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Preface

This volume of the Handbook of Experimental Pharmacology, “The Neuropharma-

cology of Alcohol,” was an exciting and challenging editorial effort. Our under-

standing of the pharmacology of the simple organic compound ethanol (referred to

as alcohol in this volume) has flourished in the past 40 years. This volume focuses

on the alcohol’s central nervous system (CNS) effects and its behavioral pharma-

cology related to abuse potential. Many of alcohol’s initial actions on brain targets

that were identified in the late 1980s and early 1990s have stood the test of time and

technological developments; however, far more depth and breadth has been added

to our understanding of alcohol’s pharmacology in the past two decades. With this

reality in mind, it was difficult to assemble 20 of the most important topics for this

volume. There are regrettable gaps in the neurotransmitter systems covered and the

extent of phenotypic outcomes related to chronic alcohol exposure. Nevertheless,

representative mechanisms of alcohol’s neuropharmacology are presented, we hope

to the satisfaction of the interested reader. We have organized the volume by

general emphasis on neurotransmitter systems, neuropeptides, and ion channels as

well as newer topics including neuroimmune systems, genomic mechanisms, and a

current review of preclinical animal and human clinical studies of pharmacotherapy

developments.

The gamma-aminobutyric acid (GABA) and glutamatergic systems were argu-

ably the first receptor systems found to have the sensitivity and selectivity expected

for receptor-mediated alcohol outcomes. These amino acid neurotransmitters con-

tinue to be the most studied in alcohol neuropharmacology. Furthermore, as the

field continues to define both pre- and postsynaptic mechanisms, neuroanatomical

specificity and GABA–glutamate interactions are becoming prominent

explanations of alcohol’s behavioral effects. Therefore, we highlight these recent

developments with five chapters. A general overview of GABAA-gated chloride

channels as a target of alcohol is provided by Chandler, Overton, Ruedi-Bettschen,

and Platt. This is complemented by a chapter by Lovinger on presynaptic release

mechanisms implicated in G-protein coupled receptor actions on GABAeric

synapses. Notable is the range of brain areas where alcohol’s effects appear to

alter synaptic efficacy and the potential cross talk with other drugs of abuse. The

importance of alcohol’s interaction with neurosteroid GABAA networks is

reviewed by Finn and Jimenez. The chapter by Cuzon Carlson emphasizes the
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striatum as a brain area where alcohol alters the excitatory and inhibitory balance of

GABAergic and glutamatergic transmission. The contribution from Rossi and

Richardson also emphasizes anatomical specificity, in this case recent data

implicating the cerebellum as a site for alcohol’s abuse liability through effects

on GABAA channels. Next, the chapter by Hopf and Mangieri focuses on AMPA

glutamate receptor (AMPAR)-mediated effects of alcohol, where advances in

selective antagonists have helped illuminate subunit-specific aspects of ethanol

sensitivity. Finally, another ionotropic receptor system that is prominent in the

abuse aspects of alcohol is the nicotinic acetylcholine receptors. The chapter by

Klenowski and Tapper provides an excellent overview of separate and common

targets of alcohol and nicotine, particularly in the mesolimbic pathways with an

emphasis on the apparent synergistic effects leading to comorbid addiction.

We selected two monoaminergic systems to highlight in this volume. The

dopaminergic system has long occupied a predominant place in

neuropharmacological aspects of addictive drugs, including alcohol. In the review

by Siciliano, Karkhanis, Holleran, Melchior, and Jones, dopaminergic mechanisms

that are determined under similar experimental conditions and translate across

species are emphasized as a way of disentangling a complex literature. In addition

to dopamine, the monoamine norepinephrine (NE) is also implicated in alcohol

reinforcement mechanisms, particularly in relation to arousal, emotional regulation,

and stress processes. The review by Vazey, den Hartog, and Moorman emphasizes

recent findings and provides new directions for better understanding how the NE

system is maladaptively altered by alcohol.

The interaction of alcohol and voltage-dependent ion channels is represented by

one review on calcium channels and two reviews on potassium channels. As with

the GABA and glutamate systems, alcohol research has a relatively long history

with voltage-sensitive calcium channels, particularly with neurophysiological

disturbances such as tremors and seizures. The review by N’Gouemo takes this

complex subject and emphasizes the role of neuronal homeostasis and its disruption

by chronic alcohol exposure. The large conductance voltage- and calcium-depen-

dent potassium channel (BK) and channel interactions with alcohol are reviewed by

Dopico, Bukiya, and Bettinger, with an emphasis on adaptations underlying toler-

ance to alcohol. Comparatively new to the neuropharmacology of alcohol is

disruptions in intrinsic neuronal excitability by alcohol-induced adaptations in

small-conductance calcium-activated (SK), voltage-dependent, and G-protein-

activated inwardly rectifying potassium channels. These potassium channel

mechanisms related to alcohol and impaired neuronal firing are reviewed elegantly

by Cannady, Rinker, Nimitvilai, Woodward, and Mulholland.

The aspect of alcohol’s pharmacology that is receiving renewed attention is

alcohol-induced neuroinflammation involving immune signaling molecules. For

this subject, we have included three reviews. The first review by Kim, McCullough,

Poulson, Sanz-Garcia, Sheehan, Stravitsky, and Nagy provides the important per-

spective of how alcohol interferes with the hepatic immune system. The second

review by Coleman and Crews focuses on innate immune signals as modulators of

neurocircuitry involved in the addiction to alcohol and possibilities for new
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treatment approaches. This is followed by a review from Roberto, Patel, and Bajo

on the effects of key cytokines on molecular properties and synaptic transmission,

particularly in the extended amygdala and hippocampus. From this collection of

reviews, it is clear that targets and pharmacotherapies that emerge from the cancer

biology field can be repurposed to address widespread organ dysfunction, including

neuroinflammation, associated with heavy alcohol drinking.

The final set of reviews on neuropharmacological mechanisms of alcohol

includes a review by Schreiber and Gilpin on the extended amygdala and cortico-

tropin-releasing factor as a basic allosteric mechanism propagating excessive

drinking. This is followed by a review of alcohol’s interaction with dynorphin

and orexin neuropeptide systems by Anderson, Moorman, and Becker. These two

systems are closely interrelated and underlie homeostatic mechanisms that likely

become dysfunctional under chronic alcohol exposure, leading to changes in

motivational states that increase further alcohol consumption. The final mechanistic

review is by Savarese and Lasek on genomic factors induced by alcohol that can

change signal transduction mechanism and gene expression integral to long-term

adaptations in chronic alcohol drinking. The emergence of new pharmacological

agents that target transcriptional factors promises new directions in alcohol

pharmacotherapy.

We conclude this volume with highly informative, comprehensive, and timely

reviews on the practical side of alcohol neuropharmacology: approaches and

outcomes of preclinical and human clinical studies of alcohol

pharmacotherapeutics. The review by Egli provides background on the role of

animal models as sensitive and efficient for rapid screening, but emphasizes that

better translational approaches are needed to have potential pharmacotherapies

retain efficacy in the arena of human outpatient treatment. The final review, by

Litten, Falk, Ryan, Fertig, and Leggio, provides a history and current emphasis on

developing efficacious and safe compounds for treating alcohol use disorder.

We sincerely believe that this volume provides a valuable and instructive view

on the state of the art in our understanding of the depth and breadth of past, present,

and future neuropharmacological research on alcohol. It remains a wonder that this

simple 2-carbon alcohol can result in such complex neuropharmacology. There is

no doubt that as we learn more about receptor systems, their circuitry, co-modula-

tion, adaptive capacities, and underlying functions, we will learn more about the

complex processes that result in alcohol use disorders. We hope you find this

volume helpful in defining important directions of this exciting research.

Portland, OR, USA Kathleen A. Grant

Bethesda, MD, USA David M. Lovinger
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Ethanol’s reinforcing and subjective effects, as well as its ability to induce
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significant mediator of these behavioral effects is the GABAA receptor system.

GABAA receptors are the target for γ-aminobutyric acid (GABA), the major

inhibitory neurotransmitter in the CNS. Structurally, they are pentameric, trans-

membrane chloride ion channels comprised of subunits from at least eight differ-

ent families of distinct proteins. The contribution of different GABAA subunits to

ethanol’s diverse abuse-related effects is not clear and remains an area of research

focus. This chapter details the clinical and preclinical findings supporting roles

for different α, β, γ, and δ subunit-containing GABAA receptors in ethanol’s

reinforcing, subjective/discriminative stimulus, and relapse-inducing effects. The

reinforcing properties of ethanol have been studied the most systematically, and

convergent preclinical evidence suggests a key role for the α5 subunit in those

effects. Regarding ethanol’s subjective/discriminative stimulus effects, clinical

and genetic findings support a primary role for the α2 subunit, whereas preclinical
evidence implicates the α5 subunit. At present, too few studies investigating

ethanol relapse exist to make any solid conclusions regarding the role of specific

GABAA subunits in this abuse-related effect.

Keywords

Alcohol deprivation effect · Drug discrimination · GABAA · Reinforcing effects

· Reinstatement · Relapse · Self-administration · Subjective effects · Two-bottle

choice

1 Introduction

Alcohol use disorders (AUDs) constitute a major public health crisis, with increases

over the past several years in the numbers of individuals reporting past-year alcohol

use (11% increase) and high-risk drinking (30% increase), as well as in those

meeting DSM-IV diagnosis for AUD (49% increase; Grant et al. 2017). Despite

the availability of both behavioral and pharmacological treatments, the majority of

individuals remain untreated (Soyka and Mutschler 2016). This phenomenon likely

reflects the fact that no therapeutic strategy is universally effective and that the

positive outcomes associated with treatment tend not to be permanent. In turn,

the lack of effective therapies suggests a need for a better understanding of

the mechanisms underlying AUDs. Ultimately, greater knowledge should lead to

improved treatment strategies for this patient population.

The use and abuse of alcohol are controlled by multiple effects of the drug,

including its reinforcing and subjective effects, as well as its capacity to induce

relapse. Ethanol’s ability to enhance γ-aminobutyric acid (GABA) neurotransmis-

sion via GABAA receptors is known to be an important mechanism underlying

these abuse-related effects in humans (e.g., Korpi 1994; Davies 2003; Saba et al.

2011). Numerous preclinical studies also provide evidence for the relevance of

GABAA neurotransmission in the effects of ethanol. For example, nonselective

ligands that increase the activity of GABAA receptors amplify several behavioral

effects of ethanol (e.g., Lilijequist and Engel 1982; S€oderpalm and Hansen 1998).

Conversely, inhibition of GABAA receptor activity with nonspecific antagonists or

4 C.M. Chandler et al.



inverse agonists can attenuate both the behavioral and neurochemical effects of

ethanol (Hyytiä and Koob 1995; June et al. 1998). Although the focus of this

chapter is on ethanol’s reinforcing, subjective, and relapse-inducing effects, it is

important to note that other effects of ethanol also likely contribute to its use and

abuse (e.g., tolerance, dependence, withdrawal) and that these effects may be due,

at least in part, to alterations in GABAA receptor function.

2 GABAA Receptors

GABAA receptors are the major inhibitory neurotransmitter receptors in the

CNS. They are transmembrane ligand-gated chloride ion channels, and a number

of pharmacologically and clinically important drugs including benzodiazepines,

barbiturates, neuroactive steroids, and anesthetics produce their effects via GABAA

receptors. These drugs allosterically modulate GABA-induced currents via distinct

binding sites (Sieghart 2015). Although under some debate, there is evidence

that alcohols interact directly with GABAA receptors. For example, alcohols with

different numbers of carbon atoms in their backbones (i.e., methanol [3 carbons] to

dodecanol [12 carbons]) potentiate the effects of GABA on GABAA receptors

expressed in Xenopus oocytes. Interestingly, when the number of carbons exceeds

12, the alcohol is no longer able to potentiate GABA-induced current (Dildy-

Mayfield et al. 1996). This lack of effect of longer-chained alcohols has been

interpreted to indicate that there is a binding pocket on GABAA receptors of a

defined size that can accommodate alcohols. Additional evidence supports this

notion. Using site-directed mutagenesis, Mihic et al. (1997) identified regions in

the second and third transmembrane segments of the α subunit of the GABAA

receptor that are essential for modulation by alcohols. That is, specific mutation

of particular amino acid residues markedly reduced or eliminated the effects of

alcohols on the receptor. Following up on these results, another study showed

that treatment of mutant receptors with propyl methanethiosulfonate, an agent

that covalently binds mutated cysteine residues and occupies the putative ethanol

binding site, completely abolishes enhancement of GABA current by alcohols (i.e.,

octanol; Mascia et al. 2000). Regardless of the specifics of the interaction between

ethanol and these receptors, studies of the single-channel properties of GABAA

receptors show that ethanol-induced potentiation of GABA-induced currents is due

to an increase in the frequency and duration of channel opening as well as an

increase in channel bursting and burst duration. Moreover, the amount of time that

the channel remains in the closed state is reduced (Tatebayashi et al. 1998). The net

outcome of these effects is increased ion flux through the open channel in the

presence of GABA and ethanol and, ultimately, hyperpolarization of the cell and a

reduced tendency to generate an action potential.

Structurally, GABAA receptors are pentamers comprised of subunits from at

least eight different families of distinct proteins (6 α, 3 β, 3 γ, 1 δ, 1 ε, 1 θ, 1 π, and
3 ρ subunits); however, the majority of native receptors consist of 2 α, 2 β, and 1 γ2
subunit (McKernan and Whiting 1996; Rudolph and M€ohler 2004; Fritschy and

Panzanelli 2014). GABAA receptors primarily occur postsynaptically, although

GABAA Receptor Subtype Mechanisms and the Abuse. . . 5



there is evidence that certain subtypes may occur extrasynaptically (e.g., α5-
containing subtype: Sur et al. 1999; Pirker et al. 2000; δ-containing subtype:

Nusser et al. 1995; Melón et al. 2017). In addition to localization relative to the

synapse, particular subunits exhibit distinct localization within the CNS (McKernan

and Whiting 1996). For example, the α5 subunit is found almost exclusively in the

hippocampus, the α4 subunit in the thalamus, and the α6 subunit in the cerebellum.

With a slightly more promiscuous distribution, α2 and α3 subunits can be found in

cortical areas, the limbic system and the spinal cord. The most widely distributed

and abundant GABAA subunit is α1 which can be found throughout the brain

(Pirker et al. 2000). Importantly, expression of these subunits is sensitive to and

can be altered by both acute and chronic ethanol (e.g., Lewohl et al. 1996; Henby

et al. 2006; Kumar et al. 2009; Olsen and Liang 2017). It is this pattern of

distribution (both regionally and in response to ethanol) that likely contributes in

part to the varied effects engendered by ethanol. Importantly, researchers have been

able to capitalize genetically and pharmacologically on the existence of multiple

subtypes (for reviews see Enoch 2008; Stephens et al. 2017) and, for example, use

GABAA subtype-specific compounds to tease apart the contributions of different

GABAA subunits to the abuse-related effects of ethanol (see Table 1 for a listing of

pharmacological agents).

3 Reinforcing Effects of Ethanol

3.1 Models of Ethanol Reinforcement

The reinforcing effects of ethanol have been studied extensively in animals primar-

ily using procedures in which alcohol exposure is controlled by the animal (Brabant

et al. 2014). Although many different ethanol self-administration models exist,

GABAA receptor subtype mechanisms have been studied primarily in the context

of the two-bottle choice paradigm and operant self-administration procedures. The

two-bottle choice procedure is the simplest self-administration model and allows

for the assessment of ethanol’s reinforcing properties through measures of ethanol

consumption and preference. Typically, two bottles are available continuously to the

animal, one containing an ethanol solution and the other water. Using this procedure,

pharmacological manipulations can provide insight into ethanol’s reinforcing pro-

perties by shifting preference toward/away from the ethanol-containing bottle or

increasing/decreasing consumption of the ethanol solution. This procedure can be

modified in a variety of ways including imposing an intermittent schedule to increase

consumption, providing multiple bottles with varying concentrations of ethanol to

inform about compulsive drinking, or assessing the strength of ethanol reinforcement

by adding aversive flavors (Gilpin and Koob 2008; Brabant et al. 2014).

Operant self-administration procedures are more complex than two-bottle

choice and can more directly assess a substance’s reinforcing properties because

animals are required to emit an arbitrary response (e.g., lever press, nose poke) to

gain access to the substance. If the substance serves as a reinforcer, its delivery will

increase the likelihood of the animal emitting the response again. Animals readily
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Table 1 Pharmacological “tools” targeting specific GABAA receptor subunits

Compound Classification Relevant citation(s)

Zolpidem α1-preferring
agonist

Puia et al. (1991), Wafford et al.

(1993b), Huang et al. (2000),

Harvey et al. (2002), Sanna et al.

(2002), and Street et al. (2004)

Zaleplon α1-preferring
agonist

Damgen and Luddens (1999) and

Sanna et al. (2002)

Abercarnil α1-preferring
agonist

Lameh et al. (2000b)

CL 218,872 (3-methyl-6-

[3-(trifluoromethyl)phenyl]-1,2,4-

triazolo[4,3-b]pyridazine)

α1-preferring
partial agonist

Wafford et al. (1993b), Huang et al.

(2000), and Harvey et al. (2002)

βCCt (β-carboline-3-carboxylate-
t-butyl ester)

α1-preferring
antagonist

Huang et al. (2000), Harvey et al.

(2002), and Yin et al. (2010)

3-PBC (3-propoxy-β-carboline
hydrochloride)

α1-preferring
antagonist

Harvey et al. (2002) and Yin et al.

(2010)

3-ISOPBC

(3-isopropoxy-β-carboline
hydrochloride)

α1-preferring
antagonist

Tiruveedhula et al. (2015)

THIP (also gaboxadol; 4,5,6,7-

tetrahydroisoxazolo-[5,4-c]

pyridine-3-ol)

α4/δ-preferring
agonist

Brown et al. (2002)

Neurosteroids α4/6/δ-preferring
agonist/inverse

agonist

Lambert et al. (2003)

QH-ii-066 (1-methyl-7-acetyleno-

5-phenyl-1,3-dihydro-benzo

[e]-1,4-diazepin-2-one)

α5-preferring
agonist

Huang et al. (1996, 2000)

Panadiplon α5-selective
partial agonist

Petke et al. (1992) and Lameh et al.

(2000a)

XLi-093 (bis 8-ethynyl-4H-

imidazo [1,5a]-[1,4]

benzodiazepine)

α5-selective
antagonist

Li et al. (2003)

Ro 15-4513 (ethyl 12-azido-8-

methyl-9-oxo-2,4,8-triazatricyclo

[8.4.0.0^{2,6}]tetradeca-1

(10),3,5,11,13-pentaene-5-

carboxylate)

α5-preferring
inverse agonist

Wafford et al. (1993a), Hadingham

et al. (1995), Huang et al. (2000),

Smith et al. (2001), Kelly et al.

(2002), and McKay et al. (2004)

RY023 (tert-butyl
8-[(trimethylsilyl)ethynyl]-5,6-

dihydro-5-methyl-oxo-4H-

imidazo[1,5a]-[1,4]

benzodiazepine-3-carboxylate)

α5-selective
inverse agonist

Huang et al. (2000), June et al.

(2001), and McKay et al. (2004)

RY024 (tert-butyl 8-ethynyl-5,6-
dihydro-5-methyl-6-oxo-4H-

imidazo[1,5a]-[1,4]

benzodiazepine-3-carboxylate)

α5-selective
inverse agonist

McKay et al. (2004)

(continued)
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respond for the delivery of ethanol, most commonly orally, but ethanol self-

administration also has been demonstrated via other routes of administration (intra-

cranial, Gatto et al. 1994; intravenous, Grupp 1981; intragastric, Fidler et al. 2006).

Depending on the experimental question, operant procedures can be modified to

assess, for example, demand/motivation (progressive-ratio schedule) or preference

(availability of an alternate reinforcer; Gilpin and Koob 2008). Interestingly, despite

the different natures of the procedures, ethanol intake in the two-bottle choice

paradigm is positively correlated with operant ethanol self-administration across

many rodent strains (Green and Grahame 2008).

3.2 GABAA Receptors and Ethanol Self-administration

3.2.1 a1-Containing GABAA Receptors
Evidence of a role for the α1 subunit in the reinforcing properties of ethanol has

been mixed, both in rodent and nonhuman primate studies. α1 knockout mice tested

under a two-bottle choice procedure showed reduced preference for ethanol, as well

as a reduction in ethanol consumption, particularly at higher ethanol concentrations

(Blednov et al. 2003; June et al. 2007). However, consumption of and preference

for a saccharin solution also were decreased, suggesting a more general effect of

deletion of this subunit on consummatory behavior. Similarly, compared to wild

types, α1 knockout mice exhibited significantly lower rates of responding for an

ethanol + sucrose solution, as well as a sucrose-only solution, under operant

conditions (June et al. 2007). In α1 knockin mice in which the α1 subunit was

rendered insensitive to potentiation by ethanol, no differences in consumption of or

preference for ethanol were observed between knockin and wild-type mice (Werner

et al. 2006). Interestingly, though, Yang et al. (2011) used siRNA techniques to

suppress α1 gene expression in the ventral pallidum of high-alcohol-drinking rats

and observed a selective decrease in binge ethanol drinking, but not binge sucrose

drinking or water consumption. This latter finding is supported by studies using

pharmacological approaches. Pharmacological targeting of α1-containing receptors
in rats via systemic injection or infusion into the ventral pallidum of the α1-
preferring antagonist 3-PBC selectively reduced operant responding for ethanol,

while only altering responding for sucrose at the highest dose tested (Harvey

et al. 2002). A second α1-preferring antagonist βCCt selectively reduced operant

Table 1 (continued)

Compound Classification Relevant citation(s)

L-655,708 (ethyl

[S]-11,12,13,13a-tetrahydro-7-

methoxy-9-oxo-9H-imidazo

[1,5-a]pyrrolo[2,1-c][1,4]

benzodiazepine-1-carboxylate)

α5-selective
inverse agonist

Quirk et al. (1996) and Atack et al.

(2006)

α5IA-II α5-selective
inverse agonist

Street et al. (2004)
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responding for ethanol following bilateral infusion into the central nucleus of the

amygdala or into the ventral pallidum in alcohol-preferring rats (Foster et al. 2004;

June et al. 2003). These latter results in rats support a role for the α1 subunit in the

reinforcing properties of ethanol.

In studies with nonhuman primates, the effects of the α1-preferring agonist

zolpidem, as well as βCCt and 3-PBC, were evaluated in rhesus monkeys self-

administering either ethanol or sucrose solutions. Although all of the α1-preferring
compounds (agonists and antagonists) increased the latency to obtain the first

ethanol delivery (indicating that behaviorally relevant doses were under evalua-

tion), these compounds had no effect on consumption of either alcohol or sucrose

(Sawyer et al. 2014). These results suggest that the α1 subunit may not be signifi-

cantly involved in the reinforcing effects of ethanol (or consummatory behaviors).

Paradoxically, 3-PBC, albeit at a higher dose than in rhesus monkeys, reduced

responding, volume consumed, and dose of ethanol self-administered in baboons

(Kaminski et al. 2012). Similar to rhesus monkeys, though, 3-PBC increased the

latency to initiate drinking behavior. The common finding that 3-PBC increases the

latency to begin drinking might provide initial evidence of a role for this receptor

subtype in the drive to initiate drinking (perhaps drinking after abstinence/relapse-

like drinking), rather than in “fundamental” reinforcing effects per se. Using a

similar procedure in baboons and a related α1-preferring antagonist 3-ISOPBC,

Holtyn et al. (2017) saw a decrease in operant responding for ethanol, as well as in

ethanol intake. They also observed decreases in the number of drinks in the first

drinking bout and a shortening of bout duration. Altogether, the preclinical evi-

dence for the involvement of the α1 subunit in the reinforcing effects of ethanol

remains equivocal and may be dependent on the species and/or procedure. Of note,

several genetic association studies utilizing data from the Collaborative Study

on the Genetics of Alcoholism found no association between alcoholism and the

GABRA1 gene encoding the α1 subunit (Song et al. 2003; Dick et al. 2005)

suggesting that this subtype plays little role in this disease in humans.

3.2.2 a2/3-Containing GABAA Receptors
α2- and α3-containing GABAA receptors possess a high degree of molecular/

structural homology in both the extracellular and the transmembrane domains

(Whiting et al. 1999). As such, it has been difficult for chemists to develop

compounds that selectively target one of these subunits over the other. It is only

in the past several years that drugs have been developed that exhibit “functional”

selectivity, rather than binding selectivity, for these receptor subtypes. Despite

genetic association studies indicating a positive association of both GABRA2 and

GABRA3 (genes encoding the α2 and α3 subunits, respectively) with an increased

risk for developing alcoholism across varied populations (e.g., Parsian and

Cloninger 1997; Covault et al. 2004; Edenberg et al. 2004; Enoch et al. 2009; Li

et al. 2014; Melroy et al. 2014; Strac et al. 2015; but see Matthews et al. 2007;

Covault et al. 2008), few researchers have used these drugs to investigate the role of

these subunits in the abuse-related effects of ethanol. Rather, information about the

potential contribution of the α2 subunit, at least, to the reinforcing effects of ethanol
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comes from studies with transgenic mice. While α3 knockin mice exist (e.g., Smith

et al. 2012), they have yet to be evaluated in procedures relevant to ethanol’s abuse-

related effects.

Studies with α2 knockout mice provide weak evidence of a role for this subunit in

ethanol reinforcement and consummatory behaviors. In a two-bottle choice para-

digm, for example, only female knockouts showed reduced preference and intake.

However, females also tended to show lower preference than males for quinine

solutions raising the possibility that the observed reduction in ethanol consumption

merely reflected an enhanced aversion to bitter tastants (Boehm et al. 2004). In an

operant self-administration procedure, male knockout mice did not differ from their

wild-type counterparts in acquisition of self-administration, active lever presses, or

number of reinforcers earned at each ethanol concentration (Dixon et al. 2012).

Stronger evidence linking the α2 subunit to ethanol’s reinforcing effects comes from

studies with α2 knockin mice in which the α2 subunit is rendered insensitive to

ethanol. Blednov et al. (2011) found that ethanol consumption and preference

were generally reduced in male knockin mice under two-bottle choice procedures.

Whereas in other models of alcohol consumption, males and/or females showed

increased consumption and/or preference (Blednov et al. 2011). Based on the findings

from genetic and rodent literature, it seems likely that the α2 subunit has some as yet

clarified role in ethanol reinforcement – a conclusion that likely is not all that

surprising given that α2-containing GABAA receptors can be found in midbrain

dopamine neurons that comprise part of the brain reward circuitry (Okada et al. 2004).

3.2.3 a5-Containing GABAA Receptors
Studies focused on α5-containing GABAA receptors provide the most consistent

evidence of a role for a particular subunit in the reinforcing effects of ethanol.

Moreover, the findings regarding this subtype are convergent, spanning transgenic

mice to outbred/selectively bred rat lines to nonhuman primates. In that regard,

studies with male α5 knockout mice showed that the mutants preferred and con-

sumed less ethanol than their wild-type counterparts in the absence of any differences

in preference for other tastants, suggesting a specific role for this subunit in ethanol

reinforcement (Boehm et al. 2004). In another study, the behavior of female α5
knockout mice was assessed in operant self-administration and two-bottle choice

procedures (Stephens et al. 2005). While the knockouts did not differ from the wild

types in terms of operant self-administration, the α5-selective inverse agonist Ro

15-4513 decreased drinking in both wild types and knockouts, although the drug was

less effective at decreasing self-administration in the knockouts. Another α5-selec-
tive inverse agonist, α5IA-II, also was shown to reduce operant self-administration in

male mice from a C57Bl X 129sv-derived line. These findings would suggest that

inverse agonism at the α5-containing GABAA receptors is sufficient to reduce the

reinforcing effects of ethanol but that α5 subunits are not necessary for ethanol

reinforcement. Interestingly, in two-bottle choice studies, the female knockouts

tended to consume less ethanol, especially at higher concentrations, endorsing a

role for the α5 subunit in ethanol consumption.
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Much of the transgenic mice work was inspired by earlier pharmacological

studies in rats demonstrating a role for the α5 subunit in ethanol self-administration.

For example, intrahippocampal infusions of the α5-selective inverse agonist RY023
reduced operant responding for ethanol but not concurrently available saccharin in

alcohol-preferring P rats (June et al. 2001). Infusions of RY023 into the nucleus

accumbens or ventral tegmental area had no effect on self-administration implying

a specific role of hippocampal α5-containing receptors in the extended ethanol

reward circuitry. Similar findings of selective attenuation of ethanol, but not water,

self-administration were obtained with another selective α5-inverse agonist RY024
and in an outbred rat strain (McKay et al. 2004).

The positive findings in rodents are bolstered by a study in rhesus monkeys

investigating the modulation of operant ethanol self-administration by ligands

selective for α5-containing receptors (Rüedi-Bettschen et al. 2013). These authors

found that L-655,708, an α5-selective inverse agonist, dose-dependently and selec-

tively inhibited ethanol but not sucrose self-administration. Conversely, the α5-
preferring agonist QH-ii-066 enhanced ethanol but not sucrose self-administration.

Importantly, both the inhibition and enhancement of ethanol self-administration

could be blocked by the α5-selective antagonist XLi-093 confirming a role for

this receptor subtype. Together, the preclinical evidence suggests a prominent and

specific role for α5-containing receptors in the reinforcing effects of ethanol. A

conclusion that is supported by a significant association between GABRA5 (the

gene encoding the α5 subunit) and alcohol dependence in humans (Song et al.

2003).

3.2.4 a4/6d-Containing GABAA Receptors
α4- and α6-containing GABAA receptors can most often be found co-expressed

with the δ subunit and mediate slow, tonic neuronal inhibition. Although contro-

versial (cf. Korpi et al. 2007), the expression of these 2 α subunits, concomitant

with β3 and δ subunits, has been shown to render them sensitive to low-to-moderate

ethanol concentrations and implicates them in the acute effects of ethanol often

obtained via social drinking (Wallner et al. 2006, but see Korpi et al. 2007).

Behavioral studies with α4 and α6 knockout mice link these subunits to some of

the behavioral effects of ethanol (e.g., α4: Chandra et al. 2008; Iyer et al. 2011; α6:
Homanics et al. 1997b, 1998). Unfortunately, neither mouse line has been evaluated

in procedures designed to assess reinforcing effects.

α4- and α6-containing receptors have been classified as benzodiazepine-insensitive
receptors due to the fact that classic benzodiazepines do not bind at these receptors.

This lack of binding is driven by the absence of the γ subunit (δ subunit replaces the γ
subunit) that comprises part of the benzodiazepine binding site on the receptor. Few

selective ligands are available to pharmacologically probe these receptor subtypes.

One exception is the ligand THIP (also gaboxadol) which was recently determined to

be a partial agonist that acts preferentially at extrasynaptic GABAA receptors that

co-express either the α4 or α6 subunit (Chandra et al. 2006; Herd et al. 2009). Older

studies in which THIP was used to demonstrate the role of general GABAmodulation

in ethanol reinforcement can now be reinterpreted in light of the newly determined
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selectivity profile of the compound. In that regard, THIP has been shown to enhance

acquisition of voluntary ethanol consumption (Smith et al. 1992) and increase ethanol

intake and preference in rats under a two-bottle choice procedure (Boyle et al. 1993),

implicating the α4 and/or α6 subunits as regulators of the reinforcing properties of

ethanol. However, other studies in mice (Moore et al. 2007; Ramaker et al. 2011; but

see Fritz and Boehm 2014) found that THIP reduced ethanol intake in both two-bottle

choice and drinking-in-the-dark procedures. Of note, though, in the latter studies

THIP also appeared to reduce water intake indicating that the reductions may be

due to nonselective effects of the compound. It also is not clear whether the variable

effects are due to the different species under study. In a more direct evaluation of the

role of α4 subunits in ethanol reinforcement, Rewal et al. (2012) used viral-mediated

RNAi to decrease the expression of the α4 subunit in the nucleus accumbens core and

shell in Long-Evans rats. Subsequently, operant responding for ethanol was observed

to be reduced when the α4 subunit was inhibited in the shell, but not the core.

Together, these findings provide initial evidence of a role for α4- and/or α6-containing
GABAA receptors in the reinforcing properties of ethanol. Future studies probing the

roles of these subunits could focus on the genetic models, as well as on newly

developed pharmacological tools (cf. Forkuo et al. 2016).

As noted above, receptors containing the δ subunit always also contain α4 or α6
subunits. As such, the evidence for these α subunits playing a role in ethanol’s

reinforcing effects also applies to the δ subunit. In a more straightforward evalua-

tion of a role for δ subunits, however, δ knockout mice have been studied in a

two-bottle choice paradigm (Mihalek et al. 2001). These mice show decreased

preference and consumption of ethanol. Another study used viral-mediated RNAi

to decrease δ subunit mRNA and protein in the medial nucleus accumbens shell

and, subsequently, observed a decrease in ethanol but not sucrose intake (Nie et al.

2011). Together, these results imply a potentially key role for the δ subunit, either

alone or co-expressed in receptors with α4 or α6 subunits, in the reinforcing effects
of ethanol. Interestingly, a significant association has been observed between

polymorphisms in GABRA6 (the gene encoding the α6 subunit) and alcohol use

disorder across populations (Radel et al. 2005; Li et al. 2014).

3.2.5 Other GABAA Receptor Subunits
There is some evidence from genetic association studies that particular β subunits

may be related to AUD-relevant phenotypes. For example, the incidence of or risk

for alcoholism has been linked to varying degrees to GABRB1, the gene that

encodes the β1 subunit (Parsian and Zhang 1999; Song et al. 2003; but see McCabe

et al. 2017). Likewise, in Caucasian populations, there is evidence for a relationship

between alcoholism and GABRB3, the gene encoding the β3 subunit (Song et al.

2003). In preclinical studies, both β1 and β2 mutant mice have been evaluated in

self-administration procedures. Mice from an ethanol-averse strain with an ENU25-

induced L285R point mutation or a P228H spontaneous mutation in the GABRB1
gene shifted their behavior to show robust and selective preference for ethanol in a

two-bottle choice procedure. In operant self-administration procedures, the induced

mutant self-administered ethanol to a greater extent (i.e., higher ethanol intakes,
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greater number of active lever presses) than the wild types, especially at the higher

ethanol concentrations (Anstee et al. 2013). In contrast, β2 knockout mice have been

evaluated in a two-bottle choice procedure, and no differences in ethanol consump-

tion or preference were found between the mutants and the wild types (Blednov et al.

2003). Although β3 knockout mice have been developed, they exhibit severe devel-

opmental problems and have not been used widely in ethanol-related studies (e.g.,

Homanics et al. 1997a). Much remains equivocal or unknown regarding the role of β
subunits in the reinforcing effects of ethanol; however, the recent development

of compounds with some selectivity for β subunits (e.g., etomidate) may offer one

avenue for future investigations.

Finally, a significant association was found in the Plains Indian population

between AUD and GABRG1, the gene encoding the γ1 subunit (Enoch et al.

2009). The potential importance of this subunit is underscored by a pilot study in

humans that also found a relationship between a GABRG1 polymorphism and IV

ethanol self-administration in human volunteers (Plawecki et al. 2013). The results

showed that individuals heterozygous at the polymorphism were significantly more

motivated to self-administer than the homozygous individuals. Unfortunately, no

γ1 transgenic mouse models have been developed. Moreover, although γ2 trans-

genic mouse models have been developed and have been exposed to ethanol, it has

not been in the context of reinforcing effects. Finally, although there is evidence of

haplotype and single nucleotide polymorphism association between alcohol depen-

dence andGABRG3 encoding the γ3 subunit (Dick et al. 2004), no γ3 mutant mouse

models exist to explore the association. To our knowledge, no pharmacological

tools exist to probe the role of the γ subunit in ethanol’s behavioral effects.

4 Subjective Effects of Ethanol

4.1 Models of the Subjective Effects of Ethanol

The ability of ethanol to engender characteristic subjective effects may contribute

importantly to its abuse. It has been suggested that the subjective effects of drugs

may contribute to the initiation of drug taking in intermittent users and to the

relapse process in drug abusers (Stolerman 1992). Evaluation of the subjective

effects of ethanol is well established in clinical research, employing a sophisticated

set of questionnaires (Kelly et al. 2003). Some of the most commonly used scales to

study the subjective effects of ethanol include the Visual Analog Drug Effect

Questionnaire (VAS), the Biphasic Alcohol Effect Scale, the Subjective High Assess-

ment Scale, and the Alcohol Sensation Scale. The VAS questionnaire includes

questions regarding whether the subject perceives they feel good/bad after the drinks,

whether the effects of the drink are liked/disliked, and if they feel best/worst. Subjects

rate the intensity of the effects on a scale of 1–100; items are then summed into

positive (i.e., good/like/best) or negative (i.e., bad/dislike/worst) effects. The Biphasic

Alcohol Effect Scale comprises 14 items assessing the sedative and stimulant effects

of ethanol; subjects rate the perceived effects from 1 to 9. Measures again are

grouped into stimulant and sedative categories. The Subjective High Assessment
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Scale includes descriptions of the effects of ethanol (e.g., high, clumsy, dizzy,

nauseated) and assesses the current perceived state in a continuum from “not at all”

to “extremely.” Finally, the Alcohol Sensation Scale measures somatic sensations

elicited by ethanol which can be divided into six subscales: (1) central stimulant

(effects on the brain), (2) dynamic peripheral (excitation, including breathing and

heart rate), (3) warmth glow (blushing), (4) anesthetic (decreased or loss of feeling

sensation), (5) gastrointestinal and (6) impaired function (changes in psychomotor

execution).

Drug discrimination procedures provide a useful experimental counterpart to

subjective effects because there is a close correspondence between the classification

of drugs based on their discriminative stimulus effects in laboratory settings and

subjective effects in humans (Schuster and Johanson 1988). They also serve as a

valuable in vivo technique for evaluating underlying pharmacological mechanisms

(Grant 1999). These procedures assess if a test drug produces similar interoceptive

effects as a training drug. In drug discrimination, a subject is trained to differentiate

between at least two conditions (e.g., training dose v. vehicle) based solely on

interoceptive cues. During training, each condition is paired with a specific

response (e.g., response on specific lever), and each correct response is reinforced

(e.g., money in clinical studies or food reward in preclinical studies). Incorrect

responses yield no reward. An accuracy criterion is typically set (e.g., at least 80%

correct responses based on condition) and must be achieved before testing can

begin. During testing, in which the discriminative stimulus effects of different

doses of the training drug, novel drugs, or combinations can be investigated, all

responses are rewarded as there is no correct or incorrect response (McMahon

2015; Bolin et al. 2016). Drug discrimination procedures are used in both clinical

and preclinical settings.

4.2 GABAA Receptors and Subjective/Discriminative Stimulus
Effects of Ethanol

4.2.1 a1-Containing GABAA Receptors
Clinically, one of the only α1 compounds available for evaluation in humans is

the agonist zolpidem. In a study which evaluated subjective effects in healthy

volunteers, both zolpidem and ethanol increased “drug-liking” and “drug strength

perception” compared to placebo on the VAS scale when administered separately.

However, when zolpidem was administered in conjunction with an ethanol-

containing beverage, ethanol did not have additive effects on the subjective ratings

for zolpidem. This lack of interaction suggests the lack of a common mechanism

underlying the subjective effects of zolpidem and ethanol (Wilkinson 1998).

Preclinical studies using drug discrimination procedures also suggest an incom-

plete overlap of the discriminative stimulus effects of ethanol and α1 agonists. For

example, the α1-preferring agonists zolpidem, abecarnil, and zaleplon only par-

tially reproduced the ethanol discriminative stimulus up to doses that markedly

reduced rates of responding in rats trained to discriminate ethanol from vehicle
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(Bienkowski et al. 1997; Sanger 1997). These results suggest that stimulation of

α1-containing GABAA receptors alone is not sufficient to produce ethanol-like

discriminative stimulus effects.

In squirrel monkeys trained to discriminate ethanol from vehicle, zolpidem,

zaleplon, and the α1-preferring partial agonist CL 218,872 engendered dose-

dependent increases in ethanol-lever responding, but only zaleplon engendered

�80% ethanol-lever responding (Platt et al. 2005). Importantly, in antagonism

studies, the α1-preferring antagonist βCCt failed to alter the ethanol-like effects

of zaleplon and zolpidem, or the effects of ethanol itself. These findings suggest that

the α1 subunit plays little role in the discriminative stimulus effects of ethanol and,

further, that the partial to full substitution profiles of α1 agonists are likely due to

the binding of these drugs to other GABAA receptor subtypes that may have more

prevalent roles in ethanol’s subjective effects. An important caveat to this conclu-

sion comes from a discrimination study in cynomolgus monkeys trained to discrim-

inate either 1 or 2 g/kg ethanol from vehicle (Helms et al. 2008). In this study,

zolpidem was found to fully substitute for the higher dose of ethanol in the majority

of monkeys in this training group; whereas it fully substituted for the lower dose of

ethanol in less than half of the monkeys in this training group. This finding suggests

that an important determinant of ethanol’s discriminative stimulus effects is the

training dose and that different mechanisms may underlie the stimulus effects of

different doses.

4.2.2 a2/3-Containing GABAA Receptors
Genetic association studies have identified single nucleotide polymorphisms in the

GABRA2 gene that appear to moderate expression of the subjective effects of

ethanol (Covault et al. 2004). For example, homozygous carriers of the A-allele

of the rs279858 polymorphism experience more intense subjective effects of

ethanol than do homozygous or heterozygous carriers of the G-allele that previ-

ously has been associated with alcohol dependence (Pierucci-Lagha et al. 2005).

These findings have been confirmed in several studies in which the same polymor-

phism and additional GABRA2 polymorphisms were under study (e.g., rs279869,

rs279837; Roh et al. 2011; Uhart et al. 2013). Moreover, Uhart et al. (2013) showed

that carriers of the minor alleles that have been previously associated with alcohol-

ism showed lower ethanol-induced “negative” subjective effects. As alcoholism

risk often has been associated with an overall low level of response to ethanol,

these findings make intuitive sense. To our knowledge, no functionally relevant

polymorphisms that have been identified in the GABRA3 gene have been evaluated
in the context of ethanol’s abuse-related effects. Moreover, no preclinical studies

exist that explicitly evaluate the role of the α2 and/or α3 subunit in the discrimina-

tive stimulus of ethanol.

4.2.3 a5-Containing GABAA Receptors
Despite a number of α5 compounds available for preclinical study, only one inverse

agonist (α5IA) has undergone sufficient toxicological testing that allows it to

be studied in humans (Nutt et al. 2007). In a double-blind, placebo-controlled
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crossover study, healthy volunteers were administered either α5IA or placebo,

followed later by ethanol. Subjective effects were determined with the Subjective

High Assessment Questionnaire, the Biphasic Alcohol Effects Scale, and the

Alcohol Urge Questionnaire. The results showed that after treatment with the

inverse agonist, the subjective effects of ethanol were unchanged.

The negative findings in humans are in direct contrast to preclinical pharmaco-

logical studies. For example, several studies have evaluated the ability of the α5-
preferring inverse agonist Ro 15-4513 to attenuate the discriminative stimulus

effects of ethanol. In male CD-1 mice trained to discriminate either ethanol from

saline, Ro 15-4513 robustly attenuated ethanol’s discriminative stimulus effects,

engendering dose-dependent reductions in ethanol-lever responding (Rees and

Balster 1988). Similar, although less robust, effects were observed in female

C57BL/6 mice (Middaugh et al. 1991). In male rats, Ro 15-4513 has been shown

to effectively block the effects of low-to-moderate ethanol doses without altering

response rates (Gatto and Grant 1997), an effect not observed in female rats

(Hilturnen and Järbe 1988), suggesting a potential sexually dimorphic effect of

the drug in this species. In cynomolgus monkeys trained to discriminate ethanol

from vehicle, pretreatment with Ro 15-4513 shifted the dose-response function

rightward in all monkeys (Helms et al. 2009).

Using other selective pharmacological tools, the role of the α5 subunit was

probed in ethanol-trained squirrel monkeys (Platt et al. 2005). In monkeys, the

α5-preferring agonist QH-ii-066 and the selective partial agonist panadiplon dose-

dependently engendered ethanol-like discriminative stimulus effects without sig-

nificantly altering response rates. Moreover, the ethanol-like stimulus effects of

QH-ii-066 were attenuated with the selective inverse agonists L-655,708 and

RY023. Finally, the discriminative stimulus effects of ethanol itself were blocked

by L-655,708. This study provides strong evidence of a key role for the α5 subunit

in the subjective effects of ethanol. The reasons underlying the discrepancy

between the human and monkey study are not entirely clear but could be related

to the relative inverse efficacies of the compounds under study. Whereas α5IA
has �25% efficacy at α5-containing receptors (Sternfeld et al. 2004), RY023 and

L-655,708 at least have efficacies of�55% and�35%, respectively, at this subtype

(June et al. 2001; Atack et al. 2006). It is possible that there is a threshold level of

inverse efficacy that must be achieved to attenuate the behavioral effects of ethanol.

4.2.4 a4/6d-Containing GABAA Receptors
A useful literature to examine to determine the role of the α4, α6, and/or δ subunits
in the discriminative stimulus or subjective effects of ethanol is that related to

neuroactive steroid (i.e., neurosteroid) regulation of the behavioral effects of

ethanol. Neurosteroids are endogenous compounds whose actions are mediated in

part by α4δ-containing receptors (Lambert et al. 2003). As reviewed in Helms

et al. (2012), neurosteroids that positively modulate the GABAA receptor (e.g.,

allopregnanolone, pregnanolone) typically engender ethanol-like discriminative

stimulus effects in laboratory animals, whereas those that negatively modulate

the receptor (e.g., epipregnanolone, epiallopregnanolone) can reduce ethanol’s
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discriminative stimulus effects. Likewise, in pregnanolone-trained rats, ethanol

has been found to partially substitute for the discriminative stimulus effects of the

neurosteroid (Eppolito et al. 2012). Interestingly, though, δ subunit knockout mice

learn to discriminate ethanol and show a similar profile of neurosteroid substitution

as the wild types, indicating that the δ subunit is not critical for the ethanol-like

stimulus effects of neurosteroids (Shannon et al. 2004).

Given the findings discussed above, one would predict a key role for the α4
subunit in the discriminative stimulus effects of ethanol. However, in animals

(cynomolgus monkeys, mice) trained to discriminate ethanol, the α4δ-preferring
drug THIP does not produce ethanol-like effects (Helms et al. 2012). Similarly, in

rats trained to discriminate THIP, ethanol failed to engender any substitution up to

doses that virtually eliminated responding nor did ethanol enhance the discrimina-

tive stimulus effects of THIP (Zanettini et al. 2016). These results suggest no

overlap in the discriminative stimulus effects of the compounds. One possible

explanation for these latter observations is that THIP is a direct GABA agonist

and it appears to be the case that the shared effects of ethanol and neurosteroids

occur at low-to-moderate doses that are likely to be modulatory rather than direct-

acting at the GABAA receptor.

5 Relapse-Inducing Effects of Ethanol

5.1 Models of Ethanol Relapse

Relapse to alcohol consumption after a period of abstinence often occurs despite

treatment, with 60–80% of abstinent alcoholics relapsing during their lifetime

(Barrick and Connors 2002; Jaffe 2002). While several criteria for relapse are

recognized, a defining criterion is a return to levels of ethanol consumption equal

to or greater than that observed prior to abstinence. The alcohol deprivation effect

(ADE) models relapse-like drinking and has been observed in both laboratory

animals and humans (Burish et al. 1981; Vengeliene et al. 2014). The ADE can

be defined as a temporary increase in ethanol intake over water upon reexposure to

ethanol access compared with levels observed prior to a period of abstinence (for

review see Vengeliene et al. 2014; Bell et al. 2017).

Relapse is often precipitated by stimuli that elicit craving for ethanol, including

environmental stimuli associated with previous ethanol use (cues; Sinha and Li

2007), acute reexposure to ethanol (priming; Bensançon 1993; Sinha and O’Malley

1999), and stress (Sinha and Li 2007). Preclinically, the reinstatement procedure

models alcohol seeking induced by these triggers. Animals initially are trained to

self-administer ethanol, frequently under conditions in which ethanol delivery is

paired with one or more environmental cues (e.g., lights, tones) or a particular

environment. Operant behavior is then extinguished by omitting both ethanol

deliveries and ethanol-paired cues. Testing consists of reexposure to ethanol,

ethanol-paired cues, and/or a stressor (e.g., foot shock, yohimbine) in the absence

of the ability to self-administer ethanol. Measures of ethanol-seeking behavior
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include both rate of extinction (with slower rates presumed to reflect seeking

behavior) and response rates after exposure to a relapse trigger (Le and Shaham

2002; Bossert et al. 2013). To date, there are very few studies reporting on the role

of specific GABAA receptor subunits in any relapse model, let alone in relapse in

humans.

5.2 GABAA Receptors and the Relapse-Inducing Effects
of Ethanol

5.2.1 a1-Containing GABAA Receptors
As previously discussed, one α1-preferring antagonist (3-PBC) appears to increase

the latency to initiate drinking in nonhuman primates (Kaminski et al. 2012; Sawyer

et al. 2014) raising the possibility that this subunit plays a role in initiating drinking

behavior after, perhaps, abstinence. However, the chained schedule under which

baboons self-administered ethanol included a “link” that directly measured ethanol-

seeking behavior, and measures associated with this link were unchanged by 3-PBC

(Kaminski et al. 2012). Together, these studies provide only weak evidence for a

role of the α1 subunit in ethanol seeking.

5.2.2 a2/3-Containing GABAA Receptors
To our knowledge, no preclinical studies have assessed the role of these subunits

in relapse or relapse-related behaviors. However, a single clinical study (Kareken

et al. 2010) assessed the effects of a polymorphism in the GABRA2 gene on

measures of craving and fMRI response to alcohol cues. Interestingly, all parti-

cipants reported increased craving after exposure to alcohol odors/visual cues, with

no genotype-dependent differences in intensity. The only difference between

genotypes was in BOLD response to alcohol odors in medial frontal areas. These

findings suggest little role for the α2 subunit in self-reported craving, as well as a

dissociation between self-reports and a brain region previously associated with

response to alcohol cues.

5.2.3 a5-Containing GABAA Receptors
In one study in which an α5-selective inverse agonist was administered to healthy

human volunteers (Nutt et al. 2007), the drug failed to alter the subjective “urge to

drink.” As of now, no preclinical studies have assessed the effects of α5 drugs in

relapse models, but these studies may be warranted given the positive effects of

these ligands against other abuse-related effects of ethanol.

5.2.4 a4/6d-Containing GABAA Receptors
As with other abuse-related effects of ethanol, information regarding α4/6-
δ-containing receptors in ethanol relapse comes from studies with neurosteroids.

In that regard, priming injections of allopregnanolone or the longer-acting

synthetic neurosteroid ganaxolone induce ethanol-seeking behavior in reinstate-

ment paradigms in rodents (Nie and Janak 2003; Finn et al. 2008; Ramaker et al.
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2014) implying a specific role for these receptor subtypes in priming-induced

reinstatement. Interestingly, though, THIP failed to engender ethanol-seeking

behavior (Ramaker et al. 2014), again suggesting that there are clear differences

among ligands that directly activate the receptor v. modulate the receptor. Addi-

tionally, neurosteroid-induced “seeking” responses are not always specific to etha-

nol as is evident in mice in which allopregnanolone induced both ethanol- and

sucrose-seeking behavior (Finn et al. 2008). These latter findings suggest that, at

least in mice, allopregnanolone may facilitate appetitive behavior in general, rather

than ethanol-seeking in particular.

6 Conclusions

Ethanol’s reinforcing and subjective effects, as well as its ability to induce relapse,

are powerful factors contributing to its widespread use and abuse. A significant

mediator of these behavioral effects is the GABAA receptor system; however, the

contribution of particular subunits to specific behavioral effects is less clear and

remains an area of research focus. Investigators have utilized various genetic and/or

pharmacological approaches in pursuit of this understanding. Although both genetic

and pharmacological approaches have limitations (e.g., compensatory changes in

subunits in response to gene knockout, incomplete knowledge of compound-specific

pharmacokinetics and brain penetration, limited knowledge of subunit distributions

across model species), one can reach reasonable conclusions regarding the role of

specific subunits in the abuse-related effects of ethanol based on a preponderance of

convergent evidence across both species and assessment techniques.

As indicated, there exists a clear disparity in knowledge regarding the role of

GABAA subunits, ranging from well-studied to virtually unstudied, depending on

the behavioral effect. By far the most widely studied abuse-related effect of ethanol,

in the context of GABAA subunits, is its reinforcing effects with both preclinical

and genetic studies contributing to our knowledge base. Based on these studies, a

key role has been suggested for the α5 subunit in ethanol reinforcement. Roles for

the α1, α2, and α4/6δ subunits are more equivocal, and α3, β, and γ subunits remain

understudied. Less well-studied in the context of GABAA mechanisms are the

subjective/discriminative stimulus effects of ethanol. The strongest evidence of a

role for a particular GABAA subunit in these effects is the clinical and genetic

findings supporting a role for the α2 subunit (preclinical studies are lacking).

Substantial preclinical evidence also implicates α5 subunits in the discriminative

stimulus effects of ethanol. Roles for the α1 and α4/6δ subunits are more ambigu-

ous, and the other subunits remain unstudied. As far as the relapse-inducing effects

of ethanol, it is fair to say that there is no clear understanding of whether a particular

GABAA subunit is important. There are simply too few clinical or preclinical

studies that have addressed this question.
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Hyytiä P, Koob GF (1995) GABAA receptor antagonism in the extended amygdala decreases

ethanol self-administration in rats. Eur J Pharmacol 283:151–159

Iyer SV, Benavides RA, Chandra D, Cook JM, Rallapalli S, June HL, Homanics GE (2011) α4-
containing GABAA receptors are required for antagonism of ethanol-induced motor incoordi-

nation and hypnosis by the imidazobenzodiazepine Ro15-4513. Front Pharmacol 2:18

Jaffe SL (2002) Treatment and relapse prevention for adolescent substance abuse. Pediatr Clin N

Am 49:345–352

June H, Eggers M, Warren-Reese C, DeLong J, Ricks-Cord A, Durr L, Cason C (1998) The effects

of the novel benzodiazepine receptor inverse agonist Ru 34000 on ethanol-maintained

behaviors. Eur J Pharmacol 350:151–158

June HL, Harvey SC, Foster KL, McKay PF, Cummings R, Garcia M, Mason D, Grey C,

McCane S, Williams LS, Johnson TB, He X, Rock S, Cook JM (2001) GABAA receptors

containing α5 subunits in the CA1 and CA3 hippocampal fields regulate ethanol-motivated

behaviors: an extended ethanol reward circuitry. J Neurosci 21:2166–2177

June HL, Foster KL, McKay PF, Seyoum R,Woods JE, Harvey SC, Eiler WJ, Grey C, Carroll MR,

McCane S, Jones CM, Yin W, Mason D, Cummings R, Garcia M, Ma C, Sarma PV, Cook JM,

Skolnick P (2003) The reinforcing properties of alcohol are mediated by GABAA1 receptors in

the ventral pallidum. Neuropsychopharmacology 28:2124–2137

June HL Sr, Foster KL, Eiler WJA, Goergen J, Cool JB, Johnson N, Mensah-Zoe B, Simmons JO,

June HL Jr, Yin W, Cook JM, Homanics GE (2007) Dopamine and benzodiazepine-dependent

mechanisms regulate the EtOH-enhanced locomotor stimulation in the GABAA α1 subunit null
mutant mice. Neuropsychopharmacology 32:137–152

Kaminski BJ, Van Linn ML, Cook JM, Yin W, Weerts EM (2012) Effects of the benzodiazepine

GABAA α1-preferring ligand, 3-propoxy-β-carboline hydrochloride (3-PBC), on alcohol seek-
ing and self-administration in baboons. Psychopharmacology 227:127–136

Kareken DA, Liang T, Wetherill L, Dzemidzic M, Bragulat V, Cox C, Talavage T, O’Connor SJ,

Foroud T (2010) A polymorphism in GABRA2 is associated with the medial frontal response

to alcohol cues in an fMRI study. Alcohol Clin Exp Res 34:2169–2178

Kelly MD, Smith A, Banks G, Wingrove P, Whiting PW, Atack J, Seabrook GR, Maubach KA

(2002) Role of the histidine residue at position 105 in the human alpha 5 containing GABAA

receptor on the affinity and efficacy of benzodiazepine site ligands. Br J Pharmacol

135:248–256

Kelly TH, Stoops WW, Perry AS, Prendergast MA, Rush CR (2003) Clinical neuropharmacology

of drugs of abuse: a comparison of drug-discrimination and subject-report measures. Behav

Cogn Neurosci Rev 2:227–260

Korpi ER (1994) Role of GABAA receptors in the actions of alcohol and in alcoholism: recent

advances. Alcohol Alcohol 29:115–129
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Abstract

Ethanol produces intoxication through actions on numerous molecular and

cellular targets. Adaptations involving these and other targets contribute to

chronic drug actions that underlie continued and problematic drinking. Among

the mechanisms involved in these ethanol actions are alterations in presynaptic

mechanisms of synaptic transmission, including presynaptic protein function

and excitation-secretion coupling. At synapses in the central nervous system

(CNS), excitation-secretion coupling involves ion channel activation followed

by vesicle fusion and neurotransmitter release. These mechanisms are altered by

presynaptic neurotransmitter receptors and prominently by G protein-coupled

receptors (GPCRs). Studies over the last 20–25 years have revealed that acute

ethanol exposure alters neurotransmitter secretion, with especially robust effects

on synapses that use the neurotransmitter gamma-aminobutyric acid (GABA).
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Intracellular signaling pathways involving second messengers such as cyclic

AMP and calcium are implicated in these acute ethanol actions. Ethanol-induced

release of neuropeptides and small molecule neurotransmitters that act on presyn-

aptic GPCRs also contribute to presynaptic potentiation at synapses in the amyg-

dala and hippocampus and inhibition of GABA release in the striatum. Prolonged

exposure to ethanol alters neurotransmitter release at many CNS GABAergic and

glutamatergic synapses, and changes in GPCR function are implicated in many of

these neuroadaptations. These presynaptic neuroadaptations appear to involve

compensation for acute drug effects at some synapses, but “allostatic” effects

that result in long-term resetting of synaptic efficacy occur at others. Current

investigations are determining how presynaptic neuroadaptations contribute to

behavioral changes at different stages of alcohol drinking, with increasing focus

on circuit adaptations underlying these behaviors. This chapter will discuss the

acute and chronic presynaptic effects of ethanol in the CNS, as well as some of the

consequences of these effects in amygdala and corticostriatal circuits that are

related to excessive seeking/drinking and ethanol abuse.

Keywords

Addiction · Alcohol · Amygdala · Cortex · Endocannabinoid · GABA · Glutamate

· Long-term depression · Striatum · Synaptic plasticity · Synaptic transmission

1 Excitation-Secretion Coupling and Modulation at CNS
Synapses

Communication between neurons generally occurs at synapses in which neuro-

transmitters are stored in and released from vesicles. When a neuronal action

potential reaches the presynaptic terminal, the depolarization activates voltage-

gated calcium channels (VGCCs) that allow calcium to enter the terminal. The

increased intraterminal calcium stimulates vesicle fusion in a process known as

excitation-secretion coupling (Catterall and Few 2008). Low rates of vesicle fusion

also occur in the absence of excitation-secretion coupling, and this fusion appears to

involve vesicle- and plasma membrane-associated proteins (Kavalali 2015). Upon

release, the neurotransmitter is available to bind to receptor proteins that either

directly gate ion flux (ligand-gated ion channels, LGICs) or act through intracellular

GTP-/GDP-binding proteins (G proteins) that alter signaling processes (G protein-

coupled receptors, GPCRs) (Betke et al. 2012; Latek et al. 2012).

While postsynaptic receptors are well known to transduce the signals necessary

for anterograde transmission, presynaptic receptors have important roles in feed-

back alterations in the released neurotransmitter (via “autoreceptors”) or crosstalk

to alter release of other neurotransmitters (via “heteroreceptors”). Both LGICs and

GPCRs serve as presynaptic receptors. The LGICs directly influence excitability

of terminals (Engelman and MacDermott 2004; Pinheiro and Mulle 2008), and

although these effects are interesting, they will not be considered in any detail in the

remainder of this chapter given the relative lack of information on ethanol interac-

tion with these presynaptic receptors. The presynaptic GPCRs work through a
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variety of heterotrimeric G proteins and signaling pathways. The heterotrimeric G

proteins consist of obligate α, β, and γ subunits, with the latter forming stable β/γ
complexes. The G proteins are generally classified according to the type of α
subunit present in the complex, and there are several major α subtypes. In this

review the focus will be on three subtypes, Gαi/o, Gαq, and Gαs/olf. Upon GPCR

activation the heterotrimeric complex separates into free α and β/γ components that

then bind to intracellular signaling proteins to alter many aspects of cell biochem-

istry, gene expression, and physiology (Oldham and Hamm 2006).

Activation of GPCRs that couple to Gi/o generally inhibits excitation-secretion

coupling and vesicle fusion and hence neurotransmitter release (Atwood et al. 2014;

Miller 1998). The predominant mechanism involved in this modulation is inhibition

of the VGCCs that mediate excitation-secretion coupling (Herlitze et al. 1996;

Ikeda 1996). However, there is also strong evidence for direct G-protein inhibition

of vesicle release (Blackmer et al. 2001). It must be emphasized that the Gβ/γ
subunit produces these actions by direct binding to channels and vesicle-associated

proteins. The Gαi/o subunit inhibits adenylyl cyclase (AC) and thus reduces

intracellular cyclic AMP levels (Oldham and Hamm 2006). Inhibition of this

enzyme is also implicated in inhibition of neurotransmitter release, especially in

long-lasting inhibition (Atwood et al. 2014; Seino and Shibasaki 2005).

A wide variety of Gi/o-coupled GPCRs exist, with a subtype for almost every

major neurotransmitter and neuromodulator. Many of these receptors will be

discussed throughout this review, with a strong emphasis on the type 1 cannabinoid

receptor (CB1). The CB1 receptor is the target of Δ9-tetrahydrocannabinol, the
major psychoactive ingredient in preparations of Cannabis sativa. This receptor is
normally activated by the endocannabinoid (eCB) fatty acid derivatives produced by

hydrolysis of arachidonoyl membrane lipids (namely, arachidonoyl ethanolamide,

or AEA also known as anandamide, and 2-arachidonoylglycerol, or 2-AG) (Araque

et al. 2017). Functions of the gamma-aminobutyric acid B (GABAB) receptor and

the metabotropic glutamate receptor type 2 (mGluR2) will also be discussed in some

detail.

The GPCRs that couple to Gq-containing GPCRs activate the hydrolysis of

membrane phospholipids by phospholipases, a mechanism activated by the Gαq
subunit (Oldham and Hamm 2006). The best-known pathway is activation of

phospholipase C to catalyze the generation of diacylglycerol (DAG) and inositol

phosphates. Among the many responses to Gαq actions are neuronal excitation

through inhibition of voltage-gated potassium channels and activation of transient

receptor potential (TRP) channels. These effectors may contribute to increased

VGCC activation and increased neurotransmitter release (reviewed in Brown and

Sihra 2008). However, Gβ/γ liberated by dissociation of heterotrimeric Gαq-
containing proteins can inhibit VGCCs and neurotransmitter release (Brown and

Sihra 2008). In addition, the DAG liberated by PLC-mediated hydrolysis can be

further metabolized to the eCB 2-AG.

Activation of Gαs/olf G proteins leads to stimulation of AC activity and cAMP

production, leading to stimulation of protein kinase A (PKA) and the exchange

protein activated by cAMP (EPAC) proteins. GPCRs that activate Gαs/olf regulate
a diverse array of biochemical, protein trafficking, and genetic regulation pathways.
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The direct physiological consequences of this signaling are not widely known, but it

has generally been observed that activation of some Gαs/olf-coupled receptors

stimulates neurotransmitter release (reviewed in Brown and Sihra 2008). Forskolin,

an AC activator, also increases neurotransmitter release at a variety of synapses, via

a mechanism that involves cAMP and PKA activation.

1.1 GPCRs, Heterotrimeric G Proteins, and Synaptic Plasticity

Activation of presynaptic Gi/o-coupled GPCRs can produce either short- or long-

lasting decreases in neurotransmitter release (Atwood et al. 2014). Inhibition of

VGCCs and vesicle fusion are generally responsible for the short-lasting effects

(persisting for seconds-to-tens of seconds). The longer-lasting effects (termed long-

term depression or LTD) persist at least for hours and generally for as long as the

preparation survives. It is not entirely clear what mechanisms contribute to Gi/o-

LTD, but it is most likely that these mechanisms take place within the presynaptic

neuronal elements with the axon terminal being the most likely site of action. LTD

is observed in slice preparations in which the presynaptic soma is not present (e.g.,

at glutamatergic synapses in striatum in slices in which axons have been severed, as

in Yin et al. 2006). Within the axon terminal, inhibition of AC is a prominent

mechanism implicated in Gi/o-LTD, but long-lasting inhibition of VGCCs may also

contribute (Atwood et al. 2014; Pelkey et al. 2008). Inhibition of AC will inhibit the

activity of PKA, and this mechanism may also contribute to LTD. One PKA

substrate, the Rim1 protein, has been implicated in presynaptic LTD (Heifets and

Castillo 2009; Grueter et al. 2010). This phosphoprotein is associated with vesicles

and implicated in control of vesicle fusion. Thus, it is thought that reducing

PKA-catalyzed phosphorylation of Rim1 leads to a decrease in rates of fusion

and neurotransmitter release. Presynaptic protein synthesis via translation also

appears to have a key role in some forms of presynaptic Gi/o-LTD (Yin et al.

2006; Younts et al. 2017). An elegant recent study indicates that presynaptic

GABAergic terminals in the hippocampus contain ribosomal elements that can

mediate protein translation, and this process appears to be necessary for the

expression of Gi/o-LTD at these synapses (Younts et al. 2017).

Presynaptic long-term potentiation (LTP) appears to involve Gs/olf-mediated

processes (Evans and Morgan 2003; Waltereit and Weller 2003). For example,

increased cAMP and PKA activation are implicated in the increased glutamate release

observed during LTP at mossy fiber-CA3 pyramidal neuron synapses in the hippo-

campus (reviewed in Evstratova and Tóth 2014).

2 Acute Ethanol Effects on Neurotransmitter Release

Ethanol acts through a variety of molecular targets to produce acute intoxication.

The stages of intoxication range from euphoria, anxiolysis, and enhanced move-

ment (which can be quite variable across individuals) to motor and cognitive

impairment, sedation, anesthesia, coma, and even death from respiratory depression
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(Abrahao et al. 2017; Mihic and Harris 2011). The blood and brain ethanol

concentrations generally associated with these lower-dose effects range from 5 to

10 mM at the low end through 18 mM (the legal intoxication level in the USA) up

to ~100 mM which is the lethal range for average non-tolerant humans. Thus, in

understanding the molecular and cellular bases of intoxication, it is important to

examine effects of these relevant concentrations. The behavioral manifestations of

intoxication are driven by effects on neurons (and possibly glia) in a number of

brain regions and circuits that control everything from reward and movement to

respiratory control (Abrahao et al. 2017). Thus, there is a need to understand actions

on different cells in different regions to gain a fuller picture of how intoxication

develops. It is also becoming clear that ethanol alters neuronal and synaptic activity

via different mechanisms at different sites within the brain, and thus the field can no

longer assume that effects involving one molecular target in one brain region

will necessarily generalize to other regions (chapters in this volume, including:

Anderson et al. 2017; Cannady et al. 2017; Chandler et al. 2017; Coleman and

Crews 2017; Cuzon Carlson 2017; Dopico et al. 2017; Finn and Jimenez 2017;

Hopf and Mangieri 2017; Klenowski and Tapper 2017; N’Gouemo 2017; Roberto

et al. 2017; Schreiber and Gilpin 2017; Siciliano et al. 2017).

In this chapter the focus is on presynaptic ethanol effects. While ethanol has

clear actions on targets within the postsynaptic elements of neurons, including a

number of ligand-gated ion channels and potassium channels, these effects will not

be discussed at present. The reader is referred to recent reviews that cover these

subjects in detail (Abrahao et al. 2017; Harris et al. 2008; Lovinger and Roberto

2013; Roberto and Varodayan 2017).

2.1 GABA

Ethanol has its clearest acute presynaptic effects at GABAergic synapses in many

brain regions. Early neurochemical studies showed both inhibitory and stimulatory

effects of acute ethanol on GABA release in synaptosomal and brain slice pre-

parations (Howerton and Collins 1984; Strong and Wood 1984; Seilicovich et al.

1988). It is not clear what accounted for these different findings, but they may be

due to differences in the methods for stimulating release (mostly assayed with

stimulation of release by increasing extracellular potassium concentrations) or the

brain regions examined (e.g., as in Peris et al. 1992). Electrophysiological studies

beginning in the 1990s began to establish that ethanol potentiation of GABAergic

transmission at intact synapses is one of the clearest acute effects of the drug (Wan

et al. 1996; Weiner et al. 1997). However, it was often assumed these ethanol

effects only involved changes in GABAA receptor function. The first clear evidence

of increased GABA release within particular brain regions came from studies in

which the ethanol-induced potentiation was accompanied by decreased paired-

pulse facilitation, changes in the frequency of miniature synaptic events, and

other signs of presynaptic facilitation (Ariwodola and Weiner 2004; Nie et al.

2004; Roberto et al. 2003). Such effects were first reported at synapses made by
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GABAergic neurons in the hippocampus (Ariwodola and Weiner 2004; Sanna et al.

2004). Subsequently, similar effects have been observed in the basolateral amyg-

dala, central amygdala, cerebellum, dorsal striatum, nucleus accumbens, spinal

cord, and ventral tegmental area (Bajo et al. 2008; Criswell et al. 2008; Kelm

et al. 2008; Richardson and Rossi 2017; Silberman et al. 2008; Talani and Lovinger

2015; Theile et al. 2008; Wilcox et al. 2014; Ziskind-Conhaim et al. 2003). Ethanol

also enhances GABA release onto cerebellar Purkinje neurons, although this effect

appears to be due mainly to increased firing of Golgi-type interneurons (Carta et al.

2004). Within the BLA ethanol potentiates GABAergic synapses, with presynaptic

mechanisms involved at one population of synapses and adrenergic-dependent

postsynaptic mechanisms at another synaptic population (Silberman et al. 2008,

2012). Evidence for ethanol potentiation of glycine release has also been observed

(Richardson and Rossi 2017; Ziskind-Conhaim et al. 2003).

Interestingly, some of the earliest reports of the presynaptic GABA release-

enhancing ethanol effects also noted that these effects could be reduced by activa-

tion of the Gi/o-coupled GABAB-type GPCR (Fig. 1a) (Ariwodola and Weiner

2004; Wan et al. 1996). This finding provided one of the first clues about

the signaling pathways implicated in ethanol potentiation of GABA release.

Subsequent studies have implicated the cyclic adenosine monophosphate (cAMP)

intracellular signaling pathway in this ethanol action (Fig. 1a). Inhibition of

adenylyl cyclase (the enzyme that catalyzes cAMP formation) and protein kinase

A (PKA, the cAMP-activated protein kinase) has been shown to prevent this

ethanol potentiation (Zhu and Lovinger 2006; Kelm et al. 2008; Talani and

Lovinger 2015). The actions of Gi/o-GPCRs that prevent ethanol potentiation

likely involve AC inhibition, which is a common consequence of activation of

such receptors. Indeed, different Gi/o-GPCRs have now been shown to have this

ethanol-inhibiting action at GABAergic synapses in several brain regions (Fig. 1a)

(Kelm et al. 2008; Roberto et al. 2010; Talani and Lovinger 2015). This raises the

possibility that such receptors may be used to alter ethanol effects, and indeed there

is evidence that CB1, GABAB, and mGluR2 receptor-targeted ligands may be

useful in this context (Agabio and Colombo 2014; Meinhardt et al. 2013; Pava

and Woodward 2012).

Additional mechanisms may also be involved in the presynaptic GABA-

enhancing ethanol action. Knocking out the protein kinase C epsilon (PKCε) isoform
appears to prevent ethanol effects in the central amygdala (CeA) (Fig. 1a) (Bajo et al.

2008). There may also be a role for stimulation of intracellular calcium release that

could enhance excitation/secretion coupling in the cerebellum and VTA (Fig. 1a)

(Kelm et al. 2007; Theile et al. 2009), and P-/Q-type VGCCs appear to be involved

in ethanol potentiation in the CeA (Fig. 1a) (Varodayan et al. 2017). At several

synapses, ethanol has been shown to increase the frequency of action potential- and

calcium-entry-independent miniature inhibitory postsynaptic currents (mIPSCs)

(Hirono et al. 2009; Kelm et al. 2007; Roberto et al. 2003; Talani and Lovinger

2015; Theile et al. 2008; Zhu and Lovinger 2006), and thus mechanisms downstream

of VGCC function are likely involved in this effect (Fig. 1a). The function of

vesicle- and plasma membrane-associated proteins involved in fusion could be

34 D.M. Lovinger



targets for ethanol actions, e.g., through changes in phosphorylation, but this has not

yet been examined in detail.

The ethanol-induced increases in GABA release observed in brain slices

could involve indirect effects due to release of neuromodulators that stimulate

GABAergic terminals (Fig. 1a, b). In the CeA, ethanol potentiation of GABA

release appears to involve activation of receptors for corticotrophin-releasing factor

(CRF), presumably secondary to release of CRF itself (Fig. 1a, b) (Nie et al. 2004).

Serotonin actions at the 5-HT2C receptor are implicated in ethanol potentiation in

VTA (Theile et al. 2009). Application of the nociceptin peptide decreases GABA

release in the CeA and prevents potentiation by ethanol when the peptide is applied

before the drug (Roberto and Siggins 2006). Thus, increased release or decreased

reuptake of small molecules or neuropeptides may underlie some of these ethanol

actions.
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CB1 ligands
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PKA
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Fig. 1 Molecular targets and neuromodulators involved in acute presynaptic ethanol actions at

GABAergic synapses. (a) Schematic diagram of a presynaptic terminal showing suspected sites of

ethanol actions that enhance GABA release (asterisks). The main suspected targets are voltage-

gated calcium channels, AC, vesicle fusion, PKCε, and intracellular Ca2+ stores. Neuropeptides,

including CRF, eCBs, and small molecule neurotransmitters (including feedback vesicular GABA

release), can contribute to or modulate ethanol actions on presynaptic GABA release through

actions on presynaptic GPCRs. Note that ethanol enhances GABA release in many brain regions

but inhibits release in others. (b) Ethanol is thought to stimulate release of neuropeptides

(including enkephalins and CRF) and eCBs, presumably from neurons, and these neuromodulators

act on presynaptic GPCRs to alter GABA release. Arrows indicate stimulation; cross-ended lines

indicate inhibition. AC adenylyl cyclase, CB1 cannabinoid type 1 receptor, CRF corticotrophin-

releasing factor, eCB endocannabinoid, GABA gamma-aminobutyric acid, GPCR G protein-

coupled receptor, Gαi/o alpha i/o G-protein subunit, Gαs/olf alpha s/olf subunit of G protein,

Gβγ beta/gamma dimer subunit of G protein, PKA protein kinase A, PKCε protein kinase C

epsilon
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However, experiments examining ethanol effects in an isolated “neuron-bouton”

preparation provided evidence for a direct effect of ethanol on GABAergic presyn-

aptic terminals (Zhu and Lovinger 2006; Kelm et al. 2007). These neurons are

isolated mechanically such that pinched-off presynaptic boutons remain attached to

the postsynaptic neuron. These boutons still release GABA, and thus spontaneous

GABAergic IPSCs (sIPSCs) can be observed independent of the firing of GABAergic

neurons and influences of any neurons other than the postsynaptic neuron (Jun et al.

2011). In this preparation, ethanol produces a rapid increase in the frequency of

sIPSCs and mIPSCs, indicating a direct effect on GABAergic boutons that appears to

be independent of known modulatory or retrograde signals form postsynaptic neurons

(Zhu and Lovinger 2006).

It must also be noted that ethanol reduces GABAergic synaptic transmission at

some CNS synapses. In the dorsolateral striatum (DLS), acute ethanol application

produces such a reduction at synapses onto the medium spiny projection neurons

(MSNs) made by both other MSNs and by parvalbumin-positive fast-spiking

interneurons (FSIs) (Wilcox et al. 2014; Patton et al. 2016). The inhibition at

FSI-MSN synapses appears to involve a presynaptic decrease in GABA release

brought about through activation of delta opiate receptors (Fig. 1a) (Patton et al.

2016). This finding suggests increased production or release of yet another

neuromodulatory peptide by acute ethanol, in this case an enkephalin (Fig. 1b).

The emerging trend of ethanol modulatory effects through neuropeptide release

opens up the possibility that the drug has a variety of actions at different synapses

depending on the local peptide expression pattern.

Interactions at GABAergic synapses between the acute presynaptic effects of

ethanol and endocannabinoids that act through the CB1 receptor have been espe-

cially noteworthy. Within the nervous system, eCBs are produced by postsynaptic

elements in response to intense neuronal activity. These compounds travel retro-

gradely across the synaptic cleft to act on presynaptic CB1 receptors, Gi/o-GPCRs

that inhibit neurotransmitter release (Fig. 1b). At synapses in the CeA and baso-

lateral amygdala (BLA), CB1 activation prevents ethanol potentiation of GABA

release (as described previously for other Gi/o-GPCRs) (Fig. 1a) (Kelm et al. 2008;

Roberto et al. 2010; Talani and Lovinger 2015). There is also evidence that acute

ethanol exposure can reduce retrograde eCB signaling at GABAergic synapses in

the BLA (Talani and Lovinger 2015). In contrast, acute exposure to ethanol appears

to enhance eCB-mediated LTD at glutamatergic synapses in the dorsomedial

striatum (Yin et al. 2007). It is not yet clear what mechanisms account for the

interaction of ethanol with eCB retrograde signaling. Interactions between ethanol

and eCB/CB1 signaling may contribute to the alterations in the in vivo actions of

ethanol produced by eCB-targeted drugs (Pava and Woodward 2012), a subject that

will be discussed in greater detail in considering the effects of chronic ethanol

exposure on the eCB signaling system.
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2.2 Glutamate and Other Neurotransmitters

Acute ethanol exposure-induced alterations in glutamate release at CNS synapses

have not been observed as frequently as effects on GABA release, but a few

synapses show some sensitivity, with decreased release being the most common

finding (Basavarajappa et al. 2008; Gioia and McCool 2017; Gioia et al. 2017;

Li et al. 2013; Maldve et al. 2004; Silberman et al. 2015; Zhu et al. 2007). In

the basolateral amygdala (BLA), ethanol inhibits glutamate release leading to

decreased posttetanic potentiation, and reduced synaptic vesicle recycling appears

to be the underlying mechanism (Gioia and McCool 2017). The vesicle-associated

protein Munc13-2 is implicated in this effect (Gioia et al. 2017). Ethanol decreases

glutamatergic synaptic transmission in CeA, and this effect is prevented by a CB1

agonist (Kirson et al. 2017) and may also involve N-type VGCCs (Zhu et al. 2007).

While it is presumed that this effect involves presynaptic mechanisms, there is as

yet no direct evidence that this is the case. Potentiation of glutamate release by

ethanol has also been reported (e.g., Xiao et al. 2009; Deng et al. 2009) but less

frequently than inhibitory actions.

The reasons for the differential effects of ethanol on GABA and glutamate

release remain unclear. It is possible that presynaptic molecules that regulate

intracellular calcium release and/or vesicle fusion differ at the different synaptic

types. In addition, the effects on release secondary to increases in neuromodulator

levels and subsequent activation of GPCRs may underlie these differential ethanol

actions. This area should be a rich source of important new findings in the future.

There is evidence that presynaptic effects of ethanol alter release of other

neurotransmitters, but in many cases, it is unclear if these effects involve direct

drug actions on presynaptic terminals (Lovinger and Roberto 2013). In the striatum,

ethanol inhibits DA release at relatively high concentrations in preparations where

DAergic axon terminals are disconnected from their somata (Budygin et al. 2001).

While this may still reflect an indirect modulatory action, the findings indicate a

local effect on terminal DA release.

3 Presynaptic Neuroadaptations to Ethanol Exposure
and Drinking

Prolonged exposure to ethanol, whether through forced exposure or ethanol drink-

ing, produces neuroadaptations that often compensate for the acute drug actions.

However, some adaptations are not always clearly compensatory, and sometimes

appear to produce stable alterations that have an “allostatic” effect on neural

function.
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3.1 GABA

Both compensatory and allostatic neuroadaptations to ethanol have been observed

at GABAergic synapses in different brain regions. While this chapter focuses on the

presynaptic changes at GABAergic synapses, postsynaptic neuroadaptations have

also been observed in many brain regions (e.g., Diaz et al. 2011; Abrahao et al.

2017; Roberto and Varodayan 2017). In the CeA, increased GABAergic transmis-

sion is observed following prolonged ethanol administration via vapor inhalation

(Fig. 2) (Roberto et al. 2004a, 2010). While there is a prominent postsynaptic

component to this neuroadaptation, there is also evidence that the probability of

GABA release and/or the number of GABAergic synapses contributes to this effect.

Reduced function of GABAB presynaptic autoreceptors is one factor that appears to
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Fig. 2 Presynaptic neuroadaptations to chronic ethanol exposure/consumption. Green arrows

indicate increases in GABA and glutamate release observed in several brain regions, as well as

increased CRF that drives increased GABA release in CeA. Red arrows indicate decreases in Gi/o-

GPCR expression/function that occur at both GABAergic and glutamatergic synapses (including

decreased GABA/GABABR feedback onto GABAergic terminals), as well as decreased GABA

release observed in some brain regions. Decreases in GABA release are thought to compensate for

ethanol-induced increases in neurotransmitter release at GABAergic synapses, while activation of

GABAB Gi/o-GPCRs participates in compensatory negative feedback that produces tolerance to

the direct ethanol action on release (dashed arrow). At glutamatergic synapses, increased neuro-

transmitter release and decreased Gi/o-GPCR function may compensate for ethanol-induced

decreases in glutamatergic transmission. Neuroadaptations that have a more allostatic role include

increased GABA release and increased CRF signaling that enhances GABA release. AC adenylyl

cyclase, BLA basolateral amygdala, CB1 cannabinoid type 1 receptor, CeA central amygdala, CRF
corticotrophin-releasing factor, Ctx cortex, DS dorsal striatum, GABA gamma-aminobutyric acid,

GABAB GABA type B receptor, GPCR G protein-coupled receptor, Gαi/o alpha i/o G-protein

subunit, Gαs/olf alpha s/olf subunit of G protein, Gβγ beta/gamma dimer subunit of G protein,

Hipp hippocampus, NAc nucleus accumbens, DRN dorsal raphe nucleus, PKA protein kinase A
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contribute to this increase in release (Fig. 2) (Roberto et al. 2008). Disrupted

eCB/CB1 modulation of GABA release may also contribute to the increased release

following chronic ethanol exposure (Varodayan et al. 2016). Alterations in CRF

levels and function could well play a role in the chronic ethanol actions on CeA

GABAergic transmission given the CRF potentiation involved in the acute drug

action that was discussed previously (Figs. 1 and 2). Indeed, CRF levels are

increased in the amygdala following withdrawal after chronic ethanol exposure,

as measured with in vivo microdialysis (Merlo Pich et al. 1995). The ability of CRF

to enhance GABA release in CeA is augmented in ethanol-dependent rats. The

acute ethanol-induced potentiation of GABAergic transmission on CeA neurons

remains intact following chronic exposure, indicating a lack of tolerance to ethanol.

Withdrawal following chronic ethanol intake results in increased extracellular CRF

levels in the BNST (Olive et al. 2002), but it is not clear if the increase alters

GABAergic transmission in this region. Overall, GABAergic neuroadaptations in

the CeA, and perhaps other parts of the extended amygdala, are not compensatory

but rather induce a general enhancement of inhibition within CeA that is exacer-

bated during intoxication.

GABA release at hippocampal synapses may also be altered through changes in

presynaptic function and modulation. In the dentate gyrus hippocampal subfield,

there is evidence of decreased probability of GABA release following chronic

ethanol intake in monkeys (Fig. 2) (Weiner et al. 2005). Evidence for decreased

GABA release has also been observed in the CA1 subfield (Cagetti et al. 2003).

These effects would appear to compensate for the increased GABA release during

acute ethanol exposure. However, decreased GABAB receptor function has been

implicated in increased GABA release in the CA1 subfield in vivo, and this may be

an allostatic type of neuroadaptation (Peris et al. 1997). Decreased GABAergic

transmission, involving both pre- and postsynaptic mechanisms has also been

observed in the BLA following chronic ethanol drinking, and this neuroadaptation

likely contributes to negative affective states that develop during withdrawal (Diaz

et al. 2011).

GABAergic synaptic transmission onto serotonergic neurons in the dorsal raphe

nucleus is not altered by acute ethanol exposure in naı̈ve mice of the DBA1/J strain.

However, following chronic ethanol exposure, acute application of the drug

produces a robust enhancement of GABA release (Fig. 2) (Lowery-Gionta et al.

2015). This illustrates a case where a change in transmission does not directly

compensate for an acute drug effect, but instead chronic exposure induces a hyper-

sensitivity to ethanol that may alter the pattern of intoxication during subsequent

encounters with the drug.

In the DLS, long-term changes at GABAergic synapses onto MSNs are mainly

allostatic. Decreased frequency of GABAergic mIPSCs has been observed in both

mouse DLS and the monkey putamen nucleus (roughly equivalent to rodent DLS)

following chronic ethanol drinking protocols (Wilcox et al. 2014; Cuzon Carlson

et al. 2011). These findings indicate that the effect of chronic ethanol exposure is

similar to that of acute exposure, with the net effect being a loss of inhibition of

MSN activity/striatal output (Fig. 2). In mouse DLS the effect of acute ethanol is
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lost after chronic drinking (Wilcox et al. 2014), and thus the effect of chronic

ethanol consumption sets a new level of GABAergic inhibition that appears to be

stable.

Chronic ethanol drinking leads to depression of DMS GABAergic synapses, i.e.,

decreased mIPSC frequency, similar to that observed in DLS (Fig. 2) (Wilcox et al.

2014). This decrease is accompanied by a change from acute ethanol potentiation of

GABA release to a slight depression. In the monkey caudate nucleus, GABAergic

synaptic transmission exhibits smaller changes following chronic drinking than

those observed in the putamen, but decreased mIPSC frequency is the most

consistent observation (Cuzon Carlson et al. 2017). Thus, the general effect of

ethanol on striatal GABAergic transmission is a decrease that would generally

allow for increased striatal output driven by synaptic activation of MSNs.

In the VTA, a single in vivo ethanol exposure appears to produce increased

GABA release at synapses on dopaminergic neurons (Melis et al. 2002; Wanat et al.

2009). This potentiation may involve impaired function of GABAB autoreceptors

(Melis et al. 2002). However, effects of more prolonged ethanol exposure remain to

be determined.

3.2 Glutamate and Dopamine

Prolonged ethanol exposure or drinking has generally been proposed to produce an

increase in extracellular glutamate levels (Fig. 2) (Dahchour and De Witte 1999,

2003; Griffin et al. 2014; Meinhardt et al. 2013; Rossetti and Carboni 1995; Roberto

et al. 2004b; Knackstedt and Kalivas 2009). The main evidence supporting this idea

comes from microdialysis data demonstrating increases in extracellular glutamate

in the cortex, dorsal striatum, NAc, and other brain regions (Dahchour and DeWitte

1999, 2003; Knackstedt and Kalivas 2009; Meinhardt et al. 2013; Rossetti and

Carboni 1995). However, it is not clear that the glutamate measured with this

approach is of synaptic origin (e.g., Baker et al. 2002). Indeed, changes in the

function of the cystine-glutamate transporter account for some of this increase

(Baker et al. 2002; Knackstedt and Kalivas 2009). Nonetheless, there is evidence

for presynaptic changes at glutamatergic synapses that would promote increased

glutamate release and direct evidence for increased glutamate release at some brain

synapses (Cuzon Carlson et al. 2011; Lack et al. 2007; Lowery-Gionta et al. 2015;

Ma et al. 2017; Meinhardt et al. 2013; Zhu et al. 2007; Roberto et al. 2004b). There

is also evidence for decreased glutamate uptake in the NAc following chronic

ethanol drinking (Melendez et al. 2005). It should also be noted that synaptic

glutamate release appears to be decreased in the lateral CeA following chronic

ethanol exposure and a 48 h withdrawal (Pleil et al. 2015). Thus, with some

exceptions, it appears that ethanol produces increased glutamate release at synapses

in many brain regions.

Another synaptic change that appears to contribute to increased glutamate levels

is the loss of regulation of release by presynaptic Gi/o-coupled receptors (Fig. 2). In

the NAc and DS, mGluR2 acts presynaptically as an autoreceptor to reduce
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glutamate release (Lovinger and McCool 1995; Manzoni et al. 1997). Chronic

ethanol exposure decreases mGluR2 expression and function (Meinhardt et al.

2013), and this study supports the idea that loss of the mGluR2 autoreceptor

function contributes to enhanced glutamate levels in NAc. Interestingly, mGluR2

is not expressed by the ethanol-preferring P rats and is missing in other rat lines

selected for high ethanol drinking preference (Zhou et al. 2013; Wood et al. 2017).

The impact of this receptor on ethanol seeking and drinking will be discussed later

in this chapter.

Dopamine release in the nucleus accumbens is also altered following chronic

ethanol exposure or drinking in rats and mice and in chronic ethanol-consuming

rhesus monkeys (Siciliano et al. 2017). Some of these changes appear to reflect

direct neuroadaptations in dopamine release mechanisms such as decreased release

in brain slices (Karkhanis et al. 2015; Melchior and Jones 2017), while others

indicate increased dopamine clearance, most likely due to changes in function of

the dopamine transporter (Karkhanis et al. 2015, 2016). It is notable that dopamine

release in male monkey NAc slices is increased following chronic drinking

(Siciliano et al. 2015), in contrast to the findings in rodent. For a more in-depth

discussion of these findings, the reader is referred to the excellent chapter by

Siciliano et al. (2017) in this volume. Inhibition of dopamine release by the Gi/o-

coupled kappa opioid receptor is also enhanced after chronic ethanol exposure in

rodent NAc (Karkhanis et al. 2016; Rose et al. 2016), contributing to a possible

hypodopaminergic state after this exposure. A similar enhancement of kappa

receptor function is observed in NAc and caudate nucleus of chronic ethanol-

consuming monkeys (Siciliano et al. 2015, 2016). Overall, several factors contrib-

ute to an overall decrease in synaptic dopamine levels following chronic ethanol

exposure, particularly during the early stages of abstinence (Hirth et al. 2016).

However, increased DA levels have been observed following protracted abstinence

in rat, and molecular changes that could contribute to increased extracellular

dopamine have been observed in postmortem tissue from patients with AUD

(Hirth et al. 2016). These findings indicate that changes in factors controlling

extracellular DA levels may depend on the period of drug withdrawal.

3.3 Endocannabinoids and LTD

The CB1 receptor is another presynaptic Gi/o-coupled GPCR whose function is

decreased following long-term ethanol exposure (Fig. 2) (Xia et al. 2006; Adermark

et al. 2011a, b; Depoy et al. 2013). As mentioned previously, retrograde signaling by

postsynaptically released eCBs normally activates presynaptic CB1 receptors induc-

ing either short-term synaptic depression or Gi/o-LTD at GABAergic and

glutamatergic synapses throughout the brain (Araque et al. 2017; Heifets and

Castillo 2009).

Chronic ethanol exposure or drinking produces decreased CB1 expression and

function and loss of the LTD induced by activation of this receptor (Basavarajappa

et al. 1998; Xia et al. 2006; Adermark et al. 2011a; DePoy et al. 2013). In the dorsal
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striatum, depression at glutamatergic synapses induced by a CB1 agonist is

lost following chronic ethanol drinking (Adermark et al. 2011a). The loss of

CB1-mediated LTD persists for 7 days following the last drug exposure (Xia

et al. 2006). At GABAergic synapses, eCB-dependent LTD also occurs, and this

synaptic depression indirectly produces a long-lasting increase in neuronal activa-

tion by glutamatergic synapses (Adermark et al. 2009). This type of LTD is also

impaired following chronic ethanol drinking, facilitating a long-lasting potentiation

of striatal output in response to glutamatergic transmission (Adermark et al. 2011b).

These changes in eCB-dependent plasticity combine with the decrease in GABAergic

transmission to increase striatal output in ethanol-exposed animals.

4 Roles of Presynaptic Changes in Ethanol-Related
Behaviors: Focus on Cortico-Basal Ganglia and Amygdala
Circuitry

As the preceding sections indicate, we now know a great deal about the acute and

chronic ethanol effects on neurotransmitter release as well as presynaptic modula-

tion and plasticity. However, less is known about the roles played by these ethanol

actions in the behavioral alterations induced by ethanol. Regarding the conse-

quences of altered GABA release, there are well-known interactions between the

acute effects of ethanol and many drugs that act at GABAergic synapses (Mihic and

Harris 2011). However, these interactions have been mainly ascribed to ethanol

effects on GABAA receptors. Thus, it will be important to investigate if presynaptic

changes at GABAergic synapses contribute to the drug interactions. This is cer-

tainly an important topic, because ethanol drinking in conjunction with drugs that

target GABAergic transmission can result in profound acute toxicity, including

death.

There has been considerable recent attention on ethanol-induced alterations in

presynaptic modulation at synapses in different regions of the striatum. This topic

is of interest to investigators examining ethanol seeking and drinking because

different cortico-basal ganglia circuits involving specific striatal subregions are

implicated in these behaviors. Large regions of the striatum are part of at least

three different cortico-basal ganglia circuits, with the DMS/caudate being part of an

“associative” circuit, the DLS/putamen participating in the “sensorimotor” circuit,

and the NAc being incorporated into the “limbic” circuit (Yin and Knowlton 2006).

As discussed in the previous sections of this chapter, ethanol has effects on aspects

of presynaptic function in striatal components of all these circuits.

The behavioral consequences of ethanol actions in NAc are widely appreciated

(Koob and Volkow 2016). It is clear that this region and the associated limbic

circuit have crucial roles in the rewarding effects of the drug (as shown using

conditioned place preference and ethanol self-administration procedures). Indeed,

alterations within the NAc/limbic circuit are likely to impact affective states,

Pavlovian conditioning and Pavlovian-to-instrumental transfer conditioning, as

well as responses to stress, withdrawal and other factors that contribute to negative
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affect that helps to drive relapse to drinking. A decrease in mGluR2 modulation of

glutamate release at prefrontal cortical inputs to the NAc contributes to excessive

seeking and drinking following chronic ethanol exposure (Meinhardt et al. 2013).

Rats and mice lacking mGluR2 also show enhanced ethanol seeking and drinking

(Zhou et al. 2013; Wood et al. 2017), although it is clear that loss of mGluR2 is only

one of several genetic and molecular factors that influence these behaviors in

alcohol-preferring rats (Zhou et al. 2013). The consequences of mGluR2 absence

or hypofunction presumably reflect loss of a crucial feedback control that normally

prevents the hyperglutamatergic state thought to drive excessive drinking. Treat-

ment with mGluR2/3 agonists reduces ethanol seeking in rodent models (Backstrom

and Hyytia 2005; Rodd et al. 2006; Sidhpura et al. 2010; Zhao et al. 2006). However,

considerable additional work is needed to determine the contributions of other

presynaptic mechanisms in NAc (e.g., alterations in other presynaptic Gi/o-coupled

GPCRs or altered GABA release) to ethanol actions in vivo.

Striatal function within the associative and sensorimotor circuits also has the

potential to contribute to a variety of acute and chronic ethanol actions. The major

focus of research in this area has been the dissociation of effects on “goal-directed”

and “habitual” behaviors, including ethanol seeking and drinking (Lovinger and

Alvarez 2017; Corbit and Janak 2016; Gremel and Lovinger 2017). Indeed, the

DMS/caudate is implicated in goal-directed behaviors, while the DLS has a key role

in habit learning, especially in self-paced “free-choice” instrumental tasks and

response learning tasks. However, this facile dichotomy has overshadowed impor-

tant roles of these regions and the larger circuits in behavioral control and ethanol

actions.

For example, the associative striatum receives strong synaptic inputs from many

regions of frontal cortex, including orbitofrontal and medial prefrontal areas (Haber

et al. 2006; Hintiryan et al. 2016; Hunnicutt et al. 2016). These cortical regions

show structural and functional alterations following long-term ethanol exposure,

both in experimental animals and in humans (reviewed in Barker et al. 2015;

Sullivan and Pfefferbaum 2005). The caudate nucleus also shows reduced volume

after heavy drinking in adolescents (Squeglia et al. 2014). Thus, the associative

circuit is likely to be strongly compromised by this type of ethanol exposure. Given

the key role of the DMS/caudate within this circuitry, it is very likely that altered

cortical communication to this striatal region contributes to this dysfunction. The

evidence that acute and chronic ethanol produce presynaptic alterations in the

DMS and caudate has already been discussed. The “hypofrontality” and altered

DMS/caudate function induced by ethanol are likely to contribute to deficits in

cognitive function and altered decision-making induced by ethanol abuse. The loss

of conscious executive control during intoxication and following chronic ethanol

abuse is likely to contribute to poor decision-making and preservation in drinking

and other associated maladaptive behaviors. There is a growing literature showing

that manipulation of the DMS alters ethanol seeking and drinking (Cheng et al.

2017; Corbit et al. 2012; Nam et al. 2013; Wang et al. 2012), but more work is

needed to determine the mechanisms within this striatal region that contribute to

this behavioral change.
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The sensorimotor circuit has important roles in performance of well-learned

actions. Inputs from sensory and motor cortices drive neurons in the DLS/putamen

(Haber et al. 2006; Hintiryan et al. 2016; Hunnicutt et al. 2016) allowing for output

of automatized movements in appropriate contexts. This circuitry also has key roles

in reinforcement-driven “stimulus-response” learning and behavior, especially in

self-paced operant tasks that do not include a clear Pavlovian component (Yin and

Knowlton 2006). Repeated performance of actions for an outcome in a particular

context leads to development of associations between the external context, the

internal state of the animal, and the action, driven by the history of reinforcement

(Dickinson 1985). Indeed, this form of instrumental learning, now sometimes

referred to as “habit” learning, received the strongest attention prior to charac-

terization of action-outcome “goal-directed” instrumental learning (Colwill and

Rescorla 1990; Dickinson 1985). A number of studies have now shown that chronic

ethanol drinking or exposure enhances this type of behavior in both experimental

animals and humans (Barker et al. 2010; Corbit et al. 2012; Dickinson et al. 2002;

Gladwin and Wiers 2012; Hogarth et al. 2012; Ostlund et al. 2010; Hay et al. 2013;

Mangieri et al. 2012; Sjoerds et al. 2013 although see Sebold et al. 2014, 2017), as

well as other behaviors that involve the DLS (DePoy et al. 2013).

A number of presynaptic changes in the DLS/putamen have been discussed,

including decreased GABA release and decreased Gi/o modulation of cortical/

glutamatergic inputs to this striatal subregion. The general consequence of these

alterations is to decrease modulatory and inhibitory controls on the activation of

MSNs, producing the potential for enhanced DLS/putamen output after chronic

ethanol exposure. This would help to foster the learning and performance mediated

by the sensorimotor circuit, including increased S-R learning. It remains to be

determined what other presynaptic changes occur in other parts of the circuitry

that could also contribute to these behavioral changes.

While the focus of the work on ethanol and sensorimotor circuitry has been on

how enhanced “habit formation” might contribute to ethanol seeking and drinking,

it is important not to lose sight of how the drug effects on sensorimotor circuitry

will alter all behaviors related to this circuitry. For example, the fact that ethanol

increases S-R learning reinforced by food is part of the pattern of impaired

decision-making produced by the drug. This effect has consequences across

the entire spectrum of behaviors altered by ethanol abuse. In combination with

impairment of associative circuit function, enhanced potential for sensorimotor

circuit function likely contributes to loss of executive control and behavioral

flexibility with enhanced control of behavior by the immediate context. It is

worth noting that this effect does not depend on having ethanol as the reinforcer

driving learning, as S-R learning is enhanced by forced ethanol exposure when a

food reinforcer is used in training (Corbit et al. 2012). Thus, it is unlikely that the

enhanced S-R learning is driven by the reinforcement history per se. Rather, it

appears to be the effect of ethanol is on the circuitry that influences how reinforce-

ment drives behavior.

The implications of these presynaptic changes in particular circuit changes for

ethanol seeking and drinking and other drug-related behaviors can be debated, but
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there is evidence from studies in both experimental animals and humans that

they have important roles. Multiple circuits contribute to intoxication, binge and

excessive ethanol drinking, withdrawal effects, relapse to drinking, and excessive

drinking following relapse. Acute exposure to ethanol initiates the processes that

contribute to escalation of drinking. Presynaptic inhibitory changes in the BLA,

CeA, and VTA likely contribute to the rewarding effects of ethanol. Enhanced

inhibition in the associative circuit may play a part in impairment of cognitive

control and executive function that contributes to lack of ability to consciously

control drinking as well as poor decisions made under the influence of ethanol.

Disinhibition of sensorimotor striatum most likely fosters excessive drinking and

poor decision-making by fostering more automatized action patterns. Chronic

ethanol effects will exacerbate many of these changes, particularly the presynaptic

effects on amygdala and sensorimotor circuitry. Presynaptic changes within the

limbic circuitry may also begin to have a larger influence with increasing duration

and amount of chronic ethanol exposure. Increased inhibition in the hippocampal

CA1 region can impair spatial memory and other aspects of episodic learning and

memory (Berry et al. 2009; Gibson 1985; Givens 1995; Hunt et al. 2009; Matthews

et al. 2002; Ryabinin 1998; Ryabinin et al. 2002). Long-term effects of changes in

this limbic region may also underlie the influence of context on relapse to ethanol

seeking and taking. Clearly ethanol has strong effects on GABA release in the CeA,

with CRF participating in both the acute and chronic drug actions. There is now

considerable evidence for participation of these neurotransmitters, and this brain

region in relapse driven by stress and negative affect (Koob and Volkow 2016). The

BLA plays important roles in signaling the relative positive or negative valence of

environmental events within the associative and limbic circuits (Johansen et al.

2011; Wassum and Izquierdo 2015). Presynaptic ethanol effects at both GABAergic

and glutamatergic synapses likely alter the contribution of this brain region to

reward- and punishment-driven behavior, as well as responses to stress. Presynaptic

effects of ethanol that alter serotonergic neuronal function will also alter limbic

circuit responses to stress, in addition to affecting affective states.

The alterations in all three cortico-basal ganglia circuits, including presynaptic

changes, will ultimately participate in a vicious circle of behavioral changes similar

to that proposed by Koob and others (Barker et al. 2015; Koob and Volkow 2016).

Prolonged ethanol exposure combined with conditioning related to ethanol intake

will promote loss of associative circuit-based mechanisms that normally support

decisions to limit drinking. Ethanol will also promote transition from associative/

limbic-based reward-driven actions to sensorimotor reinforcement-based actions that

will promote excessive drinking, especially in environments previously associated

with heavy drinking. This will drive further neuroadaptations including impairment in

prefrontal cortex contributions to associative and limbic circuits leading to compro-

mised executive control and conscious decision-making. Parallel changes in other

limbic cortical areas will promote excessive responding to negative emotions and

stressful/negative environmental events, especially during abstinence. These limbic

changes will help to promote relapse. In the proper environmental/social contexts

relapse will be fostered by a strengthened sensorimotor circuit, and once drinking has
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begun, the dominant sensorimotor circuit and impaired associative circuit will likely

contribute to continued drinking due to automatization of behavior. Often drinking

will then proceed well beyond levels needed to simply overcome negative conse-

quence of abstinence. It will be interesting to determine more about how components

of each of these circuits contribute to different stages of alcohol abuse. For example,

little is known about how acute and chronic ethanol exposure alters sensory and

motor cortex function and how these actions might contribute to altered circuit

function. Even less is known about ethanol actions on the thalamic elements of the

three circuits or effects on basal ganglia regions downstream of the striatum. Presyn-

aptic ethanol actions may occur in many of these brain regions, and discovery of these

effects may add to the list of potential targets for treatment of alcohol use disorders.
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Abstract

The term neurosteroid refers to rapid membrane actions of steroid hormones

and their derivatives that can modulate physiological functions and behavior via

their interactions with ligand-gated ion channels. This chapter will highlight recent

advances pertaining to the modulatory effects of a select group of neurosteroids

that are primarily potent positive allosteric modulators of γ-aminobutyric acidA
receptors (GABAARs). Nanomolar concentrations of neurosteroids, which occur

in vivo, potentiate phasic and tonic forms of GABAAR-mediated inhibition,
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indicating that both synaptic and extrasynaptic GABAARs possess sensitivity to

neurosteroids and contribute to the overall ability of neurosteroids to modulate

central nervous system excitability. Common effects of alcohol and neurosteroids

at GABAARs have stimulated research on the ability of neurosteroids to modulate

alcohol’s acute and chronic effects. Background on neurosteroid pharmacology

and biosynthetic enzymes will be provided as it relates to experimental findings.

Data will be summarized on alcohol and neurosteroid interactions across neuro-

anatomical regions and models of intoxication, consumption, dependence, and

withdrawal. Evidence supports independent regulation of neurosteroid synthesis

between periphery and brain as well as across brain regions following acute

alcohol administration and during withdrawal. Local mechanisms for fine-tuning

neuronal excitability via manipulation of neurosteroid synthesis exert predicted

behavioral and electrophysiological responses on GABAAR-mediated inhibition.

Collectively, targeting neurosteroidogenesis may be a beneficial treatment strat-

egy for alcohol use disorders.

Keywords

Allopregnanolone · Consumption · Ethanol · GABAA receptors · Withdrawal

1 Introduction

Steroid hormones and their derivatives can influence brain function and behavior via

classical genomic actions and rapid membrane effects (see Fig. 1 for biosynthetic

pathway). Pioneering studies of Hans Selye (1942) reported the sedative-anesthetic

activity of several steroidal compounds. Seminal studies by Margarethe Holzbauer

and her colleagues isolated and identified many steroidal compounds from the ovarian

venous blood of the rat (reviewed by Holzbauer 1976) and demonstrated the in vivo

secretion of pregnenolone, progesterone, and allopregnanolone (ALLO; 3α,5α-THP
or tetrahydroprogesterone) by the adrenal gland of the rat in quantities similar to those

secreted by the ovary in estrus (Holzbauer et al. 1985). Then, a mechanism underlying

rapid steroid actions was provided by the demonstration that the synthetic steroid

alphaxalone potentiated γ-aminobutyric acidA receptor (GABAAR)-mediated chloride

currents (Harrison and Simmonds 1984). Subsequently, evidence accumulated that

alphaxalone and steroid derivatives have rapid membrane actions via an interaction

with ligand-gated ion channels (e.g., Belelli and Lambert 2005; Belelli et al. 1990;

Paul and Purdy 1992; Purdy et al. 1990; Rupprecht and Holsboer 1999; Veleiro and

Burton 2009). These findings gave rise to the terms “neuroactive steroids” and

“neurosteroids” to refer to the rapid membrane actions and prompted interest in the

ability of endogenous neurosteroids to modulate physiological functions and behavior

(e.g., Belelli and Lambert 2005; Finn and Purdy 2007; Porcu et al. 2016; Zorumski

et al. 2013).

Alcohol administration affects multiple neurotransmitter systems, and common

effects of alcohol and neurosteroids at GABAARs have stimulated research on the
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ability of neurosteroids to modulate alcohol’s acute and chronic effects (e.g., Finn

et al. 2004, 2010; Helms et al. 2012; Morrow et al. 2001, 2006, 2009; Porcu and

Morrow 2014). This chapter highlights recent advances pertaining to the modula-

tory effects of neurosteroids that are potent positive allosteric modulators of

GABAARs. Background on neurosteroid pharmacology and biosynthetic enzymes

is provided as it relates to experimental findings. Data are summarized on alcohol

and neurosteroid interactions across neuroanatomical regions and models of alcohol

intoxication, consumption, dependence, and withdrawal.

2 Neurosteroid Chemistry and Pharmacology

2.1 Actions on GABAA Receptors (GABAARs)

The progesterone metabolites, ALLO and pregnanolone (3α,5β-THP), and the

deoxycorticosterone (DOC) metabolite, 3α,5α-tetrahydrodeoxycorticosterone
(5α-THDOC), are the three most potent positive modulators of GABAARs

characterized to date (Table 1), as they enhance GABAAR-mediated inhibition

with nanomolar potencies, directly activate GABAARs with micromolar potencies,

and interact with known modulatory sites on GABAARs in a noncompetitive

manner (Belelli and Lambert 2005; Belelli et al. 1990; Carver and Reddy 2013,

2016; Gee et al. 1988; Morrow et al. 1987; Paul and Purdy 1992; Purdy et al. 1990;

Veleiro and Burton 2009). The testosterone metabolite 3α,5α-androstanediol and
the dehydroepiandrosterone (DHEA) metabolite 3α,5α-androsterone potentiate

Table 1 Neurosteroids and actions on GABAA receptors

Neurosteroid GABAA receptor action Parent steroid

ALLO (allopregnanolone;

3α,5α-tetrahydroprogesterone;
3α,5α-THP)

Positive allosteric agonist Progesterone

Pregnanolone (3α,5β-THP) Positive allosteric agonist Progesterone

5α-THDOC
(3α,5α-tetrahydrodexoycorticosterone)

Positive allosteric agonist DOC

(deoxycorticosterone)

3α,5α-androstanediol Positive allosteric agonist Testosterone

3α,5α-androsterone Positive allosteric agonist DHEA

(dehydroepiandrosterone)

PS (pregnenolone sulfate) Noncompetitive antagonist Pregnenolone

DHEAS (dehydroepiandrosterone

sulfate)

Noncompetitive antagonist DHEA

Neurosteroids that are positive allosteric agonists enhance GABAA receptor (GABAAR)-mediated

inhibition with nanomolar potencies, directly activate GABAARs with micromolar potencies, and

interact with known modulatory sites on GABAARs in a noncompetitive manner. ALLO,

pregnanolone, and 5α-THDOC are the three most potent positive modulators of GABAARs

characterized to date. The addition of a sulfate group at C-3 (e.g., to pregnenolone and DHEA)

produces neurosteroids that antagonize GABAAR-mediated inhibition in a noncompetitive man-

ner, so these neurosteroids are noncompetitive antagonists

58 D. A. Finn and V. A. Jimenez



GABAARs (Table 1), but with lower potency than ALLO and 5α-THDOC (Carver

and Reddy 2013, 2016; Porcu et al. 2016). Notably, the interaction of these neuro-

steroids with GABAARs is stereospecific, in that the two key features necessary for

activity are a 5α- or 5β-reduced steroid A-ring and a 3α-hydroxyl group. The
3β-hydroxy analogues are devoid of activity or exhibit a partial inverse agonist

profile. In addition to this structural specificity, elegant work by Hosie and

colleagues determined that specific amino acid residues within the GABAAR α
subunits are critical for neurosteroid potentiation and that distinct residues within the

α-β subunit interface are important for direct activation (Hosie et al. 2006, 2009),

providing unequivocal confirmation of neurosteroid binding sites on GABAARs.

Importantly, the positive modulatory effect of neurosteroids at GABAARs is rela-

tively specific, in that these steroids do not interact with any other neurotransmitter

receptor in the nanomolar to low micromolar concentration range. Interactions of the

pregnane neurosteroids at ionotropic nicotinic acetylcholine, serotonin type 3, N-
methyl-D-aspartate (NMDA), and metabotropic sigma 1 receptors occur within the

10–100 μM range (see Finn and Purdy 2007; Rupprecht and Holsboer 1999) and will

not be discussed, because they are unlikely to have physiological relevance even

under challenge conditions (i.e., stress or pregnancy; see Sect. 2.3).

Nanomolar concentrations of neurosteroids potentiate phasic and tonic forms of

GABAAR-mediated inhibition (e.g., Belelli and Lambert 2005; Carver and Reddy

2016; Helms et al. 2012; Herd et al. 2007; Zorumski et al. 2013), indicating that

both synaptic and extrasynaptic GABAARs possess sensitivity to neurosteroids and

contribute to the overall ability of neurosteroids to modulate central nervous system

(CNS) excitability. Moreover, physiologically relevant concentrations of ALLO

affect presynaptic GABAARs that are located on GABAergic or glutamatergic

terminals to increase GABA (e.g., Park et al. 2011; also reviewed in Herd et al.

2007) or glutamate (e.g., Iwata et al. 2013) release, respectively, but it is not known

whether all GABAAR-active neurosteroids exert similar influences on presynaptic

GABA and glutamate release. Thus, brain regional differences in the anatomical

localization of presynaptic and postsynaptic GABAARs could produce mixed

effects of neurosteroids on CNS excitability.

Steroids with GABA-negative actions also have been reported [e.g., pregneno-

lone sulfate (PS) and DHEAS as the prototypical steroids with a sulfate at C-3],

with the demonstration that PS and DHEAS antagonized GABA-gated chloride

uptake and conductance in a noncompetitive manner (Table 1; discussed in detail in

Finn and Purdy 2007). It is interesting that sulfated and unsulfated pregnane

neurosteroids (e.g., ALLO) have opposing effects on GABAAR function (Park-

Chung et al. 1999). Thus, even though sulfation of steroids is a major enzymatic

reaction to facilitate steroid excretion, it also can change the pharmacological

activity of steroids (Mellon and Vaudry 2001). While the presence of sulfated

steroids in the mammalian brain is still a matter of controversy (Do Rego et al.

2009; Finn and Purdy 2007), it is possible that the addition and removal of the

sulfate group could be a critical control point for neurosteroid modulation of

neurotransmitter receptors (see Gibbs and Farb 2000).
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2.2 Neurosteroid Synthesis and Enzyme Distribution

Most of the enzymes present in the adrenals, gonads, and placenta have been found in

the brain, and steroid synthesis is dependent on the tissue-, cell-, and developmentally

specific expression of these enzymes (reviewed in Mellon and Vaudry 2001). As

depicted in Fig. 1, the first rate-limiting step in steroid synthesis is the conversion of

cholesterol to pregnenolone via the P450 side chain cleavage (P450scc or CYP11A1)
enzyme upon the translocation of cholesterol from the outer to the inner mitochon-

drial membrane by the chaperone proteins steroidogenic acute regulatory protein

(StAR; Stocco 2000) and translocator protein 18 kDa (TSPO; formerly peripheral or

mitochondrial benzodiazepine receptor; Papadopoulos et al. 2006). And evidence

confirms brain regional expression of StAR and P450scc (Kimoto et al. 2001; King

et al. 2002). Then, through sequential steps, pregnenolone is converted to ALLO via

3β-hydroxysteroid dehydrogenase (HSD), 5α-reductase, and 3α-HSD, with proges-

terone and 5α-dihydroprogesterone as intermediates (Fig. 1). The reduction of pro-

gesterone, testosterone, and DOC via 5α-reductase is another rate-limiting step for

neurosteroid production (Celotti et al. 1997). Within the CNS, 5α-reductase has been
detected in neurons, astrocytes, and glia, and the predominant isoform is type 1

(see Mellon and Vaudry 2001). We found that 5α-reductase expression is widely

distributed throughout mouse brain, with highest expression in specific regions of the

cerebral cortex, hippocampus, thalamus, hypothalamus, and amygdala (Roselli et al.

2011). Agis-Balboa et al. (2006) demonstrated that 5α-reductase and 3α-HSD are

co-localized in cortical, hippocampal, and olfactory bulb glutamatergic principal

neurons and in some output neurons of the amygdala and thalamus as well as

in principal GABAergic output neurons such as striatal medium spiny, reticular

thalamic nucleus, and cerebellar Purkinje neurons, but not in cortical and hippo-

campal GABAergic interneurons. Thus, GABAAR-active neurosteroids likely have

important paracrine and autocrine effects on neuronal activity (discussed in Agis-

Balboa et al. 2006).

2.3 Brain and Peripheral Sources

GABAAR-active neurosteroids are synthesized from the metabolism of progester-

one, DOC, testosterone, and DHEA (Fig. 1, Table 1), and a number of studies have

established that the enzymes identified in classic steroidogenic tissues are also

found in the nervous system (see Do Rego et al. 2009; Mellon and Vaudry 2001)

and are maintained in the brain after gonadectomy (GDX) and adrenalectomy

(ADX) in male and female rats (Kim et al. 2003). Thus, it is generally accepted

that brain neurosteroid levels reflect a combination of neuroactive compounds

produced de novo as well as peripherally derived precursor steroids that are

metabolized to neurosteroids in the brain. For this reason, it has been proposed

that the definition of the term “neurosteroid” be broadened to include both sources

of neuroactive steroids (Mellon and Vaudry 2001). So, we will use the term

“neurosteroid” throughout this chapter.
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Concentrations of the progesterone derivative ALLO, the most potent positive

allosteric modulator of GABAARs (e.g., Belelli and Lambert 2005), are detected in

the brain or plasma/serum of the rat, mouse, dog, monkey, and human (e.g., see

Finn et al. 2004; Porcu and Morrow 2014 and references therein; also Caruso et al.

2013; Cozzoli et al. 2014; Hill et al. 2005; Jensen et al. 2017; Porcu et al. 2009,

2010; Romeo et al. 1996; Snelling et al. 2014). In addition, brain ALLO level is

detectable in ADX animals and is higher than plasma level in intact animals (see

Finn and Purdy 2007).

Evidence indicates that endogenous GABAAR-active neurosteroids such as

ALLO and 5α-THDOC can reach levels that are within the range of concentrations

previously shown to potentiate the in vitro action of GABA at GABAARs. ALLO

and 5α-THDOC levels fluctuate in response to acute stress in rodents, with signifi-

cant increases following ambient temperature swim, foot shock, or CO2 inhalation

in male rats to the equivalent of 10–30 nM (Barbaccia et al. 2001; Purdy et al. 1991;

Reddy and Rogawski 2002) and significant increases following restraint, tail

suspension, or predator odor exposure in male and female mice to the equivalent

of 10–20 nM (Cozzoli et al. 2014). Notably, the swim stress-induced increase in

5α-THDOC exerted an anticonvulsant effect (Reddy and Rogawski 2002). Plasma

ALLO levels also were increased significantly during PhD examination stress in

males and females (Droogleever Fortuyn et al. 2004). In the female rodent, brain

and plasma levels of ALLO temporally follow those of progesterone, with levels in

the range of 10–30 nM during estrus and increasing to 100 nM during pregnancy

(e.g., Concas et al. 1998; Finn and Gee 1994; Paul and Purdy 1992). Taken in

conjunction with the finding that manipulation of local ALLO levels within the

hippocampus and thalamus significantly altered GABAAR-mediated inhibition

(Belelli and Herd 2003; Brown et al. 2015), the results suggest that fluctuations

in endogenous neurosteroid levels are physiologically relevant (e.g., Belelli and

Lambert 2005).

3 Physiological Significance of Neurosteroid Fluctuations
and Interaction with Alcohol

Neurosteroids that are positive modulators of GABAARs possess anesthetic, hyp-

notic, anticonvulsant, anxiolytic, antidepressant, analgesic, and amnesic effects

(see reviews by Finn and Purdy 2007; Gasior et al. 1999; Porcu et al. 2016).

These behavioral responses are consistent with in vitro evidence and suggest that

GABAergic steroids modify the functioning of central GABAARs in vivo. Thus, if

the findings with exogenous administration of GABAAR-active neurosteroids are

indicative of GABAAR sensitivity to endogenous concentration, then endogenous

neurosteroids may participate in the physiological control of CNS excitability.

Consistent with this idea, use of a 5α-reductase inhibitor to decrease endogenous

ALLO levels was proconvulsant (Gililland-Kaufman et al. 2008) and blocked the

anticonvulsant effect produced by a stress-induced increase in 5α-THDOC levels

(Reddy and Rogawski 2002).
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Based on the similar pharmacological profile ofGABAAR-active neurosteroids and

alcohol, there is interest in the ability of neurosteroid fluctuations to influence alcohol

sensitivity. Acute administration of alcohol (1–2.5 g/kg) produces a steroidogenic

effect, measured by a significant increase in levels of ALLO and 5α-THDOC and their

precursors in the brain and plasma of rodents and in plasma ALLO levels in humans,

although some conflicting results inmice and humans have been reported (see reviews

by Finn et al. 2004; Kumar et al. 2009; Morrow et al. 2006; Porcu and Morrow 2014)

and increases have not been detected in monkeys (reviewed in Helms et al. 2012).

Notably, these alcohol-induced elevations in GABAAR-active neurosteroids reach

concentrations that enhance GABAAR inhibition and influence several behavioral

effects of alcohol (Finn et al. 2004; Kumar et al. 2009; Morrow et al. 2006; Porcu and

Morrow 2014), indicating that the alcohol-induced increases in GABAAR-active

neurosteroid levels are physiologically relevant. For example, a reduction in

GABAAR-active neurosteroid levels via pretreatment with a 5α-reductase inhibitor

or prior ADX significantly reduced alcohol’s anticonvulsant, sedative, amnesic, anxi-

olytic, antidepressant-like, and pro-aggressive effects. Moreover, alcohol’s steroido-

genic effect in the rat was demonstrated in hippocampal slices in vitro (Sanna et al.

2004), was enhanced in animals with a chronic stress-induced decrease in endogenous

ALLO levels (Serra et al. 2003), andwas associatedwith increased StARexpression in

the cortex, hypothalamus, and hippocampus (Kim et al. 2003; Serra et al. 2006).

Subsequent studies identified two independent mechanisms contributing to

alcohol’s steroidogenic effect in the rat: pituitary activation to release adreno-

corticotropic hormone (ACTH) and de novo adrenal StAR formation (Boyd et al.

2010a). Collectively, these data indicate that fluctuations in GABAAR-active

neurosteroids influence sensitivity to many behavioral effects of alcohol.

Neurosteroids also possess rewarding properties in rodents and monkeys.

Rodents exhibit conditioned place preference to ALLO, display preference for

ALLO solutions over water, and consume anxiolytic doses of ALLO (Finn et al.

1997, 2003; Sinnott et al. 2002). And one study in monkeys determined that

pregnanolone functioned as a reinforcer in animals trained to administer this

neurosteroid intravenously (Rowlett et al. 1999). However, in contrast to the ability

of neurosteroids to contribute to several behavioral effects of alcohol, as described

above, ALLO levels did not influence alcohol-induced conditioned place prefer-

ence in mice (Gabriel et al. 2004; Murphy et al. 2006).

Drug discrimination procedures indicate that neurosteroids that are positive

modulators of GABAARs have alcohol-like discriminative stimulus properties

in rodents and nonhuman primates, whereas neurosteroids that are negative

modulators of GABAARs do not substitute for alcohol (reviewed in Morrow et al.

2006). In female macaques, lower doses of ALLO substituted for alcohol during the

luteal versus follicular phase of the menstrual cycle (Grant et al. 1997), suggesting

that females have enhanced sensitivity to alcohol’s subjective effects when proges-

terone and ALLO levels are high. In male rodents, ALLO promoted reinstatement of

extinguished alcohol self-administration (Finn et al. 2008; Nie and Janak 2003),

and similar results were found with ganaxolone (GAN; Ramaker et al. 2014), the

3β-methylated analogue of ALLO that has a similar pharmacological profile as
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ALLO but a half-life about three to four times longer when given systemically

(Carter et al. 1997). And consistent with the importance of the GABAergic system in

regulating alcohol consumption, systemic administration of ALLO and GAN pro-

duced dose-dependent and biphasic changes in alcohol intake in a variety of

procedures in male rodents (see Morrow et al. 2006; Ramaker et al. 2015), with

low doses enhancing, and higher doses reducing, alcohol self-administration. The

5α-reductase inhibitor finasteride (FIN) also suppressed alcohol consumption in

male mice via different effects on the microarchitecture of alcohol drinking than

ALLO, and female mice exhibited a lower sensitivity to the modulatory effects of

ALLO and FIN on alcohol drinking (reviewed in Finn et al. 2010). Interestingly, FIN

reduced the subjective effects of alcohol in humans, an effect that was dependent on

GABAAR α2 subunit genotype (Pierucci-Lagha et al. 2005), and the 5α-reductase
inhibitor dutasteride reduced alcohol consumption in male subjects classified as

heavy drinkers (Covault et al. 2014). Collectively, there is a strong relationship

between neurosteroid levels and alcohol consumption, subjective effects, and

measures of relapse, but additional studies are necessary to better understand the

genetic factors and mechanisms underlying sex differences in different species.

Following the induction of physical dependence in rodents, differences in

sensitivity to the anticonvulsant effect of GABAAR-active neurosteroids or syn-

thetic neurosteroids have been identified (see Finn et al. 2010 and references

therein; also Cagetti et al. 2004; Devaud et al. 1995). Specifically, rodents with a

low withdrawal convulsive profile (e.g., rats, C57BL/6J mice, Withdrawal Seizure-

Resistant (WSR) selected line) exhibit increased sensitivity to the anticonvulsant

effect of ALLO and alphaxalone versus controls. In contrast, mice with a high

withdrawal convulsive profile (e.g., DBA/2J mice, Withdrawal Seizure-Prone

(WSP) selected line) exhibited tolerance to ALLO’s anticonvulsant effect during

withdrawal when compared to sensitivity in controls. Notably, these changes

in sensitivity corresponded to leftward (rats) and rightward (WSP mice) shifts in

functional sensitivity of GABAARs to ALLO, and similar behavioral results were

found in males and females. These findings suggest that the plasticity of GABAARs

during alcohol withdrawal may differ between alcohol withdrawal seizure-prone

and withdrawal seizure-resistant genotypes, particularly with regard to ALLO

sensitivity.

4 Alcohol and Neurosteroid Interactions Across
Neuroanatomical Regions

As described above, acute stress (Sect. 2.3) and acute alcohol administration

(Sect. 3) can significantly increase GABAAR-active neurosteroid levels and influ-

ence behavior and alcohol sensitivity. In contrast, chronic stress (e.g., social iso-

lation) produces a consistent decrease in endogenous ALLO levels that is

associated with an increase in anxiety-related behavior and contextual fear

responses, decreased sensitivity to the hypnotic effects of GABAAR-active
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compounds, and an enhanced steroidogenic effect to acute alcohol administration

and acute stress exposure (see Biggio et al. 2014; Finn and Purdy 2007; Pibri et al.

