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Preface

Machine learning of software artefacts is an emerging area of interaction between the
machine learning (ML) and software analysis (SA) communities. Increased produc-
tivity in software engineering hinges on the creation of new adaptive, scalable tools that
can analyze large and continuously changing software systems. For example: Agile
software development using continuous integration and delivery can require new
documentation models, static analyses, proofs and tests of millions of lines of code
every 24 h. These needs are being addressed by new SA techniques based on ML, such
as learning-based software testing, invariant generation, or code synthesis. ML is a
powerful paradigm for SA that provides novel approaches to automating the generation
of models and other essential artefacts. However, the ML and SA communities are
traditionally separate, each with its own agenda.

This book is a follow-up of a Dagstuhl Seminar entitled “16172: Machine Learning
for Dynamic Software Analysis: Potentials and Limits” that was held during April
24–27, 2016. This seminar brought together top researchers active in these two fields to
present the state of the art and suggest new directions and collaborations for future
research. We, the organizers, feel strongly that both communities have much to learn
from each other, and the seminar focused strongly on fostering a spirit of collaboration
in order to share insights and to expand and strengthen the cross-fertilization between
these two communities.

Our goal in this book is to give an overview of the ML techniques that can be used
for SA and provide some example applications of their use. Besides an introductory
chapter, the book is structured into three parts: testing and learning, extension of
automata learning, and integrative approaches as follows.

Introduction

– The chapter by Bennaceur and Meinke entitled “Machine Learning for Software
Analysis: Models, Methods, and Applications” introduces the key concepts of ML
focusing on models and some of their applications in software engineering.

Testing and Learning

– The chapter by Meinke entitled “Learning-Based Testing: Recent Progress and
Future Prospects” reviews the fundamental concepts and theoretical principles of
learning-based techniques.

– The chapter by Aichernig, Mostowski, Mousavi, Tappler and Taromirad entitled
“Model-Based Testing and Learning” provides an overview of the different models
that can be used for testing and how they can be learnt.



– The chapter by Walkinshaw entitled “Testing Functional Black-Box Programs
without a Specification” focuses on examining test executions and informing the
selection of tests from programs that do not require sequential inputs.

Extensions of Automata Learning

– The chapter by Howar and Steffen entitled “Active Automata Learning in Practice:
An Annotated Bibliography of the Years 2011 to 2016” reviews the state of the art
and the open challenges for active automata learning.

– The chapter by Cassel, Howar, Jonsson and Steffen entitled “Extending Automata
Learning to Extended Finite State Machines” focuses on automata learning for
extended finite state machines.

– The chapter by Groz, Simao, Petrenko, and Oriat entitled “Inferring FSM Models of
Systems Without Reset” presents active automata learning algorithms that relax the
assumptions about the existence of an external oracle.

Integrative Approaches

– The chapter by Hähnle and Steffen entitled “Constraint-Based Behavioral Consis-
tency of Evolving Software Systems” proposes to combine glass-box analysis with
automata learning to help bridge the gap between the design and implementation
artefacts.

– The chapter by Alrajeh and Russo entitled “Logic-Based Machine Learning in
Software Engineering” focuses on logic-based learning and its application for
declarative specification refinement and revision.

While the papers in this book cover a wide range of topics regarding ML techniques
for model-based software analysis, additional research challenges and related research
topics still exist for further investigation.

We hope that you enjoy this book and that it will kindle your interest in and help
your understanding of this fascinating area in the overlap of ML and SA. We thank the
participants of the seminar for their time and their help in reviewing the chapters. Each
chapter was reviewed by at least two reviewers and many went through several revi-
sions. We acknowledge the support of Schloss Dagstuhl—Leibniz Center for Infor-
matics and thank the whole Dagstuhl team for their professional approach that made it
easy for the participants to network, to discuss, and to have a very productive seminar.
And finally, we sincerely thank the authors for their research efforts, for their will-
ingness to respond to feedback from the reviewers and editorial team. Without their
excellent contributions, this volume would not have been possible.

May 2018 Amel Bennaceur
Reiner Hähnle
Karl Meinke
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Machine Learning for Software Analysis:
Models, Methods, and Applications

Amel Bennaceur1 and Karl Meinke2(B)

1 The Open University, Milton Keynes, UK
amel.bennaceur@open.ac.uk

2 KTH Royal Institute of Technology, Stockholm, Sweden
karlm@kth.se

Abstract. Machine Learning (ML) is the discipline that studies meth-
ods for automatically inferring models from data. Machine learning has
been successfully applied in many areas of software engineering includ-
ing: behaviour extraction, testing and bug fixing. Many more applications
are yet to be defined. Therefore, a better fundamental understanding of
ML methods, their assumptions and guarantees can help to identify and
adopt appropriate ML technology for new applications.

In this chapter, we present an introductory survey of ML applications
in software engineering, classified in terms of the models they produce
and the learning methods they use. We argue that the optimal choice
of an ML method for a particular application should be guided by the
type of models one seeks to infer. We describe some important principles
of ML, give an overview of some key methods, and present examples of
areas of software engineering benefiting from ML. We also discuss the
open challenges for reaching the full potential of ML for software engi-
neering and how ML can benefit from software engineering methods.

Keywords: Machine learning · Software engineering

1 Introduction

One can scarcely open a newspaper or switch on the TV nowadays without
hearing about machine learning (ML), data mining, big data analytics, and the
radical changes which they offer society. However, the layperson might be sur-
prised to learn that these revolutionary technologies have so far had surprisingly
little impact on software engineers themselves. This may be yet another case
of the proverbial cobbler’s children having no shoes themselves. Nevertheless, by
examining the recent literature, such as the papers published in this workshop
volume, we can see small but perhaps significant changes emerging on the horizon
for our discipline.

Surely one obstacle to the take-up of these exciting technologies in software
engineering (SE) is a general lack of awareness of how they might be applied.
What problems can ML currently solve? Are such problems at all relevant for
c© Springer International Publishing AG, part of Springer Nature 2018
A. Bennaceur et al. (Eds.): ML for Dynamic Software Analysis, LNCS 11026, pp. 3–49, 2018.
https://doi.org/10.1007/978-3-319-96562-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96562-8_1&domain=pdf


4 A. Bennaceur and K. Meinke

software engineers? Machine learning is a mature discipline, having its origins as
far back as 1950s AI research. There are many excellent modern introductions to
the subject, and the world hardly needs another. However, perspectives on ML
from software engineering are less common, and an introduction for software
engineers that attempts to be both accessible and pedagogic, is a rare thing
indeed. Furthermore, at least some of the ML methods currently applied to SE
are not widely discussed in mainstream ML. There is much more to ML than
deep learning.

With these motivations in mind, we will present here an introduction to
machine learning for software engineers having little or no experience of ML.
This material might also be useful for the AI community, to better understand
the limitations of their methods in an SE context. Our focussed selection of
material will inevitably reflect our personal scientific agendas, as well as the
need for a short concise Chapter.

To structure this introductory material, we need some organising principles.
Our approach is to focus on three questions that we feel should be addressed
before attempting any new ML solution to an existing software engineering prob-
lem. These are:

– What class of learned models is appropriate for solving my SE problem?
– For this class of models, are there any existing learning algorithms that will

work for typical instances and sizes of my SE problem? Otherwise, is it possible
to adapt any fundamental ML principles to derive new learning algorithms?

– Has anyone considered a similar SE problem, and was it tractable to an ML
solution?

Let us reflect on these questions in a little more detail. As depicted in Fig. 1,
the presentation will be structured around three main concepts: models, methods,
and applications.

1.1 Models

A learning algorithm constructs a model M from a given data set D. This model
represents some sort of synthesis of the facts contained in D. Most machine
learning algorithms perform inductive inference, to extract general principles,
laws or rules from the specific observations in D. Otherwise, learning would
amount to little more than memorisation. So a model M typically contains a
combination of facts (from D) and conjectures (i.e. extrapolations to unseen
data).

A model may be regarded as a mathematical object. Examples of types of
models (on a rough scale of increasing generality) include:

– a list of numeric coefficients or weights, (w1, . . . , wn) ∈ Rn,
– a function f : A → B,
– a relation r ⊆ B,
– a directed graph, G = (V,E),
– a logical formula, φ(x1, . . . , xn),
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Fig. 1. Classification of key concepts of ML for software engineering

– a deterministic finite automaton,
– a timed automaton,
– a hybrid automaton,
– a first-order mathematical structure.

An important observation at this stage is that this non-exhaustive list of model
types is able to support increasingly complex and structured levels of description.
Our emphasis on such precise mathematical models is because for ML, a model
must be machine representable. Perhaps more importantly, models are part of
the vocabulary when talking about machine learning in general.

Different methods can be used to construct different models from the same
underlying data set D. This is because different abstraction principles can be
applied to form different views of the same data set. Therefore, to be able to
apply ML, it is fundamentally important to understand the scope and relevance
of the various model types. A learned model M never has an arbitrary structure;
rather its structure, parameters and values are defined and delimited by the
specific method that constructed it.

A certain type of model M (e.g. a set of numeric coefficients or weights) may
provide inadequate detail for a specific SE application (e.g. testing, documenta-
tion, monitoring, timing analysis etc.). In this case, a better model type needs to
be found, and after this we must consider whether there are any efficient learning
algorithms for this type of model. Generally speaking, the more complex a model
is, the harder it is to learn. Alternatively, a type of model may be overly complex
and detailed for a specific problem. In this case, it might be better to consider
simpler models, for which more efficient and scalable learning algorithms might
be found.



6 A. Bennaceur and K. Meinke

1.2 Methods

The scope and power of machine learning algorithms increases each year, thanks
to the extraordinary productivity of the AI community. Therefore, what was
technically infeasible a few years ago, may have changed or be about to change.
This rapid pace of development is reflected in current media excitement. How-
ever, the SE community needs to be more aware, on a technical level, of these
changes, as well as the fundamental and unchanging theoretical limits. For exam-
ple, [23] has shown that there is no learning method that can identify members
of the class of all total recursive functions in the limit1.

Such negative results do not necessarily mean that ML cannot be used for
your SE problem. Nor does media hype imply that you will succeed. Therefore,
we believe that it is beneficial to have a deeper insight into the fundamental
principles of machine learning that goes beyond specific popular algorithms.

1.3 Applications

We also believe it will be beneficial for software engineers to read about suc-
cess stories in applying ML to SE. Therefore, we will try to outline some SE
applications (Model extraction, testing, and component integration), where ML
has already been tried with some degree of success. Scalability in the face of
growing software complexity is one of the greatest challenges for SE toolmak-
ers. Therefore, information (however ephemeral) about the state of the art in
solvable problem sizes is also relevant.

1.4 Overview of This Chapter

In Sect. 2 we give a brief overview of the major paradigms of machine learning.
These paradigms (such as supervised and unsupervised learning) cut across most
of the important types of models as a coarse taxonomy of methods. The number
of relevant types of models for SE is simply too large to cover in a short introduc-
tion such as this. Therefore, in Sect. 3 we present models and methods focussed
around various types of state machine models. State machine models have been
successfully used to solve a variety of SE problems. Our introduction concludes
with Sect. 4, where some of these applications are discussed. Our survey of the
literature will be woven into each Section continuously.

2 Learning Paradigms

Machine learning is the discipline that studies methods for automatically induc-
ing models from data. This broad definition of course covers an endless variety
of subproblems, ranging from simple least-squares linear regression methods to
1 Informally identification in the limit means that for any infinite sequence of obser-

vations o1, o2, . . . there exists some finite point n after which the function learned
from the first n observations is longer changed by any later observations.
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advanced methods that infer complex computational structures [33]. These meth-
ods often differ in their assumptions about the learning environment, and such
assumptions allow us to categorise ML algorithms in a broad way as follows.

2.1 Supervised Learning

This is the most archetypical paradigm in machine learning. The problem setting
is most easily explained when the underlying model (in the sense of Sect. 1.1) is
a mathematical function f : A → B, however the approach generalises to other
models2, such as automata.

In this setting, the learning algorithm is provided with a finite set of n labelled
examples: i.e. a set of pairs T = {(xi, yi) ∈ A × B : 1 ≤ i ≤ n}. The goal is
to make use of the example set T (also known as the training set) to induce a
function f : A → B, such that3 f(xi) ≡ yi for each i, (see for example [50]).
Notice an implicit assumption here that the training set T corresponds to some
function: i.e. for each 1 ≤ i, j ≤ n if xi = xj then yi = yj . If this assumption is
false, we must conclude that either: (i) a function model is not appropriate for
the training set T , and a relational model r ⊆ A×B should be used; (this might
reflect non-determinism in the System Under Learning (SUL)) or, (ii) the
training set contains measurement noise, and a function model could be used
when combined with data smoothing4. Thus some domain knowledge is often
needed for the best choice of model. This situation seems to be rather typical in
practise.

The task of a learning algorithm is to actually construct a concrete represen-
tation of f for any given training set T . This could be, for example, in terms of
coefficients for a set of simple basis functions that collectively describe f5.

It is natural to try to evaluate the quality of f as a model. By quality, we
generally mean the predictive ability of f on a data set E = {(wi, zi) ∈ A × B :
1 ≤ i ≤ m} which is disjoint from T (often called the evaluation set). To quantify
the quality of f we can for example measure the percentage of instances i such
that f(wi) ≡ zi. Of course, this is only an empirical estimate of the quality of f ,
and care needs to be taken with the choice of E. Generally, a larger value of m
will give greater confidence in the accuracy of the quality estimate. These two
steps are illustrated in Fig. 2.

A larger value of n often leads to a model f with better predictive ability on the
same evaluation set E. This is because many machine learning algorithms have
the property of convergence over increasing data sets. However, convergence is not

2 Note that in general A and B can be cartesian products of sets, e.g. A = A1×. . .×An.
3 Here, the relation f(xi) ≡ yi means that f(xi) is very close to yi for some suitable

metric. Of course one such relation is the equality relation on B.
4 By data smoothing we mean any form of statistical averaging or filtering process,

that can reduce the effects of noise. Data smoothing may be necessary even when a
relational model is appropriate.

5 This is done in many approaches including linear regression models, polynomial
approximation, Fourier methods, simple neural networks and deep learning.
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always theoretically guaranteed for every learning algorithm. This problem can be
significant for algorithms based on optimisation methods, such as deep learning.

The domain A of all possible training and evaluation inputs is often very large
or even infinite. Therefore, neither perfect training, nor perfect evaluation are
usually practicable. Perfect and complete learning may not even be necessary
for specific applications. An approximate model may already yield sufficient
information, for example to demonstrate that a bug is present in a software
system under learning.

When learning is incomplete, some kind of probabilistic statement about the
quality of f may be adequate. A popular approach is the probably approximately
correct (PAC) learning paradigm of [61]. This paradigm expresses the quality of
f in terms of two parameters: (ε, δ), where ε is the probability that f(wi) lies
no further than δ from zi for each (wi, zi) ∈ E. Extensive research into PAC
learning (see e.g. [36]) has shown the existence of models that are PAC learnable
in polynomial time, but which cannot be exactly learned in polynomial time. So
being vague may pay off!

Fig. 2. Illustrating the supervised learning paradigm

A major hurdle in applying supervised learning is often the significant effort
of labelling both the training and evaluation data, in order to induce a function
f with sufficient quality. Fortunately, in a software engineering context, there are
situations where the system under learning itself can act as a qualified teacher
that can label both training and evaluation examples.

2.2 Unsupervised Learning

This is an alternative paradigm to supervised learning that lowers the entry hur-
dle for application by requiring only an unlabelled training set, T = {xi ∈ A : 1 ≤
i ≤ n}. In order to be able to come up with a useful model when no supervision is
provided, unsupervised learning must construct its own labelling scheme which
is then used to label the training set elements xi. The most well-known exam-
ple of unsupervised learning is probably k-means clustering, where the learning
algorithm identifies k (possibly overlapping) sub-categories C1, . . . , Ck ⊆ A
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within the training set T , and assigns each object xi to one or more such cat-
egories Cj . Thus the categories Cj are not given a-priori. This process is illus-
trated in Fig. 3. Obviously, the results of unsupervised learning cannot compete
with those of supervised learning. For example, in supervised learning incorrect
classification is not possible as the categories are identified a-priori.

Fig. 3. Illustrating the unsupervised learning paradigm

2.3 Semi-supervised Learning

This is a pragmatic compromise between Sects. 2.1 and 2.2. It allows one to use
a combination of a small labelled example set Ts = {(x, y)} together with a
larger unlabelled example set Tu = {x}. This can allow us to improve on the
limited supervised learning possible with Ts only, by extending the result with
unsupervised learning on Tu.

2.4 Reinforcement Learning

Reinforcement learning requires the existence of a reward mechanism that can be
used to guide the learning algorithm toward a revised hypothesis as illustrated
in Fig. 4.

The learner is in a feedback loop with the environment with which it interacts.
The learner performs an action on the environment and observes the correspond-
ing reward try to get a step closer to maximising this reward. Over time, the
learner optimises for the best series of actions. Q-learning [66] is an example
reinforcement learning technique in which agents learn incrementally how to act
optimally in controlled Markovian domains.

3 Models and Methods

In this Section we introduce some important classes of learnable models and
some of their associated learning algorithms. This survey is not meant to be
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Fig. 4. Illustrating the reinforcement learning paradigm

exhaustive. Some significant types of models omitted here are presented else-
where in this Book. Others have been presented many times in the existing ML
literature.

A general category of models which are quite natural to learn for the pur-
poses of software analysis are models of computation for computer software or
hardware. This is because such models are able to abstract away implementa-
tion details (such as programming language syntax) while preserving important
behavioural properties. For example, one application of machine learning for
models of computation is to dynamically infer a model from runtime behaviour,
and then apply a static analysis technique to this model.

In computer science, there is a long tradition of defining and studying various
models of computation, including: Turing machines [30], Petri nets [53], deter-
ministic finite automata (DFA) [30], pushdown automata [30], register machines
[14], non-deterministic [30], probabilistic [28], and hybrid automata [4].

In this Chapter, we will mainly focus on different types of automata models.
There is a rich literature around automata models that encompasses many vari-
ations. The explicit computational structure of such models is able to support
many of the basic aims of software analysis. Furthermore, there is the advan-
tage of traceability between the training data and the learned model, which
can support SE traceability and certification needs. Thus automaton learning is
largely consistent with the emerging paradigm of explainable AI (XAI). Model
traceability is often lost in other ML statistical methods.

We have several aims. The most basic aim is to survey different classes of
models which might be appropriate for different software analysis tasks such as
verification or testing. Another aim is to provide simple pedagogical examples
of algorithms that convey certain important ideas. These algorithms do not
necessarily reflect the state of the art in machine learning, (which can be found
elsewhere in this Book). However, they should equip the reader to master the
literature.
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Fig. 5. Learning automata models

Finally, we wish to compare and contrast the problem of learning across dif-
ferent model classes (see Fig. 5). In particular we aim to identify certain common
principles and techniques that can be refined and extended to new model classes.

3.1 Deterministic Finite State Machines

Pedagogically, it is appropriate to start with the simplest automata model which
is the deterministic finite state machine. Then gradually we will introduce more
features associated with greater complexity both in model structure and diffi-
culty of learning.

By a finite state machine (FSM), we mean a model of computation based
on a finite set Q = {q0, . . . , qn} of states, and transitions (i.e. state changes)
qi → qj between two states, that can occur over time. A state transition is
always initiated by some input and usually returns some output. This description
actually applies to many different models of computation found in the literature,
including some that one would prefer to call infinite state machines. So for the
purposes of studying machine learning we will need to be more precise.

A refinement of this description is that an FSM can only accept input values
from a finite input alphabet Σ and return values from a finite output alphabet Ω.
Essentially, this means that the memory model of an FSM has a fixed and finite
size. This property distinguishes the FSM model from other models, such as
pushdown automata, Turing machines and statecharts [27]. The finite memory
characteristic plays an important role for convergence in machine learning, as
we shall see.

In the simplest case, a specific transition qi → qj , from a state qi to a state
qj , is triggered by receiving an input value σ ∈ Σ. According to whether the
corresponding output value ω ∈ Ω of an FSM is associated with taking the
transition qi → qj itself, or arriving in the target state qj , the FSM is classified
as either a Mealy or a Moore machine respectively. A Mealy machine can give
an equivalent but more compact representation of the same Moore machine.
However, this makes Mealy machines somewhat harder to infer (as a function of
their size). For simplicity, in this survey we focus on learning Moore machines.
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Supposing that from any given state q ∈ Q, the same input value σ always
leads to the same next state q′ ∈ Q then an FSM (Moore or Mealy) is said to
be deterministic, otherwise it is said to be non-deterministic. Non-determinism
is quite a pervasive phenomenon in software and hardware systems, especially
where these are built up from loosely coupled communicating components. How-
ever, because of their greater complexity, non-deterministic FSMs are harder
to learn. We can consider quantifying the probabilities associated with non-
deterministic choices of transitions. This leads to an even more general model
termed probabilistic automata. We shall return to these more general models in
later sections of this Chapter.

In the context of models of computation, we begin then with the simplest
type of learning problem, the task of learning a deterministic Moore automaton.

Definition 1. By a deterministic Moore automaton we mean a structure

A = (Q,Σ,Ω, q0, δ : Q × Σ → Q,λ : Q → Ω),

where: Q is a set of states, q0 ∈ Q is the initial state, Σ = {σ1, . . . , σk} is
a finite set of input values, Ω = {ω1, . . . , ωk′} is a finite set of output values,
δ : Q × Σ → Q is the state transition function, and λ : Q → Ω is the output
function.

If Q is finite then A is termed a finite state Moore automaton, otherwise A is
termed an infinite state Moore automaton. Infinite state machines are useful
both for pedagogical and theoretical purposes. For example, they can inspire
ideas about more general learning paradigms.

The structural complexity of A is an important parameter in studying the
complexity of learning algorithms. The simplest measure here is the size of A as
measured by the number of states n = |Q|.

Notice that according to Definition 1, a deterministic Moore automaton is a
universal algebraic structure6 in the sense of [45], and this observation leads to
the subject of algebraic automata theory [29]. Algebraic concepts such as isomor-
phisms, congruences and quotient algebras are all applicable to such structures.
These algebraic concepts can be quite useful for gaining a deeper understand-
ing of some of the principles of learning. The following insights are particularly
useful.

– Structural equivalence of automata is simply isomorphism;
– The main method for automaton construction in automaton learning is the

quotient automaton construction;

6 A universal algebraic structure is a many-sorted first-order structure 〈Ai : i =
1, . . . , n; cj : j = 1, . . . , m; fk : k = 1, . . . , p, 〉 consisting of data sets Ai, constants
cj ∈ Aij , and functions fk : Aik(1) × . . .×Aik(n) → Aik(n+1) but no relations. Thus a
deterministic Moore automaton is a 3-sorted universal algebraic structure. See e.g.
[45] or [44] for further details.



Machine Learning for Software Analysis: Models, Methods, and Applications 13

– The set of all possible solutions to an automaton learning problem can be
modelled and studied as a lattice of congruences. The ordering relation is
set-theoretic inclusion ⊆ between congruences. The maximal elements in this
lattice correspond with minimal models.

Unfortunately, in a short introductory chapter such as this, we do not have
space to explore this rich mathematical theory in any depth.

Deterministic Moore automata properly include deterministic finite
automata (DFA) encountered in formal language theory. DFA are a special case
where the output alphabet Ω is a two element set: e.g. Ω = {accept, reject}.
Automaton learning algorithms found early applications in the field of natural
language processing (NLP), where they were used to infer a regular grammar
empirically from a corpus of texts. The sub-field of DFA learning is therefore
also known as regular inference [28]. For software analysis, the generalisation
from two outputs to multiple outputs Ω = {ω0, . . . ωk′} is important, and not
always trivial.

Suppose that we are given as an SUL a software artifact that we wish to
model and learn as a deterministic Moore automaton. We can imagine that this
SUL is encapsulated within a black-box, so that we can communicate with it,
without being aware of its internal structure, or even its size. This is the paradigm
of black-box learning. Black-box learning is appropriate in software analysis for
learning problems involving third-party, low level, dynamically changing, and
even undocumented software. In practise, even when we do have access to the
SUL (e.g. its source code), its explicit structure as a state machine is often far
from clear. Nor is it always clear which type of state machine best captures the
SUL behaviour (e.g. a deterministic or a non-deterministic machine).

To learn the SUL as a deterministic Moore machine, we observe its behaviour
over time, and for this we need to be given an explicit protocol to communicate
with the SUL. In practical applications, defining and implementing this protocol
can be quite challenging. For example, we might communicate with the SUL in a
regular synchronous fashion, or an asynchronous (event-driven) manner. We may
also need to map between the abstract symbolic representation of an input set Σ
and specific structured and complex input values (such as lists, queues, objects
etc.). The same mapping problem applies to the outputs of the SUL and Ω.

By a query on the SUL we mean a finite string or sequence σ = σ1, . . . , σl ∈
Σ∗ of length l ≥ 0 over an appropriate input alphabet Σ derived from its API.
Notice that even the empty string ε can be a legitimate query for returning the
initial state of the SUL on startup. If we execute the SUL on a query σ then it
should return some interesting observation. Without loss of generality, we shall
assume that this observation is a string ω0, . . . , ωl ∈ Ω∗, of length l + 1. Then
for each 0 ≤ i ≤ l, we can assume that ωi is the result of uniformly iterating a
state transition function δ, i.e.

ωi = λ(δ∗(σ1, . . . , σi)),

where δ∗(ε) = q0 and δ∗(σ1, . . . , σi+1) = δ(δ∗(σ1, . . . , σi), σi+1).
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We can now ask: Given an SUL, is it possible to construct complete definitions
of Q, q0, δ and λ for a Moore automaton model from a finite set of queries

Queries = {σ1, . . . , σm}
and the corresponding set of observations

Observations = {ω1, . . . , ωm}.

This is the problem of black-box learning a Moore automaton representation of
the SUL as illustrated in Fig. 6. It is clearly a supervised learning problem, in
the sense of Sect. 2.1. Furthermore, this problem generalises to learning other,
more complex representations of the SUL. Notice that the problem specifically
relates to finding a complete model that models all possible behaviours of the
SUL. For certain software analysis problems, e.g. bug-finding, it may already be
sufficient to construct a partial model of the SUL, in which some SUL behaviours
are missing. Notice also, that it is not a-priori clear whether a given SUL even
has a complete finite state Moore machine model. For example, the behaviours
of the SUL may correspond to a push-down automaton model using unbounded
memory.

Fig. 6. Illustrating black-box learning a Moore automaton

If this learning problem can be solved, we can pose further questions.

– Can we characterise a minimally adequate set of queries?
– What algorithms can be used to efficiently construct Q, q0, δ and λ from the

query and observation sets?

Notice that for a behavioural analysis of the SUL, it is enough to reconstruct
Q, δ and λ up to structural equivalence (i.e. isomorphism). The concrete name
given to each state q ∈ Q does not impact on the input/output behaviour of the
learned model A.

3.1.1 Passive Versus Active Learning
At this point, an important distinction in black-box learning methods arises as
follows. It may be that we are given fixed and finite sets of queries and observa-
tions for the SUL, and invited to produce our best guess about Q, q0, δ and λ
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that fits the known data. This could be because the SUL is offline, unavailable,
or because we may monitor but not actively interfere with the activity of the
SUL for safety reasons. This non-adaptive approach to learning is termed passive
learning.

On the other hand, it may be possible for us to generate our own queries and
observe the corresponding behaviour of the SUL directly. This might be because
the SUL is constantly available online to answer our queries. In this more flexible
situation, new queries could be constructed according to the response of the SUL
to previous queries. This adaptive approach is termed active learning.

In the following, we will consider both of these important learning paradigms
in turn.

3.1.2 Passive Automaton Learning
In passive automaton learning we are given a fixed and finite set of queries and
observations for an SUL, and invited to produce our best guess about the automa-
ton A (i.e. its components Q, q0, δ and λ) that fits the known data. Passive automa-
ton learning is a form of supervised learning, since we are given pairs of queries
and observations, and asked to fit an optimal automaton structure to them7. Since
more than one automaton A may fit the known data, the passive learning problem
becomes an optimisation problem: how to choose the best model among a set of
possible automata according to some criterion, e.g. size.

Passive learning is in some sense a simpler problem than active learning.
However, the basic ideas of passive learning can be generalised to develop more
interesting active learning algorithms, as we shall see later in this Section. The
fundamental situation here is fairly positive. If an SUL has a representation as
a finite state Moore automaton A, then the structure of A can be inferred in

Fig. 7. Illustrating passive learning of Moore machines

7 Here supervised learning is more obvious if we think in terms of regular languages
rather than automata. Then we are inferring the language acceptance function L :
Σ∗ → {0, 1} from a finite set of instances. However, the two viewpoints are equivalent
by Kleene’s Theorem.



16 A. Bennaceur and K. Meinke

finite time from a finite number of queries. Figure 7 summarises the main steps
for passive learning of Moore machines which we will explain in the following.

To see this, suppose that we start to systematically enumerate and execute a
sequence of queries σ1, σ2, . . . on the SUL. For example, we could enumerate all
possible input strings in Σ∗ up to some maximum size l using the lexicographical
ordering. This will produce a corresponding sequence of observations ω1, ω2, . . .
from the SUL. Whatever query set is chosen, if it is prefix closed, i.e. every prefix
of a query is also a query8, then we can arrange the data set of all queries and
responses into an efficient data storage structure termed a prefix tree.

Definition 2. Let Queries ⊆ Σ∗ be a finite prefix closed set of queries and let
Observations ⊆ Ω∗ be the corresponding prefix closed set of observations for an
SUL. The prefix tree T (Queries,Observations) is the labelled rooted tree

T (Queries,Observations) = (root,Queries, E ⊆ Queries2, label : Queries → Ω)

where:

1. root = ε,
2. for each (σ1, . . . , σn) ∈ Queries, where n ≥ 1,

((σ1, . . . , σn−1), (σ1, . . . , σn)) ∈ E,

3. for each (σ1, . . . , σn) ∈ Queries

label(σ1, . . . , σn) = ωn+1

where ω1, . . . , ωn+1 ∈ Observations is the SUL output for (σ1, . . . , σn).

Notice that this definition makes sense even if the set Queries is infinite, in
which case T (Queries,Observations) is a finitely branching infinite tree. In fact,
if |Σ| = k then T (Queries,Observations) must have a branching degree of at
most k.

The prefix tree T (Queries,Observations) is the starting point for construct-
ing all possible automaton models of the SUL, as it represents everything we
know about the SUL, assuming we are unable to ask further queries. Notice that
although T (Queries,Observations) is a directed graph, it is not necessarily an
automaton as such. In any finite prefix tree, if we start from the root and regard
its edges as transitions, we eventually “jump off” when we reach a leaf node.
However, interestingly enough, if Queries = Σ∗ then the infinite prefix tree
T (Σ∗,Observations) is an automaton (there are no leaves to jump off). This prefix
tree exactly captures the behaviour of the SUL based on perfect (infinite) infor-
mation about it9. Using the fact that finite state machine behaviour is always ulti-
mately periodic, we could try to convert a prefix tree into a finite state machine
model of the same data set.
8 This assumption amounts to little more than retaining, i.e. not throwing away, any

observational data.
9 For algebraists, the important fact here is that T (Σ∗,Observations) is the initial object

in the appropriate category of automata and homorphisms, which is unique up to
isomorphism. See [46] for details.
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The most obvious way to bridge the gap between a prefix tree and an automa-
ton model is to find a general method to fold any prefix tree (finite or infinite)
into a finite automaton model10. The essential idea here is loop identification
by searching for finitely or infinitely repeating subtrees in the prefix tree. For
finite prefix trees an important closed world assumption is at work here. If a
loop cannot be shown to not exist, i.e. the loop does not contradict the available
data, then we could consistently assume that the loop does exist11. In fact, it is
precisely this closed world assumption that lends inductive inference to automa-
ton learning. A loop hypothesis is always an inductive inference, i.e. a hypothesis
about infinitely many behaviours supported by just finite evidence.

Folding a prefix tree means merging nodes in the tree in such a way that we
preserve the subtrees. Figure 8 gives an idea of this for Σ = {0, 1} and Ω = {a, b}.
Fig (B) is obtained from the prefix tree in Fig (A) by merging the pair of nodes
ε and 0 (giving a loop) and the pair 10 and 11 (giving a path join). Following
this, in the second step Fig (C) is obtained from Fig (B) by merging the pair ε
and 100 (giving a loop), as well as the pair ε and 101 (giving a loop).

Clearly, after we have merged two nodes v1, v2 ∈ Queries they share all their
entry and exit paths afterwards through the merged nodes12. Most importantly,
if we merge two nodes v1, v2 ∈ Queries which lie on the same path from the
root13, then this always introduces a loop or cycle into the resulting directed
graph. For the result of merging to be well defined, the nodes v1 and v2 must be
compatible in the following sense.

Definition 3. Let

T (Queries,Observations) = (root,Queries, E ⊆ Queries2, label : Queries → Ω)

be a prefix tree. A pair of nodes v1, v2 ∈ Queries is said to be compatible if the
sub-trees rooted at v1 and v2 are consistent with each other, i.e. for every suffix
s ∈ Σ∗, if v1.s ∈ Queries and v2.s ∈ Queries then

label(v1.s) = label(v2.s).

We write v1 � v2 if v1 and v2 are compatible.

The consistency condition in Definition 3 ensures that if we merge nodes v1 and
v2 then they do not contradict each other in the resulting merged graph. This is
summarised by the fact that for any σ ∈ Σ we have14:

v1 � v2 =⇒ v1.σ � v2.σ (1)
10 The fundamental principle of initiality for T (Σ∗,Observations) says that such folding

is always possible.
11 For active learning, counterfactual evidence may eventually emerge that destroys

the loop hypothesis, but in passive learning this is not possible.
12 Merging is a little complicated to define graph theoretically, so we leave it to the

reader as an exercise!
13 Then v1 is a prefix of v2 or vice versa.
14 Assuming that v1.σ, v2.σ ∈ Queries.
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Fig. 8. A prefix tree folded in two steps with four node merges

Compatibility is a necessary condition for merging two nodes v1 and v2, since the
merged graph must include the information carried in both subtrees. However,
compatibility is not a sufficient condition to successfully derive an automaton
from the prefix tree by folding.

To see this, consider that the compatibility relation �, is clearly reflexive i.e.
v � v and symmetric i.e. v1 � v2 → v2 � v1. However, compatibility is not
always transitive, i.e. in general v1 � v2 and v2 � v3 do not imply v1 � v3.
This is because in general v1, v2 and v3 will have disjoint subtrees that need
not be mutually consistent. Therefore: (i) the order in which we merge subtrees
is important, (ii) different merge orders will lead to different (non-isomorphic)
automaton models from the same data set, and (iii) some models may be prefer-
able to others (e.g. in terms of size).

We can now express some necessary constraints on subtree folding for prefix
trees in terms congruence properties.

Definition 4. Let

T (Queries,Observations) = (root,Queries, E ⊆ Queries2, label : Queries → Ω)

be a prefix tree.

1. By a congruence on T (Queries,Observations) we mean an equivalence rela-
tion ≡ on the set Queries such that for any p, q ∈ Queries and any σ ∈ Σ, if
p.σ ∈ Queries and q.σ ∈ Queries then

p ≡ q =⇒ p.σ ≡ q.σ.

2. A congruence ≡ is consistent if, and only if, for any p, q ∈ Queries, if p ≡ q
then label(p) = label(q).
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3. A congruence ≡ is closed if, and only if, for any query p ∈ Queries which is
a leaf node in the prefix tree T (Queries,Observations) there exists a non-leaf
q ∈ Queries such that

p ≡ q.

Based on the two first items, we can infer that congruence implies compatibility,

p ≡ q =⇒ p � q.

However, a consistent congruence has stronger properties than compatibility as it
is transitive. This means it consistently resolves conflicting node merges. Finally,
the closure condition (the third item in Definition 4) rectifies the problem that
the leaves of finite prefix trees are not closed under state transitions.

Now given a closed consistent congruence on a prefix tree we can construct
a structure that is “almost” an automaton.

Definition 5. Let

T (Queries,Observations) = (root,Queries, E ⊆ Queries2,Queries → Ω)

be a prefix tree, and let ≡ be a closed consistent congruence on T (Queries,
Observations). We define the quotient structure

T (Queries,Observations)/≡
= (Q, Σ, Ω, q0, δ : Q × Σ 
→ Q, λ : Q → Ω)

as follows15.

1. For the state set:

Q = {p/≡ : p.σ ∈ Queries for some σ ∈ Σ}
where p/≡ is the equivalence class of p w.r.t. ≡.

2. For the initial state: q0 = ε/≡,
3. For any p ∈ Queries and σ ∈ Σ, if p.σ ∈ Queries then

δ(p/≡, σ) = p.σ/≡,

otherwise δ(p/≡, σ) is undefined.
4. For any p.σ ∈ Queries

λ(p/≡) = label(p).

We meet the above construction many times in automaton learning. It
appears again when we study active learning, and in modified forms when learn-
ing other types of automaton. The quotient structure defined above is almost an
15 Notice here that δ : Q × Σ �→ Q is a partial function, i.e. δ is not necessarily defined

on all arguments.
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automaton, but for one small problem: the query set Queries may not contain
enough information to define every transition. In this case, the state transition
function δ is a partial function that is not defined on every state and input
value. When we look into this problem more deeply, we realise that the query
set may not even have enough information to define every state! So what kind
of guarantee can we give about passive learning?

For the first time in this Chapter, but not the last, we must consider the
correctness problem for a learning algorithm. Here we view passive learning as
essentially a method for the construction of some closed consistent congruence
from which we can concretely build an automaton as a quotient structure. Are
there necessary and sufficient conditions on the underlying query set, such that
passive learning is guaranteed to yield a quotient structure that: (i) is guaran-
teed to be a fully defined automaton, and (ii) is behaviourally equivalent to the
SUL? Surprisingly (when compared with other paradigms of machine learning)
complete and correct passive learning can be guaranteed when we have sufficient
behavioural information about the SUL.

Definition 6. Let

A = (Q,Σ,Ω, q0, δ : Q × Σ → Q,λ : Q → Ω),

be a deterministic Moore automaton.

1. Let q ∈ Q be any state. By an access string for q, we mean any string
σ ∈ Σ∗ such that δ∗(q0, σ) = q.

2. Let q, q′ ∈ Q be any states. By a distinguishing string for q and q′, we mean
any string σ ∈ Σ∗ such that λ(δ∗(q, σ)) �= λ(δ∗(q′, σ)). We say that q and q′

are distinguishable if there exists a distinguishing string for q and q′.

For a pair of different states q and q′ in A, a distinguishing string σ is not
guaranteed to exist. But it must exist if there is no automaton that is both
strictly smaller than A and behaviourally equivalent to A.

Theorem 1. Correctness Theorem for Passive Learning.
Suppose that the SUL behaviour can be precisely described by a deterministic

Moore automaton,

A = (Q,Σ,Ω, q0, δ : Q × Σ → Q,λ : Q → Ω).

Let Queries ⊆ Σ∗ be a set of queries such that:

1. For every state q ∈ Q, Queries contains an access string σq ∈ Σ∗ for q.
2. For every distinguishable pair q, q′ ∈ Q of states, Queries contains both σq.δ

and σq′ .δ, where δ ∈ Σ∗ is a distinguishing string for q, q′.
3. For every state q ∈ Q, and for each input σ ∈ Σ, Queries contains the query

σq.σ.

Then for any closed consistent congruence ≡ on T (Queries,Observations)
the quotient structure T (Queries,Observations)/≡ is an automaton that is
behaviourally equivalent to A.
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Proof. Exercise.
To illustrate the Correctness Theorem 1 for Passive Learning, suppose that

we take the final Fig. 8(iii) as the Moore automaton to be learned. Then the
prefix tree of Fig. 8(i) satisfies the three properties of Theorem 1. Furthermore,
there exists a closed consistent congruence ≡ containing the equivalences (node
identifications) ε ≡ 0, 10 ≡ 11, ε ≡ 100 and ε ≡ 101. Then the resulting quotient
automaton derived from Fig. 8(i) using ≡ is isomorphic with Fig. 8(iii). In other
words, passive learning applied to Fig. 8(i) successfully gives Fig. 8(iii). It should
be obvious that no larger prefix tree than Fig. 8(i) is necessary to learn Fig. 8(iii).

An important point to emphasise here is that in general there are many dif-
ferent congruences ≡ on any specific prefix tree T (Queries,Observations). Differ-
ent congruences will lead to structurally different (i.e. non-isomorphic) quotient
automata. Nevertheless, each quotient automaton T (Queries,Observations)/≡
will exhibit all of the behaviours observed in the original data set of Queries and
Observations.

From this important observation, we are motivated to further refine model
construction by choosing the “best” model according to some principle such as
Occam’s razor (the principle of parsimony). The best model might be considered
to be a minimum state automaton. However [24] has shown that the problem
of finding a minimum state DFA compatible with a given dataset is NP Hard.
Thus all known algorithms for this problem require exponential time for some
inputs.

Considering the fact that there is not usually a single maximum congruence,
in general, there are several maximal16 congruences and it is natural to choose
from among these. Other criteria can be used to refine this choice.

One additional criterion is known as the evidence driven approach. Here we
successively merge node pairs v1, v2 for which the compatibility evidence is great-
est. This corresponds to choosing the largest possible subtrees, which have the
greatest power to refute a merge. It also corresponds intuitively to making the
least controversial hypotheses about the structure of the SUL. Algorithms based
on this approach have performed well in benchmarking studies [38].

Obviously, passive automaton learning converges as a finite model construction
from a fixed finite data set, when correctly implemented. Notice however, that
in terms of query set size, Theorem 1 implies that passive automaton learning
also converges in the limit. For once we have accumulated enough access strings,
single input extensions to these, and distinguishing strings, then further querying
cannot destroy any of these conditions.

Now the only question remains, short of exhaustive querying, how can we
compile a set of queries that satisfies Conditions 1, 2 and 3 of Theorem 1, and
how can we build the appropriate congruence ≡? This question is best answered
by the subject of active automaton learning, which we consider next.

16 In a lattice, (A, ≤) a maximum element exceeds all others while a maximal element
is exceeded by none. Thus a maximum element must be unique, while a maximal
element need not be.
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3.1.3 Active Automaton Learning
In passive automaton learning we are given a dataset of queries and observations
about the SUL and asked to construct an automaton model which best fits this
dataset. The accuracy of any model will be limited by the number of queries
in the dataset. Theorem 1 even suggests that we will obtain a behaviourally
incomplete model of the SUL if key queries are missing from the dataset.

In active automaton learning, these problems can be circumvented since the
training regime is more liberal. Active learning means that at any time in the
learning process we can supplement the existing dataset by asking new queries
which the SUL must answer. This also means we can focus on heuristics for active
query generation that could speed up the learning process. From the study of
active learning, it becomes clear that neither exhaustive nor random querying
are good heuristics, since both methods generate many redundant queries.

Active automaton learning is again a form of supervised learning, since query
and observation pairs are involved. Many active automaton learning algorithms
have been published in the literature. Useful surveys include [9,28,68]. In this
section, we will look at a well-known and widely used active learning algorithm
L* originating17 in [6]. This algorithm works quite well on small examples,
though it can generate an excessive number of queries on larger case studies.
Nevertheless, it is easy to understand and implement, while it involves simi-
lar principles to those used in more efficient algorithms. Under the assumption
that we can efficiently detect differences between the learned automaton and
the SUL, the L* algorithm can be mathematically proven to completely learn
an automaton in polynomial time. One can even prove that L* constructs the
unique minimum state automaton that is behaviourally equivalent to the SUL,
which is in itself a useful property18.

We begin by clarifying the experimental protocol for active learning. If there
is a way to bring the SUL back to its initial state q0 after each individual query σi

then the SUL is said to satisfy the reset assumption. This assumption allows us
to isolate the effects of each query from the next. Without the reset assumption,
in black-box learning we have no way of knowing what state the SUL is left in
after it processes query σi. This unknown SUL state becomes the new initial
state for processing the next query σi+1. Thus, to query the SUL without the
reset assumption is effectively to query it using one single long query. Learning
algorithms exist (see the Chapter by Groz et al. [54]) that do not require the
reset assumption. However, such algorithms tend to be complex. For applying
L*, and many other active automaton learning algorithms, we assume that the
reset assumption holds.

17 We actually present a simple generalisation of L* to an arbitrary output alphabet
Ω. This algorithm is termed L*Mealy and first appeared in [34] where it was applied
to Mealy machines.

18 Minimum state size seems to be a natural result of many active learning algorithms
for Moore automata. This seems to be due to the difficulty of distinguishing pairs of
states without any concrete evidence.
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The basic idea of all active automaton learning algorithms is to find a way
to identify incompleteness in a dataset. By an incomplete dataset, we mean a
dataset of queries and observations that does not allow us to unambiguously
infer a behaviourally equivalent SUL model. If a specific incompleteness can be
identified in the dataset then this can be used to actively generate a new query.
Executing this query on the SUL will then bring the entire dataset somewhat
closer to completeness. By iterating this process of identifying and resolving
dataset incompleteness (hopefully) eventually learning will be complete.

For many active automaton learning algorithms, a mathematical analysis
can be used to show that learning will always eventually terminate yielding a
behaviourally equivalent automaton model. Such a result is called a convergence
theorem for the learning algorithm in question. Active automaton learning is
rather rich both in algorithms and in convergence theorems. This can be con-
trasted with other branches of ML where convergence cannot always be guar-
anteed, e.g. deep learning. On the other hand, the datasets necessary to achieve
complete learning may be infeasibly large. Good methods for approximate learn-
ing are an important open problem.

The L* algorithm has its own specific active querying heuristics. For L*,
incompleteness is divided into two kinds: (i) incompleteness due to not being
able to immediately generate a model, and (ii) incompleteness due to lacking a
full set of queries (access and distinguishing strings) for the SUL. While type
(ii) incompleteness is very intuitive, type (i) incompleteness is rather technical,
and will be further broken down into more detailed requirements.

A good starting point for presenting L* is to define the underlying data
structure used to identify type (i) incompleteness in the query set. This is more
complex than the prefix tree (Definition 2) we saw earlier in passive learning.
However, it is not unrelated in content.

Suppose that Queries ⊆ Σ∗ and Observations ⊆ Ω∗ are the current dataset
of queries and observations of the SUL. The main data structure for L* is a
two dimensional table T . The table entries in T are output values from Ω. The
table rows and columns are indexed by strings over Σ∗. However, the table T
is allowed to expand dynamically over time, as we incrementally learn the SUL
using new queries. One difficulty in presenting the L* algorithm is to explain
this expansion process for T .

At any stage in the execution of L*, there are three distinguished table index-
ing sets:

– a set PrefixesRed ⊆ Σ∗ of red prefixes which is a prefix-closed set of input
strings,

– a set PrefixesBlue = PrefixesRed.Σ of blue prefixes which is a prefix-closed
set of input strings that extends each red prefix with one extra input symbol
(chosen over all possible input symbols in Σ),

– a set Suffixes ⊆ Σ∗ which is a suffix-closed set of input strings.
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We follow a common pedagogy here of distinguishing between red and blue pre-
fixes19. The rows of T are indexed by red and blue prefixes from the set

PrefixesRed ∪ PrefixesBlue,

and the columns of T are indexed by suffixes from the set Suffixes.
How are SUL output values stored as table entries of T? Let us write T [p, s]

for the table entry of T in row p and column s. We can concatenate prefix p with
suffix s yielding the query string

p.s = p1, . . . , pi, s1, . . . , sj .

Now the behaviour of the SUL on p.s will already be known if p.s is a prefix
of some q ∈ Queries. In this case we have a recorded SUL observation ω =
ω0, . . . , ωi+j corresponding to p.s. In particular, we know the value of

ωi+j = λ(δ∗(q0, p.s))

(where δ∗ is the iterated state transition function defined above) and this value
ωi+j is placed in the table entry T [p, s].

Suppose on the other hand that p.s is not currently a member of Queries.
Then we can query the SUL using p.s as an active query and observe the value
of ωi+j = λ(δ∗(q0, p.s)). This value is placed in the table at T [p, s]. Thus, the
most basic form of active querying in L* comes from filling in missing entries in
the two dimensional table T . We call these table-entry queries.

The basic principle for inferring a Moore automaton from a completely filled-
in two dimensional table T is as follows: if T [p, s] �= T [q, s], for some suffix s
then the input strings p and q cannot possibly reach the same state in the SUL,
provided that the SUL is deterministic20. In other words, the subtrees at p and
q in the corresponding prefix tree (having the same query content as T ) are
incompatible.

It follows that if any two rows in T differ at all, say T [p] �= T [q] then p and
q must access distinct states in the SUL. Therefore, we can partition the red
prefix set PrefixesRed into equivalence classes of row-identical red prefixes using
T . As a concrete representative of each equivalence class, typically the shortest
access string is chosen as a state name.

Table-entry queries are the primary source of type (i) queries. But how is it
that gaps ever arise in the table T? This is due to the already hinted expansion
of T that takes place during the learning process. To be able to directly and
unambiguously construct an automaton model from T , the structure of T must
satisfy two very specific technical properties.

19 In model construction, red prefixes are needed to represent states, while blue prefixes
are needed for defining transitions. According to our definition, a prefix can be both
red and blue, but this is not problematic.

20 What to do when the SUL is non-deterministic will be discussed later.
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Definition 7. Let

T : PrefixesRed ∪ PrefixesBlue × Suffixes → Ω

be a two dimensional table.
(i) We say that T is closed if for each red prefix p ∈ PrefixesRed and input
σ ∈ Σ there exists a red prefix q ∈ PrefixesRed such that the rows T [p.σ] and
T [q] in T are identical, i.e. T [p.σ] = T [q].
(ii) We say that T is consistent if for any red prefixes p, q ∈ PrefixesRed, if
T [p] = T [q] then for all inputs σ ∈ Σ we have T [p.σ] = T [q.σ]21.

Notice that blue prefixes are necessary in both Definition 7(i) and (ii) since even
if a prefix p is red, the prefix p.σ may be blue. This technical need for closure
and consistency in T leads to two different sub-algorithms for generating active
queries from T as follows.

ALGORITHM 1. makeConsistent()

1 find p, q ∈ PrefixesRed, σ ∈ Σ
2 and s ∈ Suffixes such that

3 T (p) = T (q) and

4 T (p.σ, s) 	= T (q.σ, s)
5 let Suffixes:= Suffixes ∪ {σ.s} // suffix set extension
6 extend T to PrefixesRed ∪ PrefixesBlue × Suffixes
7 using table-entry queries.

ALGORITHM 2. makeClosed()

1 find p ∈ PrefixesRed and σ ∈ Σ such that

2 T (p.σ) 	= T (q) for all q ∈ PrefixesRed

3 let PrefixesRed := PrefixesRed ∪ {p.σ} // red prefix set extension
4 let PrefixesBlue := PrefixesBlue ∪ {p.σ} × Σ // blue prefix set extension
5 extend T to PrefixesRed ∪ PrefixesBlue × Suffixes
6 using table-entry queries

Using the concepts of closure and consistency, we can now make precise the
basic iteration step in L* for learning a new automaton model Mn+1, given that
we have previously learned Mn.
21 For the reader familiar with algebra, condition (i) corresponds to an algebraic closure

condition on the red prefix set under the operation of appending an input σ ∈ Σ and
modulo row equivalence. The closure condition (ii) corresponds to row equivalence
being a congruence on the red prefix set with respect to the state transition function
δ. Thus the red prefix set is able to provide a state set for a quotient automaton
defined by the table T .
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ALGORITHM 3. getNextHypothesis(equivalenceQuery ∈ Σ∗)

1 PrefixesRed := PrefixesRed ∪ PrefixClosure(equivalenceQuery)
2 PrefixesBlue := PrefixesBlue ∪ {equivalenceQuery} × Σ
3 Suffixes := Suffixes ∪ suffixClosure(equivalenceQuery)
4 extend T to PrefixesRed ∪ PrefixesBlue × Suffixes
5 using table-entry queries

6

7 while T is not closed or T is not consistent do

8 if !consistent(T) makeConsistent()

9 else if !closed(T) makeClosed()

The routinegetNextHypothesis() adds a single newquery equivalenceQuery
to the existing query set and extends the table T with the appropriate new red and
blue prefixes and suffixes derived from equivalenceQuery. All new entries in the
resulting expanded table T are filled in by table-entry queries. Following this, the
structure of the newly expanded table T is analysed for failure of closure or consis-
tency. The remedial measures makeClosed() and makeConsistent()may further
expand the table T . Note that if the SUL is behaviourally equivalent to an automa-
ton then the while loop in getNextHypothesis() will eventually terminate. Upon
termination, i.e. when T is both closed and consistent, then the construction of
model Mn+1 can be carried out with the following routine.

ALGORITHM 4. mooreSynthesis()

1 // Choose state representatives as smallest red prefixes
2 Q = {p ∈ PrefixesRed : ∀q ∈ PrefixesRed, q < p → T [p] 	= T [q]}
3 q0 = ε
4 foreach p ∈ Q, λ(p) = T [p, ε]
5 foreach p ∈ Q do
6 foreach σ ∈ Σ do
7 δ(p, σ) = q if q ∈ Q and T [p.σ] = T [q]
8 return A = (Q, Σ, q0, δ, λ)

This algorithm may be compared with the quotient automaton construction
of Definition 5 which it makes more concrete.

As already observed, red prefixes form the basis for the state set Q of Mn+1.
In Algorithm 4, the first member p of each red prefix equivalence class under
some linear ordering22 < is chosen to be the state representative. Note that the
empty string ε will always be a red prefix, but needs to be the least member of its

22 For example, the short-lex ordering < on Σ∗ is suitable. Here σ < σ′ if |σ| < |σ′|. If
|σ| = |σ′| = n then σ < σ′ if, and only if σ < σ′ in the lexicographical ordering on
Σn.
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equivalence class [ε]. Then ε is the appropriate access string for the initial state
q0 in Mn+1. It is easy to see that λ : Q → Ω is mathematically well defined as a
function. The reader should observe how the closure and consistency conditions
on T ensure that the state transition map δ is also mathematically well defined.

– For each red prefix p ∈ Q and input σ ∈ Σ there exists red prefix q ∈ Q that
is row equivalent to the (possibly blue) prefix p.σ by closure of T . Thus the
value of δ(p, σ) is defined.

– By consistency of T , the row T [p.σ] and hence the value of δ(p, σ) is uniquely
defined.

We can construct the initial hypothesis automaton M0, in the sequence of
models M0,M1, . . . , by calling getNextHypothesis() on the empty string as
follows.

ALGORITHM 5. getInitialHypothesis()

1 PrefixesRed := ∅ // emptyset
2 PrefixesBlue := ∅
3 Suffixes := ∅
4 return getNextHypothesis( ε )

Finally, we can describe the complete L* algorithm. This algorithm combines
getInitialHypothesis() with getNextHypothesis() and a stopping criterion
for iterative model generation M0,M1, . . . based on equivalence checking. This
equivalence checking of each learned model Mi with the SUL is the source of the
active type (ii) queries mentioned previously.

The algorithm above assumes that L* has access to the SUL. This access is
represented here as an algorithm parameter. The L* algorithm makes an initial
call to getInitialHypothesis() to construct M0 followed by a sequence of
calls getNextHypothesis(equivalenceQueryi) in a while loop, for i = 1, . . . , n.
Together, these calls generate a sequence of hypothesis automata M0,M1, . . . Mn.

The while loop is controlled by comparing each model Mi for behavioural
equivalence with the SUL, returning the truth value equivOracle().equivalent.
By definition, Mi and the SUL are behaviourally equivalent if, and only if,
they give the same output sequence ω on every input sequence p. Thus if
Mi and the SUL are non-equivalent then there must exist at least one input
sequence p such that Mi and the SUL give different output sequences on p.
In that case equivOracle().equivalenceQuery returns such an input sequence,
and this is taken as a new type (ii) query that drives the next iteration
getNextHypothesis(equivalenceQueryi).
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ALGORITHM 6. LStar(SUL)

1 var PrefixesRed

2 var PrefixesBlue

3 var Suffixes
4 var T : PrefixesRed ∪ PrefixesBlue × Suffixes → Ω // table
5 var A
6 A := getInitialHypothesis()
7 while( !equivOracle(A, SUL).equivalent) do

8 A := getNextHypothesis(equivOracle(A, SUL).equivalenceQuery)
9 endwhile

10 return A

The desired behaviour of the equivalence oracle is specified as follows.

Definition 8. Given two parameters consisting of a Moore automaton A and a
system under learning SUL, an equivalence oracle on A and SUL returns two
parameters: equivalent ∈ {true, false} and equivalenceQuery ∈ Σ∗.

1. For the return parameter equivalent:

equivalenceOracle(A, SUL).equivalent =

{
true if ∀p ∈ Σ∗A(p) = SUL(p)

false otherwise
(2)

2. For the return parameter equivalenceQuery:

equivalenceOracle(A, SUL).equivalenceQuery =

{
p if A(p) 	= SUL(p)

null otherwise
(3)

Designing an implementation of an equivalence oracle can be somewhat prob-
lematic. Firstly, the SUL is a black-box, so there is no direct way to compare its
internal structure with the state transition structure of Mi. Black-box equiva-
lence checking algorithms, that are independent of the internal structure of the
SUL are for example the Vassilevsky-Chow algorithm [15,62]. Another approach
is to use stochastic equivalence checking, (see e.g. [6]) based on a random sample
of input sequences. Here the challenge is to identify an appropriate sample size
and length bound for the random input string set. Stochastic equivalence check-
ing might seem like machine learning using random queries, and in some sense
this is true. However, the percentage of random queries in the overall query set
will be very small, usually less than 1%. An advantage of stochastic equivalence
checking is its connection to the PAC learning paradigm cited previously [61].