2008; Serra et al. 2003). Thus, the period of exposure to stress may produce

opposite effects on endogenous neurosteroid levels and subsequent physiological

responses.

Endogenous neurosteroid levels influence the rebound neuronal hyperexcitabil-

ity seen during withdrawal from a hypnotic alcohol dose (i.e., acute withdrawal

response). Specifically, ADX/GDX to decrease endogenous neurosteroid levels

increased acute withdrawal-induced convulsive behavior, which was reversed

by replacement with GABAAR-active steroid precursors and metabolism to

GABAergic neurosteroids (Kaufman et al. 2010). Additionally, chronic alcohol

exposure and withdrawal is associated with a decrease in GABAAR inhibition

mediated by a variety of factors that includes a reduction in the steroidogenic

effect of acute alcohol administration (Boyd et al. 2010b), functional changes in

GABAAR properties, and a decrease in endogenous ALLO levels (see Finn et al.

2004; Kumar et al. 2009). In rodents, monkeys, and humans, withdrawal decreases

ALLO levels in plasma and several brain regions (Beattie et al. 2017; Cagetti et al.

2004; Hill et al. 2005; Jensen et al. 2017; Maldonado-Devincci et al. 2014; Romeo

et al. 1996; Snelling et al. 2014). For example, a withdrawal-induced decrease in

hippocampal ALLO levels was associated with a significant increase in anxiety and

impairment in hippocampal-dependent memory function in male rats (Cagetti et al.

2003, 2004). In small cohorts of male and female alcoholics, the decrease in ALLO

and 5α-THDOC levels corresponded to an increase in the subjective ratings of

anxiety and depression during days 4–5 of withdrawal, versus controls (Hill et al.

2005; Romeo et al. 1996). Furthermore, an examination of the pattern of changes in

several GABAAR-active neurosteroid levels in mouse brain and plasma during

withdrawal revealed a broad and complex dysregulation in neurosteroid biosynthe-

sis (Jensen et al. 2017; Snelling et al. 2014). The brain versus plasma differences in

the withdrawal-induced changes are consistent with the findings that basal neuro-

steroid levels in plasma do not simply reflect levels in cortex and hippocampus

(Caruso et al. 2013) and argue for independent regulation of neurosteroid synthesis

in the periphery and brain during withdrawal. Thus, chronic alcohol withdrawal

produces a consistent reduction in endogenous ALLO levels and dysregulation in

neurosteroid synthesis that may be associated with increased cellular excitability

and increased aversive behavioral effects (e.g., anxiety, depression, convulsive

activity).

4.1 Hypothalamic-Pituitary-Adrenal (HPA) Axis Stress Circuit

Acute stress stimulates the release of corticotropin-releasing hormone (CRH) from

the paraventricular nucleus of the hypothalamus (PVN), ACTH from the pituitary,

and glucocorticoids from the adrenal (cortisol in primates and corticosterone in

rodents). And as mentioned in Sect. 2.3, acute stressors also increase levels of the

GABAAR-active neurosteroids ALLO and 5α-THDOC (see Finn and Purdy 2007).
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Administration of ALLO reduced anxiety that was induced by CRH (Patchev et al.

1994) in addition to exerting actions within the hypothalamus to dampen the

activity of the HPA axis (Patchev et al. 1994, 1996). These data demonstrate that

GABAergic neurosteroids participate in the activity of the HPA axis.

Acute alcohol stimulates the HPA axis (e.g., Lee et al. 2004; Ogilvie et al. 1997;

Rivier and Lee 1996) and synthesis of neurosteroids (see Sect. 3). With repeated

alcohol exposure, both the HPA axis and neurosteroid synthesis show tolerance

(Boyd et al. 2010b; Richardson et al. 2008). In cynomolgus macaques, disinhibition

of the PVN (following naloxone, a μ-opioid receptor antagonist), but not stimula-

tion of the pituitary (ovine-CRH) or adrenal gland (exogenous ACTH), increased

pregnenolone levels (see Fig. 1, Porcu et al. 2006), indicating the PVN plays a role

in regulation of neurosteroid synthesis. Interestingly, DOC secretion was increased

following pituitary stimulation (ovine-CRH), but not disinhibition of the PVN

(naloxone; Jimenez et al. 2017), suggesting possible differential regulation of

neurosteroid precursors by activation of the HPA axis. Regulation of DOC by the

HPA axis was altered during the induction of alcohol drinking using schedule-

induced polydipsia, where the response to ovine-CRH was blunted and the response

to naloxone was potentiated (Jimenez et al. 2017), hinting that an additive effect of

schedule-induced stress and alcohol consumption may influence the relationship

between the HPA axis and neurosteroid synthesis. And, de novo synthesis has

been demonstrated following alcohol exposure in the PVN (Fig. 2). Acute alcohol

administration (2 g/kg) significantly increased ALLO immunohistochemistry (IHC)

in rats, and this effect was independent of the adrenal glands (Cook et al. 2014a, b).

Although alcohol interacts with several components of the HPA axis, the

increase in HPA axis activity relies on activation of the PVN (Lee et al. 2004).

The majority of synaptic connections within the PVN are GABAergic and

glutamatergic (Miklós and Kovács 2002; van den Pol et al. 1990). Tonic inhibition

of the PVN likely occurs via glutamatergic forebrain afferents that increase GABA

release in the PVN or activation of the PVN via inhibition by upstream GABAergic

projection neurons (Fig. 2, Cullinan et al. 2008). Thus, GABAAR-active neuro-

steroids are particularly well suited to modulate activity in the PVN, since physio-

logical concentrations of ALLO (10–100 nM) inhibit the output of PVN neurons

(i.e., CRH release) via a potentiation of GABAARs (Gunn et al. 2011). This ability

of GABAAR-active neurosteroids to inhibit CRH release could contribute to a

termination of the stress response.

4.2 Extra-hypothalamic Stress Circuit

Amygdala: The amygdala contributes to fear- and anxiety-like behavior as well as

HPA axis activity. Its role in alcohol use disorders (AUDs) is rapidly gaining

attention (see Gilpin et al. 2015). The amygdala plays a pivotal role in the assess-

ment of and response to danger, with connections to the cortex and locus coeruleus

and projections to the striatum, hypothalamus, midbrain, and brainstem (simplified

circuit in Fig. 2; see Gilpin et al. 2015 for details on amygdala microcircuitry and
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projection neurons). Microinfusion of ALLO into the central nucleus of the amyg-

dala (CeA) decreased anxiety-like behavior in rodents (Akwa et al. 1999; Engin and

Treit 2007). Electrophysiologically, ALLO’s effect on evoked GABAAR-mediated

currents appeared to depend on network activity and involved NMDA-mediated

currents (Wang et al. 2007). Recent imaging results indicate that administration of

pregnenolone, which increased ALLO levels, was associated with reduced activity

in the amygdala, increased activity in the dorsal medial prefrontal cortex (mPFC),

enhanced connectivity between the two regions, and less self-reported anxiety

(Sripada et al. 2013). These data suggest that ALLOmodulates emotion neurocircuits.

In response to an acute alcohol injection (2 g/kg), ALLO IHC within the CeA

was significantly decreased in rats, independent of ADX (Cook et al. 2014a, b).

Similarly, mice exposed to chronic intermittent alcohol (CIE) had reduced ALLO

in the CeA at 8-h but not 72-h withdrawal when compared to controls (Maldonado-

Devincci et al. 2014). In male cynomolgus monkeys that had been consuming

alcohol daily for over 12 months, there was a significant decrease in plasma

ALLO levels and in ALLO IHC in the lateral and basolateral amygdala versus

Fig. 2 Simplified stress (blue) and mesocorticolimbic (yellow) circuitry and summary of the

effects of acute and repeated alcohol administration and withdrawal. Glutamatergic, GABAergic,

and dopaminergic projections are indicated by green, red, and blue arrows, respectively, in this

simplified representation of the neuroanatomical regions described in the chapter. The black arrow

from the paraventricular nucleus of the hypothalamus (PVN) to the adrenal cortex reflects a

streamlined depiction of the hypothalamic-pituitary-adrenal axis. The tables in the figure summa-

rize the overall effect(s) of acute and repeated alcohol administration and withdrawal on

allopregnanolone (ALLO) levels, with increases ("), decreases (#), no change (¼), or unknown

(?) shown. Mixed results of chronic alcohol administration and withdrawal on hippocampal ALLO

levels have been reported. An alcohol-induced increase in ALLO levels would enhance GABAA

receptor-mediated inhibition, whereas a decrease in ALLO levels would produce the opposite

effect. BNST bed nucleus of the stria terminalis, NAc nucleus accumbens, mPFCmedial prefrontal

cortex, PVN paraventricular nucleus of the hypothalamus, SNR substantia nigra reticulata, VTA
ventral tegmental area
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controls (Beattie et al. 2017). A significant negative correlation between ALLO

IHC in the lateral and basolateral amygdala and average daily ethanol consumption

suggested that long-term high alcohol consumption dampens ALLO IHC. Collec-

tively, alcohol exposure reveals a consistent reduction in endogenous ALLO levels

in the amygdala (Fig. 2) that may be associated with increased cellular excitability

and high prior alcohol consumption or exposure.

Bed nucleus of the stria terminalis (BNST): The BNST is important for fear- and

anxiety-like behavior, serves as a relay from the amygdala, cortex and hippocampus

to the PVN (Lebow and Chen 2016), and has a well-established role in AUDs (Kash

2012). Both the BNST and CeA have a high density of GABAARs, and GABA is

the predominant co-transmitter in CRH+ neurons in these brain regions (Partridge

et al. 2016). ALLO IHC increased in the BNST of rats following acute alcohol

administration (Fig. 2), and this effect was independent of adrenal sources (Cook

et al. 2014a, b). In contrast, withdrawal from CIE exposure did not alter ALLO IHC

in the BNST in mice (Fig. 2, Maldonado-Devincci et al. 2014). As noted above, the

response to acute alcohol and to CIE both resulted in a decrease in ALLO IHC

within the CeA, suggesting that the effect of acute and chronic alcohol exposure

may be regionally specific.

4.3 Mesocorticolimbic Circuit

As recently reviewed (Koob and Volkow 2010), drug addiction can be comprised of

binge/intoxication, withdrawal/negative affect, and craving stages that recruit dif-

ferent neuroanatomical regions within the mesocorticolimbic circuit. An excellent

review of synaptic and extrasynaptic GABAAR isoforms important in the meso-

corticolimbic reward circuitry also is available (Stephens et al. 2017). States of

reward and aversion are encoded by the activity of GABAergic medium spiny

neurons (MSNs) in the nucleus accumbens (NAc; see Stephens et al. 2017), which

receives glutamatergic inputs from hippocampus, amygdala, and cortical areas. The

receipt of important limbic information from the amygdala, frontal cortex, and

hippocampus is integrated in the NAc and converted to motivational action through

outputs via the direct striatonigral and the indirect striatopallidal pathways (see

Koob and Volkow 2010; Stephens et al. 2017). The location of both synaptic and

extrasynaptic GABAAR isoforms throughout this circuitry suggests the possibility

of spatially controlled regulation of GABAAR function by neurosteroids and

alcohol in motivational and withdrawal effects.

Nucleus accumbens (NAc): Approximately 97% of NAc neurons (principal

neurons, MSNs, and interneurons) utilize the neurotransmitter GABA, and infusion

of GABAAR agonists or antagonists into the NAc shell (e.g., Eiler and June 2007;

Hyytiä and Koob 1995; Stratford and Wirtshafter 2011) as well as viral knockdown

of GABAAR δ or α4 subunits (Nie et al. 2011; Rewal et al. 2009, 2012) significantly
decreased alcohol intake in rodents. Intra-NAc shell administration of the synthetic

neurosteroid GAN also significantly decreased alcohol intake, an effect that was

similar to that observed following intracerebroventricular administration of GAN or

Dynamic Adaptation in Neurosteroid Networks in Response to Alcohol 67



ALLO (Ford et al. 2007; Ramaker et al. 2015). Taken in conjunction with the

finding that intra-NAc ALLO substituted for the discriminative stimulus effects

of systemic alcohol (Hodge et al. 2001), these results provide evidence for the

sufficiency of GABAARs in the NAc to influence alcohol’s subjective, moti-

vational, and consummatory effects (see also Sect. 3).

Acute administration of alcohol reduced ALLO IHC in the NAc core-shell

border (Fig. 2), an effect that was independent of peripheral sources (Cook et al.

2014a, b). Withdrawal (72-h) from CIE also decreased ALLO IHC in the NAc core

(Fig. 2; Maldonado-Devincci et al. 2014), suggesting that subregion differences

may exist in the regulation of neurosteroid synthesis.

Ventral tegmental area (VTA): Microinjection of a viral vector to overexpress

P450scc significantly increased ALLO IHC in the VTA and decreased alcohol self-

administration (Cook et al. 2014c). ALLO was localized in neurons, primarily in all

tyrosine hydroxylase positive neurons, which could reduce activity in cells that

project to the NAc, mPFC, or lateral habenula (Cook et al. 2014c). Acute alcohol

injection did not alter ALLO levels (Cook et al. 2014b), but CIE produced a

persistent reduction in ALLO IHC in the VTA (Fig. 2) at 8-h and 72-h withdrawal

(Maldonado-Devincci et al. 2014). Microinjection of ALLO produced an anticon-

vulsant effect in naı̈ve mice that was reduced during alcohol withdrawal in mice

with a high withdrawal phenotype, and microinjection of FIN (5α-reductase inhi-

bitor) during the induction of physical dependence (to determine the effect of a

decrease in local ALLO levels on the expression of withdrawal) enhanced alcohol

withdrawal severity (Tanchuck et al. 2013). Microinjections in the withdrawal

studies were localized to the posterior VTA, which also projects to the SN compacta

and connects the striatum to the output nuclei of the basal ganglia via the indirect

pathway (discussed in Tanchuck et al. 2013). Collectively, the results suggest that

manipulation of GABAAR-active neurosteroid levels in the VTA influences alcohol

self-administration and convulsive activity during withdrawal.

Substantia nigra reticulata (SNR): The SNR is important in the propagation of

convulsive activity, as it is one of the two major output nuclei of the basal ganglia,

with GABAergic projections to superior colliculus, brainstem nuclei, and thalamus

(see Tanchuck et al. 2013). ALLO infusion into SNR exerted a potent anticonvul-

sant effect in naı̈ve mice, at lower doses than observed following microinjection

into the VTA (Tanchuck et al. 2013). It is possible that the greater sensitivity to

ALLO’s anticonvulsant effect in the SNR than in the VTA reflects direct versus

indirect effects, respectively, on GABAAR-mediated output of the basal ganglia.

Similar to what was observed in the VTA, there was a diminished anticonvulsant

effect during alcohol withdrawal in mice with a high withdrawal phenotype

(Tanchuck et al. 2013). Microinjection of FIN during the induction of physical

dependence did not influence alcohol withdrawal severity but produced a delayed

proconvulsant effect in naı̈ve mice (Tanchuck et al. 2013). Overall, these results

provide support for the sufficiency of the SNR in mediating the anticonvulsant

effect of ALLO in naı̈ve mice and the behavioral tolerance to ALLO’s anticonvul-

sant effect during withdrawal in mice with a high withdrawal phenotype.
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Hippocampus: Acute alcohol administration increased ALLO IHC in the hippo-

campal CA1 pyramidal cell layer and dentate gyrus (DG) polymorphic layer

(Fig. 2), which was independent of the adrenals (Cook et al. 2014a, b). In contrast,

withdrawal from repeated CIE did not alter ALLO labeling in either of these

subregions, but there was an increase in ALLO IHC in the CA3 pyramidal layer

(Maldonado-Devincci et al. 2014). Studies with dissected hippocampal tissue

reported decreased ALLO levels during withdrawal in rats (Fig. 2; Cagetti et al.

2004) and divergent changes in several GABAAR-active neurosteroid levels during

withdrawal in mice that were unrelated to a convulsive phenotype (Jensen et al.

2017). However, microinjection of ALLO into CA1 produced a potent anticonvul-

sant effect in WSP mice (Gililland-Kaufman et al. 2008), with brain regional

differences in sensitivity to the anticonvulsant effect in alcohol naı̈ve mice

(CA1 � SNR > VTA). In contrast, infusion of FIN into CA1 was proconvulsant

(Gililland-Kaufman et al. 2008). These behavioral findings demonstrate that

bi-directional manipulation of hippocampal ALLO levels produces opposite behav-

ioral consequences that are consistent with alterations in GABAAR inhibitory tone

in naı̈ve mice. During withdrawal, WSP mice were tolerant to the anticonvulsant

effect of intra-CA1 ALLO, consistent with results following systemic injection

(Finn et al. 2006), and intra-CA1 FIN during the development of physical depen-

dence significantly increased alcohol withdrawal severity (Gililland-Kaufman et al.

2008). Thus, alcohol withdrawal rendered WSP mice less sensitive to ALLO’s

anticonvulsant effect and more sensitive to FIN’s proconvulsant effect, suggesting

an alteration in the sensitivity of hippocampal GABAARs in response to fluctu-

ations in GABAAR-active neurosteroids during withdrawal. Collectively, the

microinjection results provide support for the sufficiency of the CA1 in mediating

the anticonvulsant effect of ALLO in naı̈ve mice and the behavioral tolerance to

ALLO’s anticonvulsant effect during withdrawal in WSP mice.

Medial prefrontal cortex (mPFC): The ability of an acute alcohol injection to

increase ALLO levels in dissected mPFC of male rats has been well-documented

(Fig. 2; see reviews by Morrow et al. 2006; Porcu and Morrow 2014). More recent

work confirmed an alcohol-induced elevation in ALLO IHC in mPFC (Cook et al.

2014a, b) but determined that the increase was dependent on the adrenal glands

(Cook et al. 2014a). This result differs from the independent regulation of neuro-

steroid synthesis after acute alcohol in other brain regions. In contrast, there was a

sustained decrease in ALLO IHC in mPFC at 8-h and 72-h of withdrawal after

CIE exposure (Fig. 2, Maldonado-Devincci et al. 2014). Measurement of several

GABAAR-active neurosteroid levels in dissected tissue determined that cortical

levels of ALLO and other GABAAR-active neurosteroids were decreased at 8-h

withdrawal only in mice with a low withdrawal convulsive phenotype (Jensen

et al. 2017). Levels of cortical GABAAR-active neurosteroids were unchanged or

increased in mice with a high withdrawal convulsive phenotype, which contrasts

with the suppression in plasma ALLO levels during withdrawal in these genotypes

(Jensen et al. 2017; Snelling et al. 2014) and argues for independent adrenal versus

brain regional regulation of neurosteroid synthesis.
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5 Conclusions

GABAAR-active neurosteroids exert behavioral and physiological responses

that are consistent with their ability to enhance GABAAR-mediated inhibition.

Microinjection and electrophysiological studies provide evidence for brain regional

differences in sensitivity, which may reflect differences in GABAAR subunit

composition or local synthesis and metabolism. Elegant studies indicate that locally

produced neurosteroids in thalamocortical neurons enhanced GABAAR-mediated

inhibition (Brown et al. 2015) and that differences in neurosteroid metabolism in

hippocampal DG versus CA1 produced predicted effects on GABAergic transmis-

sion (i.e., increased GABAAR-mediated inhibition with increased neurosteroid

level; Belelli and Herd 2003). Consistent with the idea that brain regional differ-

ences in neurosteroid synthesis and metabolism can influence effects of alcohol, the

use of a viral vector to overexpress P450scc in the VTA, but not in the NAc,

significantly increased ALLO levels and decreased alcohol self-administration

(Cook et al. 2014c). Moreover, physiological concentrations of ALLO inhibit the

output of PVN neurons via a potentiation of GABAARs (Gunn et al. 2011),

representing another mechanism to terminate the stress response via an inhibition

of CRH release. Thus, local brain regional mechanisms to fine tune neuronal

excitability exist, and additional studies will be important to further understand

the physiological significance of these brain regional differences (see Fig. 2 for

simplified circuitry). Then, strategies based on pharmacological agents or gene

therapy tools that can increase neurosteroid levels directly in discrete brain regions

may represent a promising area of research.

Acute and chronic alcohol administration and withdrawal produced species and

brain regional differences in neurosteroid levels (Fig. 2), with many brain regional

effects being independent of the adrenals, providing evidence for independent

regulation between periphery and brain as well as across brain regions. The inverse

relationship between levels of some neurosteroid enzymes and GABA (Do Rego

et al. 2009) also may contribute to brain regional differences in regulation of

neurosteroid synthesis as well as to sensitivity of GABAARs to neurosteroids,

since potentiation of GABAARs with nanomolar concentrations of neurosteroids

requires GABA. Additionally, the ability of alcohol to increase spontaneous and

evoked GABA release in brain regions such as cerebellum, VTA, SN, and amyg-

dala but not in the cortex, lateral septum, and thalamus (reviewed in Kelm et al.

2011) may indirectly influence brain regional differences in neurosteroid levels and

GABAAR sensitivity to neurosteroids. Finally, the use of GAN, which has a similar

pharmacological profile to ALLO but is resistant to oxidation at C-3, can help to

distinguish whether reduced behavioral sensitivity to ALLO is due to enhanced

metabolism or altered sensitivity of GABAARs to neurosteroids. For instance,

WSP mice exhibit tolerance to the anticonvulsant effect of ALLO and GAN

during alcohol withdrawal, consistent with a decrease in functional sensitivity of

GABAARs during withdrawal (Finn et al. 2006; Nipper et al. 2017). In contrast,

DBA/2J mice exhibited sensitivity to the anticonvulsant effect of GAN but not

ALLO during alcohol withdrawal (Finn et al. 2000; Nipper et al. 2017), suggesting
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that a withdrawal-induced change in ALLO metabolism may play a larger role than

decreased sensitivity of GABAARs to neurosteroids per se. As another example, sex

differences in C57BL/6J mice in the ability of ALLO to decrease alcohol consump-

tion may be due in part to enhanced ALLO metabolism in female mice, given that

GAN was equally effective at decreasing alcohol intake in both male and female

mice and that ALLO exerted a decrease in alcohol intake in female mice when the

oxidation at C-3 was blocked (DA Finn and MM Ford, unpublished). Collectively,

additional studies are necessary to further understand the interaction between

alcohol’s acute and chronic effects on neurosteroid levels and GABAAR sensitivity

to provide insight on whether pharmacological strategies targeting neurosteroid

synthesis or using synthetic neurosteroid compounds that are resistant to meta-

bolism (i.e., GAN) will be effective treatment approaches for AUD.

Administration of ALLO and GAN doses produces a fairly consistent suppres-

sion in alcohol consumption and self-administration (see Sect. 3), and in conjunc-

tion with the pharmacological properties of GABAAR-active neurosteroids (e.g.,

anxiolytic, anticonvulsant, antidepressant; see Sect. 3), it has been hypothesized

that elevations in neurosteroid levels may protect against the risk for alcohol

dependence (see Morrow et al. 2006). Alcohol dependence and withdrawal are

associated with a decrease in GABAAR inhibition that is mediated by many factors,

one of which is a fairly consistent reduction in endogenous ALLO levels (Fig. 2)

that is accompanied by increased anxiety in rodents and increased ratings of anxiety

and depression in humans (see Sect. 4). Given that altered neurosteroid synthesis or

neurosteroid levels have been reported in patients with several mood disorders (see

Finn and Purdy 2007; Porcu et al. 2016; Zorumski et al. 2013), it is possible that

patients with comorbid AUD and mood disorders also exhibit a dysregulation in

neurosteroid synthesis and that this suppression in neurosteroid levels contributes to

the withdrawal/negative affect stage of addiction. One strategy to reduce relapse

risk would be to offset the potential negative affective state with a synthetic

neurosteroid such as GAN, which is in clinical trials for treatment of various

forms of depression and epilepsy (clinicaltrial.gov). Genetic diversity in enzyme

levels also should be considered, given the finding that individuals with the minor

C-allele of the SRD5A1 gene, which encodes the enzyme 5α-reductase-1, expressed
both a higher ratio of dihydrotestosterone to testosterone and a decreased risk for

alcohol dependence (Milivojevic et al. 2011), suggesting that a heightened level of

GABAAR-active neurosteroid production may be protective against the develop-

ment of dependence. Certainly, alleles that decrease enzyme function and the

biosynthesis of GABAAR-active neurosteroids could exacerbate the risk of depen-

dence. Thus, genetic differences in neurosteroid enzyme levels and biosynthesis are

an important consideration for future studies examining the therapeutic potential of

targeting neurosteroid biosynthesis.

Collectively, neurosteroids are extremely potent positive modulators of GABAARs

that can exhibit exquisite neuroanatomical control of GABAAR-mediated inhibition

and physiological and behavioral responses. Additional research is necessary to better

understand the physiological significance of the complex interactions with alcohol’s

acute and chronic effects across brain regions and in the periphery. Future studies also
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should determine the therapeutic potential of strategies to enhance neurosteroid

synthesis or to administer synthetic neurosteroids for the treatment of AUD.
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Abstract
Alcohol (ethanol) is a widely used and abused drug with approximately 90% of
adults over the age of 18 consuming alcohol at some point in their lifetime.
Alcohol exerts its actions through multiple neurotransmitter systems within the
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brain, most notably the GABAergic and glutamatergic systems. Alcohol’s actions
on GABAergic and glutamatergic neurotransmission have been suggested to
underlie the acute behavioral effects of ethanol. The striatum is the primary
input nucleus of the basal ganglia that plays a role in motor and reward systems.
The effect of ethanol on GABAergic and glutamatergic neurotransmission within
striatal circuitry has been thought to underlie ethanol taking, seeking, withdrawal
and relapse. This chapter reviews the effects of ethanol on GABAergic and
glutamatergic transmission, highlighting the dynamic changes in striatal circuitry
from acute to chronic exposure and withdrawal.

Keywords
Action control · Addiction · Alcohol · Cortico-striatal loop · Neurotransmitter ·
Synaptic transmission

1 Introduction

Alcoholism is a progressive and chronic relapsing disorder that ultimately leads to
detrimental health outcomes. Studies have revealed adaptations to cortico-basal
ganglia circuits that mediate the stages of the addiction cycle. This includes initial
drug use to habitual and continued use despite negative outcomes. The transition to
addiction involves neuroplasticity in these brain regions that begin in the mesolimbic
dopamine region and transition to the dorsal striatum (Ito et al. 2002; Everitt and
Robbins 2013, 2016). Although great progress has been made in ethanol pharmacol-
ogy demonstrating that acute ethanol has only a few known primary targets
(Vengeliene et al. 2008), it has long been proposed that the acute behavioral effects
of ethanol are mediated principally by potentiation of γ-aminobutyric acid A
(GABAA) receptors and/or inhibition N-methyl-D-aspartate (NMDA) receptors.
This presumption is due to the similarities in behavioral effects between ethanol
and benzodiazepines that act on GABAA receptors, as well as NMDA antagonists
such as ketamine (Krystal et al. 2003). An imbalance in the striatum of GABAergic
and glutamatergic transmission is thought to play a role in alcohol use and abuse.
Understanding how ethanol alters GABAergic and glutamatergic systems through
the progression to alcohol addiction within specific brain regions/circuits will pro-
vide valuable insights for developing finely targeted therapeutics.

2 GABAergic Synapses

GABA is the major inhibitory neurotransmitter in the brain. GABA is derived from
glutamate by the enzyme glutamic acid decarboxylase (GAD). There are two GAD
isoforms, GAD65 and GAD67, named for their molecular weights. Since GAD is
required for the synthesis of GABA, it is commonly used as a marker for GABAergic
neurons. Once synthesized, GABA is packaged into vesicles by the vesicular GABA
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transporter. The release of GABA is regulated by calcium concentration within the
axon terminal, with increased concentration leading to vesicular release until basal
calcium concentrations are restored.

GABA exerts its actions on transmission by GABAA ionotropic receptors and
GABAB metabotropic receptors. GABAA receptors are heteropentomeric complexes
that form a ligand-gated anion-selective channel that is permeable to chloride and
bicarbonate. The GABAA receptor can be found both pre- and postsynaptically
(Lovinger 2017). Inmature neurons, the concentration of chloride is lower intracellularly
leading to a net flow of anions into the neuron upon channel opening. Therefore,
activation of GABAA receptors results in membrane hyperpolarization that decreases
the excitability of a cell as chloride ions flow into the cell (Olsen and Sieghart 2008). In
mammals, there are 19 different GABAA receptor subunits identified: α (1–6), β (1–3),
γ (1–3), δ, ε, ρ (1–3), θ, and π (Olsen and Sieghart 2008, 2009). In addition to the
19 subunits, there are also subunit splice variants and phosphorylation states that can
modify the activation of specific subunits.Most mammalian receptors consist of 2 α, 2 β,
and 1 γ subunit. The subunits composing a GABAA receptor dictate their biophysical
and pharmacological properties and location within the brain, as well as cellular distri-
bution. Sensitivity to GABA is determined primarily by the α subunit expressed.
GABAA receptors can possess a variety of allosteric modulatory sites also dependent
on the subunits expressed, that allow modulators such as benzodiapines, neurosteroids,
and barbiturates to alter their function. Most receptors containing the γ2 subunit are
targeted to the synapse via their interactionwith the scaffolding protein gephyrin (Farrant
and Nusser 2005; Fritschy et al. 2012). The exception to this rule is α5βxγ2 receptors,
which are targeted to the extrasynapse by the interaction of the α5 subunit and radixin
(Loebrich et al. 2006). Receptors containing the δ subunit are localized exclusively in
the extrasynapse (Walker and Semyanov 2008; Belelli et al. 2009; Herd et al. 2013).
Posttranslational modifications of GABAA receptors regulate trafficking and stability.
For example, Protein Kinase-A (PKA) phosphorylation of the β3 subunit leads to
internalization of the receptor complex, whereas Protein Kinase C (PKC) phosphoryla-
tion of multiple subunits leads to membrane insertion (Kittler et al. 2005; Mele et al.
2014). Within the striatum, GABAA receptor subunits (α1–5, β1–3, γ1–3, and δ) are
expressed to varying degrees, with the α2 and β3 subunits having the highest degree of
immunoreactivity. The α2βxγ1/2 isoform is the most highly expressed isoform in the
striatum and is located within the synaptic and extrasynaptic cellular compartments of
striatal medium-sized GABAergic projection neurons (MSNs) (Schwarzer et al. 2001;
Maguire et al. 2014). The α4βxδ isoform of the GABAA receptors is found exclusively
extrasynaptically inMSNs and interneurons (Schwarzer et al. 2001;Maguire et al. 2014).

The GABAB receptors are Gi-protein-coupled receptors. When activated, they medi-
ate inhibition by activating potassium channels and decreasing calcium conductance.
There are two subtypes of the GABAB receptor, GABABR1 and GABABR2, that form
homo- and heterodimers in the membrane. GABAB receptors can be located either pre-
and postsynaptically. Presynaptic GABAB receptors serve as autoreceptors, regulating
the release of GABA. Postsynaptically located GABAB receptors are primarily coupled
to the activation of potassium channels (Misgeld et al. 2007), whose activation serves to
hyperpolarize the cell, albeit at a slower time scale than GABAA receptors.
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GABA transmission is terminated when GABA is cleared from the synapse.
Reuptake of GABA is mediated by GABA transporters located on the plasma
membrane of both neurons and glia. Following uptake by both cell types, GABA
is degraded by the enzyme GABA transaminase into glutamate.

3 Glutamatergic Synapse

Glutamate is the major excitatory neurotransmitter in the brain. Glutamate is synthesized
by two different mechanisms: the first is synthesis from glucose through the Krebs cycle
by transamination of α-ketoglutarate. Alternatively, glutamate is formed directly from
glutamine by the glutaminase enzyme. Glutamate is packaged into synaptic vesicles by
vesicular glutamate transporters.

The postsynaptic actions of glutamate are mediated by ionotropic and meta-
botropic glutamate receptors. The ionotropic glutamate receptors, N-methyl-D-aspar-
tate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA),
and kainic acid (KA) receptors, are glutamate-gated cation channels.

NMDA receptors are voltage-sensitive ionotropic glutamate receptors that when
open allow for the flow of calcium and/or sodium ions, albeit at slower kinetics than
AMPA and KA receptors. NMDA receptors are regulated by presynaptic glutamate
release and postsynaptic mechanisms such as phosphorylation states, subunit expres-
sion, and membrane potential that all contribute to its roles in neuronal plasticity,
stabilizing neuronal activity, and coincidence detection (Malenka and Nicoll 1999;
Wang 1999; Yuste et al. 1999). The voltage sensitivity aspect of NMDA receptors is
due to the blockade at restingmembrane potentials bymagnesium,which is removed by
membrane depolarization. NMDA receptors are tetramers that consist of an obligatory
NR1 subunit and regulatory NR2 (A–D) and/or NR3 (A–B) subunits. The regulatory
subunits control the biophysical (conductance and open probability) and pharmacolog-
ical properties of NMDA receptors (Wenzel et al. 1997; Traynelis et al. 2010). NMDA
receptors are unique in that they require the binding of two different ligands, glutamate
and glycine/d-serine, for activation. NR1 subunits bind glycine or d-serine, while the
NR2 subunits bind glutamate (Gonda 2012). NMDA receptors play a role in synaptic
plasticity mainly in the form of long-term potentiation that is associated with increases
in membrane insertion of AMPA receptors, protein synthesis, spine formation, and the
enlargement of existing spines (Malinow and Malenka 2002; Matsuzaki et al. 2004;
Kasai et al. 2010). Phosphorylation state of NMDA receptors plays a role in their
localization, activation state, and physiological properties (Traynelis et al. 2010).

The AMPA and KA glutamate receptors are also heterotetrameric protein complexes
that form ligand-gated ion channels. AMPA receptors consist ofGluR1–4 (also known as
GluRA-D), GluRδ1, andGluRδ2 (Dingledine et al. 1999). EachGluR subunit contains a
binding site for glutamate. AlthoughAMPA receptors are capable of allowing the flow of
calcium, sodium, and potassium, the majority of AMPA receptors contain the GluR2
subunit which renders the ion channel impermeable to calcium.AMPA receptorsmediate
most of the excitatory transmission in the brain due to its vast brain expression as well as
lack of voltage sensitivity (as in the case of NMDA receptors). AMPA receptors have
been well studied and shown to play a role in synaptic plasticity. KA receptor subunits
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includeGluR5–7,KA1, andKA2 (Dingledine et al. 1999) and their activation leads to the
flow of sodium and potassium ions, and consequently membrane depolarization.

Metabotropic glutamate receptors (mGluRs) are G-protein-coupled receptors.
mGluRs are divided into three familial groups. Group I mGluRs (mGluR1 and
mGluR5) are Gq-coupled receptors whose binding of glutamate leads to activation
of the enzyme phospholipase C (PLC) that ultimately induces the release of calcium
from intracellular stores and increases PKC activity (Kenny and Markou 2004).
Group1 mGluRs are mainly located on the postsynaptic membrane. mGluR 1 has
moderate expression in the dorsal striatum and low expression in the NAc, whereas
mGluR5 is highly expressed in the entire striatum (Olive 2009; Pomierny-Chamiolo
et al. 2014). Group II mGlurRs (mGluR2 and mGluR3) are Gi/o-coupled receptors
whose activation decreases the activity of adenylyl cyclase, ultimately decreasing the
intracellular concentration of cyclic adenosine monophosphate (cAMP) (Kenny and
Markou 2004). They are present both pre- and postsynaptically. Lastly, Group III
mGlurRs (mGluR4, GluR6, GluR7, and GluR8) are similar to Group II mGluRs in
that they are Gi/o-coupled receptors (Kenny and Markou 2004). These receptors are
primarily located presynaptically and play a role in regulating neurotransmitter
release. Of the Group III mGluRs, mGluR4, mGluR7, and mGluR8 are expressed
in the striatum (Corti et al. 2002; Messenger et al. 2002; Bragina et al. 2015).

Similar to GABA, glutamate transmission is terminated when glutamate is cleared
from the synapse. Glutamate is predominately taken up through plasma membrane
transporters that are located on glia, mainly astrocytes, and to a lesser extent, on neurons.
Once transported intracellularly, glutamate is metabolized to glutamine.

Corticostriatal GABAergic synapses can undergo synaptic plasticity by both
long-term potentiation (LTP) and long-term depression (LTD). Corticostriatal LTP
requires the activation of NMDA and D1Rs (Calabresi et al. 2000; Kerr andWickens
2001), while LTD requires activation of postsynaptic mGluRs and presynaptic CB1
receptors (Calabresi et al. 2000).

4 The Striatum and Action Control

Cortico-basal ganglia loops play a role in the learning and selection of appropriate action
sequences, as well as detecting deviations within the sequence and changes in the
outcome. Cognitive control is required to guide the selection of appropriate actions
based on an individual’s current goals and situation, and at the same time inhibiting
unwanted actions. The striatum, themain input of the basal ganglia, is innervated from all
regions of the cortex. The striatum is divided into the dorsomedial striatum (DMS,
roughly equivalent to the caudate nucleus in primates), dorsolateral striatum (DLS,
roughly equivalent to the putamen nucleus in primates), and ventral striatum. The ventral
striatum can be divided into the nucleus accumbens (NAc) and the olfactory tubercle
(Heimer andWilson 1975). Although, the striatum receives input from all regions of the
cortex, specific cortical regions send inputs to distinct striatal regions. The striatum then
sends converging projections to the output nuclei, the internal globus pallidus (GPi) and
substantia nigra pars reticulata (SNpr). The output nuclei project to the thalamus that
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sends projections back to the cortical input regions, completing the loop (Alexander et al.
1986). Cortico-basal ganglia circuits can be divided based on their cortical inputs and
their roles in learning, control, and performance of actions (Haber et al. 2000). These
parallel circuits compete for the control of behavior and are suggested to be connected in a
spiraling manner whereby MSNs in one striatal region project to the ventral tegmental
area (VTA)/SN that send projections toMSNs of another striatal region, starting from the
NAc medial shell then to the NAc core/DMS and ultimately to the DLS (Fig. 1).
Dopaminergic innervation of the DLS is thus under the influence of the NAc.

Most alcohol users are casual consumers in which alcohol is consumed for its
rewarding properties. In these individuals, alcohol consumption is thought to be a
goal-directed action, in which alcohol use is dependent on the value of the outcome.
Therefore, if alcohol consumption is devalued, for example it has become associated
with unwanted intoxication/illness, alcohol use will cease. However with repeated,
chronic use, alcohol drinking may transition to a habit in which an associated cue
triggers voluntary alcohol consumption despite negative repercussions. This is
highlighted by continued alcohol abuse by habitual alcoholics despite its negative
outcomes (personal, social or financial). Drugs of abuse, including alcohol, are

DMS DLSNAc

Limbic Circuit
(motivational control)

prelimbic and infralimbic
mPFC

PFC, entorhinal,
posterior parietal

Associative
Circuit

(goal-directed control)

primary and secondary
motor and sensory

Sensorimotor
Circuit

(habitual control)
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Fig. 1 Model of cortico-striatal circuitry focusing on the limbic (green), associative (red), and
sensorimotor (blue) circuits. The nucleus accumbens (NAc) receives glutamatergic input from the
limbic cortices, hippocampus (yellow) and amygdala (yellow), and dopaminergic projections (gray
dashed lines) from the ventral tegmental area (VTA). It then projects to the VTA. The dorsomedial
striatum (DMS), or the caudate nucleus in primates, receives glutamatergic input from the associa-
tive cortices and dopaminergic input from the VTA and substantia nigra (SN). It then projects to the
SN. The dorsolateral striatum (DLS), or the putamen nucleus in primates, receives glutamatergic
input from the sensory and motor cortices and dopaminergic input from the SN. It then projects to
the SN. The VTA projects back to the NAc and the DMS, while the SN sends projections back to the
DMS as well as the DLS
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thought to induce abnormally strong consolidation of instrumental learning
mechanisms, enhancing drug seeking behavior in response to cues or contexts that
are associated with the drug. This may occur by drug-induced cortico-basal ganglia
circuit plasticity that reinforces the connectivity within the “spiral,” leading to the
recruitment of dorsal striatum circuitry proposed to underlie this transition from
casual to habitual alcohol use and seeking (Koob and Volkow 2010).

4.1 Nucleus Accumbens: Motivation and Reinforcement

The limbic cortico-basal ganglia circuit is commonly referred to as the brain reward
circuit (Haber 2011), with the nucleus accumbens (NAc) as its main basal ganglia
input (Fig. 1 green pathway). The NAc can be divided into two subregions, the core
and shell, based on MSN morphology, neurochemistry, projection patterns, and
functions (Heimer et al. 1991; Zahm and Brog 1992; Meredith 1999).

The NAc core receives most of its input from glutamatergic projections from
prelimbic medial prefrontal cortex (mPFC), hippocampus and amygdala (Groenewegen
et al. 1999). It is also thought to be continuous with the DMS and therefore is implicated
in conditioned responding, sensorymotor integration, and emotional cues (Carlezon et al.
1995; Rodd-Henricks et al. 2002; Sellings and Clarke 2003; Ikemoto 2007; Guo et al.
2009; Suto et al. 2010). The NAc core sends GABAergic projections to the dorsolateral
ventral pallidum and the substantia nigra (Zahm and Heimer 1990; Heimer et al. 1991;
Zhou et al. 2003).

The NAc shell receives dopaminergic input from the VTA and glutamatergic
projections from infralimbic mPFC, the basolateral amygdala, and ventral hippo-
campus (Britt et al. 2012; Papp et al. 2012). The NAc shell in conjunction with the
bed nucleus of the stria terminalis and central amygdala have collectively been
referred to as the extended amygdala complex, due to similarities in morphology
and circuitry (Hopkins and Holstege 1978; Heimer and Alheid 1991). The extended
amygdala complex has been implicated in the emotional processing of stimuli and
drug addiction (Koob 2013). MSNs of the NAc shell project to the ventromedial
ventral pallidum and the ventral tegmental area (Zahm and Heimer 1990; Heimer
et al. 1991; Zhou et al. 2003). The NAc shell is implicated in reward processing, the
control of motivation, behaviors by primary rewards, and behavioral inhibition such
as aversion learning (Kravitz et al. 2012; Hikida et al. 2013).

With regards to alcohol use, ethanol increases the release of dopamine in the NAc.
This increase in dopamine is believed to mediate the positive reinforcing effects of
ethanol (Imperato andDiChiara 1986). The ventral striatum is also suggested to play a
role in drug-induced increase in locomotion and cue-induced alcohol use.

4.2 DMS: Goal-Directed Behaviors

The DMS in the rodent, roughly equivalent to the primate caudate nucleus, is one of the
subdivisions of the dorsal striatum that lines the lateral ventricle. It is part of the
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associative circuit that includes the prefrontal, entorhinal, and posterior parietal cortical
projections to the medial striatum (Fig. 1, red pathway). The DMS also receives
dopaminergic inputs from the substantia nigra and the VTA and glutamatergic inputs
from the basolateral amygdala and thalamus (Haber et al. 2000; Ikemoto 2007; Pan et al.
2010; Corbit et al. 2013; Kupferschmidt et al. 2015). MSNs of the DMS project to the
substantia nigra pars reticulate, subthalamic nucleus, and globus pallidus.

As part of the associative circuit, the DMS is thought to influence goal-directed
actions based on the expected consequences or value of the actions, also referred to
as action-outcome (Yin et al. 2005a, b; Gunaydin and Kreitzer 2016). Goal-directed
actions are flexible in that their performance is sensitive to changes in value or
motivation for the outcome as well as changes in the contingency between the action
and outcome.

Studies using an outcome devaluation test that examines whether a goal-directed
or habitual strategy is used to perform an instrumental action (i.e. nose poke or lever
press) suggest that early alcohol use is a goal-directed action (Corbit et al. 2012,
2014). In this task, rodents are trained to perform an instrumental action for alcohol.
During the outcome devaluation test, the value of the alcohol reward is changed by
either pairing it with an aversive stimuli, satiation to alcohol, or changing the
contingency between the action and alcohol reward. With extended exposure to
the action-alcohol pair, self-administration shifts from a goal-directed action sensi-
tive to the change in the value of the alcohol reward to a value-insensitive habitual
action that occurs regardless of a change in the value of the alcohol reward. (Corbit
et al. 2012; Lopez et al. 2014). Pharmacological inactivation of the DMS, but not the
DLS, led to a loss in the sensitivity to alcohol devaluation in mice suggesting that the
DMS is important for goal-directed alcohol self-administration (Corbit et al. 2012).

4.3 DLS: Habit Formation

The sensorimotor circuit includes primary and secondary sensory and motor cortices
that project to the DLS (equivalent to the primate putamen nucleus), a subdivision of
the dorsal striatum (Fig. 1, blue pathway). The DLS also receives convergent
dopaminergic input from the substantia nigra. The proposed role of the sensorimotor
circuit is the maintenance and execution of well-learned actions that rely on external
and internal cues and less on the changes in the consequences of the action often
referred to in conditioning terms as stimulus-response control over behavior (Web-
ster 1961; McGeorge and Faull 1989; Yin et al. 2006). DLS MSNs, in turn, send
GABAergic projections to the substantia nigra, globus pallidus, and subthalamic
nucleus.

As part of the sensorimotor cortico-striatal loop, the DLS is involved in habit
formation or stimulus-response learning. A habitual behavior is an overlearned
action associated with a specific cue or context. When triggered by that cue or
context the habit will be performed automatically regardless of the outcome. Habit-
ual actions require less executive control than goal-directed actions (Dalley et al.
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2004; Muller et al. 2007), and therefore allows the habit system to react quickly yet it
also makes it inflexible.

The habit system is thought to be strengthened under alcohol conditions in which
executive control over drug taking is decreased. The DLS is also implicated in the
drug-induced stereotypies as well as habitual and compulsive alcohol seeking (Everitt
et al. 2008; Corbit et al. 2012, 2014). Relapse is also thought to involve the DLS
(Fuchs et al. 2006). During chronic alcohol use DLS output is potentiated while the
circuits involved in associative learning, such as the DMS, are altered (Belin-
Rauscent et al. 2012; Hogarth et al. 2013).

4.4 Subtypes of Striatal Neurons

The striatum contains medium-sized GABAergic spiny projection neurons (MSNs),
GABAergic interneurons, and cholinergic interneurons. MSNs are the principal cells
of the striatum, constituting 90% of the neuronal population in rodents and 70% in
primates (Kemp and Powell 1971; Kita and Kitai 1988). As the sole output neurons
of the striatum, MSNs process and integrate information from cortex, thalamus,
limbic structures, VTA/SN, and neighboring striatal neurons.

MSNs can be further divided into two classes based on their axonal projections,
dopamine receptor expression, peptide expression, and electrophysiological properties.
MSNs that express the dopamine D1 receptor, co-express dynorphin, substance P, and
M4 cholinergic receptors, and directly project to the substantia nigra, are referred to as
direct pathwayMSNs (dMSNs) (Augood et al. 1997; Gerfen and Surmeier 2011).MSNs
that express the dopamine D2 receptor, co-express enkephalin and neurotensin, and
indirectly projects to striatal output regions are referred to as indirect pathway MSNs
(iMSNs) (Le Moine and Bloch 1995; Surmeier et al. 1996; Augood et al. 1997; Aubert
et al. 2000; Gerfen and Surmeier 2011). A small proportion of MSNs co-express D1 and
D2 receptors in rodents and primates (Le Moine and Bloch 1995; Aubert et al. 2000).
Direct pathwayMSNs promote actions by disinhibiting the thalamus and cortex, whereas
iMSNs “stop” actions by indirectly disinhibiting the SN (Kravitz et al. 2010). The balance
between dMSN and iMSN activity is required for normal reward-related behaviors
(Fig. 2 top). The basal electrophysiological properties of dMSN and iMSNneurons differ
in the striatum, such that iMSNs are more excitable than dMSNs (Kreitzer and Malenka
2008; Grueter et al. 2010; Planert et al. 2013). Similarly, there is an increase in glutamate
release onto iMSNs as comparedwith dMSNs (Kreitzer andMalenka 2008; Grueter et al.
2010). Although bothMSN subtypes can undergo LTD including those that are NMDA-
dependent, endocannabinoid-mediated, and transient receptor potential cation channel
(TRPV) 1-dependent, LTD is more robust in iMSNs (Kreitzer and Malenka 2007;
Grueter et al. 2010). Dopamine also leads to differential actions on dMSNs and
iMSNs. When dopamine is released in the striatum, D1 receptor activation on dMSNs
results in long-termpotentiation (LTP) of synaptic efficacy.At the same time,D2 receptor
activation prevents LTP on these synapses (Reynolds and Wickens 2002).

Although a majority of dMSNs and iMSNs are distinguished by expression and
output regions, it should be noted that they are not entirely segregated. In the NAc,
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dMSNs and iMSNs are not as clearly segregated as in the dorsal striatum, with a
larger proportion of MSNs co-expressing D1 and D2 receptors (Bertran-Gonzalez
et al. 2008; Kupchik et al. 2015). dMSNs have been shown to send axon collaterals
to the globus pallidus external and the ventral pallidum (Lu et al. 1998; Zhou et al.
2003; Fujiyama et al. 2011; Kupchik et al. 2015).

In addition to MSNs, approximately 4% of rodent striatal neurons are locally
projecting GABAergic interneurons. Striatal GABAergic interneurons are medium
sized, aspiny neurons and can be divided into three subtypes based on their electro-
physiological properties and protein expression. Fast-spiking interneurons express
the calcium binding protein parvalbumin and exhibit rapid and sustained firing
(Cowan et al. 1990; Kawaguchi et al. 1995; Tepper and Bolam 2004). They provide
the strongest input onto MSNs with approximately 100 connections targeting the
soma and proximal dendrites of neighboring MSNs (Koós and Tepper 1999). Due to
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Fig. 2 Hypothetical model of the effects of acute and chronic alcohol on glutamatergic and GABAergic
transmission onto the striatal subregions (left) and direct and indirect pathwayMSNs of the striatum (right).
Under normal conditions, glutamatergic (blue) and GABAergic transmission (orange) are balanced. This
balance in output from the DLS and DMS/NAc as well as between dMSNs and iMSNs leads to normal
action selection.Under acute alcohol exposure, data suggests that there is an overall hypoglutamatergic state
in the striatum.However, there is a differential alcohol-induced effect onGABAergic transmission between
striatal subregions: the acute ethanol-induced decrease inGABAergic transmission in theDLS and increase
in GABAergic transmission in the DMS/NAc may lead to an imbalance in control of action selection
between the striatal subregions. Under chronic alcohol exposure, there is a hyperglutamatergic state in
dMSNs that is thought to lead to LTP of glutamatergic input onto dMSNs. In iMSNs, a decrease inNMDA
receptors may lead to a decrease in glutamatergic transmission or LTD, concomitant with an increase in
GABAergic transmission. Ultimately this is thought to bias towards activation of dMSNs and abnormal
control over alcohol consumption
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their high degree of synchronization, vast number of connections, and proximity of
synapses close to or on the soma, fast-spiking interneurons can greatly control action
potential firing in MSNs (Kita 1993; Bennett and Bolam 1994; Koós and Tepper
1999; Kubota and Kawaguchi 2000; Tunstall et al. 2002; Mallet et al. 2005). Low
threshold-spiking interneurons co-express a combination of neuropeptide Y, somato-
statin, and nitric oxide synthase (Smith and Parent 1986). They have lower action
potential firing rates than fast-spiking interneurons and exhibit plateau potentials.
Synapses formed between low threshold-spiking interneurons and MSNs tend to be
more apical on MSN dendrites than is true of fast-spiking interneurons. The last
subpopulation of striatal GABAergic interneurons express calretinin and are consid-
ered to be low-threshold spiking interneurons (Tepper and Bolam 2004). This group
of interneurons are less understood due to their limited numbers and the overlapping
expression of calretinin on a subset of MSNs. MSNs receive both feed forward and
lateral inhibition from GABAergic interneurons and recurrent collaterals from neigh-
boring MSNs, respectively.

The remaining striatal neurons are large cell bodied (20–50 μm) and aspiny inter-
neurons that release the neurotransmitter acetylcholine (Bolam et al. 1984; Smith and
Bolam 1990; Wilson et al. 1990). These interneurons are tonically active and have a
relatively depolarized resting membrane potential (Wilson et al. 1990; Kawaguchi
et al. 1995). Due to their large size and vast dendritic and axonal fields, they are
suggested to integrate and modulate synaptic connections (Kawaguchi et al. 1995).
Although cholinergic interneurons and cholinergic transmission play a large role in
striatal circuitry and alcohol addiction (Clarke and Adermark 2015; Gonzales and
Smith 2015), the effects of ethanol on cholinergic transmission are not discussed in
this chapter.

5 Ethanol Actions on GABAergic Transmission

Ethanol has long been thought to exert its effects through potentiating the GABAergic
system. This is due to similarities in the behavioral effects between ethanol and
benzodiazepines, such as sedation, decreases in anxiety, and ataxia. The activity of
both ionotropic and metabotropic GABA receptors have been shown to be important
for ethanol reinforcement and relapse to ethanol seeking (Augier et al. 2017).

5.1 Acute Actions

There has been mixed data regarding the acute effects of ethanol on GABAA receptor
function. Alcohol is considered to be an allostericmodulator of GABAA receptors that
enhances GABAA receptor activity by increasing the probability of channel opening
or increasing agonist affinity (Nestoros 1980; Suzdak et al. 1986; Tonner and Miller
1995; Zhou et al. 1998;Welsh et al. 2009; Soyka et al. 2016). Other studies, however,
found a lack of ethanol effect on GABAA receptor properties (Gage and Robertson
1985; Siggins et al. 1987; White et al. 1990). The discrepancy between studies has
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been suggested to occur because of discrepant subunit composition, brain location, or
phosphorylation state. In regards to subunit composition, it has been proposed that
there is a specific ethanol binding site on the GABAA receptor located between the α
and β3 subunit interface, or between the transmembrane region between TM2 and
TM3. If this is the case, then it is safe to assume that GABAA receptors expressing a
specific subunit composition profile will be sensitive to ethanol. Low concentrations
of ethanol have been shown to act directly on extrasynaptic GABAA receptors
containing α4/6β3δ (Wallner et al. 2006; Olsen et al. 2007), but this observation
was contradicted elsewhere (Borghese et al. 2006; Botta et al. 2007). Several studies
have demonstrated an involvement of PKC and its phosphorylation of subunits on the
sensitivity of GABAA receptors to ethanol (Aguayo and Pancetti 1994; Weiner et al.
1994, 1997; Qi et al. 2007).

Failure to find a consistently observed direct ethanol effect on GABAA receptors
suggests that the effect of ethanol on GABAergic transmission is perhaps at least
partially via a presynaptic mechanism. Several studies have demonstrated an ethanol-
induced increase in GABA release in various brain regions including the hippocam-
pus, VTA, amygdala, spinal cord, cerebellum, and striatum (Crowder et al. 2002;
Melis et al. 2002; Roberto et al. 2003; Ziskind-Conhaim et al. 2003; Ariwodola and
Weiner 2004; Carta et al. 2004; Nie et al. 2004; Sanna et al. 2004; Siggins et al. 2005;
Li et al. 2006; Ming et al. 2006; Zhu and Lovinger 2006; Criswell et al. 2008;
Silberman et al. 2008; Theile et al. 2008; Wilcox et al. 2014). However not all studies
have found an ethanol-induced alteration in GABA release (Proctor et al. 2006;
Criswell et al. 2008). With regards to the striatum, the effects of GABAergic trans-
mission appear to be subregion specific as it has been shown that acute ethanol
increases the frequency of mIPSCs in the DMS and NAc but conversely decreases
it in the DLS (Nie et al. 1997, 2000; Wilcox et al. 2014).

The regulation of GABA release by acute ethanol is thought to rely on activation
of G-protein-coupled receptors including GABAB receptors (Peris et al. 1997; Nie
et al. 2004; Wu et al. 2005; Silberman et al. 2009; Kelm et al. 2011). Acute ethanol
has been shown to increase presynaptic GABAB receptor activity, suggesting its role
in the ethanol-induced changes in GABA release. The presynaptic GABAB effect is
thought to involve tonic inhibition of PKC. An ethanol-induced effect on postsyn-
aptically located GABAB receptors has not been found (Ariwodola and Weiner
2004). The ethanol-induced alterations in presynaptic GABA release are further
discussed in the chapter “Presynaptic Ethanol Actions: Potential Roles in Ethanol
Seeking” found in this volume (Lovinger 2017).

5.2 Chronic Actions

Chronic ethanol exposure can result in tolerance to alcohol’s behavioral effects. This
may reflect neural adaptations that ultimately decrease GABAergic transmission
(Fig. 2, bottom). Changes in GABAA receptor subunit expression have been found
in several brain regions coincident with chronic alcohol exposure (e.g., Papadeas et al.
2001; Cagetti et al. 2003; Floyd et al. 2004; Hemby et al. 2006; Jin et al. 2014).
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Specifically, in the NAc a decrease in the α4 subunit was found following 2 weeks of
chronic ethanol drinking in rats compared to ethanol naïve rats (Papadeas et al. 2001).
A different group demonstrated within the NAc a coordinated decrease in the protein
and functional expression of the α1 and δ subunits, concomitant with an increase in
α4, α5, and γ2 subunits, using a chronic intermittent ethanol exposuremodel followed
by up to 40 days of withdrawal (Liang et al. 2014). This is suggestive of long-lasting
adaptations in GABAergic transmission following chronic ethanol exposure. These
differences may be due to length of exposure or withdrawal. In ethanol-dependent
individuals engaged in prolonged withdrawal, lower GABAA receptor availability is
found in the NAc of dependent individuals compared to controls (Lingford-Hughes
et al. 2012). These adaptive changes in GABAA receptor subunit expression have also
been found in other brain regions such as the hippocampus (Cagetti et al. 2003; Liang
et al. 2004) and amygdala (Floyd et al. 2004; Roberto et al. 2004; Anderson et al.
2007). These alterations may induce changes in the functional properties of GABAA

receptors leading to changes in affinity for GABA and allosteric modulators.
A few studies have reported that chronic ethanol exposure alters GABA release.

An increase in GABA release was suggested to occur within the CeA and hippo-
campus of chronic ethanol treated rodents perhaps attributable to changes in the
activity of GABAB autoreceptors (Tremwel et al. 1994; Peris et al. 1997; Roberto
et al. 2004, 2008, 2010). Specifically, in the dorsal striatum a decrease in the
frequency of mIPSCs was found in both the DLS of mice and in the putamen of
monkeys (Cuzon Carlson et al. 2011, 2017; Wilcox et al. 2014). However, the role of
GABAB receptors in modulating GABA release was not examined in these studies.

5.3 Pharmacotherapies for Alcohol Use Disorders That Target
GABAergic Transmission

To date, there are only three medications approved by the US Food and Drug Administra-
tion (FDA) to treat alcohol use disorder: disulfiram, naltrexone, and acamprosate. Although
these drugs have been shown to reduce alcohol consumption, their effects are modest and
inconsistent. Therefore, there is a need to discover other pharmacological treatments need to
be explored. The observed behavioral similarities between the effects of ethanol and
benzodiazepines (Krystal et al. 2003) suggest that targeting the GABAergic system is a
viable target for treating alcohol use disorder. There are three pharmacological agents that
are thought to alter the GABAergic system that are currently being assessed for their ability
to treat AUD: gabapentin, baclofen, and sodium oxybate. Gabapentin is structurally similar
to the GABA, although it has no activity at GABA receptors. It is shown to have activity at
voltage sensitive calcium channels and the ability to modulate GAD, increasing GABA
synthesis (Taylor 1997). Gabapentin is currently FDA approved for the treatment of
seizures, neuropathic pain, and restless leg syndrome. For alcohol use disorders, gabapentin
has been shown to increase the rate of abstinence, decrease heavy drinking days, and
decrease withdrawal symptoms (Voris et al. 2003; Mason et al. 2014). Baclofen is an
agonist of the GABAB receptor and is currently FDA approved for muscle spasticity.
Clinical studies have shown an increase in abstinence and a decrease in alcohol
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consumption in AUD individuals using baclofen over placebo (Addolorato et al. 2007;
Muller et al. 2015; Beraha et al. 2016; Reynaud et al. 2017). Sodium oxybate is the salt
version of gamma-hydroxybutyrate (GHB), an endogenous neurotransmitter that has
agonist activity at GABA receptors (Kamal et al. 2016). Sodium oxybate is FDA approved
for the treatment of narcolepsy and is currently approved for alcohol relapse prevention in
Italy and Austria. Clinical trials suggest that sodium oxybate increases abstinence rates
(Gallimberti et al. 1992; Caputo et al. 2007) but may lead to craving and abuse of GHB
(Caputo et al. 2007).

6 Ethanol Actions on Glutamatergic Transmission

The glutamatergic system has been implicated in the acute intoxicating effects of ethanol,
ethanol dependence, and withdrawal, and recently has been suggested to be a potential
target for treatment of alcoholism. These acute intoxicating effect correlates with a decrease
in glutamatergic function. There is evidence that changes in brain circuitry occurring as a
result of chronic alcohol exposure leads to a hyperglutamatergic state (Fig. 2). The
glutamatergic system plays a role in alcohol-associated dependence, including chronic
alcohol seeking and relapse (Dahchour et al. 1998; Rossetti et al. 1999; Bäckström and
Hyytiä 2004; Krupitsky et al. 2007; Nagy 2008; Alasmari et al. 2015).

6.1 Acute Actions

Acute ethanol has been shown to elicit both pre- and postsynaptic effects that ultimately
lead to decreased glutamatergic transmission. Presynaptically, acute low concentrations
of ethanol elevate glutamate levels in the striatum (Moghaddam andBolinao 1994; Selim
and Bradberry 1996; Lominac et al. 2006; Szumlinski et al. 2007; Soyka et al. 2016;
Goodwani et al. 2017; Hopf 2017) whereas at acute higher concentrations ethanol can
decrease extracellular glutamate concentrations (Moghaddam and Bolinao 1994;
Piepponen et al. 2002; Tiwari et al. 2014). However, other studies suggest no acute
ethanol effect on glutamate levels (Dahchour et al. 1994, 1996; Quertemont et al. 2002).
This discrepancy may be due to strain differences, differences in ethanol sensitivity,
concentration of ethanol examined, or brain location. Nevertheless, it is proposed that
ethanol can alter extracellular glutamate levels by exerting an effect on glutamate uptake
by astrocytes (Smith 1997; Othman et al. 2002; Melendez et al. 2005) or by the effect of
high concentrations of ethanol inhibiting the release of glutamate by its action onNMDA
receptors (Martin and Swartzwelder 1992; Woodward 1994).

Postsynaptically, ethanol has been shown to alter the functioning of ionotropic and
metabotropic glutamate receptors. NMDA receptor, an ionotropic glutamate receptor,
is one of the major targets of ethanol (Lovinger et al. 1989, 1990; Holmes et al. 2013)
and inhibition of NMDA receptors by alcohol is thought to contribute to the
intoxicating effects of alcohol (Hodge andCox 1998). Acute ethanol at concentrations
that mimic intoxicating levels in humans (5–50 mM or ~23–230 mg/dL) has been
shown to inhibit the function of NMDA receptors in a concentration-dependent
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manner (Lovinger et al. 1989, 1990). This ethanol-induced inhibition of NMDA
receptors is mediated by a decreased probability of channel opening and a decrease
in mean open time (Lima-Landman and Albuquerque 1989; Weight et al. 1993).

The ethanol sensitivity of NMDA receptors is thought to be dependent on subunit
composition, regional differences, phosphorylation state, and extracellular concen-
tration of magnesium. NMDA receptors containing the NR2A or NR2B subunits are
most potently affected by ethanol, with less potency for NMDA receptors containing
the NR2C or NR3 subunits (Kuner et al. 1993; Yamakura et al. 1993; Masood et al.
1994; Chu et al. 1995; Mirshahi and Woodward 1995; Popp et al. 1998; Woodward
2000; Smothers andWoodward 2003). Fyn kinase, PKA, PKC, and DAARP-32 have
been shown to phosphorylate NMDA receptors after ethanol administration (Moon
et al. 1994; Snell et al. 1994;Miyakawa et al. 1997;Maldve et al. 2002; Li andKendig
2003; Ferrani-Kile et al. 2003; Yaka et al. 2003) that may lead to the internalization of
NR2 subunits (Suvarna et al. 2005). With regards to extracellular magnesium con-
centration, the inhibitory effect of ethanol on NMDA receptors correlates with the
concentration of magnesium such that increasing concentrations of magnesium leads
to an increase in ethanol-induced inhibition of NMDA receptors (Rabe and Tabakoff
1990; Martin et al. 1991; Morrisett et al. 1991; Calton et al. 1998). The ethanol
sensitivity of NMDA receptors is also sensitive to glycine concentration, an allosteric
modulator of the NMDA receptor. High concentrations of glycine (>10 μM) can
decrease the ethanol-induced inhibition of NMDA receptors (Rabe and Tabakoff
1990). In the striatum, acute ethanol can inhibit the synaptic plasticity of excitatory
postsynaptic currents in an ethanol concentration-dependent manner (Wang et al.
2007; Jeanes et al. 2011).

In addition to its effects on NMDA receptors, ethanol also inhibits the function of
AMPA and kainate receptors (Moghaddam and Bolinao 1994; Costa et al. 2000;
Crowder et al. 2002). AMPA and kainate ionotropic glutamate receptors are also
sensitive to the acute effects of ethanol, albeit at concentrations exceeding those that
block NMDA receptors (Lovinger et al. 1989; Dildy-Mayfield and Harris 1992;
Costa et al. 2000; Moykkynen et al. 2003; Kalev-Zylinska and During 2007; Marty
and Spigelman 2012; Santerre et al. 2014). A single 4-h two-bottle choice session in
which mice had access to ethanol (20% v/v) and water leads to an increase in the
protein level of the AMPA receptor subunit GluA1 (Beckley et al. 2016).

The role of Group I metabotropic glutamate receptors (mGluR1, mGluR5) in
alcohol-related behaviors has been extensively studied. Gene variations in mGluR5
are associated with alcoholism risk (Schumann et al. 2008). Similarly, mGluR5 has
been suggested to play a role in alcohol consumption and seeking as the blockade or
deletion of mGluR5 specifically in the ventral striatum, attenuates these behaviors
(Besheer et al. 2010; Cozzoli et al. 2012; Sinclair et al. 2012).

6.2 Chronic Actions

Chronic alcohol exposure leads to a hyperglutamatergic state in many brain regions,
including the striatum (Ward et al. 2009; Ding et al. 2012, 2013; Das et al. 2015). In
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response to chronic ethanol, there is a potentiation of glutamatergic transmission
(Fig. 2, bottom), potentially as a compensation to chronic blockade of NMDA by
acute ethanol.

In postmortem brains of human alcoholics, studies have found an increase in
NMDA receptor ligand binding, density, and affinity (Michaelis et al. 1993; Freund
and Anderson 1996, 1999). Similar findings were observed in rodent studies of
chronic ethanol exposure in which binding to the NMDA receptor was increased
concomitant with an increase in the expression of the NR1, NR2A, and NR2B
subunits of the NMDA receptor (Trevisan et al. 1994; Kumari and Ticku 2000;
Kash et al. 2009; Obara et al. 2009; Wang et al. 2010). In addition to up-regulation
of NMDA subunit expression, chronic ethanol also increases NMDA receptor
function (Kalluri et al. 1998; Carpenter-Hyland et al. 2004; Carpenter-Hyland and
Chandler 2006; Kash et al. 2009; Wang et al. 2007, 2010) and conductance (Iorio
et al. 1992; Sanna et al. 1993; Chen et al. 1999; Floyd et al. 2003; Nagy et al. 2003;
Nelson et al. 2005). In chronic ethanol-exposed mice that were undergoing with-
drawal, high frequency stimulation induced NMDA receptor-dependent LTP of
glutamatergic transmission in the striatum. This was in stark contrast to the ethanol
naïve condition in which the same high frequency stimulation paradigm induced
NMDAR-dependent LTD of glutamatergic transmission (Yamamoto et al. 1999;
Jeanes et al. 2011). The increase in LTP may be facilitated by an increase in the
response of NR2B containing NMDA receptors (Wang et al. 2007). A decrease in
LTD of glutamatergic transmission was also found in the striatum of chronic
ethanol exposed rodents potentially through decreased endocannabinoid cannabi-
noid 1 receptor signaling (Xia et al. 2006; DePoy et al. 2013). These changes in
NMDA receptor expression and function can lead to hyperexcitability that may
underlie the increased seizure susceptibility associated with early withdrawal from
ethanol (Tsai et al. 1995; Tsai and Coyle 1998). In prolonged withdrawal, a down-
regulation of NMDA subunit express, function, and LTD induction have been
observed in the NAc (Abrahao et al. 2013).

A chronic ethanol-induced increase in AMPA receptor expression has been found
in a number of brain regions, including the striatum (Chandler et al. 1999; Neasta
et al. 2010; Ary et al. 2012; Wang et al. 2012). Specifically within the striatum, an
increase in the expression and synaptic trafficking of GluA1 and GluA2 subunits of
the AMPA receptor was found following chronic ethanol (Neasta et al. 2010; Ary
et al. 2012). An increase in AMPA receptor-mediated excitatory postsynaptic
currents was observed in the DMS and amygdala following chronic ethanol (Läck
et al. 2007; Ma et al. 2017). The chronic ethanol-induced facilitation of LTP
observed in striatal MSNs has been suggested to involve an increase in the synaptic
insertion of AMPA receptors (Wang et al. 2010, 2015).

In addition to changes in the postsynaptic ionotropic glutamate receptors, an
increase in the postsynaptic release of glutamate and its concentration in brain tissue
have also been observed following chronic ethanol exposure in rodents and humans
(Rossetti and Carboni 1995; Bauer et al. 2013). Elevated glutamate concentrations
were measured in rodents after chronic ethanol exposure in several brain regions,
and the glutamate concentration measured in the NAc, in particular, correlated with
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the severity of alcohol withdrawal (Fliegel et al. 2013). An increase in the spine
density of MSNs as well as an increase in the frequency of excitatory postsynaptic
currents were observed in the putamen of nonhuman primates (Cuzon Carlson et al.
2011). The observed chronic ethanol-induced increase in extracellular glutamate
may be a result of alterations in vesicular glutamate transporters (Tsai and Coyle
1998; Fliegel et al. 2013). An increase in the expression and/or activity of mGluR1/5
may also increase glutamate release by way of activation of PLC (Obara et al. 2009;
Meinhardt et al. 2013).

6.3 Pharmacotherapies of Alcohol Use Disorders That Target
the Glutamatergic System

As stated above, there are currently only three FDA drugs for the treatment of AUD.
Acamprosate was approved by the FDA in 2004 for the maintenance of abstinence in
individuals with AUD (Maisel et al. 2013; Jonas et al. 2014; Donoghue et al. 2015).
Although its exact mechanism of action is unknown, acamprosate is thought to
reduce glutamate levels via antagonism of mGluR5 (Harris et al. 2003). Topiramate
has shown potential as a potential AUD therapy drug. It is an antagonist of kainate
and AMPA glutamate receptors (Gibbs et al. 2000) and is currently FDA approved to
treat epilepsy. Topiramate has shown potential in reducing alcohol cravings and
intake in human trials (Johnson et al. 2007; Blodgett et al. 2014; Martinotti et al.
2014). However, a number of adverse effects (including nausea, impaired cognitive
function, and paraesthesia) has the potential to lead to noncompliance in some users
as these adverse effects may outweigh the benefit of the drug (Kranzler et al. 2014).

7 Effects of Ethanol on Specific Neuronal Populations
of the Striatum

Since it has been demonstrated that specific manipulation of either direct or indirect
pathway MSNs leads to distinct downstream circuits mediating different behaviors
(Kravitz et al. 2010; Carvalho Poyraz et al. 2016; Lambot et al. 2016), it is important
to define these and other striatal cell types and highlight differences in alcohol-
induced adaptations.

7.1 dMSN vs iMSNs

Evidence is mounting that GABAergic and glutamatergic transmissions within the
striatum are modulated by ethanol in a cell-type specific manner. Repeated cycles
of voluntary ethanol consumption and forced withdrawal selectively potentiate
synaptic NMDA receptor activity in D1 receptor-expressing dMSNs but not in D2
receptor-expressing iMSNs of the DMS (Cheng et al. 2017). This imbalance in
activity between dMSNs and iMSNs following chronic ethanol exposure occurs in
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conjunction with a loss in the ability to elicit LTD selectively in dMSNs, while
that ability was observed only in iMSNs (Fig. 2, bottom). Although this was
recovered by 2 weeks of withdrawal (Jeanes et al. 2014), it is not known whether
the occlusion of LTD in dMSNs following chronic ethanol was due to an ethanol-
induced floor effect in LTD whereby it could not be further generated, or whether
ethanol altered synaptic function in some manner rendering it resistant to change.
Another study suggests that the bias towards activation of dMSNs is a result of
chronic ethanol-induced facilitation of NMDA receptor currents and LTP while
concomitantly inhibiting NMDA receptors and eliciting LTD in iMSNs (Fig. 2,
bottom; Renteria et al. 2017). A further explanation is the increase in GluN2B-
containing NMDA receptors specifically in dMSNs may facilitate AMPA receptor
plasticity, LTP and an overall increase in activity of dMSNs (Wang et al. 2012,
2015).

Interestingly, this potentiation of glutamatergic transmission onto dMSNs with
ethanol exposure was found to be concomitant with an increase in GABAergic
transmission onto iMSNs (Fig. 2, bottom; Cheng et al. 2017). This increase in
GABAergic transmission in the striatummay result from an ethanol-induced increase
in GABAergic interneuron connectivity onto D2-MSNs (Gittis et al. 2011).

On the whole, the literature suggests a strong bias towards activation of dMSNs
following chronic ethanol exposure that may be responsible for facilitating continued,
compulsive, or excessive alcohol intake (Berglind et al. 2006; Luo et al. 2011). In
agreement with an ethanol-induced increase in dMSN output, genetic knockout or
blockade of glutamate receptors specifically in dMSNs that results in a decrease in
output from dMSNs, reduces the alcohol deprivation effect in which there is a
temporary increase in voluntary alcohol consumption over baseline when ethanol
access is reinstated following a period of withdrawal (Sinclair and Senter 1967, 1968;
Eisenhardt et al. 2015).

7.2 Interneurons

There are conflicting reports as to how ethanol affects fast-spiking parvalbumin
expressing interneurons of the striatum. An acute ethanol-induced depression of
GABAergic synapses in the DLS was found to specifically involve the GABAergic
synapses of fast-spiking parvalbumin-expressing GABAergic interneurons onto
MSNs through modulation of opioid transmission (Patton et al. 2016). Conversely,
acute application of ethanol led to a reversible membrane depolarization in striatal
fast-spiking GABAergic interneurons through a reduction in cholinergic transmis-
sion (Blomeley et al. 2011). This difference in results may have been due to species
differences or differences in recording parameters. In low-threshold spiking
interneurons, brief application of ethanol led to membrane hyperpolarization
(Blomeley et al. 2011), an effect attributed to the ethanol’s actions on potassium
currents.

Acute ethanol also decreased the average action potential firing rate of cholinergic
interneurons (Blomeley et al. 2011). Cholinergic interneurons have also been shown
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to facilitate the acute ethanol effect on long-term synaptic plasticity in the striatum
(Adermark et al. 2011).

8 Implications of the Effect of Ethanol on Striatal GABAergic
and Glutamatergic Transmission in the Progression
to Addiction

Repeated cycles of ethanol consumption and withdrawal are thought to reinforce
ethanol consumption, in some instances leading to pathologically excessive use of
ethanol. Gaining insights into the detailed mechanisms that underlie the control of
ethanol consumption by excitatory and inhibitory neurotransmission onto striatal
neuronal subpopulations is a required step in elucidating prospective synaptic and
neuronal therapeutic targets for the development of new approaches for the treatment
of alcoholism. A further goal would be uncovering differences in the cortico-basal
ganglia circuits (limbic, associative, and somatosensory) to determine what sets the
stage for ethanol consumption progressing to excessive, compulsive intake in some
individuals while others are spared.

Acute ethanol leads to a reduction in excitatory drive by way of the inhibition of
NMDA receptors. This coupled with the enhancement of inhibitory GABAergic trans-
mission may account for the sedating and dose-dependent depressant effects of ethanol
intoxication. In the striatum, the acute effects of ethanol on GABAergic transmission
appeared to be subregion specific with increases in presumably the release of GABA in
the DMS and NAc but a decrease in the DLS (Nie et al. 1997, 2000;Wilcox et al. 2014).
This may lead to a disruption in the normal processing of reward-related behaviors
mediated by the limbic circuit, or action control mediated by the dorsal striatum that
may begin a bias towards the somatosensory circuit. It is posited that abnormal reward-
related learning and action selection for the consumption of alcohol is brought about by
ethanol-induced changes in striatal synaptic strength and plasticity. This could ultimately
prime the activity of the same striatal circuits in response to future alcohol exposure. The
alcohol-induced changes in neuronal signaling within the NAc could explain the errone-
ous cue-induced associations that are made by individuals during alcohol exposure. The
activity of the DMS appears to be required during the developmental phase of excessive
alcohol drinking inwhich the action of alcohol intake is still dependent on the outcome of
that action (Corbit et al. 2012). In a related fashion, theDMSmayplay a role in the relapse
to alcohol seeking.

One consequence of chronic ethanol exposure appears to be a disinhibition of
striatal output that facilitates the recruitment of certain cortico-striatal circuits. In
particular, the sensorimotor circuit may increase habit formation and alcohol seeking
(Corbit et al. 2012; Dickinson et al. 2002). The resulting recruitment of the sensori-
motor loop and the DLS is thought to underlie compulsive drug use. This may be
further exacerbated by the alcohol-induced bias in activation of dMSNs via increased
AMPAR activity. The activation or potentiation of dMSN circuitry concomitant with
a decrease in iMSN circuitry could reduce the threshold of alcohol-related sensory
stimulation and enhance multisensory integration surrounding alcohol use.
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Abstract
In the brain, fast inhibitory neurotransmission is mediated primarily by the
ionotropic subtype of the gamma-aminobutyric acid (GABA) receptor subtype
A (GABAAR). It is well established that the brain’s GABAAR system mediates
many aspects of neurobehavioral responses to alcohol (ethanol; EtOH). Accord-
ingly, in both preclinical studies and some clinical scenarios, pharmacologically
targeting the GABAAR system can alter neurobehavioral responses to acute and
chronic EtOH consumption. However, many of the well-established interactions
of EtOH and the GABAAR system have been identified at concentrations of
EtOH ([EtOH]) that would only occur during abusive consumption of EtOH
(�40 mM), and there are still inadequate treatment options for prevention of or
recovery from alcohol use disorder (AUD, including abuse and dependence).
Accordingly, there is a general acknowledgement that more research is needed to
identify and characterize: (1) neurobehavioral targets of lower [EtOH] and
(2) associated brain structures that would involve such targets in a manner that
may influence the development and maintenance of AUDs.

Nearly 15 years ago it was discovered that the GABAAR system of the
cerebellum is highly sensitive to EtOH, responding to concentrations as low as
10 mM (as would occur in the blood of a typical adult human after consuming 1–2
standard units of EtOH). This high sensitivity to EtOH, which likely mediates the
well-known motor impairing effects of EtOH, combined with recent advances in
our understanding of the role of the cerebellum in non-motor, cognitive/emotive/
reward processes has renewed interest in this system in the specific context of
AUD. In this chapter we will describe recent advances in our understanding of
cerebellar processing, actions of EtOH on the cerebellar GABAAR system, and
the potential relationship of such actions to the development of AUD. We will
finish with speculation about how cerebellar specific GABAAR ligands might be
effective pharmacological agents for treating aspects of AUD.

Keywords
Addiction · Alcohol · AUD · Cerebellum · Ethanol · GABA

1 Introduction to GABAARs, Interactions with Alcohol,
and Therapeutic Approaches to AUDs

1.1 Synaptic and Extrasynaptic GABAARs

The GABAAR is a plasma-membrane spanning, ligand-gated ionotropic channel that
is primarily permeable to Cl� (Fig. 1a) (Lorenz-Guertin and Jacob 2017). Functional
GABAARs are heteropentameric structures, comprised of varying subunit
combinations from a family of 19 closely related subunit families (α1–6, β1–3
γ1–3, δ, ε θ, π, and ρ1–3; Fig. 1a, b). Most GABAAR channels in the brain are
comprised of two α subunits, two β subunits, and either a γ or δ subunit, and the
specific subunit makeup influences almost all biophysical/pharmacological
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properties of the receptor/channel complex, including channel conductance and
kinetics, affinity for GABA and other agonists/antagonists, sensitivity to
neuromodulators, modulation by phosphorylation, and subcellular location (for
review, see Lorenz-Guertin and Jacob 2017).

Fig. 1 Phasic and tonic GABAAR currents and modulation by EtOH, as exemplified by cerebellar
granule cells. (a) Schematic diagram showing GABAARs in the synaptic cleft (blue) and outside of
the synaptic cleft (green). Synaptic GABAARs are typically comprised of two α subunits (with α1
dominating at most synapses), two β subunits, and a γ subunit. Extrasynaptic GABAARs replace the
γ subunit with a δ subunit which is crucial for anchoring the receptor complex extrasynaptically,
and at most synapses is paired with either the α4 (hippocampus and thalamus) or α6 (cerebellum)
subunit [as in (b), bottom panel], although other permutations also exist. (b) Immunocytochemistry
for the α1 (top) and α6 (bottom) subunit of the GABAAR receptor. Note, the α6 subunit is
exclusively expressed in granule cells. (c) Phasic IPSCs (left) are mediated by synaptic GABAARs
(as evidenced by their sensitivity to the GABAAR antagonist, GABAzine) that are rapidly activated
by the high concentrations of vesicular GABA released into the synaptic cleft, and their decay time
is dictated by receptor desensitization and inactivation as GABA is cleared from the synaptic cleft
by diffusion and uptake by GABA transporters. Tonic GABAAR-mediated currents (right; steady
state current blocked by GABAzine; downward deflections superimposed on the tonic current are
phasic IPSCs that are also blocked by GABAzine) are mediated by extrasynaptic GABAARs that
have a higher affinity for GABA and do not readily desensitize, and so generate a steady state
current that varies in accordance with the concentration of ambient extracellular GABA. Note,
because GABA released into the synaptic cleft diffuses out of the cleft where it can activate
extrasynaptic GABAARs, the magnitude of the tonic GABAAR current increases or decreases in
parallel with changes in vesicle release rate, either from the presynaptic neuron or from neighboring
synapses not directly connected to the recorded cell. (d) Example voltage-clamp recording (left)
showing that EtOH (52 mM) increases sIPSC frequency and tonic GABAAR current magnitude in a
granule cell in a slice of cerebellum from a low EtOH consuming Sprague Dawley rat (SDR). EtOH
dose–response plot (right) shows the mean enhancement of sIPSC frequency (black) and tonic
GABAAR current magnitude (red), without affecting sIPSC amplitude (gray). Images are adapted
with permission from Mohr et al. (2013) and Pirker et al. (2000)
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Of the wide range of properties conferred by variations in GABAAR subunit
composition, a major division is defined by whether their activity in situ is phasic or
tonic (Fig. 1a, c) (Hamann et al. 2002; Brickley et al. 1996; Wall and Usowicz 1997;
Mody and Pearce 2004; Stell and Mody 2002; Mody 2001; Lorenz-Guertin and
Jacob 2017; Ye et al. 2013; Richardson et al. 2011). The nature of phasic, inhibitory
postsynaptic currents (IPSCs) is dictated by the rapid activation of postsynaptic
GABAARs by transiently high concentrations of GABA (due to the proximity of
synaptic GABAARs to the vesicular release site), followed by receptor desensitiza-
tion, and inactivation due to transmitter removal by plasma membrane GABA
transporters (GAT1–4), which combined dictate the time course of IPSC decay
(Cavelier et al. 2005; Rossi and Hamann 1998; Rossi et al. 2003; Banks and Pearce
2000; Bragina et al. 2008; Moldavan et al. 2017; Schousboe et al. 2014). In contrast,
tonic GABAAR-mediated currents are mediated primarily by a specialized subset of
GABAARs that are located outside of the synaptic cleft and generally have a higher
affinity for GABA than synaptic GABAARs, and also are resistant to desensitization,
two properties that enable extrasynaptic GABAARs to be tonically activated by the
low ambient concentration of extracellular GABA (Rossi and Hamann 1998;
Hamann et al. 2002; Stell et al. 2003; Glykys et al. 2008; Cavelier et al. 2005).
Specifically, tonic currents are primarily mediated by GABAARs containing the δ
subunit (rather than the more common γ subunit) combined with either the α4 or α6
subunit (depending on the brain region; Fig. 1b) which result in GABAARs that have
a high affinity for GABA, do not easily desensitize, and are anchored close to, but
outside of the synaptic cleft. Importantly, although the absolute magnitude of tonic
GABAAR currents is small relative to the amplitude of IPSCs, because they are
constantly active, tonic inhibition is significantly more powerful than phasic inhibi-
tion, mediating �75% of total inhibition in cells that exhibit tonic inhibition
(Richardson et al. 2011; Hamann et al. 2002). Thus, tonic GABAAR currents are
potentially very powerful targets for neural modulation. Although tonic GABAAR
currents have now been observed in numerous brain regions [mostly those
expressing the δ subunit (Glykys et al. 2008; Richardson et al. 2011), although see
(Lorenz-Guertin and Jacob 2017) for additional permutations], their properties and
molecular makeup were first discovered and have been most thoroughly
characterized in cerebellar granule cells (Brickley et al. 1996; Hamann et al. 2002;
Stell et al. 2003; Wall and Usowicz 1997), which, given the topic of this chapter, will
serve as the model for their role in the broader context of AUDs (Fig. 1c, d).

Since the ambient concentration of GABA is determined by the balance between
vesicular GABA release [and possibly release from astrocytes (Rossi et al. 2003;
Cavelier et al. 2005; Lee et al. 2010; Diaz et al. 2011)] and GABA removal by
GATs, the magnitude of tonic GABAAR currents can be modulated by changes in
(1) the rate of vesicular GABA release (whether it be into synapses on the recorded
cell or from neighboring synapses not on the recorded cell), (2) the rate of GABA
uptake, or (3) the density of extrasynaptic GABAARs or their affinity for GABA
(Cavelier et al. 2005; Rossi et al. 2003). Thus, changes in vesicular GABA release
rate manifest as changes in the frequency of phasic IPSCs and the magnitude of tonic
GABAAR currents (in cells that express relevant extrasynaptic GABAARs).
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Because in most neurons in the mature brain the extracellular concentration of
Cl� is approximately 20-fold higher than the free concentration inside of cells, the
reversal potential of Cl� (ECl

�) is typically fairly hyperpolarized (�60 to �80 mV).
Accordingly, activation of GABAARs typically results in an influx of Cl� ions,
which is hyperpolarizing (i.e., inhibitory). Even if a neuron’s resting membrane
potential is at or near ECl

�, and thus activation of GABAARs produces little or no
current, the opening of channels and associated increase in membrane conductance
may inhibit responses to excitatory inputs via shunting inhibition (Mitchell and
Silver 2003; Heigele et al. 2016). This effect is more efficacious when GABAAR
currents are tonically active rather than phasic, as the ability for phasic currents to
cause shunting inhibition is largely dependent on their coinciding temporally
(within a few ms) with the occurrence of an excitatory current. Thus, in general,
any action of EtOH on the GABAAR system will enhance or reduce the primary
form of fast inhibitory neurotransmission in the brain. However, in developing
neurons, when the Cl� gradient is not fully established, in subcellular compart-
ments of mature neurons that have reduced Cl� gradients, or in some mature
neurons that have had their Cl� gradient transiently reduced by exposure to
hormones or peptides, GABAARs may be depolarizing (Ben-Ari et al. 2012; Eilers
et al. 2001; Ostroumov et al. 2016; Pugh and Jahr 2011; Tyzio et al. 2006), and
thus the same action of EtOH on GABAARs can have the opposite effect on overall
cellular or subcellular excitation, although shunting inhibition can still occur even if
activation of GABAARs does depolarize a given cellular compartment.

1.2 Pre- and Postsynaptic Actions of EtOH on GABAergic
Transmission

EtOH has long been known to be a potent enhancer of GABAAR-mediated inhibi-
tion, but the mechanism(s) of action are complex, and vary across brain regions and
GABAAR subtypes. First, in many brain regions, EtOH increases vesicular release of
GABA (which can be triggered by EtOH actions in the presynaptic terminal itself, or
other compartments of the presynaptic cell which induce increased action potential
firing). Regardless of the site of EtOH action within the presynaptic cell that drives
increased vesicular GABA release (hereafter referred to as presynaptic actions), the
effect manifests as an increase in the frequency of spontaneous IPSCs (sIPSCs) and,
in those brain regions that exhibit tonic GABAAR currents, an increase in its
magnitude, due to spillover from the various activated synapses (Fig. 1d) (Hanchar
et al. 2005; Carta et al. 2004; Liang et al. 2006; Kumar et al. 2009; Kelm et al. 2011,
2008; Criswell et al. 2008; Mohr et al. 2013; Kaplan et al. 2013). Although not the
focus of this chapter, EtOH-induced changes in GABA release can also affect pre-
and postsynaptic GABAB receptors (Silberman et al. 2009; Reilly et al. 2008), which
are also known to influence a variety of EtOH-related phenotypes and processes
(Enoch et al. 2016; Phillips and Reed 2014), including enhancing EtOH actions on
GABAARs (Yang et al. 2000).
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The ability of EtOH to increase GABA release varies across brain regions, and
there is considerable variation in the underlying mechanisms across those synapses
that do show EtOH-induced increased GABA release (Kelm et al. 2011). Indeed,
EtOH-induced increased vesicular GABA release has been shown to be mediated by
either increased action potential firing (Carta et al. 2004; Kaplan et al. 2013) or
increased probability of release at the axon terminal, and the underlying molecular
triggers vary from cell to cell, but often include presynaptic G-protein cascades,
kinases, and a range of second messengers and effector proteins (Kaplan et al. 2013;
Kelm et al. 2008, 2011; Criswell et al. 2008; Kumar et al. 2009; Nie et al. 2009).

While the evidence for EtOH increasing GABA release in various brain regions
is very clear, and to our understanding not notably controversial, the more
longstanding and commonly expressed thinking about EtOH actions on the
GABAAR system [that it directly enhances GABAARs (Olsen et al. 2007; Wallner
et al. 2003; Hanchar et al. 2004; Crews et al. 1996; Davies 2003; Mihic 1999)] is
actually far more controversial (Korpi et al. 2007; Borghese and Harris 2007; Botta
et al. 2007a, b). In particular, there are certainly some clear studies showing that
EtOH can increase the amplitude or decay kinetics of IPSCs and the amplitude of
tonic GABAAR currents, in many cases with action potentials blocked and in the
absence of any clear increase in GABA release (i.e., no change in sIPSC frequency),
which is compatible with postsynaptic mechanisms (Hanchar et al. 2005; Jia et al.
2007, 2008; Liang et al. 2009). In the context of AUD, some examples of EtOH
direct modulation of GABAARs exhibit forms of adaptation to chronic EtOH
exposure, which fits with a role in tolerance and dependence (Cagetti et al. 2003;
Liang et al. 2006, 2009). Further, numerous studies of cloned GABAARs expressed
in isolated cell preparations have demonstrated enhancement by EtOH of responses
to exogenous GABA (Meera et al. 2010). However, the existence of these presumed
postsynaptic actions have been somewhat controversial. In particular, often EtOH
effects vary across cell types or species despite involving apparently similar
GABAAR receptor subtypes, and not all groups have observed such effects, even
when studying the same preparation and cell type (see below for a more detailed
discussion) (Borghese and Harris 2007; Borghese et al. 2006; Botta et al. 2007b).
While this controversy has yet to be fully explained, there is accumulating evidence
that the phosphorylation state of GABAARs is a crucial determinant of whether
EtOH affects postsynaptic responsivity of GABAARs to EtOH (Choi et al. 2008;
Hodge et al. 1999; Kaplan et al. 2013; Qi et al. 2007; Trudell et al. 2014).

Another concern is whether the [EtOH] required to induce direct enhancement of
GABAARs is commonly achieved in human clinical scenarios or rodent preclinical
models. For example, EtOH enhancement of hippocampal and thalamic GABAAR
currents doesn’t occur until ~50 mM EtOH (Jia et al. 2008; Liang et al. 2009), which
may be achieved in some severe cases of AUD, but is not achieved during recrea-
tional consumption in humans or in any model of voluntary consumption in rodent
models. Thus, while such actions, and associated adaptations may contribute to
neural processes in the late stages of AUD (Cagetti et al. 2003; Liang et al. 2006,
2009), they are not likely to play a role in initial reactions to EtOH and thus
predilection and early progression to AUD. A similar concern applies to most studies
of EtOH action on recombinantly expressed GABAARs (Borghese et al. 2006).
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Finally, even in cases where EtOH does alter postsynaptic GABAAR
responsivity, it is not fully resolved whether such actions are due to direct interaction
of EtOH with the GABAAR, or whether they are secondary to phosphorylation of
GABAARs and/or GABAAR translocation to new locations within the plasma
membrane or even out of the plasma membrane, all of which have also been
observed in response to acute or chronic exposure to EtOH (Kumar et al. 2009;
Lorenz-Guertin and Jacob 2017). Indeed, the best evidence for modulation of
GABAARs by EtOH being mediated by direct interactions comes from modeling
of the ρ subunit, based on crystallographic studies of the homologous GluCl subunit
(a glutamate gated chloride channel found in insects), which is an uncommon
GABAAR subunit in the brain, and whose activity is actually suppressed by EtOH
(Borghese et al. 2016). In this regard, we recently discovered that low [EtOH]
(9 mM) can directly suppress cerebellar granule cell tonic GABAAR currents in
situ, but that such suppression is prevented by postsynaptic PKC activity (Kaplan
et al. 2013). Importantly in the context of AUD, the level of postsynaptic PKC
activity, and thus EtOH suppression of tonic GABAARs, varies across mammalian
genotypes in a manner that suggests it is a key genetically controlled, molecular
determinant of excessive EtOH consumption (see below for further detail) (Kaplan
et al. 2013, 2016a; Mohr et al. 2013).

Thus, while there is much evidence supporting the idea that EtOH can enhance
and in some cases suppress GABAAR transmission via postsynaptic mechanisms
(Kaplan et al. 2013; Borghese et al. 2016), the details of such mechanisms are far
from clear. Indeed, although the GABAAR inverse agonist, Ro 15-4513, which
blocks many of the intoxicating effects of EtOH has been suggested to do so by
blocking EtOH binding to GABAARs (Hanchar et al. 2006), other studies do not find
any direct competitive molecular interaction between the two compounds (Korpi
et al. 2007), and Ro 15-4513 activity at GABAARs could just as well counteract
EtOH intoxication by functionally counteracting enhanced GABA release, or even
simply by counteracting overall changes in network activity induced by EtOH in a
given brain region.

Our overall thinking on the history of and current status of direct actions of EtOH
on GABAARs is as follows. Similarities in the behavioral actions of EtOH and
known GABAAR modulators (anesthetics and benzodiazepines) combined with
numerous studies showing that modulating GABAARs (pharmacologically or genet-
ically) affects EtOH-related behavioral or even cellular phenotypes correctly led to
the conclusion that a primary target of EtOH is the GABAAR “system.” Parallel
and/or consequent studies of recombinant GABAARs, combined with a limited
number of in situ examples of EtOH modulating GABAARs (arguably directly),
refined the thinking toward the notion that a major component of EtOH actions on
the GABAAR system was via direct enhancement of GABAARs. However, many of
the apparent examples of direct enhancement of GABAARs (both in situ and in
recombinant systems) required higher [EtOH] than were likely involved in most
behavioral actions of EtOH. Moreover, a general lack of reproducibility of some
observations of direct enhancement of GABAARs, and the discovery that direct
enhancement is tightly controlled by GABAAR receptor phosphorylation status,
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suggests that direct enhancement may not be as common as initially thought,
although it may play a role in specific cellular/behavioral situations. Further, the
discovery of EtOH-induced GABA release (often at more clinically typical
concentrations) combined with the fact that the dominant role of GABAARs in all
central neural processing, means that modulating GABAARs (pharmacologically or
genetically) may, and often does, alter EtOH-related behaviors even if the relevant
underlying neural actions of EtOH do not involve direct enhancement of GABAARs
by EtOH at relevant concentrations. Finally, it is now clear that EtOH can actually
directly suppress GABAARs, and that this process appears to be genetically
regulated such that it correlates with and can drive high EtOH consumption
phenotypes.

A final way in which EtOH may affect GABAAR-mediated transmission is via its
effect on GABAAR-active neurosteroids, primarily deoxycorticosterone, progester-
one, testosterone, and their respective metabolites (Helms et al. 2012; Finn et al.
2004; Porcu and Morrow 2014; Cook et al. 2014). In particular, both acute and
chronic exposures to EtOH alter the local and systemic concentrations of these
GABAAR-active neurosteroids, either by changes in their local or global synthesis
or metabolism. Often such changes vary considerably across different brain regions
and across different species or genetic lines that have divergent EtOH-related
phenotypes, further implicating their interaction with GABAARs in AUDs (Jensen
et al. 2017; Cook et al. 2014; Porcu and Morrow 2014; Snelling et al. 2014). It is
important to note that while many such neurosteroids have been studied in the
context of their ability to enhance GABAAR currents, in general the sulfated
versions of otherwise GABAAR-enhancing neurosteroids actually suppress
GABAAR-mediated currents (Helms et al. 2012; Snelling et al. 2014). Finally, it
has been demonstrated that some neurosteroids can act on presynaptic GABAergic
terminals to increase vesicular GABA release (Park et al. 2011). The concentration
of neurosteroids required to induce such release is generally higher than the usual
range detected in plasma, but it is conceivable that local neurosteroid synthesis could
result in higher concentrations locally that could affect presynaptic GABA release.
Regardless, potential AUD-related treatment options involving neurosteroid-
GABAAR interactions could involve this process. Thus, regulation of GABAAR
transmission by neurosteroids is complex on its own, and varied modulation by
EtOH across different brain regions, EtOH-contexts (low versus high concentrations
and acute versus chronic exposure), and species/genotypes adds another level of
complexity for which considerably more research will be required to fully
understand.

1.3 Preclinical Studies That Target GABAARs to Deter EtOH
Consumption Have Not Translated into Clinical Treatment
for AUDs

Because of the clear interactions of EtOH with GABAAR-mediated transmission,
modulation of GABAARs has been a dominant focus of preclinical efforts to combat
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EtOH actions in a manner that might reduce AUDs. Such efforts tend to focus on
blocking or replacing acute EtOH actions on GABAARs and on ameliorating
GABAAR-related adverse reactions to chronic EtOH consumption and associated
withdrawal (Anton et al. 2014). Specifically, in an early study, systemic administra-
tion of a GABAAR agonist (THIP/Gaboxadol) or antagonist (picrotoxin) increased
and decreased, respectively, ongoing voluntary EtOH consumption by rats (Boyle
et al. 1993). Similarly, knocking out specific GABAAR subunits globally generally
reduces EtOH consumption across a range of EtOH consumption models and lines
of mice (Crabbe et al. 2006b; Rewal et al. 2009, 2012; Nie et al. 2011). However,
other studies have shown that systemic application of GABAAR agonists, including
THIP, can reduce EtOH consumption, including binge EtOH consumption (Moore
et al. 2007; Ramaker et al. 2012). Furthermore, detailed temporal analysis of EtOH
bout patterns indicate that the effect of modulating GABAARs globally, with the
synthetic GABAAR-enhancing neurosteroid ganaxolone, can be complex even
within a single model and set of animals (Ramaker et al. 2011). Such variability
with systemic application of GABAAR ligands likely reflects the widespread expres-
sion of GABAARs across the brain, with different brain regions playing different
roles in various aspects of EtOH-induced responses (Ramaker et al. 2015; Kaplan
et al. 2016b; Nowak et al. 1998; Nie et al. 2011; Pina et al. 2015; Rewal et al. 2009).
However, even within a given brain region, such as the nucleus accumbens, the role
of GABAARs in EtOH consumption is complex, with either blocking or activating
extrasynaptic GABAARs able to reduce EtOH consumption (Rewal et al. 2009; Nie
et al. 2011; Ramaker et al. 2015). An additional complication is that because
GABAARs are widely distributed in most brain regions, many GABAARmodulators
cause intolerable side effects, such as sedation, depression, and motor impairment,
which preclude clinical use. Similarly, various GABAAR modulators have their own
addictive potential. Thus, it is perhaps not surprising that despite the clear role of
GABAARs in multiple aspects of EtOH responses, there are currently no GABAAR
ligands that are clinically effective at reducing AUDs. Instead, clinically, the use of
GABAAR modulators is primarily restricted to emergency care, in particular
preventing life threatening EtOH withdrawal symptoms, and there is still inadequate
pharmacotherapy for AUD treatment and recovery generally (Anton et al. 2014;
Eastes 2010).

1.4 The Cerebellar GABAAR System May Provide a Missing Piece
to the AUD Puzzle

A likely contributing factor to the inadequate clinical translation of the aforemen-
tioned preclinical studies of EtOH and the GABAAR system is that much of what has
been learned about their interactions is based on the studies of relatively high [EtOH]
(almost exclusively �20 mM, and often�40 mM). While such [EtOH] are achieved
in the blood of humans after binge EtOH consumption by nonalcoholics, and may be
common in advanced cases of AUD, such concentrations are not achieved by
humans in their early experiences with recreational EtOH consumption. This
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discrepancy is problematic because individual variation in the sensitivity of various
neural processes to low [EtOH] is a significant predictor of risk for developing AUD.
Specifically, low sensitivity to the aversive effects and high sensitivity to the
rewarding effects of low [EtOH] predict an increased risk for developing AUD
(Crabbe et al. 2010; Quinn and Fromme 2011; Schuckit 1985; Schuckit and Smith
1996; Schuckit et al. 1996, 2003). Importantly, low [EtOH], such as those achieved
when an adult human consumes 1–2 standard units of alcohol over a 1–2 h period
(i.e., blood [EtOH] ¼ ~10 mM), have profound impacts on affect, mood, and
behavior. Effects include a sense of euphoria, social disinhibition, anxiolysis, and
motor impairment (Gallaher et al. 1996; Gilman et al. 2008; Schuckit 1985; Schuckit
et al. 2003, 2008; Spanagel 2009; Trudell et al. 2014). These behavioral
manifestations are reflected by brain imaging studies showing low [EtOH] alters
neural signaling in brain regions involved in executive function (prefrontal cortex),
reward and anxiety (ventral tegmental area, striatum, and amygdala), and motor
coordination (cerebellum) (Mitchell et al. 2012, 2013; Gan et al. 2014; Weber et al.
2014; Nikolaou et al. 2013a, b; Bjork and Gilman 2014; Gilman et al. 2008; Volkow
et al. 2008). However, there is a significant gap in our understanding of specific
cellular/molecular targets of low [EtOH], and the mechanisms by which they alter
neural processing to influence behavior. In fact, although studies of isolated brain
tissue have shown that higher [EtOH] (>20 mM) alter neuronal and synaptic
function, the effects of low [EtOH] (� 10 mM) at this level have been reported to
be minimal or absent (Choi et al. 2008; Jia et al. 2007, 2008; Liang et al. 2006;
Morikawa and Morrisett 2010; Nie et al. 1994, 2000; Peris et al. 1992; Roberto et al.
2003; Theile et al. 2008, 2009; Weitlauf and Woodward 2008). Thus, it is not clear
how low [EtOH] has such robust action on cognition, emotion, and behavior, and
thus how variations in those actions contribute to risk for developing an AUD.
Accordingly, a primary goal of the alcohol research field has become to identify the
molecular mechanisms by which low [EtOH] alters neural processing and EtOH-
associated subjective effects and behaviors, and to determine how individual
differences affect risk for developing AUD.

In this context, the GABAAR system of the cerebellum is an appealing target. In
particular, in studies of humans and animals, low [EtOH] clearly alters cerebellar
neural processing and associated behaviors (Volkow et al. 2008; Gallaher et al.
1996; Schuckit 1985; Schuckit et al. 2003). Similarly, studies of cerebellar brain
slices from low EtOH consuming Sprague Dawley rats have shown that 10 mM
EtOH powerfully enhances GABAAR-mediated inhibition of cerebellar granule cells
(Fig. 1d) (Botta et al. 2007a; Carta et al. 2004; Hanchar et al. 2005; Kaplan et al.
2013), which are the primary integrators of afferent information to the cerebellar
cortex (Fig. 2). In the remainder of this chapter we will review recent advances in our
understanding of the cerebellum and its potential relationship to AUDs, with a
particular focus on the granule cell GABAAR system (including GABAARs and
upstream mechanisms that affect GABA release).
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2 Introduction to and Review of the Cerebellum and Its
Relationship to AUDs

2.1 The Cerebellum and Genetic Risk for AUD

The importance of the cerebellum in motor control and balance has been known for
nearly 200 years (Schmahmann 2010). However, over the last two decades it has
been thoroughly established that the cerebellum plays a critical role in cognitive
processes that had hitherto been overshadowed by its more obvious role in motor
coordination. Compelling evidence from cerebellar specific lesion (Levisohn et al.

Fig. 2 Circuitry of the cerebellar cortex. Circuit diagram of the cerebellum, showing the two
excitatory/glutamatergic afferent inputs to the cerebellar cortex (mossy fibers and climbing fibers),
the connectivity of the interneurons, which include the glutamatergic granule cells and GABAergic
Golgi cells and Molecular Layer interneurons (MLIs), and the sole output of the cerebellar cortex,
the GABAergic Purkinje cells. The Purkinje cells synapse onto a variety of cells distributed into
three cerebellar nuclei, which in turn send mono- and polysynaptic efferents to most of the rest of
the brain
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2000; Paulus et al. 2004; Schmahmann 2004; Tavano et al. 2007; Wolf et al. 2009),
functional imaging (Stoodley and Schmahmann 2009, 2010; Stoodley et al. 2010,
2012), and anatomical tracing studies (Strick et al. 2009) indicate that the cerebellum
contributes to attention, executive function, visual-spatial cognition, language, and
emotion through reciprocal loops to and from the association areas of the parietal,
frontal, temporal, and limbic cortices (Fig. 2) (Ito 2008; Schmahmann 2010; Strick
et al. 2009). The cerebellum also communicates (see below for further details) with
brain regions associated with EtOH reward [ventral tegmental area (Ikai et al. 1992,
1994), amygdala (Tomasi and Volkow 2011), and nucleus accumbens (Dempsey
and Richardson 1987)], and with consummatory behavior (hypothalamus (Zhu et al.
2006; Zhu and Wang 2008)).

Adoption and twin studies suggest that predilection for developing AUD is
50–60% genetically determined (Hasin et al. 2007; Hill 2010). However, it is clear
that there isn’t a single or even group of “AUD gene(s),” but rather that a wide range
of genes lead to complex traits, and interactions amongst such traits engender a
predilection for AUD. Consequently, the field of AUD researchers has tended to
identify and characterize endophenotypes (genetically and mechanistically simpler
heritable traits associated with genetic risk for developing an AUD), with the
idea that understanding the molecular/genetic and neural substrates of such
endophenotypes will be a more feasible approach to identifying potential targets
for treatment of AUD. A common approach to identifying such AUD-related
endophenotypes is to quantify differences in a given physical or behavioral trait
between people with and without a family history of AUD (FH+ and FH�, respec-
tively). Such studies have consistently identified cerebellar-related anatomical,
neurological, and behavioral endophenotypes for which variation is tightly linked
with AUD FH status.

First, in a series of MRI studies, Hill and colleagues determined that the cerebel-
lum of FH+ offspring is significantly larger than in trait matched FH� offspring, due
primarily to increased grey matter, potentially due to reduced synaptic pruning
during development (Hill et al. 2007, 2011, 2016; Hill 2010). Importantly, this
difference is separable from effects related to prenatal exposure to EtOH, which
also affects the size of the cerebellum, but in the opposite direction and in distinct
lobes (Sharma and Hill 2017). Also of interest, given the importance of GABAARs
in EtOH actions, increased cerebellar volume in FH+ individuals is associated with
an allelic variation in the GABAAR α2 subunit (Hill et al. 2011), which when
knocked out in mice results in reduced EtOH consumption in females (Boehm
et al. 2004).

In terms of cerebellar processing and communication with other brain regions,
there are also considerable differences that correlate with AUD FH status. In a series
of functional connectivity magnetic resonance imaging (fcMRI) studies, Nagel and
colleagues determined that relative to FH� individuals, alcohol naïve FH+ offspring
showed less functional connectivity between the cerebellum and two brain regions
known to be involved in addictive behaviors, the prefrontal cortex (PFC) and
nucleus accumbens (Cservenka et al. 2014; Herting et al. 2011). Further, using
functional MRI, they also determined that FH+ individuals show reduced cerebellar
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activity during cognitive tasks (risky decision making and spatial working memory),
despite not exhibiting any deficits in task performance (Cservenka and Nagel 2012;
Mackiewicz Seghete et al. 2013). Thus, in addition to exhibiting reduced communi-
cation with addiction-associated brain regions, alcohol naïve, FH+ individuals
exhibit altered cerebellar processing of behavioral tasks that likely play a role in
addiction.

Another way in which genetic variation in cerebellar processing may influence
predilection to AUD is via its role in neurological diseases/conditions that are risk
factors for developing an AUD, possibly through self-medication with EtOH. The
clearest example of self-medication with EtOH for a known cerebellar disease is a
condition known as essential tremor, in which genetically determined cerebellar
dysfunction leads to uncontrollable shaking, most frequently in the hands, but also in
other body parts (Louis et al. 2017; Kuo et al. 2017). It is well established that
consumption of EtOH ameliorates such tremors, and that patients use EtOH to self-
medicate the condition (Rautakorpi et al. 1983; Mostile and Jankovic 2010).
However, while some studies have suggested that essential tremor is a risk factor
for AUD, others have not (Deik et al. 2012; Schroeder and Nasrallah 1982; Koller
1983). Similarly, tremor is a symptom of severe EtOH withdrawal, which also has a
cerebellar etiology, and self-medication of the negative withdrawal symptoms may
also contribute to the maintenance of AUD (Welsh et al. 2011; Deik et al. 2012).

Attention deficit hyperactivity disorder (ADHD) and schizophrenia are two
genetically influenced disorders that have a strong cerebellar component to their
etiology (Bledsoe et al. 2009; Mulder et al. 2008; Epstein et al. 2007; Mothersill
et al. 2015; Baumann et al. 2015), and both conditions are risk factors for developing
AUD (Daurio et al. 2017; Jones et al. 2011). In the case of ADHD, the relationship
between risk for developing AUD is most tightly connected to the impulsivity
aspects of ADHD (Daurio et al. 2017), which fits with the studies described above
showing that AUD FH+ individuals exhibit reduced cerebellar processing during
tests of impulsivity, i.e., risky decision making.

As discussed above, one consistent component to genetic risk for developing an
AUD is increased sensitivity to the rewarding aspects of EtOH and reduced sensi-
tivity to the aversive aspects of EtOH. One commonly studied manifestation of
sensitivity to EtOH in humans is alcohol-induced static ataxia, which manifests as
body sway, resultant from impaired vestibular and ocular feedback control of
balance (a process that heavily depends on the cerebellum). Notably, studies of
EtOH-induced body sway consistently find that the level of sensitivity to EtOH-
induced body sway is heritably associated with AUD family history status and
predictive of development of AUDs (Schuckit et al. 2005, 2011; Newlin and
Thomson 1990; Newlin and Renton 2010). However, the nature of the relationship
is complicated, with some studies finding a low level of response to EtOH-induced
body sway in FH+ individuals, but others finding a high level of response in FH+

individuals (Newlin and Renton 2010; Quinn and Fromme 2011; Schuckit et al.
2005; Lex et al. 1988; Newlin and Thomson 1990; McCaul et al. 1991). These
distinctions may result from differences in methodology or time point after EtOH
exposure, or they may reflect two distinct sets of phenotypic risk (Quinn and
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Fromme 2011). This covariation also consistently occurs in animal models, albeit
similar to humans, with varying polarity across studies. In particular, sensitivity to
EtOH-induced ataxia shows an inverse relationship with EtOH consumption in some
inbred strains of mice [e.g., DBA/2J (D2) and C57BL/6J (B6) mice] (Gallaher et al.
1996; Yoneyama et al. 2008) and lines of rodents selected for differences in alcohol
consumption (e.g., Alko, Alcohol [AA]/Alko, Non-Alcohol [ANA] rats, and alcohol
preferring (P)/alcohol non-preferring (NP) rats) (Bell et al. 2001, 2006; Malila
1978). Conversely, a recent study in high- and low-alcohol preferring mice (HAP
and LAP) showed a positive relationship between EtOH consumption and sensitivity
to EtOH-induced ataxia (Fritz et al. 2012). Thus, collectively, although the direction
of the relationship varies across studies, there is nonetheless a consistent genetic
relationship between cerebellar sensitivity to EtOH and risk for AUD in humans and
level of EtOH consumption in rodent genotypes. In this context, it is also important
to reiterate that although static ataxia in humans and rotorod performance in rodents
are easily quantified measures of cerebellar sensitivity to EtOH, they do not have to
be the only aspect of altered cerebellar processing that promotes or deters EtOH
consumption and thus escalation to AUD. Instead, the relationship between cerebel-
lar sensitivity to EtOH (quantified by measures of static ataxia and rotorod perfor-
mance) and AUD risk could be mediated by cerebellar-dependent motor processes,
cognitive processes, reward processes, or some combination. Thus, while motor
impairment and disrupted balance are likely aversive (Damji et al. 1996; Hotson
1984; Ragge et al. 2003), whether or not the overall cerebellar response to EtOH
promotes or deters excessive EtOH consumption likely depends on how motor
aspects combine/interact with EtOH effects on the other, non-motor aspects of
cerebellar processing.

In summary, there is a clear and consistent heritable relationship between genetic
predisposition for developing an AUD and a variety of aspects of the cerebellum,
including: (1) its size and white matter to grey matter ratios, (2) its communication
with reward-associated brain regions (see below for further details), (3) its
processing of behaviors that likely influence predilection for AUD, and (4) its
sensitivity to EtOH. There are also a number of known cerebellar-related diseases
that are also known risk factors for developing an AUD, and at least some of them
are likely to provoke self-medication with EtOH.

2.2 The Neural Circuitry of Cerebellar Interactions
with AUD-Associated Brain Regions

In order to consider how variable effects of EtOH on cerebellar cortical processing
might influence EtOH consumption, we need to consider the outputs and function of
the cerebellum. Purkinje cells are the sole output of the cerebellar cortex (Fig. 2), and
they form GABAergic inhibitory synapses onto the glutamatergic/GABAergic/
glycinergic neurons of the three cerebellar nuclei: the dentate (lateral), interpositus
(intermediate), and fastigial (medial) (Ito et al. 1970; Billard et al. 1993; Jahnsen
1986; ten Bruggencate et al. 1972; Teune et al. 1998; De Zeeuw and Berrebi 1995;
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Chen and Hillman 1993; Monaghan et al. 1986). Efferents from these nuclei then
project, directly and polysynaptically, to multiple other brain regions that are
important for driving and/or regulating motor output, including motor cortex, thala-
mus, basal ganglia, red nucleus, inferior olive, and spinal cord. This dominant
efferent distribution pattern, combined with the fact that cerebellar neurons respond
to movement or changes in limb/body position (Barmack and Yakhnitsa 2008;
Lisberger and Fuchs 1978; Thach 1968, 1970), and that damage to the cerebellum
often results in motor control abnormalities like ataxias, dysmetria, or gaze control
disorders (Schmahmann 2004), demonstrate that the cerebellum serves an important
role in motor control and vestibular reflexes, including balance and ocular stabiliza-
tion. Importantly, EtOH-induced ataxia and motor incoordination are largely
mediated by EtOH actions in the cerebellar cortex that lead to disruption of cerebel-
lar output to these motor areas (Dar 2015; Hanchar et al. 2005).

In addition to its well-established role in motor control, functional imaging
studies in humans clearly indicate that changes in cerebellar activity are correlated
with numerous non-motor behaviors, including various cognitive and emotional
processing tasks (Ferrucci et al. 2012; Schraa-Tam et al. 2012; Stoodley and
Schmahmann 2009, 2010; Stoodley et al. 2010, 2012). In parallel animal studies,
clear mono- or polysynaptic functional connections between the cerebellum and
non-motor brain regions have been identified (Harper and Heath 1973, 1974; Strick
et al. 2009; Zhang et al. 2016). Accordingly, selective damage of the cerebellum in
humans can result in non-motor, cognitive, or emotional processing abnormalities
that may present with, or even without, motor function disruption (Schmahmann and
Sherman 1998; Schmahmann 2004; Schmahmann et al. 2009). These studies indi-
cate that the cerebellum is involved in many aspects of cognition, emotion, and
overall behavior (Ito 2008; Schmahmann 2004, 2010; Schmahmann and Caplan
2006).

In the context of AUDs, some of the mono- and polysynaptic projections from
cerebellar nuclei neurons target brain regions known to be involved in addiction and
drug abuse, including the ventral tegmental area (VTA), nucleus accumbens, amyg-
dala, PFC, hippocampus, and hypothalamus (Tomasi and Volkow 2011; Strick et al.
2009; Volkow et al. 2008). Therefore, EtOH-induced changes in the activity of these
cerebellar efferents due to modulation of cerebellar cortical activity may be a
mechanism by which EtOH alters reward processing, affect, memory, or consump-
tion behavior. Thus, it is important to consider the nature of these connections in
order to understand the direction and degree to which EtOH actions in the cerebellar
cortex may alter synaptic activity and firing dynamics of neurons in these other brain
regions.

The collection of dopaminergic neurons within the ventral tegmental area has
long been known to be important in mediating reward responses or pleasurable
feelings associated with specific stimuli (e.g., food, sex, drugs of abuse) by releasing
dopamine in the nucleus accumbens of the ventral striatum (Koob and Volkow
2010). Unfortunately, the mechanisms by which EtOH at doses or concentrations
that are within a range commonly experienced during recreational consumption
(blood [EtOH] � 45–150 mg/dl, 10–35 mM) modulate dopamine release through
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altering VTA dopaminergic neuron activity and dopamine release are unclear.
In rodent models in vivo, low doses of systemically administered EtOH (0.5–
2 g/kg � 50–200 mg/dl) reduce firing of GABAergic (Steffensen et al. 2009; Stobbs
et al. 2004) neurons and increase firing of dopaminergic neurons (Gessa et al. 1985;
Ostroumov et al. 2016) in the VTA, but this approach cannot distinguish between
sites of action for EtOH that are within the VTA or on VTA afferents, or on the cell
bodies or synaptic inputs of such afferents. When directly administered into the
posterior VTA, rats selectively bred to prefer EtOH will self-administer 50–75 mg/dl
(11–16 mM) EtOH (Gatto et al. 1994; Hauser et al. 2011; Rodd et al. 2005).
Although, in rat strains not bred selectively to prefer EtOH, 200 mg/dl (43.4 mM)
appears to be the threshold dose to induce dopamine release in the nucleus
accumbens (Ding et al. 2009), ventral pallidum, or PFC (Ding et al. 2011), and
trigger self-administration (Rodd-Henricks et al. 2000). Importantly, EtOH in
ex vivo brain slices typically needs to reach>40 mM before inducing any significant
change in the activity of VTA dopaminergic neurons or synaptic activity in mice
(Avegno et al. 2016; Brodie and Appel 2000; Okamoto et al. 2006) and rats (Xiao
et al. 2009; Theile et al. 2011; Ostroumov et al. 2016; McDaid et al. 2008; Koyama
et al. 2007; Brodie et al. 1990), although Mrejeru et al. (2015) recently indicated that
a limited subset of VTA dopaminergic neurons may be sensitive to 20 mM EtOH.
Together, these data suggest that VTA sensitivity to recreational levels of EtOH is
likely not mediated entirely by mechanisms within the VTA, but rather may be
dependent on modulation of VTA afferent activity from other brain regions that are
only functionally intact in vivo and may induce excitation of VTA dopaminergic
neurons.

One possible brain region that could mediate EtOH’s effects in the VTA may be
the cerebellum, since it is exquisitely sensitive to low [EtOH] (see above). A
functional synaptic connection between cerebellar nuclear neurons and the VTA
was demonstrated by studies in which electrical stimulation of the dentate nucleus or
Purkinje cells caused increased dopamine levels in the nucleus accumbens
(Dempsey and Richardson 1987) or PFC in a manner that was blocked by local
pharmacological inhibition of the VTA (Rogers et al. 2011, 2013; Mittleman et al.
2008). The as yet poorly understood cerebellar efferent pathway to VTA that
increases dopamine release in the PFC, nucleus accumbens, and amygdala (Inglis
and Moghaddam 1999; Oades and Halliday 1987; Loughlin and Fallon 1983;
Beckstead et al. 1979; Fallon et al. 1978) may couple with the activity of a direct
projections from the fastigial nucleus to the nucleus accumbens and amygdala which
have been demonstrated in primate, cat, and rat (Harper and Heath 1973; Heath and
Harper 1974; Oades and Halliday 1987). While these pathways are poorly under-
stood, their clear existence provides a potential substrate for the translation of EtOH-
induced changes in cerebellar cortical activity into EtOH-related modulation of
reward and emotional processing.

Of the dopamine-related cerebellar efferent pathways, those that influence dopa-
mine release in the PFC, a region involved in cognition, attention, and affect, is most
thoroughly characterized. Cerebellar cortical or nuclear stimulation increases PFC
dopamine, which peaks within 350–400 ms poststimulation (Mittleman et al. 2008).
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Specific nuclei/region inactivation studies using local application of lidocaine
(a voltage-gated sodium channel blocker) or kynurenate (an ionotropic glutamate
receptor antagonist) directly into the VTA alone reduced cerebellar stimulation-
induced PFC dopamine levels by ~50%. Thus, half of the cerebellar-evoked PFC
dopamine release is via excitation of the VTA. Further efforts to map the efferent
pathway that drives such VTA excitation, again via local inactivation studies
of potential intervening nuclei, revealed a dentate-reticulotegmental-
peduncolopontine-VTA-PFC pathway (Rogers et al. 2011). Additional studies,
blocking action potentials and glutamatergic transmission in putative complemen-
tary pathways (mediodorsal or ventrolateral thalamus) revealed that, together,
pathways involving the thalamic nuclei mediate the remaining ~50% of the rise in
PFC dopamine (Rogers et al. 2011). Collectively, these data suggest that electrical
stimulation of the cerebellar cortex or dentate nucleus increases PFC dopamine
release via parallel polysynaptic pathways that excite the VTA (dentate-
reticulotegmental-peduncolopontine-VTA-PFC pathway) as well as VTA terminals
(mediodorsal or ventrolateral thalamus) within the PFC (Rogers et al. 2011). How-
ever, recent exciting functional tract tracing studies have confirmed an older tract
tracing study (Perciavalle et al. 1989) showing that there is also a direct projection
from the cerebellar nuclei (dentate and interpositus) to the VTA (Kamran
Khodakhah, personal communication; Richardson and Rossi, unpublished
observations), but the function, behavioral relevance, and potential role of this
pathway in mediating VTA responses to EtOH and reward have yet to be examined.

The increase in PFC dopamine levels upon cerebellar stimulation indicates the
ability of dentate nuclei efferents to influence activity of both the VTA and the PFC
(Rogers et al. 2011; Mittleman et al. 2008), but additional parallel cerebellar nuclear
efferent pathways may also influence the PFC, albeit presumably in different
contexts and time scales. In particular, electrical stimulation of the dentate nucleus
evokes excitatory field potentials in the PFC in primates (Sasaki et al. 1979), and
concurrent antero- and retrograde tracing techniques indicated that such potentials
are mediated by dentate to thalamic nuclei to PFC pathways (Kelly and Strick 2003;
Middleton and Strick 1994, 2001). Conversely, electrical stimulation of the fastigial
nucleus typically induces a suppression or biphasic inhibition/excitation response of
putative PFC pyramidal cells, indicating that fastigial efferents may primarily
influence inhibitory synaptic activity in PFC (Kelly and Strick 2003; Middleton
and Strick 1994, 2001; Watson et al. 2014), but does so after a much longer latency
(10–13 ms) relative to dentate-evoked responses, suggesting that the connection is
polysynaptic (Watson et al. 2014).

Thus, in addition to dentate driven VTA-derived dopamine release into the PFC,
inhibitory fastigial and excitatory dentate projections to the PFC offer a mechanism
by which differential EtOH-induced changes in cerebellar cortical output may be
able to enhance and/or suppress PFC activity, although further work is needed to
confirm the precise neuronal types that these cerebellar nuclei projections target to
fully understand how the cerebellum may modulate or drive PFC activity to affect
EtOH consumption.
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In addition to cerebellar modulation of reward circuitry influencing the initial
responses to EtOH, another way in which actions of EtOH in the cerebellum may
influence abusive EtOH consumption is via an influence over cues and contexts
associated with EtOH during the addiction cycle. In particular, learned associations
between cues related to drugs of abuse (including EtOH) and pleasure are a key
aspect of drug abuse and relapse. And, fMRI studies in abstinent alcoholic humans
have shown that the cerebellum is strongly activated by cue-induced craving, and
that such cue-induced activation of the cerebellum ceases to occur after cognitive
therapy eliminates craving associated with the cues (Schneider et al. 2001). And a
recent study in rodents found that a subset of granule cells in the cerebellar cortex is
activated by cues that predict reward in a manner that suggests that they code
expectation of reward (Wagner et al. 2017).

How might the cerebellum influence cue-induced craving and anticipation of
reward? Given the role of the hippocampus in learning and memory, it has long been
considered that the hippocampus is a key player in maintaining this association
despite also contributing to AUD-associated cognitive impairment (Kutlu and Gould
2016), and evidence suggests that the cerebellum may powerfully influence the
hippocampus, providing a potential mechanism by which the cerebellum influences
craving for EtOH. For the purposes of this discussion, only the potential role of the
cerebellum in mediating the association between context and reward will be
discussed, not the multitude of deleterious effects EtOH has on hippocampal anat-
omy and function. Similarly, since the full range of pathways that may constitute
polysynaptic connections between the cerebellum and hippocampus which shape
aspects of spatial and temporal processing are vast, full coverage is also beyond the
scope of this book chapter, but have been recently reviewed elsewhere (Yu and
Krook-Magnuson 2015).

While there does not appear to be a direct connection between the dentate nucleus
and hippocampus (Heath et al. 1978), field potential, single unit responses, and
degenerating fiber tracing data from primate, cat, and rat indicate that there is a
robust short latency bilateral direct projection from the fastigial nuclei to hippocam-
pus (Newman and Reza 1979; Heath and Harper 1974; Heath et al. 1978). In line
with the known expression of glycinergic projection neurons in the fastigial nucleus
(Bagnall et al. 2009), this projection appears to be largely inhibitory (Heath and
Harper 1974). However, these fastigial-evoked field potentials tended to be biphasic
and also had a later excitatory component and generated action potentials within
12 ms of stimulation, likely due to a rebound from inhibition or activation of an
additional long latency excitatory projection (Heath and Harper 1974; Newman
and Reza 1979). This cerebellar-hippocampal projection is robust enough to
block epileptiform activity when Purkinje cells are driven by activation of
channelrhodopsin (Krook-Magnuson et al. 2014). PKC-dependent plasticity at the
parallel fiber to Purkinje cell synapse in mice is essential for accurate coding of
hippocampal place cells and performance on a navigation task, indicating the
importance of cerebellar input to the hippocampus in maintaining spatial orientation
(Rochefort et al. 2011). These data indicate that cerebellar nuclei neurons are capable
of dramatically altering hippocampal activity and coding of spatial cues that may be
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relevant for shaping EtOH consumption behavior in the context of craving. There-
fore, determining which nuclei, neurons, and synapses are involved in this pathway
may provide further insight into the role of the cerebellum in AUDs.

Finally, when considering the neurobiological underpinnings of EtOH consump-
tion behaviors, it is essential to address the hypothalamus, a brain region responsible
for a range of autonomic functions, regulating hormone secretion, and metabolic
homeostasis. On its own, the hypothalamus has been shown to be important in
mediating motivated behaviors to feed and seek out drugs of abuse or reward
(Marchant et al. 2012). However, the hypothalamus also both sends and receives
input to/from cerebellar nuclei neurons (Zhang et al. 2016; Zhu et al. 2006). In
primate and rat, tract tracing suggests that neurons from all three cerebellar nuclei
form projections that are broadly distributed across a number of posterior hypotha-
lamic nuclei (Zhu et al. 2006; Zhang et al. 2016; Cavdar et al. 2001a, b; Haines et al.
1990), including the lateral hypothalamus which are known to be important in EtOH
seeking behavior (Marchant et al. 2009; Dayas et al. 2008; Hamlin et al. 2007).
However, outside of this tract tracing approach, little is known about the function of
this pathway to influence behavior, or even the neurotransmitter systems and cell
types in the hypothalamic nuclei that may be involved.

2.3 History of and Recent Controversies About Actions of EtOH
Within the Cerebellum

Ultimately, fully understanding the actions of EtOH on human neurophysiology, and
thus the etiology of and treatment for AUDs, requires determining the molecular and
neural targets of EtOH. This sentiment is reflected in some of the first in vivo brain
recording studies examining responses to systemic EtOH in various brain regions of
the rat or rabbit (Klemm and Stevens 1974; Klemm et al. 1976). In this context,
because of the clear adverse impact of EtOH on motor control and balance, many
early in vivo studies of EtOH actions at a cellular level included or even focused on
the cerebellum (Klemm and Stevens 1974; Klemm et al. 1976; Rogers et al. 1980;
Deitrich et al. 1989), a presumed mediator of such EtOH-induced motor
impairments. Such early studies determined that the cerebellum, along with the
hippocampus and cerebral cortex, was one of the more EtOH-sensitive brain regions,
generally responding to lower [EtOH] than other brain regions. In particular, most
early in vivo studies used single unit recording from Purkinje cells (PCs), which are
the sole output of the cerebellar cortex, and thus should reflect actions of EtOH
anywhere in the cerebellar cortex. Such studies generally indicated that EtOH
suppresses PC firing, although some studies also showed enhanced firing, potentially
reflecting different doses of EtOH used and/or local direct versus secondary,
upstream actions of EtOH (Deitrich et al. 1989). For example, Rogers et al. (1980)
determined that systemic EtOH increased PC complex spike firing but simulta-
neously decreased their simple spike firing rates in an anesthetized preparation
(Rogers et al. 1980). Given that PC complex spikes are synaptically driven by
climbing fiber afferents from the inferior olive, whereas PCs fire simple spikes
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spontaneously, the opposite actions within the same cell were interpreted as
reflecting actions of EtOH in the inferior olive and direct actions on the PCs,
respectively. Interestingly, such acute responses were absent in rats that had been
chronically exposed to EtOH prior to recording, and climbing fiber driven complex
spike frequency was reduced during withdrawal (Rogers et al. 1980). Thus, in
addition to being highly sensitive to EtOH (acute intoxication), the cerebellum
exhibits neural correlates of behavioral tolerance and dependence.

Parallel in vivo studies examining PC responses to local cerebellar application of
EtOH, combined with studies of isolated slices of cerebellum confirmed that acute
suppression of PC simple spikes by EtOH is indeed due to direct actions within the
cerebellum (George and Chu 1984; Siggins and French 1979). Importantly, while
such impacts could be due to direct actions of EtOH on PCs, they could also be
influenced by the underlying granule cells, which synaptically modulate PC spike
firing and also appear sensitive to the actions of EtOH in vivo. For example, low
dose EtOH dramatically suppressed sensory-evoked granule cell spiking activity in
cat upon systemic administration of low dose EtOH (0.3 g/kg¼ 15–20 mM EtOH in
CSF) (Huang and Huang 2007). Therefore, EtOH-induced changes observed at the
level of PCs may also reflect actions elsewhere in the cerebellar cortex.

Given the above summarized establishment of the cerebellum as a sensitive target
of EtOH, consequent studies began to focus on two crucial issues that have yet to be
fully resolved: (1) identifying the molecular targets that mediate EtOH impacts on
cerebellar signal propagation and (2) determining if there are genetic differences in
such cerebellum-specific actions that may relate to predilection for excessive alcohol
consumption and addiction. In terms of the latter interest, a series of studies by
Hoffer and colleagues determined that the degree of EtOH-induced spike suppres-
sion in PCs correlated with genetic variation in sensitivity to the soporific effects of
EtOH in vivo (Basile et al. 1983; Palmer et al. 1982, 1985; Sorensen et al. 1980,
1981). In particular, PCs in mouse lines bred to be sensitive (long sleep mice; LS
mice) to the soporific effects of EtOH (i.e., duration of sleep, as assessed by a loss of
the righting reflex) were significantly more sensitive to EtOH-induced suppression
of spiking than PCs in mice bred to be insensitive to the soporific effects of EtOH
(short sleep mice; SS mice). Such differences are somewhat specific to the cerebel-
lum, as parallel recordings of similarly sensitive hippocampal neurons did not show
any differences in sensitivity between LS and SS mice (Sorensen et al. 1981).
Importantly, the observed cerebellar differences persisted in acutely isolated slices
of cerebellum and when the cerebelli from LS/SS mice were transplanted into the
ocular space of the opposite line of mice, collectively confirming that such genetic
differences were inherent properties of the cerebellum (Basile et al. 1983; Palmer
et al. 1982, 1985). Finally, when LS and SS mice were chronically exposed to EtOH
in vivo, they both developed behavioral tolerance to the ataxic and soporific effects
of EtOH, which was mirrored by the development of tolerance at the level of PC
spiking, even in slices. This suggests again that crucial aspects of AUD (acute
sensitivity and tolerance) are exhibited by the cerebellum at both the behavioral
and cellular level (Palmer et al. 1985).
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Interest in the cerebellum as a primary mediator of EtOH intoxication was further
stimulated by the contemporarily developing appreciation that GABAARs were key
mediators of EtOH intoxication (Allan et al. 1987; Harris et al. 1988; Palmer et al.
1988; Allan and Harris 1987), and that the newly developed GABAAR inverse
agonist, Ro 15-4513, the so-called alcohol antagonist, had a high affinity for binding
to the α6 subunit of GABAARs that are fairly exclusively expressed on cerebellar
granule cells (Fig. 1b) (Luddens et al. 1990). In particular, studies of EtOH actions
on GABAARs using membrane microsacs isolated from cerebellum determined that
EtOH enhanced GABAAR-stimulated Cl� flux in LS mice, but not in SS mice (Allan
and Harris 1986; Allan et al. 1987, 1988). And, similar to the cerebellar specificity
that was observed with in vivo neuronal recordings, there were no differences in
EtOH modulation of GABAAR-stimulated Cl� flux in membrane microsacs derived
from the hippocampus of LS and SS mice. Lastly, EtOH suppression of Purkinje cell
firing and enhancement of microsac Cl� flux was significantly reduced by Ro
15-4513 (Harris et al. 1988; Palmer et al. 1988). Collectively, the data suggest that
genetic differences in behavioral sensitivity to EtOH intoxication are mediated in
part by genetic differences in the sensitivity of the cerebellar GABAAR system
to EtOH.

Despite the genetic relationship between behavioral intoxication (as assessed by
sleep time) and cerebellar sensitivity to EtOH, relating such differences to actual
genetic variation in EtOH consumption has been more complicated. In particular,
early studies of EtOH consumption by LS and SS mice determined that SS mice
consumed more EtOH than LS mice when the consumption options were sweetened
EtOH versus tap water (Church et al. 1979). Importantly, when given the choice
between sweetened EtOH and sweetened tap water, although SS mice still consumed
more EtOH than LS mice, they both consumed significantly less EtOH. Together,
these outcomes suggest that at least part of the limit on EtOH consumption was
driven by aversive aspects of EtOH which can be overridden to an extent by
sweetening. While these outcomes support the broad idea that genetic sensitivity
to aversive aspects of EtOH, particularly those mediated by the cerebellum (reflected
in this case by loss of righting reflex), is a deterrent to abusive EtOH consumption,
parallel operant studies determined that only LS mice exhibited positive reinforce-
ment by EtOH, and thus worked for pharmacologically active levels of EtOH (Elmer
et al. 1990). Subsequent studies with a variety of inbred or selected lines have
revealed similar discrepancies, with levels of EtOH consumption being greater in
either higher or lower sensitivity rodent genotypes, or not being correlated at all
(Kakihana et al. 1966; Malila 1978; Spuhler and Deitrich 1984; Tabakoff and
Kiianmaa 1982; Riley et al. 1977; Erwin et al. 1980; Millard 1983; Daoust et al.
1987). Thus, while there is frequent genetic covariation between EtOH consumption
and “sensitivity” phenotype, the relationship is not always negative, and the two
behavioral phenotypes are, although frequently genetically linked, separable.

In this context, it is important to emphasize that few, if any rodent genotypes will
voluntarily consume enough EtOH to induce sleep, and the high [EtOH] required to
induce sleep will obviously affect multiple molecular and neural targets that may
not influence early, nondependent voluntary consumption, which complicates

The Cerebellar GABAAR System as a Potential Target. . . 133



interpretation of genetic risk for excessive EtOH consumption (Bell et al. 2001).
Relatedly, although sleep duration and other measures of acute intoxication duration
may reflect initial sensitivity, their duration is also affected by the rate of develop-
ment of acute functional tolerance, which is a separable, genetically determined
factor that presumably also influences the overall subjective initial “reaction” to
EtOH (Crabbe et al. 2006a; Ponomarev and Crabbe 2002; Gallaher et al. 1996; Fritz
et al. 2012). Further complicating interpreting the role of such genetic sensitivity in
risk for abusive EtOH consumption, it is also possible that EtOH-induced sedation
may be aversive to some genotypes and positive to others.

Collectively, the complications described above form part of the following
rationale for focusing on responses to low [EtOH]. First, responses to low [EtOH]
and genetic differences in such responses are key to determining the nature of initial
reactions to EtOH in most nonhuman models and early non-abusive EtOH consump-
tion by humans that may ultimately determine predilection to AUD. Second, the
smaller number of molecular/neural targets of low [EtOH] will be more tractable and
thus relatable to specific behavioral endophenotypes that influence development
of AUD.

In this broad context, while most early in vivo studies of cerebellar responses to
EtOH found PCs to be highly sensitive, parallel slice studies with synaptic transmis-
sion blocked found that the concentration of EtOH required to suppress PC firing
directly were higher [30–100 mM (Basile et al. 1983)] than those required to induce
motor incoordination (~10 mM). This discrepancy, combined with early evidence
that low [EtOH] [10–15 mM (Allan and Harris 1986; Allan et al. 1988)] could
enhance GABAAR-mediated Cl� flux in cerebellar-derived membrane microsacs
prompted a shift in focus to other cellular targets in the cerebellar cortex that might
underlie the higher in vivo sensitivity of the cerebellum to low [EtOH] (Carta et al.
2004; Freund et al. 1993). In particular, an early in vivo recording study determined
that EtOH increased action potential firing of inhibitory Golgi cells that provide
lateral and feedback inhibition to granule cells (Freund et al. 1993). Subsequently, a
slice study confirmed that concentrations of EtOH as low as 10 mM increased Golgi
cell spontaneous firing frequency, which increased GABA release onto granule cells,
manifesting as increased phasic IPSC frequency and associated increase in magni-
tude of granule cell tonic GABAAR current (Carta et al. 2004).

While the initial slice study by Valenzuela and colleagues indicated that EtOH
increased inhibition of granule cells by increasing Golgi cell firing (because EtOH
did not affect granule cell inhibition in the presence of the sodium channel blocker
tetrodotoxin) (Carta et al. 2004), a subsequent study by Olsen and colleagues argued
that much of the enhancement of the granule cell tonic GABAAR current was
mediated by direct actions of EtOH on the α6-δ-subunit containing extrasynaptic
GABAARs that generate granule cell tonic GABAAR currents (Hanchar et al. 2005).
Moreover, these authors argued that a single point mutation in the α6 subunit
conferred increased sensitivity of the granule cell tonic GABAAR current to EtOH,
and that the increased sensitivity resulted in increased behavioral sensitivity to the
motor impairing effects of EtOH. This study, along with parallel studies of cloned
GABAARs (Wallner et al. 2003) heralded an exciting moment in EtOH research in
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which the researchers concluded that the δ subunit, and its typical pairing with either
the α4 (hippocampus and thalamus) or α6 (cerebellum) GABAAR subunits was the
elusive “one glass of wine receptor” that mediated the well-established behavioral
sensitivity to low [EtOH] (Olsen et al. 2007). While the authors also observed EtOH-
induced increased release of GABA from Golgi cells, they have concluded that most
of that increase is driven by EtOH directly enhancing δ-subunit-containing
GABAARs on the axons of granule cells, which because they are excitatory (Pugh
and Jahr 2011, 2013), actually enhance excitatory synaptic drive of Golgi cell-
mediated feedback inhibition of granule cells (Santhakumar et al. 2013). Unfortu-
nately, such direct actions on GABAARs of low [EtOH] have not been observed by
most other researchers, ourselves included, either in situ or in cloned GABAARs, and
the cause of such discrepancies remains unclear [for detailed discussions of this
ongoing controversy see Santhakumar et al. (2007); Korpi et al. (2007); Borghese
and Harris (2007); Botta et al. (2007a, b); Olsen et al. (2007); Valenzuela and Jotty
(2015)].

While we predict that eventually the discrepancy will be discovered to stem from
some subtle difference across labs in tissue health and/or intracellular milieu (such as
intracellular [Ca2+], [NO], or phosphorylation status), we will provide a brief
description of why we conclude that direct enhancement is not likely to be a
dominant mediator of EtOH actions in the cerebellum or its role in AUD. First,
similar to Valenzuela’s findings, in a range of mammalian species, including non-
human primates, we have been unable to see any direct enhancement of granule cell
tonic GABAAR currents by even high [EtOH] (9–105 mM) (Kaplan et al. 2013,
2016a; Mohr et al. 2013). Importantly, while concluding that there is direct enhance-
ment in situ is dependent on ensuring that all possible sources of increased GABA
are prevented, the converse is not true: a lack of enhancement cannot be explained by
inadequate block of a potential source of GABA. Thus, we find the complete absence
of EtOH enhancement of granule cell tonic GABAAR currents in the presence of
tetrodotoxin in B6 and D2 mice, SD rats, prairie voles, and nonhuman primates to be
compelling evidence that EtOH does not directly enhance granule cell tonic
GABAAR currents (Kaplan et al. 2013, 2016a; Mohr et al. 2013). Similarly, we
also reported that in a subset of granule cells in B6 and D2 mice, and nonhuman
primates, EtOH did not affect the tonic GABAAR current even without blocking
action potentials, which was associated with a lack of increase in sIPSC frequency,
as well as low nNOS expression, which we have determined is a key mediator of
EtOH excitation of Golgi cells (Kaplan et al. 2013). Importantly, the lack of
enhancement in our hands cannot be due to a ceiling effect, because in all mamma-
lian species we have tested, bath application of THIP [at concentrations that are
absolutely selective for δ-subunit-containing GABAARs (Meera et al. 2011)]
increases the magnitude of the tonic GABAAR current (Kaplan et al. 2013, 2016a;
Mohr et al. 2013). Finally, as will be discussed in greater detail below, we recently
discovered that EtOH actually directly suppresses tonic GABAAR currents in high
EtOH consuming genotypes (B6 mice and prairie voles), and this suppression
persists when granule cells are physically removed from the slice, thus precluding
possible actions of EtOH-induced altered GABA release (Kaplan et al. 2013, 2016a).
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Similarly compelling, it was recently shown that EtOH increases tonic GABAAR
currents in pre-weanling SD rats that do not yet express the δ-subunit of the
GABAAR, with the cause of the enhancement again being increased GABA release
(Diaz and Valenzuela 2016). This is particularly important because although
germline deletion of the δ-subunit reduces responses to EtOH (Santhakumar et al.
2013), it is well known that germline deletion of GABAARs causes a variety of
homeostatic adaptations in the cerebellum which could indirectly alter responses to
EtOH (Valenzuela and Jotty 2015; Brickley et al. 2001).

Finally, regarding the proposed role of excitatory, axonal δ-containing
GABAARs in mediating EtOH-induced increased GABA release from Golgi cells
(Santhakumar et al. 2013), we have done extensive immunocytochemistry for the
δ-subunit in the cerebellar cortex, and we have seen no evidence for it being
expressed in the molecular layer where the granule cell axons reside, despite robust
expression within the granule cell layer (Kaplan et al. 2013; Mohr et al. 2013).
Moreover, we were able to significantly reduce EtOH-increased Golgi cell firing and
consequent GABA release onto granule cells by blocking nNOS, without blocking
the glutamate receptors that were hypothesized to drive Golgi cell excitation (Kaplan
et al. 2013). In this regard it is important to note that it is possible that blocking
glutamate receptors will reduce basal Ca2+ influx and thus reduce nNOS activity,
thereby circumventing EtOH from exciting Golgi cells via nNOS block, independent
of EtOH-induced changes in glutamatergic synaptic transmission.

In summary, although there are clearly still some specific cross-lab conflicting
results, many of the apparent conflicts can be explained by alternative interpretations
of complex network and molecular interactions. Regardless, since the genotypic
differences we will consider below were discovered in our lab using identical
techniques and solutions, any differences in EtOH actions and associated impacts
on EtOH consumption phenotypes should be specific to true genetic variation.

2.4 Genetic Variation in Cerebellar Cortical GABAAR Signaling
Responses to EtOH Influences EtOH Consumption Phenotype

As discussed above, the cerebellum is exquisitely sensitive to EtOH, with
concentrations as low as 10 mM significantly altering cerebellar neural signaling
(Kaplan et al. 2013, 2016b; Welsh et al. 2011; He et al. 2013; Richardson and Rossi
2017) and, consequently, known cerebellar-dependent behaviors (Gallaher et al.
1996). Importantly in the context of genetic predilection to AUD, over the last
several years we have discovered that the response of key cerebellar processes to
low [EtOH] varies across mammalian genotypes in a manner that correlates with,
and appears to influence EtOH consumption phenotype (Mohr et al. 2013; Kaplan
et al. 2013, 2016a, b; Richardson and Rossi 2017). While there are many molecular
targets of EtOH in the cerebellum, which collectively affect almost all cells and
synapses within the cerebellar cortical circuit (Dar 2015; He et al. 2013; Kaplan et al.
2013; Richardson and Rossi 2017; Welsh et al. 2011; Valenzuela and Jotty 2015),
only a few targets have been identified that are sensitive to 10 mM EtOH, including
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T-type Ca2+ channels in the Inferior Olivary neurons that provide climbing fiber
inputs to Purkinje cells (Welsh et al. 2011), the NMDA receptors in the climbing
fiber to Purkinje cell synapse (He et al. 2013; Zamudio-Bulcock et al. 2018), and the
GABAAR synapse from Golgi cells to granule cells, which has both Golgi cell and
postsynaptic targets (Kaplan et al. 2013). Indeed, we explicitly determined that
10 mM EtOH does not have any detectable impact on any of the other cells and
synapses in the mouse cerebellar cortex (Kaplan et al. 2016b). And, while the two
climbing fiber targets have been implicated respectively in EtOH withdrawal-
induced tremors (Olivary neuron T-type Ca2+ channels) and cerebellar learning
(Purkinje cell NMDA receptors), both of which may influence predilection to
AUD, to our knowledge, only the Golgi cell to granule cell synapse is known to
vary in its response to low [EtOH] in a manner that correlates with EtOH consump-
tion phenotype across mammalian genotypes. Thus, for the remainder of this
chapter, we will focus on the Golgi cell to granule cell synapse.

As introduced above, in low EtOH consuming Sprague Dawley rats (SDRs), low
[EtOH] (starting at ~10 mM) enhances Golgi cell inhibition of granule cells (Carta
et al. 2004). The enhancement manifests as both an increase in the frequency of
sIPSCs and an increase in the magnitude of the tonic GABAAR current (Figs. 1d and
3a), which in granule cells is mediated by extrasynaptic α6 and δ subunit-containing
GABAARs (Hamann et al. 2002). Despite the controversy described above (Hanchar
et al. 2005; Santhakumar et al. 2007; Korpi et al. 2007; Borghese and Harris 2007;
Botta et al. 2007a, b), we believe that the preponderance of data indicates that the
primary mechanism is via EtOH-induced increased action potential firing by Golgi
cells, which accounts for the increase in both sIPSC frequency and in tonic
GABAAR current magnitude, due to elevated extracellular GABA. These funda-
mental observations have been replicated by several labs, including those that also
see direct enhancement of GABAARs (Hanchar et al. 2005; Kaplan et al. 2013), and
are part of the cornerstone of two widely accepted concepts: (1) a main target of
recreational [EtOH] is the GABAAR system generally, and (2) EtOH-induced motor
impairment is due to enhancement of Golgi cell inhibition of granule cells by EtOH
(Hanchar et al. 2005; Dar 2015).

The notably high sensitivity of the Golgi cell to granule cell GABAAR system to
EtOH, combined with the clear role of this response in mediating at least one
behavioral response to EtOH (motor impairment) makes it a potential mediator of
genetic differences in response to low [EtOH] that influences initial subjective
reactions to consumption of EtOH, and thus predilection for developing an AUD.
In this context, we decided to determine if the action of EtOH on the Golgi to granule
cell GABAAR system varied across rodent genotypes with differing EtOH consump-
tion phenotypes (Fig. 3a–d) (Kaplan et al. 2013). Indeed, in our initial study we
found that in stark contrast to the enhancement of inhibition induced by EtOH in low
EtOH consuming SDRs, EtOH actually suppressed the magnitude of the granule cell
tonic GABAAR current in the prototypical high EtOH consuming C57BL/6J mice
(B6; Fig. 3b–d). This divergence is not simply a species difference, because EtOH
enhanced sIPSC frequency and tonic GABAAR current magnitude in the low EtOH
consuming DBA/2J mouse (D2; Fig. 3a–c). Parallel studies in high EtOH consuming
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Fig. 3 Response of granule cell tonic GABAAR current to EtOH varies in parallel with and
influences EtOH consumption phenotype. (a, b) Example recordings showing that EtOH
(52 mM) enhances the tonic GABAAR current in low EtOH consuming rodent genotypes (SDRs
and D2 mice; a), but suppresses the tonic GABAAR current in high EtOH consuming rodent
genotypes (Prairie Voles and B6 mice; b). (c) Plot of mean EtOH-induced change in magnitude of
granule cell tonic GABAAR current across mammalian genotypes with divergent EtOH consump-
tion phenotypes.Note, EtOH consumption values are rough estimates of average amount consumed
across a 24 h period for each mammalian genotype, without consideration for consumption pattern
across the day. (d) Example recordings and bar chart of mean responses to varying doses of EtOH in
SDRs and B6 mice showing that opposite action of EtOH is preserved at low to high [EtOH]. (e)
Bar chart depicts the mean amount of EtOH consumed by B6 mice during a 2 h 2 bottle choice
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prairie voles (PVs) and variable EtOH consuming nonhuman primates (NHPs)
revealed a general pattern in which the impact of EtOH on granule cell tonic
GABAAR currents varies in polarity and magnitude in parallel with the EtOH
consumption phenotype of the mammal, with high and low EtOH consumption
associated with suppression and enhancement of tonic GABAAR currents respec-
tively (Fig. 3b, c). Crucially, this relationship persists across the dose–response
range of EtOH concentrations tested, including 9 mM (Fig. 3d). To test whether
this striking correlation actually played a role in EtOH consumption, we attempted to
counteract the ability of EtOH to suppress the tonic GABAAR current in B6 mice
in vivo. To do this, the GABAAR agonist THIP, which has an order of magnitude
higher affinity for δ-subunit containing GABAARs, was focally injected into the
cerebellum of B6 mice in vivo. This would effectively increase granule cell tonic
GABAAR currents similar to what EtOH does in low EtOH consuming genotypes
(Kaplan et al. 2013). Such injections effectively reduced EtOH consumption by B6
mice (Fig. 3e), without affecting water consumption or overall locomotion (Kaplan
et al. 2016b). While more selective manipulations of the tonic GABAAR current will
need to be tested, and ideally it should be determined if EtOH consumption can be
increased or decreased based on the direction of manipulation, these studies suggest
that either EtOH-induced suppression of granule cell tonic GABAAR currents
promotes EtOH consumption or EtOH-induced enhancement of granule cell tonic
GABAAR currents deters consumption, or both.

It is worth noting that although the cerebellar neurological differences that we
discovered clearly correlate with and influence EtOH consumption (Fig. 3c, e)
(Kaplan et al. 2016b), they are not the only factors that influence EtOH consumption.
Of particular relevance, it is well established that a large factor in deterring EtOH
consumption by D2 mice is their aversion to the taste of EtOH, and an apparent
insensitivity to glucose, which undermines using it as a means to override taste
aversion (Grahame and Cunningham 1997; McCool and Chappell 2012, 2014;
Fidler et al. 2011). Thus, when taste is bypassed by intravenous or gastric cannula-
tion, D2 mice will self-administer significant quantities of EtOH (Grahame and
Cunningham 1997; Fidler et al. 2011). Similarly, D2 mice will also voluntarily
orally consume EtOH if its taste is masked with monosodium glutamate (McCool
and Chappell 2012, 2014). However, even with such aversive taste circumventions,
D2 mice still consume significantly less EtOH than B6 mice, suggesting that
aversive post-absorptive ethanol effects probably contribute to avoidance of oral
consumption of ethanol by D2 mice (McCool and Chappell 2012, 2014; Fidler et al.
2011). In this regard, when normalized to the basal magnitude of tonic GABAAR
current, the percent change induced by EtOH in D2 mice falls roughly between the
percent change observed in B6 mice and SD rats, being significantly different from
both (Kaplan et al. 2016a). This is interesting because unlike D2 mice, SD rats find

�

Fig. 3 (continued) (water and 10% EtOH) session, under control conditions and after a local
injection of the GABAAR agonist, THIP, into lobe 3 of the cerebellum. Adapted with permission
from Kaplan et al. (2013, 2016a, b)
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EtOH aversive even when taste is bypassed (Fidler et al. 2004). Thus, EtOH actions
on granule cell tonic GABAARs may contribute to deterrence of EtOH consumption
in D2 mice relative to B6 mice, but not as strongly as it does in SD rats.

In these studies we also determined the molecular mechanisms that determine
the overall response polarity. Specifically, we found that enhancement of tonic
GABAAR currents is mediated by EtOH inhibition of neuronal nitric oxide synthase
(nNOS), which excited Golgi cells enough to increase their action potential firing
(Kaplan et al. 2013), possibly via NO actions on the Na+/K+-ATPase and/or K+

channels (Botta et al. 2010, 2012; Valenzuela and Jotty 2015). Genetic control of
this process appears to be implemented by expression of nNOS, with low levels of
expression in high EtOH consuming B6 mice and PVs, high levels of expression in
low EtOH consuming SDRs and D2 mice, and intermediate and variable levels of
expression across individual NHPs which also show variable levels of EtOH con-
sumption (Kaplan et al. 2013, 2016a; Mohr et al. 2013). Conversely, the suppression
of granule cell tonic GABAAR currents observed in B6 mice and PVs is mediated
solely by postsynaptic actions on the GABAARs, as evidenced by the fact that
suppression was observed in acutely isolated granule cells that had their GABAARs
activated by exogenous GABA to circumvent any possible action of EtOH on
endogenous GABA release (Kaplan et al. 2013). And, we determined that the ability
of EtOH to postsynaptically suppress granule cell tonic GABAAR currents is
genetically determined by the level of postsynaptic PKC activity. In particular,
PKC activity appears to prevent EtOH from suppressing granule cell tonic GABAAR
currents. Thus, activating PKC in B6 mouse granule cells eliminated EtOH suppres-
sion of tonic GABAARs, whereas blocking PKC in SDR granule cells enabled EtOH
to suppress their tonic GABAAR currents (Kaplan et al. 2013).

Collectively, our data indicate that there are two genetically controlled molecular
switches (nNOS expression and postsynaptic PKC activity), and that the balance of
the two processes dictates the polarity and magnitude of the effect of EtOH on
granule cell tonic GABAAR currents. High postsynaptic PKC activity and high
nNOS expression result in EtOH enhancing granule cell tonic GABAAR currents,
and low postsynaptic PKC activity and low nNOS expression result in EtOH
suppressing tonic GABAAR currents. Importantly, the resultant direction of EtOH
effects correlates with and influences EtOH consumption phenotype, wherein sup-
pression and enhancement are associated with high and low EtOH consumption,
respectively.

2.5 Is There Potential for Manipulating the Cerebellum to Deter
EtOH Consumption with Fewer Side Effects?

Based on our recent studies, our overall contention is that EtOH suppression of
granule cell tonic GABAAR currents promotes EtOH consumption in high EtOH
consuming genotypes, whereas EtOH enhancement of such currents deters EtOH
consumption in low EtOH consuming genotypes (Fig. 3a–d). Accordingly, we
propose that pharmacological agents that selectively enhance granule cell tonic
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GABAAR currents, or can emulate the overall outcome of such enhancement on PC
output (presumed to be the final mediator of any cerebellar behavior), should reduce
EtOH consumption. And, given that granule cell tonic GABAAR currents are
mediated by α6-subunit containing GABAARs, which are almost exclusively
expressed by granule cells (Fig. 1c), any such pharmacotherapy might be achieved
with fewer side effects than more broadly acting GABAAR modulators.

As discussed above, Ro 15-4513 strongly binds to the α6 containing GABAARs
that generate tonic GABAAR currents in granule cells (Luddens et al. 1990).
Although Ro 15-4513 is generally considered to be an inverse agonist of GABAARs,
it has been shown to enhance currents generated by α6 containing GABAARs
(Knoflach et al. 1996). In partial support of our broad contention, in at least one
study of alcohol preferring (AA) rats, Ro 15-4513 did in fact decrease EtOH
consumption (Wegelius et al. 1994). However, Ro 15-4513 is clearly not selective
for the α6 subunit or the cerebellum. So, to more directly test the hypothesis, we have
shown that a local injection of THIP into the cerebellum effectively reduces EtOH
consumption by B6 mice without affecting water consumption or general locomo-
tion (Fig. 3e) (Kaplan et al. 2016b). While this confirms the potential capacity of
targeting the cerebellar GABAAR system to treat AUDs, as discussed above, it is
unlikely that THIP will be a suitable therapeutic in the human clinic, due amongst
other things to the widespread action of THIP and associated adverse side effects.

However, having determined that regulating granule cell excitability, and pre-
sumably therefore Purkinje cell output, can effectively reduce EtOH consumption
without obvious adverse effects, it is reasonable to speculate that any drug that could
specifically target cerebellar granule cell excitability or Purkinje cell output might be
an effective treatment option. Accordingly, we will end this chapter by highlighting
the fact that the cerebellum is an unusual brain structure in that there are a variety of
subunits/subtypes of common receptor/channel/transporter families that are exclu-
sively expressed in the cerebellum, many only on cerebellar granule cells. Impor-
tantly, many of these cerebellar, or even granule cell specific subunits are known to
be key players in regulating signal transmission through the cerebellar cortex,
including the α6 subunit of the GABAAR family (Fig. 1c) (Hamann et al. 2002),
the EAAT4 subtype of the plasma membrane glutamate transporter (Kaplan et al.
2016b; Wadiche and Jahr 2005; Welsh et al. 2002), and the NR2C subunit of the
NMDA receptor family (Cathala et al. 2000, 2003; Ebralidze et al. 1996). Thus, there
are likely many potential targets for modulating cerebellar responses to EtOH that
may not affect the rest of the brain. Indeed, GABAAR-positive allosteric modulators
have already been developed that show orders of magnitude selective affinity for α6
containing GABAARs (Varagic et al. 2013). Given that enhancement of granule cell
tonic GABAAR currents reduces EtOH consumption (Fig. 3e) (Kaplan et al. 2016b),
we would predict that such ligands could reduce EtOH consumption, and given their
selectivity for cerebellar granule cells, may have fewer side effects than drugs that
target more widely expressed GABAAR subunits.
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3 Summary

It is clear that the GABAAR system plays multiple important roles in mediating acute
and chronic responses to EtOH and almost certainly plays a role in the development
and maintenance of AUD. However, such information has not translated to effective
treatment for AUD. Contributing factors to this failure likely include the inadequate
understanding of: (1) the molecular/neural targets of low [EtOH] (~10 mM), (2) the
neural systems that mediate initial reactions to low [EtOH], and (3) pharmaceuticals
that can selectively target relevant neural systems in a manner that is not plagued by
side effects.

Recently, our understanding of non-motor roles of the cerebellum has evolved
dramatically, and we now know that the cerebellar GABAAR system is highly
sensitive to EtOH, responding to [EtOH] as low as 10 mM. Moreover, variability
in the polarity and magnitude of the response of cerebellar GABAARs to EtOH
correlates with and actually affects EtOH consumption phenotype across various
mammalian genotypes. This suggests that the cerebellum generally, and the cerebel-
lar GABAAR system specifically may be promising targets for AUD pharmacother-
apy. Importantly, the cerebellum and its GABAAR system are unique in their pattern
of expression of atypical subunits/subtypes of GABAARs and other transmitter
systems that could be targeted, potentially without producing typical adverse side
effects of drugs that affect more widely distributed targets.
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Abstract
Ionotropic glutamate receptors (AMPA, NMDA, and kainate receptors) play a
central role in excitatory glutamatergic signaling throughout the brain. As a result,
functional changes, especially long-lasting forms of plasticity, have the potential
to profoundly alter neuronal function and the expression of adaptive and patho-
logical behaviors. Thus, alcohol-related adaptations in ionotropic glutamate
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receptors are of great interest, since they could promote excessive alcohol con-
sumption, even after long-term abstinence. Alcohol- and drug-related adaptations
in NMDARs have been recently reviewed, while less is known about kainate
receptor adaptations. Thus, we focus here on functional changes in AMPARs,
tetramers composed of GluA1–4 subunits. Long-lasting increases or decreases
in AMPAR function, the so-called long-term potentiation or depression, have
widely been considered to contribute to normal and pathological memory states.
In addition, a great deal has been learned about the acute regulation of AMPARs
by signaling pathways, scaffolding and auxiliary proteins, intracellular traffick-
ing, and other mechanisms. One important common adaptation is a shift in
AMPAR subunit composition from GluA2-containing, calcium-impermeable
AMPARs (CIARs) to GluA2-lacking, calcium-permeable AMPARs (CPARs),
which is observed under a broad range of conditions including intoxicant expo-
sure or intake, stress, novelty, food deprivation, and ischemia. This shift has the
potential to facilitate AMPAR currents, since CPARs have much greater single-
channel currents than CIARs, as well as faster AMPAR activation kinetics
(although with faster inactivation) and calcium-related activity. Many tools
have been developed to interrogate particular aspects of AMPAR signaling,
including compounds that selectively inhibit CPARs, raising exciting transla-
tional possibilities. In addition, recent studies have used transgenic animals
and/or optogenetics to identify AMPAR adaptations in particular cell types and
glutamatergic projections, which will provide critical information about the
specific circuits that CPARs act within. Also, less is known about the specific
nature of alcohol-related AMPAR adaptations, and thus we use other examples
that illustrate more fully how particular AMPAR changes might influence
intoxicant-related behavior. Thus, by identifying alcohol-related AMPAR
adaptations, the specific molecular events that underlie them, and the cells and
projections in which they occur, we hope to better inform the development of new
therapeutic interventions for addiction.

Keywords
AMPA · Electrophysiology · GluA1 · GluA2 · Glutamate · Plasticity

1 General Introduction to AMPARs and Plasticity Related
to Intoxicant Exposure

A great deal has been learned and written about AMPAR regulation and function
(see Malinow and Malenka 2002; Collingridge and Isaac 2003; Fukata et al. 2005;
Chen et al. 2010; Traynelis et al. 2010; Mao et al. 2011; Bats et al. 2013; Henley and
Wilkinson 2013; Hanley 2014; Wang et al. 2014). Thus, our purpose here is to
present a simplified version of the better studied aspects of AMPAR regulation,
in order to understand the possible cellular and behavioral impact of AMPAR
adaptations that are observed after exposure to alcohol or other intoxicants.
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AMPARs are one of the three types of ionotropic, excitatory glutamate-activated
receptors, in addition to NMDA receptors and kainic acid receptors. Importantly,
glutamate receptor neuro-adaptations, especially an increase in function, have the
potential to strongly drive maladaptive behavior including excessive alcohol drink-
ing. We focus here on AMPARs, since NMDA receptor adaptations are addressed in
several recent reviews (Hopf 2017; Morisot and Ron 2017) and kainic acid receptors
are less understood but can contribute to alcohol behavior (Crowder et al. 2002;
Acosta et al. 2012; Bach et al. 2015).

AMPARs are widely distributed through the brain and are typically the major
glutamate receptor that mediates excitatory glutamatergic signaling at the
hyperpolarized physiological resting potential in neurons (but see Hopf 2017).
AMPARs are homo- and hetero-tetramers composed of GluA1–4 subunits. As
addressed more fully below, a considerable amount is known about a number of
specific molecular steps that control AMPAR activity, including phosphorylation
events, scaffolding and auxiliary proteins, and changes in subunit composition.
While some common themes do emerge (Fig. 1), there are also important nuances
and some mixed findings (e.g., Fukata et al. 2005; Engblom et al. 2008; Henley and
Wilkinson 2013). In part, the presence of multiple, redundant, and conflicting
pathways for regulating AMPAR function makes sense for a molecule so fundamen-
tal to excitatory neuronal interactions. Thus, we will use both alcohol-related and
other examples to better illustrate how a given regulatory step or adaptation can
impact AMPAR function and behavioral expression.

When trying to uncover AMPAR adaptations and their behavioral impact, there
are several general key points. First, AMPAR function can be precisely determined
using ex vivo electrophysiology in live neurons in a brain slice. These methods were
used to first identify activity-dependent, long-lasting increases in AMPAR function
that are proposed to contribute to memory, the so-called long-term potentiation
(LTP) (Malinow and Malenka 2002). Thus, the section “Ex vivo electrophysiology

Fig. 1 Cartoon indicating several widely studied interactions for GluA1 and GluA2 AMPAR
subunits, including critical phosphorylation sites and interacting molecules that alter both AMPAR
localization and function. Green indicates molecules or phosphorylation sites that have been
associated with retaining AMPARs at the membrane or enhancing AMPAR function, while red
indicates signaling that can mediate internalization or intracellular retention of AMPARs
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measures for AMPARs” below describes different experimental techniques that can
be used to measure AMPAR function, and the particular strengths and limitations of
each method. When functional measures agree, one can have greater confidence that
a given adaptation has occurred. However, many different forms of AMPAR
plasticity have been identified, and we believe it is critical in practice to perform a
broad assessment of AMPAR function, including biochemical measures of AMPAR
activity and localization within the cell, when trying to understand the importance of
a particular AMPAR adaptation or signaling action. We also note that memory often
involves new spine growth, and structural changes often occur during conditions of
intoxicant enhancement of AMPAR activity (e.g., Passafaro et al. 2003; Beckley
et al. 2016; Kalivas and Kalivas 2016).

Another general principle is the presence of calcium-permeable versus calcium
impermeable AMPARs (CPAR or CIARs, respectively). In general, CPARs are
enriched in GluA1 subunits and are GluA2-lacking (see Cull-Candy et al. 2006).
Relative to CIARs, CPARs have nearly double the single-channel conductance and
faster onset and offset kinetics. Thus, one-for-one exchange of GluA1s for GluA2s
might be predicted to increase AMPAR currents. Calcium signaling through the
calcium-permeability of CPARs also likely has important functional consequences,
ranging from insertion of GluA2 subunits which stabilizes LTP (Liu and Cull-Candy
2000; Henley andWilkinson 2013; Wu et al. 2017), to neurotoxicity during ischemia
(Gerace et al. 2015). Also, CPARs are inhibited intracellularly by polyamines when
the cell is at more depolarized potentials, which has provided a number of selective
CPAR inhibitors that act at the polyamine site, including the widely used 1-naphthyl
acetyl spermine (NASPM) and a range of selective toxins (Isaac et al. 2007).

In many brain regions, AMPAR function is primarily or exclusively mediated
through CIARs (Conrad et al. 2008; Reimers et al. 2011; Ding et al. 2014), in
agreement with significant protein levels of both GluA1 and GluA2 subunits
(although some cells have basal CPAR activity, e.g., McGee et al. 2015). Impor-
tantly, alcohol exposure or intake leads to expression of CPARs in several brain
regions (see below), which has the potential to promote excessive drinking. As
discussed in detail below, an increase in CPARs, especially in the NAc, is observed
after exposure to a number of behavioral conditions ranging from alcohol or
cocaine exposure to stress or novelty. This long-term increase in CPARs may
reflect their role in learning in memory, and reflect long-term storage of intoxicant-
related approach memories. When tested, the increase in CPARs is critical for
behavioral expression, for example, where NAc CPARs mediate cocaine relapse
after protracted abstinence (e.g., Conrad et al. 2008). Overall, it is clear that CPAR
induction represents a central form of insult-related adaptation that can strongly
bias future behavior.

There are also likely to be intoxicant-related AMPAR adaptations that do not
involve CPARs. An increase in both GluA1 and GluA2 subunit levels could elevate
AMPAR activity without causing CPAR formation. In addition, stabilizing GluA2
surface expression and function (in a GluA2-K882A knockin mouse) increases
AMPAR function without functional expression of CPARs, and also strongly
enhances behavioral response to stressors and cocaine reinstatement and CPP
(Briand et al. 2016; Ellis et al. 2017).
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We discuss a number of examples of AMPAR regulation and adaptations for
intoxicants other than alcohol, since these provide indications of other kinds of
AMPAR signaling that could be observed, even if they have not yet been identified
in relation to alcohol. However, it is also clear that different abused drugs can act
through different circuits, e.g., psychostimulants versus opiates or alcohol (e.g.,
Marchant et al. 2015), and one might predict a priori that alcohol-related adaptations
will be different from those with cocaine. Indeed, there are examples where
psychostimulants produce different AMPAR changes relative to other drugs. It is
equally important and interesting to understand which AMPAR adaptations diverge
across intoxicants, and which AMPAR changes are common.

Finally, while AMPAR activity is clearly essential for a great deal of neural
activity, and increased AMPAR function can promote intoxicant intake or seeking,
it would be especially useful to understand whether intoxicant-related AMPAR
adaptations occur in humans and are relevant for human alcohol addiction. This is
challenging, as glutamate and related excitatory transmitters can be measured with
MRS (Zahr et al. 2016). Cocaine can change NAc AMPARs in primates and humans
(Hemby et al. 2005), but AMPARs will not be able to be directly studied until there is
a PET ligand for the receptor (e.g., how raclopride is used to examine human
dopamine-2-receptors). Nonetheless, several human studies have examined whether
alcohol problems are related to gene variants across a cluster of AMPAR-related
proteins. For example, Karpyak et al. (2012) found that gene variants in the NMDAR-
dependent AMPAR trafficking pathway predict alcohol dependence. Also, gene
variants in the mGluR-dependent AMPAR trafficking pathway are associated with
greater problem alcohol drinking (Meyers et al. 2015). In addition to linking human
drinking to AMPAR regulation, mice could be engineered to express to a specific gene
variant linked to human drinking, which would allow better assessment of the
physiological impact of the particular AMPAR-related genetic variant. Also, evidence
for a relationship between AMPAR function in humans and alcohol addiction
validates the possibility of using pharmacological agents that modulate AMPARs to
decrease harmful drinking patterns (Holmes et al. 2013; Watterson and Olive 2013).

2 Ex Vivo Electrophysiology Measures to Measure AMPAR
Function

Researchers often want to determine whether there is an increase or decrease in
AMPAR function, perhaps after observing changes in AMPAR subunit levels with
western blot. Ex vivo electrophysiology, where one records from a neuron in the live
brain slice, provides powerful methods to directly assess glutamate receptor activity.
It is simple to place two wires close together in the brain slice, and pass brief
electrical current across them to stimulate glutamate release from terminals. Thus,
it should be straightforward to detect changes in AMPAR function after alcohol or
some other exposure. However, in practice, there can be slice-to-slice variability in
currents generated this way, perhaps due to differences in geometry or survival of
axons from different glutamate inputs. Thus, determining a change in the absolute
magnitude of AMPARs is often the most difficult to address directly.
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The AMPAR-to-NMDAR ratio is widely used to circumvent this problem.
Measuring the ratio of AMPARs to NMDARs should control for possible
differences in glutamate release across slices, since, e.g., lower release with electrical
stimulation would reduce the magnitude of both AMPARs and NMDARs. In fact,
NMDAR adaptations are observed (Hopf 2017; Morisot and Ron 2017), but longer-
term functional changes in AMPARs are more common. Determining the AMPAR-
NMDAR ratio is technically simple, where AMPARs are measured when holding a
cell at �70 mV or +40 mV, then AMPARs are blocked pharmacological to measure
NMDAR currents at +40 mV. In practice, this measure has been of immense value to
identify AMPAR adaptations which may represent a form of LTP, and where
elevated AMPAR function would strongly drive addiction-related behavior.

One clear caveat is that changes in NMDAR function will also alter the AMPAR-
to-NMDAR ratio. Thus, one can vary the level of electrical stimulation in a brain
slice and measure the amount of receptor activity at each level, called an input–
output relationship. These more direct measures of pharmacologically isolated
synaptic AMPAR or NMDAR currents tend to be more variable, relative to the
AMPAR-to-NMDAR ratio, and require a larger sample size to accurately assess
receptor function. Other groups have also used brief (10–30 s) bath application of
AMPA or NMDA as another method to assess functional changes, which can be
complicated by unnatural AMPAR desensitization or by activation of extra-synaptic
receptors. Nonetheless, these measures can provide valuable confirmation when
other evidence suggests an increase in AMPAR function.

Changes in AMPAR function can also be assessed through AMPAR currents
generated by spontaneous release of glutamate-containing vesicles. These so-called
miniature excitatory postsynaptic currents (mEPSCs) are recorded in the presence of
sodium channel blockers (lidocaine or tetrodotoxin) to prevent action potential firing
in presynaptic axons, which assures that postsynaptic mEPSCs represent activation
by a single glutamate-containing vesicle. Also, spontaneous EPSCs (sEPSCs, spon-
taneous events which arise from spontaneous vesicle release or presynaptic action
potentials) can be measured in the absence of action potential blockers, and analyzed
similarly to mEPSCs, although amplitude measures require the caveat that sponta-
neous activity can elicit multi-vesicular release and larger amplitudes. Increases or
decreases in amplitude of mEPSCs or sEPSCs have proven valuable for identifying
changes in postsynaptic AMPARs activity (Collingridge and Isaac 2003). There are
also caveats to this method, one being that glutamate levels in a vesicle in theory
could also be altered, although in practice this is considered less of an issue. Also,
release mechanisms can be somewhat different for evoked release and spontaneous
release (Guarnieri 2017). Another point to note is that measurement of m/sEPSCs
detects release from multiple synapses, i.e., multiple inputs, to a given neuron. Thus,
if a particular manipulation causes input-specific effects, such changes could be
obscured in a background of multiple other unchanged inputs or oppositely affected
inputs. An approach that solves this problem is the measurement of optogenetically
evoked asynchronous EPSCs (asEPSCs) (e.g., Britt et al. 2012; Joffe and Grueter
2016). The replacement of calcium with strontium in the extracellular solution
promotes asynchronous, quantal release of glutamate following afferent stimulation
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for several hundred milliseconds (Goda and Stevens 1994). Thus, asEPSCs
measured during this “after-discharge” time window can be attributed to glutamate
release from the activated terminal, with differences in frequency or amplitude
indicative of pre- or postsynaptic changes, respectively, for the activated input
(Abdul-Ghani et al. 1996).

In addition to measuring sensitivity of AMPAR currents to a CPAR inhibitor such
as NASPM, CPARs can be detected electrophysiologically by measuring the rectifi-
cation index. Specifically, AMPAR currents are typically measured at a series of
voltages ranging from �70 mV to +40 mV. Rectification can then be assessed, e.g.,
as the ratio of AMPAR currents at +40 mV versus �60 mV. If CPARs are present,
then currents at positive potentials will be smaller than predicted by the linear
current–voltage relationship of non-CPAR AMPARs. Thus, it is fortunate that
there are clear complementary electrophysiological and pharmacological methods
to identify CPARs, given that many addiction-related AMPAR changes involve the
appearance of CPARs.

In addition to postsynaptic measures, greater AMPAR function could also reflect
increased release of glutamate-containing vesicles from the presynaptic compart-
ment. If larger AMPAR currents are due only to greater glutamate release, then there
should be no change in indices of postsynaptic AMPAR function, such as the
mEPSC amplitude or AMPAR-to-NMDAR ratio. Presynaptic vesicle release can
be assessed by two measures. First, an increase in the frequency of mEPSCs is taken
to indicate more spontaneous vesicle release events. Second, one can assess the
probability of release using the so-called paired-pulse ratio (PPR), where two EPSCs
(or IPSCs) are generated 50–100 ms apart, and the second evoked current is divided
by the first. Residual calcium in the presynaptic terminals can linger after the first
stimulation, leading to greater vesicle release for the second stimulation, which is
known as paired-pulse facilitation. On the other hand, strong vesicle release in the
first stimulation can deplete the vesicle pool, leading to a smaller current with the
second stimulation, known as paired-pulse depression. Thus, decreased PPR is taken
to indicate greater release probability. There are some important caveats when using
these methods. While mEPSCs are easy to measure, the release mechanisms during
spontaneous release and electrically evoked release can be different, with electrical
release more physiologically relevant. Also, greater mEPSC frequency can actually
reflect an increased number of synapses, rather than a presynaptic effect. One well-
studied example of this is called “silent synapses,” which contain NMDARs but not
AMPARs (Collingridge and Isaac 2003; Chen et al. 2010; Neumann et al. 2016). In
particular, insertion of AMPARs into these silent synapses increases AMPAR
function by increasing the number of AMPAR-containing synapses, which can
elevate AMPAR currents globally without increasing the number of AMPARs at
any given synapse.

In addition to measures of AMPAR activity, a number of studies have examined
the ability of patterned glutamatergic release to produce long-term increases or
decreases in AMPAR activity, the so-called LTP or long-term depression (LTD),
which could contribute to long-term storage of memories including those related to
addiction. If greater AMPAR function after intoxicant exposure reflects formation of
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LTP, in that it utilizes the same mechanism, then LTP induction ex vivo should be
impaired (since it has already been induced). One might also expect to generate a
larger LTD, since there is a larger range for AMPARs to fall from the LTP state (e.g.,
Ungless et al. 2001). However, a number of forms of AMPAR plasticity have been
identified (Malinow and Malenka 2002; Henley and Wilkinson 2013), which may
complicate interpretation of the mechanisms of a given AMPAR adaptation. Also,
biochemical measures of AMPAR activation would be particularly useful, especially
how they are changed by LTP/LTD inducing protocols.

Another interesting possibility is that intoxicant exposure could disrupt the
signaling cascade necessary for plasticity induction, which may prevent neurons
from generating new LTP or LTD (also called anaplasticity). For example, obesity in
animals is associated with increased NAc AMPARs and decreased LTD induction
(Brown et al. 2017). Furthermore, the ATPase Thorase facilitates internalization of
AMPARs, while disrupting Thorase increases AMPAR function and impairs induc-
tion of both LTP and LTD (Pignatelli et al. 2017). In practice, it can be difficult to
assess whether a given intoxicant-related “disruption” in generating LTP or LTD
reflects an impairment in a signaling cascade necessary for plasticity induction,
rather than an adaptation in AMPARs themselves, since both could occur at the
same time. Interestingly, it is also possible that the observation that addicted humans
can decrease involvement with non-intoxicant rewards (e.g., see Perry et al. 2015)
reflects where repeated drug exposure impairs formation of memories for other,
nondrug rewards.

In recent years, newer techniques have been developed which have significantly
advanced our ability to examine changes in glutamate receptor function. Glutamate
uncaging can reveal AMPAR function and rectification at the level of single spines
(e.g., Lalanne et al. 2016), and can also be used to induce synaptic plasticity (e.g.,
Chiu et al. 2017). While these methods have not, to our knowledge, been used in
relation to alcohol drinking studies, they could strongly enhance our mechanistic
understanding to AMPAR adaptations that contribute to alcohol and other addiction-
related behaviors.

Thus, there a number of measures of AMPAR function that serve as complemen-
tary windows into different aspects of glutamatergic signaling. In the best case,
different electrophysiological measures would provide a consistent pattern. For
example, a postsynaptic AMPAR increase would be evident as a larger AMPAR-
to-NMDAR ratio, a larger input–output relationship for AMPAR but not NMDARs,
and a larger mEPSC amplitude, with no change in mEPSC frequency or paired-pulse
ratio. In contrast, increased presynaptic release would be reflected in a decrease in
the paired-pulse ratio and an increase in mEPSC frequency, with no change in
mEPSC amplitude or AMPAR-to-NMDAR ratio. It is important to understand the
strengths, weaknesses, and interpretation of the different glutamate receptor
experiments, both when performing them and when interpreting published results.
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3 Regulation of AMPARs by Phosphorylation and Accessory
Proteins

In addition to electrophysiology measures of AMPAR function, a number of bio-
chemical measures for AMPARs can be utilized to indicate or infer the AMPAR
activity state. A considerable amount has been discovered about regulation of
AMPARs by posttranslational modifications, phosphorylation, trafficking, auxiliary
subunits, and scaffolding molecules (Malinow and Malenka 2002; Collingridge and
Isaac 2003; Fukata et al. 2005; Chen et al. 2010; Citri et al. 2010; Traynelis et al.
2010; Mao et al. 2011; Bats et al. 2013; Henley and Wilkinson 2013; Hanley 2014;
Wang et al. 2014). Thus, in addition to electrophysiology, biochemical methods are
invaluable in assessing possible AMPAR adaptations. Western blot can be used to
determine the protein levels of specific AMPAR subunits in the total homogenate or
in fractions concentrated for synaptic components (e.g., see Conrad et al. 2008;
Beckley et al. 2016). Also, one can determine the level of AMPARs at the surface of
the neuron using cross-linking methods which isolate surface proteins (Conrad et al.
2008; Mickiewicz and Napier 2011; Russell et al. 2016). In addition, recent
advances in immunocytochemistry and laser-scanning microscopy allow the visual-
ization of GluA subunits within dendrites and spines (e.g., Sebastian et al. 2013).
Furthermore, antibodies are available for several regulatory phosphorylation sites
(e.g., Hayashi and Huganir 2004; Chung et al. 2000). The model in Fig. 1 presents
several widely studied regulatory interactions for GluA1 and GluA2 AMPAR
subunits, including critical phosphorylation sites and interacting molecules that
alter both AMPAR localization and function. Some regulators, including the auxil-
iary molecules transmembrane AMPA receptor regulatory proteins or TARPS (e.g.,
stargazin), promote trafficking and surface anchoring of all AMPAR subunits
(Fukata et al. 2005; Jackson and Nicoll 2011; Henley and Wilkinson 2013), while
other regulatory steps are specific to GluA1 or GluA2. Here we present only a subset
of known molecular regulators of AMPARs, focusing on those studied thus far in the
context of addiction-related behaviors. In particular, some of the described AMPAR
changes are not as of yet reported for alcohol drinking, but their generation in other
addiction-related behaviors means they are possible.

One could increase CPAR function by increasing GluA1 activity. Regulation of
GluA1 at serine 831 (S831) and serine 845 (S845) is associated with increased levels
of GluA1 and functional CPAR currents (Derkach et al. 1999; Banke et al. 2000;
He et al. 2009; Park et al. 2014). In addition, scaffolding proteins such as SAP97
can stabilize GluA1 surface expression (Leonard et al. 1998; Waites et al. 2009). As
we will see, all of these mechanisms that increase GluA1 activity can be associated
with greater expression of addiction- and motivation-related behaviors (Park et al.
2014; Zheng et al. 2015; White et al. 2016; Cannady et al. 2017; Martinez-Rivera
et al. 2017; Ouyang et al. 2017).

One could also increase CPAR function by reducing the impact of GluA2
subunits. As shown in Fig. 1, there are several amino acid residues in the GluA2
C-terminus that, when phosphorylated, promote removal of GluA2 from the syn-
apse. In particular, GluA2 serine 880 (S880) and a tyrosine cluster just upstream of
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S880 have been studied by several groups in the context of addiction-related
behaviors. For example, the scaffolding protein GRIP stabilizes GluA2 at the
synapse, but when S880 is phosphorylated by PKC, GluA2 is internalized due
to disrupted association of GluA2 with GRIP (Chung et al. 2000; Henley and
Wilkinson 2013). As described below, knocking down GRIP in the NAc increases
CPAR activity and cocaine reinstatement (Briand et al. 2014). Others have devel-
oped interference peptides based on the GluA2 C-terminal sequence that target the
trafficking of GluA2-containing AMPARs. One example is the GluA23Y peptide
that is based on the tyrosine cluster upstream of S880 (869YKEGYNVYG877). This
peptide specifically interferes with clathrin-dependent, regulated GluA2 endocyto-
sis, and prevents LTD without affecting basal AMPAR transmission (Ahmadian
et al. 2004; Brebner et al. 2005; Choi et al. 2014). Interestingly, this peptide
attenuates cue-induced reinstatement of heroin seeking and blocks cue-induced
increases in CPAR activity in the mPFC (Van den Oever et al. 2008). This finding
is especially noteworthy because it explicitly demonstrates that regulated GluA2
endocytosis is a critical step in drug cue-induced upregulation of CPAR activity.
Infusion of this peptide into the NAc also prevents the expression of amphetamine
sensitization, suggesting that NAc LTD (i.e., regulated GluA2 endocytosis) in vivo
is required for this behavior (Brebner et al. 2005). Furthermore, as discussed below,
studies with this peptide find disruption of alcohol consumption under some but not
all circumstances. Thus, GluA2 endocytosis concomitant with upregulation of
CPAR activity is a category of AMPAR adaptation that appears to be common to
several classes of intoxicants.

Finally, increased AMPAR function could also reflect increased GluA2-related
mechanisms. For example, alcohol drinking increases synaptic levels of GluA1 and
GluA2 and AMPAR currents in the dorsal-medial striatum (Wang et al. 2012, 2015),
and it would be interesting to determine whether this occurs without a switch to
CPAR expression. In addition, several studies have used mice with a GluA2-K882A
knockin, which, by preventing PKC action at GluA2-S880, stabilizes functional
GluA2 at the synapse. These knockin mice show greater AMPAR currents in NAc
neurons, but no change in the CPAR contribution, along with larger behavioral
responses to stressors and stress-, cue, or cocaine-induced reinstatement of cocaine
self-administration (Briand et al. 2016; Ellis et al. 2017). Thus, elevating GluA2
function, without any shift to CPARs, can also be sufficient to drive excessive
behavior.

4 The Role of CPARs in Alcohol-Related Behaviors

Although there are multiple possible forms of AMPAR adaptation, we focus here
initially on possible alcohol-related adaptations in CPARs, in part because they have
received significant attention, and also because there is evidence that a number of
identified AMPAR changes involve CPARs. Alcohol exposure leads to expression
in CPAR activity in a number of brain regions, including the NAc, dorsal-medial
striatum (DMS), central amygdala (CeA), ventral tegmental area (VTA), cortex, and
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bed nucleus of the stria terminalis (BNST). These regions have been shown to
contribute to motivation- and addiction-related behavior, with some differential
roles (Chaudhri et al. 2010; Fineberg et al. 2010; Koob and Volkow 2010, 2016;
Barker et al. 2015; Koob and Mason 2016; Cooper et al. 2017; Gremel and Lovinger
2017; Vranjkovic et al. 2017). In this section, we will address alcohol-related CPAR
adaptations and their potential behavioral consequences; then subsequent sections
will examine examples from outside of alcohol to illustrate other key points about
AMPAR regulation and adaptation. Also, although many AMPAR adaptations
reflect increased CPAR function, AMPAR function can be increased without the
involvement of CPARs. See Fig. 2 for an overview of mechanisms implicated in
ethanol-induced AMPAR adaptations.

4.1 NAc

The NAc is important for driving motivated behavior, with the core perhaps more
important for action driven by discrete events (e.g., a cue), with the shell mediating
conditions ranging from uncertainty and primary reward, to context and cued
reinstatement (Chaudhri et al. 2010). Intermittent alcohol drinking strongly increases
GluA1 protein levels in the NAc through mTORC1-dependent signaling, and
inhibiting mTORC1 action in the NAc significantly decreases alcohol intake levels
(Neasta et al. 2010). Since that time, transgenic mice expressing markers specifically
within the dopamine D1R- or D2R-expressing medium spiny neurons (D1-cells or
D2-cells) have allowed evaluation of AMPAR activity specifically within each cell
type. Interestingly, a single alcohol drinking session increases mTORC1 activation
and CPAR function only in D1-cells of NAc shell (Beckley et al. 2016), and not in
the NAc core. This was associated with a greater AMPAR-to-NMDAR ratio and
larger mEPSC amplitude, both signs of increased AMPAR activity, and also with
greater rectification, which reflects the presence of functional CPARs. Thus, GluA1-
and CPAR-related increases in the NAc shell likely drive excessive alcohol drinking.

In strong concurrence, repeated, intermittent exposure to alcohol vapor also leads
to CPAR expression in D1-cells of the NAc shell (Renteria et al. 2017). In addition,
D1-cells actually show a constellation of alcohol-related adaptations, while NAc
D2-cells show fewer such adaptations. Following alcohol vapor-exposure, D1-cell
AMPARs show greater inward rectification than observed in air-treated controls,
indicating the presence of CPARs. However, the amplitude of sEPSCs was not
changed by alcohol vapor. Thus, these data suggest a change in the balance of GluA1
and GluA2 subunits, without a change in total postsynaptic AMPARs, after alcohol
vapor. In addition, measures of presynaptic release, including both spontaneous
EPSC frequency and paired-pulse ratio, were greater after alcohol vapor, suggesting
there may be both pre- and postsynaptic adaptations in glutamatergic function in the
NAc shell after repeated alcohol vapor. In contrast, we did not see changes
in AMPAR to NMDAR ratio, or several other measures of AMPAR function, in
glutamatergic inputs to the NAc core after long-term intermittent alcohol intake in
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rats (Hopf et al. 2010a, unpublished findings), although we did not specifically look
for CPAR function.

In addition to changes in AMPAR composition after chronic alcohol experience,
NAc neurons also show profound changes in the ability to express glutamatergic
synaptic plasticity (Abrahao et al. 2013; Jeanes et al. 2011; 2014; Ji et al. 2017;

Fig. 2 Simplified illustration of possible ethanol-induced AMPAR adaptations. The left side of
each panel represents an ethanol-naïve state, with the right side depicting possible ethanol-induced
AMPAR changes. (a) Increases in AMPAR subunit expression or function that are associated with
enhanced overall AMPAR function. GluA1 subunits are yellow; GluA2 are blue; ivory subunits
represent where the identity of the other two subunits may vary. Phosphorylated residues (described
in Fig. 1) are enlarged and filled in black. Elevated GluA1 S831 phosphorylation and/or increased
total, surface, or synaptic GluA1 protein expression is observed in the OFC, DMS, and subregions
of the amygdala and NAc. In some studies, effects on other AMPAR subunits were not evaluated
(Neasta et al. 2010; Salling et al. 2016; Cannady et al. 2017; Nimitvilai et al. 2017). In others, these
changes in GluA1 are observed alongside increased surface or total GluA2 protein (Christian et al.
2012; Wang et al. 2012; Nimitvilai et al. 2016). (b) Increases in the contribution of CPARs, with or
without an increase in overall AMPAR transmission. Elevated contribution of CPARs is
documented in the VTA and subregions of the NAc. The top pathway illustrates situations in
which the increased CPAR contribution enhances AMPAR transmission overall (Marty and
Spigelman 2012; Hausknecht et al. 2015; Beckley et al. 2016), while the bottom pathway illustrates
conditions of GluA2 internalization where CPARs increase without a change in total AMPAR
transmission (Renteria et al. 2016a, 2017). Color scheme is the same as in (a), with the addition of
dark gray in GluA1-containing AMPARs to indicate where the subunit cannot be GluA2
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Spiga et al. 2014; Renteria et al. 2016a, b, 2017). For example, NMDAR-dependent
LTD of AMPAR-mediated EPSCs can be induced in D1-cells, but not D2-cells, in
the NAc shell and core in alcohol naïve mice. However, after alcohol vapor
exposure, NAc shell D1-cells exhibit no LTD, or even LTP, while D2-cells exhibit
LTD (Jeanes et al. 2014; Renteria et al. 2016b, 2017). These changes are
accompanied by an increase in NMDAR currents in D1-cells and a decrease in
NMDAR currents in D2-cells (Renteria et al. 2016b). Renteria et al. (2017) found
that the metaplastic effects of alcohol exposure on D1-cells were specific to the NAc
shell, and a similar distinction between NAc shell and core D1-cells also was
observed by Mangieri et al. (2017). After operant ethanol self-administration expe-
rience, the magnitude of LTD in NAc shell, but not core, D1-cells was inversely
correlated to prior ethanol consumption, with the highest-drinking mice showing
normal LTD in core D1-cells, but no LTD at all in shell D1-cells. On the other hand,
Abrahao et al. (2013) found that NMDAR-dependent AMPAR-mediated LTD in
unidentified NAc core neurons was impaired during withdrawal from chronic
ethanol treatment, but only in mice that had shown sensitization to the locomotor-
stimulating effects of ethanol. Notably, sensitized mice also voluntarily consume
more ethanol compared to non-ethanol-treated or ethanol-treated, non-sensitized
mice. Thus, although the specific ethanol-induced changes in NAc glutamatergic
synaptic plasticity appear to vary by several factors, including subregion, cell type,
and model of exposure, the findings of Abrahao et al. and Mangieri et al. suggest
there may be a general relationship between individual differences in ethanol-
induced metaplasticity and individual differences in ethanol consumption.

An important question is the relationship between the disappearance or
impairment of LTD and the appearance of CPARs in NAc cells following alcohol
exposure, and, moreover, the relevance of these changes to alcohol-related
behaviors. One possibility is that the presence of CPARs reduces the stimulus
intensity threshold required for inducing LTP rather than LTD, since the same
level of stimulation would produce greater rises in intracellular Ca2+ during the
plasticity induction stimulus. Only one of the studies cited in the preceding para-
graph (Renteria et al. 2017) specifically tested for changes in CPAR function,
however. Thus, it remains to be exhaustively demonstrated that a loss or reduction
in the ability to induce LTD after drug or alcohol exposure is a reliable indicator of
the presence of CPARs, and vice versa.

Some insight as to the relevance of CPARs and LTD to alcohol and other reward-
related behaviors comes from experiments in which endocytosis of GluA2-
containing AMPARs is disrupted. As discussed in the preceding section, the
GluA23Y peptide prevents LTD induction by interfering with the regulated endocy-
tosis of GluA2-containing AMPARs (CIARs) and, at least under some conditions
(e.g., Van den Oever et al. 2008), thereby blocks upregulation of CPAR activity.
Thus, presumably, this peptide could prevent replacement of CIARs by CPARs in
NAc D1-cells – although to our knowledge this remains to be tested explicitly. In a
study by Lim et al. (2012), chronic restraint stress promoted CPAR activity in NAc
core D1-cells and decreased sensitivity to food and cocaine reward. Blocking
endocytosis of GluA2-containing AMPARs (with a peptide that works similarly to

Do Alcohol-Related AMPA-Type Glutamate Receptor Adaptations Promote Intake? 169



GluA23Y) in the NAc prevented the chronic stress-induced decreases in reward
sensitivity (Lim et al. 2012), without affecting reward sensitivity in non-stressed
mice. Similarly, expressing the GluA23Y peptide in the NAc does not appear to
affect alcohol intake under conditions in which low to moderate doses of ethanol are
consumed (e.g., operant self-administration), but it does prevent the chronic, inter-
mittent, alcohol vapor-induced escalation of non-operant ethanol consumption
(Renteria et al. 2016a; Maier et al. unpublished observations). Unfortunately, none
of this work in the NAc directly assessed whether disruption of GluA2 endocytosis
prevents upregulation of CPARs. However, taken together, these findings are con-
sistent with the idea that GluA2-containing CIARs are endocytosed and replaced
by CPARs in the NAc as a result of strong physiological challenges and that
this phenomenon specifically underlies behavioral modification in the face of such
challenges.

4.2 DMS

The DMS has been considered crucial for goal-directed behaviors, perhaps the
counter to DLS-driven habitual behavioral drives. Enhanced cannabinoid signaling
after alcohol exposure inhibits mPFC-DMS inputs, facilitating habitual responding
(Gremel and Lovinger 2017). Also, AMPAR adaptations in the DMS can drive
excessive alcohol drinking. Both alcohol exposure in the slice and alcohol drinking
in vivo, which are known to increase DMS NMDAR function, also enhance
AMPAR signaling in a form of LTP (Wang et al. 2012). This is accompanied by
increased protein levels of GluA1 and GluA2 in the synaptic membrane fraction.
Additional studies (Wang et al. 2015) indicate that this alcohol-related enhancement
in AMPAR function occurs in D1-cells but not D2-cells in the DMS, which is
accompanied by cell-type-specific structural plasticity. Furthermore, recent work
(Ma et al. 2017) shows that excessive alcohol drinking leads to increased AMPAR
function at mPFC-DMS inputs, while the probability of glutamate release is elevated
at amygdala inputs. Furthermore, co-activation of mPFC and amygdala inputs leads
to LTP only of the mPFC inputs to DMS. Finally, inhibiting AMPARs (Wang et al.
2012) or D1 (but not D2) receptors (Wang et al. 2015) within the DMS decreased
operant alcohol but not sucrose self-administration. Thus, alcohol-related, projec-
tion-specific AMPAR changes in the DMS promote excessive alcohol intake. To our
knowledge, the contribution of CPARs to DMS AMPAR plasticity has not yet been
investigated, but remains an area of great interest, especially if the DMS is a case of
non-CPAR alcohol-related AMPAR plasticity.

4.3 DLS

The DLS is important for habit-driven behavior, and is likely a critical contributor to
excessive alcohol intake and more pathological forms of drinking such as compul-
sion. Intermittent alcohol vapor impairs generation of synaptic plasticity in the
DLS (DePoy et al. 2015), and DLS AMPARs are required for expression of
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alcohol-related habit (Corbit et al. 2014). To our knowledge, DLS AMPAR function
in relation to alcohol has not been directly investigated.

4.4 CeA

An interesting line of research has shown that moderate, voluntary intake through
operant self-administration leads to AMPAR adaptations in the CeA (Salling et al.
2014, 2016; Cannady et al. 2017). Alcohol intake increases phosphorylation of
GluA1 at S831 in the amygdala, in agreement with alcohol vapor increasing
amygdala GluA1 surface levels (Christian et al. 2012). In addition, calmodulin
kinase II (CMKII) is known to phosphorylate GluA1-S831, and intra-CeA inhibition
of AMPARs or CMKII decreases alcohol but not sucrose self-administration
(Salling et al. 2016; Cannady et al. 2017). Further, a positive allosteric modulator
of AMPARs increases alcohol intake when infused in the CeA, and this effect is
blocked by a subthreshold level of CaMKII inhibitor. While these studies did
not look for CPARs directly, increased phosphorylation at GluA1-S831 can be
associated with greater CPAR activity (Park et al. 2014). Together, these results
suggest that moderate voluntary alcohol intake can increase GluA1 and CPAR levels
in the CeA, which contributes to maintaining ongoing self-administration. Interest-
ingly, CeA AMPARs are also implicated in learning about opiate reward (Cai et al.
2013), which concurs with the idea that the CeA regulates the moderate alcohol
drinking that may be more related to the primary rewarding effects of alcohol.

These findings are also interesting in the context of findings that the CeA is a
central contributor to the “dark side” of alcohol addiction, where intake is thought to
occur in order to relieve negative consequences (Koob and Mason 2016). The CeA
has been shown to drive the greater intake after induction of dependence in rats, in
part through CRF-related adaptations (e.g., Funk et al. 2006). This same CRF-related
adaptation drives the greater binging after 4 days of drinking-in-the-dark in mice
(Lowery-Gionta et al. 2012). Thus, it is interesting that increased AMPARs in CeA
could also be protective against excessive drinking, but also that, in a different
experimental context, CeA activity is important for driving excessive intake. This
could also reflect where the CeA has complex internal anatomy, with GABA cells
connected in series that can disinhibit behaviors (Johansen et al. 2012). Thus, CeA
AMPAR contributions may reflect signaling within specific CeA cell types, and thus
could have very different effects on behavior.

4.5 VTA

Psychostimulants increase VTA CPAR function (Luscher 2013, 2016), and thus
there is rationale for alcohol intake having a similar effect. Intermittent alcohol
drinking increases AMPAR synaptic strength in the VTA (Stuber et al. 2008), but
the possible role of CPARs remains untested. Interestingly, fetal alcohol exposure is
associated with increased CPARs in the VTA (Hausknecht et al. 2015). Not only did
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this increase self-administration of amphetamine, it also led to the appearance of a
CPAR-dependent LTP, where enhanced CPAR signaling led to further increases in
VTA AMPAR activity.

4.6 Cortex

Given the importance of cortical areas for behavioral control, AMPAR adaptations
in these regions could profoundly alter the expression of behavior (e.g., Otis and
Mueller 2017). While repeated alcohol vapor does not change mPFC AMPAR
protein levels in rat (Trantham-Davidson et al. 2017) or mouse (Kroener et al.
2012), increasing the level of CPARs in the infralimbic but not prelimbic mPFC
was protective against alcohol reinstatement (Gass et al. 2014). CPAR levels in
mPFC were elevated using a positive allosteric modulator of mGluR5, although total
AMPAR function was not increased. Thus, a switch from CIARs to CPARs in the
ventral mPFC could actually be protective against alcohol relapse. However, mPFC
CPARs mediate behavioral sensitization after nerve injury (Chen et al. 2014),
indicating that cortical areas still have the potential to express long-term CPAR
adaptations which potently regulate negative aspects of behavior.

While repeated alcohol does not seem to alter mPFC AMPAR currents, alcohol
drinking leads to significant AMPAR changes in the orbitofrontal cortex (OFC) in
both monkeys and mice (Nimitvilai et al. 2017). Heavy-drinking monkeys show
greater GluA1 expression and larger amplitude of spontaneous EPSCs in OFC, both
suggestive of increased AMPAR function. In addition, repeated alcohol vapor
increased the AMPAR-to-NMDAR ratio in lateral OFC, with an increase in the
ratio of GluA1 to GluA2 expression, as well as facilitated LTP induction (Nimitvilai
et al. 2016). The increase in GluA1 levels relative to GluA2 in OFC may suggest that
the increased OFC AMPAR function reflects a shift towards CPARs, although this
remains to be directly tested. Nonetheless, it is clear that alcohol enhancement of
cortical AMPARs likely strongly promotes heavy alcohol drinking.

4.7 BNST

Alcohol vapor exposure alters some forms of AMPAR LTD in the BNST
(McElligott et al. 2010). BNST neurons exhibit two forms of LTD, one mediated
through mGluR5s and the other through α1-adrenergic receptors. Interestingly, the
adrenergic-mediated LTD involves signaling through CPARs, and is disrupted by
chronic alcohol or stress exposure, while mGluR-mediated LTD is not. While
there is more to understand about how alcohol regulates BNST AMPARs, these
findings suggest that alcohol exposure could cause more selective effects on stress
responding mediated through the BNST.
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5 Instructive Examples of Other CPAR and Non-CPAR
Adaptations

Much has been learned about the ability of intoxicants other than alcohol to induce
CPAR and other AMPAR adaptations within brain regions including the NAc and
VTA (Pickens et al. 2011; Pierce and Wolf 2013; Luscher 2013, 2016). In addition,
different types of passive and active exposure can produce differential effects (e.g.,
Martin et al. 2006; Chen et al. 2008; Terrier et al. 2016). On the one hand, these
studies represent particular AMPAR changes that could develop. However,
cocaine/psychostimulants can act through different circuitry from other intoxicants
(Marchant et al. 2015), and might be predicted to have different AMPAR and
signaling mechanisms (e.g., Karoly et al. 2015; Graziane et al. 2016; see below).
Common and divergent mechanisms among intoxicants are equally interesting and
informative.

Considerable work has examined CPAR expression in the NAc that develops
slowly across protracted abstinence from repeated cocaine exposure, which has been
called incubation of cocaine craving (Conrad et al. 2008; Wolf and Ferrario 2010;
Pierce and Wolf 2013). There are also more complex changes in AMPAR function
early in abstinence (Ortinski et al. 2012). Cocaine incubation has been associated with
greater surface expression of GluA1, decreased surface levels of GluA2, and electro-
physiological indicators of CPARs, and with little evidence for NAc CPARs in control
animals. In addition, cocaine seeking is significantly reduced after infusing the CPAR
inhibitor NASPM into the NAc. Importantly, food-seeking control animals do not
show increased NAc CPARs, and their food seeking is not altered by NASPM in the
NAc. Also, GluA2 pre-mRNA can be edited by a protein called ADAR, where
unedited GluA2 actually contribute to CPARs (see Schmidt et al. 2015). Under normal
conditions, the vast majority of GluA2 is edited, resulting inGluA2-containing CIARs.
In contrast, withdrawal from cocaine intake reduces ADAR and increases the number
of unedited GluA2 in the NAc shell, which is associated with the presence of CPARs
(Schmidt et al. 2015). In addition, increasing ADAR levels reduced reinstatement.
Thus, there is considerable evidence that increasedNAcCPARs drive high relapse after
protracted abstinence, which in part reflects an increase in CP-GluA2 subunits.

Other interesting findings have been observed after cocaine self-administration
and extinction, and in relation to reinstatement of seeking. Sutton et al. (2003)
identified an increase in NAc AMPARs during extinction, and provided evidence
that this increase was protective against reinstatement. In addition, cocaine self-
administration and extinction have been recently shown to increase mTORC1
activity and synaptic GluA1 and CaMKII levels in the NAc shell and core
(James et al. 2014). While mTORC1 inhibition does not decrease cocaine self-
administration, intra-NAc shell mTORC1 inhibition decreases cued reinstatement,
progressive ratio, extinction responding, and the enhanced NAc GluA1 and CaMKII
levels observed after cocaine.

Other very interesting studies have shown that cue induction of reinstatement in
extinguished cocaine-seeking animals can rapidly enhance AMPAR function in the
NAc core (Shen et al. 2014; Gipson et al. 2013a). The NAc core AMPAR-NMDAR

Do Alcohol-Related AMPA-Type Glutamate Receptor Adaptations Promote Intake? 173



ratio was increased after extinction from cocaine, and reinstatement enhanced
AMPAR function further. This increased AMPAR function and the associated
greater spine growth can be instated and retracted quickly (Kalivas and Kalivas
2016). Similar rapid increases in NAc AMPAR function and GluA1 levels are also
observed after nicotine self-administration (Gipson et al. 2013b). Thus, not only can
cocaine exposure enhance NAc AMPAR function, exposure to cocaine cues can
rapidly induce AMPARs, which likely contribute to the expression of reinstatement.
We also note that, in contrast to cocaine, heroin cues decrease mPFC GluA2 levels
and AMPA-NMDAR ratios (Van den Oever et al. 2008; see also Cruz et al. 2008;
Glass et al. 2008). This supports the idea that psychostimulants act through different
mechanisms from opiates, which could in part reflect that strong acute drugs (such as
cocaine and perhaps nicotine) act differently from more diffuse rewards (such as
opiates and alcohol).

Also noteworthy is a seeming consensus that a number of forms of challenge,
ranging from alcohol intake to stress and novelty, increase NAc CPARs predomi-
nantly within D1-cells, with little basal AMPAR change in D2-cells, and primarily
within the NAc shell rather than NAc core. These studies are mainly carried out in
mice, where transgenic animals expressing fluorescent proteins in D1- or D2-cells
allow dissection of cell-type-specific AMPAR activation. As mentioned above,
CPAR induction only in D1-cells is observed in the NAc shell after alcohol drinking
(Beckley et al. 2016) and after alcohol vapor (Renteria et al. 2017). Increases in
CPARs within D1- but not D2-cell of the NAc shell have also been reported after
exposure to cocaine (Terrier et al. 2016), opiates (Hearing et al. 2016; Russell et al.
2016), and food deprivation (Ouyang et al. 2017; see also Oginsky et al. 2016 for
junk food diet). Interestingly, both alcohol and cocaine enhancement of NAc shell
CPARs are dependent on mTORC1 signaling (James et al. 2014; Beckley et al.
2016). Furthermore, inhibiting mTORC1 signaling in the NAc suppresses alcohol
drinking (Neasta et al. 2010) and cocaine seeking (James et al. 2014), reinforcing
the behavioral importance of elevated NAc CPARs. Finally, morphine CPP is also
associated with increased CPARs only in NAc shell D1-cells (Hearing et al. 2016),
and treatments that reverse CPAR expression also prevent morphine reinstatement.
Changes in AMPARs across a variety of intoxicants have also been observed in the
VTA (Saal et al. 2003; Luscher 2013). This convergence across intoxicants and
exposure methods is one reason that we focus on CPAR adaptations and the critical
importance of NAc mTORC1 signaling cascades in AMPAR regulation of problem
alcohol drinking and cocaine intake.

While rat and mouse studies both implicate NAc CPAR adaptations during
addiction-related behaviors, there seems to be a fundamental conundrum. In studies
from rats, increased CPAR function is typically observed across most of the NAc cells
examined. In contrast, results from mice would predict that only half of rat NAc cells
should show the AMPAR adaptation, corresponding to a change in D1-cells but not
D2-cells. There are certainly technical differences across rat and mouse studies,
including the level of intake. However, dorsal striatal D2-cells in mice have about
twice the intrinsic excitability (the number of action potentials fired for a given level of
depolarizing current) relative tomouse D1-cells. In contrast, the intrinsic excitability of
dorsal striatal neurons in rat is very similar across all cells (Hopf et al. 2010b), with no
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evidence for two populations of cells as would be predicted from mouse studies. Also,
some mouse–rat projection-specific differences are observed in the VTA (Margolis
et al. 2008; Lammel et al. 2012). While we must collectively reckon with such species
discrepancies, these examples also underscore the critical importance of examining
the impact of a molecular adaptation on behavior in both rat and mouse. This will
greatly increase one’s confidence in the translational relevance of one’s pathway.

While CPARs, both in NAc shell and in general, may reflect a fundamental,
common mechanism that can regulate excitability and behavior, it is important to
note that adaptations in AMPARs other than CPARs also likely play a critical role
under some behavioral conditions. Increased NAc glutamatergic transmission and
cocaine reinstatement are observed after preventing GluA2 phosphorylation at S880
which normally leads to GluA2 internalization into the cell, or by overexpressing
GluA2 (Briand et al. 2016; Ellis et al. 2017). In addition, stabilization of surface
GluA2 levels and increased GluA2 function in the K882A knockin mouse have been
associated with increased susceptibility to social defeat stress (Ellis et al. 2017),
while GluA2 overexpression in NAc increases resilience to social defeat (Vialou
et al. 2010). Thus, increased CPARs may increase reactivity for intoxicants and
cues at the cost of decreasing resilience to stress. In addition, K882A knockin mice
do not show a change in inward rectification, while GluA2 overexpression by viral
methods is associated with decreases in rectification, suggesting a reduction in
CPARs. While some differences may relate to technical matters, including global
versus local modulation of GluA2 function, it also underscores the possibility that
AMPARs are regulated by a dynamic system whose regulation may be complex.

We would expect that some behaviors will not require NAc CPARs, either
because CPARs are not induced by that behavior, or because CPARs are present
but the NAc is not important for expression of the given behavior. For example,
behavioral flexibility can require NAc core and shell NMDAR signaling, but with no
role for CPARs in either region (Ding et al. 2014). One interesting possibility is that
behaviors only become dependent on CPAR when there are adaptations associated
with increased CPAR levels. This would concur with a lack of CPAR adaptations
and CPAR contribution to behavior in several control behaviors including seeking of
natural rewards (Conrad et al. 2008), and that CPARs are hardly present at baseline
in many areas (Conrad et al. 2008; Reimers et al. 2011; Ding et al. 2014). In fact, by
identifying the types of training and experience that induce CPAR expression, we
may be able to better understand the central ethological role of the mechanisms that
enhance CPAR function. In addition, we consider it important to examine how a
given alcohol-related neuro-adaptation might alter intake of a natural reward (Seif
et al. 2013, 2015), in contrast to having controls where separate animals receive the
natural reward but never consume alcohol. These animals never develop the CPAR
adaptation, so it is unlikely that CPARs would promote reward-related behavior. In
contrast, the CPAR adaptation in alcohol drinkers still has the possibility to influence
natural reward intake, and should be tested directly.

Finally, while classic electrophysiological techniques have identified more global
changes in AMPAR function, a number of exciting recent studies have used
optogenetics ex vivo and discovered that specific inputs into a given brain region
can actually have different types of AMPAR adaptations. In particular, a specific
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projection is often labeled with the excitatory channelrhodopsin, so that light can be
used to release glutamate only from that projection, allowing determination of input-
specific glutamate receptor signaling (see also Lane et al. 2008; Good and Lupica
2010). For alcohol, this has been shown for the NAc core (Seif et al. 2013) and the
DMS (see above). Cocaine exposure also leads to complex projection-specific
glutamate receptor adaptations within the NAc, measured across inputs from
mPFC, amygdala, paraventricular thalamus, and hippocampus (Britt et al. 2012;
Pascoli et al. 2014; Joffe and Grueter 2016; Neumann et al. 2016; Terrier et al.
2016). Projection-specific AMPAR adaptations onto NAc D2-cells also mediate
opiate withdrawal (Zhu et al. 2016). Finally, the ventral hippocampus has a particu-
larly strong glutamatergic input to the NAc shell, relative to other inputs (Britt et al.
2012), and adaptations in this input could profoundly alter expression of reward
behavior.

6 Reversal of AMPAR Adaptations

A number of advances have been made in reversing enhancements in AMPAR
function after intoxicant exposure. First, some forms of LTP of AMPAR function
can be reversed by patterns of stimulation that induce LTD. This has been termed
metaplasticity, where LTP and LTD are viewed as being opposite functional states,
and where further patterned stimulation could quickly switch LTP to an LTD or
vice versa. LTD-like patterned simulation in vivo can reverse several AMPAR
adaptations including the elevated CPARs after cocaine or morphine (Pascoli et al.
2014; Hearing et al. 2016). Importantly, as mentioned above, the advent of
channelrhodopsin has allowed activation of only specific glutamatergic inputs by
LTD-inducing stimulation. It is perhaps remarkable that even a relatively brief
in vivo LTD-inducing pattern can persistently reverse NAc AMPAR adaptations
and their behavioral impact, as demonstrated in studies of opiates (Hearing et al.
2016; Zhu et al. 2016) and cocaine (Stefanik et al. 2016). For example, in the study
from Hearing et al. (2016), optogenetic LTD of mPFC-NAc shell inputs in vivo
decreases both the morphine-related increase in AMPAR to NMDAR ratio and the
reinstatement of morphine CPP.

A different strategy is based on pharmacological agents that normalize a hyper-
glutamatergic state after intoxicant exposure. For example, cocaine reinstatement
increases AMPARs, and reinstatement and the AMPAR changes are prevented by
inhibiting the prelimbic mPFC (Gipson et al. 2013a). In addition, cocaine induces
dysfunction in glial glutamate transport and excessive glutamate release in the NAc,
which results in mGluR5 activation of NOS interneurons, glial changes, and
increased NAc AMPARs and spine density, and these changes are rectified by
N-acetylcysteine (Kalivas and Kalivas 2016). Thus, N-acetylcysteine normalizes
the excessive glutamate release and reduces cocaine reinstatement. In addition,
cocaine intake causes LTP and LTD deficits in the NAc, and N-acetylcysteine
restores both through increasing mGluR2/3 activity for LTP and mGluR5 for LTD
(Moussawi et al. 2009; see also Kasanetz et al. 2013). Indeed, direct or indirect
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activation of mGluRIs (mGluR1/5) can decrease the effects of cocaine incubation
and sensitization on cocaine seeking and AMPARs (Bellone and Luscher 2006;
McCutcheon et al. 2011; Halbout et al. 2014; Jedynak et al. 2016). In contrast to
mGluR normalization of AMPAR adaptations, alcohol reinstatement is suppressed
by a positive allosteric modulator of mGluR5, which acts by increasing CPAR
function in specific mPFC areas (Gass et al. 2014). Finally, mGluRs can play a
direct role in induction of a number of forms of LTD (Henley and Wilkinson 2013;
Lodge et al. 2013). Thus, there may be fundamental differences in how mGluR
regulation of AMPARs impacts alcohol versus cocaine intake. Nonetheless, the
general principle of mGluR agonists to treat addiction is supported by these studies,
although there may be some difference among intoxicants. In addition, other agents
such as ceftriaxone, which is thought to increase glial glutamate uptake, might reflect
translational inroads to normalize dysfunction in glutamate signaling (e.g., Alhaddad
et al. 2014; Hearing et al. 2016).

A final interesting possibility is that addiction-related, long-term increases in
CPARs represent an immature form of memory. In particular, LTP can be mediated
by an early increase in CPARs, where calcium influx through CPARs then causes
GluA2s to traffic to the membrane to replace CPARs and form a more stable long-
term memory (Liu and Cull-Candy 2000; Henley and Wilkinson 2013; Wu et al.
2017). In addition, these studies suggest that CPARs are more labile in the face of
depotentiating (LTD-like) stimuli, compared with GluA2-mediated LTP which is
more resistant to depotentiation. One speculation is that CPAR increases are
designed to be a temporary form of memory storage, and thus could be more easily
unlearned under conditions where well-ordered information is used to update
associations that need to become memorized. In contrast, intoxicant exposure is
likely to be long-lasting and less discrete, although it remains unclear why and how
this might result in trapping of these intoxicant memories in a CPAR-dependent
state.

7 Summary and Conclusions

A great deal is now understood about mechanisms that can alter AMPAR function
and promote learned behaviors such as addiction. However, there is still much to learn
about the specific nature of these adaptations, including the specific effect of AMPAR
changes on firing activity, and the impact of AMPAR adaptations in particular cell
types and projections. While much is known about the presence of alcohol-related
AMPAR changes that promote intake, it is clear that there are many subtleties and
possible mechanisms for AMPAR regulation. In the search for better treatments for
AUD, it would be valuable to continue to expand our understanding of how specific
regulatory AMPAR interactions drive pathological drinking and seeking of alcohol.
Also, one important caveat for this review is that the predominance of NAc CPARs
studies is not meant to imply they are the most important behaviorally. Instead, this
may simply reflect where AMPAR adaptations through other mechanisms and in
other brain regions have not received as much attention. Nonetheless, it is also clear
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that AMPAR adaptations, including those mediated by CPARs, occur in a number of
brain regions and promote excessive drive for alcohol. Thus, future studies should
also seek to understand the collective effect of AMPAR changes across brain circuits
on promoting problem drinking, and how they might interact with non-AMPAR
adaptations (e.g., Heinsbroek et al. 2017).
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Abstract
Ethanol and nicotine can modulate the activity of several neurotransmitter systems
and signalling pathways. Interactions between ethanol and nicotine can also occur via
common molecular targets including nicotinic acetylcholine receptors (nAChRs).
These effects can induce molecular and synaptic adaptations that over time, are
consolidated in brain circuits that reinforce drug-seeking behavior, contribute to the
development of withdrawal symptoms during abstinence and increase the susceptibil-
ity to relapse. This chapter will discuss the acute and chronic effects of ethanol and
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nicotine within the mesolimbic reward pathway and brain circuits involved in
learning, memory, and withdrawal. Individual and common molecular targets of
ethanol and nicotinewithin these circuits are also discussed. Finally,we review studies
that have identified potential molecular and neuronal processes underlying the high
incidence of ethanol and nicotine co-use that may contribute to the development of
ethanol and nicotine co-addiction.

Keywords
Acute drug exposure · Chronic drug exposure · Dopamine · Ethanol · Nicotine ·
Nicotinic acetylcholine receptors

1 Introduction

The co-use of alcohol and nicotine has remained high despite the decline of cigarette
use in society (Bobo and Husten 2000). Reports estimate that between 70 and 80%
of alcohol use disorder patients are smokers (Bobo 1992; Bobo and Husten 2000;
Miller and Gold 1998). Additionally, smokers have an increased risk of developing
alcohol use disorders (DiFranza and Guerrera 1990; Grant et al. 2004). Both drugs
are amongst the leading causes of preventable death (World Health Organization
2014, 2015) and are associated with increases in cardiovascular and lung diseases
(Benowitz 2003) and some forms of cancer (Sasco et al. 2004). Moreover, the co-use
of alcohol and nicotine can increase susceptibility to certain forms of cancer com-
pared to the risk posed by the drugs individually (Room 2004).

With the economic burden of addiction-related illnesses in the US rising to over $420
billion per year (Office of the Surgeon General 2016), there remains a critical need to
develop improved treatment strategies for alcohol and nicotine co-dependence and to
increase awareness of the harmful effects of alcohol and nicotine co-use. This requires a
fundamental understanding of the overlapping neural circuitry that reinforces the reward-
ing properties of alcohol and nicotine co-use, and determining how repeated, long-term
consumption produces neuronal adaptations that increase consumption, facilitate the
transition to dependence, and increase susceptibility to relapse. In this chapter we will
compare and contrast the molecular, neuronal, and behavioral effects of acute versus
repeated and/or chronic alcohol and nicotine co-use and discuss the implications of these
findings to the development of improved therapies aimed at reducing alcohol and nicotine
co-addiction.

2 Acute Effects of Ethanol and Nicotine on Brain Reward
Circuitry

As with all addictive drugs, the rewarding actions of ethanol and nicotine in the brain
converge on the mesolimbic dopaminergic system. Modulation of the mesolimbic
pathway by ethanol and nicotine involves several neurotransmitter systems including
dopamine (DA), acetylcholine, GABA, glutamate, serotonin, and opioids (Balfour
2009; Koob 2014).
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2.1 Overlapping Molecular Targets of Ethanol and Nicotine:
Nicotinic Acetylcholine Receptors

Although nicotine acts more specifically than ethanol to elicit its positive reinforcing
effects, both share a common receptor target, namely, nicotinic acetylcholine receptors
(nAChRs). These receptors are pentameric ligand-gated cation channels that contain a
combination of α and β subunits. In humans, a total of 11 subunits have been identified
(α2-α7, α9, α10, β2-β4) that can form several homomeric or heteromeric conformations
with varying pharmacological properties (reviewed inGotti et al. 2007;Klink et al. 2001).
In an active state, nAChRs undergo a conformational change that allowsmonovalent and
divalent cations including K+, Na+, and Ca2+ to diffuse across the plasma membrane
(Unwin 2003). This can lead to a multitude of cellular responses including membrane
depolarization, modulation of intracellular signalling pathways, and neurotransmitter
release (Dajas-Bailador and Wonnacott 2004).

Nicotine, the tertiary alkaloid found in tobacco, is a high-affinity agonist that binds to
nAChRs and causes a conformational change in the receptor that induces an open or
“active” state, allowing the flow of cations down their electrochemical gradient through
the channel (Changeux et al. 1998). Ethanol, on the other hand, modulates the activity of
nAChRs, not as a direct agonist, but as an allosteric modulator, likely stabilizing specific
channel conformations (Forman and Zhou 1999; Zuo et al. 2004). Rapid desensitization
of nAChRs occurs in the presence of nicotine and this process is thought to play an
important role in modulating DA levels within the mesolimbic system. Evidence is also
accumulating to suggest balance between the activation and desensitization of nAChRs
caused by nicotine could be altered in the presence of ethanol, which might induce
adaptations that contribute to the high incidence of their co-use (see Sect. 2.3).

2.2 Ethanol and Nicotine Modulation of Dopaminergic Activity
via Nicotinic Acetylcholine Receptors

The distribution of nAChRs within the mesolimbic system is well characterized, having
been shown to exist in pre-, post-, and extra-synaptic domains within the ventral
tegmental area (VTA) (Feduccia et al. 2012; Hendrickson et al. 2013). The VTA is
densely innervated by synaptic inputs containing nAChRs which are sensitive to ethanol
and nicotine, including glutamatergic afferents from the prefrontal cortex (PFC) and
cholinergic and GABAergic afferents from the pedunculopontine tegmental nucleus and
the laterodorsal tegmental nucleus (Champtiaux et al. 2003;Gotti et al. 2007;Mansvelder
and McGehee 2000; McDaid et al. 2016) (Fig. 1). Additionally, nAChRs are highly
expressed in both GABAergic and DAergic VTA neurons in addition to DAergic
terminals in the NAc, and display cell-type and regionally distinct expression profiles
(Hendrickson et al. 2013, Fig. 1). Both indirect and direct mechanisms of ethanol and
nicotine-induced DA release have been proposed, which occurs via increased cell
excitability and burst firing of VTA DAergic neurons (Chatterjee and Bartlett 2010;
Hendrickson et al. 2013). Previous studies have demonstrated that nAChRs containing
the β2 subunit in combination with the α4 and/or α6 subunits mediate the rewarding
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properties of nicotine and nicotine-induced increase in accumbal DA (De Biasi and Dani
2011). This is based on reports highlighting the absence of nicotine-induced DA release
in α4 and β2 knock-out (KO) mice, reduced self-administration/reward in mice that do
not express α4, α6, or β2 subunits, enhanced responsiveness to nicotine via increased
activation or overexpression of the α4 subunit, as well as reduced nicotine-induced VTA
DAergic cell firing in α5 KO mice (Marubio et al. 2003; Ngolab et al. 2015; Picciotto
et al. 1998; Pons et al. 2008; Tapper et al. 2004; Morel et al. 2014). Studies with ethanol
have also shown that activation of DAergic neurons in the posterior VTA is partially
mediated by nAChRs, presumably leading to release of DA in the NAc (Hendrickson
et al. 2010; Liu et al. 2013a; Zhao-Shea et al. 2011). Pharmacological studies have shown
that α-conotoxin MII, which is a selective antagonist at α6, β3, and α3/β2 containing
nAChRs, significantly decreases ethanol-mediated DA release (Jerlhag et al. 2006).
When administered locally into the VTA, α-conotoxin MII also reduced self-
administration and operant responding for ethanol and inhibited DA release in the NAc
of rats (Kuzmin et al. 2009; Larsson et al. 2004). Furthermore, genetic manipulations
have identified that nAChRs containing α4 and α6, also contribute to the rewarding
properties of ethanol (Liu et al. 2013a, b; Guildford et al. 2016; Powers et al. 2013).

Direct infusion of ethanol into the NAc can increase DA to a level that is similar
in magnitude to systemic administration (Ericson et al. 2003). This effect may be
due, in part, to direct ethanol-induced modulation of nAChRs on DAergic terminals

VTA 
GABA 

DA 

Nicotine: α4, α5, α6, β2 
 
Ethanol: α3, α4, α6, β3, β4 

GLUT 

NAc 

PFC 

ACh 
GABA 
GLUT 

LTD/PPTg 

nAChR 

Fig. 1 Overlapping molecular targets of ethanol and nicotine in brain reward circuitry. The acute
pre- and post-synaptic effects of ethanol and nicotine converge on the mesolimbic dopaminergic
system. Ethanol and nicotine via nAChRs modulate glutamatergic input from brain areas including
the prefrontal cortex (PFC) and laterodorsal tegmental nucleus (LTD). Arrows indicate ethanol and
nicotine-induced increases or decreases in various reward signalling pathways including cholinergic
and GABAergic afferents from the pedunculopontine tegmental nucleus, (PPTg) as well as local
ventral tegmental area (VTA) GABAergic neurons and VTA DAergic neurons via pre- and post-
synaptic nAChRs, leading to increased DA release in the nucleus accumbens (NAc). Also shown
are nAChR subunits that are expressed within these brain regions that are involved in ethanol and
nicotine reward
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in the NAc. Within the NAc, large cholinergic neurons (Phelps et al. 1985) release
acetylcholine which can activate nAChRs on presynaptic dopaminergic terminals to
augment DA activity (Zhou et al. 2002). Previous studies have also observed a dense
level of cholinergic fibers between the border of the NAc core and shell (Meredith
et al. 1989). This area has been proposed as a potential site for nAChR-mediated DA
responses to ethanol within the NAc. This is based on work that has observed
increased DA levels within this region during ethanol self-administration (Howard
et al. 2009). Additionally, infusion of α4/β2 nAChR partial agonist varenicline into
the NAc core-shell border reduces voluntary ethanol consumption and increases DA
release along with other nAChR antagonists, in a manner that is cell activity
dependent (Feduccia et al. 2014). Nicotine can also have direct effects at DAergic
terminals within the NAc (Fu et al. 2000; Nisell et al. 1994). Interestingly, this effect
is thought to occur within the NAc shell (Kleijn et al. 2011), and appears to involve
activation of α7 subunit-containing nAChRs (Fu et al. 2000) which is in contrast to
ethanol.

2.3 Molecular, Neuronal, and Behavioral Effects of Acute Ethanol
and Nicotine Consumption

The effects on brain circuitry resulting from the combined use of alcohol and nicotine
have been less well studied than the effects mediated by consumption of each drug
alone. However, recent studies have uncovered potential mechanisms that may
contribute to the frequent co-use of alcohol and nicotine. Behavioral studies have
shown that acute nicotine decreases the consumption of ethanol in self-administration
and operant conditioning paradigms (Hauser et al. 2012; Le et al. 2000; Sharpe and
Samson 2002; Tritto et al. 2001). Based on these results, it has been suggested that
when nicotine is initially combined with ethanol, it acts as an additional reinforcer,
which might reduce the amount of ethanol required for reward satiety (Sharpe and
Samson 2002). This has been supported by work showing that systemic administra-
tion of ethanol and nicotine had an additive effect on the release of DA in the NAc
(Tizabi et al. 2007). Additionally, it was revealed that nicotine infusion into the VTA
combinedwith systemic ethanol potentiated accumbal DA release (Tizabi et al. 2002).
A more recent study suggests that the additive effect of ethanol and nicotine on
accumbal DA levels may involve nAChRs containing the β2 and β4 subunits (Tolu
et al. 2017).

It has also been suggested that ethanol and nicotine co-use reduces the aversive
side effects associated with consumption of each drug alone. This is supported by
evidence revealing that acute nicotine administration significantly reduces ethanol-
induced motor impairment (Dar et al. 1993, 1994) and cognitive deficits (Gould et al.
2001; Gould and Lommock 2003), suggesting that opposing effects could maintain
the anxiolytic properties of ethanol while reducing cognitive impairment (Perkins
1997). Recent studies have shown that neurons within the rostromedial tegmental
nucleus are activated in response to the aversive properties of both ethanol and
nicotine (Fowler and Kenny 2014; Glover et al. 2016; Tandon et al. 2017). Increased
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activity of GABAergic rostromedial tegmental nucleus neurons mediated by nico-
tine is thought to involve activation of α7 subunit-containing nAChRs on presynap-
tic glutamatergic inputs that project from the lateral habenula (Lecca et al. 2011).
Similarly, recent work suggests that neurons within the rostromedial tegmental
nucleus and lateral habenula are activated in response to the aversive properties of
ethanol (Glover et al. 2016). If ethanol can modulate the activity of nicotine at
nAChRs within this circuitry, this could provide a possible explanation for how
ethanol and nicotine co-use might augment the aversive side effects associated with
the consumption of each drug individually.

Following repeated use, additional processes are thought to lead to the development of
cross-tolerance (de Fiebre andCollins 1993), which increases the consumption of ethanol
and nicotine compared to if the drugs were consumed individually (Zacny 1990). A
possible explanation for this effect may involve changes in nicotine-induced nAChR
activation and desensitization in the presence of ethanol. For example, although inhibiting
α7 subunit-containing nAChRs does not affect ethanol consumption (Le et al. 2000) or
block ethanol-induced DA release in the NAc (Ericson et al. 2003; Larsson et al. 2002),
ethanol has been shown to inhibit α7 subunit-containing nAChRs in cultured cortical
neurons by potentially enhancing desensitization of the receptor (Aistrup et al. 1999;
Dopico and Lovinger 2009). Ethanol also reduces nicotine-induced glutamate release
from laterodorsal tegmental nucleus neurons in a PKA-dependent manner (McDaid et al.
2016). Additionally, nAChRs containing α4 and β2 subunits which are rapidly
desensitized by nicotine were found to have increased activity in the presence of ethanol
and desensitizing concentrations of nicotine (Aistrup et al. 1999).

2.4 Neuronal and Molecular Effects of Nicotine That Induce
Escalating Ethanol Consumption

Because the long-term effects of ethanol and nicotine co-use on the dopaminergic
system at a molecular level remain unknown, it is not clear whether combined
influences at nAChRs and other receptor subtypes may increase the susceptibility
and/or expedite the development of dependence compared to consumption of each
drug alone. It is possible that molecular consequences of ethanol and nicotine co-use
could increase the likelihood and accelerate adaptations associated with dependence.
For example, during the development of alcohol dependency, repeated use often causes
an escalating pattern of binge-like intake over time (Koob and Volkow 2010). A recent
study showed that ethanol and nicotine co-exposure in rats increased the rate at which
ethanol consumption escalated compared to ethanol exposure alone (Leao et al. 2015).
Moreover, this effect increased compulsive drinking, accelerated the transition to
dependence, and was blocked by the nAChR antagonist mecamylamine (Leao et al.
2015). Results from this study also revealed that nicotine-induced increases in ethanol
intake involved increased neuronal activation in the dorsomedial PFC, the NAc core,
and the central nucleus of the amygdala (CeA). In addition to interactions on the
mesolimbic system, the opposing roles of ethanol and nicotine on other molecular
targets including glutamate transporters (Flatscher-Bader et al. 2008) and choline
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acetyltransferase (Hernandez and Terry 2005; Jamal et al. 2009) could also contribute
to nicotine-induced escalation of ethanol intake. Additional evidence suggests that
metabolic changes may also be involved in subsequent increases in consumption
during ethanol and nicotine co-use (Collins et al. 1996; Schoedel and Tyndale 2003).

2.5 Genetic Variations Implicated in Ethanol and Nicotine
Consumption

Recent genomic studies have provided evidence to suggest that variation in genes may
predispose and/or contribute to the development of drug addiction in certain individuals.
For example, variations in genes that contribute to the reinforcing properties of ethanol
and nicotine, including genes encoding nAChR subunits and alcohol metabolizing
enzymes, are implicated in the development of alcohol and nicotine addiction [for
review, see (Tawa et al. 2016; Yang and Li 2016)]. Of note, polymorphisms in the
nAChR subunit genes that are clustered in the genome, CHRNA3-CHRNA5-CHRNB4
(encoding α3, α5, and β4 subunits), as well as CHRNB3-CHRNA6 (encoding β3 and
α6 subunits), have been associated with nicotine dependence susceptibility (Bierut et al.
2008; Thorgeirsson et al. 2008, 2010). Polymorphisms in CHRNA3-CHRNA5-
CHRNB4 have also been linked to age of initiation for both nicotine and alcohol
(Schlaepfer et al. 2008). In addition, unique polymorphisms in CHRNA3-CHRNA5
and rare variants of CHRNB3 and CHRNA3 have been associated with risk for alcohol
dependence (Haller et al. 2014;Wang et al. 2009). However, while the high incidence of
ethanol and nicotine co-use suggests that common genetic influences may exist, to date,
only two genome-wide association studies have investigated variations involved in
alcohol and nicotine co-dependence (Lind et al. 2010; Zuo et al. 2013). Findings from
these studies revealed associations between alcohol and nicotine co-addiction and single
nucleotide polymorphisms located near or within the microtubule affinity regulating
kinase 1 gene, the DEAD-box helicase 6 gene, the NALCN channel complex subunit
gene and between the importin 11 and 5-hydroxytryptamine receptor 1A genes. More-
over, a recent study looking at DNAmethylation, which is an epigenetic mechanism that
can alter gene expression without changing the DNA sequence, found significant
variations in genes of several neurotransmitter systems including serotonin, DA,
GABA, glutamate, and opioids (Xu et al. 2017). These results are likely to represent a
small percentage of the genetic influences contributing to the co-use of ethanol and
nicotine. Therefore, additional genomic investigations are likely to identify other genetic
variations involved in the co-occurrence of alcohol and nicotine use.

3 Neural Circuitry Involved in the Development of Alcohol
and Nicotine Dependence

Prolonged use of ethanol and nicotine elicits unique adaptations that are lacking
following short-term use. These changes are consolidated in various neurochemical
pathways and play a critical role in the development of dependence. In some cases,
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these adaptations are thought to occur as homeostatic responses that initially com-
pensate for changes initially occurring in the presence of high ethanol and nicotine
concentrations. The development of alcohol and/or nicotine dependence is initiated
when tolerance leads to more frequent drug intake and hedonic dysfunction (Koob
and Le Moal 1997). Over time, this can lead to an inability to self-limit intake despite
negative consequences and cause the emergence of negative emotional states during
withdrawal (Koob and Volkow 2010), that facilitate craving and relapse during
abstinence.

3.1 Adaptations in Brain Reward Circuitry

A number of recent studies have uncovered several potential mechanisms that are
involved in the development of nicotine dependence. For example, differences in the
rate of desensitization are thought to play a pivotal role in the sustained nicotine-induced
activation of DAergic neurons in the VTA. Previous studies have reported that, in the
VTA, rapid desensitization of α4/β2 nAChRs within local GABAergic neurons and
GABAergic projections combined with the activation of α7 containing nAChRs on
glutamatergic terminals which do not desensitize as quickly, leads to an overall increase
in excitatory drive onto DAergic neurons (Mansvelder et al. 2003; Mansvelder and
McGehee 2000). When this effect is coupled with post-synaptic activation of nAChRs
by nicotine, the subsequent depolarization of VTADAergic neurons produces long-term
potentiation (LTP) of glutamatergic transmission through NMDA and non-NMDA
receptors (Mansvelder and McGehee 2000). These effects can increase the burst firing
of DAergic VTA neurons and facilitate sustained DA release in the NAc (Mameli-
Engvall et al. 2006; Schilstrom et al. 2003). Additionally, cholinergic modulation of
GABAergic interneurons in theVTAhas also been shown to play an important role in the
burst activity of DAergic neurons (Tolu et al. 2013).

The chronic activation and desensitization of nAChRs induced by prolonged
nicotine use is thought to facilitate mechanisms that cause an upregulation of receptor
expression in the VTA and NAc. In particular, upregulation of α4/β2 nAChRs has
been demonstrated following chronic nicotine treatment (Flores et al. 1992). The
upregulation of nAChRs in response to chronic nicotine is thought to represent an
underlying molecular mechanism that, in part, facilitates tolerance by desensitizing
the mesolimbic system. One proposed mechanism includes upregulation of α4
subunit-containing nAChRs on GABAergic neurons in the VTA, which in chroni-
cally nicotine treated mice increases their basal activity (Nashmi et al. 2007), thereby
enhancing inhibition and reducing the activity of VTA DAergic neurons (Nashmi
et al. 2007). Neuronal adaptations such as these could affect the threshold required for
reward satiety and increase the propensity to consume alcohol. Conversely, high
ethanol concentrations may, to some extent, re-sensitize the rewarding properties of
nicotine by increasing the activity of GABAergic inputs to GABAergic neurons in the
VTA. This is supported by animal data showing that chronic nicotine administration
increases ethanol self-administration (Clark et al. 2001; Le et al. 2003; Potthoff et al.
1983; Smith et al. 1999), and the involvement of nAChRs in the locomotor stimulant
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response to ethanol (Blomqvist et al. 1992). Additional work has shown that chronic
nicotine can induce an upregulation of nAChRs that contain certain combinations of
nAChR receptor subunits. Examples include α3 and α4 subunit-containing nAChRs
that also contain a β2 subunit (Sallette et al. 2004; Wang et al. 1998), and α6/
β2 subunit-containing nAChRs that also contain a β3 subunit (Tumkosit et al.
2006). A number of mechanisms have been proposed to explain nicotine-induced
upregulation of nAChRs including a response to receptor desensitization, which
occurs during sustained nicotine exposure (Benowitz 2008). Additionally, it has
been shown that nicotine can act as a “chaperone” which expedites the transport of
nAChR subunits to the endoplasmic reticulum and facilitates the passage and inser-
tion of assembled nAChRs to the plasmamembrane (Henderson et al. 2014; Kuryatov
et al. 2005; Srinivasan et al. 2011).

3.2 Molecular and Synaptic Effects of Ethanol and Nicotine
on Brain Circuitry Involved in Reinforcement-
mediated Learning and Memory Underlying
the Development of Addiction

An important aspect of addiction is the development of associative memories that
pair drug use with specific environments or cues. The formation of drug-context
associations that relate drug-predictive environments or cues to drug reward can
have a strong influence on behavior by contributing to drug craving and relapse
during abstinence (Crombag et al. 2008). Recent studies implementing conditioned
place preference, where nicotine administration is paired with a specific environment
or context have shown that connections between the tegmental pedunculopontine
nucleus and the VTA are involved in these associations (Laviolette et al. 2002).
More recent studies have shown that nAChRs containing the α4, α6, and β2 subunits
(Ngolab et al. 2015; Sanjakdar et al. 2015; Walters et al. 2006) in addition to other
receptor subtypes including GABAB, cannabinoid, and α1-adrenoceptors also play a
role in contextual memories involving nicotine administration (Forget et al. 2009;
Hashemizadeh et al. 2014; Navarrete et al. 2013).

Ethanol can also induce place preference in rodents with previous studies showing
that projections from the amygdala to NAc are involved during memory acquisition
(Gremel and Cunningham 2008) and retrieval (Theberge et al. 2010). Studies have
also implicated the involvement of DAergic transmission during this process as local
infusion of DA receptor antagonists into the NAc reduces the formation of ethanol
conditioned place preference (Walker and Ettenberg 2007; Young et al. 2014).
Following consolidation of the paired ethanol-context memory, GABAergic activity
in the VTA, DAergic neuron innervation in the amygdala, glutamatergic inputs from
the amygdala to the NAc and inactivation of the bed nucleus of the stria terminalis
(BNST) contribute to and can affect memory expression (Bechtholt and Cunningham
2005; Gremel and Cunningham 2009, 2010; Pina et al. 2015).

It is conceivable that upregulation of nAChRs in addition to other adaptations resulting
from repeated ethanol and nicotine co-use may enhance craving when drug associated
environments or cues are encountered during abstinence. Animal studies have shown that
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when a conditioned stimulus (which acts as drug-predictive cue) is paired with ethanol,
presentation of the cue is sufficient to induce accumbal DA release (Lof et al. 2007).
Moreover, DA receptor antagonists decrease cue-induced responding for nicotine (Cohen
et al. 2005; Khaled et al. 2010; Liu et al. 2010). Studies have also highlighted the
involvement of nAChRs in cue-induced reinforcement for ethanol and nicotine. For
example, local VTA infusion of the non-selective nAChR antagonist mecamylamine
blocked the DA response following cue presentation and reduced conditioned-responding
for ethanol (Lof et al. 2007). For nicotine, the selective α7 antagonist, methyllycaconitine,
was found to decrease cue-induced reinstatement (Liu 2014). The involvement of
glutamatergic synaptic transmission is also thought to play an important role in the
development of paired nicotine-cue associationswith previous reports identifying increased
extracellular glutamate, changes in glutamate receptor expression, and increased excitatory
post-synaptic currents following reinstatement of nicotine-seeking behavior by conditioned
cues (Dravolina et al. 2007;Gipson et al. 2013;Liechti et al. 2007). The combined effects of
nicotine at nAChRs and glutamate receptors are thought to potentiate synaptic responses
that underlie learningprocesses andmemory formation. Interestingly, previous studies have
shown that ethanol and nicotine co-use can change the response to paired drug–cue
associations. For example, in mice, it has been shown that ethanol in excess of 0.5 mg/kg
in a combined ethanol and nicotine mixture can “overshadow” the salience of a cue
previously paired with nicotine (Ford et al. 2012). This effect is thought to involve an
ethanol-induced, antagonist-like effect at NMDA receptors (Ford et al. 2013). This is in
contrast to the effect of nicotine in the presence of low dose ethanol (<0.5 mg kg) which
can potentiate the discriminative effects of ethanol (Ford et al. 2012; Kouri et al. 2004).
Importantly, these studies highlight the actions of ethanol andnicotine at nAChRs andother
receptor targets that contribute to paired drug–cue associations and reinstate drug-seeking
following the presentation of environmental and contextual cues. Studies are beginning to
uncover the cellular and synaptic mechanisms underlying these behavioral responses,
which are thought to contribute to craving and facilitate relapse abstinence.

The activation of nAChRs by nicotine can induce synaptic plasticity and long-
lasting signalling effects in a number of brain regions involved in the formation and
consolidation of associative memories including the PFC, amygdala, and hippocam-
pus. For example, in the PFC, nicotine-induced activation of α7 and β2 subunit-
containing nAChRs increases DA levels (Livingstone et al. 2009; Marshall et al.
1997) andDA binding to D1 andD2 receptors can initiate long-term depression (LTD)
when pairedwith post-synaptic membrane depolarization (Law-Tho et al. 1995; Otani
et al. 1998). In addition, it has been shown that spike-timing dependent potentiation of
layer V pyramidal neurons in the PFC is reduced by nicotine via activation of nAChRs
which changes glutamate receptor compositions within glutamatergic terminals, and
activates low-threshold spiking GABAergic interneurons which combine to reduce
dendritic calcium signalling following action potential propagation (Couey et al.
2007). This effect may improve the signal to noise ratio during PFC mediated
information processing and enhance cognitive performance (Couey et al. 2007).

Chronic nicotine consumption also enhances long-term potentiation (LTP) fol-
lowing stimulation of cortical inputs to the lateral amygdala (Huang et al. 2008).
This effect was observed in mice that consumed nicotine in water for 7 days. The
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nicotine-induced LTP persisted for 72 h following the last drinking session was
found to involve α7 and β2 subunit-containing nAChRs and was NMDAR depen-
dent (Huang et al. 2008). This effect was partially attributed to reduced GABergic
activity mediated through nAChRs, however previous studies have also shown that
nicotine enhances glutamatergic transmission in the basolateral amygdala (BLA) and
potentiates excitatory responses from cortical inputs (Jiang and Role 2008).

In the hippocampus, high expression levels of α7 and α4/β2 subunit-containing
nAChRs have been found on GABAergic interneurons and pyramidal cells with
synaptic plasticity being reported via both excitatory and inhibitory mechanisms. In
theCA1 region, nicotine can disinhibit pyramidal neuron activity throughGABAergic
interneurons and reduce evoked GABA release through α7 and non-α7 nAChRs,
respectively (Fujii et al. 2000; Ji and Dani 2000; Yamazaki et al. 2005). Additionally,
activation of α7 nAChRs on presynaptic glutamatergic terminals by nicotine can
increase excitatory synaptic currents and glutamate release onto CA1 pyramidal
neurons (Gray et al. 1996; Radcliffe andDani 1998). The induction of LTP by nicotine
in the dentate gyrus was found to involve a mechanism that required activation of α7
nAChRs and metabotropic glutamate receptors, in addition to the utilization of
intracellular calcium stores through activated L-type calcium and ryanodine channels
(Welsby et al. 2006).Amechanismof nicotine-inducedLTP throughα4/β2 containing
nAChRs has also been demonstrated (Matsuyama and Matsumoto 2003) and is
thought to rely on DAergic signalling from the midbrain (Tang and Dani 2009).

The mechanisms of synaptic plasticity described for ethanol are for the most part
distinct from those of nicotine and have been proposed to result in an overall state that
involves increased glutamatergic and reduced GABAergic activity. It is hypothesized
that these mechanisms act as adaptive homeostatic responses to compensate for the
initial effects of acute ethanol consumption. Acute ethanol can modulate the activity
of several receptor subtypes including the enhancement of GABAA (Lobo and Harris
2008), glycine (McCool et al. 2003), and 5HT3 (Lovinger and White 1991) receptors
and inhibition of NMDA (Kuner et al. 1993; Lovinger et al. 1989; Masood et al.
1994), AMPA (Lovinger 1993; Moykkynen et al. 2003) and kainate receptors
(Valenzuela et al. 1998). Ethanol can also indirectly inhibit LTP and LTD in certain
brain regions including the hippocampus (Zorumski et al. 2014) and the dorsal
striatum (Clarke and Adermark 2010; Yin et al. 2007). Following repeated and/or
chronic exposure to ethanol, additional responses can induce molecular and neuro-
chemical changes that can have long-lasting effects on synaptic activity. For example,
in VTA neurons of rats given intermittent access to ethanol for 5–7 weeks, an increase
in AMPA-mediated post-synaptic currents and basal glutamate release was observed
(Stuber et al. 2008). Chronic ethanol administration can also facilitate induction of
LTP via NMDA-mediated post-synaptic currents on VTA DAergic neurons by
enhancing 1,4,5-trisphosphate-mediated intracellular calcium release (Bernier et al.
2011).

The amygdala is another prominent site of action for ethanol-induced plasticity.
Chronic ethanol administration causes an increase in AMPA-mediated post-synaptic
currents in the BLA (Läck et al. 2007) and sensitizes NMDA receptors to ethanol in
the CeA (Roberto et al. 2004b). In ethanol-dependent rats, increased GABAergic
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activity is observed in CeA neurons in response to ethanol (Roberto et al. 2004a) and
activation of GABAA receptors in the amygdala reduces ethanol-self administration
(Roberts et al. 1996). Although further work is required to uncover mechanisms
underlying changes in glutamatergic and GABAergic receptor function following
long-term ethanol exposure, studies suggest that these changes could, in part, result
from altered subunit expression and receptor composition (Floyd et al. 2003; Kash
et al. 2009). This is supported by recent studies that have identified differences in
expression of GABAA and glutamate receptor subunits in post-mortem analysis of
human brains from control and alcohol-dependent individuals (Bhandage et al.
2014; Jin et al. 2011, 2014a, b).

These results suggest that repeated ethanol and nicotine consumption can have
significant effects on brain circuitry implicated in the development of addiction. The
long-lasting molecular and synaptic effects of combined ethanol and nicotine co-use on
circuits involved in learning and memory, drug-reinforcement, and drug-reinstatement
appear to have a strong influence on drug-seeking behavior and cause a persistent
and increased susceptibility to relapse during abstinence. Although the effects of com-
bined ethanol and nicotine co-use on mechanisms of synaptic plasticity remain largely
unknown, future research may help to determine if mechanisms of plasticity have an
additive affect that contribute to the high incidence of ethanol and nicotine co-use.
Studiesmay also help to identify novelmechanisms that lead tomore frequent consump-
tion over time and establish whether ethanol and nicotine co-use accelerates the develop-
ment of behavioral symptoms associated with dependence.

4 The Development of Ethanol and Nicotine Withdrawal

A key component of the addiction cycle is the development of withdrawal symptoms
during abstinence. During withdrawal, severe negative emotions including dysphoria,
anxiety, and stress increase craving and motivation for drug-taking and can lead to an
ability to self-limit intake despite negative consequences (Koob and Volkow 2010).
Withdrawal states associated with drug-dependence develop following extended
periods of drug use and are thought to result from the consolidation of adaptations
in brain circuits that control behavioral responses to negative emotional states. The
effects of alcohol and nicotine in brain circuitry implicated in withdrawal are shown in
Fig. 2.

4.1 Interactions of Ethanol and Nicotine on Brain Circuitry
Involved in Withdrawal

The development of nicotine withdrawal is thought to involve an upregulation of
nAChRs, which occurs following long-term exposure (Paolini and De Biasi 2011;
Turner et al. 2011). Studies also suggest that chronic nicotine use can lead to a
reduction in the activity of the mesolimbic pathway during withdrawal. For example,
chronic nicotine infusion can cause a reduction in DA release from tonic firing of
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DAergic VTA neurons (Grieder et al. 2012). This effect is also seen following
infusion of nAChR antagonists into the VTA of rats chronically treated with nicotine
(Carboni et al. 2000; Hildebrand et al. 1998; Rada et al. 2001). This suggests that
following chronic nicotine exposure, sustained activation of nAChRs may play a
role in inhibiting DAergic VTA neurons and reducing basal DA levels in the NAc.
Furthermore, this effect appears to be enhanced following acute withdrawal from
nicotine and is reversed following re-exposure (Zhang et al. 2012). Although studies
show that as plasma levels of nicotine increase in response to chronic exposure, the
DA effect is diminished (Balfour 2009), the initial increase in extracellular DA
elicited by nicotine may provide a modest hedonic effect that may help to prolong
abstinence from alcohol in alcoholic smokers.