We conclude this section with a worked example of L* in action, to see how
the various concepts fit together. Suppose that we wish to learn the simple
DFA presented in Fig. 9. Now Table 1 depicts the very first table produced by
L* through its single call to getInitialHypothesis(). We separate the red
prefixes above from the blue prefixes below by inserting a horizontal space in
between, e.g. in Table 1, ε is red while 0 and 1 are blue. Now Table 1 is consistent,
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Fig. 9. Simple DFA for learning

Table 1. Closed: no, consistent: yes Table 2. Closed: yes, consistent: yes

but not closed. A single call to makeClosed() produces Table 2 which is both
closed and consistent. At this point, the initial model M0 can be constructed by
a call to mooreSynthesis().

The initial model M0 is depicted in Fig. 10. Clearly, this model replicates
some but not all of the behaviour of the DFA in Fig. 9. A call to the equivalence
oracle gives the following results:

equivalenceOracle(M0, SUL).equivalent = false,

equivalenceOracle(M0, SUL).equivalenceQuery = 110.

Adding the equivalence query 110 to Table 2 by calling getNextHypothesis
(110) gives Table 3.

Fig. 10. M0, the initial hypothesis model
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Table 3. Closed: yes, consistent: no Table 4. Closed: yes, consistent: yes

Fig. 11. M1, the second hypothesis model

Table 3 is closed, but there are two inconsistencies, since T (ε) = T (11) but
(1) T (1) �= T (111), and (2) T (0) �= T (110). So after two separate calls to
makeConsistent(), we obtain Table 4.

Now Table 4 is closed and consistent, so the next model M1 can be con-
structed by another call to mooreSynthesis() and is depicted in Fig. 11. Notice
that in Table 4 there are four red prefixes, but two of these, 1 and 110, are row
equivalent. Therefore, model M1 has just three distinct states.

Now M1 is structurally isomorphic with, and therefore behaviourally equiva-
lent to, the SUL in Fig. 9. According to the theory of L*, structural isomorphism
implies that Fig. 9 was a minimum state DFA to begin with.

A convergence result (i.e. a statement of both correctness and termination)
for the L* learning algorithm is the following.

Theorem 2. Convergence Theorem for L*. Suppose that the SUL behaviour can
be precisely described by a DFA and let A be a minimal representation of this
DFA. Then the L* algorithm eventually terminates and outputs a DFA isomor-
phic to A. Moreover, if n is the number of states of A and m is an upper bound
on the length of any counterexample provided by the equivalence checker, then
the total running time of L* is bounded by a polynomial in m and n.

Proof. See [6].
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We end this section with an important observation about both passive and
active learning of deterministic finite state machines. Our theoretical exposition
and the case study above both reveal the important fact that every feature of the
final learned model Mi is traceable back to behaviours of the SUL. Therefore they
can be reproduced and independently confirmed even after the learning session
has terminated. This fact will be important in the future for software engineering
applications, where traceability between conclusions and their evidence may be
legally required, e.g. by certification processes such as ISO 26262 [1].

One reason for traceability in automaton learning is the absence (for better
or worse) of any statistical learning methods, which smooth the dataset. Said
simply: what you get is what you see (WYGIWYS). Another reason for trace-
ability is the explicit state space structure and construction of the model M .
There are other ML techniques which can also learn temporal behaviours, for
example, recurrent and deep neural networks. However, for software engineer-
ing, such algorithms may be problematic in the sense that they lack traceability
between the learned model and the original SUL.

3.2 Non-deterministic Finite State Machines

In the context of software engineering, given an arbitrary black-box SUL, it
may be difficult to be certain that its behaviour is entirely deterministic. On
the contrary, for many large-scale distributed systems that we would like to
model, we can often be confident of extensive non-deterministic behaviour. The
ML models and methods of Sect. 3.1 have a restricted value in this case. For
example, L*, as we have described it, would record the first observed behaviour
of a non-deterministic SUL in the table T and simply ignore later alternative
behaviours. This yields a partial model that will lack any alternative behaviours.
Clearly, it would be appropriate here to learn a more general non-deterministic
automaton model.

Definition 9. By a non-deterministic Moore automaton we mean a
structure

A = (Q,Σ,Ω, q0, δ : Q × Σ × Q,λ : Q → Ω),

where: Q = {q1, . . . qn} is a set of states, q0 ∈ Q is the initial state, Σ =
{σ1, . . . , σk} is a finite set of input values, Ω = {ω1, . . . , ωk′} is a finite set of
output values, δ : Q × Σ × Q is the state transition relation, and λ : Q → Ω is
the output function.

The main difference in Definition 9 compared with Definition 1 of Sect. 3.1.3 is
that the state transition relation δ allows us to capture each of the multiple
states q′ ∈ Q to which A can transition from any given state q ∈ Q under the
same input σ ∈ Σ.

Non-deterministic automata models have been widely studied in the liter-
ature (see e.g. [30]), and have their own theory which is distinctively different
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from the deterministic case. For example, while every DFA has a unique mini-
mum state representation, this property does not hold for NDFA.

There are advantages to learning non-deterministic automata. Obviously,
they can give a more faithful representation of a non-deterministic SUL. How-
ever, even where the SUL is deterministic, an NDFA representation can be expo-
nentially more succinct than a DFA representation [12].

There are also some difficulties associated with learning non-deterministic
automata. It may be difficult to induce an SUL to exhibit every one of its alter-
native behaviours in practise. Some alternatives may be statistically very rare.
This brings us to a more advanced modelling question: how can we model the
probability of SUL behaviours? We discuss this question further in Sect. 3.3.

One simplistic approach to learning non-deterministic automata is to rep-
resent them as set-valued deterministic automata, where the non-deterministic
choice of output is captured by a set-valued output function λ : Q → ℘(Ω).
In this case, we can generalise the L* algorithm (c.f. Algorithm 6) to allow the
table entries to be set-valued. Then a table entry

T [p, s] = {ω1, . . . , ωi}

gives the set of all known observations of the SUL for the input sequence p.s. This
approach is easy to implement, and can suffice for some behavioural analyses of
the SUL. However, it fails to completely capture the transition behaviour of the
SUL. It also lacks the succinctness properties of NDFA representation.

There are several rather complex proposals in the literature for representing
a non-deterministic SUL as true non-deterministic automaton. An important
contribution was [16] which introduced the idea of residual finite state automata
(RSFA) which are a subclass of NDFA having some similar properties to DFA.
Subsequently [17] presented a passive learning algorithm for RSFA which can
achieve exponential state space reduction without losing canonical minimum
state models. In [12], the NL* algorithm was presented as an active automaton
learning algorithm for RSFA that generalises the L* algorithm. A survey of
learning for DFAs using representations as non-deterministic automata is [21].

3.3 Probabilistic Automata

We continue with the problem of modelling and learning non-deterministic SUL
behaviour. A quantitative approach to non-determinism, via probabilities, is pos-
sible when the distributions involved are stationary, i.e. time invariant. In fact,
even for a deterministic SUL, it may be interesting to apply probability values
to model the frequency of different input patterns or user behaviours. There
are a variety of state machine models that include probability values, including:
labelled Markov chains, labelled Markov decision processes and continuous-time
Markov chains.

One of the earliest contributions to learning probabilistic models of compu-
tation was the ALERGIA algorithm of [13]. This algorithm was designed to infer
probabilistic finite automata having the following model structure.
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Definition 10. By a probabilistic finite automaton (PFA) we mean a
structure

A = (Q,Σ, I,F, δ),

defined as follows.

1. Q = {q1, . . . qn} is a finite set of states.
2. Σ = {σ1, . . . , σk} is a finite set of input values.
3. I : Q → [0, 1] is the initial state probability distribution which satisfies

Σq∈QI(q) = 1.
4. F : Q → [0, 1] defines the termination probabilities.
5. δ : Q × Σ × Q → [0, 1] is the transition probability function, which satisfies

for each q ∈ Q:

F(q) + Σσ∈Σ,q′∈Q δ(q, σ, q′) = 1.

One can determinise this PFA model as follows.

Definition 11. A PFA is deterministic (a DPFA) if there exists a state q ∈ Q
such that I(q) = 1 and for each q ∈ Q and σ ∈ Σ there exists at most one q′ ∈ Q
such that δ(q, σ, q′) > 0.

A deterministic frequency finite automaton (DFFA) is the same as a
DPFA except that probabilities are replaced by frequencies, i.e. integer values.

Clearly a DPFA can be derived from a DFFA by normalisation of the fre-
quency values. PFA combine the non-deterministic automaton model of Sect. 3.2
with probability values. The transition probability function δ of a PFA encodes
the probability of taking a non-deterministic transition (q, σ, q′). As a comple-
mentary concept to δ, termination probabilities are used to assign the probability
that an input sequence will terminate at a particular state. DPFA combine the
more restricted deterministic automaton model of Sect. 3.1 with probability val-
ues. The relative frequency interpretation of probability theory is appropriate in
a machine learning context. For this reason, DFFA can provide a model that is
closer to the original observation set, as we shall see below.

The ALERGIA algorithm is a passive automaton learning algorithm that
works by merging compatible nodes in a frequency prefix tree acceptor (FPTA)
(c.f. Definition 2 of Sect. 3.1.2) as follows. Let S be any multiset23 of strings
over Σ. Then |S| denotes the size of S, |S|σ denotes the number of instances of
string σ in S, and |S|pref(σ) denotes the number of instances of strings in S with
prefix σ.

Definition 12. Let S be a prefix-closed multiset of strings over Σ. The deter-
ministic FPTA representation of S is the DFFA

F (S) = (Q,Σ, I,F, δ)
23 Notice that it is necessary to use a multiset of observations, i.e. to repeat previous

SUL experiments, in order to establish frequencies and probabilities. Thus the cost
of learning a probabilistic automaton may be quite high in terms of the query count.
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where:
Q = {p : p is a prefix of some q ∈ S}

I(ε) = |S|
F(σ) = |Sσ|

δ(p, σ, qp.σ) = |Spref(p.σ)|
In ALERGIA, starting from the FPTA F (S) for a given multiset S of observa-

tions, we merge nodes to derive a DFFA. A perennial theme of Sect. 3.1 was that
strings which are observationally indistinguishable belong in the same equiva-
lence class. Each such class identifies a distinct state in the learned automaton.
In ALERGIA, we relax the distinguishability test on strings somewhat to allow
for an error bound on the observation set S. Thus in ALERGIA, different FPTA
nodes may be merged to the same state provided they are statistically compat-
ible. For two nodes v1 and v2 in the FPTA, statistical compatibility means all
comparable features of these nodes satisfy a Hoeffding inequality on their relative
frequencies f1/n1 and f2/n2 up to a specified error bound ε:
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There are three types of comparable features in the subtrees of v1 and v2 that
must satisfy the Hoeffding bound: (i) the termination frequencies F(v1) and
F(v2) of v1 and v2, (ii) the transition frequencies δ(v1, σ) and δ(v2, σ) for v1 and
v2 on each input value σ ∈ Σ and (iii) the same comparable features for all
corresponding states in the subtrees of F (S) starting at v1 and v2, (a recursive
check). The error bound ε can be decreased, leading to a larger learned model
where more states are identified, or it can be increased, leading to a smaller
model.

PFA, DPFA and DFFA are intended to model input-driven transitions only.
The generalisation to include an output set Ω and output function λ is straight-
forward, but omitted here for reasons of space.

Theorem 3. Convergence Theorem for ALERGIA. Algorithm ALERGIA iden-
tifies a DPFA in the limit with probability one and runs in time polynomial
in |S|.
Proof. See [28].

There exist a number of variants of ALERGIA such as [55,59]. An active
automaton learning algorithm AALERGIA based on ALERGIA can be found
in [40].
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3.4 Other Types of Computational Model

Timed Automata. Timed automata [5] are a generalisation of deterministic
finite automata that allow one to model time bounds on the transitions of an
automaton by means of clocks. Such clocks can be set, reset and expire to model
complex temporal behaviour. Timed automata are particularly useful in the
analysis of real-time embedded systems. However, the problem of learning timed
automata is in general significantly harder than the problem of learning a finite
state automaton. Early results in [25] suggested that the problem of learning
timed automata was an exponential time problem. However later attempts at
efficient learning algorithms showed that polynomial time learning was possible,
at least for certain restricted classes [63].

Hybrid Automata. Hybrid automata [4] are an approach to combine discrete
and continuous state transitions into one automaton model. This is achieved
by using differential equations to model continuous state transitions. Hybrid
automata models have proven useful for modelling cyber-physical systems,
including control algorithms. Since timed automata can be modeled as hybrid
automata, the learning problem for hybrid automata is at least as difficult as
the learning problem for timed automaton. There have been some attempts to
define learning algorithms for restricted forms of hybrid automata for example:
[26,51] and [42].

Register Automata. Register automata were introduced in [14] as a means of
generalising finite automata to deal with simple forms of symbolic or abstract
data types. This means allowing for an input alphabet that can include simple
function calls or data expressions such as push(a,s) or pop(s).

A register automaton has a finite set of registers which can be assigned using
such data expressions. A guard for a state transition is a Boolean expression
built up from equations and inequations about register values. A state tran-
sition between two labelled states of a register automaton is enabled when its
source state is occupied and its guard becomes true, at which point its associated
register assignments are carried out, and its target state is reached.

Learning algorithms for register automata have been introduced in [32] that
are capable of learning the behaviour of implementations of many abstract data
types such as stacks, queues, bags etc. A survey of recent results on register
automaton learning can be found in the Chapter by Howar and Steffen [19].

Learning Logic Formulas. At first sight, formulas in logical languages such
as predicate and temporal logics seem to have little in common with models of
computation. However, fragments of these logical languages are often executable
by using efficient computational theorem proving techniques such as resolution.
Such fragments are therefore capable of expressing algorithms. Accordingly, some
ML researchers have looked at the problem of inferring logical formulas, for
example Horn formulas [7,8], Prolog programs [57] and temporal logic formulas,
see the Chapter by Alrajeh and Russo [3] of this Book.
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Learning Term Rewriting Systems. Term rewriting systems (TRS) can be
seen as a special case of logic formulas. They represent an efficient computational
logic for first-order equations. Since arbitrary recursive functions can be encoded
as term rewriting systems, the intractability results of [23] apply in the general
case. However, for string rewriting systems as a special case there are some
positive results, e.g. [18,46].

3.5 Summary

In this Section we have presented fundamental theoretical concepts, data struc-
tures, and basic algorithms for learning a variety of models of computation.
These were mostly organised around the extended concept of a state machine
model. We have shown how a sequence of increasingly structured and complex
model classes, leads to learning problems which are increasingly more difficult.
Indeed for the most general case of learning recursive functions, we again remind
the reader of the intractability result [24].

Nevertheless, in the literature on applications of machine learning to software
analysis there are already significant success stories. It is to such applications
that we now turn.

4 Applications and Examples

4.1 Model Extraction

There is a prevalent need for models in software engineering, whether for ver-
ification, testing, component integration, or documentation. In the context of
modern software engineering methods, we consider model construction to be a
long-term task of continuously integrating new information, and identifying and
discarding outdated information. This can come from a sequence of software
revisions, or from a dynamic component-based software environment.

Traditionally, models were produced during the early design stages of a
project. However, in modern development methods, product inception itself is a
continuous and ongoing activity. In either case, traditional or modern, software
projects rarely have models available in practice. Therefore, in software analysis,
research has been initiated towards automatically creating or reverse engineering
models from other available artefacts.

Models can play multiple roles in software engineering. They can be used
for software documentation or to capture specific aspects of the behaviour of
software, in order to be used for different types of software analysis. They are
abstractions of a software system, and are therefore more amenable to exhaustive
analysis techniques, which typically suffer from scalability issues.

Learning provides a promising approach for automatically documenting soft-
ware as well as to extract models by observing the behaviour of a system as a
black-box. It can also take advantage of additional knowledge when the source
code is available. Learning is flexible in adapting models in the presence of
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changing external requirements as well as new or unanticipated environmental
parameters.

Automata learning (aka. regular inference) has been the prevalent paradigm
in this area of software engineering research. Angluin’s classical L* learning
algorithm for DFAs has been used and extended by researchers in a variety
of contexts: formal verification of reactive systems [52], generating component
abstractions for model checking, as well as assumptions for automating com-
positional verification through assume-guarantee reasoning [22]. Learning has
also been compared to and combined with counterexample guided abstraction
refinement (CEGAR) by some of these researchers.

Cassel et al. [14], Vaandrager [60], Cassel et al. [58], have contributed to
research on learning register automata. As we saw in Sect. 3 this class of
models is more expressive than finite automata. Steffen has developed the
LearnLib24 library that supports several learning algorithms and provides effi-
cient approaches that increase the scalability of automata learning for realistic
systems.

Challenging ML problems here are to build truly high-level models of code
that capture design intentions such as decomposition, sharing and hierarchy.
Furthermore, the underlying systems are usually infinite state, which raises the
question of what level of abstraction to capture by learning, since machine learn-
ing of general infinite state systems is computationally intractable. Scalability is
also a major challenge of automata learning, and recent ML research may have
suggestions for improvement in that domain. One important observation is that
the ML community has focussed on continuous mathematical models of learning
(e.g., neural networks, support vector machines, kernel methods etc.) which are
quite different from the discrete symbolic models of Sect. 3. However, such con-
tinuous approaches yield implicit model representations, with no explicit state
space structure. It is not clear how to analyse such implicit models using a con-
ventional theorem prover or symbolic model checker. Therefore an important
challenge for the ML and SA communities is to combine powerful continuous
methods for machine learning with discrete methods for model analysis. Partic-
ularly for software verification and testing, there is a need to consider learning
for more diverse models of computation such as hybrid automata, term rewriting
systems, logic programs etc. Inferring probabilistic and non-deterministic models
of computation is important for autonomous or large-scale distributed systems,
for which we may only ever have incomplete knowledge.

Statistical Learning for Inferring Semantics. Since a software system inter-
face is typically described by textual documentation, e.g., XML documents, one
can capitalise on the long tradition of research in text categorisation. Text cate-
gorisation enables the classification of a textual document into a predefined set
of categories. One of the main techniques for text categorisation is the support
vector machine (SVM) [35], which is a type of learning algorithm that has the
ability to infer a categorisation function based on a set of features. For text
categorisation, the standard representation of features is a bag of words [56].
24 http://learnlib.de.

http://learnlib.de
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In this method, words are associated with dimensions of the vectors used by the
SVM. For example, a textual document consisting of the string “get Weather,
get Station” could be represented as the vector (2, 1, 1, . . .) where 2 in the first
dimension is the frequency of the “get” token. The SVM algorithm is first given
a training set that consists of textual documents, each of which is associated
with the appropriate category. As a result it produces the categorisation func-
tion, which associates a textual document to a category according to its features.
One can then use SVM to infer the categorisation function that relates an inter-
face, which is considered as a textual document, to a semantic concept from
the ontology of domains D, which represents the set of possible categories. At
runtime, the interface is analysed in order to infer the appropriate functionality,
as illustrated in Fig. 12. Note that the type of the capability specifies whether
it is required (Req) or provided (Prov) depending on whether the component is
advertising its interface or looking for a component to interact with.

Fig. 12. Illustrating capability learning

Automata Learning For Inferring Component Behaviour. Learning tech-
niques based on L∗ algorithm have been used to extract the behaviour of a
component when only its interface is known. This is based on an iterative pro-
cess by which a hypothesis component’s behaviour is incrementally refined by
actively testing interactions with the corresponding component. Unlike passive
learning algorithms [37,39] that only observe the interaction traces, L∗ chooses
the sequences of actions to execute in order to learn the behaviour in polyno-
mial time. In the Connect project, the learning technique was provided by
LearnLib [48], a framework for automata learning, which implements various
improvements to the L∗ algorithm such as abstraction/refinement or dealing
with data values in order to be able to learn the behaviour of realistic compo-
nents in minimal time.

Let us consider the simple example of learning the behaviour of a client for a
weather service, called C2. The interface of C2 defines three actions req.login,
req.logout, and req.getWeather. The steps for learning the behaviour of C2
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are illustrated in Fig. 13. At time t0, the learning algorithm begins by assum-
ing that C2 is able to perform any action in any order, that is its behaviour
is represented using one single state where all the actions can be performed.
However, when trying to interact with the system by performing, for example,
req.getWeather and then req.login, an error (or exception) is raised. At time
t1, the model is updated so as to forbid this erroneous trace. Similarly, when
performing req.login, req.logout, then req.getWeather, an error occurs, there-
fore the learning algorithm updates the model, which continues to be refined to
obtain the model at time t3. LearnLib verifies the data types of actions in order
to refine the initial behaviour. Hence, it would directly start with the behaviour
specified at t1.

Fig. 13. Learning the behaviour of C2

4.2 Software Testing

Model-based testing has become well established, and can be traced back to
Moore’s 1956 “Gedanken experiments” [49] on finite state machines. Despite
well documented productivity increases, model-based testing, faces a number of
problems. Particularly in an agile environment it can be unrealistic to expect
developers to maintain a detailed software model that is in synchronisation with
a rapidly evolving code base.

To address this problem, new academic research has focused on techniques
to automatically reverse engineer models directly from systems. The idea of
combining the two areas (ML and testing) was enunciated as long ago as 1983 by
Weyuker [67]. Early attempts to combine software testing with model inference
include the work of Bergadano [11] and Zhu [69] in the 90s. However, it is only the
fairly recent arrival of powerful automata-learning algorithms and model checkers
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that have made this approach practical for industrial scale problems. Since 2000,
work in the groups of Grosz [54], Meinke [54], Steffen [19], and Walkinshaw [65]
has begun to exploit modern techniques for automata learning. For example, the
learning-based testing tool LBTest (Meinke) [43] has been successfully used to
solve industrial testing problems up to 1 MLOC in the automotive [43], financial
[47] and web sectors [20], within recent FP7 and ARTEMIS projects.

Challenging ML problems here include testing of distributed systems by dis-
tributed learning, also application of transferable learning to efficiently update
legacy models of dynamically evolving systems.

4.3 Systems Integration

We live in a world increasingly populated by heterogeneous, networked, mobile
and pervasive systems and services. Such heterogeneity may span the application,
middleware, and underlying communication layers of infrastructure. Interaction
between networked systems, where feasible, is customarily achieved through ad
hoc means for specific pairs of systems in a particular environment. Principled
automatic integration of multiple heterogeneous and dynamic systems would
therefore bring about a labour-saving benefit. It would also provide the flexibility
needed to cope with rapidly changing contexts, dynamic service availability and
user mobility.

Machine learning can support such principled automatic integration by
extracting essential semantic information about the different systems. Indeed,
when network components are dynamically discovered, and interact sponta-
neously, as is the case in ubiquitous computing environments or the Internet
of things, integration cannot even be planned but rather must take place at run-
time. Semantic information about systems, such as capabilities and behaviours,
has been acknowledged as an essential element of system specification. However,
it is the exception rather than the rule to have such rich system descriptions
available on the network. Given a description of a system’s interface, learning
techniques can be used to extract this missing semantic information. Initial evi-
dence about the viability of such an approach was given by the European FP7
Connect project25, that explored learning techniques for interoperability in
systems of systems.

A major challenge is to understand the synergy between learning and system
integration techniques. Indeed, the correctness of the integration is conditioned
by the correctness of the models of the systems for which the related semantic
information has been learned. While machine learning significantly improves
automation by completing the model of the systems based on their interfaces,
it also induces some inaccuracy that may lead the system to reach an erroneous
state. This inaccuracy is inherent in learning techniques and cannot totally be
removed. Hence, we can simply accept this imprecision and apply engineering
techniques to increase precision over time, such as a control loop in which the

25 See https://www.connect-forever.eu.

https://www.connect-forever.eu
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system is continuously monitored so as to evaluate the correspondence between
the actual systems and their models.

4.4 Other Areas

Besides traditional software analysis, the learning techniques we have described
in this Chapter are even being applied to non-traditional areas, such as bio-
informatics and autonomous vehicles. For example, in the field of life sciences, the
team of Grosu et al. [26] has recently applied model inference and model checking
methods to analyse small 2-D and 3-D networks of heart-muscle excitable cells,
starting from in-vitro observations. Similar methods of hybrid automata learning
have been applied to analysis and verification of cyber-physical systems, control
systems, bio-molecular and gene-regulatory networks.

Outside of software analysis, inference of probabilistic automata has long
been used in the field of autonomous systems, such as self-driving cars and
autonomous aircraft, for generating controllers or planners. These models have
been learned from telemetry, flight, or other data, and their parameters can be
tuned through reinforcement learning approaches. Challenging ML problems in
these areas also involve the application of machine learning to infinite state and
continuous systems.

5 A Roadmap for Future Research

In this Section we sketch a roadmap for future research in the field of machine
learning methods for software analysis. This roadmap was compiled by mem-
bers of the Dagstuhl Seminar 16172: Machine Learning for Dynamic Software
Analysis: Potentials and Limits based on joint discussions [10].

Machine Learning for Model Extraction

– How can one learn truly high-level models of code that capture design inten-
tions such as decomposition, sharing and hierarchy?

– What level of abstraction should be captured by learning and how can one
combine powerful continuous and discrete methods for machine learning to
support model analysis?

– How can one model and efficiently learn software systems that are not suffi-
ciently documented, and are subject to constant change?

– How can one best model uncertainty and partial information arising from
observing software systems that are too large to be completely learned? Can
continuous learning methods be used interpolate missing information?

– Continuous mathematical models of learning are widely used in ML but largely
unused in SA, since most analysis algorithms are not applicable. Is there a
way to harness continuous learning without losing symbolic analysis methods?
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Model-based Software Testing

– How can one learn distributed software systems, and efficiently construct glob-
ally non-deterministic system models that accurately integrate the results of
local observations?

– What learning challenges do the extended and infinite state automata models
coming from SA pose for ML? How can one model and quantify the complexity
of different learning tasks going beyond finite state systems?

– What notions of convergence (i.e. progress) are appropriate for learning infi-
nite state systems? How do measures of convergence relate to coverage and
reliability models in software testing theory?

– How can one balance the necessary model size and accuracy needed by SA
with efficiency of learning in ML?

– Can new and efficient SA techniques such as symbolic execution be exported
back to ML, to speed up learning tasks such as glass-box equivalence checking?

– In SA, inferred models are the basis for later complex machine processing
that needs to be scalable but accurate. How can such post-processing best be
integrated with learning, e.g., correctness queries arising from model checking?

Machine Learning for Systems Integration

– How does the inaccuracy of learned models impact the correctness of software
integration?

– Can one apply adaptive systems engineering techniques to increase the preci-
sion of learned models over time?

Applications of Machine Learning in Non-traditional Areas

– Can machine learning be used in the case of applications involving infinite
state and continuous systems?

6 Conclusions

In this Chapter, we have presented an introduction to some of the major themes
and results of machine learning, as these are being applied today to software
analysis. Our target audience has been software engineers who wish to learn
and apply machine learning as a tool, as well ML experts who wish to better
understand the specific needs of software engineering. ML is a rapidly maturing
branch of computer science, which has made great strides since its infancy in
the 1950s. However, applications of ML to software analysis is an ongoing and
emerging field, where much remains to be done.
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6.1 Models, Methods and Applications: A Synthesis

We have developed a pedagogical approach to presenting ML for software anal-
ysis. This was based around first identifying appropriate types of models that
could be used to perform different software engineering tasks such as functional
testing, performance analysis, documentation, and interface, component and ser-
vice identification.

For each model type, our goal was then to describe or reference different
types of ML methods. The emphasis was on presenting basic algorithms that
are pedagogically insightful while also being practically useful. However, these
algorithms do not necessarily represent the state-of-the-art, which is covered
elsewhere in this Book. Another pedagogical goal was to identify some funda-
mental principles used in ML methods that could be re-used in new situations.
Such principles included abstract learning paradigms as well as concrete data
structures and model construction methods.

Finally, we surveyed some applications applications of ML methods in soft-
ware analysis and software engineering. This survey was not exhaustive, but
aimed to provide an initial literature orientation that supports later more tech-
nical chapters in this Book.

6.2 Models

In Sect. 3, we focused on symbolic models of computation. Such models can rep-
resent software systems explicitly, and are thus directly applicable to many prob-
lems of software analysis. The discrete mathematical methods used in these mod-
els (such as graphs and congruences) can be contrasted with continuous models
produced by learning techniques such as support vector machines and deep neu-
ral networks. The predominant class of computational models we focussed on
were state machine models, though our survey also extended to logical models.

All the model types we considered (deterministic, non-deterministic, proba-
bilistic, timed and hybrid automata) are currently well supported by a rich set
of analytical techniques and tools for behaviour and performance. We saw that
the difficulty of machine learning increases in line with increasing model com-
plexity. Thus a principle of parsimony applies, i.e. use the simplest model type
appropriate to an SE task.

The features of these model classes speak largely for themselves when rep-
resenting real world systems. For example, deterministic models are appropri-
ate and frequently successful for analysing simple monolithic software systems,
and have the best scalability properties. The performance of state-of-the-art
ML algorithms here are at least an order of magnitude better than the earliest
ML algorithms from the 1980s. Non-deterministic and probabilistic models are
more flexible for representing large scale distributed systems. They can model
uncertainty in both behaviour and knowledge. For specialist applications, such
as modelling real-time or cyber-physical systems, timed and hybrid automata
are appropriate. Register automata are a promising approach to inferring both
data and control properties of software systems. However for these more complex



44 A. Bennaceur and K. Meinke

model types further fundamental research is needed to find general, efficient and
scalable ML algorithms.

Finally a more declarative, and less operational approach to modelling can
be achieved by using logical models. Such models are also well suited to available
analytical techniques such as theorem proving and constraint solving.

6.3 Methods

Besides presenting or referencing basic ML methods for each of the above model
types, we have also attempted to indicate what ML methods cannot do, by citing
results from the complexity theory of ML. There is an extensive literature on
the complexity theory of ML. The reader could begin with a basic introduction
such as [36].

We gave a detailed and lengthy exposition of ML algorithms for deterministic
automata, since these present a paradigm for learning other types computational
models. This is because the discrete mathematical principles used, such as prefix
trees, congruences, quotient automata, access and distinguishing strings, can be
reused for more complex model types. Perhaps the concept of congruence could
be pointed out as the single most important unifying theme. This concept is
powerful precisely because it is so abstract26. However, we have also presented
concrete ML algorithms and data structures as a counterbalance to such abstract
theory. For the software engineer, practical and useful algorithms are necessary,
while for the ML specialist, sound mathematical theory will be necessary for
future progress.

6.4 Applications

Software is now evolving to encompass a world where the boundary between the
machine and human disappears, merging wearable with the Internet of Things
into ‘a digital universe of people, places and things’ [2]. Increasingly engineer-
ing these ubiquitous computing systems involves agile and adaptive software
development where continual change and uncertainty are norms. In this context,
machine learning is used to construct artefacts such as requirements specifi-
cations, models, and reports, as well as to analyse the large amount of data
generated by those systems. Future system engineering will need more automa-
tion, adaptability and scalability and to integrate software engineering, adaptive
systems, and machine learning techniques.

In this Chapter, we have focused on the application of machine learning
techniques to software engineering problems, especially in the areas of model
extraction, model-based software testing, and system integration. Yet, software
engineering has also a lot to offer to machine learning. Software engineering has
focused on capturing lessons, developing strategies and techniques, and build-
ing tools to assist with the creation of software systems. For example, machine

26 In fact congruences and quotients are universal constructions throughout the whole
of mathematics.
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learning can be viewed as a tool for building a system inductively from a set
of input-output examples, where specifications of such a system are given as
training data sets [41]. In this context, requirements engineering can guide the
selection of training data. Without having this selection inline with stakeholders’
needs, the learnt system may diverge from their initial purpose, as it happened
with Microsoft Tay chatbot [64]. Tay was a machine learning project designed for
user engagement but which has learnt inappropriate language and commentary
due to the data used in the learning process. In addition, eliciting transparency
requirements [31] can also guide the selection of learning algorithm, which will
ultimately play an important role in increasing users confidence in the system
by explaining the decision made with the software system. A systematic way
to clarify the synergies between the two discipline is an exciting area for future
research.

6.5 Future Work

In Sect. 5, we presented a tentative roadmap for future research in this emerging
field, based on surveying a group of currently active researchers.

Perhaps one of the major themes emerging in this survey was the tension
between explicit symbolic models of computation such as state machine mod-
els, and implicit numerical models such as deep neural networks. For software
engineering, needs such as efficient analysis and traceability between data and
models are important, and at the current time it is difficult to see how these needs
can be met by the neural network community. Nevertheless future research may
change this or bring about a reconciliation.

A short chapter such as this is necessarily incomplete. The interested reader
will find an exciting and constantly growing literature, starting from the refer-
ences mentioned below. We hope that this Chapter will inspire other researchers
to take up some of the challenging problems in this field.
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Abstract. We present a survey of recent progress in the area of learning-
based testing (LBT). The emphasis is primarily on fundamental concepts
and theoretical principles, rather than applications and case studies.
After surveying the basic principles and a concrete implementation of
the approach, we describe recent directions in research such as: quan-
tifying the hardness of learning problems, over-approximation methods
for learning, and quantifying the power of model checker generated test
cases. The common theme underlying these research directions is seen
to be metrics for model convergence. Such metrics enable a precise, gen-
eral and quantitative approach to both speed of learning and test cover-
age. Moreover, quantitative approaches to black-box test coverage serve
to distinguish LBT from alternative approaches such as random and
search-based testing. We conclude by outlining some prospects for future
research.

1 Introduction

1.1 Overview

Learning-based testing [21,24,27,31,39,48] (LBT) is an emerging paradigm for
fully automated black-box testing based on software model inference using
machine learning (ML). Sometimes (but not always) this technique is combined
with static analysis (e.g. model checking). In this case, formal requirements mod-
els are added to implement fully automated requirements testing.

The basic idea of LBT is to use active machine learning (see Chap. 1 of this
Book) to dynamically generate (online) an efficient test suite for a system under
test (SUT). This active learning process is used to infer, or reverse engineer, a
sequence of increasingly accurate models M0,M1, . . . of the SUT. Because they
are constructed by a process of inductive inference, these models Mi potentially
offer the opportunity to predict unobserved errors in the SUT. To automatically
generate reliable test verdicts from requirements, it is possible to statically anal-
yse the reverse engineered models Mi. For example, we can analyse the functional
correctness or performance characteristics of the learned model Mi to infer these
properties for SUT.

c© Springer International Publishing AG, part of Springer Nature 2018
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As a software testing procedure, it is important in LBT to be able to measure
the progress or coverage achieved by testing. One approach to this measurement
task is to automate by means of equivalence checking algorithms. We can quan-
tify test coverage as the degree of convergence of the learned model to a complete
(i.e. behaviourally equivalent) model of the SUT. With appropriate machine
learning algorithms and convergence measures, we indeed see model sequences
M0,M1, . . . monotonically converging to a final complete model Mfinal of the
SUT. Generally speaking, test coverage is a difficult property to define precisely
for black-box testing techniques. So this approximation model of coverage is a
novel contribution of LBT to the practise of black-box software testing.

The wide variety of model representations, active machine learning algo-
rithms and static analysis tools that can be found in the literature support the
claim that LBT constitutes a general paradigm of testing. Using state-of-the-art
machine learning algorithms, the current generation of LBT tools can construct
and execute anything between thousands and millions of test cases within a few
hours. In fact, the main bottleneck to fast LBT seems to be the latency of the
SUT itself. This latency can difficult to handle, although concurrent distributed
LBT seems to be one approach (see e.g. [16,20,38]). Already with current tech-
nology and algorithms, LBT generated test suites are sufficient to infer complex
models, e.g. state machines with tens of thousands of states and millions of
transitions.

Our aim in this survey is to present a personal and selective account of some
recent progress in learning-based testing. We focus on some technical questions
that were identified during early research in our group, and where progress has
recently been made. These questions include:

(i) quantifying the hardness of testing and learning based on SUT structure,
(ii) fast learning using compact over-approximations, and
(iii) quantifying the learning power of static analysis generated test cases.

The unifying theme to tackle these questions has been quantitative measurement
of the convergence of learning.

We will present the basic principles of LBT in a rather abstract and general
way, in the hope that this stimulates new ideas and progress in algorithms and
tool architectures. We mainly emphasize machine learning aspects of LBT, since
this reflects our own research bias. However, it is certainly possible to conduct
new research into static analysis methods appropriate for LBT. Some pertinent
research questions will be mentioned in Sect. 8.

The organisation of this survey is as follows. In Sect. 2, we provide a more
detailed account of the principles of learning-based testing. In Sect. 3, we describe
how these abstract principles have been instantiated in a concrete learning-based
test tool: LBTest. In Sect. 4, we consider the problem of quantifying the learning
complexity of SUTs. In Sect. 5, we consider methods to accelerate learning using
over-approximations based on non-deterministic finite automata. In Sect. 6 we
consider the learning power of model checker generated queries. In Sect. 7 we
survey some of the literature in the field of LBT. Finally in Sect. 8 we present
some conclusions and pointers to significant future research problems.
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2 General Principles of Learning-Based Testing

We begin with a presentation of some general principles for learning-based
testing. Starting from these principles, a number of different design choices
and architectures become apparent for constructing an LBT tool. It is there-
fore appropriate to discuss the fundamental principles first at a high level of
abstraction.

2.1 Algorithms for Test Case Generation

Learning-based testing attempts to integrate several sources for automated test
case generation (ATCG) such as machine-learning, static analysis, equivalence
checking and even manually designed test suites. Experience has shown that no
one method in isolation is adequate, although machine learning can be said to
be the basis which leverages additional TCG techniques. A major theme of LBT
research is refining the individual TCG techniques, and investigating optimal
architectures that integrate them.

A basic philosophy of LBT is to generate, execute and judge test cases dynam-
ically, i.e. we conduct online testing. The main advantage of this approach is that
LBT tools can dynamically adapt each test session to changes in the underlying
SUT such as refactoring, as well as changes in user requirements. So LBT is well
adapted to modern agile development methods such as continuous integration.
This philosophy is implemented by using active learning to rapidly explore the
behaviour of the SUT during each new test session.

A second guiding principle of LBT in our own research has been the aim
of supporting fully automated verdict construction (i.e. pass, fail, warning etc.).
This is essential whenever a large volume of test cases must be executed, as
manual verdict construction would be too slow and error prone. One approach
is to generate test cases from user requirements simultaneously with their out-
put predictions. Fortunately, formal requirements modeling languages and static
analysis tools that can generate such predictions have existed for some time (e.g.
temporal logic model checkers, SMT solvers etc.). As we have already seen in
Sect. 1, such analysis tools can be applied either: (1) during active learning to
the sequence of generated models M0,M1, . . ., or (2) post-hoc to the final model
Mfinal when the learning process has been terminated. The latter approach can
be much more efficient in practise, as it can eliminate much redundant model
analysis. When comparing these two approaches or architectures, an interesting
question for machine learning emerges: what is the power of static analysis gen-
erated test cases compared with active learning queries? By power, we mean their
potential to speed up model convergence. This is an interesting question that
has consequences for architectural design, and we will take it up again in Sect. 6.

By introducing formal user requirements and static analysis into LBT we
perhaps impose a significant hurdle for widespread take-up of LBT technology
within the industrial testing community. It seems to be a widely held belief that
precise requirements modeling is too difficult and/or time consuming outside
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the safety critical systems community. To this objection one can make several
comments.

(1) Automated TCG seems a necessity in the near future for testing ever more
complex systems. This will be difficult without formal requirements models
that support precise fully-automated verdict construction.

(2) The advantages gained from formal requirements modeling, i.e. speed, vol-
ume, accuracy, and hence reduced time-to-market and lowered software qual-
ity assurance (SQA) costs, can outweigh the investment in education and
effort.

(3) Visual modeling languages such as UML, and also natural language based
patterns, can improve usability issues for testing tools that need formal
requirements modeling. In fact the reverse engineered models Mi derived
from LBT are themselves amenable to interesting forms of post-test model
visualisation.

However, clearly this criticism has some validity, and further research into
requirements modeling is needed. To this end, there are an increasing number
of published case studies of LBT, e.g. [14,16,35,37], that aim to promote better
understanding of domain-specific formal requirements modeling and its impact
on testing.

As is well-known, high-volume test case generation can also be obtained by
random testing [2] or search-based testing [26]. Therefore a deeper understanding
of the novel contribution to testing made by machine learning and static analysis
methods is necessary. In LBT, rather than discarding any test vectors after
execution, these are always accumulated and integrated into a model of the
SUT which becomes increasingly accurate over time. This model could be:

– a mathematical function such as a piecewise polynomial approximation [29],
– a finite state machine [31],
– a timed automaton [47],
– a term rewriting system [30],
– a logic program [5],
– or even an infinite state machine [33].

The choice of an appropriate computational model depends on both the
behaviour of the SUT, as well as the availability of algorithms for subsequent
static analysis.1

Semantically rich and complex learned models can support sophisticated
analyses of functional behaviour and performance. For example, using temporal
logic the liveness and fairness properties of an SUT can be analysed, even though
counter-examples to such properties are infinite sequences that are not directly
executable on the SUT.2 Such analyses go beyond the usual domain of software
1 For certain models of computation, such as neural networks, it seems that no static

analysis techniques are currently known. So this paradigm of machine learning seems
less useful in LBT at the present time.

2 Infinite counter-examples can be approximated by finite truncations, and in this way
warning verdicts can be generated.
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testing, and begin to integrate the most powerful features of both software test-
ing and static analysis, achieving some compensation of the weaknesses of each
approach when used in isolation.

We conclude this section with an important observation: as long as the learn-
ing process is incomplete, then a test case found by static analysis of a model
Mi may either be a false negative (a transient artifact of incomplete learning)
or a true negative (a correct observation or prediction). Only by executing the
counter-example on the SUT and observing the actual SUT behaviour can we
distinguish between these two. For sufficiently complex SUTs we must accept the
fact that learning must necessarily be terminated before completion. Therefore,
models of test coverage are also important for interpreting the results of LBT
tools.

2.2 Test Coverage, Test Termination and Model Convergence

After the construction of each intermediate model Mi, we need to consider
whether it is worthwhile to continue the testing session. We address this well
known test termination problem in terms of the degree of completeness of Mi as
a model of the SUT. We call this degree of completeness of Mi its convergence
measure. An important advantage of LBT over random and search-based testing
is that we can address test termination precisely in terms of model convergence.
This is a powerful side-effect of explicit model construction.

It is obvious that continued testing is worthwhile only if, there is some-
thing more to learn about the SUT behaviour, i.e. Mi and the SUT are not
yet behaviourally equivalent. In other words, there exists at least one test vector
on which Mi and the SUT behave differently. So the test termination problem
can be reduced to the equivalence problem for Mi and the SUT. However, this
equivalence problem is complicated by the fact that Mi and the SUT might
not belong to the same class of models. For example Mi might be a finite state
machine, while the SUT might be a piece of C code in which we cannot explic-
itly identify any states at all.3 For this reason, we generally ignore glass box
equivalence checking methods in LBT.

Instead, LBT makes use of black-box equivalence checking techniques. These
may either be deterministic (e.g. for finite automata the Vasileskii-algorithm
[10,46]) or randomised (stochastic equivalence checking). A randomised approach
to equivalence checking not only provides a generic solution, it also supports a
probabilistic approach to model convergence and coverage metrics, which seems
to work reasonably well in practise. Furthermore, randomised equivalence check-
ing allows us to introduce non-uniform probability distributions on the choice
of test cases. This opens up the possibility to apply risk-based testing. It also
connects LBT with the very extensive theory of PAC (probably approximately
correct) learning theory (ref).

3 The SUT may also be inherently more complex then the model, e.g. having the
structure of a pushdown automaton that is not reducible to any finite automaton.
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Stochastic equivalence metrics are fairly simple to describe. We empirically
estimate the relative frequency (and/or the average length) of randomly chosen
test cases where Mi and the SUT differ, using Monte Carlo methods. We then
take this stochastic measure of divergence to be an estimate of the completeness
of Mi (normalised in percentage terms) as a model of the SUT. It is important
to ensure that the randomly chosen sample set used for convergence estima-
tion contains an insignificant proportion of members from the training set (i.e.
previous test cases) to avoid bias.

Stochastic equivalence checking is also easy to implement. However, an accu-
rate estimation of convergence for a large model Mi can require an infeasibly
large number of samples.4 One solution is to compute a moving average of the
convergence measure over k models Mi,Mi−1, . . . Mi−k, for a suitable window
size k. This can gives an estimate over a larger population of samples, and
enhances monotonicity of the convergence measure, at the expense of some local
accuracy.

In practical case studies we have observed that stochastic convergence mea-
sures do not always correlate in a linear way with the state space size of inferred
models (see e.g. Figs. 3 and 4). However, as we shall see in Sect. 4, although state
space size seems like an intuitive metric for coverage, it can be very misleading
if the structural complexity of the SUT is not factored in. Further research on
convergence and coverage concepts is still needed, especially in relation to PAC
learning.

3 LBTest: An Architecture for Testing
Embedded Systems

Within our research into LBT, commencing with [27], we have defined and inves-
tigated a number of different component algorithms and global architectures for
learning-based testing. A survey of our early research is [32]. One long-term
research direction has been to explore the scope of the LBT paradigm, espe-
cially the semantic expressiveness of models of computation for which convergent
learning algorithms can be found [29,33]. However, expressive models usually
come at a price, which includes slower learning and static analysis. Therefore,
the opposite direction of research has also been important: to develop learning
algorithms and architectures for simple models of computation that are scalable
to large problem instances. This latter research programme has enabled us to
conduct industrial research collaboration on real-world testing problems, such
as [14].

This research into scalable testing has yielded the testing tool LBTest, which
has been re-implemented and extended from the original published version [34].
Therefore, a review of the current architecture (LBTest 2.2) and its features is
both timely and appropriate to concretely illustrate the abstract principles of
LBT outlined in Sect. 2.
4 This problem is most acute where the SUT latency, i.e. the time to execute one test

case, is high.
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LBTest makes use of deterministic Moore automata5 over user-defined finite
symbolic input and output alphabets as the class of learned models. However, to
improve the efficiency of learning, to minimise model size, and also to speed up
the convergence of learning, this class of models has been extended to include
non-deterministic Moore automata. We will discuss this extension in more detail
in Sect. 5.

Finite automata are an appropriate class of models for representing many
types of embedded systems, occurring in industries such as automotive and
avionics. In embedded applications, recursion and dynamic data structures are
usually avoided for safety reasons. So a bounded memory model, such as a
finite automaton, is usually applicable. As is well known, finite automata can
be learned by so-called regular inference algorithms, of which many examples
are known in the literature [3,19], including Angluin’s L* algorithm [1]. What is
unclear from traditional machine learning research is the efficiency and scalabil-
ity of regular inference algorithms, particularly in the non-traditional context of
software testing. This has called for empirical research to implement and bench-
mark existing and new learning algorithms. Furthermore, the frequency of model
construction (i.e. the number of active learning queries needed per model Mi)
has never been considered. As we have seen in Sect. 2, frequent construction of
many models Mi is crucial if static analysis is to make an impact on the learning
process.

For requirements testing, LBTest makes use of linear temporal logic (LTL)
[15]. From many industrial case studies, we have found only a small number of
real-world requirements on embedded systems that could not be directly modeled
in this logic. The static analyser used by LBTest is of course a model checker.
LBTest has a file interface so that it can be loosely integrated with a variety
of different model checkers that are called externally from the tool. Since it is
mature, stable and one of the most reliable model checkers available, we have
mainly used NuSMV [11], and more recently nuXmv [6]. Both the BDD-based
and BMC (SAT-based) model checkers of NuSMV have been evaluated. These
two generally lead to different results in terms of performance and logical anal-
ysis, and recent benchmark results can be found in [53].

A significant issue with NuSMV, that seems common to all model checkers
we are aware of, is the lack of efficient support for generating different counter-
examples to the same formula within a model. From a testing perspective, it is
important to generate the largest possible set of counter-examples (modulo some
appropriate equivalence relationship) and not just one. This is an appropriate
research topic for the model checker community.

The architecture of LBTest is illustrated in Fig. 1. This illustrates the main
feedback loop that allows model checker queries and equivalence checker queries
to be executed at regular intervals after the construction of each new model Mi.
A manual test suite, if one exists, can be executed as an initial set of queries.
Otherwise, testing usually commences from a single state automaton, that rep-

5 Recall that a Moore automaton is a finite state machine which has an output value
associated with each state.
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resents a null hypothesis about the SUT. The length of the intervals between
successive models Mi and Mi+1 is dependent upon the choice of active learning
algorithm. For example, for L* the intervals can grow cubically, so that this
particular learning algorithm scales poorly, and much better algorithms exist.

LBTest has a modular structure so that new learning algorithms and model
checkers can easily be integrated. New learning algorithms are added by sub-
classing abstract learner classes such as MooreAutomatonLearner which involves
implementing abstract methods such as
MooreAutomaton getInitialHypothesis() and
MooreAutomaton getNextHypothesis(CounterExample newCounterExample)
to support iterative model construction. The LBTest architecture is configured
at run-time through a configuration file, which specifies run-time options, data
type models, and LTL requirements.

Noteworthy in Fig. 1 is the communication wrapper (aka. test harness) around
the SUT. This software component, which must be manually customised to
the API of the SUT, is responsible for all communication and data transla-
tion between the SUT and LBTest. Wrappers implement all test set-up and
tear-down actions between the individual test case executions. These actions
can be technically challenging for distributed systems testing, where complex
network management and large scale reset actions for databases may be neces-
sary [14,35]. Besides solving such pragmatic problems, wrappers also implement
more fundamental semantic concepts, including the following.

(1) Wrappers support the abstraction of infinite state systems into finite state
models, through data partitioning. This well-known technique of traditional
testing allows simple but efficient learning and model checking algorithms
to deal with complex real-world systems.

(2) Wrappers implement communication protocols between the SUT and the
learning algorithm, which may be synchronous (clock driven) or asyn-
chronous (event driven). Generally, synchronous protocols are necessary
for testing hard real-time systems, while more data efficient asynchronous
protocols are appropriate for soft real-time systems. Both synchronous and
asynchronous protocols can be used to support abstractions of real time, by
undersampling the SUT at fixed (synchronous) or variable (asynchronous)
rates. Temporal abstraction is often necessary to handle high data rates
between LBTest and the SUT.

(3) Wrappers can be used to define the semantics of fault injection, i.e. injection
of values into the infrastructure surrounding the SUT which can simulate or
induce some type of infrastructure failure (e.g. a communications failure).
This opens the way to robustness testing using LBT [35].

The principles of wrapper construction are technically complex, and quickly
become tool specific. Therefore we refer the reader to [36] for further discussion
of this subject.

This concludes our discussion of the fundamental concepts of learning-based
testing. In the following sections we turn our attention to some specific research
problems and recent results.
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Fig. 1. LBTest architecture

4 Quantifying the Complexity of Testing and Learning

In this section we consider the problem of characterising the difficulty of testing
an SUT as an intrinsic property of its structural complexity. This problem, which
is perhaps generic to all software testing methods, is well suited to be addressed
within the framework of learning-based testing.

Both intuition and practical experience suggest that among similar sized
SUTs, some are harder to test than others. Why is this so, and what are the
dominant factors? To discuss this concretely, based on empirical investigation
with regular inference algorithms, we will assume some familiarity with the con-
cepts of an accessor string and distinguishing string, widely used in the literature
on regular inference.6

LBT is a black-box testing method, so the structure and complexity of the
SUT is always something unknown. However, questions about the complexity
of testing can be translated into questions about the complexity of learning.
Specifically, we can study the complexity of learning as a function of the struc-
tural complexity of the learned model. The asymptotic complexity of specific
regular inference algorithms has been extensively studied, since Angluin’s obser-
vation that L* can infer DFA in polynomial time wrt. the number of states to
be learned. Empirical analysis of the actual performance of different learning
algorithms has also been conducted both as a research task [4], and by means of
open competitions e.g. [23,44].

Within our own research, we have repeatedly observed that the time com-
plexity of learning different automata with roughly the same state space size can

6 An accessor string is an input sequence needed to reach a specific state in the SUT
state space. A distinguishing string is suffix that can distinguish two SUT states in
terms of their output behaviour. See e.g. [19].



62 K. Meinke

vary significantly. This observation does not disagree with general asymptotic
analysis, but focuses the question more sharply on structural characteristics of
automata that make for best/worst case algorithm performance. It is useful to be
able to characterise automata which are easy to learn, for the SUTs which give
rise to these are correspondingly easy to test within the LBT paradigm. Perhaps
surprisingly, we have been able to identify structural complexity characteristics
that seem robust to different kinds of learning algorithms.

In [13] a simple approach was identified to randomly generate7 DFA (Moore
automata with only 0/1 output) with a specific degree of structural complexity.
The generation principle is surprisingly simple. For a fixed, but arbitrarily chosen
input alphabet, each state of an n-state random DFA can be randomly labeled
with a 0 or 1 output such that at least 0 and at most n states are assigned
0. While the state output assignments themselves are made randomly, we can
choose the ratio of 0s to 1s in a precise deterministic way. The complexity of
learning a random DFA with a specific 0/1 output ratio (normalised between
0% and 100%) can then be measured in terms of the number of queries needed.

Fig. 2. Complexity of L* learning as a function of SUT complexity (acceptance ratio).

7 Fast random generation is important to measure average performance over large
sample sizes.
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Figure 2 shows results obtained when studying the performance of Angluin’s
L* algorithm using random DFA examples classified by output ratio.8 The three
curves, corresponding to different state space sizes, all show horizontal symmetry
due to the symmetry of permuting 0s and 1s. More importantly, all three curves
show that as the incidence of 0s (respectively 1s) becomes sparse, the complex-
ity of learning increases sharply. Furthermore, the gap between the easiest and
the hardest examples increases dramatically as the state space size increases. A
similar study of Kearns algorithm [22] exhibits the same properties, and we con-
jecture that these results are robust to all types of regular inference algorithm.

How should we interpret these results? Clearly, when a DFA has an increas-
ingly high percentage of 0s (or 1s) then when two states with accessor strings
a1, a2 are not behaviourally equivalent, then a distinguishing suffix s such that
λ(a1s) �= λ(a2s) becomes increasingly difficult to find. Thus when the complex-
ity of finding accessor strings is uniformised by means of glass-box equivalence
checking, then the complexity of finding distinguishing strings becomes domi-
nant. These results cast doubt on the validity of benchmarking performance for
regular inference algorithms in terms of state space size alone.

We can make some generalisations from these observations. Moore automata
which satisfy the Markov property, i.e. a distinguishing string of length 0 always
suffices to distinguish two non-equivalent states, constitute the most easily
learned and hence easily tested systems. By contrast, Moore automata which
are highly history sensitive, i.e. the next state is a function of the current state
and the previous history to reach that state, can be arbitrarily harder learn.
This is because the previous history of a state determines the difficulty to find
an accessor string for it, while its future paths determine the difficulty to find
distinguishing strings for non-equivalent states.

Another important generalisation from these observations concerns the data
abstraction methods used to approximate infinite state systems by finite state
automata (c.f. Sect. 3). It is sometimes possible to choose a data abstraction
that yields a more Markov-like finite automaton after learning. This abstraction
is clearly worthwhile since the SUT becomes easier to learn and hence to test.
For example we can try to use a finer data partition on output values, yielding
more output equivalence classes. We can also try to expose more SUT output
variables to the learning algorithm. Practical experimentation seems to confirm
that when they are possible, both these approaches can make systems easier to
learn and test.

5 Inductive Inference, Regular Inference
and Over-Approximation

In learning-based testing, it is the inductive inference principles inherent in
machine learning algorithms that allow us to generalise from a finite set of

8 These results where obtained using a glass-box equivalence checker, so that the
complexity of finding equivalence counter-examples is constant.
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observations (test cases results) to an infinite set of model behaviours. Inductive
inference starting from a finite set of observations has two effects on the testing
process:

(1) it can lead to the prediction of unseen SUT errors from previous observa-
tions, and

(2) it can increase the rate of convergence of learning.

The principle of inductive inference employed in regular inference algorithms
is rather simple. Any finite set of SUT observations can be organised into a prefix
tree.9 Then an automaton model can be synthesized by merging prefix tree nodes
ni and nj which are behaviourally consistent, i.e. common suffixes of ni and nj

are identical in the prefix tree. When a merged pair of nodes ni and nj lie along
the same path from the prefix tree root, this leads to a loop in the automaton
model. Otherwise, merging simply leads to a join of their two paths from the
root. This inductive inference principle is based on a closed world assumption.
That is to say, in the absence of any conflicting evidence (a closed world) that
two nodes are behaviourally inconsistent, we assume that they are consistent.
This approach gives a non-monotonic learning process, because early hypothe-
ses about node pair merges must be abandoned in the face of later conflicting
evidence. Despite their non-monotonicity, regular inference algorithms are usu-
ally provably convergent. However, non-monotonicity does make convergence of
learning difficult to formulate in terms of regular language inclusion.

Before learning has converged, there is always some degree of under-
approximation of the SUT by the inferred model, since the full SUT structure
has not yet been found. That is, paths exist in the SUT which do not exist in
the model. On the other hand, because of the node merging process there is also
some degree of over-approximation since paths may exist in the inferred model
which do not actually exist in the SUT.

Recent results have shown that it is possible to greatly accelerate the test-
ing process by increasing this degree of over-approximation within the inferred
model. Intuitively, this corresponds to the learner making bolder hypotheses
about the SUT behaviour (which may not be true!). One approach to over-
approximation that we have studied results in the use of non-deterministic
automata to infer deterministic SUTs.