During prolonged abstinence from nicotine, evidence suggests that a persistent
upregulation and reduced desensitization of nAChRsmay lead to a hyperactive choliner-
gic system, which facilitates affective and somatic symptoms of nicotine withdrawal. In
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Fig. 2 The effects of ethanol and nicotine in brain circuitry involved in withdrawal. Alcohol (blue)
and nicotine (red) target distinct and overlapping brain circuits (orange) that are involved in the
development of withdrawal. Studies have shown that physical and anxiety-like symptoms of nicotine
withdrawal involve glutamatergic and cholinergic input (orange) from the medial habenula (MHb,
orange) to the interpeduncular nucleus (IPN, orange). Also implicated in nicotine withdrawal-
induced anxiety is corticotrophin releasing factor (CRF, red) signalling within the interpeduncular
intermediate subregion of the IPN, which may result from input of neighboring CRF-containing
neurons in the ventral tegmental area (VTA, red). Another mechanism that may promote withdrawal-
like symptoms is chronic nicotine-induced increases in the basal activity of VTA GABAergic
neurons, greater inhibition of DAergic VTA neurons and reduced basal DA levels in the nucleus
accumbens (NAc, red). During ethanol withdrawal, increased CRF levels in the central nucleus of the
amygdala (CeA, blue) and the bed nucleus of the stria terminalis (BNST, blue) have been observed.
In ethanol-dependent rats, increased glutamate (GLUT, blue) in the basolateral amygdala (BLA,
blue) and the CeA is also found during withdrawal. Recently, activation of nAChRs within the MHb
(orange) and IPN (orange) was shown to promote physical symptoms of alcohol withdrawal. These
results offer the possibility that the combined effects of ethanol and nicotine within these pathways
may causemore severe and prolong symptoms of withdrawal compared to individual consumption of
each drug
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studies implementing pharmacological interventions and nAChR receptor subunit
knock-out mice, results have identified a role for α2 (Lotfipour et al. 2013), α3 (Jackson
et al. 2013), α5 (Salas et al. 2009), α6 (Jackson et al. 2009), β2 (Jackson et al. 2008), and
β4 (Salas et al. 2004) nAChR receptor subunits in the expression of nicotine withdrawal
symptoms. These receptor subunits exhibit high expression levels in the VTA [α5, (Salas
et al. 2003a); α7, (Zhao-Shea et al. 2011)] and the medial habenula (MHb) to
interpeduncular nucleus (IPN) [α2, (Lotfipour et al. 2013); α3, (Grady et al. 2009; Shih
PY et al. 2014); α5, (Salas et al. 2003a); β4, (Salas et al. 2003b; Shih PY et al. 2014)]
pathway. The MhB-IPN circuit contains efferent outputs from the MHb that release
glutamate, acetylcholine, and substance P in the IPN (Zhao-Shea et al. 2013). This circuit
plays a critical role in nicotine withdrawal. Pharmacological studies have demonstrated
that injection of the nAChR antagonist mecamylamine into the Mhb or IPN precipitates
affective and somatic symptoms of nicotine withdrawal (Salas et al. 2009; Zhao-Shea
et al. 2013). The induction of withdrawal symptoms was observed following light-
stimulated activation of GABAergic neurons in the IPN (Zhao-Shea et al. 2013) of
mice expressing channelrhodopsin inGAD2-expressing neurons. Furthermore, increased
β4 subunit expression was found in somatostatin expressing IPN neurons of nicotine-
dependent mice and blockade of β4 containing nAChRs with SR16584 induced
withdrawal-like symptoms in nicotine-naïve animals (Zhao-Shea et al. 2013).
Glutamatergic and cholinergic input from the Mhb to the IPN was also found to
contribute to symptoms of nicotine withdrawal (Zhao-Shea et al. 2013; Pang et al. 2016).

Recent evidence indicates that the MHb-IPN circuit is also involved in ethanol
withdrawal. Following a chronic ethanol treatment, blockade of nAChRs in the MHb
or IPN with mecamylamine induced withdrawal-like symptoms in mice (Perez et al.
2015). This study also found that the length and severity of withdrawal was signifi-
cantly increased following ethanol and nicotine co-use compared to each drug
individually (Perez et al. 2015). The dual effects of ethanol and nicotine on the
MHb-IPN pathway make it an important candidate for future studies aimed at
investigating whether molecular and neuronal adaptations in this circuit contribute
to the high incidence of ethanol and nicotine co-use and increase susceptibility for
relapse. The identification of neurochemical changes within this pathway such as the
absence of neuropeptide Y in the MHb of alcohol-preferring rats (Hwang et al. 2004)
could be targeted in order to develop improved pharmacotherapies for the manage-
ment of alcohol and nicotine co-use.

Another possible interaction between ethanol and nicotine during withdrawal
may involve dual effects on corticotrophin releasing factor (CRF) signalling in
extrahypothalamic brain areas including the extended amygdala. During ethanol
withdrawal, increased levels of CRF are observed in the CeA and BNST (Merlo
Pich et al. 1995; Olive et al. 2002). Furthermore, CRF1 receptor antagonism in
ethanol-dependent and ethanol-withdrawn animals produces a robust decrease in
consumption (Funk et al. 2007; Roberto et al. 2010) and reduces withdrawal-induced
anxiety (Rassnick et al. 1993). The effects of CRF on ethanol consumption appear to
involve an interaction with GABAergic transmission. Specifically, ethanol-induced
enhancement of GABAergic activity is mediated via CRF1 receptors (Nie et al.
2004) and CRF1 receptor antagonism in the CeA reverses increases in GABA release
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induced by ethanol dependence (Roberto et al. 2010). Additionally, the activity of a
subpopulation of CRF1 receptor containing neurons within CeA is enhanced by
ethanol and ethanol-mediated increases in CeA projections to the BNST were also
observed (Herman et al. 2013).

CRF signalling within the CeA has also been implicated in nicotine withdrawal.
The induction of withdrawal with mecamylamine in chronically-nicotine-treated
mice causes an increase in CRF levels within the CeA (George et al. 2007). Blockade
of CRF1 receptors within the CeA also reduces mecamylamine-precipitated and
abstinence-induced anxiety (Cohen et al. 2015; George et al. 2007). Recent studies
have also identified that CRF activity in the IPN contributes to nicotine withdrawal-
induced anxiety (Zhao-Shea et al. 2015). This effect was mediated via CRF1
receptors within the interpeduncular intermediate subregion of the IPN (Zhao-Shea
et al. 2015) and may reply upon neighboring CRF-containing neurons in the VTA
which project to the IPN (Grieder et al. 2014). Studies also suggest that interactions
between the CRF and cholinergic systems could affect processes underlying learning
and memory (Warnock et al. 2006). These results suggest that interactions between
ethanol and nicotine on CRF signalling could potentially have effects that prolong or
increase the severity of stress- and anxiety-like responses during withdrawal.
Because CRF signalling in other brain areas including the dorsal raphe nucleus
and mPFC also play a role in drug-reinforcement and drug-seeking behaviors
(Zorrilla et al. 2014), more detailed studies aimed at uncovering the long-term effects
of ethanol and nicotine co-use on the CRF system could help identify novel neuronal
mechanisms involved in the development of alcohol and nicotine co-dependence.

5 Summary and Conclusions

Despite recent advancements in our understanding of brain circuitry and the molecular
and neuronal mechanisms contributing to the development of alcohol and nicotine
addiction, there remains a critical need for future research aimed at understanding the
long-term effects of alcohol and nicotine co-use, in order to identify improved treatment
strategies for the management of alcohol and nicotine co-dependence. A number of
studies have uncovered important interactions between alcohol and nicotine that appear
to contribute to the high incidence of their co-use. Furthermore, studies suggest that
nicotine can facilitate an escalation in alcohol intake and produce additional responses
compared to alcohol consumption alone, that reinforce drug-seeking behavior and facili-
tate craving and relapse during abstinence. However, due to lack of long-term studies, the
molecular and neuronal adaptations caused by prolonged alcohol and nicotine co-use
remain to be elucidated. In addition, the implication that extended alcohol and nicotine
consumption could prolong symptoms of withdrawal and increase susceptibility to
relapse compared to consumption of each drug individually also requires further investi-
gation and may help to identify improved pharmacotherapeutics for the management of
use disorders associated with alcohol and nicotine co-use.
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Abstract
Alcohol use disorders are a leading public health concern, engendering enormous
costs in terms of both economic loss and human suffering. These disorders are
characterized by compulsive and excessive alcohol use, as well as negative affect
and alcohol craving during abstinence. Extensive research has implicated the
dopamine system in both the acute pharmacological effects of alcohol and the
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symptomology of alcohol use disorders that develop after extended alcohol use.
Preclinical research has shed light on many mechanisms by which chronic
alcohol exposure dysregulates the dopamine system. However, many of the
findings are inconsistent across experimental parameters such as alcohol exposure
length, route of administration, and model organism. We propose that the dopa-
minergic alterations driving the core symptomology of alcohol use disorders are
likely to be relatively stable across experimental settings. Recent work has been
aimed at using multiple model organisms (mouse, rat, monkey) across various
alcohol exposure procedures to search for commonalities. Here, we review recent
advances in our understanding of the effects of chronic alcohol use on the
dopamine system by highlighting findings that are consistent across experimental
setting and species.

Keywords
Alcohol · Autoreceptors · Cross-species · Dopamine · Kappa Opioid receptors ·
Monkey · Mouse · Nonhuman primate · Rat · Uptake

1 Introduction

1.1 Alcohol Use Disorder

Alcohol use disorder (AUD) is a medical diagnosis describing a cluster of symptoms
characterized by compulsive and excessive alcohol use despite negative health and
social outcomes of drinking (Dziegielewski 2010; Hagman and Cohn 2011; O’Brien
2011). AUD is a leading public health concern, affecting roughly 14% of the adult
population in the United States (Grant et al. 2015). The prognosis for AUD is often
poor, and it is estimated that alcohol use leads to around 100,000 deaths per year in
the United States alone, and 4% of deaths worldwide, making it the third leading
preventable cause of death (Mokdad et al. 2004; Rehm et al. 2009). Beyond mental
and physical deterioration, alcoholism and the larger spectrum of AUD also nega-
tively affect civil and social responsibilities and interpersonal relationships. AUDs
are associated with higher incidences of stress, anxiety, depression, and other mood
disorders (Hasin et al. 2007), which may contribute to the maintenance of alcohol
use as an anxiolytic (Blaine and Sinha 2017). In addition, AUD is a chronically
relapsing disease (Dawson et al. 2007; Pickens et al. 1985). Given the severe
negative outcomes of this prevalent brain disorder, the alcohol research field has
focused its efforts on understanding the neurobiology of AUD in an effort to develop
effective therapeutic strategies. Here we will review recent advances in understand-
ing the mechanisms by which alcohol exposure affects dopamine signaling to
produce aberrant behaviors seen in AUD.
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1.2 The Role of Dopamine in Alcohol Use Disorder
Symptomology

Many drugs of abuse exert their subjective effects (euphoria, or “high”), in part, via
actions on the mesolimbic dopamine system (Di Chiara and Imperato 1988; Siciliano
et al. 2015b; Volkow et al. 1997). Alcohol, like many abused substances, increases
extracellular dopamine concentrations in the ventral striatum, an area known to be
involved in reward and motivation (Humphries and Prescott 2010; Imperato and Di
Chiara 1986). Acutely, alcohol increases dopamine signaling via directly targeting
ion channels expressed on dopamine neurons, which alter the currents that shape
cellular communication, and result in increased firing of dopamine neurons in the
ventral tegmental area (VTA), leading to increased dopamine release downstream in
the ventral striatum (Brodie 2002; Brodie et al. 1990, 1999; Nimitvilai et al. 2016).
Alcohol enhances hyperpolarization-activated depolarizing cation currents (Ih),
which increase intrinsic activity in dopamine neurons (Okamoto et al. 2006). In
addition, alcohol modulates various potassium channel (K+)-mediated aspects of
hyperpolarization (Appel et al. 2003). For example, alcohol has been shown to
modulate large-conductance potassium (BK) channels (Chu et al. 1998), G-protein-
coupled inwardly rectifying K+ channels (GIRK) (Aryal et al. 2009), and K+-channel
mediated M currents (Koyama et al. 2007). Additionally, alcohol has been shown to
alter L-type Ca2+ channels (Hendricson et al. 2003), which may alter dopamine cell
firing. While it is important to note that alcohol acutely modulates dopaminergic
activity, this review will focus on the adaptions to the dopamine system induced by
chronic alcohol use. Further, this review will focus on receptor and circuit level
analyses; for more in-depth discussions of the molecular mechanisms underlying
these alterations we point the reader towards several other helpful reviews
(Morikawa and Morrisett 2010; Abrahao et al. 2017; Morisot and Ron 2017; Ron
and Barak 2016).

Changes in dopamine signaling are particularly important in the context of
alcohol abuse, as the dopamine system plays a key role in mediating adaptive
decision-making. Dopamine neurons in the VTA are required for adaptive encoding
of reward-predictive cues, which allows organisms to successfully navigate complex
environments and acquire rewards, such as food (Nicola 2010; Phillips et al. 2003;
Schultz et al. 1997). Dynamic activity of dopamine neurons, and dopamine release
downstream in areas such as the striatum, are critical to both initial learning of
reinforcement contingencies and updating the value of these contingencies as they
shift over time (Cools et al. 2009; Schultz 2013). Continued alcohol use can, in some
individuals, induce a maladaptive shift in contingency valuation such that the
motivational saliency of alcohol is increased, leading to behaviors aimed at acquiring
alcohol at the expense of more adaptive rewards. Because alcoholics show a
decreased ability to make adaptive decisions – and instead continue maladaptive
behavioral strategies such as alcohol seeking – the dopamine system has been
implicated as a probable locus of these behavioral aberrations.

In humans, it is known that chronic alcohol use dysregulates the dopamine
system. For example, alcohol abusers show greatly reduced dopamine signaling in
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the ventral striatum (Diana et al. 1993; Martinez et al. 2005; Volkow et al. 1996,
2007). This reduced dopamine signaling is often referred to as a “hypodopaminergic
state” and is also observed in other addictive disorders such as psychostimulant
addiction (Melis et al. 2005). It is hypothesized that this low-dopamine state results
in deficits in reward processing, which contributes to anhedonia during withdrawal
from alcohol (Danjo et al. 2014; Schulteis et al. 1995). Because anhedonia, defined
as a reduced ability to experience pleasure or reward, is thought to occur primarily in
relation to non-alcohol stimuli, this may bias choices towards previously reinforced
alcohol seeking behaviors over alternative options (Pierce et al. 1990; Rebec et al.
1997; Twining et al. 2015), resulting in continued and persistent alcohol use.
Anhedonia, maladaptive decision-making, and alcohol seeking are sine qua non
symptoms of AUD. The precise mechanisms by which alcohol disrupts dopamine
system function are difficult to study in humans, and thus have been a major focus of
preclinical alcohol abuse research.

1.3 Preclinical Models of Alcohol Abuse

A great deal of research into the neurobiological basis of AUD has been conducted in
animal models, where hypotheses can be readily tested via direct measurements and
manipulations of the receptors and circuits involved. Preclinical studies have over-
whelmingly leveraged rodent (rat and mouse) and nonhuman primates as model
organisms. Rodent and nonhuman primate models each offer specific advantages in
exploring alcohol’s effects on the brain. For example, rodents can be procured and
bred quickly, and are thus more practical for studies which require brain tissue to be
harvested (e.g., for protein analysis, or ex vivo slice preparations) or where high-risk,
invasive methods are needed (e.g., intracranial implants). Further, there are a wide
array of tools that have been developed for use in rodents, including genetic
modifications, in vivo microscopy, neurotransmitter sensors, and tools for
manipulating neural circuit activity (Boyden et al. 2005; Flusberg et al. 2008; Koller
and Smithies 1992; Wightman 1988; Wightman et al. 1976). Many of these
techniques have been adapted for, and implemented in, nonhuman primates; how-
ever, they are generally less developed and often pose greater challenges (Ariansen
et al. 2012; Eldridge et al. 2016; Stauffer et al. 2016).

Nonhuman primate models offer many advantages over rodents, although inva-
sive approaches are often not feasible. First, they are genetically much closer to
humans, as macaque monkeys share 95% gene homology with humans while mice
share only 75% homology (Church et al. 2009). This genetic similarity manifests
itself in, among other things, a high degree of correspondence in neuroanatomical
structures between monkeys and humans (Seress 2007). High levels of homology
increase the likelihood that discoveries will generalize from nonhuman primates to
humans, compared to lower organisms. The advantages of nonhuman primates’
similarity to humans is even greater in studies of alcohol drinking, as the patterns of
alcohol consumption in nonhuman primates are similar to humans (Grant et al.
2008; Majchrowicz and Mendelson 1970). While rodents metabolize alcohol at a
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much faster rate than humans, nonhuman primates have similar alcohol metabolism
as humans. Further, AUD is a chronic disorder which can take years to develop, and
lasts a lifetime (Dawson et al. 2008). Not only is AUD long lasting, but there are also
interactions between drinking and age/developmental periods. For example, age at
first drink is strongly predictive of problematic drinking behaviors later in life
(Dawson et al. 2008). The large disparity between the human and rodent life span
can make examining the effects of alcohol exposure over long periods of time or
during specific developmental periods challenging (Silberberg and Silberberg
1954). Macaques, which have been used most frequently for alcohol studies in
the nonhuman primate literature, have a lifespan of 25–35 years in captivity, and
thus are often more appropriate for longitudinal experimental questions (Tigges
et al. 1988).

1.4 Importance of Consistent Cross-Species Results

Rodent and nonhuman primate models have provided valuable insight into the
neurobiological and pharmacological basis of AUD; here, we posit that the most
important insights from these literatures are the consistencies that can be observed
across species. Searching for these consistencies is particularly important because
the effects of chronic alcohol exposure in preclinical models is extremely sensitive to
experimental parameters such as alcohol concentration, exposure length, route of
administration, withdrawal length, strain of rodent or species of nonhuman primate,
and many other variables that can have large impacts on the observed effects
(Bonthius and West 1990; Budygin et al. 2003; Hwa et al. 2011; Kashem et al.
2012; Rimondini et al. 2003; Siciliano et al. 2016b, 2017). However, the core
behavioral symptomology of AUD (excessive alcohol consumption, craving/
seeking, and withdrawal behaviors) is relatively consistent across experimental
parameters (Green and Grahame 2008; Le et al. 1998; Macey et al. 1996; Venniro
et al. 2016), suggesting that neurochemical adaptations that are only observed under
very specific experimental settings may not be driving the primary symptomology of
AUD. Instead, it is likely that some of the alterations that are inconsistent across
experimental setting may be “epiphenomenon” of the specific paradigm or model
organism used. The large number of methodological differences across laboratories
makes determining the source of any inconsistent effects difficult.

Comparing across species, strain, sex, and experimental parameters to search for
consistent adaptations induced by chronic alcohol exposure is a powerful approach
for filtering “noise” out of large sets of studies. Here, we will review commonalities
and disparities in studies examining chronic alcohol-induced alterations to the
dopamine system across multiple model organisms.
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1.5 Alcohol Exposure Protocols Across Species

Each species utilized as a preclinical model of AUD described in this chapter
provides unique assets to address and examine specific facets of alcoholism. The
three model organisms discussed here (mouse, rat, and monkey) are distinct in terms
of alcohol metabolism and intake pattern; thus, species-specific alcohol exposure
protocols are often used. These protocols are described in the sections below and
depicted in Fig. 1.

1.5.1 Chronic Intermittent Alcohol Exposure in Mice and Rats
Rodents (both mice and rats) will voluntarily consume alcohol under certain
conditions; however, due to relatively low intakes and fast metabolism of alcohol,
environmental or genetic manipulations are often required to produce high blood
alcohol levels in these animals (Li et al. 1979; Penn et al. 1978; Rhodes et al. 2005,
2007). For example, selectively breeding animals with high alcohol intake has
resulted in alcohol preferring strains of rats and mice (Penn et al. 1978). Environ-
mental manipulations often include removing access to water or allowing alcohol
access at specific times during the light cycle. Another approach to exposing animals
to alcohol is a noncontingent method of alcohol administration in which rodents
inhale tightly controlled levels of vaporized alcohol (for review see Gilpin et al.
2008). Because the levels are experimenter controlled (i.e., not dependent on the
actions of the animal) this allows for titration of blood alcohol levels around a
desired amount. Vapor alcohol exposure is often used to rapidly induced alcohol
dependence by inducing very high blood alcohol levels (�200 mg/dL) for extended
periods of time (Anderson et al. 2016a; Diaz et al. 2011; Rose et al. 2016). This
blood alcohol level is approximately three times the legal limit for motor vehicle
operation in the United States; it is important to achieve such high blood alcohol
concentrations intermittently in order to drive dependence in rodents (Griffin et al.
2009; Rose et al. 2016).

The primary utility of the vapor exposure model is that dependence-like
symptoms can be induced in short periods of time, relative to models that require
the animal to voluntarily drink. The exposure protocol used most often involves
repeated exposures to vaporized alcohol separated by withdrawal periods. Typically,
this is referred to as the chronic intermittent alcohol (CIE) vapor exposure model
(Griffin et al. 2009). While the exact procedure varies between laboratories, the CIE
exposure procedure often consists of exposure to vaporized alcohol for a large
portion of the day (12–16 h) followed by withdrawal period (8–12 h) where room
air is pumped into the chamber. This procedure is repeated daily (usually 4 consecu-
tive days) before a longer withdrawal period (often 3 days) is imposed, for a total
time of 1 week (referred to as one “cycle”). The CIE procedure in mice has typically
been utilized to deliver one, two, three, four, or five cycles of alcohol vapor
exposure, depending on the requirements of the study (Fig. 1a). Because mice
metabolize alcohol at a high rate, to achieve desired blood alcohol levels it is
necessary to inhibit the metabolic pathway of alcohol, and expose the animals to a
“loading” dose of alcohol. This is typically achieved via systemic injection of the
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alcohol dehydrogenase inhibitor, pyrazole, mixed with alcohol. In this model, it is
important to include a control group that is housed in a similar chamber and given
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Fig. 1 Example paradigms of chronic ethanol administration across species. Schematic outline of
ethanol administration in (a) mice, (b) rats, (c) male cynomolgus monkeys, and (d) female rhesus
monkeys (note that many parameters vary slightly across lab and study depending on the specific
hypotheses being addressed). (a, b) In order to precisely regulate blood ethanol levels and achieve
high levels of ethanol intake, vaporized ethanol administration paradigms are utilized for noncon-
tingent chronic exposure in rodents. (a) Mice undergo multiple cycles, ranging from 1 to 5, of
intermittent ethanol vapor exposure (inset: daily ethanol exposure during one cycle) separated by
3 days of abstinence. In many of the experiments discussed in this review, behavioral and
physiological measurements were taken during acute withdrawal, immediately following removal
from the vapor chamber, or during abstinence – typically 72 h after last exposure. (b) Rats undergo a
similar vapor exposure paradigm; however, daily ethanol exposure is continuous and not divided
into cycles by days of abstinence. (c, d) The pattern of ethanol consumption by nonhuman primates
is similar to that of humans and volitional intake paradigms offer greater insight to consummatory
behaviors and subsequent physiological alterations. In many of the experiments discussed in this
review, following a 5-month schedule-induced polydipsia induction period, nonhuman primates
were given free access to ethanol and water for 22 h/day for either 6 or 12 months, and neurophysi-
ological experiments examining the dopamine system are performed during acute withdrawal
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injections of pyrazole, but not exposed to alcohol, to control for the effects of
pyrazole as well as housing condition. Even though CIE exposure is a noncontingent
exposure method (i.e., the animal has no choice but to be exposed to alcohol), it has
been shown to drive augmented compulsive/anxiety-like behavior and an increase in
alcohol drinking when animals are later given volitional access to alcohol, which
suggests recapitulation of at least some aspects of alcohol dependence in humans
(Anderson et al. 2016a, b; Rose et al. 2016).

Most protocols for exposing rats to alcohol vapor are very similar to mice. Rats
are typically exposed to alcohol vapor for 12 h followed by 12 h of room air. This
procedure is often repeated daily for 10–12 consecutive days (Gilpin et al. 2008)
(Fig. 1b). Because rats do not metabolize alcohol as fast as mice, administration of
pyrazole and a loading dose of alcohol is not required.

1.5.2 Chronic Alcohol Self-administration in Nonhuman Primates
Similar to rodents, there are many different procedures used to study nonhuman
alcohol exposure. The most commonly used nonhuman primate model of alcohol
consumption, and what we will focus on in this review, involves training animals to
volitionally consume alcohol. Volitional consumption, as opposed to noncontingent
exposure such as a vapor chamber or alcohol injection, is an important distinction.
Indeed, humans consume alcohol volitionally, giving this approach strong face
validity. Further, pattern of drug exposure and rate of onset/clearance are important
factors in the pharmacological action of drugs, and can often affect the neurochemi-
cal adaptations induced by drug exposure (Allain et al. 2015; Calipari et al. 2013).
Thus, allowing the animal to consume the drug in a self-imposed pattern is more
likely to result in effects similar to those in humans.

The method of inducing alcohol self-administration often varies across laboratory
and/or study. Generally, animals are trained to pull a lever or activate a finger-poke
to receive access to a sipper containing alcohol (Grant et al. 2008; Vivian et al.
2001). In some cases, schedule-induced polydipsia is used to augment alcohol
consumption during the initial exposure and training phase (Grant et al. 2008; Vivian
et al. 2001). Schedule-induced polydipsia involves simply delivering small amounts
of food at spaced intervals. Because most mammals tend to increase fluid consump-
tion during times of feeding, the increase in number of feeding bouts produces a
robust increase in fluid consumption (Falk 1966). Once trained to consume alcohol,
animals are then allowed to drink, either freely with continuous access to alcohol in
the home cage, or in daily sessions where alcohol becomes available. In this review
we will primarily discuss studies in which nonhuman primates were given 22 h/day
access to alcohol in the home cage, for a period of 6–18 months (Fig. 1c, d).
Importantly, this model produces robust individual differences in alcohol intake
between animals and between days within each animal. This allows for determining
the effects of alcohol across a range of intake, as well as the factors that may predict
individual differences in alcohol consumption (Cuzon Carlson et al. 2011; Grant and
Bennett 2003; Grant et al. 2008; Nimitvilai et al. 2017; Pleil et al. 2015b; Vivian
et al. 2001; Baker et al. 2014, 2017).
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1.6 Tonic and Phasic Dopamine Signaling

Dopamine neurons originating from the VTA have two distinct types of firing
patterns, tonic or phasic firing. Tonic firing is characterized by the periodic occur-
rence of single action potentials (2–5 Hz), while phasic firing is characterized by
bursts of action potentials (10–25 Hz) occurring in close temporal proximity (Grace
and Bunney 1983, 1984). These two types of signaling are critical in regulating
reward processing and internal state, and can be controlled by both changes in VTA
firing and local modulatory mechanisms directly at dopamine terminals in the
nucleus accumbens (NAc; a subregion of the ventral striatum) (Exley and Cragg
2008). Below we will discuss the different methods for measuring tonic and phasic
dopamine signaling.

Tonic dopamine levels, often referred to as extracellular levels, are comparatively
low (usually 5–20 nM) and can be measured with relatively low temporal resolution
over several minutes using techniques such as in vivo microdialysis. To conduct
microdialysis, a concentric perforated probe is implanted into the area of interest.
Artificial cerebrospinal fluid is perfused into the region of interest; neurotransmitters,
such as dopamine, diffuse down their concentration gradient across this perforated
membrane. This fluid is then collected over 5–30 min and analyzed using detection
methods such as high performance liquid chromatography or mass spectrometry,
which allow for quantification of analytes (e.g., neurotransmitters) within the
sample. Changes in tonic dopamine levels have been shown to predictably alter
thresholds for intracranial self-stimulation, which is used to monitor the function of
brain reward systems and measure the motivational state of the animal, suggesting
that tonic dopamine levels are involved in reward sensitivity and affective states
(Carlezon and Chartoff 2007; Hernandez et al. 2012; Kokkinidis and McCarter
1990; Negus and Miller 2014; see Dobrossy et al. 2015 for review).

While microdialysis can give information about relative levels of synaptic
neurotransmitters, it is important to understand how receptors and local regulation
of dopamine neurons are influenced by alcohol exposure. Ex vivo fast-scan cyclic
voltammetry (FSCV), typically performed in coronal brain slices, allows for mea-
suring experimenter-stimulated dopamine release when the dopamine terminal is
isolated from its endogenous inputs (due to severing these connections in the slicing
process). FSCV detects electroactive analytes (including dopamine) by applying
voltage to a microelectrode, which drives oxidation of dopamine to dopamine-o-
quinone; the oxidation of dopamine results in the loss of electrons which are detected
at the electrode as a change in current which is proportional to the concentration
of dopamine molecules near the surface of the electrode. Thus, based on the
electroactive properties of dopamine, FSCV is able to detect dopamine levels with
high specificity, even within a heterogeneous environment of transmitter signaling.
This detection can occur quickly (typically sampled at 10 Hz) allowing for informa-
tion to be obtained about real-time dopamine release and clearance kinetics. With
this technique, receptors expressed on dopamine terminals can be pharmacological
targeted and their effects on the kinetics of dopamine signaling can be assessed (for
review of the utility of ex vivo voltammetry see Ferris et al. 2013).
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Phasic firing refers to bursts of activity that result in high concentrations
(estimated to be around 100 μM) of dopamine within the synapse (Grace et al.
2007). These phasic dopamine signals are particularly important in the case
of addiction where they act to encode information not just about rewards, but
also about cues that predict their availability. For example, reward conditioning
experiments have shown that phasic dopamine responses occur immediately follow-
ing presentation of unexpected rewards; however, after multiple pairings of cue and
reward, phasic dopamine responses shift to the cue predicting the reward instead of
the reward itself (Phillips et al. 2003; Schultz 1998). Thus, understanding how this
type of signaling is dysregulated by alcohol has implications not only for subsequent
alcohol use, but also for decision-making and reward seeking outside of alcohol-
related contexts.

Thus, understanding phasic and tonic dopamine signaling is crucially important
as their interplay controls the execution of motivated behaviors, and the examination
of these two aspects of dopaminergic signaling in tandem allows a greater under-
standing of the alcohol-induced maladaptive responses to external stimuli.

2 Dopamine Signaling Following Chronic Alcohol Exposure

2.1 Acute Effects of Alcohol on Dopamine Release

Acute alcohol administration has distinct, regionally specific effects on dopamine
system activity. Systemic alcohol administration transiently increases extracellular
tonic levels of dopamine in the NAc of rodents and monkeys as measured by
microdialysis (Bradberry 2002; Karkhanis et al. 2016; Weiss et al. 1993; Yim
et al. 1998). Similarly, an in vivo FSCV study in awake, behaving rats showed
that alcohol administration resulted in an increase in phasic dopamine release
(Shnitko and Robinson 2015). In contrast, ex vivo FSCV studies show that acute
application of alcohol to brain slices results in a reduction of phasic dopamine
release in the NAc of both rodents and monkeys (Siciliano et al. 2016b; Yorgason
et al. 2014, 2015), which is dependent on alcohol concentration and frequency of
stimulation. Reductions in dopamine release in these experiments were observed
only at high concentrations of alcohol (80 mM and above) and during high fre-
quency of stimulation (20 Hz and above) (Yorgason et al. 2015). While these
findings may seem in opposition, the inconsistencies between in vivo (enhanced
release) and ex vivo (reduced release) are likely driven by the fact that dopamine
terminals are separated from the cell body in ex vivo slice preparations. In the
ex vivo slice preparation, effects that are observed represent only the synaptic
connections that are maintained within the slice, and do not assess the full spectrum
of circuit connectivity between the region of interest and the rest of the brain.
Without the contribution of alcohol-mediated excitation of VTA neurons to augment
dopaminergic signaling, NAc terminals are inhibited by alcohol. However, the net
effect of alcohol in the intact animal (i.e., inhibitory actions at the terminal and
excitatory actions at the cell body) is increased extracellular dopamine levels in the
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striatum. These findings highlight both the complexity of this system and the need
for multiple levels of exploration (from the slice to the whole animal) in order to fully
appreciate the pharmacological actions of alcohol on the dopaminergic system. For
more information on alcohol’s presynaptic actions, including non-dopaminergic
systems, see Lovinger (2017) elsewhere in this volume.

2.2 Effects of Chronic Alcohol Exposure on Dopamine Release
During Abstinence

While the section above outlines the acute effects of alcohol on dopamine release,
chronic use leaves a lasting impact on dopamine release during alcohol-free periods,
which may contribute to maladaptive decision making. In this section we will outline
literature which has examined dopamine release in animals with a history of alcohol
exposure, when there is no alcohol “on board” (i.e., during withdrawal).

Studies examining the role of chronic alcohol exposure on dopamine release
have generally yielded mixed results, with species, sex, and experimental design
appearing to have a strong influence on the findings. For example, stimulated
dopamine release in ex vivo slices preparations was attenuated following three to
five cycles of CIE exposure in mice (Karkhanis et al. 2015; Rose et al. 2016; but see
Melchior and Jones 2017). However, in rats, shorter exposure to alcohol vapor over
5 or 10 days did not alter dopamine release as compared to control animals (Budygin
et al. 2007). Data from nonhuman primates further “muddies the waters” in regard to
interpreting the effects of alcohol exposure on stimulated dopamine release. In
contrast to the decreased release observed in mice, male cynomolgus macaques
were found to have increased stimulated dopamine release following 6 months of
alcohol self-administration (Siciliano et al. 2015a). Complicating matters further,
female rhesus macaques showed no change in dopamine release after 12 months of
alcohol self-administration (Siciliano et al. 2016b). The driving factor underlying the
inconsistency within the nonhuman primate studies is currently unclear, as sex,
length of exposure (6 vs 12 months), and species (cynomolgus vs rhesus) were all
divergent between the two studies.

Although these seemlying inconsistent results may suggest that alterations in
dopamine release are not related to the primary pathology of AUD, it should also be
noted again that ex vivo measurements of dopamine release can only give insight
into certain aspects of the system. Indeed, many in vivo studies of dopamine release
in response to stimuli have demonstrated that release can encode many different
aspects of learned behaviors and drug associated cues, and is plastic throughtout the
formation of these associations (Wanat et al. 2009). Because the afferent inputs that
drive dopamine release in vivo are severed in an ex vivo slice preparation, ex vivo
approaches provide insight to the size of the readily reasable pool of dopamine, but
do not capture the complexity of dopaminergic encoding of these behaviors. It is
also important to note that the tonic, extracelluar level of dopamine is depedent on
many factors (discussed below); when tonic dopamine levels are measured via
microdialysis, multiple studies have found them to be decreased following alcohol
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exposure in rats (Rossetti et al. 1992, 1999). Further, metabolic markers of dopami-
nergic activity are reduced in macaques after chronic alcohol use (Cervera-Juanes
et al. 2016).

2.3 Dopamine Uptake

Extracellular dopamine levels are a complex interaction between dopamine release
and its reuptake via the dopamine transporter (DAT) (Ferris et al. 2014). Not only is
the DAT a major factor in determining tonic extracellular levels, but it is also thought
to tightly regulate the “sphere of influence” and duration of dopamine effects at
postsynaptic receptors as it flows out of release sites (Cragg and Rice 2004). Thus,
DAT function and expression is an integral component in guiding dynamic dopa-
mine neurotransmission.

Exposure to chronic alcohol modulates the DAT, both in terms of its function and
expression. In mice, repeated cycles of CIE exposure augments dopamine reuptake,
which is a primarily DAT mediated process, in the NAc (Karkhanis et al. 2015,
2016; Rose et al. 2016; Melchior and Jones 2017). In CIE models, uptake rate is
enhanced immediately following cessation of the final alcohol exposure and are
maintained for at least until 72 h into withdrawal, suggesting that this effect may be
long lasting, though later time-points have not yet been tested (Karkhanis et al. 2015;
Rose et al. 2016) (Fig. 2). Further, DAT density in the NAc is increased after CIE
(Healey et al. 2008). Enhanced dopamine uptake rate likely contributes to reduced
tonic dopamine levels by increasing the speed of dopamine removal from the
extracellular space.

Enhanced dopamine uptake rate following alcohol exposure is a phenomenon that
is strongly conserved across species. Similar to mice, dopamine uptake rate is
increased in rats exposed to CIE vapor (Budygin et al. 2007). In rats exposed to an
alcohol-containing liquid diet for 1 year, DAT protein expression was increased in
both the ventral and dorsal striatum (Rothblat et al. 2001), suggesting that increased
functional uptake is a result of increased protein levels, although other mechanisms
such as conformational alterations or changes in the affinity state of the DAT could
also be at play. These findings have been extended to nonhuman primates, where
dopamine uptake rate has been found to be increased in the NAc of male
cynomolgus macaques and female rhesus macaques after 6 and 12 months of
volitional access to alcohol, respectively (Siciliano et al. 2015a, 2016b). Together,
these data demonstrate that, in the NAc, dopamine uptake is increased across species
and experimental setting, suggesting that it may be an important factor in driving the
core symptomology of AUD.

One exception is that in male cynomolgus macaques, uptake rate in the dorsolat-
eral caudate (a subregion of the striatum typically thought to be involved in motor
control and habit learning (Graybiel 1995, 2008; Porrino et al. 2004) were reduced
after chronic access to alcohol (Siciliano et al. 2015a)). This decrease in dopamine
uptake rate likely produces increases in extracellular dopamine levels. Interestingly,
the ratio of uptake rates between the dorsolateral caudate and NAc was highly
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correlated with alcohol intake across animals. While the behavioral relevance of
differential changes in dopamine uptake between these two regions remains to be
determined, there is evidence that dysregulation of dopamine-mediated communica-
tion between these areas can lead to habitual and addiction-like behaviors (Belin and
Everitt 2008; Everitt and Robbins 2013). Thus, enhancement of NAc dopamine
reuptake and blunting of dorsolateral caudate dopamine reuptake together may
contribute to maladaptive alcohol seeking and intake following chronic exposure.

Not only is dopamine uptake altered by chronic alcohol administration in pre-
clinical models, there is also evidence that abnormal dopamine uptake may contrib-
ute to disease states in the human population. Genetic association studies point to
alterations in the DAT in a subset of individuals with an AUD diagnosis, which may
confer a heightened vulnerability towards development of the disease (Köhnke et al.
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2005). The relationship between DATs and alcoholism in humans is not entirely
clear, however. Alcoholism is associated with both increases and decreases in DAT
availability as measured by positron emission tomography (PET) or single photon
emission computed tomography (SPECT), depending on the study (Laine et al.
1999; Tiihonen et al. 1995; Tupala et al. 2006; Yen et al. 2015, 2016). These
discrepancies may be due, at least in part, to different durations of withdrawal
between studies and limitations of lower resolution, noninvasive approaches which
are typically employed in human studies. However, given the abundant preclinical
data showing alterations in uptake rate following chronic alcohol exposure discussed
above, and implications for genetic DAT alterations in the clinical population, it is
clear that the DAT plays a significant role in the etiology of AUD that should be
further examined in future studies.

2.4 Autoreceptors

In the NAc, dopamine D2-type (D2, D3, D4) receptors are found on medium spiny
projection neurons, local interneurons, and presynaptic terminals from afferent
inputs (Alcantara et al. 2003; Ford 2014; Levey et al. 1993). D2-type receptors
that are located on presynaptic dopamine terminals are autoreceptors, which function
in a feedback-inhibitory manner, binding released dopamine and inhibiting future
release. D2-type dopamine autoreceptors are G-protein coupled receptors expressed
at both cell bodies and presynaptic terminals of dopamine neurons, where they
inhibit action potential firing activity, release and synthesis of dopamine. Thus, in
the NAc, when extracellular dopamine levels are high, autoreceptors inhibit dopa-
mine release and synthesis, driving the system towards homeostasis. For this reason,
D2-type autoreceptors are often conceptualized as the “brakes” on the dopamine
system. Of the members of the D2-type receptor family, D2 receptors themselves
have been found to mediate the majority of autoreceptor activity in the striatum,
although D3 and D4 receptors are also present (Bello et al. 2011; Meador-Woodruff
et al. 1994; Meller et al. 1993; Rubinstein et al. 1997).

Most studies examining D2-type autoreceptor sensitivity following chronic alco-
hol exposure have shown functional increases in activity/sensitivity, contributing to
a reduction in dopamine signaling. Multiple cycles of CIE exposure result in greater
autoregulation of release in the NAc in mice (Karkhanis et al. 2015), but shorter
exposure times did not change the ability of autoreceptors to inhibit dopamine
release in rats (Budygin et al. 2007) or their ability to inhibit dopamine synthesis
in mice (Siciliano et al. 2017). Repeated CIE-induced increases in autoreceptor
sensitivity appears to be relatively short-lived during abstinence, however, with
sensitivity returning to control levels within a few days (Karkhanis et al. 2015).
Typically, the sensitivity of these receptors has been assessed by examining the
ability of D2-type dopamine receptor agonists to inhibit dopamine release ex vivo.
When greater effects of D2-type specific agonists are observed, it is interpreted as an
increase in the sensitivity of these receptors, which translates to increased inhibitory
feedback when endogenous dopamine interacts with these receptors. Thus, increased
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sensitivity of D2-type autoreceptors likely contributes to a hypodopaminergic state
via decreased probability of dopamine release from presynaptic terminals.

Similar findings have been observed in nonhuman primate models of AUD. In
one study of male cynomolgus macaques it was found that, after 6 months of
volitional alcohol drinking, there was no change in overall autoreceptor-mediated
inhibition of dopamine release; however, there was a shift in the relative contribution
of D2 vs D3 dopamine autoreceptors towards D2 receptors (Siciliano et al. 2016b).
In other words, D2 sensitivity was increased, and D3 sensitivity was decreased such
that the sum of autoreceptor inhibition remained the same while the contribution of
the two receptor subtypes was shifted. In two studies of monkeys exposed to longer,
12- to 18-month periods of alcohol drinking, D2-type autoreceptor sensitivity was
increased, but the relative contributions of receptor subtypes were not queried
(Budygin et al. 2003; Siciliano et al. 2016a). Thus, it appears that, across species,
overall changes in autoreceptor sensitivity occur after extended exposure to alcohol,
but not after modest exposure lengths. These consistent cross-species findings of
dopamine autoreceptor changes, with consistent relative time-courses and direction
of change towards greater dopamine inhibition, provide confidence that autoreceptor
changes may be functionally related to the core symptomology of AUD.

2.5 Kappa Opioid Receptors

2.5.1 Dopamine and Kappa Opioid Receptor Interactions
Like D2/D3 autoreceptors, kappa opioid receptors (KORs) are located on dopamine
terminals (Ebner et al. 2010; Svingos et al. 2001; Werling et al. 1988) and act to
reduce dopamine release. KOR activation results in reduced tonic dopamine levels
as well as both decreased probability and magnitude of phasic release events (Steiner
and Gerfen 1996). Given the role of dopamine in reward, it is not surprising that the
activation of KORs, which inhibit dopamine release, is generally aversive (Land
et al. 2009). Dynorphin, the endogenous ligand of KORs, is released during expo-
sure to painful, noxious, or stressful stimuli (Bruchas and Chavkin 2010; Land et al.
2009; Nabeshima et al. 1992). KORs are believed to exert their behavioral and
subjective effects in part through inhibition of dopaminergic signaling (Ebner et al.
2010; Svingos et al. 2001; Werling et al. 1988).

In the NAc, dopamine, dynorphin, and KORs have an intimate relationship of
interconnectivity and feedback regulation. GABAergic medium spiny neurons
(MSNs) account for more than 90% of all neurons in the striatum and are the
major projection population. Striatal MSNs consist of two distinct populations,
which are interspersed and equally distributed across the dorsal and ventral striatum,
and differentiated based on the expression of dopamine receptors and opioid
peptides. Approximately half of the MSN population expresses excitatory D1-type
dopamine receptors and dynorphin peptides, and the other half of MSNs express
inhibitory D2-type receptors and enkephalin peptides (ligand for mu and delta opioid
receptors) (Gerfen et al. 1990). Dynorphin is generated in D1-MSNs in response to
D1 receptor activation, and its release inhibits further dopamine release from the
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presynaptic terminal (Gerfen and Surmeier 2011; Steiner and Gerfen 1996).
Dynorphin peptides are transported to recurrent collateral axons within the NAc
and decrease dopamine release via presynaptic KORs (Steiner and Gerfen 1993). In
this way, a feedback loop wherein dopamine release can increase the probability of
dynorphin release, which in turn reduces dopamine release, is propagated.

2.5.2 Kappa Opioid Receptors and Chronic Alcohol Exposure
In humans, activation of KORs has been associated with feelings of dysphoria, and
both KORs and dynorphin mRNA are upregulated in patients suffering from AUD
(Bazov et al. 2013). In preclinical models, a single injection of alcohol in naïve rats
results in a transient increase in dynorphin levels (Kuzmin et al. 2013; Lam et al.
2008; Marinelli et al. 2006). Following CIE exposure, inhibition of KORs has been
shown to successfully mitigate negative affect-like behavioral alterations observed
in mice and rats, without altering these behaviors in alcohol-naïve animals
(Anderson et al. 2016b; Pleil et al. 2015a; Rose et al. 2016; Kissler et al. 2014).
Interestingly, the effect of KOR activation on alcohol intake behaviors appears to be
strongly influenced by the animal’s history of alcohol intake and state of depen-
dency. Pharmacological blockade of KORs does not change alcohol consumption in
non-alcohol-dependent animals; however, in animals that have been made depen-
dent through CIE exposure, and show high dependence-induced volitional alcohol
intake, KOR blockade reduces alcohol consumption to control levels (Rose et al.
2016; Walker et al. 2011; see Anderson and Becker 2017 for review). Conversely, in
naïve animals, pretreatment with KOR agonists drives an increase in alcohol con-
sumption comparable to animals that have been previously made dependent, again
suggesting that alcohol-induced increased activity of these receptors is associated
with excessive alcohol intake (Anderson et al. 2016b; Rose et al. 2016).

Behavioral studies, outlined above, have suggested that KORs are functionally
altered by previous alcohol exposure, and subsequent studies directly measuring
KOR regulation of dopamine signaling after chronic alcohol exposure support this
hypothesis (Karkhanis et al. 2016; Rose et al. 2016; Siciliano et al. 2016a). Indeed, in
mice and rats, the dopamine-decreasing effects of KOR activation, observed using
ex vivo FSCV, are heightened dramatically following CIE exposure (Karkhanis et al.
2016; Rose et al. 2016). Thus, alcohol exposure augments the ability of KORs to
reduce dopamine, contributing further to hypodopaminergia following chronic alco-
hol exposure. Importantly, dependence-induced increases in alcohol consumption
can be reduced via microinfusion of a KOR antagonist directly into the NAc (Nealey
et al. 2011). This suggests a causal role for increased KOR function in the NAc in
aberrant alcohol consumption.

Augmentation of KOR sensitivity is conserved across species. Following
6 months of drinking in male cynomolgus macaques, KOR-mediated inhibitory
regulation of dopamine signaling in the NAc is increased (Siciliano et al. 2016a).
Further, KOR-mediated inhibition of dopamine release in the dorsolateral caudate is
augmented after alcohol drinking (Siciliano et al. 2015a). Interestingly, while both
regions appear to develop KOR hyper-function, KOR activity in the NAc, but not the
dorsolateral caudate, is correlated with alcohol intake (Siciliano et al. 2015a), again
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suggesting that KOR signaling in the NAc is a critical node in driving excessive
alcohol intake. Further, these effects are consistent across sex, as 1 year of alcohol
self-administration also increased KOR regulation of dopamine release in the NAc
of female rhesus macaques (Siciliano et al. 2016a). Together, these studies demon-
strate that KOR regulation of dopamine release is increased across species as well as
several other experimental parameters, including route of administration, exposure
length, and withdrawal time, suggesting an integral role in the etiology of AUD. We
hypothesize that alcohol dependence-induced increases in KOR function contribute
to a hypodopaminergic state possibly leading to craving and excessive consumption
of alcohol. These alterations in KOR changes at the dopamine terminal are illustrated
in Fig. 3.
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Fig. 3 Putative synaptic alterations associated with chronic ethanol exposure across species.
Synaptic changes in the NAc associated with withdrawal from chronic alcohol exposure in (a)
male mice, (b) male rats, (c) male cynomolgus monkeys, and (d) female rhesus monkeys. (a) In
mice, acute withdrawal from chronic intermittent ethanol exposure is associated with reduced
dopamine release and augmented reuptake, D2R/D3R autoreceptor, and KOR sensitivity. With
the exception of autoreceptor sensitivity, most of these effects are relatively long lasting, and remain
altered 72 h following the final ethanol exposure. (b) In rats, dopamine release and autoreceptor
function are unaffected during acute withdrawal; however, enhanced D1R and DAT sensitivity are
observed. (c) Male cynomolgus monkeys show synaptic alterations remarkably similar to male mice
during acute withdrawal from chronic ethanol intake, whereby DAT and KOR functions are
augmented. However, dopamine release is increased and total autoreceptor function remains
unaltered. (d) In female rhesus monkeys, while there is no change in dopamine release, the DAT,
KOR, and autoreceptor function in increased during acute withdrawal
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The extensive alcohol-induced reductions in presynaptic dopamine terminal
activity in the NAc would be predicted to result in differential signaling onto
downstream, postsynaptic targets. In the NAc, these consist primarily of D1 and
D2 receptor expressing MSNs, which are also altered in AUD models. These other
aspects of alcohol-induced alterations in striatal activity are beyond the scope of the
current chapter, but have been extensively characterized elsewhere and continue to
be areas of intense investigation (Clarke and Adermark 2015; Engel and Jerlhag
2014; Koob 2014; Renteria et al. 2017; Soderpalm et al. 2009; Tupala and Tiihonen
2004).

3 Conclusions

It is clear that factors such as alcohol exposure length, species, route of administra-
tion, and withdrawal time-point can be important variables in determining the effects
of alcohol on the dopamine system. However, in this chapter, we highlight some of
the robust findings that transcend these variables and may hint at common neurobi-
ological substrates following chronic exposure to alcohol. Primary examples of
these commonalties include increased functionality/sensitivity of multiple negative
regulators of dopamine signaling, such as DATs, dopamine autoreceptors, and
KORs. The combination of increased clearance of dopamine from the synapse,
via upregulation of DATs, with enhanced KOR and autoreceptor function, likely
combines to produce hyper-inhibitory regulation of dopamine signaling. Thus,
deviations from “healthy” function of the mesolimbic dopaminergic system follow-
ing chronic exposure to alcohol appear to be a universal adaptation that may be
driving maladaptive behaviors associated with repeated alcohol exposure.

The use of multiple species and paradigms offers insight into possible treatment
strategies that could alleviate suffering in individuals with an AUD. As illustrated
above, such diverse experimental designs help to “separate the wheat from the chaff”
by identifying consistent, key neurobiological changes following exposure. To this
end, we argue that successful pharmacological strategies may lie in a combinatorial
pharmacotherapy that would quiet both DAT and KOR systems (e.g., a DAT
inhibitor and KOR antagonist or partial agonist). Such a treatment could suppress
two key contributors to dopamine signal reduction following chronic alcohol expo-
sure, and may alleviate negative affective states that are pervasive in abstinent AUD
patients. Resultant normalization of affect during withdrawal would be predicted to
both improve quality of life and decrease likelihood of relapse in individuals striving
to maintain abstinence.

Taken together, it is clear that key alterations in mesolimbic dopamine signaling
are consistently observed following chronic alcohol exposure across species and
administration paradigms. Although there is far more work to be done in order
to fully elucidate the role of dopaminergic signaling in neural and behavioral
adaptations following alcohol exposure, pharmacological strategies targeting these
adaptations are a potentially important treatment avenue for alleviating suffering in
individuals with an AUD.
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Abstract
Alcohol use disorder (AUD) results from disruption of a number of neural
systems underlying motivation, emotion, and cognition. Patients with AUD
exhibit not only elevated motivation for alcohol but heightened stress and anxi-
ety, and disruptions in cognitive domains such as decision-making. One system at
the intersection of these functions is the central norepinephrine (NE) system. This
catecholaminergic neuromodulator, produced by several brainstem nuclei, plays
profound roles in a wide range of behaviors and functions, including arousal,
attention, and other aspects of cognition, motivation, emotional regulation, and
control over basic physiological processes. It has been known for some time that
NE has an impact on alcohol seeking and use, but the mechanisms of its influence
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are still being revealed. This chapter will discuss the influence of NE neuron
activation and NE release at alcohol-relevant targets on behaviors and disruptions
underlying alcohol motivation and AUD. Potential NE-based pharmacotherapies
for AUD treatment will also be discussed. Given the basic properties of NE
function, the strong relationship between NE and alcohol use, and the effective-
ness of current NE-related treatments, the studies presented here indicate an
encouraging direction for the development of precise and efficacious future
therapies for AUD.

Keywords
Adrenergic receptors · Allostasis · Dependence · Locus coeruleus · Nucleus
tractus solitarius · Reward · Withdrawal

1 Introduction

Norepinephrine (NE) is a key neuromodulator in the CNS that originates from
several hindbrain nuclei and projects widely across the brain. NE alters neural
responsiveness in its targets, modifying activity of ongoing neural processes through
pre- and postsynaptic G-protein-coupled receptors. As such, it can exert wide-
reaching and complex influences over neural circuits involved in the regulation of
alcohol-related behaviors. In the following chapter we discuss central noradrenergic
systems, with a particular focus on NE from the locus coeruleus (LC) and nucleus
tractus solitarius (NTS), their interactions with alcohol, and NE as a therapeutic
target for alcohol use disorder (AUD).

2 Central Norepinephrine Systems

Central noradrenergic neurons in several small nuclei of the medulla and pons
(A1–A7) use the enzyme dopamine-β-hydroxylase (DBH) to convert dopamine
(DA) to NE for release (Dahlstrom and Fuxe 1964). Although their cell bodies
number only in the thousands these neurons reach almost every region of the CNS
through an extensively branching efferent network (Fuxe 1965). The largest
population of noradrenergic neurons is the bilateral LC (A6) and subcoeruleus
(A4) complex in the dorsal pons (Swanson and Hartman 1975). This population
contains around half of all central NE neurons with each LC comprising ~1,500
neurons per side in rodents (Swanson 1976) and up to 50,000 per side in humans
(Baker et al. 1989). Other noradrenergic nuclei are found within the lateral tegmental
system that extends from the caudal midbrain and pons (A5, A7) through the
medulla (A1–A3) (Moore and Bloom 1979).

In addition to descending spinal cord projections and local brainstem projections
critical for autonomic regulation, NE populations show a diverse topography. The
LC provides the vast majority of NE input to cerebral cortex, hippocampus,
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thalamus, and cerebellum, as well as innervating basal forebrain limbic structures
including the amygdala, dorsal BNST, and some parts of the hypothalamus (Moore
and Bloom 1979). Non-LC NE neurons, particularly those located in A1/A2 clusters
in the medulla including the NTS (A2), provide input to homeostatic and limbic
regions of the forebrain including the hypothalamus, amygdala, and extended
amygdala, particularly the BNST (Moore and Bloom 1979). Although contributions
of other NE nuclei cannot be ruled out, the majority of studies to date investigating
the relationship between NE and alcohol use have focused on signaling emanating
from either the NTS or the LC.

NTS and LC receive substantial convergent input, integrating information sent
from multiple forebrain, thalamic and hypothalamic, midbrain, and brainstem nuclei,
in addition to receiving inputs from spinal cord and cranial nerves (Cedarbaum and
Aghajanian 1978; Rinaman 2011; Takigawa and Mogenson 1977). LC inputs
include also ascending NE from the NTS (Levitt and Moore 1979). These afferents
from diverse regions regulate NE neurons using a range of transmitters and
modulators including glutamate and GABA, NE itself, and neuropeptides such as
dynorphin (DYN), corticotropin releasing factor (CRF), pituitary adenylate cyclase-
activating peptide (PACAP), and orexin/hypocretin, making NE neurons directly
sensitive to multiple levels of modulation (Ennis and Aston-Jones 1988; Olpe and
Steinmann 1991; Valentino and Foote 1988). Of particular relevance to alcohol-
associated studies, the NTS and LC are densely interconnected with frontal and
insular cortex, amygdala, extended amygdala, and hypothalamus (reviewed in
Berridge and Waterhouse 2003; Rinaman 2011). Finally, NE neurons co-express
several additional neurotransmitters, modulators, and peptides including glutamate,
neuropeptide Y (NPY), and galanin among a number of other peptides (Melander
et al. 1986; Rinaman 2011; Sawchenko et al. 1985; Stornetta et al. 2002). Thus, the
medullary and brainstem NE populations are strongly regulated by a diverse set of
inputs and, in return, project broadly, signaling with a complex conjunction of
neurochemicals.

As noted above, NE neurons project widely across the extent of the brain,
targeting cortical and subcortical regions. NE projections reach the forebrain primar-
ily through two major ascending tracts, specifically the dorsal noradrenergic bundle
(DNAB) from the LC and the ventral noradrenergic bundle (VNAB) from medullary
NE neurons, including NTS. These tracts then converge within the medial forebrain
bundle before reaching the hypothalamus and extended amygdala (Moore and
Bloom 1979). An individual NE neuron may produce up to 30 cm of terminal arbors
with ~100,000 axonal varicosities (Moore and Bloom 1979). NE is released extra-
synaptically from these varicosities, in addition to synaptic release at axon terminals,
further expanding the influence of NE through volume transmission (Aoki et al.
1998).

The distribution of norepinephrine projections allows these neurons to play a
wide and diverse role in modulating key processes throughout the brain. The vast
majority of NE efferents to cognitive and sensory cortical regions comes from LC,
from which NE can modulate perception and decision making in response to
alcohol-related stimuli (Aston-Jones and Cohen 2005; Berridge and Waterhouse
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2003). LC also provides noradrenergic, and dopaminergic (Takeuchi et al. 2016),
regulation to the hippocampus where it regulates memory function, including
consolidation (Sara 2015). LC and medullary NE nuclei including NTS (and A1)
project to paraventricular nucleus (PVN) of the hypothalamus where they regulate
HPA signaling critical to ethanol responses (Moore and Bloom 1979). In each of
these regions NE modulation provides a potent influence over physiological and
behavioral responses to alcohol.

NE innervation of the forebrain is also well positioned to regulate motivational
and emotional responses that drive alcohol consumption and craving. NE has a
potent regulatory influence over limbic circuits, including control of anxiety and
stress responses through LC inputs to basolateral amygdala, inputs to BNST from
NTS, and to a lesser degree LC, in addition to reciprocal connections of both regions
with central amygdala (Daniel and Rainnie 2016; Park et al. 2009; Phelix et al. 1992;
Valentino and Van Bockstaele 2008). NE may also impact motivational drive for
alcohol through modulation of lateral hypothalamus, ventral tegmental area, and
other regions of the extended amygdala which are innervated by both LC and NTS
NE (Moore and Bloom 1979). NTS NE additionally provides noradrenergic tone to
the nucleus accumbens, an area heavily implicated in motivation for natural and drug
rewards, including alcohol (Berridge et al. 1997; Chang 1989; Wang et al. 1992).

2.1 Central Norepinephrine Functions

The canonical role of NE modulation in these target regions is to enhance neuronal
responses to other synaptic inputs. The enhancement can take the form of an
inhibitory suppression of baseline noise, with or without a potentiation of discrete
excitatory responses. NE achieves this complex modulatory regulation through
several postsynaptic receptors; excitatory Gq-mediated α1 receptors, Gs-mediated
β receptors (both β1 and β2 are prominent in CNS), or inhibitory Gi α2 receptors
(MacDonald et al. 1997; Morrow and Creese 1986; Nicholas et al. 1993a, b).
α2 receptors also play a prominent role in regulating NE transmission presynapti-
cally by acting as autoreceptors on NE terminals and via local collaterals in NE
nuclei (Aghajanian et al. 1977; Aoki et al. 1994). NE-mediated baseline suppression
and excitatory potentiation can both lead to enhanced signal-to-noise of acute
signaling at NE targets. The postsynaptic mechanisms of NE vary by target region
with NE acting on target cells directly, or indirectly via postsynaptic GABAergic
interneurons (Bevan et al. 1973; Foote et al. 1975; Waterhouse et al. 1980). In some
target regions, such as the BNST, the presence of Gi-coupled α2 receptors on
postsynaptic target cells or non-NE axon terminals predominates a net inhibitory
effect upon NE release, suppressing both basal activity and incoming glutamatergic
signaling (Daniel and Rainnie 2016; Shields et al. 2009).

The LC-NE system exerts profound influence on arousal, cognition, and behav-
ioral regulation and is well poised to regulate responses to alcohol-related stimuli. A
key feature of LC-NE signaling is dynamic modulation both through tonic baseline
neuronal activity changes and through phasic bursting activity and NE release in
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response to behaviorally relevant or salient stimuli (Aston-Jones and Cohen 2005).
Tonic LC neuron firing rates vary with arousal and are strongly influenced by
peptidergic inputs, including stress-associated corticotrophin releasing factor
(CRF) and dynorphin (DYN) from regions such as hypothalamus and extended
amygdala (Valentino and Van Bockstaele 2008). In contrast, phasic responses are
typically associated with salient stimuli, including conditioned salience, predictive
cues, and aversive stimuli that require behavioral responses (Aston-Jones and Bloom
1981; Clayton et al. 2004; Kalwani et al. 2014).

The LC plays a major role in cognitive control. Physiological, pharmacological,
and neurochemical techniques show that NE is associated with memory consolida-
tion and executive function including response inhibition and behavioral flexibility,
among others (reviewed by Aston-Jones and Cohen 2005; Robbins and Arnsten
2009). In addition to regulating cognitive function via PFC (and other areas), LC-NE
plays a critical role in stress responses. LC neurons are reactive to both acute and
chronic stress, in part due to strong CRF input (Valentino and Van Bockstaele 2008).
CRF serves as a feedback mechanism whereby stress-related signaling dynamically
regulates LC activity and, consequently, NE input back to stress-reactive systems
(Van Bockstaele et al. 2001). Acute low level stress transiently increases tonic LC
activity to facilitate alertness and scanning attention (Aston-Jones and Cohen 2005;
Valentino and Van Bockstaele 2008). Exposure to prolonged, chronic stress
dysregulates LC-NE function, and CRF mediated LC tone in a sex- and stressor-
specific manner (Bangasser et al. 2010). We do not yet know if sex-dependent
regulation of LC-NE function impacts stress and alcohol interactions, although
recent evidence suggests this is likely (Retson et al. 2015).

Within stress circuits, the LC sends robust projections to the basolateral amygdala
(BLA) (Asan 1998; Jones and Moore 1977). BLA, LC, and other inputs regulate
CRF containing neurons in the central amygdala (CeA). The CRF afferents from
CeA innervate many regions, including LC, potentiating stress responses (Cui et al.
2015; Gilpin 2012). Stress-mediated dysregulation of LC, in addition to producing a
feed-forward enhancement of anxiety and stress, disrupts NE regulation of cognitive
function in PFC.

Medullary NE has a profound influence on homeostatic functions and emotional
regulation and plays a prominent role in motivational drive related to the seeking of
alcohol and other drugs of abuse (Rinaman 2011; Smith and Aston-Jones 2008). The
A2 noradrenergic population plays a role in both the execution and inhibition of
feeding behaviors, though the preponderance of studies to date emphasizes its role in
suppression of feeding (Rinaman 2010, 2011; Roman et al. 2016; Wellman 2000).
The NTS also plays an important role in emotional regulation and motivated
behavior, in part through its connections with the NAc, CeA, PVN, and BNST
(Delfs et al. 1998; Rinaman 2011; Sawchenko and Swanson 1981, 1982; Smith and
Aston-Jones 2008). The main outcome of NTS innervation of such areas is primarily
increased stress and behavioral inhibition, and some investigators have considered
the NTS projections to limbic targets to be main activators of aversive emotional
state, in contrast with LC-NE, the activation which ultimately promotes arousal and
exploratory behavior (Rinaman 2011). In all likelihood both systems contribute to
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stress and anxiety, but the potent innervation of limbic structures such as those noted
above, and the plethora of studies demonstrating a particularly influential role of the
NTS over the HPA axis and behavioral components of stress indicate particularly
privileged role for this system (Herman 2017; Rinaman 2011).

In general NE is broadly involved in multiple aspects of motivation, including
driving behaviors associated with drugs of abuse. The history and current under-
standing of the role of NE in drug seeking have been the subject of a number
of excellent recent reviews (Espana et al. 2016; Fitzgerald 2013; Smith and
Aston-Jones 2008; Sofuoglu and Sewell 2009; Weinshenker and Schroeder 2007;
Zaniewska et al. 2015). Although early studies of the neural circuitry of drug abuse
highlighted a prominent role for NE, research gradually shifted focus to DA as a final
common pathway underlying addiction (Weinshenker and Schroeder 2007). How-
ever, recent studies have demonstrated the importance of NE across multiple classes
of drugs of abuse (psychostimulants, opiates, etc.), particularly with respect to
relapse behaviors. The details underlying such lines of research are too extensive
and diverse to consider here and, in focusing exclusively on the role of NE in
alcohol-related behaviors and AUD, we refer readers to the reviews above for
more detailed consideration.

3 Norepinephrine and Alcohol

The NE system in general is highly responsive to ethanol, and there is a growing
appreciation that noradrenergic signaling may underlie substantial components of
both controlled and excessive drinking. There have even been proposals that NE is
more critical than dopamine (DA) for ethanol reward (Amit and Brown 1982). Due
in part to the organization and functions of noradrenergic systems described above,
as well as effects of NE manipulation on alcohol seeking, described below, NE
signaling has long been posited as a key neural mechanism involved in both positive
and negative motivation for alcohol use (Koob 2014).

3.1 Changes in Noradrenergic Function Mediated by Acute
and Chronic Alcohol

In early human studies, acute ethanol produced increases in NE and the NE metabo-
lite 3-methoxy-4-hydroxy-phenylglycol (MHPG) measured in CSF (Borg et al.
1981) and plasma (Howes and Reid 1985). The acute increases in central NE were
greater in alcoholic patients than in healthy controls and were correlated with blood
alcohol levels. The increased levels observed in patients decreased significantly after
multiple days of abstinence. These findings suggested that acute ethanol elevates the
activity of central NE neurons, and the LC was proposed as a site of action (Borg
et al. 1981). Further studies comparing MHPG levels between alcohol-dependent
patients and healthy controls were inconclusive (Petrakis et al. 1999) and potentially
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depend on withdrawal state, indicating that further direct studies of central NE
function are warranted.

Early investigations of NE and alcohol in animal models focused on the impact of
alcohol administration on catecholamine metabolism. These studies found consistent
changes in NE function during acute intoxication. At doses ranging from 1 to 5 g/kg
of ethanol, brain NE content was reduced alongside increases in NE metabolites,
specifically 3,4-dihydroxyphenylglycol (DHPG), and vanillomandelic acid (VMA).
This was seen in both outbred and alcohol preferring P rats (Alari et al. 1987a;
Karoum et al. 1976; Murphy et al. 1983). These increases in NE turnover during
acute intoxication normalized 6 h after ethanol exposure and were consistently more
pronounced than changes in dopamine turnover, particularly at lower doses of
ethanol (Corrodi et al. 1966). Whether the increased turnover results from increased
vesicular leakage or synaptic NE release remains unclear given conflicting findings
from various approaches used to measure neuronal activity.

The idea that increased NE release and turnover is due to enhanced synaptic
release is supported by increases in neuronal activation, often measured with c-Fos
expression, within NE populations after acute ethanol exposure. c-Fos is an imme-
diate early gene marker upregulated by neuronal activity and used as a post hoc
proxy of recent activation (Dragunow and Faull 1989). Several studies have found
an upregulation of c-Fos activity specifically in tyrosine hydroxylase (TH) or DBH
positive neurons within the LC, RVLM (A1/C1) and NTS after intragastric or
intraperitoneal injection of ethanol (Lee et al. 2011; Thiele et al. 2000). After high
doses of acute ethanol, elevations in LC c-Fos are more pronounced in alcohol
non-preferring strains than alcohol preferring strains of rats (Thiele et al. 1997). In
the NTS, ethanol enhancement of GABAergic transmission, indirectly resulting in
disinhibition of local TH positive neurons including NE, has been proposed as a
mechanism for c-Fos induction by high doses in vivo (4 g/kg) (Aimino et al. 2017).
A similar mechanism of disinhibition in LC-NE neurons is plausible, although
GABAergic interneurons are not widely interdigitated within the nucleus. A pool
of GABA neurons within the dendritic fields of LC, however, would be capable of
providing potent local regulation (Aston-Jones et al. 2004).

Direct recordings of NE neurons after acute alcohol have been made to confirm
changes in activity indicated by NE turnover and c-Fos. The complexity of norad-
renergic interactions with ethanol is highlighted by differential findings between
electrophysiological studies and other measures neuronal activation. The majority
of electrophysiological studies measuring responses of NE neurons to acutely
administered ethanol have targeted LC-NE neurons, though similar effects have
been demonstrated in an unidentified neuron population in NTS (Aimino et al.
2017). Systemic and direct local administration of relatively high doses of ethanol
has elicited either no change, or suppression in LC unit activity via an enhancement
of inwardly rectifying potassium currents (Aston-Jones et al. 1982; Osmanovic and
Shefner 1994; Strahlendorf and Strahlendorf 1983; Verbanck et al. 1990). Even
without direct changes in basal activity, LC signaling of salient sensory information
is disrupted by low dose ethanol (1 g/kg). Acute ethanol delays, reduces the
magnitude of, and slows LC-NE conduction velocity during LC signaling of sensory
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information (Aston-Jones et al. 1982). This difference between, on the one hand,
suppression of NE unit activity or responsiveness and, on the other hand, evidence of
neuronal activation using metabolite and c-Fos measures, has yet to be resolved. One
potential explanation worth pursuing, however, comes from in vitro evidence for
rebound activation in LC-NE neurons after acute ethanol washout which has been
seen in multiple studies after acute suppression, or complete inhibition of firing by
ethanol (Shefner and Tabakoff 1985; Verbanck et al. 1990).

There is additional evidence that environmental history may alter NE responses to
acute alcohol, which has implications for interpretation of the above findings.
Karkhanis et al. (2014, 2015) used microdialysis to measure NE release in the
basolateral amygdala and NAc after low doses of acute ethanol (1 or 2 g/kg). No
changes in NE release after alcohol were identified in group housed animals, but
there was a significant enhancement of NE release within animals that had a history
of social isolation. Just as environment might alter neural plasticity that contributes
to changes in NE response to acute alcohol, chronic alcohol consumption also
appears to alter the homeostatic balance within NE circuitry.

As noted above, NE metabolite levels in the CSF of alcohol-dependent subjects
are higher compared to control subjects following acute ethanol administration
(Borg et al. 1981). In dependent animals receiving daily ethanol gavage, NE
metabolite levels remain high while intoxicated and through to withdrawal,
indicating chronic increases in NE signaling (Karoum et al. 1976). Repeated alcohol
administration has also been shown to sensitize NE neurons to release larger
amounts of NE (Lanteri et al. 2008). Chronic alcohol differentially induces c-Fos
signaling in the NTS (Ryabinin et al. 1997) of males and LC of females but not males
(Chang et al. 1995; Retson et al. 2015) indicating some region-specific adaptations in
NE signaling with chronic alcohol. However, withdrawal from chronic alcohol
ubiquitously activates NE signaling across regions (Vilpoux et al. 2009).

Chronic alcohol use has long been associated with disruption of the HPA axis,
although central NE is not necessarily a direct component (Richardson et al. 2008).
As noted above, NE sources such as LC and NTS provide critical input to central
HPA nuclei including the paraventricular nucleus of the hypothalamus (PVN) as
well as sites in the amygdala and extended amygdala (Moore and Bloom 1979).
β-NE signaling within PVN is critical to ACTH production after ethanol administra-
tion (Selvage 2012). Alterations in NE signaling to HPA regions, combined with
reciprocal connections between NE nuclei and CRF neurons that are activated after
chronic ethanol in the central amygdala and other regions, generate feed-forward
circuits for persisting NE dysfunction after chronic alcohol (Retson et al. 2016).
Evidence for allostatic changes in NE signaling after chronic alcohol exposure and
withdrawal indicates NE dysfunction as a key aspect of the negative affective state
and a component driving relapse after abstinence (Koob 2014).

In summary, there is a wealth of studies demonstrating that both acute and
chronic alcohol use has an impact on NE neuron function and NE release (see
Table 1). Additionally, several peptides, such as NPY and galanin, which are
expressed by NE neurons (and other populations) are known to be altered by alcohol
exposure (Barson and Leibowitz 2016; Gilpin and Roberto 2012). The impact of
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co-transmitter/peptide release within NE circuits remains understudied in general.
Most studies on these systems to date have focused on receptor signaling, and the
source of these relevant co-transmitters/peptides, including whether or not they are

Table 1 Summary of the impact of ethanol on NE neuronal function

Change Region Measurement Species References

NE neuron activity
Acute ethanol

Decrease LC Electrophysiology
(in vivo)

Rodent Aston-Jones et al. (1982), Strahlendorf
and Strahlendorf (1983), and Verbanck
et al. (1990)

Decrease LC Electrophysiology
(ex vivo)

Rodent Osmanovic and Shefner (1994),
Shefner and Tabakoff (1985), and
Verbanck et al. (1990)

Rebound
increase

LC Electrophysiology
(ex vivo)

Rodent Shefner and Tabakoff (1985) and
Verbanck et al. (1990)

Increase LC,
NTS

c-Fos Rodent Aimino et al. (2017), Chang et al.
(1995), Kolodziejska-Akiyama et al.
(2005), Lee et al. (2011), Ryabinin
et al. (1997), and Thiele et al. (1997,
2000)

Chronic ethanol

Increase LC c-Fos Rodent Males (Knapp et al. 1998; Putzke et al.
1996; Ryabinin et al. 1997) females
but not males (Retson et al. 2015)

Decrease LC c-Fos Rodent Males (Rodberg et al. 2017)

NE release/measurement
Acute ethanol

Increase CSF/
plasma

NE, metabolites
(MHPG)

Human Borg et al. (1981) and Howes and Reid
(1985)

Increase Whole
brain

Metabolites
(DHPG, VMA)

Rodent Alari et al. (1987b), Corrodi et al.
(1966), Karoum et al. (1976), and
Murphy et al. (1983)

Decrease Whole
brain

NE Rodent Alari et al. (1987a) and Murphy et al.
(1983)

Chronic ethanol

Increase CSF Metabolites
(MHPG)

Human Borg et al. (1981)

Increase Whole
brain

Metabolites
(DHPG, VMA)

Rodent Karoum et al. (1976)

Increase PFC Evoked
extracellular NE

Rodent Lanteri et al. (2008)

As discussed in the text above, there has been longstanding interest in understanding how ethanol
alters noradrenergic activity, and norepinephrine release/turnover. Some key findings are
summarized in this table
BLA basolateral amygdala, CSF cerebrospinal fluid, DHPG 3,4-dihydroxyphenylglycol, MHPG
3-methoxy-4-hydroxy-phenylglycol, NAc nucleus accumbens, LC locus coeruleus, NTS nucleus
tractus solitarius, PFC prefrontal cortex, VMA vanillomandelic acid
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originating in NE neurons, remains to be determined. There are also results that
appear to conflict – the differences between decreased acute effects on NE neuron
activity vs. increased c-Fos and NE release, for example. These differences may stem
from experimental differences such as time points of intoxication and withdrawal, all
of which have profound but potentially differential effects on NE systems. Future
work dissecting the effects of acute vs. chronic alcohol at different stages of
administration and withdrawal will help specify the precise effects of alcohol on
NE neuron function and plasticity.

3.2 Effects of Noradrenergic Receptor Modulation
on Alcohol-Related Behaviors and Neural Systems

Manipulation of noradrenergic signaling has provided some of the strongest evi-
dence for a functional role of NE in alcohol-related behaviors and has demonstrated
not only a mechanism for NE in stress-associated alcohol effects, but in positive
motivational aspects of alcohol use as well (Table 2). Early studies using DBH
inhibitors showed attenuation of voluntary ethanol consumption (Amit et al. 1977).
More recently DBH knockout mice that are incapable of producing central NE have
been shown to have a number of relevant phenotypes including reduced ethanol
consumption in males but not females, and increased ethanol-related hypothermia
and sedation in both sexes (Weinshenker et al. 2000). DBH knockout mice are
hyperdopaminergic and release DA from NE terminals, suggesting the DA signaling
through NE neurons may be a potential mechanism for these findings. However
disruptions of DA signaling through lesioning of accumbens DA inputs do not
impact voluntary ethanol intake (Rassnick et al. 1993). Lesions of ascending NE
tracts can generate increases (Kiianmaa and Attila 1979; Kiianmaa et al. 1975) or
decreases in ethanol intake (Brown and Amit 1977; Corcoran et al. 1983).

Whether NE-related changes in ethanol consumption are representative of
reduced stress-driven drinking or reduced ethanol reward remain unclear. However,
strong evidence for rewarding components of NE in acute alcohol comes from a
selective NE deafferentation of medial prefrontal cortex (mPFC) in mice which
prevents ethanol-related conditioned place preference and reduces ethanol consump-
tion (Ventura et al. 2006). This reinforces that the complexity of NE in alcohol-
related behaviors is due in part to the broad efferent networks of NE and complex
interactions at different targets.

A number of studies investigating the role of NE transmission in dependent
subjects indicate a role for NE in pathological allostasis that is further exacerbated
during withdrawal (Becker 2012; Koob 2014). NE-targeted therapies have
demonstrated efficacy in improving symptoms associated with sympathomimetic
overdrive and NE overactivation during withdrawal from chronic alcohol (Hawley
et al. 1994; Rasmussen et al. 2006). Polymorphisms in noradrenergic reuptake
transporters or α2 receptors, both mechanisms for terminating NE signaling, have
been associated with familial history of, or individuals with, alcohol use disorders
(Clarke et al. 2012). Studies in rodents and humans have shown value in the use of
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Table 2 Summary of the impact NE manipulations on ethanol-related behavior

Direct NE disruption

Manipulation Measurement Effect on ethanol-
related behavior

Species References

DBH knock-
out

Ethanol intake Decreased
consumption

Rodent Males but not females
(Weinshenker et al. 2000)

DBH
inhibition

Ethanol intake Decreased
consumption

Rodent Brown et al. (1977)

DNAB lesion Ethanol intake Increased
consumption

Rodent Kiianmaa et al. (1975)

DNAB lesion Ethanol intake
and initiation

Decreased
consumption/
initiation

Rodent Brown and Amit (1977)
and Corcoran et al. (1983)

NE lesion in
PFC

Ethanol intake
and CPP

Decreased
consumption/
preference

Rodent Ventura et al. (2006)

LC lesion Withdrawal
symptoms

Decrease Rodent Kostowski and
Trzaskowska (1980)

NE receptor disruption

Target/
manipulation
(compound)

Measurement Effect on
ethanol-related
behavior

Species References

α2 – Gi coupled

Agonist
(lofexidine,
guanfacine)

Ethanol SA, cue/
stress-induced
reinstatement

Decreased
ethanol seeking

Rodent Fredriksson et al. (2015),
Le et al. (2005), and
Riga et al. (2014)

Agonist
(clonidine,
guanfacine)

Ethanol intake Decreased
consumption

Rodent Fredriksson et al. (2015),
Opitz (1990), and
Rasmussen et al. (2014a)

Agonist
(clonidine)

Withdrawal
symptoms

Decrease acute
withdrawal

Rodent Kostowski and
Trzaskowska (1980)

α1 – Gq coupled

Inverse
agonist
(prazosin)

Cue/stress-
induced craving

Decreased
ethanol craving

Human Fox et al. (2012)

Inverse
agonist
(prazosin)

Ethanol intake Decreased
consumption

Human Simpson et al.
(2009, 2015)

Inverse
agonist
(prazosin)

Ethanol intake
and initiation

Decreased
consumption

Rodent Froehlich et al. (2013,
2015) and Skelly and
Weiner (2014)

Inverse
agonist
(prazosin)

Ethanol SA, cue/
stress-induced
reinstatement

Decreased
ethanol seeking

Rodent Funk et al. (2016),
Verplaetse et al. (2012),
and Walker et al. (2008)

Antagonist
(doxazosin)

Ethanol intake Decreased
consumption

Rodent O’Neil et al. (2013)

Antagonist
(doxazosin)

Cue/stress-
induced ethanol
reinstatement

Decreased
ethanol seeking

Rodent Funk et al. (2016)

(continued)
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Gi-coupled α2-adrenergic agonists (which activate postsynaptic and autoreceptors)
as adjuncts for ameliorating ethanol withdrawal (Kostowski and Trzaskowska 1980;
reviewed by Muzyk et al. 2011).

Preclinical evidence indicates an effect of NE pharmacotherapy both during acute
withdrawal and in the maintenance of abstinence after chronic ethanol. α2 agonists
have shown further application in reducing operant self-administration of ethanol
and reduce stress-induced reinstatement of ethanol seeking (Le et al. 2005). In
alcohol preferring strains of P and AA rats, α2 agonists reduce voluntary alcohol
intake acutely and for several days after repeated administration (Opitz 1990;
Rasmussen et al. 2014a). These effects are likely mediated by overall reductions in
NE signaling due to presynaptic modulation as postsynaptic NE antagonists produce
similar effects. Guanfacine, an α2a agonist known for cognitive enhancing effects
and currently being explored for treating ADHD (Ramos and Arnsten 2007), has
been tested in rat models of drinking, producing decreased alcohol intake in high-
drinking rats (Fredriksson et al. 2015) and in rats with elevated drinking resulting
from social defeat stress (Riga et al. 2014). These results indicate a complex, but
potentially important role for α2 signaling in alcohol motivation and AUD. How-
ever, these agonist studies must be interpreted with caution, as α2 agonists have
known sedative properties via Gi-mediated inhibition of arousal circuits (Aoki et al.
1994) that may reduce a variety of volitional behaviors, particularly after systemic
administration.

Chronic alcohol has been shown to disrupt α1-mediated NE signaling in the
extended amygdala (McElligott et al. 2010), similar dysfunction likely occurs at
other postsynaptic targets with extensive α1 receptors including hypothalamus,
amygdala, prefrontal cortex, and VTA (Domyancic and Morilak 1997; Sands and
Morilak 1999). Prazosin, an α1 NE inverse agonist, is a sympatholytic compound

Table 2 (continued)

NE receptor disruption

β – Gs coupled

Antagonist
(propranolol)

Withdrawal
symptoms

Decrease
withdrawal

Human Carlsson (1976) and
Sellers et al. (1977)

Antagonist
(propranolol)

Ethanol SA Decreased
ethanol seeking

Rodent Gilpin and Koob (2010)

Antagonist
(propranolol)

Ethanol intake Decreased
consumption

Rodent Andreas et al. (1983)

α1 and β antagonist cocktail

Prazosin +
propranolol

Ethanol intake Decreased
consumption

Rodent Rasmussen et al.
(2014b)

NE-targeted manipulations have been shown to have a number of effects on ethanol-related
behavior. The vast majority of interventions have targeted reductions in NE transmission/signaling
and a summary of some key effects are included in this table
CPP conditioned place preference, DBH dopamine-β-hydroxylase, DNAB dorsal noradrenergic
bundle, PFC prefrontal cortex, SA self-administration (operant)
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which is FDA approved to treat hypertension and has been well explored in relation
to alcohol consumption. It has been shown to dose dependently reduce operant
ethanol seeking in dependent animals (Walker et al. 2008), seeking in P rats
(Verplaetse et al. 2012), and relapse in P rats (Froehlich et al. 2015), and it can
also delay initiation of drinking in P rats (Froehlich et al. 2013). Prazosin also
reduces anxiety-like behavior after chronic alcohol exposure and ongoing ethanol
consumption in rats (Rasmussen et al. 2017; Skelly and Weiner 2014), and decreases
sensitization to chronic alcohol administration in mice (Kim and Souza-Formigoni
2013). Prazosin crosses the blood–brain barrier and is available as a clinical anti-
hypertensive agent. Off-label studies have provided translational support for
prazosin in the treatment of AUD. Prazosin has been shown to reduce stress- and
cue-induced alcohol craving in abstinent individuals with AUD (Fox et al. 2012), as
well as to reduce alcohol consumption and increase alcohol free days in treatment
seeking individuals with AUD and those with AUD and comorbid PTSD (Simpson
et al. 2009, 2015). Doxazosin, a long-lasting α1 receptor antagonist, has shown
preclinical efficacy in reducing alcohol consumption and yohimbine-induced rein-
statement in alcohol preferring P rats (Funk et al. 2016; O’Neil et al. 2013). α1-
meditated treatments such as prazosin and doxazosin may also come with potential
side effects, such as orthostatic hypertension, and at high doses drowsiness, which
may either limit their usefulness or patient compliance (see clinical efficacy review
in this volume, Litten et al. 2018). However, both preclinical and human tests of α1
antagonists appear to be efficacious, as described above, suggesting that refinement
of α1-associated therapy may be a worthwhile pursuit.

Signaling through the β adrenergic receptor influences stress responses,
indicating a potential mechanism to explain AUD-associated stress and anxiety
(Do Monte et al. 2008; Giustino et al. 2016; Gorman and Dunn 1993; Steenen
et al. 2016). However, the contributions of this system to AUD have been less
thoroughly explored. Early studies suggested a beneficial role of propranolol, a
nonselective β adrenergic antagonist, on decreasing withdrawal symptoms such as
elevated anxiety and potentially reducing drinking in human alcoholic patients
(Carlsson 1976; Sellers et al. 1977). Propranolol treatment also decreased alcohol
preference in mice (Andreas et al. 1983). In rats, propranolol reduced operant self-
administration of and motivation for alcohol in dependent animals at low doses and
reduced moderate ethanol consumption in nondependent animals at high doses
(Gilpin and Koob 2010). Combined α1 and β adrenergic treatment with prazosin
and propranolol is more effective at reducing alcohol consumption than either drug
alone in rats (Rasmussen et al. 2014b), indicating that such a combination treatment
may be useful in patients. However, this promising approach has not yet been
investigated clinically. As noted with respect to α1-related treatments above, poten-
tial NE-related pharmacotherapies targeting β-adrenergic receptors must be consid-
ered with caution. Drugs targeting these receptors have potent hypotensive
effects (Musini et al. 2017) which may limit their implementation and relevant
dosing.

As is clear from studies involving manipulation of NE receptor signaling, there is
a prominent role for this pathway in both human and animal models of alcohol use
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(Table 2). The potent effects of α1 receptor blockade in animals and the promising
impacts on human patients indicate that this may be a key mechanism in regulating
aspects of AUD. However, modulation at α2 or β receptors may play an equally
potent role, and future therapies may benefit from combinations of receptor
targeting. Although NE receptor pharmacotherapy appears to be particularly
promising for AUD treatment, refinements are still required in order to develop
therapies that are specific to dependence symptoms, including increased alcohol
motivation, increased stress, and potentially cognitive disruptions impairing decision
making. One possibility is that the AUD syndrome is a result of globally disrupted
NE signaling, arguing that broad NE-associated treatments will be maximally
efficacious. Alternately, only some aspects of the NE system may be disrupted in
AUD, or AUD subtypes, suggesting that future pharmacotherapy treatment should
be refined. One way to refine future treatments, and a key action item for future
research, is to determine functional consequences of the intersection between NE
receptor subtypes and downstream neural systems influenced. Specific symptoms of
AUD may result from disrupted NE signaling specifically in the BNST or amygdala
or PFC, for example, but not in other areas. Individualized, highly specific treatment
for subtypes of AUD may stem from characterizing precise interactions between NE
release and NE-regulated neural networks. In addition to understanding specific
circuits influenced by AUD-associated disruptions in NE release, future
NE-related treatments may benefit from an understanding of interactions between
NE signaling and other neuromodulatory or peptidergic pathways. Given the diverse
set of systems associated with alcohol use and AUD, optimal treatments for alcohol-
associated disorders will likely benefit from targeting multiple systems. One possi-
bility is that these systems interact sequentially, such as in the proposal that the main
motivational impact of NE is via the regulation of DA release, and the observation
that neuropeptides such as DYN or CRF impact signaling in the LC, for example
(Tjoumakaris et al. 2003). Alternately, these systems may influence alcohol use in a
simultaneous, distributed, and potentially independent fashion, increasing the diver-
sity of AUD subtypes depending on combinations of systems affected. Thus, in
addition to specifying the precise nature of NE impact on alcohol use, potential
treatment research will benefit from understanding the interaction (or lack thereof)
between NE and the numerous other neural systems disrupted in AUD (Becker
2012; Koob 2014).

4 Summary: Norepinephrine in the Treatment of AUD

As discussed in the sections above, NE signaling exhibits a substantial degree of
influence over alcohol use and its disruption contributes to AUD. Although its role in
stress and anxiety is well documented, NE also appears to have an important role in
the rewarding aspects of alcohol use. The NE system is also critical in a number of
other behaviors and functions, in particular cognitive functions such as attention,
memory, and decision making, as described above. Each of these elements of NE
regulation contribute both to the role of NE signaling in regulated, nondependent,
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alcohol seeking and use, and in AUD symptoms resultant from chronic alcohol
exposure. Given the prominent dysphoric disruptions that are a consequence of
chronic alcohol use, elevated NE associated with (or even producing) increased
stress in AUD may enhance motivation for alcohol in order to transiently relieve this
negative hedonic state (Koob 2014). At the same time, disrupted NE control over
cognitive functions such as response inhibition, behavioral flexibility, attention, and
memory may result in compromised mechanisms that would normally allow
individuals to regulate alcohol seeking behaviors. Pharmacotherapeutics specifically
targeting the NE system, therefore, have the potential to ameliorate multiple key
symptoms of AUD: motivation for alcohol, stress, and cognitive disruption.
Supporting this hypothesis, initial results in human patients treated with prazosin,
for example, appear promising. More specifically tailored treatments resulting from
future research into the exact mechanisms of NE receptor subtypes and their
interaction with other brain systems will enhance the effectiveness and selectivity
of targeting the NE system. Additional issues remain to be explored at both basic
and clinical levels, such as the interaction between NE signaling and other
neuromodulators and neuropeptides, clear sex differences in NE function in both
humans and nonhuman models, and issues associated with individual heterogeneity
in AUD symptoms in which some may be more NE-associated than others. Regard-
less, work to date has demonstrated that the NE system is both fundamentally
involved in alcohol seeking behaviors and is disrupted following chronic alcohol
and withdrawals in AUD and research for NE-targeted pharmacotherapies has strong
potential for positive treatment outcomes.
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Voltage-Sensitive Calcium Channels
in the Brain: Relevance to Alcohol
Intoxication and Withdrawal
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Abstract
Voltage-sensitive Ca2+ (CaV) channels are the primary route of depolarization-
induced Ca2+ entry in neurons and other excitable cells, leading to an increase
in intracellular Ca2+ concentration ([Ca2+]i). The resulting increase in [Ca2+]i
activates a wide range of Ca2+-dependent processes in neurons, including neuro-
transmitter release, gene transcription, activation of Ca2+-dependent enzymes,
and activation of certain K+ channels and chloride channels. In addition to their
key roles under physiological conditions, CaV channels are also an important
target of alcohol, and alcohol-induced changes in Ca2+ signaling can disturb
neuronal homeostasis, Ca2+-mediated gene transcription, and the function
of neuronal circuits, leading to various neurological and/or neuropsychiatric
symptoms and disorders, including alcohol withdrawal induced–seizures and
alcoholism.
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1 Introduction

In neurons, voltage-sensitive Ca2+ (CaV) channels serve as the primary route of Ca2+

entry in response to membrane depolarization, driving a localized increase in intra-
cellular Ca2+ concentration ([Ca2+]i). The driving force for Ca2+ entry arises from
the steep electrochemical gradient maintained between extracellular and intracellular
Ca2+ concentrations, which are typically on the order of 1 mM and 100 nM,
respectively; thus Ca2+ entry can change membrane potential and can therefore
affect neuronal excitability. In neurons, low [Ca2+]i is maintained by a variety of
mechanisms and processes, including Ca2+ efflux via a Na+/Ca2+ exchange protein
and a Ca2+-ATPase located at the plasma membrane, as well as the sequestration
of intracellular Ca2+ into in Ca2+ stores (e.g., via the sarco-endoplasmic reticular
ATPase pump) or by Ca2+-buffering proteins (Berridge 2012).

The CaV-mediated localized increase in [Ca2+]i in neurons activates a variety of
downstream processes, including Ca2+-induced Ca2+ release from intracellular Ca2+-
gated Ca2+ stores, activation of Ca2+-activated K+ channels, Ca2+-activated chlo-
ride channels and Ca2+-dependent enzymes, and other Ca2+-dependent processes
such as gene transcription and neurotransmitter release. In addition, Ca2+ entry
following relatively mild membrane depolarization (e.g., depolarization induced
by activation of N-methyl-D-aspartate receptors) can give rise to low-threshold Ca2+

spikes, which can further depolarize the plasma membrane, causing voltage-gated Na+

channels to open and initiating the repetitive firing of action potentials (Cain and
Snutch 2010). Thus, CaV channels play a wide range of important roles under both
physiological and pathophysiological conditions, including a variety of diseases
associated with neuronal excitability. In the central nervous system (CNS), CaV
channels are also an important molecular target for alcohol, and changes in neuronal
Ca2+ signaling induced by alcohol exposure and subsequent withdrawal can lead to
alcoholism and alcohol withdrawal–induced seizures, (AWSs).

2 Structure, Diversity, and Localization of Voltage-Sensitive
Ca2+ Channels in the CNS

2.1 Structure and Diversity of CaV Channels

CaV channels are large protein complexes comprised of a pore-forming α1 subunit
and up to three auxiliary β, α2/δ, and γ subunits (Simms and Zamponi 2014). In
addition to providing the pore through which Ca2+ flows, the α1 subunit of CaV
channels also confers the channel’s electrophysiological and pharmacological
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properties; in contrast, the auxiliary subunits modulate the channel’s biophysical
properties and regulate the channel’s trafficking to the plasma membrane. In
human, nine distinct genes encode the α1 subunits (designated α1A through α1I),
all of which are expressed in the CNS (Simms and Zamponi 2014). Based on their
responsiveness to changes in membrane potential, these nine CaV channels are
broadly classified as either low voltage–activated (LVA, comprising the CaV3
family) channels or high voltage–activated (HVA, which include the CaV1 and
CaV2 families) channels. Activation of LVA channels and HVA channels produced
transient and sustained currents, respectively.

HVA CaV channels have both distinct and overlapping voltage dependence and
kinetics, making it difficult to differentiate HVA CaV currents based solely on their
biophysical properties. Fortunately, however, HVA CaV channels have unique
pharmacological profiles, which have been used to confirm the heterogeneity of
the channels expressed in the CNS. Moreover, based largely on their sensitivity to
various CaV channel blockers, HVA CaV channels currents have been further
classified into the following five types: L-type CaV1.2 (α1C), L-type CaV1.3
(α1D), N-type CaV2.2 (α1B), P/Q-type Cav2.1 (α1A), and R-type CaV2.3 (α1E)
channels, encoded by the CACNA1C, CANA1D, CANA1B, CANA1A, and
CACNA1E genes, respectively (Ertel et al. 2000; Randall and Tsien 1995). In the
CNS, P/Q-type Cav2.1 channels can give rise to both P-type and Q-type currents;
this distinction is likely due to a combination of factors, including the CaV-β subunit
and/or alternative splicing of the CACNA1A gene that encodes the channels
(Richards et al. 2007).

Molecular analyses revealed that the LVA family of CaV channels consists of
three distinct α1 pore-forming subunits, namely CaV3.1 (α1G), CaV3.2 (α1H), and
CaV3.3 (α1I), encoded by the CACNA1G, CANA1H, and CACNA1I genes, respec-
tively (Cribbs et al. 1998; Lee et al. 1999; Perez-Reyes et al. 1998). Interestingly,
unlike HVA CaV channels, the α1 subunit of LVA CaV channels does not require
auxiliary subunits to form a fully functional channel, although LVA CaV channels
can be regulated by auxiliary subunits (Klöckner et al. 1999). Finally, the three genes
that encode the CaV3.x subunits can undergo alternative splicing, giving rise to a
wide diversity of functional LVA CaV channels (Swayne and Bourinet 2008). The
CaV-α1 subunit is comprised of four transmembrane domains, which are connected
by cytoplasmic linkers (Simms and Zamponi 2014; Turner and Zamponi 2014). The
N and C termini are located in the cytoplasmic side and they contained important
sites for protein–protein interactions such as with G-protein and protein kinases
(Simms and Zamponi 2014; Turner and Zamponi 2014). Interestingly, phosphoryl-
ation by PKA or PKC alters the voltage dependence and kinetics of CaV currents
(Gray and Johnston 1987; Nagao and Adachi-Akahane 2001; Sculptoreanu et al.
1993; Stea et al. 1995).
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2.2 Localization and Function HVA CaV1 Channels

Although L-type CaV1.x channels are expressed widely throughout brain, each
channel subtype has a unique cellular and subcellular distribution. For example,
L-type CaV1.3 channels are distributed relatively evenly, whereas L-type CaV1.2
channels are localized in clusters (Hell et al. 1993; Tippens et al. 2008). Moreover,
L-type CaV1.2 and CaV1.3 channels are located predominantly on the cell soma
(where they regulated depolarization and Ca2+-dependent pathways that control
gene expression), proximal dendrites, and in some interneurons in the olfactory
bulb, cerebral cortex (pyramidal neurons), hippocampus (pyramidal neurons in the
CA1–CA3 areas), dentate gyrus (granule neurons), amygdala, inferior colliculus,
cerebellum (granule layer, molecular layer, Purkinje cells), and spinal cord (Hell
et al. 1993). Unlike L-type CaV1.3 channels, CaV1.2 channels are expressed in
astrocytes in the CA3 area of the hippocampus (Tippens et al. 2008; Westenbroek
et al. 1990). The distribution of CaV1.2 and CaV1.3 channels throughout the CNS
has been confirmed by RT-PCR analysis, which shows that the levels of CACNA1C
and CACNA1D mRNA matches the protein levels of CaV-α1C and CaV-α1D
subunits, respectively (Sinnegger-Brauns et al. 2009; Schlick et al. 2010). In the
striatum, CACNA1C and CACNA1D mRNA are co-expressed in medium-sized
spiny neurons (Olson et al. 2005). Interestingly, L-type CaV1.3a (but not CaV1.3b)
isoform co-localizes with Shank protein and the synaptic protein PSD-95 in medium
spiny neurons at excitatory synapses (Olson et al. 2005). In the CNS, approximately
80% and 20% of L-type CaV1 channels are CaV1.2 and CaV1.3 channels, respec-
tively (Hell et al. 1993; Sinnegger-Brauns et al. 2009). With respect to function,
evidence suggests that L-type CaV1.3 channels activate with less depolarization and
inactivate more slowly than CaV1.2 channels (Koschak et al. 2001; Xu and
Lipscombe 2001). Given their unique set of biophysical properties, L-type CaV1.3
channels likely play an important role in controlling Ca2+-dependent firing; moreover,
L-type CaV1.3 channels help sustain Ca2+ influx at membrane potentials at which
CaV1.2 channels are closed.

CaV2.1, CaV2.2, and CaV2.3 channels (i.e., P/Q-type, N-type, and R-type,
respectively) are also expressed throughout the CNS. P/Q-type CaV2.1 channels
are primarily concentrated in presynaptic terminals and dendritic shafts, N-type
CaV2.2 are found mainly in dendrites and some cell bodies of neurons, and
R-type CaV2.3 channels are found mainly in the cell soma in most sites with
variable expression in dendrites (Westenbroek et al. 1992, 1995; Yokoyama et al.
1995). These CaV channels are found primarily in the olfactory bulb, cerebral
cortex (pyramidal neurons), striatum (medium-sized spiny neurons), amygdala,
hippocampus (pyramidal neurons in CA1–CA3 areas), dentate gyrus (granule
neurons), thalamus, globus pallidus, hypothalamus, inferior colliculus, and cere-
bellum (Purkinje cells) (Hillman et al. 1991; Westenbroek et al. 1992, 1995;
Volsen et al. 1995; Yokoyama et al. 1995; Day et al. 1996; Xu et al. 2010). In
the cortex and hippocampus, there is barely detection of R-type CaV2.3 channels
in proximal dendrites, while other structures such as olfactory bulb, amygdala,
and cerebellum have intense expression of these channels in the dendrites, the
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prominent sites of Ca2+ entry, causing transient increase in cytosolic Ca2+.
Molecular and biochemical analyses have confirmed that mRNA levels match
the corresponding protein for CaV2.1(α1A), CaV2.2(α1B), and CaV2.3 (α1E) (Mori
et al. 1991; Soong et al. 1993; Day et al. 1996; Ludwig et al. 1997; Schlick et al.
2010).

At synaptic terminal, the rapid release of neurotransmitters requires tight
coupling between presynaptic CaV2.x channels to the release machinery. In
addition to regulating vesicle fusion, members of the CaV2.x channels also
control neuronal excitability. For example, P/Q-type CaV2.1 and N-type CaV2.2
channels interact both physically and functionally with large-conductance, Ca2+-
activated K+ channels, providing the Ca2+ influx needed to activate these
channels (Faber and Sah 2003; Berkefeld et al. 2010); thus, P/Q-type CaV2.1
and N-type CaV2.2 channels control neuronal excitability by regulating K+

conductances.

2.3 Localization and Function LVA CaV3 Channels

Like HVA CaV channels, LVA CaV3 channels are also distributed throughout
the CNS; however, their expression is restricted to the cell body and dendrites of
neurons primarily in the olfactory bulb (granule layer), cerebral cortex (pyramidal
neurons, GABAergic interneurons), striatum, amygdala, hippocampus (CA1–CA3
pyramidal neurons), dentate gyrus (granule cells), thalamus (large neurons,
GABAergic interneurons), substantia nigra, inferior colliculus, superior colliculus,
inferior olive, cerebellum (granule layer, molecular layer, Purkinje cells), and spinal
cord (Craig et al. 1999; Talley et al. 1999; Yunker et al. 2003; McKay et al. 2006;
Kovács et al. 2010; Liu et al. 2011; Kanyshkova et al. 2014).

As discussed above, LVA CaV3 channels are activated upon weak depolarization
and carry depolarizing currents; therefore, similar to L-type CaV1.3 channels, LVA
CaV3.x channels also play an important role in controlling neuronal excitability.
LVA CaV3.x channels also inactivate at a fast rate. Thus, a combination of low
threshold of activation with fast inactivation kinetics results in transient Ca2+ influx,
giving rise to the so-called “low-threshold Ca2+ potentials,” which initiate the burst-
firing process (Cain and Snutch 2010; Contreras 2006; Jahnsen and Llinas 1984; Lee
et al. 2003; Yazdi et al. 2007; Xu and Clancy 2008). The burst-firing mode in the
CNS contributes to the generation of physiological events such as sleep spindles, and
pathological conditions such as epileptic seizures (Cain and Snutch 2010, 2012). In
addition, LVA CaV3.x channels generate a so-called “window current” near the
neuron’s resting membrane potential, thereby regulating Ca2+ homeostasis (Dreyfus
et al. 2010). In the CNS, LVA CaV3.x channels are also associated both with
voltage-gated K+ channels and with Ca2+-activated K+ channels (Anderson et al.
2010; Rehak et al. 2013), giving LVA CaV3.x channels the ability to activated K+

channels and regulate neuronal firing.
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3 Effects of Acute Alcohol Exposure on the Expression
and Function of CaV Channels

Oakes and Pozos (1982a, b) reported that alcohol exposure decreased CaV
currents (and voltage-gated K+ currents but not voltage-gated Na+ currents) in
dorsal root ganglia neurons. This effect was not associated with change in the
resting membrane potential and spike amplitude. However, the duration of the
action potential (AP) was decreased, and AP threshold was increased (Oakes and
Pozos 1982a, b). A large body of experimental evidence indicates that acute
alcohol exposure suppresses K+ depolarization–induced and AP–evoked Ca2+

transients in several CNS neurons including inferior colliculus, cerebellar, and
hippocampal neurons (Gruol et al. 1997; Mah et al. 2011; Morton and
Valenzuela 2016; our unpublished data). Consistent with these findings, we
found that acute alcohol exposure inhibits the current carried by HVA CaV
channels in inferior colliculus neurons (our unpublished data). Furthermore,
acute alcohol exposure suppresses currents through L-type CaV1.x channels at
neurohypophysial terminals, in supraoptic neurons, and hippocampal neurons
(Wang et al. 1991, 1994; Widmer et al. 1998; Zucca and Valenzuela 2010).
On the other hand, P-type CaV2.1 channels in Purkinje cells are unaffected by
acute alcohol exposure (Hall et al. 1994). Thus, in the CNS, L-type CaV1.x
channels appear to be particularly sensitive to the acute effects of alcohol
exposure.

Interestingly, LVA CaV3.x channels are also an important target for alcohol. For
example, acutely exposing rodent thalamic neurons to a low or high alcohol
concentration increases or decreases, respectively, LVA CaV3.x currents
(Mu et al. 2003; Joksovic et al. 2005). Furthermore, the inhibitory effect of alcohol
on LVA CaV3.x currents appears to be mediated by protein kinase C (Shan et al.
2013). In contrast, acute exposure to either low or high alcohol concentration
inhibits LVA CaV3.x currents in the inferior olive in primates (Welsh et al. 2011).
Thus, the increase in LVA CaV3.x currents in response to low alcohol concentration
in rodents – but not in primates – suggests species-specific differences in the
underlying mechanisms.

The inhibition of HVA CaV channels and LVA CaV channels (Fig. 1), and
downstream Ca2+-related signaling following acute alcohol exposure suggests that
this mechanism may induce a compensatory upregulation of HVA CaV channels and
LVA CaV channels during chronic alcohol intoxication; this upregulation would be
masked by the inhibitory effect alcohol, but would then be revealed during alcohol
withdrawal.
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4 Effects of Chronic Alcohol Exposure on the Expression
and Function of CaV Channels

Several lines of evidence indicate that chronic alcohol exposure alters Ca2+ signaling
in the CNS. For example, chronic alcohol exposure increases AP–evoked Ca2+

transients in hippocampal neurons (Mulholland et al. 2015), possibly by
upregulating of CaV channels. Consistent with this notion, P-type CaV2.1 current
is increased in the cerebellum during chronic alcohol exposure (Gruol and Parsons
1994). On the other hand, chronic alcohol intoxication by inhalation did not alter the
protein levels of P/Q-type CaV2.1 (α1A) protein levels in cortical neurons (Katsura
et al. 2005). Similarly, the protein levels of the P/Q-type α1A subunit were

Fig. 1 Acute alcohol
intoxication downregulated
CaV channels in the brain. In
normal conditions, the
expression of LVA and HVA
CaV channels is tightly
regulated whereas following
acute alcohol intoxication, a
dysregulation occurs leading
to a downregulation of LVA
and HVA CaV channels
(L-type CaV1.x)
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unchanged in the central nucleus of the amygdala following chronic intermittent
alcohol exposure (Varodayan et al. 2017a). Increased protein levels of L-type
CaV1.3 (α1D) channels were measured in cortical neurons in mice following chronic
alcohol exposure by inhalation (Katsura et al. 2005). However, in the model of chronic
intermittent alcohol exposure, the protein levels of the L-type CaV1.2 (α1C) subunit
were decreased in the central nucleus of the amygdala (Varodayan et al. 2017b). The
dihydropyridine binding sites, which represent L-type CaV1.x channels, were
increased in ethanol-dependent brains (Dolin et al. 1987). Accordingly, chronic
alcohol exposure increased total CaV currents including L-type CaV1.x in hippocam-
pal neurons in ethanol-tolerant long-sleep mice compared to short-sleep mice; this
effect was not associated with changes in the biophysical properties of the channels,
suggesting an increase in the number of functional L-type CaV1.x channels (Huang
and McArdle 1993). L-type CaV1.x channels are also implicated in alcohol-mediated
neurodegeneration, as inhibition of these channels attenuated cytotoxicity related to
chronic alcohol exposure of neocortical cell cultures (Ruhe and Littleton 1994).

Finally, the protein levels of N-type CaV2.2 (α1B) channels were unchanged in
cortical neurons following chronic alcohol administration (Katsura et al. 2005),
whereas McMahon et al. (2000) reported an increase in the number of N-type
CaV2.2 channels in the frontal cortex and hippocampus in AWS-prone mice follow-
ing chronic alcohol administration. Thus, the increase in N-type CaV2.2 channel
expression may be specific to certain brain structures, and this increase may be
related to the genetic predisposition of AWS-prone mice to these seizures. Impor-
tantly, mice that lack functional N-type CaV2.2 channels have reduced alcohol
consumption (Newton et al. 2004). Similarly, mice treated with blockers and/or
agonists of L-type CaV1.x channels have reduced alcohol consumption (Rezvani and
Janowsky 1990; Rezvani et al. 1991; De Beun et al. 1996a, b). These findings
suggest that the anti-alcohol effect may not be related to antagonistic activity at
L-type CaV1.x channels; alternatively, the anti-alcohol effect may be restricted to
specific brain sites. The amygdala appears to be one of the brain sites underlying this
behavioral effect, as blocking of L-type CaV1.x channels in the central nucleus of
the amygdala reduces alcohol intake in rodents (Varodayan et al. 2017b). Taken
together, these findings suggest that both L-type CaV1.x channels and N-type
CaV2.2 channels might serve as viable therapeutic targets for treating of alcoholism.
The mechanisms underlying changes in L-type CaV1.x channels and N-type CaV2.2
channels are not fully understood (Fig. 2). Nevertheless, chronic alcohol exposure
increases the expression of protein kinase C (PKC) isoforms, including PKC delta
(PKCδ) and PKC epsilon (PKCε); moreover, chronic alcohol exposure upregulated
L-type CaV1.x channels and N-type CaV2.2 channels via PKCδ- and PKCε-
dependent mechanism, respectively (Gerstin et al. 1998; McMahon et al. 2000).

Interestingly, in primates, chronic alcohol exposure decreases and increases LVA
CaV3.x in the thalamus and inferior olive, respectively (Carden et al. 2006; Welsh
et al. 2011). In contrast, no changes in the mRNA levels or current density of LVA
CaV3.x channels were seen in thalamic neurons in a mouse model of chronic alcohol
exposure (Graef et al. 2011); however, the steady-state inactivation of LVA CaV3.x
channels was altered in these neurons during alcohol intoxication suggesting a
change in Ca2+ currents carried by these channels (Graef et al. 2011).
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5 Effects of Alcohol Withdrawal on the Expression
and Function CaV Channels

Alcohol withdrawal triggers increase in the expression of early gene c-fos through-
out the CNS at the time at which the seizure susceptibility peaked (Bouchenafa
and Littleton 1998). The increased expression of c-fos was prevented by inhibition
of L-type CaV1.x channels, suggesting an important role of Ca2+ influx in the
mechanisms underlying AWS susceptibility (Bouchenafa and Littleton 1998). In
addition, withdrawal from chronic alcohol exposure induced neuronal hyper-
excitability in the hippocampus; this epileptiform activity was mediated, in part,
by L-type CaV1.x channels (Riplet et al. 1996; Whittington and Little 1991, 1993;
Whittington et al. 1992, 1995). Seizures are usually the most severe symptoms

Fig. 2 Chronic alcohol
intoxication upregulates CaV
channels in the brain. During
chronic alcohol exposure, a
compensatory mechanism to
the inhibitory effect of alcohol
exposue occurs leading to an
upregulation of CaV channels
including L-type CaV1.3 (but
downregulation of CaV1.2);
moreover, the function and/or
expression of these channels
is masked by the inhibitory
effect of alcohol. LVA CaV
channels are either upreglated
or downregulated in various
brain sites
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associated with alcohol withdrawal syndrome. Typically, these AWSs are genera-
lized tonic-clonic seizures, which are initiated in the brainstem. In our model of
acoustically evoked AWSs, neurons in the IC play a critical role in initiating AWSs,
whereas the cortex, hippocampus, and amygdala play a role in propagating these
seizures (Faingold et al. 1998; Takao et al. 2006; Faingold 2008; Newton and
N’Gouemo 2017). In this model, K+ depolarization–induced Ca2+ transients were
increased in inferior colliculus neurons when the susceptibility to AWS peaks (our
unpublished data). The influx of Ca2+ into neurons plays an important role in the
neuronal hyperexcitability that underlies seizures, as [Ca2+]i rises – and extracellular
[Ca2+] decreases – during epileptiform activity (Heinemann et al. 1977; Albowitz
et al. 1997; Delorenzo et al. 2005). Thus, inhibition of Ca2+ influx into neurons is a
promising therapeutic approach for various types of seizures, including AWSs.
Interestingly, pharmacologically blocking L-type CaV1.x channels suppressed
acoustically evoked AWSs (Little et al. 1986). These findings suggest that altered
L-type CaV1.x channels – at least in the IC – play a key role in initiating these
seizures. Consistent with this notion, currents through HVA CaV channels are
increased before the onset of AWS susceptibility and when the prevalence of
AWSs peaks, but they returned to control levels after AWS susceptibility has
returned to baseline (N’Gouemo 2015; N’Gouemo and Morad 2003). Thus, the
increase in HVA CaV currents measured in IC neurons prior to the onset of AWS
susceptibility cannot be a consequence of seizure activity. Interestingly, alcohol
withdrawal increased HVA CaV currents in dentate granule neurons in AWS-
prone mice but not in AWS-resistant mice (Perez-Velazquez et al. 1994), suggesting
that genetic differences in the genes encoding HVA CaV channels may contribute to
differences in AWS susceptibility and the expression of HVA CaV channels.

Alcohol withdrawal-induced upregulation of L-type CaV1.x channels in the brain
was also reported in a mouse model (Brennan et al. 1990; Guppy et al. 1995; Watson
and Little 1999). In our rat model of acoustically evoked AWSs, the increased Ca2+

current density in IC neurons mediated by L-type CaV1.x channels and P-type
CaV2.1 channels occurs during peak AWS susceptibility (N’Gouemo 2015;
N’Gouemo and Morad 2003). These findings suggest a possible causal relationship
between the upregulation of L-type CaV1.x channels and P-type CaV2.1 channels in
IC neurons and the occurrence of AWSs. L-type CaV1.x channels and P-type CaV2.1
channels play important roles in synaptic plasticity and glutamate release, respec-
tively (Thiagarajan et al. 2005; Ermolyuk et al. 2013). Thus, an increase in currents
through L-type CaV1.x channels and/or P-type CaV2.1 channels in IC neurons is
likely to increase both firing and transmitter release, leading to increased AWS
susceptibility. Consistent with this notion, blocking L-type CaV1.x channels in the
IC suppressed AWS susceptibility, whereas inhibiting P-type CaV2.1 channels only
reduced AWS severity (N’Gouemo 2015). Moreover, the protein levels of L-type
CaV1.3 (α1D) channels – but not L-type CaV1.2 (α1C) channels or P/Q-type CaV2.1
(α1A) channels – are upregulated in IC neurons when AWS susceptibility peaks
(Fig. 3), but not prior to the onset of AWS susceptibility (N’Gouemo et al. 2015;
Newton et al. 2018). However, it is important to note that the lack of change in
protein levels of P/Q-type CaV2.1 (α1A) channels reflects all P/Q-type channel
phenotypes and may therefore masks any increase in the selective expression of
P-type CaV2.1 channels occurring in some selective neuronal subtypes.
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Interestingly, although mRNA expression of CACNA1D and CACNA1A (which
encode the L-type α1D and P/Q-type α1D subunits, respectively) is increased in IC
neurons prior to the onset of AWS susceptibility, their corresponding total protein
levels are unchanged in these neurons (N’Gouemo et al. 2015; Newton et al. 2018).
Thus, changes in cell surface expression and/or phosphorylation of these HVA CaV
channels may account for the increased current density in IC neurons prior to the
onset of AWS susceptibility. In support of this notion, the activity and expression of
protein kinase A are increased in IC neurons prior to the onset of AWS susceptibility
(Akinfiresoye et al. 2016). Under normal conditions, phosphorylation by protein
kinase A enhances L-type CaV1.x and P-type CaV2.1 currents (Fournier et al. 1993;
Mogul et al. 1993; Davare and Hell 2003), while activation of PKC inhibits the
activity of N-type CaV2.2 channels, but increases other types of CaV currents (Diversé-
Pierluissi and Dunlap 1993; Rane and Dunlap 1986; Rane et al. 1989). Interestingly,
alcohol acts on L-type CaV1.x channels by inhibiting calmodulin-dependent activity
of the channel (Canda et al. 1995). Thus, increase in L-type CaV1.x currents prior
to the onset of AWS susceptibility may be due to phosphorylation of the channels.
Similarly, downregulation of N-type CaV2.2 channels seen in IC neurons at the time
at which AWS susceptibility peaks may be due to enhanced PKC activity.

On the other hand, the protein levels of N-type CaV2.2 (α1B) subunit are
decreased in IC neurons when AWS susceptibility peaks (N’Gouemo et al. 2006)
(Fig. 3). Interestingly, activation of PKC inhibits the activity of N-type CaV2.2
channels, but increases other types of CaV currents (Diversé-Pierluissi and Dunlap
1993; Rane and Dunlap 1986; Rane et al. 1989), suggesting increased PKC activity
in the IC following alcohol withdrawal at the time at which the susceptibility to
AWS peaked. The downregulation of N-type CaV2.2 channels may contribute to
AWS susceptibility by reducing Ca2+-dependent inhibitory mechanisms, as Ca2+

influx contributes to the activation of Ca2+-activated K+ current, which initiates
repolarization and underlies the afterhyperpolarization, an intrinsic neuronal inhibi-
tory mechanism (Faber and Sah 2003; Loane et al. 2007; Berkefeld et al. 2010;
N’Gouemo and Morad 2014). Interestingly, some Ca2+ channel types have been
shown to provide the necessary Ca2+ influx required to activate small-conductance,
and/or large-conductance, Ca2+-activated K+ channels in the brain (Faber and Sah
2003; Berkefeld et al. 2010). Thus, there appear to be significant differences in
coupling between Ca2+ channels and Ca2+-activated K+ channels, suggesting a
functional role for the Ca2+ channels in driving the activity of Ca2+ microdomains.

In primates, alcohol withdrawal decreases LVA CaV3.x currents in inferior olive
neurons (Welsh et al. 2011). In a mouse model of alcohol withdrawal, thalamic
neurons have increased mRNA levels of the genes encoding the LVA CaV3.2 and
CaV3.3 channel subtypes, but not CaV3.1 channel subtype (Graef et al. 2011).
Despite these changes in mRNA levels and in the steady-state inactivation of LVA
CaV3.1x channels, alcohol withdrawal does not cause a change in LVA CaV3.1x
currents in thalamic neurons (Graef et al. 2011). However, ethosuximide, a potent
blocker of LVA CaV3.x channels commonly used to treat absence seizures,
suppresses susceptibility to AWSs in a mouse model (Riegle et al. 2015), suggesting
these channels may have therapeutic applications beyond the treatment of absence
seizures.
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6 Conclusion

In the CNS, CaV channels play an important role in regulating neuronal excitability,
and changes in their activity and/or expression contribute to a wide variety of
pathological conditions, including seizures. In keeping with their central role in
CNS excitability, CaV channels are also an important target for alcohol, and both
acute and chronic alcohol exposure, as well as alcohol withdrawal, can alter the
function of CaV channels, giving rise to an array of symptoms and disorders,
including alcohol abuse, alcoholism, and AWSs. Paradoxically, there is a positive
relationship between increased CaV channel function/expression and increased sus-
ceptibility to AWSs, yet downregulating CaV channels can also cause seizures, as

Fig. 3 Alchol withdrawal
upregulates CaV channels.
Alcohol withdrawal following
chronic alcohol exposure
unmasks the upregulation of
CaV channels mainly L-type
CaV1.3 channels and
downregulation of L-type
CaV1.2 and N-type CaV2.2
channels. LVA CaV channels
are either upreglated or
downregulated in various
brain sites
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some CaV channels are functionally coupled to K+ channels and/or chloride channels.
From this review, it becomes clear that HVACaV1.x (i.e., L-type) channels and HVA
CaV2.2 (i.e., N-type) channels are promising targets for treating alcohol abuse and
alcoholism; in contrast, L-type CaV1.3 – and to some extent LVA CaV3.x (i.e.,
T-type) – channels are promising targets for treating AWSs. Moreover, the alcohol-
related changes in the function and/or expression of various CaV channels vary
among brain structures, suggesting the need for targeted therapeutic approaches,
reflecting the notion that localized changes in specific CaV channels induce distinct
sets of symptoms associated with alcoholism and the alcohol withdrawal syndrome.
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Abstract

Among all members of the voltage-gated, TM6 ion channel superfamily, the

proteins that constitute calcium- and voltage-gated potassium channels of large

conductance (BK) and their coding genes are unique for their involvement

in ethanol-induced disruption of normal physiology and behavior. Moreover,

in vitro studies document that BK activity is modified by ethanol with an

EC50~23 mM, which is near blood alcohol levels considered legal intoxication

in most states of the USA (0.08 g/dL ¼ 17.4 mM). Following a succinct

introduction to our current understanding of BK structure and function in central

neurons, with a focus on neural circuits that contribute to the neurobiology of

alcohol use disorders (AUD), we review the modifications in organ physiology

by alcohol exposure via BK and the different molecular elements that determine

the ethanol response of BK in alcohol-naı̈ve systems, including the role of

an ethanol-recognizing site in the BK-forming slo1 protein, modulation of

accessory BK subunits, and their coding genes. The participation of these and

additional elements in determining the response of a system or an organism to

protracted ethanol exposure is consequently analyzed, with insights obtained

from invertebrate and vertebrate models. Particular emphasis is put on the role of

BK and coding genes in different forms of tolerance to alcohol exposure. We

finally discuss genetic results on BK obtained in invertebrate organisms and

rodents in light of possible extrapolation to human AUD.

Keywords

Alcohol · KCNMB genes · MaxiK channel · Neuron · Slo1 and orthologs

Abbreviations

ACA Acetaldehyde

AFT Acute functional tolerance

AHP Afterhyperpolarization

AMPA 2-Amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid

AP Action potential

AUD Alcohol use disorders

BK Voltage- and calcium-gated potassium channel of large conductance

CaV Voltage-gated calcium channel

CIE Chronic intermittent ethanol

cPC Cerebellar Purkinje cell

CTD Cytosolic tail domain

DA Dopamine

EC Extracellular

EC50 Ligand concentration at which 50% of the ligand’s maximal effect is

reached

fAHP Fast afterhyperpolarization

GABA 4-Aminobutanoic acid
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GLUT Glutamate

HIC Handling-induced convulsions

I Macroscopic current

i/IC Intracellular

Ibtx Iberiotoxin

KO Knockout

KV Voltage-gated potassium channel

LORR Loss of righting reflex

MSN Medium spiny neuron

NMDA N-methyl-D-aspartate

PGD Pore-gate domain

PKA Protein kinase A

Po Open probability

POPE 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine

RCK Regulatory of conductance for potassium

SCN Suprachiasmatic neurons

SN Substantia nigra

TM Transmembrane

VSD Voltage-sensor domain

VTA Ventro-tegmental area

1 Introduction

“MaxiK” channels or “BK”1 are ionotropic, transmembrane receptors defined by

the unique coupling of large unitary conductance and selectivity for K+ over other

monovalents to dual activation by increased intracellular Ca2+ (Ca2+i) and more

positive transmembrane voltage. This chapter is focused on BK in neurons and

neuroendocrine cells within the brain. Thus, we will not discuss the physiological

role and eventual modulation by ethanol of BK in the spinal cord, glia, or cerebral

artery tissues (reviewed by Contet et al. 2016; Krishnamoorthy-Natarajan and

Koide 2016). Because invertebrate species are often used as model organisms for

studies on both BK channels and alcohol, we have included information on the

effect of alcohol and related sedatives on invertebrate nervous systems. After a

glance at BK molecular assembly and physiological roles in neuronal compart-

ments (Sect. 2), the action of ethanol on BK in alcohol-naı̈ve systems will be

1As previously discussed (Dopico et al. 2014), “BK channel” should properly be used to denomi-

nate not only Ca2+i-activated K+ channels of large conductance, which are products of the Slo1

gene (slo1 channels) and orthologs, but also the products of Slo2 and Slo3 genes, which render K+

channels gated by ions other than Ca2+. Thus, slo1 channels should be labeled BKV,Ca2+. For

consistency with most of the literature and brevity, we will simply use the term “BK” to design a

protein complex (with or without regulatory subunits) where the channel-forming subunits are slo1

proteins.
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presented2 (Sect. 3). This information is critical to understand the complexity of

mechanisms at the genetic, epigenetic, posttranslational, and/or signaling levels

that involve BK subunits or their coding genes in the neurobiological bases of

alcohol use disorders (AUD), which are usually associated with repeated and/or

protracted exposure of the brain to ethanol (Sect. 4). Due to space limitations, on

several points, we refer the reader to previous, expanded reviews where citations to

the original articles can be found.

2 BK in Brain Neurons

2.1 Basic Channel Structure, Coding Genes and Brain Expression

BK-forming alpha subunit is the product of a single gene (KCNMA1 or Slo1 in

mammals, including humans). However, Slo1 pre-mRNA is subject to significant

alternative splicing, editing, and further regulation by miRNA (reviewed in

Shipston and Tian 2016). The resulting mRNA and protein isoforms vary in brain

regional distribution, as well as neuronal trafficking and, thus, organelle distribu-

tion. These processes, followed by posttranslational modification of slo1 itself

(Kyle and Braun 2014; Shipston and Tian 2016) and its associated regulatory

subunits (Lu et al. 2006; Li and Yan 2016), determine the ionic current phenotype,

including its alcohol pharmacology (see Sects. 3.3 and 4.2).

The slo1 channel signature phenotype stated in the introduction recognizes the

structural basis of a modular protein where a pore-gate domain (PGD), a voltage-

sensor domain (VSD), and an ion (Ca2+ and Mg2+)-sensing domain have long been

acknowledged. The former two (S0-S6, in which S1-S6 is highly conserved to the

core of TM6 KV channels) and the latter have transmembrane (TMs) and cytosolic

locations, respectively (Wang and Sigworth 2009; Yuan et al. 2010; Wu et al. 2010).

The so-called cytosolic tail domain (CTD) includes two regulatory of conductance

for K+ structures (RCK1 and 2) where electrophysiological data have mapped two

high-affinity, Ca2+-recognition sites (Xia et al. 2002): the “RCK1-Ca2+ site” and the

“Ca2+-bowl.” Thus, in the slo1 homotetramer, Ca2+ cooperative binding to both sites

expands the octameric (two RCKs per unit) gating ring, which is coupled to the VSD

via a short “linker” (Fig. 1). Recent cryo-EM data of a full-length slo1 channel from

Aplysia californica confirm the location of the bound divalents and reveal both direct

interaction of RCK1 with VSD and the stiff nature of the linker, asserting elastic

properties to the gating ring itself (Tao et al. 2017).

Differential distribution of BK subunits and slo1 isoforms allows for distinct

control of excitability among brain regions and neuronal compartments. For exam-

ple, a mouse brain slo1 variant containing a terminal insert (“Strex”) in the CTD

whose exon is regulated by stress hormones is characterized by fast activation,

slow deactivation, and increased open probability (Po) at negative potentials when

2Unless otherwise stated, statements in this chapter refer to findings obtained in rat or mouse brain

and neurons.
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compared to the insert-less, “zero” variant (Xie and McCobb 1998). Similar results

were obtained when slo1 isoforms were studied after heterologous expression

(Poulsen et al. 2011). This study revealed the presence of a brain-specific “X1”

variant having three inserts (in the S1-S2 EC loop, between RCK1 and RCK2, and

distal to the Ca2+ bowl) that displayed faster activation and reduced voltage

sensitivity and current than the zero variant. Remarkably, Strex is reduced after

birth, probably to allow non-Strex variants to exert a more efficient brake on

hyperexcitability (MacDonald et al. 2006; Contet et al. 2016). Strex isoforms

remain detectable in CA3 pyramidal neurons, dentate gyrus granule cells, and

cerebellar Purkinje cells (cPCs) (Contet et al. 2016). All these brain neurons

Fig. 1 Cartoon depicting a cross section through two BK α subunits (slo1 proteins) in the

presence of BK β4 or β2 regulatory subunits. In most mammalian tissues, BK channels are

heteromers of α and β subunits, yet slo1 homotetramers render fully functional BK channels. In

central neurons, β4 are widespread and abundant, while β2 and β3 show lesser expression, and β1
is found in selected central neurons. The large EC loop of β4 renders most neuronal BK channels

resistant to docking and block by the peptides charybdotoxin and iberiotoxin, while the

inactivating domain of β2 emboldens some brain BK channels with distinct contribution to

excitability (see main text). BK “γ” subunits (i.e., LRRC proteins) are not depicted as their

functional presence in adult brain BK channels remains undetermined. The modular nature of

the slo1 protein is underscored: the voltage-sensor domain (VSD, in blue) and the central pore-gate

domain (PGD, in purple) are largely embedded in the lipid bilayer with an N-end of extracellular

location. The large C-end lies in the intracellular compartment and conforms the cytosolic tail

domain (CTD). Each CTD contains two regulatory of conductance for K+ (RCK) domains (in red).

RCK1 includes binding sites for physiological levels of Ca2+i (in shaded orange) and Mg2+i
(in shaded green), while RCK2 includes another site for recognition of physiological Ca2+i
(“calcium bowl,” also in shaded orange). The resulting octameric RCK structure conforms the

gating ring of the homotetrameric channel. VSD and gating ring are connected to the PGD by

linkers (black line) and through domain-domain interface contacts. With modifications, from

Magleby (2017); in turn, based on data from Tao et al. (2017)
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experience significant development and maturation after birth. It may be suggested

that the Strex phenotype enables an increased degree of excitability that is critical

for neurocircuitry formation.

In most mammalian tissues, BKs include small, two TMs, regulatory subunits

(β) associated with slo1 proteins (i.e., BK α subunits) (Fig. 1). BK “γ” subunits (i.e.,
LRRC proteins) have also been identified. Both β and γ subunits drastically affect

the BK current phenotype (Lu et al. 2006; Li and Yan 2016), yet the functional

significance of γ subunits in brain neurons remains to be established. Four β
types have been identified (encoded by KCNMB1–4). Beta4 and β2 distribution in

mammalian brain neurons is widespread, yet β4 reaches significantly higher levels

than β2. Beta2, however, includes an IC domain that uniquely confers fast inacti-

vation to the BK current. Beta1 and β3 (variants 3b–d) are expressed at very low

levels in most brain areas, yet β1 shows significant expression in cerebellar Purkinje
cell (cPCs), many brainstem nuclei, and several hypothalamic regions (Contet et al.

2016; Li and Yan 2016). The subunits confer different pharmacological properties

to the BK channel; β4 provides BK resistance to the selective peptide blockers

charybdotoxin and iberiotoxin (Ibtx) (Lu et al. 2006), while β1 blunts ethanol-

induced potentiation of BK currents and enables ethanol-induced reduction of BK

activity at physiological low μM Ca2+i (Dopico et al. 2014). Remarkably, differen-

tial co-expression of BK β1 vs. β4 subunits is the primary determinant of the

differential alcohol response of BKs across different compartments of the same

neuron, e.g., soma vs. nerve endings of supraoptic magnocellular neurons; soma

vs. dendrites of nucleus accumbens (NAc) medium spiny neurons (MSN) (reviewed

in Dopico et al. 2014, 2016; Contet et al. 2016).

Regarding BK “γ” subunits (1, 2, 3, and 4, encoded by LRRC26, LRRC52,
LRRC55, and LRRC38, respectively), γ1 is abundant in fetal brain, while γ3 and

4 are expressed in adult brain (reviewed by Li and Yan 2016). Data from recombi-

nant BK expressed in Xenopus laevis oocytes show that a slo1 + β2 + γ1 complex

renders a novel current phenotype, which depends on the stoichiometry of

β2 (Gonzalez-Perez et al. 2015). Whether this BK plays a physiological role in

fetal brain, where γ1 is abundant, remains to be determined. Likewise, whether

another ternary heterotetramer exists and plays a functional role in brain neurons

remains unknown.

Finally, several Drosophila neural tissues, including photoreceptors, optic lobe,

pars intercerebralis neurons, and the surrounding cortex, express Slo-binding proteins

(Slobs), which are an integral part of BK complexes and regulate ion current pheno-

type (Jaramillo et al. 2004).

2.2 General Function in Central Neurons and Neurosecretory
Elements

BKs in central neurons play key roles, at both pre- and postsynaptic membranes, in

the excitability of somata, axon terminals, and dendrites. Disregarding the particu-

lar cell membrane, BK’s low affinity for Ca2+, resulting in Ca2+ in μM levels to gate

the channel at the physiological negative potentials that prevail in neurons, requires
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BK to be located nearby sources of Ca2+ influx, including CaV (most types),

NMDA and AMPA channels, and/or intracellular stores to effectively participate

in neuronal firing, neurotransmitter release, or neurotoxicity. Such BK clustering

near Ca2+-signaling elements, usually in nanodomains (Fakler and Adelman 2008;

Vandael et al. 2010; Contet et al. 2016), also allows BK to effectively control

excitability without needing a widespread increase in Ca2+i, which could lead to

neurotoxicity. However, local clustering of Ca2+ influx conductances and BK

may facilitate depolarization and/or neurotoxicity. Thus, Ca2+ influx via glutamate

(GLUT) receptors in mouse cortical layer 5 pyramidal neurons evokes increased

activity of nearby BK within seconds of hypoxia-induced depolarization (Revah

et al. 2016). In contrast, neuroprotective effects of BK against GLUT neurotoxicity

were reported in slices from the hippocampus (Rundén-Pran et al. 2002) and

the cortex-striatum (Katsuki et al. 2005). Consistent with this protective role, BK

activation by cytokine IL-10 reduces hypoxia-induced increase in excitability in

hippocampal CA1 pyramidal neurons (Levin et al. 2016). The role of BK modula-

tion by oxidative stress in neurotoxicity has been extensively reviewed elsewhere

(Hermann et al. 2015).

BK contributes to action potential (AP) single spike shape and firing patterning,

yet the final effect on neuronal firing may be an actual decrease or increase based
on the specific BK subunits present, BK coupling to other conductances (e.g., Im, Ih;

Ly et al. 2011), and/or distinct signaling within a given neuronal compartment or

brain region. “Neuronal,” i.e., β4-containing, BK broadens APs and increases the

fast afterhyperpolarization (fAHP), as widely reported across most brain regions

(Contet et al. 2016). Genetic ablation of KCNMB4 in rat hippocampal dentate gyrus

granule neurons, however, leads to AP sharpening, increased fAHP amplitude, and

enhanced spike frequency, underscoring a pro-excitatory role for BK-mediated

fAHP (in the absence of β4). Work with engineered proteins has revealed that β4
decouples slo1 from RyR leading to reduced excitability (Wang et al. 2016). In

general, fast-inactivating BK activity in high-frequency neurons contributes to

fAHP and decreases firing rate, whereas BK exerts opposite effects in neurons

with low spontaneous firing. An enhanced fAHP may also speed up Na+ channel

recovery from inactivation and limit the activation of slow KV outward rectifiers, as

found in CA1 pyramidal neurons, leading to faster firing (Gu et al. 2007; Contet

et al. 2016).

In substantia nigra (SN) dopamine (DA) neurons, inhibition of BK expectedly

leads to wider APs due to slow repolarization. However, fAHP does not decrease

but actually increases, this effect being attributed to recruitment of additional current

via nearby KV2 channels (Kimm et al. 2015). The relative contribution of Kv channels

vs. BK to repolarization often differs between different neuronal populations within

a given brain area. Thus, in mouse cortex, BK plays a significant role in shaping

both somatic and axonal APs of somatostatin-expressing interneurons. In turn, KV1

channels seem to only play a major role in shaping axonal APs of GABA-releasing

basket interneurons (Casale et al. 2015).

At chemical presynaptic endings and terminals of neurosecretory cells, BK

usually decreases neurotransmitter (particularly, GLUT; Martire et al. 2010) or
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hormone release (e.g., vasopressin, oxytocin, gonadotrophin) by opposing the

depolarization evoked by incoming APs. Likewise, Ibtx has been reported to

increase the probability of GABA and glycine release in central amygdala and

spinal cord neurons, respectively. In a few species (mostly nonmammalian), how-

ever, BK mediates the opposite effect on neurotransmitter release (reviewed in

Contet et al. 2016).

In apical dendrites of hippocampal CA1 pyramidal neurons, BK activation

limits repetitive firing of Ca2+ spikes (Golding et al. 1999). BK-mediated reduced

propagation of dendritic Ca2+ spikes was also observed in cPC (Rancz and Häusser

2006). The role of BK in backpropagating APs seems to depend on species and/or

brain regions. Thus, in the leech anterior pagoda neuron, BK inhibition leads to

increased amplitude of backpropagating Na+ spikes (Wessel et al. 1999). In con-

trast, dendritic BK regulates neither amplitude nor duration of backpropagating APs

in cortical layer 5 pyramidal neurons of the rat, while its somata counterpart does

contribute to AP repolarization and to mediating fAHP (Bock and Stuart 2016).

In addition to the neuronal plasma membrane, BK have been mapped to internal

organelles, including the inner mitochondrial membrane (Douglas et al. 2006) and

the nuclear envelope, with nuclear BK-regulating gene expression (Fedorenko

et al. 2010; see Balderas et al. 2015; Li and Gao 2016 for reviews). A proteonomic

analysis of mouse brain combining mass spec, histochemistry, and confocal micros-

copy revealed several hundred unique proteins in the BK interactome, including

pre- and postsynaptic, mitochondrial, and nuclear interacting partners for slo1

(Singh et al. 2016).

Consistent with their widespread participation in regulating excitability across

all neuronal compartments, (a) KCNMA1�/� mice suffer a variety of severe neuro-

logical dysfunctions (Zemen et al. 2015), and (b) BK-mediated currents become

prominent at developmental times that define maturation of a given CNS structure,

e.g., in the early postnatal period for pyramidal neurons in the neocortex or SN DA

neurons (reviewed in Contet et al. 2016). However, BK expression and impact on

excitability across the different neuronal compartments shows regional variability.

For instance, slo1 immunoreactivity of hippocampal pyramidal cells is higher in

presynaptic membranes and in dendritic areas that oppose postsynaptic contacts,

whereas cPCs show higher slo1 channel levels in dendritic extrasynaptic mem-

branes away from postsynaptic contacts (reviewed in Contet et al. 2016).

BK’s sensitivity to Ca2+i is likely a determining factor for the channel’s involve-

ment in neuronal plasticity and neuroprotection/neurotoxicity. Indeed, BK current

in pyramidal neurons of the prefrontal cortex displays drastic changes during

adolescence, a period in which such neurons are characterized by enhanced plas-

ticity (Contet et al. 2016). In turn, BK activity is usually associated with neuro-

protection. For instance, in mouse cortical neurons, prostaglandin E2 receptor

signaling evokes NMDA-mediated currents that lead to BK activation and, thus,

reduced dendritic beading (Hayashi et al. 2016). However, BK activation through

NLRP1, a member of the inflammasome complex, by chronic levels of gluco-

corticoids has been linked to degeneration of hippocampal neurons (Zhang et al.

2017).
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After describing BK general roles in the different neuronal compartments, we

will discuss the importance of this channel in distinct brain regions, with a focus on

brain neurons known to be affected by ethanol exposure and/or involved in

the neurocircuitry of AUD. BK roles in CNS disease, including epilepsy, motor

disorders, memory and cognitive disorders, and cerebral ischemia, have been

reviewed elsewhere (Contet et al. 2016).

2.3 Role in Neurocircuits That Contribute to the Biology
of Alcohol Use Disorders

Slo1 mRNA and protein levels are detected in almost all brain regions, with

particularly high levels in the olfactory bulb, cortex, basal ganglia, thalamus,

hypothalamus, cerebellum, and vestibular nuclei (Contet et al. 2016). As indicated

above, the “neuronal” β4 subunit also shows high and widespread distribution in the
brain. It is noteworthy that in hippocampus pyramidal cells, the high expression of

this subunit does not translate into prominent β4-containing currents, and the BK

“neuronal” subunit is thought to blunt forward trafficking of slo1 in these cells

(Shruti et al. 2012). Remarkably, many brain regions that are very sensitive to

intoxicating levels of ethanol and/or participate in the neurobiology of AUD, such

as the cerebellum, neocortex, hippocampus and lateral amygdala, include β2-
containing BK, which are endowed with fast inactivation (Contet et al. 2016).

This fast inactivation, however, does not seem to play a major role in the sensitivity

of recombinant β2-containing BKs to acute exposure to intoxicating levels of

ethanol (Kuntamallappanavar and Dopico 2016).

DA neurons of the ventro-tegmental area (VTA) are at the center of the “reward

system of the brain.” In cultured DA neurons from both VTA and SN, selective

block of BK with paxilline results in AP widening, reduced amplitude, and reduced

fAHP, exemplifying the “classic” roles for BK in AP sharpening. In a more

complex system, however, DA projections from VTA inhibit AP firing via dopa-

mine receptor activation in a population (25%) of NAc MSN (Ji and Martin 2014).

This action is prevented by paxilline; thus, BK activity plays a critical role in

DA receptor-mediated inhibition of some MSNs (Ji and Martin 2014). Opposite

effects of BK block on neuronal firing rate may arise from differential BK subunit

distribution in different neuronal populations (Brenner et al. 2000; Salzmann et al.

2010), contribution of players additional to BK (including other ion channels) to

spike frequency regulation (Sengupta et al. 2010), and from the location of BK

along the pathways that controls spike firing (e.g., upstream vs. downstream of DA

receptor signaling). Thus, an upstream location of BK would result in paxilline-

induced loss of DA receptor-meditated inhibition of MSN firing and, therefore,

would lead to an increased MSN activity.

Paxilline actions on CA1 pyramidal neuron firing are similar to those described

above for the VTA (Springer et al. 2015). In the lateral amygdala, a key component

of the reward system-stress-fear “axis,” a decrease in BK current likewise leads to

spike widening and increased excitability (Faber and Sah 2003), both phenomena
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being significantly higher in fear-conditioned mice vs. controls (Sun et al. 2015).

BK-mediated fAHP in these neurons is also reduced by stress-evoked anxiety (Guo

et al. 2012). Low-frequency firing neurons from the external globus pallidus, where

BK mediates an alcohol-induced decrease in firing rate, show that pharmacological

block of BK leads to a mild increase in firing rate (Abrahao et al. 2017). In the

cerebellar cortex, another region that is highly sensitive to intoxicating ethanol,

pharmacologic block of BK leads to reduced AHP and enhanced cPC firing (Edgerton

and Reinhart 2003). BK activity in cPC axons (the only output of the cerebellar

cortex) facilitates the inhibitory synaptic response in the deep cerebellar nuclei

(Hirono et al. 2015). Also in the cerebellar cortex, BK have been found in Golgi

cells (Cheron et al. 2009) and mediate a large component of the depolarization-

evoked, non-inactivating K+ current in stellate cells (Liu et al. 2011). Along the

cerebellum, vestibular nuclei participate in vestibule-ocular disorders, including those

evoked by drug (e.g., alcohol) exposure. BK critically controls the excitability of

medial vestibular nucleus neurons in the brainstem. Decreased BK current with

eventual hyperexcitability may be triggered by vestibular damage, and the compen-

satory increase in eye movements that restore oculomotor function is blunted in slo1

knockout (KO) mice (Nelson et al. 2017).

In thalamocortical relay neurons, BK inhibition prevents spike frequency adap-

tation; these channels also participate in epileptic activity (Ehling et al. 2013). The

role of BK in the neurobiology of seizures and epilepsies has been reviewed

elsewhere (N’Gouemo 2011). Growing evidence supports a role for circadian

system disruption in AUD. In suprachiasmatic nucleus (SCN) neurons, inactivating
BK currents increase during the day leading to increased SCN firing. Inactivation is

lost after KCNMB2 ablation, suppressing the diurnal variation in BK current

amplitude and SCN firing, both of these defects being rescued by incorporation

of β2-mediated inactivation (Whitt et al. 2016).

3 BKs as Targets That Participate in Ethanol Actions
on Alcohol-Naı̈ve Systems

3.1 The slo1 Channel Protein and Coding Genes as Ethanol
Targets

Numerous reports point at slo1 channel proteins and their coding genes as molecu-

lar targets of alcohol in alcohol-naı̈ve preparations during brief exposure episodes.

Following a single brief exposure episode, the sedative benzyl alcohol upregulated

slo1 gene expression via alteration of histone acetylation in the Slo promoter region

of Drosophila melanogaster (Wang et al. 2007). In higher organisms, studies of

alcohol actions and Slo1 genes and their products have generally focused on ethyl

alcohol (ethanol) and how such exposure alters protein function, i.e., BK current.

Ethanol-induced activation of BK current was observed in rat neurohypophysial

terminals (Dopico et al. 1996; Knott et al. 2002), cell-attached patches from

external globus pallidus neurons (Abrahao et al. 2017), as well as in cell-free
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membrane patches from numerous cell types, including NAc MSN (Martin et al.

2004). This phenomenon was replicated when recombinant slo1 channels from

brain neurons (mouse and human) were expressed in heterologous systems such as

X. laevis oocytes and HEK cells (Dopico et al. 1998; Feinberg-Zadek et al. 2008).

The ethanol-induced activation of neuronal slo1 is concentration-dependent and

occurs at physiologically relevant ethanol levels (10–200 mM), with the EC50

reported at �25 mM (Dopico et al. 1998). The EC50 of the recombinant mslo1 is

close to EC50 of native BK in rat neurohypophysial terminals (Dopico et al. 1996).

Thus, ethanol modification of slo1 function is conserved in the absence of intracel-

lular signaling and when probed in a mammalian vs. an amphibian cell membrane.

Moreover, ethanol-induced activation of neuronal slo1 (hslo1) was detected in an

overly simplified system, that is, a planar lipid bilayer formed by only two phos-

pholipid species (Crowley et al. 2003; Yuan et al. 2008), underscoring that ethanol

action does not require complex lipid domains associated with the existence of

many lipid species in the membrane.

Ethanol action on BK current does not involve modification of N (e.g., number

of active channels), current rectification, or unitary slope conductance (Dopico

et al. 1996; Jakab et al. 1997; Crowley et al. 2003) but stems from an ethanol-

driven minor increase in mean open times (Jakab et al. 1997) and a robust decrease

in closed times (or increased frequency of channel openings; Dopico et al. 1996,

1998; Abrahao et al. 2017).

In addition to potentiation of BK current, refractoriness and even inhibition of

current by ethanol were reported (see Table I in Dopico et al. 2016). This inconsis-

tency in ethanol modulation of BK function may arise from numerous factors (see

below). In cell-free systems, however, ethanol responses of homomeric slo1 were

reported to be tuned by a Ca2+-dependent mechanism: ethanol failed to gate slo1 in

the absence of activating Ca2+, increased slo1 activity in the presence of physiologi-

cally relevant Ca2+ concentrations (<10 μM), and decreased slo1 current when Ca2+

exceeded 10 μM at the intracellular membrane leaflet (Liu et al. 2008). Ethanol-

induced activation of slo1 from mammalian species was sustained in the presence of

either of the high-affinity Ca2+ sensors (Ca2+ bowl and RCK1 domain; see Fig. 1).

This conclusion was reached by comparing ethanol action on recombinant channels

that contained mutations of either vs. both high-affinity, Ca2+-sensing regions (Liu

et al. 2008). A recent study utilizing Horrigan-Aldrich detailed gating analysis

demonstrated that ethanol-induced slo1 activation was driven by an increase in the

channel’s apparent Ca2+ affinity in the presence of ethanol. The increase in Ca2+

affinity was not accompanied by detectable changes in the channel’s intrinsic gating

or voltage-dependent parameters. Ethanol did, however, mildly decrease allosteric

coupling between Ca2+ binding and channel opening (Kuntamallappanavar and

Dopico 2016).

With regard to ethanol-induced slo1 inhibition at Ca2+ levels exceeding 10 μM,

at this Ca2+ concentration, channels enter a low Po gating mode that resembles that

observed as a result of ligand-driven desensitized states (Liu et al. 2008; Dopico and

Lovinger 2009). Ethanol favors the transition of the channel to this low-Po mode,

with the RCK1 high-affinity site being necessary to enable ethanol-induced
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inhibition at higher Ca2+ levels (Liu et al. 2008). Whether these findings on Ca2+-

dependent modulation of ethanol effect in mammalian slo1 apply to other species

remains unclear; in Caenorhabditis elegans, SLO1’s Ca2+-sensing domains are not

linked to ethanol sensitivity, although they greatly modulate basal channel function

(Davis et al. 2015).

In contrast to Ca2+i, Mg2+, another intracellular divalent cation that can gate the

slo1 channel (albeit via the low-affinity divalent RCK1 binding site; Fig. 1), is not

necessary for ethanol to increase mouse slo1 (mslo1) current (Liu et al. 2008).

Moreover, recent work on excised patches from hippocampal neuronal cultures

shows that ethanol produces BK inhibition at intracellular Mg2+ <200 μM, with

ethanol-induced BK activation being observed at 1 mMMg2+ (Marrero et al. 2015).

The latter value is close to the estimated physiological level of intracellular Mg2+ in

excitable cells (Hille 2001).

Ethanol’s ability to augment homomeric slo1 function at physiological divalent

cation concentrations in such simple experimental systems as excised membrane

patches and artificial lipid bilayers led to the conclusion that the ethanol effect was

likely mediated by a molecular target common to all systems: the slo1 protein itself.

Based on structural criteria for ethanol-sensing sites that have been put forward

from analysis of a variety of proteins (Dwyer and Bradley 2000; Harris et al. 2008),

and using computational protein homology modeling of the mslo1 CTD based on

crystallographic data from human slo1 (hslo1; Yuan et al. 2010), an alcohol-sensing

site was mapped within the mslo1 CTD (Bukiya et al. 2014). This site was

characterized as a secluded cavity within the surface of the CTD facing the aqueous

intracellular medium. The ethanol-sensing site has estimated dimensions of

10.7 � 8.6 � 7.1 Å and is able to accommodate n-alkanols from ethanol up to

heptanol. Longer-chain alkanols, such as octanol and nonanol, are unable to fit the

ethanol-sensing cavity (Bukiya et al. 2014) and, thus, failed to activate mslo1

channels (Chu and Treistman 1997; Bukiya et al. 2014). Ethanol’s fit within the

cavity enables hydrogen bond formation with K361. Remarkably, the alcohol-

sensing site is adjacent to the RCK1 high-affinity Ca2+-sensing site, with interaction

between the two sites (for ethanol and Ca2+ binding) being coupled via R514 to the

slo1 channel gate. In the absence of Ca2+, this residue points away from the alcohol-

docking area (Wu et al. 2010; Bukiya et al. 2014). Thus, R514 is unable to

participate in its positive charge-mediated stabilization of ethanol docking. The

critical role of R514 in ethanol sensing of mslo1 was confirmed using computa-

tional modeling and point mutagenesis (Bukiya et al. 2014). In addition, spatial

rearrangement of several other residues within the ethanol-sensing area in Ca2+-free

solution was expected to further preclude effective ethanol docking into the sensing

area. These data provided a structural explanation for the inability of ethanol to

modify BK current in Ca2+-free solution (Liu et al. 2008). An ethanol-sensing

region was also mapped in C. elegans SLO-1, where T381 mutations blunted

SLO-1 ethanol sensitivity (Davis et al. 2014). This site is not identical to that in

mslo1, and the discrepancy may be linked to the differential roles of Ca2+ sensing

in the ethanol response of C. elegans (Ca2+ is not critical; Davis et al. 2015)

vs. mammalian species (Ca2+ is necessary, Liu et al. 2008). However, the residue
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equivalent to C. elegans SLO-1 T381 in mammals (T352) is located near K361.

Thus, although the specific residues that interact with ethanol vary, the overall

positioning of the alcohol-sensing region within the BK α subunit CTD seems to be

evolutionary conserved.

3.2 The slo1 Channel Protein Response to Ethanol: Slo1 Splicing
and Posttranslational Modifications of slo1 Proteins

Based on the previous observation that bovine slo1 (bslo1) differed from mslo1 in

ethanol sensitivity (Liu et al. 2003), CaM kinase II phosphorylation of T107 in the

slo1 S0-S1 linker was shown to override ethanol-induced potentiation of channel

activity, even leading to channel inhibition in response to ethanol (Liu et al. 2006).

Thus, even a difference in a single amino acid within the slo1 sequence may

drastically modulate ethanol sensitivity of slo1. Slo1 isoforms containing T107,

however, are largely restricted to the bovine species, whereas slo1 from the vast

majority of tissues and species, including humans, contain nonphosphorylatable

residues in position 107 or equivalent, this structural feature allowing channel

activation by ethanol (Liu et al. 2006).

Ethanol sensitivity of the slo1 channel is also governed by trafficking of slo1 to

the site of ethanol action. ERG-28 (endoplasmic reticulum membrane protein) has

been recently shown to protect C. elegans SLO-1 subunits from proteolytic degra-

dation during their trafficking to presynaptic terminals. As a result, in the absence

of ERG-28, SLO-1 channels undergo proteolysis, resulting in markedly reduced

expression at presynaptic terminals and diminished alcohol sensitivity of C. elegans
as measured from a behavioral phenotype (Oh et al. 2017).

3.3 Modifiers of the slo1-Ethanol Interactions: Lipids, BK
Accessory Subunits, and Cell Microenvironment

It is widely recognized that membrane lipids play a critical role in tuning BK

responses to alcohol. Cholesterol, a major structural lipid in the plasma membrane

of eukaryotes, antagonized alcohol-induced BK activation in planar lipid bilayers

following reconstitution of recombinant slo1 protein from human brain (Crowley

et al. 2003). The presence of cholesterol in the bilayer at physiologically relevant

molar fractions (up to 49 mol%) gradually shifted channel open-time distribution

histograms to shorter open times while progressively increasing channel closed

times, effects that were opposite to those of ethanol on slo1 channels. Thus, choles-

terol antagonized ethanol’s effect on channel dwelling. At low molar fractions (e.g.,

<20%), however, cholesterol still supported ethanol-induced channel activation

(Yuan et al. 2011). The mechanisms behind cholesterol antagonism of ethanol action

on BK current remain under investigation and may include indirect (bilayer lipid-

mediated) and/or direct (e.g., competition for similar sensing site on BK protein)

components. The former would be mediated by cholesterol-driven changes in
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membrane physical properties, such as membrane order, lipid packing, membrane

dipole potential, and/or thickness (reviewed by Dopico et al. 2012; Gumı́-Audenis

et al. 2016). A lipid-mediated component in ethanol-cholesterol antagonism on BK

function is consistent with the fact that the action of each individual agent on slo1

channels is similarly decreased when probed in one phospholipid species bilayer

(POPE; see discussion in Crowley et al. 2003). Remarkably, alcohol-induced BK

activation inversely correlates with membrane thickness (Yuan et al. 2007). Thus, it

is conceivable that cholesterol antagonism of ethanol-driven increase in BK current

may arise from cholesterol’s ability to increase membrane thickness (Hung et al.

2007). Changes in membrane physical properties are likely to underlie modulation of

the effect of ethanol by bulk membrane phospholipids. It was demonstrated that

ethanol-induced potentiation of hslo1 activity in planar lipid bilayers was blunted by

type 2 phospholipids but supported by cylindrical ones (Crowley et al. 2005). It was

speculated that cylindrical phospholipids could relieve bilayer stress when compared

to the inclusion of type 2 lipids, and, thus, bilayer stress could represent a driving

force behind lipid-mediated modulation of slo1 ethanol sensitivity (Crowley et al.

2005).

The possibility of direct ethanol sensing by slo1 protein also received experi-

mental support, as enantiomeric cholesterol (ent-cholesterol) was unable to modu-

late ethanol sensitivity of hslo1 to 50 mM ethanol in planar lipid bilayers while

changing bilayer properties similarly to natural cholesterol (Yuan et al. 2011). The

location of amino acids that enable cholesterol control over the effect of ethanol on

slo1 remains unknown.

Among protein modifiers of the ethanol effect on BK current, accessory BK

subunits play a central role. Neuron-abundant human β4 subunit co-expressed with

the human BK α-subunit splice variant hbr5 in HEK cells did not prevent alcohol-

induced BK current activation observed in homomeric hslo1 channels, yet the

ethanol activation of β4 subunit-containing channels was generally smaller than

of homomeric slo1 (Feinberg-Zadek and Treistman 2007; Velázquez-Marrero et al.

2014). Remarkably, the slo1 characteristic behavior in response to ethanol was also

described when human β4 subunit was co-expressed with rat cerebral artery slo1

(cbv1), which has a 99% amino acid sequence identity with mouse brain slo1 (Liu

et al. 2008; Kuntamallappanavar and Dopico 2016). In contrast, β2 (with or without
inactivation sequence) rendered a BK with an ethanol sensitivity profile similar to

that of β1-containing BK, e.g., drastically different from the ethanol sensitivity that

is characteristic of slo1 homomers or β4-containing heteromers. β1 themselves are

responsible for the inhibition of BK currents observed at physiological voltages and

Ca2+i, and the resulting alcohol-induced cerebral artery constriction, raising the

possibility that BK β1-targeting drugs could be used to counteract alcohol-induced

constriction of brain arteries (Kuntamallappanavar and Dopico 2016, 2017). The

mechanisms underlying β subunit modulation of BK’s ethanol sensitivity may

include several non-mutually exclusive possibilities, ranging from the existence

of an alcohol-sensing site on BK β subunits and expanding to β subunit modulation

of slo1 Ca2+ sensitivity and/or protein kinase regulation of slo1 (Feinberg-Zadek

and Treistman 2007; Kuntamallappanavar and Dopico 2016).
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Protein phosphorylation was shown to play a critical role in tuning BK responses

to ethanol. Indeed, the potentiation of BK current in GH3 pituitary tumor cells by

ethanol was blocked by PKC inhibitors, but not by a phospholipase C blocker

(Jakab et al. 1997). In contrast, phosphatase inhibitors promoted ethanol-induced

BK activation (Jakab et al. 1997). Ethanol-mediated enhancement of human

slo1 channel activity in HEK cells was completely blocked by a PKA inhibitor

(Velázquez-Marrero et al. 2014). Yet, PKA block did not affect the ethanol-induced

BK activation in BK heteromers containing β4 subunits (Velázquez-Marrero et al.

2014). Therefore, β subunits may reshape protein kinase modulation of slo1

channels: in the case of β4, these accessory subunits are able to override the

modulatory influence of PKA over slo1 ethanol sensitivity.

The effect of ethanol on BK current may also be modulated by alcohol meta-

bolites, such as acetaldehyde (ACA). Ethanol-induced BK activation observed in

excised patches from GH3 pituitary tumor cells was progressively suppressed by

increasing ACA concentrations at the intracellular side of the membrane leaflet

(Handlechner et al. 2013). Whether acetaldehyde presence plays a role in modu-

lating ethanol action on neuronal BK channels remains to be determined.

3.4 Physiological and Behavioral Modifications Consequent
to Exposure of BK to Brief Application of Ethanol in Alcohol-
Naı̈ve Systems

Consistent with the commonly observed slo1 channel activation by ethanol, this

drug is expected to exert an inhibitory effect on neuronal activity. Indeed, behavior

patterns of slo-1 gain-of-function mutants resembled those of C. elegans under

alcohol intoxication (Davies et al. 2003). Moreover, mutations in C. elegans slo-1
were found to cause resistance to alcohol intoxication in this model organism

(Davies et al. 2003). Accordingly, reduction in functional SLO-1 channels in

presynaptic terminals due to accelerated degradation in ERG-28-lacking worms

also resulted in an alcohol-resistant phenotype (Oh et al. 2017).

Ethanol-induced reduction in AP firing rate and, thus, decreased neuronal

excitability have been reported in several preparations. These include NAc MSN

in rat and mouse (Martin et al. 2004, 2008). Ethanol-driven decrease in MSN

excitability has been linked to ethanol- perturbation of motor behavior and alcohol

preference (reviewed by Treistman and Martin 2009; Bettinger and Davies 2014).

Tonically active neurons in mouse external globus pallidus show the critical role of

BKs in ethanol-induced reduction of firing rate of low-frequency neurons in this

brain region: in the presence of penitrem A, a BK antagonist, the ethanol effect is

lost (Abrahao et al. 2017). In supraoptic neurons acutely dissociated from rat,

however, BKs were ruled out as major contributors to the ethanol-driven decrease

in single evoked spike duration (Widmer et al. 1998). Differential involvement of

BK in ethanol effect on excitability may arise from variability in BK subunits

(Brenner et al. 2000; Salzmann et al. 2010) and role of ethanol targets other than

BK, such as voltage-gated Ca2+ and small conductance Ca2+-activated K+ channels
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(Mulholland et al. 2011; reviewed by Harrison et al. 2017). Considering that the

final ethanol effect on BK is given by several factors (Dopico et al. 2016; see

Fig. 2a), it comes as no surprise that ethanol action on neuronal firing not always

result in decreased AP frequency. Indeed, sedation with benzyl alcohol increased

neuron excitability within theD. melanogaster giant fiber pathway, this effect being
accompanied by a substantial decrease in the neuronal refractory period (Ghezzi

et al. 2010). Alcohol-driven increase in neuronal firing was dependent on functional

slo and could be mimicked by slo gene induction. As a result, flies developed

tolerance to repeated alcohol exposure, and slo-mediated increase in neuronal firing

rate predisposed animals to seizures. The latter constitutes a characteristic symptom

of alcohol withdrawal. Thus, alcohol-driven alteration of BK channel expression/

function might provide an explanation for the long-standing counteradaptive theory

of “drug tolerance,” that is, a homeostatic adaptation(s) that limits the effect of the

drug, yet it contributes to dependence upon drug clearance (Cowmeadow et al.

2005; Ghezzi et al. 2010). Alcohol-induced increase in neuronal excitability is not

limited to D. melanogaster: pharmacological block of presynaptic BKs prevented

ethanol-induced enhancement of GABAergic inhibitory transmission in the rat

central nucleus of the amygdala (Li et al. 2014).

The complexity of ethanol action at the cellular and organ levels is further

increased by the fact that ethyl alcohol is a very simple molecule, a feature that

allows this alcohol to “fit” in many putative docking areas (whether within lipid or

protein species) and readily cross membranes. Thus, besides modulating BK func-

tion, ethanol has the capability to almost simultaneously target several receptors

within a single-cell domain. For example, in rat neurohypophysial terminals,

ethanol-induced potentiation of BK current was accompanied by ethanol inhibition

of CaV channels, both ethanol actions contributing to decrease neuropeptide release

(Knott et al. 2002). Longer exposure to ethanol, however, triggered compensatory

modifications in BK and CaV channel density, with consistent reduction in alcohol-

induced inhibition of neuropeptide release (Knott et al. 2002).

4 BK and Coding Genes as Mediators of Physiological
and Behavioral Alterations Evoked by Protracted and/or
Repeated Ethanol Exposure

4.1 Slo1 and Related Genes as Participants of Acute and Rapid
Tolerance to Ethanol and Physiological Dependence

In C. elegans, SLO-1 is a major mediator of acute behavioral responses to ethanol.

Mutations in slo-1 were identified in a forward genetic screen as they conferred a

very strong resistance to the depressing effects of ethanol, consistent with SLO-1

being an important target of ethanol for mediating its behavioral effects (Davies

et al. 2003). Like mammals, C. elegans develops acute functional (within session)

tolerance (AFT) to ethanol within 30 min of an exposure (Davies et al. 2004), and

slo-1 also plays a role in this process. Mutations in slo-1 diminish but do not
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Fig. 2 Molecular determinants of the functional interaction between BK and alcohol: (a) in

alcohol-naı̈ve systems following single and brief (min) alcohol exposure; (b) during protracted

(hours to days) or repeated alcohol administration, which leads to different forms of tolerance to

alcohol action. Tolerance was determined by electrophysiological, biochemical, genetic, and/or

behavioral assays. While different splice variants of slo1 show different electrophysiological

responses to acute ethanol exposure, the differential expression of slo1 variants secondary to

miR9s only occurs upon protracted ethanol. BK β1 TM2 determines a unique response of

recombinant slo1 + β1 heteromers to acute ethanol exposure, i.e., decrease in activity under

conditions of voltage and Ca2+i that are physiological in the contracting cerebral artery myocyte.

It remains unknown, however, whether this channel region plays a role in the ethanol response of

β1-containing BK in native, neuronal channels
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eliminate the development of AFT, indicating that slo-1 is involved in, but is not

required for, AFT to ethanol (Bettinger et al. 2012). In addition, slo-1 plays an

important part in the response of C. elegans to longer treatment with ethanol; when

C. elegans are exposed to a sedating dose of ethanol for 18–24 h and then

withdrawn, they demonstrate behavioral impairments (Davies et al. 2004; Mitchell

et al. 2010; Scott et al. 2017). The depression of locomotion that is associated with

withdrawal is enhanced in slo-1 mutant animals, and animals carrying a slo-1 gain-
of-function mutation display attenuated withdrawal (Scott et al. 2017). A 24-h

exposure to a sedating dose of ethanol decreased the intensity of the signal from

a slo-1:: fluorescent reporter transgene chimera in some neurons, suggesting that

ethanol might induce a reduction in slo-1 expression. The mechanism of this

regulation (transcriptional or posttranscriptional), however, remains to be estab-

lished (Scott et al. 2017).

The role of BK in behavioral tolerance to ethanol has been extensively studied in

Drosophila melanogaster. In a rapid tolerance assay, Drosophila were exposed to a
sedating dose of ethanol, removed from the ethanol, and the time for them to

recover was recorded. After this exposure, flies developed rapid tolerance, such

that when they were sedated a second time, their recovery was faster (Cowmeadow

et al. 2005). Slo mutant animals did not develop rapid tolerance to ethanol,

demonstrating a central role for BK in this process (Cowmeadow et al. 2005).

Transcriptional regulation underlies the slo-dependent development of rapid toler-

ance in Drosophila: ethanol sedation increased slo expression, and artificial induc-

tion of slo expression decreased ethanol sensitivity, a phenotype that resembled

rapid tolerance to ethanol (Cowmeadow et al. 2006). This ethanol-induced change

in slo transcription was dependent on modulation of histone acetylation in the slo
promoter (Wang et al. 2007). Moreover, both CREB and CBP were required for this

effect on slo expression (Wang et al. 2009; Ghezzi et al. 2017).

4.2 Modifiers of BK-Mediated Acute and Rapid Tolerance
to Ethanol: BK Accessory Subunits, Transcriptional
Regulation, Posttranslational Modifications, and Lipid
Metabolism/Levels

4.2.1 BK Accessory Subunits
BK also plays a role in acute behavioral responses to ethanol including the

development of tolerance in mammals. Several studies have directly tested the

role of BK function in the behavioral responses to alcohol using a mouse KO

approach. While experiments examining the function of BK α have not been

reported, the β1 and β4 subunits have both been examined. Knockout of either β1
or β4 did not alter the acute effects of ethanol in ethanol-naı̈ve animals, as tested by

rotorod at 1.5 g/kg ethanol, loss of righting reflex (LORR) at 4 g/kg, and body

temperature over 2 h at 4 g/kg (Kreifeldt et al. 2015). However, both β subunits

affected different aspects of the responses to chronic ethanol treatment: after wt
animals were exposed to chronic intermittent ethanol (CIE), they developed
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tolerance to the sedating effects of ethanol as tested by the LORR assay and to

ethanol-induced hypothermia. β1 KO but not β4 KO animals demonstrated a

decrease in the development of tolerance to both of these effects of ethanol

(Kreifeldt et al. 2015), unveiling a role for β1 in the development of tolerance. In

contrast, both subunits were involved in a different measure of the response to

chronic ethanol treatment. After CIE, animals were more sensitive to demonstrating

withdrawal-induced hyperexcitability, which was measured by the susceptibility of

animals to demonstrate handling-induced convulsions (HIC). β1 and β4 KO

affected different aspects of HIC: β1 KO increased HIC at 6 h post-ethanol injection

whereas β4 KO increased HIC at 12 h post-ethanol injection, which suggests that β1
is involved in the appearance of withdrawal-induced hyperexcitability whereas β4
has a role in its resolution (Kreifeldt et al. 2015).

β4 was also implicated in modulating the chronic effects of ethanol in a separate

series of experiments. When control animals were injected with 2 g/kg of ethanol,

their locomotion was suppressed at 5, 10, and 15 min postinjection. After 4 days of

treatment with 2 g/kg ethanol, the animals were equally sedated at 5 and 10 min

postinjection but had developed the ability to demonstrate acute functional toler-

ance to this effect at 15 min postinjection. β4 KO mice had a strikingly different

phenotype; on the first day, while being significantly sedated by ethanol at 5 min

postinjection, animals displayed a robust acute functional tolerance to the sedating

effects of ethanol at 10 min postinjection. After 4 days of treatment, the develop-

ment of tolerance was significantly enhanced in β4 KO mice relative to wt (Martin

et al. 2008). These data indicate that BK β4 is central in the development of AFT to

ethanol in mammals and, importantly, that this role of BK β4 can be modulated over

repeated ethanol exposures.

4.2.2 Transcriptional Regulation
The transcriptional changes elicited by a 4 h exposure of the brain to ethanol were

globally assessed in C57BL/6J and DBA/2J mice (Kerns et al. 2005) and in a set of

mouse strains derived from these inbred strains (Wolen et al. 2012). Three brain

regions were studied: nucleus accumbens, prefrontal cortex, and ventral midbrain.

In each region, KCNMA1 was found to be transcriptionally regulated in response to
ethanol exposure (Kerns et al. 2005; Wolen et al. 2012). In the ventral midbrain,

KCNMB4 was also regulated with ethanol exposure (Wolen et al. 2012). Thus,

transcriptional regulation may constitute a widespread mechanism by which BK

function is changed in response to ethanol exposure.

This same series of recombinant inbred mouse lines were used to directly test the

hypothesis that KCNMA1 expression was altered with chronic ethanol exposure

(Rinker et al. 2017). Transcript levels from the nucleus accumbens and prefrontal

cortex of animals chronically exposed to ethanol in either the forced CIE paradigm

or the voluntary two-bottle choice paradigm were examined. KCNMA1 mRNA

levels were significantly correlated with both voluntary consumption and CIE

in both brain regions (Rinker et al. 2017). Animals that had undergone the CIE

treatment became ethanol-dependent and increased their voluntary ethanol con-

sumption. In the prefrontal cortex, transcript levels of KCNMB2 were significantly
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correlated with dependence-induced change in voluntary drinking, further connecting

transcriptional regulation of BK function with ethanol drinking (Rinker et al. 2017).

Although there is a single BK α encoding gene in mammals, there is a rich

diversity of BK isoforms that is achieved through alternative splicing of BK

mRNAs. The different splice forms code for slo1 channels with different phenotypes,

including drastic differences in their ethanol sensitivity (Pietrzykowski et al. 2008).

In rat supraoptic nucleus cells, the microRNA miR-9 was rapidly upregulated in

response to ethanol exposure and, in turn, decreased expression of particular BK

isoforms through selectively destabilizing their mRNAs with antisense complemen-

tarity to miR-9 in their 3’UTRs. This isoform-specific regulation changes the BK

population in the neuronal cells to strongly favor those isoforms that are less or not

sensitive to alcohol, which is predicted to dramatically decrease the ethanol sensitiv-

ity of the overall BK current in response to alcohol (Pietrzykowski et al. 2008).

4.2.3 Posttranslational Modifications
The effects of ethanol exposure on the physiological aspects of BK channel

function have been extensively studied in rat neurohypophysial terminals (see

Sect. 3.4). In particular, in rats that had been exposed to ethanol for 3 weeks, BK

currents were less sensitive to activation by ethanol and demonstrated lower current

density, suggesting that they had developed tolerance to the drug (Knott et al.

2002). Tolerance that developed over 24 h of ethanol exposure was found to be

intrinsic to the tissue that is targeted by ethanol and had two phases: a fast decrease

in ethanol potentiation of the BK current that was detectable by 12 min of exposure

to ethanol, representing acute molecular tolerance; this effect was maintained for

at least 24 h. In addition, a second, distinct response to longer-term treatment with

ethanol was identified; after 24 h of ethanol exposure, BK current density was

decreased. This decrease in current density was coincident with a decrease in

BK clustering and a movement of channels away from the plasma membrane

(Pietrzykowski et al. 2004). Indeed, upon careful analysis, the subcellular localiza-

tion of BK channels in ethanol-exposed neurons was found to be dynamic: in rat

primary hippocampal neuron preparations, upon exposure to ethanol, there was a

transient increase in BK channels on the cell surface that lasted for 3 h. Importantly,

during the transient increase in the BK population on the cell surface, there was a

decrease in BK function, providing evidence that this ethanol-induced change in

localization is not the only mechanism underlying the change in BK function in

response to ethanol exposure (Palacio et al. 2015). After 6 h of exposure to ethanol,

however, BKs were internalized and removed from the plasma membrane, whereas

the total BK protein level remained unchanged (Palacio et al. 2015). This was

consistent with the previous observation that 6 h of ethanol exposure caused a

decrease in channel number in rat neurohypophysial membranes (Pietrzykowski

et al. 2004). This persistent decrease in slo1 channel number on the cell surface

after 6 h of ethanol treatment can be inhibited by inhibiting protein synthesis in

cultured rat hippocampal neurons (Velázquez-Marrero et al. 2016). Since the total

BK protein level is unchanged after 6 h of ethanol exposure (Palacio et al. 2015;

Velázquez-Marrero et al. 2016), the protein synthesis that is required for BK
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internalization must be producing other proteins that act in this process. Levels of

β-catenin, known to be important in BK surface expression (Bian et al. 2011), were

increased in response to ethanol treatment, and the Wnt/β-catenin signaling path-

way was found to be required for the redistribution of BK after 6 h of ethanol

treatment (Velázquez-Marrero et al. 2016).

4.2.4 Lipid (Cholesterol-Triglyceride) Metabolism/Levels
In artificial electrophysiological preparations, the composition of the lipid bilayer

strongly modulates the ability of the human slo1 channel to develop tolerance to

ethanol. BKs are activated by ethanol, and within 10 min they display tolerance to

this effect. In artificial lipid bilayers, when the bilayer thickness was modified by

changing the lipid composition, the ability of ethanol to activate BK, as well as the

ability of BK to develop acute tolerance, could be modified, demonstrating a central

role for lipid milieu in the function of BK and the effects of ethanol on that function

(Yuan et al. 2008).

Behavioral studies in C. elegans support the in vitro data documenting that BK

interaction with the lipid milieu is an important regulator of BK in vivo function,

including the BK response to ethanol. Cholesterol is an important component of the

lipid bilayer. C. elegans derive cholesterol exclusively from their diet, so it can be

depleted experimentally. Cholesterol-starved C. elegans were unable to develop

AFT to ethanol, demonstrating that there is an absolute requirement for cholesterol

in this form of tolerance (Bettinger et al. 2012). Furthermore, animals carrying a

mutation in the triacylglyceride lipase lips-7 had higher lipid levels than wt, were
resistant to ethanol, and demonstrated enhanced development of AFT to the alco-

hol. Importantly, lips-7 and slo-1 showed an intriguing genetic interaction: lips-7
mutant animals had a locomotion phenotype consistent with that of a loss-of-

function slo-1 mutant, and the lips-7 mutation could significantly suppress the

depressed locomotion phenotype of slo-1 gain-of-function mutations. These data

demonstrate that the function of this triacylglyceride lipase is important for the

modulation of SLO-1 function (Bettinger et al. 2012).

4.3 Putative Role of BK in Alcohol Consumption and Alcohol Use
Disorders

BK has well-established roles in the acute behavioral responses to ethanol across

the phylogenetic spectrum, which suggests that BK may play a role in more

complex behavioral responses to ethanol. The effect of manipulating BK function

on voluntary ethanol consumption was tested in mice. Beta4 KO mice were found

to consume significantly more alcohol and to achieve a significantly higher blood

alcohol concentration in the drinking in the dark paradigm than wt (Martin et al.

2008). These data strongly indicate that BK activity is an important modulator of

biologically relevant vertebrate ethanol response behaviors.

The finding that repeated exposures to ethanol could modify the effects of BK on

a tolerance phenotype suggests that modulation of BK function may play a role in

the behavioral response to ethanol in animals that had had prior exposure to the
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drug. When wt mice were made physically dependent on ethanol in the chronic

intermittent exposure paradigm, and then subsequently allowed only limited volun-

tary access to alcohol, they consumed more alcohol over time (Kreifeldt et al.

2013). Intriguingly, β1 and β4 KO mice had significantly different behavioral

responses to alcohol under this paradigm: β1 KO animals demonstrated enhanced

escalation of voluntary consumption compared to wt. In contrast, β4 KO animals

had attenuated escalation of drinking relative to wt (Kreifeldt et al. 2013). These
data clearly indicate that BK activity plays an important part in voluntary ethanol

consumption.

The effects of changing BK function in voluntary alcohol consumption behaviors

in mice suggest that BK function in humans is a good candidate for being involved

in alcohol drinking. In humans, the propensity to develop an AUD is strongly

influenced by genetics (Verhulst et al. 2014), and the identification of specific

genetic factors that predispose particular individuals to AUD has been the focus of

much study. While it has been difficult to unambiguously identify variants that alter

risk for AUD, variations in KCNMA1 have been repeatedly implicated in several

studies conducted in different human populations.

Single nucleotide KCNMA1 polymorphisms were first identified by Schuckit

et al. (2005) as being implicated in the level of response to alcohol demonstrated

in a laboratory alcohol challenge. In this study of pairs of siblings of alcohol-

dependent parents, authors identified a linkage peak for association with the level of

response to alcohol; KCNMA1 was under the peak, and 44 polymorphisms in

KCNMA1 were directly examined for association with level of response to alcohol.

None of the polymorphisms in any gene under examination reached genome-wide

significance, but six of the examined KCNMA1 polymorphisms were nominally

associated with the level of response to alcohol. In a separate population assessed

for symptoms of alcohol dependence in a questionnaire, KCNMA1 variation was

identified as being associated with symptoms of dependence (Kendler et al. 2011).

None of the polymorphisms tested in this study was significantly associated with

alcohol dependence symptoms, but a polymorphism in KCNMA1 was the most

significant result. Bolstering this observation, several other KCNMA1 polymor-

phisms were nominally associated in this population. Collectively these two studies

indicate that multiple polymorphisms in KCNMA1 show association with alcohol

phenotypes.

Examining the Collaborative Study on the Genetics of Alcoholism (COGA),

Edenberg et al. (2010) found two additional lines of evidence for the importance of

KCNMA1 in alcohol phenotypes in humans. One polymorphism in KCNMA1 was

one of six that was identified both in European American and African American

samples in the COGA case-control sample. Additionally, a polymorphism in

KCNMA1 was nominally associated in the COGA family sample with early onset

of alcohol dependence. Han et al. (2013) approached this question somewhat

differently and combined different human genome-wide association studies with

functional analysis of the most highly associated genes to generate a functional

network of genes that they hypothesized were particularly likely to play roles in risk

for alcohol dependence. Both KCNMA1 and, intriguingly, KCNMB1 were among

the 39 genes identified in this study.
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4.4 Extrapolations of BK Genetic Studies on Ethanol Use
Disorders Between Invertebrate Organisms, Rodents,
and Humans

Studies in model organisms including both invertebrate and vertebrate systems

have consistently demonstrated that BK plays important roles in ethanol response

behaviors across phyla. In both C. elegans and mouse, there is ample electrophysi-

ological evidence that ethanol acts directly on BK proteins, and the behavioral

evidence demonstrates that this action of ethanol has important behavioral conse-

quences (see above). Genes that modulate the acute level of response to alcohol in

invertebrates are excellent candidates for having roles in alcohol dependence in

humans (Grotewiel and Bettinger 2015). In mouse, the behaviors that BK mediates

include both acute levels of response to alcohol and, importantly, voluntary con-

sumption of alcohol. Interestingly, altering the function of different BK subunits

can increase or decrease alcohol consumption (Kreifeldt et al. 2013), suggesting

that different kinds of genetic variation in the BK system may influence risk for

alcohol dependence in humans differently. These observations may also imply that

genetic variation in BK β subunit genes may also be important in risk for ethanol

dependence.

It has been difficult to identify robust signals in human studies of variation in

genes that are strongly associated with liability to develop alcohol dependence.

This is likely to be due to the complex genetic architecture of alcohol dependence in

humans (Kendler et al. 2012) and the relatively small contribution of any individual

variant, which will require very large genome sizes to detect. One reason for the

small effect of specific variants may be that strong perturbations of function of

important ethanol response mediators like BK may not be maintained in human

populations. KO of slo1 in mice causes significant behavioral deficits (Typlt et al.

2013). Therefore, it may be that variation tolerated in the human population

consists of mild change-of-function alleles, which may be more difficult to detect

in human association studies. However, signals that appear in multiple studies, even

when not significant in any individual study, are likely to identify genes that are

relevant for alcohol dependence phenotypes. While none of the human genome

studies individually yielded genome-wide significance for KCNMA1, the consis-

tency of identifying variation in KCNMA1 across many different studies (Schuckit

et al. 2005; Edenberg et al. 2010; Kendler et al. 2011; reviewed by Rinker and

Mulholland 2017) points very strongly to the importance of this gene in alcohol

dependence phenotypes. Furthermore, the finding of association with KCNMB1
(Han et al. 2013) provides additional support to a central role for BK function in

human alcohol dependence.

5 Conclusion

In summary, BK is one of the central regulators of alcohol’s effects in the brain.

Although the sensitivity of BK to clinically relevant concentrations of alcohol was

described nearly two decades ago, new concepts and pathways of interference with
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alcohol-BK interactions are emerging rapidly. Some of the most recent findings

include work on epigenetic modifications over gene expression of slo1 proteins and

its accessory subunits, as well as cellular trafficking mechanisms that are targeted

by both acute and protracted alcohol exposures. The fundamental role played by

BK in neuronal physiology spans from invertebrate to mammalian species and,

thus, bolsters the applicability of findings in animal models to the effects of alcohol

intoxication and AUD pathophysiology in humans. However, bedside interventions

that would target alcohol-BK interaction(s) in the central nervous system are yet to

emerge.
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Abstract
Neural mechanisms underlying alcohol use disorder remain elusive, and this lack
of understanding has slowed the development of efficacious treatment strategies
for reducing relapse rates and prolonging abstinence. While synaptic adaptations
produced by chronic alcohol exposure have been extensively characterized in a
variety of brain regions, changes in intrinsic excitability of critical projection
neurons are understudied. Accumulating evidence suggests that prolonged alco-
hol drinking and alcohol dependence produce plasticity of intrinsic excitability as
measured by changes in evoked action potential firing and after-hyperpolarization
amplitude. In this chapter, we describe functional changes in cell firing of
projection neurons after long-term alcohol exposure that occur across species
and in multiple brain regions. Adaptations in calcium-activated (KCa2), voltage-
dependent (KV7), and G protein-coupled inwardly rectifying (Kir3 or GIRK)
potassium channels that regulate the evoked firing and after-hyperpolarization
parallel functional changes in intrinsic excitability induced by chronic alcohol.
Moreover, there are strong genetic links between alcohol-related behaviors and
genes encoding KCa2, KV7, and GIRK channels, and pharmacologically targeting
these channels reduces alcohol consumption and alcohol-related behaviors.
Together, these studies demonstrate that chronic alcohol drinking produces
adaptations in KCa2, KV7, and GIRK channels leading to impaired regulation of
the after-hyperpolarization and aberrant cell firing. Correcting the deficit in the
after-hyperpolarization with positive modulators of KCa2 and KV7 channels and
altering the GIRK channel binding pocket to block the access of alcohol represent
a potentially highly effective pharmacological approach that can restore changes
in intrinsic excitability and reduce alcohol consumption in affected individuals.

Keywords
After-hyperpolarization · Alcohol drinking · Alcohol use disorder · Intrinsic
excitability · Potassium channels

1 Introduction

The term addiction is commonly used to denote an unnatural or unbalanced amount
of attention directed toward an object, substance, or activity. In clinical terms, the
term addiction has largely been replaced by the phrase “use disorder” that reflects the
understanding that these conditions are diseases or illnesses of the brain that result
from some underlying alteration in normal physiology. Substance use disorders
(SUDs) and more specifically those involving alcohol (ethanol) are operationally
defined as the inability of the individual to control or reduce drug or alcohol intake
even in the face of negative social, emotional, or health-related consequences
(DSM-5 2013).

An emerging theme in the study of drug and alcohol addiction is that different
neural systems and neurochemicals underlie various stages associated with drug and
alcohol intake that contribute toward the progression of a drug-/alcohol- dependent
state (Koob 2013). In one such model, a binge/intoxication stage is thought to
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involve midbrain dopamine, opioid, and endocannabinoid reward pathways that are
activated by acute ingestion of drugs/alcohol and induce positive and pleasurable
feelings. Metabolic clearance of the drug or alcohol then induces a stage of acute
withdrawal that may engage brain stress systems involving hypothalamic and
extrahypothalamic circuits leading to negative or unpleasant symptoms that drive
additional binge/intoxication stages. The desire to retake a drug or alcohol following
some period of abstinence represents the preoccupation/anticipation stage and is
associated with feelings of craving characterized as a need to seek out and consume
the substance. This phase is thought to reflect activity in higher cortical areas
including areas of the prefrontal and orbitofrontal cortex that are involved in guiding
behavior by assessing risk and reward associated with making choices between
competing activities.

While the brain circuitry underlying these three phases of the cycle is evolution-
arily adapted for pursuing natural rewards, repeated episodes of drug or alcohol
consumption may lead to an imbalance between these systems with reductions in
reward signaling and altered activity in brain stress and preoccupation/anticipation
pathways that combine to produce escalations in drug/alcohol use and the develop-
ment of an SUD. The yearly incidence for developing an alcohol use disorder (AUD)
varies among different populations and is approximately 6% for US adults age
18 and older (Substance Abuse and Mental Health Administration (SAMHSA)
2015). Multiple factors enhance an individual’s susceptibility for developing an
AUD including genetic and epigenetic mechanisms that influence the sensitivity of
brain reward, stress, and cognitive systems to alcohol. Alcohol dependence disrupts
systems designed to maintain and regulate excitability, and in this chapter, we focus
on the role of three subtypes of K+-selective ion channels (KCa2, KV7, and Kir3
channels) in regulating intrinsic excitability and discuss how alcohol exposure alters
the expression and function of these channels. We also highlight findings from
recent studies showing how manipulating these channels with selective pharmaco-
logical agents can moderate alcohol consumption and facilitate extinction of
cue-induced alcohol-seeking behaviors.

2 Alcohol and Intrinsic Excitability

Although several types of cells including those of skeletal and cardiac muscle are
capable of generating action potentials, neurons have exploited this process to
generate the complex set of electrical signals that underlie brain function. Action
potentials reflect the opening of sodium permeable ion channels activated during
periods of membrane depolarization elicited by excitatory synaptic inputs. The rapid
entry of positively charged sodium ions drives the membrane potential toward the
sodium equilibrium potential that is approximately +40 mV for most mammalian
neurons. Voltage-dependent K+ ion channels are activated at these highly
depolarized potentials and, combined with sodium channel inactivation, repolarize
the neuronal membrane. Repolarization is often accompanied by an overshoot called
the after-hyperpolarization (AHP) that briefly drives the membrane potential past its
normal resting value. The AHP helps regulate the frequency of action potential
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generation and is mediated by a variety of ion channels including those regulated by
changes in intracellular calcium (e.g., KCa1 and KCa2 channels). Neuronal firing is
also regulated by activation of channels in the KV7 family whose activity is normally
inhibited by G protein-coupled neurotransmitter receptors and by inwardly
rectifying K+ channels (Kir3) that are activated by G proteins (also called GIRK
channels).

Intrinsic excitability is a measure of a neuron’s ability to fire and is experimentally
determined by measuring the number of action potentials generated spontaneously or
during a series of current pulses delivered to the neuron using the current-clamp mode
of whole-cell electrophysiology. Importantly, plasticity of intrinsic excitability is a
critical mechanism underlying synaptic integration and learning processes (Sehgal
et al. 2013), and alterations in cellular firing by abused substances may facilitate drug-
induced pre- and postsynaptic adaptations (Kourrich et al. 2015). The following
section briefly reviews studies that have examined the effects of acute and chronic
alcohol exposure on the firing properties of neurons (for review, see Harrison et al.
2017). Later sections focus on how alcohol-induced changes in the expression or
function of KCa2, KV7, and GIRK channels may underlie changes in the current-spike
relationship, thus altering the intrinsic excitability of neurons.

2.1 Acute Alcohol and Spike Firing

Brain slice recordings have revealed that under basal conditions, neurons in ventral
tegmental area (VTA), globus pallidus, cerebellum, and lateral habenula (LHb) are
spontaneously active, while those from dorsal striatum, nucleus accumbens (NAc),
hippocampus, and most cortical areas are silent although firing can be induced by
direct current injection. Acute application of relatively high concentrations of alco-
hol (~40–80 mM) enhances firing of dopamine VTA neurons (Brodie et al. 1999),
while a lower concentration (20 mM) was shown to increase firing of DA neurons
located in the medial VTA (Mrejeru et al. 2015). Concentrations of alcohol as low as
1 mM increased spontaneous firing of glutamatergic neurons in the LHb, while
50 mM alcohol increased the frequency of action potential spiking in cerebellar
Golgi neurons (Carta et al. 2004). In contrast, alcohol (10–80 mM) inhibits sponta-
neous firing of low-frequency (<30 Hz) globus pallidus neurons while having no
effect on those that fire at higher frequencies (Abrahao et al. 2017). This effect was
occluded by a blocker of KCa1 channels that are a known target for alcohol
(Mulholland et al. 2009). Studies using current-evoked spiking report that alcohol
also reduces firing of GABAergic neurons in the VTA (Gallegos et al. 1999),
pyramidal neurons in the lateral orbitofrontal cortex (lOFC) (Badanich et al. 2013;
Nimitvilai et al. 2016, 2017a), and serotonergic neurons of the dorsal raphe (Maguire
et al. 2014). Alcohol inhibition of VTA GABAergic neuron firing may involve α6-
containing nicotinic acetylcholine receptors (Schilaty et al. 2014), while the alcohol-
induced reduction in the firing of lOFC and dorsal raphe neurons requires activation
of strychnine-sensitive glycine receptors (Badanich et al. 2013; Maguire et al. 2014).

314 R. Cannady et al.



2.2 Chronic Alcohol and Spike Firing

Several studies have reported changes in intrinsic excitability following chronic
exposure to alcohol (Table 1). Spike firing was increased in NAc medium spiny
neurons (MSNs) recorded from rats following operant self-administration of alcohol
(Hopf et al. 2010), and this was accompanied by reduced AHP amplitude and
function of apamin-sensitive KCa2 channels. Similarly, repeated systemic alcohol
treatment and long-term drinking in an intermittent access model increased sponta-
neous action potentials and reduced AHP amplitude in LHb neurons (Agrawal et al.
2012). In contrast, no changes in spike firing or KCa2 channel currents were reported
for NAc MSNs from rats given repeated oral doses of alcohol (Marty and Spigelman
2012). Following repeated cycles of chronic intermittent ethanol (CIE) vapor expo-
sure in mice, spike firing of NAc medium spiny neurons and lOFC pyramidal
neurons was increased along with reduced AHP and loss of apamin-sensitive
currents (Nimitvilai et al. 2016; Padula et al. 2015). Renteria and colleagues reported
that the increased firing after CIE exposure was observed only in D1R-expressing
MSNs in the NAc shell (Renteria et al. 2017). The increase in spike firing in lOFC
neurons persisted for up to 10 days and was associated with a loss of monoamine
(DA, NE, 5HT) and GIRK channel modulation of firing and a tolerance to the acute
inhibitory actions of alcohol (Harrison et al. 2017; Nimitvilai et al. 2016, 2017b). A
similar attenuation of alcohol’s inhibitory effect on spike firing was observed in
lOFC neurons from long-term drinking (~9 months) monkeys, while current-evoked
spiking was reduced in these animals (Nimitvilai et al. 2017a). In contrast, intrinsic
excitability of putamen MSNs was increased in monkeys following prolonged
drinking and repeated periods of abstinence (Cuzon Carlson et al. 2011). Region-
specific changes in spike firing following CIE treatment of mice have also been
reported with increases for neurons in the ventral BNST (Marcinkiewcz et al. 2015;
Pleil et al. 2015) and dorsal raphe (Lowery-Gionta et al. 2015), decreases in medial
central nucleus of the amygdala (Pleil et al. 2015), and no change in infralimbic
cortex (Pleil et al. 2015).

One key factor to consider from these types of studies is the time of recording
relative to the last alcohol exposure. For example, in the mouse lOFC studies,
CIE-exposed animals showed elevated spike firing by the 3-day withdrawal period,
and excitability was still elevated at the 10-day withdrawal time point (Nimitvilai
et al. 2016), while no change in excitability was seen in animals undergoing acute
(<6 h) withdrawal (Nimitvilai et al. 2017a). Studies examining chronic alcohol-
induced changes in intrinsic excitability in prelimbic cortical pyramidal neurons are
inconsistent, with two studies showing no alterations in evoked firing in layer V
neurons and one study reporting an increase in excitability of layer II/III neurons
(Pleil et al. 2015; Hu et al. 2015; Trantham-Davidson et al. 2014). Changes in NAc
neuron excitability in alcohol-exposed mice and rats were observed during early
withdrawal (3–7 days; Padula et al. 2015) as well as following extended abstinence
(Hopf et al. 2010). The increase in dorsal raphe neuron spiking following CIE
exposure in mice was present 24 h after the last treatment but was lost after
1 week of withdrawal (Lowery-Gionta et al. 2015). Overall, these findings highlight
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the dynamic nature of processes that regulate the intrinsic excitability of neurons
across species and reveal that not all alcohol exposure models produce the same
effect on cell firing, even within the same brain region.

3 Potassium Channels

The K+ channel family is the largest known group of ion channels with at least
79 mammalian K+ channel genes that encode the wide variety of channel subtypes.
K+ channels are highly conserved and ubiquitously expressed in almost all species
(Kuo et al. 2005). Currently, there are several distinct categories of K+ channels
based on the mode of activation and gating, including calcium-activated (KCa),
voltage-gated (KV), inward rectifier (Kir), and two-pore domain K+ channels
(Table 2). Moreover, alternative splicing and co-assembly of varying K+ channel
subunits add to the diversity in K+ channel subtypes and function (Zandany et al.
2015; King et al. 2016). Despite the large number of K+ channel subtypes, all share
the common feature of a highly selective K+ ion-permeable transmembrane pore.

Table 2 HUGO Gene Nomenclature Committee (HGNC) designations with their International
Union of Pharmacology (IUPHAR) protein names for the potassium channels discussed in this
chapter

Gene
IUPHAR protein
name (common name) Description Activator Blockers

Kcnn1 KCa2.1 (SK1) Small-conductance,
calcium-activated

1-EBIO, CyPPA,
chlorzoxazone

Apamin

Kcnn2 KCa2.2 (SK2) Small-conductance,
calcium-activated

1-EBIO, CyPPA,
chlorzoxazone

Apamin

Kcnn3 KCa2.3 (SK3) Small-conductance,
calcium-activated

1-EBIO, CyPPA,
chlorzoxazone

Apamin

Kcnq1 KV7.1 Voltage-gated,
delayed rectifier

XE-991

Kcnq2 KV7.2 Voltage-gated,
delayed rectifier

Retigabine XE-991

Kcnq3 KV7.3 Voltage-gated,
delayed rectifier

Retigabine XE-991

Kcnq4 KV7.4 Voltage-gated,
delayed rectifier

Retigabine XE-991

Kcnq5 KV7.5 Voltage-gated,
delayed rectifier

Retigabine XE-991

Kcnj3 Kir3.1 (GIRK1) G protein-gated,
inwardly rectifying

ML297 Ba2+

(nonselective)

Kcnj6 Kir3.2 (GIRK2) G protein-gated,
inwardly rectifying

Ba2+

(nonselective)

Kcnj9 Kir3.3 (GIRK3) G protein-gated,
inwardly rectifying

Ba2+

(nonselective)

Also shown are the common protein names and the pharmacological agents used to probe alcohol-
related behaviors
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Given the high intracellular K+ concentration compared to that in the extracellular
environment, channel opening leads to rapid K+ ion efflux and hyperpolarization/
repolarization of the cell membrane potential (Doyle et al. 1998). K+ channels thus
act as an opposing force to cellular depolarization and excitability or as a modifying
factor for the shaping of action potentials. Due to the immense number of K+ channel
subtypes and the limited scope of this chapter, we will highlight only three of the K+

channel families, the KCa channels, the KV channels, and the G protein-activated
inward rectifier (Kir3) channels (Fig. 1). The structure and function of other K+

channel families and subtypes not mentioned here have been extensively reviewed
by others and are referenced for the reader’s consideration (Coetzee et al. 1999;
Miller 2000; Gonzalez et al. 2012; Jenkinson 2006; Fonseca 2012; Vandenberg et al.
2015).

There are 12 subgroups (KV1–KV12) in the family of voltage-gated K+ channels.
KV channel subtypes are gated by varying voltage dependencies through a voltage-
sensing domain formed by four transmembrane segments (S1–S4) in each channel
subunit, while the channel pore is comprised of two other transmembrane segments
that form a loop (S5–S6). KV1, KV4, and KV7 channels are activated at relatively
low membrane potentials and are critical in regulating the number of action
potentials during early phases of membrane depolarization (Johnston et al. 2010).
The transient A-type current is generated by KV4 channels and has a unique feature

Fig. 1 Activation of KCa2, KV7, and GIRK channels in neural membranes. KCa2 channels are
activated by elevations in intracellular calcium via influx through voltage-gated calcium channels
(VGCCs), NMDA receptors (NMDARs), or release from intracellular stores. KV7 channels are
activated near the resting membrane potential and during membrane depolarization. Ligand binding
of G protein-coupled receptors (GPCRs) releases G proteins that bind to and activate GIRK
channels. Opening of these KCa2, KV7, and GIRK channels allows potassium ions to flow outside
of the cell causing hyperpolarization and shunting of neuronal excitability. CaM calmodulin, RyR
ryanodine receptors. Images were acquired with permission from www.servier.com and subse-
quently modified
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in which hyperpolarization is necessary for the removal of steady-state inactivation
before activation (Maffie and Rudy 2008). KV7 voltage-gated K+ channels produce
the M-current, a slow-developing, low-voltage activated AHP current that is sensi-
tive to muscarinic receptor activation (discussed in detail below). KV2 and KV3
currents are activated at high voltages, particularly during the firing of action
potentials, and play an important role in membrane repolarization and regulation
of firing in neurons with a fast-spiking phenotype. An important feature that
differentiates KV2 and KV3 channels is the rate of activation with KV2 channels
showing much slower activation, while KV3 channels open rapidly contributing to
their prominent role in regulating firing of fast-spiking neurons. Interestingly, KV5,
KV6, KV8, and KV9 are commonly named the silent electrical K+ channel subunits.
These subunits do not form functional channels as homomers but readily form
heteromers with KV2 channels with diverse functions within tissue types (Bocksteins
2016). The KV10–KV12 channels are referred to as ether-à-go-go (denoted KV10),
ether-à-go-go-related (erg, KV11), and ether-à-go-go-like (elk, KV12) and are
members of the KCNH gene family. Few studies exist that directly characterize the
exact function of these channels, but generally, these channels become activated at
subthreshold voltages and display highly variable gating kinetics (Vandenberg et al.
2015; Zhang et al. 2009).

KCa channels are unique in that they are activated by increasing levels of
intracellular calcium. Each member of this K+ channel family is further distinguished
by the level of single-channel conductance upon activation (Vergara et al. 1998).
Large-conductance calcium-activated KCa1 channels that are also voltage-gated
have a single-channel conductance of �100–300 pS, while intermediate (KCa3;
�20–80 pS) and small (KCa2; �2–20 pS, Marty and Neher 1985) subtypes have
more modest values. As discussed below, small-conductance calcium-activated
KCa2 channels are of particular interest due to their critical role in regulating intrinsic
excitability in relation to alcohol addiction. Alcohol effects on large-conductance
calcium-activated KCa1 channels are discussed in the chapter by Dopico and
colleagues in this volume (Dopico et al. 2017).

Inward-rectifying K+ channels consist of seven subfamilies (Kir1–Kir7) and are
distributed in multiple cell types, including cardiomyocytes, endothelial cells,
kidneys, and neurons (for review, see Hibino et al. 2010). Among these, G
protein-coupled inwardly rectifying K+ (Kir3 or GIRK) channels are considered as
important neuronal regulators and are associated with numerous neuropsychiatric
diseases, including schizophrenia (Yamada et al. 2012), depression (Llamosas et al.
2015), epilepsy (Signorini et al. 1997), as well as drug and alcohol abuse disorders
(Hill et al. 2003). Unlike KV and KCa, GIRK channels are activated by ligand-
stimulated G protein-coupled receptors (GPCRs), including dopamine, serotonin,
and GABA. Binding of an agonist to the GPCR triggers the dissociation of Gαi and
Gβγ. Once released from its bound Gαi, the Gβγ dimeric protein can directly activate the
GIRK channel (Logothetis et al. 1987; Reuveny et al. 1994) and increase its affinity for
the membrane-bound phospholipid-phosphatidylinositol 4,5-bisphosphate (PIP2),
which is required to stabilize the open state of the GIRK channel (Huang et al.
1998; Xiao et al. 2003). The activated GIRK channel is now permeable to K+ ions,
leading to hyperpolarization of the cell membrane and inhibition of neuronal activity.
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Interestingly, concentrations of alcohol relevant to human consumption (18 mM
alcohol or 0.08% blood alcohol level) directly activate GIRK channels independently
from GPCR-dependent activation (Bodhinathan and Slesinger 2013; Kobayashi et al.
1999; Lewohl et al. 1999). As many therapeutic drugs that target GPCR-linked GIRK
channels have been used to treat a number of neuropsychiatric diseases including
alcoholism and alcohol itself directly activates GIRK channels, the role of these
channels on neuronal activity and its involvement in alcohol addiction is also
addressed in this chapter.

4 Intrinsic Excitability

K+ channel regulation of cellular excitability is among the most important functions
related to proper neuronal activity. Excitability of neuronal activity is regulated in
many ways including alteration of resting membrane potential (RMP) and limiting
neuronal spike activity. The AHP that follows neuronal spiking is a manifestation of
outward K+ current that regulates subsequent spiking episodes and, thus, establishes
firing frequency. In addition, summation of the AHP after bursts of action potentials
leads to spike-frequency adaptation that ultimately leads to the inhibition of spiking
and is key for protecting neurons from over-excitation and epileptiform activity
(Alger and Williamson 1988; Garduno et al. 2005; Schulz et al. 2012). The genera-
tion and regulation of action potentials by K+ channels are critical for neuronal
encoding of input- and output-specific information and are mediated by the AHP.
Intrinsic excitability is also crucial to processes such as spike timing-dependent
plasticity in which changes in the strength of neuronal connectivity rely on the
relative timing of synaptic events and back-propagating action potentials and is
essential for certain types of learning (Debanne and Poo 2010). Therefore, K+

channel regulation of excitability has important implications in establishing and
mediating learning and memory processes. KCa2, KV7, and GIRK channels play
significant roles in controlling intrinsic excitability by regulating RMP, spike fre-
quency, and the AHP. Their functional roles and importance in alcohol-related
neuroadaptations and behaviors are discussed in more detail below.

5 KCa2, KV7, and GIRK Channel Regulation of Excitability

The small-conductance calcium-activated K+ (KCa2) channels play a key role in
regulating intrinsic excitability and underlie the medium AHP (mAHP) that follows
action potentials. KCNN1–3 genes encode the pore-forming α subunits of KCa2.1,
KCa2.2, and KCa2.3 channels that are predominantly expressed in the central nervous
system (Stocker 2004). These channels are structurally similar to the KV channels in
that they form tetramers and each α subunit contains six transmembrane regions.
KCa2 channels are potently inhibited by the bee venom toxin apamin that produces
an increase in cellular excitability and reduction in the amplitude of the mAHP
(Blatz and Magleby 1986). Subunits of KCa2 channels contain a calcium-sensitive
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calmodulin-binding domain formed by constitutively bound calmodulin
(Schumacher et al. 2001; Xia et al. 1998) that senses changes in intracellular calcium
concentration arising from activation of various calcium channel subtypes, NMDA
receptors, and intracellular stores of the endoplasmic reticulum (Adelman et al.
2012). The increase in intracellular calcium concentration that occurs during mem-
brane depolarization induces a conformational change in the calmodulin-binding
domain of the KCa2 channel resulting in activation and K+ ion efflux (Xia et al.
1998). Thus, KCa2 channels are critical for monitoring and regulating intracellular
calcium signaling and action potential generation.

Similar to other voltage-gated K+ channels, KV7 channels are tetramers formed
by assembly of six transmembrane KV7 protein subunits (KV7.1–7.5) that are
encoded by the KCNQ family of genes (KCNQ1–5, respectively). KV7.1 subunits
are found almost exclusively in cardiomyocytes and do not co-assemble with any of
the other KV7 channel proteins and instead associate with KCNE proteins that act as
ancillary modulatory subunits (Abbott and Goldstein 2001; McCrossan and Abbott
2004; Roura-Ferrer et al. 2010). The remaining four subunits are expressed through-
out the nervous system and form functional homotetramers (KV7.2, KV7.4, and
KV7.5) or heterotetramers with KV7.3 (Howard et al. 2007; Jentsch 2000). These
channels generate the M-current (IM), a voltage-sensitive K

+ current so named as it is
suppressed by activation of muscarinic receptors (Wang et al. 1998; Shah et al.
2002). Subsequent research has demonstrated that the M-current can also be
inhibited by a number of different neurotransmitters/hormones that act on Gq-
and G11-coupled receptors, including, but not limited to, mGlu1/5, histamine H1,
5-HT2C, substance P, bradykinin, and angiotensin II (Brown and Passmore 2009;
Zaika et al. 2006; Marrion 1997). Despite the abundance of KV7.2/7.3 channels and
the physiological evidence that these heterotetramers contribute substantially to the
native M-current, all KV7 channels produce M-like currents (Brown and Passmore
2009), with KV7.4-containing channels contributing to M-current in midbrain dopa-
minergic neurons (Hansen et al. 2008). Although KV7.5-containing channels show a
less ubiquitous expression profile, they are nonetheless found in cortical, hippocam-
pal, and striatal tissue (Shah et al. 2002; Schroeder et al. 2000). Regardless of
composition, each M-channel subunit contains a voltage-sensor domain (transmem-
brane domains S1–S4), and the channels are slow-activating starting at subthreshold
potentials of around �60 mV. Uniquely, M-channels do not inactivate, thus produc-
ing a sustained voltage-dependent outward current that stabilizes the membrane
potential in the presence of depolarizing currents, thus regulating neuronal
excitability by dampening repetitive or burst firing of action potentials (Jentsch
2000; Brown and Passmore 2009; Brown and Adams 1980). These channels also
regulate interspike intervals and contribute substantially in determining whether
neurons naturally fire tonically or phasically (Wang and McKinnon 1995; Lawrence
et al. 2006). They also contribute to aspects of the AHP differentially depending on
the brain region, channel composition, and presence/distribution of other K+

channels. In CA1 pyramidal neurons, M-channels almost exclusively mediate the
mAHP (Gu et al. 2005), though not as much in other cell types (Mateos-Aparicio
et al. 2014). In contrast, M-channels have been shown to mediate the fAHP and
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sAHP in VTA dopamine neurons (Koyama and Appel 2006). Suppression of the
M-current by application of the KV7 channel blocker, XE-991, diminishes respective
AHP components and increases cellular excitability and spike discharge (Brown and
Passmore 2009; Gu et al. 2005; Koyama and Appel 2006). Thus, KV7 channels are
an essential regulator of intrinsic excitability, the importance of which is
underscored by the finding that a mere 25% reduction in function of KV7.2/7.3
channels induces seizures, as found in cases of benign familial neonatal convulsions
caused by KCNQ2 and KCNQ3 mutations (Schroeder et al. 1998).

KCa2 and KV7 channels play complementary roles in regulating neuronal
excitability and the AHP. KCa2 channels within dentate gyrus granule cells have
been identified as the central contributor to the mAHP and spike-frequency adapta-
tion, while KV7 channels contribute minimally to the isolated mAHP and spike-
frequency adaptation but strongly regulate the action potential threshold by
activating at subthreshold potentials (Mateos-Aparicio et al. 2014). This comple-
mentary function is critical because dentate granule cell activity can regulate the
output of interneurons and pyramidal cells through synaptic activity within hippo-
campal mossy fibers (Henze et al. 2002), and these channels also function to support
stable long-term potentiation through facilitating protein synthesis (Barnes et al.
2010). In contrast, in CA1 hippocampal pyramidal cells, KCa2 channels seem to
contribute minimally to the mAHP following action potential bursts, whereas KV7
channels are the predominant regulators of the mAHP (Chen et al. 2014). Moreover,
when KV7 channel function is inhibited or compromised in CA1 pyramidal cells,
KCa2 channels usurp regulation of the AHP and intrinsic excitability and function as
a “fail-safe” to limit spike discharge (Chen et al. 2014). This has been proposed to
have functional implications for conditions in which KV7 channel function may be
disrupted including hyposmolarity-induced epileptiform seizures (Kobayashi et al.
2008), benign familial neonatal convulsions (Singh et al. 2008), or chronic alcohol
exposure (Kang et al. 2017). There is limited understanding of how KCa2 and KV7
channels may interact in other brain regions outside of the hippocampus. The diverse
functional interactions within cellular subtypes of the hippocampus alone suggest
that interplay between these channels may have varying influences on neuronal
firing and AHP in other brain regions and/or cellular subtypes. Future studies are
warranted to determine the full extent of KV7 and KCa2 channel interactions to
regulate cell firing, especially as disruptions in KV7-KCa2 channel cross talk may
influence plasticity of intrinsic excitability and alcohol-seeking behavior.

GIRK channels are comprised of four different subunits, GIRK1 to GIRK4.
GIRK1–3 subunits (encoded by Kcnj3, Kcnj6, and Kcnj9, respectively, Table 2)
are moderately or highly expressed throughout the brain, while expression of GIRK4
is low and is found only in a few brain regions such as the hypothalamus and
cerebellum (Aguado et al. 2008; Karschin et al. 1996; Perry et al. 2008). Functional
GIRK channels are heterotetramers of GIRK1/2, GIRK1/3, GIRK1/4 or GIRK2/3
subunits, or homotetramers of GIRK2 subunits (Luscher and Slesinger 2010).
GIRK2 contains an endoplasmic reticulum (ER) export signal, enabling this subunit
to form either homo- or heterotetramers. GIRK3 does not have an ER signal but
contains a lysosomal targeting sequence that promotes degradation of GIRK
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channels. GIRK1 has neither an ER nor a lysosomal targeting signal so it must
assemble with another GIRK subunit to express on the plasma membrane. GIRK
currents are termed “inwardly rectifying” because current passes more easily in the
inward direction than in the outward direction. Under physiological conditions
where the RMP of neurons is positive to the equilibrium potential for K+, basal
current or agonist-induced GIRK currents show large inward and small outward
flow. The outward flow of GIRK-mediated K+ currents near the RMP hyperpolarizes
the membrane potential and thus decreases the excitability of the neuron. Dysfunc-
tion of GIRK channels has been implicated in several diseases. For example, loss of
GIRK function results in excessive excitability found in epilepsy (Signorini et al.
1997), while over-activation of GIRK can reduce neuronal activity and may trigger
cell death as postulated in Down’s syndrome and Parkinson’s disease, respectively
(Patil et al. 1995).

6 KCa2 Channels and Alcohol

6.1 Genetics

AUD is a complex brain disease that likely results from interactions among genetic,
epigenetic, and environmental factors that combine to promote heavy alcohol drink-
ing and dependence phenotypes. Meta-analyses and twin studies estimated that
23–79% of the variance in alcohol addiction is heritable (Agrawal et al. 2012;
NIAAA 2016). The limited success of the current FDA-approved drugs for treating
excessive drinking may reflect the heterogeneous population of those with AUD. As
precision medicine approaches are showing efficacy across a number of diseases
(i.e., cancer and cardiovascular disease), recent clinical and preclinical studies
have searched for genetic mutations as possible pharmacogenetic targets to treat
alcohol addiction (Kranzler et al. 2017; Rinker and Mulholland 2017). While not
all pharmacogenetic studies to treat alcohol addiction are reproducible (Kranzler
et al. 2017), some studies have shown that matching genetic variation to
pharmacotherapies can improve relapse rates and heavy drinking days (Kranzler
and McKay 2012; Heilig et al. 2011; Sturgess et al. 2011). Thus, advances in
precision medicine approaches offer a promising strategy for treating alcohol addic-
tion, and a number of novel targets have been identified from preclinical models of
alcohol seeking and dependence (Padula et al. 2015; Rinker and Mulholland 2017;
Rinker et al. 2017).

A recent preclinical study employing an integrative functional genomics
approach revealed that KCNN genes are present in multiple quantitative trait loci
(QTL) and gene sets related to alcohol intake and dependence (Padula et al. 2015),
including an alcoholism susceptibility QTL on human chromosome 1. Each member
of the family of Kcnn genes is found in QTLs for alcohol consumption and
preference in rats and mice (Padula et al. 2015; Bachmanov et al. 2002; Carr et al.
2003; Foroud et al. 2000; Radcliffe et al. 2004). BXD recombinant inbred
(RI) strains of mice are an excellent resource to study the genetic diversity of
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alcohol-related phenotypes (Philip et al. 2010). To gain a better understanding of
Kcnn genes in controlling voluntary alcohol intake, the relationship between Kcnn
and drinking was explored in BXD RI and their parental strains. Interestingly, Kcnn3
transcript levels in the NAc correlated negatively with voluntary drinking in a
two-bottle choice limited-access and the drinking-in-the-dark model (Padula et al.
2015; Rinker et al. 2017). While there are some potential caveats of using BXD RI
strains to study the genetic control of alcohol intake (such as the influence of taste
and gene-environment interactions), Kcnn3 was also identified as a candidate signa-
ture gene that associated with alcohol preference in low- and high-alcohol-drinking
rat lines (Lo et al. 2016). In alcohol-dependent BXD strains, the negative relation-
ship between Kcnn3 and alcohol intake became more robust, suggesting that alcohol
dependence alters Kcnn expression and that high levels of Kcnn expression protect
against escalation of drinking in dependent mice (Padula et al. 2015). Thus, high
expression levels of Kcnn3 may be a protective factor against developing alcohol
addiction and dependence. Although not identified in the NAc, reductions in KCNN2
expression were reported in the frontal cortex and amygdala of alcohol-dependent
individuals (Ponomarev et al. 2012). As described below in detail, studies consis-
tently demonstrate that chronic alcohol exposure reduces KCa2 channel function
across multiple preclinical models and in divergent cell types, further demonstrating
that KCNN is a mediator of voluntary and heavy alcohol drinking. This finding is
supported by evidence showing that KCa2 channel positive modulators reduce
drinking in rodent models (see below). Lastly, KCNN genes are present in QTLs
related to all abused substances and are altered in brains of addicts (Padula et al.
2015), suggesting that the KCNN family of genes is a common mechanism underly-
ing addiction that spans multiple abused substances (Mulholland et al. 2016).

6.2 Alcohol and KCa2 Channel Function

Alcohol has distinct effects on function and membrane trafficking of KCa2 channels
that may underlie some of the neuropathology associated with alcohol addiction
(Fig. 2). Early studies in rats demonstrated that 20 weeks of chronic alcohol exposure
significantly reduced inhibitory postsynaptic potentials and AHP currents in CA1
pyramidal neurons and dentate gyrus granule cells (Durand and Carlen 1984). Similar
effects on KCa2-mediated IAHP were later replicated in CA1 pyramidal neurons from
organotypic hippocampal slices continuously exposed to alcohol in vitro (Mulholland
et al. 2011). Interestingly, synaptic KCa2 channels are part of a negative feedback loop
with NMDA receptors within dendritic spine head nanodomains (Mulholland et al.
2011; Ngo-Anh et al. 2005). Mulholland and colleagues (2011) reported a loss of KCa2
channel control of synaptic NMDA receptor activity after chronic alcohol that
paralleled increases in excitotoxicity. This effect was attributed to reduced KCa2.2
subunit expression at synaptic sites, and the hyperexcitability was rescued by treatment
with 1-EBIO, a KCa2 channel positive modulator. Together, these data demonstrate a
relationship between prolonged alcohol exposure and deficits in hippocampal function
that may underlie alcohol-induced cognitive impairments observed in clinical settings
(Bartels et al. 2007).
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Fig. 2 Chronic alcohol reduces KCa2, KV7, and GIRK channel expression and signaling in the
cortex and striatum. KCa2 and KV7 potassium channels are expressed in dendrites, axons, and along
the soma of neurons where they function to reduce the action potential threshold, increase the after-
hyperpolarization (AHP) amplitude, and hyperpolarize the resting membrane potential. GIRK
channels localize to synaptic and perisynaptic regions of glutamatergic neurons where they function
to dampen neuronal excitation. Chronic alcohol exposure and alcohol dependence reduce expres-
sion and function of KCa2 and KV7 potassium channels in neurons leading to increased intrinsic
excitability and reduced AMP amplitude. GIRK channel signaling in the cortex is disrupted in
alcohol-dependent mice. Images were acquired with permission from www.servier.com and subse-
quently modified
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Alcohol exposure is also linked to reduced KCa2 channel function within the
VTA, a brain region that is the origin of dopamine cell bodies and that plays a
significant role in regulating motivation and the rewarding properties of alcohol
(Gonzales et al. 2004; Gorelova et al. 2012; Cook et al. 2014). Indeed, studies have
shown that bath application of alcohol reduces KCa2 channel function and increases
excitability of dopaminergic neurons through modulation of the AHP (Brodie et al.
1999). It was later demonstrated that withdrawal from alcohol reduced AHP and
KCa2-mediated IAHP amplitude in VTA neurons (Hopf et al. 2007). Similar effects
have also been observed in the NAc and lOFC after induction of alcohol dependence
(Nimitvilai et al. 2016; Padula et al. 2015) and voluntary consumption (Hopf et al.
2010). Decreases in NAc KCa2 subunit expression and trafficking also accompany
reductions in the AHP amplitude and are associated with increased excitability of the
NAc. Interestingly, there was a complete loss of apamin-sensitive IAHP current in
NAc and lOFC neurons following chronic alcohol exposure (Nimitvilai et al. 2016;
Padula et al. 2015), suggesting that alcohol may affect expression of apamin-
sensitive and apamin-insensitive isoforms of KCa2.3 channels (Wittekindt et al.
2004). These data suggest that adaptations in KCa2 channels underlie plasticity of
intrinsic excitability and the motivation for alcohol-seeking behavior, particularly
during a period of abstinence.

6.3 KCa2 Channel Ligands and Drinking

Several preclinical studies have shown that pharmacological modulation of KCa2
channel activity alters alcohol consumption and seeking behavior. For example,
chlorzoxazone is an FDA-approved KCa2 channel activator (Syme et al. 2000; Cao
et al. 2001) used as a muscle relaxant that dose-dependently reduced alcohol
consumption in rats using the chronic intermittent access drinking protocol (Hopf
et al. 2011). The chlorzoxazone-induced reduction in alcohol consumption was
associated with the rescue of diminished KCa2 channel activity in the NAc core as
examined by ex vivo slice electrophysiology. In addition, infusion of 1-EBIO, a
similar KCa2 positive modulator, in the NAc core selectively reduced alcohol, but
not sucrose operant self-administration after a period of forced abstinence (Hopf
et al. 2010). Using a 24-h intermittent access procedure, investigators were able to
show that CyPPA, another KCa2 positive modulator, significantly reduced alcohol
consumption in C57BL/6J mice (Padula et al. 2013). Taken together, these preclini-
cal data indicate that treatment with KCa2 positive modulators is a potential
promising pharmacotherapeutic approach to reduce alcohol consumption in
individuals with alcohol use disorder (Mulholland 2012). Other studies have
demonstrated that microinjection of apamin into the NAc significantly increased
alcohol consumption in nondependent mice and also induced spontaneous seizure
activity in dependent mice at high doses (Padula et al. 2015). These data indicate that
there is a bidirectional role for KCa2 channels to modulate alcohol consumption and
further emphasize the role of reduced KCa2 channel function in mediating excessive
consumption.
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In addition to its role in alcohol consumption, KCa2 channels are also involved in
regulating responses to alcohol-associated cues. The prefrontal cortex is a key brain
region that responds to the presentation of alcohol- and drug-associated cues (Otis
et al. 2017), and KCa2 channels within this region have been linked with associative
learning processes (Criado-Marrero et al. 2014). Recent evidence has shown that
both systemic and local inhibition of infralimbic but not prelimbic cortex KCa2
channels with apamin facilitates extinction of alcohol-seeking behavior during cue
extinction sessions (Cannady et al. 2017). This effect is hypothesized to be due
to facilitation of newly formed extinction memories to compete with prior
cue-associated memories that had once motivated alcohol-seeking behavior. These
data demonstrate that KCa2 inhibition could act as a potential therapeutic target to
facilitate cue-exposure therapy in problem drinkers.

7 KV7 Channels and Alcohol

7.1 Genetics

Similar to the relationship between KCNN genes and alcohol, integrative functional
genomic analysis revealed that Kcnq2 and Kcnq3 lie within multiple alcohol-related
QTLs in rodents, including those for alcohol consumption and preference (McGuier
et al. 2016). Likewise, the remaining members of the Kcnq family of genes are
present in alcohol preference-related QTLs in rodents (Table 3). In Drosophila, low
doses of alcohol blocked KCNQ currents, and a loss-of-function mutation in KCNQ
produced an increase in alcohol tolerance and sensitivity to its sedating effects
(Cavaliere et al. 2012). Kcnq2 was identified as a positional candidate within the
cis-eQTL for alcohol consumption and withdrawal (Metten et al. 2014), and there

Table 3 GeneWeaver.org gene sets that contain Kcnq1, Kcnq4, and Kcnq5 genes in published
QTL and curated genomic data sets for alcohol-related behaviors

Gene
GeneWeaver gene set
ID QTL or gene set Species

PubMed
ID

Kcnq1 GS128199 Alcohol preference Mouse n/a

GS84196 Alcohol preference QTL Mouse 9880655

Kcnq4 GS223356 Alcohol response QTL Rat 16953387

GS84162 Chronic alcohol withdrawal
severity QTL

Mouse 12925894

Kcnq5 GS84098 Alcohol preference QTL Mouse 10443995

GS135279 Alcohol preference QTL, male
specific

Mouse 10443995

GS18838 Differential expression Rat 12462420

GS223361 Alcohol response QTL Rat 15608595

GS84096 Alcohol consumption QTL Mouse 11109025

GS84097 Alcohol preference QTL Mouse 9880657

GS84101 Alcohol withdrawal QTL Mouse 9655868
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are two single nucleotide polymorphisms (SNPs) in Kcnq2 that could account for the
differences in drinking phenotypes across multiple mouse crosses (McGuier et al.
2016). In BXD RI strains, Kcnq transcript levels in the NAc and prefrontal cortex
negatively correlated with voluntary alcohol drinking in a limited-access model
(Rinker et al. 2017). Transcript expression levels of genes encoding KV7.2, KV7.3,
and KV7.5 channel subunits are altered in key brain regions within the addiction
circuitry in postmortem brain tissue from alcoholics and rodent models of chronic
alcohol exposure or intake (Rinker and Mulholland 2017; Rinker et al. 2017;
McGuier et al. 2016). In the NAc of BXD RI strains, adaptations in Kcnq1 and
Kcnq5 transcript levels correlated with the change in voluntary drinking in alcohol-
dependent mice (Rinker et al. 2017). Moreover, a recent whole genome sequencing
study identified Kcnq5 as a gene associated with alcohol preference in rats (Lo et al.
2016). These preclinical findings are intriguing given that SNPs in KCNQ1 and
KCNQ5 are associated with early-onset alcoholism and symptoms of alcohol depen-
dence (Kendler et al. 2011; Edenberg et al. 2010). Together, genetic findings linking
alcohol action to the family of KCNQ genes across species as diverse as fruit flies
and humans provide strong evidence that genetic diversity in KCNQ influences
heavy alcohol intake and contributes to risk factors for developing an AUD.

7.2 Alcohol and KV7 Channel Function

There is accumulating evidence demonstrating that acute alcohol has direct effects
on KV7 channel activity leading to alterations in the AHP and intrinsic excitability of
neurons. In one of the first reports of this kind, Moore and colleagues showed that in
rat hippocampal pyramidal cells, alcohol significantly reduced the M-current and
blocked typical somatostatin-induced augmentation of the M-current (Moore et al.
1990). They also demonstrated that this effect of alcohol was mediated through
mechanisms distinct from the muscarinic receptor, as bath application of atropine did
not alter the alcohol-induced suppression of M-channel activity (Moore et al. 1990).
More recent data in dissociated rat VTA dopaminergic neurons confirms that alcohol
reduces M-current by acting directly on KV7 channels in a voltage-independent
manner, suggesting that the site of action of alcohol is distinct from the voltage-
sensing regions of KV7 channel subunits (Koyama et al. 2007). Additionally, this
effect is conserved across species, as the M-channel ortholog in Drosophila,
dKCNQ, is a direct target of alcohol (Cavaliere et al. 2012, 2013).

While the majority of studies in this area have focused on the acute effects of
alcohol on M-channel function, Kang and colleagues have recently examined the
effects of more chronic alcohol administration on M-channel function. They demon-
strate that repeated alcohol exposure results in increased excitability of neurons in
the LHb, as evidenced by increased evoked spike firing, as well as a reduction in the
mAHP and decreased ability of XE-991 to increase LHb cell firing (Kang et al.
2017). The authors argued that these effects of alcohol on neuron physiology are
attributable to a loss of M-channel activity because of an overall reduction of both
KV7.2 and KV7.3 subunit expression in LHb neurons (Kang et al. 2017; Shah et al.
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2017). Similarly, KV7.2 subunits in the NAc are differentially trafficked between
detergent soluble and insoluble membrane fractions after chronic alcohol consump-
tion, possibly due to changes in KV7.2 SUMOylation that could alter M-channel
function (McGuier et al. 2016). These changes in cellular expression profiles and
function of M-channels following alcohol exposure (Fig. 2) provide support for
using KV7 channel positive modulators to reduce alcohol consumption associated
with AUD.

7.3 Retigabine and Drinking

A number of preclinical studies demonstrate that increasing M-channel activity can
alter alcohol-associated behaviors and, importantly, may represent a promising
pharmacological target for treating AUD. Retigabine, a KV7 channel opener
for treating epilepsy, has shown great promise in preclinical models as one
such potential treatment. Initial demonstrations show that systemic retigabine
administered acutely reduces alcohol consumption in rats in both a limited-access
model of alcohol consumption (Knapp et al. 2014) and a more chronic alcohol-
drinking model (McGuier et al. 2016). Interestingly, McGuier and colleagues
demonstrated that retigabine was more effective in “high-drinking” rats than “low-
drinking” rats and that positive modulation of KV7 in the NAc was similarly
effective in reducing alcohol consumption in “high-drinking” rats (McGuier et al.
2016). In a mouse model of chronic alcohol consumption, retigabine was highly
effective at reducing consumption in mice showing a high-drinking phenotype
(Rinker et al. 2017). Additionally, repeated, prophylactic administration of
retigabine decreased hippocampal sensitivity to an acute intravenous injection of
alcohol, i.e., retigabine decreased alcohol-induced changes in hippocampal EEG
activity in rabbits (Zwierzynska et al. 2015). In a subsequent study, Zwierzynska and
colleagues demonstrated that chronic retigabine administration blocked alcohol-
induced changes in EEG activity both during forced alcohol administration and
during abstinence, highlighting the potential of retigabine to prevent alcohol
dependence-related functional changes in activity of the frontal cortex, hippocam-
pus, and midbrain (Zwierzynska et al. 2016). As well, LHb M-channels are sensitive
to repeated alcohol exposure, and Kang and colleagues determined that
microinfusion of retigabine into the LHb, but not the nearby paraventricular nucleus
of the thalamus or the mediodorsal thalamic nuclei, significantly reduced alcohol
consumption and alcohol withdrawal-induced anxiety (Kang et al. 2017). Taken
together, these preclinical studies demonstrate that retigabine, or other KV7 channel
openers, holds great therapeutic potential for treating AUD. Despite these promising
results, only one study to date has examined the effects of retigabine in a clinical
population of moderate social drinkers to determine interactive effects of alcohol on
retigabine pharmacodynamics and pharmacokinetics (Crean and Tompson 2013).
Thus, future studies are essential to determine the efficacy of KV7 channel positive
modulators in treating AUD.
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8 GIRK Channels and Alcohol

8.1 Genetics

A genome-wide QTL mapping study identified Kcnj9 (a gene encoding the GIRK3
subunit) as one of the genetic determinants of alcoholism in mice (Buck et al. 2012).
This gene was also associated with withdrawal from alcohol and other sedative
hypnotics (Herman et al. 2015; Kozell et al. 2009), alcohol drinking (Tarantino et al.
1998), alcohol-conditioned aversion (Risinger and Cunningham 1998), and acute
sensitivity to alcohol (Crabbe et al. 1994; Demarest et al. 1999). In BXD RI strains,
Kcnj3 (a gene encoding the GIRK1 subunit) transcript levels in the NAc positively
correlated with voluntary alcohol drinking in nondependent mice, while Kcnj6
(a gene encoding the GIRK2 subunit) in the PFC negatively correlated with drinking
in nondependent animals (Rinker et al. 2017). Following CIE exposure, significant
adaptations in Kcnj3 and Kcnj6 transcript levels in the NAc have been detected
(Rinker et al. 2017). In addition, there was a positive correlation between Kcnj9 and
the change in voluntary drinking induced by alcohol dependence (Rinker et al.
2017). The genetic evidence in mice was correlated with behavioral studies in
GIRK-knockout models. For example, GIRK2�/�mice showed reduced conditioned
taste aversion and failed to develop a conditioned place preference for alcohol (Hill
et al. 2003). Additionally, mice lacking GIRK3 exhibited excessive alcohol drinking
(Herman et al. 2015) and demonstrated less severe withdrawal symptoms compared
to their wild-type littermates (Kozell et al. 2009).

The involvement of KCNJ genes in the development of alcohol use disorders has
also been identified in humans. One SNP, rs2836016 in KCNJ6, was found to be
associated with alcohol dependence in adults. In addition, this KCNJ6 SNP was
significantly associated with hazardous drinking, as defined by the Alcohol Use
Disorders Identification Test (AUDIT), in adolescents but only in those exposed to
early life stress (Clarke et al. 2011). Another study reported several SNPs in the
promoter region of KCNJ6 in AUD subjects and in offspring at high risk to develop
an AUD (Kang et al. 2012). In this study, electroencephalogram was used to record
the theta event-related oscillations (EROs) that reflect processes underlying frontal
inhibitory control, conscious awareness, and memory and processes that are often
impaired in individuals with drug and alcohol use disorders. The results
demonstrated a correlation between KCNJ6 SNPs and theta oscillations across the
scalp, with the strongest associations for the frontal phenotype (Kang et al. 2012). A
significant association of KCNJ6 SNP for nicotine dependence has also been
reported (Saccone et al. 2007). Together, behavioral and genetic evidence in rodents
and humans suggest the involvement of KCNJ family of genes with alcohol con-
sumption and behaviors related to heavy drinking.

8.2 Alcohol and GIRK Channel Function

It is largely accepted that alcohol affects multiple neurotransmitters in the brain,
many of which (i.e., dopamine and GABA) are linked to GIRK channel activation.
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For example, alcohol enhances GABAB-mediated inhibitory postsynaptic transmis-
sion on rat VTA neurons by facilitating GIRK currents (Federici et al. 2009).
Withdrawal from repeated in vivo alcohol exposure produced a profound decrease
in D2-/GIRK-mediated inhibition in VTA neurons of mouse brain slice while having
no effect on GABAB-/GIRK-mediated inhibition (Perra et al. 2011). Recent findings
from our group demonstrated that monoamines, including dopamine, serotonin, and
norepinephrine, decreased evoked firing of lOFC neurons in C57BL/6J mice via the
activation of Gi-coupled D2, 5HT1A, and α2-adrenergic receptors, respectively
(Nimitvilai et al. 2017b). This effect was GIRK-dependent as blocking GIRK
channel with barium attenuated monoamine inhibition, and the GIRK1-subunit
selective activator, ML297, by itself reduced evoked spiking. Following CIE expo-
sure, however, the inhibitory effects of each monoamine or ML297 were blunted
(Nimitvilai et al. 2017b), indicating the importance of monoamine/GIRK system as a
modulator of lOFC excitability and suggesting that disruption of this process could
contribute to various deficits associated with alcohol use disorder. As mentioned
earlier, alcohol at intoxicating concentrations in humans can directly activate
GIRK channels independently from GPCR signaling pathway. In Xenopus oocytes
co-injected with mRNAs encoding GIRK1/GIRK2 subunits or GIRK1/GIRK4
subunits, alcohol (100–200 mM) induced strong K+ currents, and this effect was
blocked by barium, suggesting a direct action of alcohol on GIRK channels
(Kobayashi et al. 1999). A similar finding was reported for GIRK-mediated currents
in cerebellar granule cells (Lewohl et al. 1999). Recently, a high-resolution crystal
structure of a GIRK channel (Aryal et al. 2009) combined with an alcohol-tagging
approach (Bodhinathan and Slesinger 2013) revealed that GIRK channels contain an
alcohol binding pocket located at the interface between two adjoining subunits
within the cytoplasmic domains. The presence of alcohol in the pocket induces
conformational changes and increases the affinity of PIP2 that helps stabilize the
open state of the GIRK channel. Mutation of a leucine (L257) within the alcohol
binding pocket significantly decreases alcohol-induced GIRK currents (Aryal et al.
2009). Therefore, changes in physical and chemical nature of the alcohol binding
pocket could interfere with alcohol action on GIRK channels.

8.3 GIRK Channel Ligands and Drinking

Imbalance or dysfunction of GIRK channels has been implicated in altering neuronal
excitability and is linked to many neuropsychiatric diseases and SUDs. As men-
tioned above, a number of studies demonstrate that GIRK channels can be activated
directly by acute alcohol (Bodhinathan and Slesinger 2013; Kobayashi et al. 1999;
Lewohl et al. 1999) and that GIRK function is blunted following chronic alcohol
exposure (Nimitvilai et al. 2017b). In addition, the action of many Gi-coupled
neurotransmitters, including dopamine, serotonin, and GABA, that are linked to
GIRK channel activation is modulated by alcohol (Nimitvilai et al. 2017b; Federici
et al. 2009; Perra et al. 2011). Genetic studies also depict the association of Kcnj
genes encoding GIRK channels in alcohol use disorder and dependence (Rinker and
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Mulholland 2017; Rinker et al. 2017; Buck et al. 2012; Clarke et al. 2011).
Therefore, selective manipulation of GIRK channels may represent a promising
target for treating excessive drinking and relapse.

In 2012, baclofen, a GABAB agonist that is linked to GIRK channel activation,
was approved as a treatment for alcohol addiction in France and is currently under
clinical trials in the USA. It shows promising effects in managing alcohol with-
drawal symptoms, reducing alcohol craving and consumption, and promoting alco-
hol abstinence in alcoholic animal models and humans, without serious or severe
side effects (Addolorato et al. 2012; Maccioni and Colombo 2009; Morley et al.
2014). An increase in sedation on the BAES scale was reported in human subjects;
however, no clinically significant sedative side effects, including sedation, tiredness,
and sleepiness, were reported during the treatment session, confirming the safety of
baclofen in alcohol-dependent patients (Evans and Bisaga 2009; Leggio et al. 2012).
Despite these positive findings, other studies reported a lack of efficacy of baclofen
in some alcohol-dependent individuals (Garbutt et al. 2010; Leggio et al. 2010) and a
severe sedative effect of the drug (Garbutt et al. 2010). One clinical trial study
examined the possible role of DRD4, a genetic modulator associated with risk of
alcohol dependence (AD), on the effect of baclofen (Leggio et al. 2013). There is
evidence of a robust relationship between urge for alcohol and the DRD4 or
5-HTTLPR polymorphisms, i.e., the presence and absence of the DRD4 allele
7-repeat or the short and long allele in the 5-HTTLPR promoter region (Kenna
et al. 2012; McGeary 2009). When baclofen was given to AD participants, less
drinking was observed in subjects with �7 DRD4 repeats, while the opposite was
observed in AD patients with <7 DRD4 repeats. Baclofen caused a reduction in
alcohol consumption regardless of 5HTTLPR form; however, individuals with a
homozygous LL genotype drank significantly less than those with SS/SL genotype
(Leggio et al. 2013). Therefore, the ability of baclofen to reduce alcohol consump-
tion might be limited to specific endophenotypes of AD individuals. At present, there
is no treatment for alcohol dependence that directly targets GIRK channels. One
compound, ML297, has been recently designed to directly activate GIRK1-
containing GIRK channels (Kaufmann et al. 2013) and has been shown to decrease
anxiety-related behavior and exhibit antiepileptic properties without affecting loco-
motor activity or conditioned place preference (Kaufmann et al. 2013; Wydeven
et al. 2014). It will be interesting to examine whether ML297 can also be used to
alleviate symptoms related to alcohol withdrawal that are thought to contribute to the
risk of relapse. Although both ML297 and alcohol enhance GIRK channel activity,
ML297 may help restore normal GIRK channel tone that is lost following chronic
alcohol exposure and reduce craving for alcohol.

9 Conclusions and Future Directions

In this chapter, we have summarized the effects of chronic alcohol exposure on
intrinsic excitability and adaptations in expression and function of KCa, Kv7, and
GIRK channels across different alcohol exposure models and species (Drosophila,
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rodent, monkey, and humans). In general, transcript levels of genes in these K+

channel families negatively correlate with higher levels of alcohol intake. Evidence
presented here suggests that downregulation of KCa2 and KV7 channel function
underpins the reduction in AHP amplitude and increased evoked cell firing after
chronic alcohol exposure. In many cases, positive modulators of these channels
restore or prevent aberrant physiology and behaviors that result from prolonged
alcohol exposure, including alcohol-seeking and withdrawal- and anxiety-related
behaviors (Table 4). Indeed, KCa2 and KV7 channel positive modulators reduce
alcohol intake across many preclinical models of drinking and seeking, and both
channels play a critical role in heavy alcohol drinking in dependent and nondepen-
dent rodents (Padula et al. 2013, 2015; Rinker et al. 2017; McGuier et al. 2016).
Together, these findings reveal genetic variations and adaptations in KCa2 and KV7
channels that are important for the plasticity of intrinsic excitability and a heavy
drinking phenotype.

The goal of preclinical studies is to identify neural mechanisms that underpin
aberrant drug-seeking and relapse-like behaviors. As presented in this chapter, KCa2,
KV7, and GIRK channels emerged from these preclinical studies as promising
“translational” therapeutic targets for treating alcohol use disorder. The next step
in the progression to FDA approval is to determine the efficacy of compounds that
target KCa2, KV7, and GIRK channels in clinical trials of treatment-seeking
individuals diagnosed with alcohol use disorder. Because activators of these
channels have anticonvulsive properties, sedation and cognitive impairments may
be an unwanted side effect. A small-scale trial in social and moderate drinkers
(ClinicalTrials.gov record number: NCT01342341) was recently completed with
chlorzoxazone, an FDA-approved drug prescribed as a skeletal muscle relaxant
(Chou et al. 2004) that acts as a KCa2 channel positive modulator (Cao et al.
2001). Although chlorzoxazone was well tolerated in this moderate social drinking
population, the dosing schedule used in this trial did not reduce the number of
alcohol drinks across 2 weeks of treatment. These findings are in stark contrast to the
preclinical studies showing that KCa2 channel positive modulators decrease con-
sumption. The reasons for the discrepancy between the preclinical studies and this
clinical trial are unclear but may relate to the short half-life, low EC50 for KCa2
channels, off-target actions of chlorzoxazone, conservative dosing approach, or
population of drinkers that were recruited for the trial.

Similar to KCa2 channels, an FDA-approved drug, retigabine, acts as a positive
modulator of KV7 channels and is used to treat partial-onset seizures, and acute
doses are well tolerated in moderate social drinkers (Crean and Tompson 2013).
However, extended retigabine use produces pigment changes in the retina and skin
due to accumulation of retigabine dimers with low solubility. Although the pigment
changes are reversible, GlaxoSmithKline withdrew retigabine from the market in
2017. While these findings are somewhat discouraging, there are analogs of
retigabine with selectivity for brain-specific KV7 channel subtypes with chemical
scaffolds that appear not to form insoluble dimers. Thus, despite some setbacks,
there is continued enthusiasm for developing additional KCa2 and KV7 channel
positive modulators as pharmacotherapeutics for treating alcohol use disorder,
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especially in light of the vast preclinical genetic, functional, and pharmacological
evidence supporting a role for these channels in alcohol-seeking behaviors. Finally,
based on the compelling preclinical and human genetic evidence, future clinical
studies are necessary to validate KCNQ SNPs as pharmacogenetic targets for a
precision medicine approach for treating alcohol addiction.

In addition, although this chapter was focused on the role of discrete K+ channel
subtypes in alcohol addiction, emerging evidence reveals that plasticity of intrinsic
excitability contributes to addiction of all abused substances (Kourrich et al. 2015;
Kourrich and Thomas 2009) and neuropsychiatric disorders (Beck and Yaari 2008).
For example, protracted withdrawal from chronic morphine exposure increased the
intrinsic excitability of NAc shell medium spiny neurons in rats (Wu et al. 2013), and
this was accompanied by an attenuation of the apamin-sensitive AHP current in the
morphine-withdrawn rats. Interestingly, members of the KCNN family of genes have
links with opioid and alcohol addiction (Padula et al. 2015), and multiple studies
have implicated KCNN3 mutations in schizophrenia (Bowen et al. 2001; Cardno
et al. 1999; Chandy et al. 1998). A rare frameshift mutation in KCNN3 that generates
a dominant-negative form of this channel was reported in a patient with schizophre-
nia (Bowen et al. 2001), and longer polyglutamine repeat alleles in KCa2.3 channels
associate with negative symptoms and cognitive performance in schizophrenics
(Cardno et al. 1999; Grube et al. 2011). Importantly, the rare frameshift mutation
and longer polyglutamine repeats in KCNN3 suppress KCa2 channel surface expres-
sion and function (Grube et al. 2011; Miller et al. 2001). These findings are
consistent with the overlap of some genes with abused substances and psychiatric
diseases (Agrawal et al. 2012) and suggest that neural mechanisms that underlie
adaptations in intrinsic excitability are critical factors that drive the risk for and
emergence of neuropsychiatric disorders.
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Abstract
Both the innate and adaptive immune systems are critical for the maintenance of
healthy liver function. Immune activity maintains the tolerogenic capacity of the liver,
modulates hepatocellular response to various stresses, and orchestrates appropriate
cellular repair and turnover. However, in response to heavy, chronic alcohol exposure,
the finely tuned balance of pro- and anti-inflammatory functions in the liver is
disrupted, leading to a state of chronic inflammation in the liver. Over time, this
non-resolving inflammatory response contributes to the progression of alcoholic liver
disease (ALD). Here we review the contributions of the cellular components of the
immune system to the progression of ALD, as well as the pathophysiological roles for
soluble and circulating mediators of immunity, including cytokines, chemokines,
complement, and extracellular vesicles, in ALD. Finally, we compare the role of the
innate immune response in health and disease in the liver to our growing understand-
ing of the role of neuroimmunity in the development and maintenance of a healthy
central nervous system, as well as the progression of neuroinflammation.

Keywords
Alcoholic liver disease · Cytokines · Hepatic macrophages · Innate immunity

1 Overview of Alcoholic Liver Disease

Alcoholic liver disease (ALD) is a complex condition caused by chronic alcohol
abuse. It accounts for 40% of deaths from liver disease in the United States and
Europe alone (Hilscher and Shah 2016) and affects thousands of patients each year.
While entirely preventable, liver-related mortality from alcohol abuse remains a
global burden, even as awareness of the risks increases. ALD makes up 4% of total
mortality and 5% of disability-adjusted life years globally (Singal and Anand 2013).
ALD manifestation is not purely dose-dependent, but varies based on a number of
identified risk factors. This includes the duration and pattern of alcohol consumption,
as well as individualized genetic and environmental factors (O’Shea et al. 2010).

The spectrum of ALD symptoms includes steatosis, fibrosis, alcoholic hepatitis,
and cirrhosis, which can occur sequentially or simultaneously in individual patients.
Steatosis, or fatty liver, develops after short-term consumption of alcohol and is
primarily asymptomatic (Singal et al. 2016). Liver fibrosis and cirrhosis, which are
characterized by an increase in liver collagen and impaired liver function, are more
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severe forms of injury. In particular, alcoholic hepatitis (AH), which can be present
at any point on the spectrum, has a high rate of short-term mortality. Twenty-eight-
day mortality rates for severe AH patients are 40–50% (Singal et al. 2016). While
abstinence improves clinical outcomes after diagnosis, cirrhosis is irreversible and
associated with negative patient outcomes.

One of the major challenges associated with ALD is the difficulty to diagnose
patients at an early point in disease progression. Often, clinical diagnosis comes with
very advanced stages of the disease, which significantly limits treatment options
(Yeluru et al. 2016). Liver transplants are the last step in treatment for ALD patients,
but social stigma and concern involving potential relapse have prevented this from
becoming common, particularly in the United States. There is a need for more
effective screening and treatment options for patients with ALD.

The stress-innate immunity-homeostasis axis (S-I-HA) paradigm posits that over
eons the selective pressures of infectious, traumatic, and chemical-toxic stresses
induced the evolution of innate immune pathways which respond promptly to these
stresses by up- and/or down-modulating homeostasis and thus influencing fitness and
survival (Stavitsky 2007). While the evolution of the immune system was initially
linked to selective microbial pressure, later, it was proposed that innate immunity
evolved in response to “danger signals” from tissues injured by pathogens, trauma,
and toxins (Matzinger 2002). Both pathogen-associated molecular patterns (PAMPs)
and damage-associated molecular patterns (DAMPs) are critical signals to activate
innate immunity in response to infectious, traumatic, and toxic stresses, such as
ethanol. PAMPs and DAMPs selectively induce networks of interactive, reparative,
and pathogenic innate immune pathways which modulate homeostasis (Stavitsky
2007).

The pathophysiological mechanisms for the development of ALD are complex and
can be considered as an impaired ability of the innate immune system to elicit an
appropriate wound healing response. Importantly, chronic alcohol consumption
increases exposure to both PAMPs and DAMPs in the liver. Ethanol metabolism
leads to an accumulation of reactive oxygen species (ROS), which causes oxidative
stress and endoplasmic reticulum stress in hepatocytes (Louvet and Mathurin 2015).
These cytotoxic effects lead to hepatocyte injury and death, causing the release of
DAMPs. While the specific array of DAMPs released upon ethanol exposure is not
well understood, DAMPs can include the ficolins, heat shock proteins (HSPs), high
mobility box 1 (HMGB1), S100 proteins, advanced glycation end products (AGE),
and chromatin (Fleshner and Crane 2017). Alcohol also impairs the barrier function of
the intestine, increasing the concentration of LPS and other PAMPs in the portal
circulation (Chen et al. 2016a). Increased concentrations of PAMPs/DAMPs trigger
the activation of macrophages and neutrophils. Importantly, chronic ethanol also
enhances PAMP/DAMP signaling, thus further exacerbating the activation of the
immune response and inappropriately increasing the production of pro-inflammatory
cytokines and chemokines (Wang et al. 2012). AH, in particular, is characterized by
an inappropriate and non-resolving inflammatory response, leading to the develop-
ment of excessive and dangerous inflammation that plays a key role in pathogenesis of
the disease (Colmenero et al. 2007).
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The innate and adaptive immune responses function autonomously as well as collab-
oratively to normalize or dysregulate homeostasis (Sharland and Gorrell 2009). The
innate immune pathways activate and/or differentiate many cell types to produce a rich
variety of circulating and membrane-bound molecules required for innate and adaptive
immune responses (Fearon and Locksley 1996). Here we will review the basics of innate
and adaptive immune responses in the liver, as well as the adaptations/dysregulation of
these responses in ALD. Hepatic immune responses to ethanol will be contrasted tomore
recent studies characterizing the importance of the effects of ethanol on activation of
innate immune functions in the brain.

2 The Hepatic Immune System

The liver is an extremely tolerogenic organ. Portal blood from the intestine, rich in
both bacterial and food antigens, continuously challenge the liver to maintain balance
between self and non-self. Alcohol impacts both the innate and adaptive immune
response in the liver, resulting in a loss of tolerance, thus increasing the potential for
persistent inflammation (Nagy 2015).

2.1 Innate Immunity

Diverse innate immune pathways and networks deploymany cell types andmolecules
in the liver to maintain homeostasis and promote wound healing and tissue repair in
the face of toxins, such as alcohol. The liver is enriched in resident innate immune
cells including Kupffer cells, dendritic cells (DCs), natural killer (NK) cells, and NKT
cells (Fig. 1). Injury also results in the recruitment of peripheral immune cells
including neutrophils and infiltrating monocytes. Chronic, heavy alcohol exposure
results in the dysregulation of the innate immune activity of these cells, contributing to
the progression of the non-resolving inflammation characteristic of AH and ALD
(Nagy 2015; Gao et al. 2011).

2.1.1 Kupffer Cells
Kupffer cells aremacrophages resident in the liver sinusoids and are important contributors
to the progression of ALD. They are among the first cells exposed to alcohol-induced,
microbe-derived PAMPs originating from the gut, including LPS and peptidoglycans.
Increased intestinal translocation of bacterial LPS during alcohol consumption is central to
inducing TLR4-mediated Kupffer cell activation (Nakamoto and Kanai 2014; Roh and
Seki 2013;Wheeler et al. 2001). In addition, chronic alcohol intake also sensitizes Kupffer
cell responses to LPS-mediated activation (Wang et al. 2012). Activated Kupffer cells
produce inflammatory mediators (e.g., TNFα and ROS) that contribute to hepatocyte
necrosis and apoptosis and generation of extracellular matrix proteins leading to alcoholic
liver injury and fibrosis (Liu et al. 2017; Xu et al. 2017).

Necrotic hepatocytes release DAMPs, exosomes, and microRNAs that also can
activate Kupffer cells in a sterile inflammatory manner aggravating the progression
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of the disease (Fleshner and Crane 2017). Recent research has focused on the
identification of anti-inflammatory molecules that might be effective a breaking
the cycle of continued dysregulation of Kupffer cell activation, identifying several
specific pathways that may be effective at normalizing Kupffer cell signal transduc-
tion, including adiponectin (An et al. 2012; Gao 2012), IL-10 (Mandal et al. 2010)
and hyaluronic acid of an average molecular weight of 35 kDa (HA35), which acts
via interactions with CD44-dependent signaling (Saikia et al. 2017).