A more mathematically precise statement of model construction for regular
inference algorithms than the one sketched above can be expressed in terms of
quotient automata. These are constructed from an absolutely free finite automa-
ton (for specific input and output alphabets) which is unique up to isomorphism.
This algebraic construction highlights the fact that it is essentially a congruence
relation on the free automaton which has to be learned (e.g. as a 2-dimensional
table). Further mathematical details can be found in [28].

Now for any Moore automaton

A = 〈Q, Σ, Ω, δ : Q × Σ → Q, λ : Q → Ω, q0〉
9 The prefix tree consists of all input/output observations of the SUT stored as an

n-ary tree, where n is the size of the input alphabet.
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an equivalence relation ≡⊆ Q×Q on the state set Q of A is a congruence if, and
only if, ≡ satisfies two substitutivity conditions

q ≡ q′ → δ( q, σ ) ≡ δ( q′, σ ), (1)

q ≡ q′ → λ( q ) = λ( q′ ), (2)

for any states q, q′ ∈ Q and input symbol σ ∈ Σ. The motivation for this sub-
stitutivity condition is that it ensures that in the resulting quotient automaton,
A/≡, both the state transition function δA/≡ and output function λA/≡ are well
defined as functions (i.e. unique valued). Hence the quotient automaton A/≡
will be deterministic.

To build a congruence that yields a deterministic model, each observed non-
equivalence between two states must propagated through all prefixes of the prefix
tree by inverting rule (1) to its contrapositive form

δ( σ1, σ ) �≡ δ( σ2, σ ) → σ1 �≡ σ2 (3)

for input strings σ1, σ2 ∈ Σ∗.
What would happen if we simply omit propagation rule (3) in a regular infer-

ence algorithm? This omission has many interesting and useful consequences.

(1) The relation ≡ would be an equivalence relation, but not a congruence.
(2) We would save the effort of propagation itself.
(3) The quotient automaton A/≡ would be a non-deterministic automaton in

which the state transition relation δA/≡, defined in the usual way for quotient
relations by

δA/≡(σ/≡, σ) ↔ δA(σ, σ) ∈ σ.σ/≡.

is a relation, but not a function (i.e. not unique-valued).
(4) The quotient object A/≡ will be a non-deterministic automaton.
(5) The quotient automaton A/≡ will be more compact, since states distin-

guished under rule (3) are no longer separated.
(6) A more compact quotient automaton requires less storage and can be model

checked faster.
(7) The quotient automaton A/≡ will contain many more paths than if we had

used rule (3). This stronger over-approximation leads to faster discovery of
SUT errors.

Does this approach work in practise? We have designed and implemented the
regular inference algorithm MinSplit that relaxes the propagation rule (3), and
does indeed achieve over-approximation. It has been integrated with the LBTest
tool for evaluation. While the algorithm itself is too complex to more than sketch
here10 we can present some preliminary results. The graph in Fig. 3 illustrates
the difference in rates of convergence between MinSplit and L* when learning
a complex brake-by-wire automotive application [14]. We can see that while L*
fails to converge on any reasonable time scale, MinSplit converges rather rapidly,
but does so by over-approximation. In Fig. 4 we show the rate of growth of models
over time using MinSplit and L*. Clearly the non-deterministic representation
of MinSplit leads to significant compaction of the inferred model.
10 In practise rule (3) is not completely relaxed.
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Fig. 3. Relative convergence of MinSplit and L* learning algorithms testing a brake-
by-wire application [14].

Fig. 4. Rate of growth of inferred models for MinSplit and L* testing a brake-by-wire
application [14].

6 The Querying Power of Model Checkers

As we have seen, LBT uses counter-examples to correctness generated by static
analysers (such as model checkers) as a source of queries to augment active
learning. An interesting question is therefore whether these model checker queries
accelerate the learning process at all. We have recently begun to investigate this
question using the LBTest tool. However, in its full generality, the question is a
complex one that is sensitive to more factors then have yet been examined.
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To investigate this question using the LBTest tool we simply switch off the
model checker during the learning process, by using a command in the tool
configuration file. This does not entirely sever the feedback loop within the
LBTest architecture (c.f. Fig. 1), since equivalence checker queries are still used
after each new model.

By measuring the rate and final degree of convergence of learning both with
and without model checking, we have been able to precisely quantify the power of
model checker generated queries. We performed this benchmarking for one of our
standard benchmark case studies, the brake-by-wire application of [14,37]. The
results were somewhat surprising. No decrease in the rate of model convergence
could be seen at all after disabling the model checker. This observation held
true across each of a set of ten different user requirements. Furthermore, the
observation could not be influenced by the choice of different learning algorithms.

This rather surprising result suggests that the feedback loop architecture
of Fig. 1 (which seems also to be the subject of the patent [25]) is actually
highly sub-optimal. This is because empirically, we observe that model checking,
when interleaved with machine learning, contributes significantly to the overall
testing time by more than 50%. Furthermore, conventional off-the-shelf model
checkers are forced to completely re-analyse each model Mi many times, without
any re-use of previous results. This approach is highly inefficient. So from this
perspective, the pipeline LBT architecture of Fig. 5 is superior, and can shorten
test session times by 50% or more. However, further research remains to be done
on this question in the context of different models, learning algorithms, static
analysers and requirements modeling languages.

Fig. 5. A pipelined LBT architecture
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7 Literature Survey

The connections between computational learning and software testing have been
a fruitful line of research since Elaine Weyuker’s PhD research, [49]. Early
research includes [5] on inferring and testing Prolog programs and [51,52] on
PAC-learning and testing of axiomatic models. Complexity theoretic results on
testing derived from models of machine learning include [9,42,43].

A notable contribution historically is [39]. This paper introduced a testing
architecture similar to that of Fig. 1 for learning-based testing of reactive sys-
tems using Angluin’s L* algorithm for learning, the Vasileskii-Chow algorithm
for black-box equivalence checking, and Buchi automata as specifications. This
work seems to be the basis of the patent [25]. In [27], a somewhat similar LBT
architecture for testing numerical analysis programs was presented. This app-
roach was focused more on data correctness than control correctness. It used
models based on piecewise polynomial approximation, machine learning based
on finite differences, requirements modeling based on Hoare’s logic and static
analysis based on the CAD algorithm for satisfiability over real-closed fields.
Taken together, these two early alternative approaches suggested that an under-
lying general paradigm existed.

Automaton learning, with or without model checking, was subsequently con-
sidered for testing by many other researchers e.g. [16,18,21,24,31,41]. The lit-
erature has grown too extensive to provide a full bibliography here, and many
other references will be found elsewhere in this Book, e.g. Chap. 1. Interest-
ingly, [48] has shown that even without model checking, model inference alone
provides better functional coverage for black-box testing than random testing.
Within the model checking community, the verification approach known as coun-
terexample guided abstraction refinement (CEGAR) also combines learning and
model checking, (see e.g. [8,12]).

8 Conclusions and Future Work

We have presented here a personal survey of recent progress in learning-based
testing. We began with short overview of fundamental principles, followed by
an exposition of these principles within a specific testing tool, namely LBTest.
We have described a number of contemporary research questions addressed
using LBTest, such as convergence estimation, quantifying the hardness of learn-
ing, over-approximation learning methods, and quantifying the power of model
checker generated test cases. The common theme unifying each of these research
questions has been metrics on the convergence of learning. Such metrics enable a
precise, general and quantitative approach to both machine learning and testing.
In this respect, learning-based testing differs significantly from other black-box
testing methods such as random testing and search-based testing where conver-
gence measures based on models are absent.
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8.1 Future Prospects

What are the future prospects for learning-based testing? What are the major
scientific challenges today and the ultimate theoretical limits in the future? Is it
possible to adopt this technique industrially? It is difficult to definitively answer
all of these important questions at this time. Many questions are the topic of
ongoing research projects within a small but growing community. Further empir-
ical study, theoretical research and practical algorithm and architecture design
is needed. However, we can draw some conclusions based on academic and indus-
trial research so far.

(1) The technical advantages of LBT have been shown to be:
(a) flexibility derived from a black-box approach to testing and requirements;
(b) extensibility to more complex testing scenarios such as fault injection,

robustness testing and risk-based testing;
(c) support for high-volume and hence high coverage testing derived from

active learning;
(d) a precise coverage model derived from stochastic equivalence checking;
(e) a high degree of automation, once a test harness has been constructed

and requirements gathered; and
(f) the accuracy of test verdicts through the use of precise formal user require-

ments.
(2) Formal requirements models have been perceived as a bottleneck to indus-

trial adoption. But this criticism is not specific to LBT, and can be leveled
at any use of formal methods. At the same time, critics of formal methods
have yet to come up with any widely applicable and viable alternative that
is sufficiently precise. Indeed, there seems to be an element of denial that
requirements testing is even important.

(3) Successful case studies of LBT often depend upon being able to execute large
test suites that can infer complex models. The size of test suites generated
by active machine learning tends to grow rapidly as model complexity and
the number of parameters to be inferred increases. However, run times often
scale linearly wrt. the input alphabet size. Many types of real-time system
have sufficiently low test latency to execute large test suites. However, this
does not seem to hold for distributed systems such as client-server architec-
tures. More aggressive techniques for over-approximation, such as presented
in Sect. 5, may be necessary to address this problem. Furthermore, refined
techniques which re-use inferred models from unit testing at the levels of
integration and systems testing may also be necessary [45].

(4) At the outset of our research, machine learning was the main bottleneck for
LBT, in the sense that regular inference was more computationally expensive
than model checking. Today, this situation has more or less reversed. The
converse definitely holds if we take into account the additional complexity
of generating a large number of distinct counter-examples, and not just one
as is current practice with most model checking tools. For future progress
it will be necessary to find machine learning and model checking techniques
that support each other in a more efficient way.
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J.M., Garćıa, P. (eds.) ICGI 2010. LNCS (LNAI), vol. 6339, pp. 148–162. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15488-1 13

29. Meinke, K., Niu, F.: A learning-based approach to unit testing of numerical soft-
ware. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS,
vol. 6435, pp. 221–235. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16573-3 16

30. Meinke, K., Niu, F.: Learning-based testing for reactive systems using term rewrit-
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Abstract. We present a survey of the recent research efforts in inte-
grating model learning with model-based testing. We distinguished two
strands of work in this domain, namely test-based learning (also called
test-based modeling) and learning-based testing. We classify the results
in terms of their underlying models, their test purpose and techniques,
and their target domains.

1 Introduction

On one hand, learning (functional or behavioral) models of software and
computer systems (e.g., hardware, communication protocols) has been stud-
ied extensively in the past two decades. Various machine learning techniques
[Mit97,Alp14] have been adopted to this domain and new domain-specific tech-
niques have been developed for model learning (cf. the chapters on (Extended)
Finite Stat Machine learning in this volume).

On the other hand, testing has been the dominant verification and quality
assurance technique in industrial practice. Traditionally, testing has been an
unstructured and creative effort in which requirements and domain knowledge
is turned into a set of test cases, also called a test suite, while trying to cover
various artifacts (such as requirements, design, or implementation code). Model-
based testing (MBT) [UPL12,UL07] is a structured approach to testing in which
the testing process is driven by a model (e.g., defining the correct behavior of the
system under test, or specifying the relevant interactions with the environment).

The focus of the present paper is precisely in the intersection of the above-
mentioned two fields: learning (functional or behavioral) models and model-
based testing. In this intersection fall two types of research:

1. test-based learning : various (active) learning techniques make queries to the
to-be-learned system in order to verify a learning hypothesis. Such queries
can be tests that are generated from a learned model. We refer to this strand
of work as test-based learning or test-based modeling [MNRS04,Tre11].
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2. learning-based testing : models are cornerstones of model-based testing; how-
ever, complete and up-to-date models hardly ever exist. Learning can hence
be used to create and complement models for model-based testing. We refer
to this category of work as learning-based testing [MS11].

To structure our survey of the field we focus on the following classification
criteria:

1. Types of models: different types of models have been learned and have been
used for model-based testing. We distinguish the following categories of mod-
els: predicates and functions, and logical structures (such as Kripke struc-
tures, cf. the chapter on logic-based learning in this volume), finite state
machines (including their variants and extensions, cf. the chapters on FSM
and Extended FSM learning, as well as learning-based testing in this volume),
and labeled transition systems. The distinction between variants of these mod-
els is not always well-defined and there are several property-preserving trans-
lations among them. However, this classification gives us a general overview
and a measure of matching between different learning and testing techniques.

2. Types of testing: requirement-based and conformance testing are the most
prominent uses of model-based testing. However, other types of model-based
testing have also been considered in combination with learning; these include:
integration testing, performance testing, and security testing.

3. Domain: test-based learning and model-based testing have been applied to
various domains, such as embedded systems, network protocols, and web ser-
vices. If a research result considers a particular application domain, we classify
the result in terms of the domain, as well.

The rest of this paper is organized as follows. In Sect. 2, an overview of model-
based testing is provided. In Sect. 3, the basic ideas behind model learning and
their relation to testing are presented. In Sect. 4, we review the types of models
that have been used in integrating learning and testing and survey the different
pieces of research related to each type of model. In Sect. 5, we classify the test
purposes and testing techniques that have been considered in combination with
learning. In Sect. 6, we review the domains to which the combination of testing
and learning has been applied. Finally, we conclude the survey in Sect. 7 by
pointing out some of the open challenges in this domain.

2 Model-Based Testing

Model-based testing (MBT) is a structured testing technique in which models
are used to guide the testing process. Specification test models can, for example,
describe the input-output functionality of a unit (function, class, module, or
component) [HRD07,MN10], specify the state-based behavior of a unit [UL07]
or a system [VT14], or sequences of interactions with graphical user interface
[YCM09]. Ideally such specification models have a mathematical underpinning,
i.e., have a formal semantics; such formal models include algebraic properties,
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finite state machines, and labeled transition systems. Once specification test
models are in place, much of the testing process can be mechanized thanks to
various MBT techniques and algorithms.

Fig. 1. An overview of model-based testing [ARM16,UPL12]

Figure 1 presents a general overview of MBT theory and practice. The under-
lying assumption of MBT is the existence of a formalization of the requirements
in the form of a specification test model. This is a highly non-trivial assumption;
models are often absent or incomplete in practice. Learning is a technique that
can help reinstate the underlying assumption of MBT.

To put MBT on firm formal grounds, a common assumption is that the
behavior of the implementation under test can be described by some (unknown)
model with the same mathematical underpinning as the specification test model.
This enables grounding the theory of MBT in a mathematical definition of a
conformance relation between the specification model and the purported imple-
mentation model.

One of the most important ingredients of a practical MBT approach is
a test-case generation algorithm that can automatically generate a test suite
(a set of test cases) from the specification model (in an online or offline manner),
taking into account the specified test goals. Then using a mechanized adapter
the generated abstract test suite can be translated into concrete test cases that
are executed on the system under test (which is traditionally considered to be a
black box). The results of the test execution are then compared with the results
prescribed by the specification test model.

The formal notion of conformance and the conformance testing algorithm are
linked through soundness and completeness theorems. Soundness states that con-
formance testing never rejects a conforming implementation and exhaustiveness
states that conformance testing is able to reject all non-conforming implementa-
tions. A sound and exhaustive conformance testing algorithm is called complete.
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Fig. 2. Creating models for model-based testing

Specification test models can be learned from (reference) implementations
and validated or verified by the domain experts, e.g., by manual inspection or
model checking (as well as equivalence checking tools); Fig. 2 illustrates this
process. Also incomplete or outdated models can be augmented or corrected
(possibly with user feedback) using learning techniques.

Since the scope of this paper is the combination of model-based testing and
learning, we only explore the part of the literature that serves at least one of
the following two categories of purposes (cf. the chapter on testing stateless
black-box programs in this volume for a complementary survey):

1. Model-based test-based learning, i.e., the use of model-based testing as a
teaching mechanism in learning models, or

2. Learning-based model-based testing, i.e., the use of learning techniques to
come up with models (of specification or implementation) in the model-based
testing process.

3 Learning

In this section, we review the main ideas concerning model learning and their
connections to (model-based) testing. We mainly consider active automata learn-
ing in the minimally adequate teacher (MAT) framework as introduced by
Angluin [Ang87], since it shares clear common grounds with testing; for other
machine learning techniques (some of which are also used in combination with
model-based testing), we refer to [Mit97,Alp14].
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Generally, this framework requires the existence of a teacher (called MAT)
with which the learner interacts in order to learn (1) how accurate the currently
learned model is and (2) how the system reacts to some new patterns that are of
interest for improving the model. To this end, the MAT must be able to answer
two respective types of queries: (1) equivalence queries, which check whether the
currently learned model is an accurate model of the system under learning and
(2) membership queries, which provide the system reaction to specified patterns
of input. This setup is shown in Fig. 3. In fact, it illustrates an instantiation
of this framework for black-box systems. Since ideal equivalence queries usually
cannot be implemented, they have to approximated via model-based testing.
Failing tests serve as counterexamples in such implementations, while the learned
model and the system under learning are considered equivalent if they agree
on all executed tests. The relationship between learning and testing is detailed
further below.

Fig. 3. Learning setup in the MAT framework. Figure adapted from a figure in
[SMVJ15].

In the original L∗ algorithm by Angluin, a deterministic finite automaton
(DFA) representing an initially unknown regular language is learned. Member-
ship queries correspond to the question whether some string is in the target
language. In equivalence queries, the learner asks whether the language of a
hypothesized DFA is equivalent to the target language.

These queries enable the learner to follow a two-step procedure in which it
gains knowledge by posing membership queries. If there is sufficient information
to create a hypothesis, an equivalence query is issued. The teacher either answers
yes, signaling that learning is finished, or it responds with a counterexample
to equivalence. Such a counterexample is then processed by the learner which
eventually starts another round of learning.
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Several variations of this general learning process have been proposed. All
of them have in common that two types of queries are posed in an inter-
leaved and iterative manner. As an example, consider learning of Mealy-machine
models [Nie03,MNRS04,SG09]: instead of posing membership queries, the
learner asks output queries [SG09], i.e., it asks for a sequence of outputs pro-
duced in response to a sequence of inputs. Analogously to L∗, equivalence queries
are issued whereby a counterexample is a string of inputs for which the system
under learning (SUL) and the current hypothesis produce different outputs.

3.1 Relation Between Learning and Testing

Early work relating testing and program inference predates Angluin’s L∗

algorithm. Weyuker [Wey83] proposed a program-inference-based test-adequacy
criterion. She points out the importance of distinguishing between test-selection
criteria and test-adequacy criteria. The latter should be used to assess if a pass-
ing test set contains sufficient data. For that she proposes to infer a program
from a test set and deem it adequate if the inferred program is equivalent to both
program and specification. Noting that checking equivalence is in general unde-
cidable, she suggest that equivalence checks may be approximated by testing as
is usually done for equivalence queries in active automata learning.

More recently, Berg et al. [BGJ+05] discussed the relationship between con-
formance testing and active automata learning, referred to as regular inference.
Basically, both techniques try to gain information about a black-box system
based on a limited number of observations, but with different goals. One tech-
nique solves a checking problem and the other a synthesis problem. They showed
that a conformance test suite for a model m provides enough information to
learn a model isomorphic to m. Conversely, observations made during learning
a model m form a conformance test suite for m. This resembles the intuition
behind Weyuker’s work [Wey83]: a test set should contain information to infer
a program equivalent to the original program.

Aside from the theoretical relationship, they referred to another connection
between learning and testing. Since equivalence oracles do not exist in general,
they can be approximated by conformance testing (as shown in Fig. 3). Hence,
in practice a testing problem has to be solved each time an equivalence query
is issued. Two examples of commonly used equivalence testing methods are the
W-method [Vas73,Cho78] and partial W-method [FvBK+91], the latter aiming
at improving efficiency. Both of these have for instance been implemented in the
automata-learning library LearnLib [IHS15].

3.2 Test Case Selection vs. Query Minimization

Since exhaustive model-based testing is usually infeasible, it is necessary to
select a subset of test cases based on some user-specified criterion [UPL12].
In other words, the number of tests has to be reduced. Because of the rela-
tionship described above, it can be concluded that a reduction of queries is
required for learning as well. There are several possibilities for implementing
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such measures. Most importantly, abstraction is essential for learning to be fea-
sible. While abstraction is mostly done manually, techniques have been developed
to derive abstraction automatically through counterexample-guided abstraction
refinement [AHK+12,Aar14,HSM11]. In addition to that, we give three exam-
ples for ways to reduce the number of tests required for learning.

Algorithmic Adaptations. Following the work of Angluin [Ang87], short-
comings of the L∗ algorithm have been identified and optimizations have been
developed. A well-known example of such an optimization is the adapted coun-
terexample processing proposed by Rivest and Schapire [RS93]. They extract
a single suffix from a counterexample which distinguishes states in the current
hypothesis. As a result, the observation table size and thereby the required mem-
bership queries are reduced.

Equivalence Testing Optimisations. Well-known methods for conformance
testing are the W-method [Vas73,Cho78] and partial W-method [FvBK+91].
Thus, they may be used to check whether the current hypothesis is equivalent to
the SUL. However, they suffer from two drawbacks. Firstly, they assume a known
upper bound on the number of states of the SUL. Since we consider black-box
systems, we cannot know such a bound. Furthermore, their complexity grows
exponentially in the difference of the number of states of hypothesis and SUL.
This makes the application in industrial scenarios impractical. Alternative ways
of selecting tests should thus be considered. The ZULU challenge [CdlHJ09]
called for solutions to this issue. Competing approaches were only allowed to
pose a limited number of membership queries/tests. This resembles a setting in
which the cost of test execution matters and equivalence has to be checked via
testing.

Howar et al. [HSM10] describe that a different interpretation of equivalence
queries is necessary in this case. Rather than testing for equivalence, it is neces-
sary to find counterexamples fast. This is a reasonable approach, as learning is
inherently incomplete anyway, because of its relation to black-box testing. Fur-
thermore, they discuss their approaches to selecting test cases which are based
on heuristics. They consider hypotheses to be evolving, i.e. testing is not started
from scratch once a new hypothesis is constructed. Additionally, they base their
test selection on the improved counterexample handling [RS93], combined with
randomization.

Efficient equivalence testing has been addressed by Smeenk et al. [SMVJ15] as
well. Since their SUL is too large for testing with the W-method, they developed
a randomized conformance testing technique. It is based on a method for finding
adaptive distinguishing sequences described by Lee and Yannakakis [LY94]. In
addition to that, they selected a subset of the original alphabet which they
tested more thoroughly. This is done to ensure that specific sequences relevant
to the initialization of the considered application are covered although it would
be unlikely to select them otherwise.
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Another randomized conformance testing technique for automata learning
has been presented in [AT17a]. It addresses coverage by mutation-based test-case
selection whereby the applied mutations are tailored to the specifics of learning.
Furthermore, stochastic equivalence checking has for instance been applied in
learning-based testing to measure convergence [MN15].

Purely random testing, without taking heuristics into account, is a viable
option as well. It has successively been used for experiments with the tool
Tomte [AHK+12,AFBKV15]. However, Aarts et al. [AKT+14] also point out
that while being effective in most cases, random testing may also fail if the
probability of reaching some state is low. Still, quantitative analysis of learned
models, e.g. giving some confidence for the correctness of the models, are mostly
lacking. This is despite early work discussing such ideas [Ang87,RS93].

Domain-Specific Optimisations. Another important insight is that the
inclusion of knowledge about the application domain can increase learning per-
formance. This has for instance been shown by Hungar et al. [HNS03], who
applied techniques such as partial-order reduction methods to reduce the number
of queries. Another example of a domain-specific optimization is the modification
of the W-method by de Ruiter and Poll [dRP15].

3.3 State Merging Techniques

A prominent alternative to learning in the MAT framework is learning via
state merging. State merging techniques infer models from given samples, that
is, sequences of symbols. This is usually done passively, i.e. without interac-
tion with a teacher. Prominent examples are the RPNI algorithm [OG92] and
ALERGIA [CO94]. In a first step, state merging techniques generally build a
prefix tree acceptor (PTA) from the given samples. They then iteratively check
nodes in the tree for compatibility and merge them if they are compatible. The
tree is transformed into a finite automaton through this procedure. Depending
on the actual algorithm, different techniques are used for the steps in this generic
procedure and different types of models are created.

In the case of RPNI for instance, a deterministic finite automaton is inferred
and samples are split into negative and positive samples. Furthermore, the PTA
is built from positive samples while negative samples are used to check whether
two nodes may be merged. ALERGIA requires only positive samples to learn a
probabilistic finite automaton. Therefore, it augments the PTA with frequencies
and bases its compatibility check on a statistical test.

The QSM algorithm is an interactive state-merging algorithm with member-
ship queries [DLDvL08]. Hence, it is a query-driven State-Merging DFA induc-
tion technique. The induction process starts by constructing an initial DFA
covering all positive scenarios only. The induced DFA is then successively gener-
alized under the control of the available negative scenarios and newly generated
scenarios classified by the end-user (membership queries). This generalization
is carried out by successively merging well-selected state pairs of the initial
automaton.
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4 Models

In this section, we provide an overview of the kind of models that have been
learned for testing. Most of the work concentrates on different types of finite
state machines and labeled transition systems. Some researchers have considered
other models, e.g. for stateless systems.

4.1 Finite State Machines

In [AKT+12,AKT+14], the authors use a combination of automata learning
techniques to learn a model of the implementation, which is then compared to
a reference specification model using equivalence checking techniques.

In [LGS06a], the authors use an approach based on L∗ to learn Mealy
machines, which is extended and more thoroughly described in [SG09]. Other
work considers more expressive versions of Mealy machines [LGS06b,SLG07a],
which include parameters for actions, predicates over input parameters and allow
for observable non-determinism.

Margaria et al. [MNRS04] optimized the L* algorithm for generalized Mealy
machines, i.e. Mealy machines that may produce a sequence of outputs rather
than exactly one output in response to a single input. They report significant
performance gains as compared to learning DFA models.

In [CHJS14,CHJS16], Cassel et al. consider generating models from test
cases and present a framework for generating a class of EFSM models, called
register automata, from black-box components using active automata learning.
They introduce an extension to the L* algorithm called SL* (for Symbolic L* ).
However, they do not explicitly mention any particular testing technique. They
only suggest using conformance testing in hypothesis validation (i.e., providing
counterexamples). The SL* algorithm is available as an extension to Learn-
Lib [IHS15], namely RaLib.

Ipate et al. [ISD15] propose an approach which, given a state-transition
model of a system (EFSM), constructs an approximate automaton model and
a test suite for the system. The approximate model construction relies on
a variant of Angluin’s automata learning algorithm, adapted to finite cover
automata [CSY99]. In parallel with automata construction, they incremen-
tally generate conformance test suites for the investigated models, using the
W-method [Cho78] adapted to bounded sequences. These test suites are used to
find counterexamples in the learning process. Their approach is presented and
implemented in the context of the Event-B modeling language [DIMS12,DIS12].

Arts et al. [AT10] automatically extract finite state machines from sets of
unit tests using an FSM inference technique, namely StateChum [WBHS07].
Then, the inferred FSMs are used to provide feedback on the adequacy of the
set of tests and to develop properties for testing state-based systems. They use
QuickCheck for testing and thus, consider generating QuickCheck properties.
An FSM model is incrementally extracted from the test suite as it evolves.
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In [RMSM09] a method for learning-based testing is presented, where the
alphabet of the system under learning is progressively extended during the pro-
cess based on previous interactions. This extension, and the knowledge gained
about the system is used to further derive test cases. The method uses classic
deterministic Mealy machines and the LearnLib for learning, and it is showcased
with the Mantis Bug Tracker case study.

Relying on a heuristic approach to model inference, Schulze et al. [SLBW15]
discussed an model-based testing supported by model generation. They propose
to generate a model from manually created test cases in order to generate further
tests from this model which possibly find undetected issues. In the case study,
they report on manual effort for GUI testing a web-based system.

4.2 Labeled Transition Systems

Hagerer et al. [HHNS02] presented a technique called regular extrapolation for
learning labeled transition systems (LTS) with inputs and outputs. For testing
purposes, labels and states may have additional observations, i.e. parameters and
attributes. Their technique starts with a set of abstract traces, either gathered
passively via log-files or actively via testing. These traces are merged into a
tree and then states with equivalent observations, i.e. equivalent attributes, are
merged. Furthermore, a user may specify independence relations in order to
simplify the model via partial order reduction. Model checking is used to verify
if the learned model satisfies a set of Linear Temporal Logic (LTL) specifications.

Hungar et al. [HNS03] used the L* algorithm to learn LTS models with inputs
and outputs that are input-enabled and input-deterministic. Several optimiza-
tions for reducing the number of membership queries are presented, most notably
the application of partial-order reduction techniques that exploit domain-specific
independence and symmetry properties.

Walkinshaw et al. [WDG09] introduce a reverse-engineering technique which
infers state machines, in the form of LTS, from implementations. They use active
state-merging techniques [DLDvL08] for learning a model based on program exe-
cutions and model-based testing in refining the hypothesis model. The learning
process starts with an initially small set of execution traces, based on which an
initial hypothesis model is constructed. Then, iteratively, a given MBT frame-
work automatically generates tests from the hypothesis model which are exe-
cuted in the program. Any test conflicting the expected behavior by the model
would restart the process to construct a refined hypothesis model. The process
iterates until no more conflicts can be found by testing. For model inference,
they use StateChum, developed by the authors [WBHS07], and use QuickCheck
for MBT [AHJW06].

Walkinshaw et al. [WBDP10] use the technique introduced in [WDG09] and
propose inductive testing to increase functional coverage in the absence of a
complete specification.

Tretmans [Tre11] discusses both learning-based testing as well as testing-
based learning. It is rightfully noted that intermixing the two directions is
dangerous due to a risk of a circular dependency in the resulting testing process.
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Most approaches by Tretmans, employ ioco-based conformance testing methods,
and they treat both deterministic and non-deterministic models given as Mealy
machines. The learning process is delegated to the LearnLib suite with custom
extensions to facilitate better learning, Volpato and Tretmans [VT14] extend the
Angluin’s L* algorithm to work with non-determinism in input-output labeled
transition systems. The ioco-based testing methodology is implemented in the
TorXakis tool [TB03] and employs random model exploration to generate tests.
The learning approach is further improved in subsequent work [VT15] which
weakens assumptions related to the completeness of information obtained dur-
ing learning. An important improvement is that the new approach does not
require exhaustive equivalence checks.

Groz et al. [GLPS08] present inference of k-quotients of FSMs, but also of
input output transition systems (IOTSs). They address the composition IOTSs
and asynchronous communication between components. The latter is accounted
for by introducing queues modeled by IOTSs.

4.3 Other Models

Meinke and Sindhu [MS11] apply the learning-based testing paradigm to reactive
systems and present an incremental learning algorithm for Kripke structures.

For stateless behavior, predicates and functions provide a natural abstraction
for the input-output functionality of programs. In [BG96], inductive program
learning (and inductive logic programming) is used to learn the behavior of
programs; the technique is used to generate adequate tests in order to distinguish
the program under test from all other alternative programs that can be learned.
In [HRD07], algebraic specifications of Java programs are learned. In [Mei04,
MN10], functional models of numerical software are learned and the learned
models are used for automatic generation of unit tests.

Walkinshaw and Fraser presented Test by Committee, test-case generation
using uncertainty sampling [WF17]. The approach is independent of the type
of model that is inferred and an adaption of Query By Committee, a tech-
nique commonly used in active learning. In their implementation, they infer
several hypotheses at each stage via genetic programming, generate random
tests and select those tests which lead to the most disagreement between the
inferred hypotheses. In contrast to most other works considered, their imple-
mentation infers non-sequential programs. It infers functions mapping from
numerical inputs to single outputs. Papadopoulos and Walkinshaw also con-
sidered similar types of programs, but in a more general learning-based testing
setting [PW15]. Therefore, they presented the Model-Inference driven Testing
(MINTEST) framework which they also instantiated and evaluated.

5 Test Purposes and Types of Testing

5.1 Behavioral Conformance Testing

Behavioral conformance testing is a common form of model-based testing, in
which tests are generated in order to establish whether the behavior of the
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implementation under test is “equivalent” to that of the specification model,
according to a well-defined notion of equivalence. Typically behavioral confor-
mance testing is integrated with model-learning in that the specification test
models are learned and are subsequently used for generating a conformance test
suite [VT15,ASV10]. However, in [AKT+14], an alternative integration is also
explored. Namely, model learning is used to learn both a model of a reference
implementation and the implementation under test and then equivalence check-
ing tools are used to check the equivalence between the two learned model. This
way conformance checking is performed in an intensional manner by comparing
models rather than by generating test cases from the specification model and
executing test cases on the implementation.

A case study following a similar approach is presented in [TAB17]. However,
instead of comparing to the model of a reference implementation, learned mod-
els of implementations are compared among each other. Detected differences
are considered to point to possible bugs which should be analyzed manually.
Experiments involving five implementations of the MQTT protocol revealed 18
errors in all but one of the implementations. The system HVLearn described by
Sivakorn et al. [SAP+17] follows a similar approach. It learns DFA-models of
SSL/TLS hostname verification implementations via the KV algorithm [KV94].
Given learned models, HVLearn is able to list unique differences between pairs
models and additionally provides analysis capabilities for single models. The
authors reported that they found eight previously unknown unique RFC viola-
tions by comparing inferred models. Another example using a similar technique
in the security domain is SFADiff [ASJ+16]. In contrast to the other approaches,
it learns symbolic finite automata (SFA) and is able to find differences between
pairs of sets of programs, e.g., for fingerprinting or creating evasion attacks
against security measures. It has been evaluated in case studies considering TCP
state machines, web application firewalls and parsers in web browsers.

These approaches to conformance testing between implementations can in
general not guarantee exhaustiveness. In other words, if models are found to be
equivalent this does neither imply that the implementations are equivalent nor
that the implementations are free of errors. In testing of complex systems, how-
ever, the reverse will often hold, i.e. there will be differences. These may either
help to extend the learned models in case learning introduced the differences,
or may point to actual differences between systems. The discussed case studies
showed that such differences can be exploited in practice, e.g., to find bugs.

5.2 Requirements-Based Testing

With the introduction of black box checking, Peled et al. [PVY99] pioneered a
line of research combining learning, black-box testing and formal verification.
In order to check whether a black-box system satisfies some formally-defined
property, a model is learned with Angluin’s L∗-algorithm and the property is
checked on this model. If a counterexample is found, it either shows that the
property is violated or it is spurious and can be used to extend the model.
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To avoid false positives, conformance testing as described by Vasilevskii [Vas73]
and Chow [Cho78] is also used to extend the model, i.e., to implement equivalence
queries.

Following that, several optimisations and variations have been proposed.
Adaptive model checking [GPY02a,GPY02b] optimizes black box checking by
using a model of the system which is assumed to be inaccurate but relevant.
Another early developed variation is grey-box checking [EGPQ06], which con-
siders a setting in which a system is composed of some completely-specified com-
ponents and some black-box systems. With regard to testing, the VC-method
[Vas73,Cho78] and other conformance testing approaches, taking the grey-box
setting into account, are used and compared.

Adaptive model-checking combined with assume-guarantee verification has
also been considered for the verification of composed systems [HK08]. Fur-
thermore, another variation of adaptive model-checking has been described by
Lai et al. [LCJ06]. They use genetic algorithms instead of L∗ in order to learn
a system model. Their results show promising performance for prefix-closed
languages.

Meinke and Sindhu [MS11] applied the learning-based testing paradigm to
reactive systems and present an incremental learning algorithm for Kripke struc-
tures. Here, an intermediate learned model is model checked against a temporal
specification in order to produce a counter-example input stimulus. The SUT
is then tested with this input. If the resulting output satisfies the specification,
then this new input-output pair is integrated into the model. Otherwise, a fault
has been found and the algorithm terminates.

Following ideas of black box checking, a testing approach for stochastic
systems is presented in [AT17b]. It focuses on reachability properties and basi-
cally infers testing strategies which optimize the probability of observing cer-
tain outputs. This is done via iterated model-inference, strategy generation
via probabilistic model-checking, and property-directed sampling, i.e. testing, of
the SUT.

5.3 Security Testing

Based on black box checking [PVY99], Shu and Lee had described an approach
to learning-based security testing [SL07]. Instead of checking more general prop-
erties, they try to find violations of security properties in the composition of
learned models of components. In following work, they presented a combination
of learning and model-based fuzz testing and considered both active and pas-
sive model inference [SHL08]. This approach is more extensively described in
[HSL08] with a focus on passive model inference. For this purpose they detail
their state-merging-based inference approach, discuss the type of fuzz functions
and the coverage criteria they used. Additionally, they provide a more exhaustive
evaluation.

The compositional approach is also taken in [ORT+07], where several meth-
ods are used to study the security of cryptographic protocols, where learning
by testing black-box implementations is one of the techniques employed. The
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secrecy and authenticity properties are then checked on both the protocol spec-
ifications and the actual implementations through the learned model of the
implementation.

Hossen et al. [HGOR14] presented an approach to model inference specifically
tailored to security testing of web applications. The approach is based on the
Z-quotient algorithm [PLG+14].

Cho et al. [CBP+11] developed a security testing tool called MACE. This
tool combines the learning of a Mealy machine with concolic execution of the
source code in order to explore the state space of protocol implementations
more efficiently. Here, the learning algorithm guides the concolic execution in
order to gain more control over the search process. When applied to four server
applications, MACE could detect seven vulnerabilities.

5.4 Integration Testing

Tackling the issue that complex systems commonly integrate third-party com-
ponents without specification, Li et al. [LGS06a] proposed a learning-based app-
roach to integration testing. They follow an integrated approach in which they
learn models of components from tests and based on the composition of these
models, they generate integration tests. The execution of such tests may eventu-
ally lead to an update of the learned models if discrepancies are detected. Inte-
gration testing thus serves also as equivalence oracle. In following work, Li et al.
[LGS06b,SLG07a,SLG07b] extended their learning-based integration testing
approach to more expressive models. These models also account for data, through
the introduction of parameters for actions and predicates over input parameters.
Additionally, they also allow for observable non-determinism [SLG07a,SLG07b].

Groz et al. present an alternative approach to inference of component mod-
els [GLPS08]. Instead of learning each component model separately, they infer a
k-quotient of the composed system and by projection they infer component mod-
els. With an initial model at hand, they perform a reachability analysis to detect
compositional problems. If a detected problem can be confirmed, they warn that
a problem exists, otherwise they refine the inferred models if the problem could
not be confirmed. Testing is stopped when no potential compositional problem
can be found.

In a similar setting as [LGS06a] and using the same algorithm, Shahbaz
et al. [SPK07] described an approach to detect feature interaction in an inte-
grated system. Basically, they infer models of components by testing, and execute
the same tests of the composed system again. If the observations in the second
phase do not conform to the inferred models, a feature interaction is detected.

Based on their previous works, Shahbaz and Groz [SG14] present an app-
roach for analyzing and testing black-box components by combining model learn-
ing and MBT techniques. The procedure starts by learning each component’s
(partial) behavioral model and composing them as a product. The product is
then fed to a model-based test case generator. The tests are then applied on
the real system. Any discrepancies between the learned models and the system’s
real behavior counts as counterexample for the learned models, to be used to
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refine the models. For a more extensive discussion of learning-based integration
testing, see also the corresponding chapter in the volume.

In [KMMV16] a test-based learning approach is devised, where an already
specified system under test is executed to find and record deviations from that
specification. Based on the collection of these deviations, a fault-model is learned,
which is then used to perform model-based testing with QuickCheck [AHJW06]
for the discovery of similar faults in other implementations. Being a prelimi-
nary work, it uses classic deterministic Mealy machines in the learning process
with the LearnLib implementation. The models utilized in this approach are rich
state-based models with full support for predicates. It falls into the integration
testing category in that overall goal of the work is to test implementations com-
posed of different versions of components, some of which may exhibit deviations
from the reference model.

5.5 Regression Testing

Hagerer et al. [HHNS02] and Hungar et al. [HNS03] consider regression testing
as a particularly fruitful application scenario for model learning. With the pos-
sibility of automatically maintaining models during the evolution of a system
regression testing could be largely improved.

Regression testing and learning is also related in [LS14], however, in a slightly
different fashion and not directly connected to model learning. Namely, machine-
learning techniques are used to identify, select, and prioritize tests for regression
testing based on test results from previous iterations and test meta-data.

Selection and extension of test cases, consequently leading to the refinement
of the software model used for MBT, is also considered in [GS16]. Additional
tests are recorded from the Exploratory Testing process [MSB11] and checked to
be covered in the existing MBT model. If they are not, the model undergoes a
refinement procedure to include the new execution traces. This can be classified
as expert supported continuous learning process to build an MBT model.

5.6 Performance Testing

Adamis et al. proposed an approach to passively learn FSM models from confor-
mance test logs to aid performance testing [AKR15]. Since the learned models
may be inaccurate, manual postprocessing is required.

5.7 GUI Testing

Choi et al. described Swifthand a passive-learning-based testing tool for user
interfaces of Android apps [CNS13]. They interleave learning and testing:
(1) they use the learned model to steer testing to previously unexplored states
and (2) refine the model based on test observations. Their test selection strategy
aims at minimizing the number of restarts, the most time-consuming action in
the considered domain, while maximizing (code) coverage. The evaluation shows
that Swifthand outperforms L∗-based and random testing.
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6 Domain

Model learning and model-based testing has been applied to many different
domains with different characteristics. In this section, we provide an overview of
such application domains.

6.1 Embedded Systems

Embedded systems are a very suitable application domain for model learning
and model-based testing; they often have a confined interaction with the envi-
ronment through an interface. One of the earliest application of such techniques
to the embedded system domain has been the application of model learning
to telephone systems with large legacy subsystems [HHNS02,HNS03]. Meinke
and Sindhu [MS11] applied their learning algorithm to a cruise control and an
elevator controller.

Test-based learning (based on a variant of the well-known FSM-based test-
ing, called the W-method) has been applied in [SMVJ15] to learn an industrial
embedded control software.

The combination of learning and testing has also been applied in the auto-
motive domain. In [KMMV16], the basic ideas about learning faulty behavior of
AUTOSAR components is explored in order to predict possible failures in com-
ponent integration. In [KMR] learning-based testing is applied to testing ECU
applications.

6.2 Network and Security Protocols

Another application area often explored in the context of learning and testing is
that of security protocols and protocol implementations. Using the abstraction
technology described in [AHK+12] and Mealy machines learned through Learn-
Lib, [FBJV16] reports on learning different TCP stack implementations. Instead
of for testing, the learned models are used for model checking to verify proper-
ties of these implementations in an off-line fashion. A similar case study carried
out in a security setting focused on SSH implementations [FBLP+17]. Model
checking the learned models of different implementations revealed minor viola-
tions of the standard but no security-critical issues. In [MCWKK09], the learned
protocols are used as an input for fuzzing tools in order to reveal security vul-
nerabilities. Learning-based fuzz testing has also been applied for the Microsoft
MSN instant messaging protocol [SHL08,HSL08]. Furthermore, learning-based
testing of security protocols is addressed in [SL07] as well.

The authors of [MCWKK09] learned a number of malware, text-based and
binary protocols using some domain-specific and heuristic-based learning tech-
niques. Aarts et al. [AKT+12,AKT+14] combined various learning techniques
to learn and test the bounded re-transmission protocol and Fiterau-Brostean
et al. [FBJV14] extended this work to fragments of TCP. Walkinshaw et al.
[WBDP10] applied their inductive testing approach to explore the behavior of
the Linux TCP stack.
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Test-based learning has been extensively used to learn models of different
sorts of smart-card based applications. Being black-box systems and typically
specified using imprecise language, test-based learning helped to devise more pre-
cise models of such applications. In particular, the models of a biometric passport
and a bank card have been produced this way, see [ASV10,AdRP13], respectively.
In both works, a suitable data abstraction between the learning alphabet and
the actual system inputs and output had to be developed to facilitate the learn-
ing process. This led to the development of Tomte, a framework for automated
data abstraction for the purpose of real system learning [AHK+12,Aar14]. The
learned model produced [ASV10] was also compared to the manually developed
model for the conformance testing of the Dutch biometric passport [MPS+09].

6.3 Web Services

Raffelt et al. applied dynamic testing on web applications [RMSM08]. More con-
cretely, they described a test environment Webtest, combining traditional testing
methods, like record-and-replay, and dynamic testing. The latter provides ben-
efits such as systematic exploration and model extrapolation, while the former
eases dynamic testing by defining possible input actions.

Bertolino et al. [BIPT09] used test-based learning (based on finite state
machines) to learn the behavioral interfaces for web services.

6.4 Biological Systems

Biological systems have been recently studied as instances of reactive systems
[BFFK09]. This provides the prospect of using models of reactive and hybrid
systems to replace in vivo and in vitro experiments on living organisms and cells
with in silico experiments (e.g., replacing the experiments with model checking or
model-based testing) [BFFH14,Col14]. In [AL13], test-based learning is used to
learn hybrid automata models of biological systems (cell models). In [MHR+06],
automata learning technique is integrated with requirement-driven engineering
to create and improve models of biological systems.

7 Conclusions

Learning-based testing is an active research area that has produced impressive
results despite being a relatively young discipline. Different systems in various
critical domains have been tested successfully including controllers, communi-
cation protocols, web applications, mobile apps and smart cards. Every year
new algorithms, techniques and tools are proposed in order to learn and test
increasingly complex systems.

The prevailing concern in the domain of model-learning (in the context of
testing) is the scalability and applicability to real systems. For such applica-
tions, abstraction techniques for input and output data are needed to support
the learning process. The researchers are actively looking into automating this
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process, which in many cases is still manual and requires either domain-specific
knowledge, or apriori knowledge about the system under test. Several discussed
papers either mention this as an issue, or provide some solution for it.

Another open issue surfacing in the described works is the treatment of richer
models, both in the context of learning and testing. For example, stochastic
models, or models that consider time or system dynamics. Such rich models
bring new challenges in both research domains, moreover, they underline the
scalability issues mentioned above.

Completeness (or a quantified approximation thereof) is another major con-
cern in this domain. A property of algorithms in the MAT framework is “that
a learned model is either complete and correct, or not correct at all” [VT15].
Note that in this context, correctness expresses that the learned model and the
system under learning agree on all possible inputs. In [VT15], this property has
been dropped by learning an over- and an underapproximation and preserving
ioco-conformance during learning. In other words, there are two learned models
which may not agree with the system under learning on all inputs but which are
in a conformance relation with the system. However, such an adaptation may not
be possible for all types of models. Steffen et al. [SHM11] also mention this prop-
erty, stating that it must be accepted and that incompletely learned models may
still provide benefits in certain scenarios, e.g., for test-case generation [HHNS02].

Scenarios like black-box checking [PVY99] on the other hand suffer from
incompleteness1. They can guarantee that a verified property either holds or the
number of states of the system is larger than an assumed upper bound. More
quantitative measures of correctness would be useful for this type of verification
such that, e.g., statistical guarantees could be given with a certain confidence.
Although already early work discussed such matters, there has not been much
research in this direction. In fact, Angluin considered learning without equiva-
lence queries in a stochastic setting in her seminal paper [Ang87]. Furthermore,
Rivest and Schapire also gave probabilities for learning the correct model [RS93].
Despite its practical usefulness, recent work usually does not assign probabili-
ties or confidence levels to the learning result, also in case stochastic (testing)
strategies are applied.

Testing has always been a challenge due to (1) its incompleteness by nature,
(2) the lack of good specifications and (3) by its high demand for resources. With
the growing complexity of the systems-under-tests this process is not going to
be easier. Learning-based testing offers an opportunity to master this complex-
ity with modern learning-based techniques. It represents a natural evolution of
testing: with the trend of our environment becoming “smarter”, e.g. smart
homes, smart cars, smart production, smart energy, our testing process needs to
be smart as well. We are seeing the advent of smart testing.
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1 The authors also briefly discuss stochastic properties of Mealy machines, though.
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Abstract. In this chapter we examine the problem of testing functional
black-box programs that do not require sequential inputs. We specifically
focus on the case where there is no existing specification from which to
derive tests. Research into this problem dates back over three decades,
and has produced a variety of techniques, all of which employ various
types of data mining and machine learning algorithms to examine test
executions and to inform the selection of new tests. Here we provide an
overview of these techniques and examine their limitations and opportu-
nities for future research.

1 Introduction

This chapter is concerned with the challenge of devising test sets for functional,
black box components. By ‘functional’, we mean that the component does not
store its data in such a way that the internal state could affect its behaviour with
respect to subsequent inputs. By ‘black-box’ we mean that the internal workings
of the system are hidden; we cannot inspect the source code, or obtain execution
traces of internal variables; we can only monitor the inputs given to the system,
and the outputs returned in response. Finally, we assume that we do not have a
useful model of the system that could be used to guide our selection of inputs,
which prevents us from resorting to traditional model-based testing techniques.

Functional programs (or portions of programs) are highly prevalent1. There
are the obvious functions, such as the various mathematical functions that
are built into most programming languages. Functions that might appear non-
functional (such as the Stack.push(o) operation in Java) can be recharacterised
in functional terms by simply making the state of the stack part of the input
and output.

There are many occasions in which a system might have to be treated as a
‘black boxes’. In some cases it might be because we genuinely have no access to
the internals of the system; for example we are dealing with a COTS component
procured from a developer who has not given us access to the source code,
or the system under test involves web-services that are hosted on a remote

1 Note that the use of ‘functional’ in this chapter refers to the external behaviour of
the program, not the programming paradigm used to implement it.

c© Springer International Publishing AG, part of Springer Nature 2018
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machine. In others, it might be because we do not wish to base our testing on
established white-box notions such as code-coverage alone, because these have
been repeatedly shown to be unreliable as a basis for test-adequacy, or we simply
do not have the wherewithal to identify a test set that obtains a reasonable degree
of coverage in the first place.

Section 2 starts by examining the essential challenge of constructing test sets
in this scenario. It shows how the baseline approach of simply executing arbi-
trary random inputs is not an effective, scalable approach. We also consider some
properties that an ideal, hypothetical testing technique should possess. It is then
followed by Sect. 3, which describes a feedback-driven approach to random test-
ing known as Adaptive Random Testing. In Sect. 4 we then provide an overview
of a family of techniques that are based on the idea of using feedback from test
executions to infer models, which can in turn drive test generation. In Sect. 5
we cast a critical eye over the various techniques covered, pick out some general
weaknesses, and highlight several open questions. This is finally followed by the
conclusions in Sect. 6.

2 The Challenge of Testing Unspecified Functional
Black-Box Systems

The essential challenge of testing black-box systems without a reference model
is that there is no obvious guidance from which to drive test efforts. Once a test
has been executed, all that can be observed is the output. There is no source
code or control flow graph that can be used to elicit additional test cases that
could perhaps expose new aspects of program behaviour.

2.1 State-Based and Functional Systems

The problem of devising test cases in this scenario has been studied for sev-
eral decades. Numerous techniques have been devised that use a variety of
heuristics and reasoning mechanisms to experiment with and test such systems.
These techniques can be, in broad terms, split into two families of approaches:
(1) Approaches that target systems that react to sequences of inputs, and
(2) approaches that target systems that react to individual inputs.

Most of the chapters in this book that consider black-box testing are con-
cerned with the state-based family of systems. These approaches characterise
the system under test as a state machine. The test cases are sequences of events
that can be fed to the system, and a “state” in the system amounts to the future
set of inputs that the system can be expected to respond to at a given point in
its execution.

In this chapter we focus upon the functional family of systems. For such
systems, inputs are not sequential. Inputs and outputs tend to be data values
as opposed to events or signals. They can often be referred to as “stateless”
because a truly functional software component does not incorporate any data-
state that could persist across and affect future executions. Whereas sequential
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systems are overwhelmingly represented as automata, functional programs can
be represented and reasoned about in a variety of ways.

2.2 The Challenge

In order to test any system it is first necessary to establish the ‘interface’ of the
System Under Test (SUT). In other words, what are the types of parameters
that are expected? As a concrete example we might consider the scenario where
we are testing an implementation of the Bessel function (e.g. as can be found in
Apache Commons Math). For this we would need to now that a Bessel function
expects two parameters (order and x).

The de-facto test-generation approach is to provide random combinations of
values for order and x. In order to apply random testing in the proper sense, it is
first necessary to define an appropriate probability distribution over the inputs,
representing the anticipated “operational profile” of how the SUT is to be used
once deployed. Testing then amounts to sampling inputs according to these dis-
tributions. If this is done for a sufficiently large sample of tests, it becomes possible
to apply probability theory to reason about notions such as reliability [15].

Unfortunately, random testing is problematic in our scenario. Firstly, it is
unlikely that we are fully aware of the “operational profile” of our system, which
hampers the selection of useful parameters. If we then resort to a default dis-
tribution (e.g. the uniform distribution), it is liable to either generate an over-
whelmingly large number of trivially invalid inputs, or will fail to adequately
probe the full range of software behaviour.

The essential weaknesses of conventional random testing are thus: (1) it
requires knowledge about the SUT that goes beyond its interface, and (2) it
is inefficient; it can take an infeasibly large number of test executions to expose
a fault. Accordingly, this sets out the goals for any techniques that seek to offer
an improvement. They should not depend upon knowledge that is difficult to
obtain about the SUT (such as its operational profile), and should (2) seek to
be efficient – to minimise the number of tests required, whilst maximising the
range of software behaviour covered.

3 Adaptive Random Testing (ART)

Adaptive Random Testing (ART) [8] was developed to address the weakness of
inefficiency with respect to purely random testing mentioned above. The key idea
is, instead of blindly attempting inputs, to keep track of previously attempted
inputs, and to use these in the process of selecting more effective new ones. The
ultimate goal of ART is to select inputs that are as “different” as possible from
those that have been selected previously.

The approach is captured in Algorithm 1. It starts from an existing set of test
cases (TestInputs). The algorithm operates over a given number of iterations -
where each iteration yields an additional test case to add to TestInputs.
The core loop starts by generating a pool of size poolSize of random test inputs
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Input: TestInputs,poolSize
Uses: generateRandom,minDistance,terminate

1 i ← 0 ;
2 while (¬terminate(i, T estInputs)) do
3 i ← i + 1;
4 Candidates ← generateRandom(poolSize);
5 maxDistance ← 0;
6 Furthest ← ε;
7 for c ∈ Candidates do
8 minDist ← minDistance(c, TestInputs);
9 if (Furthest = ε) ∨ (minDist > maxDistance)) then

10 Furthest ← c;
11 maxDistance ← minDist;

12 end

13 end

14 end
15 return TestInputs;

Algorithm 1. Adaptive Random Testing

(without executing them). Each candidate input c is then compared against the
existing inputs, by measuring the distance between c and the other inputs. The
final distance with the test set is recorded as the shortest distance to any mem-
ber of TestInputs. Once this is done for all candidates, the candidate with the
largest distance is added to the test set, and the process continues for the given
number of iterations.

At the heart of ART lies the use of a “distance” metric. The default approach,
if the inputs are numerical, is to compute the Euclidean distance. However, this
can be problematic. For example, if parameters are on different scales, it can
become easy for a distance calculation to ignore small-scale inputs. This problem
of ‘test distance’ has recently been the focus of an increasing amount of attention.
Recently, several ‘test diversity’ metrics have been devised that use information
theory, such as Feldt et al.’s Test Set Diameter [11].

Recent efforts have been made to extend ART to non-numerical inputs too.
For example, ARTOO [10] considers input objects in an Object-Oriented pro-
gramming context. To enable this, they devised a custom object-oriented distance
function, which incorporates object types and values to form a composite value.

Strengths:

• Test sets can be created without
needing to execute the program.

• Experimental evidence indicates
that ART is effective for programs
with numerical input, and that
ARTOO is effective for Eiffel pro-
grams.

Weaknesses:

• Effectiveness is sensitive to
parameters, including distance
functions, sampling ranges, and
the choice of poolSize.

• Clustering and sampling invari-
ably impose a time-penalty.
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4 Inference-Driven Techniques

The success of ART is founded on the principle that it is possible to memorise
which inputs have been attempted, so that successive new inputs can be selected
in such a way that they avoid re-executing previously executed program features.
The weakness is that inputs alone do not necessarily capture the actual behaviour
of a system. Inputs might be superficially diverse, yet still end up covering a
relatively homogeneous set of program executions.

Inference driven test generation techniques are based on a similar premise –
of memorising test executions. However, instead of merely focussing on program
inputs, inference-driven techniques aim to capture executions in a more compre-
hensive sense, by inferring a model that relates test inputs to their correspond-
ing outputs. Instead of periodically clustering input data as in ART, inference-
driven test generation techniques periodically infer a model of the input/output
behaviour of the system under test, with the aim of using this model as a basis
for test generation.

Input: TestInputs
1 Executions ← ∅;
2 for (input ← TestInputs) do
3 Executions ← Executions ∪ execute(input);
4 end
5 hyp ← inferModel(Executions);
6 while (¬terminate(hyp)) do
7 NewInputs ← selectInputs(hyp);
8 for (input ← NewInputs) do
9 Executions ← Executions ∪ execute(input);

10 end
11 hyp ← inferModel(Executions);
12 TestInputs ← TestInputs ∪ NewInputs;

13 end
14 return TestInputs;

Algorithm 2. A generic inference-driven testing procedure.

The basic iterative procedure is illustrated in Algorithm2. For every test
execution (stored in Executions) it captures both the input(s) and output. Sim-
ilarly to the ART algorithm, it then operates on an iterative basis: A model is
inferred, the model is used to select new inputs, these are executed, and the
resulting execution data is used to infer a refined model. The process an either
continue for a fixed number of iterations or until some termination condition is
satisfied (e.g. the model stabilises and further test executions fail to result in
changes to the model).