Resident macrophages exhibit a tremendous phenotypic plasticity, dependent on
the local metabolic and immune environment. Macrophages are sufficiently plastic to
integrate multiple signals, such as those from microbes, damaged tissues, and the
normal tissue environment (Murray 2017). The balance of the polarization of Kupffer
cells is very important for the tight regulation of the development of liver injury, with
phenotypes ranging from pro-inflammatory, anti-inflammatory, as well as phenotypes
promoting the resolution of fibrosis (Ju andMandrekar 2015). Recent studies demon-
strate that limiting the pro-inflammatory polarization of Kupffer cells could be a

Fig. 1 Resident immune cells with the specialized architecture of the liver. Kupffer cells, the
resident macrophage in the liver, are localized in the hepatic sinusoids, in close proximity to liver
sinusoidal endothelial cells and hepatocytes. Other resident immune cells, including NK and NKT
cells, are also located within the sinusoids, while hepatic stellate cells, responsible for generation of
extracellular matrix during fibrosis, are localized in the space of Disse. Infiltrating monocytes and
neutrophils are also recruited to the liver in response to injury
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protective strategy that prevents the progression of ALD. For example, IL-10,
generated by anti-inflammatory macrophages, promotes selective pro-inflammatory
macrophage cell death by apoptosis via paracrine activation of arginase (Wan et al.
2014).

2.1.2 NK Cells
NK cells play an important role in antiviral and antitumor defenses in the liver. However,
NK cell function is suppressed in ALD [reviewed in (Gao et al. 2011)]. Thus, it is very
unlikely that NK cells contribute to ethanol-induced hepatocellular damage. However, it
is more likely that inhibition of NK cells by ethanol may play an important role in
accelerating liver fibrosis. Many studies have focused on the crosstalk between hepatic
stellate cells and NK cells in the progression of the fibrotic stages of ALD. For example,
the oxidative stress resulting from chronic ethanol consumption induces increased levels
of TGF-β and reduces IFN-γ signaling, blocking NK cell killing of activated HSC via
TNF-related apoptosis-inducing ligand (TRAIL)-TRAIL receptor interactions (Ness
et al. 2008). Inhibition of alcohol dehydrogenase 3 (ADH3) enhanced IFN-γ production,
promoting the cytotoxic activity of NK cells against HSCs and protecting against liver
fibrosis (Yi et al. 2014). Finally, IL-22, a member of the IL-10-like cytokine family, is
also produced by NK cells. IL-22 activates STAT3 signaling pathway, increasing HSC
senescence and reducing collagen deposition [reviewed in (Ceni et al. 2014)].

There remains a significant amount of controversy as to the role of NK cells in the
progression of ALD. For example, the impact of acute versus chronic ethanol on NK
cells may be different. In one study, acute alcohol ingestion decreased the number and
cytotoxic function of NK cells; responses were normalized after 12–14 days but then
increased after 8 weeks of continued alcohol ingestion (Ballas et al. 2012). Finally, it
is not clear if ethanol impacts the differentiation of specific NK cell phenotypes,
designated as memory-like or adaptive NK cells that develop after repeated stimulus,
such as in response to cytomegalovirus infection in humans (Kovalenko et al. 2017).

2.1.3 NKT Cells
NKT cells, innate-like cells which are abundant in the liver sinusoids, are a heteroge-
neous group of T lymphocytes that recognize lipid antigens in the context of CD1d, a
nonclassical MHC class I-like molecule. Although activation of NKT cells has been
shown to induce hepatocellular damage in a variety of acute liver injury models,
different subsets of NKT cells can play opposing roles in non-microbial liver inflam-
mation (Gao et al. 2011). Type I NKT cells can be activated after injury, directly by
recognition of cognate lipids or indirectly by TLRs ligands and cytokines, increasing
the production of various cytokines such as IFN-γ and IL-4 and finally giving
hepatocellular death neutrophils and macrophages infiltration [reviewed in (Kumar
2013; Cui et al. 2015; Mathews et al. 2016)]. Inhibition of type I NKT cells with
exposure to retinoids protects against ALD (Maricic et al. 2015) and chronic alcohol
consumption enhances cell maturation and activation of type I NKT cells (Zhang et al.
2015). However, Type II NKT cells have been shown to protect against ALD after
sulfatide-mediated activation (Maricic et al. 2015) with a novel mechanism involving
the release of all-trans retinoic acid to inhibit the functions of type I NKT cells.
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Different subsets of NKT cells also differentially regulate fibrosis. For example, NKT
cells can kill activated hepatic stellate cells and produce IFN-γ, which inhibits liver
fibrosis (Park et al. 2009), whereas activation of NKT cells can also promote liver
fibrosis via enhancing hepatocellular damage and promoting HSC activation (Jin et al.
2011; Syn et al. 2012). Therefore, the net impact of NKT cells on liver fibrosis is
determined by the balance between these inhibitory and stimulatory effects of NKT
cells. Identification of the precise impact of each NKT subset in liver disorders could
potentially lead to the development of novel therapeutics.

2.1.4 Dendritic Cells (DC)
DCs are the most efficient antigen-presenting cells (APCs) of the immune system,
playing a crucial role in innate and adaptive immune responses.Chronic alcohol ingestion
can interfere with antigen presentation that is required to activate T and B cells and can
impair dendritic cell differentiation (Ceni et al. 2014). In addition to acting as APCs,
hepatic DCs also either aggravate or ameliorate hepatocellular damage via production of
pro-inflammatory (Connolly et al. 2009) or anti-inflammatory cytokines (Bamboat et al.
2010) in various liver injurymodels. Alcohol consumption canmodulate the functions of
DCs (Heinz andWaltenbaugh 2007; Laso et al. 2007; Lau et al. 2006; Pascual et al. 2011)
and subsequently impair the cellular response necessary for clearance of hepatitis virus
(Szabo et al. 2010), likely contributing to the synergistic effect of alcohol and viral
hepatitis on liver injury. However, it remains unknown whether DCs directly contribute
the pathogenesis of alcoholic liver injury via increases in ROS production, TLR signal-
ing, inflammasome activation, and Il-1β production (Pearce and Everts 2015).

2.2 Adaptive Immunity

In addition to the effects of ethanol on cells of the innate immune system, early
studies identified both CD8+ and CD4+ T lymphocytes in liver biopsies from patients
with AH and cirrhosis (Albano 2012; Chedid et al. 1993), implicating the adaptive
immune system as a contributor to alcohol-induced hepatic inflammation.

Adaptive responses consist of cellular and humoral components, primarily mediated by
B and T lymphocytes. CD4+ T cells play a critical role in the activation and differentiation
of both innate and adaptive immune cells, including macrophages, CD8+ T cells, and B
cells, while CD8+ T cells aid in the clearance of infected and cancerous cells (Pasala et al.
2015). B cells produce antibodies against both ingested and self-antigens, important for
the elimination of pathogenicmaterial. In fact, immunogenicmolecules have been reported
in ALD, including liver-specific autoantigens against alcohol-metabolizing enzymes
(McFarlane 2000; Sutti et al. 2014) and advanced lipid peroxidation products (Albano
2012; Mottaran et al. 2002).

Chronic, heavy alcohol consumption differentially effects tissue and systemic immune
responses. Therefore, while chronic alcohol increases inflammatory responses in tissues,
such as the liver and gut, individuals with alcohol use disorder (AUD) are prone to
increased incidence of bacterial and viral infections (Pasala et al. 2015; Massey et al.
2015) and are considered to be “immunocompromised hosts.” Chronic alcohol abuse, as
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well as binge drinking, causes lymphopenia (reduced peripheral T cell numbers) (Liu 1973;
McFarland and Libre 1963; Tonnesen et al. 1990) and disrupts the balance between T cell
subtypes. Reduction of naiveCD4+ andCD8+ cells with concurrent increases inmemoryT
cells have been reported in several studies (Cook et al. 1994, 1995; Song et al. 2002; Zhang
and Meadows 2005). Chronic alcohol also lowers the numbers of circulating B cells, in
particular conventional memory B cells (involved in responding to repeated exposure of a
priming antigen) (Cook et al. 1996), likely contributing to inadequate responses of patients
with ALD to new antigens (Pasala et al. 2015).

Two distinct populations of effector T cell (Teff) subtypes, Th17 and regulatory T
cells (Treg), are pivotal regulators of immune homeostasis (Abe et al. 2013), with the
reciprocal relationship between Th17 and Treg dictating hepatic tolerance. T cell
differentiation is mediated by the local cytokine environment; alcohol’s effect on the
innate immune response stimulates the production of a multitude of cytokines,
including IL-6. Together with TGF-β and IL-21 [in mice (Veldhoen et al. 2006)]
or IL-23 [in humans (Wilson et al. 2007)], IL-6 promotes differentiation of naïve
CD4+ T cells to Th17, effectively driving Treg depletion. Th17 cells secrete
chemokines (e.g., IL-17A) that recruit and activate neutrophils and macrophages
to induce inflammation. Patients with AH and cirrhosis have higher plasma IL-17, as
well as IL-17+ hepatic inflammatory foci (Lemmers et al. 2009). The numbers of
IL-17+ cells correlates with disease severity in ALD patients.

3 Circulating Mediators of Inflammation in ALD: Cytokines,
Chemokines, Complement, and Extracellular Vesicles

3.1 Chronic Ethanol Sensitizes Kupffer Cells to Activation by
PAMPs and DAMPs

Kupffer cells, the resident hepatic macrophage, display a tremendous phenotypic
plasticity. The activation state of Kupffer cells in the healthy liver promotes hepatic
tolerance. In ALD, Kupffer cells exhibit a shift in macrophage polarization, with an
increase in the pro-inflammatory M1 phenotype and a decrease in the anti-inflam-
matory/tissue repair phenotype (M2) (Karakucuk et al. 1989). This shift in Kupffer
cell phenotype increases their sensitivity to activation by PAMPs and DAMPs and
contributes to the progression of disease (Fig. 2). Expression of pro-inflammatory
signals, such as TNFα, IL-6, IL-8, and IL-18, increases, as well as production of
reactive oxygen species (ROS). In chronic alcohol, Kupffer cell expression of TNFα
contributes to the apoptosis and necrosis of liver hepatocytes (Hishinuma et al. 1990;
McClain et al. 1998) and fibrosis caused by hepatic stellate cells (Karlmark et al.
2009). Activation of the inflammasome and generation of IL1-β is also an important
contributor to the accelerating cycle of inflammation in the liver in response to
chronic ethanol exposure (Petrasek et al. 2012, 2013).

The mechanisms for the sensitization of Kupffer cells to activation have been best
studied in response toTLR4 ligands. Chronic ethanol feeding enhancesTLR4 signaling via
both theMyD88-dependent and -independent pathways (Wang et al. 2012). In theMyD88-
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dependent armofTLR4 signaling,TAK1 is activated, leading toNF-kB translocation to the
nucleus and MAPK signaling (Akira and Takeda 2004); chronic ethanol increases activa-
tion of both NF-kB and MAPK family members, leading to increased transcription and
mRNA stabilization of multiple cytokines and chemokine (Wang et al. 2012). TNFα also
increases the expression of TLRs, thus increasing sensitivity of Kupffer cells to ROS and
LPS in response to ethanol (Wang et al. 2012). The MyD88-independent pathway acts
through TRIF1 to activate IRF3 and increase expression of type I interferons; this pathway
is a critical regulator of the progression ALD (Petrasek et al. 2011). In particular, IRF3
expression in non-parenchymal cells contributes to upregulating pro-inflammatory cyto-
kine expression in response to ethanol (Petrasek et al. 2011).

Fig. 2 Pathways of activation of Kupffer cells in response to ethanol. Kupffer cells, the resident
macrophages in the liver, are activated by bacterial PAMPs from the gut, as well as DAMPs released
from injured hepatocytes. Complement anaphylatoxins, C3a and C5a, as well as ethanol metabolism
and production of reactive oxygen species, also contribute to activation of Kupffer cells during
ethanol exposure. These activation pathways are integrated and result in dysregulated production of
pro-inflammatory cytokines and chemokines. Reprinted with permission from Nagy (2015)

Hepatic Immune System: Adaptations to Alcohol 355



3.2 Chemokines and Recruitment of Immune Cells from
the Periphery in ALD

Appropriate and effective immune cell trafficking is essential to host defense from
pathogens.Whereas cytokines, interleukins, and complement play critical roles acting
directly on tissues in response to a noxious stimuli like excessive alcohol consumption
or toxicant exposure, chemokines (chemotactic cytokines) orchestrate the dynamics
of cellular infiltration into sites of damage within tissues (Marra and Tacke 2014).
Chemokines are a vast, redundant web of more than 50 ligands and 20 receptors
(Marra and Tacke 2014). Chemokines can be secreted by many cell types in response
to acute and chronic injury. Chemokines are classified into four different families
based upon cysteine residues near their N-terminal, so-called CC, CXC, CX3C, and C
(Charo and Ransohoff 2006). These chemokine families interact with G-protein-
coupled receptors of a similar nomenclature, e.g., CCLs bind to CCRs and CXCLs
bind CXCRs. The ligand-receptor interaction initiates intracellular events including
Ca+2 mobilization, cytoskeletal rearrangement, and even cellular proliferation, that
allow for immune cell transit into tissues (Marra and Tacke 2014). The complex
choreography of immune cell recruitment in response to chemokines involves
dynamic changes in chemokine gradients at the site of damage and egress of immune
cells from the bone marrow.

3.2.1 Chronic Ethanol Enhances the Recruitment of Infiltrating
Monocytes

Circulating monocytes are known to be key contributors to progression of ALD (Marra
and Tacke 2014). In circulation, monocytes can be classified by expression of the surface
receptor Ly6C, wherein Ly6C-high expressing monocytes are pro-inflammatory and
Ly6C-low expressing monocytes are key to regression of injury and inflammation in
animalmodels offibrosis resolution (Ramachandran et al. 2012;Wang et al. 2014). These
pro-inflammatory monocytes generate inflammatory cytokines in response to bacterial
ligands like lipopolysaccharide orDAMPS released fromdamaged cells. InALD, several
chemokines are upregulated in the liver, including monocyte chemoattractant protein-1
(CCL2/MCP-1), CXCL1, CXCL2, CXCL5, CXCL8, and CXCL10 (Marra and Tacke
2014) as well as the pluripotent protein macrophage migration inhibitory factor (MIF)
that contains a pseudo-E-L-Rmotif similar to the C-X-C chemokine family (Barnes et al.
2013;Marin et al. 2017). A seminal study identified amultifaceted role for CCL2 /MCP-
1 in ALD progression. Mice deficient in CCL2 were protected from hepatocyte injury,
steatosis, and excessive inflammatory cytokine production following ethanol feeding
(Mandrekar et al. 2011). Interestingly, mice deficient in CCR2, the cognate receptor for
CCL2, were not protected from ethanol-induced liver injury or inflammation, demon-
strating the complex biology not yet fully understood with regard to chemokines and
chronic disease, including ALD.

Infectious, traumatic, and toxic stresses induce the release of MIF from virtually all
cell types by diverse innate immune mechanisms (Stavitsky 2007). In particular,
hepatocytes are a critical source of MIF in response to chronic ethanol exposure (Marin
et al. 2017). Studies have also provided strong evidence for the role of MIF in ALD
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progression as an upstream regulator of chemokine synthesis might be an important
aspect of chemokine-mediated contributions to chronic disease. AlthoughMIF does have
direct chemokine activity through interactions with CXCR2 and CXCR4, MIF can also
direct chemokine synthesis (CCL2, CXCL10, and CXCL1) in the livers of ethanol-fed
mice.MIF-deficient mice are protected from ethanol-induced liver injury and chemokine
upregulation, as well as inflammatory monocyte accumulation and resident macrophage
proliferation in the hepatic parenchyma (Barnes et al. 2013; Marin et al. 2017), possibly
through a combination ofMIF-mediated chemotaxis andMIF-dependent upregulation of
chemokines in the liver.

3.2.2 Neutrophils in the Progression of ALD
Alcohol increases neutrophil recruitment to the liver; neutrophils are a very promi-
nent feature of AH. While activated neutrophils release numerous harmful mediators
such as H2O2, elastase, chloramine, and proteinase-3 (Neuman et al. 2015), recent
studies revealed that patients with AH have better prognosis associated with neutro-
phil infiltration (Altamirano et al. 2014), suggesting a complex role for neutrophils in
both injury and repair during the progression of ALD and AH. Recruitment of
neutrophils to the liver is associated with increased expression of CXC subfamily
members in patients with AH (Dominguez et al. 2009) and is dependent on TLR2
and 9 (Roh et al. 2015), as well as E-selectin (Bertola et al. 2013). Moreover,
chemokines such as CXCL1, CXCL2, and CXCL5 were reduced in TLR2�/� and
TLR9�/� mice suggesting the connection between those chemokines and neutrophil
infiltration (Roh et al. 2015).

3.3 Complement

Complement, a component of the innate immune system that provides a link between
the innate and adaptive immune response, is implicated in the immune system’s
response to ethanol. Complement primarily functions as a first line of defense against
infection, acting to facilitate clearance of microbes and mediating inflammation by
attracting macrophages and neutrophils. However, it acts as an aggressor in certain
environments, including in immune and inflammatory diseases (Ricklin et al. 2016).
At least two complement factors, C3 and C5, contribute to the pathogenesis of ALD;
however, their exact role is not completely understood (Gao and Bataller 2011;
Pritchard et al. 2007).

The complement system is activated via three separate pathways, which converge at
the terminal component C3. The classical pathway is activated by C1q binding to an
antibody-antigen complex. The lectin pathway, which converges with the classical
pathway at C4, is activated upon the recognition of bacterial wall carbohydrates through
mannose-binding lectins. The alternative pathway is initiated by the hydrolysis of C3
through a spontaneous process, also called tick-over, and provides an amplification loop
that increases the overall complement response (Ricklin et al. 2016). Multiple comple-
ment pathways contribute to the phagocytosis of debris accumulated from dead or
damaged cells including C1q, factor D, and the C5b-9 complex.
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These pathways are activated and regulated by over 30 membrane-bound and
circulating proteins and cognate receptors (Bohana-Kashtan et al. 2004). Regulatory
proteins and receptors tightly control complement response to injury by modulating
multiple steps of these activation pathways. C3 and C5 convertase assembly is prevented
by a family of proteins, regulators of complement activation, which include CR1, CD46,
and CD55 (Ricklin et al. 2016). Factor H controls tick-over activation and the amplifica-
tion loop of the alternative pathway. CD59 prevents formation of the membrane attack
complex, and clusterin and vitronectin also regulate this complex. Properdin, a plasma
protein, acts as a positive modulator by stabilizing to the C3 convertase of the amplifica-
tion loop. Expression of specific complement receptors, including C3aR and C5aR, is
another important regulatory step that has been associated with crosstalk between the
complement response and other immune systems (Ricklin et al. 2016). Other regulatory
factors also play a role in complement activation, and an emerging theory suggests that
these complex interactions may be context-specific (Ricklin et al. 2016).

Complement has complex pathophysiologic roles in that it has both damaging
and beneficial effects, particularly in response to ALD. C1q contributes to inflam-
mation and early liver injury (Cohen et al. 2010). However, complement is also
involved in hepatic regeneration through transcriptional control after chemical injury
(Min et al. 2016). Further, the alternative pathway may have a protective role after
ethanol exposure by facilitating the clearance of apoptotic and necrotic cells in
animal models (Cresci et al. 2015) (McCullough et al. 2018). Immunoreactive
C5aR, a receptor of C5a, is increased in patients with AH (Shen et al. 2014). After
ethanol-induced liver injury, mice lacking CD55, a complement regulator, showed
worsened injury (Pritchard et al. 2007). The exact mechanisms of complement
activation in patients with ALD are not well understood.

3.4 Extracellular Vesicles

Extracellular vesicles (EVs), including exosomes and microparticles, are a rapidly
expanding field of study in many diseases (Bang and Thum 2012; Povero et al. 2014;
Verma et al. 2016). Isolated EVs are enriched in exosomes (~20–100 nM particles)
and microparticles (~80–200 nM particles). Much is still being discovered about
exosomes in chronic diseases. How exosomal cargo is loaded, why exosome release
is increased, and how exosomes home to certain tissues or deliver their cargoes are
all active fields of study. The recent interest in EVs has transformed how we view
interorgan and intercellular communication in ALD. The ability to rapidly isolate,
identify cargo, and manipulate and administer exosomes to ALD patients will likely
shape the future of therapeutic and diagnostic innovation in ALD.

EVs are increased in circulation in AH patients and following animal models of
ethanol feeding (Verma et al. 2016; Momen-Heravi et al. 2015). EVs are potential
diagnostic tools given the protein and nucleic acid cargoes they contain and protect
which can change due to ongoing and/or progressing disease, like ALD. A study in AH
patients identified the proteomic signature in serum-derived exosomes, and the CD40L
contained within these vesicles was found to be released from injured hepatocytes and
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was key in initiating macrophage activation in ethanol-fed mice (Verma et al. 2016).
Exosomal microRNAs are potent mediators of inflammation and information transfer in
models of ethanol feeding and fibrosis. One study identified that ethanol-treated
hepatocytes, ethanol-fed mice, and ethanol-binged healthy human volunteers had
increased exosome release. The vesicles from human volunteers, mice, and hepatocytes
were all highly enriched in miR-122. The miR-122 contained in these exosomes
sensitized monocytes to bacterial lipopolysaccharide and exacerbated cytokine release
as is well-established in ALD and experimental models of ethanol exposure (Momen-
Heravi et al. 2015).

4 Is the Hepatic Immune System a Target
for Pharmacological Intervention?

Many of the signalingmolecules and pathways known to be enhanced inALDprovide us
with possibilities for developing pharmacological interventions or promising targets for
the development of future novel therapies.Many potential therapies have focused on anti-
inflammatories or disrupting TNFα signaling but have had either little success or adverse
effects on other gastrointestinal organs (Gao 2012). IL-22, which has a cytoprotective
role in hepatocytes, may be effective in preventing some the adverse effects of anti-
inflammatory or anti-TNFα therapies (Park et al. 2011). Other potential therapeutics
include inhibitors of MCP-1 andMIF to decrease infiltrating macrophages (Barnes et al.
2013; Mandrekar et al. 2011) and IL-1 receptor antagonists to inhibit inflammasomes
(Petrasek et al. 2012). Some groups have taken strategies to enhance anti-inflammatory
pathways rather than directly inhibiting inflammatory cytokines or chemokines. For
example, PDE4 inhibitors increase the production of the cAMP, an important anti-
inflammatory signal (McClain et al. 1998), while low molecular weight hyaluronic
acid of a molecular weight of 35 kDa (HA35) normalized TLR4 signaling in Kupffer
cells isolated from ethanol-fed rats and prevented ethanol-induced liver injury in mice
(Saikia et al. 2017). HA35, via activation of CD44, decreased expression of importin α5
and reduced the translocation of p65 to the nucleus (Saikia et al. 2017).

Chemokines have also been considered as another potential target for therapeutic
interventions in ALD. However, given the highly complex interplay between cells,
chemokines, chemokine receptors, and disease stage in ALD, it is unlikely that
directly targeting a specific chemokine or receptor would be effective. Moreover,
chemokine gene families cluster at loci on chromosomes in both humans and mice,
indicating stimuli that increase chemokine production could similarly affect many
chemokines in the same family (Zlotnik et al. 2006). Therefore, potential therapeutic
avenues for ALD focused on chemokines would ideally target upstream factors that
lead to increased chemokine expression. Further, identification of circulating
chemokines using systems approaches, for instance, could be developed into a
new diagnostic tool for ALD.

A new avenue of therapeutics may target the regulation of miRNAs; miRNA expres-
sion is strongly dysregulated during the progression of ALD. For example, miR223,
which inhibits pro-inflammatory IL-6 in neutrophils, is highly expressed in mouse
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models of chronic ethanol feeding but interestingly is downregulated in alcoholic patients
(Li et al. 2017). Loss miR223 increases liver injury in response to alcohol, so increasing
miR223 expression may protect the liver from damage (He et al. 2017). miR-155, which
is regulated by TLR4, is highly upregulated in Kupffer cells from chronic ethanol-fed
mice and increases pro-inflammatory signals, making it a potential therapeutic target
(Bala et al. 2016).

EVs are also prospective therapeutic tools, as the vesicles circumvent immune-
mediated rejection, drug resistance antiporters, freely cross the blood-brain barrier,
and can be used experimentally in vitro and in vivo (Hirsova et al. 2016). Innovative
work in the liver fibrosis field highlights both the pathogenic and therapeutic potential
of exosomes in ALD. Upregulation of connective tissue growth factor (CCN2)
induces fibrogenesis through hepatic stellate cell activation. Two negative regulators
of CCN2, miR-214 (Chen et al. 2014, 2015) and miR-199a-5p (Chen et al. 2016b),
were shown to be decreased n exosomes following models of fibrosis and ethanol
exposure. These exosomal miRs were found to be critical regulators of fibrogenesis,
and furthermore, the transfer of exosomes derived from either quiescent cells or
loaded with miR mimics prevented stellate cell activation and fibrogenesis.

5 Comparison Between Effects of Alcohol on Hepatic
and Neural Immune Systems

Here we have reviewed the interactions between ethanol and immune functions in the
liver. What is clear from studies done over the last decades is that both innate and
adaptive immune function is critical for the maintenance of homeostasis in the healthy
liver; immune activity serves to maintain the tolerogenic capacity of the liver and
contributes to maintain normal responses to various stresses, as well as appropriate
cellular turnover and repair. In response to heavy, chronic alcohol exposure, the finely
tuned balance of pro- and anti-inflammatory functions is disrupted, leading to a
chronic state of inflammation in the liver. Over time, this inability to resolve the
inflammation contributes to the progression of liver disease (Wang et al. 2012).

Similar to the role of the innate immune response in the healthy liver, it is becoming
evident that there is an active and complex neuroimmune system that serves to maintain a
healthy central nervous system. Both cells of innate immune system (microglia, astrocytes),
receptors (e.g., TLRs), and solublemediators (e.g., cAMP, complement, TNF, IL1β) contrib-
ute to awide range of physiological functions. For example,microglia play amajor role in the
development of the nervous system, as well as maintaining neuronal plasticity and synaptic
pruning (Salter and Stevens 2017). Paralleling the impact of ethanol on the hepatic immune
system, chronic, heavy alcohol exposure dysregulates neuroimmune activity, leading to a
condition of neural inflammation (reviewed in other chapters of this volume by Crews et al.
and Roberto et al.). Many of the same mediators, including HMGB1, IL1β, TNF, and
multiple TLRs, contribute to both ethanol-induced inflammation in the liver and brain.
However, it is not clear whether the mechanisms by which ethanol dysregulates neural vs
hepatic immune responses are similar (Montesinos et al. 2016).

360 A. Kim et al.



There is also a growing appreciation that neuroimmunity can also influence
behaviors, including alcohol consumption (McCarthy et al. 2017) and depression
(Wetsman 2017); however, it is not clear whether this is a physiological role for the
neuroimmune system or a consequence of neuroinflammation. Future studies aimed at
understanding the mechanistic parallels between ethanol-induced inflammation in the
central nervous system and the liver may lead to therapeutic interventions that may
target both the behavioral impact of neuroinflammation and the progression of
alcohol-induced liver injury.
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Abstract
Innate immune signaling is an important feature in the pathology of alcohol use
disorders. Alcohol abuse causes persistent innate immune activation in the brain.
This is seen in postmortem human alcoholic brain specimens, as well as in
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primate and rodent models of alcohol consumption. Further, in vitro models of
alcohol exposure in neurons and glia also demonstrate innate immune activation.
The activation of the innate immune system seems to be important in the
development of alcohol use pathology, as anti-immune therapies reduce pathol-
ogy and ethanol self-administration in rodent models. Further, innate immune
activation has been identified in each of the stages of addiction:
binge/intoxication, withdrawal/negative affect, and preoccupation/craving. This
suggests that innate immune activation may play a role both in the development
and maintenance of alcoholic pathology. In this chapter, we discuss the known
contributions of innate immune signaling in the pathology of alcohol use
disorders, and present potential therapeutic interventions that may be beneficial
for alcohol use disorders.

Keywords
Addiction · Alcohol · Neuroimmune · Treatment

1 Immune Signaling in the Brain

1.1 Immune Cells in the Brain

The brain has effective mechanisms for protection against infectious agents. Primarily,
this is thought to occur via the maintenance of its “immune privileged” status by the
physical protection of the blood–brain barrier. However, the brain also has resident
immune defenses, which are primarily innate immune cells. In the brain the resident
immune cells are primarily microglia and astrocytes. These cells are capable of
recognizing and responding to viral, bacterial, and fungal pathogens. Microglia,
astrocytes, and neurons contain innate immune signaling receptors and capabilities.

Microglia are often considered the resident macrophages of the brain. However,
microglia are unique from peripheral macrophages. Microglia are the only myeloid
cells that originate from yolk-sac progenitor cells (Sheng et al. 2015; Hoeffel et al.
2015). Microglia are formed early in embryonic brain development (E8 in mice) and
maintain stable levels in adulthood through neuro-proliferation throughout the
lifespan (Ginhoux et al. 2010). There remains debate about whether peripheral
monocytes migrate into brain in normal physiological circumstances (Ginhoux
et al. 2013). Both microglia and macrophages share multiple markers such as Cluster
of Differentiation (CD)-45, CD11b, and ionized calcium-binding adapter molecule
1 (Iba-1). However, microglia-retain unique functions from peripheral monocytes,
such as an involvement in synaptic pruning, debris clearance, and the regulation
of adult neurogenesis (Salter and Stevens 2017; Kettenmann et al. 2011, 2013).
Microglia transition from physiological “resting” state to activated states in response
to infections, stressors, and drugs of abuse such as alcohol and cocaine (Beynon and
Walker 2012; Streit 2002; Guo et al. 2015; Coleman et al. 2017; Qin et al. 2008; He
and Crews 2008; Periyasamy et al. 2016). Microglial activation state is traditionally
classified as M1 (pro-inflammatory) or M2 (anti-inflammatory), though their
function is likely more complicated. The M1 activation state is defined by the release
of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα),
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interleukin (IL)-1β, and IL-6 with accompanying reactive oxygen species generation
by inducible nitric oxide synthase (iNOS) and nicotinamide adenine dinucleotide
phosphate-(NADPH) oxidase expression. M2 state is defined by the release of “anti-
inflammatory” cytokines such as IL-10 and IL-4. These activation states are a
simplified framework to understand microglial activation. Alcohol and other drugs
of abuse modulate microglial activation, contributing to disease pathology.

Astrocytes are also involved in neuroimmune responses in the brain (Farina et al.
2007). Astrocytes express immune receptors and release cytokines when activated
(Jensen et al. 2013). This activation, known as reactive gliosis, can limit tissue
damage in several contexts (Pekny and Pekna 2014). Astrocytes might also have
pro- and anti-inflammatory states, similar to microglia (Jang et al. 2013), but this has
yet to be fully elucidated. Astrocytes can be activated by microglia to release
neurotoxic factors that damage neurons (Liddelow et al. 2017; Hashioka et al.
2015; Lee et al. 2013). We found that the expression of many immune genes and
receptors are unchanged in brain after pharmacological depletion of microglia with
the compound Plexicon (Walter and Crews 2017). Thus, astrocytes and neurons
seem to express higher levels of immune mediators than previously believed. There
continues to be debate regarding the exact immune function of astrocytes. In
Sects. 1.3 and 2.3 specific immune receptors on astrocytes are discussed. This is
currently being investigated with in vitro culture models as well as chemogenetic
in vivo models. In addition to immune function, astrocytes are also involved in
fluid homeostasis, metabolic support of neurons, and modulation of glutamate
concentrations at the synapse (Khakh and Sofroniew 2015). Drugs of abuse such
as alcohol and cocaine cause astrocyte activation (Periyasamy et al. 2016; Valles
et al. 2004; Alfonso-Loeches et al. 2010). It is important to note that since microglia
and astrocytes regulate synaptic plasticity, activation of immune signaling in these
cells might alter synaptic firing and neuroplasticity.

Though glia (i.e., microglia and astrocytes) are considered the primary neuro-
immune cells, neurons also seem to play a role in innate immune responses
(Lawrimore and Crews 2017). Neurons can regulate glial responses through factors
such as fractalkine, and also express many cytokine receptors, such as those for
TNFα, IL-1β, IL-6, and the interferons (IFNs) (Khairova et al. 2009). Immune
molecules have normal physiological roles in neurons that regulate synaptic firing
and plasticity. For instance IL-1β modulates γ-aminobutyric acid (GABA) transmis-
sion in the central nucleus of the amygdala (Bajo et al. 2015a, b) and monocyte
chemoattractant protein (MCP-1) increases dopamine release in the rat substantia
nigra (Rostene et al. 2007). The effects of cytokines and chemokines on ethanol
responses are discussed in Sect. 2. Thus, neurons contain and respond to immune
signaling molecules. These cytokines and other immune signaling molecules not
only regulate immune responses, but they also modulate synapses and neurocircuits.

1.2 Innate Immune Signaling Molecules as Modulators
of Neurocircuitry

Increasing evidence from brain studies indicate that the neuroimmune system is
involved in the regulation of brain function, apart from its role in response to
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pathogens. Several immune signaling molecules have been found to regulate synap-
tic activity, learning, and memory (see Table 1). TNFα is considered a classic
pro-inflammatory cytokine. However, in the brain, TNFα also regulates long-term
potentiation (LTP). LTP is a form of plasticity that involves increased synaptic
excitability following a burst of firing that is thought to reflect components of
memory formation. TNFα is required for proper LTP in visual cortical slices from
rats and mice (Sugimura et al. 2015), but disrupts LTP at higher concentrations
(Tancredi et al. 1992). This results in behavioral dysfunction, with TNFα over-
expressing mice having decreased performance on spatial learning and memory
tasks (Aloe et al. 1999). TNFα also regulates synaptic strength in hippocampal
neurons by increasing AMPA receptor surface expression (Beattie et al. 2002).
The pro-inflammatory cytokine IL-1β also modulates LTP, promoting it at lower
levels, and disrupting LTP at higher concentrations, similar to TNFα (Prieto and
Cotman 2017; Prieto et al. 2015; Goshen et al. 2007). Pro-inflammatory chemokines
macrophage inflammatory protein alpha (MIP-1α) and fractalkine/chemokine
(C-X-C motif) ligand 1 (CX3CL1) also regulate synaptic plasticity and memory
function (Marciniak et al. 2015; Bian et al. 2015). CX3CL1 is expressed in neurons
and is an anti-inflammatory signal to microglia. CX3CL1 KO mice show impaired
LTP, with exogenously added MIP-1α impairing LTP. These changes might be
similar to those seen with IL-1β and TNFα where the dose response is critical for
functions in LTP.

Traditional anti-inflammatory molecules also regulate synaptic plasticity. The
anti-inflammatory protein transforming growth factor-β1 (TGF-β1) promotes LTP
and object recognition memory (Caraci et al. 2015). Further, anti-inflammatory
cytokines IL-4 and IL-13 regulate learning and memory. IL-4 and IL-13 knockout
(KO) mice show learning and memory impairments (Brombacher et al. 2017;
Derecki et al. 2010). Thus, since both cytokines and chemokines can regulate
LTP and synaptic strength, neuroimmune signaling may actually be a form of
neuroplasticity. In addition to LTP, cytokines can modulate inhibitory GABA and
excitatory glutamatergic signaling. For instance, IL-1β modulates neuronal GABA

Table 1 Innate immune molecules involved in neuroplasticity

Neuroimmune
molecule Synaptic function

TNFα LTP (Sugimura et al. 2015)
Synaptic strength (Beattie et al. 2002)

Il-1β LTP (Prieto and Cotman 2017; Prieto et al. 2015; Goshen et al. 2007)
GABA transmission in CeA (Bajo et al. 2015a, b)

Il-4 Learning and memory (Brombacher et al. 2017; Derecki et al. 2010)

Il-13 Learning and memory (Brombacher et al. 2017; Derecki et al. 2010)

CX3CL1 LTP (Bian et al. 2015)

MIP-1 LTP (Marciniak et al. 2015)

TGFβ Promotes LTP (Caraci et al. 2015)

CXCL16 GABA transmission in hippocampus (Di Castro et al. 2016)

HMGB1 Excitatory signaling (Liang et al. 2014; Maroso et al. 2011)
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transmission in the central amygdala (CeA), decreasing the amplitude of evoked
inhibitory postsynaptic potentials (eIPSPs) and differentially modulating inhibitory
postsynaptic currents (mIPSCs) (Bajo et al. 2015a, b). The chemokine CXCL16 also
modulates GABA transmission in the hippocampal CA1 region by increasing the
frequency of mIPSCs via increased presynaptic GABA release (Di Castro et al.
2016). Thus, in the brain, immune signaling molecules act as neuromodulators.
Many of these molecules are altered by drugs of abuse which could lead to altered
synaptic activity and behavior.

1.3 Endogenous Toll-Like Receptor (TLR) Agonists and Pattern
Recognition Receptors

A key feature of the innate immune system is the recognition of foreign pathogens
and endogenous damage-associated molecules. Specialized groups of receptors have
been identified that recognize specific molecular signatures of pathogen-associated
molecular patterns (PAMPs) from bacteria, fungi, viruses, or endogenous damage-
associated molecular patterns (DAMPs). These pattern recognition receptors (PRRs)
are grouped into five different classes: toll-like receptors (TLRs), C-type lectin
receptors, nucleotide binding domain receptors (leucine-rich repeat containing or
NOD-like receptors), RIG-I-like receptors (RLRs), and AIM 2-like receptors
(Brubaker et al. 2015). TLRs are the best characterized PRR and are involved in
numerous disease states including alcohol and drug addiction (Periyasamy et al.
2017; Bachtell et al. 2015; Northcutt et al. 2015; Crews et al. 2017). Ten TLRs are
known in humans and 12 in mice (Brubaker et al. 2015). Ligands for TLRs include a
variety of molecules from bacterial endotoxin to mammalian high-mobility group
box protein 1 (HMGB1) and heat shock proteins (Vabulas et al. 2002). The ability of
TLRs to recognize DAMPs creates the situation known as “sterile inflammation.”
Sterile inflammation occurs when innate immune signaling is activated in the
absence of an invading organism. Since immune signaling can modulate neuro-
circuitry, functional consequences of sterile inflammation are likely critical. Indeed,
TLR signaling has been found to play a role in alcoholism and other neurological
conditions. Table 2 illustrates some key TLRs, their foreign PAMP, endogenous
DAMP, and associated neurological diseases.

TLRs contain an N-terminal extracellular leucine-rich repeat sequence and an
intracellular toll/interleukin-1 receptor/resistance motif (TIR) (Takeuchi and Akira
2010). TLR signaling utilizes key adapter proteins to initiate a signaling cascade
upon ligand recognition. Each of the TLRs, minus TLR3, utilizes the MyD88
adapter protein complex. TIRAP/MyD88 complex formation leads to activation
of the IL-1 receptor-associated kinases (IRAKs) and the TNF receptor-associated
factor 6 (TRAF6) leading to IκB kinase (IKK) and mitogen-activated protein kinase
(MAPK) activation, followed by activation of the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) and activated protein-1 (AP-1) transcription
factors respectively. Endosomal TLRs (i.e., TLR3, TLR7, and TLR9) cause activa-
tion of the interferon regulator factors (IRFs), transcription factors that lead to
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interferon induction (see Fig. 1). These key transcription factors subsequently induce
the expression of several pro-inflammatory cytokines and mediators to perpetuate
the immune response. The involvement of these transcription factors in addiction is
detailed in subsequent sections. Selected key TLRs, cytokines, and chemokines are
illustrated in Fig. 1, as well as their expression on different brain cell types. The exact
TLR signaling pathways in brain cells type is an ongoing work, as there are some
differences between brain and peripheral immune cells, in which TLR signaling was
initially described. Both microglia and astrocytes express TLRs; however, the effects
of activation of specific TLRs may vary between cell types. For instance, there is
question over whether astrocytes have TLR4 responses, which may depend on
culture conditions (Gorina et al. 2011; Barbierato et al. 2013). Astrocytes do,
however, have strong TLR3 responses (Serramia et al. 2015) and can release an
assortment of immune mediators. Further, responses in neurons are less well under-
stood. Neurons appear to be capable of activating NF-κB in some settings but not
others (Mao et al. 2009). Neuronal NF-κB might regulate plasticity, learning, and
memory (Lawrimore and Crews 2017; Kaltschmidt and Kaltschmidt 2015) in
glutamatergic and GABAergic neurons. Dorsal horn spinal neurons (Bai et al.
2014) have activated NF-κB and different neuronal cell lines exhibit NF-κB depen-
dent regulation of μ-opioid receptors (Borner et al. 2012; Wagley et al. 2013).
Though the exact downstream signaling pathways in neurons needs to be studied
in each specific context, TLRs undoubtedly play important roles in normal neuronal

Table 2 Toll-like receptors (TLRs) implicated in alcoholism and neurological diseases

TLR Foreign immunogen Endogenous TLR ligand
Neuropsychiatric
disease

2 Bacterial di- and
tri-aceylated polypeptides
(Buwitt-Beckmann et al.
2006)
Gram (+) lipoglycans
(Blanc et al. 2013)

α-synuclein (Kim et al.
2013)

Alcoholism
Parkinson’s disease
(Kim et al. 2013)

3 dsRNA Stathmin (Bsibsi et al. 2010) Alzheimer’s disease
(Jackson et al. 2006)
Multiple sclerosis
(Bsibsi et al. 2010)

4 Bacterial endotoxin
Peptidoglycans

HMGB1 (Park et al. 2004)
HSPs 60, 70/72 (Vabulas
et al. 2002)

Alcoholism (Crews et al.
2013)
Cocaine abuse
Stroke, traumatic brain
injury
Chronic pain

7 ssRNA (Lehmann et al.
2012b)

miRNAs let-7 (Lehmann
et al. 2012a) and miR-21
(Yelamanchili et al. 2015)

Alcoholism (Coleman
et al. 2017)
Alzheimer’s disease
(Lehmann et al. 2012a)
Chronic pain (Park et al.
2014)
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function. For instance TLR3 and TLR8 regulate axonal or neurite outgrowth,
respectively (Cameron et al. 2007; Ma et al. 2006). TLR7 activation can cause
neurodegeneration (Coleman et al. 2017; Lehmann et al. 2012a). The presence of
physiological, non-pathologic, and non-damage associated TLR signaling in brain
argues that endogenous ligands for these receptors play key roles in normal
physiology.

Since endogenous TLR agonists play key roles in normal brain physiology, a
better understanding of these ligands is required. Traditionally called DAMPs
(i.e. damage associated molecular patterns), in the brain these agonists may have
normal biological functions. However, in the context of disease states, these DAMPs
subsequently lead to further TLR activation by enhanced induction of their
receptors. One DAMP that has been found to play a role in alcohol addiction in

Fig. 1 Selected toll-like receptors (TLRs), cytokine (IL-1β), and chemokine (MCP-1) signaling
pathways in brain cells relevant to alcoholism. Selected immune signaling pathways that are
involved in alcohol use pathologies are illustrated. (a) The three primary neuroimmune cell
types – microglia, astrocytes, and neurons – are illustrated with selected immune receptors that
are relevant to alcohol use disorders. Several TLRs are implicated in microglial and astrocyte
activation including TLRs2–4 and 7. Microglia also contain the IL-1β receptor (IL-1R) and
interferon (IFN) receptors. Astrocytes contain TLRs2–4 as well as IFN receptors. Neurons have
TLR3 and 7 responses in the context of alcohol use disorders, as well as the MCP-1 receptor
(CCR2) and IFN receptors. (b) Simplified versions of the signaling cascades for immune receptors
that are relevant to alcoholism are shown. The TLR7 pathway has been shown to be involved in
alcoholic hippocampal neurodegeneration, and can lead to IFN gene induction via IRF7 as well as
NFκB-mediated immune gene induction. Both the IL-1R and surface TLRs such as TLR4 share
the same downstream signaling pathway leading to NFκB-mediated immune gene induction. The
chemokine MCP-1 regulates ethanol self-administration and is a G-protein coupled receptor that
can result in AP-1-mediated immune gene induction, NFκB activation, or neuronal plasticity via
CREB signaling. The interferon receptors (IFN) are on all three cell types and are associated with
depressive phenotypes. These activate the JAK/STAT signaling pathway to result in interferon
response gene expression. See Lehmann et al. (2012a, b), Coleman et al. (2017), Fernandez-Lizarbe
et al. (2009, 2013), Blanco et al. (2005), Montesinos et al. (2015), Narayanan and Park (2015), and
Bose and Cho (2013)

Innate Immune Signaling and Alcohol Use Disorders 375



particular is the protein high-mobility group box 1 (HMGB1). HMGB1 is a nuclear
chromatin binding protein that is released during bacterial infection, cellular stress,
or damage. After its release HMGB1 can bind directly to TLR4 or receptor for
advanced glycation endproducts (RAGE) receptors (Muller et al. 2004; Janko et al.
2014). However, HMGB1 also can modulate activity of several other TLRs such as
TLR3, 7, and 9 (Yanai et al. 2009). HMGB1 might also regulate synaptic firing, as
it is released just prior to hyperexicitable states, such as seizures, to modulate
glutamatergic signaling (Maroso et al. 2011). The role of HMGB1 in the pathology
of alcoholism is further described in Sect. 2.3. Neuroimmune activation and neuro-
nal signaling might be interconnected by the release of DAMP such as HMGB1 in
addition to cytokines. Thus, understanding DAMPs and cytokines play key roles in
the neuroimmune system that may regulate neuron signaling and brain function.

2 Neuroimmune Activation in the Pathology of Alcoholism

2.1 The Natural History of Alcohol Use Disorders

Neuroimmune activation in addiction has been elucidated by several laboratories,
with several reviews on the topic (Crews et al. 2011, 2015, 2017; Neupane 2016;
Ballester et al. 2017; Montesinos et al. 2016; Jacobsen et al. 2016; Crews and
Vetreno 2014, 2016; Vetreno and Crews 2014; Most et al. 2014; Ray et al. 2014;
Loftis and Janowsky 2014; Cui et al. 2014; Mayfield et al. 2013). Alcoholism
develops progressively over the course of an individual’s lifespan. This often begins
during adolescence as drug exploration (Fig. 2). The age of drinking onset is strongly
associated with the risk of developing an alcohol use disorder in adulthood (Dawson
et al. 2008; Grant and Dawson 1998). Adolescence is a key developmental period
during when maturation of frontal cortical structures regulating cognitive function
and decision-making occurs (for review see Crews et al. 2016). A key cognitive
feature in the progression to addiction is a loss in frontal-cortical-mediated executive
functions. This includes motivation, planning, goal setting, and behavioral flexibil-
ity. Binge drinkers show impairments in executive functioning tasks (Townshend
and Duka 2003; Weissenborn and Duka 2003; Crews and Boettiger 2009). Reversal
learning (the ability to change previously learned behaviors) is impaired in both
human alcoholics (Fortier et al. 2008; Jokisch et al. 2014) and cocaine addicts
(Stalnaker et al. 2009). Mice and rats also have long-lasting impairment of reversal
learning following binge ethanol (Obernier et al. 2002; Coleman et al. 2011;
Badanich et al. 2011) or cocaine (Calu et al. 2007; Schoenbaum et al. 2004).
Prefrontal cortical regions regulate these behaviors in concert with striatum and
amygdala (Izquierdo et al. 2016) through reciprocal glutamatergic connections.
Glutamatergic dysfunction is a well-known finding in alcoholism and drug abuse.
Neuroimmune gene induction has been found to contribute to glutamatergic hyper-
excitability in the frontal cortex and to impair executive function (Crews et al. 2006,
2011). Thus, neuroimmune activation might contribute to the development of
cognitive dysfunction due to altering prefrontal cortical to limbic circuitry, though
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this needs to be elucidated. Recurrent immune activation across the lifespan, from
adolescence into adulthood, may contribute to lasting cognitive dysfunction in
alcoholism through these and other mechanisms.

The pathology of addiction has been described as a cycle consisting of three
recurring stages (Cui et al. 2015; Volkow et al. 2016). This includes cycling through
binge/intoxication, withdrawal and negative affect, craving and preoccupation,
which leads to recurrent binge intoxication (Koob and Volkow 2010) (Fig. 3).
Specific neurocircuits are involved in the regulation of behavioral phenotypes
associated with each stage in the cycle (Cui et al. 2015; Koob and Volkow 2016).
For example, the binge/intoxication stage involves reward pathways that involve
dopaminergic and opiod signaling originating in the basal ganglia. This includes
the dorsal striatum (caudate nucleus and putamen), the ventral striatum (nucleus
accumbens), globus pallidus, ventral pallidum, and substantia nigra. The with-
drawal/negative affect stage involves circuits that regulate stress, fear, and anxiety.
This includes pathways such as the amydala-nucleus accumbens and ventral teg-
mental area (VTA). The craving/preoccupation stage is likely associated with
prefrontal cortical dysfunction mentioned above. The complexity of the dysfunction
in these circuits is significant, as reciprocal and overlapping connections cause
interplay between the different circuits typically associated with each individual
stage. Thus, each stage is connected, and the dysfunction of several circuits is likely
linked. Interestingly, neuroimmune signaling has been implicated in each of the
three stages of addiction, though there remains much to be further understood about

Fig. 2 Multiple drug exposures amplify neuroimmune signals and cognitive decline. The natural
history of alcohol use disorders involves a progression from adolescence into adulthood of recurrent
cycles of binge intoxication and withdrawal. Neuroimmune signaling is amplified with each cycle,
as cognitive function progressively worsens
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the precise effects of neuroimmune activation on specific circuitry. The majority of
the studies investigating neuroimmune contributions in vivo have been done on the
binge/intoxication stage, leaving much to be examined in the other stages, especially
the withdrawal/negative affect stage. However, several inflammatory mediators have
been found to play important roles at different stages, and certain neuroimmune
therapies are effective in reducing ethanol consumption in rodent models.

2.2 Neuroimmune Activation in the Stages of Addiction

2.2.1 Binge/Intoxication Stage
The binge/intoxication stage is perhaps the most studied stage involving
neuroimmune activation in alcoholism. Multiple immune regulating interventions

Fig. 3 Neuroimmune contributions to the cycle of addiction. The three main stages of the
cycle of addiction-binge/intoxication, withdrawal/negative affect, and preoccupation/craving-each
have neuroimmune contributions. Multiple neuroimmune interventions reduce alcohol self-
administration in rodent models. Binge intoxication causes the induction of several immune
signaling molecules such as HMGB1, TNFα, and IL-1β. Neuroimmune molecules might also
mediate some of the negative affect seen during withdrawal. The TLR4 antagonist (+)-Naltrexone
reduces alcohol-induced conditioned-place preference (a feature of craving), and several immune
molecules in plasma have been associated with craving in human alcoholics. See Marshall et al.
(2016a), Agrawal et al. (2011), Jacobsen et al. (2018), McCarthy et al. (2017), Blednov et al.
(2014), Wang et al. (2016), and Montesinos et al. (2017)
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have been found to alter ethanol consumption in rodents, suggesting that
neuroimmune activation can drive ethanol consumption. A genetic analysis found
that high ethanol drinking rodents had increased expression of NF-κB and other
pro-inflammatory genes (Mulligan et al. 2006). A significant amount of work has
been done surrounding TLR4. Sensitization of TLR4 responses by injection of the
TLR4 agonist LPS increases ethanol self-administration in a two-bottle choice
paradigm in mice (Blednov et al. 2011). Selective knockdown of TLR4 in the central
amygdala decreases ethanol self-administration in alcohol-preferring strain of rats
known as p-rats (Liu et al. 2011). Knockdown of TLR4 in the ventral palladum,
however, had no effect, suggesting brain regional specificity of TLR4 involvement
in self-administration. Intracerebroventricular injection of the chemokine MCP-1
also increases alcohol self-administration in rats (Valenta and Gonzales 2016).
Inhibition of several traditional pro-inflammatory signaling has also been shown
to reduce ethanol self-administration. Ablation of many key neuroimmune genes
including IL-6, Ccr2, MCP-1, and Ccl3 decreases ethanol consumption (Blednov
et al. 2005, 2012). The IL-1 receptor antagonist and the anti-inflammatory IL-10
both reduce alcohol self-administration when injected into the basolateral amygdala
(Marshall et al. 2016a, 2017). Furthermore, IL-1β inhibition in the VTA also prevents
cocaine-induced dopamine release in the nucleus accumbens (Northcutt et al. 2015),
suggesting these signals are involved in other drugs of abuse. Broad acting inhibitors
of microglial activation also reduce ethanol consumption in rodents. Minocycline, a
tetracycline antibiotic and microglial inhibitor, reduces ethanol self-administration
(Agrawal et al. 2011) as well as conditioned place preference after cocaine exposure
(Northcutt et al. 2015). These studies suggest that neuroimmune signaling plays a role
in the rewarding properties of alcohol, or in the early stages of dependence. However,
translating rodent drinking studies to humans can be challenging, as most rodent
studies are not in dependent models. Further, in addicted humans, the rewarding
properties of the drug seem to shift from the drug itself to cues associated with the
drug (Koob and Volkow 2010). Therefore, future work is needed in models that have
more features of ethanol dependence. Nonetheless, neuroimmune signaling is clearly
involved in ethanol consumption and warrants further investigation.

2.2.2 Craving/Preoccupation Stage
Regarding the craving/preoccupation stage, innate immune activation both in the
brain and periphery seems to be important. In human alcoholics, certain key inflam-
matory mediators are elevated in plasma that correlate with alcohol craving. This
includes TNFα (Heberlein et al. 2014) (which also correlated with the severity of
alcoholism), IL-1β, IL-6, and IL-8 (Heberlein et al. 2014; Leclercq et al. 2014).
Several of these cytokines such as TNFα, IL-6, and IL-1β can cross the blood–brain
barrier to exert effects on the brain (Banks et al. 1994, 1995), and could drive craving
in humans. However, they might also regulate craving via modulation of systemic
stress responses. Recently, the systemic administration of the TLR4 antagonist
(+)-naltrexone was found to reduce alcohol-induced conditioned place preference,
which is likely a feature of craving (Jacobsen et al. 2018). Further, (+)-naltrexone
reduces cue-induced heroine seeking (Theberge et al. 2013). These findings suggest
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that immune interventions may be effective at reducing alcohol and drug-associated
craving or preoccupation. More work needs to be done to differentiate central
from peripheral immune involvement in the craving/preoccupation stage. This can
be challenging in animal models, as craving is a subjective measure in humans.
However, assays such as conditioned place preference can identify features of
craving and should be utilized to further dissect the neuroimmune contribution.

2.2.3 Withdrawal/Negative Affect and Stress
The withdrawal/negative affect stage of addiction is a key feature in the maintenance
of addiction (Koob and Le Moal 2005). Negative affective states include stress,
anxiety, and dysphoria. Neuroimmune signaling seems to be involved in this stage as
well. Several inflammatory cytokines including TNFα, MCP-1, as well as inflam-
matory transcription factors are increased in whole brain during withdrawal 24 h
after a 10-day chronic binge ethanol exposure in mice (Qin et al. 2008). Transcrip-
tion factors such as NFκB and CEBP are increased in the rodent hippocampus and
amygdala respectively during withdrawal from ethanol (Freeman et al. 2012; Qin
and Crews 2012a). Further, intracerebroventricular (ICV) injection of TNFα, IL-1β,
and MCP-1 sensitize to anxiety-like behavior during alcohol withdrawal (Breese
et al. 2008), suggesting that these cytokines contribute to withdrawal-associated
negative affect. Interestingly, rhesus macaques that show heavy or binge drinking
patterns during adolescence have elevated levels of MCP-1 in the plasma across the
time of alcohol use (Fig. 4). MCP-1 might cross the blood–brain barrier and exert
central effects, or it could alter stress responses. Stress pathways are critical in the
negative affect stage. Neuroimmune activation is strongly associated with activation
of stress pathways and may be a critical feature of modulating negative affect. Prior
stress sensitizes microglia to inflammation in an HMGB1-dependent manner (Weber
et al. 2015). Ethanol sensitizes microglia, increasing microglial markers such as
CD11b and Iba1 (Fernandez-Lizarbe et al. 2009; Qin and Crews 2012b), priming the
microglial response to subsequent systemic inflammatory responses (Qin and
Crews 2012b). Further, TLR4 activation alters serotonin transporter (SERT) func-
tion to increase depressive behavior (Zhu et al. 2010). Chronic restraint stress
causes microglia activation throughout the brain (Tynan et al. 2010) and leads to
depression-like behavior. The pro-inflammatory cytokines TNFα, IL-6, and IL-1β
contribute to the pathologies of mood disorders (Bhattacharya and Drevets 2017;
Bhattacharya et al. 2016). Stress can also result in NF-κB activation. Psychosocial
stress in humans drives NF-κB activation in blood monocytes (Bierhaus et al. 2003).
Restraint stress in rodents causes NF-κB activation in rodents with production of
TNFα and other pro-inflammatory prostaglandins (Bierhaus et al. 2003; Madrigal
et al. 2002). Ethanol itself activates NF-κB in rat and mouse brain (Qin and Crews
2012a; Ward et al. 1996), and human astrocytes (Davis and Syapin 2004), and can
interact with stress to enhance immune responses. On the other hand, agents that
inhibit microglial activation can prevent the onset of depression-like behavior
(Tynan et al. 2010; Frank et al. 2007; Wohleb et al. 2011; Kreisel et al. 2014).
Thus, it is clear that there is overlay between stress and alcohol effects on glia, via
immune mechanisms. However, the exact role of neuroimmune activation during
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ethanol withdrawal/negative affect needs to be clearly delineated. Further, it remains
unclear exactly which immune mediators are involved in the negative affect
associated with withdrawal. Identification of these mediators could offer important
therapeutic options to help individuals suffering from negative affect during with-
drawal and abstinence, and hopefully improve remission rates.

2.3 Neuroimmune Signaling in Alcoholism: TLRs
and Endogenous TLR Agonists

The identification of neuroimmune activation in alcoholism has been supported by
findings in postmortem human alcoholic tissue, rodent and cell culture experiments.
Microglial and astrocytic markers are upregulated in postmortem human alcoholic
brain (He and Crews 2008; Rubio-Araiz et al. 2017). Also, other immune markers
are increased such as TLR2, TLR3, TLR4, TLR7, MCP-1, and HMGB1 (He and
Crews 2008; Crews et al. 2013). Studies in vivo also find increased expression of
TLRs 2–4, 7 and HMGB1 in different brain regions with associated NF-κB activa-
tion and cytokine induction (Crews et al. 2013; Coleman et al. 2017; Lippai et al.
2013). In vitro studies also find that ethanol activates brain cells. Microglial cell
cultures find that ethanol causes activation, increasing expression of TNFα, IL-1β,

Fig. 4 Elevated plasma
MCP-1 in heavy-drinking
adolescent rhesus macaques.
Adolescent rhesus macaques
had free access to either water
or ethanol for 18 months.
MCP-1 was measured by
cytokine multiplex. Ethanol
drinkers showed increased
plasma MCP-1 across the
exposure period: 2-way
ANOVA F(1,38) ¼ 4.250,
*p < 0.05. Courtesy K. Grant
et al., The Monkey Alcohol
and Tissue Research Resource
(MATRR)
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iNOS, and NADPH oxidase (Qin et al. 2008; Fernandez-Lizarbe et al. 2009; Qin and
Crews 2012b). Ethanol causes NF-κB activation in neurons in brain slice culture
(Coleman et al. 2017; Zou and Crews 2006) and in vivo (Ward et al. 1996) as well as
increased NF-κB–DNA binding (Crews et al. 2006; Zou and Crews 2006). This
leads to induction of proinflammatory cytokines (TNFα, IL-1β, and IL-6) (Qin et al.
2007), proinflammatory oxidases (inducible nitric oxide synthase (Alfonso-Loeches
et al. 2010; Zou and Crews 2010), COX (Alfonso-Loeches et al. 2010; Knapp and
Crews 1999), and NOX (Qin et al. 2008)), and proteases (TNFα-converting enzyme
[TACE] and tissue plasminogen activator [tPA]) (Zou and Crews 2010). In addition
to NF-κB activation, ethanol also causes IRF3 activation in both neuronal and
microglial cell cultures (Lawrimore and Crews 2017). Astrocyte cell cultures simi-
larly show activation with ethanol (Alfonso-Loeches et al. 2010; Franke 1995). Ex
vivo brain slice cultures agree, showing immune activation with ethanol exposure
(Zou and Crews 2010, 2012, 2014). Thus, ethanol can directly cause neuroimmune
activation, in the absence of peripheral immune involvement. Further, each of these
studies shows that ethanol neuroimmune induction involves TLR activation.

Activation of TLRs is a central feature in the neuroimmune responses to ethanol.
This leads to pro-inflammatory transcription factor activation (e.g., NF-κB, AP-1,
IRFs) and further amplification of immune responses. TLR4 has been the best
studied TLR in alcohol-induced neuroimmune signaling (Alfonso-Loeches et al.
2010). TLR4 KO mice and TLR4 KO glia are protected from many features of the
neuroimmune activation by ethanol. This includes protection from glial cell activa-
tion, NF-κB activation, caspase-3 cleavage, anxiety-like behavior, and memory
impairment (Valles et al. 2004; Alfonso-Loeches et al. 2010; Fernandez-Lizarbe
et al. 2009; Pascual et al. 2011; Blanco et al. 2005). TLR4 siRNA in cultured
astrocytes (or siRNA to critical TLR adaptor proteins MD-2 and CD14) prevents
ethanol induction of NF-κB (Blanco et al. 2005). Ethanol-preferring p-rats have
increased expression of TLR4 in the VTA (June et al. 2015), with TLR4 expression
being regulated by GABA(A)α2 receptor (Liu et al. 2011) and the stress regulating
corticotropin-releasing factor (CRF) (June et al. 2015). TLR4 activation is also
involved in cocaine and heroin abuse (Periyasamy et al. 2017; Northcutt et al.
2015; Theberge et al. 2013) suggesting a broader role in addictive pathologies.
Though TLR4 is the best studied TLR in alcohol abuse, it is important to recognize
that several TLRs are increased in the postmortem human alcoholic brain (TLRs 2, 3,
4, and 7) that show pathologic roles in vitro. Accordingly, TLR2 KO microglia are
protected from ethanol-immune induction (iNOS and MAPK) (Fernandez-Lizarbe
et al. 2013). Ethanol causes increased expression of TLR3 in neurons and TLR7, and
TLR8 in both neuronal and microglial cell lines (Lawrimore and Crews 2017).
Further, TLR7 has recently been identified as important in ethanol-induced hippo-
campal neurodegeneration (Coleman et al. 2017). Thus, several TLRs are important
in ethanol-induced neuroimmune induction. The exact contribution of each TLR as
well as the interplay between TLRs remains unclear. However, it does appear that
the involvement of multiple TLRs and the induction of multiple immune transcrip-
tion factors lead to amplified and integrated responses.
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It is clear that TLR signaling is key in neuroimmune responses for ethanol.
However, the brain is sterile under normal operating conditions. This suggests that
endogenous TLR-agonists (also known as DAMPs) mediate TLR responses to
ethanol. Indeed, this has been found to be true in the cases of TLR4 and TLR7.
The endogenous TLR4 ligand, HMGB1, has been found to be a critical immune
mediator in alcoholism. Postmortem human alcoholic brain shows HMGB1 is
increased in several brain regions, which correlates with lifetime alcohol consump-
tion (Coleman et al. 2017; Crews et al. 2013; Vetreno and Crews 2012). Rodent
studies also find that ethanol administration increases HMGB1 in cortex and cere-
bellum (Crews et al. 2013; Lippai et al. 2013). In response to ethanol, microglia
release HMGB1 (Coleman et al. 2017; Lawrimore and Crews 2017; Crews et al.
2013; Zou and Crews 2014). HMGB1 inhibition in vitro and in vivo protects against
cytokine induction by ethanol (Zou and Crews 2014; Whitman et al. 2013). Meth-
amphetamine also induces neuroimmune activation via HMGB1 induction both
in vivo and in vitro (Frank et al. 2016), suggesting other drugs of abuse may also
involve HMGB1 release. Ethanol also causes TLR7 activation through the release of
its endogenous agonist. TLR7 is a single-stranded RNA virus sensing TLR that
has also been found to bind the endogenous miRNA let-7b when it is present in
microvesicles (Lehmann et al. 2012a). Ethanol causes the secretion of the TLR7
agonist miRNA let-7b in microvesicles leading to TLR7-mediated neurodegene-
ration (Coleman et al. 2017). Let-7 isoforms have been shown previously to be
increased in postmortem human alcoholic brain as well as in chronic ethanol models
in rodents (Lewohl et al. 2011; Nunez et al. 2013). Interestingly, HMGB1 served as a
chaperone for let-7b, possibly mediating its vesicular secretion. Indeed, HMGB1 is
critical for immune responses of each of the endosomal TLRs (i.e., TLRs 3, 7, and 9)
(Yanai et al. 2009). HMGB1 might represent a critical mediator for the induction of
multiple TLRs in the context of alcohol addiction. These endogenous agonists, and
perhaps others that have yet to be identified, may serve as novel targets against the
neuroimmune activities of ethanol. More work is necessary to identify the precise
functions of these agonists within specific brain circuits and stages of addiction.

2.4 Neuroimmune Contribution to the Progression to Addiction

The persistent activation of the neuroimmune system by alcohol abuse seems to
contribute the development of addiction (Crews et al. 2015, 2017; Vetreno and
Crews 2014; Crews and Vetreno 2016). Binge drinking during the adolescent
developmental period has long-lasting behavioral, functional, mood, and cognitive
effects (Crews et al. 2016; Coleman et al. 2011; Vetreno and Crews 2012). A key
feature of the neuroimmune activation in alcoholism that supports this hypothesis is
the persistent upregulation of immune signals. The persistent upregulation of key
immune molecules seen in postmortem human alcoholic brain tissue and rodents,
and their correlation with years of drinking links the degree of immune activation
with the progression of disease. Neuroimmune markers in alcoholics not only
correlate with lifetime alcohol consumption and age of drinking onset (Crews
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et al. 2013; Coleman et al. 2017; Crews and Vetreno 2016; Vetreno and Crews 2012;
Vetreno et al. 2013), but some remain elevated during prolonged abstinent periods
(Crews et al. 2013; Coleman et al. 2017; Vetreno and Crews 2012). Binge ethanol
causes persistent upregulation of neuroimmune molecules including TLR3, TLR4,
HMGB1, RAGE, etc. (Vetreno and Crews 2012; Vetreno et al. 2013). Further,
ethanol sensitizes TLRs to future activation by their agonists (Qin et al. 2008; Qin
and Crews 2012b). The recurrent and persistent induction of pro-inflammatory
transcription factors by repeated alcohol might result in a chronic inflammatory
state in the brain (see Fig. 5). This is supported by the increased innate immune
markers in the postmortem brains of human alcoholics (Crews et al. 2013; Coleman
et al. 2017), as well as the upregulation of NF-κB target genes in alcoholics (Okvist
et al. 2007). Thus, chronic alcohol seems to shift the allosteric set point of immune
activation in the brain. This is likely a result of multiple cycles of intoxication and
withdrawal over time. It is well established that repeated cycles of binge and
withdrawal amplify alcohol induced pathologies and behavioral dysfunction (Breese
et al. 2005; Marshall et al. 2016b). Repeated neuroimmune induction may contribute

Fig. 5 Neuron-glia cell–cell interactions in neuroimmune responses to alcohol. Neuronal-glial
interactions underlie neuroimmune signaling in alcohol use disorders. Microglia release factors
such as microRNA let-7, HMGB1 and cytokines that can cause either neurotoxicity or altered
neuronal activity. Microglia and astrocytes likely release factors that alter each other’s activation
status. Astrocytes modulate glutamate and ATP levels that affect neuronal signaling and vitality.
Neurons release factors such as HMGB1, fractalkine, and cytokines that can modulate microglial
and astrocyte activation. See Liddelow et al. (2017), Lee et al. (2013), Lawrimore and Crews
(2017), Crews et al. (2013), Coleman et al. (2017), and Zou and Crews (2014)
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to this amplification of pathology. The aforementioned effects of neuroimmune
signals on plasticity suggest that changes in plasticity might be driven by repeated
neuroimmune activation. Each acute inflammatory insult due to an alcohol binge
may be additive, further increasing the “neuroimmune baseline.” Future work should
investigate how the recurrent amplification of neuroimmune responses corresponds
to known changes associated with the transition from alcohol abuse to addiction.

2.5 Neuroimmune Basis of Addiction: An Ongoing Investigation

Much work has been presented in this chapter that supports a neuroimmune
contribution to the development of alcoholism. However, much remains unknown.
Particularly, the interactions between the immunocompetent brain cells – neurons,
microglia, and astrocytes – need to be further investigated. These interactions could
have very significant functional consequences. For example, a region-specific hyper-
glutamatergic state has been demonstrated in both alcohol and drug addiction
(Reissner and Kalivas 2010), with astrocytes being key regulators of synaptic
glutamate levels. Ethanol exposure induces NF-κB activation in astrocytes leading
to increased expression of pro-inflammatory genes (Zou and Crews 2006, 2010;
Pascual et al. 2007) and impaired astrocyte glutamate transport (Zou and Crews
2005). Increased extracellular glutamate levels causes enhanced neuronal excitation,
microglial activation, and excitotoxicity (Zou and Crews 2006; Ward et al. 2009).
TLR4 activation is involved in this interaction, as TLR4 KO mice are protected from
the ethanol induced-hyperglutamatergic signaling and the associated neurotoxicity
(Alfonso-Loeches et al. 2010; Knapp and Crews 1999). The tripartite synapse is
composed of three immunocompetent cells, thus the interactions between these cells
must be elucidated. In Fig. 5, we illustrate some of the known cell–cell interactions
between neurons and glia regarding DAMPs (e.g., HMGB1 and miRNA let-7),
cytokines (e.g., TNFα, IL-1β, and MCP-1), and glutamate. Several TLRs are
involved in the alcohol-induced neuroimmune activation. There remains a paucity
of understanding how these TLRs interact in the context of alcoholism, and at which
stage of disease TLR antagonism might be effective. A recent report illustrates the
difficulty in using TLR4 antagonism to reduce drinking behavior (McCarthy et al.
2017). TLR4 antagonism does, however, reduce conditioned place preference for
ethanol (Jacobsen et al. 2018). Clearly, these interactions are complex, but they will
likely produce novel therapeutic targets. Additionally, the interaction of stress and
immune activation needs further investigation. Stress is a key feature in the cycle of
addiction, however addiction-related stress is probably quite different from other
non-addiction-related stressors, and is difficult to model in rodents. Neuroimmune
activation causes both cognitive and emotive effects, leading to dysfunction
(Dantzer et al. 2008; Yirmiya and Goshen 2011; Okun et al. 2010; Hanke and
Kielian 2011). These mechanisms might contribute to the progressive and persistent
nature of addiction. This work suggests that innate immune activation and TLR
signaling are essential for ethanol-induced pathology. Though much of this work is
convincing, important gaps remain regarding the precise mechanisms that cause

Innate Immune Signaling and Alcohol Use Disorders 385



immune induction and the precise impact of neuroimmune activation. Nonetheless,
sufficient findings are present to warrant the investigation of neuroimmune therapies
for the treatment or prevention of alcoholism.

3 Novel Immune Therapeutic Strategies for Addiction

3.1 Toward Novel Addiction Treatments Strategies Based
on Immune Pharmacology

Several potential and tested neuroimmune therapies are presented in Table 3, some
of which in clinical trials for alcohol use disorders. A challenge in interpreting rodent
studies is the difficulty in translating animal drinking models to the human condition.
Also, certain interventions may be more effective at different stages of addiction.
Additionally, it will likely be important to consider at which point in the disease
progression a therapeutic would be effective. For instance, immune therapies would
likely not be of benefit in brain regions where permanent changes such as
neurodegeneration have occurred. However, given the acute influences of cytokines
on plasticity, neuroimmune therapies might also aid in the recovery of normal
synaptic function in other regions. Below, we list several potential neuroimmune
treatment strategies (Table 3). There are already several FDA approved drugs, which
have immune modulating effects in the brain. Minocycline, for example, is a
tetracycline antibiotic that also regulates microglial function (Plane et al. 2010)
and reduces ethanol self-administration (Agrawal et al. 2011; Qin and Crews
2012b) in vivo. Phosphodiesterase 4 (PDE4) inhibitors exert anti-inflammatory
actions via NF-κB inhibition presumably through a cAMP-mediated mechanism
(Jimenez et al. 2001), and have also been found to reduce ethanol self-administration
in vivo (Blednov et al. 2014; Bell et al. 2015; Hu et al. 2011). Previously, ibudilast
was found to reduce some of the rewarding effects of methamphetamine in a
placebo-controlled trial (Worley et al. 2016) and may have efficacy in alcoholism.
Currently, a phase I clinical trial with the PDE4 inhibitor ibudilast is underway for
alcoholism. PPARγ agonists such as pioglitazone can act as microglial inhibitors and
may be helpful in alcohol use disorders (Storer et al. 2005). Pioglitazone, for
example, is a PPARγ agonist that has been shown to reduce neurotoxicity in models
of fetal alcohol spectrum disorder (Kane et al. 2011; Drew et al. 2015). These drugs,
and other, that have been shown to be effective in rodents should be considered for
clinical therapeutic investigations. As the basic understanding of the neuroimmune
contributions to the various stages of addiction increases, more targeted and strategic
neuroimmune therapies will be developed.

3.2 Conclusions

In conclusion, the neuroimmune contributions to the pathology of alcoholism is a
new and exciting field. This work suggests that innate immune activation and TLR
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Table 3 Potential neuroimmune therapies for the treatment of addiction

Drug

Mechanism

CNS activityPrimary Immune

Minocycline Tetracycline
antibiotic

Microglial
inhibitor

Reduces alcohol self-administration
(free-choice voluntary drinking)
(Agrawal et al. 2011)
Reduces ethanol microglia activation
(Qin and Crews 2012b)
Prevents reinstatement of morphine and
amphetamine seeking (Arezoomandan
and Haghparast 2016; Attarzadeh-
Yazdi et al. 2014)

Rapamycin Macrolide
antibiotic

mTORC1
inhibitor

Reduces binge ethanol intake in male
mice (Cozzoli et al. 2016)
Neuroprotection via autophagy
promotion (Chen et al. 2012; Pla et al.
2016)

Azithromycin Macrolide
antibiotic

Microglial
inhibitor

Promotes anti-inflammatory M2
microglial activation state (Zhang et al.
2015)

Rifampin Bacterial
RNA
polymerase
inhibitor

TLR4
inhibition

Inhibits microglia activation to TLR4
(Bi et al. 2011; Wang et al. 2013)

Indomethacin COX-2 inhibitor Reduces ethanol self-administration in
Sprague-Dawley rats (George 1989)
Reduces ethanol neurotoxicity in
cortex, hippocampus, and cerebellum
(Pascual et al. 2007)

Simvastatin HMG-CoA
reductase
inhibitor

NF-κB
inhibition

Reduces inflammation and
neurotoxicity to ischemia and traumatic
brain injury in rodents (Sironi et al.
2006; Lim et al. 2017)

Glycyrrhizin HMGB1 inhibition Blocks ethanol-induced cytokine
release in hippocampal slice culture
(Zou and Crews 2014)
Reduces neuroinflammation after
traumatic brain injury in rodents
(Okuma et al. 2014)

Pioglitazone, DHA PPARγ agonists Reduces toxicity and pro-inflammatory
cytokines in a rodent fetal alcohol
spectrum disorder model (Kane et al.
2011; Drew et al. 2015)

Ibudilast, mesopram,
rolipram, CDP 840

Phosphodiesterase 4
inhibition

Reduces ethanol intake in two-bottle
choice in C57BL/6J mice
(Blednov et al. 2014)
Reduces ethanol self-administration in
p-rats and dependent mice (Bell et al.
2015)

(continued)
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signaling are essential for ethanol-induced pathology. Much of this work is convinc-
ing, however, critical gaps remain regarding the underlying mechanisms leading to
immune induction and the precise impact of neuroimmune activation in the stages of
addiction. Also, work is needed to identify particular circuits that may be more
susceptible to deleterious effects of neuroimmune activation. Nonetheless, this field
opens the possibility for new therapeutic interventions for alcoholism that could be
efficacious at different stages of the disease. Nonetheless, sufficient findings are
present to warrant the investigation of neuroimmune therapies for the treatment or
prevention of alcoholism.
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Abstract

The innate immune system plays a critical role in the ethanol-induced neuro-

immune response in the brain. Ethanol initiates the innate immune response via

activation of the innate immune receptors Toll-like receptors (TLRs, e.g., TLR4,

TLR3, TLR7) and NOD-like receptors (inflammasome NLRs) leading to a release

of a plethora of chemokines and cytokines and development of the innate immune

response. Cytokines and chemokines can have pro- or anti-inflammatory properties

through which they regulate the immune response. In this chapter, we will focus on

key cytokines (e.g., IL-1, IL-6, TNF-α) and chemokines (e.g., MCP-1/CCL2) that
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mediate the ethanol-induced neuroimmune responses. In this regard, we will

use IL-1β, as an example cytokine, to discuss the neuromodulatory properties of

cytokines on cellular properties and synaptic transmission. We will discuss their

involvement through a set of evidence: (1) changes in gene and protein expression

following ethanol exposure, (2) association of gene polymorphisms (humans) and

alterations in gene expression (animal models) with increased alcohol intake, and

(3) modulation of alcohol-related behaviors by transgenic or pharmacological

manipulations of chemokine and cytokine systems. Over the last years, our under-

standing of the molecular mechanisms mediating cytokine- and chemokine-

dependent regulation of immune responses has advanced tremendously, and we

review evidence pointing to cytokines and chemokines serving as neuromodulators

and regulators of neurotransmission.

Keywords

Alcohol · Inflammatory mediators · Neuroimmune system · Synaptic

transmission

1 Introduction

Innate immunity is the first line of defense against an immune challenge (e.g.,

infection, toxin, and trauma), and the response is characterized by limited specific-

ity and a lack of memory. Regardless of the type of stimulus, the neuroimmune

response involves activation of receptors of the innate immune system and release of

inflammatory mediators. Inflammatory mediators comprise a heterogeneous group of

factors, including cytokines, prostaglandins, free radicals, complement system, acute

phase proteins, and neurotransmitters. These mediators regulate diverse aspects of

the immune response including its intensity and duration. In general, the immune

response/inflammation encompasses innate and adaptive immune responses that

work together through direct cell contacts and through interactions involving

chemical mediators (e.g., cytokines, antibodies). Contrary to innate immunity, the

adaptive immune response is very specific, develops slowly, and shows memory

(repeated challenge with the same microbe induces a faster and stronger response)

(Abbas et al. 2018; Lydyard et al. 2011). This chapter focuses on a group of

inflammatory mediators – cytokines and chemokines – and their role in the ethanol-

induced neuroimmune response and adaptive changes in the brain.

1.1 Cytokines

Cytokines are a group of more than 300 soluble glycoproteins that are produced by

cells in response to immunological stimuli (microbes, toxins, tissue damage, etc.).

Cytokines are characterized by pleiotropic, redundant, synergistic, and antagonistic

effects and play a crucial role in regulation of the innate and adaptive immune

response. The term “cytokine” encompasses several classes of proteins including

interleukins, chemokines, tumor necrosis factor, interferons, and growth factors

(Abbas et al. 2018; Lydyard et al. 2011). Members from each of these cytokine

398 M. Roberto et al.



subgroups are involved in ethanol-induced pathology in the central nervous system

(CNS) (Montesinos et al. 2016; Crews et al. 2017).

Interleukins (ILs) mediate signaling between cells of the immune system. ILs are

produced by a variety of cells and are involved in regulation of cell growth,

differentiation, and motility of immune cells (Vosshenrich and Di Santo 2002).

Chemokines, such as MCP-1/CCL2 (monocyte chemotactic protein 1/chemokine

ligand 2), are involved in leukocyte trafficking under both homeostatic and inflam-

matory conditions (Bachelerie et al. 2014). The tumor necrosis factor (TNF) family

are characterized by their critical role in the inflammatory responses as well as in

homeostatic processes (Sedger and McDermott 2014; Probert 2015). Interferons

(IFNs) are pro-inflammatory molecules that are essential for innate and adaptive

immunity and provide critical protection during early stages of viral, bacterial, or

pathogen infections (Nallar and Kalvakolanu 2014). Growth factors include

members of colony-stimulating factors (CSF) which mediate development, differ-

entiation, and expansion of cells of the myeloid series and transforming growth

factor β (TGFβ) which inhibits activation of macrophages and growth of B and T

cells and is cytotoxic (Abbas et al. 2018; Lydyard et al. 2011).

The diversity of cytokine molecules reflects their broad functional roles in

regulation of immune responses and homeostatic processes in peripheral organs

as well as in the CNS. During the immune response, cytokines act in concert via

complex interactions to regulate gene expression, cytokine release, and induction

and termination of cytokine activity. While these interactions are fine-tuned under

physiological conditions, their imbalance often leads to the development of patho-

logical immune responses that are associated with numerous disorders.

2 Cytokines in the CNS

In the CNS, cytokines are produced locally, primarily by glial cells, but all CNS cell

types are capable of synthesizing cytokines (Becher et al. 2017). Under physiologi-

cal conditions, some cytokines are produced constitutively at relatively low levels.

However, cytokine levels are significantly increased after various CNS and PNS

(peripheral nervous system) injuries, seizures, or infections (Vezzani and Viviani

2015). While activation of cytokine signaling in glial cells is crucial for the immune

response (Allan et al. 2005; Vezzani et al. 2011), cytokine signaling in neurons

induces rapid and often persistent changes in excitability and/or presynaptic neuro-

transmitter release (Vezzani and Viviani 2015). In addition to the local production

of cytokines, cytokines are also transported across the blood-brain barrier (BBB)

from the periphery via active and passive transporter systems (Erickson et al. 2012;

Erickson and Banks 2011; Banks 2015) and are produced by CNS-invading leuko-

cytes (Callahan and Ransohoff 2004). Activation of cytokine signaling in endothe-

lial cells of the BBB mediates the recruitment of circulating leukocytes and in some

cases induces breakdown of tight junctions resulting in a leaky, permeable BBB

(Annunziata et al. 2002; Tsao et al. 2001; Pan and Kastin 2001; Librizzi et al. 2012;

Vezzani and Friedman 2011; Rochfort and Cummins 2015). Additionally,
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peripheral cytokines can communicate with the CNS by acting on vagal afferent

inputs, which modulate cholinergic signaling in the brain (Hosoi et al. 2002a; Maier

et al. 1998).

Beyond regulating the immune response, cytokines in the CNS are also involved

in regulation of homeostasis of the nervous system (Becher et al. 2017). Cytokines

play a critical role in synaptic pruning during development, synapse removal,

neurogenesis, and modulation of synaptic transmission in the brain (Vezzani and

Viviani 2015; Boulanger 2009; Kohman and Rhodes 2013; Levin and Godukhin

2017; Pribiag and Stellwagen 2014; Williamson and Bilbo 2013; Marin and Kipnis

2013). Thus, dysregulation of cytokines, for instance, by ethanol exposure, has a

complex impact on brain physiology and can cause long-lasting neuroadaptive

changes (Crews et al. 2017). The overall effect of cytokines on neurons and

glia is dependent on several factors including interaction with other cytokines,

age, sex/gender, brain region, type of stimulus, and previous history of immune

challenges (Barker et al. 2011; Lobo-Silva et al. 2016; Bardou et al. 2014; Pascual

et al. 2017; Knapp et al. 2016; Biswas and Lopez-Collazo 2009; Marshall et al.

2016a; Topper et al. 2015).

3 Neuroimmune System and Alcohol Use Disorders

The neuroimmune system and ethanol have a complex reciprocal interaction, wherein

the neuroimmune system modulates the effects of ethanol on synaptic transmission,

ethanol drinking, and alcohol-related behaviors and ethanol modulates the activity of

the neuroimmune system. There are several lines of evidence supporting this bidirec-

tional interaction. Genetic predisposition to increased ethanol/alcohol drinking is

associated with polymorphisms in neuroimmune genes and altered gene expression

of cytokines in humans (Pastor et al. 2005; Marcos et al. 2008; Sery et al. 2003) and

rodents (Mulligan et al. 2006; June et al. 2015). Moreover, transgenic and pharmaco-

logical manipulation of cytokine signaling alters ethanol drinking, ethanol-related

behaviors, and the molecular and cellular effects of ethanol in the CNS (June et al.

2015; Bajo et al. 2014, 2015a; Blednov et al. 2005, 2011, 2012, 2015a; Wu et al.

2011; Marshall et al. 2017; Lippai et al. 2013a). Reciprocally, ethanol exposure

induces acute and chronic changes in brain cytokine production, making these

interactions very complex. The severity and duration of the neuroimmune response

represented by a particular cytokine profile vary with the type of ethanol exposure/

drinking (e.g., binge consumption). Table 1 summarizes the acute and chronic

ethanol-induced dysregulation of cytokine production in animal models and humans.

Alcohol use disorder (AUD) is associated with a chronic neuroimmune response and

persistently altered neuroimmune gene expression (Crews and Vetreno 2014).

Human and animal studies suggest that key mediators of the ethanol-induced

neuroimmune response and neuroadaptive changes in the CNS include interleukins

IL-1β, IL-6, IL-10, chemokineMCP-1/CCL2, and TNF-α. This chapter will highlight
our current understanding of the role of these cytokines in AUDs.

400 M. Roberto et al.



T
a
b
le

1
E
th
an
o
l-
in
d
u
ce
d
ch
an
g
es

in
th
e
b
ra
in

cy
to
k
in
e
g
en
e
ex
p
re
ss
io
n
an
d
p
ro
te
in

le
v
el
s
in

th
e
an
im

al
m
o
d
el
s
an
d
h
u
m
an
s

C
y
to
k
in
e

E
th
an
o
l
tr
ea
tm

en
t

B
ra
in

re
g
io
n

Δ
m
R
N
A

le
v
el
s

Δ
P
ro
te
in

le
v
el
s

A
n
im
a
l
m
o
de
ls
(r
od

en
ts
)

IL
-1
β

A
cu
te

W
h
o
le

b
ra
in

¼
(R
aj
ay
er

et
al
.
2
0
1
3
;
Q
in

et
al
.
2
0
0
8
;
D
o
re
m
u
s-

F
it
zw

at
er

et
al
.
2
0
1
4
)

#(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

"(
R
aj
ay
er

et
al
.
2
0
1
3
)

¼
(Q

in
et

al
.
2
0
0
8
)

#(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

C
o
rt
ex

"(
A
h
le
rs

et
al
.
2
0
1
5
)

¼
(P
as
cu
al
et
al
.
2
0
1
7
;
A
h
le
rs
et
al
.
2
0
1
5
;
W
h
it
m
an

et
al
.
2
0
1
3
;
T
en
g
an
d
M
o
li
n
a
2
0
1
4
)

¼
(W

h
it
m
an

et
al
.
2
0
1
3
;
G
o
tt
es
fe
ld

et
al
.

2
0
0
2
)

H
y
p
o
th
al
am

u
s

(P
V
N
)

"(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

¼
(G

an
o
et
al
.
2
0
1
7
;
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
,

2
0
1
5
)

#(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
5
)

¼
(G

o
tt
es
fe
ld

et
al
.
2
0
0
2
)

H
ip
p
o
ca
m
p
u
s

"(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

¼
(G

an
o
et
al
.
2
0
1
7
;
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
,

2
0
1
5
)

#(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
5
)

¼
(G

o
tt
es
fe
ld

et
al
.
2
0
0
2
)

C
er
eb
el
lu
m

¼
(D

o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

A
m
y
g
d
al
a

¼
(G

an
o
et
al
.
2
0
1
7
;
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
5
)

P
ro
lo
n
g
ed
/b
in
g
e

W
h
o
le

b
ra
in

¼
(Q

in
an
d
C
re
w
s
2
0
1
4
;
Q
in

et
al
.
2
0
0
8
)

¼
(Q

in
et

al
.
2
0
0
8
;
Q
in

an
d
C
re
w
s
2
0
1
4
)

C
o
rt
ex

"(
P
as
cu
al

et
al
.
2
0
1
7
)

¼
(D

re
w

et
al
.
2
0
1
5
)

"(
M
o
n
te
si
n
o
s
et

al
.
2
0
1
7
;
T
iw
ar
i
an
d

C
h
o
p
ra

2
0
1
2
,
2
0
1
3
)

H
ip
p
o
ca
m
p
u
s

"(
D
re
w

et
al
.
2
0
1
5
)

"(
T
iw
ar
i
an
d
C
h
o
p
ra

2
0
1
3
)

C
er
eb
el
lu
m

"(
T
o
p
p
er

et
al
.
2
0
1
5
;
D
re
w
et

al
.
2
0
1
5
)

S
tr
ia
tu
m
/N
A
c

"(
M
o
n
te
si
n
o
s
et

al
.
2
0
1
7
)

C
h
ro
n
ic

C
o
rt
ex

"(
W
h
it
m
an

et
al
.
2
0
1
3
;
A
lf
o
n
so
-L
o
ec
h
es

et
al
.

2
0
1
3
)

¼
(W

h
it
m
an

et
al
.
2
0
1
3
)

#(
V
et
re
n
o
et

al
.
2
0
1
3
)

"(
A
lf
o
n
so
-L
o
ec
h
es

et
al
.
2
0
1
3
;
S
ch
n
ei
d
er

et
al
.
2
0
1
7
;
D
ia
z
et

al
.
2
0
1
6
)

¼
(W

h
it
m
an

et
al
.
2
0
1
3
;
A
lf
o
n
so
-L
o
ec
h
es

et
al
.
2
0
1
3
)

H
y
p
o
th
al
am

u
s

(P
V
N
)

#(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

(c
o
n
ti
n
u
ed
)

Ethanol and Cytokines in the Central Nervous System 401



T
a
b
le

1
(c
o
n
ti
n
u
ed
)

C
y
to
k
in
e

E
th
an
o
l
tr
ea
tm

en
t

B
ra
in

re
g
io
n

Δ
m
R
N
A

le
v
el
s

Δ
P
ro
te
in

le
v
el
s

H
ip
p
o
ca
m
p
u
s

¼
(D

o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

"(
D
ia
z
et

al
.
2
0
1
6
;
Z
h
u
et

al
.
2
0
0
7
)

C
er
eb
el
lu
m

"(
L
ip
p
ai

et
al
.
2
0
1
3
a)

"(
L
ip
p
ai

et
al
.
2
0
1
3
a)

A
m
y
g
d
al
a

#(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

S
tr
ia
tu
m
/N
A
c

"(
P
as
cu
al

et
al
.
2
0
1
5
)

IL
-6

A
cu
te

C
o
rt
ex

¼
(T
en
g
an
d
M
o
li
n
a
2
0
1
4
)

¼
(T
en
g
an
d
M
o
li
n
a
2
0
1
4
)

H
y
p
o
th
al
am

u
s

(P
V
N
)

"(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
,
2
0
1
5
)

¼
(G

an
o
et
al
.
2
0
1
7
;
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

H
ip
p
o
ca
m
p
u
s

"(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
,
2
0
1
5
)

¼
(G

an
o
et
al
.
2
0
1
7
;
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
,

2
0
1
5
)

C
er
eb
el
lu
m

"(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

¼
(D

o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

#(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

A
m
y
g
d
al
a

"(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
5
)

¼
(G

an
o
et

al
.
2
0
1
7
)

P
ro
lo
n
g
ed
/b
in
g
e

W
h
o
le

b
ra
in

"(
Q
in

an
d
C
re
w
s
2
0
1
4
)

"(
Q
in

an
d
C
re
w
s
2
0
1
4
)

C
o
rt
ex

¼
(K

an
e
et

al
.
2
0
1
3
,
2
0
1
4
)

"(
M
ar
sh
al
l
et

al
.
2
0
1
3
)

¼
(M

ar
sh
al
l
et

al
.
2
0
1
3
)

H
y
p
o
th
al
am

u
s

(P
V
N
)

"(
Z
h
u
et

al
.
2
0
0
7
)

H
ip
p
o
ca
m
p
u
s

¼
(K

an
e
et

al
.
2
0
1
3
,
2
0
1
4
)

¼
(M

ar
sh
al
l
et

al
.
2
0
1
3
)

C
er
eb
el
lu
m

¼
(K

an
e
et

al
.
2
0
1
3
)

C
h
ro
n
ic

C
o
rt
ex

"(
S
ch
n
ei
d
er

et
al
.
2
0
1
7
)

H
y
p
o
th
al
am

u
s

(P
V
N
)

¼
(D

o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

"(
E
m
an
u
el
e
et

al
.
2
0
0
5
)

H
ip
p
o
ca
m
p
u
s

¼
(D

o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

"(
S
ch
n
ei
d
er

et
al
.
2
0
1
7
)

A
m
y
g
d
al
a

"(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

402 M. Roberto et al.



IL
-1
0

A
cu
te

W
h
o
le

b
ra
in

¼
(Q

in
et

al
.
2
0
0
8
)

H
ip
p
o
ca
m
p
u
s

"(
S
u
ry
an
ar
ay
an
an

et
al
.
2
0
1
6
)

P
ro
lo
n
g
ed
/b
in
g
e

W
h
o
le

b
ra
in

¼
(Q

in
et

al
.
2
0
0
8
)

#(
Q
in

et
al
.
2
0
0
8
)

C
o
rt
ex

¼
(M

ar
sh
al
l
et

al
.
2
0
1
3
,
2
0
1
6
a)

H
ip
p
o
ca
m
p
u
s

"(
M
ar
sh
al
l
et

al
.
2
0
1
3
)

¼
(M

ar
sh
al
l
et

al
.
2
0
1
3
,
2
0
1
6
a)

C
er
eb
el
lu
m

¼
(T
o
p
p
er

et
al
.
2
0
1
5
)

C
h
ro
n
ic

C
o
rt
ex

#(
S
ch
n
ei
d
er

et
al
.
2
0
1
7
)

H
ip
p
o
ca
m
p
u
s

#(
S
ch
n
ei
d
er

et
al
.
2
0
1
7
)

IL
-1
R
a

C
h
ro
n
ic

C
er
eb
el
lu
m

"(
L
ip
p
ai

et
al
.
2
0
1
3
a)

T
N
F
-α

A
cu
te

W
h
o
le

b
ra
in

"(
R
aj
ay
er

et
al
.
2
0
1
3
;
Q
in

et
al
.
2
0
0
8
)

"(
R
aj
ay
er

et
al
.
2
0
1
3
)

¼
(Q

in
et

al
.
2
0
0
8
)

C
o
rt
ex

"(
A
h
le
rs

et
al
.
2
0
1
5
;
T
en
g
an
d
M
o
li
n
a
2
0
1
4
)

¼
(A

h
le
rs

et
al
.
2
0
1
5
;
W
h
it
m
an

et
al
.
2
0
1
3
;
T
en
g

an
d
M
o
li
n
a
2
0
1
4
)

"(
W
h
it
m
an

et
al
.
2
0
1
3
;
A
m
in

et
al
.
2
0
1
6
)

¼
(G

o
tt
es
fe
ld

et
al
.
2
0
0
2
)

H
y
p
o
th
al
am

u
s

(P
V
N
)

"(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

¼
(G

an
o
et
al
.
2
0
1
7
;
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

#(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
,
2
0
1
5
)

H
ip
p
o
ca
m
p
u
s

"(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

¼
(G

an
o
et
al
.
2
0
1
7
;
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

#(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
,
2
0
1
5
)

¼
(G

o
tt
es
fe
ld

et
al
.
2
0
0
2
)

C
er
eb
el
lu
m

¼
(D

o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

#(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

A
m
y
g
d
al
a

¼
(G

an
o
et
al
.
2
0
1
7
;
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
5
)

#(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
5
)

P
ro
lo
n
g
ed
/b
in
g
e

W
h
o
le

b
ra
in

"(
Q
in

et
al
.
2
0
0
8
;
Q
in

an
d
C
re
w
s
2
0
1
4
)

¼
(Q

in
et

al
.
2
0
0
8
)

"(
Q
in

et
al
.
2
0
0
8
;
Q
in

an
d
C
re
w
s
2
0
1
4
)

¼
(Q

in
et

al
.
2
0
0
8
)

(c
o
n
ti
n
u
ed
)

Ethanol and Cytokines in the Central Nervous System 403



T
a
b
le

1
(c
o
n
ti
n
u
ed
)

C
y
to
k
in
e

E
th
an
o
l
tr
ea
tm

en
t

B
ra
in

re
g
io
n

Δ
m
R
N
A

le
v
el
s

Δ
P
ro
te
in

le
v
el
s

C
o
rt
ex

" ¼
(K

an
e
et

al
.
2
0
1
3
,
2
0
1
4
;
D
re
w
et

al
.
2
0
1
5
)

"(
P
as
cu
al

et
al
.
2
0
1
7
;
T
iw
ar
i
an
d
C
h
o
p
ra

2
0
1
2
,
2
0
1
3
)

¼
(M

ar
sh
al
l
et

al
.
2
0
1
3
,
2
0
1
6
a)

H
y
p
o
th
al
am

u
s

(P
V
N
)

"(
Z
h
u
et

al
.
2
0
0
7
)

¼
(Z
ah
r
et

al
.
2
0
1
0
)

H
ip
p
o
ca
m
p
u
s

"(
D
re
w

et
al
.
2
0
1
5
)

¼
(K

an
e
et

al
.
2
0
1
3
,
2
0
1
4
)

"(
M
ar
sh
al
l
et

al
.
2
0
1
6
a;

T
iw
ar
i
an
d

C
h
o
p
ra

2
0
1
2
,
2
0
1
3
)

¼
(M

ar
sh
al
l
et

al
.
2
0
1
3
,
2
0
1
6
a;

M
cC

la
in

et
al
.
2
0
1
1
)

C
er
eb
el
lu
m

"(
T
o
p
p
er

et
al
.
2
0
1
5
;
D
re
w
et

al
.
2
0
1
5
)

¼
(T
o
p
p
er

et
al
.
2
0
1
5
;
K
an
e
et

al
.
2
0
1
3
)

S
tr
ia
tu
m
/N
A
c

"(
P
as
cu
al

et
al
.
2
0
1
7
)

C
h
ro
n
ic

C
o
rt
ex

"(
V
et
re
n
o
et

al
.
2
0
1
3
;
W
h
it
m
an

et
al
.
2
0
1
3
;

A
lf
o
n
so
-L
o
ec
h
es

et
al
.
2
0
1
3
)

¼
(W

h
it
m
an

et
al
.
2
0
1
3
)

"(
A
lf
o
n
so
-L
o
ec
h
es

et
al
.
2
0
1
3
;
S
ch
n
ei
d
er

et
al
.
2
0
1
7
;
D
ia
z
et

al
.
2
0
1
6
)

¼
(W

h
it
m
an

et
al
.
2
0
1
3
)

H
y
p
o
th
al
am

u
s

(P
V
N
)

¼
(D

o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

"(
E
m
an
u
el
e
et

al
.
2
0
0
5
)

H
ip
p
o
ca
m
p
u
s

#(
D
o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

"(
S
ch
n
ei
d
er

et
al
.
2
0
1
7
;
D
ia
z
et
al
.
2
0
1
6
)

C
er
eb
el
lu
m

"(
L
ip
p
ai

et
al
.
2
0
1
3
a)

"(
L
ip
p
ai

et
al
.
2
0
1
3
a)
#

A
m
y
g
d
al
a

¼
(D

o
re
m
u
s-
F
it
zw

at
er

et
al
.
2
0
1
4
)

S
tr
ia
tu
m
/N
A
c

"(
P
as
cu
al

et
al
.
2
0
1
5
)

¼
(P
as
cu
al

et
al
.
2
0
1
5
)

M
C
P
-1
/

C
C
L
2

A
cu
te

W
h
o
le

b
ra
in

"(
Q
in

et
al
.
2
0
0
8
)

"(
R
o
b
er
so
n
et

al
.
2
0
1
1
)

¼
(Q

in
et

al
.
2
0
0
8
;
R
o
b
er
so
n
et

al
.
2
0
1
1
)

C
o
rt
ex

"(
T
en
g
an
d
M
o
li
n
a
2
0
1
4
)

¼
(P
as
cu
al

et
al
.
2
0
1
7
)
(K

an
e
et

al
.
2
0
1
3
;
W
h
it
m
an

et
al
.
2
0
1
3
;
T
en
g
an
d
M
o
li
n
a
2
0
1
4
)

"(
M
o
n
te
si
n
o
s
et

al
.
2
0
1
7
)

¼
(W

h
it
m
an

et
al
.
2
0
1
3
)

H
ip
p
o
ca
m
p
u
s

"(
K
an
e
et

al
.
2
0
1
3
)

C
er
eb
el
lu
m

"(
K
an
e
et

al
.
2
0
1
3
)

404 M. Roberto et al.



P
ro
lo
n
g
ed
/b
in
g
e

W
h
o
le

b
ra
in

"(
Q
in

et
al
.
2
0
0
8
;
Q
in

an
d
C
re
w
s
2
0
1
4
)

"(
Q
in

et
al
.
2
0
0
8
;
Q
in

an
d
C
re
w
s
2
0
1
4
)

¼
(Q

in
et

al
.
2
0
0
8
)

C
o
rt
ex

"(
P
as
cu
al
et
al
.
2
0
1
7
;
K
an
e
et
al
.
2
0
1
4
;
D
re
w
et

al
.

2
0
1
5
)

¼
(K

an
e
et

al
.
2
0
1
4
)

"(
K
an
e
et

al
.
2
0
1
4
)

H
ip
p
o
ca
m
p
u
s

"(
K
an
e
et

al
.
2
0
1
4
;
D
re
w

et
al
.
2
0
1
5
)

¼
(K

an
e
et

al
.
2
0
1
4
)

#

"(
K
an
e
et

al
.
2
0
1
4
)

C
er
eb
el
lu
m

"(
D
re
w

et
al
.
2
0
1
5
)

S
tr
ia
tu
m
/N
A
c

"(
M
o
n
te
si
n
o
s
et

al
.
2
0
1
7
)

C
h
ro
n
ic

C
o
rt
ex

"(
V
et
re
n
o
et

al
.
2
0
1
3
;
W
h
it
m
an

et
al
.
2
0
1
3
)

¼
(W

h
it
m
an

et
al
.
2
0
1
3
)

#

" ¼
(W

h
it
m
an

et
al
.
2
0
1
3
)

#
C
er
eb
el
lu
m

"(
L
ip
p
ai

et
al
.
2
0
1
3
a)

"(
L
ip
p
ai

et
al
.
2
0
1
3
a)

S
tr
ia
tu
m
/N
A
c

"(
P
as
cu
al

et
al
.
2
0
1
5
)

H
um

an
s

IL
-1
β

A
lc
o
h
o
li
cs

–
ac
u
te
ly

ex
p
o
se
d
to

E
tO
H

C
F

¼
(U

m
h
au

et
al
.
2
0
1
4
)

A
lc
o
h
o
li
cs

(p
o
st
m
o
rt
em

)

H
ip
p
o
ca
m
p
u
s

"(
Z
o
u
an
d
C
re
w
s
2
0
1
2
)

IL
-6

A
lc
o
h
o
li
cs

+
h
ep
at
ic

en
ce
p
h
al
o
p
at
h
y

S
u
p
er
io
r

fr
o
n
ta
l
g
y
ru
s

¼
(D

en
n
is
et

al
.
2
0
1
4
)

P
re
ce
n
tr
al

g
y
ru
s

¼
(D

en
n
is
et

al
.
2
0
1
4
)

IL
-1
0

A
lc
o
h
o
li
cs

+
h
ep
at
ic

en
ce
p
h
al
o
p
at
h
y

S
u
p
er
io
r

fr
o
n
ta
l
g
y
ru
s

¼
(D

en
n
is
et

al
.
2
0
1
4
)

P
re
ce
n
tr
al

g
y
ru
s

¼
(D

en
n
is
et

al
.
2
0
1
4
)

T
N
F
-α

A
lc
o
h
o
li
cs

–
ac
u
te
ly

ex
p
o
se
d
to

E
tO
H

C
F

¼
(U

m
h
au

et
al
.
2
0
1
4
)

#(
U
m
h
au

et
al
.
2
0
1
4
)

(c
o
n
ti
n
u
ed
)

Ethanol and Cytokines in the Central Nervous System 405



T
a
b
le

1
(c
o
n
ti
n
u
ed
)

C
y
to
k
in
e

E
th
an
o
l
tr
ea
tm

en
t

B
ra
in

re
g
io
n

Δ
m
R
N
A

le
v
el
s

Δ
P
ro
te
in

le
v
el
s

M
C
P
-1
/

C
C
L
2

A
lc
o
h
o
li
cs

(p
o
st
m
o
rt
em

)

V
T
A

"(
H
e
an
d
C
re
w
s
2
0
0
8
)

S
u
b
st
an
ti
a

n
ig
ra

"(
H
e
an
d
C
re
w
s
2
0
0
8
)

H
ip
p
o
ca
m
p
u
s

"(
H
e
an
d
C
re
w
s
2
0
0
8
)

A
m
y
g
d
al
a

"(
H
e
an
d
C
re
w
s
2
0
0
8
)

A
lc
o
h
o
li
cs

–
ac
u
te
ly

ex
p
o
se
d
to

E
tO
H

C
F

"(
U
m
h
au

et
al
.
2
0
1
4
)

W
e
d
efi
n
e
“a
cu
te

tr
ea
tm

en
t”

as
a
si
n
g
le

ad
m
in
is
tr
at
io
n
o
r
co
n
ti
n
u
o
u
s
ap
p
li
ca
ti
o
n
fo
r
le
ss

th
an

2
4
h
.
T
h
e
“p
ro
lo
n
g
ed
/b
in
g
e
tr
ea
tm

en
t”

in
cl
u
d
es

se
v
er
al

b
in
g
e

m
o
d
el
s
an
d
re
p
ea
te
d
et
h
an
o
l
ex
p
o
su
re

fo
r
le
ss

th
an

2
w
ee
k
s,
an
d
“c
h
ro
n
ic

tr
ea
tm

en
t”

co
rr
es
p
o
n
d
s
to

et
h
an
o
l
tr
ea
tm

en
ts

ex
ce
ed
in
g
2
w
ee
k
s.
T
h
e
p
ri
m
ar
y

re
as
o
n
s
fo
r
th
e
d
is
cr
ep
an
ci
es

in
th
e
d
ir
ec
ti
o
n
o
f
th
e
et
h
an
o
l
ef
fe
ct
s
o
n
a
p
ar
ti
cu
la
r
cy
to
k
in
e
am

o
n
g
an
d
w
it
h
in
th
e
st
u
d
ie
s
in
cl
u
d
e
ag
e
(e
.g
.,
ad
o
le
sc
en
t
v
s
ad
u
lt
),

se
x
,
et
h
an
o
l
tr
ea
tm

en
t/
ad
m
in
is
tr
at
io
n
(e
.g
.,
in
tr
ap
er
it
o
n
ea
l
v
s
in
tr
ag
as
tr
ic

ap
p
li
ca
ti
o
n
o
r
co
n
ti
n
u
o
u
s
v
s
in
te
rm

it
te
n
t
tr
ea
tm

en
t)
,
an
d
p
o
st
tr
ea
tm

en
t
ti
m
e
o
f
th
e

ti
ss
u
e
co
ll
ec
ti
o
n
(e
.g
.,
1
d
ay

v
s
2
8
d
ay
s)
.
T
h
e
te
rm

“c
o
rt
ex
”
en
co
m
p
as
se
s
fi
n
d
in
g
s
fr
o
m

th
e
st
u
d
ie
s
o
n
th
e
n
eo
co
rt
ex
,
fr
o
n
ta
l
co
rt
ex
,
m
P
F
C
,
an
d
en
to
rh
in
al
an
d

te
m
p
o
ra
l
co
rt
ex
.
W
e
m
ar
k
th
e
d
ir
ec
ti
o
n
o
f
th
e
et
h
an
o
l
ef
fe
ct
s
o
n
th
e
cy
to
k
in
es

(Δ
m
R
N
A
/p
ro
te
in

le
v
el
s)

as
"i

n
cr
ea
se
,
¼

n
o
ch
an
g
e,
an
d
#d

ec
re
as
e
in

th
e

m
R
N
A

o
r
p
ro
te
in

le
v
el
s

C
F
ce
re
b
ro
sp
in
al

fl
u
id
,
V
T
A
v
en
tr
al

te
g
m
en
ta
l
ar
ea
,
P
V
N
p
ar
av
en
tr
ic
u
la
r
n
u
cl
eu
s
o
f
th
e
h
y
p
o
th
al
am

u
s,
N
A
c
n
u
cl
eu
s
ac
cu
m
b
en
s

406 M. Roberto et al.



4 The Interleukin-1 Family

The interleukin-1 (IL-1) family is a group of 11 cytokines that initiate and regulate

inflammatory responses (Dinarello 2011). IL-1α/β and its cognate IL-1 receptor

type 1 (IL-1R1) are expressed throughout the brain (Parker et al. 2000; French et al.

1999; Ericsson et al. 1995; Heida and Pittman 2005; Johnson et al. 2004; Hosoi

et al. 2002b; Gayle et al. 1999; Cartmell et al. 1999; Taishi et al. 1997; Quan et al.

1998; Quan et al. 1996; Hagan et al. 1993) and are synthesized in both neurons

(Allan et al. 2005) and glial cells (Blanco et al. 2005; Blanco and Guerri 2007).

Specifically, IL-1R1 is enriched in postsynaptic compartments in rat hippocampus

and cortex (Gardoni et al. 2011; Viviani et al. 2014). In general, IL-1α is produced

constitutively, whereas IL-1β synthesis is induced and requires activation of the

inflammasome pathway. The inflammasome is a multiprotein complex mainly

functioning as a platform for the activation of inflammatory caspases to produce

pro-inflammatory cytokines (IL-1β and IL-18) and as a trigger for the release of

proteins involved in coordination of cell proliferation and tissue repair. First, an

initial immune stimulus induces gene expression and protein synthesis of the

inactive proIL-1β. The release of an active IL-1β requires a second stimulus that

activates the inflammasome, which leads to cleavage of the proIL-1β by caspase

1 (Keyel 2014; Lamkanfi and Dixit 2014). Notably, activation of the inflammasome

pathway, particularly NLRP3/ASC inflammasome, plays a critical role in regula-

tion of the alcohol-induced neuroimmune response (Lippai et al. 2013a; Zou and

Crews 2012; Wang et al. 2015; Alfonso-Loeches et al. 2014; Alfonso-Loeches

et al. 2015).

The pro-inflammatory activities of IL-1α and IL-1β are mediated by downstream

signaling of IL-1R1. IL-1α/β binds to the extracellular domain of IL-1R1 leading

to the recruitment of accessory proteins (e.g., the co-receptor IL-1R1 accessory

protein (IL-1RAcP)), formation of a receptor heterodimeric complex (comprised of

IL-1α/β, IL-1R1, and IL-1RAcP), and assemblage with the intracellular adaptor

protein MyD88. Downstream of IL-1R1, many intracellular signaling pathways are

activated such as NF-κB, c-Jun N-terminal kinase, and p38 MAPK. Additionally,

transcription factors, which induce gene expression of the inflammatory mediators

including IL-1α/β, are also activated (Cohen 2014). Importantly, IL-1α/β-IL-1R1
signaling is regulated by an endogenous antagonist (IL-1Ra) and a decoy receptor

(IL-1R2). IL-1Ra (IL-1 receptor antagonist) competes with IL-1α/β for binding

sites on IL-1R1, and IL-1α/β binds to the decoy receptor IL-1R2, which does

not assemble into the IL-1R1/IL-1RAcp/MyD88 complex (Garlanda et al. 2013;

Krumm et al. 2014). In both cases, the inhibition of IL-1α/β-mediated response is

carried out by preventing the activation of downstream IL-1R1 signaling (Garlanda

et al. 2013).

Based on the available literature, ethanol does not induce changes in the IL-1α
levels in the brain (Lippai et al. 2013a). While this does not exclude the possibility

of IL-1α playing a role in the ethanol-induced neuroimmune response, IL-1α does

not appear to play a critical role in ethanol effects in the CNS (Bajo et al. 2015a, b).

Here, we will focus on IL-1β which play a critical role in the ethanol-induced

neuroimmune response in the CNS (Szabo and Lippai 2014).
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The mechanisms by which IL-1β exerts its effects can be broadly categorized

into two branches: (1) primarily immune cell-mediated effects and (2) direct

neuronal effects. The first branch of the IL-1β mechanisms encompasses various

processes of the neuroimmune response (e.g., free radical generation, activation of

glial cells) in which the IL-1β serves as a key regulator. The second branch includes
the direct regulation of homeostasis in the CNS by IL-1β and IL-1β � dependent

modulation of synaptic transmission. Importantly, the individual mechanisms from

both branches do not act independently, but rather work in parallel, influencing the

actions of each other.

The IL-1β system modulates the functional activity of neurons in a cell- and

brain region-specific manner including excitability, neurotransmitter receptors,

neurotransmitter release, and synaptic plasticity. For example, IL-1β directly modu-

lates voltage-gated ion channels (Vezzani and Viviani 2015); it increases firing in

Purkinje cells (Motoki et al. 2009), decreases firing in dorsal raphe nucleus seroto-

nergic neurons (Brambilla et al. 2007; Manfridi et al. 2003), and has dual effects in

orbitofrontal cortex neurons (Lukats et al. 2005). In the hippocampus (including

hippocampal neuronal cell cultures), IL-1β increases the membrane expression of

GABA (γ-aminobutyric acid) receptors (Serantes et al. 2006; Wang et al. 2012) and

IL-1R1 at synaptic sites, where IL-1R1 colocalizes and binds to the GluR2B subunit

of NMDA (N-methyl D-aspartic acid) receptors (Gardoni et al. 2011). IL-1β-IL-1R
can increase NMDA receptor phosphorylation (e.g., GLuR2B subunit) leading to an

increase in NMDA-mediated calcium (Ca2+) flux, excitability, and excitotoxicity

(Viviani et al. 2003). The dual effects of IL-1β on presynaptic GABA and glutamate

release as well as postsynaptic inhibitory and excitatory activity are specific to

neuronal type and brain region (Bajo et al. 2015b; Feleder et al. 1998; Miller et al.

1991; Mishra et al. 2012; Murray et al. 1997; Sama et al. 2008; Tabarean et al.

2006; Zeise et al. 1992, 1997). Moreover, IL-1β inhibits synaptic plasticity in CA1

and dentate gyrus neurons of the hippocampus (Zeise et al. 1992; Dunn et al. 1999;

Lin et al. 2006; O’Connor and Coogan 1999; Rothwell and Luheshi 2000).

4.1 IL-1b and Alcohol

There are several lines of evidence supporting the critical role of IL-1β in the

neuropathogenesis and behavioral changes associated with alcohol dependence. In

humans, polymorphisms in Il1rn and Il1b, the genes encoding IL-1Ra and IL-1β,
respectively, are associated with a susceptibility to alcoholism in Spanish men (Pastor

et al. 2005). Similarly, mice with a genetic predisposition to high alcohol consump-

tion show altered expression of several genes of the IL-1/IL-1R system, including

Ilf5, Ilf6, Ilf8, Irak4, and Il1rn. All of these genes, except Irak4, are also located

within QTLs (quantitative trait locus) for human alcoholism susceptibility and are

considered candidate genes for alcohol drinking (Mulligan et al. 2006). ILf5, ILf6,

and ILf8 are ligands for IL-1R2 (Towne et al. 2004). Irak4 encodes the protein

IRAK4 (IL-1 receptor-associated kinase 4), which plays a key role in the activation

of NF-κB signaling (O’Neill 2008). Interestingly, high alcohol-preferring (HAP)
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mice have altered levels of several genes involved in the NF-κB pathway (Casp8,
Fadd, Ikbkb, Ikbkg, Map3k1, Map3k7, Tradd), through which IL-1α/β-IL-1R1
mediates its biological action (Mulligan et al. 2006). Follow-up behavioral studies

show the involvement of some of these genes in alcohol drinking and preference.

Il1rn encodes the IL-1Ra protein that is an endogenous competitive antagonist of

IL-1R1. Il1rn knockout mice exhibit a reduction in alcohol drinking and preference

(Blednov et al. 2012), increased ethanol clearance and decreased ethanol-induced

conditioned taste aversion, increased sensitivity to the sedative/hypnotic effects of

ethanol and flurazepam, and reduced severity of acute ethanol withdrawal. Pretreat-

ment with exogenous IL-1Ra (Kineret) reverses some of the behavioral phenotypes of

Il1rn KO mice; specifically it reduces the ethanol- and flurazepam-induced sedation

and restores the severity of acute ethanol withdrawal (Blednov et al. 2015a). Mice

lacking the Il1r1 gene, encoding IL-1R1, exhibit the opposite phenotype of Il1rn KO
mice – decreased ethanol-induced sedation and increased severity of ethanol with-

drawal – indicating that IL-1R1 signaling plays a crucial role in these behaviors.

However, the findings that ethanol intake and preference are not altered in Il1r1
KO mice and recovery from ethanol-induced motor incoordination is only altered in

female Il1r1 KO mice suggest that these alcohol-related behaviors are not solely

regulated by the IL-1β system (Blednov et al. 2015a). Moreover, systemic adminis-

tration of IL-1Ra reduces alcohol-induced sedation and motor impairment recovery

time in mice (Wu et al. 2011) and also prevents alcohol-induced neuroinflammation

(Lippai et al. 2013a).

Pharmacological manipulation of the IL-1 system selectively in the CNS

provides further evidence for a critical role of the brain IL-1 system in several

alcohol-related behaviors. Intracerebroventricular administration of IL-1β increases

alcohol withdrawal-induced anxiety (Breese et al. 2008), while bilateral infusion of

IL-1Ra into the basolateral amygdala (BLA), but not the central nucleus of the

amygdala (CeA), reduces ethanol consumption with no impact on either sucrose

drinking or open-field locomotor activity, a behavioral measure of anxiety (Marshall

et al. 2016b). Overall, these evidences indicate that IL-1β plays a critical role in

activation of the ethanol-induced immune response in the brain and is involved in

the regulation of critical neurocircuitries mediating the alcohol-related behaviors.

4.2 IL-1b Mechanisms of Action

Evidence for the involvement of IL-1β and its signaling pathways in alcohol-related
behaviors are compelling. Indeed, ethanol increases IL-1β levels in neuronal and

glial cell cultures (Zou and Crews 2012; Rajayer et al. 2013; Boyadjieva and Sarkar

2010; Lawrimore and Crews 2017) and in specific brain regions in animal models of

AUDs as well as in humans (see Table 1). In this regard, the hippocampus, PFC,

and cerebellum seem to be the most sensitive to ethanol-induced dysregulation of

IL-1/IL-1R1 signaling (Lippai et al. 2013a, b; Qin et al. 2008; Valles et al. 2004).

However, the mechanisms through which IL-1β modulates alcohol-related behaviors

are still not fully understood. Therefore, the focus of current research has extended to
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the other brain regions such as the amygdala, which plays a critical role in alcohol

dependence and withdrawal (Koob and Volkow 2016). Thus, here, we will

summarize our current understanding of the mechanisms of action of IL-1β and

IL-1β-ethanol interactions at the cellular and behavioral levels in the CeA, BLA,

and hippocampus.

4.3 IL-1b in the CeA

The CeA, a major component of the extended amygdala, is a primarily GABAergic

nucleus involved in stress-, fear-, and anxiety-like behavior (Davis et al. 1994) and

excessive drinking (Koob and Volkow 2016; Roberto et al. 2010). The GABAergic

system tightly controls neuronal excitability (Klausberger and Somogyi 2008; Nuss

2015), and it is critical in the development of alcohol dependence (Holmes and

Wellman 2009; Silveri 2014).

Modulation of GABA-A receptors alters many ethanol behaviors (Blednov et al.

2003, 2013; Boehm et al. 2004). Specifically, muscimol, a GABA-A receptor

agonist, injection into the CeA greatly reduces ethanol self-administration, but

only in dependent rats (Roberts et al. 1996), and a GABA-A antagonist reduces

ethanol self-administration (Hyytia and Koob 1995) in nondependent rats. The

CeA has abundant corticotrophin-releasing factor (CRF)-containing fibers and

CRF receptors (Uryu et al. 1992) and is thought to be a target of the peripheral

neuroimmune system (Konsman et al. 2008). CRF1 receptors play an essential role

in ethanol’s effects on GABA release in the CeA and in ethanol dependence

(Roberto et al. 2003, 2010; Nie et al. 2004, 2009). Interestingly, facilitation of

ethanol withdrawal-induced anxiety by TNFα or MCP-1/CCL2 microinjection into

the CeA is dependent on CRF (Knapp et al. 2011), and CRF-amplified neuronal

TLR4/MCP-1 signaling in the CeA regulates alcohol self-administration (June et al.

2015). Moreover, IL-1β and IL-1Ra regulate GABAergic transmission in the CeA

(Bajo et al. 2015a, b). Under basal conditions, IL-1R is detected in the amygdala

(Frost et al. 2001), but expression of IL-1β and IL-1Ra is not detectable but rather

appears to be inducible in the CeA (Konsman et al. 2008; Eriksson et al. 2000),

suggesting that modulation of basal GABAergic transmission with acute appli-

cation IL-1Ra is likely through IL-1α, which is constitutively expressed. Systemic

IL-1β and LPS administration activates the CeA, as indicated by an increase in gene

expression of the immediate early gene product cFos (Konsman et al. 2008; Frost

et al. 2001; Dayas et al. 2001). At the cellular level, IL-1β significantly decreases

amplitudes of evoked inhibitory GABA-A-mediated postsynaptic potentials

(eIPSP), without affecting paired-pulse facilitation (PPF), a paradigm to assess

pre- and postsynaptic mechanisms for evoked responses. Interestingly, IL-1β has

dual effects on action potential-independent miniature inhibitory postsynaptic

currents (mIPSCs) in CeA neurons: in the majority of cells, IL-1β increases

mIPSC frequency suggesting an increase in presynaptic vesicular GABA release.

However, in some CeA neurons, IL-1β decreases vesicular GABA release as well as

postsynaptic GABA-A receptor function represented by a decrease in mIPSC
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amplitude. Consistent with the IL-1β effects, IL-1Ra alone had dual effects on

mIPSCs, and it also blocks the effects of IL-1β on CeA GABA transmission (Bajo

et al. 2015a, b).

Further, acute ethanol facilitates GABA transmission in the CeA (Roberto et al.

2003). IL-1β interacts with the effects of acute ethanol on GABA transmission in

the CeA. Although IL-1β pretreatment does not block the ethanol-induced facilita-

tion of evoked responses, IL-1β occludes ethanol’s effects on presynaptic vesicular
GABA release in CeA neurons responding to IL-1β. Overall, these findings indicate
that the IL-1 system is involved in tonic regulation of GABA transmission and that

IL-1β interacts with the ethanol-induced enhancement of GABAergic transmission

in the CeA (Bajo et al. 2015b).

The endogenous IL-1Ra is an anti-inflammatory element that may play a critical

role in the development of alcohol dependence (Mulligan et al. 2006; Blednov et al.

2012; Wu et al. 2011; Lippai et al. 2013a). Transgenic mice lacking endogenous

IL-1Ra (Il1rnKO) exhibit reduced alcohol intake (Blednov et al. 2012) and prolonged
loss of the righting reflex (LORR) induced by ethanol or by flurazepam, a positive

allosteric modulator of the GABA-A receptor (Blednov et al. 2015a). Also,

GABAergic neurotransmission in the CeA of Il1rn KO mice is disrupted. Notably,

both baseline-evoked GABA responses and baseline frequency of action potential-

dependent spontaneous inhibitory postsynaptic currents (sIPSCs), but not mIPSCs, are

significantly increased in these KOmice compared to wild-type (WT)mice, indicating

increased GABA release in the CeA of KO mice. Acute application of ethanol

increases the frequency of sIPSCs and mIPSCs in the vast majority of WT CeA

neurons, but these effects are observed only in about half of the KO CeA neurons.

Pretreatment with exogenous IL-1Ra (Kineret) reverses this increase in KO mice

without altering the frequency in WT mice. Kineret is also capable of restoring the

ethanol-induced increase in GABA release in KO mice, indicating that some of the

cellular phenotypes in Il1rnKOmice are rescued by application of exogenous IL-1Ra

(Bajo et al. 2015a). This suggests that IL-1R1 antagonism regulates basal GABA

release and plays a key role in the effects of ethanol at inhibitory synapses in the CeA.

4.4 IL-1b in the BLA

Acute application of IL-1β hyperpolarizes the membrane and decreases input resis-

tance in most BLA neurons. The hyperpolarization induced by IL-1β is dose-

dependent, reversible, action potential independent, and blocked with a GABA-A

antagonist. IL-1β inhibits excitatory and inhibitory responses evoked by stimulating

either the bed nucleus of stria terminalis or the lateral amygdala via presynaptic

mechanisms. Thus, IL-1β hyperpolarizes the membrane through indirect mechanisms,

possibly by enhancing the action of endogenous GABA in the BLA, and inhibits

excitatory and inhibitory transmission at presynaptic sites (Yu and Shinnick-Gallagher

1994).

Binge-like ethanol drinking induces a significant increase in IL-1β mRNA

and protein expression within the amygdala, but not in the CeA. Interestingly,

bilateral infusion of IL-1Ra into the BLA, but not the CeA, reduce ethanol drinking
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without affecting sucrose drinking or open-field locomotor activity (Marshall et al.

2016b). These results highlight a specific role for IL-1 receptor signaling in the

BLA in modulating binge-like ethanol consumption and indicate that

pro-inflammatory cytokines can be induced prior to progression into alcohol

dependence.

4.5 IL-1b in the Hippocampus

The hippocampus expresses a high density of IL-1β receptors presumably on

dendrites of granule cells (Takao et al. 1990). Exogenously applied IL-1β enhances
neuronal excitability and increases NMDA receptor function. Indeed, data from

primary rat hippocampal neuron cultures suggests that IL-1β increases NMDA

receptor function through activation of tyrosine kinases and subsequent NR2A/B

subunit phosphorylation (Viviani et al. 2003). IL-1β reduces seizure thresholds and
inhibition of IL-1R1 by its antagonist limits seizures (Vezzani et al. 1999). More-

over, convulsant and/or excitotoxic stimuli increase the production of IL-1β in

microglia-like cells in the hippocampus (Vezzani et al. 1999). A later study clarified

the mechanism of IL-1β-associated seizures and the interaction between IL-1β and

Ca2+ mobilization on glutamate and GABA release using mice hippocampal mini-

slice (Zhu et al. 2006). Both basal and K+-evoked GABA release are regulated

by Ca2+ influx and Ca2+-induced Ca2+ releasing system (CICR). Similarly, K+-

evoked glutamate release is also regulated by Ca2+ influx and CICR, but basal

glutamate release is not. IL-1β increases basal release of glutamate and GABA

depending on the activation of Ca2+ influx and ryanodine receptor (RyR)-sensitive

CICR. During neuronal hyperexcitability, the effect of IL-1β on GABA release is

predominantly modulated by Ca2+ influx and RyR-sensitive CICR (Zhu et al.

2006).

IL-1β can also impact neuronal plasticity. Low, physiological levels of IL-1β
play a role in long-term potentiation (LTP), an important cellular correlate of

learning and memory, while high, pathological levels can disrupt this process.

Blockade of IL-1β signaling by its antagonist, IL-1Ra, impairs memory. However,

addition of excessive IL-1β also impairs memory (Goshen et al. 2007). Therefore,

immune signaling impacts plasticity through finely tuned changes in cytokine

levels that alter neuronal activity, neural circuitry, and consequently behavioral

phenotypes (Crews et al. 2017).

IL-1β can also affect neurogenesis, the process of generating functional neurons
from neural precursors, in the hippocampus. Inflammation (Ryan and Nolan 2016)

and chronic stress (Kreisel et al. 2014) reduce neurogenesis and cause depression-

like behavior. In particular, stress induces IL-1β expression in the hippocampus,

which decreases neurogenesis and contributes to depression. Blockade of IL-1β
signaling inhibits stress-induced decreases in neurogenesis and depression-like

behavior (Koo and Duman 2008). The increased gene expression and protein levels

of IL-1β in the hippocampus following prolonged/binge and chronic ethanol expo-

sure, found in animal models as well as in human alcoholics (Table 1), indicate that
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IL-1β may play a critical role in the ethanol-reduced hippocampal neurogenesis

(Geil et al. 2014). Indeed, blocking IL-1β or inflammasome signaling reverses the

effects of ethanol on neurogenesis (Geil et al. 2014). These findings indicate that

inflammasome and IL-1β mediate the ethanol-induced inhibition of the hippo-

campal neurogenesis (Zou and Crews 2012).

Thus, it is clear that the IL-1β system plays a neuromodulatory role and interacts

with ethanol in CeA/BLA/hippocampus neurons. At the same time, there are still

many unanswered questions regarding the mechanisms mediating brain region

differences in the IL-1β effects and neuroadaptive changes of the IL-1β system

induced by chronic ethanol exposure and withdrawal.

5 Interleukin-6

Interleukin-6 (IL-6) is a prototypical pro-inflammatory cytokine involved in

the transition from innate to adaptive immunity. IL-6 plays a major role in the

neuroimmune response to brain injury and is associated with multiple neurobiologi-

cal (e.g., multiple sclerosis, Parkinson’s disease, Alzheimer’s disease) and psychi-

atric (major depression, post-traumatic stress disorder, substance use disorders)

disorders (Erta et al. 2012). In addition to mediating the neuroimmune response,

IL-6 is critical in neurogenesis and the regulation of various physiological pro-

cesses (e.g., food intake, body weight, body temperature, stress, sleep-awake

behavior, etc.) (Wallenius et al. 2002; Herrmann et al. 2003; Chai et al. 1996;

Mastorakos et al. 1993; Morrow and Opp 2005; Dimitrov et al. 2006). Neurons,

astrocytes, microglia, and endothelial cells are essential sources of IL-6, but

astrocytes are the primary source of IL-6 under physiological conditions and during

alcohol exposure in the CNS (Ye and Johnson 1999; Fattori et al. 1995; Choi et al.

2014; Farina et al. 2007). Production of IL-6 in brain cells is regulated by

other cytokines and inflammatory factors (e.g., IL-1β and TNF-α) as well as by

neurotransmitters and neuropeptides (e.g., norepinephrine, serotonin, substance P)

(Erta et al. 2012; Norris and Benveniste 1993; Maimone et al. 1993; Lieb et al.

2005; Gitter et al. 1994). IL-6 signaling is initiated by binding of IL-6 to the IL-6

receptor (IL-6R) and recruitment of additional accessory proteins including gp130,

which leads to the activation of major signaling pathways including JAK2/ STAT3,

p44/42 MAPK, and PI3-K (Schaper and Rose-John 2015). IL-6 modulates gene

expression of many inflammatory mediators and proteins involved in apoptosis

and other processes (Erta et al. 2012). At the cellular level, IL-6 has an inhibitory

effect on sodium (Na+) and Ca2+ voltage-gated ion channels that may serve as a

neuroprotective mechanism in the CNS (Vezzani and Viviani 2015; Li et al. 2014).

Moreover, IL-6 modulates glutamate receptor (mGluR2/3) expression and glutamate-

mediated excitotoxicity (Conroy et al. 2004; Orellana et al. 2005; Qiu et al. 1995).

IL-6 also reversibly decreases GABA-A-mediated currents, likely via modulation of

GABA-A receptor compartmentalization and PI3-K-Akt pathway (Garcia-Oscos

et al. 2012). The direct effects of IL-6 on cellular physiology and synaptic
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transmission indicate that dysregulation of IL-6 signaling may lead to a significant

disturbance in network activity in a brain region-specific manner.

5.1 IL-6 and Alcohol

A polymorphism in Il6, the gene encoding IL-6, is associated with alcoholism

in humans (Marcos et al. 2008; Sery et al. 2003), and genomic studies show

modifications in Il6 gene expression in alcohol-preferring rodents (Mulligan et al.

2006). Transgenic mice with a null mutant Il6 have lower ethanol intake and

ethanol preference compared to WT mice (Blednov et al. 2012). On the other

hand, transgenic mice with elevated astrocyte production of IL-6 in the CNS

(IL-6tg mice) show increased susceptibility to acute alcohol withdrawal hyperex-

citability (Hernandez et al. 2016).

While ethanol has mixed effects on the IL-6 levels in neuronal and glial cell

cultures (Boyadjieva and Sarkar 2010; Lawrimore and Crews 2017; Sarc et al.

2011; Chaturvedi et al. 2012; Wilhelm et al. 2016), both acute and chronic ethanol

exposure increases IL-6 levels in a brain region- and ethanol exposure (time and

dose)-specific manner (see Table 1). In addition to the direct effects of ethanol on

IL-6 levels in the brain, ethanol’s effects on IL-6 levels might also be under

conditioned control. Repeated pairings between distinctive odor cues (conditional

stimulus) and ethanol can result in elevation of IL-6 levels in the hippocampus and

amygdala upon presentation of the odor cues alone (Gano et al. 2017). At the

synaptic level, IL-6tg mice exhibit an altered response in hippocampal LTP to acute

ethanol. While acute ethanol depresses fEPSPs (field excitatory postsynaptic

potentials), PTP (post-tetanic potentiation), and LTP and does not affect sPS

(secondary population spikes) in WT (non-tg) mice, acute ethanol increases fEPSPs

and sPS and does not affect the PTP and LTP in Il-6tg mice (Hernandez et al. 2016;

Bray et al. 2013). These studies on IL-6tg mice suggest possible mechanisms

mediating IL-6 and ethanol interactions, particularly following the ethanol-induced

increase in IL-6 levels in the brain.

6 Interleukin-10

Interleukin-10 (IL-10) is an anti-inflammatory cytokine that negatively regulates

inflammation. IL-10 is expressed in the brain; specifically, it is produced by

microglia, astrocytes, and neurons (Kwilasz et al. 2015). IL-10 binds to its cognate

cell surface receptor, a heterotetrameric complex consisting of two ligand-binding

IL-10 receptor 1 (IL-10R1) chains and two accessory IL-10 receptor 2 (IL-10R2)

chains (Kwilasz et al. 2015; Fickenscher et al. 2002) also expressed in glia and

neurons. This interaction leads to the activation of downstream signaling cascades

including the JAK/STAT3 and PI3-K/Akt pathways (Kwilasz et al. 2015;

Fickenscher et al. 2002; Sharma et al. 2011; Norkina et al. 2007) and ultimately

results in diverse biological effects in the brain such as limiting the synthesis of
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pro-inflammatory mediators and reducing cytokine receptor expression and activa-

tion (Curtale et al. 2013), neuroprotection (Sharma et al. 2011; Segev-Amzaleg

et al. 2013), and modulation of synaptic structure and activity (Lim et al. 2013;

Suryanarayanan et al. 2016). At the cellular level, IL-10 regulates GABAergic

transmission in the hippocampal (dentate gyrus) neurons via both pre- and post-

synaptic mechanisms; IL-10 decreases mIPSCs and tonic GABA currents, and its

postsynaptic mechanisms of actions are mediated by PI3K pathways (Suryanarayanan

et al. 2016).

6.1 IL-10 and Alcohol

IL-10 is implicated in alcoholism in humans. Human genetic studies show that

a -592C>A polymorphism in the IL-10 gene is associated with alcoholism (Marcos

et al. 2008). Further, IL-10R2 levels are decreased in the CeA and cortex of

alcoholics (Ponomarev et al. 2012). Notably, IL-10 regulates SOCS (suppressor

of cytokine signaling), and SOCS mRNA levels are also decreased in the CeA and

cortex of alcoholics (Ponomarev et al. 2012).

IL-10 expression and signaling are altered in several CNS pathologies (Kwilasz

et al. 2015). Expression studies show that a single intoxicating dose of ethanol

increases IL-10 content in rat hippocampus and primary cultured cortical neurons

(Suryanarayanan et al. 2016), 24-h ethanol exposure increases IL-10 production by

human monocytes (Norkina et al. 2007), 4-day binge ethanol exposure results in

protracted increases in IL-10 levels in the rat hippocampus (Marshall et al. 2013),

and 12-day withdrawal after chronic ethanol exposure increases IL-10 content in

the rat hippocampus, prefrontal cortex, and brainstem (Schunck et al. 2015). In

contrast, 4-day binge drinking in the dark paradigm decreases IL-10 levels in the

mouse BLA, but not in the CeA, and IL-10 infusion into the BLA, but not the

CeA, decreases binge-like drinking (Marshall et al. 2017). A 10-day binge ethanol

exposure decreases mouse brain IL-10 levels (Qin et al. 2008). The differential

effects on IL-10 expression are likely due to differences between species, animal

models, and examination of region-specific versus whole brain changes. Despite

the growing body of evidence on an important role of IL-10 in the regulation of

alcohol-related behaviors, particularly binge drinking, the mechanistic and func-

tional aspects of IL-10 and ethanol interactions are very limited.

7 Tumor Necrosis Factor-Alpha

Tumor necrosis factor-alpha (TNF-α) is a member of the TNF superfamily and is

central to the innate immune response and maintenance of homeostasis at the cellular,

tissue, and organism levels. In the CNS, TNF-α displays pro-inflammatory effects and

is considered a major mediator of the secondary CNS damage following acute injury

and during chronic inflammation. However, TNF-α also exerts essential beneficial

functions in the CNS. Its potent pro-inflammatory effects require very tight temporal
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and spatial control, as dysregulation of TNF-α production and activity can trigger cell

death and tissue degeneration (Probert 2015). TNF-α is produced in two bioactive

forms transmembrane (tmTNF) and soluble (solTNF) that differ in their biological

activity and intracellular signaling (Kriegler et al. 1988). In general, solTNF has

systemic inflammatory effects and is necessary for optimization of the immune

response, whereas tmTNF mediates a subset of beneficial TNF-α activities and only

basic immune responses (Probert 2015). The TNF-α system has two receptors –

TNFR1 and TNFR2. While both TNF-α forms bind to TNFR1, tmTNF is the sole

ligand for TNFR2 (Grell et al. 1995). TNFR1 is ubiquitously and constitutively

expressed, and its activation induces pro-inflammatory signaling through the NF-kB

and AP1 transcription factors (Walczak 2011). TNFR2 expression is restricted to

immune cells, endothelial cells, and CNS cells – including neurons, astrocytes, and

oligodendrocytes. Activation of TNFR2 leads mainly to induction of pro-survival

signals mediated by Akt and NF-kB signaling pathways (Medvedev et al. 1994;

Rao et al. 1995). Under physiological conditions, TNF-α plays an important role

in the regulation of homeostatic processes such as synaptic scaling and plasticity

(Stellwagen and Malenka 2006; Turrigiano 2008; Kaneko et al. 2008) and regulation

of inhibitory and excitatory neurotransmission (Vezzani and Viviani 2015). Under

pathological conditions in the CNS, TNF-α has both protective and pro-inflammatory

effects (Probert 2015). For example, a mechanism by which TNF-α mediates neuro-

toxicity is by inhibiting glutamate uptake causing glutamate excitotoxicity (Zou and

Crews 2005).

Similar to IL-1β and IL-6, TNF-α has neuromodulatory effects in the CNS. TNF-α
enhances Na+ channels and has mixed effects on voltage-gated Ca2+ channels

(solTNF-α decreasing and mTNF-α increasing Ca2+ currents) (Vezzani and Viviani

2015). Presynaptically, TNF-α increases action potential-dependent spontaneous

excitatory postsynaptic currents (sEPSCs) in corticostriatal projections, through

AMPA receptors (Musumeci et al. 2011). Also, TNF-α can modify extracellular

glutamate levels indirectly by inducing glutamate release from microglia (Takeuchi

et al. 2006) and astrocytes (Bezzi et al. 2001) and by inhibiting glutamate uptake by

astrocytes (Zou and Crews 2005). TNF-α-TNF-R1 signaling preferentially affects

AMPARs in a brain region-specific manner. TNF-α facilitates AMPAR-mediated

glutamatergic transmission and enhances neuronal excitability in the hippocampus,

cortex, amygdala, and spinal cord (Stellwagen et al. 2005; He et al. 2012; Ferguson

et al. 2008). Notably, activation of the CB1 cannabinoid receptor reverses TNF-α
effects on AMPAR (Zhao et al. 2010). In the striatum, however, TNF-α induces

the internalization of GluR1-GluR2 AMPAR subunits leading to a decrease in the

excitatory drive on inhibitory GABA neurons. Also, TNF-α promotes the endocytosis

of GABA-A receptors (subunits b2/3) (Stellwagen et al. 2005). Thus, TNF-α effects

on glutamate and GABA receptors lead to enhanced neuronal excitability and in some

instances to excitotoxicity (Stellwagen and Malenka 2006; Stellwagen et al. 2005;

Beattie et al. 2002; Leonoudakis et al. 2004). In the CeA, TNF-α increases the

amplitude of mEPSCs via the PI3-K signaling pathway but does not affect mEPSC

frequency, suggesting a predominantly postsynaptic mechanism of action. Further,

TNF-α increases the firing of CeA neurons through its action on glutamate receptors
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(Knapp et al. 2011; Ming et al. 2013). Finally, TNF-α increases the frequency of

mIPSC, indicating an increase in presynaptic GABA release, and this effect is

blocked by a CRF1 antagonist and minocycline, which is an inhibitor of glial

activation (Ming et al. 2013). These findings indicate that TNF-α interacts and

modulates key neurotransmitters (GABA and glutamate) and neuropeptide (CRF)

systems involved in alcohol-related behaviors (Roberto et al. 2012).

7.1 TNF-a and Alcohol

Elevated plasma levels of TNF-α in alcoholics are associated with increased craving

and relapse to drinking (Kiefer et al. 2002). In contrast to IL-1β and IL-6 cytokines,
genomic studies in rodents did not find alterations in TNF-α gene expression in

alcohol-preferring mice (Mulligan et al. 2006). In general, TNF-α levels are pre-

dominantly decreased following acute ethanol treatment and increased after chronic

ethanol exposure. Intracerebroventricular (i.c.v.) and intra-CeA administration of

TNF-α before a single chronic ethanol exposure and ethanol withdrawal sensitizes

ethanol withdrawal-induced anxiety-like behavior (Breese et al. 2008; Knapp et al.

2011), and this effect is mediated by CRF1, as a CRF1 antagonist reduces the TNF-α
induced elevation of withdrawal-induced anxiety (Knapp et al. 2011). The interac-

tions of TNF-α and the CRF system particularly in the CeA, where CRF1 is known

to mediate ethanol effects on GABAergic transmission, may represent one of the

mechanisms involved in TNF-α-induced modulation of the synaptic transmission.

However, the mechanisms and functional consequences of TNF-α and its interaction

with ethanol on neuromodulation are not known.

8 Chemokine Ligand 2

The chemokine ligand 2 (CCL2), also known as monocyte chemotactic protein

1 (MCP-1), is a member of the monocyte chemoattractant protein (MCP) family.

CCL2 is a vital chemokine that controls the migration and infiltration of monocytes/

macrophages (Reaux-Le Goazigo et al. 2013). In the brain, CCL2 is produced

mainly by astrocytes and microglia and to a lesser extent by endothelial cells

(Semple et al. 2010). The neuronal expression of CCL2 is present in several brain

regions including the cortex, hippocampus, hypothalamus, substantia nigra, and

cerebellum (Banisadr et al. 2005a). Importantly, the expression of CCL2 colocalizes

with classical neurotransmitters, particularly acetylcholine and dopamine (Banisadr

et al. 2005a), and cell depolarization can induce Ca2+-dependent CCL2 release (Jung

et al. 2008; Dansereau et al. 2008). Compared to CCL2, its receptor CCR2 is

expressed by resident immune cells, such as microglia (Conductier et al. 2010;

Yamasaki et al. 2012). Moreover, CCR2 production is also found in cultured rat

microglia (Boddeke et al. 1999), human fetal astrocytes (Andjelkovic et al. 2002),

and neurons of the adult rat brain (Rostene et al. 2007), mainly from the cortex,

hippocampus, hypothalamus, amygdala, substantia nigra, ventral tegmental area
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(VTA), and cerebellum (Banisadr et al. 2005b). There are two splice variants of

CCR2 – CCR2A and CCR2B. The splice variants are expressed in different immune

cells, and they activate different signaling pathways and exert distinct actions.

CCR2, as a Gαi class G-protein-coupled receptor (Kuang et al. 1996), signals

through inhibition of adenylate cyclase and PI3-K, MAPK, and protein kinase C

pathways (Wain et al. 2002; Old and Malcangio 2012; Dawson et al. 2003). CCL2

enhances neuronal excitability and excitatory synaptic transmission in CA1 hippo-

campal neurons via presynaptic mechanisms (Zhou et al. 2011). Importantly, CCR2

has both pro-inflammatory and anti-inflammatory actions (Reaux-Le Goazigo et al.

2013), and CCL2-CCR2 are involved in some physiological processes and the

pathogenesis of neurodegenerative disorders and AUD.

8.1 CCL2 and Alcohol

CCL2 levels are elevated in several brain regions (e.g., hippocampus and cortex) in

postmortem tissue of human alcoholics (Lewohl et al. 2000; He and Crews 2008)

and the cerebrospinal fluid (CF) of alcohol-dependent human subjects (Umhau et al.

2014). Similarly, ethanol exposure and withdrawal increases levels of CCL2 in

several brain regions (see Table 1) (Knapp et al. 2011, 2016; Qin et al. 2008;

Freeman et al. 2012; Kane et al. 2013, 2014; Vetreno et al. 2013; Chang et al. 2015;

Drew et al. 2015; Pascual et al. 2015). Indeed, alterations in the CCL2 system affect

ethanol intake and motivation as mice deficient in Ccl2 or Cclr2, the genes

encoding CCL2 and its receptor CCLR2, drink less ethanol and show reduced

ethanol-induced aversion (Blednov et al. 2005). There is no significant difference

in ethanol intake between ethanol nondependent CCL2-tg (mice overexpressing

CCL2 in astrocytes) and their control WT (non-tg) mice, whereas ethanol-

dependent CCL2-tg mice drink less than the dependent non-tg mice (Gruol

2016). Notably, chronic infusions of CCL2 result in long-lasting heightened ethanol

intake in rats suggesting that persistent exposure to CCL2 may be required for

CCL2/alcohol interactions (Valenta and Gonzales 2016). Interestingly, CCL2-tg

mice did not show acute alcohol-induced impairments in contextual learning that

are observed in non-tg mice (Bray et al. 2013). However, ethanol induced a spatial

learning impairment in nondependent CCL2-tg mice but not in nondependent

non-tg mice. Overexpression of CCL2 has a protective effect against alcohol-

induced impairments in associative learning (Gruol 2016). Like IL-1β and TNF-a,

intracerebral injection of CCL2 before ethanol exposure and withdrawal elevates

ethanol withdrawal-induced anxiety-like behavior (Breese et al. 2008). At the

cellular level, CCL2-tg mice are resistant to the depressing effects of acute alcohol

(20–60 mM) on hippocampal LTP in non-tg mice. CCL2 can enhance neuronal

excitability and excitatory synaptic transmission in CA1 hippocampal neurons via

presynaptic mechanisms (Bray et al. 2013). These studies on transgenic animals

targeting CCL2 have significantly advanced our understanding of the potential role

of CCL2 in the neuropathology of AUD.
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Mechanistically, CCL2/CCR2 system involvement in the neurobiology of AUD

includes interactions with other neurotransmitter and neuropeptide systems, parti-

cularly CRF and the orexigenic peptide MCH (melanin-concentrating hormone).

CCL2 is expressed in cholinergic and dopaminergic neurons (Banisadr et al. 2005a),

and it modulates neuronal activity and synaptic transmission (Guyon et al. 2009;

Apartis et al. 2010). CCL2 levels in the CeA and VTA are increased in alcohol-

preferring P rats compared to non-preferring rats, and CCL2 in these brain regions,

but not in the ventral pallidum, mediate binge drinking in P rats. Importantly, CRF

mediates feedback regulation of TLR4 (Toll-like receptor 4) and CCL2 signaling in

the CeA and VTA during ethanol consumption (June et al. 2015) suggesting that

CRF, TLR4, and CCL2 in these regions regulate the initiation of excessive drinking

(June et al. 2015). Moreover, prenatal exposure to ethanol increases later adolescent

ethanol drinking which is associated with increased CCR2 levels and increased

density of neurons co-expressing CCR2 and MCH in the lateral hypothalamus

(Chang et al. 2015). As both CCR2 and MCH are believed to promote ethanol

intake, these findings suggest that these systems may work together to promote

ethanol drinking. Although our understanding of the mechanisms mediating

CCL2’s contribution to AUDs has advanced, there are still many unknowns regard-

ing CCL2’s regulation of synaptic transmission in other alcohol-related brain

regions.

9 Conclusion

The role of the neuroimmune system and cytokines in the neurobiology of AUDs is

supported by several lines of evidence. Ethanol-induced cytokine responses in the

CNS are dynamic and depend on multiple factors including the duration and amount

of ethanol exposure, sex, brain region, cellular specificity, and history of previous

immune challenges (e.g., infection, trauma, stress, etc.). Cytokines contribute to the

neuroadaptive changes in the CNS induced by ethanol exposure through their direct

and indirect effects on all CNS cell types, which lead to the modulation of neuronal

activity, glia cells, neurogenesis, and potentially neurodegeneration.

Although our understanding of the role of key cytokines in the ethanol-induced

immune response has advanced, there are still many unanswered questions espe-

cially regarding the therapeutic implications of targeting cytokines and their down-

stream signaling pathways. The critical role of the neuroimmune system in the

neuropathology of AUD suggests its potential to be targeted for the development

of new treatments for AUDs. Currently, the focus of preclinical research is on

inhibiting the alcohol-induced neuroimmune response and associated alcohol-related

behaviors, particularly alcohol drinking. The strategies involve targeting individual

components of the neuroimmune system (e.g., TLR4 (Wu et al. 2012), IL-1R1

(Wu et al. 2011), or IL-10 (Marshall et al. 2017)) or to use drugs that simultaneously

target several inflammatory pathways as well as other brain signaling systems (e.g.,

peroxisome proliferator-activated receptor agonists (fenofibrate, pioglitazone,

tesaglitazar, bezafibrate) (Stopponi et al. 2011, 2013; Blednov et al. 2015b),
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phosphodiesterase inhibitors (e.g., ibudilast, rolipram) (Bell et al. 2015; Blednov

et al. 2014), and naloxone/naltrexone (Kamdar et al. 2007; Tomie et al. 2013)).

Regarding cytokines, preclinical studies suggest that activation or increased expres-

sion of anti-inflammatory cytokines such as IL-1Ra and IL-10might have therapeutic

value. There are, however, several challenges in targeting the neuroimmune system

for the development of therapeutic strategies for alcoholism: (1) different inflamma-

tory pathways seem to be critical for different stages of alcohol addiction and

alcohol-related behaviors (Robinson et al. 2014), (2) the peripheral immune system

is compromised in human alcoholics (Szabo and Saha 2015), and (3) the

neuroimmune response has both neurotoxic and neuroprotective roles. And thus,

strategies based solely on blocking the neuroimmune system may be counterproduc-

tive (Du et al. 2017). Understanding the role and mechanisms of action of individual

components of the neuroimmune systems in the development and maintenance of

alcohol addiction and relapse will be crucial for the identification of new, more

target-specific and efficacious therapies for AUD.
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Abstract
Alcohol use is pervasive in the United States. In the transition from nonhazardous
drinking to hazardous drinking and alcohol use disorder, neuroadaptations occur
within brain reward and brain stress systems. One brain signaling system that has
received much attention in animal models of excessive alcohol drinking and
alcohol dependence is corticotropin-releasing factor (CRF). The CRF system is
composed of CRF, the urocortins, CRF-binding protein, and two receptors – CRF
type 1 and CRF type 2. This review summarizes how acute, binge, and chronic
alcohol dysregulates CRF signaling in hypothalamic and extra-hypothalamic
brain regions and how this dysregulation may contribute to changes in alcohol
reinforcement, excessive alcohol consumption, symptoms of negative affect
during withdrawal, and alcohol relapse. In addition, it summarizes clinical work
examining CRF type 1 receptor antagonists in humans and discusses why the
brain CRF system is still relevant in alcohol research.

Keywords
Alcohol dependence · Alcohol use disorder · Binge drinking · Corticotropin-
releasing factor · Urocortin

1 Problematic Alcohol Use in Humans

Alcohol use is pervasive in the United States, with ~88% of adults 18 years or older
reporting alcohol use at some time during their life and ~55% of adults reporting
alcohol use within the past month (CBHSQ 2016). With the high prevalence of
alcohol drinking, it is unsurprising that alcohol accounts for ~4% of global disease
burden and is the fourth leading preventable cause of death in the United States
(Mokdad et al. 2004). Therefore, there is an urgent need to understand the neurobio-
logical processes that underlie the transition from moderate controlled alcohol use to
problematic alcohol use in humans.

In the transition from nonhazardous drinking to hazardous drinking and alcohol
use disorder (AUD), neuroadaptations occur within brain reward and brain stress
systems. Initial alcohol use is driven by positive reinforcement, that is, drinking for
the euphoric or rewarding effects of alcohol, and brain reward pathways are pre-
dominantly activated in this stage of alcohol use (Koob 2003). Intermittent bouts of
binge alcohol consumption occur during the transition from moderate use to alcohol
dependence (Koob and Le Moal 1997). During this time, individuals transition
from drinking alcohol for its positive reinforcing effects to drinking alcohol for
its negative reinforcing effects, in many cases to relieve the negative affective
symptoms that define alcohol withdrawal (Koob 2003; Koob and Le Moal 1997).
One brain signaling system that has received much attention in animal models of
excessive alcohol drinking and alcohol dependence is corticotropin-releasing factor
(CRF), a pro-stress neuropeptide that is dysregulated by chronic high-dose alcohol
exposure and that appears to contribute to binge alcohol drinking, alcohol depen-
dence, and alcohol relapse.
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2 Introduction to Brain CRF System

2.1 CRF and Urocortins

2.1.1 Corticotropin-Releasing Factor (CRF)
CRF is a 41-amino acid neuropeptide that is evolutionarily conserved across
species (Vale et al. 1981). Within the central nervous system, CRF acts as a
neuromodulator at both pre- and postsynaptic sites (Lowry and Moore 2006). In
general, neuromodulators (like CRF) work at G-protein-coupled receptors, and they
have longer-lasting effects than classical neurotransmitters (van den Pol 2012). Such
neuromodulators may enhance or attenuate neuronal activity by modulating the
activity of ion channels or by increasing or decreasing the activity of classical
neurotransmitters via direct actions on peptide receptors (van den Pol 2012). CRF
is widely expressed in the brain, including in the cortex, hypothalamus, thalamus,
hippocampus, midbrain, and locus coeruleus (LC) (Merchenthaler 1984; Peng et al.
2017). The highest density of CRF neurons is in the paraventricular nucleus (PVN)
of the hypothalamus and the extended amygdala, particularly the central amygdala
(CeA) and bed nucleus of the stria terminalis (BNST; Dunn and Berridge 1990;
Merchenthaler 1984; Peng et al. 2017). Importantly, CRF neurons are heteroge-
neous, co-expressing different molecules, having different electrophysiological
properties, and differing in soma shape depending on the region (Dabrowska et al.
2013a, b; Peng et al. 2017).

Hypothalamic CRF projections modulate endocrine and autonomic responses to
stress. CRF released from glutamatergic parvocellular neurons in the PVN is the
primary activator of the hypothalamic-pituitary-adrenal (HPA) axis (Rivier and Vale
1983; Vale et al. 1981). Acting as a hormone, CRF is released from the PVN into
the median eminence, where it travels to the pituitary, and binds receptors on
corticotrophs, thereby increasing the synthesis and release of adrenocorticotropic
hormone (ACTH). ACTH travels in systemic circulation and increases glucocorti-
coid synthesis and release from the adrenal gland, thereby initiating the endocrine
stress response. After initiation of the endocrine stress response, glucocorticoids feed
back onto CRF cells in the PVN and other brain regions (e.g., hippocampus and
cortex) to decrease CRF production. During stress, hypothalamic CRF neurons can
synthesize and co-release arginine vasopressin (AVP), which can increase ACTH
release from corticotrophs in the anterior pituitary (Sawchenko et al. 1984). In
addition, a majority of CRF neurons in the PVN express transcripts for oxytocin,
suggesting that these neurons have multiple effects according to physiological
demand (Dabrowska et al. 2013a).

Extended amygdala CRF pools participate in coordination of visceral, behavioral,
and emotional responses to stress. CRF is particularly abundant in the lateral division
of the CeA and the dorsolateral division of the BNST (Fig. 1; Pomrenze et al. 2015;
Shimada et al. 1989). CeA and oval BNST (oBNST) CRF neurons share many
similarities with each other and appear to be different from CRF neurons in the PVN.
For example, while glucocorticoids negatively regulate CRF transcription in the
PVN, glucocorticoids increase CRF production in a positive feedback loop in the
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CeA and BNST (Shepard et al. 2000). CRF is typically expressed in GABAergic
interneurons with medium spiny neuron morphology in both the CeA and the BNST
(Phelix and Paull 1990). Interestingly, CRF neurons in the CeA project to BNST,
CRF neurons in the BNST project to CeA, and these two CRF neuron pools project
to many of the same downstream regions including the lateral hypothalamus,
ventrolateral periaqueductal gray (PAG), dorsal raphe nucleus (DRN), and ventral
tegmental area (VTA) (Dabrowska et al. 2016; Pomrenze et al. 2015). CRF neurons
in CeA and BNST also co-express overlapping molecules, including but not limited
to dynorphin, neurotensin, and somatostatin (Pomrenze et al. 2015; Shimada et al.
1989). In addition, CRF neurons in CeA and oBNST both co-express striatal-
enriched protein tyrosine phosphatase (STEP; Dabrowska et al. 2013b). STEP
may function as an indirect marker of neuronal activation in the CeA and BNST
because it dephosphorylates neuronal activation markers (e.g., pERK), and it is
expressed in 98% of CRF neurons in the oBNST and 94% of CRF neurons in the
CeA (Dabrowska et al. 2013b).

2.1.2 Urocortins (Ucns)
The urocortins (Ucns) are more recently discovered components of the CRF system.
Urocortins 1, 2, and 3 (Ucn1, Ucn2, and Ucn3) share a highly conserved structural
homology, but each molecule has a unique distribution and function in the mamma-
lian brain. Although the exact physiological function of the Ucn system remains
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Fig. 1 Distribution and projection of CRF, Ucn1, and CRFRs in alcohol-related regions.
Corticotropin-releasing factor (CRF) is more widely expressed than urocortin 1 (Ucn1); CRF
type 1 receptors (CRFR1, green triangle) are expressed widely throughout the brain, while CRF
type 2 receptors (CRFR2, yellow triangle) have a more restricted distribution. Corticotropin-
releasing factor-binding protein (CRF-BP, red diamond) is expressed in most brain regions that
express CRF, Ucn1, and CRFRs. CeA central amygdala, DRN dorsal raphe nucleus, EWcp centrally
projecting Edinger-Westphal nucleus, LHA lateral hypothalamus, mPFC medial prefrontal cortex,
PAG periaqueductal gray, PVN paraventricular nucleus of the hypothalamus
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unclear, it appears to be involved in modulation of physiological processes that
include stress response, osmoregulation, energy expenditure, food intake, and
immune function (Fekete and Zorrilla 2007).

Ucn1 is expressed primarily in non-cholinergic cells in the centrally projecting
Edinger-Westphal nucleus (EWcp), a subdivision of the Edinger-Westphal nucleus
that is not involved in autonomic responses (Bittencourt et al. 1999; Ryabinin et al.
2012). Ucn1 fibers project to lateral septum, DRN, supraoptic nucleus, PVN, PAG,
Edinger-Westphal nucleus, BNST, CeA, and medial amygdala (MeA; Fig. 1; Fekete
and Zorrilla 2007; Pan and Kastin 2008; Ryabinin et al. 2012). In response to acute
stress, Ucn1 shows rapid induction that is mediated by glucocorticoids (Koob and
Heinrichs 1999; Weninger et al. 2000). Because Ucn1 binds to both CRF receptor
subtypes (discussed below), its physiological function is not completely understood.
It has been hypothesized that midbrain Ucn1 neurons play a role in sympathetic-
mediated behavioral responses to stress, including increases in anxiety-like behavior
and decreases in food consumption (Koob and Heinrichs 1999; Pan and Kastin
2008). Others have postulated that Ucn1 expression may be important for balancing
activation of CRF receptor subtypes during stress (Ryabinin et al. 2012). In this
hypothesis, CRF and Ucn1 signaling at CRFR1 initiate the sympathetic, endocrine,
and behavioral responses to stress, and Ucn1 signaling at CRFR2 may also mediate
the later adaptive phases of stress (Ryabinin et al. 2012).

Ucn2 (also known as stresscopin-related peptide) is expressed in the PVN;
supraoptic nucleus; LC; trigeminal, facial, and hypoglossal motor nuclei; and
meninges (Dunn and Berridge 1990; Reyes et al. 2001; Ryabinin et al. 2012).
Projection targets of Ucn2 fibers are not known (Fekete and Zorrilla 2007), but it
is hypothesized that Ucn2 projections from LC to DRN increase depressive-like
behavior by modulating serotonergic signaling (Fekete and Zorrilla 2007). In addi-
tion, Ucn2 may modulate basal HPA circadian amplitude in females by modulating
AVP levels (Chen et al. 2006).

Ucn3 (i.e., stresscopin) is the most widely expressed urocortin. It is expressed in
the medial preoptic area, perifornical area, BNST, MeA, ventral premammillary
nucleus, superior olivary nucleus, and parabrachial nucleus (Ryabinin et al. 2012).
Projection targets for Ucn3 cells include the lateral septum and ventromedial hypo-
thalamus, both of which contain high levels of CRF receptor type 2 (Hillhouse and
Grammatopoulos 2006). Ucn3 modulates food intake and basal neuroendocrine
regulation (Hillhouse and Grammatopoulos 2006).

2.2 CRF Receptors

There are two CRF receptor subtypes in the mammalian central nervous system –

CRF type 1 receptor (CRFR1) and CRF type 2 receptor (CRFR2). Both CRFR1 and
CRFR2 are Gs-protein-coupled receptors, and binding of endogenous ligands to
these receptors activates adenylate cyclase, increases cAMP, and increases protein
kinase A (PKA) signaling (Chen and Du 1996). In addition, these receptors are
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bound to various structural proteins that modulate CRF signaling according to brain
region and physiological state (Henckens et al. 2016).

2.2.1 CRFR1
CRFR1s are widely expressed, with high concentrations in the anterior hypophysis,
cerebral cortex, cerebellum, BNST, CeA, MeA, BLA, hippocampus, globus
pallidus, and VTA (Fig. 1; Chalmers et al. 1995; Henckens et al. 2016; Van Pett
et al. 2000). CRFR1 binds both CRF and Ucn1 with high affinity (Bittencourt et al.
1999), and its expression corresponds to areas where there is high expression of CRF
and Ucn1 cell bodies and projection fibers. Canonically, CRFR1 has been consid-
ered to be “pro-stress,” because increases in CRFR1 signaling are anxiogenic (Dunn
and Berridge 1990), whereas antagonizing or knocking out CRFR1 reduces anxiety-
like behavior (Henckens et al. 2016; Muller et al. 2003; Timpl et al. 1998; Zorrilla
et al. 2002).

2.2.2 CRFR2
CRFR2s exhibit expression that is restricted to subcortical brain regions including
the amygdala, BNST, lateral septum, and DRN (Fig. 1; Chalmers et al. 1995;
Van Pett et al. 2000). CRF has a much lower affinity for CRFR2 than for CRFR1;
however, the Ucns all show high affinity for CRFR2, and they appear to be the
primary endogenous ligand for this receptor. As such, regions that show high
CRFR2 expression also show high Ucn expression and/or receive projections from
Ucn-rich brain areas. Two hypotheses exist to explain the role of CRFR2 activation
in anxiety-like behavior (Henckens et al. 2016): the first is that CRFR2 activation
counteracts the initial stress response and maintains homeostasis (Henckens et al.
2016; Hillhouse and Grammatopoulos 2006); the second is that CRFR1 and
CRFR2 mediate different aspects of the stress response, with CRFR1 mediating
active defensive behavior and CRFR2 mediating passive coping behavior and
depression-like responses (Henckens et al. 2016).

2.3 CRF-Binding Protein

CRF-binding protein (CRF-BP) is a 37kd secreted glycoprotein that binds CRF and
Ucn1. In humans, CRF-BP binds 40–90% of CRF, and its expression is tenfold
higher than CRF levels in most regions of the human brain (Hillhouse and
Grammatopoulos 2006; Suda et al. 1988). CRF-BP expression and synthesis is
regulated by stress, CRF, and glucocorticoids (Westphal and Seasholtz 2006). In
addition, CRF-BP is often co-localized with CRF or CRFRs in the brain, with
particularly high concentrations in CeA and BNST (Fig. 1; Chan et al. 2000; Potter
et al. 1992; Westphal and Seasholtz 2006).

Once CRF-BP binds CRF, it can inhibit or facilitate CRF activity. For example,
CRF-BP can reduce CRFR activation by sequestering CRF or Ucn1 and/or targeting
them for degradation (Ketchesin and Seasholtz 2015). Conversely, CRF-BP can
increase CRF signaling by binding CRF and interacting with CRFRs, as recently
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shown for CRFR2 in the VTA (Albrechet-Souza et al. 2015; Ungless et al. 2003). In
addition to modulating the activity of CRF and its receptors, CRF-BP may affect
neuronal activity independent of CRF and CRFRs. For example, intraventricular
administration of CRF-BP increases neuronal activation in CRFR-expressing cells
but also in CRF-BP-expressing cells that do not co-express CRF or CRFR (Chan
et al. 2000).

3 Alcohol Effects on CRF Signaling

3.1 Acute Alcohol Effects on the CRF System

3.1.1 CRF
Acute alcohol activates the HPA axis by inducing CRF cell activation in the
hypothalamus (Rivier and Lee 1996). Acute alcohol increases CRF heteronuclear
RNA (hnRNA) in the PVN, suggesting increased CRF synthesis (Rivier and Lee
1996); however, there is not a clear increase in CRF mRNA following acute alcohol
in vivo (Rivier and Lee 1996). The difference between hnRNA and mRNA could be
due to presence of a large stable pool of CRF mRNA in parvocellular neurons of the
PVN, which may make it hard to detect small changes, or due to unknown alcohol
effects on events between gene transcription and detection of mRNA (Rivier and Lee
1996). Work done in hypothalamic cell culture has demonstrated acute alcohol-
induced increases in CRF mRNA, CRF promoter activity, and CRF secretion via
increases in cAMP and PKA (Li et al. 2005). In addition, in an in vitro hypothalamic
preparation, acute alcohol exposure increased CRF release from neurons (Redei
et al. 1988). See Table 1 for a summary of the effects of different alcohol exposure
regimens on brain CRFR system signaling.

Within the CeA, high doses of acute alcohol increase CRF release 120–180 min
later (Lam and Gianoulakis 2011). Interestingly, acute alcohol-induced increases in
frequency of spontaneous mini inhibitory postsynaptic currents (IPSCs) in the CeA
are mediated by CRFR1 signaling through both protein kinase Cε and PKA
pathways (Bajo et al. 2008; Cruz et al. 2012; Roberto et al. 2010). Therefore,
acute alcohol increases CRF release in CeA, which in turn increases CeA inhibitory
transmission, suggesting that CRF modulates acute alcohol effects on synaptic
transmission in CeA.

3.1.2 Ucn1
The Ucn1 system is activated by acute alcohol and may mediate acute alcohol effects
on other brain signaling systems. Acute alcohol increases activation of Ucn1 cells in
the EWcp, as measured by c-fos (Ryabinin et al. 1995, 1997, 2003). This acute
alcohol-induced activation of Ucn1 neurons in the EWcp is slow to habituate to
repeated bouts of alcohol exposure, as evidenced by increased c-fos expression in
Ucn1 neurons in the EWcp following repeated alcohol self-administration (Ryabinin
et al. 2003; Turek and Ryabinin 2005). The observed lack of tolerance to acute
alcohol effects suggests that Ucn1 neurons may be involved in behaviors that
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accompany prolonged alcohol exposure (Weitemier and Ryabinin 2005). See
Table 3 for a summary of the effects of different alcohol exposure regimens on
brain Ucn system signaling.

Overall, acute alcohol exposure leads to activation of hypothalamic and extra-
hypothalamic CRF systems and activation of Ucn1 cells within the EWcp. More
work is needed to determine if acute alcohol effects on brain CRF signaling
change after repeated low-level exposures and if/how they contribute to escalation
of alcohol use.

3.2 Binge Alcohol Effects on the CRF System

The National Institute on Alcohol Abuse and Alcoholism (NIAAA) defines
binge drinking as a pattern of ethanol consumption that leads to blood alcohol
concentrations (BACs) of 80 mg/dL or above (NIH-NIAAA 2004), which is usually
about four drinks in about 2 h for women and five or more drinks for men. Binge
alcohol consumption is associated with increased risk to develop AUD and is
observed in populations that do and do not meet criteria for an AUD diagnosis
(Deas and Brown 2006; Lai et al. 2012). Binge alcohol consumption affects brain
CRF signaling acutely post-binge, and it is hypothesized that binge alcohol drinking
may induce plasticity in brain CRF systems that becomes more robust and more rigid
with repeated binge-like drinking episodes (Lowery-Gionta et al. 2012).

3.2.1 CRF
Different models of binge drinking have produced conflicting results regarding
binge alcohol effects on hypothalamic CRF and HPA activity. Binge-like alcohol
consumption in the drinking in the dark (DID) mouse model does not change HPA
axis activity following one DID session (Lowery et al. 2010). Furthermore, repeated
DID cycles do not alter CRF immunoreactivity in the PVN, although corticosterone
levels were not measured in this study (Lowery-Gionta et al. 2012). In contrast, in a
model of intermittent alcohol homecage drinking in which rats achieve high levels
of alcohol consumption punctuated by intermittent periods of abstinence, alcohol
consumption decreases CRF binding and downstream signaling in the hypothalamus
(Simms et al. 2014). This effect was attributed to the binge-like pattern of alcohol
consumption in intermittent drinkers, rather than the overall amount of alcohol
consumed, as animals with continuous access to alcohol had higher lifetime
alcohol consumption but did not display the same changes in hypothalamic CRF
binding and downstream G-protein-coupled signaling (Nielsen et al. 2012; Simms
et al. 2014). The difference between the DID model and escalation model may have
to do with the pattern of EtOH consumption as well as the different species used for
each model. Future work will determine how repeated binge-like sessions of alcohol
drinking alter hypothalamic CRF signaling and HPA activity and how these changes
potentially contribute to excessive alcohol drinking and/or impact the transition to
alcohol dependence.
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The effects of binge-like alcohol drinking on the extra-hypothalamic CRF system
depend on the age at time of alcohol exposure. Adolescence is a time of particularly
high vulnerability to alcohol effects on the brain, and heavy onset early drinking is
one of the strongest predictors of lifetime AUD (Chou and Pickering 1992). Binge
drinking is highly prevalent in adolescents, and binge alcohol effects on adolescent
brain CRF systems may affect subsequent alcohol-related behaviors (Gilpin et al.
2012). Following 14 days of binge-like alcohol consumption, adolescent male and
female rats exhibit reductions in CRF cell number in the CeA, with no changes in
CRF cell number in the BNST (Karanikas et al. 2013). Interestingly, adult male rats
with a history of voluntary binge drinking in adolescence also exhibit reductions in
CRF immunoreactivity in the CeA (Gilpin et al. 2012). This suggests that adolescent
binge alcohol effects on the CeA CRF system last into adulthood (Gilpin et al. 2012)
and may contribute to increased AUD vulnerability in adolescent binge drinkers
(Chou and Pickering 1992).

Although binge alcohol drinking is common in adolescents, it is not a pattern of
drinking seen only in adolescents. In fact, a large proportion of adults engage in
binge drinking behavior (CBHSQ 2016), and binge drinking is associated with
negative consequences and increased risk for AUD in adults as well as adolescents
(Jennison 2004; CBHSQ 2016). In adult mice, after one and six cycles of DID,
CRF-ir is increased in the CeA of mice with a history of binge-like alcohol drinking
when compared to sucrose controls, suggesting that contrary to prior dogma, the
CeA CRF system is recruited during early binge-like drinking episodes in animals
without a chronic alcohol history (Lowery-Gionta et al. 2012). This increase in CeA
CRF-ir persists 18–24 h post-binge, well after alcohol has been cleared from the
blood and brain (Lowery-Gionta et al. 2012). This increase in CRF immunoreactiv-
ity may not be due to higher local CRF synthesis, as CRF mRNA was unchanged in
the CeA 24 h after the last of three DID cycles (Ketchesin et al. 2016). Additionally,
repeated bouts of binge-like alcohol drinking result in a reduction in the ability of
CRF to enhance GABAergic transmission in the CeA (Lowery-Gionta et al. 2012),
which differs from alcohol dependence effects on CRF modulation of CeA
GABAergic transmission (see below). This suggests a unique functional neuro-
adaptation in the CeA following repeated binge cycles that may contribute to
escalated alcohol use and maintenance of excessive binge-like alcohol intake.
Similar to adolescents, repeated cycles of DID do not alter CRF-ir or CRF mRNA
outside the CeA (i.e., in the BNST, BLA, MeA, NAc core and shell, lateral
hypothalamus, or lateral septum; Ketchesin et al. 2016; Lowery-Gionta et al.
2012). Interestingly, the VTA exhibits transient increases in CRF and decreases in
CRF-BP levels following acute binge cycles that normalize after repeated binge
exposures (Ketchesin et al. 2016; Lowery-Gionta et al. 2012; Rinker et al. 2017).
More specifically, CRF mRNA and CRF-ir in VTA are increased following
one cycle of DID, but CRF-ir normalizes after six cycles of DID (CRF mRNA
was not measured after six cycles; Lowery-Gionta et al. 2012; Rinker et al. 2017).
CRF-BP mRNA is decreased following three cycles of DID but, like CRF-ir, returns
to normal after six cycles of DID (Ketchesin et al. 2016; Lowery-Gionta et al. 2012).
Overall, this suggests that binge alcohol transiently increases CRF availability
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and/or activity in the VTA, which may represent a point of interaction between brain
stress and reward systems and which may contribute to the transition to alcohol
dependence.

3.2.2 Ucn1
The effect of binge drinking on the Ucn1 system has not been extensively studied,
although recent work suggests that Ucn1 neurons within the EWcp play a role in the
maintenance of high levels of alcohol consumption (Giardino et al. 2017). Following
long-term intermittent alcohol drinking in which mice escalate alcohol intake to
binge-like levels, mice exhibit increased mRNA levels of Ucn1 and CRF-BP in the
EWcp (Giardino et al. 2017). Furthermore, in that study, alcohol intake levels were
positively correlated with fos mRNA levels in EWcp (Giardino et al. 2017). Overall,
these results suggest that binge alcohol increases activity of the brain Ucn1 system.

3.2.3 CRF-BP
Similar to Ucn1, it is largely unknown how binge-like alcohol consumption alters
CRF-BP levels and its function in different brain regions. One study did not find
binge alcohol effects on CRF-BP mRNA in the extended amygdala, but did find
decreased CRF-BP transcript in extra-hypothalamic regions including the VTA
(as mentioned earlier) and the mPFC (Ketchesin et al. 2016). Three cycles of DID
binge-like alcohol drinking reduce CRF-BP mRNA in both the prelimbic (PrL) and
infralimbic (IL) subdivisions of the mPFC, but this decrease is more persistent in the
PrL than in the IL (Ketchesin et al. 2016). The same procedure did not alter CRF
mRNA in the brain regions tested. Further work is needed to determine whether
CRF-BP in mPFC plays a causal role in alcohol-related behavioral dysregulation.

Overall, binge-like alcohol consumption alters CRF signaling differently
depending on the model, the brain region, and the age of exposure, with the CeA
exhibiting the largest, most lasting effects. Higher CRF (and possibly Ucn1) signal-
ing after binge-like alcohol consumption in brain reward and stress regions may
contribute to increased vulnerability to addiction. Much remains unknown regarding
the relationship between binge-like alcohol consumption and brain CRF signaling,
including potential differences between adolescents and adults, potential lasting
effects of binge alcohol drinking on brain CRF signaling, and how this latter effect
may contribute to the transition to alcohol dependence.

3.3 Chronic Alcohol (i.e., Dependence) Effects on the CRF System

3.3.1 CRF
Extensive work has detailed the effects of chronic alcohol on HPA axis activity in
humans with AUD (Adinoff et al. 1998; Stephens and Wand 2012). In general,
humans with AUD display elevated basal ACTH and cortisol and hyporeactive HPA
response to acute alcohol (as reviewed in Blaine et al. 2016). During early abstinence
from alcohol, humans with AUD have low cortisol production and a blunted cortisol
response to stress (Stephens and Wand 2012). Animals exposed to chronic alcohol
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liquid diet exhibit alterations in HPA axis function similar to what is seen in
humans, with basally increased corticosterone levels during alcohol dependence,
and lower HPA activity after alcohol is removed, which persists 3 weeks into alcohol
withdrawal (Rasmussen et al. 2000). Exposure to alcohol for 3–7 days leads to
increased CRF gene expression and biosynthesis immediately after the alcohol
exposure (Rivier et al. 1990). During acute withdrawal, chronic alcohol exposure
also decreases CRF mRNA content in hypothalamic neurons without changing CRF
release characteristics and decreases anterior pituitary corticotroph responses to CRF
by decreasing CRF binding and adenylate cyclase in the pituitary of chronic alcohol-
exposed rats (Richardson et al. 2008; Redei et al. 1988). Downregulation of CRF in
the hypothalamus may be explained by negative feedback from higher circulating
cortisol levels, whereas high levels of circulating cortisol increase CRF levels in the
extended amygdala and may “sensitize” the extended amygdala to the effects of
chronic alcohol (Koob 2010; Shepard et al. 2000).

Many studies have examined chronic alcohol effects on CRF in the CeA.
Immediately following chronic ingestion of alcohol liquid diet, CRF mRNA in the
CeA is increased (Lack et al. 2005). Various studies have examined CeA CRF
during alcohol withdrawal and collectively report that alcohol withdrawal leads
to decreased CRF immunoreactivity and increased CRF release, as measured by
microdialysis, in CeA (Funk et al. 2006; Merlo Pich et al. 1995; Zorrilla et al. 2001).
Specifically, CRF release peaks ~10–12 h into withdrawal in alcohol-dependent rats
(Merlo Pich et al. 1995). This increase in CRF release corresponds to a decrease in
CRF-ir seen during the first day of withdrawal from alcohol liquid diet or alcohol
vapor, interpreted by the authors to reflect depletion of peptide in the cell due to
increased CRF release (Funk et al. 2006; Zorrilla et al. 2001). Furthermore, follow-
ing the development of alcohol dependence, the CeA becomes sensitized to CRF
effects, such that the ability of CRF to augment mIPSC frequency is increased and
CRFR1 antagonists have a greater suppressive effect on basal inhibitory transmis-
sion in dependent vs. nondependent rats (Roberto et al. 2010). Overall, this suggests
that heightened CRF signaling during acute alcohol withdrawal possibly contributes
to escalated alcohol self-administration during withdrawal. During protracted with-
drawal, neuroadaptations to CRF signaling in the CeA may continue to occur. Three
weeks after cessation of alcohol vapor, CRF mRNA is increased in dependent
rats compared to alcohol-naïve controls (Sommer et al. 2008), and after 6 weeks
of alcohol withdrawal, alcohol-dependent rats have increased CRF tissue levels
compared to alcohol-naïve rats (Zorrilla et al. 2001). Overall, this suggests that
chronic alcohol effects on CRF signaling in the CeA last long after alcohol exposure
is terminated.

A large population of CRF neurons also exists within the BNST, and these
neurons are also affected by alcohol dependence and withdrawal. Like what is
observed in the CeA, there is a trend toward a decrease in CRF-ir in alcohol-
dependent animals compared to nondependent controls (Funk et al. 2006). During
alcohol withdrawal, there is an increase in extracellular CRF in the BNST (Olive
et al. 2002). Interestingly, this putative increase in CRF release in the BNST is
normalized by oral alcohol consumption (Olive et al. 2002). Recent work suggests
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that during acute withdrawal, increases in extracellular CRF in BNST activate
glutamatergic neurons that project from the BNST to the VTA (Silberman et al.
2013). This is another example of how CRF signaling in brain stress regions impacts
brain reward signaling after chronic alcohol exposure, which may be important for
mediating escalated alcohol drinking, which may in turn normalize dysregulated
CRF signaling.

Similar to binge drinking, chronic intermittent alcohol vapor exposure alters CRF
expression in the mPFC. Twenty-four hours into withdrawal from chronic alcohol
vapor, there are more CRF-positive cells in the mPFC; however, these cells are not
more highly activated, as measured by c-fos, despite a large increase in c-fos
expression in mPFC GABAergic interneurons at the same time point (George
et al. 2012). Overall, this suggests that chronic alcohol dysregulates CRF within
the mPFC (George et al. 2012), but a functional role for mPFC CRF signaling in
alcohol dependence-related behavior has not yet been established.

3.3.2 Ucn1
Chronic alcohol does not alter Ucn1 levels in the EWcp, but does affect Ucn1 circuit
function (Weitemier and Ryabinin 2005); more specifically, chronic alcohol
decreases the number of Ucn1 fibers projecting to the lateral septum and the DRN
(Weitemier and Ryabinin 2005). This change is associated with increased CRFR2
binding in the lateral septum and DRN after chronic alcohol (Weitemier and
Ryabinin 2005), suggesting a potential role for this circuit in mediating behavioral
change after chronic alcohol exposure. More work is needed to understand precisely
how alcohol dependence and withdrawal affect Ucn1 levels and circuit function and
the impact of those changes on behavior.

3.3.3 CRF Receptors
Chronic alcohol alters CRF receptor expression and function in specific ways
according to receptor subtype and brain region. Acute alcohol increases CRFR1
hnRNA in the PVN (Lee et al. 2001), but this increase is blunted in rats with a history
of chronic alcohol, and this blunting effect, which lasts at least 7 days, may be
important for mediating altered HPA activity during alcohol dependence (Lee et al.
2001). During acute withdrawal from alcohol vapor, CRFR1 mRNA trends to be
unregulated in the CeA, but not in the BLA or NAc (Roberto et al. 2010). Function-
ally, this same study demonstrated increased CRFR1 enhancement of GABA release
in the CeA during acute withdrawal (Roberto et al. 2010). Two-week withdrawal
from alcohol vapor produces robust increases in CRFR1 mRNA in the CeA, but not
the MeA or BLA of mice (Eisenhardt et al. 2015). Interestingly, in rats the opposite
is true, with 3 weeks of withdrawal from alcohol vapor increasing CRFR1 gene
expression in the BLA and MeA, but not the CeA or BNST (Sommer et al. 2008).
The reason for the difference in CRFR1 gene expression in mice compared to rats is
unclear but may be attributable to the amount of time between ethanol vapor and
sacrifice in those studies.

Chronic alcohol affects CRFR2 gene expression in a brain region-dependent
manner. During protracted withdrawal from alcohol vapor, CRFR2 gene expression
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is downregulated in the BLA of rats (Sommer et al. 2008); however, chronic alcohol
exposure does not significantly change CRFR2 gene expression in the CeA, MeA,
or BNST (Eisenhardt et al. 2015; Sommer et al. 2008). In mice, chronic alcohol
injections increase CRFR2 binding in the DRN, a region that receives strong Ucn1
inputs from the EWcp (Weitemier and Ryabinin 2005). Also, alcohol-preferring
rats show decreased CRFR2 expression compared to alcohol-non-preferring rats in
the hypothalamus, amygdala, and caudate putamen. Finally, alcohol-preferring rats
(iP rats) have a polymorphism in the CRFR2 gene that is associated with lower
CRFR2 binding in the amygdala, which may contribute to the increased alcohol
drinking behavior observed in those animals (Yong et al. 2014).

Overall, alcohol dependence and withdrawal lead to increases in extended amyg-
dala CRF signaling (Table 1) that are hypothesized to functionally contribute to
dependence-induced increases in alcohol consumption and negative affect
(discussed below). In addition, this is associated with potentially decreased signaling
of Ucn1 in the lateral septum and DRN, suggesting a potentially dysregulated
balance between CRFR1 and CRFR2 signaling. It is not yet clear how alcohol
dependence changes CRF signaling in brain reward regions, especially in the
VTA, which exhibits transient increases in CRF signaling after binge-like alcohol
consumption. In addition, little work has been done to examine how alcohol
dependence and withdrawal affect CRF-BP levels, CRF-BP function, and Ucn2/3-
CRFR2 signaling.

4 Brain Region-Specific CRFR1 and CRFR2 Effects on Alcohol-
Related Outcomes

4.1 Alcohol Effects at the Synapse

The relationship between brain CRF signaling and alcohol effects on neurotransmis-
sion has been extensively studied in the extended amygdala. Within the CeA, acute
alcohol increases GABAergic transmission, and antagonizing CRFR1 blocks this
effect (Nie et al. 2004, 2009; Roberto et al. 2010). In alcohol-dependent rats,
although there is not tolerance to the effect of acute alcohol on GABA release,
antagonizing CRFR1 more effectively reduces basal and alcohol-induced increases
in GABAergic transmission in CeA (Roberto et al. 2010). In addition, chronic
CRFR1 blockade in CeA blocks the transition to dependence-induced escalation
of alcohol drinking (Roberto et al. 2010). Overall, these findings suggest that
the transition to alcohol dependence is characterized in part by alcohol-induced
neuroadaptations in CeA CRF-CRFR1 signaling and that these neuroadaptations
mediate some of the behavioral changes seen during and following the transition to
alcohol dependence.

In the BNST, protracted withdrawal from alcohol vapor impairs long-term
potentiation (LTP) induction (Francesconi et al. 2009). This impairment appears to
be mediated by CRF, as repeated systemic administration of CRFR1 antagonist
during withdrawal abolished the impairment in LTP induction, and repeated but
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not acute CRF administration mimicked the withdrawal-induced impairment
(Francesconi et al. 2009). Repeated administration of CRFR2 agonist during with-
drawal had no effect on LTP induction in alcohol-dependent rats during protracted
withdrawal (Francesconi et al. 2009). Overall, these results suggest that alcohol
withdrawal produces neuroadaptations in BNST CRF-CRFR1 signaling that may be
important for mediating behavioral change.

4.2 Alcohol Reinforcement

The role of CRF in the positive reinforcing effects of alcohol has not been exten-
sively studied, but brain CRF signaling alters the rewarding properties of alcohol, as
measured by alcohol conditioned place preference (CPP). Conditioned place prefer-
ence is an indirect way of testing the reinforcing properties of a drug by pairing the
drug with specific external stimuli; animals express their preference or aversion for
drug-paired stimuli by approaching them or avoiding them, respectively, and this
behavioral readout is thought to reflect drug reward or aversion. Although CRF is
not often tested for its role in the positive reinforcing effects of alcohol (and other
drugs), CRF-deficient mice fail to show an alcohol CPP at 2 g/kg alcohol but do
exhibit alcohol CPP at 3 g/kg alcohol (Olive et al. 2003). Experimental inhibition of
glucocorticoid synthesis or secretion does not alter the acquisition or expression of
an alcohol CPP, suggesting that the change in alcohol CPP in CRF KO rats is due to
extra-hypothalamic processes (Chester and Cunningham 1998). Similar to CRF KO
mice, Ucn1 and CRFR2 KO mice fail to show alcohol CPP at 2 g/kg alcohol
(Giardino et al. 2011); however, a higher dose of alcohol was not tested, so it
remains to be seen if alterations in alcohol CPP in these knockout strains is dose-
dependent, similar to what is seen in CRF-deficient mice. These whole-brain knock-
out mice suggest that brain CRF signaling is involved in alcohol reinforcement, but
the brain region-specific roles of CRF, the Ucns, and their receptors have not been
tested. Furthermore, it is unknown how CRF modulation of the positive reinforcing
effects of alcohol may change during the transition to dependence.

The negative reinforcing effects of alcohol are often tested by examining negative
affective symptoms and increased alcohol drinking during withdrawal (discussed
below). Place conditioning can also be used to assess aversion associated with
alcohol and/or alcohol withdrawal. Rats show conditioned place aversion (CPA) to
a chamber paired with acute withdrawal from high doses of acute alcohol (Morse
et al. 2000). Similarly, injecting mice with alcohol immediately after removal from
the conditioning chamber produces a CPA that is observed in wild-type and Ucn1
knockout mice (Giardino et al. 2011), suggesting that Ucn1 signaling via CRFR1
may not mediate the aversive and/or negative reinforcing effects of alcohol (i.e.,
perhaps this effect is mediated by CRF signaling). In support of this, rats show a
conditioned place aversion to a chamber paired with CRF infused into the ventricles,
the vmPFC, or the CeA (Cador et al. 1992; Itoga et al. 2016; Schreiber et al. 2017),
which suggests that excess brain CRF signaling is aversive and may support the
notion that CRF mediates the aversive effects of alcohol.
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4.3 Alcohol Consumption

4.3.1 Low-Level Alcohol Consumption
During consumption of low alcohol quantities by a nondependent individual, the
positive reinforcing effects of alcohol drive alcohol intake, and there is limited
engagement of brain stress systems (Koob 2003; Koob and Le Moal 1997). As
chronicity and quantity of alcohol consumption increase and withdrawals are expe-
rienced, brain stress systems are increasingly engaged and become important for
mediating escalated alcohol consumption (Koob 2003). As mentioned above,
although brain CRF signaling is not typically assigned a major role in mediating
the positive reinforcing effects of low doses, non-binge, and nondependent levels of
alcohol, brain CRF signaling may not be without a role in the maintenance of
low-level alcohol drinking (see Table 2 for a summary of the effects of brain
region-specific CRF system manipulations and Table 3 for a summary of Ucn system
manipulations on different types of alcohol drinking).

CRF
CRF may play a role in non-escalated alcohol consumption, because CRF knockout
mice drink twice as much alcohol as their wild-type counterparts (Olive et al. 2003),
and CRF-overexpressing mice show reduced alcohol consumption and preference
(Palmer et al. 2004). In addition, acute intraventricular CRF reduces acute alcohol
drinking in mice (Bell et al. 1998). It is not clear why the direction of whole-animal
and ventricular CRF effects on low-level alcohol drinking in mice is opposite to what
is typically observed in procedures that engender high levels of alcohol consumption
in rats and mice. Regardless, it is likely that chronically escalated alcohol consump-
tion and/or repeated withdrawal produces neuroadaptations that fundamentally
change the role of brain CRF signaling in alcohol-related behaviors.

Ucn1
Ucn1 neurons in the EWcp modulate acute low-level alcohol drinking in a
concentration-dependent manner. At low alcohol concentrations (3–10% v/v), lesion
of the EWcp decreases alcohol preference and consumption in a two-bottle
choice continuous access paradigm (Bachtell et al. 2004), but at higher alcohol
concentrations (20% v/v), lesions of the EWcp do not affect alcohol consumption
(Bachtell et al. 2004). Interestingly, the role of EWcp Ucn1 neurons in alcohol
drinking seems to differ from the role of the EWcp as a whole. In a two-bottle choice
continuous access paradigm, Ucn1 knockout mice do not differ from wild-type
controls in levels of alcohol consumption or alcohol preference of 10% (v/v)
(Giardino et al. 2017). Despite being activated by moderate doses of alcohol, it
does not appear that Ucn1 signaling modulates moderate alcohol consumption, and
the effects of EWcp lesion on decreasing alcohol consumption in mice may be
attributable to other neuropeptides and signaling pathways.
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CRFR1
CRFR1 modulation of nondependent alcohol drinking is contingent on the concen-
tration of alcohol and the amount of alcohol the animal consumes. In nondependent
animals consuming alcohol at low concentrations (<20%), systemic antagonism of
CRFR1 or CRFR1 knockout has no effect on alcohol consumption (Chu et al. 2007;
Gehlert et al. 2007; Roberto et al. 2010; Sabino et al. 2006). In addition, when mice
do not drink in a binge-like manner or reach binge levels of alcohol consumption
(BACs of <40 mg/dL), systemic CRFR1 antagonism does not alter alcohol con-
sumption (Lowery-Gionta et al. 2012; Sparta et al. 2008). Collectively, these data
suggest that CRFR1 signaling does not modulate low-level alcohol consumption.

In nondependent animals, CRFR1 signaling mediates consumption of high alco-
hol concentrations or high quantities of alcohol. In nondependent rats, systemic
CRFR1 antagonism does not affect low-level operant self-administration without
induction of dependence (Funk et al. 2006; Gehlert et al. 2007; Gilpin et al. 2008).
For this reason, the effects of brain region-specific CRFR1 manipulations on
low-level alcohol drinking have not been extensively studied, except in control
groups in alcohol dependence studies. Those studies have shown that CRFR1
antagonism in either the CeA or BNST does not affect alcohol drinking in nonde-
pendent drinkers (Finn et al. 2007; Funk et al. 2006). However, as animals drink
more alcohol or the concentration of alcohol is increased, CRFR1 signaling plays a
larger role in the maintenance of alcohol consumption in nondependent animals. The
effects of CRFR1 antagonism on nondependent rats are sensitive to alcohol concen-
tration, reducing alcohol consumption at 20% v/v, but not at lower concentrations, in

Table 3 Alcohol interactions with the urocortin system

Systemic/ICV CeA EWcp

Alcohol effects on Ucn1

Low-level/acute EtOH (Ucn1) N/A ? " Activation

Binge-like alcohol (Ucn1) N/A ? " (Escalation model)
mRNA

Chronic alcohol (Ucn) N/A ? $ Content
# Fibers projecting to
lateral septum and DRN

Ucn manipulation effects on alcohol consumption

Ucn1 effect on low-level alcohol
consumption

$ (KO) ? ?

Ucn1 effect on binge-like alcohol
consumption

$ (KO – DID)
# (KO – escalation
model)

? ?

Ucn3 effect on binge-like alcohol
consumption

# ? ?

Ucn3 effects on dependence-induced
increases in alcohol consumption

# # ?

" increase, $ no change, # decrease,
? unknown
ICV intraventricular, Ucn1 urocortin-1, Ucn3 urocortin-3, CeA central amygdala, EWcp centrally
projecting Edinger-Westphal nucleus
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a continuous access drinking procedure (Cippitelli et al. 2014). In a rat model of
escalating alcohol consumption, CRFR1 antagonists reduce alcohol consumption in
animals that consume the highest quantities of alcohol (Simms et al. 2014). Overall,
these data suggest that CRFR1 signaling is recruited as levels of alcohol intake
increase over time, even in nondependent animals.

In nondependent animals drinking low quantities of alcohol, basal CRF-CRFR1
signaling does not appear to modulate alcohol consumption, but brain CRF system
signaling may modulate alcohol drinking in nondependent animals consuming high
alcohol concentrations and/or quantities.

4.3.2 Binge-Like Alcohol Consumption
Brain CRF signaling is increased during repeated binge-like alcohol intake, and
pharmacologic manipulations of CRF signaling during binge-like alcohol consump-
tion may alter the transition to alcohol dependence (Lowery-Gionta et al. 2012; see
Table 2).

CRF
Repeated cycles of binge-like alcohol consumption increase CRF-ir in the extended
amygdala, suggesting a role of CRF signaling in mediating binge-like alcohol
drinking. In support of this hypothesis, whole-brain CRF knockout mice consume
less alcohol over all 4 days of the DID procedure (Kaur et al. 2012). In particular,
CRF neurons in the BNST that project locally and those that project out of the BNST
mediate binge-like alcohol consumption (Pleil et al. 2015; Rinker et al. 2017).
Chemogenetic inhibition of all BNST local and projection CRF neurons reduces
binge drinking in the DID procedure (Pleil et al. 2015). BNST CRF neurons project
to the VTA, a brain region critical for alcohol reward and binge-like alcohol drinking
(Dabrowska et al. 2016). Indeed, specific inhibition of VTA-projecting CRF projec-
tion neurons in BNST reduces binge-like alcohol drinking (Rinker et al. 2017).
Interestingly, inhibition of CRF neurons originating in VTA does not affect binge-
like alcohol drinking, suggesting that BNST CRF inputs to VTA, but not local VTA
CRF neurons, are important for mediating binge-like alcohol drinking in mice
(Rinker et al. 2017). It also once again suggests that brain stress systems interact
with brain reward systems and that this interaction may (1) increase with heavy bouts
of alcohol consumption and (2) mediate the transition to alcohol dependence.

Ucn1
Ucn1 signaling may mediate excessive binge-like alcohol consumption, although its
potential role is not completely understood. Whole-brain Ucn knockout mice do not
show a change in alcohol consumption in the DID procedure (Kaur et al. 2012).
However, in an escalating continuous access drinking procedure, whole-brain
knockout of Ucn1 decreases consumption of high alcohol concentrations (40%
v/v), such that knockout mice fail to reach intoxicating binge-like intake levels
and exhibit lower BACs than wild-type controls (Giardino et al. 2017). This effect
was alcohol-specific, as Ucn1 knockout mice did not exhibit altered sweet or bitter
taste reactivity (Giardino et al. 2017). In contrast to the DID procedure, where mice
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achieve binge-like alcohol consumption in a 4-day procedure without escalating
concentrations, this escalating continuous access model increases the alcohol con-
centration from 10 to 40% v/v over the course of 12 days (Giardino et al. 2017). The
difference in these studies suggests that Ucn1 contributes to escalation of alcohol
intake over time resulting in binge-like levels of alcohol consumption, but may not
contribute to non-escalating binge-like alcohol drinking as modeled in the DID
procedure.

CRFR1
Systemic CRFR1 antagonism and whole-brain CRFR1 knockout decrease binge-
like alcohol drinking in the DID model (Kaur et al. 2012; Lowery et al. 2010;
Lowery-Gionta et al. 2012; Sparta et al. 2008) and in modified two-bottle choice
drinking paradigms where animals reach binge-like levels of alcohol consumption
(BACs >80 mg/dL; Cippitelli et al. 2014; Simms et al. 2014). As mentioned above,
CRF-CRFR1 signaling is increased in CeA during repeated binge-like alcohol
consumption (Lowery-Gionta et al. 2012), and antagonizing CRFR1 in the CeA
reduces binge-like alcohol drinking in the DID procedure (Lowery-Gionta et al.
2012). CRFR1 antagonism in VTA also decreases binge-like alcohol drinking in an
intermittent access drinking model in rats and in high-alcohol-drinking mice (Hwa
et al. 2013), and CRFR1 antagonism in DRN decreases binge-like levels of alcohol
drinking in mice and rats (Hwa et al. 2013). These data clearly delineate a role for
CRFR1 in binge alcohol drinking, perhaps via interactions with brain DA and/or
5-HT systems.

Ucn2/3-CRFR2
The role of Ucn2/3-CRFR2 signaling in binge-like alcohol drinking depends on the
brain region and the animal model of alcohol consumption. Whole-brain deletion of
CRFR2 increases alcohol intake in a limited access model of alcohol consumption
(Sharpe et al. 2005), but does not affect binge-like alcohol consumption in the
DID model (Kaur et al. 2012). Conversely, intraventricular administration of Ucn3
decreases binge-like alcohol drinking in the DID model (Lowery et al. 2010).
Overall this suggests that activation of whole-brain Ucn3-CRFR2 signaling protects
against excessive alcohol drinking. Interestingly, antagonizing CRFR2 specifically
in the VTA decreases binge-like alcohol drinking in mice (Albrechet-Souza et al.
2015), suggesting that VTA CRFR2 signaling may have a unique role in mediating
excessive alcohol intake.

CRF-BP
Similar to CRFR2, CRF-BP effects on binge-like alcohol consumption depend on
the brain region being tested. Whole-brain CRF-BP knockout in mice does not alter
binge-like alcohol drinking in the DID model (Ketchesin et al. 2016). In the CeA,
inhibition of CRF-BP does not affect binge-like alcohol drinking; however, as with
CRFR2, inhibition of CRF-BP in the VTA decreases binge-like alcohol drinking
(Albrechet-Souza et al. 2015). Furthermore, antagonizing both CRF-BP and CRFR2
decreases binge-like alcohol consumption to a greater degree than antagonizing

454 A. L. Schreiber and N. W. Gilpin



CRFR2 alone, suggesting that in the VTA, CRF-BP facilitates CRF signaling,
potentially through an association with CRFR2 (Albrechet-Souza et al. 2015).
More work needs to be done to determine how CRF-BP signaling site specifically
influences binge-like alcohol consumption.

In summary, CRF signaling plays a major role in mediating binge-like alcohol
consumption, especially in the VTA. CRF projections from the BNST to the VTA
mediate binge-like alcohol consumption, perhaps via signaling at both CRFR1 and
CRFR2. Ucn1 signaling contributes to binge-like escalation of alcohol consumption,
while Ucn3 signaling may be protective against binge-like alcohol drinking behav-
ior. Future work should determine the relative roles of CRF and Ucn signaling in
mediating binge drinking and also how connections between brain stress and reward
circuits mediate binge-like alcohol drinking.

4.3.3 Dependence-Induced Increases in Alcohol Consumption
Brain CRF signaling plays a key role in dependence-induced escalation of alcohol
drinking. In rodent models of chronic high-dose alcohol exposure, excessive alcohol
drinking during acute and protracted withdrawal is a key sign of alcohol dependence
(Edwards et al. 2012; Gilpin et al. 2008) and is mediated, at least in part, by brain
CRF signaling, especially in the CeA and neighboring regions.

CRF-CRFR1
Dependence-induced escalation of alcohol drinking is highly contingent on
CRFR1 signaling, and CRF-CRFR1 signaling is recruited during the transition to
alcohol dependence. Whole-brain CRF knockout mice do not increase alcohol intake
after induction of alcohol dependence (Chu et al. 2007), suggesting that CRF is
necessary for the dependence-induced escalation of alcohol drinking. Conversely, a
non-specific CRFR antagonist injected into the ventricles decreases dependence-
induced increases in alcohol self-administration 2 h and 5 weeks into forced absti-
nence (Valdez et al. 2002). In addition, chronic systemic injection of a CRFR1
antagonist during alcohol withdrawal periods blocks escalation of alcohol self-
administration, relative to alcohol-dependent rats treated chronically with vehicle
(Roberto et al. 2010). In this study, at least 24 h passed between CRFR1 antagonist
injections and subsequent operant self-administration sessions, suggesting that
CRFR1 antagonists may block neuroadaptations that normally accumulate with
repeated withdrawals (Roberto et al. 2010). In addition, systemic CRFR1 antago-
nism decreases alcohol intake in alcohol-dependent rats during acute and protracted
withdrawal (Chu et al. 2007; Funk et al. 2007; Gehlert et al. 2007; Gilpin et al. 2008;
Roberto et al. 2010). The CeA is critical for mediating CRFR1 effects on escalated
alcohol drinking, because antagonizing CRFR1 in the CeA, but not the BNST or
nucleus accumbens shell, decreases operant alcohol self-administration in alcohol-
dependent rats (Finn et al. 2007; Funk et al. 2006).

Ucn3-CRFR2
CRFR2 activation appears to have effects that are opposite of CRFR1 activation
effects on dependence-induced escalation of alcohol drinking. Intraventricular
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administration of Ucn3 attenuates high alcohol drinking in alcohol-dependent rats
(Valdez et al. 2004). Like CRFR1, the effect appears to be mediated in the CeA,
since intra-CeA administration of Ucn3 also decreases dependence-induced alcohol
drinking (Funk and Koob 2007). In light of the different effects of whole-brain and
VTA modulation of CRFR2 signaling on binge-like alcohol drinking, it will be
interesting to see how Ucn3-CRFR2 signaling in VTA modulates escalated alcohol
drinking in alcohol-dependent animals.

In summary, CRFR1 and CRFR2 signaling have opposite effects on dependence-
induced escalations in alcohol consumption. CRFR1 signaling increases alcohol
consumption, and CRFR2 signaling may counteract this effect. Little work has
examined a role for Ucn1/2 in dependence-induced escalation of alcohol drinking,
and little is known about the CRF circuits mediating escalation of alcohol drinking
during alcohol dependence.

4.4 Alcohol Relapse (e.g., Reinstatement)

AUD is defined as a chronically relapsing disorder. Environmental stimuli
associated with alcohol (i.e., cues) and stressful events can each elicit relapse
drinking after a period of alcohol abstinence (Sinha 2001). In rodents, reinstatement
of alcohol seeking can be induced by stress or an alcohol-paired cue and is typically
quantified as an increase in previously extinguished alcohol responding elicited by
one of these stimuli.

4.4.1 Cue-Induced Reinstatement
Reinstatement of alcohol seeking in response to a cue formerly associated with
alcohol reward may or may not be mediated by brain CRF signaling. In one study,
cue-induced reinstatement of alcohol seeking was not blocked by a non-specific
peptide CRFR antagonist that targeted both CRFR1 and CRFR2 (Liu and
Weiss 2003). But a more recent study suggests that CRFR1 might play a role in
cue-induced reinstatement; that study showed that rats treated with a systemic
CRFR1 antagonist respond less on an alcohol-paired lever after the presentation of
an alcohol-paired cue, relative to vehicle-treated rats (Galesi et al. 2016). This effect
may be mediated by hypothalamic CRF signaling, because systemic CRFR1 antag-
onist effects were mimicked by systemic injection of metyrapone, a glucocorticoid
synthesis inhibitor (Galesi et al. 2016). More studies are needed to clarify these
apparently contradictory results and to clarify the potential role for hypothalamic and
extra-hypothalamic CRF signaling in cue-induced reinstatement of alcohol seeking.

4.4.2 Stress-Induced Reinstatement
Stress is a major trigger for relapse drinking in abstinent alcoholics (Sinha 2001). In
animals, stress-induced reinstatement of alcohol seeking is a paradigm in which
acute stress promotes alcohol seeking by increasing the frequency of a previously
extinguished operant alcohol response. In rats, this is generally accomplished with
footshock or with administration of yohimbine, an alpha-2 adrenergic receptor
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antagonist. Footshock reliably increases responding on a previously alcohol-paired
(and previously extinguished) lever, and systemic yohimbine injection mimics this
effect (Le et al. 2000).

CRF signaling is intimately involved in stress-induced reinstatement of alcohol
seeking. A non-specific CRFR antagonist blocks reinstatement of alcohol seeking
induced by footshock in rats (Le et al. 2000; Liu and Weiss 2003). Furthermore,
footshock-induced reinstatement can be mimicked by intraventricular CRF admin-
istration (Le et al. 2002). The role of CRF in stress-induced reinstatement seems
primarily due to CRFR1 because systemic administration of a selective CRFR1
antagonist attenuates footshock stress- and yohimbine-induced reinstatement of
alcohol seeking in rats (Gehlert et al. 2007; Le et al. 2000; Marinelli et al. 2007).
In contrast to cue-induced reinstatement of alcohol self-administration, stress-
induced reinstatement is likely mediated by extra-hypothalamic CRF signaling
because adrenalectomy has no effect on stress-induced reinstatement or the ability
of CRFR1 antagonism to decrease alcohol-seeking behavior following footshock
(Le et al. 2000). Specifically, brain stem regions including the nucleus incertus
(NI) and the median raphe nucleus (MRN) appear to have a prominent role
in stress-induced reinstatement mediated by CRFR1. The NI is a brain region
characterized by dense CRFR expression (Potter et al. 1994) and is sensitive to
exogenous CRF administration (Bittencourt and Sawchenko 2000). Recently, its
role in alcohol-related behaviors has begun to be explored. CRFR1 antagonism, but
not CRFR2 antagonism, in the NI attenuates yohimbine-induced reinstatement of
alcohol seeking in iP rats (Walker et al. 2016). Interestingly, unlike systemic CRFR1
antagonists, site-specific antagonism in the NI did not completely reverse stress-
induced reinstatement of alcohol seeking, suggesting involvement of other brain
regions and perhaps interaction with other neurotransmitter systems in this behavior.
One such possible candidate site is the MRN, a brain region rich in serotonergic cells
that express CRFR1 and CRFR2 (Chalmers et al. 1995). Intra-MRN CRF infusion
mimics footshock-induced reinstatement of alcohol seeking, and CRFR antagonism
in the MRN blocks increased alcohol-seeking behavior following footshock in rats,
perhaps suggesting a CRF-5-HT interaction in mediating alcohol relapse (Le et al.
2002). CRF may also interact with the kappa opioid system to induce relapse to
alcohol-seeking behavior, since systemic activation of kappa opioid receptors
(KOR) increases alcohol-seeking behavior, and this effect is prevented by systemic
injection of a CRFR1 antagonist (Funk et al. 2014). Although these results used
systemic drug injection, it is tempting to speculate that the CRF-KOR interaction
may occur in the extended amygdala, due to the high degree of co-localization of
CRF and dynorphin in CeA and BNST (Pomrenze et al. 2015; Reyes et al. 2001), as
well as CRF and dynorphin convergent effects on GABAergic transmission in CeA
(Gilpin et al. 2014; Roberto et al. 2010). Emerging preliminary data suggests that
CRF-KOR interactions also occur in VTA, with obvious potential implications for
alcohol reward, consumption, and seeking.
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Reinstatement of alcohol seeking appears to be at least partially mediated by
CRFR1 signaling. Hypothalamic CRF signaling likely contributes to cue-induced
reinstatement of alcohol seeking, whereas extra-hypothalamic CRF signaling, espe-
cially in the NI and MRN, likely contributes to stress-induced reinstatement of
alcohol seeking. It is not known how the urocortins and/or CRFR2 may contribute
to reinstatement of alcohol seeking.

4.5 Alcohol-Induced Negative Affect (e.g., Anxiety, Nociception)

Negative affect during acute withdrawal from chronic alcohol is hypothesized to
promote escalation of alcohol drinking and relapse in alcohol-dependent individuals.
In fact, negative affective symptoms are reported by alcohol-dependent humans to
be one of the main reasons for continual drinking (Hershon 1977; Sinha 2001). In
rodents, negative affect is measured as increases in anxiety-like behavior, behavioral
sensitivity to stress, and increases in nociception (i.e., hyperalgesia/allodynia). Rats
exposed to repeated cycles of intoxication and withdrawal exhibit increases in
anxiety-like behavior that are not seen in rats continuously exposed to alcohol
(Overstreet et al. 2002). Brain CRF signaling may become sensitized during repeated
withdrawals and contribute to negative affect (Koob 2003). Although much work
has been done examining the role of CRF, CRFR1, and CRFR2 in negative affect
associated with chronic alcohol exposure, the potential role of Ucns and CRF-BP in
negative affect has been less explored (these are not covered below).

4.5.1 CRF
Brain CRF signaling may be recruited during multiple withdrawals such that
brain stress systems become sensitized with repeated withdrawals and contribute
to negative affect in the absence of alcohol. This hypothesis is supported by the
fact that intraventricular infusions of CRF can substitute for alcohol withdrawals
by mimicking repeated withdrawal-induced increases in anxiety-like behavior
(Overstreet et al. 2004). This CRF effect appears to be mediated by extra-
hypothalamic brain regions: repeated injections of CRF into the CeA, BLA, DRN,
and dorsal BNST before initiation of alcohol liquid diet increase anxiety-like
behavior during subsequent alcohol withdrawals, but CRF microinjections in the
PVN, ventral BNST, or CA1 of the hippocampus do not (Huang et al. 2010). This is
specific to a CRF-alcohol interaction because injections of CRF before a control diet
do not alter anxiety-like behavior (Huang et al. 2010). These data support the
hypothesis that repeated alcohol withdrawals sensitize the brain to the effects of
future alcohol withdrawals through a brain CRF signaling mechanism. In addition,
non-specific CRF receptor antagonism blocks restraint stress-induced increases in
anxiety-like behavior after 6 weeks of alcohol deprivation in previously alcohol-
dependent rats, suggesting a role for CRF in enhanced responsiveness to stress
during protracted withdrawal from alcohol (Valdez et al. 2003).
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4.5.2 CRFR1
Activation of CRFR1 during withdrawal is critical for many aspects of negative
affect including anxiety-like behavior, sensitization of anxiety-like behavior during
repeated alcohol withdrawals, and hyperalgesia. Systemic CRFR1 antagonism
before the first and second withdrawals of a multiple-withdrawal protocol prevented
increases in anxiety-like behavior normally observed during subsequent alcohol
withdrawals (Overstreet et al. 2007; Breese et al. 2004). Site-specific CRFR1
antagonism in the CeA, DRN, and dorsal BNST blocks CRF-induced sensitization
of withdrawal anxiety-like behavior, suggesting that stress-induced sensitization
during withdrawal is mediated by extra-hypothalamic brain regions (Huang et al.
2010). Alcohol-dependent animals typically exhibit withdrawal-induced increases
in anxiety-like behavior that can be blocked with systemic CRFR1 antagonism or
whole-brain CRFR1 knockout (Rassnick et al. 1993; Sommer et al. 2008; Timpl
et al. 1998). As with dependence-induced increases in alcohol self-administration,
intra-CeA CRFR1 antagonism reverses alcohol withdrawal-induced increases in
anxiety-like behavior in alcohol-dependent animals (Baldwin et al. 1991; Rassnick
et al. 1993). Similarly, systemic CRFR1 antagonism decreases allodynia in alcohol-
dependent rats, although the specific brain regions mediating this effect have yet to
be determined (Edwards et al. 2012). Overall, CRFR1 signaling in CeA is recruited
during repeated withdrawals and contributes to withdrawal-induced negative affect
and drives the negative reinforcing effects of alcohol.

4.5.3 CRFR2
In stark contrast to CRFR1, CRFR2 activation decreases negative affective
symptoms in alcohol dependence. Intraventricular Ucn3 decreases dependence-
induced anxiety-like behavior (Valdez et al. 2004). The brain region mediating
Ucn3-CRFR2 signaling-induced decreases in negative affect has not yet been
determined, although Ucn3-CRFR2 signaling in the DRN and dorsal BNST, brain
regions implicated in withdrawal-induced sensitization of negative affect, does not
significantly contribute to decreases in anxiety-like behavior induced by dependence
(Huang et al. 2010). Intra-CeA Ucn3-CRFR2 manipulations have not been tested for
their effects on alcohol withdrawal-related negative affective behaviors, but Ucn3-
CRFR2 signaling may have a role since intra-CeA injection of a CRFR2 agonist
decreases alcohol withdrawal-induced increases in alcohol self-administration (Funk
and Koob 2007). More work is needed to clearly delineate the role of Ucn3-CRFR2
in mediating alcohol dependence-induced negative affect, excessive alcohol drink-
ing, and relapse.

Similar to escalations in alcohol drinking, negative affect in the alcohol-
dependent organism is mediated by CRF-CRFR1 signaling, and it is counteracted
by Ucn3-CRFR2 signaling. It will be interesting to see what role if any Ucn1 and
Ucn2 play in negative affect and also which brain networks contribute to the
negative affect observed in alcohol-dependent animals during withdrawal.
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5 Human Studies

5.1 Status of Clinical Trials

Extensive preclinical work examining the role of CRF-CRFR1 signaling in alcohol-
related behavior suggests that CRFR1 antagonists may have therapeutic potential in
humans with AUD, specifically to reduce excessive alcohol drinking and symptoms
of withdrawal and prevent relapse in those individuals. Although numerous small-
molecule CRFR1 antagonists have been developed for clinical trials, the results have
been overwhelmingly negative. One of the first molecules tested, R121919, showed
some promise in depression, but development of the drug was suspended due to
elevations in liver enzymes (Zobel et al. 2000). Other small-molecule CRFR1
antagonists have been tested in depression, anxiety, human fear lab studies, and
PTSD, but all have yielded negative results (Binneman et al. 2008; Coric et al. 2010;
Dunlop et al. 2017; Grillon et al. 2015).

Two studies have examined the efficacy of CRFR1 antagonists for decreasing
craving in anxious adults with AUD. The first study tested pexacerfont, an orally
available, brain-penetrant CRFR1 antagonist (Kwako et al. 2015), but that study
reported no effect on alcohol craving following alcohol or stress cues or following a
Trier social stress test (TSST; Kwako et al. 2015). In addition, pexacerfont had no
effect on measured neuroendocrine outcomes, including cortisol and ACTH levels
following stress (Kwako et al. 2015). The negative results in this study were thought
to be due to the binding kinetics of pexacerfont, which has a fast receptor off-rate
(Fleck et al. 2012). Therefore, a follow-up study examined therapeutic potential of
CRFR1 antagonism in anxious AUD females, this time using verucerfont (Schwandt
et al. 2016). Verucerfont is an orally available, brain-penetrant potently selective
CRFR1 antagonist with a similar structure to compounds with slow off-kinetics,
suggesting increased efficacy compared to pexacerfont (Schwandt et al. 2016).
Indeed, verucerfont blunted HPA axis activity during a dexamethasone-CRF chal-
lenge, suggesting that verucerfont is more active than pexacerfont (Schwandt et al.
2016). However, like pexacerfont, verucerfont failed to reduce craving after stress
cues or alcohol cues (Schwandt et al. 2016). In fact, verucerfont significantly
increased anxiety in the TSST (relative to placebo) without significantly affecting
alcohol craving or HPA axis activation after TSST (Schwandt et al. 2016). Overall,
these data suggest that antagonism of CRFR1 in anxious humans with AUD does not
affect stress- or cue-induced increases in alcohol craving, despite having activity on
the HPA axis. That said, the preponderance of preclinical data strongly implicates
CRFR1 signaling in mediating escalated alcohol drinking and negative affective
symptoms seen during early withdrawal, which were not measured in these two
clinical studies. In addition, these studies may have missed the temporal window in
which CRFR1 antagonists might be expected to have efficacy, because they were
completed after withdrawal symptoms subsided. Therefore, CRFR1 antagonism
may still be therapeutically relevant for reducing alcohol drinking or negative
affective symptoms, but likely not craving, in people with AUD.
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5.2 Why the CRF System Is Still Important in AUD Research

The CRF system is still important in AUD research despite negative effects in two
clinical trials examining CRFR1 antagonist effects on alcohol craving. The negative
results of the clinical trials may be attributable to any combination of the following:
limitations of stress-induced alcohol reinstatement in animal studies relative to the
human craving it models, mismatched timing of drug delivery in animal and human
studies, differences between brain CRF systems in rodents versus humans, or the
possibility that CRFR1 antagonists would only be therapeutically effective in an as
yet unidentified subgroup of AUD patients (Spierling and Zorrilla 2017).

The two alcohol craving clinical trials described above targeted CRFR1 signal-
ing, but preclinical literature supports a potential role for CRFR2, the Ucns, and
CRF-BP in mediating various aspects of alcohol use. A recent study in nonhuman
primates postulated that in primates, CRFR2 in the amygdala might play an impor-
tant role in anxiety-like responses (Kalin et al. 2016). Indeed, compared to rodents,
where there is limited CRFR2 expression in the CeA (Van Pett et al. 2000), primates
express high density of CRFR2 in the CeA (Sanchez et al. 1999), although the
functional relevance of this has not yet been determined. CRF-BP in rodents was
recently shown to interact with CRFR2 in the VTA to influence binge-like alcohol
drinking (Haass-Koffler et al. 2016). Therefore, a deeper understanding of the
relationship between alcohol and brain CRF system plasticity and signaling, espe-
cially CRFR2 signaling and CRF-BP, may be necessary to effectively leverage the
brain CRF system as a therapeutic target for reducing excessive alcohol drinking and
negative affect in at least a subset of humans living with AUD.

6 Future Directions and Conclusions

Animal studies clearly implicate the brain CRF system in mediating escalated
alcohol drinking and negative affect observed in rodent models of AUD. Rodent
models suggest that high-dose alcohol exposure, in the form of binge-like alcohol
drinking or forced high-dose alcohol exposure (i.e., that which produces alcohol
dependence), dysregulates CRF signaling in hypothalamic and extra-hypothalamic
brain regions. This dysregulated CRF signaling, particularly CRF-CRFR1 signaling
within the extended amygdala, is hypothesized to drive excessive alcohol drinking,
negative affect, and stress-induced alcohol-seeking behaviors that are associated
with alcohol dependence and binge-like alcohol drinking.

Although clinical studies have demonstrated a lack of efficacy of CRFR1
antagonists in decreasing craving in anxious adults with AUD, these studies don’t
entirely rule out other clinical endpoints (e.g., alcohol consumption) or other
components of the brain CRF system as potential therapeutic targets for treating
aspects of AUD. In addition, hypothalamic CRF signaling and the HPA axis may be
of more importance in AUD than the preclinical literature suggests. In a recent study,
glucocorticoid receptor antagonists decreased alcohol craving and alcohol drinking
in treatment-seeking individuals with AUD (Vendruscolo et al. 2015).
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Advances in basic science research technology, including optogenetics,
chemogenetics, and transgenic rodent lines, allow for circuit-specific modulation
of brain CRF signaling that will greatly enhance our understanding of how, where,
and when brain CRF signaling modulates escalated alcohol drinking, relapse-like
behavior, and negative affect. In addition, future work should examine the potential
roles of CRFR2, Ucns, and CRF-BP in binge-like alcohol drinking, negative affec-
tive states associated with alcohol withdrawal, and relapse, both in rodent models
and in primate models, to maximize the translational value of this work. The
investigation of brain CRF system signaling remains important not only for potential
therapeutic benefits but also in the investigation of CRF receptors as gatekeepers on
the function of brain circuits impacted by alcohol and drugs and important for
various behaviors, many of which extend beyond the addiction field (e.g., stress,
fear, and pain).
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Abstract
Understanding the neural systems that drive alcohol motivation and are disrupted
in alcohol use disorders is of critical importance in developing novel treatments.
The dynorphin and orexin/hypocretin neuropeptide systems are particularly rele-
vant with respect to alcohol use and misuse. Both systems are strongly associated
with alcohol-seeking behaviors, particularly in cases of high levels of alcohol use
as seen in dependence. Furthermore, both systems also play a role in stress and
anxiety, indicating that disruption of these systems may underlie long-term
homeostatic dysregulation seen in alcohol use disorders. These systems are also
closely interrelated with one another – dynorphin/kappa opioid receptors and
orexin/hypocretin receptors are found in similar regions and hypocretin/orexin
neurons also express dynorphin – suggesting that these two systems may work
together in the regulation of alcohol seeking and may be mutually disrupted in
alcohol use disorders. This chapter reviews studies demonstrating a role for each
of these systems in motivated behavior, with a focus on their roles in regulating
alcohol-seeking and self-administration behaviors. Consideration is also given to
evidence indicating that these neuropeptide systems may be viable targets for the
development of potential treatments for alcohol use disorders.

Keywords
Alcohol · Dynorphin · Ethanol · Hypocretin · Kappa opioid receptor · Orexin

1 Neuropeptides: Dynorphin and Orexin

1.1 Introduction

The dynorphin (DYN) and hypocretin/orexin (ORX) neuropeptide systems play critical
roles in regulating appetitively and aversively motivated behaviors. Activation of both
systems is associated with arousal, stress, and reward motivation. Both systems are also
implicated in psychiatric diseases such as anxiety, depression, and addiction. In particu-
lar, DYN and ORX have been demonstrated to be major contributors to alcohol use and
potentially misuse and dependence. In this chapter we first discuss the overarching roles
of these systems in reward- and aversion-related behaviors followed by a consideration of
their roles in alcohol use and dependence. In some cases these peptides are co-expressed,
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raising questions about their separate versus overlapping roles in the motivational effects
of alcohol. We end with a discussion of the potential interaction between these systems
and future studies that could address their unique or shared contributions to alcohol
consumption and alcohol use disorders.

2 Dynorphin/Kappa Opioid System and Roles
in Pharmacological and Motivational Effects of Alcohol

Dynorphins are highly potent endogenous opioids that bind preferentially to kappa opioid
receptors with relatively little affinity for mu and delta opioid receptor subtypes. The
precursor protein prodynorphin can be cleaved to form numerous active peptides including
dynorphin A, dynorphin B, big dynorphin, α and β neoendorphins, and leumorphin
(Chavkin 2013).Kappaopioid receptors areGprotein-coupled receptors that are distributed
widely throughout the central nervous system. When activated, KORs typically couple to
inhibitory G proteins and exert their effects through multiple signal transduction pathways
(Bruchas and Chavkin 2010). However, lower ligand concentrations have been reported to
provoke coupling to Gs proteins, initiating stimulatory signaling cascades (Crain and Shen
2000).

2.1 Dynorphin/Kappa Opioid Receptor (DYN/KOR) System
Anatomy

The anatomical distribution of DYN and KOR expression in brain regions associated
with reward and stress enable this neuropeptide system to contribute to addiction and
mood disorders. Dynorphin immunoreactivity has been observed throughout the cortex,
nucleus accumbens (NAc), striatum, caudate-putamen, lateral division of the central
nucleus of the amygdala, bed nucleus of the stria terminalis (BNST), hippocampus,
multiple hypothalamic nuclei, periacqueductal gray, and numerous brainstem nuclei
(Khachaturian et al. 1982; Fallon and Leslie 1986). Assessments of KOR mRNA in
the human brain have revealed high expression in prefrontal cortex (PFC; particularly in
deep layers), NAc, caudate-putamen, dentate gyrus of the hippocampus, thalamus,
hypothalamus, amygdala, ventral tegmental area (VTA), and multiple brainstem nuclei
(Peckys and Landwehrmeyer 1999; Simonin et al. 1995). Similarly, a study of KOR
mRNA and KOR binding density in the rat brain reported co-expression (suggesting
local receptor synthesis) in multiple brain regions including the NAc, caudate-putamen,
olfactory tubercle, BNST, paraventricular nucleus of the hypothalamus (PVN), amyg-
dala, periaqueductal gray, raphe nucleus, locus coeruleus, and nucleus of the solitary tract
(Mansour et al. 1995).Within theVTA, however, fewKORbinding sites are detected but
KORmRNA is highly expressed, suggesting thatKORs are likely produced in this region
and transported to theNAc (Mansour et al. 1995). Notably, species differences have been
observed when comparing KOR expression in humans and rodents: KORs are more
widely expressed in the human brain, particularly in the cortex, hippocampus, and
thalamus (Peckys and Landwehrmeyer 1999).
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2.2 KOR Pharmacology and Signaling

Although pharmacological evidence has suggested the existence of multiple KOR
subtypes, only one KOR has been cloned (reviewed by Bruijnzeel 2009; Dietis et al.
2011). Agonist binding at these receptors can initiate the dissociation of G βγ from
Gα subunits or directly interact with β arrestins (Bruchas and Chavkin 2010).
Consequently, KOR activation can result in stimulation of a variety of signaling
cascades (including ERK 1/2, p38 MAPK, and JNK) that depend on the nature of the
ligand. The β arrestin recruitment of the p38 MAPK cascade has been implicated in
dysphoric effects of KOR agonism and stress (Bruchas et al. 2007). Synthesis of
ligands that favor a particular signaling pathway (biased agonism) is an emerging
trend in drug development, and recent efforts have aimed to develop KOR ligands
that favor G-protein coupled signaling rather than β arrestin in order to diminish
aversive effects in favor of therapeutic effects (Lovell et al. 2015; Zhou et al. 2013).

Kappa opioid receptors are expressed throughout the brain, with presynaptic expres-
sion enabling modulation of neurotransmission in numerous brain regions associated
with drug and alcohol reward. For example, KORs located on glutamatergic projections
to the PFC, NAc, dorsal striatum, BNST, and VTA inhibit signaling when activated
(Hjelmstad and Fields 2001;Margolis et al. 2005; Tejeda et al. 2013; Atwood et al. 2014;
Crowley et al. 2016). Similarly, stimulation of KORs expressed on dopaminergic
projections to amygdala, NAc, and PFC and on GABAergic projections to amygdala,
NAc, VTA, and BNST also results in decreased transmission (Ford et al. 2007;Margolis
et al. 2003, 2006, 2008; Hjelmstad and Fields 2003; Li et al. 2012). KORs located on
projections to multiple brain regions can also influence serotonergic and noradrenergic
signaling (Berger et al. 2006; Land et al. 2009).

2.3 DYN/KOR System and Motivational Behaviors

Whereas activation of mu opioid receptors stimulates dopamine release in the NAc,
activation of KORs results in reduced dopamine release in this brain region (Di Chiara
and Imperato 1988). Thus, in contrast to euphoric effects that characterize mu opioid
receptor activation, effects of KOR activation are largely aversive or dysphoric. For
example, studies in rodents have shown that KOR activation results in conditioned
taste and place aversion, decreased reward sensitivity (i.e., increased reward
thresholds in intracranial self-stimulation procedures), and increased depressive-like
and anxiety-like behaviors (Mucha and Herz 1985; Todtenkopf et al. 2004; Mague
et al. 2003; Bruchas et al. 2009; Valdez and Harshberger 2012). Similarly, adminis-
tration of KOR agonists to humans has been reported to produce aversive effects
including anxiety, racing thoughts, agitation, hallucinations, confusion, sedation, and
dysphoria (Pfeiffer et al. 1986; Rimoy et al. 1994; Walsh et al. 2001).

KOR activation activates the hypothalamic-pituitary-adrenocortical (HPA) axis
and stimulates glucocorticoid release (Iyengar et al. 1986; Wittmann et al. 2009).
Likewise, stress exposure activates and upregulates the KOR system, and DYN
signaling through KORs has been implicated in the aversive effects of stress (Land
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et al. 2008). On the other hand, KOR antagonists have been shown to reduce both
anxiety-like and depressive-like behavior in addition to blocking the dysphoric effects
of stressor exposure (Knoll et al. 2007; Carr and Lucki 2010; Land et al. 2008; Mague
et al. 2003). The DYN/KOR system likely facilitates stress-related signaling through
interactions with the corticotropin-releasing factor (CRF) system (Land et al. 2008;
Van’t Veer and Carlezon 2013). Evidence for co-localization of DYN and CRF has
been observedwithin neurons of the central nucleus of the amygdala (CeA), PVN, and
locus coeruleus (Marchant et al. 2007; Roth et al. 1983; Kreibich et al. 2008).

2.4 Alcohol and the DYN/KOR System

Interest in DYN/KOR modulation of alcohol consumption dates back to the late
1980s, and appears to have stemmed from a body of evidence that established a role
for this neuropeptide system in ingestive behaviors (Sandi et al. 1988; Morley and
Levine 1983). Since that time, research efforts have expanded to assess effects of
alcohol on DYN/KOR expression and function, as well as effects of the DYN/KOR
system on alcohol’s rewarding and motivational effects (Anderson and Becker
2017).

2.4.1 Effects of Alcohol Exposure on DYN/KOR Expression
and Function in Brain

Both acute and chronic alcohol exposures produce adaptations in the DYN/KOR
system, typically reflected by an upregulation of expression and activity. For example,
microdialysis and radioimmunoassay studies have revealed that, following acute
systemic delivery of alcohol, dynorphin levels are increased in the NAc, CeA,
VTA, and PVN (Marinelli et al. 2006; Lam et al. 2008; Jarjour et al. 2009; Chang
et al. 2007). Elevated prodynorphin or dynorphin mRNA expression also has been
observed in the amygdala, PFC, and PVN following acute alcohol administration
(D’Addario et al. 2013; Chang et al. 2007). DYN-B expression was elevated in the
NAc following repeated alcohol administration (Lindholm et al. 2000), although in
another report, a similar alcohol exposure regimen resulted in decreased KORmRNA
expression in the NAc andVTA (Rosin et al. 1999). Chronic alcohol consumption has
been shown to increase DYNmRNA and peptide levels in the PVN and prodynorphin
levels in the NAc (Chang et al. 2007; Przewlocka et al. 1997). Adaptations in the
DYN/KOR system also occur during alcohol withdrawal, with upregulated KOR
signaling and DYN peptide expression observed in the CeA (Kissler et al. 2014).

2.4.2 Effects of KOR Activation and Blockade on Alcohol-Related
Behaviors

A number of preclinical studies have examined the effects of KOR agonists and
antagonists on alcohol-related behavior. Research examining effects of KOR ligands
on home-cage alcohol consumption has yielded variable results in rats, with studies
reporting increases, decreases, and no change in alcohol intake following both
systemic KOR activation and blockade (Sandi et al. 1988, 1990; Nestby et al. 1999;
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Holter et al. 2000; Lindholm et al. 2001; Mitchell et al. 2005; Morales et al. 2014;
Rorick-Kehn et al. 2014). These discrepant findings are likely due to differences in
experimental parameters, including sex, strain, drug dose and timing of administra-
tion, stress experience, and history of ethanol exposure (Anderson and Becker 2017).
In alcohol-preferring C57BL/6J mice, however, several reports have replicated the
finding that the KOR agonist U50,488 increases alcohol intake (Sperling et al. 2010;
Rose et al. 2016; Anderson et al. 2016). Likewise, KOR antagonism has been
consistently reported to decrease home-cage alcohol consumption in C57BL/6J
mice, though this effect is typically observed only when intake is elevated above a
basal level following induction of alcohol dependence or stress exposure (Sperling
et al. 2010; Rose et al. 2016; Anderson et al. 2016). Only a few studies have examined
the effects of KOR activation in specific brain regions on home-cage ethanol con-
sumption. Administration of U50,488 reduced intake in rats when infused into the
lateral hypothalamus or the PVN (Chen et al. 2013; Barson et al. 2010), but had no
effect in the NAc or ventral pallidum (Barson et al. 2009; Kemppainen et al. 2012).

Studies using operant self-administration procedures in rats have reported that
KOR agonists reduce alcohol self-administration, suggesting that KOR activation
opposes the rewarding effects of alcohol (Holter et al. 2000; Henderson-Redmond and
Czachowski 2014). KOR agonists are also consistently reported to induce reinstate-
ment of alcohol-seeking behavior, an effect interpreted as a stress-like effect of KOR
activation (Harshberger et al. 2016; Funk et al. 2014; Le et al. 2017). Conversely,
KOR blockade has been shown to attenuate cue-induced reinstatement and reinstate-
ment induced by pharmacological stressors (Berger et al. 2013; Schank et al. 2012;
Funk et al. 2014). Both systemic and site-specific (NAc, BNST, CeA) administrations
of the KOR antagonist nor-BNI have been shown to attenuate elevated self-
administration in alcohol-dependent rats while not influencing responding in nonde-
pendent rats (Walker and Koob 2008; Walker et al. 2011; Nealey et al. 2011; Kissler
et al. 2014; Erikson and Walker 2016).

Several reports have observed altered alcohol-induced conditioned place prefer-
ence following KOR activation, suggesting that KOR signaling can influence the
conditioned motivational effects of alcohol. However, the direction of the effect
appears to be related to the timing of agonist administration. Specifically, adminis-
tration of a KOR agonist shortly before alcohol treatment blocked the development
of alcohol conditioned place preference whereas administration of the same agonist
90 min before alcohol conditioning sessions resulted in a potentiation of alcohol
conditioned place preference (Logrip et al. 2009; Sperling et al. 2010). Although
studies with cocaine have revealed time-dependent effects of KOR agonist adminis-
tration on cocaine-induced dopamine release in the NAc (Ehrich et al. 2014; Chartoff
et al. 2016), at present, it is unclear how dose of the KOR agonist (U50,488) and/or
the timing of its administration in relation to alcohol intoxication influences the
outcome of these conditioning studies. Interestingly, several reports suggest that
KOR blockade has no effect on alcohol’s conditioned motivational properties. For
instance, nor-BNI did not alter expression of alcohol conditioned place preference or
taste aversion under standard testing conditions (Sperling et al. 2010; Roma et al.
2008; Anderson et al. 2013; Nguyen et al. 2012).
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A large literature has provided evidence that stress activates the DYN/KOR system
and that increased DYN/KOR activity plays an important role in mediating behav-
ioral responses to various stress events (Crowley and Kash 2015; Knoll and Carlezon
2010; Van’t Veer and Carlezon 2013). Despite an established role for this neuropep-
tide system in stress-related behavior, relatively few studies have examined the
influence of DYN/KOR activity in mediating the interaction between stress and
alcohol reward (Becker 2017). Although these studies provide evidence to indicate
such involvement, the results have not been consistent. For example, pretreatment
with the KOR antagonist nor-BNI was reported to block stress-induced potentiation
of alcohol conditioned place preference in mice whereas a study in rats reported that
nor-BNI administration further enhanced the effects of stress on alcohol conditioned
place preference (Sperling et al. 2010;Matsuzawa et al. 1999). Evidence suggests that
KOR modulation of alcohol consumption is also influenced by stress conditions.
Mice defeated in multiple social interactions consumed more alcohol than victorious
mice, an effect that was further enhanced by administration of the KOR agonist
U50,488 (Kudryavtseva et al. 2006). In another report, stress-enhanced consumption
in alcohol-dependent mice was blocked by the KOR antagonist LY2444296
(Anderson et al. 2016). Similarly, a study that observed elevated alcohol consumption
in adult rats exposed to isolation stress throughout adolescence found that nor-BNI
administration reversed this effect (Karkhanis et al. 2016a). The same report
demonstrated enhanced sensitivity to KOR agonist-induced suppression of dopamine
release in the NAc of rats reared in isolation, suggesting long-lasting adaptations of
the KOR system following stressful experiences (Karkhanis et al. 2016a). Taken
together, a growing body of literature demonstrates that pharmacological manipula-
tion of KORs influences the motivational effects of alcohol. This includes alcohol
self-administration as well as the conditioned rewarding effects of alcohol. A host of
variables, including dose, timing of drug administration, and stress experience, likely
accounts for differences in outcomes. Future studies will be needed to tease apart
these important variables, on both mechanistic and behavioral levels.

2.5 Brain Circuitry Analyses of DYN/KOR System Involvement
in Alcohol Actions

Substantial evidence indicates that the NAc is an important site where KOR activity
modulates alcohol-induced dopamine release. Indeed, systemic administration of alcohol
has been shown to provoke DYN release in the NAc (Marinelli et al. 2006), and
pharmacological activation of KORs has been reported to reduce alcohol-evoked dopa-
mine release in this brain region (Lindholm et al. 2007). Although the agonist effect was
independent of alcohol exposure history, KOR antagonism increased alcohol-evoked
dopamine release in rats with a history of repeated alcohol treatment, but not in saline-
injected controls (Lindholm et al. 2007). Additional evidence indicates that chronic
alcohol exposure results in increased sensitivity of KORs in the NAc. That is, KOR
agonist-induced suppression of dopamine release (measured using fast-scan cyclic
voltammetry) was more pronounced in subjects exposed to chronic alcohol (Rose et al.
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2016; Karkhanis et al. 2016b; Siciliano et al. 2015). These adaptations may explain why
blockade of KORs in the NAc shell has been shown to selectively reduce escalated
consumption in alcohol-dependent rats (Nealey et al. 2011). Interestingly, another study
demonstrated that within theNAc shell, subpopulations of DYNneuronsmediate reward
and aversion (Al-Hasani et al. 2015). The effects of alcohol on these subpopulations have
yet to be examined and are worthy of future study.

Alcohol administration also results in DYN release in the CeA (Lam et al. 2008).
Induction of alcohol dependence via repeated alcohol vapor inhalation has been
shown to increase both DYN peptide expression and KOR signaling within the CeA
(Kissler et al. 2014). Accordingly, site-specific administration of the KOR antagonist
nor-BNI into this area resulted in reduced alcohol consumption in dependent rats,
but not their nondependent counterparts (Kissler et al. 2014). KOR ligands have also
been reported to influence the effects of alcohol on GABAergic transmission within
the CeA (Kang-Park et al. 2013; Gilpin et al. 2014).

Recent and ongoing research continues to illuminatemechanisms ofDYNmodulation
of neural signaling in other brain regions sensitive to alcohol, although interactions with
alcohol actions have not yet been well characterized. For example, KORs modulate
neurotransmission within multiple projections to the BNST, a brain region implicated in
alcohol seeking that shows stress-induced plasticity (Conrad et al. 2012; Pina et al. 2015).
Activation of KORs on projections from the central amygdala to the BNST inhibits
GABAergic transmission (Li et al. 2012), while stimulation ofKORs on projections from
the basolateral amygdala also inhibits glutamate transmission in the BNST (Crowley
et al. 2016). Blockade of KORs in the BNST eliminates KOR agonist-induced reinstate-
ment of operant alcohol self-administration, suggesting a role for KOR signaling in stress
modulation of alcohol reward (Le et al. 2017).

The PFCmay be another area where the DYN/KOR system interacts with alcohol.
KORs modulate neurotransmission in the PFC, and this brain region is implicated in
the role of stress in the transition to alcohol dependence (Margolis et al. 2006; Tejeda
et al. 2013, 2015; Lu and Richardson 2014; Rodberg et al. 2017). Chronic alcohol
exposure increases prodynorphin expression in the PFC, and a comparison of post-
mortem human brain tissue in alcoholic and control subjects revealed greater expres-
sion of prodynorphin and KOR mRNA in the dorsolateral PFC and orbitofrontal
cortex (Bazov et al. 2013; D’Addario et al. 2013).

3 Orexin/Hypocretin Receptor System and Roles
in Pharmacological and Motivational Effects of Alcohol

In contrast to the DYN/KOR system, the orexin/hypocretin (ORX) system has been
less-extensively studied in the context of alcohol use/misuse. Nevertheless, in the
past 10 years, interest in the role ORX plays in mediating various alcohol actions has
steadily grown. There is also recognition of an intriguing overlap between ORX and
DYN neuropeptides, in part due to co-localization of both peptides in the same
neurons as well as the fact that both systems play fundamental roles in stress and
motivation, particularly for alcohol. These and other relationships between these two
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neuropeptides will be considered further after a discussion of the ORX system and its
role in alcohol use and dependence.

3.1 Orexin/Hypocretin Peptide/Receptor System Anatomy

The ORX system is made up of a population of neurons located exclusively in the
tuberal hypothalamus, in a region typically referred to as the lateral hypothalamic
area. First discovered in rodents in 1998 where it was termed orexin (Sakurai et al.
1998) and hypocretin (de Lecea et al. 1998) by different research groups, this
relatively restricted population of neurons influences a wide range of behaviors.
There are approximately 70,000 ORX neurons in humans and approximately 3,000
in rats (Peyron et al. 1998; Nambu et al. 1999), but these neurons project widely
across the central nervous system. ORX neurons are defined by the expression of the
protein precursor prepro-orexin (preprohypocretin), which is cleaved into two active
peptides: the 33 amino acid orexin-A (ORX-A), also known as hypocretin-1 (HCRT-
1), and the 28 amino acid orexin-B (ORX-B), also known as hypocretin-2 (HCRT-
2). There are two ORX receptors (OXRs), OX1R (HCRTR1) and OX2R (HCRTR2),
which exhibit differential selectivity for ORX-A vs. ORX-B, and activation of these
receptors mediates numerous physiological functions.

ORX neurons residing in the hypothalamus project widely across the extent of the
brain and spinal cord (Peyron et al. 1998; Date et al. 1999; Nambu et al. 1999; van
den Pol 1999; Nixon and Smale 2007). Among the many projection targets, the ORX
system strongly innervates a number of regions associated with motivation for
natural and drug rewards, as well as those associated with emotional regulation,
including stress. This includes projection sites with dense ORX terminal expression
such as the noradrenergic locus coeruleus, dopaminergic midbrain areas such as the
VTA and substantia nigra, the serotonergic raphe nuclei, the cholinergic laterodorsal
and peducopontine nuclei, BNST, CeA, a number of thalamic nuclei, and more local
projections among numerous nuclei across the extent of the hypothalamus (Peyron
et al. 1998; Date et al. 1999; Nambu et al. 1999; Nixon and Smale 2007). Other brain
areas, particularly those involved in regulating sleep and arousal, such as the
noradrenergic locus coeruleus and the histaminergic tuberomammilary nucleus, are
also heavily innervated, demonstrating an additional important role for this system in
regulating arousal states (Sakurai 2007). As reviewed below, ORX activity in a
number of these targets has been shown to have profound effects on reward seeking,
including alcohol seeking, and emotional arousal and regulation.

3.2 ORX Receptor Pharmacology and Signaling

As noted above, ORX peptides exert their effects through two receptor subtypes: the
orexin-1 and orexin-2 receptors (OX1R and OX2R, also referred to as HcrtR1 and
HcrtR2). OX1R binds ORX-A with high affinity and ORX-B with low affinity, whereas
OX2R binds equally to both peptide subtypes. OX1R coupleswith Gq proteins, resulting
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in excitation via nonselective cation channels, voltage-gated Ca2+ channels, Na+/Ca2+
exchange, and inhibition of K+ channels, whereas OX2R is Gq- and/or Gi/Go-protein
coupled, resulting in more complex signaling outcomes depending on G protein profile
(Tang et al. 2008; Kukkonen and Leonard 2014; Sakurai 2014; Kukkonen 2017; Schone
and Burdakov 2017). OXRs can also have indirect effects via regulation of NMDA
receptors, or via altering presynaptic glutamate or GABA release (Li et al. 2002; Liu et al.
2002; Borgland et al. 2006, 2008; Baimel and Borgland 2012). OX1Rs and OX2Rs are
widely distributed across the brain. Within hypothalamic nuclei there is some overlap
between receptor subtypes, but inmany other regions the two receptor subtypes appear to
exhibit complementary expression, with either exclusive or biased expression of one
subtype over another (Trivedi et al. 1998; Hervieu et al. 2001; Marcus et al. 2001;
Cluderay et al. 2002). For example, OX1R expression is more predominant in areas such
as PFC, amygdala nuclei, CA1 andCA2 (but not CA3) hippocampal regions, laterodorsal
tegmental area, and locus coeruleus. In other areas, such as the VTA, as well as a number
of thalamic nuclei, receptor distribution is approximately equivalent, and OX2Rs pre-
dominate in other regions, notably in a number of hypothalamic nuclei, brainstem nuclei,
lateral habenula, and other regions. This semi-differential distribution has led some
investigators to propose that signaling through the OX1R is more related to emotional
and motivational control whereas OX2R signaling conveys the influence of the ORX
system on arousal (Sakurai 2014). However, this dichotomy is far from exclusive. For
example, the locus coeruleus,which regulates sleep and arousal, exhibits extremely dense
expression of OX1Rs. In contrast, the shell of the NAc, an area closely associated with
appetitively motivated behaviors, preferentially expresses OX2Rs (Trivedi et al. 1998;
Hervieu et al. 2001; Marcus et al. 2001; Cluderay et al. 2002). Thus, attributing specific
behavioral effects to actions at OX1Rs vs. OX2Rs remains a challenge, and this includes
ORX-mediated effects on alcohol-related behaviors.

The effects of ORX on postsynaptic neurons are largely excitatory, via mechanisms
noted above. The extensive projections of the ORX system, particularly to areas such as
the VTA, locus coeruleus, BNST, and multiple thalamic, hypothalamic, and amygdalar
nuclei, indicate that these neurons produce a potent excitatory drive on a number of
regions influential in arousal, emotion, and motivation. For example, ORX release in the
VTA produces excitatory plasticity and increases firing of dopamine neurons in vitro and
in vivo (Borgland et al. 2006; Korotkova et al. 2006; Muschamp et al. 2007; Moorman
and Aston-Jones 2010), as well as elevating dopamine release in VTA targets such as the
PFC and NAc (Vittoz and Berridge 2006; Calipari and Espana 2012; Prince et al. 2015).
ORX neurons co-release glutamate, in addition to other peptides such as DYN (Chou
et al. 2001; Rosin et al. 2003; Schone et al. 2012; Muschamp et al. 2014). Consequently,
the effects of ORX neuron activation on downstream targets are complex and may
be multimodal depending on the nature of neurotransmitter/peptide cocktail released
(Schone et al. 2014; Schone and Burdakov 2017). Exactly what might control this
complex signaling is poorly understood, and may derive from activation of differential
inputs. In addition, at least two subtypes of ORX neurons have been described based on
physiological responses to glucose (Williams et al. 2008; Schone et al. 2011), whichmay
contribute to heterogeneous output. The overall influence of ORX neuron activation and,
in particular, ORX signaling through OX1R and OX2R is excitatory. However, multiple
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factors including co-transmission of glutamate and inhibitory neuropeptides such as
DYN result in complex signaling profiles, which likely contribute to dynamic effects
on behavior. In addition, OX2R signaling can work through Gi/o pathways which can
have an inhibitory effect on target neurons (Muroya et al. 2004). However, exactly how
Gi/o interacts with Gq is unclear, and the Gi/o effects on alcohol use and other motivated
behaviors are largely unknown.

3.3 ORX System and Motivational Behaviors

The ORX system has been implicated in a wide range of different behavioral functions
(Willie et al. 2001; Sutcliffe and de Lecea 2002; Kuwaki and Zhang 2012; Giardino and
de Lecea 2014; Mahler et al. 2014; Sakurai 2014; Flores et al. 2015; James et al. 2017a;
Schone and Burdakov 2017). Early work focused on the role of ORX activity in the
regulation of feeding and control of sleep and arousal. The association of theORXsystem
with feeding was initially based on the observation that intracerebroventricular ORX
administration increased food intake (Sakurai et al. 1998). The relationshipwith sleep and
arousal was initially based on the findings that the absence of ORX neurons and ORX in
the CSF is a major, if not primary, factor in the disrupted sleep-wake balance seen in
narcolepsy (Lin et al. 1999; Nishino et al. 2000; Thannickal et al. 2000). Many indepen-
dent lines of research have validated both of these associations. Of particular interest with
respect to the role of ORX in regulatingmotivation, ORX signaling is especially engaged
when behavior is directed at highly palatable (rewarding) food such as chocolate, as
opposed to rodent chow (Clegg et al. 2002; Cason et al. 2010). Thus, palatable foods that
are sweet and high in fat drive activation ofORXneurons, and seeking of these rewarding
substances are blocked with treatment with the OX1R antagonist SB334867 (Nair et al.
2008; Borgland et al. 2009; Choi et al. 2010). This finding that theORX system is closely
associated with highly reinforcing food rewards is relevant in the context of drugs of
abuse and particularly alcohol. For both alcohol and other drugs of abuse, a number of
studies have demonstrated parallel findings – that the ORX system plays an important
role when motivation for the drug outcome is high (Borgland et al. 2009; Moorman and
Aston-Jones 2009; Espana et al. 2010;Hollander et al. 2012;Mahler et al. 2014; Bentzley
and Aston-Jones 2015; Lopez et al. 2016).

The ORX system also plays a critical role in regulating emotional state. In particular,
this system has been strongly connected with regulation of stress, anxiety, and fear
(Johnson et al. 2012; Kuwaki and Zhang 2012; Giardino and de Lecea 2014; Flores
et al. 2015; James et al. 2017a), in part due to its influence on some of the systems that also
control arousal (e.g., locus coeruleus) and motivation (e.g., BNST and amygdala). ORX
neurons are activated following acute stress, and pharmacological or genetic decreases in
ORX signaling result in blunted responses to stress challenges. ORX neurons also
regulate fundamental physiological processes such as respiration, cardiovascular func-
tion, and temperature, via control of autonomic nuclei in the hypothalamus and brainstem
(Madden et al. 2012; Kuwaki 2015; Carrive and Kuwaki 2017). Many of these functions
are linked in order to regulate an overall adaptive active coping response to internal or
external challenges.
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3.4 Alcohol and the ORX System

A large body of evidence implicates a role for ORX signaling in alcohol- and drug-
seeking/taking behaviors (Mahler et al. 2012; Baimel et al. 2015; Baimel and
Borgland 2017; James et al. 2017b). In general, studies have shown that the ORX
system is particularly involved in alcohol/drug-seeking behavior when motivation,
demand, or effort requirements are high. This has led to the proposal that a major
function of the ORX system is motivational activation, or to energize an individual
to respond to needs, challenges, or potential rewards (Mahler et al. 2014). That this
fundamental process gets coopted by alcohol and other drugs of abuse is important
for understanding fundamental mechanisms of the addiction process. The relation-
ship between ORX system function and motivational effects of alcohol was first
investigated by Lawrence and colleagues in 2006 (Lawrence et al. 2006). Since then,
there has been a growing interest in understanding contributions of the ORX system
to alcohol use/misuse (Lawrence 2010; Mahler et al. 2012; Brown and Lawrence
2013; Barson and Leibowitz 2016; Walker and Lawrence 2017).