The essential idea for inferring a model from test executions dates back to
Moore’s work on “Gedanken Experiments with Sequential Machines” [20] from
1956. In this early work, Moore envisaged a situation whereby the “component”
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under test could be potentially modelled as a finite state machine. He went on
to enliven the situation somewhat by conjecturing that the mechanism being
experimented on “may explode, particularly if it is a bomb, a mine, or some
other infernal machine. Since the experimenter is presumably intelligent enough
to have anticipated this possibility, he may be assumed to have conducted his
experimentation by remote control from a safe distance”.

Moore’s line of state machine inference and testing has become a highly active
area of research (spurred by the combined availability of an extensive array of
state machine inference and testing algorithms). Given that this is the subject
of extensive treatment elsewhere in this book, this chapter will instead focus on
the family of inference-based testing techniques that are not specifically targeted
towards sequential (state-machine based) systems.

As a family of techniques, inference-driven testing techniques share certain
strengths and weaknesses. Whereas the following apply across all techniques,
the specific strengths and weaknesses that pertain to individual techniques will
be listed individually. In the remainder of this section we examine some of the
key contributions in this area. We put them in an approximately chronological
order.

Strengths:

• Test generation can adapt to
observed behaviour (software out-
puts are taken into account as well
as inputs).

• Produces explicit models that have
an intrinsic value (e.g. for validat-
ing tested behaviour).

Weaknesses:

• Efficiency is tied to execution-speed
of system under test, as well as
amount of time taken for inference.

• Dependent on identifying a suitable
match between the system being
tested, the inference algorithm, and
the test generation approach.

4.1 Theoretical Links Between Machine Learning and Test
Adequacy

Throughout the 80s and early 90s, most of the work linking Machine Learning
with testing was focussed on the conceptual links between the two areas. Both
Budd and Angluin [7] and Weyuker [32] independently investigated the idea in
1982-3. Their work was subsequently developed by Cherniavsky and Smith in
1987 [9]. They all set out broad theoretical frameworks within which to discuss
the relationships between the two areas.

These early pieces of research were particularly interested in the question
of adequacy [13]. Specifically they focussed on the question of whether Machine
Learning concepts could be used to characterise when a test set can be deemed to
be complete - something that had traditionally been (and still is) measured via
crude, imperfect proxy measures such as code coverage. In terms of Algorithm 2,
the focus was on whether a terminate function could exist and how it might
work.
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Although the bulk of the work was theoretical, Weyuker’s work did include
a proof-of-concept implementation. In it she used a simple inference engine by
Summers [27] to infer programs (comprised from a subset of LISP) from program
executions. Weyuker’s work highlighted the limitation that an inferred model
cannot be shown to be equivalent to the code of the underlying program or
a given specification. To work around this she proposed that the terminate
function might instead resort to a weaker interpretation of equivalence, using a
pool of random executions of the program to gauge whether or not the behaviour
of the inferred model was sufficiently close (either to the program or the given
specification).

This line of work was subsequently carried on in the early 90s by Zhu et al.
[35,36], and by Romanik and Vitter [24,25]. Both investigated how testability
could be linked to (what had by then become) more established Machine Learn-
ing concepts. Zhu et al. showed how test adequacy could be linked to Valiant’s
Probably Approximately Correct framework [29]. Romanik and Vitter, in a sim-
ilar vein, proposed a link between test adequacy and the Vapnik Chervonenkis
Dimension [30] (which underpins Structured Vector Machine learning).

4.2 Combining Testing with Inductive Logic Programming

Although Weyuker’s work had focussed on the terminate function in Algo-
rithm2, her proof of concept implementation also provided an implementation
of the inferModel function in the form of Summers’ LISP program inference
engine [27].

Summers’ engine was an example of what is known as Inductive Logic Pro-
gramming (ILP) [19]. ILP operates by encoding all of the knowledge about the
target subject (in our case this would be the SUT) into logical facts that can be
represented in a programming language such as LISP or Prolog. This may include
observed examples (in our case set Executions in Algorithm 2), as well as any
ancillary knowledge. This is then used as a database from which a generalised
hypothesis is inferred.

In the mid-90s, Bergadano and Gunnetti [4] used IPL in the first concerted
effort (since Weyuker’s work) to implement Algorithm 2. For their work they used
their own IPL system [3]. Their proof of concept demonstrated the generation
of an adequate test set for a Prolog implementation of a merge function.

Approximately a decade later, in 2004, ILP was again used to drive the
inference-test loop. However, this time the system ‘under test’ was not a con-
ventional software system, but a genetic pathway. In their work on the “robot
scientist” King et al. [17] set up a physical version of the inference loop. This
time, test executions amounted to physical experiments on the gene function of
yeast, which were devised to test a hypothesis model that was inferred by ILP.
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Strengths:

• Suited to inferring models of pro-
grams that suit declarative lan-
guages such as Prolog.

• Recent growth in the popular-
ity of such languages, such as
Elixir/Erlang (particularly in tele-
coms and web-apps).

Weaknesses:

• Unclear what range of behaviours
can be accurately inferred by ILP.

• The ILP setup has to be tailored
to the inferred program, and the
extent to which this can be auto-
mated is uncertain.

• There is limited empirical evidence
to corroborate the efficacy of the
resulting test sets.

4.3 Test-Driven Algebraic Specification Inference

In 2003 Henkel and Diwan [16] proposed an approach to discover algebraic spec-
ifications from Java programs2. The approach was not primarily intended as a
software testing approach, but as a generic specification mining tool. We nev-
ertheless cover the approach here because their approach marries model infer-
ence with test generation (even if the tests are ultimately considered a mere
by-product).

Input: SUT
1 Algebra ← obtainAlgebra(SUT );
2 Tests ← generateTests(Algebra);
3 Executions ← execute(Tests);
4 Equations ← generateEquations(Tests, Executions);
5 Spec ← generateAxioms(Equations);
6 return Spec;
Algorithm 3. Henkel and Diwan’s algorithm for inferring algebraic specifica-
tions.

Although it marries Machine Learning with software testing, Henkel and
Diwan’s approach is a departure from the iterative approach in Algorithm2.
Their approach is shown in Algorithm3. It starts off by generating the basic
terms in the algebra by extracting the signatures of the methods in the SUT
(since they focus on Java programs, they achieve this by using Java’s reflec-
tion API). These terms are subsequently combined into sequences. From these
sequences, it is necessary to generate a set of test cases by supplying suitable
input parameters (the sequences can be seen as Parameterised Unit Tests [28]).
Once tests are executed, the sequences of corresponding terms can be formu-
lated into equations, indicating which sequences result in an equivalent state, so
2 The idea of combining algebraic specification inference with test generation was

proposed in the same year by Xie and Notkin [34], though this was not accompanied
by an implementation.
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that they can be generalised into the resulting specification. This equivalence is
established by identifying a set of “observer” methods in the target class that
do not mutate the object, but can provide some feedback on its state.

It is difficult to evaluate the efficacy of Henkel and Diwan’s approach from
a test-generation perspective, because tests are more of a by-product in their
approach. They do not prescribe a particular test generation strategy or pro-
cedure for generating the tests. They do not link their test-generation to some
adequacy criterion; instead they specify a number of tests to be generated for
each sequence (e.g. in their experiments this was set to 4). The value of these
tests will clearly depend on the accuracy of the model, coupled with the choice
of test-data generation strategy.

However, this lack of focus upon testing is not an essential limitation of
their approach. It would be relatively straightforward to re-purpose Henkel and
Diwan’s approach towards testing, in line with the iterative test-inference cycle
in Algorithm 2. Lines 4 and 5 in Algorithm3 would amount to inferring the
model from tests (inferModel in Algorithm 2), and lines 2–3 would amount to
selecting and executing tests from the inferred model (lines 8–10 in Algorithm2).

Strengths:

• Particularly suited to testing data
types. As such, especially suited to
unit testing.

• Empirical evidence to suggest that
their approach is applicable to col-
lection data types in the Java API.

Weaknesses:

• There has been no evidence wrt.
the effectiveness of the test sets
that are produced in the inference
process – all of the emphasis has
been placed on the accuracy of the
inferred models.

• Appropriate observer methods are
not necessarily available, or even
obviously identifiable.

• Can involve the execution of large
numbers of tests to establish object
equality.

• No evidence to corroborate the effi-
cacy of the generated test sets.

4.4 Decision-Tree Based Approaches

Decision tree models are interesting from a testing perspective, because they
provide a concise means by which to link constraints (i.e. on input variables)
to functional program outcomes. When modelling the behaviour of a software
system, a decision tree in essence presents a hierarchy of decisions on the input
space, where each leaf node in the tree amounts to a conjunction of decisions
that lead to a specific outcome. In the context of inference-based testing, there
are two approaches that specifically revolve around decision trees: Briand et al.’s
MELBA approach, and Papadopoulos and Walkinshaw’s MINTEST framework.
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4.4.1 MELBA
Briand et al. [6] proposed MELBA - a semi-automated variant of the inference-
test loop. They considered the typical situation where the developer is given a
partial, inadequate set of test cases, and needs to decide how to augment it. The
process of testing, informed by the inferred model, is carried out according to
the Category Partition method [21]. The approach is distinguished from others
considered so far for two reasons: (1) it explicitly incorporates input from a
human developer, and (2) it is linked with a systematic test selection strategy.

In terms of Algorithm 2 the inferModel function is carried out by an off-
the-shelf decision tree learner (they opt for the C4.5 algorithm [23]). However
terminate and selectInputs are carried out by the developer. For terminate
it is left to the developer to scrutinise the inferred model to determine
whether the behaviour that has been tested is sufficiently representative of the
expected behaviour (or whether the model indicates any obvious faults). For
generateTests, Briand et al. leave the developer with two options. They can
either update the test specification that is used to generate test cases (the cate-
gories and partitions [21]), or can add individual test cases themselves.

Briand et al. argue that it is necessary to keep the developer in the loop,
because it is otherwise impossible to validate the inferred model and to identify
potentially faulty behaviour. This highlights a key assumption that is made by
most other approaches: that there is some oracle (perhaps in the form of runtime
assertions) that is able to flag up any faulty behaviour should it occur.

MELBA was demonstrated on two case studies – the typical Triangle program
was used to illustrate the approach. The larger PackHexChar program (a Java
adaptation of a GhostScript function used to compress hexadecimal characters
into bit strings) was used as a case study. They illustrated (via a study on
students) that their combination of decision tree inference with the category
partition method could lead to an improvement in test sets (as assessed by
seeded faults).

Strengths:

• Empirical evidence indicating that
the test sets are effective.

• Reliance upon a human oracle
enables stronger conclusions to be
made about the absence of faults in
the system once testing is complete.

Weaknesses:

• Evidence only collected for a single
subject program.

• Reliance upon a human oracle
increases expense, especially when
required to visually inspect inferred
decision trees.

• Tied to programs that have cate-
gorical outputs. This rules out a
large range of programs.

4.4.2 MINTEST
Papadopoulos and Walkinshaw presented an automated variant of Briand et al.’s
MELBA approach [22]. It was automated in the sense that the generateTests
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part was amended to automatically generate sets of tests that satisfied the var-
ious combinations of constraints set out by the decision tree. The test sets are
generated by, for each leaf-node in the tree, identifying all of the constraints that
lead to it, and feeding the conjunction of the various constraint to a constraint
solver (Z3 in their case). This is then used to identify a set of test inputs that
satisfy the various constraints and cumulatively span the range of behaviours
set out in the tree.

Their MINTEST framework includes a proof of concept implementation that
can, in principle, automatically test any program that can be executed from the
command line (if a suitable descriptor file of the interface is provided). The
limitation, as with MELBA, is that the program in question must be capable
of being modelled as a decision tree: it must take as input either numerical or
categorical inputs, and produce a single output variable (that is also numerical
or categorical).

To illustrate the effectiveness, the authors include a small experiment on
three small Java programs, which indicates that the approach is better able to
identify test sets that expose (seeded) faults than equivalent random approaches.

Strengths:

• Some limited empirical evidence
indicating that the test sets are
effective.

• Automated - framework enables
approach to be applied to arbitrary
programs that can be launched
from the command line.

Weaknesses:

• Tied to programs that have cate-
gorical outputs. This rules out a
large range of programs.

• Only demonstrated on small num-
ber of small Java programs.

4.5 Model-Agnostic Techniques

One of the limitations of most of the approaches mentioned previously is the fact
that they are tied to a specific family of Machine Learning algorithms. As such,
these approaches can only be practically applied to programs where the under-
lying behaviour is a suitable fit to the type of model inferred by that approach.
ILP-driven approaches are a good fit for approaches that operate on arrays,
but less appropriate for systems with sequential behaviour. The converse applies
to approaches that are based upon algebraic specifications or state machines.
Decision-tree based approaches such as MELBA are particularly good for sys-
tems that produce categorical outputs, but are again unsuitable for systems that
operate on complex data structures such as lists, or are sequential in nature.

4.5.1 Coevolutionary Inference of Models and Tests
Bongard and Lipson applied a version of the test-and-infer loop in the con-
text of nonlinear dynamical systems [5]. Such systems tend to involve multiple
interacting components. There is no assumption that the systems under test
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are necessarily software systems; they demonstrate their approach on a vari-
ety of problems, including the inference of gene networks, grammars, and robot
behaviours. In practice they are often simulations of physical systems – as is the
case with the gene networks. In practice this distinction between software and
non-software is not significant, and the work is reminiscent of the ILP-driven
gene pathway identification work by King et al. [17], which appeared a year
earlier.

Bongard and Lipson’s approach is particularly interesting because they do
not tie themselves to a specific model inference algorithm. They are interested in
the broader process by which one can, with the help of tests, infer a demonstra-
bly accurate model of an arbitrary (potentially non-linear) dynamic system. At
the heart of their approach lies a “coevolutionary” algorithm – an evolutionary
algorithm that evolves a population of models and corresponding test cases in
tandem with each other.

This coevolutionary approach is an embodiment of the familiar loop in Algo-
rithm2. Bongard and Lipson refer to this as the Estimation-Exploration Algo-
rithm. They start from a random set of tests. The inferModel function is
assumed to be based on a genetic algorithm that encourages diversity within
its population. The fitness function is presumed to be based on the ability of the
inferred model to explain the test case executions. The selectInputs function is
called the Exploration phase. This is again assumed to be under the control of
a genetic algorithm, where fitness is measured by the capacity of the tests to
disagree with the inferred model. They also have the ability to flexibly define
the terminate function, to stop the inference once both model inference fails to
achieve an improved model, and test inference fails to identify tests that disagree
with the model.

Strengths:

• Empirically evaluated on a range
of systems (grammars, robots, gene
pathway models).

• Can be linked to arbitrary model
inference techniques.

Weaknesses:

• Efficacy of tests has not been eval-
uated in a software testing context.

• Lack of documented implementa-
tion detail, specifically with respect
to choice of learners and testing
strategies.

4.5.2 The BESTEST Framework
Recent work by Fraser and Walkinshaw [12] has adopted a similar approach
to Bongard and Lipson’s, but with more of a focus on software systems. Their
BESTEST framework provides ‘stubs’ for inferModel, for which it is possible
to supply arbitrary Machine Learning algorithms (for example it is possible to
specify any Machine Learning algorithm implemented within the WEKA frame-
work [14]).

The test case generation (selectInputs) also applies a Genetic Algorithm.
However, in their case the fitness function aims to identify test cases that
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maximise the extent to which they cover the source code of the system under
test3, whilst also maximising disagreement with the inferred model. This dis-
agreement is measured according the ability to diminish the assessment that it
is ‘Probably Approximately Correct’ [29].

The approach was evaluated on 18 Java units. Given the restriction to off-
the-shelf WEKA learners, these all had to have relatively straightforward inter-
faces (with numerical or categorical inputs, and a single numerical or categorical
output), and were accordingly relatively simple (all apart from one were under
100 SLOC). They showed that BESTEST outperforms standard code-coverage
driven and random test generation approaches, but only if the approach is con-
figured appropriately (which relies to an extent upon human judgement).

Strengths:

• Can be linked to arbitrary model
inference techniques.

• Evidence suggests that generated
test sets are more effective and effi-
cient (on a per-test basis) than ran-
dom testing.

Weaknesses:

• Reliant upon generating large num-
bers of quasi-random tests (albeit
optionally guided by code coverage
if code is accessible).

• Use of WEKA means currently
restricted to programs with simple
interfaces (primitive types, single-
output values).

• Only demonstrated on small Java
units.

4.5.3 Uncertainty-Based Sampling
The process of generating tests to refine inferred models (selectInputs) is com-
monly either random, or is driven by the model in some way. The disadvantage
of random or quasi-random testing is that these tests tend to struggle to prop-
erly explore and probe the behaviour as represented by the inferred models. This
is especially the case if the behaviour is difficult to trigger (e.g. is governed by
highly specific pre-conditions on the data state).

However, when it comes to generating tests from an inferred model, the spe-
cific implementation of selectInputs is invariably tied to the specific type of
model. This means that approaches that are model-agnostic such as Bongard
and Lipson’s approach, or BESTEST ultimately rely on quasi-random test gen-
eration for selectInputs. Both approaches ultimately rely on generating random
tests with the help of a genetic algorithm which aims to maximise disagreement
between the tests and the model.

This approach has the weakness that it is possible, in principle, to generate
lots of tests that trivially disagree with the model, without actually probing the
more subtle ‘deeper’ behaviour of what has been executed so far. In a scenario

3 This requirement for access to source code coverage can be waived if it is not avail-
able, in which case the coverage becomes entirely driven by the inferred model.
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where we have co-evolution (in our case between the inferred model and the gen-
erated test set), this is referred to by Bongard and Lipson as the “Red Queen
Effect”. Although they assert that this effect diminishes over time with their
coevolutionary approach, this ultimately depends on the genetic algorithm find-
ing more probing test-cases, which is not necessarily realistic in the domain of
software systems where specific behaviour trajectories can have complex precon-
ditions.

Walkinshaw and Fraser [31] recently proposed an alternative test genera-
tion approach, designed to provide more probing test cases. Their approach is
based on a technique from Active Machine Learning [26] known as uncertainty
sampling. This approach is based on the assumption that, for a given input,
the inferred model is capable not only of giving a predicted output, but also of
associating that output with a level of confidence or probability. The rationale
is that, by identifying those test cases that elicit the greatest uncertainty from
the inferred model, a subsequent training set that contains the ground-truth
behaviour for these inputs will be of most ‘utility’ for model inference, and will
lead to the greatest improvements in model accuracy.

Although some inferred models have an in-built means by which to assess
probability (e.g. C4.5 decision trees [23]), this is not necessarily always the case.
One way by which to obtain confidence measures from arbitrary types of models
is to use inferModel to produce populations of multiple models, instead of a
single model. For example, Walkinshaw and Fraser use Genetic Programming,
which intrinsically produces a population of models (individual chromosomes),
but it is similarly possible to adopt the Ensemble Learning approach of inferring
diverse models from different sub-samples of the training set [18]. Once there
are multiple models, a confidence value for a given input can be ascertained by
measuring the level of agreement or disagreement amongst the models.

Strengths:

• Empirical evidence indicates that
the approach is more effective on a
per-test basis than random testing
and ART.

• Can be linked to arbitrary model
inference techniques.

• Only selects few tests per iteration
(as opposed to a large set) and thus
relies on fewer test executions than
BESTEST and Bongard and Lip-
sons co-evolutionary approach.

Weaknesses:

• Only applied on a Genetic Pro-
gramming inference system, which
leads to similar interface restric-
tions to BESTEST.

• Only demonstrated on small Java
units.

5 Limitations of the State of the Art

Despite being the subject of several decades worth of research, none of the
techniques to have emerged has transferred into widespread use. In part, this
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is because off-the-shelf Machine Learning and clustering implementations have
only become widely available relatively recently.

Nevertheless, there are several other, potentially more fundamental problems
that need to be overcome before such techniques become readily applicable. This
section presents a brief survey of some of these key problems.

5.1 Time Penalties Imposed by Inference

In their critique of ART, Arcuri and Briand [1] observed that empirical evalu-
ations of ART had tended to focus on its relative effectiveness in terms of the
number of test cases executed, whilst ignoring the time taken. They observed
that as soon as this was taken into account, ART is shown to be impracti-
cal. They point to an example of the notorious Triangle classification program,
where random testing required merely 10 ms to find the first failure, whereas
ART required 47 min.

This criticism is not merely restricted to ART, but potentially also applies to
all of the other techniques that revolve around model inference. All iteratively
involve a repeated inference step. For the most part, the time-penalty of this step
also increases for each iteration, as it needs to take an ever increasing number
of test executions into account.

The extent to which this criticism applies to model-inference based tech-
niques depends on a variety of factors. Arcuri’s research focussed on subject
systems that had a trivially small execution time. For systems where software
execution takes longer, the relative efficacy of random testing would probably
rapidly diminish. Examples of such systems obviously include the (non-software)
robot scientist system [17], where an execution amounted to a robot carrying out
a physical experiment, or the robotic simulations considered by Bongard and
Lipson [5].

One factor that was not explicitly considered by Arcuri and Briand was the
question of where the oracle fits in to the testing loop. Depending on the devel-
opment context, for example if test executions have to be inspected manually,
the prospect of randomly producing tens of thousands of test executions might
not be tenable. In this case, investing more care in selecting test cases might be
a preferable option.

It is clear that, regardless of the context, there is a need to evaluate inference-
driven techniques in terms of their time-efficiency in comparison to baseline
techniques. In cases where time is of the essence, this could also indicate the
need to focus on more efficient Machine Learning techniques that are capable of
handling large streams of data (e.g. on-line algorithms).

5.2 Selection of Appropriate Model Inference Algorithms

Most of the techniques in this chapter make the strong assumption that the
inference technique in question is capable of inferring a model that approximates
the behaviour of the system under test. In the papers, the case study systems
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tend to be chosen to reflect the learner; Bergadano and Gunetti’s ILP-based
technique was demonstrated on a Prolog function, Henkel and Diwan’s approach
was demonstrated on implementations of collections data types, and the decision
tree-based approaches by Briand et al. and Papadopoulos and Walkinshaw were
illustrated on small Java units with simple interfaces.

Although the approach can be (and has been) applied to larger, complex
software systems, there is always the presumption that the resulting behaviour
can ultimately be summarised and captured with the chosen inference algo-
rithm. This assumption can however readily be confounded. For example, it is
common for data processing implementations (e.g. data compression or sequence
alignment frameworks) to switch between different algorithms depending on par-
ticular characteristics of the dataset.

The problem is that the question of whether a given phenomenon is ‘learn-
able’ is often far from clear. In the Machine Learning domain this problem has
been studied under the term “computational learning theory”, and have partic-
ularly focussed on the question of whether it is possible to even approximately
learn a model of a given phenomenon [29]. Even then, answers tend to only be
forthcoming for well understood subjects, such as regular grammars. However,
the question of whether a vaguely understood black box program can be inferred
by a given learner is inevitably subject to a high degree of supposition and doubt.

Even once a given learning algorithm is chosen, there is the challenge of
selecting appropriate configurations of parameters. It is a corollary of the ‘No
Free Lunch’ theorem [33] that, although there may be certain configurations that
excel for certain inference problems, there are no configurations that perform
better than others in the general case. Ultimately, identifying a suitable Machine
Learning configuration requires, again, an understanding of the behaviour of the
subject being inferred which, in our use case, is not necessarily available.

This limitation is partly founded on the presumption that the subject system
really is a ‘black box’. It is however possible that the limitation could be at least
partially addressed by gaining access to particular implementation details or
aspects of domain knowledge.

5.3 The Oracle Problem

With the notable exception of Briand et al.’s MELBA approach, none of the
testing approaches covered here involve any validation of what is being tested.
The emphasis tends to be placed upon automation. The general presumption is
that the checking of the outputs can be left to some existing set of assertions.

Of course, this presumption is usually fanciful. Often the only reliable oracle
available is to detect obvious failures such as crashes or uncaught exceptions.
However, such oracles will not highlight more subtle faulty behaviour. This is
the essence of the “oracle problem”, which is omnipresent in testing; the value of
a highly rigorous set of test inputs is undermined if there is no means by which
to check its outputs.

The availability of inferred models does offer the potential to facilitate ver-
ification by a human [2]. This step is not by necessity restricted to MELBA,



Testing Functional Black-Box Programs Without a Specification 117

but could in principle be applied with any of the other model inference based
techniques as well. The question of whether to do so depends on the following
factors:

• Model readability: Inferred models can become highly complex. They tend
to be the product of a large number of test execution traces, and are often
large, requiring a lot of effort to read and understand.

• Domain knowledge: In order to identify faults in the model, the developer
has to have a sufficiently in-depth understanding of the idealised behaviour
of the system, and be able to relate this to the inferred model.

• Ability to debug or verify faults: If the developer detects a discrepancy
with the inferred model, the problem could either lie with the model inference
(the inference algorithm made a mistake and the inferred model is not a true
reflection of the SUT), or with the system itself (the inference algorithm was
correct and the SUT is indeed buggy). Either way, this requires developer
effort. If there is no bug in the SUT, then the developer also has to identify
the necessary test executions to elicit the behaviour that will prevent the
inference from making the mistake in subsequent iterations.

• Time and expertise: Reading, validating the model, and debugging any
problems require a lot of time and expertise, which is generally at a premium
in routine software development environments.

6 Conclusions

In this chapter we have focussed specifically on the challenge of testing ‘stateless’
black box programs. By ‘stateless’, we mean programs are not sequential in
nature. This has been the subject of a substantial amount of research over the
past three to four decades, and we have attempted to provide a concise overview
of these efforts here.

The chapter started from a description of the testing challenge. This was
followed up by a brief overview or Adaptive Random Testing (which works by
identifying clusters of inputs, to support the identification of more distinctive
inputs). Most of the chapter, however, was devoted to a myriad of techniques
to have emerged that revolve around model inference, where models are inferred
that are then used to feed back into test generation.

At first glance, the model inference approaches appear to be quite diverse.
Some were devised primarily for model inference, with tests as a by-product.
Others were devised entirely for testing. Some were intended solely for software
testing, others had a broader remit (e.g. to infer models of robot behaviour or
models of genetic pathways). However, all of the approaches are underpinned
by the same sequence of steps - executing test cases, inferring a model from the
execution traces, using the model to identify new inputs, and repeating the loop.

There are of course major differences between the techniques. These mainly
reside in the types of models that they infer. These have included logic programs,
algebraic specifications, decision trees, and fully fledged programs (inferred by
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Genetic Programming). The best choice invariably depends on the nature of the
behaviour of the software system that is being tested.

The relative merits of the different approaches are difficult to compare.
Although most approaches have been subject to some form of applied case study
or even an empirical study, these vary substantially in nature. Techniques that
were mainly intended for reverse-engineering tend to assess the models, whereas
test-centric approaches tend to assess the test sets. Nevertheless, in this chapter
we have attempted to take whatever evidence is available, and to use this to
highlight any apparent strengths and weaknesses for each approach.

The chapter has set out some of the limitations with the state of the art.
It remains the case that choosing an appropriate inference algorithm, and set-
ting up an interface between the system under test and the algorithm, can be
challenging. The inference step can incur time penalties that can, under certain
circumstances, render the approach too expensive in comparison with random
testing. There is also the enduring oracle problem; even if useful tests are gener-
ated, there is no straightforward automated approach by which to check them.
These all remain challenges that must be addressed in future research.
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Abstract. Active automata learning is slowly becoming a standard tool
in the toolbox of the software engineer. As systems become ever more
complex and development becomes more distributed, inferred models of
system behavior become an increasingly valuable asset for understand-
ing and analyzing a system’s behavior. Five years ago (in 2011) we have
surveyed the then current state of active automata learning research
and applications of active automata learning in practice. We predicted
four major topics to be addressed in the then near future: efficiency,
expressivity of models, bridging the semantic gap between formal lan-
guages and analyzed components, and solutions to the inherent problem
of incompleteness of active learning in black-box scenarios. In this paper
we review the progress that has been made over the past five years,
assess the status of active automata learning techniques with respect to
applications in the field of software engineering, and present an updated
agenda for future research.

1 Introduction

Active automata learning [13] infers models from observations. Alternating
between deriving conjectures from experiments and observations and then trying
to corroborate or disprove conjectures, active automata learning can be seen as
one instance of the fundamental method in science described by Popper [126],
who postulates that models (of the world) cannot be verified or reliably gen-
eralized, not even probabilistically. Rather, models (of the world) can only be
falsified and repaired.

In a world of evermore complex man-made systems that consist of many com-
ponents, developed by large groups of engineers, and use independently devel-
oped libraries or basic software, referring to Popper’s scientific method seems
appropriate for analyzing, understanding, and validating the behavior of (soft-
ware) systems whose complexity is beyond the reach of deductive methods.

When learning the behavior of software systems, an observation can be a
simple execution of some target component, or a sequence of packages exchanged
with a networked system, but also an instance of model checking the feasibility

c© Springer International Publishing AG, part of Springer Nature 2018
A. Bennaceur et al. (Eds.): ML for Dynamic Software Analysis, LNCS 11026, pp. 123–148, 2018.
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of a sequence of steps on a system. Learned models enable the application of
(formal) analysis and verification techniques or testing approaches, e.g., of model
checking [42] or model-based testing [27].

This has first been demonstrated in the concrete scenario of testing com-
puter telephony integrated (CTI) systems [12,69,71], where a finite automaton
model was inferred from experiments and used as a basis for regression testing.
When analyzing bigger systems, however, it became clear quickly that the suc-
cess of automata learning in practice would hinge on practical optimizations like
efficient implementation of existing learning algorithms, strategies for selecting
experiments, and the development of new and more efficient learning algorithms
that infer more expressive models. An example of early practical optimizations is
the exploitation of the prefix-closedness of a system’s set of traces for generating
observations to many experiments performed by a learning algorithm without
executing actual tests on a system [72,86,107,140].

In 2011, we wrote a report and published a book chapter on the practi-
cal challenges in applying active automata learning in software engineering and
surveyed the then current state of active automata learning research and appli-
cations [81]. We predicted four major topics to be addressed in the then near
future: efficiency, expressivity of models, bridging the semantic gap between for-
mal languages and analyzed components, and solutions to the inherent problem
of incompleteness of active learning in black-box scenarios. In this paper, we
survey the literature on active automata and provide a brief overview of the
progress that has been made in the years 2011 to 2016 towards these challenges.

Organization. We give a very brief introduction to active automata learning in
Sect. 2 and revisit the challenges that we identified in 2011 in Sect. 3. Section 4
surveys work that focuses on active automata learning in software engineering
in the past six years (i.e., from 2011 to 2016). Finally, we asses the progress that
has been made and update the list of challenges, taking into account the results
of the survey, in Sect. 5.

2 Active Automata Learning

Active automata learning [13] is concerned with the problem of inferring an
automaton model for an unknown formal language L over some alphabet Σ.

MAT Model. Active learning is often formulated as a cooperative game
between a learner and a teacher, as is sketched in Fig. 1. The task of the learner
is to learn a model of some unknown formal language L. The teacher can assist
the learner by answering two kinds of queries:

Membership queries ask for a single word w ∈ Σ∗ if it is in the unknown
language L. The teacher answers these queries with “yes” or “no”.

Equivalence queries ask for a candidate language LH if LH equals L. In
case a conjectured language LH does not equal L, the teacher will provide a
counterexample: a word from the symmetric difference of LH and L.
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Learner Teacher
Is w in L?

Yes or No

Is LH = L?

Yes or
ce ∈ (L ⊗ LH)

LH L

Fig. 1. Active automata learning in the MAT model.

The teacher in this model is called a minimally adequate teacher (MAT) and the
learning model is hence often referred to as MAT learning.

Dana Angluin’s original contribution (in hindsight) is twofold: with the MAT
learning model, she introduced an abstraction that allowed for the separation of
concerns (constructing stable preliminary models and checking the correctness
of these models). This enabled an algorithmic pattern or framework of reasoning
that allowed the formulation and optimization of learning algorithms. The second
contribution is the original L∗ learning algorithm for regular languages and a
sequence of lemmas on the status of preliminary models, e.g., showing that for
L∗ all conjectured models are consistent with all previous observations. The
learning algorithm and the sequence of lemmas have served as a basis for proving
corresponding properties for many learning algorithms for more complex classes
of concepts.

Languages and Automata. A conjectured language LH is represented by
its canonical deterministic acceptor and identified using its residual languages.
Intuitively, a residual language [48] of a language is the language after some
prefix. Formally, for some language L and a word u ∈ Σ∗, the residual language
u−1L is the set {w ∈ Σ∗ | uw ∈ L}. A regular language L can be characterized
by a finite set of residual languages and every state of the language’s canonical
acceptor corresponds to one of these languages.

Definition 1. A Deterministic Finite Automaton (DFA) is a tuple
A = 〈Q, q0, Σ, δ, F 〉 where:

– Q is a finite nonempty set of states,
– q0 ∈ Q is the initial state,
– Σ is a finite alphabet,
– δ : Q × Σ → Q is the transition function, and
– F ⊆ Q is the set of accepting states.

We extend δ to words in the natural way by defining δ(q, ε) = q for the empty
word ε and δ(q, ua) = δ(δ(q, u), a) for u ∈ Σ∗ and a ∈ Σ. A word w is accepted
by A if d(q0, w) ∈ F .
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The well-known Nerode congruence is the basis for the construction of the canon-
ical acceptor for a regular language L: Two words u, v are Nerode-equivalent
w.r.t. L if their residual languages in L are identical [120]. The canonical DFA
AL for L has one state for every residual language of L (i.e., for every class of
the Nerode-relation induced by L). The residual language u−1L after word u is
represented by state qu. With qε = q0 and δ(qu, a) = qua for u ∈ Σ∗ and a ∈ Σ
in AL, a word u leads to the state qu = δ(q0, u), representing the corresponding
residual language u−1L. Finally, letting qu ∈ F iff u ∈ L makes AL an acceptor
for L and Au

L, the automaton obtained from AL by making qu the initial state,
an acceptor for u−1L.

The L∗ Algorithm. Active learning algorithms are based on the dual charac-
terization of states in the canonical acceptor AL, by words leading to states and
their residual languages. The key observation is that words u and u′ cannot lead
to the same state if for some v ∈ Σ∗ the word uv is in L while u′v is not in L
(or vice versa). Thus, a finite nonempty set U of prefixes can be used to identify
states and a finite nonempty set V of suffixes can be used to distinguish states.

The L∗ algorithm1 for regular languages uses an observation table Obs :
(U ∪ U · Σ) × V �→ {1, 0} for organizing results of membership queries, letting
Obs(u, v) = 1 iff uv ∈ L and 0 otherwise. Sets U and V are initialized as {ε},
i.e., with a prefix for the initial state and a suffix that distinguishes final states
from non-final states, and are extended incrementally. An automaton AObs can
be generated from Obs with states qu for u ∈ U , initial state qε, transitions
δ(qu, a) = qu′ for u, u′ ∈ U and a ∈ Σ where Obs(ua) = Obs(u′) and qu ∈ F iff
Obs(u, ε) = 1. This automaton is only well-defined if δ is total. The algorithm
ensures this when extending the table (and hence refining the corresponding
automaton) on the basis of query results, iterating the two main steps (1) estab-
lishing closedness via membership queries, and (2) testing for equivalence via
equivalence queries.

Local exploration. The first phase checks whether the knowledge, gathered from
membership queries and accumulated in the observation table, suffices to con-
struct a hypothesis automaton with a total transition function. This requires
that the table is closed, meaning that for every word w ∈ U · Σ there is a prefix
u ∈ U with Obs(u) = Obs(w). The set U of prefixes is extended by words from
U · Σ until the table is closed and a hypothesis automaton AObs (accepting LH

in Fig. 1) can be generated.

Checking Equivalence. An equivalence query checks whether AObs is the canonic
acceptor of the target language L. Once this is true, the learning procedure ter-
minates successfully. Otherwise, the equivalence query returns a counterexam-
ple from the symmetric difference of L and LH . As was shown by Rivest and

1 We only provide a very brief sketch of the improved version of L∗ due to Rivest and
Schapire here [130]. A more detailed presentation can be found in Angluin’s original
paper [13].
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Schapire [130], a counterexample w indicates that the set V of suffixes, approx-
imating the characterization of states by residual languages, can be refined by
adding one of the suffixes of w to V : The word w = a1 · · · am traverses states
q0, q1, . . . , qm in AObs. For index 0 ≤ i ≤ m, let ũi be the prefix for qi in U with
δ(q0, ũi) = qi and for 1 ≤ j ≤ m let vj be the suffix aj · · · am of w. There is a pair
ũi−1 and ũi of prefixes in U with Obs(ũi−1ai) = Obs(ũi) while ũi−1ai · vi+1 ∈ L
and ũi ·vi+1 
∈ L (or vice versa).2 Adding vi+1 to the set V of suffixes will lead to
unclosedness of the observation table, which in turn will lead to adding prefixes
to U , and result in a refined conjecture.

Correctness and Termination. The correctness argument for this approach
follows a straightforward pattern, which does not only hold for L∗, but also for
all of the derivatives [96,107,123,130,132] presented so far.

Partial correctness [75] is obvious, because learning only terminates after
the equivalence oracle guaranteed the correctness of the inferred model. What
remains to be shown is termination. The following four steps suffice to prove that
the learning procedure always terminates after at most n equivalence queries,
where n is the number of states of the desired minimal acceptor for L:

1. The state construction, using distinguishing suffixes in lieu of residual lan-
guages, guarantees that the number of states of the hypothesis automaton can
never exceed the number of states of the smallest deterministic automaton
accepting the considered language.

2. The closedness procedure guarantees that each transition of the hypothesis
automaton is represented by a prefix during learning. This means in particular
that a hypothesis automaton of the size (in terms of number of states) of the
smallest deterministic automaton for the considered language must already
be isomorphic to this (canonic) automaton.

3. The analysis of counterexamples guarantees that at least one additional state
is added to the hypothesis automaton for each counterexample. Thus, due to
(1) and (2), such treatments can happen only n times.

4. The equivalence checking mechanism, often called equivalence oracle, provides
new counterexamples as long as the language of the hypothesis automaton
does not match the desired result.

Using the underlying concept of query learning a number of optimizations
and akin algorithms have been proposed in the 1990s [96,130], Balcázar et al.
give a unifying overview [17].

Application in Model Learning. To meet the requirements in practical sce-
narios, Margaria et al. transferred automata learning to Mealy machines [107].

2 While the word w = ũ0 · v1 is a counterexample, ũm cannot be a counterexample
(by construction of AObs), and all words ũi · vi+1 with 0 ≤ i ≤ m − 1 lead to the
same state as ũm in AObs. As a consequence, at one index ũi−1ai · vi+1 ∈ L and
ũi · vi+1 �∈ L (or vice versa).
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Mealy machines are widely used models of deterministic reactive systems and
multiple optimized algorithms have been proposed [72,129,132]. Examples of
applications in the years before 2011 are the learning of behavioral models for
Web Services [127], communication protocol entities [139], or software compo-
nents [86,117,128].

Extensions to inference methods focus on modeling phenomena that occur in
real systems. On the basis of inference algorithms for Mealy machines, inference
algorithms for I/O-automata [8], timed automata [124], Petri Nets [52], and
Message Sequence Charts [22,23] have been developed. With the I/O-automata
model, a wide range of systems that comprise quiescence is made accessible for
query learning. Timed automata model explicitly time dependent behavior. With
Petri Nets, systems with explicit parallel state are addressed.

3 A Short Review of Challenges in Applications

In this section, we discuss the challenges we identified in 2011 for the practical
application of active automata learning. Automata learning can be considered
as a key technology for dealing with black-box systems, i.e., systems that can
be observed, but for which no or little knowledge about the internal structure
is available. Active automata learning is characterized by its specific means of
observation, i.e., its proactive way of posing membership queries and equivalence
queries. It requires some way to realize this query-based interaction for the con-
sidered application contexts. Whereas membership queries may often be realized
via testing in practice, equivalence queries are typically unrealistic.

3.1 Interacting with Real Systems

The interaction with a realistic target system comes with a number of challenges.
A merely technical problem is establishing an adequate interface that allows one
to realize membership queries. This can be rather simple for systems designed
for connectivity (e.g., Web-services or libraries) which have a native concept
of being invoked from the outside and come with documentation on how to
accomplish this (cf. the work on so-called dynamic Web testing [128]). It may be
more difficult for other systems, e.g., embedded systems that work on streams
of data.

Establishing an adequate abstraction for learning is a second challenge: An
abstraction has to produce a useful and finite model while at the same time
allowing for an automatic back and forth translation between the abstract model
and the concrete target system. At the time, there was some work focusing
explicitly on the use of abstraction in learning [4,6] and even first steps in the
direction of automatic abstraction refinement [84,89].

Another challenge is that active learning requires membership queries to
be independent. Solutions range here from reset mechanisms via homing
sequences [130] or snapshots of the system state to the generation of observ-
ably equivalent initial conditions. E.g., for session-based protocols, it may be
sufficient to perform every membership query with a fresh session identifier [81].
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3.2 Efficiency

Whereas small learning experiments typically require only a few hundred mem-
bership queries, learning realistic systems may easily require several orders of
magnitude more. In some scenarios, each membership query may need multiple
seconds or sometime even minutes to compute. In such a case minimizing the
number of required membership queries is the key to success.

In [83,132] optimizations are discussed to classic learning algorithms that
aim at saving membership queries in practical scenarios. Additionally, the use of
filters (exploiting domain specific expert knowledge) has been proven as a prac-
tical solution to the problem [72,140]. Finally, the choice of a concrete learning
algorithm may have a huge influence on the number of membership queries that
are used to infer a model of a target system [77].

3.3 Expressivity of Models

Active learning classically is based on abstract communication alphabets. Param-
eters and interpreted values are only treated to an extend expressible within the
abstract alphabet. In practice, this typically is not sufficient, not even for systems
as simple as communication protocols, where, e.g., increasing sequence numbers
must be handled, or where authentication requires matching user/password com-
binations.

First attempts to deal with parameters in models range from case studies
with manual solutions [117] to extensions of learning algorithms that can deal
with Boolean parameters [137,138]. One big future challenge at the time was
extending learning to models with state variables and arbitrary data parameters
in a more generic way, as explored by [10].

3.4 Equivalence Queries

Equivalence queries compare a learned hypothesis model with the target system
for language equivalence and, in case of failure, return a counterexample exposing
a difference. Their realization is rather simple in white-box scenarios: equivalence
can be checked. In black-box scenarios, however, equivalence queries have to be
approximated using membership queries. Without the introduction of additional
assumptions, such equivalence tests are not decidable: the possibility of having
not tested extensively enough always remains.

Conformance testing has been used to simulate equivalence queries. If, e.g.,
an upper bound on the number of states the target system can have is known,
the W-method [41] or the Wp-method [57] can be applied. Both methods have
an exponential complexity (in the size of the target system and measured in
the number of membership queries needed). The relationship between regular
extrapolation and conformance testing methods is discussed in [19].

Without introducing any additional assumptions, only approximate solutions
exploiting membership queries exist. Here, conformance testing methods may
not always be a wise choice. It has turned out that changing the view from
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“trying to proof equivalence”, e.g., by using conformance testing techniques,
to “finding counter examples fast” has a strong positive impact. An attempt
to intensify research in this direction was the 2010 Zulu challenge [44]. The
winning solution is discussed in [83]. The main contribution of this solution is a
strategy for sharing information on test coverage for the evolving model between
individual equivalence queries.

4 Recent Advances in Active Automata Learning

In order to assess the advances in practical application of active automata learn-
ing in the domain of Software engineering, we survey the literature on active
automata learning in the years 2011 to 2016. Basis for the survey are the ACM’s
digital library and the proceedings of several big software engineering confer-
ences (i.e., ICSE, CAV, ETAPS). The survey is not exhaustive since the number
of candidate publications is in the thousands. We have used different heuristics
for filtering out relevant publications: cited foundational papers, used keywords,
and authors known to work in the field.

We sort publications into categories based on their main focus and differenti-
ate between advances that have been made by application of automata learning
and those that have been made to the methodology of active automata learning
itself. Finally we discuss advances in lines of work that are closely related (i.e.,
learning from examples or active learning of other classes of concepts).

4.1 Advances in Applications

There have been impressive advances in the application of automata learning in
diverse scenarios over the past years. Applications are found in black-box con-
texts as well as in white-box scenarios. The broad range of application areas doc-
uments that active (automata) learning is becoming one of the well-established
tools in the toolbox of the formal methods trained software engineer.

Specification Generation. The most obvious application of active automata
learning is the a posteriori generation of specifications from prototypes or from
running (legacy) systems. Esparza et al. present a learning algorithm for Work-
flow Petri Nets [52] using log data and a teacher that answers executability of con-
jectured workflows. Sun et al. use active automata learning in combination with
automated abstraction refinement and random testing for finding abstract behav-
ioral models of Java classes [136]. Aarts et al. demonstrate how a combination of
active automata learning with manually crafted abstraction mappers can be used
to infer models of the SIP and TCP protocols [7]. Gu and Roychowdhury present
a variant of L∗ for inferring finite state abstractions of continuous circuits defined
by differential equations [67]. Aadithya and Roychowdhury go on and extend the
approach from learning regular abstractions to models with arbitrary I/O alpha-
bets [1].
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Model-based Testing without Models. One of the earliest practical appli-
cations of active automata learning was testing of telecommunication sys-
tems [12,69]. The idea of model-based testing without (a priori) models was
later elaborated and, e.g., applied to Web-based systems [128]. In recent years
this line of application has been continued for several different types of systems.
Dinca et al. develop an approach for generating test-suites for Event-B mod-
els through active automata learning [49,50]. Choi et al. use active automata
learning for testing the behavior of the graphical user interfaces of Android
applications [39,40]. Shahbaz and Groz use automata learning for integration
testing [133]. They infer models of embedded components and use these mod-
els as a basis for test case generation. Meinke and Sindhu present LBTest, a
tool for learning-based testing for reactive systems, integrating model checking,
active automata learning, and random testing [111]. In this volume, the relation
between learning and testing is discussed in [11] and an overview of learning-
based testing is presented in [109].

Software Re-engineering. Inferred models cannot only be used for testing but
also for comparing different versions or implementations of a system. This can,
e.g., be useful for searching (accidental) differences in the behavior of subsequent
version of a software system. Neubauer et al. develop ‘active continuous quality
control’: they use active automata learning on subsequent versions of a Web-
application (during development) and analyze models for unintended behav-
ioral changes between versions [121,122,145]. The approach integrates active
automata learning, model checking, regression testing, and risk-based testing.
Schuts et al. use model learning and equivalence checking to assist re-engineering
of legacy software in an industrial context at Philips [131]. Howar et al. vali-
date a model-to-code translator. They use active automata learning to extract
behavioral models from generated implementations and compare these models
to specification models [80]. Bainczyk et al. presented an easy to use tool for
mixed-mode learning, which, in particular, allows one to compare back-end and
front-end functionality of web applications [16].

Verification and Validation. Inferred models can be used in (formal) verifi-
cation and system analysis as well, as sketched below.

Security. Behavioral models of systems can be used for identifying vulnerabili-
ties. Active learning in these scenarios is often used to automate the work of a
prospective attacker, exploring state of a systems in a structured way. Over the
past years, a number of real vulnerabilities have been identified in this manner.

Cho et al. present MACE an approach for concolic exploration of protocol
behavior. The approach uses active automata learning for discovering so-called
deep states in the protocol behavior. From these states, concolic execution is
employed in order to discover vulnerabilities [38]. Chalupar et al. use active
automata learning and a LEGO robot to physically interact with smart cards
and reverse engineer their protocols [34]. De Ruiter and Poll use active automata
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learning for inferring models of TLS implementations and discover previously
unknown security flaws in the inferred models [46].

Botinčan and Babić present a learning algorithm for inferring models of
stream transducers that integrates active automata learning with symbolic
execution and counterexample-guided abstraction refinement [26]. They show
how the models can be used to verify properties of input sanitizers in Web-
applications. Xue et al. use active automata learning for inferring models of
JavaScript malware [146].

Argyros et al. present SFADiff, a tool based on active automata learning
for inferring symbolic automata that characterize the difference between similar
programs [15]. The work is motivated by the security challenge of fingerprinting
programs based on their behavior.

Safety/Correctness. Active learning can be used to generate (abstract) models at
interfaces of systems. The behavior at such interfaces is often an issue when inte-
grating systems into environments (virtual or physical). Inferred models can be
used for analyzing safety in such situations. Combéfis et al. use active learning to
generate abstract models of systems as a basis for analyzing potential mode con-
fusion, a well-known problem in human machine interaction [45], while Howar et
al. use the register automaton model [32] for inferring precise semantic interfaces
of data structures [79]. Giannakopoulou et al. develop an active learning algo-
rithm that infers safe interfaces of software components with guarded actions. In
their model, the teacher is implemented using concolic execution [62,78]. Khalili
et al. [97] use active automata learning to obtain behavioral models of the mid-
dleware of a robotic platform. The models are used during verification of control
software for this platform. Fiterău-Broştean et al. use learning and model check-
ing to analyze the behavior of different implementations of the TCP protocol
stack and document several instances of implementations violating RFC specifi-
cations [56].

Assume-Guarantee Reasoning. Assume-guarantee reasoning has been a big
area of application of active automata learning algorithms for much longer than
the past couple of years (cf. [43,101,125]). The moderate style of exploration
that is achieved by learning is used to reduce the problem of state space explo-
sion. Recent advances have been made by finding active automata learning to
many classes of systems. Learning algorithms are usually based quite directly on
the classic L∗ algorithm. The required extensions in expressivity of models are
usually realized through powerful teachers.

Chaki and Gurfinkel infer assumptions for ω-regular systems [33]. He et al.
present a framework automated symbolic assume-guarantee reasoning that incor-
porates a MAT learning algorithm for BDDs [74]. He and some of the same
and some other co-authors also present a compositional reasoning framework for
concurrent probabilistic systems using an active learning algorithm for multi-
terminal binary decision diagrams [73]. Feng et al. present an algorithm for infer-
ring assumptions for probabilistic assume/guarantee reasoning [53,54]. Komurav-
elli et al. develop automata learning of non-deterministic probabilistic models that
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then serve as assumptions during automated assume/guarantee reasoning [99].
Meller et al. develop learning-based assume-guarantee reasoning for behavioral
UML systems, using the L∗ algorithm “off the shelf” [112].

Synthesis. The latest area of application of active automata learning that
could be identified is synthesis. In synthesis, active learning is used for exploring
and constructing formal models of safe (emerging) behavior that can be used
as a basis for synthesizing safe mediators or controllers. Lin and Hsiung use
learning-based assume-guarantee reasoning to build a compositional synthesis
algorithm [104]. Cheng et al. synthesize safe and deadlock-free component-based
systems using priorities and automated assumption learning [37]. Neider and
Topcu use active automata learning to solve safety games [118,119].

4.2 Tools and Libraries

There are many tools presented in the work surveyed that integrate active learn-
ing algorithms. For this category we focus on tools and libraries that provide
active automata learning algorithms to applications.

Since 2004, Bernhard Steffen’s group develops LearnLib3, a library for active
automata learning that comprises infrastructure (e.g., filters and abstractions)
for learning models of real-world systems [116,129]. Merten et al. present an
extension of LearnLib for inferring data-aware models of Web-Services [115] fully
automatically using only WSDL interface descriptions to bootstrap the learning
process. The maturity of today’s version of the LearnLib, which is now open
source, is witnessed by the CAV 2015 artifact award [91].

There exist at least two other open-source automata learning libraries that
provide implementations of textbook algorithms, complemented by own develop-
ments: libalf4, the Automata Learning Framework [24], was developed primarily
at the RWTH Aachen. Its active development seems to have ceased; the last ver-
sion was released in April 2011. AIDE5 [98], the Automata-Identification Engine,
developed by a group at University of Genoa. It is not clear from the web-page
if the library is still maintained.

Several tools and libraries for learning more expressive automata models have
been developed over the past couple of years. The Tomte6 [3] tool is developed at
Radboud University. The tool fully automatically constructs abstractions (i.e.,
mappers) for automata learning and uses LearnLib for inferring models. Drews
and D’Antoni develop a library for symbolic automata and symbolic visibly
pushdown automata7 [51]. The library provides learning algorithms for sym-
bolic automata. Cassel et al. develop RaLib8 [134], an extension to LearnLib for

3 https://learnlib.de/.
4 http://libalf.informatik.rwth-aachen.de/.
5 http://aide.codeplex.com/.
6 http://tomte.cs.ru.nl/.
7 https://github.com/lorisdanto/symbolicautomata.
8 https://bitbucket.org/learnlib/ralib/.

https://learnlib.de/
http://libalf.informatik.rwth-aachen.de/
http://aide.codeplex.com/
http://tomte.cs.ru.nl/
https://github.com/lorisdanto/symbolicautomata
https://bitbucket.org/learnlib/ralib/
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learning algorithms that infer extended finite state machine models. All three
tools seem to be actively maintained.

4.3 Algorithmic Advances

While active automata learning has gained a lot of traction as a tool in software
engineering applications, there is another group of work aiming at improving
the foundations of active automata learning by extending it to semantically
richer models, by developing more efficient learning algorithms, by exploring new
learning models, and by working on techniques for approximating equivalence
queries in black-box scenarios that yield quantifiable correctness guarantees for
inferred models.

Expressivity. Meinke and Sindhu present IKL, a learning algorithm in the
MAT model that infers Kripke structures [110]. Lin et al. develop a mixed active
and passive learning algorithm that infers a subclass of timed automata, so-called
event-recording automata [103].

Howar et al. extend active automata learning in the MAT model to register
automata, which model control-flow as well as data-flow between data parame-
ters of inputs, outputs, and a set of registers [82,114]. Registers and data param-
eters can be compared for equality. The authors demonstrate the effectiveness
of their approach by inferring models of data structures [79] and extent the
expressivity to allow for arbitrary data relations that meet certain learnability
criteria [31,134]. A summary of this work can be found in this volume [30]. Aarts
et al. develop a slightly different approach for inferring register automata mod-
els that can compare registers and data parameter for equality [2,3]. The two
approaches are compared in [5].

Garg et al. develop an active learning algorithm for so-called quantified data
automata over words that can model quantified invariants over linear data struc-
tures [59]. Volpato and Tretmans investigate the necessary assumptions under
which models of nondeterministic systems can be inferred [141]. Kasprzik shows
how residual finite-state tree automata can be inferred from membership queries
and positive examples [95]. Isberner presents an active learning algorithm that
infers visibly push-down automata [88].

Learning Models. Abel and Reinecke address the problem of inferring a model
of a component that can only be addressed through a given and known intermedi-
ate component [9]. Decker et al. present active learning of networks of automata
that consist of one base automaton and a number of identical components [47].

Groz et al. present a learning algorithm of scenarios in which the system
cannot be reset into a well-defined initial state [66] (an extended version can
be found in this volume [65]). Leucker and Neider present an active learning
algorithm that learns models from an ‘inexperienced’ teacher, i.e., a teacher
that fails to answer some membership queries [102].

A separate line of work focuses on learning regular languages from so-called
automatic classes in different learning models [28,29,92,93].
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Efficiency. For the case of finite regular languages, Ipate presents an active
learning algorithm that infers deterministic finite cover automata and in some
cases leads to substantial savings compared to more generic active learning algo-
rithms [87]. Groz et al. develop optimizations of the L∗ algorithm targeting
large input sets, parameterized inputs, and processing counterexamples [64].
Björklund et al. develop a MAT-model learning algorithm that infers universal
automata as a representation of regular languages [21]. Angluin et al. develop
learning algorithms for universal automata, and alternating automata [14] and
evaluate the performance trade offs for inferring these automata models—
compared to deterministic finite state automata.

Means and Maler present a variant of L∗ that learns concise models for sys-
tems with big sets of inputs by inferring symbolic characterizations of equivalent
sets of inputs [113], an approach reminiscent of [89].

Finally, Isberner et al. develop the TTT algorithm [90], a space-optimal
active learning algorithm that computes minimal distinguishing suffixes from
counterexamples. The TTT algorithms is particularly well-suited when aiming
at lifelong learning [20], where equivalence queries are essentially replaced by
cont́ınuous monitoring of the running system.

Quality of Models. Van den Bos et al. develop a quality metric for inferred
models and introduce a so-called ‘Comparator’ that can be used to enforce that
the quality of intermediate models obtained during learning always increases
(w.r.t. to the introduced metric) [25]. Chen et al. use the PAC result presented
in Angluin’s original paper on L∗ for implementing a learning-based framework
for program verification [35]. Using a PAC result allows them to quantify the
confidence in the verification result in the absence of a perfect equivalence oracle.

4.4 Related Lines of Work

Learning in general is gaining traction in software engineering. This includes
active learning of different concepts, as well learning from examples, which is
the method of choice when inferring models from logs and traces.

Active Learning of Loop Invariants. One line of work aims at synthesizing
invariants for loops in programs using combinations of active learning of logic
formulas, predicate abstraction, and counterexample-guided abstraction refine-
ment (e.g., [94]). Konev et al. present an algorithm for learning logic TBoxes
from a teacher that answers entailment queries and equivalence queries [100].
Chen and Wang present an active learning algorithm for Boolean functions and
use it for inferring loop invariants [36].

Garg et al. develop several learning algorithms for invariants in different
learning models. In [60], they present algorithms for inferring Boolean combi-
nations of numerical invariants for scalar variables and for quantified invariants
of arrays and dynamic lists. In [61], they infer inductive invariants in a model
where the teacher instructs a learner through positive, negative, and implication
examples [61].
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Learning from Examples. Passive automata learning infers automata mod-
els from positive or from positive and negative examples - the learning model
is referred to as “in the limit” [63]. Learning from examples has an equally big
recent impact in software engineering as active learning. The application scenar-
ios and advances resemble closely the ones of active learning, as the following
examples show.

Applications. Walkinshaw uses passively inferred models as a basis for deciding
the adequacy of test suites for black-box systems [142]. Adamis et al. mine for
sequential patterns (i.e., frequently observed transitions) in conformance test
logs and use these to generate a finite state machine model. The finite state
model is then used for performance testing [10].

Medhat et al. present an approach for mining hybrid automata specifications
from input/output traces using several machine learning techniques [108]. Mao
et al. extend the Alergia algorithm that learns probabilistic models from pos-
itive examples to more expressive reactive and timed models [106]. They then
investigate how these models can be used for model checking and demonstrate
the feasibility in a comparison to statistical model checking. Statistical model
checking samples the system directly for a property, while in their approach first
a model is inferred and then a property is checked on this model.

Another line of work focuses on designing domain-specific languages for
Object processing and formatting, e.g., in Excel, and then learning models in
the respective DSL from examples [68,85,144]. Barowy et al. learn formatting
rules for spread sheet data from examples [18].

Algorithmic Advances. One recent theoretic results is shown by Garćıa et al.:
the authors prove the existence of polynomial characteristic samples for every
order in which states are merged during learning, i.e., sets of examples that allow
correct identification of unknown regular languages [58].

Staworko and Wieczorek present learning algorithms that learn XML path
queries from positive and negative examples [135]. Walkinshaw et al. develop a
passive learning algorithm that infers extended finite state machines that model
control-flow and data-flow from [143]. Högberg presents an algorithm for infer-
ring regular tree languages from positive and negative examples [76].

5 Discussion and Open Challenges

The survey of the literature documents progress concerning all challenges that
we identified in our earlier work. A careful analysis shows that progress in some
directions has been stronger than in other directions. This yields some potential
directions for further research.

Interacting with Real Systems. There is, by now, a considerable number of
case studies that show how active learning can be beneficial in different scenar-
ios: In our survey, the number of publications that present applications exceeds
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the number of publications that focus primarily on algorithmic or theoretic con-
tributions. It can be observed that in black-box scenarios, membership queries
are typically realized through tests, and equivalence queries are approximated
by tests. In white-box scenarios, both types of queries are often implemented
using model-checking or program analysis.

While interaction with real systems is reported in many publications their
corresponding conceptual progress is typically small. Specifically, the proposed
methods for establishing appropriate abstractions underlying the learning alpha-
bet or for guaranteeing equivalent initial conditions for membership queries are
still mostly a case-specific manual effort.

Efficiency and Tools. In the past ten years, many improved active automata
learning algorithms have been developed. Some rely on the observation table,
the basic data structure introduced by Angluin, and differ from the original L∗

algorithm mostly in the way counterexamples are analyzed. Others use decision
trees as data structures. Observations clearly indicate the superiority of tree-
based algorithms, combined with efficient counter example analysis. It is striking
that despite this algorithmic progress, many applications still use the original
L∗ algorithm or one of the optimized versions that have been developed in the
early 1990s. Sometimes heuristics to overcome well-known weaknesses of L∗ are
even proposed as general achievements.

One future challenge is therefore the systematic transfer of the existing algo-
rithmic improvements into tools. As of today, there seem to exist only very few
tools and libraries that are actively maintained and publicly available (compared
to, e.g., the tools in the areas of satisfiability modulo theories or automated theo-
rem proving). In these other domains, competitions have been used to encourage
development of new methods and implementation of tools. Maybe model learning
needs a similar vehicle for driving the transfer of theoretic results into tools.

Expressivity. Over the years, active learning has been extended to produce
more expressive models, like register automata, extended finite state machines,
visibly push-down automata, event recording automata, or symbolic automata.
It appears that most of the corresponding active learning approaches use the L∗

algorithm (or one of its variants) as a reference and often adapt correctness proofs
(e.g., [51,105]). This does not only result in inefficient solutions, but often also in
quite indirect correctness arguments. The more efficient algorithms are typically
technically more involved than the original L∗ algorithm making their adaptation
to new domains harder. On the other hand, e.g., the TTT algorithm reveals very
much of the information-theoretic essence of active automata learning which
promotes a better understanding and provides significant performance gains.

One direction for future work is therefore leveraging this potential and pro-
viding modular conceptual frameworks that support the adaptation of learning
algorithms to new domains and classes of models. Conceptual frameworks have
to be complemented by implementations enabling the systematic profiling of
various learning algorithms in order to identify the best fitting algorithm for a



138 F. Howar and B. Steffen

given application domain. The LearnLib Studio [116] was a first step into this
direction and the authors are currently working on transferring this idea to the
open-sourced version of LearnLib.

Equivalence Queries. Equivalence queries are mostly addressed on a per-
case-study basis. They are usually implemented as conformance tests or through
random testing in black-box scenarios. The concrete strategy for generating test
cases varies, but there has hardly been progress on efficient and effective meth-
ods for approximating equivalence queries. In order to further develop active
automata learning to a point where it can be used by verification techniques or
for documentation even in industrial (black-box) contexts, equivalence queries
will have to provide a quantifiable measure for the likelihood or precision of
inferred models.

One way of obtaining such results is the PAC (probably approximately cor-
rect) framework. Angluin obtained a PAC result for the original L∗ algorithm
by implementing equivalence queries using sequences of membership queries [13].
Recently, this result (which had been largely ignored for 20 years) was picked up
and extended [55,105]. In some application scenarios “lifelong learning” seems
to be an adequate answer, i.e., monitoring running systems relative the current
hypothesis model, identifying behavioral discrepancies, and correcting either the
model or, if required, the systems. One major obstacle to this approach are
the resulting excessively long counterexamples. The TTT algorithm has been
specifically designed to address this challenge [90].

6 Conclusions

In the last 15 years, active automata learning, an originally merely theoretical
enterprise, has received attention as a method for dealing with black-box or third-
party systems in software engineering. Especially, in the past six years (2011 to
2016) active automata learning has found many applications, ranging from secu-
rity analysis, to testing, to verification, and even synthesis. At the same time,
algorithmic and theoretic advances have led to more efficient learning algorithms
that can infer more expressive models (e.g. [30], in this volume) Scalability of
active automata learning is still a major challenge. Hybrid approaches that com-
plement the power of black box analysis with white box analysis methods seem
to emerge as one possible technique for addressing this challenge (cf. [70], in this
volume). Summarizing, active automata learning has developed far beyond what
could have been anticipated 15 years ago. However, with every solved problem,
news questions arise - making active automata learning a very fruitful area of
research with increasingly high practical impact.
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eration through static, dynamic, and symbolic analysis. In: Proceedings of the
2013 International Symposium on Software Testing and Analysis, ISSTA 2013,
pp. 268–279. ACM, New York (2013)

79. Howar, F., Isberner, M., Steffen, B., Bauer, O., Jonsson, B.: Inferring semantic
interfaces of data structures. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012.
LNCS, vol. 7609, pp. 554–571. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34026-0 41

80. Howar, F., Margaria, T., Wagner, C.: Simplifying translation validation via model
extrapolation. J. Integr. Des. Process Sci. 17(3), 71–91 (2013)

81. Howar, F., Merten, M., Steffen, B., Margaria, T.: Practical aspects of active
automata learning, pp. 235–267. John Wiley and Sons, Inc. (2012)

82. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register
automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol.
7148, pp. 251–266. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-27940-9 17

83. Howar, F., Steffen, B., Merten, M.: From ZULU to RERS. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 687–704. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16558-0 55

84. Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet
abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol.
6538, pp. 263–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-18275-4 19
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Abstract. Automata learning is an established class of techniques for
inferring automata models by observing how they respond to a sample of
input words. Recently, approaches have been presented that extend these
techniques to infer extended finite state machines (EFSMs) by dynamic
black-box analysis. EFSMs model both data flow and control behavior,
and their mutual interaction. Different dialects of EFSMs are widely used
in tools for model-based software development, verification, and testing.

This survey paper presents general principles behind some of these
recent extensions. The goal is to elucidate how the principles behind clas-
sic automata learning can be maintained and guide extensions to more
general automata models, and to situate some extensions with respect
to these principles.

1 Introduction

Behavioral models of components and interfaces are the basis for many powerful
software development and verification techniques, such as model checking, model
based test generation, controller synthesis, and service composition. Ideally, such
models should be part of documentation (e.g., of a component library), but in
practice they rarely exist, or become outdated as the implementations evolve.

One approach to overcome the problem of nonexisting or outdated models is
to develop techniques for automatically generating models of component behav-
ior are being developed. In this paper, we are interested in a particular such
technique, active automata learning [Ang87,RS93], using which we can infer
automata models that represent the dynamic behavior of a software or hard-
ware component. Mature techniques, based on active automata learning, are
available for generating finite-state models that describe control flow, i.e., possi-
ble orderings of interactions between a component and its environment [HHNS02,
HNS93,ABL02,SL07]. These techniques suppress data values, but have neverthe-
less been demonstrated to be useful for, e.g., mining APIs [ABL02], supporting
c© Springer International Publishing AG, part of Springer Nature 2018
A. Bennaceur et al. (Eds.): ML for Dynamic Software Analysis, LNCS 11026, pp. 149–177, 2018.
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model-based testing [HHNS02,WBDP10] and conformance testing [AKT+12],
and for analyzing security protocols [SL07,GIO12]. Perhaps the most well-known
algorithm for inferring finite automata is L∗ [Ang87], which has been imple-
mented in the LearnLib framework [IHS15]. However, in many situations it is
crucial for models to also be able to describe data flow, i.e., constraints on data
parameters that are passed when the component interacts with its environment,
as well as the mutual influence between control flow and data flow. For instance,
models of protocol components must describe how different parameter values in
sequence numbers, identifiers, etc. influence the control flow, and vice versa.

In order to capture both control flow and data flow aspects of compo-
nent behavior (as well as their mutual influence), finite state machines can be,
and commonly are, equipped with variables. Variables can store the values of
data parameters; they can influence control flow by means of guards, and the
control flow can cause variable updates. Finite state machines with variables
are often called extended finite state machines (EFSMs). Different dialects of
EFSMs are successfully used in tools for model-based testing (such as ConformiQ
Qtronic [Hui07], which produces high-quality test suites), web service composi-
tion [BPT10], model-based development [GHP02], and by software model check-
ers to formally verify properties of all program behaviors [JM09].

Recently, various techniques have been employed to extend automata learning
to EFSM models, which combine control flow with guards and assignments to
data variables [CHJS16,AJUV15,BHLM13].

In this paper, we provide a condensed account of one way in which AAL can
be generalized from the learning of DFAs to the learning of EFSM-like models.
Our aim is to show how such a generalization can be obtained while keeping as
much as possible of the structure that underpins mainstream AAL algorithms
for DFAs. In particular, we will emphasize how such a generalization can pre-
serve AAL as a gradual refinement process, which exploits central concepts from
automata theory to converge monotonically to a correct target automaton. This
view allows AAL to be seen as a partition refinement process, which generates
successively more refined approximations to the Nerode congruence, and allows
to give rather strong convergence guarantees.

The described generalization is very close to that presented in [CHJS16].
However, whereas [CHJS16] aims to describe a complete implementation of an
AAL algorithm for EFSM-like models, here the aim is to focus on how central
principles of AAL are generalized to the EFSM case. We have therefore tried to
simplify the notation and concept machinery to a bare minimum; we describe
only the main mechanisms of the AAL algorithm. In order to try to make the
paper accessible, we have structured it into four parts:

– The next section summarizes main concepts underlying AAL for DFAs.
– Section 3 introduces register automata, a simple formalism for expresing

EFSMs.
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– Section 4 introduces the main concepts in the AAL generalization by means
of an example.

– Section 5 formally defines the generalized concepts, and establishes key
theorems of correctness and convergence.

Related Work. The problem of inferring behavioral models from implemen-
tations has been addressed in a number of different ways. Dynamic analysis
approaches that combine automata learning techniques with methods for infer-
ring constraints on data are the most closely related to our work. The pattern
they follow is typically similar to CEGAR (counterexample-guided abstraction
refinement): a sequence of models is refined in a process that is usually monotonic
and converges to a fixpoint. All the approaches, however, suffer from limitations
with respect to capturing the mutual influence of data flow and control flow on
each other, and/or in what relations can be expressed between data parameters.

In white-box scenarios, access to the source code is presumed, so domain
knowledge, manual abstractions, and/or symbolic execution can be used. White-
box inference based on active automata learning (AAL) has been explored in
several works. AAL has been combined with predicate abstraction [ACMN05]
to infer interface specifications of Java classes, and with CEGAR [HJM05] to
infer interface specifications as finite-state automata without data parameters.
In [XSL+13], AAL is combined with support vector machines to infer constraints
on data parameters; in [GRR12], AAL is combined with symbolic execution to
recover guards from the analyzed system, producing DFA models where labels
are guards over parameters of alphabet symbols.

In black-box scenarios, an early method for inferring EFSM-like models
is [LMP08], where models are generated from execution traces by combining
passive automata learning with the Daikon tool [EPG+07]. Since constraints on
data parameters are only created for individual traces, there is no way to model
the influence of data values on subsequent control flow. A more recent approach
is that of [WTD16] which uses a different EFSM model than in this paper, and
provides no statements about correctness or convergence.

Other approaches use AAL to infer data constraints from tests: In [AJUV15],
a manually supplied abstraction on the data domain makes it possible to apply
finite-state active automata learning techniques to the test cases. The approach
has been successfully used in practical applications [ASV10,AdRP13], but a
drawback is that a priori insight into the target component’s behavior is required,
making it not quite black-box. In [HSM11], automated (alphabet) refinement is
used. Since the presented approach works at the level of concrete representative
inputs, the resulting models have no symbolic interpretation but are rather min-
imal concrete representative systems. In [MM14,DD17], AAL is used to learn
symbolic automata, and counterexamples used to refine transitions (represent-
ing equivalence classes in the language of the symbolic automata). The goal is
to handle very large alphabets without having to store values in registers. The
authors of [BHLM13] infer EFSMs that they claim to be incomparable with
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register automata, and that can represent components where data parameters
are ‘globally fresh’, i.e., never before seen or stored since the last reset of the
component.

The approach of this paper can be specialized to learning register automata
where the only operation on data is comparison for equality. Descriptions of
such approaches have appeared in [HSJC12], and we have successfully applied
it to generate models of container-like interfaces (such as sets, stacks, queues,
etc.) [HIS+12]. [IHS14] provides a then up-to-date overview of the extension of
active automata, including [AHK+12,BHLM13,HSJC12]. This model was also
considered in our earlier work [BJR08], which however is less suitable for imple-
mentation.

2 Background: Active Learning of DFAs

In this section, we review the main ideas underlying active automata learning
(AAL) of DFAs. The exposition is intended to highlight the principles on which
extensions, as outlined in Sects. 4 and 5, are based. Essentially, our intention
is to show how AAL can be seen as a partition refinement procedure, which is
based on the Nerode congruence, to which an exploration process is added. We
first recall standard notions from the theory of finite automata.

Languages. Let A be a finite set of symbols. A word over A is a finite sequence
of symbols in A. A language over A is a set of words over A. Let A∗ denote
the set of all words over A, and let ww′ denote the concatenation of words w
and w′.

Automata. A deterministic finite automaton (DFA) over A is a structure
M = (Q, δ, q0, F ) where Q is a non-empty finite set of states, q0 ∈ Q is the initial
state, δ : Q×A → Q is the transition function, and F ⊆ Q is the set of accepting
states. The transition function is extended from input symbols to words of input
symbols in the standard way, by defining δ(q, ε) = q and δ(q, ua) = δ(δ(q, u), a).
An input word u is accepted iff δ(q0, u) ∈ F . The language accepted by M,
denoted by L(M), is the set of accepted input words.

Nerode Congruence. Let L be a language over A. Two words w,w′ over A are
Nerode equivalent, denoted w ≡L w′ if wv ∈ L ⇔ w′v ∈ L for all words v ∈ A∗.
It follows that ≡L is an equivalence relation, and also a (right) congruence (i.e.,
w ≡L w′ implies wv ≡L w′v for any w,w′, v). Given two words u and u′, a
distinguishing suffix for u and u′ is a word v such that either uv or u′v is in L,
but not both. Thus, two words are Nerode equivalent if there is no distinguishing
suffix for them.

Regular Languages. The index of an equivalence relation is the number of equiv-
alence classes. The language L is regular if ≡L has finite index. A main result
in classical automata theory is that a language is regular if and only if it can be
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recognized by a DFA. The proof that a regular language L can be recognized by
a DFA constructs the DFA M = (Q, δ, q0, F ) where Q is the set of equivalence
classes of ≡L, where q0 is [ε]≡L , where δ is defined by δ([w]≡L , a) = [wa]≡L , and
where F is defined by [w]≡L ∈ F ⇐⇒ w ∈ L, and then demonstrates that
L(M) = L.

Active Automata Learning. Active Automata Learning (AAL) is most often
formulated in the so-called MAT (for minimally adequate teacher) model of
learning [Ang87]. In this model, learning proceeds by asking two kinds of queries.

– A membership query consists in asking whether a word w is in L.
– An equivalence query consists in asking whether a hypothesized DFA H is

correct, i.e., whether L(H) = L. The query is answered by yes if H is correct,
otherwise by a counterexample, which is a word from the symmetric difference
of L and L(H).

The basic problem in any inductive learning is to generalize from the classifi-
cation of a finite set to a classification of an infinite set. In AAL, this problem
is to infer a language (i.e., a classification of an infinite set of words) from the
classification of the finite set of words for which membership queries have been
performed, or which have been returned by unsuccessful equivalence queries.

If we look at the construction of a DFA from a regular language, it shows
that in order to construct a DFA we need

(i) at least one representative word in each Nerode equivalence class, and
(ii) a criterion which determines whether two words are in Nerode equivalent.

A learning algorithm starts with a small sample, which may not contain suffi-
ciently many words for this need. In this case, these two concepts can only be
approximated.

(i) The set of representative words is approximated from below, since we can
only know about equivalence classes which have representative words in the
sample.

(ii) The Nerode equivalence is overapproximated based on suffixes that are avail-
able in the sample. That is, two words are considered equivalent if the sample
contains no concatenations of these words with a distinguishing suffix.

These considerations lead to the structuring of AAL algorithms as maintain-
ing two finite sets of words:

– a non-empty prefix-closed set U of short prefixes (sometimes called access
strings), which contains representatives of Nerode equivalence classes, and

– a set V of suffixes, which is used to define an overapproximation to the Nerode
equivalence.

The set V represents an overapproximation of the Nerode equivalence, here
denoted ≡L,V , defined by w ≡L,V w′ if wv ∈ L ⇐⇒ w′v ∈ L for all words
v ∈ V . It is easy to see that ≡L,V is an equivalence relation, which overapprox-
imates ≡L. If L is has finite index, then in fact ≡L,V coincides with ≡L for
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sufficiently large finite V (it is sufficient that V contains a distinguishing suffix
for each pair of inequivalent words).

Several AAL algorithms (of which [RS93] was maybe the first) maintain the
property that the words in U are pairwise inequivalent wrt. ≡L,V . We will follow
this approach here.

We say that the set U is closed wrt. V if for each u ∈ U and a ∈ A there is
a u′ ∈ U such that ua ≡L,V u′. Whenever U is closed wrt. V , we can construct
a DFA H(U, V ) = (U, δ, ε, F ) where δ(ua) is the u′ such that ua ≡L,V u′ and
where F is defined by u ∈ F ⇐⇒ u ∈ L.

It can be shown [Ang87, Lemma 3] that if U is prefix-closed and V is suffix-
closed, then H(U, V ) correctly classifies all words in UV .

AAL iterates two phases: hypothesis construction and hypothesis validation.

– During hypothesis construction, membership queries are performed for all
words in UV ∪UAV . The purpose of this is to compute the relation ≡L,V on
U ∪UA. Whenever the set U is not closed wrt. V , then it is extended: if there
is some ua with u ∈ U such that ua 
≡L,V u′ for all u′ ∈ U , then ua is added
to U , triggering new membership queries. The extension of U is continued in
this way until U is closed wrt. V .

– When U is closed wrt. V , then the hypothesis H(U, V ) is validated by sub-
mitting it in an equivalence query. If the query returns “yes”, then the
learning is completed, and H(U, V ) accepts L. If the query returns a coun-
terexample word w, this is used to extend V as follows. By the fact that
w is a counterexample, there is a suffix av of w such that ua ≡L,V u′ but
uav ∈ L 
⇐⇒ u′v ∈ L for some u, u′ ∈ U . (To se this, let w = a1 · · · an,
and define the sequence u0, u1, . . . , un of short prefixes in U by u0 = ε and
ui−1ai ≡L,V ui for i = 1, . . . n, i.e., u0 . . . un is the sequence of states visited
when H(U, V ) processes w. Let vi be the suffix ai+1 · · · an of w length n − i.
By the fact that w is a counterexample, we have u0v0 ∈ L 
⇐⇒ un ∈ L,
which implies that ui−1vi−1 ∈ L 
⇐⇒ uivi ∈ L for some i; we can then take
ui−1 as u and ui as u′.) This means that v is a new separating suffix that
should be added to V . After adding v to V , U is no longer closed wrt. V , so
the algorithm can resume a next round of hypothesis construction, which will
eventually generate a new hypothesis, etc.

Starting from some initial approximations (e.g., the singleton set consisting of
the empty word), the sets U and V are successively extended, until U contains
one element of each equivalence class of ≡L, and ≡L,V coincides with ≡L. At
termination the hypothesis is correct, by definition of equivalence query.

Since each round of hypothesis construction and validation adds at least one
word to U , there can be at most n equivalence queries, where n is the index of L.
Since each equivalence query adds only one word to V , this means that |V ] ≤ n
when the algorithm finishes, implying that in total, at most n2|A] membership
queries will be performed during hypothesis construction. During hypothesis
validation, at most 2 log(m) membership queries need be performed (in addition
to the equivalence query), where m is the length of the largest counterexample
word returned.
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3 Basic Definitions for Register Automata

In this and the following section, we introduce the principles for our general-
ization to data languages and register automata. In this section, we generalize
the concepts of languages and automata by defining data languages and register
automata. These are parameterized on a vocabulary that determines how data
can be examined, which in our setting is called a theory.

Definition 1 (Theories). A theory is a pair 〈D,R〉 where D is an infinite
domain of data values, and R is a set of relations on D.

The relations in R can have arbitrary arity. Known constants can be represented
by unary relations. The assumption that the domain D be infinite allows to avoid
some technical complexities. Some examples of theories are

– 〈N, {=}〉, the theory of natural numbers with equality; instead of the set of
natural numbers, we could consider any other infinite domain, e.g., the set of
strings (representing passwords or usernames),

– 〈R, {<}〉, the theory of real numbers with inequality; this theory also allows
to express equality between elements.

The above theories can all be extended with constants (allowing, e.g., theories
of sums with predefined concrete constants). Technically, such an extension is
achieved by defining new relations for every constant that can be added to a
data values. As an example, 〈N, {=}〉 could be extended to a theory that also
allows modeling sums of data values with the constant 5 by adding relation =5

with a =5 b for a, b ∈ N iff a + 5 = b. In the following, we assume that some
theory has been fixed.

Data Languages. We assume a set Σ of actions, each with an arity that deter-
mines how many parameters it takes from the domain D. For simplicity, we
assume that all actions have arity 1; it is straightforward to extend the tech-
niques to handle actions with arbitrary arities.

A data symbol is a term of form α(d), where α is an action and d ∈ D is
a data value. A data word is a sequence of data symbols. The concatenation of
two data words w and w′ is denoted ww′. In this context, we often refer to w as
a prefix and w′ as a suffix. For a data word w = α1(d1) . . . αn(dn), let Acts(w)
denote its sequence of actions α1 . . . αn, and V als(w) its sequence of data values
d1 . . . dn. Let |w| denote the number of data symbols in w.

Two data words w = α1(d1) . . . αn(dn) and w′ = α1(d′
1) . . . αn(d′

n) are
R-indistinguishable, denoted w ≈R w′, if

– Acts(w) = Acts(w′), and
– R(di1 , . . . , dij

) ⇔ R(d′
i1

, . . . , d′
ij

) whenever R is a j-ary relation in R and
i1, · · · , ij are indices among 1 . . . n.

Intuitively, w and w′ are R-indistinguishable if they have the same sequences of
actions and cannot be distinguished by any of the relations in R.
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A data language L is a set of data words that respects R in the sense that
w ≈R w′ implies w ∈ L ↔ w′ ∈ L. We will often represent data languages as
mappings from the set of data words to {+,−}, where + stands for accept and
− for reject.

Example 1. As a running example, we will use a simple version of a priority queue
with bounded capacity. A priority queue stores a set of keys from some totally
ordered set. We will use the set of rational numbers as the set of keys. An actual
priority queue may store values along with keys, but here we only model the
keys. The interface of the priority queue supports two operations: - offer inserts
a given key into the priority queue. It succeeds if the queue is not full; - poll asks
for the smallest key in the queue; the operation returns that key and removes
it; if the queue contains several copies of the smallest key only one is removed;
if the queue is empty, the operation does not succeed. The interface consists of
operations with input parameters and return values. In order to represent it as a
data language, we let data symbols represent successul operations: a successful
offer is represented by the data symbol offer(d), where d is the inserted key, a
successful poll operation is represented by the data symbol poll(d), where d is
the returned key. We represent the interface as the data language consisting of
sequences of data symbols that correspond to possible sequences of successful
operations.

Register Automata. We assume a set of registers x1, x2, . . .. A parameterized
symbol is a term of form α(p), where α is an action and p a formal parameter.
A guard is a conjunction of negated and unnegated relations (from R) over the
formal parameter p and registers. An assignment is a simple parallel update
of registers with values from registers or the formal parameter p. We represent
an assignment which updates the registers xi1 , . . . , xim

with values from the
registers xj1 , . . . , xjn

or p as a mapping π from {xi1 , . . . , xim
} to {xj1 , . . . , xjn

}∪
{p}, meaning that the value of the register or formal parameter π(xik

) is assigned
to the register xik

, for k = 1, . . . , m. Using multiple-assignment notation, this
would be written as xi1 , . . . , xim

:= π(xi1), . . . , π(xim
).

Definition 2 (Register automaton). A register automaton (RA) is a tuple
A = (L, l0,X , Γ, λ), where

– L is a finite set of locations, with l0 ∈ L as the initial location,
– X maps each location l ∈ L to a finite set X (l) of registers, and
– Γ is a finite set of transitions, each of form 〈l, α(p), g, π, l′〉, where

• l ∈ L is a source location,
• l′ ∈ L is a target location,
• α(p) is a parameterized symbol,
• g is a guard over p and X (l), and
• π (the assignment) is a mapping from X (l′) to X (l) ∪ {p}, and

– λ maps each l ∈ L to {+,−}. ��
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We require register automata to be determinate and non-blocking; these concepts
are defined after the definition of runs.

A restriction of register automata, as defined by Definition 2, is that transi-
tions do not allow to assign arbitrary expressions to registers, only the value of
a formal parameter or a register. A main reason for this restriction is to limit
the number of possibilities for inferring guards and assignments that match the
results of membership queries, thereby making learning more tractable. As an
example, suppose that a SUL accepts sequences with increasing parameter val-
ues, e.g., offer(1) offer(2) offer(3) offer(4). We could then learn a RA if the
theory includes, e.g., the relation issucc, defined by issucc(x, y) iff x + 1 = y. If
assignments to registers would allow expressions that include e.g., the +1 opera-
tor, or even arbitrary addition, then the learning algorithm would have to choose
between a potentially large number of different guards and assignments on each
transition, This would complicate the design of a learning algorithm. On the
other hand, we do not foresee any conceptual difficulty in extending the theory
for learning RAs in order to produce more expressive classes of RAs; this could
possibly be done by making the implementation of tree queries more advanced
and extending the Nerode equivalence (cf. Sect. 4). However, in order to focus on
the conceptual extensions needed to learn RAs, we have so far excluded expres-
sions in assignments of RAs.

Let us formalize the semantics of RAs. A state of an RA A = (L, l0,X , Γ, λ) is
a pair 〈l, μ〉 where l ∈ L and μ is a valuation over X (l), i.e., a mapping from X (l)

to D. A step of A, denoted 〈l, μ〉 α(d)−−−→ 〈l′, μ′〉, transfers A from 〈l, μ〉 to 〈l′, μ′〉
on input of the data symbol α(d) if there is a transition 〈l, α(p), g, π, l′〉 ∈ Γ with

– μ |= g[d/p], i.e., d satisfies the guard g under the valuation μ, and
– μ′ is the updated valuation μ′ = μ ◦ [p �→ d] ◦ π (i.e., μ′(xi) = μ(xj) if

π(xi) = xj , and μ′(xi) = d if π(xi) = p).

Here, and in the following, we use [p �→ d] to denote a mapping, with suitable
domain and range determined by context, which maps p to d and leaves all other
elements in its domain unchanged.

A run of A over a data word w = α1(d1) . . . αn(dn) is a sequence of steps of
A

〈l′0, μ0〉
α1(d1)−−−−→ 〈l′1, μ1〉 . . . 〈l′n−1, μn−1〉

αn(dn)−−−−→ 〈l′n, μn〉.
The run is initialized if l′0 is the initial location and μ0 is the initial (empty)
valuation. An initialized run is accepting if λ(l′n) = + and rejecting if λ(l′n) = −.
The word w is accepted (rejected) by A under μ0 if A has an accepting (rejecting)
initialized run over w.

An RA is non-blocking if for any initialized run ending in 〈l, μ〉 and any data

symbol α(d) there is a step of form 〈l, μ〉 α(d)−−−→ 〈l′, μ′〉. An RA is determinate if
there is no data word over which it has both accepting and rejecting initialized
runs. We require RAs to be non-blocking and determinate. We have chosen to
work with determinate, rather than deterministic, RAs. This distinction is not
important, since a determinate RA can be easily transformed into a deterministic
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RA by strengthening its guards, and a deterministic RA, by definition, is also
determinate. Our construction of RAs in Sect. 5 will generate determinate RAs
which are not necessarily deterministic.

We use RAs as acceptors for data languages. The language accepted by A,
denoted L(A), is the set of data words that it accepts.

Example. We illustrate by an RA that accepts the language modeling a priority
queue with bounded capacity. We choose to represent a priority queue with
capacity 2. Figure 1 shows a RA that accepts the corresponding data language.
For conciseness, we have omitted nonaccepting locations. Thus the RA in Fig. 1
should be extended with a terminal non-accepting location; from each location,
there should be transitions to the non-accepting location for data symbols that
do not satisfy any of the existing guards. For instance, from l1 there is a transition
to the non-accepting location for poll(p) symbols where p 
= x1.

l0 l1 l2

offer(p) | true
x1:=p

poll(p) | p=x1
−

offer(p) | p≥x1
x1,x2:=x1,p

offer(p) | p≤x1
x1,x2:=p,x1

poll(p) | p=x1
x1:=x2

Fig. 1. Register automaton modeling a priority queue with capacity 2.

4 Generalizing Active Learning to EFSM Models

In this section, we discuss how the principles on which AAL for DFAs was
based can be generalized to the learning of register automata. The challenge that
faces AAL for register automata is to infer all the features of an RA, including
locations, registers, guards, and assignments, using only membership queries and
counterexamples returned by equivalence queries. The only a priori information
available is the set Σ of actions that appear in data symbolc, and a theory which
is expressive enough, in the sense that the language accepted by the RA respects
the relations of the theory. For instance, in the case of the priority queue of
our running example, the theory could be the theory of rational numbers with
inequality. We will here try to illustrate how this challenge can be solved by
suitable generalizations of the concepts underlying AAL for DFAs.

Recall from Sect. 2 that the essence of AAL for regular languages is to main-
tain a set U of short prefixes, which represent states in the DFA to be con-
structed, and an overapproximation of the Nerode equivalence, represented by
a set V of suffixes. During hypothesis construction, the approximation of the
Nerode equivalence triggers the expansion of U until it is closed, so that a
hypothesis automaton can be formed. During hypothesis validation, returned
counterexamples are used to refine the Nerode equivalence by expanding V .
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In our generalization to learning register automata, we still let the algorithm
maintain a set U of short prefixes. In contrast to the DFA case we will not let the
short prefixes in U represent states of the RA: this would be highly impractical
since an RA in general has an infinite number of states. Instead, we let short
prefixes represent locations in the RA to be constructed; this seems like a natural
way to obtain a suitable number of equivalence classes.

4.1 Symbolic Decision Trees and Approximated Nerode Equivalence

Let us now consider how to generalize the approximated Nerode equivalence.
We first note that in the literature there is no standard generalization of Nerode
equivalence for register automata, which we can just adapt and approximate.1

We must therefore first define such an equivalence. It appears most convenient
to first define an approximated Nerode equivalence, parameterized on a set of
suffixes (which is what is actually needed for automata learning), from which
a proper Nerode equivalence can be derived as the limit of increasingly precise
approximations (as shown in Sect. 6).

Symbolic Suffixes. Let us consider how to define our approximated Nerode
equivalence, parameterized on a set of suffixes. Recall that in the DFA case, the
parameter is simply a finite set V of suffixes. In the RA case, sets of suffixes are
typically infinite, due to the infinite data domain. A natural way to characterize
such sets is by sets of sequences of actions. To this end, define a symbolic suffix
to be a sequence of actions. A set V of symbolic suffixes represents the set of
suffixes v with Acts(v) ∈ V. Let [[V]] denote the set of suffixes represented by V.

We must now define an approximated Nerode equivalence, parameterized by
a set V of symbolic suffixes. We first note that we cannot directly copy the
definition of Nerode equivalence from the DFA case, i.e., to let two words be
equivalent if their composition with an arbitrary suffix in [[V]] result in words
that are either both inside or outside the language. Let us illustrate this for
the priority queue example: letting V = {poll} would make any two words of
form offer(d) with different data values d inequivalent, since after offer(d), the
continuation poll(d′) is accepted if and only if d′ = d. Thus, V = {poll} would
induce an infinite number of equivalence classes, which can not be used for
constructing RAs.

Symbolic Decision Trees. A better idea is to let the equivalence reflect the
idea that prefixes represent RA locations. A location l remembers data values
from the already processed sequence of data symbols in its registers. The pro-
cessing of future sequences of data symbols from a location involves to evaluate
their data values using guards on relevant transitions. This future processing can
be represented by an RA, in which l is an initial location with registers that store
the remembered data values. If the future sequences of interest are restricted to

1 The Nerode equivalence defined in [CHJ+15b] is defined only for the theory of
equalities over an infinite domain, and can be obtained as a special case of the
approach described in Sect. 6.
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the suffixes in a set [[V]] where V is finite, then such an RA can be tree-shaped
with l as its root. Thus, the processing of a set of suffixes in [[V]] after a given
prefix u can be represented by a tree-shaped “RA-fragment”, whose initial loca-
tion may therefore have registers that store data values from u. And which only
has branches that correspond to the symbolic suffixes in V. Following [CHJS16],
we use the term symbolic decision tree (SDT) for such an RA-fragment.

{x1}

offer(p)
true

poll(p)
p = x1

(a) V = {offer, poll}

{x1}

offer(p)
p ≥ x1

offer(p)
p ≤ x1

x2 := p

poll(p)
p = x1

poll(p)
p = x1

poll(p)
p = x2

(b) V = {offer, poll, offer poll}

Fig. 2. SDTs for u = offer(5) for various V in the priority queue example.

Let us illustrate this on the priority queue example for the prefix u = offer(5)
and the set V = {offer , poll} of symbolic suffixes. The acceptance/rejection of
suffixes in [[V]] after the prefix offer(5) can be represented by the SDT in Fig. 2(a).
We require that an SDT refers to data values in the prefix u only via registers
in its initial location. Thus, in the initial location, the value 5 from offer(5) is
stored in a register. We annotate the root location by the set of its registers. In
other words, the SDT generalizes from specific data values in prefixes (in this
case 5) by using the guard p = x1 instead of the more specific p = 5. In this way,
the same SDTs can hopefully be used to represent the effect of suffixes in [[V]]
for many different prefixes. In order to know which values from the prefix are
stored in which registers, we use the convention that register xi stores the ith
data value from the prefix. Thereafter, suffixes of form poll(d) are accepted if
the data value d equals the value stored in the register, whereas suffixes of form
offer(d) are always accepted. In the same way as for the RA in Fig. 1, we omit
rejecting locations, and transitions leading to them.

Note that the initial location of an SDT only has registers for the data values
of the prefix that are actually used in the SDT. Thus, even if the prefix u is very
long, the SDT may use only a few of its data values, and equally many registers.
Also note that the SDT in Fig. 2(a) is different from the corresponding fragment
of the RA in Fig. 1, which starts in location l1: the latter makes finer distinctions
for parameters of offer actions, since it must also care about suffixes of length 2
or more. To move closer to the corresponding fragment in the RA of Fig. 1, we
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can extend the set V of symbolic suffixes to {offer , poll, offer poll}. We can then
obtain the SDT in Fig. 2(b), in which the outgoing offer -transitions are split by
guards that compare the received data value to that stored in the register.

{x1}

offer(p)
x2 := p

poll(p)
p = x1

poll(p)
p = x1

x1 ≤ x2

poll(p)
p = x2

x2 ≤ x1

Fig. 3. Alternative SDT for u = offer(5) and V = {offer , poll, offer poll} in the priority
queue example.

The construction of SDTs that accept and reject suffixes in [[V]] after some
prefix u can in principle be done in different ways. For instance, for the prefix
u = offer(5) and the set of symbolic suffixes V = {offer , poll, offer poll}, we
could instead of the SDT in Fig. 2(b) produce the SDT in Fig. 3. Following our
previous work, we prefer the SDT in Fig. 2(b) to that in Fig. 3, since it obeys
the principle to perform comparisons between data values as early as possible to
avoid direct comparisons between registers, and since such a principle makes it
easier to define a canonical form for RAs.

In order to learn uniquely defined RAs, wee need to determine the form for
SDTs. We do this by postulating the existence of a tree oracle T , which for each
data word u and set of symbolic suffixes V produces an SDT, denoted TV(u).
In our running example the tree oracle will, for the prefix offer(5) and suffixes
{offer , poll} produce the SDT in Fig. 2(a). Tree oracles should satisfy a number
of criteria, listed in Definition 4.

The tree oracle introduced here can be realized by a procedure which con-
structs SDTs by performing a bounded set of membership queries. For simple
theories, such as 〈N, {=}〉 and 〈R, {<}〉, introduced in the beginning of Sect. 3,
it is not difficult to devise techniuqes for SDT construction (see, e.g., [CHJS16]).
An extension to sequence numbers is reported in [FH17]. For theories with a large
number of relations, tree oracles may have to perform choices between a number
of possible ways combine them for classifying suffixes. Different tree oracles may
induce different approximations of the Nerode equivalence, and consequently
generate different RAs.

Approximated Nerode Equivalence. Having introduced the notation TV(u)
for the SDT for u and V, we can use the constructed SDTs to define an approxi-
mated Nerode equivalence. A natural first idea is to let two prefixes, u and u′, be
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equivalent wrt. V if TV(u) and TV(u′) are the same. However, since RAs can per-
form arbitrary assignments between registers, it is sufficient that the registers in
the root location of TV(u) can be renamed so that TV(u) and TV(u′) become the
same. The approximated Nerode equivalence between two SDTs will therefore
be parameterized on a bijection between their registers. It suffices to specify the
bijection for registers of the initial location; for the others it can be determined
from the structure of the trees. Thus, for a set V of symbolic suffixes and prefixes
u, u′, let u �γ

T ,V u′ denote that γ is a bijection from the registers of the initial
location of TV(u) to the registers of the initial location of TV(u′) which can be
extended to a bijection from all registers of TV(u) to all registers of TV(u′), and
which converts TV(u) into TV(u′). Let u �T ,V u′ denote that u �γ

T ,V u′ for some
bijection γ. The point of this equivalence is that whenever u �γ

T ,V u′, then for
the purpose of classifying the suffixes in [[V]], we can let let the prefix u′ lead to
the same location as u, and let the assignments on transitions be defined so that
the data value that is assigned to register xi after u is assigned to register γ(xi)
after u′.

{x2}

offer(p)
true

poll(p)
p = x2

Fig. 4. TV(u′) for u′ = offer(5)offer(7)poll(5) and V = {offer , poll}

To illustrate the approximated Nerode equivalence, Fig. 4 shows TV(u′) for
u′ = offer(5)offer(7)poll(5) and V = {offer , poll}. We see that offer(5) �γ

T ,V
offer(5)offer(7)poll(5), where γ maps x1 to x2.

4.2 Towards a Learning Algorithm

We have now developed sufficient machinery to illustrate our generalized AAL
learning on the priority queue.

Suppose we start our learning algorithms with U = {ε, offer(5), offer(5)
offer(7)} and V = {offer , poll}. We construct the RA-fragments TV(u) for u ∈ U ,
as shown in Fig. 5.

Since the SDTs are different, the corresponding prefixes are inequivalent, and
should therefore lead to three different locations. The recepy for AAL prescribes
to expand U until it is closed. In the DFA case, “closed” means that each one-
symbol continuation of some prefix in U is equivalent to some prefix which is
already in U . The naive generalization of this condition would be expensive to
check, since each prefix has an unbounded number of one-symbol continuations,
and often cause unnecessary work. Therefore, our generalization of “closed” per-
forms this check only for one “representative” symbol for each transition from the



Extending Automata Learning to Extended Finite State Machines 163

{ }

offer(p)
true

(a) u =

{x1}

offer(p)
true

poll(p)
p = x1

(b) u = offer(5)

{x1}

poll(p)
p = x1

(c) u = offer(5)offer(7)

Fig. 5. SDTs TV(u) for V = {offer , poll} in the priority queue example.

initial location of the corresponding RA-fragment. Our framework thus requires
to define, for each prefix u and each guard g, a representative data value, denoted
dg

u. We say that U is closed wrt. V if for each u ∈ U and each transition from
the initial location of TV(u) labeled by parameterized symbol α(p) and guard
g, the extension uα(dg

u) is equivalent to a prefix in U . It is not crucial how the
representative data value dg

u is chosen, but it is advisable to avoid corner cases,
such as unnecessarily letting dg

u be equal to a data value in u. For the following,
let us assume that representative data values are chosen as follows.

– The representative data value for the guard true is 5 after ε and 7 after
offer(5) (avoiding the corner case 5).

– For a guard of form p = xi, there is obviously only one possible representative
data value, viz. the value of xi.

In our example, let us check whether our set U is closed wrt. V.

– u = ε: the extension offer(5) is also in U .
– u = offer(5): here there are two outgoing transitions.

• offer(p): the extension offer(5)offer(7) is also in U .
• poll(p): for the guard p = x1, the extension offer(5)poll(5) has the same

SDT as ε.
Recall that for the presentation we have omitted transitions leading to reject-
ing locations. E.g., after offer(5), we have thus omitted the poll-transition
with guard p 
= x1; the treatment of these cases is trivial in this example.

– u = offer(5)offer(7): the only continuation is u = offer(5)offer(7)poll(5),
which has the SDT of Fig. 4, equivalent to that of offer(5).

Thus the set U is indeed closed wrt. V. In the DFA case, we should be able to
construct a hypothesis automaton. However, in our setting there is still one prob-
lem remaining, which is that we cannot construct a transition from the location
represented by offer(5)offer(7) to that represented by offer(5)offer(7)poll(5).
The reason is that the SDT after offer(5)offer(7)poll(5) has a register contain-
ing data value 7 in its initial location, whereas the SDT after offer(5)offer(7) has
a register which contains 5. Thus, we can not construct the assignment for the
transition, since there is no register of TV(offer(5)offer(7)) whose contents can
be assigned to the register of TV(offer(5)offer(7)poll(5)). Following [CHJS16],
we solve this issue by requiring U and V to be register-consistent, meaning that
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the registers of uα(dg
u), except possibly the register which stores dg

u, should be
a subset of the registers of u. If U and V are not register consistent, then V
is extended by a symbolic suffix that forces the missing register to be added
to TV(u).

To remedy this deficiency, the learning algorithm discovers that the missing
register x2 is used in a poll transition after offer(5)offer(7)poll(5). This corre-
sponds to a suffix in [[{poll poll}]] after offer(5)offer(7). Thus, in order to add
the corresponding register to TV(offer(5)offer(7)), the set of suffixes must be
extended with poll poll. Resuming hypothesis construction, we construct TV(u)
for u in U and V = {offer , poll, poll poll}. The resulting SDTs are in Fig. 6.

{ }

offer(p)
true

offer(p)
true

(a) u =

{x1}

offer(p)
true

poll(p)
p = x1

(b) u = offer(5)

{x12}

poll(p)
p = x1

poll(p)
p = x2

(c) u = offer(5)offer(7)

Fig. 6. SDTs TV(u) for V = {offer , poll, poll poll} in the priority queue example.

The new set of symbolic suffixes achieves both closedness and register con-
sistency. We can thus proceed to constructing a hypothesis. The main principles
for this construction are as follows.

– Each prefix u in U induces a location. Its registers are the registers of the
initial location of TV(u).

– Each initial transition of TV(u) induces a transition from the location induced
by u, with the same guard, to the prefix that is equivalent to its representative
one-symbol extension. Its assignment is derived from the parameter γ of this
equivalence.

Using these principles, we construct the hypothesis shown in Fig. 7.

l0 l1 l2

offer(p) | true
x1:=p

poll(p) | p=x1
−

offer(p) | true
x1:=x1

poll(p) | p=x1
x1:=x2

Fig. 7. Hypothesis RA for V = {offer , poll} in priority queue example.
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We then move to the hypothesis validation phase. The hypothesis RA in
Fig. 7 is supplied in an equivalence query. Since it is not equivalent to the one
in Fig. 1, the equivalence query will return a counterexample. Suppose that this
counterexample is the word w = offer(5)offer(3)poll(3), which is rejected by the
hypothesis but is in the language. Let us now illustrate how we generalize coun-
terexample processing to the RA setting. The word w suggests that something
is wrong with the symbolic path induced by w, i.e., the sequence of transitions
that goes through the sequence of locations l0l1l2l1. In the DFA case, a coun-
terexample indicates that a one-symbol extension of some prefix in U , which
has incorrectly been assumed to be equivalent to another prefix in U , should be
added to U ; it describes how to extend V to achieve this effect. In the RA case,
a counterexample can point to additional deficiencies in the hypothesis:

– a guard may need to be refined, since it is satisfied by different data values
that induce inequivalent subsequent behavior, but V must be extended to
expose this difference,

– a representative one-symbol extension of a prefix in U may indeed be equiva-
lent to another prefix in U , but an incorrect bijection has been used to check
this.

These cases are also resolved by extending V and resuming hypothesis constru-
ction.

In our case, investigating the symbolic path induced by w reveals that
the sequence of transitions l1l2l1 treats the two suffixes offer(7) poll(5) and
offer(3) poll(5) in the same way, although the first is in the language and
the second is not. This discrepancy is visible after the location induced by
the prefix offer(5), and therefore its outgoing offer -transition must be refined.
The remedy is to extend V by the symbolic suffix offer poll. Then the
tree oracle will construct and SDT for offer(5) with two outgoing offer -
transitions. Resuming hypothesis construction, we construct TV(u) for u in U and
V = {offer , poll, poll poll, offer poll}. The resulting SDTs are in Fig. 8.

{ }

offer(p)
true

x1 := p

offer(p)
true

poll(p)
p = x1

(a) u =

{x1}

offer(p)
p ≥ x1

offer(p)
p ≤ x1

x2 := p

poll(p)
p = x1

poll(p)
p = x1

poll(p)
p = x2

(b) u = offer(5)

{x1, x2}

poll(p)
p = x1

poll(p)
p = x2

(c) u = offer(5)offer(7)

Fig. 8. SDTs TV(u) for V = {offer , poll, offer poll, poll poll} in the priority queue
example.
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Constructing an automaton based on these fragments yields the desired RA
in Fig. 1.

5 Learning Register Automata: Formal Development

Let us now define the generalization more formally. We continue the line of
definitions from Sect. 3.

5.1 Symbolic Decision Trees

A symbolic suffix is a sequence of actions. An abstract suffix is a set of sym-
bolic suffixes. For an abstract suffix V, let [[V]] denote the set of data words v
with Acts(v) ∈ V, let α−1V denote the set of symbolic suffixes α1 . . . αn with
αα1 . . . αn ∈ V, and let Initacts(V) be the set of actions α with α−1V 
= ∅.

Assume a data word u with V als(u) = d1 . . . dk. Let μu be the valuation
with domain {x1, . . . , xk} such that μu(xi) = di for i = 1, . . . , k. A u-guard is
a predicate g over x1, . . . , xk and the formal parameter p. We require that to
each u-guard g is assigned a unique representative data value, denoted dg

u, which
satisfies μu |= g[dg

u/p] (thus, each u-guard must have at least one satisfying
instantiation of the formal parameter p); moreoever, if some other u-guard g′

satisfies μu |= (g′ ⇒ g) and μu |= g′[dg
u/p], then dg′

u = dg
u.

We extend the definitions of u-guards to sequences, as follows. A sequence
τ = (αk+1, gk+1) · · · (αk+m, gk+m) of action-guard pairs is a u-path if either
(i) m = 0, or (ii) gk+1 is a u-guard and (αk+2, gk+2) · · · (αk+m, gk+m) is a
uαk+1(d

gk+1
u )-path. We define Gτ as gk+1[xk+1/p]∧gk+m[xk+m/p]. For a suffix v

of form αk+1(dk+1) · · · αk+m(dk+m), we say that vsatisfies τafter u if μuv |= Gτ .
Intuitively, Gτ is the condition on dk+1, . . . , dk+m under which v satisfies the
sequence of guards gk+1, . . . , gk+m, given some valuation of {x1, . . . , xk}, and
letting xk+i represent dk+i for i ≥ 1.

For a set Π of u-paths and action α, let InitgsΠ(α) denote the set of guards g
with (α, g)τ ∈ Π for some τ . Let φΠ(α) be the constraint ∀p. [

∨
InitgsΠ(α)]. For

an abstract suffix V, let φΠ(V) be the conjunction of φΠ(α) over α ∈ Initacts(V).
Intuitively, φΠ(V) is the constraint over {x1, . . . , xk} under which a data symbol
α(d) with α ∈ Initacts(V) is guaranteed to find a satisfying initial guard in Π.

For g ∈ InitgsΠ(α) define (α, g)−1Π as the set of uα(dg
u)-paths τ ′ with

(α, g)τ ′ ∈ Π. Define a (u,V)-cover as a set Π of u-paths satisfying μu |= φΠ(V),
such that for each α ∈ Initacts(V) and g ∈ InitgsΠ(α) we have (i) (φΠ(V) ∧
g[x|u|+1/p]) ⇒ φ(α,g)−1Π(α−1V), and (ii) (α, g)−1Π is a (uα(dg

u), α−1V)-cover.
Intuitively, these conditions imply that Π can process any suffix v ∈ [[V]] after
u without being blocked by lack of a satisfying guard. The constraint φΠ(V)
characterizes those valuations of {x1, . . . , xk} from which Π can be used to
classify suffixes in [[V]]. It is analogous to a path constraint in symbolic execution;
to see this, note that the condition μu |= φΠ(V) means that it is satisfied by
the prefix u, and that condition (i) is a natural condition for propagating path
constraints.
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Definition 3. A (u,V)-tree T is a mapping from a (u,V)-cover to {+,−}.

We write InitgsT (α) for InitgsDom(T )(α) and φT for φDom(T )(V). If T is a
(u,V)-tree and g ∈ InitgsT (α), then define (α, g)−1

T as the (uα(dg
u), α−1V)-tree

T ′ defined by Dom(T ′) = (α, g)−1Dom(T ) and T ′(τ) = T ((α, g)τ). Intuitively,
(α, g)−1T is the subtree of T reached after the action-guard pair (α, g). We will
sometimes use the term symbolic decision trees (SDTs) for (u,V)-trees.

Definition 4. A tree oracle T is a function which maps each data word u and
abstract suffix V to a (u,V)-tree TV(u), subject to the consistency conditions that

1. whenever g ∈ InitgsTV(u)(α) then Tα−1V(uα(dg
u)) is (α, g)−1TV(u), and

2. for any u, V and V ′, we have (φTV(u) ∧ φTV′ (u)) ⇒ φT(V∪V′)(u).

Intuitively, Condition 1 states that the SDT produced by Tα−1V(uα(dg
u)) must be

the same as the correponding subtree of TV(u), reached after the action-guard
pair (α, g). This implies that the tree oracle can construct SDTs recursively
bottom-up from the leaves of a tree. Condition 2 is a natural technical condition,
used only in our subsequent discussion on counterexample processing. Intuitively,
it states that if a prefix satisfies both the path constraint for processing suffixes
in [[V]] and the path constraint for processing suffixes in [[V ′]], then that prefix
should satisfy the path constraint for processing suffixes in [[V ∪ V ′]].

We say that T respects the language L if for each u, V, and τ ∈ Dom(TV(u)),
it holds that (TV(u)(τ) = + ⇔ uv ∈ L) whenever v satisfies τ after u. Let
memT ,V(u), also called the set of memorable parameters, denote the set of reg-
isters among {x1, . . . , xk} that occur on some u-path in Dom(TV(u)).

The above definitions are illustrated by the SDTs in Sect. 4. Each SDT is
labeled by the corresponding set memT ,V(u) of memorable parameters. Con-
sider, e.g., the (u,V)-tree in Fig. 8(b). Here, the middle branch corresponds to the
u-path τ = (offer , p ≤ x1)(poll, p = x2). The corresponding constraint Gτ

becomes x2 ≤ x1 ∧ x3 = x2). In the examples, all constraints φTV(u) are true.
However, if we would consider a priority queue of capacity three, then after
u = offer(5)offer(7), a natural tree oracle would for suitable V result in φTV(u)

being x1 ≤ x2, since guards for subsequent offer -symbols make sense only under
this condition.

5.2 Approximated Nerode Equivalence

We can now define the generalization of the approximated Nerode equivalence.
The generalization of the approximated Nerode equivalence is parameterized by
a tree oracle and an abstract suffix.

Two (u,V)-trees, T and T ′, are said to be equivalent, denoted T ≡ T ′, if
Dom(T ) = Dom(T ′), and T (τ) = T ′(τ) for each τ ∈ Dom(T ). For a mapping γ
on registers, we define its extension to u-guards and u-paths in the natural way.
For a (u,V)-tree T , we define γ(T ) by Dom(γ(T )) = {γ(τ) : τ ∈ Dom(T )} and
γ(T )(γ(τ)) = T (τ).



168 S. Cassel et al.

Definition 5 (Approximated Nerode Equivalence). Let T be a tree oracle
which respects L. Let u,u′ be data words and V be an abstract suffix. Then u �γ

T ,V
u′ denotes that γ : memT ,V(u) → memT ,V(u′) is a bijection from memT ,V(u) to
memT ,V(u′) such that γ̂(TV(u)) ≡ TV(u′), where γ̂ extends γ by mapping x|u|+i

to x|u′|+i for i ≥ 1.

Let u �T ,V u′ denote that u �γ
T ,V u′ for some bijection γ.

Intuitively, two words u and u′ are equivalent if the bijection γ transforms
the SDT for processing suffixes in [[V]] after u to the SDT for processing suffixes
in [[V]] after u′. Note that in general, when u �T ,V u′, there can be several
bijections γ such that u �γ

T ,V u′.

5.3 Register Automata Construction

To generalize automata construction and AAL to RAs, we must impose some
technical requirements on tree oracles, to ensure that generated hypothesis
automata converge monotonically towards an acceptor for the language.

Definition 6 (Monotone tree oracle). A tree oracle T which respects the
language L is monotone if whenever V ⊆ V ′, then for any u, u′ and action
α ∈ Initacts(V),

1. for each g ∈ InitgsTV(u)(α) there is a g′ ∈ InitgsTV′ (u)(α) such that
φTV(u) ⇒ (g′ ⇒ g) and μu |= g′[dg

u/p],
2. memT ,V(u) ⊆ memT ,V′(u),
3. whenever there are two u-paths τ ∈ Dom(TV(u)) and τ ′ ∈ Dom(TV′(u)) with

the same sequences of actions, such that φTV′ (u) ∧ Gτ ∧Gτ ′ is satisfiable, then
TV(u)(τ) = TV′(u)(τ ′).

4. u �γ
T ,V′ u′ implies u �γ

T ,V u′.

Intuitively, if V ⊆ V ′, then the first condition states that the initial guards
make more distinctions between data values when V increases. More precisely,
each guard in InitgsTV(u)(α) is refined into a guard that is stronger under the
associated path condition, and also includes its representative data value; more
guards may have to be added in order to fill the induced gaps. The second
condition states that more registers are needed to make these distinctions. The
third condition states that a refinement must preserve the classification of all
suffixes in [[V]]. An alternative statement of this condition is that if some suffix v
satisfies both τ and τ ′ after u, where u satisfies φTV′ (u), then v must be classified
in the same way by TV(u) and TV′(u). The fourth condition states that increasing
V will induce a refinement of the approximated Nerode equivalence.

We now have sufficient machinery to generalize the construction of DFAs to
construction of RAs. Let U be a set of data words, and let V be an abstract
suffix with Σ ⊆ Initacts(V).

– U is closed wrt. V if for each u ∈ U and each g ∈ InitgsTV(u)(α) there is a
u′ ∈ U such that uα(dg

u) �T ,V u′.
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– U is register-consistent wrt. V if for each u ∈ U , each α ∈ Σ, and each
g ∈ InitgsTV(u)(α) we have memT ,V(uα(dg

u)) ⊆ (memT ,V(u) ∪ {x|u]+1}).
– U is constraint-consistent wrt. V if for each u ∈ U , each α ∈ Σ, and each

g ∈ InitgsTV(u)(α) we have (φTV(u) ∧ g[x|u]+1/p]) =⇒ φTV(uα(dg
u))

Closedness ensures that each transition in the automaton to be constructed has
a target location. Register-consistency states that the memorable parameters
of uα(dg

u), possibly except x|u]+1, are also memorable parameters of u. In the
automaton to be constructed, it ensures that any data value from u that must
be remembered after uα(dg

u) is also remembered after u. Constraint-consistency
intuitively states that the initial guards of SDTs have stabilized, in the sense
that the path constraints of form φTV(u) are kept invariant by each transition.

Definition 7 (Hypothesis automaton). Let U be a set of words, which
contains ε, and V an abstract suffix, with Σ ⊆ Initacts(V), such that U is
closed, register-, and constraint-consistent wrt. V. Then the hypothesis automa-
ton H(U,V) is the RA H(U,V) = (L, l0,X , Γ, λ), where

– L = U and l0 = ε,
– X maps each location u ∈ U to memT ,V(u) (thus X (l0) is the empty set),
– λ(u) = + if u ∈ L, otherwise λ(u) = −, and
– for each g ∈ InitgsTV(u)(α) there is a transition 〈u, α(p), g, π, u′〉 in Γ , where

• u′ is the unique short prefix in U such that uα(dg
u) �T ,V u′

• π : memT ,V(u′) → (memT ,V(u) ∪ {p}) is defined as [x|u|+1 �→ p] ◦ γ−1

for some γ with uα(dg
u) �γ

T ,V u′

Remark. In order to remove some arbitrariness in the last part of the construc-
tion, e.g., in order to construct canonical automata, we could let the set Γ contain
a transition of form 〈u, α(p), g, γ−1, u′〉 for each γ such that uα(dg

u) �γ
T ,V u′ (and

not just for one of them).
We will now prove a theorem, which states that H(U,V) is consistent with the

observations used to construct it, i.e., the set of words uv with u ∈ U and v ∈ [[V]].
This will generalize the corresponding property for DFAs (e.g., [Ang87, Lemma
3]), stating that if U is prefix-closed and V is suffix closed, then H(U, V ) correctly
classifies all words in UV . The property of prefix-closedness is generalized as
follows. We say that a set U of data words is V-induced if whenever uα(d) ∈ U
then u ∈ U and d = dg

u for some g ∈ InitgsTV(u)(α).

Theorem 1. Let T be a monotone tree oracle which respects L. Let V be a
suffix-closed abstract suffix with α−1V 
= ∅ for each α ∈ Σ, and U be a V-
induced set of words. Then H(U,V) correctly classifies all words uv with u ∈ U
and v ∈ [[V]].

Proof. The proof follows a similar pattern as the corresponding proof for the
DFA case (see, e.g., [Ang87, Lemma 3]).

We first prove that for all u ∈ U , the hypothesis H(U,V) can process u
to reach the state 〈u, μu|X (u)〉, using induction on u (we let μ|X denote the
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restriction of valuation μ to the set X of registers). For u = ε, this follows from
H(U,V)(ε) = l0 = ε, and X (ε) = ∅. For the inductive step, assume uα(d) ∈ U .
Since U is V-induced we have u ∈ U and d = dg

u for some g ∈ InitgsTV(u)(α). By
the inductive hypothesis, H(U,V) can process u to reach the state 〈u, μu|X (u)〉.
By the construction of H(U,V), there is a transition 〈u, α(p), g, π, uα(d)〉 in Γ ,
where π = [x|u|+1 �→ p]. This implies that the transition 〈u, α(p), g, π, uα(d)〉
takes H(U,V) from the state 〈u, μu|X (u)〉 to the state 〈u, μuα(d)|X (uα(d))〉. It also
follows that H(U,V) accepts u iff u ∈ L.

We next prove that H(U,V) correctly classifies all words uv with u ∈ U and
v ∈ [[V]]. Assume wlog. that uv ∈ L. Let m = |v|, let vi be the suffix of v of
length m − i, and let ti be the prefix of v of length i (i.e., v can be written as
tivi for i = 0, . . . , m). Assume that H(U,V) processes v in a run

〈u0, μ0〉
α1(d1)−−−−→ 〈u1, μ1〉 · · · 〈um−1, μm−1〉

αm(dm)−−−−−→ 〈um, μm〉

where 〈u0, μ0〉 = 〈u, μu|X (u)〉. By the construction of H(U,V) and the semantics
of register automata, this means that for i = 1, . . . , m there is a transition
〈ui−1, αi(p), gi, πi, ui〉 such that μi−1 |= gi[di/p] and πi = [x|ui−1|+1 �→ p] ◦ γ−1

for some γ with ui−1αi(dgi
ui−1

) �γ
T ,V ui, and that μi = (μi−1 ◦ [p �→ di]) ◦

[x|ui−1|+1 �→ p] ◦ γ−1 = μi−1 ◦ [x|ui−1|+1 �→ di] ◦ γ−1.
We will now prove (by induction over i) that for i = 0, . . . , m we have (i)

μi |= φTV(ui), and (ii) TV(ui)(τ) = + for each τ ∈ Dom(TV(ui)), such that
vi satisfies τ after uti. The base case is trivially true, since by construction,
μu |= φTV(u), and since T respects L. For the inductive step, we assume as
inductive hypothesis that μi−1 |= φTV(ui−1), and that TV(ui−1)(τ) = + for
each τ ∈ Dom(TV(ui−1)) that is satisfied by vi−1 after uti−1. We must prove
properties (i) and (ii) for i. For (i), from μi−1 |= φTV(ui−1) (the inductive
hypothesis) and μi−1 |= gi[di/p], it follows by constraint consistency that
(μi−1 ◦ [x|ui−1|+1 �→ di]) |= φTV(ui−1αi(d

gi
ui−1 ))

. From ui−1αi(dgi
ui−1

) �γ
T ,V ui,

we then infer that (μi−1 ◦ [x|ui−1|+1 �→ di] ◦ γ−1) |= φTV(ui), i.e., that μi |=
φTV(ui). For (ii), assume that τ ′ ∈ Dom(TV(ui)) is satisfied by vi after uti. We
first note that αi · · · αm ∈ V since V is suffix-closed. Hence, by the assumption
that TV(ui−1)(τ) = + for each τ ∈ Dom(TV(ui−1)) that is satisfied by vi−1

after uti−1, using Condition 1 on tree oracles (in Definition 4), we have that
Tα−1

i V(ui)(τ ′′) = + for each τ ′′ ∈ Dom(Tα−1
i V(ui)) that is satisfied by vi after

uti. Since α−1
i V ⊆ V and since vi satisfies both τ ′ and τ ′′ after uti, it means that

φTV(ui) ∧ Gτ ′ ∧ Gτ ′′ is satisfiable. Hence, by Condition 3 in Definition 6 we have
TV(ui)(τ ′) = +. This establishes the inductive step.

Letting i be m, it follows that TV(um)(ε) = +. Since um is the final location
in the run of H(U,V) over uv, this means that H(U,V) accepts uv. ��

5.4 Generalizing Active Automata Learning

The generalization of AAL for RAs will follow the same pattern of alternation
between hypothesis construction and hypothesis validation as for DFAs, during
which the sets U and V are increased.
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During hypothesis construction, the tree oracle is used to construct SDTs
of form TT ,V(u), from which the approximated Nerode equivalence �T ,V is
constructed.

– Whenever the set U is not closed wrt. V, then U is extended: if there is
some u ∈ U , α ∈ Σ, and g ∈ InitgsTV(u)(α), for which there is no u′ with
uα(dg

u) �T ,V u′, then uα(dg
u) is added to U , triggering new membership

queries.
– Whenever the set U is not register-consistent wrt. V, then V is extended: if

there is some u ∈ U , α ∈ Σ, and g ∈ InitgsTV(u)(α), such that there is a xi

with 1 ≤ i ≤ |u| which is in memT ,V(uα(dg
u)) but not in memT ,V(u), then

extend V with a symbolic suffix of form αα1 . . . αm such that xi occurs on
some path of form (α1, g1) · · · (αm, gm) in Dom(TV(uα(dg

u))).
– Whenever the set U is not constraint-consistent wrt. V, then V is extended: if

there is some u ∈ U and α ∈ Σ, such that there is a g ∈ InitgsTV(u)(α) with
(φTV(u) ∧ g[x|u]+1/p]) 
⇒ φTV(uα(dg

u)), then extend V with the set of symbolic
suffixes of form αα1 . . . αn with α1 . . . αn ∈ V.

This process of extending U and V is continued until U is closed, register con-
sistent, and constraint consistent wrt. V.

When U is closed, register consistent, and constraint consistent wrt. V,
hypothesis validation submits the hypothesis H(U,V) in an equivalence query.
If the query returns “yes”, then the learning is completed, implying that H(U,V)
accepts L. If the query returns a counterexample word w, this is used to extend
V, as follows. Let w = α1(d1) · · · αn(dn). Assume wlog. that H(U,V) accepts w
but w 
∈ L. Thus there is an initialized run of H(U,V) over w

〈u0, μ0〉
α1(d1)−−−−→ 〈u1, μ1〉 · · · 〈un−1, μn−1〉

αn(dn)−−−−→ 〈un, μn〉

where 〈u0, μ0〉 is the initial state and λ(un) = +. For each i = 1, . . . , n, the step

〈ui−1, μi−1〉
αi(di)−−−−→ 〈ui, μi〉 is derived from a transition 〈ui−1, αi(p), gi, πi, ui〉

with μi−1 |= gi[di/p], which is added to H(U,V) based on the properties that
ui−1αi(dgi

ui−1
) �γ

T ,V ui for some γ, and where πi = [x|u|+1 �→ p] ◦ γ−1 and
μi = μi−1 ◦ [x|u|+1 �→ di] ◦ γ−1. For i = 1, . . . , n, let Vi be the suffix-closure of
V ∪ {αi+1 · · · αn}. By generalizing from the DFA case, we claim that if w is a
counterexample then there must be an i among 0, . . . , n such that either

1. ui−1αi(dgi
ui−1

) 
�γi

T ,Vi
ui, or

2. case 1 does not apply, but the guard in InitgsTVi−1 (ui−1)(αi) which has dgi
ui−1

as representative value is not implied by gi; in this case, the symbolic suffix
Vi−1 shows that the guard gi can be strengthened.

These two cases are illustrated in Fig. 9. To prove that the existence of such an
i is guaranteed, we assume (to get a contradiction) that ui−1αi(dgi

ui−1
) �γi

T ,Vi
ui,

and that gi is also a guard in InitgsTVi
(ui−1)(αi) for i = 1, . . . , n. We can then

show that w would not be a counterexample, using a similar technique as in
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ui

ui−1 αi(dgiui-1)
Case 1
γ̂i( Vi(ui-1αi(dgiui-1))) Vi(ui)

Case 2
gi guard for dgiui-1 in
Initgs Vi-1 (ui-1)(αi)

v

v

Fig. 9. Counterexamples for discussion

the proof of Theorem 1. Let vi be the suffix of length n − i of w, and let wi

be the prefix of w of length i. We shall establish, by induction over i, that
for i = 0, . . . , n we have (i) μi |= φTVi

(ui), and (ii) TVi
(ui)(τ) = − for each

τ ∈ Dom(TVi
(ui)), such that vi satisfies τ after wi. The base case is trivially true,

since by construction, φTV0 (ε)
is true, and since T respects L. For the inductive

step, we assume as inductive hypothesis that μi−1 |= φTVi−1 (ui−1), and that
TVi−i

(ui−1)(τ) = − for each τ ∈ Dom(TVi−1(ui−1)) that is satisfied by vi−1 after
wi−1. We must prove properties (i) and (ii) for i. For (i), it follows by constraint
consistency that μi |= φTV(ui). It also follows by Condition 1 in Definition 4
on tree oracles that μi |= φT{αi+1···αn}(ui). By Condition 2 of Definition 4,
it follows that μi |= φTVi

(ui). For (ii), assume that τ ′ ∈ Dom(TVi
(ui)) is

satisfied by vi after wi. We note that αi+1 · · · αn ∈ Vi. Hence, by Condition 1
on tree oracles (in Definition 4), we have that Tα−1

i (Vi−1)
(ui)(τ ′) = − for each

τ ′′ ∈ Dom(Tα−1
i (Vi−1)

(ui)) that is satisfied by vi after wi. Since vi satisfies both
τ ′ and τ ′′ after wi, it means that φTVi

(ui) ∧ Gτ ′ ∧ Gτ ′′ is satisfiable. Hence,
by Condition 3 in Definition 6 we have TVi

(ui)(τ ′) = −. This establishes the
inductive step. By specializing to i = n, we establish that w is rejected by
H(U,V), which contradicts the assumption that w is a counterexample.

Thus, a value of i can be obtained by invoking the tree oracle for abstract
suffixes of form Vi. We should let i be as large as possible, since adding a shorter
symbolic suffix to V induces fewer membership queries. The subsequently gen-
erated hypothesis automaton is guaranteed to refine the current one. In Case 1,
some equivalence between prefixes is refuted, inducing either a new location or
a removed transition (in case there are several transitions differing only in the
remapping between two locations) In Case 2, some guard will be refined.

Starting from some initial approximations, e.g., U = {ε} and V = Σ, the sets
U and V are successively extended, until an equivalence query returns “yes”. In
the next section, we will give conditions, corresponding to regularity in the DFA
case, under which termination is guaranteed.
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6 Canonical Automata Construction

Nerode Equivalence. If our tree oracle is monotone, then the equivalence � can
be used to define a Nerode Equivalence. Let u ≡γ

T u′ denote that u �γ
T ,V u′ for

all abstract suffixes V. Let u ≡T u′ denote that u ≡γ
T u′ for some γ.

Define a data language L to be regular with respect to T if ≡T has finite
index. Note that the regularity of L is relative to the particular tree oracle T
that is used. Of course, it is assumed that T respects L. We can now state and
prove an analogue of the classical Myhill-Nerode theorem.

Theorem 2 (Myhill-Nerode). Let L be a data language, and let T be a
monotone tree oracle which respects L. If L is regular wrt. T , then there is a RA
that accepts L.

Proof. Choose a V such that �T ,V is maximally refined, such that memT ,V(u),
and such that TV(u) is maximally refined for all u. Such a V must exist by
standard finiteness arguments.

In the proof, we will first construct an RA A, and thereafter establish that A
accepts L. First, we define the set L of locations with transitions between them,
using the following spanning tree construction. The spanning tree construction
incrementally constructs a set L of locations, each of which can be either marked
or unmarked. Initially, L contains only the single unmarked location lε, which is
also the initial location. The set L is then extended and modified as follows: As
long as L contains unmarked locations, select an unmarked lu ∈ L and do:

1. for each α ∈ Σ and each g ∈ InitgsT(α−1V)(u)
(α):

– if there is already some lu′ in L with uα(dg
u) �γ

T ,V u′ for some γ, then add
〈lu, α(p), g, π, lu′〉 to Γ , where π : memT ,V(u′) → (memT ,V(u) ∪ {p}) is
defined as π = [x|u|+1 �→ p] ◦ γ−1,

– otherwise add luα(dg
u) (unmarked) to L, and add 〈lu, α(p), g, π, luα(dg

u)〉 to
Γ , where π = [x|u|+1 �→ p] ◦ Id,

2. mark lu;

When this procedure has finished, and L contains only marked locations, it is
taken as the set of locations of A. The procedure is guaranteed to terminate since
there is a finite number of equivalence classes of �T ,V . Note that in general, L
may contain fewer locations than there are equivalence classes of �T ,V , since not
all equivalence classes need to have their own location. This can happen if some
equivalence classes are “subsumed” by other ones. For instance, in the theory of
equality, assume that L accepts only words of form α(d1)α(d2)α(d3)α(d4) with
d1 = d3 and d2 = d4. Then the equivalence class u = α(1)α(2) is sufficient to
cover the behavior for all prefixes of length 2. In particular, u subsumes the
behavior of the prefix u(1)u(1), which is not equivalent to u.

We now construct A as H(L,V). We must only check that A indeed accepts
L. This follows from Theorem 1, and the argument given when describing the
hypothesis validation phase above: if there is a word w which is incorrectly
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classified by A, then we can add a suffix of Acts(w) to V and refine the equiva-
lence or some guard, which contradicts that �T ,V is maximally refined and that
guards are maximally refined. ��

By similar arguments as in the proof of the preceding theorem, we can also
prove an analogous theorem for the AAL procedure.

Theorem 3 (Termination of AAL). Let L be a data language, and let T be
a monotone tree oracle which respects L. If L is regular wrt. T , then the active
automata learning algorithm of Sect. 5.4 will terminate and return a RA that
accepts L.

Proof. The proof relies on using the RA constructed by Theorem3 as bound on
the monotonically increasing sets of locations, guards, and registers. ��

7 Conclusions

We have presented a condensed illustration and account of a symbolic active
learning algorithm for generating EFSM models of black-box components using
dynamic analysis. The algorithm, outlined in Sect. 5.4, shows the basic principles
of the SL∗ algorithm of our previous work [CHJS16].

We have implemented this approach in the tool RA-lib [CHJ15a]. Our pre-
liminary implementation demonstrates that the approach can infer protocols
comprising sequence numbers, time stamps, and variables that are manipu-
lated using simple arithmetic operations or compared for inequality even in a
black-box scenario.

We hope that the presentation of principles of SL∗ in this paper can inspire
further techniques for model learning.

Acknowledgment. This work was supported in part by the European FP7 project
CONNECT (IST 231167), and by the Swedish Research Council as part of the
UPMARC centre of excellence.
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CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21690-4 32

[JM09] Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv.
41(4), 1–54 (2009)

[LMP08] Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software
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Abstract. Active inference algorithms that are used to extract
behavioural models of software systems usually assume that the System
Under Inference (SUI) can be reset. Two approaches have been proposed
to infer systems that cannot be reset. Rivest and Schapire proposed an
adaptation of the L∗ algorithm that relies on having a homing sequence
for the SUI. We detail here another approach that is based on characteri-
zation sequences. More precisely, we assume classical testing hypotheses,
namely that we are given a bound n on the number of states and a set
W of characterizing sequences to distinguish states. Contrary to L∗, it
does not require an external oracle to decide on equivalence. The length
of the test sequence is polynomial in n and the exponent depends on the
cardinality |W | of the characterization set. For systems where resetting
is impossible or expensive, this approach can be a viable alternative to
classical learning methods.

1 Introduction

Query learning has received growing interest for software engineering. It is used
to retrieve finite state models of software systems or components. These models
can be used for various purposes: documentation as in “specification mining”,
verification with model checkers [14], test generation using model-based test-
ing techniques [12,13], integration testing for modular and distributed systems
[5,18], security analysis [3] etc. In this context, it makes sense to use active
learning inference algorithms, because in many cases we can query the software
system, by sending inputs to observe its outputs. The corresponding automata
models are Mealy machines, often called FSM (Finite State Machines).

Most inference algorithms and techniques assume that the system can be
reset, so that observed sequences can be rooted to a common initial state.
However, in many black box contexts, typically when a system is queried over
a network, the SUI cannot be reset. It may also be the case that a system
could be reset, but it could take a very long time to do so. As a typical exam-
ple, interacting over a local network for querying a web system packaged in a
c© Springer International Publishing AG, part of Springer Nature 2018
A. Bennaceur et al. (Eds.): ML for Dynamic Software Analysis, LNCS 11026, pp. 178–201, 2018.
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virtual machine takes around a millisecond for a single input/output observa-
tion, whereas resetting a virtual machine takes typically almost over a minute,
so the reset typically costs 105 more time than an I/O observation.1

The absence of a (reliable) reset is problematic for inference. When a system
cannot be reset, only a single sequence can be observed, and it is more difficult
to assign subsequences to inferred states of the system.

We assume that the SUI can be modelled, at some level of abstraction on
its inputs and outputs, as a Finite State Machine. FSM-based testing theory
has shown that an FSM can be identified, i.e., the SUI can be tested to be
proven equivalent to it, with the help of state identifying (separating) sequences,
constituting, e.g., a characterization set (W -set [20]) of input sequences.

The key difference between inference and testing is that classical testing
methods start from a known specification machine, and just check whether the
black box is equivalent (or conformant) to this specification. Therefore, those
methods heavily rely on transfer sequences that make it possible to test a new
state through a path known to transfer to the right state in the specification.
In our context, since no specification is available, we cannot rely on known
transfer sequences. Although the absence of reset had already been addressed
by Hennie [9], the task is much harder in our context since we cannot return
to a known state to compare the responses to input sequences of the W -set.
Generating a checking sequence (without reset) from a known specification FSM
with a characterization set is very costly, due to the fact that the sequences of
this set have to be applied a number of times which is proportional to some
exponential on the number of states in the specification [1]. We cannot expect
better for infering a system without reset.

Rivest and Schapire [16] have addressed the problem of inferring without a
reset by using a variant of the L∗ algorithm and the assumption that a homing
sequence was given. A homing sequence is a fixed input sequence such that
the output observed completely determines the state reached at the end of the
sequence (see [11]). We have proposed a new approach [8] that, instead of relying
on a homing sequence, uses two classical assumptions from FSM-based testing.
First, we assume a bound on the number of states of the SUI. Second, instead
of a homing sequence, we start from a given characterization set The advantage
as compared to Rivest and Schapire’s approach is that this algorithm no longer
requires an oracle. Implementing an oracle that can answer equivalence queries
cannot be done for an unknown software system, so it is usually approximated.
Therefore, being able to avoid an oracle or a counterexample generation process
is a definite advantage. However, there is a difficulty: since the W -set could
contain several sequences, it implies that for a system which cannot be reset, the
algorithm must guarantee to return to a state where a previous sequence was
applied. This is achieved by a recursive procedure called a localizer.

1 The round trip time for a local network is usually between 0.1 and 1 ms. Resetting
a virtual machine may depend on the type of virtualization and the speed of the
underlying processor, but starting a Linux or Windows machine usually takes several
tens of seconds.
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The absence of an oracle is compensated by the fact that we assume we know
a bound on the number of states as well as a characterization set (although the
latter is a weaker compensation for a homing sequence). Such knowledge could
be derived for instance from previous versions of the SUI (a frequent case is to
use inference to get uptodate models of evolving systems).

In both approaches, Rivest and Schapire’s and ours, there are strong assump-
tions that somehow contradict the idea that the SUI is a black box. Rivest and
Schapire base inference on L∗, where an oracle is able to answer equivalence
queries, i.e. telling whether the conjecture is equivalent to the SUI. Besides it
assumes that this oracle can provide a counterexample that points to a differ-
ence between the conjecture and the SUI. It also assumes knowledge of a homing
sequence for the SUI. Our assumptions (known bound on number of states and
characterization set) are weaker than Rivest and Schapire’s, but still question-
able for a SUI that was supposed to be a black box.

Actually, the basic algorithms proposed by both approaches are proved to
converge to a correct (equivalent) model in a polynomial number of queries
under those assumptions. But it is possible to relax the assumptions. Rivest and
Schapire [16] propose a probabilistic extension of the method that can be proved
to converge in the limit. The probabilistic extension infers, with probability
1 − δ, a correct model of the SUI in polynomial number of queries in the size of
the FSM, the length of the longest counterexample and log(1/δ). In [8], we do
not develop a probabilistic approach, but give indications on how to deal with
incorrect bounds or characterizing set. In both cases, the assumptions make it
possible to propose core algorithms, from which extensions of the algorithms and
heuristics can converge towards more precise models and learn in the limit.

In this paper, we compare the two algorithms: the W − set based algorithm
[8], and an implementation of Rivest and Schapire’s approach for FSM. The rest
of this paper is organized as follows. In Sect. 2, we give the formal notations and
definitions used in the paper to describe the algorithms. In Sect. 3, we present
a version of Rivest and Schapire’s algorithm adapted to Mealy machines. In
Sect. 4, we recall the algorithm for the general case defined in [8]. Section 5
develops two examples to show how the algorithm works. The following Sect. 6
provides preliminary statistical results on various kinds of machines. Finally,
Sect. 7 concludes.

2 Definitions

In this section, we recall definitions for the type of automata we are consider-
ing here, namely Mealy machines, which we shall call indifferently Finite State
Machines (FSMs for short).

A Finite State Machine is a complete deterministic Mealy machine. Formally,
it is a 6-tuple M = (Q, q0, I, O, δ, λ) where

– Q is a finite set of states with the initial state q0,
– I is a finite set of inputs (the input alphabet), and O a finite set of outputs,
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– δ : Q × I → Q is the transition mapping, and
– λ : Q × I → O is the output mapping.

Notations δ and λ are lifted to sequences: δ(q, ε) = q, λ(q, ε) = ε, where ε is
the empty sequence; and for q ∈ Q, α ∈ I∗, x ∈ I, we have δ(q, αx) = δ(δ(q, α), x)
and λ(q, αx) = λ(q, α)λ(δ(q, α), x).

For inference without reset, we will assume that the FSM to be inferred is
strongly connected, i.e. for all pairs of states (q, q′) there exists an input sequence
α ∈ I∗ such that δ(q, α) = q′.

A homing sequence h ∈ I∗ for M is an input sequence such that the state
reached by executing h from any state is uniquely determined by the output
produced. h is a homing sequence iff

∀q1 ∈ Q,∀q2 ∈ Q[λ(q1, h) = λ(q2, h) =⇒ δ(q1, h) = δ(q2, h)].
Two states q, q′ ∈ Q are distinguishable by γ ∈ I∗ if λ(q, γ) �= λ(q′, γ). γ is

said to be a separating sequence. Two states are distinguishable by a set H ⊂ I∗ if
there exists γ ∈ H that distinguishes them. Otherwise the two states will be said
H-equivalent. An FSM is minimal if all states are pairwise distinguishable. A set
W of sequences of inputs (therefore conventionaly called a W -set, following [20])
is a characterization set for an FSM M if each pair of states is distinguishable
by W .

A sequence of input/output pairs α ∈ (IO)∗ is called a trace. Given a trace
ω = αβ composed of a prefix α and suffix β, we will write α = ω \ β and
α ≤ ω. ω ↓ I will denote the projection of the trace on its input set, that is
the sequence obtained by deleting all outputs from the trace. Given a machine
M = (Q, q0, I, O, δ, λ) and its current state q defined by the context, tr(α) will
denote the trace from q such that tr(α) ↓ I = α and tr(α) ↓ O = λ(q, α). For a
set of input sequences H, Tr(H) = {tr(h) | h ∈ H}. We overload the notation
by defining Tr(q) as the set of all traces of M from state q, i.e. Tr(q) = {tr(α) |
α ∈ I∗}; and Tr(M) = Tr(q0). Finally, we define machine equivalence: M ≈ M ′

iff Tr(M) = Tr(M ′).
Given a characterization set W , rather than naming or numbering states, we

may refer to a state by its state characterization Tr(W ). A state characterization
φ is actually a mapping from W to (IO)∗, such that φ(w) = tr(w). The set of
all mappings Φ = {φ1, ..., φm} corresponds to the set of states Q of the machine.
Namely, for φ ∈ Φ and q ∈ Q, we write φ ↔ q if ∀w ∈ W,φ(w) ↓ O = λ(q, w).
Thus, while inferring an unknown FSM with characterization set W , we will
consider the set of mappings Φ as its set of states.

A checking sequence is defined w.r.t. a fault domain F , which corresponds
to the set of all possible correct or faulty implementations. A typical fault
domain could be the set of all FSM with a number of states bounded by
some n. Given an FSM M , a trace T is a checking sequence for M in F iff
∀M ′ ∈ F , T ∈ Tr(M ′) ⇔ M ′ ≈ M . Conformance test generation consists in
producing a checking sequence for a given reference machine (the specification),
so that any implementation from F can be tested for conformance with the spec-
ification. A checking sequence is a perfect test that identifies a correct machine
and detects all faulty implementations.
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3 Rivest and Schapire’s Algorithm

3.1 Approach and Algorithm

Rivest and Schapire [16] were the first to propose a query-based inference app-
roach for machines that cannot be reset. Each query is therefore applied on a
SUI in its current state. As they base the approach on Angluin’s L∗ algorithm,
the main idea is that L∗ cannot be applied in that case with sequences start-
ing from the same initial state. Each state of the machine corresponds to one
instance of L∗. So there can be as many observation tables to be completed
as there are states. In order to know for which state an observation should be
recorded, Rivest and Schapire assume that a homing sequence is given for the
SUI. The approach consists in repeatedly applying a homing sequence, followed
by a query for the state reached at the end of the homing sequence, until one of
the observation tables is complete and the equivalence query confirms that the
SUI is correctly identified.

We assume here that the reader is familiar with L∗, so we do not detail the
steps of L∗ and the queries. However, in order to describe the algorithm in a form
that makes it possible to understand the difference between the two approaches
and evaluate the results provided in Sect. 6, here are a few adjustments. Rivest
and Schapire’s algorithm was given for a slightly different model of automata,
a Moore model where the output is completely determined by the (tail) state,
that is the output function was not λ as in our FSM Mealy model but a function
γ : Q → O. Additionally, to be consistent with the DFA model used by L∗,
they considered that O = {0, 1}. For better comparison, we adapt it to the FSM
notations, and we implemented the algorithm by using a Mealy algorithm L+

M

[17] instead of L∗.
The (deterministic version) algorithm assumes that

– the unknown automaton B is strongly connected,
– h is a homing sequence for B,
– B can be queried for outputs, by providing it an input sequence and observing

the corresponding outputs
– an oracle can answer equivalence queries, i.e., a conjecture M can be provided

to this oracle, that will answer with an input sequence (called a counterex-
ample) distinguishing M from B (the two machines provide different output
sequences for the same input sequence), if they are not equivalent.

3.2 Illustrating Rivest and Schapire Algorithm on Example 1

We consider the following three state automaton (cf. Fig. 1). a is a homing
sequence for it.

Let us illustrate the algorithm on this example, starting from initial state 1.
We start by applying the homing sequence a, and observe the output sequence 1.
So we are in state which we can call a/1, to which we associate a newly created
observation table La/1 as in L+

M . This table has a single upper row labelled ε
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1 procedure RivestSchapire(B, h)
2 repeat
3 Apply h, producing output σ
4 if it doesn’t already exist, create L∗

σ, a new copy of L∗

5 simulate the next query of L∗
σ:

6 if L∗
σ queries membership of a then

7 Apply a and supply L∗
σ with the output

8 end
9 if L∗

σ makes an equivalence query then
10 if the conjecture model M is correct then
11 exit with M
12 else
13 supply counterexample to L∗

σ

14 end
15 end
16

17 end

1

3

2

b/1

b/1 a/0

a/1

a/0

b/0

Fig. 1. Three state automaton

(empty sequence), and one column for each input. We apply a observing output
0. We can fill the corresponding cell of the observation table. At this point, we
have applied two inputs: one for homing, and the second one to learn the output
for input a (for state a/1).

We now need to repeat the cycle: applying again the homing sequence, in
order to know to which state we should associate the next observation. In that
case, we apply a and observe output 0. This indicates that we are in a state which
we can call a/0. Actually, in this example, this is the same state as the one we
called a/1, but we do not know it for a black box, and this is just coincidental
for this example. Applying the algorithm, we create another observation table
La/0. We again apply εa for this new table and observe 0.

10
a/1
−→21

a/0
−→22

a/0
−→23

a/0
−→24

a/0
−→25

b/0
−→16

a/1
−→27

b/0
−→18



184 R. Groz et al.

In the trace above, positions are shown as indices of the states reached by
the automaton. Of course, the inference algorithm only observes the positions
and I/O pairs of transitions; it does not have access to the internal state: those
are depicted for the reader to make it easier to follow the trace.

After 8 steps, we have filled the ε row with its two columns for both tables
La/1 and La/0. Following Angluin’s algorithm, we now need to fill the table for
the rows of the lower half of the table, i.e. rows labeled with the concatenation
of a label from the upper rows with one input (unless this concatenation was
already in the upper rows). This means that for both tables, we need to complete
cells for rows labelled a and b. Combining with the columns, we need to apply
aa, ab, ba and bb, each time preceded by a homing sequence, until we complete
at least one of the tables.

28
a/1
−→29

a/0
−→210

a/0
−→211

a/0
−→ 212

a/0
−→213

a/0
−→ 214

a/0
−→215

a/0
−→216

b/0
−→117

a/1
−→218

218
a/0
−→219

b/0
−→120

a/1
−→221

b/0
−→122

a/1
−→223

a/0
−→224

b/0
−→125

a/1
−→226

226
a/0
−→227

b/0
−→128

b/1
−→329

a b
ε 0 0
a 0 0
b 1 1

At this point, we have filled table La/0, but we observe that is it not closed
(following L∗ terminology): row b in the lower part is not equivalent to any row
in the upper part. So we move it to the upper part, and table La/0 must be
completed to fill the new rows in the lower part: ba and bb.

329
a/0
−→230

b/0
−→131

a/1
−→232

a/0
−→233

a/0
−→234

b/0
−→135

a/1
−→236

b/0
−→137

137
a/1
−→238

b/0
−→139

b/1
−→340

Now table La/0 is completely filled (it is the same table as above for La/0,
since they correspond to the same state in the black box), but it has the same
non-closed row b.

340
a/0
−→241

b/0
−→142

b/1
−→343

a/0
−→244

a/0
−→245

b/0
−→146

b/1
−→347

b/1
−→348

a b
ε 0 0
b 1 1
a 0 0
ba 0 0
bb 0 1

Now, we have again a non-closed completely filled table for La/0, and move
row bb to the upper part. The sequence goes on with:
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348
a0b0b1a0a0

−→ 253
a0b0b1a0b0

−→ 158
a1b0a1a0

−→ 262
a0b0b1b1a0

−→ 267

267
a/0
−→268

b/0
−→169

b/1
−→370

b/1
−→371

b/1
−→372

With this, we get a closed and compatible table for La/0.

a b
ε 0 0
b 1 1
bb 0 1
a 0 0
ba 0 0
bba 0 0
bbb 0 1

This enables to produce a three state conjecture. In order to search for a
counterexample, we would need to apply from the initial state of La/0. So we
have a final input to apply:

372
a/0
−→273

And the oracle would answer negatively to the counterexample query, since
the conjecture is equivalent to the black box machine.

3.3 Complexity and Further Extensions

If n is the number of states of B, no more than n copies of L∗ will be created.
Thus, the algorithm will succeed in inferring B after no more than n times the
complexity of the L∗ algorithm. This complexity depends on the length m of
the longest counterexample provided to the learner. Therefore, its complexity
would be O(|I|2mn2 + |I|mn3) with a classical Mealy adaptation of L∗, and
with the L+

M algorithm from [17], it would be O(|I|2n2 + |I|mn3). Actually,
the paper that presented the inference without reset refered to the dichotomic
search on counterexamples, so that the m factor could be reduced, yielding a
complexity of O(|I|n3+n2 log m). However, as shown later [2], this was flawed as
a counterexample can still remain a counterexample in the updated conjecture.
Therefore, in our experiments (see Sect. 6) we did not use dichotomic search,
but a sound counterexample processing method that is efficient enough while
keeping the observation table suffix-closed [10].

The original paper [16] also describes how to deal when it is provided with a
sequence that is not homing. An incorrect homing sequence will lead to inconsis-
tent behaviour in the tables of copies of L∗ (one table for each output sequence in
response to homing). Detecting the inconsistency makes it possible to extend h,
until it becomes a real homing sequence. Each time an inconsistency is discov-
ered, the existing copies of L∗ are discarded and the algorithm is restarted.
However, there is a possibility that no inconsistency is detected, and the
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algorithm will add rows to the tables of the copies of L∗. The authors pro-
pose a probabilistic approach that uses a bound on the number of states, which
we do not detail here.

4 Algorithm Based on W -Set

We assume we are provided with a black-box FSM B = (P, p0, I, O, δ, λ), and a
characterization set for it W ⊂ I∗. We are also provided with a bound n on the
number of states of B, so |P | ≤ n.

Since we do not know B, we cannot compute a checking sequence using a
test generation method. However, the inference algorithm will use the bound n
and the knowledge that W is indeed a characterization set for B to derive
– a minimal FSM M that will be equivalent to B
– a sequence of inputs and observed outputs that in effect will be a checking

sequence, with a unique solution M ≈ B up to equivalence, in the fault
domain of all machines with up to n states.

A complete definition and proof of the algorithm can be found elsewhere [8].
In this section, we just provide the main description and results.

4.1 Data Records Used by the Algorithm

The algorithm will record deduced information in the following sets:
– Q ⊂ 2W �→(IO)∗

will denote states, defined by their characterizations. Each
state is named by its traces recording its responses to the input sequences
from W .

– C : (IO)∗ → Q ∪ {⊥}, actually defined on a subset of prefixes of ω will be
used to label prefixes of the observed trace. For α ≤ ω, we have C(α) = q ∈ Q
when we have established that the machine B was in state p where p ↔ q
after observing α. C(α) = ⊥ when we do not know what is the state reached
by B after α. C stands for “Characterized positions”.

– V ⊆ Q× (IO)∗ ×Q will record verified subtraces of ω, that is a subtrace is in
V if its start and end “states” are labelled by C. Formally, V ′ = {(q, α, q′) ∈
Q× (IO)∗ ×Q | ∃σα ≤ ω,C(σ) = q, C(σα) = q′}. Actually, since the relation
between states associated with V ′ would be transitively closed, the algorithm
will maintain its transitive reduction V . V stands for “Verified sequences”.

– R will record input verified transitions, those for which we define the start
state and input, and we do not need to refer to the tail state. R = {(q, x) ∈
Q × I | ∃o ∈ O,∃q′ ∈ Q, (q, xo, q′) ∈ V }.

– K ⊆ Q × (IO)+ × (IO)∗ keeps track of the applications of elements from W
in a given state, followed by either a single transition or a non-empty trace
of a sequence from W . (q, α, γ) ∈ K if ∃β s.t. βαγ ≤ ω, C(β) = q, α ↓ I ∈
I ∪ W and γ ↓ I ∈ W . K stands for “Known applications of characterizing
sequences”.

Note that V,R and K can be derived from the knowledge of ω and C: they are
data structures introduced to simplify the algorithm when it has to look up for
sequences.
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4.2 Localizer Procedure

The key element for the base algorithm is the localizer procedure, which makes
it possible to ensure that we bring the machine to a state that is identified
because its responses to all sequences in W have been ascertained. The localizer
procedure is formulated for fixed input and output alphabets I and O, and an
assumed bound n on the number of states in the black box. It takes as input the
current observed trace ω and an ordered subset Z ⊆ W . The observed trace ω
will be extended and updated as output when exiting the procedure. As originally
defined in [8], it will append a fixed input sequence, a localizing sequence, to ω.

1 procedure L(ω, Z) // returns (ω′, T r, tr)
2

3 if | Z |= 1, i.e. Z = (w) then
4 Apply w, observe tr(w)
5 ω ← ωtr(w)
6 return (ω, {tr(w)}, tr(w))

7 else
8 let Z = (w1, ..., wk), Z1 = (w1, ..., wk−2, wk−1), Z2 = (w1, ..., wk−2, wk)
9 for i from 0 to 2n − 2 do

10 (ω′, T r(Z1), τi) ← L(ω, Z1) // τi is tr(wk−1)
11 ω ← ω′

12 end
13 Find greatest j, 0 ≤ j ≤ n − 1 s.t. for all m ∈ [0, n − 2] τj+m = τn+m

14 (ω′, T r(Z2), tr(wk)) ← L(ω, Z2)
15 return (ω′, T r(Z2) ∪ {τj+n−1}, tr(wk))

16 end

17 end

Regardless of the state in which the black-box machine B is, the localizer will
ensure that just before applying the last wk input sequence, B was in a state
that can be characterized by the traces returned as second argument. This is
captured by the following theorem.

Theorem 1. When Z = W , from any starting state, the localizer will return
(ω′,X, β) such that C(ω′ \ β) = X and X ↓ I = W .

The proof, and the explanation for this procedure are provided in the original
paper [8]. Here we just provide an intuition on its structure and why it ensures
the property.

If W = {w1, w2}, then, after applying wn
1 we can be sure that the state

reached at the end of this sequence must be the same as one of the states reached
after some prefix wk

1 with k < n, since there are at most n different states. Thus,
the output sequence that will be observed after the n + 1 application of w1 will
necessarily be the same as a previously observed output sequence. However, we
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do not know on which previous state we have cycled. So it might be too early to
be able to predict what would be this output. Nevertheless, after n − 1 further
applications, we have seen the cycle at least twice and we can indeed predict
what would be the output of the 2n application of w1. Actually, depending on
the length of this cycle, we might be able to predict the output earlier, at some
iteration between n and 2n − 1, but that would lead us to more complicate
schemes when we have more than two sequences in W . Therefore, the procedure
here is defined with a fixed number of iterations 2n − 1 that corresponds to the
worst case.

In all cases, after 2n − 1 applications of w1, we no longer need to apply it
again, and we can apply w2. We can say that, in the state reached after w2n−1

1 ,
we have somehow virtually applied w1 and therefore, we know for that state its
answers (output sequences) to both w1 and now w2. Once we have applied w2,
we have fully characterized the state we were in before applying it.

If we add one more sequence to W , the sequence becomes more complex. For
W = {w1, w2, w3} the localizer would apply the following sequence:
(w2n−1

1 w2)2n−1w2n−1
1 w3. After each sequence (w2n−1

1 w2), we are able to predict
what would be the answers of the state reached after the w2n−1

1 part to both
w1 and w2. However, the states reached just before the application of w2 after
(w2n−1

1 w2)k could be different, but again, after n iterations, we know we must
have cycled. In order to recognize the length of the cycle, we go to 2n − 1
iterations. At this point, when we apply w2n−1

1 we know what would be the
answer to w1 and w2: we virtually applied them at this point, and so we can
now apply w3.

Similarly, for W = {w1, w2, w3, w4} the localizer would apply the following
sequence: ((w2n−1

1 w2)2n−1w2n−1
1 w3)2n−1(w2n−1

1 w2)2n−1w2n−1
1 w4.

4.3 Main Procedure

The inference procedure assumes it is given a black-box machine B whose num-
ber of states is less or equal to n, and for which it is known that a set which we
will order as W = (w1, ...wp) is a characterization set. It can query B through
the procedure Apply by submitting an input sequence and obtaining the corre-
sponding output sequence from B, in the state it was left in following previous
queries.

We have kept the traditional terminology of “conjecture”, even though in the
case of this algorithm under our assumptions, we only get a single final machine.

The sets K,T and R are updated to reflect the changes in C. This is done
by applying the following rules as long as possible.

1. If C(β) = q, C(βα) = q′, with βα ≤ ω, then (q, α, q′) ∈ V .
2. If C(β) = q, βα ≤ ω, and (q, α, q′) ∈ V then C(βα) = q′.
3. If (q, x, q′) ∈ V for x ∈ I, then (q, x) ∈ R.
4. If C(β) = q, βαγ ≤ ω, α ↓ I ∈ I ∪ W and γ ↓ I ∈ W , then (q, α, γ) ∈ K.
5. If ∃α s.t. {w ∈ W | (q, α, tr(w) ∈ K} = W then ∀βα ≤ ω s.t. C(β) = q, we

have C(βα) = {γ | (q, α, γ) ∈ K}.
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1 procedure InferNoReset(B, W, n)
2 Initialize K = R = V = ∅
3 (ω, q0, tr(wp)) ← L(ε, W ) // Home into a known state

4 C(ω \ tr(wp)) ← q0
5 QC ← {q0}
6 while ∃q′ ∈ QC and x′ ∈ I such that (q′, x′) /∈ R do
7 if C(ω) = q �= ⊥ then
8 Find a shortest α = α1, ...αk // Move to unverified transition

9 s.t. ∀i, (qi, αi, qi+1) ∈ V , q1 = q and x ∈ I s.t. (qk+1, x) /∈ R
10 Apply α ↓ I, observe α

11 ω ← ωα ; χ ← ω
12 Apply x, observe xo // Observe transition

13 σ ← xo ; ω ← ωxo

14 else
// Use the latest known previous state

15 Find the shortest γ s.t. C(ω \ γ) �= ⊥ // Maybe shorter than wp

16 χ ← ω \ γ ; σ ← γ

17 end
18 q ← C(χ) // Here ω is unlabeled

19 Choose w ∈ W such that there is no tr(w) s.t. (q, σ, tr(w)) ∈ K
20 Apply w observe tr(w) // Improve characterization of (q, σ)

21 ω ← ωtr(w) ; K ← K ∪ {(q, σ, tr(w))}
22 if {w ∈ W | (q, σ, tr(w)) ∈ K} = W then

// Full characterization reached

23 C(χσ) ← {tr(w) | w ∈ W and (q, σ, tr(w)) ∈ K}
24 QC ← QC ∪ {C(χσ)}
25 Update V, R, K, C

26 end
27 if C(ω) = ⊥ then
28 (ω, q′, tr(wp)) ← L(ω, W ) // Move to a characterized state

29 C(ω \ tr(wp)) ← q′ ; QC ← QC ∪ {q′}
30 Update V, R, K, C

31 end

32 end
33 Build the conjecture from QC and V ∩ (Q × (IO) × Q)

34 end

By definition, V is transitively closed, so in the implementation of the algorithm,
we just need to keep a transitive reduction of it. Actually, this is sufficient for
the algorithm, since we use V to find a shortest concatenation of sequences that
would themselves be in V .
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4.4 Illustrating on Example 1

4.5 Example 1

We consider again the three state automaton from Fig. 2. This machine has
no distinguishing sequence. However, states can be fully characterized by their
traces for sequences from the set W = {a, b}.

1

3

2

b/1

b/1 a/0

a/1

a/0

b/0

Fig. 2. Three state automaton

Let us illustrate our algorithm on this example. Assuming the bound is 3,
the localizer procedure will generate the input sequence: a5b. The algorithm will
start by applying the localizer procedure on line 2, thus identifying a first state
of the machine: C(ω\b0) = q0 = {a0, b0}.

Thus, the prefix obtained in the 5th step is labelled by q0. C is updated on
the fourth line of the inference procedure.

10
a/1
−→21

a/0
−→22

a/0
−→23

a/0
−→24

a/0
−→25

b/0
−→16

a/1
−→27

q0

As in Sect. 3, positions are shown as indices of the states reached by the
automaton. The states that can be inferred are shown below the positions. They
are called qi with a numbering i that starts from 0. Note that the states of the
black-box machine are simply named with integers, starting at 1.

The algorithm then enters the main while loop in the inference procedure.
As the last state of ω (6th step in the trace) is not yet labelled we proceed to the
else part of the first if statement. Then γ = b0, χ = a1a0a0a0a0 and σ = b0.

After the first if statement, q = q0, K is empty, and we choose w = a.
Applying a, we observe a1 and arrive at the 7th step. Now K = {(q0, b0, a1)},
V = R = ∅.

Since the condition of the second if statement is false, the algorithm proceeds
with the third if statement, which is true. It applies again the localizer proce-
dure, and labels the state after a0a0a0a0a0 (12th step) with q0: C(12) = q0. At
this point, the while loop is restarted.
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27
a/0
−→28

a/0
−→29

a/0
−→210

a/0
−→211

a/0
−→212

b/0
−→113

b/1
−→314

q0 q1

The algorithm enters the else part of the if statement, with γ = σ = b0.
Then q = q0, and we choose w = b. Apply b, observe b1 and arrive at the 14th
step. Now K = {(q0, b0, a1), (q0, b0, b1)}.

The condition of the second if statement is now true, we have thus identified
a new state q1 = {a1, b1} and C(13) = q1. Then V = {(q0, b0, q1)}, R = {(q0, b)}
and C(6) = q1. Thus K = {(q0, b0, a1), (q0, b0, b1), (q1, a1, a0)}.

The algorithm now executes the third if statement: applying the localizer
procedure and arriving at the 20th step. C(19) = q0 and C(20) = q1. K is
unchanged.

314
a/0
−→215

a/0
−→216

a/0
−→217

a/0
−→218

a/0
−→219

b/0
−→120

a/1
−→221

b/0
−→122

q0 q1 q0

Again restart the while loop. Since the last (20th) step is now labelled, the
algorithm enters the then part of the first if statement. α = ε and we choose
x = a. Apply a, observe a1 and arrive at step 21. Now σ = a1, q = q1, and we
choose w = b, because (q1, a1, a0) ∈ K. Apply b, observe b0 and arrive at step
22; so now K = {(q0, b0, a1), (q0, b0, b1), (q1, a1, a0), (q1, a1, b0)}.

Since the condition of the second if statement is true, we are now able to
identify the tail state of the transition on input a from q1: C(21) = q0 = {a0, b0}.
Update V , R, C and K:
V = {(q0, b0, q1), (q1, a1, q0)}, R = {(q0, b), (q1, a)}, C(7) = q0, C(22) = q1,
K = {(q0, b0, a1), (q0, b0, b1), (q1, a1, a0), (q1, a1, b0), (q0, a0, a0), (q1, b1, a0)}.
The trace at the last step (22) is labelled, and the condition of the third if
statement is false.

222
b/1
−→323

b/1
−→324

a/0
−→225

a/0
−→226

a/0
−→227

a/0
−→228

a/0
−→229

b/0
−→130

q1 q2 q0 q1

The while loop is restarted, which allows to add (q1, b1, b1) to K, and thus to
identify a new state q2 = {a0, b1} and label C(23) = q2. The algorithm applies
the localizer procedure and arrives at step 30. C(29) = q0, C(30) = q1. At this
point,
V = {(q0, b0, q1), (q1, a1, q0), (q1, b1, q2), (q2, b1a0a0a0a0a0, q0)},
K = {(q0, b0, a1), (q0, b0, b1), (q1, a1, a0), (q1, a1, b0), (q0, a0, a0), (q1, b1, a0),

(q1, b1, b1), (q2, b1, a0)},
R = {(q0, b), (q1, a), (q1, b)} and C(14) = q2.

The while loop is restarted. As the last step (30) is labelled, it enters the
then part of the first if statement. As all transitions from q1 are now known, it
must apply a transfer sequence to move to an unverified transition. We choose
to go to q0 with α = a1 and x = a. Apply a, observe a1 (α), apply a again
(as x), observe a0 and arrive at step 32. σ = a0.
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We choose w = b, apply b, observe b0, arrive at step 33 and add (q0, a0, b0)
to K. The condition of the second if statement is true, C(32) = q0 and we add
(q0, a0, q0) to V . Now R = {(q0, b), (q1, a), (q1, b), (q0, a)}, C(7) = C(8) = .... =
C(11) = q0, C(33) = q1.

After applying the while loop two more times, we obtain the trace below,
with V = {(q0, b0, q1), (q1, a1, q0), (q1, b1, q2), (q0, a0, q0), (q2, a0, q0), (q2, b1, q2)}
and R = {(q0, b), (q1, a), (q1, b), (q0, a), (q2, a), (q2, b)}. All transitions are known
and C(38) = q2.

130
a/1
−→231

a/0
−→232

b/0
−→133

b/1
−→334

a/0
−→235

b/0
−→136

b/1
−→337

b/1
−→338

q1 q0 q0 q1 q2 q0 q1 q2 q2

The algorithm now exits from the while loop and V gives us the inferred
finite state machine, which is isomorphic to the FSM in Fig. 2.

The algorithm based on W-sets infer with a shorter sequence as compared
to Rivest and Schapire’s algorithm on this example. The behaviours of the two
approaches will be discussed in Sect. 6, and a detailed analysis on a more complex
example will be presented in Sect. 5.2.

4.6 Convergence and Complexity

The original paper [8] proved the following theorem and analyzed the complexity
of the algorithm.

Theorem 2. When W is a characterization set for B and the number of states
of B is less than or equal to n, the inference procedure terminates and yields a
conjecture that is isomorphic to the minimal FSM modelling B.

The complexity of active learning algorithms based on queries is usually assessed
in terms of the number and the length of queries. This makes sense in particular
in the context of learning black-box software systems, especially when queried
over a network or a bus, because remote interaction with the system takes much
more time than the internal bookkeeping activities of the algorithm. In the case
of algorithms that do not use reset and simply send inputs and observe outputs,
the measure is quite simple: the total length of the trace until we can build the
conjecture.

The algorithm uses the set W , whose cardinality is p, and n which is the given
bound on the number of states. It also queries the machine by knowing its input
set I. A coarse bound2 for the length of the trace is O(p(|I|+p)2pnp+2). Actually
this is a very coarse bound as it assumes that all characterization sequences would
be of length n, whereas we would typically have in W much shorter sequences.

2 The size of the output set does not play a role in this bound. The number of tran-
sitions is solely determined by the number of states and the number of inputs. In
practice, a higher number of different outputs increases distinguishability and there-
fore can reduce the length and the number of separating sequences. The worst case
in practice is for |O| = 2.
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And it is also known that this length is asymptotically logarithmic in n (actually
log|I|log|O|n [19]). Experiments showed that the average complexity for p = 2
(the most common case even for random machines with 2 inputs and 2 outputs)
is O((|I| + 2)n1.9). An interesting point worth mentioning is that the algorithm
remains polynomial in n, although the degree of the polynomial depends on the
number of sequences in W .

5 Example 2

5.1 Inferring with the W -Based Algorithm

Let us now consider in less detail a slightly more complex automaton, that will
provide a more interesting basis for comparison. We consider the following 6-
state automaton (Fig. 3), which is a product of a counter modulo 2 (on i) and
a counter modulo 3 (on j). I = {i, j} and O = {0, 1}. We choose as W -set the
singleton W = {jji}. This will avoid recursive calls in the localizer procedure,
so the example is easier to follow.

1 2 3

4 5 6

j/0 j/0

j/0 j/0

j/1

i/0 i/0 i/0 i/1i/1i/1

j/1

Fig. 3. Two-counters automaton

The W -based algorithm infers the automaton in 71 steps. The algorithm
starts with the localizer, which consists in just applying the sequence jji. It
gets the output sequence 000, and thus identifies a new state at position 0 of
the trace: S0 = {jji → j0j0i0} which we shall simply write {j0j0i0}. Since the
states of the black box machine are discovered progressively in an order that is
not related to their numbering, state Si does not correspond in general to state
i or i + 1.

10
j/0
−→21

j/0
−→32

i/0
−→63

j/1
−→44

j/0
−→55

i/1
−→26

j/0
−→37

j/1
−→18

i/0
−→49

S0 S1 S2

The algorithm enters the main while loop. The current state is unknown, so
the algorithm enters the else part of the first if statement and gets σ = j0j0i0.
We choose w = jji, apply w and observe 101.
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Now K = {(S0, j0j0i0, j1j0i1)}, and the algorithm discovers a new state
S1 = {j1j0i1} and get V = {(S0, j0j0i0, S1)}. As the last position is unknown,
it enters the last if statement and applies the localizer procedure. Notice that
states are not discovered in the order of their “names” in the automaton.
We first found state 1 which was called S0, then discovered state 3 which is
called S1.

Now K = {(S1, j1j0i1, j0j1i0)}. A new state S2 = {j0j1i0} is discovered,
V = {(S0, j0j0i0, S1), (S1, j1j0i1, S2)} and we label position 6 of the trace
with S2.

The while loop is restarted and yields the trace

49
j/0
−→510

j/0
−→611

i/1
−→312

j/1
−→113

j/0
−→214

i/0
−→515

j/0
−→616

j/1
−→417

i/1
−→118

S3 S4 S5

At this point, we have identified the states S3 = {j0j0i1}, S4 = {j1j0i0}
and S5 = {j0j1i0}. Now K = {(S4, j1j0i0, j0j1i0)} and
V = {(S0, j0j0i0, S1), (S1, j1j0i1, S2), (S2, j0j1i0, S3), (S3, j0j0i1, S4)}.

We still do not know where we are, so we apply the localizer again.

118
j/0
−→219

j/0
−→320

i/0
−→621

i/1
−→322

j/1
−→123

j/0
−→224

i/0
−→525

S0 S1 S4 S5

We can now label positions 18 and 21 with S0 and S1. We can notice that
for the first time, we know where we are (state S1) at the end of the trace. The
algorithm thus enters the then part of the first if statement in order to move to
an unverified transition. We choose α = ε and x = i, apply x and observe 1. At
step 22, we choose w = jji, apply w and observe 100. We can now label step 22
with S4 and 25 with S5. We have thus identified the transition (S1, i1, S4).

The same process can go on until all transitions of the automata are identified.
Since we now know all 6 states, and V contains all start and end states of each
application of the DS jji, this is a rather straightfoward process now. There
are 11 remaining transitions to identify, for each one of them the algorithm just
needs to apply it and then jji, and at a few points just needs to transfer with
an α sequence that is not the empty string.

i/1 j/0 j/1 i/0 i/1 j/0 j/0 i/0 j/1 j/0 j/0 i/1 i/0 j/1 j/0 i/1 i/0
j/0 j/1 i/1 i/0 j/0 j/0 i/1 j/1 j/0 j/0 i/0 j/1 j/0 j/0 j/1 i/1 j/0 j/0
j/1 i/0 j/0 j/0 j/1 j/0 i/1 j/0 j/1 j/0 i/0

The total length of the inference process consists of 71 inputs to be applied.
We observe that in this particular example, we have first identified all states and
then all transitions, which is not the case in general.

Actually, more information could be extracted from the prefixes of the trace,
and a recent paper [6] shows how this could be done by combining passive infer-
ence (with a notion of compatibility) with the active W -based inference method.
In that case, the inference can be done with a trace reduced to 41 steps (down
from 71 as above).
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5.2 Example 2: Comparison with Rivest and Schapire’s Algorithm

The algorithm by Rivest and Schapire requires an oracle to answer equivalence
queries. In our black-box testing context, we need to define a realistic way of
implementing an oracle to provide counter-examples. As we have no information
on the black box except for a bound on its number of state (to compare with
the W -based algorithm), we look for a counterexample by heuristics based on
random walks. This introduces a higher degree of nondeterminism or choices in
the algorithm, so that we do not have a fixed number for the length of the trace
needed to infer the example. For better efficiency, we also consider cases where
random walks are interrupted to avoid cycling in non-productive parts of the
FSM, then restarted in a different direction.

In the W -based algorithm, although there are a few choices (choice of the
input x and of α on lines 8–9 and of a w on line 19), those can easily be deter-
minized by choosing a lexical order on the input alphabet (as we did above)
and of the order defined on W by the localizer (irrelevant in our example since
|W | = 1). Similar choices are made in L∗ as used by Rivest and Schapire’s
algorithm.

Our experiments with various parameters for the heuristics gave a mean
of 1750 inputs to infer the 6 state machine of the example with Rivest and
Schapire’s algorithm. This went down to around 1500 when L∗ was provided
with shortest counter-examples (which we could find since in that case, the
6-state target machine is known).3

Therefore, Rivest and Schapire’s algorithm is vastly more expensive than the
W -based algorithm on this example, and the experiments with large samples
of random machines presented in Sect. 6 show that this would be the normal
case for low cardinality of W . More detailed analysis of the behaviour of the
algorithms shows that there are two major causes for the high number of inputs
required by Rivest and Schapire’s algorithm.

– It requires creating n copies of L∗ observation tables, and filling them.
Although a natural idea would be to try and avoid some redundancy by
deducing some information from one table to the other, this idea seems diffi-
cult to concretize, and Rivest and Schapire informed that they had not found
a way to do it [16].

– The processing of counter-examples introduces a factor m in the complexity,
corresponding to the maximal length of a countexample, because all suffixes
would be added to columns, therefore expanding the observation table by this
factor.

3 Since we have a bound on the number of states, another method for searching coun-
terexamples could be used: enumerating sequences of increasing length up to the
given bound. This would be an exponential search, but with a low bound it could
be viable. However, this would still be longer than the shortest counterexamples to
which we compared for reference.
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This implies that Rivest and Schapire’s algorithm incurs at least an nm multi-
plicative factor that the W -based algorithm avoids. In our example, the typical
length of optimal counterexamples would be between 2 and 4, so the factor would
be around 18 or 20, which accounts for a large part of the difference between 71
and 1500.

6 Experimental Results

It is difficult to compare algorithms based on different assumptions. Knowing a
homing sequence could be similar to knowing a W-set, but whereas there is a
single homing sequence, the size of the W-set would be a parameter. However the
main differing assumption is that the algorithm by Rivest and Schapire heavily
relies on an oracle able to provide counterexamples to equivalence queries.

We still give elements of comparisons, based on experiments where we assume
that all assumptions are satisfied. In active learning contexts, the time or space
complexity of the algorithms is not the main factor to be considered. Instead, we
compare algorithms on the length of the sequence needed to infer an equivalent
model of the black-box. In a software testing context, as described in this paper,
the critical factor would be the length of the sequence, as each interaction with
the system is usually more costly in time than the book-keeping activities of the
algorithm. The number of queries is not considered here. Each query generates
a subsequence of inputs, so they are assessed through the length of the sequence
generated. Equivalence queries could add extra costs, but since the results are
already in favour of the W-based algorithm, we do not provide any specific
analysis on equivalence queries.

We experimented with random machines, with a low level of state distin-
guishability (input and output sets of sizes 2) so as to consider inference without
reset in unfavourable conditions for the W-based algorithm. Of course, an input
set of size 2 also reduces the number of transitions, but an increase in the input
size would simply add a linear factor to the W-based algorithm, and a quadratic
one for Rivest and Schapire’s.

In a first experiment, we considered a few hundred (random) machines, to
compare the average complexity of Rivest and Schapire’s algorithm with the
W -based method. Actually, we also compared with a brute force combinatorial
approach that would do some enumeration of possible solution machines; such
a method rapidly blows up in computing time, but it is a good reference as
a baseline method. Figure 4 shows the average trace length for variants of the
algorithms. For the W -based algorithm, we distinguish between p = 1 and p = 2
(remember that p = |W |), because the length of the localizer, that depends
exponentially on p, has a high impact on the complexity. For random machines,
some of them may have a distinguishing sequence (p = 1 in that case), otherwise
we were able to find W -sets of cardinality 2 for most of the others.

Note that the vertical axis (length of trace, i.e. number of inputs required
to infer) has a logarithmic scale. Both the combinatorial algorithm and Rivest
and Schapire’s blew up for n reaching 10 states. Although a more careful imple-
mentation (with optimized memory usage) of those algorithms could have gone
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Fig. 4. Comparison of algorithms

a little further, this would not change the overall growth and ranking of the
curves. The average complexity of the W -based algorithm lies between 1 and 2
order of magnitude below Rivest and Schapire’s.

In order to better assess the average complexity of the W -based algorithm
w.r.t. to our very coarse complexity bound, we conducted another experiment
with ca. 500 random machines (Fig. 5). The upper, dotted curve shows the shape
of the complexity bound O(p(|I|+p)2pnp+2), in that case, since p = 2 and |I| = 2,
reduced to O(32n4) = O(n4). In order to better fit in the chart, we plot the
function 0.2n4, which keeps the shape of the curve in a linear scale. A polynomial
regression on the average complexity shows that it follows a curve that has
an exponent of 1.9 instead of 4. The actual curve for the average complexity
is 20n1.9.

From these experiments, it appears that the W -based algorithm outperforms
significantly the approach by Rivest and Schapire on random machines, even
though it has weaker assumptions (no equivalence queries). It also scales up
better, at least for W-sets that do not have too many sequences.

When assessing inference algorithms, although random machines are an easy
way to have statistical results on a large number of machines, it is known that
they are not typical of real software models. Collecting evidence on a large set
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Fig. 5. Length of trace as function of number of states for W -based algorithm

of real systems would provide more relevant results. It is unlikely however that
it would change the main comparison results between the two algorithms, given
the wide difference. Note that example 2 is a 2-counter system, and counters are
typical elements of programs. The detailed analysis of the example provided in
Sect. 5 provides good indications on the difference between the performances of
the two algorithms.

7 Conclusion

This paper revisits the problem of inferring FSM models of black box systems
when those systems cannot be reset. It compares an algorithm proposed by
Rivest and Schapire based on Angluin’s L∗, and a new method proposed by
the authors. This new method uses weaker assumptions than those used by L∗;
no oracle is needed. Instead, it uses classical elements used in software testing,
namely a characterization set W and an assumed upper bound n on the number
of states. The method requires a number of interactions with the system that
is polynomial in n. The degree of the polynomial is bounded by the cardinal-
ity of W (plus 2). Although this might be crippling for machines with large
characterization sets, it seems that most machines have characterization sets of
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at most 2 elements that can be found relatively easily with heuristics (as are
implemented in our Simpa tool).

Although the assumptions used by the W -based algorithm are weaker than
those used by Rivest and Schapire, the length of the trace is much shorter as
long as |W | ≤ 3 in our experiments.

The localizer procedure presented in Sect. 4.2 is the main contributor to the
length of the trace. There are many ways for reducing its complexity. Instead of
using a fixed sequence, the length of the sequence can be dramatically reduced
by producing an adaptive sequence [4].

It is worth pointing out that if we assume that we know both a homing
sequence and a characterization set, then the lengthy localizing sequences can
be just replaced by a homing sequence. A very straightforward adaptation of the
algorithm in Sect. 4.3 yields a simplified algorithm that easily improves on the
other algorithms. There is no need for an oracle, and it is not even necessary
to know a bound on the number of states. The most interesting path for bet-
ter applicability would be the possibility to alleviate the key assumption that
we know a characterization set of a black box FSM. We have started recently
investigating those ideas, with an adaptive heuristic approach. The key idea is to
start from an approximate homing sequence (as Rivest and Schapire did in the
probabilistic version of their algorithm) as well as an approximate W -set that
will be refined when inconsistencies are detected. Preliminary results [7] indicate
that such an approach could perform much better than the more deterministic
methods presented in this paper. And it scales up to machines that may have
thousands of states. On random machines, it converges fast to a correct model
of the system with an average trace length that is around O(n1.3), a very low
polynomial in the number of states.

Finally, another recent paper proposes an approach that requires no specific
assumption apart from a bound on the number of states [15]. This approach looks
quite promising since it could be used on a black box with a tentative bound
that could be extended if the model proves inaccurate, and it does not require
assumptions on the black box, such as a homing sequence, a W -set, or an oracle
for equivalence queries. The approach is based on the ability to derive alternative
solutions from an existing prefix trace (passive inference), and extending the
sequence in order to eliminate wrong conjectures. The implementation of that
paper [15] uses a constraint solver to derive alternative conjectures. The main
drawback is that even though the length of the sequence remains polynomial in n,
the time used by the algorithm for solving the constraints grows rapidly with the
length of the sequence, thus limiting the number of states that can be inferred.
However its potential of applicability is still interesting since experiments have
shown that the implementation could infer machines with up to 13 states. An
even newer publication [21] proposes an approach that does not require any a
priori knowledge on the black box SUI, and can work with an approximated
oracle such as a random walk on the conjectured model. This approach scales
up to hundreds or thousands of states, and seems quite promising. This shows
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that model inference of non-resettable systems is a problem that can yield new
solutions, with new efficient algorithms to come.

Acknowledgements. The authors acknowledge the work of Nicolas Bremond, master
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Abstract. Any complex software system exhibits a tension between the
technical perspective required for its realization and the user-level per-
spective. We term this the “how-what gap”, represented by the questions
“how is a system implemented” vs. “what is its functionality/usage”.
The normative, anticipated behavior of a software system as envisaged
during its development and the de facto, observed behavior emerging
after its continued operation tends to drift apart, resulting in behavioral
inconsistency. We discuss how behavioral consistency in software sys-
tems can be captured in technical and formal terms, we sketch a possible
tool chain that could support it, and we describe some of the research
challenges that must be solved. Our main idea is to combine software
analysis approaches represented by various forms of static analysis and
formal verification with runtime verification, monitoring, and automata
learning in order to optimally leverage the de facto observed behaviour
of the deployed systems.

1 Introduction

Any complex software system exhibits a tension between the technical perspec-
tive required for its realization and the user-level perspective at which the pri-
mary concerns of the client/customer are evaluated. We term this the “how-what
gap”, represented by the questions “how is a system implemented” vs. “what is
its functionality/usage”. In more precise terms, the normative, anticipated behav-
ior of a software system as envisaged during its development and the de facto
observed behavior emerging after its continued operation tend to drift apart,
resulting in behavioral inconsistency.

The how-what gap recently gained prominence under the heading
DevOps [40]. Here, it manifests itself in terms of an often serious and with time
increasing mismatch between design and implementation artifacts. While the
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problem is well recognized by practitioners, there is little systematic research
and, as far as we are aware, no tool support to help maintaining behavioral
consistency.

In this article we discuss how behavioral consistency in software systems can
be captured in technical and formal terms, we sketch a possible tool chain that
could support it, and we describe some of the research challenges that must be
solved.

Our main idea is to combine software analysis approaches represented by
various forms of static analysis and logical inference with runtime verification,
monitoring, and automata learning in order to optimally leverage the de facto
observed behaviour of the deployed systems. All of these approaches require suit-
able abstraction techniques for scaling, but they have complementary strengths
and weaknesses when it comes to their predictive power: the results of glass
box approaches are typically provably correct, but they are restricted to a cer-
tain level of modeling (specification). In contrast, the results of black-box, or
learning approaches reflect the actual runtime behaviour, and therefore comprise
the whole system, including compilers, runtime environment, hardware, etc. On
the other hand, these results have the status of a hypothesis. Predictions for
not explicitly observed runs are mere “best guesses” according the principle of
Occam’s razor [44,48]: they are true according to the simplest explanation/model
for the concretely observed phenomena.

We suggest to achieve behavioral consistency by automated, iterative refine-
ment steps. These maintain a formal specification model, technically realized
as a common global constraint model, that represents the accumulated knowl-
edge about a given system at a given time during its operation. Consistency is
then established by comparing the specification of the system with its operation,
i.e., comparing static constraints against a model obtained by active automata
learning by way of model checking.

To the best of our knowledge, there is no previous work that systemati-
cally enforces (behavioral/operational) consistency of knowledge gained through
(static or symbolic) analysis at the normative how-level and operation-based
knowledge at the what-level, obtained by active automata learning. To do
so requires a common abstraction level on the basis of extended finite state
machines, tailored to support an adequate notion of “learning modulo theories”.

In the following section we explain the problem and its ramifications in
greater detail. In Sect. 3 we make a detailed proposal, based on state-of-art
research results and tools, for a technology that may represent behavioral con-
sistency of a piece of software in a unified manner and that is robust in the
presence of evolution. In Sect. 4 we draw some conclusions.

2 The Problem of Deteriorating Specifications

During the course of any complex software development project, a large amount
of diverse knowledge from a wide variety of sources is accumulated. This knowl-
edge is crucial for producing a correctly working, usable, and maintainable
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product in timely fashion. Close analysis of catastrophic software errors and
failed projects repeatedly shows that lack in the ability to make crucial connec-
tions among diverse knowledge artifacts is at the heart of the matter [25].

Even for less critical software development projects it is of paramount impor-
tance to systematically integrate knowledge and project artifacts. This is strongly
suggested by the frame conditions of contemporary software development: rapid
time-to-market with changing, unanticipated requirements; very long-lived usage
of some components; incremental, cyclic (“agile”) development processes. Specif-
ically, recent software engineering trends such as DevOps call for a system-
atic and continuous connection between runtime and design time information
[40,51].

In current practice, however, the integration of design knowledge and the
knowledge gained from operation is rather limited. Merely a few updates are
often sufficient to separate a running system from its design artifact and docu-
mentation. A conceptual explanation for this phenomenon is the fact that the
design phase is typically dominated by a how perspective, describing the system
to be developed in terms of its software architecture, whereas post-deployment
is characterized by a what perspective describing the system in terms of what it
actually does.

Table 1. The how-what dichotomy

How perspective What perspective

Development phase Design Deployment

Purpose System specification System understanding

Behavioral aspect Instruction-level behavior User experience

Description artifacts Architectural diagrams Test models, use cases

Formal result (cf. Sect. 3) Executable specifications Behavioural automata

Table 1 summarizes the how-what distinction. Whereas the how perspective
addresses the system builder, supporting her with means for system specifica-
tion, in terms of, for example, class diagrams, abstract algorithms, contracts,
that help capturing the envisioned instruction-level behaviour, to ultimately
construct executable specifications, the what perspective aims at user-level sys-
tem understanding: What does the user experience when interacting with the
deployed system? Test models and use case diagrams often serve as basis for a
systematic, test-based investigation of running systems.

The longer systems live, the looser becomes the connection to their design
models (which are hardly ever kept up to date in current practice) and, as a con-
sequence, quality control is mostly confined to merely testing the current prod-
uct. In addition, test models—the basis for model-based testing—hardly ever
enter industrial practice. In those rare cases where they are constructed during
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development time, they typically suffer the same fate as their design counter
parts. In short, what is lacking in contemporary development practice is the
ability to automatically maintain behavioral consistency between design arti-
facts and the actual system implementation. Active automata learning is an
ideal means to aggregate test-based knowledge in order to provide behavioural
automata that are suitable for “closing the loop” and (re-)establishing
behavioural consistency, i.e. consistency between the how and the what.

3 Representation of Behavioral Consistency

We propose to combine software analysis approaches represented by various
forms of static analysis and formal verification with runtime verification, monitor-
ing, and automata learning in order to optimally leverage the de facto observed
behaviour of the deployed systems. Iterative refinement steps build a behav-
ioral and specification model backed by a common global constraint model
representing the knowledge about the underlying system. This knowledge is con-
stantly refined and updated and can be used to automatically enforce behavioral
consistency.

Fig. 1. Life cycle of automatically gaining or maintaining behavioral consistency

The envisaged user workflow and consistency maintenance cycle is sketched
in Fig. 1. The activities involved in it are described in the following.

3.1 Constraint-Based Global Model

The backbone of the considered notion of consistency is the Constraint-Based
Global Model , our main data structure. It collects all knowledge gained during
design, analysis, and execution of a software system. The central design decision
is to use logic-based constraints to represent that knowledge. Specifically, we
use two basic building blocks: typed first-order logic (FOL) with a number of
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built-in theories to represent constraints; and a symbolic representation of sets
of computation states, variously called updates [52] or explicit substitutions [3].
Both are implemented in the KeY system ([4], see also sidebar). These basic
constraint types are closed under the usual logical composition operators, such
as conjunction or functional composition.

On this basis one can define different
KeY [4] is a state-of-the-art deduc-

tive software analysis tool based

on symbolic execution of source

code and invariant reasoning. It

can be used for functional verifi-

cation [19], code-based test case

generation [6,22], certification of

resource analysis [8], information

flow analysis [21,53], visualiza-

tion of control flow and symbolic

data structures [29], and for veri-

fied code compilation and program

optimization [41]. Its currently sup-

ported languages are Java [4] and

ABS [20].

kinds of logic-based constraints. Obvi-
ously, we envisage first-order assertions
that hold relative to a symbolic state.
Additionally, any constraint can be rel-
ativized with a symbolic path condition,
essentially a constraint on the input vari-
ables of a program, given as a quantifier-
free first-order formula. Such relative
constraints can be generated (and under-
stood) by, for example, deductive sym-
bolic execution [12]. They can also be
used to generate test cases [6,22] or mon-
itors [17].

Hence, logic constraints enable one to
uniformly express the essential common
properties of the rather heterogeneous
artifacts obtained from symbolic execution, from user input, and from active
learning and monitoring. The decision to employ FOL constraints and symbolic
states has a number of important advantages:
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Fig. 2. Data flow among different components around the Constraint-Based Global
Model .

– Simplicity: typed FOL is a very well understood formalism with undisputed
semantics.

– Flexibility: the expressiveness of FOL ensures that we are not tied to specific
kinds of semantic information that is exchanged.
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– Formal semantics: the inputs/outputs of all environments mentioned in
Fig. 1 can be given a formal semantics in terms of FOL in a straightforward
manner. This is essential for ensuring correct interoperability among different
analysis methods and tools.

– Scalable automation: SMT solvers and automated theorem provers can be
employed to simplify logic-based constraints aggressively and continuously.
This is feasible, because those tools have achieved a degree of maturity that
lets them cope even with large formulas [18,58]. Another reason why it can
be expected that the analysis scales is that in practice path conditions and
assertions are mostly quantifier-free.

– Incrementality/Looseness: the constraint-based setting permits to start
with arbitrarily partial information about a system (in the extreme case, with
the empty constraint) which can be incrementally augmented by logical con-
junction in the guise of [55].

– Bidirectionality: it is not merely possible to import information in the form
of adding constraints, but also to export it using well-understood methods and
tools, such as first-order model generation, projection (substitution), consis-
tency checking, inference, abduction, etc.

The main task of the consistency maintenance framework illustrated in Fig. 1
is to forward incoming information and to update and maintain the Constraint-
Based Global Model , which is not simply one large, monolithic FOL formula, but
structured to reflect the specifics of the various tasks detailed below.

The categories processed by this framework include sets of constrained sym-
bolic computation states, symbolic transition systems, test oracles, concrete sys-
tem configurations, etc. Important is here the ability to model both, desired
properties as well as unwanted behaviour.

3.2 Reconciliation of Learned and Designed Artifacts

The Specification Module is the (main) interface for human user interaction. It
allows one to model the application domain, to identify an abstraction alphabet,
i.e. the actions of the analyzed system, and to specify the intended behavior.

To lower the entry hurdle for the definition of abstraction or learn alpha-
bets one may enhance the modeling environment jABC [56]—which was already
used for end-user modeling of learn alphabets [50] in the context of risk-based
testing [23] and active continuous quality control [60]—with an interactive user
interface.

A suitable technology for the specification module that supports abstract,
human-readable, formal models, is available as the abstract behavioral specifica-
tion (ABS) language (see side bar). ABS permits precise modeling of distributed
and highly variable software systems from the how perspective. ABS models can
be partially obtained by specification generation techniques based on deductive
symbolic execution [59] and invariant generation [45]. They are complemented
by hand-crafted models supplied by domain experts. The result is an executable
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specification structure resembling information both from top-down and bottom-
up reasoning similar to the One Thing in the eXtreme Model Driven Develop-
ment paradigm [46,47].

The Specification Module feeds into
The ABS languagea [27,42] is a

behavioral modeling language. It

supports modeling of variability and

provides a uniform basis for the

modeling of features, behavior, and

data. ABS is a mature technology

for behavioral modeling and analy-

sis of industrial systems [9] and is

also used to model inherently con-

current physical systems as diverse

as railways [28] or biological organ-

isms.b ABS was developed with the

explicit goal to support scalable

analysis. It comes with an extensive

toolbox [14,61], including test case

generation [10], resource analysis [7],

deadlock detection [24], and func-

tional verification [20].

a www.abs-models.org.
b www.compugene.tu-darmstadt.de/

compugene/welcome.

the Constraint-Based Global Model by
generating behavioral constraints. (The
data flow between the Constraint-Based
Global Model and the other components
is illustrated in Fig. 2.) Constraints can
be used for test case generation, for code
generation (in the Execution Context),
or for adequate (aspect-oriented) prob-
ing to support automata learning and
monitoring. The implementation of the
constraint generation facilities is based
on the deductive analysis tool KeY-
ABS [20], the ABS version of the KeY
tool described in Sect. 3.1.

The Specification Module receives
symbolic traces indicating constraint vio-
lations observed by the Execution Con-
text at runtime in the Monitoring Envi-
ronment or from the Active Automata
Learner (details see Sects. 3.3 and 3.4
below). This information can be used for
error location/diagnosis. Vice versa, the
Specification Module imposes constraints
in the form of symbolic execution paths enriched with state constraints such as
strongest post-conditions or signaled exceptions (representing implementation
errors). These are consumed by the Active Automata Learner to improve the
efficiency of learning and the precision of the learned models as well as by the
Monitoring Environment to speed up monitoring in the style of [5,17]. In partic-
ular, this interplay addresses one of the major challenges of automata learning,
how to adequately realize the so-called equivalence query in practice [30,32].

Instantiation constraints, typically derived by model finding from pre-
conditions and path conditions, are used by both, the Specification Module and
Active Automata Learner , to relate abstract and concrete behavior: for example,
glass-box test case generation in the Specification Module relies on the ability
to produce such constraints [10]. There is, however, a considerable degree of
freedom in solving them. Ideally, test case generation should be combined with
information from the Active Automata Learner to produce relevant test cases.

3.3 Automata Learning

The Active Automata Learner uses the learn alphabet defined in the Specification
Module together with other static constraints (if available) to infer a behavioral

www.abs-models.org
www.compugene.tu-darmstadt.de/compugene/welcome
www.compugene.tu-darmstadt.de/compugene/welcome
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model via systematic, feedback-guided testing of the system provided by the
Execution Context . There is a large body of existing research [15,31,33,35,36,39]
and tools (see LearnLib sidebar) that form the basis. Most promising is a novel
algorithm called TTT [34,37], which is also a part of LearnLib. It was designed
to optimally deal with excessively long counter examples as they appear in the
envisioned monitoring-based learning scenario.

One pressing question in automata
The open-source LearnLib [38,49] is

a library for active automata learn-

ing [11]. It has a high degree of flex-

ibility and extensibility, while at the

same time providing a performance

that allows for large-scale applica-

tions. It comprises numerous algo-

rithms for inferring behavioral mod-

els via system testing, technology

to automatically adapt abstractions

of the alphabet and to optimize the

exploitation of domain characteris-

tics during the learning process.

learning is how to deal with data. While
automata learning is a technology that
matches perfectly the control perspec-
tive, it has to comprise strategies for
handling data flow in practice. State-of-
the-art solutions consist in defining the
abstraction of the learned model at a
granularity where the model is based on
a regular language and the states do
not contain structured data. Bridging
the gap to a real system is commonly
achieved by hand-crafted so called map-
pers [2,26,43] or via automated alpha-
bet abstraction refinement [1,33,35].
Recently, also more ambitious automata learning techniques have been devel-
oped that explicitly deal with data [15,36]. In particular the SMT-solver-based
approach presented in [15,16,31] nicely fits into the ABS/KeY landscape and
will enable the automatic construction of data flow-sensitive behavioral mod-
els of black-box systems based on knowledge from the Constraint-Based Global
Model .

In practice, automata learning is characterized by the fact that the learning
process is continuous and can never be assumed to have completed [13,30]. The
interplay with the other analysis and validation techniques employed here drives
this continuous process. In particular, monitoring is ideal to providing execution
sequences that can be turned into counter examples for the learner to start a
new learning phase. The TTT algorithm is the only known algorithm capable
of dealing with counter examples of the length typical for monitoring-generated
counter examples [37].

In our setting, after each learning phase, the obtained behavioral informa-
tion needs to be incorporated into the Constraint-Based Global Model , e.g., the
monitoring observations or (parts of) the ABS specification. This resembles a
kind of “equivalence query” from classical active automata learning, but is in
fact a more general approach. Consequently, the task of analyzing and exploit-
ing counter examples to refine the learned behavioral model is considerably more
challenging in this setting. To realize this vision we plan to generalize the TTT
algorithm [37] to cover the learning of register automata and extended finite
state machines.
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3.4 Runtime Monitoring

Monitoring observes the actual runtime behavior of the system under analysis
to detect violations against the Constraint-Based Global Model . The monitor
usually works on a monitoring model comprising the properties under obser-
vation, which is generated from the behavioral model obtained from the Active
Automata Learner by a certain set of rules. If system behavior is observed that is
not in compliance with the model, then the latter has to be adapted by restarting
the learning process with the newly found information. If the system behavior is
also not compliant with the Constraint-Based Global Model , this hints at incon-
sistencies in the global model, which in turn have to be fixed, either through
automatic handling strategies or explicit user input.

To detect non-compliance, the incoming observations have to be matched
against the monitoring model. If the monitoring component detects a mismatch,
i.e., a violation of one or more constraints in the global model, it generates a
“witness” for this anomaly. A witness is a sequence of observations made by the
monitor which leads to the point where a mismatch was detected. This is a
more general notion of what in automata learning is called a “counter example”:
The witness can be regarded as a further constraint in the model (e.g., “the
behavioral model has to contain some additional trace”), and actions have to be
taken in order to reconcile the global model and resolve inconsistencies.

Since the constraints that are monitored originate from various sources, there
is a large heterogeneity in how this reconciliation can be achieved: As long as
the learned behavioral models are incorrect, the witnessing constraint is used to
construct a counter example which is then fed to the counter example-handling
facility of some learning algorithm. A violation of the constraints imposed by
the ABS specification, in contrast, would trigger some notification in the design
environment.

Two different model representations for the behavioral model suggest them-
selves: Mealy Machines and extended finite-state machines. Especially the inter-
play between symbolic execution, monitoring and extended finite-state machines
learning, which form the conceptual basis for “learning modulo theories” [15], is
promising as these approaches seem able to complement each other well. Knowl-
edge about data values might be preserved in the learned extended finite-state
machines, which are also more concise and scale better for large applications.
To further exploit the incremental nature of the approach, behavioral models
of former versions could be used to find counter examples more quickly, which
would speed up the overall learning process [60].

3.5 The Execution Context

The Execution Context is augmented by code generation from the constraints
provided by the Specification Module, for example, following the sound code
transformation paradigm developed in [41].

For monitoring-based anomaly detection to work reliably, the generated code
has to incorporate instrumentation and monitoring facilities that provide suit-
able observations for this purpose. High-level constructs that are to be monitored
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have to be identifiable in the generated code. For instance, observations must
contain information on the system actions at an abstraction level that can be
mapped to the monitored model. In particular, actions have to be related to the
notions used in the actively learned model, in order to be able to automatically
relate system actions to the correct alphabet symbols.

4 Conclusion

The interplay between the different components described above establishes
a framework for controlling software evolution by synchronizing the traceable
how and the learning-based and, therefore, self-adapting what perspective to
obtain and maintain an overall coherent system knowledge. Thus it automati-
cally bridges the inevitable semantic gap in software engineering in a way that
requires interaction only at the specification level. This is possible due to the
looseness of behavioral consistency, which does not reflect syntactic features but
focuses on runtime behavior, the true primary concern.

As a consequence, the constraint-based behavioral consistency framework
proposed in this paper will establish the theoretical and practical basis for a
software development framework that is holistic in the following sense:

– Knowledge artifacts obtained during analysis, modeling, coding, as well as
runtime knowledge gained through log data, testing and monitoring are con-
sistently combined in an integrated, semantic framework.

– Tools for symbolic static analysis, test case generation, automata learning,
and code generation are integrated on the basis of a common behavioral
understanding [54,57].

Synchronizing the knowledge about changes in model, code and system behav-
ior maintains the consistency between the perspectives of the different people
involved in the system life-cycle independently of who and where the change hap-
pened. This makes the software evolution process transparent and counter-acts
the usual tendency of software to turn into legacy.
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In: Giachino, E., Hähnle, R., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2012.
LNCS, vol. 7866, pp. 1–37. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40615-7 1
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42. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

43. Jonsson, B.: Learning of automata models extended with data. In: Bernardo, M.,
Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 327–349. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21455-4 10

44. Gauch Jr., H.G.: Scientific Method in Practice. Cambridge University Press,
Cambridge (2003)
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Abstract. In recent years, research efforts have been directed towards
the use of Machine Learning (ML) techniques to support and automate
activities such as specification mining, risk assessment, program analysis,
and program repair. The focus has largely been on the use of machine
learning black box methods whose inference mechanisms are not easily
interpretable and whose outputs are not declarative and guaranteed to
be correct. Hence, they cannot readily be used to inform the elaboration
and revision of declarative software models identified to be incorrect or
incomplete. On the other hand, recent advances in ML have witnessed
the emergence of new logic-based machine learning approaches that over-
come such limitations and which have been proven to be well-suited for
many software engineering tasks. In this chapter, we present a survey of
the state-of-the-art of logic-based machine learning techniques, highlight
their expressivity, define their different underlying semantics, and dis-
cuss their efficiency and the heuristics they adopt to guide the search for
solutions. We then demonstrate the application of this type of machine
learning to (declarative) specification refinement and revision as a com-
plementary task to program analysis.

1 Introduction

Machine Learning (ML) has been shown to provide a promising approach to sup-
port and automate various software engineering (SE) activities. Numerous (tra-
ditional) ML techniques have been used for modelling and predicting software
costs, predicting software defects [13], performing program repair [43], improving
software reliability [22], and mining (quantitative) knowledge from data on past
software engineering projects [52]. They have been shown to have the potential
of reducing human effort and human-driven errors. They have also been used
as components of software systems themselves, giving, for instance, the soft-
ware the ability to model the environment in which they operate and to adapt
its behaviour at run-time in response to changes in its environment (e.g., [21]).
However, as noted in [32], most of these applications of ML are mainly optimi-
sation tasks. The synergy between ML techniques and SE has the potential to
go beyond this.

Software engineering activities are predominately knowledge-intensive. Some
of this knowledge is explicit at design time whilst some becomes apparent only
c© Springer International Publishing AG, part of Springer Nature 2018
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after the deployment of the software within its environment. For example, in
requirements engineering, knowledge about the domain is key to the development
of correct specifications with respect to given system goals, and its absence may
lead to significant system failures [40]. Domain knowledge is also relevant at run-
time. Complex software systems are increasingly required to be context-aware
and self-adaptive. In other words, they must be sufficiently intelligent, i.e., to
know when and how to evolve in response to changes in the environment. To
demonstrate intelligent behaviour, software needs to be able to: (i) learn and
react to new knowledge, exhibited once it interacts with its environment, in
order to improve over time and with experience, and (ii) be analysable, so that
the evolved behaviours can be verified with respect to overall (domain-specific)
properties (e.g., safety, security, correctness and completeness properties) [51].
But the integration of “black box” ML in software development tasks and in
software systems may reduce the transparency of the (evolved) software models,
thus jeopardising their correct use, analysis and deployment. So the question
that we address in this chapter is how can relevant knowledge be automatically
learned at both design and run-time expressed in a way that can be amenable to
analysis, and human inspection, where required.

Recent advances in Artificial Intelligence have witnessed the development
of new ML approaches, called logic-based machine learning methods [30]. They
differ from traditional ML approaches in that (i) observations, prior knowledge
and learned outcomes are all represented within the same declarative formal-
ism, hence making the learned outcomes interpretable, and, due to their precise
semantics, easier to inspect and analyse; (ii) they allow for declarative specifi-
cation of the space of possible outcomes; (iii) guaranteeing correctness of the
learned outcomes with respect to given constraints, observations and prior knowl-
edge; (iii) they do not suffer from the problem of overfitting when handling small
number of examples due to their ability of generalising; and (iv) they may pro-
duce alternative solutions if any exist, with possible ranking (if needed).

This chapter surveys key recent advances in logic-based machine learning
over the last fifteen years. It presents different types of learning tasks, including
non-monotonic learning and learning-based revision, their underlying seman-
tic assumptions, expressivity, and the common heuristics they use to guide the
search for solutions. A case study is then explored to illustrate how logic-based
machine learning can be used to support the task of software specification refine-
ment and revision. We discuss some of the recent research trends in logic-based
ML as well as some promising applications in formal software analysis.

2 Background

2.1 Notation and Terminology

We summarise here the terminologies and notations that will be used throughout
this chapter. These are adapted from Lloyd [46], and Nienhuys-Cheng and de
Wolf [59]. First-order logic is a formalism characterised by a first-order language
L and a formal model-theoretic semantics. The language L consists of quantifiers,
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∀ and ∃, logical connectives ∧, ∨, ← and ¬, logical constants � and ⊥, a set Σp

of predicate symbols, with specified arities, a set Σf of function symbols, with
specified arities, and a set Σv of variables. We denote a predicate (resp. function)
p (resp. f) with arity n as p/n (resp., f/n). Function symbols with arity 0 are
also called constants. Throughout the chapter, we adopt the standard convention
of denoting variables as strings of letters and digits starting with an uppercase
letter (e.g., X, X1, C, C1 etc.); and predicate, function and constant symbols as
strings of letters and digits starting with a lowercase letter (e.g., c, l1, etc.). A
term, t, is either a constant, a variable or a construct of the form f(t1, . . . , tn),
where f is an n-ary function and t1, . . ., tn are terms. A term is said to be ground
if it contains no variable. For instance, c is a ground term, f(c, d) is also a ground
term, whereas g(X, c) is not. An atomic formula (also called atom) is composed
of a predicate symbol, say p/n, of arity n, and a tuple of n terms, say t1, . . ., tn.
We denote such an atom as p(t1, . . . , tn). Similarly to terms, we say that an atom
is ground if it does not include any variable. For example, p(f(c), d) is a ground
atom whereas p(f(X), d) is not. The notion of a formula is recursively defined as
follows. A formula is either an atom or one of the following expressions, where
α1 and α2 are themselves formulae.

¬α1 | α1 ∨ α2 | α1 ∧ α2 | α1 ← α2 | ∀X(α1) | ∃X(α1)

A literal is either an atom or a negated atom. Given a formula ∀X(α)
(resp. ∃X(α)), α is the scope of the quantifier ∀X (resp. ∃X). Occurrences of the
variable X in α are said to be bound as they are within the scope of a quantifier.
A formula whose variables are all bound is said to be closed. For example, the
formula p(X) is not closed because X does not occur within the scope of a quan-
tifier, whereas the formula ∀X(∀Y (p(X,Y ))) is a closed formula. Close formulae
are also called sentences. In the rest of this chapter, we assume all formulae to
be closed and use the terms formula and sentence interchangeably.

Another important notion in classical logic is that of substitution. A substitu-
tion, θ, is a finite set of the form {X1/t1, . . . , Xn/tn} where each Xi is a different
variable and each ti is a term distinct from Xi. We call each element of the set
a binding. θ is called a ground substitution if all ti are ground terms. Given a
sentence f and a substitution θ = {X1/t1, . . . , Xn/tn}, the instantiated sentence
fθ is obtained by replacing each variable Xi with the term ti. fθ is a ground
instantiation of f , or simple an instance of f , if θ is a ground substitution.

The model-theoretic semantics of first-order logic assumes a semantic struc-
ture comprising of an interpretation, I , and a non-empty domain of discourse,
D . Given first-order language L, the interpretation assigns each constant c to an
element cI in D ; each n-ary function g in L to a function gI from Dn to D ; each
n-ary predicate p in L to a function pI from Dn to the Boolean set {true, false}.
Given an arbitrary sentence α and a semantic structure (I,D), the truth value
of α is defined inductively as follows. The atom p(t1, . . . , tn) is true (resp. false)
if and only if the value of pI(tI1, . . . , t

I
n) is true (resp. false). The truth value of a

complex sentence α follows the conventional semantics of the connectives (truth
tables) and quantifiers that appear in α (see [46] for further details). Finally,
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an interpretation I is a model of a sentence α if α is true with respect to I.
Similarly an interpretation I is a model of set S of sentences if each sentence in
S is true with respect to I, i.e., I is a model of every sentence in S. A sentence
is consistent (satisfiable) if and only if it has at least one model, inconsistent
(unsatisfiable) if it has no models, valid if every interpretation is a model. Let S
be a set of sentences, and α be a sentence. We say α is a logical consequence of
S, denoted S |= α, if for every interpretation I that is a model of S, I is also a
model of α. In this case we also say that S logically entails α.

2.2 Logic Programming

We have introduced basic notions of first-order logic. Logic programming is a pro-
gramming paradigm based on a subset of first-order logic that is computationally
tractable. Programs, written in a logic programming language, are sets of specific
types of sentences for which various formal framework and algorithms have been
developed to support different forms of computational inference (e.g., deductive,
abductive and inductive). Various families of logic programming languages have
been proposed in the literature, each with different level of expressivity. The
basic language represents a problem in terms of definite clauses. Definite clauses
are first-order sentences of the form ∀X(h ∨ ¬b1 ∨ . . . ∨ ¬bn) where ∀X is a
shorthand for ∀X1, ..,∀Xn of all variables X1, ..,Xn appearing in the clause, h
and every bi are positive atoms. Such clauses are also written in rule form as
h ← b1, . . . , bn where h is the head of the rule and b1, . . . , bn is the body of the
rule, consisting essentially of conjunction of atoms. Definite clauses with empty
body are called facts whereas definite clauses with empty head are called denial
constraints. A definite logic program Π is a conjunction of definite clauses.

Example 1. Consider a basic electric circuit consisting of a single light bulb and
a single switch connected in series. We want to describe the property “it is always
the case that flicking the switch may turn the light on” as a logic program Π. We
can use the constant lightOn to refer to the light being on, and the constant
flickSwitch to express the event of flicking the switch. We can also assume a
notion of time as additional type of constant (and variable) in our domain. We
can use the predicate happens/2 to express the occurrence of an event at a specific
time, the predicate initiates/3 to express the effect that an event may have, and
the predicate holdsAt/2 to express what is true at any given time point. To
represent the above property, we can write the following definite logic program
where the fact states that at any time point T , flickSwitch may have the effect
of lightOn, and the rule captures the general property that the occurrence of an
event that may have an effect causes that effect to be true after the event has
occurred.

Π =

{
initiates(flickSwitch, lightOn, T )
holdsAt(F, T ) ← happens(E, T1), initiates(E, F, T1), time(T ), time(T1), T > T1)

}

A model of the definite program Π is constructed by first considering the
Herbrand domain of the program as domain of discourse, denoted as U . This is
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the set of all ground terms that can be constructed using constants and functions
that occur in Π. If we assume the program Π in the example above extended
with facts about time points (i.e., time(0). time(1). time(2).) then the Herbrand
domain of Π would be U(Π) = {flickSwitch, lightOn, 0, 1, 2}. The Herbrand base
of the program Π, denoted HB(Π), is instead the set of all ground atoms con-
structed using the predicates in Π and ground terms in U(Π). For the program
Π given in the above example, the Herbrand base HB(Π) is the following set of
ground atoms extended with the ground atoms about time time(0), . . . , time(2).

HB(Π) =

⎧
⎪⎪⎨

⎪⎪⎩

initiates(flickSwitch, lightOn, 0), initiates(flickSwitch, lightOn, 1),
initiates(flickSwitch, lightOn, 2), happens(flickSwitch, 0),
happens(flickSwitch, 1), happens(flickSwitch, 2),
holdsAt(lightOn, 0), holdsAt(lightOn, 1), holdsAt(lightOn, 2)

⎫
⎪⎪⎬

⎪⎪⎭

An Herbrand interpretation I of a given definite program is a subset of the
Herbrand base of the program. Ground atoms in I are assumed to be true and
any other ground atoms in HB(Π)\I is assumed to be false. An Herbrand inter-
pretation is an Herbrand model of a definite program Π if and only if it makes
all the clauses in Π true. For instance, the following Herbrand interpretation,
extended with ground atoms time(0), . . . , time(2), is an Herbrand model of Π.

HM(Π) =

⎧
⎨

⎩

initiates(flickSwitch, lightOn, 0), initiates(flickSwitch, lightOn, 1),
initiates(flickSwitch, lightOn, 2), happens(flickSwitch, 0),
holdsAt(lightOn, 0), holdsAt(lightOn, 1), holdsAt(lightOn, 2)

⎫
⎬

⎭

Definite programs have the appealing property of accepting a unique mini-
mal Herbrand model, called the least Herbrand model (LHM). For a given def-
inite program Π, the LHM(Π) ⊆ HB(Π) such that any other Herbrand inter-
pretation I, I ⊂ LHM(Π) is not an Herbrand model of Π. In other words,
LHM(Π) is the smallest set of ground positive atoms from the Hebrand base
that satisfy a given program Π. For instance, the HM(Π) given above is an Her-
brand model of Π, but it is not a LHM(Π). This is because the strict subset
HM(Π)\holdsAt(lightOn, 0) is also a Herbrand model of Π, and it is actu-
ally the LHM(Π). The least Herbrand model of a program can be computed
using a notion of immediate consequence operator TΠ . Starting from an empty
interpretation, the TΠ operator iteratively adds to the interpretation immediate
consequences of the program until no new consequence (ground atom) is gener-
ated (i.e., a fixed point of the operator is reached). At each iteration, assuming
I to be the interpretation constructed so far, TΠ(I) = {hθ|h ← b1, . . . , bn ∈ Π
and b1θ, . . . , bnθ ∈ I} [46]. Essentially, for every rule h ← b1, . . . , bn ∈ Π and for
all ground substitutions θ, {b1θ, . . . , bnθ} ⊆ I implies hθ ∈ I. Given a definite
logic program Π and a ground atom α, Π |= α if and only if α ∈ LHM(Π).

The notion of entailment under the least Herbrand model semantics essen-
tially equates the entailment of a ground atom from a program to the notion of
provability of that ground atom from the program. The least Herbrand model
semantics imposes the implicit assumption that ground atoms that are true
are also known to be true, that is they are computationally provable. Adding
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rules or facts to a given definite program can therefore only allow the deriva-
tion of additional ground atoms whilst preserving the entailment of all the
ground atoms that are already provable from the initial program. The entail-
ment based on least Herbrand model semantics is therefore monotonic. This is
not the case for logic programs that include negation as failure, called normal
logic programs. Normal logic programs are programs consisting of rules of the
form h ← b1, . . . , bn,not c1, . . . ,not cm, where h, bi, and cj are all atoms, and
not is a negation as failure (NAF) operator. This operator interprets the notion
of negation as failure to prove. The semantics of negation as failure reflect the
notion of Closed World Assumption (CWA) [53]. A ground atom f that is not
provable is not currently known to be true, therefore it is false and not f is true.
Conversely, a ground atom f that is true, is provable and therefore currently
known to be true, so not f is false. The semantic interpretation of not f can
therefore be defined as follows:

not f is true if and only if f is not provable

not f is false if and only if f is provable

Different formal semantics have been proposed in the literature for normal logic
programs (see [6] for a survey). One of the most established is the stable model
semantics [28]. This is based on the concept of grounding of a program. Given
a normal logic program Π, the grounding of Π, written ground(Π), is given by
ground(Π) = ∪r∈Π ground(r), where ground(r) is obtained by substituting the
variables occurring in r with all possible elements in the Herbrand domain of Π.
Consider the program Π given in Example 1 and let r be the first rule in Π.

ground(r) = {initiates(flickSwitch, lightOn, 0), initiates(flickSwitch, lightOn, 1),
initiates(flickSwitch, lightOn, 2).}

The computation of a stable model of a normal logic program Π is based
on the notion of a reduct of the program with respect to a given set of ground
atoms. The reduct is essentially a transformation of the normal program into a
definite program for which a unique least Herbrand model exists. If such a least
Herbrand model is equal to the chosen set of ground atoms than the chosen set of
ground atoms constitutes the stable model of the initial normal program. More
formally, let Π be a normal program, for any rule r ∈ ground(Π) let head(r) be
the head of r, body+(r) and body−(r) be respectively the set of positive atoms
and the set of negated (by NAF) atoms in the body of r. Let I be a chosen
set of ground atoms. Then the reduct of ground(Π) relative to I is defined as
ΠI = {head(r) ← body+(r) | r ∈ ground(Π) and body−(r)∩ I = ∅}. A set of
ground atoms I is a stable model of Π if it is the case that I is the least Herbrand
model of ΠI .

Example 2. Consider a modified version of the electric circuit given in Example 1
where the required properties are (i) “flicking the switch may turning the light on
if the switch is not already on”; (ii) “flicking the switch may make the switch on
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if the switch is not on”; and (iii) “flicking the switch may make the switch not on
if the switch is already on”. We need to use a new constant switchOn to refer to
the switch being already on. Let’s also assume that at time 0 the switch is not
on and that the flickSwitch happens at time 0. The program will now be

Π =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

initiates(flickSwitch, lightOn, T ) ← not holdsAt(switchOn, T )
initiates(flickSwitch, switchOn, T ) ← not holdsAt(switchOn, T )
terminates(flickSwitch, switchOn, T ) ← holdsAt(switchOn, T )
holdsAt(F, T ) ← happens(E, T1), initiates(E, F, T1)

not clipped(T1, F, T ), T > T1

clipped(T1, F, T ) ← happens(E, T2), terminates(E, F, T2), T1 ≤ T2, T2 < T
happens(flickSwitch, 0)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

Consider the set

I = {happens(flickSwitch, 0), holdsAt(switchOn, 1), holdsAt(switchOn, 2),
holdsAt(lightOn, 1), holdsAt(lightOn, 2), initiates(flickSwitch, lightOn, 0),
initiates(flickSwitch, switchOn, 0), terminates(flickSwitch, switchOn, 1),
terminates(flickSwitch, switchOn, 2)}

Part of the reduct of Π with respect to I is given by:

Π
′
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

initiates(flickSwitch, lightOn, 0)
initiates(flickSwitch, switchOn, 0)
terminates(flickSwitch, switchOn, 1) ← holdsAt(switchOn, 1)
terminates(flickSwitch, switchOn, 2) ← holdsAt(switchOn, 2)
holdsAt(lightOn, 1) ← happens(flickSwitch, 0),

initiates(switchOn, lightOn, 0), 1 > 0
holdsAt(switchOn, 1) ← happens(flickSwitch, 0),

initiates(flickSwitch, switchOn, 0), 1 > 0
holdsAt(lightOn, 2) ← happens(flickSwitch, 0),

initiates(switchOn, lightOn, 0), 2 > 0
holdsAt(switchOn, 2) ← happens(flickSwitch, 0),

initiates(flickSwitch, switchOn, 0), 2 > 0
happens(flickSwitch, 0)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The LHM(Π
′
) is equal to the given set I. So I is the stable model

of Π. As no other flickSwitch event occurs, the lightOn and switchOn pre-
serve their truth value, from time point 1 onwards. This is because the
predicate clipped is not provable. But if happens(flickSwitch, 1) is added to
Π the ground atom holdsAt(switchOn, 2) would not be provable from Π,
since clipped(0, switchOn, 2) would be now true. Similarly, the ground facts
initiates(flickSwitch, lightOn, 2) and initiates(flickSwitch, switchOn, 2) become
provable as holdsAt(switchOn, 2) would be false and, for the same reason, the
fact terminates(flickSwitch, switchOn, 2) becomes no longer provable. In this case
the given interpretation I would not be a stable model.
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The above example demonstrates how the use of NAF and CWA makes the
entailment relation of a given program (defined in terms of provability), non-
monotonic (i.e., entailment of ground atoms are no longer preserved as new
information is added to or deleted from the program).

3 A Survey on Logic-Based Learning

In the early 1970s, contributions to the area of resolution theorem proving
prompted many research activities in the area of automated inference, which
led to the definition and development of three main research fields, logic pro-
gramming for deductive inference [38], abductive logic programming for abduc-
tive inference [63] and inductive logic programming for inductive inference [62].
The main distinction between deduction, on the one hand, and abduction and
induction on the other hand, lays on the fact that the former is a necessary
inference, whereas the latter are ampliative inferences. In a deductive inference
step, what is inferred is necessarily true if the premises from which it is inferred
are true, that is the truth of the premises guarantees the truth of the conclu-
sion. In syllogistic terms, deductive inference is the process of deriving results
by applying general rules to specific cases. Abduction and induction are instead
ampliative forms of inferences, as they generate knowledge that is not explicitly
included in the premises of the inference process. Specifically, abduction is the
process of reasoning from observations to possible causes. It starts from general
rules and observations (or results) and finds possible cases for which the gen-
eral rules, if applied, would lead to the given observations. These cases are the
explanations of the given observations. Induction is also an ampliative reasoning
mechanism, but it aims at discovering new general rules from samples of cases
and related results, in a way that the learned general rule when applied to the
given cases would prove the given results. In summary, abduction is the process
of explanation—reasoning from effects to possible causes, whereas induction is
the process of generalisation – reasoning from specific cases to general hypothesis.

Inductive Logic Programming (ILP) is the study of frameworks and algo-
rithms for performing the inductive reasoning task of learning logic programs, in
the form of hypotheses, from given observations. ILP approaches can be grouped
into two main types: descriptive ILP and predictive ILP [23]. The former is
designed to ‘discover clausal regularities from unclassified data’ [1]. Observa-
tions are full Herbrand interpretations, and the task is to learn a descriptive
hypothesis, as a set of clauses, that accepts each observation as a model. More
formally, given as set O of observations, such that each element o ∈ O is an Her-
brand interpretation with respect to a given language, an hypothesis H is a set of
definite clauses such that ∀o ∈ O, we have o |= H. The symbols used to construct
the hypothesis are limited to those found in the given set of observations.

In contrast, predictive ILP aims to learn rules that define a classification
of given observations. A predictive task takes a set E of observations, called
examples, labelled according to some predetermined labelling, together with a
background theory B (if any), and searches for a set of rules, H that, together
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with B, assigns the correct labels to the given observations as well as to unseen
observations. We refer to the notion of assigning correct labels to given obser-
vations as coverage of the learned hypothesis H, denoted as c(B ∪ H,E), and
correctly labelling unseen examples as predictive accuracy of the hypothesis H.
Predictive ILP differs from other machine learning techniques in that the hypoth-
esis is represented as a logic program and the classification of the examples may
rely upon an existing background theory also expressed as a logic program that
defines relevant concepts for the learning task. These characteristics give pre-
dictive ILP two main advantages. Firstly, it can be applied to complex domains
where entities are (to be) modelled using complex rule-based models. Secondly,
the outcome of the learning is readable and can be interpreted by domain experts
or by end users.

The most common framework for predictive ILP is learning from entailment.
In a learning from entailment, examples are ground literals. Positive literals
are examples labelled as true (i.e., positive examples), whereas atoms that are
negated are examples labelled as false (i.e., negative examples). The background
theory, examples and hypotheses are all expressed using a common logic pro-
gramming language with a specific underlying semantics and entailment rela-
tion. Hypotheses are assumed to belong to a given search space of possible logic
programs, called hypothesis space. Not all the logic programs in the hypothesis
space are solutions of a given learning task. The goal of a learning task is to find
a hypothesis in the hypothesis space that together with the given background
theory entails each positive examples and does not entail any of the negative
examples. Such an hypothesis is referred to as a solution of a learning task.
Coverage of examples is, therefore, defined in terms of the entailment relation
of the chosen logic program’s semantics considered in the learning task. This is
formalised as follows.

Definition 1 (Learning from entailment). A learning from entailment task
is a tuple T = 〈B,LH , E〉, where B is a logic program, called the background
theory, LH is a set of logic programs, called the hypothesis space and E is a set
of positive and negative literals, called examples. An inductive solution of T is a
logic program H ∈ LH such that B ∪ H |= E.

Different algorithms have been proposed in the literature to address the prob-
lem of how to solve a learning from entailment task. Such task could be seen
as a search problem, i.e., search within a given hypothesis space for solutions
that classify (or cover) the given examples correctly. In the above definition,
coverage has to be perfect, that is, all examples must be entailed by a solution.
Perfect coverage is appropriate in learning tasks that have examples perfectly
labelled. But the search may lead to multiple hypotheses with perfect coverage.
So often ILP algorithms use a quality measure for which more compact solutions
are preferred1. The notion of compact solution is often given in terms of size
of the solution, computed as the number of different literals that appear in the
1 This follows the standard Occam’s razor principle for which simpler hypotheses are

better.
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solution. In practice, examples are not perfectly labelled. In this case, the qual-
ity measure of a solution has to take into account the number of examples that
are covered. An example of such measure is given by the following function [18],
where |r| is the number of literals that appear in a rule of H.

score(B,H,E) = −
∑

r∈H

|r| + |{e ∈ E|B ∪ H |= e}| − |{not e ∈ E|B ∪ H |= e}|

The above function, referred to as score of an hypothesis, can be defined as
the number of positive examples correctly covered minus the number of negative
examples covered and the number of literals in the hypothesis. So, when an
hypothesis H has perfect coverage, the number of negative examples covered
is 0 and the number of positive examples is equal to the given set of positive
examples. So if few hypotheses with perfect coverage exist in the hypothesis
space, the most preferred one will be the hypothesis with highest score, which
corresponds to the hypothesis with less number of literals.

As shown in Definition 1 one of the components of a learning task is the
hypothesis space LH . In practice, the hypothesis space, provided as input to
a learning task, is defined in the form of a specification language, called mode
declarations, first introduced in [58]. In brief, a set M of mode declarations
is composed of two subsets, M+ and M−, called head and body declarations,
respectively. Each of these declarations consists of a scheme. A scheme is an
atom that may contain special terms called placemarkers. It can be thought
of as a “template” with placemarkers as its “slots”. Placemarkers can be
of three different modes: input (denoted as +), output (denoted as −), or
ground (denoted as �). Intuitively, input and output placemarkers stand for vari-
ables, while ground placemarkers stand for ground terms. Head declarations are
denoted as modeh(s), where s is a scheme, and body declarations are denoted
as modeb(s) where s is a scheme. An example of a mode head declaration is
modeh(terminates(+action,+fluent, +time)), where the scheme is the pred-
icate terminates which has three placemarkers (action, fluent and time) of
mode input. An instance of this mode declaration is a predicate of the form
terminates(X,Y, T ) where X is a variable of type action, Y is a variable of type
fluent and T is a variable of type time. Being an head mode declaration means
that such a predicate may appear in the head of a rule defining the solution of a
learning task. Similarly, for mode body declarations. So given a set M of mode
declarations, the hypothesis space specified by M is LH = P(S) where S of the
set of clauses a0 ← a1, a2, . . . , an for which there is a mode head declaration
m0 ∈ M+, and mode body declarations m1,m2, . . . , mn in M− such that ai

is an instance of mi for every 0 ≤ i ≤ n, and every variable v with an input
occurrence in ai has an input occurrence in a0 or an output occurrence in aj for
some 0 < j < i.
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Example 3. Consider the following set M of mode declarations, h1, and h2 are
examples of two hypotheses in the hypothesis space LH specified by M .

M =

⎧
⎨

⎩

modeh(p(+type1))
modeb(r(+type1, �type2))
modeb(q(+type1,−type1))

⎫
⎬

⎭

h1 =
{

p(X) ← r(X, c)
p(X) ← q(X,Y ), r(Y, d)

}

h2 =
{

p(X) ← r(X, c)
p(X) ← q(X,Y ), r(X, d)

}

Existing ILP approaches, which fall within the framework of learning from
entailment, can be grouped into two main classes: monotonic ILP and non-
monotonic ILP. The former assume a background theory and hypothesis space
expressed only in terms of definite logic programs with the notion of entailment
based on the least Herbrand model semantic. The latter, on the other hand,
are capable of handling learning tasks where both the background theory and
hypothesis space are expressed as normal logic programs. The underlying seman-
tics and entailment relation is that of stable model semantics. Within each of
these classes, ILP approaches can be further characterised into top-down, bottom
up and meta-level learning, depending on the type of search algorithm used to
compute solutions within the given hypothesis space. The following two subsec-
tions survey the most established ILP approaches, specifying in particular the
type of input and output that they accept, the algorithmic approach they adopt
to learn correct solutions, and current limitations.

3.1 Monotonic ILP

Traditionally, ILP has addressed the problem of learning definite logic programs.
As this class of programs does not allow any form of negation, the notion of learn-
ing from entailment given in Definition 1 is reformulated as follows. A learning
from entailment task for definite logic programs is a tuple 〈B,LH , E+, E−〉,
where B is a definite logic program, the hypothesis space LH is also a set of
definite logic programs, and E+ and E− are respectively the set of positive and
of negative examples, each consisting of ground atoms. An inductive solution of
such a task is a definite logic program H ∈ LH such that B ∪ H |= e, for each
e ∈ E+ and B ∪ H �|= e for each e ∈ E−, where the entailment relation is under
the least Herbrand model semantics. An example of an ILP task for definite logic
programs is given below, where the function symbol s returns the successor of a
given number.
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Example 4. Consider the ILP task T = 〈B,LH , E+, E−〉 where B, E+, E− are
defined below, and LH is the hypothesis space specified by the following set M
of mode declarations:

B =

⎧
⎨

⎩

even(0)
nat(0)
nat(s(X)) ← nat(X)

⎫
⎬

⎭
M =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

modeh(even(+nat))
modeh(odd(+nat))
modeb(+nat = s(−nat))
modeb(even(+nat))
modeb(odd(+nat))

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

E+ = {odd(s(s(s(s(s(0))))))}

E− =
{
odd(s(s(0)))
odd(s(s(s(s(0)))))

}

A solution to the above task would be the following definite logic program.
It is easy to see that H is an element of an hypothesis space LH .

H =
{
odd(X) ← X = s(Y ), even(Y )
even(X) ← X = s(Y ), odd(Y )

}

Due to the monotonicity of the entailment relation for definite logic pro-
grams, the hypothesis space of an ILP task can be seen as a lattice structure,
whose top node is the empty clause (i.e., inconsistency from which everything
is provable), and the bottom nodes are the given positive examples. Nodes in
this lattice structure are definite logic programs corresponding to hypotheses in
the hypothesis space, and the relation between nodes is defined in terms of θ-
subsumption between two definite logic programs. Informally, an hypothesis h1

θ-subsumes an hypothesis h2 if it is the case that every positive ground atom that
is provable by h2 is also provable by h1, but h1 proves also ground atoms that
are not provable by h2. Hypothesis h1 is therefore said to be more general than
hypothesis h2 if h1 θ-subsumes h2. Solving an ILP task can therefore be seen as
searching over this lattice for a node corresponding to a definite logic program
that together with the given background theory entails all positive examples and
none of the negative examples. Walking the lattice from “bottom-to-top” means
searching for more general solutions. This is needed when the logic program at
a current node does not entail some positive example (i.e., the program is too
specific and needs to be generalised further). Because of the θ-subsumption prop-
erty every positive example entailed by such current program will still be entailed
by a more general program that θ-subsumes it. So the generalisation step is in
order to expand the entailment of positive examples. Walking the lattice from
“top-to-bottom” means searching for more specialised solutions. This is needed
when the logic program at the current node entails some negative examples (i.e.,
the program is too general). So specialising such a program means restricting its
entailment relation to eliminate the negative examples that are currently proved.

Algorithms that adopt the first type of search are called bottom-up algo-
rithms. A first renown algorithm of this type was that proposed by Plotkin
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in [62]. It was based on the notion of least general generalisation operator [61].
The algorithm starts from two bottom nodes (i.e., two given positive examples),
and generalises them by applying a least general generalisation operator, which
computes a more general logic program that θ-subsumes the chosen current pro-
grams and does not entail any negative example. This process is repeated until
all positive examples are covered. Another bottom-up approaches is GOLEM
[56], which generalises pairs of current definite clauses into a relative least gen-
eral generalisation, relative to the given background theory. GOLEM greedily
selects the clause with best coverage over those created by relative least general
generalisation.

Algorithms that adopt the “top-to-bottom” search are called top-down algo-
rithms. A first algorithm of this kind was proposed in the early 1980s by Shapiro
(e.g., [72]). The approach uses an oracle that knows which examples are positive
or negative. The search is a top-down search that uses a downward subsump-
tion operator [72]. Given the set of clauses at a current node of the hypothesis
space, this operator produces the set of all set of clauses that are subsumed by
it. So, starting from a very general set of clauses (e.g., the node in the lattice
that corresponds to a single clause with just an unground head atom), the oracle
confirms whether any negative example is entailed. If this is the case, then this
current set of clauses is refined by replacing some clauses with the clauses gen-
erated by the downward subsumption operator. This process is repeated until
no further negative example is entailed. Another top-down algorithm proposed
in the literature is FOIL (First Order Inductive Learning) [65]. It specialises
rules according to an information based search heuristic. As it adopts a greedy
search strategy, it is suitable for learning tasks where suboptimal hypotheses are
acceptable. These are solutions that do not need to entail all positive examples
and none of the negative example, but minimise the number of examples that
are wrongly classified.

In the mid 90s, a new approach for solving monotonic ILP tasks, called
Induction by Bottom Generalisation, was proposed based on the idea of inverse
entailment [55], which states that given a positive example e, B ∪ h |= e if
and only if B ∪ ¬e |= ¬h. Using this property, the algorithm assumes a lattice
structure where every node is a single clause, and solves a monotonic ILP task
in two steps. Firstly, given a positive example e, called seed example, and the
background theory B, the negation of an hypothesis, ¬h is inferred deductively
from B and the negation of the seed example. The inferred ¬h is denoted as
Bot(B, e) and defined as Bot(B, e) = {l | B,¬e |= l}. Given that B is a definite
logic program and ¬e is the only negated fact, it is easy to see that Bot(B, e)
is essentially a set of positive ground atoms, provable from B and ¬e, together
with the negated e. Then a ground define clause is constructed, denoted as
Bot(B, e) by negating all the ground literals in Bot(B, e), i.e., Bot(B, e) = {¬l |
B,¬e |= l}. This is clearly a ground definite clause as it includes only one
positive ground atom (i.e. e) and the rest are all negated ground atoms. The
algorithm calls such a clause the ground Bottom clause as it is the most specific
clause in the lattice that explains the seed example e with respect to the given
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background theory B. The second step of the algorithm searches the lattice in a
top-down fashion for a clause that θ-subsumes Bot(B, e) and does not entail the
negative examples. Two ILP systems were developed based on this algorithm:
Progol [57] and Progol5 [58]. The former was only able to learn single definite
clauses per seed example, whose head predicate was the predicate of the example
itself. This type of learning is referred in the literature as observation predicate
learning as the learned rule defines the predicate whose instances are observed
as positive and negative examples. The second algorithm was also able to learn
only single define clauses per seed example but with the extended capability
of learning definite rules that define predicates that are not directly observed
as examples but “linked” to the examples via rules in the background theory.
This type of learning is referred in the literature as non-observation predicate
learning. A further algorithm, also based on the idea of Bottom Generalisation,
was subsequently proposed [54]. This approach, called ALECTO, uses abduction,
instead of the deductive step of PROGOL, to learn predicates that are not
directly observed and therefore supporting non-observation predicate learning.

All ILP systems based on Bottom Generalisation share the same compu-
tational method described in Algorithm1, referred in the literature as cov-
erage loop. The coverage loop method takes as input an ILP learning task
〈B,LH , E+, E−〉 for definite programs. At each loop iteration a seed example
ei ∈ E+ is chosen. This is a positive ground atom. A definite clause h is learned
that satisfies the conditions B ∪ h |= ei and B ∪ h �|= ek for any ground atom
ek ∈ E−. The coverage of h is then checked (line 9) and all ground atoms in E+

that are also entailed by the learned clause, together with the background theory
B, are removed (line 10). Different monotonic ILP algorithms for learning defi-
nite programs may use different “LearningStep” procedures based on any of the
learning approaches described so far (i.e., bottom-up generalisation, top-down
specialisation or inverse entailment). What is crucial of the coverage loop method
is the monotonicity property that is typical of learning definite logic programs.
Whenever a new definite clause is added (line 8) to the current hypothesis, it is
safe to remove all positive examples that have been entailed so far from the set
of positive examples since they will still be entailed by the rules learned in the
subsequent iterations.

In summary, existing ILP algorithms that use the coverage loop method
have the advantage of be able to learn from reasonably large set of positive
examples, since the learning is iterative. However they suffer of the following
limitations. First of all, only one single definite clause can be learned per seed
example. Although this seems to be reasonable for learning tasks where the
solution is a single definition of a predicate that is observed, it is very limited
in cases when multiple predicates need to be learned to entail the given positive
examples. A simple instance of such cases is learning recursive definitions. So
they cannot do multiple clause learning from single seed examples. A second
limitation is the inability to learn from negative examples. In all the methods
described above, negative examples are only used to reject possible candidate
solutions, as the learning process is solely driven by the seed examples that are
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Algorithm 1. Coverage Loop
1: Inputs: E+ positive examples, E− negative examples, LH hypothesis space,

B background theory
2: Outputs: H hypothesis
3: Ecurr = E+

4: H = ∅
5: while Ecurr �= ∅ do
6: Select ei ∈ Ecurr

7: h = LearningStep(B, e, E−)
8: H = H ∪ {h}
9: Ecov = {ej ∈ Ecurr|B ∪ H |= ej}

10: Ecurr = Ecurr \ Ecov

11: end while
12: returnH;

encountered. It makes for instance difficult to compute solutions that are specif-
ically learned to reject a negative example. The third most relevant limitation
is the inability of learning logic programs that have negation as failure either
in the background theory or in the actual learned program. The first limitation
has been addressed and resolved by a new hybrid abductive inductive learning
algorithm, called HAIL, proposed in [68]. This algorithm is still based on the cov-
erage loop method, but it uses a more general LearningStep procedure, which
combines abductive, deductive and inductive reasoning in a seamless manner.
The abductive reasoning step identifies a set of ground predicates that together
with the background theory explain a chosen seed example. These ground pred-
icate instances constitute the head predicates of the set of definite clauses to be
learned in a single loop iteration. The deductive step computes ground literals,
to add to the body of these definite clauses, which are derivable from the given
background theory B. These two steps together generate a set of ground definite
clauses that are guaranteed to entail the given seed example. Such a set is called
ground Kernel Set. Finally, the inductive step searches for a set of unground
clauses, with a minimal number of literals, that θ subsume the ground Kernel
Set and does not entail the negative examples. The HAIL algorithm has been
the first learning algorithm to show how the three forms of reasoning, abduction,
deduction and induction, can be integrated to enable a more powerful learning
of definite logic programs. Although limited to definite clauses, HAIL has also
been shown to generalise the PROGOL algorithm and to resolve a well known
incompleteness problem of PROGOL5 [77].

The monotonicity assumption that underpins the coverage loop method for
learning, no longer holds in the case when the background theory and/or the
hypothesis space is expressed in terms of normal logic programs, i.e., programs
that include negation as failure. This is because the underlying semantics of
normal logic programs (e.g., stable model semantics) is non-monotonic. Adding
new normal clauses to a given normal logic program may stop the entailment of
some of the positive atoms that are initially entailed by the program. Consider,



234 D. Alrajeh and A. Russo

for instance, the simple learning task where the background theory B = {p ←
not q, r} and examples E+ = {p, q} and E− = ∅. The hypothesis space can
include any normal logic program written using propositions p, q, and r. The
coverage loop approach would start with choosing a seed example, let’s say p. In
this case a learner should be able to compute, as first hypothesis, the single fact
r, since B∪{r} |= p, under the stable model semantics. What is learned does not
explain the second positive example q so after the first iteration Ecurr = {q} and
the current hypothesis is H = {r}. In the second iteration the new chosen seed
example is q and the only possible hypothesis for it is q itself. However, when we
add q to the current hypothesis H, the new updated hypothesis H

′
will no longer

be able to entail the previous example p, since B ∪{r}∪{q} �|= p. This example,
although simple and propositional, shows that the coverage loop method cannot
be used by ILP algorithms targeted to learn normal logic programs.

3.2 Non-monotonic ILP

Learning normal logic programs brings new challenges to the task of logic-based
learning. Firstly, the coverage loop method, described in the previous section,
that learns iteratively from selected seed examples cannot be used when learn-
ing normal logic programs. As illustrated above, applying this method to the
problem of learning normal logic programs leads to incorrect solutions, as the
entailment of ground atoms may not be guaranteed to be maintained when new
learned normal clauses are added to the solution during the iterative process.
The second challenge is that normal logic programs may accept multiple stable
models. So the notion of learning from entailment given in Definition 1 may be
too strong (i.e., requiring that positive examples are satisfied in all stable models
of B ∪ H), as in some applications it might be sufficient to require that positive
examples are satisfied in at least one stable model of B ∪ H. In what follows we
present recent advancements in the area of non-monotonic ILP frameworks for
learning normal logic programs that, together with existing background theory,
cover given examples, and learning revisions of existing programs, which is one
of the typical application of non-monotonic ILP.

Learning Normal Logic Programs. In contrast to what we have seen in
Sect. 3.1, when learning normal logic programs positive and negative exam-
ples have to be considered all together in order to guarantee their coverage
by the final solution. So a learning task can be formalised as a tuple 〈B,LH , E〉,
where E is a set of positive ground atoms (positive examples) and negated
ground atoms (negative examples), as given in Definition 1 – no need to split
the set of examples into two sets of positive and negative examples. We denote
E = {e+1 , . . . , e+n ,not e−

1 , . . . ,not e−
m}. The background theory B is assumed to

be a normal logic program and the hypothesis space LH a set of normal logic
programs, specified by a set of mode declarations with mode body declarations
referring to scheme that can include also negation as failure. When a solution
H is computed, the extended program K ∪ H may accept more than one stable
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model. So to fully define the notion of learning from entailment in the case of
non-monotonic learning, we need to specify a notion of example coverage. In
the literature two different semantic notions of entailment have been proposed,
brave entailment (|=b) and caution entailment (|=c), which have given rise to
two notions of non-monotonic learning, brave induction and caution induction
respectively, initially defined in [70]. The notion of coverage for each of these two
types of non-monotonic learning is captured by the following definitions.

Definition 2 (Cautious induction). A cautious induction task is a tuple
T = 〈B,LH , E〉, where B is a normal logic program, LH is a set of normal
logic programs, and E = {e+1 , . . . , e+n ,not e−

1 , . . . ,not e−
m} is a set of positive

and negative examples. A normal logic program H ∈ LH is a cautious inductive
solution of T if and only if for every stable model Ms of B ∪ H it is the case
that e+i ∈ Ms, for every 1 ≤ i ≤ n, and e−

j �∈ Ms for every 1 ≤ j ≤ m.

Definition 3 (Brave induction). A brave induction task is a tuple T =
〈B,LH , E〉, where B is a normal logic program, LH is a set of normal logic
programs, and E = {e+1 , . . . , e+n ,not e−

1 , . . . ,not e−
m} is a set of positive and neg-

ative examples. A normal logic program H ∈ LH is a brave inductive solution
of T if and only if there exists a stable model M of B ∪ H such that e+i ∈ M ,
for every 1 ≤ i ≤ n, and e−

j �∈ M for every 1 ≤ j ≤ m.

Early approaches to non-monotonic ILP adopted cautious induction, as this
notion is closer to the notion of learning from entailment (Definition 1), where
examples must be covered in every model. In [70] it was argued that in some
cases cautious induction can be too strong, and that a weaker form of induction
– brave induction – is more appropriate. In the rest of this chapter we will refer
mainly to non-monotonic ILP approaches for brave induction.

One of the first recently proposed algorithms for non-monotonic ILP is
XHAIL [67]. It generalises the HAIL approach, described in Sect. 3.1, to the case
of brave induction for non-monotonic learning. Similarly to HAIL, XHAIL com-
putes brave inductive solutions in three steps: abductive, deductive and inductive
steps. In the first step, a set Δ of ground atoms such that B ∪ Δ |=b e for every
e ∈ E is computed. These atoms are required to conform to mode head declara-
tions defined in the learning task, and constitute the heads of ground instances
of rules in the final brave inductive solution. In the deductive step, XHAIL finds
the set of ground literals that could go in the body of the rules in the final brave
solution. Each of these body literals l are such that B ∪ Δ |=b l and conform to
at least one mode body declaration of the task. These first two steps generate
together what is called the ground Kernel set, that is a set of ground normal rules
whose head atoms are the elements in Δ and body literals are those computed
in the deductive step. Such ground Kernel set K has already the property that
B ∪ K |=b e, for every e ∈ E, but may not belong to the hypothesis space LH .
The final step of XHAIL, the inductive step, computes a set of normal rules,
H that (i) is in the hypothesis space, H ∈ LH , (ii) it subsumes the Kernel
set, and (iii) bravely entails the examples. The computation also guarantees
that if there were two solutions H1 and H2, which satisfy these three conditions,
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then the solution with the minimal number of literals would be returned, referred
to as the most compressed solution. The XHAIL approach is an example of a
non-monotonic ILP algorithm that uses a mixture of bottom-up and top-down
search. The construction of the Kernel Set can be seen as a bottom-up process
that looks for the most specific normal logic program that bravely entails the
examples. The inductive step could be seen instead a form of top-down search
that looks for most compressed solutions, starting from those that have only
head predicates. We omit here the description of how the search for most com-
pressed solution is performed in XHAIL. The reader is referred to [67] for further
details.

Several other approaches have been recently proposed in the literature for
non-monotonic learning, which adopt different strategies for resolving brave
induction tasks. The Top-directed Abductive Learning (TAL) approach [16], for
instance, makes use of a top-down meta-level search that aims to solve a brave
induction task by automatically translating it into an equivalent abductive task
for which a top-down search algorithm is used [60]. The transformation relies
upon a one-to-one mapping function from the mode declarations, which specify
the hypothesis space of the brave induction task, to the set of possible abduc-
tive solutions and vice-versa2. So, solutions generated by the abductive task are
translated back into solutions of the given brave induction task. The transfor-
mation of an brave induction task to an equivalent abduction task, translates
each normal rule that could appear in the hypothesis space into a meta-level
representation and generates a normal logic program that reasons over possible
ways of constructing such rules using this meta-level representation [16]. This
abductive reasoning process can be seen essentially as a “meta-level” search over
the hypothesis space. The main advantage of this approach is its generality and
ability to compute brave inductive solutions that can include recursive rules,
definition of multiple predicates and rules that are interdependent (i.e., predi-
cates that appear in the body of a rule can also appear in the head of another
rule belonging to the same solution). Finally, it has been shown to support both
observation and non-observation predicate learning [18]. The generality of this
non-monotonic learning approach has been evaluated in practice in various appli-
cation domains (e.g., [3,36,69]), demonstrating the advantage of adopting such
a meta-level strategy for solving brave induction tasks [18].

However, a drawback of this approach is its scalability. The abductive reason-
ing engine used by TAL is implemented in Prolog and as such its computational
time is affected by the size of the hypothesis space and the number of examples
of a given brave induction task. Furthermore, non-monotonic ILP systems based
Prolog, including TAL, are not declarative enough. The order of the normal
rules in the background theory can affect not only the efficiency of the compu-
tation, but also its termination. In addition, whenever the brave induction task
is particularly knowledge-intensive (i.e., it relays a lot on the background the-
ory), Prolog based ILP systems tend to perform redundant computations and

2 We omit a full definition of an abductive algorithm as this would fall outside the
scope of this chapter. The reader is referred to [20] for further details.
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particularly heavy inferences which are responsible for a high share of the total
time needed to compute a brave inductive solutions. Answer Set Program-
ming [34] provides a natural solution to these computational problems, which
can be more adequately solved by SAT-based techniques rather than resolution.

To combine the theoretical advantages of the meta-level abductive learn-
ing approach used by TAL with computational efficiency, the ASPAL system
has been proposed in [17]. This system adapts the meta-level abductive learning
approach of TAL to the computational environment of Answer Set Programming
(ASP), a knowledge representation technique oriented towards declarative prob-
lem solving [11]. ASP combines a rich modelling language with powerful solving
mechanisms based on satisfiability testing. ASP, unlike Prolog, resulted from the
line of research regarding stable models [34]. Its language combines that of nor-
mal logic programming with ASP constructs like aggregates and optimisation
statements [2]. ASP solvers make use of a grounder that derives the grounding of
a given ASP program using optimisation techniques to reduce the instantiations
whilst maintaining logical equivalence with the original program. Given an ASP
program, an ASP solver computes all the answer sets of the program.

The ASPAL algorithm is based on the TAL approach of converting an ILP
task to a meta-level logic program, but with the difference that such meta-level
program is an ASP program. Given an brave induction task T = 〈B,LH , E〉,
where LH is specified by a given set of mode declarations M , the first step of
the algorithm is to compute a set Sk of skeleton rules. Consider, for instance,
the set M of model declarations. Sk is the corresponding set of skeleton rules:

M =

{
modeh(penguin(+bird)
modeb(not can(+bird, �ability)

}

Sk =

{
penguin(X) ← bird(X)
penguin(X) ← not can(X, C1)

}

Each skeleton rule R is associated with a unique atom rule(Rid, C1, . . . , Cn),
denoted as Rmeta, where C1,. . . ,Cn are the “constant placemarker” variables in
R. Given a brave induction learning task, T = 〈B,LH , E〉, where LH is specified
by a set M of mode declarations, and E = {e+1 , . . . , e+n ,not e−

1 , . . . ,not e−
m},

the set Sk of skeleton rules is generated from M . Then ASPAL automatically
constructs an ASP meta-level representation of the learning task by adding to
the background theory B, the set {h ← b1, . . . bn1, Rmeta| for each rule R ∈ Sk},
of rules that could possibly appear in a solution, together with the following
ASP constructs:

1. 0{Rmeta1 , . . . .Rmetak
}n for each Rmetai

associated to the each skeleton rule.
2. goal ← e+1 , . . . , e+n ,not e−

1 , . . . ,not e−
m

3. ← not goal

The statement (1) is an ASP aggregation. This groups together all the ground
instances of atoms rule(Rid, C1, . . . , Cn) associated with the skeleton rules.
Statement (2) groups together all the examples (positive and negative) given in
the task, and statement (3) defines a constraint which states that the atom goal
must be satisfied. The atoms in the aggregation are not defined in the program
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(i.e., they don’t appear in the head of any rule) so their truth value is guessed by
the ASP solver. In this process the solver computes a stable model of the ASP
program by assigning true to a minimal number of atoms in the aggregation
such that the constraint is satisfied. The satisfiability of the constraint guaran-
tees that the Answer Set solution bravely entails all the positive examples and
does not entail any of the negative examples. The guess of minimal assignment of
true value to the atoms in the aggregation corresponds essentially to an optimal
abductive solution. So each answer set computed by the ASP solver comes with a
specific optimal assignment of true value to the atoms in the aggregate, which in
turn corresponds to the optimal set of rules in the hypothesis space that bravely
entail all the positive examples and none of the negative examples. The overall
procedure is described in Algorithm 2.

Algorithm 2. Find-Hypothesis

1: Inputs: E examples; B background theory; M mode declarations; γ penalisation
function

2: Outputs: H hypotheses
3: MNC = 0
4: H = ∅
5: while 〈 termination condition 〉 do
6: Q, A = derive-skeleton-rules(M , MNC)
7: {Δ1, ..., Δn} = asp-abduce(Q ∪ B, E, A, γ)
8: H = H ∪ translate-solutions({Δ1, ..., Δn}, M)
9: 〈 increase MNC 〉

10: end while
11: returnH;

Given the explicit representation of the rules present in an hypothesis space,
the ASPAL algorithm uses an incremental approach over the maximum number
of conditions (MNC) that can appear in the rules of a brave inductive solution.
The loop terminates when a condition is met, e.g., when a satisfactory number of
solutions is generated or when an optimal solution is found. Optimisation state-
ments of ASP are used to find an optimal abductive solution (in ASP) within
each iteration (see line 7). This corresponds to the {Δ1, . . . , Δn} generated by
the ASP-ABDUCE function (line 7) in the algorithm, which are then translated
back into a solution (set of normal rules) of the original brave inductive learn-
ing task, by the function TRANSLATE-SOLUTIONS. ASPAL’s top theory could in
principle grow exponentially with respect to the length of rules that may appear
in an inductive solution. This is why the algorithm adopts an iterative way for
searching for solutions, where the iteration takes into account the length of rule
that maybe learned as part of inductive solution. To analyse the space of possible
skeleton rules for a given language bias M , consider Mh to be the number of head
mode declarations in M , Mb to be the number of body mode declarations, maxo

and maxi to be respectively the largest number of output and input variables in
the body mode declarations, dmax to be the maximum number of body literals
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allowed in the rules of an inductive solution, and maxh
i to be the largest number

of input variables in all head mode declarations. The upper bound for the size
|Sk| of the non-ground set of skeleton rules can be estimated to be defined as
follows3:

|Sk| ≤
dmax∑

d=0

|Mh| × (|Mb| × (maxh
i + maxo × (d − 1))maxi)d

It is easy to see that even for a small learning task, the size of Sk increases
exponentially with an increase in the maximum number of body literals in a rule
dmax. This may cause problems with the grounding step of the ASP program, as
one of the main factors in the size of this grounding is the number of body literals
that are allowed to appear in a rule in the hypothesis space. So although ASPAL
is computationally more efficient than TAL, the meta-level representation in ASP
of a brave inductive learning task scales poorly with respect to the size of the
grounding of B ∪ LH [8]. To overcome this bottleneck, a different meta-level
approach for brave induction, called RASPAL, was recently proposed [8]. This
approach breaks the learning process into small manageable steps and uses a
notion of hypothesis revision. The learning process iteratively refines a hypothesis
until all of the examples in an given brave induction task are covered. At each
step, the number of literals that are allowed to be added to the hypothesis is
restricted, meaning that the grounding is often significantly smaller than the
meta-level program in ASPAL. In [9] it was shown that RASPAL significantly
outperforms ASPAL on some learning tasks with large problem domains and
large hypothesis spaces.

Model Revision. The task of learning revisions has been applied not only for
scaling up learning algorithms, as it is the case for the RASPAL algorithm, but
also for revising logic-based theories, specifications and models. Theory revision
is a particular case of the problem known as theory refinement, “the problem of
improving the quality of a given theory” [76]. In general, a theory can be either
restructured, i.e., its entailment relation does not change but it is only modified
for efficiency, elegance or understanding, or changed so that its entailment rela-
tion is changed. Non-monotonic ILP has full power over the semantic changes
of a given theory. By definition, non-monotonic learning is capable to learn a
hypothesis H such that the consequences of an existing background theory B is
changed once B is extended with H. That is the entailment relation of B ∪ H
is not necessarily a superset of the entailment relation of B only. Change of
the entailment relation is essentially the objective of a learning revision task,
but with the difference that what is learned are not necessarily new clauses but
rather retraction or addition of literals to existing clause.

3 The parameter maxhi is included as variables in a body literal can either be from
input variables in the head literal or output variables in other body literals, giving
maxhi +maxo × (d − 1) as the total number of variables that can serve as a inputs to
a body literal.
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In [18] it has been shown that theory revision can be solved in terms of a non-
monotonic brave induction learning task. Such a task can be automatically gen-
erated from a given theory revision problem and solutions are prescriptions for
changes in the original theory of the revision problem. Performing such changes
leads to a revised theory that satisfies the requirements of the theory revision
problem. Typical prescriptions for changes that can be learned include addition
or deletion of entire rules, and/or addition and deletion of literals in the body of
existing rules. Algorithm 3 shows how a non-monotonic ILP system can be used
to learn a set of revisions to apply to a given theory.

Algorithm 3. Find-Hypothesis

1: Inputs: E examples; B background theory; R revisable program; M mode declara-
tions

2: Outputs: R
′

revised program
3: (R̃, LR̃) = pre-processing(R, M)
4: H = ILP(B ∪ R̃, LR̃, E)

5: R
′
= post-processing(R, H)

6: returnB ∪ R
′

The input of the algorithm is a theory revision task 〈B,R,LR, E〉. B is
a background theory, which is not revisable, R is a revisable program, LR is
the search space of possible revised programs generated from R after applying
revision operations to it, and E is a set of literals expressing what is expected
to be entailed and not entailed from the revised program. A solution to a theory
revision task is a revised program R

′
such that (i) R

′ ∈ LR, (ii) B ∪ R
′ |= E,

and (iii) if there exists another revised program S ∈ LR that satisfies conditions
(i) and (ii), then the distance d(R,S) ≥ d(R,R

′
), where d defines the number

of revision operations applied to R to generate the revised program. The third
condition essentially captures the notion of minimal changes to R to generate
R

′
. The search space LR is specified by a set of mode declarations that define

the literals that are allowed to be in the head and body of the learned and/or
revised rules.

Let us assume for simplicity that the theories B and R of our revision task
are expressed already as sets of normal clauses. In principle, Algorithm 3 can be
applied to other types of logic-based theories but translations of these theories
into normal logic programs would need to be provided, as the learning approach
is a non-monotonic ILP approach. The algorithm resolves a theory revision task
using a non-monotonic brave induction approach. It consists of three phases.
The first phase is called pre-processing. It transforms the rules of the revisable
program R into a meta-level representation R̃ to allow reasoning about the liter-
als in the rules in R that should be kept or deleted during the revision process.
An extra condition is added to the body of each rule in R, using a predicate
called extension() which represents a placeholder for possible literals that need
to be added to the rule. Learning definitions of each of these extension predicates
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correspond basically to learning the “extra” conditions to add to the body of the
corresponding rule in R. Using the same transformation process, the space LR

of possible revised programs is mapped into a hypothesis space LR̃ of possible
revisions that can be learned. The output of this phase is the pair (R̃, LR̃). The
second phase is called learning phase. At this point a non-monotonic brave induc-
tion task has been automatically generated. The background theory is B ∪ R̃,
the hypothesis space is LR̃ and the examples are the same examples E of the
revision task. The learner (e.g., RASPAL) computes a brave inductive solution.
This may include information about what literal to delete from existing rules,
what new literals to add to existing rules (through the learned definitions of the
extension predicate), as well as what rules to add to or to delete from the given
program. The third phase is called post-processing. It takes the learned inductive
solution and the initially given set R of revisable rules and performs the changes
that are specified in the learned solution. The result is a revised theory B ∪ R−

which is guaranteed now to entail the given set E of literals.

Example 5. Consider the following theory revision task 〈B,R,LR, E〉 where B
is the set of rules

B =

⎧
⎨

⎩

c2(X) ← c3(X)
c3(b)
c2(a)

⎫
⎬

⎭

R is the revisable program R = {p(X) ← c1(X), c2(X)} and the mode decla-
ration M = {modeb(c1(+any)), modeb(c2(+any)), modeb(c3(+any))}, indicating
that literals c1, c2, c3 could be added to the body of the rules in the revisable
program R. Note that the any type that appear in the mode declaration indi-
cates that variables of any type could appear as arguments of the predicates in
a learned solutions. E is the set {p(a), not p(b)} that must be entailed by the
revised program. Given this task, it is easy to see that B∪R �|= E. So R needs to
be revised. The pre-processing step generates the following re-written revisable
program R̃ and mode declarations M̃ .

M̃ = M ∪ {modeh(extension(1, p(+any), []),modeh(del(1, 1)),modeh(del(1, 2))}

R̃ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p(X) ← try(1, 1, c1(X)), try(1, 2, c2(X)), extension(1, p(X), []).
try(1, 1, c1(X) ← use(1, 1), c1(X).
try(1, 1, c1(X) ← not use(1, 1).
try(1, 2, c2(X) ← use(1, 2), c2(X).
try(1, 2, c2(X) ← use(1, 2).
use(X,Y ) ← not del(X,Y ).

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

The learning phase uses now a non-monotonic ILP system to compute a set of
hypotheses for the task 〈B∪R̃, LR̃, E〉, where LR̃ is the hypothesis space specified
by the set M̃ of mode declarations. Learning a most compressed hypothesis would
correspond in this case to learn minimal changes to be made to the revisable
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theory R. Let the following H be the brave inductive solution of the generated
learning task:

H =
{

del(1, 1).
extension(1, p(X), []) ← not c3(X).

}

The post-processing phase takes the initial revisable program R, the learned
hypothesis H and applies the changes that appear in the learned solution. Each
del facts instructs a deletion of a literal (indicated by the second argument of
the del fact) from a rule indexed by the first argument of the del fact. So, for
instance del(1, 1) instructs deletion of first body literal from first rule in R. For
each rule with head predicate extension the literals that appear in this rule
are added to the body of a rule indexed by the first argument of extension. So
the learned rule extension(1, p(X), []) ← not c3(X) instructs the addition of the
literals not c3(X) to the first rule in R. By performing these two learned changes,
the post-processing phase generates the revised theory:

R
′
=

{
p(X) ← c2(X),not c3(X).

}

So the algorithm returns the program B ∪ R′, which clearly entails E.

4 ILP for Specification Refinement and Revision

Correct and complete specifications provide significant aid in the formal analy-
sis of software, enabling tasks such as verification [49], program synthesis [31],
program analysis [19] and software maintenance [47]. However obtaining such
specifications remains a fundamental challenge [7]. Their manual construction
requires immense effort in identifying the right level of abstraction and consid-
erable expertise in the formal languages and semantics deployed. There have
been continual efforts to develop rigorous, automated mechanisms for generat-
ing such specifications, of which dynamic approaches specifically have gained
growing attention in recent years [26,27].

In general, dynamic approaches to specification generation (also referred to as
specification mining and inductive synthesis) provide means for inferring spec-
ifications automatically from execution traces (e.g., program runs, use-cases,
system logs). Existing approaches mainly differ in the input they require (e.g.,
traces, domain knowledge, input/output examples), their method of computa-
tion (e.g., user-driven interaction, SMT solver, machine learning), the type of
specification generated (e.g., automata, declarative logical assertion, sequence
charts), the features they guarantee (e.g., domain consistency, completeness)
and the function the specifications serve (e.g., controller synthesis, program ver-
ification).

There have been several applications of monotonic ILP to support specifi-
cation generation including specification recovery [15], requirement elaboration
[5] and interface (APIs) specifications mining [71]. These approaches, however,
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presume the input traces provide complete knowledge of the intended specifica-
tion and hence are not well-suited for exploratory and incremental specification
generation.

In this section, we demonstrate the use of non-monotonic learning for such
task, specifically for refining partial specification and revising incorrect ones. We
focus on a goal-oriented requirements elaboration framework which is founded
on the idea that requirements are derived from stakeholders’ goals and that these
requirements must be fulfilled by the software being developed [40].

4.1 Notation and Terminology

We begin with some basic definitions of terms and notations. In what follows,
we consider the Event Calculus (EC) formalism [39] (a logical framework for
representing and reasoning about states, actions, and time) as the specification
language L. For convenience, our illustration adopts the EC formulation of [3],
which includes three types of terms: time-points (with variables T, T1, T2, . . .)
represented by the domain of integers; events (with variables E,E1, E2, . . .)
capturing actions that happen at various time-points; fluents (with variables
F, F1, F2, . . .) marking propositional atoms whose values change over time; and
scenarios (with variables S, S1, S2, . . .) denoting linear-time sequences. The main
EC predicates considered are holds(f, t, s) and nholds(f, t, s) to mean that a flu-
ent f holds and does not hold respectively at time-point t in scenario s. Thus,
for a given system, the Herbrand domain U comprises event constants, fluent
constants, scenario constants and the set of natural numbers. The Herbrand base
HB contains the set of ground holds and nholds atoms and type declarations
for elements in U , e.g., event(e) and fluent(f). We write HB∗ to denote HB
excluding the type declarations.

Given a background theory B, a Herbrand universe U and a Herbrand base
HB from which a set of examples E ⊆ HB∗ are drawn, a specification is a set
of logic programs Φ such that I ⊆ HB for every stable model I of φ ∈ Φ. We
sometime write I[φ] to denote the stable model of program φ.4

In our setting, examples are sets of ground facts within the domain of dis-
course collectively representing partial executions of a system (i.e., traces). These
are defined using 2 or more arity predicates over time-point and scenario sorts
(i.e., in addition to the two, it may contain arguments over other sorts). A single
trace is a set of ground atoms which have the same scenario constant. It is said
to be a positive example, denoted ω+, iff ω+ ⊆ I[φ ∪ B] ∩ E. Conversely, it is
said to be a negative example, denoted ω−, iff ω− ⊆ E and ω− �⊆ I[φ ∪ B] for
all φ ∈ Φ. Since there may be several correct specifications in Φ that guaran-
tee goals’ achievement, our aim is to learn at least one correct specification φ
definable within the language LΦ.

4 We focus here on specifications with a single stable model.
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Let ψ be a candidate specification, Ωψ a set of traces accepted by ψ, φ a
target specification and Ωφ a set of traces accepted by φ. We say that ψ is an
over-approximation of φ with respect to Ωφ if Ωφ ⊂ Ωψ. Conversely, ψ is said
to be an under-approximation of φ if Ωψ ⊂ Ωφ.

4.2 Requirement Specification Refinement

The formalisation and refinement of requirement specifications are fundamental
problems of requirements engineering [35]. A requirement specification is a set
of prescriptive expressions, typically expressed in a temporal logic, that describe
the objectives to be achieved by a system being developed [45]. The use of a tem-
poral formalism enables the deployment of automated analysis and refinement
tools, but is not directly accessible to most stakeholders with a non-technical
background. In practice, stakeholders tend to convey their requirements through
more intuitive narrative-style scenarios of desirable and undesirable interactions
between system objects rather than temporal assertions [74]. Because scenarios
are inherently partial descriptions about specific system behaviours, they leave
requirements implicitly defined, some of which may be inconsistent. It is there-
fore necessary to be able to infer declarative specifications of these requirements
which would admit the desired behaviours while rejecting the undesired ones,
and at the same time are consistent with any available domain knowledge. The
requirement inference task may be defined as follows.

Given: A set of desirable scenarios Ω+, and undesirable scenarios Ω− and
domain knowledge D;
Find: a requirement specification ψ such that:

ω+ ⊆ I[ψ ∪ D] for all ω+ ∈ Ω+

ω− �⊆ I[ψ ∪ D] for all ω− ∈ Ω−

To illustrate how non-monotonic ILP may be deployed to achieve this task,
we first introduce the example below.

Example 6. Consider a simple example of a driver assistance system [29] in which
a car driver, cars’ control software and a construction control software must inter-
act to avoid collision on two-lane road. We describe here two scenarios which
illustrate what should happen when a car approaches a construction site on
the road. The first scenario captures a desirable case of when a car approaches
a construction site blocking its lane. The car control detects the obstruction
by communicating with the construction control and overtakes the construction
site using the lane for oncoming traffic to avoid unnecessary hold-up. The sec-
ond scenario describes an undesirable situation where the car approaches the
construction site, and as it attempts to overtake, collides with an oncoming car.
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We assume the following constants: c1 and c2 representing two car controllers;
r for the construction controller; and l1 and l2 for the two lanes. We further con-
sider fluents capturing the location of the car and construction site which are
represented by ground terms: overtaking/2 (for a car overtaking a construc-
tion site), approaching/2 (for a car approaches a construction site), on/2 (for a
car/construction site is on a lane), safe passage/1 (when a car has safely passed
a construction site) and collided/2 (when two cars collide). Auxiliary predicates
are introduced to define a total order over time points, e.g., next(2, 1) meaning
2 is the next timepoint following 1, and over locations such as next(l2, l1). Given
this language, we assert the following type declarations and facts as part of D.

car(c1). car(c2). construction(r1). lane(l1). lane(l2).

fluent(overtaking(c1, r)). fluent(overtaking(c2, r)). fluent(collided(c1, c2)).

fluent(collided(c2, c1)).safe passage(c1). safe passage(c2). (1)
fluent(approaching(c1, r)). fluent(approaching(c2, r)). fluent(on(r, l1)). fluent(on(r, l2)).

fluent(on(c1, l1)). fluent(on(c2, l1)). fluent(on(c1, l2)). fluent(on(c2, l2)).

time(0). time(1). time(2). time(3).time(4). time(5).

next(1, 0). next(2, 1). next(3, 2). next(4, 3). next(5, 4). next(l1, l2). next(l2, l1).

In addition to this, suppose that the controllers keep track of the locations
of the cars and construction sites over time which are recorded as the following
facts in D. (We consider only finite observations to be recorded.) The constants
s1 and s2 denote two distinct scenarios.

holds(on(c1, l1), 0, s1). holds(on(r1, l1), 0, s1).
holds(on(c1, l1), 1, s1). holds(on(r1, l1), 1, s1). holds(approaching(c1, r1), 1, s1).
holds(on(c1, l2), 2, s1). holds(on(r1, l1), 2, s1). (2)
holds(on(r1, l1), 3, s1). holds(on(c1, l1), 3, s1). nholds(collided(c1, c2), 3, s1)
holds(on(r1, l1), 0, s2). holds(on(c1, l1), 0, s2). holds(on(c2, l2), 0, s2).

holds(on(r1, l1), 1, s2). holds(on(c1, l1), 1, s2). holds(approaching(c1, r1), 1, s2).
(3)

holds(approaching(c2, r1), 1, s2).
holds(on(r1, l1), 2, s2). holds(on(c1, l2), 2, s2). holds(approaching(c2, r1), 2, s2).
holds(on(r1, l1), 3, s2). holds(on(c1, l2), 3, s2). holds(collided(c1, c2), 3, s2).



246 D. Alrajeh and A. Russo

The first observation (2), for instance, indicates that there is a construction
site r1 on lane l1. A car c1 is detected on lane l1 at start after which it moves
at time point 2 to lane l2 and then returns afterwards to lane l1 at time point
3. The second observation (3) records a situation where a construction site r1 is
on lane l1, c1 is on lane l1 and c2 is on lane l2 for the first two time points. At
time point 3, both cars are detected on l2 and collide.

We further include the following domain-independent and dependent rules in
D with which φ must be consistent.

nholds(F, T, S) ← not holds(F, T, S). (4)
← holds(F, T, S),nholds(F, T, S). (5)
← holds(collided(C,C), T, S). (6)
← holds(collided(C1, C2), T, S), holds(safe passage(C1), T, S). (7)
← holds(collided(C1, C2), T, S), holds(safe passage(C2), T, S).

The first expression (4) provides a default definition for nholds in terms of
the negation (as failure) of holds, whilst the second (5) is an integrity constraint
stating that fluents cannot both hold and not hold at the same time in a scenario.
Rule (6) states a car cannot collide with itself, whilst the last two constraints
(7) state that cars cannot pass safely if they have collided.

The two scenarios described in Example 6 can be represented as the following
sets. They capture the consequence of the cars movements on the two lanes.

ω+
1 ={holds(overtaking(c1, r1), 2, s1), holds(safe passage(c1), 3, s1)}

ω−
1 ={holds(overtaking(c1, r1), 2, s2),nholds(safe passage(c1), 3, s2),

nholds(safe passage(c2), 3, s2)}

The task we aim to achieve here is learning a specification ψ that exactly
matches a target requirements specification φ ∈ Φ, that is consistent with D,
from partial scenarios. Given the above rules, we can define a learning task
〈D,LΦ, Ω+ ∪ Ω−〉 where D corresponds to the background knowledge B and
comprises the programs (1)–(7), and Ω+ = {ω+

1 }, Ω− = {ω−
1 }. We define LΦ to

be the set of clauses that can be constructed using the following mode declaration
M .
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modeh(holds(safe passage(+car),+time,+scenario)).
modeh(holds(overtaking(+car,+construction),+time,+scenario)).
modeh(nholds(safe passage(+car),+time,+scenario)). (8)
modeh(nholds(overtaking(+car,+construction),+time,+scenario)).
modeb(next(+lane,−lane)). modeb(next(−lane,+lane)).
modeb(next(+time,−time)).
modeb(holds(on(+car,−lane),+time,+scenario)).
modeb(holds(on(−car,−lane),+time,+scenario)).
modeb(holds(on(+construction,−lane),+time,+scenario)).
modeb(holds(approaching(+car,+construction),+time,+scenario)).
modeb(holds(approaching(−car,+construction),+time,+scenario)). (9)
modeb(holds(overtaking(+car,+construction),+time,+scenario)).
modeb(holds(overtaking(+car,−construction),+time,+scenario)).
modeb(holds(overtaking(−car,−construction),+time,+scenario)).
modeb(nholds(on(+car,−lane),+time,+scenario)).
modeb(nholds(on(−car,−lane),+time,+scenario)).
modeb(nholds(on(+construction,−lane),+time,+scenario)).
modeb(nholds(approaching(+car,+construction),+time,+scenario)).
modeb(nholds(approaching(−car,+construction),+time,+scenario)).
modeb(nholds(overtaking(+car,+construction),+time,+scenario)).
modeb(nholds(overtaking(+car,−construction),+time,+scenario)).
modeb(nholds(overtaking(−car,−construction),+time,+scenario)).

The above restricts the class of requirements to safety properties over a fixed
bound of consecutive states. Other classes including liveness are discussed in [4].

To compute a solution, we use the system ASPAL described in [16] as our
learning engine. The learning task is non-monotonic since the program itself
(owing to (4) is non-monotonic). The specification learned comprises the follow-
ing candidate requirements.

ψ =

{
holds(overtaking(C1, R), T, S) ← holds(on(C1, L), T, S),nholds(on(C2, L), T, S).
holds(safe passage(C), T, S) ← holds(overtaking(C, R), T, S).

}

(10)

The first states that a car overtakes a construction site whenever another
car is not on the same lane as it does so. The second says that whenever a car
overtakes a construction site, the car safely passes the contraction site. Since
the program, as demonstrated in [4], is locally stratified, ψ ∧ D has a single
stable model in which traces in Ω+ are consistent with the specification but not
those in Ω−. In [4], we showed how the output could be soundly translated into
temporal logic making it amenable to further analysis (e.g., model checking).
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For instance, each of the expressions above can be rewritten in Linear Temporal
Logic as follows respectively. (The G is a temporal operator that stands for
always.)

∀c1, c2 : Car, r : Construction, l : Lane. G((on(c1, l) ∧ ¬on(c2, l)) → overtaking(c1, r))
(11)

∀c : Car, r : Construction. G(overtaking(c, r) → safe passage(c)) (12)

Though the above assertions are consistent with scenarios given, they may
not reflect the behaviour intended by the target specification (either an over- or
under-approximating the behaviour prescribed by the target specifications). In
what follows, we discuss how learning-based revision can also be used to modify
goals in light of new observations.

4.3 Requirements Specifications Revision

Requirements elicitation is an incremental process. Requirements (as described
for above for instance) are extracted from partial descriptions, in this case
scenarios. As further scenarios are identified, and the extracted requirements
are merged, inconsistencies may arise and obstacles to their achievement may
emerge. Consider the first requirement in ψ (10) above. This states that cars
shall not be allowed to overtake if there are other cars on the same lane been
though these may not be close to the construction site and hence do not pose
a collision risk. Of course it would be desirable to allow cars to overtake when
oncoming cars are at a safe distance. Since this desirable behaviour is not con-
sistent with the learned requirement, we say that the extracted requirement is
an under-approximation of the target specification.

When such cases are identified, requirements need to be revised in such a way
that ensures that their preservation of all the desirable behaviour identified thus
far and none of the undesirable ones, they are consistent amongst each other
and they are feasible to achieve within their domain.

Such assurances can be met by either: (i) retracting the current require-
ments and re-instigate the inference process from the start with the extended set
of desirable and undesirable scenarios, or (ii) revising the problematic require-
ments, and retain all the valid ones. Though both processes lead to correct
requirements specifications, we adopt the latter approach as we argue that the
former requires engineers to abandon any development activities they may have
started based on the earlier specification. The general task of revising require-
ments is formulated as follows.

Given: A set of desirable scenarios Ω+, undesirable scenarios Ω−, domain
knowledge D, a requirements specification ϕ ∈ 2Ψ and a revision function f :
2Ψ → 2Ψ such that:

ω+ �⊆ I[ϕ ∪ D] for some ω+ ∈ Ω+

ω− ⊆ I[ϕ ∪ D] for some ω− ∈ Ω−
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Find: a revision ϕ′ = f(ϕ) such that:

ω+ ⊆ I[ϕ′ ∪ D] for all ω+ ∈ Ω+

ω− �⊆ I[ϕ′ ∪ D] for all ω− ∈ Ω−

The distance d(ϕ,ϕ′)is minimal

Since there might be multiple revisions that satisfy the conditions above, f
may return instead a set {ϕ′

i} where each ϕ′
i meets the conditions above.

Let us go back to our running example. In addition to (1)–(7), we consider D to
include the following facts about the cars’ locations from the new observation s3.

holds(on(r1, l1), 0, s3).holds(on(c1, l1), 0, s3).holds(on(c2, l2), 0, s3).
holds(on(r1, l1), 1, s3), holds(on(c1, l1), 1, s3).holds(on(c2, l2), 1, s3).
holds(approaching(c1, r1), 1, s3). (13)
holds(on(r1, l1), 2, s3).holds(on(c1, l2), 2, s3).holds(on(c2, l2), 2, s3).
holds(on(r1, l1), 3, s3).holds(on(c1, l2), 3, s3).nholds(on(c2, l2), 3, s3)
nholds(collided(c1, c2), 3, s3).

We extend the set of positive examples to Ω+ = {ω+
1 , ω+

2 } where ω+
2 is

ω+
2 ={holds(overtaking(c1, r1), 2, s3),

holds(safe passage(c1), 3, s3), nholds(safe passage(c2), 4, s3)} (14)

To generate revisions for ψ, we define a theory revision task as 〈D,ψ,LΦ, Ω+∪
Ω−〉 in which ψ of (10) is the revisable program. M is defined as before (8 and 9).

The learning algorithm aims to find within the space of possible revisions LΦ

definable by M for variant rules of ψ (obtainable by adding/deleting literals or
rules from ψ) that yield a correct solution with the smallest distance (i.e., the
least number of revision operator applications), i.e., minimize |d(ψ,ψ′)|. Since,
given the new observation (13), the revisable rule

holds(overtaking(C1, R), T2, S) ← holds(on(C1, L), T1, S),
nholds(on(C2, L), T1, S).

is the only rule in the program D ∪ ψ that defines overtaking and for which
nholds(on(C2, l2), 2, s3) does not hold for any car constant in U , we have that
holds(overtaking(c1, r1), 2, s3) �∈ I[ψ∪D]. Thus ω+

2 �∈ I[ψ∪D] and therefore (10)
must be revised.

We use the learning-based revision system RASPAL, described in Sect. 3.2, to
compute revisions for this rule. The learning procedure seeks to find which literals
may be added or deleted for the examples to be entailed. In this case, both literals
holds(on(C1, L), T1, S) and nholds(on(C2, L), T1, S) are removed from the body
of (10) and the literals next(T2, T1) and nholds(approaching(C2, R), T1, S) are
added instead. The output of the learning is:

ψ′ =

⎧
⎨

⎩

holds(overtaking(C1, R), T2, S) ← next(T2, T1),
nholds(approaching(C2, R), T1, S).

holds(safe passage(C), T, S) ← holds(overtaking(C,R), T, S).

⎫
⎬

⎭
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From the solution, we see that the only goal that is revised is the first. The
goal about safe passing remains unchanged. The revised goal now states that a
car overtakes the construction site, if at the previous time-point, a car is not
approaching the site. (Note that the solution is correct given that the language
only considers two cars.) The distance |d(ψ,ψ′)| = 4. The revised assertions
can be expressed in LTL as follows. (The X is a temporal operator that stands
for next.)

∀c1 : Car, r : ConstructionG((∃c2 : Car.¬approaching(c2, r)) → Xovertaking(c1, r))
(15)

∀c : Car, r : Construction.G(overtaking(c, r) → safe passage(c)) (16)

5 Research Trends and Promising Applications

The learning approaches described in this chapter assume correct labelling of
examples. In practise, labelled examples might be noisy either because they are
wrongly labelled by humans, or because their are data generated by devices, such
as sensors, that operate often within a certain margin of error and/or approx-
imation. A future venue of research is how to make such logic-based learning
approaches resilient to noise in the labelled examples, e.g. when not all exam-
ples are correctly labelled. This open problem has given raise to two new research
trends in the area of logic-based learning.

A first trend is the combination of probabilistic and logic-based learning. First
attempts have been proposed in [66], where the notion of probabilistic Inductive
Logic Programming was first proposed. This combines ILP with probabilistic
reasoning. The learning task combines structural learning, where an underlying
logic program is learned, and parameter estimation or weight learning, where the
probabilities associated to the rules in the program are also learned so to min-
imise the errors between the a posterior (conditional) probability of the entailed
examples and those given as labelled examples. But results so far are limited to
the case of probabilistic definite clauses. Possible directions on how to extend
these approaches to probabilistic non-monotonic ILP would be to build upon
recent results in [50] that provide a first ever framework for integrating param-
eter learning with abductive logic programming in the context of normal logic
programming. The abductive logic programming approach used in this app-
roach is the same as that used by the meta-level abductive learning methods
such as TAL and ASPAL described in Sect. 3.2. So an immediate research chal-
lenge would be to explore how the probabilistic non-monotonic learning could
be defined in terms of meta-level probabilistic abductive learning.

A second trend for supporting logic-based learning from noisy data is through
Inductive Learning Answer Set Programs (ILASP) [42]. This has recently been
applied to learn non-deterministic concepts, such as the possible of two outcomes
of tossing a coin. Although different from probabilistic ILP settings where the
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focus is on learning the probabilities of the outcomes of an event, learning non-
deterministic concepts corresponds to learning programs that represent the set
of possible instances of a problem. Such type of learning takes as positive and
negative examples, instance of possible (highly probable) and impossible (highly
improbable) instances of a problem. Learning answer set programs has also very
recently shown the possibility of learning from noisy examples by defining a
notion of weights over labelled examples and penalty score over hypotheses. An
hypothesis that does not cover an example has to pay the penalty of that exam-
ple. Solutions are learned by considering optimisation statements (e.g., minimi-
sation of the penalty score) over the penalty score of the hypothesis.

The approach of inductive learning of answer set programs has also open
up a new opportunity for learning preference models from examples that are
pairwise ordered. Recent results in [41] have shown how such an approach can
be used for performing preference learning. Machine learning solutions to pref-
erence leaning aim at learning to rank any two objects given some examples
of pairwise preferences [24]. Previous attempts of applying ILP to preference
learning has been limited to addressing just the problem of learning ratings,
such as good, poor and bad, rather than rankings over the examples (e.g., [33]).
But ratings are not expressive enough if we want to find an optimal solution, as
we may rate many objects as good when some are actually better than others.
Answer Set Programming, on the other hand, allows for declarative expression
of preferences in terms of constructs called weak constraints. Results in [41] have
recently proposed a learning approaches for learning ASP program containing
weak constraints and it has been successfully applied to the problem of learning
user’s preferences in journey planning to provide personalised recommendations.
Learning preference models from pairwise ordered examples provides also new
opportunity for learning norms and arguments in legal reasoning (e.g., [37]), as
well as application opportunity in any areas where policy, norms and strategies
need to be learned.

Finally, the big underpinning challenge to all these methods is how to increase
the scalability of existing state of the art systems with respect to large hypothesis
spaces. One possible direction is to provide mechanisms for constraining the
hypothesis space using domain-specific knowledge. Some preliminary results have
been proposed in [25], where the notion of constraint-bias has been proposed and
formalised as an additional input to a non-monotonic brave induction task. It
has also been shown to be particular useful not only in controlling the size of the
hypothesis space during the learning process and at the same time guaranteeing
that what is learned is close to the intended program.

We outline below also some of the promising areas in applying ILP to software
development.

Oracle-guided Inductive Synthesis. Inductive synthesis seeks to find software
artefacts (such as programs, automata, specifications) from a given set of exam-
ple (e.g., input/output, counterexamples, execution traces). Oracle guided induc-
tive synthesis is a class of techniques that emphasises the use of an oracle to both
check the correctness of the candidate artefact and to generate examples that
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can further guide the synthesis process. Examples of such methods have been
developed for the purpose of program synthesis (e.g., [73]), model abstraction
refinement (e.g., [14]), assume-guarantee reasoning (e.g., [64]) and assumption
refinement (e.g., [12]). The work presented in [4] shows how model checking
and ILP can be used in tandem to support the inductive synthesis of specifi-
cation refinements. In this setting non-monotonic ILP is used to incrementally
learn specifications from counterexamples generated by a model checker. The
key advantage in using ILP here is that it ensures the consistency of candidate
artefacts (in the case of [4] specification) with previously synthesised ones and
with the available domain knowledge. Though this integration has been shown
to be promising, there remains a number of open questions to be addressed. On
the theoretical side, it is yet to be understood how much the quality of artefacts
and rate of convergence to target artefact is improved by using ILP. Furthermore
the application of ILP in other OGIS setting is yet to be explored.

Program Repair. Program repair is concerned with finding fixes to erroneous
programs. In recent years, techniques such as machine learning (including genetic
programming [75]) and SAT solving (e.g., [10]) have been applied to support
the automation of such process. Machine learning based approaches typically
formulate a program repair task as a learning task requiring the computation
of fixes for faulty programs from passing and failing test cases (such as [44])
or human-written patches (e.g., [48]) or other forms of input. One of the major
limitation of existing methods however is the huge search space for candidate
programs. These are typically handled by either limiting the class of programs
(e.g., loop-free programs), restricting the repair operations to be applied (e.g.,
change to variables only), or deploying a pre-defined set of templates to the
faulty programs. A limiting factor in existing methods is that they do not allow
for conditional repairs, i.e., if one part of the program is changed, then other
parts of the programs should also be modified (consider the case of replacing
an if condition and needing to update else if conditions dependent on it). ILP
methods that allow for semantic and syntactic constraints to be defined over the
language bias could potentially provide repair methods with the capability of
enforcing such constraints on the forms of acceptable repair.

6 Summary

This Chapter outlines recent advances in the area of logic-based learning. It
defines two main learning tasks, non-monotonic learning and theory revision, and
reviews some algorithms for solving them. In contrast to other forms of learn-
ing, logic-based learning computes declarative hypotheses—expressed as logic
programs—that are guaranteed to be consistent with a given background theory
from a set of examples. The learning setting provides syntactic and semantic
control over the set of computable hypotheses. We have illustrated their use in
the context of dynamic specification inference and revision.
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