3.4.1 Effects of Alcohol Exposure on ORX Expression and Function
in Brain

As noted above, the earliest demonstrations of a contribution ofORX signaling to alcohol
seeking came from Lawrence and colleagues who reported increased prepro-ORX
mRNA after chronic alcohol consumption (Lawrence et al. 2006). This was observed
exclusively in alcohol-preferring iP rats originally derived from the Indiana University
selectively bred line (Lumeng et al. 1977), but not in genetically selected non-preferring
rats, supporting the notion that one link between ORX and alcohol is intensity of
motivation or preference. More recent work by this group revealed no effect of alcohol
self-administration on number of ORX positive neurons (Kastman et al. 2016), but a
separate group demonstrated increased ORX mRNA following chronic alcohol, with
expression levels correlated with preference (Barson et al. 2015). Other studies have
reported mixed results as well. For example, both decreases and increases in ORX
mRNA and peptide levels have been reported after acute or chronic alcohol administra-
tion in outbred rats (Morganstern et al. 2010). In studies involving binge-like and chronic
alcohol drinking in mice, no changes in mRNA expression were noted, but decreases in
ORX peptide levels were observed (Olney et al. 2015, 2017). Finally, zebrafish given
chronic alcohol exposure exhibited signs of alcohol preference and increased ORX
mRNA expression (Sterling et al. 2015), suggesting conservation of coarse aspects of
encoding for this neuropeptide across species. Thus, while a number of studies have
demonstrated that alcohol exposure influences ORX mRNA and peptide expression,
differences in outcome likely reflect a number of differences in experimental parameters
(e.g., species, alcohol dose, exposure duration).

A number of studies have demonstrated an association between alcohol exposure
and activation of ORX neurons, primarily using the immediate early gene c-Fos as a
measure of activation. For example, rats exhibiting relapse-like responding for
alcoholic beer exhibited increased activation of ORX neurons, particularly in the
lateral hypothalamus, which correlated significantly with intensity of responding
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(Hamlin et al. 2007; Millan et al. 2010). Evidence for ORX neuron activation was
also demonstrated in studies involving cue and context-related alcohol-seeking
behavior in rats. In these studies, Fos activation of ORX neurons in the lateral
hypothalamus was correlated with home-cage alcohol-seeking responses whereas
context-driven reinstatement responding was correlated with ORX neuron activation
in the dorsomedial and perifornical hypothalamic nuclei (Moorman et al. 2016).
Discriminative-stimulus driven reinstatement in Wistar rats produced significant
increases in c-Fos activation of ORX neurons across the lateral hypothalamus
(Dayas et al. 2008), as did stress-induced reinstatement of alcohol responding in iP
rats (Kastman et al. 2016) and sensitization following repeated alcohol injections in
mice (Macedo et al. 2013). As with ORX mRNA expression, immunohistochemical
measurements of ORX neuron activity present somewhat variable results across
studies, particularly with respect to the relationship between specific behaviors and
hypothalamic subregions, but they reliably show an impact of alcohol responding
and consumption.

A small number of studies have investigated the relationship between ORX
expression and alcohol use/dependence. Alcohol-dependent patients have been
shown to exhibit higher levels of ORX expression during early (1–7 days) vs. late
(multiple weeks) abstinence (Bayerlein et al. 2011). Similarly, plasma ORX levels
were correlated with depression-like symptoms in early withdrawal in alcohol-
dependent patients, but these correlations diminished after several weeks of continued
abstinence (von der Goltz et al. 2011). Thus, although limited in scope, there is some
clinical evidence to indicate a correlative relationship between ORX system activity
and chronic alcohol use and withdrawal. The exact factors underlying these
correlations (e.g., craving, stress of withdrawal, etc.) remain to be elucidated, but
these studies point to the ORX system as a potential target for dependence treatment.

3.4.2 Effects of ORX Receptor Activation and Blockade on Alcohol-
Related Behaviors

The majority of studies investigating the influence of the ORX system on alcohol-
related behaviors have involved pharmacologically manipulating OXRs in mice and
rats. In general, these studies have shown that antagonism of OX1Rs and, in some
cases, OX2Rs results in reduced alcohol self-administration and relapse-like behav-
ior. In many cases, the effect of OXR antagonism was found to be most robust in
animals exhibiting high motivation for alcohol, suggesting a role for the ORX
system in heightened levels of seeking and drinking as typically seen in alcohol
dependence.

Antagonism of OX1Rs, particularly through systemic administration of drugs such
as SB334867 (SB), has been shown to decrease motivational aspects of alcohol self-
administration. For example, SB administration significantly decreased both operant
responding for 10% alcohol and cue-induced reinstatement of alcohol seeking
(Lawrence et al. 2006), findings that have been replicated in various rat strains at
varying alcohol concentrations (Richards et al. 2008; Jupp et al. 2011b; Martin-Fardon
and Weiss 2014; Moorman et al. 2017). Systemic SB treatment also decreased stress
(yohimbine)-induced alcohol relapse-like behavior (Richards et al. 2008) and
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discriminative stimulus-induced reinstatement responding (Jupp et al. 2011a). Neuro-
peptide S infused into the lateral hypothalamus also induced reinstatement of alcohol
seeking, and this behaviorwas significantly reduced by pretreatmentwith SB (Cannella
et al. 2009). Neuropeptide S may have direct effects on ORX neurons via a Gq/s
protein-coupled receptor (NPSR), as over 40% of ORX neurons exhibit NPSR expres-
sion and neuropeptide S axons are found in apposition to ORX neurons (Ubaldi et al.
2016). OX1R antagonism decreased progressive ratio breakpoint for alcohol, but not
sucrose, suggesting a potentially unique role in alcohol vs. natural reward motivation
(Jupp et al. 2011b). SB treatment also decreased alcohol consumption when it was
offered in the home-cage, as did the dual OX1R/OX2R antagonist almorexant. In
contrast, selective antagonism of OX2Rs (with LSN2424100) had no effect on alcohol
drinking (Anderson et al. 2014; Moorman and Aston-Jones 2009). Another study
corroborated these findings, demonstrating that systemic almorexant treatment
decreased operant alcohol self-administration, although sucrose self-administration
was also influenced (Srinivasan et al. 2012). Decreased alcohol consumption following
OX1R antagonism has also been shown in mouse models of heavy drinking, such as
binge-like consumption and escalated alcohol intake resulting from repeated cycles of
chronic intermittent ethanol (CIE) vapor exposure (Carvajal et al. 2015; Olney et al.
2015; Lopez et al. 2016). In a model of compulsive-like alcohol drinking (C57BL/6J
mice exhibiting aversion resistance to quinine-adulterated alcohol), OX1R antagonism
(SB), but not OX2R antagonism (TSC-OX2-29) reduced intake of alcohol presented
alone or in combination with quinine (Lei et al. 2016a). The OX1R antagonist SB
pretreatment also blocked alcohol conditioned place preference and alcohol sensitized
hyperlocomotion in mice (Voorhees and Cunningham 2011; Macedo et al. 2013).
Taken together, a substantial body of evidence has emerged indicating that OXR
antagonism, in particular OX1R antagonism, decreases motivational aspects of alcohol
self-administration behavior.

One observation that appears consistent across a number of studies is the finding
that OXR antagonism is more potent and/or efficacious when motivation for alcohol
seeking and consumption is at a high level, either due to natural variation in alcohol
preference, or through measures employed to produce dependence-like states. Sup-
port for this contention comes from studies demonstrating that the OX1R antagonist
SB produces more robust decreases in alcohol self-administration and relapse-like
behavior in rats genetically selected for high alcohol preference (Lawrence et al. 2006;
Dhaher et al. 2010; Anderson et al. 2014), as well as outbred rats with a high
propensity for alcohol taking behavior (Moorman and Aston-Jones 2009; Moorman
et al. 2017). Further, OX1R antagonism, using either SB or another selective antago-
nist (GSK1059865), selectively decreased escalated drinking in dependent
(CIE-exposed) mice without altering more moderate levels of alcohol intake in
nondependent mice (Lopez et al. 2016). Finally, OX1R antagonism was found to be
more effective in reducing compulsive-like alcohol drinking in quinine-resistant (but
not quinine-sensitive) mice (Lei et al. 2016a). Collectively, these findings may have
important clinical implications, as the ORX system may be a particularly attractive
target for treatment of individuals that have transitioned to heavy, compulsive-like
alcohol drinking.
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Despite this growing and compelling evidence, there are some instances in which
either OX1R antagonism has had limited effects or OX2R antagonism has been shown to
more prominently influence alcohol self-administration behavior. For example, in one
study SB treatment had no effect on Pavlovian spontaneous recovery of alcohol seeking
following a period of extinction training, but the drug did decrease renewal of rewarded
alcohol self-administration in female alcohol-preferring rats (Dhaher et al. 2010). This
raises questions about potential sex differences in a line of research primarily dominated
by studies of male rodents. Other studies have found no effect of OX1R antagonism
(using the SB-408124 compound) on alcohol self-administration or conditioned place
preference but, instead, have observed an influence of OX2R antagonism, using the
JNJ-10397049 compound (Shoblock et al. 2011). In contrast to some studies described
above, progressive ratio breakpoints in alcohol preferring P rats were not affected by SB
treatment (nor by OX2R antagonism), but were decreased by the dual OX1R/OX2R
antagonist almorexant (Anderson et al. 2014). Mice in this study exhibited decreased
alcohol and sucrose drinking with all OXR antagonists, suggesting a potent effect of
OXR manipulation on reward consumption in general. In a separate study in mice,
alcohol conditioned place preference was only modestly influenced by SB treatment,
although alcohol-induced hyperlocomotion was decreased (Voorhees and Cunningham
2011). Knockdown of ORX expression using morpholinos had limited effect on
responding for alcoholic beer, raising questions about the exact nature of ORX control
over alcohol-seeking behavior (Prasad and McNally 2014). Thus, although the majority
of pharmacological findings relating ORX to motivational effects of alcohol implicate a
role for OX1Rs, there are certainly exceptions to this rule. These divergent findings
suggest a complex mechanism by which the ORX system regulates alcohol seeking and
consumption, potentially by signaling at different receptors in different brain areas.

3.5 Brain Circuitry Analyses of ORX System Involvement
in Alcohol

As noted above, the ORX system projects widely across the brain. Systemic treatment
with OXR antagonists has been shown to exert direct and indirect effects on behaviors
related to the rewarding effects of alcohol. To further investigate these effects, recent
studies have begun probing brain region-specific OXR signaling in the context of
alcohol-related behaviors. Results from these studies demonstrate a complex framework
in which OX1R signaling in some brain areas regulates alcohol self-administration
behavior whereas OX2R signaling influences it in other brain regions.

Perhaps the most salient target region for ORX signaling is the VTA, given its
prominent role in reward and alcohol/drug-motivated behaviors (Aston-Jones et al.
2010; Brown and Lawrence 2013; Baimel and Borgland 2017). The OX1R antagonist
SB applied directly into the VTA decreased cue-induced reinstatement of alcohol
responding in iP preferring rats (Brown et al. 2016). The dual OX1R/OX2R antagonist
almorexant injected into the VTA decreased self-administration of both alcohol (20%)
and sucrose (5%) in Long-Evans rats (Srinivasan et al. 2012; Prasad andMcNally 2014).
In contrast to these results, SB application to the VTA did not reduce Neuropeptide
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S-enhanced reinstatement of alcohol seeking in rats, nor did administration of the drug
into the noradrenergic locus coeruleus (Ubaldi et al. 2016). Further, SB (and not the
OX2R antagonist TCS-OX2-29) injected into the VTA decreased alcohol consumption
during thefirst hour of consumption in amousemodel of binge-like drinking (Olney et al.
2017). Taken together, there is some evidence indicating that ORX signaling in the VTA
may contribute to regulation of alcohol self-administration and relapse-like behavior.

Other brain regions where ORX signaling could potentially influence alcohol-
seeking/drinking behaviors include the PFC and NAc (Kalivas et al. 2005; Kalivas
2008; Barker et al. 2015; Marchant et al. 2015). Systemic SB treatment that decreased
reinstatement of alcohol seeking also decreased c-Fos expression in the NAc core,
medial prefrontal cortex (mPFC), orbitofrontal cortex, and piriform cortex (Jupp et al.
2011a). Targeted SB application into the mPFC in iP rats significantly decreased
cue-induced reinstatement of alcohol (but not sucrose) responding (Brown et al.
2016). SB injected into the shell subdivision of the NAc or the mPFC decreased
alcohol intake in mice (Lei et al. 2016b), and direct administration of SB into the NAc
shell region decreased alcohol self-administration in mice (Lei et al. 2016b) and rats
(Mayannavar et al. 2016). In contrast, no effect of SB treatment to the insula was
observed (Lei et al. 2016b), which is interesting given the important role for the insula
in regulating alcohol-seeking behavior (Seif et al. 2013) and the noted influence of
ORX in the insula on nicotine seeking (Hollander et al. 2008). In total, however, these
findings demonstrate a role for ORX signaling in both cortical (mPFC) and striatal
(NAc) regions in regulation of alcohol seeking and consumption.

A number of other brain regions have been implicated in mediating effects of
ORX system activity on alcohol-related behaviors. Injections of ORX-A in both the
paraventricular nucleus of the hypothalamus (PVN) and the lateral hypothalamus
increased alcohol consumption (Schneider et al. 2007), potentially through increas-
ing the frequency of drinking bouts (Chen et al. 2014). SB infusion into the PVN
blocked the effects of intra-lateral hypothalamus injection of Neuropeptide S on
reinstatement of alcohol responding, as did SB infusion into the BNST (Ubaldi et al.
2016). Antagonism of both OX1Rs and OX2Rs in the CeA reduced alcohol intake in
a mouse binge-drinking model (Olney et al. 2017). ORX also interacts with relaxin-
3/RXFP3, another peptide system implicated in alcohol-seeking behavior (Ryan
et al. 2014). ORX-A, signaling through OX2Rs, excites relaxin-3 neurons in the
nucleus incertus, and OX2R antagonists (but not OX1R antagonists) infused into the
nucleus incertus decrease stress-induced reinstatement of alcohol responding in
alcohol preferring iP rats (Kastman et al. 2016). Another nucleus that may regulate
alcohol seeking through OXR2 signaling is the paraventricular nucleus of the
thalamus (PVT). This area receives strong ORX projections and is gaining attention
as a potential major regulator of motivated behavior and drug seeking (Martin-
Fardon and Boutrel 2012; James and Dayas 2013; Matzeu et al. 2014, 2016),
including alcohol-seeking behavior (Hamlin et al. 2009). Recent work has shown
that alcohol drinking increases ORX peptide and OX2R expression in the anterior
PVT, that ORX-A and ORX-B infusions into the anterior PVT increase alcohol
intake, and that OXR antagonists, particularly those targeting OX2Rs, in the anterior
PVT decrease alcohol consumption (Barson et al. 2015), potentially through
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interaction with the substance P system (Barson et al. 2017). Thus, ORX system
activity within a number of brain regions appears to play a role in modulating
alcohol-related behaviors. Future work in this area will be critical for understanding
the anatomical and network basis for these effects.

4 Potential Overlap Between ORX and DYN/KOR Systems
in Mediating Alcohol-Related Behaviors

At first glance it may seem counterintuitive to group theORX andDYN systemswhen
considering peptidergic regulation of alcohol seeking, particularly when considering
the diversity of neuropeptides that influence alcohol actions (Barson and Leibowitz
2016). However, there are a number of interesting intersection points to consider in
this regard. Most prominently, almost all ORX neurons co-express DYN, and both
peptides are packaged in the same vesicles and are co-released (Chou et al. 2001;
Crocker et al. 2005; Li and van den Pol 2006; Muschamp et al. 2014; Baimel and
Borgland 2017), although ORX is not found in DYN neuron populations outside the
lateral hypothalamus. These findings indicate a close degree of coupling between
ORX and at least one population of DYN neurons. That is, when “ORX” neurons in
the lateral hypothalamus are activated, so are “DYN” neurons. Furthermore, OXRs
and KORs are located in many of the same regions, including those in which both
peptides are known to regulate motivational effects of alcohol (e.g., VTA, NAc,
BNST, CeA, and PFC) (Fig. 1). Although DYN projections to each of these regions

VTA CeA 

LH 

mPFC 

NAcS 
NI 

BNST 

PVN 

PVT 

Fig. 1 Brain regions in which pharmacological manipulation of kappa opioid receptors (red),
orexin receptors (blue), or both (purple) influences ethanol consumption are shown. Blockade of
orexin receptors in the medial prefrontal cortex (mPFC), ventral tegmental area (VTA), nucleus
incertus (NI), and paraventricular nucleus of the thalamus (PVT) results in decreased drinking.
Conversely, activation of orexin receptors in the PVT increases drinking. Orexin and kappa opioid
receptor agonists exert opposing effects on ethanol intake in the lateral hypothalamus (LH) and
paraventricular nucleus of the hypothalamus (PVN), with orexin agonists increasing drinking and
kappa opioid receptor agonists decreasing drinking. Antagonism of both orexin and kappa opioid
receptors in the nucleus accumbens shell (NAcS) reduce ethanol consumption. Within the central
nucleus of the amygdala (CeA), blockade of kappa opioid receptors reduces ethanol intake. Mouse
brain outline by Jonas Töle
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may originate from multiple sources, the shared receptor profiles across the two
systems suggest a possible interaction in signaling.

ORX and DYN have largely opposing physiological effects, with OXR signaling
primarily producing excitatory effects and KOR signaling producing inhibitory
responses in postsynaptic neurons. This raises an interesting question about what
purpose is served by co-release of these peptides. Individual dopamine neurons of
the VTA are most commonly responsive to both peptides, though some neurons are
selectively responsive to ORX vs. DYN (Muschamp et al. 2014). Similar effects
have been seen in the basal forebrain (Ferrari et al. 2016), and will presumably be
discovered in other co-target regions. The interplay between these systems may also
serve as feedback or gating mechanisms within the lateral hypothalamus, as ORX
activates ORX/DYN neurons via glutamatergic interneurons (Li et al. 2002), and
these neurons are directly inhibited by DYN (Li and van den Pol 2006). These initial
studies suggest that either a balance of ORX/DYN release or a balance of OXR/KOR
expression and function regulates excitatory/inhibitory profiles. Alternately, it is
possible that co-release is precisely balanced to produce a hybrid response that is
neither purely excitatory nor inhibitory, but perhaps involves more fine-tuned
responses mediated by specific intracellular signaling pathways (Robinson and
McDonald 2015). The interaction may also involve differential regulation of inputs
or outputs depending on which other pathways are engaged during behavior (Baimel
et al. 2017). It is also of note that expression of these peptides is under control of
different promoters, which may be activated at different times during behavior. So,
synthesis and release may be differentially regulated by the ORX/DYN neurons
themselves.

The ORX and DYN systems also mediate different behavioral profiles – ORX more
appetitive, DYN more aversive. ORX may facilitate reward motivation by occluding
DYN anti-reward signaling, as recently demonstrated in the first behavioral study
to directly address this question (Muschamp et al. 2014). Systemic or intra-VTA SB
increased brain stimulation threshold levels and decreased impulsivity, and either SB
treatment in rats or OXR1 knockdown in mice reduced cocaine self-administration.
Interestingly, pretreatment with the KOR antagonist nor-BNI ameliorated all of these
changes in behavior. This provides support for the fact that, at least in the VTA and
probably elsewhere, the ORX and DYN systems serve opposing or regulatory roles over
one another. On the other hand, binary distinctions between the two systems may be
unrealistic, given that ORX signaling is also associated with stress and arousal. Despite
knowing for over 15 years that these systems overlap, we are still at the beginning of
understanding the meaning of ORX/DYN co-expression and co-release. Exactly how
these interactions contribute to motivational effects of alcohol, and the therapeutic
potential of these interactions, remains to be investigated.

Despite some physiological and behavioral differences, there are significant
commonalities between ORX and DYN systems that are particularly relevant with
regard to their influence on the motivational effects of alcohol. Orexins are known to
play a role in the regulation of food/water intake (e.g., Sakurai et al. 1998; Kunii et al.
1999) and dynorphins have been shown to influence consumption of food and
palatable solutions (e.g., Morley and Levine 1983; Beczkowska et al. 1992). These
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peptides may exert their effects to a greater degree under conditions of high motiva-
tion (hunger or thirst resulting from deprivation). Likewise, both systems have been
shown to be especially effective in altering alcohol drinking when motivation for the
drug is high; the effects of OXR and KOR manipulation on alcohol consumption are
greater in subjects that exhibit higher levels of drinking and in models of binge-
drinking and dependence-related escalated drinking (Lindholm et al. 2001; Lawrence
et al. 2006; Walker and Koob 2008; Moorman and Aston-Jones 2009; Anderson
et al. 2014, 2016; Olney et al. 2015; Lopez et al. 2016). Interestingly, under these
conditions of apparent high motivation for alcohol, pharmacological manipulation of
ORX and KOR receptor systems is selective in influencing alcohol intake relative to
motivation for natural rewards (e.g., sucrose). Further, ORX and DYN may play
an enhanced role in signaling stress and arousal in these circumstances, as these
behavioral components are integral features of motivated action that help focus
attention on the target goal. Thus, motivation for high levels of alcohol consumption
may result, at least in part, from activation of these peptide systems in a manner that
redirects their role from regulating motivation towards natural rewards to driving
elevated motivational states that engender high alcohol intake.

Although the exact mechanisms by which ORX and DYN systems influence alcohol
seeking and consumption are not fully understood, it is reasonable to assume that
chronic alcohol-induced adaptations in these systems contribute to the more selective
effects on self-administration associated with dependence. Synaptic plasticity of DYN
and ORX neurons induced by chronic alcohol, as observed in studies of other drugs of
abuse, is a likely mechanism (Li and van den Pol 2008; Sirohi et al. 2012; Yeoh et al.
2012; Rao et al. 2013). However, the precise adaptations that may occur upstream to
alter excitability in DYN and ORX neurons remain unknown. One possibility may
involve selective alteration of different pathways for these peptides following chronic
alcohol exposure. That is, chronic alcohol may weaken the synaptic strength of certain
inputs associated with pathways that subserve motivational behavior directed at natural
rewards while simultaneously enhancing synapses from regions that are especially
activated by alcohol-associated cues or stress. Alternately, chronic alcohol may produce
synaptic changes in downstream targets to promote enhanced motivation for alcohol, as
has been seen in studies of psychostimulants and opioids (Baimel et al. 2015), either
through direct changes in peptidergic signaling at targets or indirectly through enhance-
ment or suppression of glutamatergic or GABAergic signaling, as observed in ORX and
DYN signaling in the VTA (Margolis et al. 2005; Borgland et al. 2006, 2008). Yet
another possibility is that chronic alcohol exposure may produce changes at a genomic
level within these neural populations. That is, promoters may be up- or down-regulated,
biasing regulation and activity of specific DYN and ORX pathways that underlie
motivational behavior. Supporting this idea, alcohol exposure in the dorsal striatum
was shown to activate brain-derived neurotrophic factor (BDNF) signaling cascades that
result in elevated preprodynorphin mRNA and increased DYN translation; in turn, DYN
signaling was shown to mediate the decreased alcohol consumption associated with
increased BDNF (Logrip et al. 2008).

These considerations are relatively speculative, largely because there is a general
paucity of information regarding mechanisms by which chronic alcohol exposure

Contribution of Dynorphin and Orexin Neuropeptide Systems to the. . . 491



functionally alters DYN and ORX systems. Future work utilizing contemporary
experimental approaches will no doubt further advance our understanding of how
chronic alcohol influences these peptide systems at the molecular, neuronal, and
circuitry levels of analyses. This work, in turn, will shed valuable insight regarding
the viability of targets within the DYN and ORX systems as potential therapeutics
for tempering excessive alcohol consumption.

5 Summary

A large body of evidence indicates that both DYN and ORX are associated with stress
and reward motivation, with implications that these neuropeptide systems play a signifi-
cant role in contributing to psychiatric disorders including anxiety, depression, and
addiction. The neuroanatomical distribution of both neuropeptide systems overlaps in
brain regions implicated in the motivational effects of alcohol, including the PFC, NAc,
BNST, CeA, and VTA. Accordingly, numerous reports have indicated that both DYN
and ORX modulate alcohol intake, particularly when motivation to consume alcohol is
high, suggesting that both neuropeptide systemsmay be promising therapeutic targets for
the treatment of alcohol dependence. Interestingly, despite evidence thatORX is typically
colocalized with DYN, and that co-release of these neuropeptides can produce opposing
effects on dopamine neurons in the VTA, the implications of these interactions have not
been studied within the context of alcohol reward. Future work disentangling selective
vs. interactive contributions of these neuropeptide systems holds great promise for
development of new and novel treatment approaches for alcohol use disorders.
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Abstract
Alcohol use disorder (AUD) is a chronic relapsing brain disease that currently
afflicts over 15 million adults in the United States. Despite its prevalence, there
are only three FDA-approved medications for AUD treatment, all of which show
limited efficacy. Because of their ability to alter expression of a large number of
genes, often with great cell-type and brain-region specificity, transcription factors
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and epigenetic modifiers serve as promising new targets for the development of
AUD treatments aimed at the neural circuitry that underlies chronic alcohol
abuse. In this chapter, we will discuss transcriptional regulators that can be
targeted pharmacologically and have shown some efficacy in attenuating alcohol
consumption when targeted. Specifically, the transcription factors cyclic AMP-
responsive element binding protein (CREB), peroxisome proliferator-activated
receptors (PPARs), nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB), and glucocorticoid receptor (GR), as well as the epigenetic enzymes,
the DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), will
be discussed.

Keywords
CREB · DNA methylation · DNA methyltransferase · DNMT · Glucocorticoid
receptor · HDAC · Histone acetylation · Histone deacetylase · Nuclear factor
kappa B · PPAR

1 Introduction

Alcohol (ethanol) induces both rapid changes in receptor signaling and the longer-
acting second messenger signal transduction cascades in the brain that culminate in
chromatin remodeling and changes in gene expression. While acute alcohol can lead
to transient changes in these signaling pathways, chronic alcohol use leads to per-
sistent genome-wide epigenetic modifications and associated changes in gene ex-
pression that alter the neuronal circuitry involved in alcohol reward, craving, and the
negative affective state that develops during ethanol withdrawal. Transcription fac-
tors and epigenetic modifiers therefore represent excellent targets for attenuating or
reversing the pathological effects of chronic alcohol use on neuronal circuitry and
ameliorating alcohol use disorder (AUD). In this chapter, we will discuss the role of
transcription factors and chromatin-modifying enzymes in alcohol consumption and
behaviors related to problematic alcohol use. Many pharmacological agents target-
ing transcriptional regulators and epigenetic enzymes have been developed that have
shown efficacy in preclinical models of AUD.

2 Transcription Factors

2.1 Cyclic AMP-Responsive Element Binding Protein

Cyclic AMP-responsive element binding protein (CREB) is a transcription factor that
is widely expressed in the nervous system and is critically involved in neuronal de-
velopment, plasticity, and learning and memory (Silva et al. 1998). Activity of CREB
is modulated by phosphorylation by a number of kinases and phosphatases, including
protein kinase A (PKA, Fig. 1a) and calcium/calmodulin-dependent protein kinases
(Soderling 1999; Mayr and Montminy 2001). Phosphorylated CREB (pCREB) binds
to its coactivator CREB binding protein (CBP), a histone acetyltransferase (HAT) that
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Fig. 1 Simplified diagram of transcriptional pathways and targets for intervention for alcohol use
disorder (AUD) treatment. (a) The cAMP-responsive element binding protein (CREB) pathway.
Adenylyl cyclase (AC) produces cAMP from AMP, activating protein kinase A (PKA). CREB is
phosphorylated (pCREB) by several kinases, one of which is PKA. Once phosphorylated, CREB
translocates to the nucleus and binds to cAMP-responsive elements (CRE) in the DNA to activate
transcription of genes associated with AUD such as Bdnf and Npy. One method to activate CREB is
to use compounds that inhibit the phosphodiesterases (PDEs) that hydrolyze cAMP, thus increasing
cAMP levels and activating PKA. PDE inhibitors reduce alcohol consumption in animal models of
AUD. (b) The peroxisome proliferator-activated receptor (PPAR) signaling pathway. PPARs are
activated by their endogenous ligands, fatty acids (FA), or by synthetic agonists such as the thiazo-
lidinediones and fibrates. Upon ligand binding, PPARs translocate to the nucleus and interact with
retinoid X receptor (RXR) at peroxisome proliferator response elements (PPREs) to regulate gene trans-
cription. PPAR agonists reduce alcohol consumption in animal models of AUD. (c) The nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. NF-κB exists as a dimer of different
subunits and is complexed with an inhibitory molecule, inhibitor κB (IκB) in the cytosol. Activation of
various receptors leads to activation of IκB kinase (IKKβ) and phosphorylation of IκB. This event
targets IκB for degradation, releasing NF-κB for translocation to the nucleus to regulate gene expres-
sion at κB elements. IKKβ inhibitors reduce alcohol consumption in mice. (d) Glucocorticoid receptor
(GR) pathway. GR is held in the cytosol by chaperone proteins. Once bound to its ligand, cortisol
(in humans/nonhuman primates) or corticosterone (in rodents) (CORT), GR translocates to the nucleus
and binds to glucocorticoid response elements (GREs) to regulate gene transcription. The GR antag-
onist mifepristone has shown efficacy in reducing alcohol consumption in rodents and humans
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acts to open chromatin and activate transcription (see Sect. 3), and this complex then
binds to cAMP-response elements (CREs) in the DNA. As such, CREB activity is
tightly regulated and can rapidly change to adapt to different stimuli.

Polymorphisms in both the CREB1 gene (rs35349697) and the CBP gene CREBBP
(rs3025684) are associated with alcohol addiction (Pal et al. 2014; Kumar et al. 2011).
Two key transcriptional target genes of CREB are brain derived neurotrophic factor
(BDNF) and neuropeptide Y (NPY) (Tao et al. 1998; Pandey et al. 2004). Polymor-
phisms in NPY have been associated with alcohol consumption, and a large body of
literature has demonstrated that manipulation of the NPY system in rodents alters
ethanol consumption (reviewed in Robinson and Thiele 2017). BDNF modulates neu-
ronal development, differentiation, and survival and has been implicated in most psy-
chiatric disorders, including addiction (Moonat et al. 2011; Greenwald et al. 2013;
Lobo et al. 2010; Logrip et al. 2015). A single nucleotide polymorphism (SNP) of
BDNF (Val66Met) has been associated with alcohol dependence. Minor allele carri-
ers exhibit resistance to relapse (Wojnar et al. 2009) and decreased brain activation
in networks associated with more severe dependence symptoms (Chen et al. 2015).
Admittedly, this association has not always been found (Nedic et al. 2013; Forero et al.
2015), and discrepancies in study results may be partly attributable to differences in the
frequency of theBDNFVal66Met allele across ethnic populations (Shimizu et al. 2004;
Pivac et al. 2009).

Alcohol regulates CREB activity by modulating its phosphorylation. Acute ethanol
treatment increases, while chronic ethanol attenuates, pCREB (Yang et al. 1998; Pandey
et al. 2004). Similarly, withdrawal from ethanol after chronic exposure is characterized
by decreased pCREB, without changes in total CREB (Pandey et al. 2001). In vitro,
acute ethanol induces an increase in gene expression that is dependent on CREB
phosphorylation, an effect that can be blocked by inhibiting PKA activity (Asher et al.
2002). It is possible that the decreased pCREB that results from chronic alcohol
exposure is a direct result of reduced PKA activity. Chronic intermittent alcohol
exposure in rats results in increased expression of protein kinase A inhibitor alpha (-
PKI-alpha), a member of a family of proteins implicated in reducing PKA activity
(Repunte-Canonigo et al. 2007).

Changes in pCREB may mediate behaviors at each phase of the alcohol addiction
cycle. The development of tolerance to the sedative effect of alcohol is associated with
increased pCREB (Yang et al. 2003). Additionally, rats selectively bred for high al-
cohol consumption (alcohol-preferring, or P rats) have decreased CREB expression,
pCREB, and CRE-DNA binding in the amygdala compared to their alcohol non-
preferring counterparts (Pandey et al. 1999). Withdrawal from chronic alcohol expo-
sure leads to decreased pCREB in the amygdala (Pandey et al. 2001). This reduction of
pCREB in the amygdala, a brain region critical for anxiety-like behavior, is associated
with both high anxiety and increased ethanol preference (Pandey et al. 2003). Similar-
ly, mice that are deficient in CREB display more anxiety-like behavior relative to wild-
type mice and show an attenuation of ethanol-induced anxiolysis (Pandey et al. 2004).
Importantly, restoring CREB function in the amygdala of P rats can reduce both
alcohol intake and anxiety-like behavior (Pandey et al. 2005).

Although there are no pharmacological agents that directly interact with CREB,
CREB activity can be increased indirectly by elevating cAMP levels and activating
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PKA, which is achieved by inhibition of the phosphodiesterases (PDEs) that hydro-
lyze cAMP (Fig. 1a). Two recent review articles have discussed the effects of PDE
inhibitors on alcohol consumption (Logrip 2015; Olsen and Liu 2016), so the results
will only be briefly summarized here (Table 1). Rolipram, a phosphodiesterase-4
(PDE4) inhibitor, increases pCREB in the brain (Hu et al. 2016) and reduces alcohol
intake in rats (Franklin et al. 2015; Wen et al. 2012) and in mice (Hu et al. 2011;
Blednov et al. 2014; Liu et al. 2017). Other PDE4 inhibitors that reduce ethanol con-
sumption in rodents are roflumilast, Ro 20-1724, mesopram, CDP 840, and piclamilast
(Table 1). In addition, the PDE10 inhibitor TP-10 reduces ethanol self-administration
by rats, and the nonselective PDE inhibitor ibudilast reduces ethanol consumption by
high-drinking rats and ethanol-dependent mice (Bell et al. 2015; Logrip 2015). Most
of the aforementioned studies observed a selective reduction in ethanol intake with no
change in water or saccharin intake, but others have shown reductions in saccharin
or sucrose intake with administration of TP-10 and rolipram (Logrip 2015; Franklin
et al. 2015). This initial anhedonic behavior is likely a short-term side effect of drug
administration. Rolipram, for instance, initially reduced sucrose intake in P rats, but
intake normalized after 5 days of exposure, while suppression of ethanol intake con-
tinued (Franklin et al. 2015).

Ibudilast was recently tested in human subjects with mild to severe AUD and was
found to improve mood after exposure to an alcohol cue or stress, and reduced craving,
but did not change the subjective effects of alcohol (Ray et al. 2017). Ibudilast is cur-
rently approved in Japan for the treatment of asthma, multiple sclerosis, and cerebrovas-
cular disease and is generally considered safe. However, ibudilast has gastrointestinal
side effects that include nausea, vomiting, and abdominal pain. Roflumilast is a selective
PDE4 inhibitor that is FDA-approved for the treatment of chronic obstructive pulmo-
nary disease (COPD) and also has gastrointestinal side effects. Another PDE inhibitor
that is currently being used clinically for the treatment of psoriasis is apremilast, a
selective PDE4 inhibitor that may have fewer side effects, but animal and

Table 1 Compounds that act on phosphodiesterases (PDEs) and decrease ethanol consumption

Compound Target
Species
tested

Approved for
clinical use References

Rolipram PDE4 Mice,
rats

No Hu et al. (2011), Blednov et al.
(2014), Liu et al. (2017)
Wen et al. (2012) and Franklin
et al. (2015)

Roflumilast PDE4 Mice Yesa Liu et al. (2017)

Ibudilast PDE
(nonselective)

Rats,
mice

Yesb Bell et al. (2015)

Ro
20-1724

PDE4 Mice,
rats

No Hu et al. (2011)
Franklin et al. (2015)

TP-10 PDE10A Rats No Logrip et al. (2014)

Mesopram PDE4 Mice No Blednov et al. (2014)

CDP 840 PDE4 Mice No Blednov et al. (2014)

Piclamilast PDE4 Mice No Blednov et al. (2014)
aApproved for the treatment of chronic obstructive pulmonary disease (COPD)
bApproved in Japan for the treatment of asthma, multiple sclerosis, and cerebrovascular disorders
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human studies need to be completed to evaluate whether it can reduce ethanol
consumption. PDE inhibitors may, in fact, reduce drinking through their anti-
inflammatory actions (Page and Spina 2011). PDE inhibitors reduce inflammatory
neuroimmune responses, which are induced after chronic alcohol exposure and have
emerged as important promoters of excessive alcohol intake (Crews et al. 2017; Titus
et al. 2015). Thus, the ability of PDE inhibitors to reduce ethanol consumption may not
necessarily be solely related to the enhancement of CREB signaling.

2.2 Peroxisome Proliferator-Activated Receptors

Peroxisome proliferator-activated receptors (PPARs) are a group of transcription fac-
tors belonging to the nuclear hormone receptor superfamily. PPARs are distributed
throughout the body and contribute to a range of biological processes (for a review, see
Berger and Moller 2002). Although primarily known for their role in regulating lipid
metabolism, PPARs have also been shown to play a role in neuroprotection through re-
pression of pro-inflammatory genes, including the inducible nitric oxide synthase gene
(Pascual et al. 2005). PPARs function by translocating to the nucleus upon ligand
binding (Fig. 1b). Saturated and unsaturated fatty acids, and their derivatives, are
the endogenous ligands of PPARs, although a number of synthetic ligands have also
been developed (Berger and Moller 2002). Once in the nucleus, PPARs form het-
erodimers with retinoid X receptors (RXRs) and bind to PPAR response elements
(PPREs) in the promoter region of target genes. Coactivator proteins, such as steroid
receptor coactivator-1 (SRC-1), then bind to the transcriptional complex to help ini-
tiate transcription (Zhu et al. 1996). The efficiency of coactivator proteins to aid in
transcription depends upon which ligand is bound to the PPAR complex, allowing
for dynamic control of PPAR target gene expression (Berger and Moller 2002).

Three isoforms of PPARs exist: PPARα, PPARγ, and PPARβ/δ. While most re-
gions of the brain express all three isoforms, PPARβ/δ has the most widespread
distribution and dense expression in the rat brain, with PPARγ showing the most
restricted expression pattern (Moreno et al. 2004). All three isoforms may work in a
coordinated fashion, with PPARβ/δ regulating the activity of the other two PPAR
types (Aleshin et al. 2013). Importantly, PPARs are expressed in regions of the brain
critical to addiction (i.e., the nucleus accumbens, ventral tegmental area, and amyg-
dala) (Warden et al. 2016) and have recently been implicated in the addiction cycle
(Flores-Bastias and Karahanian 2018). Data from a genome-wide association study
(GWAS) of the genetics of alcoholism, the Collaborative Study on the Genetics of
Alcoholism (COGA), supported an association with the genes encoding PPARγ and
PPARαwith alcohol withdrawal (Blednov et al. 2015). Intriguingly, while no genetic
association was found in that GWAS study for PPARβ/δ, individuals with an AUD
were shown to have altered expression of PPARβ/δ and PPARG coactivator 1 alpha
(PGC-1alpha) protein in the amygdala and cortical regions of the brain (Ponomarev
et al. 2012). Alterations in expression of PPARβ/δ in the brain may then be a
consequence of chronic alcohol use. Alternatively, discrepancies in the results of
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these two studies could suggest that changes in epigenetic regulation of PPARβ/δ
may increase risk for the development of an AUD.

Several agonists of PPARs have proven efficacious in regulating alcohol intake in
animal models (Table 2). Agonists of PPARγ and PPARα (pioglitazone, fenofibrate,
and tesaglitazar), but not PPARβ/δ (GWO742), decreased alcohol intake and prefer-
ence in C57BL/6J mice (Blednov et al. 2015; Ferguson et al. 2014). Furthermore,
fenofibrate and tesaglitazar suppressed ethanol intake in wild-type mice but had no
effect on PPARα null mice, supporting a direct role of PPARα in regulating drinking
(Blednov et al. 2016). Interestingly, PPARα may be acting in a sex-dependent manner
to regulate ethanol intake; while male mice showed reductions in ethanol intake with
fenofibrate and tesaglitazar, female mice showed no response to fenofibrate and an
attenuated response to tesaglitazar relative to male mice (Blednov et al. 2016).

Ferguson and colleagues collected amygdala and prefrontal cortex inmice that were
given agonists to PPARα (fenofibrate), PPARα/γ (tesaglitazar), or PPARα/γ/β

Table 2 Compounds that act on transcriptional regulators and decrease ethanol consumption

Compound Target
Species
tested

Approved
for clinical
use References

Gemfibrozil PPARα Rats Yesa Barson et al. (2009)

Pioglitazone PPARγ Rats,
mice

Yesb Stopponi et al. (2011,
2013) and Blednov
et al. (2015)

Rosiglitazone PPARγ Rats Yesb Stopponi et al. (2011)

Fenofibrate PPARα Mice,
rats

Yesa Blednov et al. (2015,
2016), Karahanian
et al. (2014), and
Ferguson et al. (2014)

Tesaglitazar PPARα/γ Mice No Blednov et al. (2015,
2016) and Ferguson
et al. (2014)

Bezafibrate PPARα/γ/δ Mice Yesa Blednov et al. (2015)

TPCA-1
(2-[(aminocarbonyl)
amino]-5-
(4-fluorophenyl)-3-
thiophenecarboxamide)

IKKβ Mice No Truitt et al. (2016)

Sulfasalazine IKKβ Mice Yesc Truitt et al. (2016)

Mifepristone GR/progesterone
receptor

Rats,
humans

Yesd Vendruscolo et al.
(2012, 2015)

CORT113176 GR Rats No Vendruscolo et al.
(2015)

aApproved treatments for lowering high cholesterol and triglycerides
bApproved for the treatment of type 2 diabetes
cApproved for the treatment of Crohn’s disease and rheumatoid arthritis
dApproved for use in terminating pregnancy and in controlling hyperglycemia in individuals with
Cushing’s syndrome
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(bezafibrate) and, by using gene expression microarrays and a weighted gene
co-expression network analysis (WGCNA), were able to identify gene expression
networks that were associated with reduced drinking (Ferguson et al. 2014). Cell-
type enrichment analysis showed that both fenofibrate and tesaglitazar targeted amyg-
dala GABAergic interneurons in a coordinated manner while the nonselective PPAR
agonist bezafibrate did not. Interestingly, fenofibrate and tesaglitazar both upregulated
neuropeptide and dopaminergic signaling genes in the amygdala (including Avp
[encoding vasopressin], Npy, and Pdyn [encoding dynorphin]), suggesting that these
drugs may be acting in a manner independent of their anti-inflammatory effects to
regulate drinking.

The PPARγ agonist pioglitazone has also been shown to be effective at reducing
alcohol relapse in rats induced by the pharmacological stressor yohimbine (Stopponi
et al. 2013). Interestingly, the opioid antagonist naltrexone (which is FDA-approved
for AUD) reduces cue-induced reinstatement of alcohol seeking but has no effect on
stress-induced reinstatement of alcohol seeking. When naltrexone and pioglitazone
are given together, however, both relapse behaviors are reduced (Stopponi et al. 2013),
suggesting that these drugs may work in independent, complementary manners to re-
duce alcohol relapse risk. In addition to regulating drinking behaviors, pioglitazone
has also been shown to be protective against alcohol neurotoxicity (Kane et al. 2011;
Tajuddin et al. 2014), suggesting that PPAR agonists may be effective treatments for
both AUD and fetal alcohol spectrum disorder (FASD). Indeed, pioglitazone treatment
in neonatal C57BL/6J mice blocked ethanol-induced neuroinflammatory cytokine and
chemokine expression and microglial activation (Drew et al. 2015). Both fenofibrate
and pioglitazone are FDA-approved and are currently being used clinically to improve
metabolism and decrease inflammation for a range of conditions, including insulin re-
sistance (Shah and Mudaliar 2010) and cardiovascular disease (Rosenson et al. 2012).
Patients with AUD may need to be closely monitored on these drugs, given the rare,
but serious, potential side effect of liver disease.

2.3 Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B
Cells

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription
factors are activated by various immunological stimuli and work to amplify inflam-
matory responses. Since their discovery in the immune system, NF-κB factors have
been found in a range of cell types (including neurons and glial cells). NF-κB consists
of a family of five subunit proteins (p50, p65, p52, RelB, and c-Rel) that function as
dimers. The dimers formed by these subunits are specific to cell type and develop-
mental stage, and lend great specificity to downstream targets and function (Perkins
1997). Generally speaking, the p65/p50 heterodimer activates gene transcription
(Li et al. 1994) and is the major NF-κB complex in the adult rodent brain (Yakovleva
et al. 2011), while the p50 homodimer represses transcription (Guan et al. 2005).
These dimers can be found in the cytoplasm under basal conditions bound to inhibitor
κB (IκB) proteins. Upon immune activation, IκB is phosphorylated by the IκB kinase
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(IKKβ) and targeted for degradation, allowing NF-κB to translocate to the nucleus and
regulate gene transcription (Fig. 1c). AlthoughNF-κB is classically activated by immu-
nological stimuli, it can also be activated by glutamate (Guerrini et al. 1995). Activa-
tion of NF-κB by synaptic transmission is dependent, at least partially, on calcium/
calmodulin-dependent protein kinase II (CAMKII) activation (Meffert et al. 2003).
NF-κB activity can also be regulated by additional neurotransmitter systems impli-
cated in addiction. Stimulation of dopamine D2 receptors increases, while stimulation
of D1 receptors decreases, NF-κB activity (Takeuchi and Fukunaga 2003). Opioid re-
ceptors have also been shown to activate NF-κB. Acute and long-term administration
of a μ-opioid receptor agonist in primary cultures of cortical neurons increased NF-κB
activity, an effect that was abolished by concurrent treatment with naloxone (Hou et al.
1996).

NF-κB activation has also been associated with alcohol dependence. Polymor-
phisms in the p50 protein precursor gene NFKB1 are correlated with an increased risk
for developing an AUD, especially in individuals with an early onset of alcoholism
(Edenberg et al. 2008). The brains of chronic alcoholics exhibit dysregulation in the
NF-κB system, with reduced expression of the p50 homodimer and the p65 subunit in
the dorsal prefrontal cortex (Okvist et al. 2007). Because the p50 homodimer is largely
responsible for inhibiting transcription, its downregulation is associated with increased
transcription of over 50 of its target genes in alcoholics (Okvist et al. 2007). The timing
and dose of alcohol exposure plays a large role in determining what effect it will have
on the NF-κB system. Acute alcohol exposure in C57BL/6J mice results in an upre-
gulation of NF-κB activity, while chronic treatment downregulates its activity (Rulten
et al. 2006). As an amplifier of inflammatory responses, NF-κB has been shown to
regulate alcohol-induced neurotoxicity. Binge alcohol exposure activates microglia, in-
creases NF-κB binding to DNA, and results in neurotoxicity in Sprague-Dawley rats
(Crews et al. 2006). Furthermore, alcohol-induced neurotoxicity can be attributed to the
activation of a number of pro-inflammatory genes by NF-κB (Zou and Crews 2010).

Anti-inflammatory compounds may be a promising strategy for manipulating the
NF-κB system. Resveratrol, a natural polyphenol, prevents the acute ethanol-induced
upregulation of NF-κB, decreases ethanol-induced pro-inflammatory gene transcrip-
tion, and increases cognitive performance in rodents (Tiwari and Chopra 2013b). Si-
milar therapeutic effects were found upon treatment with curcumin (Tiwari and Chopra
2013a), a biomolecule found in turmeric with well-defined anti-inflammatory pathways
associated with inhibition of NF-κB (Shakibaei et al. 2007; Singh and Aggarwal 1995).
Administration of the antioxidant butylated hydroxytoluene (BHT) can prevent NF-κB
activation, neural damage, and pro-inflammatory gene induction that occur with etha-
nol exposure (Zou and Crews 2010). Specifically targeting the NF-κB pathway, the
IKKβ inhibitors TPCA-1 and sulfasalazine (which prevent NF-κB from translocating to
the nucleus) were able to reduce ethanol drinking in mice (Truitt et al. 2016) (Table 2).
Sulfasalazine is an FDA-approved anti-inflammatory agent that is commonly used for
the management of rheumatoid arthritis (Meier et al. 2013). Delayed liver toxicity may
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be a serious, albeit reversible, side effect of sulfasalazine in patients with AUD (Masood
et al. 2016). The occurrence of such liver toxicity is rare (<1%) in the general population
and is associated with a slowed acetylation of sulfasalazine metabolites (Tanigawara
et al. 2002). Currently, it is not known whether patients with AUD would be at an
increased risk for sulfasalazine-induced liver toxicity.

2.4 Glucocorticoid Receptors

The connection between stress and alcohol use has long been recognized. Stress has
been shown to escalate drinking in nondependent and dependent populations (Nash
and Maickel 1985; Russell et al. 2017; Spanagel et al. 2014), individuals with a family
history of alcohol dependence exhibit increased stress responsivity (Uhart et al. 2006),
and vulnerability to stress is a reliable indicator of relapse in alcohol-dependent indivi-
duals (Brown et al. 1995;Witkiewitz 2011). There are many targets in the physiological
stress pathway that may contribute to stress-induced drinking (including corticotropin
releasing factor), yet the importance of glucocorticoids has increasingly been recog-
nized (Nash and Maickel 1988; Fahlke et al. 2000).

The hypothalamic–pituitary–adrenal (HPA) axis is the body’s primary stress re-
sponse pathway and is responsible for the release of cortisol (in humans) or cortico-
sterone (in rodents), herein referred to as CORT, from the adrenal glands. CORT
binds to two receptors: the glucocorticoid receptor (GR) and the mineralocorticoid
receptor (MR). CORT has a tenfold higher affinity for MRs than for GRs, which
allows MR occupancy to occur under basal conditions, and therefore restrict CORT
levels at baseline via a negative feedback loop (Rupprecht et al. 1993). In contrast,
GR occupancy occurs under conditions of high CORT release and is therefore large-
ly responsible for facilitating recovery after a stressor, via negative feedback in the
hypothalamus. Additionally, GRs help to promote memories of stressful events by
increasing AMPA receptor expression, and thereby strengthening glutamatergic sig-
naling, in the hippocampus and prefrontal cortex (Joels et al. 2012). The ratio of MR:
GR functionality may confer resilience (when high) or vulnerability (when low) to a
host of psychiatric conditions (ter Heegde et al. 2015). Under basal conditions, GRs
are bound to chaperone proteins in the cytoplasm. Upon ligand binding, GR trans-
locates to the nucleus and binds to glucocorticoid response elements (GREs) on the
DNA that are often distal to the promoter region of target genes (Reddy et al. 2009)
(Fig. 1d). GRs can also bind to noncanonical binding sites on DNA, interact indirect-
ly with DNA via a tethered mechanism with other transcription factors, and interact
synergistically with neighboring transcriptional regulatory proteins at combinatorial
binding sites on the DNA (Ratman et al. 2013). These varied mechanisms allow for
incredible complexity in the downstream transcriptional effects of GRs.

Importantly, alterations in GR expression and activity have been linked to alcohol
abuse risk. Genetic polymorphisms in the GR gene (NR3C1) are associated with age
of onset of alcohol use and abuse, a phenotype strongly correlated with risk of de-
veloping an AUD (Desrivieres et al. 2011). Individuals with alcohol dependence also
exhibit a delayed and/or blunted hormonal response to a pharmacological
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stressor, suggesting dysregulation of the HPA axis with heavy alcohol use (Wand and
Dobs 1991). Alcohol can alter CORT and GR expression in such a way as to promote
intake. Chronic intermittent ethanol exposure in rats increased peak CORT levels,
transiently decreased GR signaling in the medial prefrontal cortex (mPFC) during
early withdrawal, and then increased GR signaling during protracted abstinence, an
effect accompanied by reinstatement of ethanol seeking (Somkuwar et al. 2017).
Similarly, acute alcohol withdrawal in rats produced decreases in GR expression in
other regions of the brain critical to stress/alcohol pathways, including the nucleus
accumbens and bed nucleus of the stria terminalis, whereas protracted abstinence led
to increased GR expression in these brain areas and escalated compulsive alcohol
intake (Vendruscolo et al. 2012). CORT can also contribute to alcohol-induced
neurodegeneration. Chronic alcohol exposure in adrenalectomized rats given high
levels of CORT showed exacerbation of neurodegeneration, while low-dose CORT
(commensurate with basal CORT levels) did not exacerbate alcohol neurotoxicity
(Cippitelli et al. 2014). CORT acutely suppresses the immune system, but repeated
exposures to CORT have been shown to activate microglia in mice, a response
driven by GR activation (Nair and Bonneau 2006). In this way, alcohol may increase
pro-inflammatory responses in the brain via direct mechanisms involving NF-κB
signaling (as mentioned earlier in this chapter) as well as via GR activation.

Inhibition of GRs can reverse many of these alcohol phenotypes. Chronic treatment
with mifepristone, a nonselective GR antagonist, prevented dependence-induced esca-
lations in drinking and compulsive responding for alcohol exhibited during protracted
abstinence in rats (Vendruscolo et al. 2012) (Table 2). Interestingly, mifepristone re-
duced alcohol intake in dependent, but not nondependent rats, suggesting that the GR
dysregulation that occurs with chronic alcohol exposure is a unique risk factor for es-
calated use (Vendruscolo et al. 2015). Mifepristone may also prove to aid in the treat-
ment of symptoms associated with ethanol withdrawal. Rats treated with mifepristone
showed a dose-dependent reduction in several withdrawal-related behaviors, including
tremor and tail rigidity (Sharrett-Field et al. 2013), and a single treatment of mifepris-
tone in mice reduced the cognitive deficits observed during withdrawal (Jacquot et al.
2008). Daily doses of mifepristone have also been shown to attenuate alcohol-induced
hippocampal neurodegeneration in rats in a dose-dependent manner (Cippitelli et al.
2014). Although most work with mifepristone has been conducted in animals, prelim-
inary research in humans has shown promising results. Just 1 week of mifepristone
treatment in alcohol dependent human subjects reduced both alcohol craving and
consumption (Vendruscolo et al. 2015).

Mifepristone shows great promise as a treatment for AUD, but there are limitations
to its use. In addition to blocking GRs, mifepristone is also a potent antagonist of the
progesterone receptor and is most commonly used clinically to terminate pregnancies.
As such, female patients receiving mifepristone can experience vaginal bleeding due to
endometrial thickening. Other side effect profiles are low, even with chronic treatment.
Long-term, low-dose mifepristone used to treat uterine fibroids resulted in no signifi-
cant side effects (Kapur et al. 2016). At much higher doses, mifepristone has been used
to treat Cushing’s syndrome, which is characterized by chronic, excessive exposure to
glucocorticoids. At these high doses, mifepristone can cause more serious side effects,
including hypertension, hypokalemia, and edema (Cuevas-Ramos et al. 2016).
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Taken together, these results suggest that GR activation is critical for both the de-
velopment and maintenance of AUD, and disrupting GR signaling using mifepristone
may be promising for preventing relapse and treating withdrawal symptoms in alcohol-
dependent individuals.

3 Epigenetic Modifiers

3.1 DNA Methyltransferases

Inmammals, DNAmethylation is catalyzed by three DNAmethyltransferases (DNMTs):
DNMT1, DNMT3A, and DNMT3B (Day et al. 2015). These enzymes add a methyl
group to the fifth carbon position of the cytosine (5mC) found adjacent to guanine
(as cytosine-phosphate-guanine dinucleotides, or CpGs) (Zovkic et al. 2013), using the
methyl donor S-adenosyl methionine (SAM). The genome contains regions that are rich
in CpGs, known as CpG islands, which are often found in gene regulatory or promoter
regions. The methyl-binding domain proteins (e.g.,MeCP2) directly interact with 5mC,
that then recruit chromatin-modifying proteins and transcriptional repressor complexes
to the DNA (Zovkic et al. 2013). Thus, DNAm is normally associated with repression
of gene expression (Fig. 2).

DNAm in the brain plays an important role in learning and memory (Zovkic et al.
2013), and evidence is accumulating that DNAm is also important in AUD (Tulisiak
et al. 2017). Increased expression of DNMT1 protein and DNMT3a and 3b genes in
rodent brains, and decreased expression of DNMT3A and 3B genes in human blood
samples, have been observed after chronic ethanol exposure (Barbier et al. 2015;
Bonsch et al. 2006; Warnault et al. 2013; Qiao et al. 2017). The difference in
DNMT3A and 3B expression between brain and blood samples may be due to species
differences (rat vs. human), different tissue-specific responses to ethanol, or duration
or timing of alcohol exposure. Nonetheless, changes in DNMTs after chronic ethanol
exposure indicate that DNAm might be altered by alcohol.

Additional circumstantial evidence that DNAm is altered by alcohol exposure has
come from an analysis of postmortem cerebellum from human subjects with AUD
compared with that of control subjects. In this study, the authors measured increased
transcript levels of enzymes involved in the one-carbon metabolism pathway, which
generates the methyl donor SAM (Gatta et al. 2017). Correlated with this was an in-
crease in the ratio of SAM to s-adenosylhomocysteine (SAH) in the cerebellum, which
would increase the activity of DNMTs (Auta et al. 2017; Gatta et al. 2017). Similar
changes in the SAM/SAH ratio occurred in rat cerebellum after chronic ethanol drink-
ing, indicating that the changes are induced by alcohol (Auta et al. 2017). Finally,
mRNA levels of an enzyme (tet methylcytosine dioxygenase 1, TET1) that removes
methyl groups from cytosines was decreased in the cerebellum of subjects with AUD
(Gatta et al. 2017). Together, these results indicate that changes in enzymes that
regulate DNAm are associated with chronic alcohol exposure and suggest that there
might be increased total DNAm in the brain. However, more detailed studies described
below, examining differentially methylated regions after chronic alcohol use, suggest
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that specific genomic locations associated with excessive drinking can be either hypo-
or hypermethylated.

More explicit evidence that changes in DNAm are associated with alcohol use
was first provided by analysis of genomic DNA from blood cells of alcoholic pa-
tients, with increased total DNAm associated with alcoholism (Bonsch et al. 2004).
Another study found decreased DNAm at repetitive DNA elements (Alu) associated
with alcohol use in lymphocytes from healthy individuals (Zhu et al. 2012). Candi-
date gene approaches in blood cells have demonstrated associations between increased
DNAm and AUD at the promoters for alpha synuclein (SNCA), homocysteine-induced
endoplasmic reticulum protein (HERPUD1), serotonin transporter (SLC6A4), mono-
amine oxidase A (MAOA), prodynorphin (PDYN), and aldehyde dehydrogenase 2
(ALDH2) (Bleich et al. 2006; Bonsch et al. 2005; Philibert et al. 2008a, b; D’Addario
et al. 2017; Pathak et al. 2017). More recently, genome-wide profiling of methylated
regions in whole blood cells or human lymphoblast cell lines has demonstrated several
significant differentially methylated regions or differentially methylated cytosines as-
sociated with high levels of alcohol drinking or dependence (Philibert et al. 2012;
Clark et al. 2015; Liu et al. 2016; Zhang et al. 2013; Zhao et al. 2013). In another study

Fig. 2 Simplified diagram of epigenetic modifications and epigenetic enzyme targets for interven-
tion for AUD. DNA (gray line) is wrapped around histone octamers to form the nucleosome (shown
in blue), the basic unit of chromatin. Top panel: DNA methylation is catalyzed by DNA methyl-
transferases (DNMTs) and is associated with condensed chromatin and repression of gene expres-
sion. DNMT inhibitors reduce alcohol consumption in animal models of AUD. Bottom panel: histone
acetylation is catalyzed by the histone acetyltransferases (HATs) and is generally associated with open
chromatin, increased transcription factor availability, and activation of gene expression. Removal of
acetyl groups from histones is achieved by the histone deacetylases (HDACs). HDAC inhibitors re-
duce alcohol consumption in animal models of AUD
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by Philibert et al. (2014), differentially methylated cytosines were identified in periph-
eral mononuclear cell DNA from subjects with heavy alcohol use compared with con-
trols. Genome-wide DNAm was measured in the AUD subjects as they entered a
treatment facility and ~25 days later, during abstinence. Many of the differentially
methylated cytosines identified between controls and alcohol-dependent subjects were
reversed during abstinence to levels similar to controls. Similarly, Bruckmann et al.
(2017) found that some of the differentially methylated cytosines identified in CD3+ T
cells between healthy controls and alcohol-dependent patients reverted back to control
levels after abstinence, demonstrating a potential causal role for alcohol in changing
DNAm in blood cells.

Studies in blood, lymphoblast cell lines, or other peripheral tissues may not represent
the DNAm patterns in the brain associated with alcohol use. A few studies have found
similar changes occurring in postmortem brain and peripheral tissues. Notably, DNAm
in the promoter for the gene encoding the delta subunit of the GABA-A receptor
(GABRD) was increased in the cerebellum of human subjects with AUD compared
with controls, similar to what has been observed in lymphocytes (Gatta et al. 2017; Liu
et al. 2016). The increase in DNAm in the promoter of GABRD in the cerebellum was
associated with decreased GABRD expression (Gatta et al. 2017). In the precuneus
brain region fromAUD subjects, 244 hypomethylated and 188 hypermethylated regions
were associated with alcohol dependence (Hagerty et al. 2016). These differentially
methylated cytosines overlapped with those found in buccal (cheek) cells collected
from the same subjects (Hagerty et al. 2016). Together, these studies indicate that al-
terations in DNAm in the brain occur with chronic alcohol use and that some of these
changes are similar to those occurring in peripheral tissues, suggesting that DNAm
changes at particular genetic loci could be used as a diagnostic measure for AUD and
possibly treatment response.

Additional genome-wide analysis of DNAm in different brain regions in humans,
and monkeys has been performed in order to identify both region-specific changes in
DNAm and potential new candidate genes for AUD. Analysis of prefrontal cortex
tissue from AUD and control subjects found 1,812 differentially methylated cyto-
sines mapping to 1,099 genes that were significantly associated with AUD (Wang
et al. 2016). In rhesus macaques, differentially methylated regions in the nucleus ac-
cumbens discriminated abstinent monkeys from low/binge drinkers and heavy/very-
heavy drinkers and were located in genes encoding synaptic, cell signaling, and re-
ceptor trafficking mediators (Cervera-Juanes et al. 2017a, b) that could, in theory, be
targets for pharmacological intervention.

Three pharmacological agents have been used to inhibit DNMTs and determine
the effect on behaviors related to AUD in animal models: the nucleoside analogs
5-azacytidine (azacytidine), 5-aza-20deoxycytidine (decitabine), and RG108, a non-
nucleoside DNMT inhibitor (Table 3). Mice treated with azacytidine or decitabine
reduced their ethanol intake in intermittent access procedures that model binge-like
drinking (Warnault et al. 2013; Ponomarev et al. 2017). In alcohol-dependent rats,
infusion of RG108 into the cerebral ventricles resulted in decreased alcohol intake
after a three-week period of forced abstinence when compared with vehicle-treated
rats (Barbier et al. 2015). Similarly, infusion of decitabine into the mPFC of
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chronically drinking rats decreased ethanol intake but increased anxiety-like behavior
(Qiao et al. 2017). The timing of administration appears to be important for the ability
of DNMT inhibitors to reduce ethanol drinking. When ethanol-dependent mice
were given intracerebroventricular azacytidine during the induction of dependence
(immediately before ethanol vapor exposure), they subsequently consumed more
ethanol in a 2BC test (Qiang et al. 2014). However, generally the evidence indicates
that DNMT inhibitors reduce ethanol intake in rodent models of binge and dependence-
induced drinking.

Azacytidine and decitabine are FDA-approved for the treatment of myelodys-
plastic syndrome and acute myeloid leukemia. Both of these drugs have high toxicity
(Gnyszka et al. 2013) and serious side effects of these drugs include increased bruis-
ing, bleeding, and infection. Azacytidine is contraindicated for individuals with liver
tumors, and those with liver and kidney disease should be monitored carefully. As a
result, these drugs should not be used for those individuals with alcohol-associated
liver disease. A newer nucleoside analog, zebularine, has less toxicity (Gnyszka et al.
2013) but has not yet been tested in animal models of AUD. In summary, DNMT
inhibitors represent a promising pharmacotherapeutic approach to treat AUD, but
newer generation compounds, such as zebularine and RG-108, which are not yet
FDA-approved, require further investigation.

Table 3 Compounds that act on epigenetic enzymes and reduce ethanol consumption

Compound Target
Species
tested

Approved
for clinical
use References

Azacytidine DNMT1/3a/3b Mice Yesa Warnault et al. (2013)

Decitabine DNMT1/3a/3b Mice,
rats

Yesa Ponomarev et al. (2017)
and Qiao et al. (2017)

RG108 DNMT1/3a/3b Rats No Barbier et al. (2015)

Trichostatin A (TSA) Class I, II, IV
HDACs

Rats,
mice

No Warnault et al. (2013),
Pandey et al. (2015),
and Sakharkar et al.
(2014)

Suberanilohydroxamic
acid (SAHA,
Vorinostat)

Class I, II, IV
HDACs

Mice,
rats

Yesb Warnault et al. (2013)

Valproic acid (VPA) HDAC1/2 Rats Yesc Al Ameri et al. (2014)

Sodium butyrate (NaB) Class I, IIa
HDACs

Rats No Simon-O’Brien et al.
(2015)

MS-275 (Entinostat) HDAC1/3 Rats,
mice

No Warnault et al. (2013),
Simon-O’Brien et al.
(2015), and Jeanblanc
et al. (2015)

aApproved for the treatment of myelodysplastic syndrome and acute myeloid leukemia
bApproved for the treatment of cutaneous T-cell lymphoma
cApproved for the treatment of seizures, mania, bipolar disorder, and to prevent migraines
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3.2 Histone Deacetylases and Histone Acetyltransferases

DNA wrapped around a histone octamer forms the nucleosome, an integral building
block of chromatin structure. Changes in the acetylation state of histone tails are
intimately involved in chromatin remodeling and transcriptional alterations. HATs
are enzymes that add acetyl groups to lysine residues on histone proteins, while his-
tone deacetylases (HDACs) remove these acetyl groups (Elvir et al. 2017; Haberland
et al. 2009) (Fig. 2). Generally, HATs activate transcription while HDACs repress it,
although there are exceptions (Haberland et al. 2009; Sacconnay et al. 2016). The
mammalian genome encodes 11 “classical,” zinc-dependent HDACs that are cate-
gorized into four families (class I: HDAC1, 2, 3, and 8; class IIa: HDAC4, 5, 7, and
9; class IIb: HDAC6 and 10; and class IV: HDAC11). A separate family of nicotin-
amide adenine dinucleotide (NAD+)-dependent deacetylases, called sirtuins (or class
III HDACs), comprises 7 members (SIRT1-7) (Sacconnay et al. 2016). Recent evi-
dence shows alterations in histone acetylation/deacetylation and chromatin structure in
several psychiatric disorders, suggesting that these processes may underlie motivated
behaviors, including drug addiction (Elvir et al. 2017; Pena et al. 2014).

Ethanol changes the acetylation state of histones after acute and chronic exposure
and during withdrawal. Acute ethanol exposure led to changes in histone H3 and H4
acetylation in the amygdala, hippocampus, and cortex (D’Addario et al. 2013; Finegersh
and Homanics 2014; Pandey et al. 2008; Sakharkar et al. 2012). Chronic ethanol ex-
posure and/or withdrawal altered acetylation of histones H3 and H4 in the amygdala,
ventral tegmental area, cortex, nucleus accumbens, dorsal striatum, and hippocampus
(Arora et al. 2013; Bohnsack et al. 2017; Botia et al. 2012; D’Addario et al. 2013;
Dominguez et al. 2016; Finegersh et al. 2015; Qiang et al. 2011; Shibasaki et al. 2011;
Simon-O’Brien et al. 2015; You et al. 2014; Pandey et al. 2008). In general, the
changes in total histone H3 and H4 acetylation induced by acute alcohol exposure
appear to be the opposite to those of withdrawal from chronic alcohol exposure.
However, this depends on the brain region. Alcohol-induced changes in acetylation
in the promoter regions of specific genes such as GABRA1 (Arora et al. 2013;
Bohnsack et al. 2017), PDYN (D’Addario et al. 2013), PNOC (D’Addario et al.
2013), BDNF (You et al. 2014), ARC (You et al. 2014), NPY (Pandey et al. 2008;
Sakharkar et al. 2012), andGRIN2B (NR2B) (Qiang et al. 2011, 2014) were associated
with changes in gene expression, which has important consequences for behaviors
such as anxiety during withdrawal (Pandey et al. 2008) and ethanol consumption
(Qiang et al. 2014).

Treatment with HDAC inhibitors is effective in reducing ethanol intake in multi-
ple models of AUD (Table 3). Mice treated with Trichostatin A (TSA) or Vorinostat
(SAHA) (inhibitors of class I, II, and IV HDACs) consumed less ethanol in a limited-
access binge-drinking test, and rats treated with SAHA also self-administered less eth-
anol in an operant task and exhibited reduced alcohol-seeking behavior (Warnault et al.
2013). Treatment with the HDAC1/2 inhibitor valproic acid (VPA) decreased 2BC
ethanol consumption and preference by rats and also blocked ethanol reward, as mea-
sured in the conditioned place preference test (Al Ameri et al. 2014). In the Warnault
and Al Ameri studies, the effect of the HDAC inhibitors on histone acetylation in the
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brain was not measured, but Warnault et al. did observe a decrease in total histone H4
acetylation in the nucleus accumbens after binge drinking by mice and ethanol self-
administration by rats (Warnault et al. 2013). In summary, these studies indicate that
TSA, SAHA, and VPA decrease binge-like drinking or alcohol reward/reinforcement-
related behavioral measures.

Heavy-drinking rats treated with the HDAC1/3 inhibitor Entinostat (MS-275) also
self-administered less ethanol and exhibited reduced relapse (reinstatement) to ethanol
seeking after a period of abstinence, an effect that was associated with increased his-
tone H4 acetylation in the nucleus accumbens and dorsolateral striatum (Jeanblanc
et al. 2015). Treatment with the nonselective HDAC class I and IIa inhibitor sodium
butyrate (NaB), or MS-275, reduced operant ethanol self-administration by ethanol-
dependent rats, but these compounds did not affect responding for ethanol in nonde-
pendent animals (Simon-O’Brien et al. 2015). In addition, NaB treatment reduced eth-
anol drinking by rats in an intermittent access 2BC drinking experiment and prevented
the escalation of ethanol intake that occurs after alcohol deprivation (Simon-O’Brien
et al. 2015). In this study, histone H3 lysine 9 acetylation varied between ethanol-
dependent and nondependent rats depending on the brain region, and NaB treatment
did not uniformly increase histone acetylation in all brain regions as might be predicted
of an HDAC inhibitor. For instance, in the prefrontal cortex of ethanol-dependent rats,
NaB decreased histone H3 acetylation (Simon-O’Brien et al. 2015). This demonstrates
that there are complicated region-specific alterations in total histone acetylation after
alcohol exposure. In the studies described above in which HDAC inhibitors were tested
for their role in ethanol consumption, histone acetylation at specific gene promoters
was not examined. Identifying these genes and the brain regions in which they act to
regulate alcohol drinking is a clear area for future research. Nonetheless, these studies
demonstrate that NaB andMS-275 treatment can prevent relapse to alcohol drinking in
animals that are alcohol-dependent.

Ethanol withdrawal causes anxiety, promotes relapse to drinking, and is associated
with several changes in the amygdala: increased nuclear HDAC activity, decreased ace-
tylated histones, decreased expression of the HAT CBP (CREB binding protein), de-
creased expression ofNpy, Bdnf, and Arc, and decreased dendritic spine density (Pandey
et al. 2008; You et al. 2014). Treatment of rats with TSA reversed ethanol withdrawal-
induced anxiety and the epigenetic, gene expression, and structural changes observed
in the amygdala (Pandey et al. 2008; You et al. 2014). HDAC inhibitors are also ef-
fective in a genetic model of AUD, the alcohol-preferring P rat. P rats have higher
anxiety and ethanol intake compared with alcohol non-preferring NP rats, higher levels
of nuclear HDAC activity, more HDAC2 protein, decreased acetylated histones, and
decreased NPY protein in the amygdala (Moonat et al. 2013; Sakharkar et al. 2014).
Treatment of P rats with TSA, or with HDAC2 siRNA in the amygdala, reduced an-
xiety and ethanol intake and normalized the associated epigenetic alterations and NPY
levels (Moonat et al. 2013; Sakharkar et al. 2014). Since anxiety is associated with an
increased risk of relapse in alcohol-dependent individuals (Schellekens et al. 2015), pre-
venting the development of withdrawal-induced anxiety through the use of HDAC inhi-
bitors may be a promising method for encouraging abstinence in recovering alcoholics.
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Changes in histone acetylation can persist long after the initial exposure to alcohol.
Adolescence is a period of brain development in which synaptic structural modifi-
cations and changes in neural plasticity are occurring. Exposure of animals to alcohol
during adolescence leads to long-lasting alterations in histone acetylation that persist
into adulthood and these changes are associated with increased anxiety-like behavior
and high levels of ethanol consumption (Kokare et al. 2017; Pandey et al. 2015; Pascual
et al. 2009, 2012; Sakharkar et al. 2016). Treatment of adult rats with TSA after they
had been exposed to ethanol during adolescence normalized the high levels of anxiety,
ethanol intake, and alcohol-induced histone acetylation and gene expression changes
(Pandey et al. 2015; Sakharkar et al. 2016). These studies suggest that the persistent
histone acetylation changes associated with alcohol exposure during adolescence can
be reversed by treatment with HDAC inhibitors in adulthood and attenuate pathologi-
cal anxiety and excessive drinking.

Taken together, HDAC inhibitors have been found generally to decrease excessive
ethanol-drinking and ethanol-seeking behavior in rodents. However, there are a few ex-
ceptions.Wolstenholme et al. found that treatment of mice with TSA increased voluntary
2BC ethanol intake, and Qiang et al. demonstrated that treatment of mice with TSA
during exposure to ethanol vapor subsequently led to increased ethanol drinking (Qiang
et al. 2014; Wolstenholme et al. 2011). In addition, Ponomarev et al. found that SAHA
had no effect on either a binge-drinking test or in a chronic intermittent drinking pro-
tocol (Ponomarev et al. 2017). These results indicate that the timing of administration
of HDAC inhibitors may be important when considering them for AUD treatment.

SAHA is FDA-approved for the treatment of cutaneous T-cell lymphoma. Seri-
ous side effects include increased risk of developing blood clots, increased bruising,
bleeding, or susceptibility to infection, and increased blood sugar levels. There are
no known interactions with light alcohol drinking. SAHAmight be a viable option to
move forward in clinical studies. VPA has long been prescribed for the treatment of
seizures and bipolar disorder. Serious side effects of VPA include blistering, peeling,
or red skin rash, confusion, memory problems, suicidal thoughts, and depression. VPA
can also cause liver problems, pancreatitis, and thrombocytopenia. As also noted for
the DNMT inhibitors (azacytidine and decitabine), liver disease may preclude the use
of VPA in alcohol-dependent patients. Finally, it should be mentioned that systemic
administration of DNMT and HDAC inhibitors could have potentially deleterious ef-
fects on gene expression in several tissues because they block the activity of enzymes
expressed throughout the body.

In terms of treating AUD patients with compounds targeting epigenetic modifiers,
the aforementioned animal studies may provide insight into compounds that may
work best for different subtypes of alcoholism or at different phases of the addiction
cycle. For instance, DNMT inhibitors might be useful in decreasing binge-like drink-
ing, and a non-nucleoside DNMT inhibitor such as RG-108 could also be effective in
treating alcohol-dependent individuals during abstinence to prevent relapse. SAHA
may be effective in reducing binge-like drinking and also anxiety during alcohol
withdrawal. Finally, the HDAC1/3 inhibitor MS-275 appears to have limited toxicity
(Subramanian et al. 2010), is currently in clinical trials for cancer treatment, and may
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be another option for treating alcohol-dependent patients during abstinence to pre-
vent relapse.

4 Conclusions and Future Directions

Several small molecule compounds have been developed that target transcriptional
regulators and epigenetic enzymes that have shown effectiveness in reducing alcohol
drinking in several rodent models of AUD. One of these compounds, mifepristone, has
shown promising results in a human laboratory study and is already FDA-approved for
other conditions. Future studies should focus on translating the findings of other com-
pounds to clinical studies to determine if they can reduce excessive alcohol drinking in
human subjects with AUD. Several new promising candidates exist, including PDE4
inhibitors, PPARα/γ agonists, HDAC inhibitors, and DNMT inhibitors. A focus on re-
purposing those compounds that are already FDA-approved for other conditions may be
an efficient mechanism to getting these into clinical use for those suffering from AUD.
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Abstract
Animal models provide rapid, inexpensive assessments of an investigational drug’s
therapeutic potential. Ideally, they support the plausibility of therapeutic efficacy
and provide a rationale for further investigation. Here, I discuss how the absence of
clear effective-ineffective categories for alcohol use disorder (AUD) medications
and biases in the clinical and preclinical literature affect the development of
predictive preclinical alcohol dependence (AD) models. Invoking the analogical
argument concept from the philosophy of science field, I discuss how models of

The original version of this chapter was revised. A correction to this chapter is available at
https://doi.org/10.1007/164_2018_191.

M. Egli (*)
Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism,
National Institutes of Health, Bethesda, MD, USA
e-mail: mark.egli@nih.gov

# Springer International Publishing AG 2018
K. A. Grant, D. M. Lovinger (eds.), The Neuropharmacology of Alcohol,
Handbook of Experimental Pharmacology 248, https://doi.org/10.1007/164_2017_85

537

http://crossmark.crossref.org/dialog/?doi=10.1007/164_2017_85&domain=pdf
mailto:mark.egli@nih.gov


excessive alcohol drinking support the plausibility of clinical pharmacotherapy
effects. Even though these models are not likely be completely discriminative,
they are sensitive to clinically effective medications and have revealed dozens of
novel medication targets. In that context, I discuss recent preclinical work on GLP-1
receptor agonists, phosphodiesterase inhibitors, glucocorticoid receptor antagonists,
nocioceptin agonists and antagonists, and CRF1 antagonists. Clinically approved
medications are available for each of these drug classes. I conclude by advocating a
translational approach in which drugs are evaluated highly congruent preclinical
models and human laboratory studies. Once translation is established, I suggest the
burden is to develop hypothesis-based therapeutic interventions maximizing the
impact of the confirmed pharmacotherapeutic effects in the context of additional
variables falling outside the model.

Keywords
Alcohol use disorder · Pharmacotherapy · Preclinical models · Translational
research

Abbreviations

AD Alcohol dependence
ADE Alcohol deprivation effect
AUD Alcohol use disorder
BAC Blood alcohol concentration
BNST Bed nucleus of the stria terminalis
cAMP Cyclic adenosine monophosphate
CeA Central nucleus of the amygdala
cGMP Cyclic guanosine monophosphate
CIE Chronic intermittent ethanol
CPP Conditioned place preference
GR Glucocorticoid receptor
HDID High drinking in the dark
HPA Hypothalamus-pituitary-adrenal
LC Locus coeruleus
N/OFQ Nociceptin/orphanin-FQ
NAc Nucleus accumbens
PFC Prefrontal cortex
PVN Paraventricular nucleus
RCT Randomized controlled trials
SA Self-administration
VTA Ventral tegmental area

1 Orientation

Investigational drug HBJ714 is effective in preclinical alcohol dependence
(AD) models; can we predict that HBJ714 will be an effective alcohol use disorder
(AUD) pharmacotherapy in humans? To answer, we must consider: What is a
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clinically effective AUD medication? Do clinically effective medications have
similar effects and do clinically ineffective drugs have distinct effects when tested
in the preclinical AD models?

1.1 What Is Clinically Effective?

Can we distinguish clinically effective from clinically ineffective AUDmedications?
Table 1 shows medications that have been tested in double-blind randomized,
placebo-controlled studies (N � 10 in each treatment arm; treatment �2 months).
The table is illustrative, not exhaustive, and does not attempt definitive conclusions
regarding efficacy (see Litten et al. 2016; Litten et al. 2018, this volume for recent
reviews). Despite negative clinical trial outcomes or controversies, I accept naltrex-
one, nalmefene and acamprosate as effective medications because they have met
universal efficacy and safety standards via FDA or comparable regulatory agency
approval. Disulfiram is not considered due to its distinct mechanism and its failure to
show efficacy in blinded RCTs compared to controls (Skinner et al. 2014;
Yoshimura et al. 2014).

Impressions about clinical efficacy from the literature must be taken cautiously as
they are shaped by the order of negative and positive outcomes. Early negative
outcomes diminish interest in further testing. Had negative naltrexone (Krystal et al.
2001) or acamprosate (e.g., Anton et al. 2006) RCTs been the first reported, fewer
additional trials – including those which proved to be positive – would likely have
been performed. Negative outcomes carry less weight if they follow positive
findings (e.g., the continued interest in baclofen after early positive findings despite
many subsequent negative RCTs; see Litten et al. 2016).

Table 1 shows that medications do not fall clearly into dichotomous effective-
ineffective categories. Some, like naltrexone, ondansetron, or gabapentin, demon-
strate efficacy in multiple independent RCTs. Others, like tiapride, flupenthixol, and
levetiracetam, may even worsen clinical indications. Many more show mixed
outcomes. Mapping preclinical measures to these clinical studies seems daunting.

1.2 How Do Clinically Evaluated AUD Medications Perform
in Preclinical Tests?

As shown in Table 1, preclinical testing of clinically evaluated AUD drugs is uneven,
unsystematic, and heavily focused on drinking or operant self-administration (SA) in
nondependent rodents. Such models are sensitive to clinically effective medications,
but they are also sensitive to clinically ineffective medications.

Impressions of published preclinical studies may also be biased. Heavy resource
investment justifies publishing negative clinical trials; there is less incentive to
publish negative preclinical studies. Published preclinical studies appear optimistic
as a result (see Yardley and Ray 2017; Fig. 1). Negative preclinical tests often lead to
abandonment especially in medication development contexts. Explanations for the
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Table 1 Clinical trial and preclinical test outcomes for select AUD medicationsa

Medication
Mechanism of
action Primary outcome

Effects in preclinical AUD
models (examples)

Level 1: Regulatory agency approval

Naltrexone Opioid
receptor
antagonist

US FDA approval 1994
Negative multicenter trial
in VA population: Krystal
et al. (2001)

Reduced drinking in P rats
(Froehlich et al. 1990)
Reduced SA in monkeys
(Boyle et al. 1998)
Reduced cue-induced
reinstatement (Dayas
et al. 2007)
Blocked CPP (Kuzmin
et al. 2003)
Blocked ADE (Kuzmin
et al. 2007)

Nalmefene MOR, DOR
antagonist;
KOR partial
agonist

EU EMA approval 2013
Negative multisite trial
(Anton et al. 2004)
Conflicting meta-analysis
data (Palpacuer et al. 2015;
Mann et al. 2016)

Reduced self-
administration (SA) in
nondependent and
dependent rats (Walker
and Koob 2007)
Reduced self-
administration in P rats
(June et al. 2004)

Acamprosate Glutamate
modulator

France, approval 1989
US FDA approval 2004

Reduced drinking in
HDID mice (Crabbe
et al. 2017)
Selectively reduced
drinking in dependent rats
(Le Magnen et al. 1987)
Blocked CPP (McGeehan
and Olive 2003)
Blocked cue-induced
reinstatement (Bachteler
et al. 2005)
Blocked ADE (Heyser
et al. 2003)

Level 2: Two or more independent definitive RCT

Ondansetron 5-HT3
antagonist

Decreased drinks/day
(Sellers et al. 1994)
Decreased drinks/day
(Johnson et al. 2000)

Reduced SA in rats
(Tomkins et al. 1995)
Reduced SA in heavy
drinking P more than light
drinking P and Wistar rats
(Lynch et al. 2011)
No effect on SA in rats
(Beardsley et al. 1994)
Attenuated footshock
reinstatement (Lê
et al. 2006)

Gabapentin GABA
modulator,

Decreased drinks/day and
heavy drinking days;
increased % days abstinent

Reduced SA in dependent
more than nondependent
rats (Roberto et al. 2008)

(continued)
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Table 1 (continued)

Medication
Mechanism of
action Primary outcome

Effects in preclinical AUD
models (examples)

voltage-gated
Ca2+ channel

(Furieri and Nakamura-
Palacios 2007)
Increased complete
abstinence; decreased
heavy drinking (Mason
et al. 2014)

Increased SA
nondependent rats
(Besheer et al. 2016)

Topiramate Glutamate and
GABAA
receptor
modulator

Decreased drinks/day,
drinks per drinking day,
% HDD; increased
% days abstinent (Johnson
et al. 2003)
Decreased % HDD
(Johnson et al. 2007)
Increased time to first
relapse, cumulative
abstinence duration;
decreased weeks of
heavy drinking (Baltieri
et al. 2008)
No effect (Likhitsathian
et al. 2013) Thailand
No effect on relapse to
drinking (Anthenelli
et al. 2017)

Reduced stress-induced
drinking in mice (Farook
et al. 2009)
Reduced drinking in P, but
not Wistar rats (Breslin
et al. 2010)
Drinking in dependent
mice reduced more than
nondependent (Becker and
Lopez unpublished)

Varenicline α7 NAC
antagonist;
α4β2, α3β4,
and α6β partial
agonist

Decreased drinks/week
(heavy smokers) (Mitchell
et al. 2012b)
Decreased % HDD;
drinks/day, drinks/drinking
day, alcohol craving
(Litten et al. 2013b)
No effect significant effects
(Plebani et al. 2013)
No effect %HDD;
decreased craving AUDIT
scores (de Bejczy
et al. 2015)

No effect on SA in Wistar
rats (Funk et al. 2016)
Decreased SA in Wistar
rats (Steensland et al.
2007)
Decreased seeking,
drinking in baboons
(Kaminski and Weerts
2014)
Reduced drinking in
UChB rats (Sotomayor-
Zarate et al. 2013)
No effect on drinking by
msP rats (Scuppa et al.
2015)
Blocks ADE in P rats
(Froehlich et al. 2017)
No effect CPP (Gubner
et al. 2014)
Blocked cue reinstatement
(Wouda et al. 2011)

Zonisamide Sodium and
T-type calcium
channel
blocker;

Decreased HDD, drinks/
week (Arias et al. 2010)
Decreased drinks/day, %
days drinking, % days

Decreased 2-h drinking in
rats and mice (Knapp et al.
2007)

(continued)
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Table 1 (continued)

Medication
Mechanism of
action Primary outcome

Effects in preclinical AUD
models (examples)

GABA, Glu
modulator

heavy drinking (Knapp
et al. 2015)

Level 3: Negative primary outcome, positive secondary outcomes

ABT-436 V1B
antagonist

No significant effect %
HDD; increased % days
abstinent (Ryan et al.
2017)

Related compound,
SSR149415, selectively
reduced SA in dependent
vs. nondependent rats
(Edwards et al. 2012)
SSR149415 reduced
drinking in sP rats (Zhou
et al. 2011)

LY2196044 MOR, DOR,
KOR
antagonist/
inverse agonist

No significant effect: %
HDD, % days abstinent per
month; decreased drinks/
day (Wong et al. 2014)

Not reported

Inconclusive: mixed positive negative

Baclofen GABAB

agonist
Increased % abstinent
patients and cumulative
abstinence, decreased
drinks/day (Addolorato
et al. 2002, 2007)
No significant effect %
HDD (Garbutt et al. 2010)
Increased % days abstinent
(Leggio et al. 2015)
Increased total abstinence,
cumulative abstinence
(Müller et al. 2015)
No significant effect %
HDD; % days abstinent
(Ponizovsky et al. 2015)
No significant effect %
abstinent patients, EtOH
consumption, reduced
craving (Reynaud et al.
2017)

Decreased drinking in
HDID mice (Crabbe et al.
2017)
Decreased SA in rats
(Besheer et al. 2004)
Decreased SA and
drinking in baboons (Duke
et al. 2014)
Decreased SA in
dependent rats more than
nondependent rats
(Walker and Koob 2007)
Diminished ADE in sP
rats (Colombo et al. 2003)
Blocked cue reinstatement
in sP rats (Maccioni et al.
2012)

Negative

Aripiprazole 5-HT1A and
D2 partial
agonist

No significant effect on %
days abstinent, % subjects
abstinent, drinks/drinking
day (Anton et al. 2008a)

Reduced drinking in AA
rats at highest (6 mg/kg)
dose (Ingman et al. 2006)
Reduced drinking in rats
(Nirogi et al. 2013)

Bromocriptine D2 receptor
agonist

No significant effect
on drinking (Dongier
et al. 1991)
No significant effect on
drinking, craving (Powell
et al. 1995) decreased

Decreased SA in Wistar
and P rats (Weiss et al.
1990)
Increased drinking
sweetened EtOH (Nadal
et al. 1996)

(continued)
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Table 1 (continued)

Medication
Mechanism of
action Primary outcome

Effects in preclinical AUD
models (examples)

craving; most with
DRD2 A1 allele
(Lawford et al. 1995)
No significant effect on
relapse (Naranjo et al.
1997)

Decreased drinking in
UChB rats (Mardones and
Quintanilla 1996)
Decreased drinking in C57
mice (Ng and George
1994) decreased SA in rats
(Cohen et al. 1998)

Flupenthixol D2 and
5-HT2A
receptor
antagonist

Increased relapse in males
(Wiesbeck et al. 2001)

Not reported

Tiapride D2 and D3
antagonist

No significant effect
relapse (treatment group
relapsed sooner) (Bender
et al. 2007)

None reported

Quetiapine Antipsychotic No significant effect %
HDD other drinking
measures (Litten et al.
2012)
No significant effect “Type
A” alcoholics, reduced DD,
HDD, craving “Type B”
alcoholics (Kampman et al.
2007)

No effect drinking P and
HAD1 rats, dependent
mice (Bell, Becker, and
Lopez unpublished)

Ritanserin 5-HT2 receptor
antagonist

No significant effect on
drinking or craving
(Johnson et al. 1996)
No significant effect on
drinking, craving or relapse
(Wiesbeck et al. 1999)

No effect on drinking by
cAA rats (Maurel et al.
1999)

Dexfenfluramine SSRI No significant effect on
drinking measures
(Romach et al. 2000)

Attenuated footshock
reinstatement in rats (Lê
et al. 2006)

Fluoxetine SSRI No significant effect on
drinking measures
(Naranjo et al. 1990)
No significant effect on
drinking days, drinks/day,
drinks/drinking day
(Kranzler et al. 1995)

Reduced SA in P rats
(Murphy et al. 1988)
Blocked withdrawal-
induced SA in rats (Simon
O’Brien et al. 2011)
Increased ADE (Alén et al.
2013)
Blocked footshock
reinstatement (Lê et al.
1999)

Fluvoxamine SSRI Tendency for increased
relapse in treatment group
(Chick et al. 2004)

Decreased SA in rats
(Lamb and Järbe 2001)

(continued)
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Table 1 (continued)

Medication
Mechanism of
action Primary outcome

Effects in preclinical AUD
models (examples)

Buspirone 5-HT1A
agonist

No significant effects
relapse, drinks/day
(Malcolm et al. 1992)
No significant effect on
drinking (Kranzler et al.
1994)
No significant effect on
drinking (Malec et al.
1996)
No significant effect on
time to relapse (George
et al. 1999)
No significant effect on
drinking (Fawcett et al.
2000)

No effect on drinking in
rats (short alcohol history).
Reduced drinking (longer
history) (Hedlund and
Wahlström 1996)
Decreased drinking in rats
(Hedlund and Wahlström
1999)

Memantine NMDA
receptor
antagonist

No significant effects on
drinking or abstinence
(Evans et al. 2007)

Decreased drinking in
dependent and
nondependent rats (Alaux-
Cantin et al. 2015)
Decreased drinking in
mHEP rats (Malpass et al.
2010)
Decreased drinking in sP
rats (Sabino et al. 2013)
Decreased drinking in
HAP mice (Oberlin et al.
2010)
Decreased cue
reinstatement in rats
(Vengeliene et al. 2015)
Blocked ADE (Hölter
et al. 1996)

Levetiracetam Anticonvulsant No significant effect %
HDD (Fertig et al. 2012)
No significant effect time
to relapse (Richter et al.
2012)
No significant effect,
increased drinking in lower
drinkers (Mitchell et al.
2012a)
No effect on drinks/day, %
days drinking, reduced %
HDD (Knapp et al. 2015)

Decreased drinking in
WHP rats (Zalewska-
Kaszubska et al. 2011)
Increased DID, decreased
IA drinking in rats (Fish
et al. 2014)
Increased drinking P rats
(Bell unpublished)

Galantamine Cholinesterase
inhibitor

No significant effect time
to severe relapse (Mann
et al. 2006)

Reduced drinking in AA
rats (Doetkotte et al. 2005)

aItalic text indicates multisite trial
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negative outcome (e.g., model insensitivity, lack of target engagement) may never be
rigorously pursued.

Preclinical medication efficacy tests should have distinct responses to clinically
ineffective drugs. Some clinically ineffective medications reduce drinking in rodents
(see Table 1, bromocriptine, buspirone, SSRIs), yet distinct effects are found for
other clinically ineffective drugs. For example, a 15-day treatment with the SSRI
fluoxetine produced long-lasting increases in alcohol drinking following periods of
alcohol deprivation (Alén et al. 2013) which may correspond to increased relapse
and drinking reported in some AUD patients after SSRI treatment (Chick et al. 2004;
Dundon et al. 2004). Similarly, levetiracetam has been shown to increase drinking in
mice (Fish et al. 2014), in rats (Bell unpublished data), and in non-treatment-seeking
alcohol abusers (Mitchell et al. 2012a). In the future, identifying reliable and distinct
preclinical test responses for ineffective AUD medications will temper indiscrimi-
nately positive preclinical test results when testing novel medications.

2 Preclinical Medication Evaluation: Two Concepts

Two complementary concepts arise when considering preclinical AUD medication
evaluations. The first, introduced above, is the need for sensitive, reliable, predictive
efficacy screens. The second concerns external validity in the form of parallel causal
relationship structures among variables in the model and variables in the clinical
domain.

Fig. 1 HBJ714 reduces elevated alcohol drinking in dependent rats but is ineffective in nondepen-
dent rats. We conclude that HBJ174 reduces drinking by affecting pharmacological targets
contributing to elevated drinking in the model. We infer that the same targets contributed to
increased drinking in AUD patients and predict that HBJ714 will decrease alcohol drinking (and
other AUD symptoms) in patients by engaging the target
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2.1 Predictive Screening

Predictive screens require reference compounds of known clinical efficacy,
standardized protocols, and blind, unbiased testing conditions. Some medications
appearing in Table 1 may be suitable as reference standards. They are mechanisti-
cally diverse and the range is likely to expand. Whether a predictive efficacy screen
can be constructed from them is unknown. The exercise has yet to be attempted.

Preclinical efficacy screens need not have obvious mechanistic relevance to AD
to be predictive; however, the mechanistic range of reference compounds will
determine the screen’s scope. For example, screens based on only one positive
(e.g., naltrexone) and one negative reference (e.g., fluoxetine) would discriminate
opiate antagonists, SSRIs, and nothing else. Screens derived from a mechanistically
diverse reference battery potentially discriminate a broader range of drugs through
common, but unknown, mechanisms as exemplified by the DRL-72-s reinforcement
schedule sensitive to mechanistically diverse classes of antidepressant drugs
(O’Donnell et al. 2005). The mechanistic basis for the screen’s predictive validity
remains unknown.

Screening requires standardized protocols. Standardization eliminates the meth-
odological variability found in the published literature, although it may not remove
the smaller influences of unspecified variables over time and across laboratories (see
Crabbe et al. 1999). Some argue (e.g., Richter et al. 2009) that standardization
constrains external validity – i.e., the standardized methods sample too narrow a
phenomenological space to be broadly generalizable. Nevertheless, “hits” identified
by efficacy screens can be subjected to further tests to evaluate their robustness. As
with clinical studies, blinding investigators to the compound’s identity, mechanism
of action, and test conditions is necessary to reduce testing biases.

Given the complexity of AUD and the pharmacological diversity of effective
medications, a universal predictive screen may never emerge. For example, the
recently developed HDID mouse line is not sensitive to naltrexone, but reduces
alcohol intake following acamprosate and baclofen administration (Crabbe et al.
2017), whereas alcohol drinking in the alcohol-preferring msP rat is sensitive to
naltrexone and acamprosate treatment, but not to varenicline (Scuppa et al. 2015).
Therefore, it is possible that screens will consist of tests relevant to specific clinical
indications, distinct patient subtypes, or specific therapeutic mechanisms. Positive
effects on any of them would be considered further (Egli 2005). The challenge
remains to construct the screens.

2.2 Mechanistic Modeling

The first acamprosate test in a preclinical alcohol drinking model used a subset of
rats (24%) drinking alcohol solutions as 60% or more of their total fluid intake
(Boismare et al. 1984). Following this, Jacques Le Magnen et al. (1987) showed that
acamprosate reduced alcohol intake by rats rendered alcohol dependent, but had
little effect in nondependent rats, thus, following the principle that preclinical
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paradigms modeling AD would be sensitive to therapeutically effective drugs.
Subsequently, investigators developed specialized voluntary drinking paradigms
to engender high alcohol intake (>5 g/kg) and intoxicating blood alcohol concen-
trations (80–100 mg/dL or higher). Models include genetic (e.g., selectively bred P
rats, msP rats, HDID mice), scheduled access (e.g., drinking in the dark [DID],
alcohol deprivation [ADE]), and chronic exposure/extended access paradigms (e.g.,
chronic intermittent ethanol [CIE] exposure).

Pathologically relevant AD models led to the discovery of gene networks and
brain mechanisms for consideration as AUD pharmacotherapy targets (e.g., Kimpel
et al. 2007; Osterndorff-Kahanek et al. 2015). Elevated drinking in many ADmodels
is selectively sensitive to therapeutically effective drugs relative to drinking in
models more relevant to social drinking (see Meinhardt and Sommer 2015;
Sprow and Thiele 2012; Tunstall et al. 2017). Metaphorically, excessive drinking
models capture portions of the neurobiological “landscape” of alcohol dependence.
Attenuating heightened alcohol intake with a test drug suggests that neurobiological
targets relevant to AD are changed in a way that may ameliorate AUD in humans
(see Fig. 1).

Testing drugs in animal AD models to draw inferences about clinical efficacy
invokes the analogical argument, a formal statement that known similarities between
a model and its target domain (i.e., the modeled clinical phenomena) permits us to
conclude that additional features observed in the model will also be observed in the
target domain (Bartha 2010). In Fig. 1, the implied analogical argument is of the
form: HBJ714 decreases alcohol drinking in the model; therefore, it will reduce
drinking in AUD patients.

Material or physical similarities (often called “face validity”) between a model
and its target are often discussed (Koob and Zimmer 2012). Less appreciated are
similarities between causal relationships among variables within the model and
causal relationships among corresponding variables in the model’s target domain
(see Hempel 1965; Ruse 1973). Figure 2 depicts the causal relationship structure of
three categories of excessive drinking animal models (left) and the corresponding
relationship among analogous clinical variables (right). At a broad level, there are
parallels in causal relationship structures in the models and in aspects of clinical
AUD.

Parallel causal relations are essential to the analogical argument (Hesse 1966;
Bartha 2010), but the analogical argument also requires some degree of material
similarity between corresponding variables (Hesse 1966, p. 69). In this context, the
initial analogy – where a variable of strong interest is created in the model system –

links the model and its target (Overmier and Patterson 1988). The initial analogy is
often at the level of pathology such as in animal models of excessive alcohol
drinking. Once the initial analogy is established, causally related variables are
studied in the model system. As illustrated in Figs. 1 and 2, investigational drug
HBJ714 – at a range of doses – decreases alcohol drinking in alcohol-dependent
animals exposed to chronic intermittent ethanol vapors, but not drinking in an
alcohol naïve group. From this, we infer that neurobiological systems dysregulated
by the CIE procedure are targeted by HBJ714 to reduce drinking and that these same
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neurobiological systems are likely to be targeted by HBJ714 in AUD patients to
ameliorate clinical symptoms of AUD.

Do inferences drawn from preclinical AD models discriminate positive from
negative RCT outcomes? As shown in Table 1 and discussed previously (Egli
2005; Koob et al. 2009; Yardley and Ray 2017), preclinical AD models are sensitive
to clinically effective medications. Table 1 also suggests that, perhaps because there
is no further interest, many clinically ineffective drugs have not been systematically
examined in ADmodels and compared to effective medications. Because they do not
model all the relevant variables present in RCTs, it may not be appropriate to expect
preclinical AD models to completely discriminate effective from ineffective AUD
medications. In the concluding sections, I will discuss strategies for translating
preclinical to clinical studies. For now, it is important to appreciate that gaps
between preclinical AD models and RCTs more likely reflect ignorance regarding
the full spectrum of variables operating in the clinical setting than general
deficiencies in modeling approaches (see Egli et al. 2016).

2.3 Inferences and the Exploratory-Confirmatory Continuum

Test outcomes must be interpreted in the context of prior knowledge. According to
Bayes Theorem, estimating the probability that HBJ714 is clinically effective for
AUD after a positive preclinical test outcome requires that the probability that a drug
will be clinically effective given a positive test outcome (true positive rate), the test’s
false positive rate, and the probability that HBJ714 is clinically effective prior to the
test all be considered.

Bayes theorem, stated mathematically, is:

p AjXð Þ ¼ p XjAð Þp Að Þ
p XjAð ÞpAþ p Xjnot Að Þ p not Að Þ

where p(A|X) is the probability the drug is clinically effective (A) given a positive
test (X), p(X|A) is the probability of a positive test (X) given that drug is clinically
effective (A), p(A) is the probability the drug is clinically effective, (not A) is the
probability the drug is clinically ineffective, and p(X|not A) is the probability of a
positive test (X) given that the drug is clinically ineffective (not A).

Prior probability is informed not only by previous test outcomes but also relevant
basic mechanism studies, preclinical and clinical efficacy evaluations of closely
related drugs, and the overall success rate for AUD drugs, among other things. For
instance, if HBJ714 is a novel μ-opioid receptor antagonist, the pretest probability
that HBJ714 is clinically effective might be reasonably estimated to be 0.67 based on
the success of naltrexone and research findings on opioid mechanisms of alcohol
drinking. Let us also say that our initial preclinical test has performed somewhat
better than a coin toss with a true positive rate of 0.67 and false-positive estimate of
0.47. In this scenario, the chance that HBJ714 will be clinically effective given a
positive outcome in the preclinical test is reasonably high, about 0.74. (Note: we are
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not considering possible adverse side effects and other significant drug development
milestones in this example). Taking the first test into account, a subsequent positive
result in a test with the same true positive and false-positive rates yields a probability
estimate of 0.80. Yet another positive result using the same quality test yields 0.85,
and another would only increase the probability estimate to 0.89. Assigning quanti-
tative probability estimates is not realistic at present, and the numbers used in the
example are not meant to be definitive or valid. Nevertheless, the example illustrates
that successive testing gives diminishing returns. For a drug mechanistically very
similar to successful medications, one or two positive preclinical efficacy test results
may be sufficient.

Consider a second scenario where HBJ714 is a novel drug for which there is no
prior mechanistic information with respect to AUD. The prior probability, p(A),
would be low. (Most drugs are not clinically successful). Let us be optimistic and set
p(A) equal to 0.10. In this case, after an initial successful test, the estimated chance
that HBJ714 is clinically effective for AUD is only 0.14. Several successive positive
test results (assuming the tests are similar in their true-/false-positive rates) would be
required before we would have sufficient confidence in the drug’s potential clinical
efficacy. Of course, any negative test results – with their own set of probability
estimates – would also influence the estimate.

The above examples suggest that the most basic research and efficacy evaluation
practices are consistent with Bayes theorem. Negative test outcomes are tolerated
when prior evidence is strong, whereas a positive test outcome in the face of
overwhelmingly discouraging evidence has little influence unless previous findings
have been adequately explained. Furthermore, tests and models are weighted
according to perceived true- and false-positive rates, although they are seldom
calculated. On this point, the Bayesian importance of a model’s past predictive
performance is complemented by a Popperian emphasis on risky predictions (see,
e.g., Popper 1959). Models that exclusively generate observations easily predicted
without the model (i.e., when p(A) is high) are of lesser value than those revealing
completely unexpected, confirmed information (i.e., when p(A) is low). In simpler
words, a system allowing us to successfully bet on long-shots that payoff is more
valuable than one only capable of selecting favorites to win.

Research is performed in exploratory or confirmatory modes. Each mode has
defining characteristics falling along a continuum rather than the dichotomy implied
by some (Jaeger and Halliday 1998; Wagenmakers et al. 2012; Kimmelman et al.
2014). Early preclinical screens and mechanistic evaluations are exploratory. As less
costly efforts, they generate hypotheses. In the pursuit of discovery, efforts are made
to reduce false negatives and deviations from protocol standards are tolerated as
tests are refined and new information is acquired. Successful exploratory research
justifies pursuing riskier, resource-intensive confirmatory studies such as RCTs.
Hypothesis supporting confirmatory research demands rigorous, outcome-neutral
testing conditions, reduced risk of false-positive outcomes, and a willingness to
accept the outcome – positive or negative – as definitive. Exploratory and confirma-
tory research each has its value if confirmatory conclusions are not drawn from
exploratory data (Wagenmakers et al. 2012). Given that preclinical tests are models
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of clinical phenomena, they are never fully confirmatory. Negative exploratory
research findings – especially in the context of strong prior evidence – might call
for a return the “drawing board” to refine hypotheses and measures rather than
abandonment. Depending on the potential epistemological or therapeutic payoff,
time, and financial and material resources, negative confirmatory research findings
(such as a well-designed RCT) may occasionally retreat toward the exploratory
mode, rejection and abandonment of the hypothesis, but seldom further confirmatory
research efforts.

3 Discoveries

In this section, I discuss recent advances in preclinical AUD pharmacotherapy. For
each target, there are clinically approved medications for conditions other than
AUD. The selection is not comprehensive, but provides perspectives on preclinical
AD models in the context of AUD pharmacotherapy development.

3.1 Glucagon-Like Peptide-1 (GLP-1) Receptor

GLP-1 is secreted from endocrine L cells in the intestine in response to nutrients. It is
also produced and released in the brain, specifically, the nucleus of the solitary tract
(NST) which projects throughout the CNS including the BNST and CeA – areas
involved in the development of AD (Gu et al. 2013). GLP-1 regulates appetite and
eating, gastric emptying, and glucose metabolism. The GLP-1 receptor, a Gs cou-
pled GPCR, is expressed throughout the CNS including the brainstem, hypothalamic
nuclei, VTA, NAc, and CeA – brain regions associated with addiction (Pratley and
Gilbert 2008). GLP-1 itself is not used therapeutically because it degrades rapidly.
Analogs with longer half-lives have been discovered or synthesized. Notably,
exenatide – a synthetic analog of the exendin-4 hormone found in Gila monster
saliva – is marketed for the treatment of type 2 diabetes.

Egecioglu et al. (2013) showed that exendin-4 attenuated alcohol-induced loco-
motor stimulation and NAc dopamine release, reduced alcohol CPP in mice, and
decreased alcohol drinking and SA in rats after months of intermittent alcohol
access. These effects were replicated with GLP-1 (Shirazi et al. 2013) and the
GLP-1 receptor agonist liraglutide (Vallöf et al. 2016).

Shirazi et al. (2013) confirmed the involvement of endogenous GLP-1 in
regulating alcohol intake by demonstrating that GLP-1 receptor blockade increased
alcohol intake. CNS mediation was demonstrated when GLP-1 infusion into the
VTA was shown to reduce alcohol intake (Shirazi et al. 2013). Sørensen et al. (2016)
found that exendin-4 attenuated intravenous ethanol self-administration in mice,
confirming that GLP-1 receptor activation reduced alcohol reinforcement indepen-
dent of its effects on ingestive physiology.

Support for the GLP-1 receptor as a therapeutic target for AUD comes from
observations in AD-relevant models. Shirazi et al. (2013) observed that reduced
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alcohol intake following exendin-4 or GLP-1 administration was confined to the top
30% alcohol drinkers and was not detected in low-alcohol-consuming rats (bottom
30%). A similar observation was reported with liraglutide (Vallöf et al. 2016). Acute
liraglutide administration prevented the ADE in rats (Vallöf et al. 2016) and daily
exendin-4 administration blocked the ADE in mice Thomsen et al. (2017).
Liraglutide also diminished alcohol SA in alcohol-preferring sP rats (Vallöf et al.
2016).

In a study performed prior to Egecioglu et al. (2013), but published later
(Suchankova et al. 2015), effects of the GLP-1 agonist AC3174 were examined on
drinking by alcohol-dependent mice and nondependent mice. In nondependent
mice, AC3174 did not affect voluntary alcohol consumption, nor was it effective
in reducing elevated alcohol drinking in dependent mice when first administered.
When tested over additional alcohol-vapor-exposure cycles, AC3174 decreased
escalated drinking. The effect, once established, was relatively long lasting. Only
weeks later did alcohol consumption in dependent mice return to pretreatment
alcohol intake levels. The time-dependent effects suggest that AC3174 requires
repeated administration to be effective, that repeated alcohol-exposure cycles are
required to sensitize GLP-1 relevant neurophysiology or both.

A recent comprehensive study suggests that GLP-1 neurons regulate nicotine
intake in a manner analogous to their role in meal patterning (Tuesta et al. 2017).
Specifically, nicotine stimulates GLP-1 neurons in the NTS to enhance the activity of
excitatory habenular inputs to the interpeduncular nucleus (IPN). GLP-1 signaling in
the IPN, in turn, blocks nicotine reward and promotes nicotine avoidance. Whether
such a mechanism acts in concert with GLP-1 signaling in the VTA (Shirazi et al.
2013) to reduce alcohol intake remains to be studied.

Preclinical support for the GLP-1 receptor as an AUD therapeutic target is
consistent with evidence that GLP-1 receptor variants are associated with AUD in
humans (Suchankova et al. 2015). Preliminary functional validation was obtained
retrospectively from two studies in which the GLP1R 168Ser allele was associated
with increased alcohol SA and higher BOLD signal at the globus pallidus following
rewarding feedback. It is notable that a clinical trial has been initiated in Denmark to
investigate the effects of exenatide (Bydureon) on alcohol intake in AUD patients
(ClinicalTrials.gov Identifier: NCT03232112). A remaining consideration for future
clinical testing is that, at higher doses, GLP-1 agonists are anxiogenic in rodents
through action in the amygdala (Möller et al. 2002; Anderberg et al. 2016). It
remains unknown whether GLP-agonists affect anxiety during alcohol abstinence.

3.2 Phosphodiesterase (PDE) Inhibition

Neuroimmune/neuroinflammatory pathway regulation of alcohol drinking is
discussed elsewhere in this volume (Coleman and Crews 2018; Roberto et al.
2018) and in recent reviews (Robinson et al. 2014; Crews et al. 2017). I discuss
here preclinical studies supporting PDE inhibition as a pharmacotherapeutic strategy
for alcohol dependence.
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A negative relationship between brain cAMP signaling and alcohol consumption
is well documented (e.g., Misra and Pandey 2006; Pandey et al. 2005; Logrip 2015)
and suggests that pharmacologically enhancing cAMP signaling in relevant brain
sites may reverse excessive alcohol drinking. PDE enzymes catalyze hydrolysis
of cAMP and cGMP to inactive forms. The PDE4 enzyme family selectively
inactivates cAMP suggesting that PDE4 inhibitors might be a novel therapeutic
strategy to reduce excessive alcohol consumption (Wen et al. 2015).

Higher PDE4A gene expression levels were found in the NAc shell of P vs NP
rats (Franklin et al. 2015). In addition, selective PDE4 inhibitors were found to
decrease drinking by mice (Hu et al. 2011; Liu et al. 2017), alcohol SA and drinking
by Fawn-hooded rats (Wen et al. 2012), and 2-h access drinking by HAD1 and P rats
(Franklin et al. 2015). The selective PDE4 inhibitor rolipram also reduced anxiety-
and depression-like behaviors in early and extended alcohol withdrawal (Gong et al.
2017). Blednov et al. (2014) compared PDE inhibitors with different subtype
selectivity for their ability to reduce alcohol drinking and preference in C57BL/6J
mice. Four PDE4 inhibitors – rolipram, mesopram, piclamilast, and CDP840 –

decreased alcohol drinking and preference, whereas PDE1,3,5 and nonspecific
inhibitors did not.

In addition to PDE4, PDE10 – a dual-specificity cAMP/cGMP inhibiting
enzyme – has been implicated in AD. Gene network analysis consistently supports
an association between brain pde10a gene expression and alcohol drinking in
rodents (Mulligan et al. 2006; Wolstenholme et al. 2011; Osterndorff-Kahanek
et al. 2015). Pde10a mRNA expression in the prelimbic subdivision of the mPFC
and BLA was positively associated with relapse-like SA in rats with a history of
stress exposure (Logrip and Zorrilla 2012) and was also elevated during both acute
and prolonged abstinence from CIE exposure (Logrip and Zorrilla 2014). The
selective PDE10A inhibitor TP-10 decreased alcohol SA in rats with a stress history,
alcohol-dependent rats, sP rats, and stress-naïve, nondependent rats (Logrip et al.
2014). TP-10 also reduced saccharin SA suggesting that PDE10A may have a
nonselective effect on motivated behavior.

Despite the availability of specific PDE4 and PDE10a inhibitors for human use,
no clinical investigation on their effects on human alcohol drinking has yet been
performed. Nevertheless, the nonspecific PDE3,4,10,11 inhibitor ibudilast – an anti-
inflammatory drug used to treat asthma – decreased alcohol drinking in P and HAD1
rats and selectively decreased drinking in alcohol-dependent mice relative to nonde-
pendent mice (Bell et al. 2015). An exploratory human laboratory study tested
ibudilast effects on subjective response to alcohol administration and to cue- and
stress-induced changes in alcohol craving and mood in non-treatment-seeking AUD
subjects (Ray et al. 2017a). Ibudilast did not significantly affect subjective response
to alcohol, but improved mood responses to stress and alcohol cue exposure and
decreased alcohol craving. Post hoc analysis revealed that ibudilast decreased
alcohol’s stimulant and mood-altering effects in subjects with higher (subclinical)
depressive symptoms, an effect that may be relevant to antidepressant actions of
PDE4 inhibitors (Fleischhacker et al. 1992). Given negative mood associated
with protracted abstinence and relapse (Koob 2015), selective reduction of post-
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dependent drinking (Bell et al. 2015), and decreased post-dependent anxiety- and
depression-like behaviors following rolipram treatment (Gong et al. 2017), further
studies on PDE4 inhibition and its effects on mood and craving during the post-
dependent state are warranted.

Ibudilast’s inhibitory effects on PDEs are greatest for the 4-type enzyme. Its
effects on alcohol drinking might occur through other mechanisms, however,
although it is unlikely that TLR4 antagonism is one of them (Harris et al. 2017).
Additional studies should clarify PDE or other mechanisms through which ibudilast
affects alcohol drinking and other AD-relevant measures. In addition, clinically
approved selective PDE4 inhibitors are available for testing in AUD subjects;
however, they are associated with undesirable side effects such as nausea and
emesis – actions attributed to the PDE4D subtype. PDE4B subtype-specific drugs
under development may eliminate the undesirable side effects while retaining action
in brain regions associated with affect and motivation (Cherry and Davis 1999).

3.3 Glucocorticoid Receptor (GR)

The glucocorticoid receptor (GR) is a widely expressed transcription factor
mediating diverse physiological responses to glucocorticoids (Oakley and Cidlowski
2013). It is surprising that the GR has only recently been considered as a target for
AUD pharmacotherapy given the well-known relationship between stress physiol-
ogy and AUD. Alcohol intoxication and withdrawal activate the hypothalamus-
pituitary-adrenal (HPA) axis to elevate circulating glucocorticoids (cortisol
[CORT] in primates, corticosterone [CORT] in rodents) in rodents (Tabakoff et al.
1978; Rasmussen et al. 2000), monkeys (Schwandt et al. 2011), and humans
(Adinoff et al. 1998). CORT levels remain elevated in specific brain regions months
after alcohol withdrawal (Little et al. 2008) to engender a blunted HPA axis response
characteristic of long-term heavy alcohol exposure (Lee and Rivier 1997;
Richardson et al. 2008; Helms et al. 2012) and protracted alcohol abstinence
(Adinoff et al. 1990; Wand and Dobs 1991).

Alcohol intake is increased by glucocorticoids (Fahlke et al. 1994; Fahlke and
Eriksson 2000). Whether these effects are mediated through GR interactions with
brain DA reward circuitry as proposed for psychomotor stimulants (Piazza and Le
Moal 1997) is unknown. Under nondependent conditions, the GR antagonist mifep-
ristone (RU486) decreased limited access alcohol drinking in rats (Koenig and Olive
2004) and blocked alcohol CPP acquisition (Rotter et al. 2012) suggesting that GR
mediates alcohol reward and nondependent alcohol drinking.

Prolonged HPA axis activation and CORT release caused by frequent alcohol
intoxication and withdrawal escalates alcohol intake through two distinct GR
mechanisms (Edwards et al. 2015; Tunstall et al. 2017). CORT activation of the
GR in the PVN inhibits CRF release which, in turn, diminishes HPA activation.
With prolonged drinking, this leads to the dampened HPA function and subsequent
binge drinking to temporarily restore HPA axis tone (Blaine and Sinha 2017). In
addition, GR activation in the CeA by CORT stimulates CRF release and increases
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GR expression (Vendruscolo et al. 2012) giving rise to negative affect and
increased alcohol drinking through negative reinforcement mechanisms (Edwards
and Koob 2010). To that end, mifepristone prevented escalation of alcohol drinking
in rats exposed to chronic intermittent alcohol vapors (Vendruscolo et al. 2012) and
mifepristone, and the selective GR antagonist CORT113176 selectively reduced
alcohol drinking in dependent rats (Vendruscolo et al. 2015). Mifepristone
administered into the CeA also blocked yohimbine-induced reinstatement of
extinguished alcohol SA (Simms et al. 2012).

Glucocorticoid-induced neurotoxicity arising from long-term alcohol intoxica-
tion also contributes to cortically mediated cognitive dysfunction that may impair
regulation of alcohol intake (Rose et al. 2010; Lu and Richardson 2014; Blaine and
Sinha 2017; Pahng et al. 2017). The GR is expressed in the PFC and coordinates
stress response in multiple brain regions. Chronic ethanol intoxication and with-
drawal alters GR signaling in the mPFC (Somkuwar et al. 2017). GR antagonism
during alcohol withdrawal in rats was shown to ameliorate memory impairments in
mice (Jacquot et al. 2008) suggesting that, with the PVN and CeA, GRs in the PFC
also serve as a pharmacotherapeutic target for AUD.

With strong preclinical support, mifepristone was tested in non-treatment-seeking
AUD subjects over a 1-week period (Vendruscolo et al. 2015) and found to reduce
alcohol cue-induced craving in the laboratory and decrease alcohol consumption
during the treatment phase and 1-week posttreatment. Additionally, results of a
clinical proof-of-concept study examining a 14-day mifepristone treatment on cog-
nitive function and mood after drinking cessation awaits publication (Donoghue
et al. 2016). The strong preclinical support and encouraging clinical results justify
further clinical studies with mifepristone or novel selective GR antagonists.

3.4 Nociceptin (NOP) Receptor

Nociceptin/orphinin FQ (N/OFQ) is the endogenous ligand for the nociceptin
receptor (NOP) – a G-protein-coupled receptor sharing significant homology
with classical opioid receptors, yet having little to no affinity opioid peptides
or morphine-like drugs (Meunier et al. 1995; Reinscheid et al. 1995). Although
of interest for pain reduction and feeding effects, N/OFQ attenuates stress-like
responses and has a broad anxiolytic profile. Relevant to AUD, the NOP receptor
expressed brain regions associated with alcohol intake and AD including the BNST,
CeA, PFC, VTA, NAc, and LC (Witkin et al. 2014).

Preclinical evidence for NOP receptor involvement in AUD has been reviewed
elsewhere (e.g., Murphy 2010; Witkin et al. 2014). The studies showed that
nocioceptin and brain-penetrant NOP receptor agonists reduced alcohol drinking
and SA (Ciccocioppo et al. 1999, 2014) and alcohol CPP (Kuzmin et al. 2003). They
also decreased alcohol SA in alcohol-dependent rats at doses that were ineffective in
nondependent rats (de Guglielmo et al. 2015), blocked ADE development (Kuzmin
et al. 2007), and blocked footshock (Martin-Fardon et al. 2000) and cue reinstate-
ment of extinguished alcohol SA (Ciccocioppo et al. 2004). In the rat, ethanol
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significantly augments CeA GABA release, whereas N/OFQ diminishes it, an
effect that is significantly stronger in alcohol-dependent rats (Roberto and Siggins
2006). These observations, combined with reduced pronociceptin and NOP receptor
expression observed in postmortem brain tissue of human alcoholics (Kuzmin et al.
2009), support the hypothesis that endogenous N/OFQ functions to limit alcohol
intake. Restoring diminished brain NOP receptor-system function through NOP
receptor agonist administration, therefore, seemed to be a valid therapeutic strategy
for AUD.

Contradictory observations appeared early in a report that N/OFQ administered
continuously via an indwelling minipump elevated already substantial alcohol
drinking by msP rats (Cifani et al. 2006). Recently, rats carrying a deletion of the
NOP receptor self-administered less alcohol and reached lower progressive-ratio
breakpoints than wild-type rats (Kallupi et al. 2017). These studies suggested a
positive rather than negative relationship between nociceptin activity and alcohol
intake. Accordingly, NOP receptor antagonists rather than agonists would be the
desired AUD pharmacotherapy.

Earlier, when selective NOP receptor antagonists were used as experimental tools
to verify NOP receptor activity in agonist studies, they had no significant effect on
alcohol intake (Ciccocioppo et al. 2002, 2007) yet, in the latter study – which did not
report the p-value – there appeared to be reduced drinking at the middle dose (see
Ciccocioppo et al. 2007, Fig. 3). In preparation for clinical testing, Rorick-Kehn
et al. (2016) found that LY2940094, a brain-penetrant, selective NOP receptor
antagonist, significantly reduced home cage alcohol drinking and operant alcohol
SA breakpoints in female P rats and male msP rats. LY2940094 also blocked
yohimbine-induced reinstatement of extinguished alcohol SA by msP rats and
blocked alcohol-stimulated DA release in the NAc. These preclinical observations
served as the basis for an 8-week, double-blind, placebo-controlled, proof-of-con-
cept study in 88 AUD patients (Post et al. 2016). Although the primary outcome
measure, drinks per day, did not differ significantly between the treatment groups,
LY2940094 significantly reduced % monthly heavy drinking days and increased %
abstinent days per month.

The encouraging clinical efficacy for the NOP receptor antagonist LY2940094
raises questions regarding approximately 15 years of preclinical studies showing
efficacy for NOP receptor agonists. Rorick-Kehn et al. (2016) hypothesized that
chronic NOP receptor agonist administration downregulates the N/OFQ system
through NOP receptor desensitization and internalization. Reduced NOP receptor
expression at the plasma membrane available to bind N/OFQ results in a functional
receptor blockade. Agonist effects reported previously may be related to reduced
NOP receptor availability and diminished endogenous signaling after sub-chronic
agonist administration. The hypothesis is consistent with reports that attenuating
alcohol drinking and SA required repeated NOP receptor agonist administration
(Ciccocioppo et al. 1999, 2014; Economidou et al. 2006, 2008). Agonist-induced
NOP receptor desensitization and internalization has been examined in vitro
(Dautzenberg et al. 2001), but not in parallel with alcohol drinking.
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Until we understand NOP receptor dynamics in response to repeated agonist and
antagonist administration, concerns remain about detrimental effects that could
worsen AUD. Like their effects on alcohol drinking, NOP receptor agonists (Vitale
et al. 2006; Lu et al. 2011) as well as antagonists (Duzzioni et al. 2011) have
anxiolytic effects. NOP agonists decrease anxiety-like behavior in acute and
protracted alcohol withdrawal (Economidou et al. 2011) possibly through functional
CRF antagonism in the BNST (Rodi et al. 2008) and CeA (Cruz et al. 2012). If NOP
receptor antagonism – functional or direct – is required to decrease alcohol drinking
and related AD measures, concerns remain regarding potential anxiogenic effects,
particularly during abstinence, after extended NOP receptor agonist or antagonist
administration. Preclinically, N/OFQ attenuated elevated anxiety-like behavior in
ethanol-dependent rats 1-week post-withdrawal but was anxiogenic 3-week post-
withdrawal (Aujla et al. 2013). Expanding the canvas, NOP antagonists also have
antidepressant actions which are reversed by NOP agonists (Gavioli and Calò 2013).
For the NOP receptor to be a serious therapeutic AUD candidate, further preclinical
studies are needed to evaluate anxiolytic and antidepressant responses in parallel
with alcohol-related measures. Ligands over a range of intrinsic activities may also
need to be considered. Once resolved, the availability of PET ligands for the NOP
receptor will support translation to human subjects (Narendran et al. 2017).

3.5 Corticotrophin-Releasing Factor (CRF) Receptor 1

CRF’s involvement in alcohol dependence has been reviewed extensively (see
Zorrilla et al. 2014; Phillips et al. 2015; Quadros et al. 2016; Schreiber and Gilpin
2018, this volume). Briefly, extrahypothalamic CRF1 receptors in the CeA (Roberto
et al. 2010), MRN (Lê et al. 2013), DRN (Quadros et al. 2014), mPFC (George et al.
2012; Gondré-Lewis et al. 2016), VTA (Hwa et al. 2013; Sparta et al. 2013), and
BNST (Pleil et al. 2015) mediate excessive alcohol intake in CIE and scheduled
access models, reinstatement associated with early and proximal stress, and alcohol
heightened aggression.

The CRF1 receptor as an AUD therapeutic target is supported by preclinical
peptide and non-peptide drug studies using a diverse range of alcohol drinking and
AUDmodels. Approximately 75% of published CRF1 antagonist tests show positive
effects (I reviewed 46 publications reporting 63 distinct test outcomes for 12 CRF1
antagonists). The 25% negative outcomes were largely confined to 24-h access
or limited access drinking or to alcohol cue reinstatement in nondependent,
non-stressed animals – that is, non-pathological social drinking models. In mice
drinking to BACs >100 mg% (Correia et al. 2015), alcohol-preferring msP rats
(Gehlert et al. 2007), stressed rats (Roltsch et al. 2014), alcohol-dependent rats (Chu
et al. 2007), or rats undergoing alcohol withdrawal (Funk et al. 2006), CRF1
antagonists reduced alcohol intake, anxiety-like behaviors (Gehlert et al. 2007),
and brain stimulation reward thresholds (Bruijnzeel et al. 2010). CRF1 antagonists
also reduced yohimbine-induced (Marinelli et al. 2007) and footshock-induced (Liu
and Weiss 2002) reinstatement of extinguished alcohol SA – a response that is
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stronger in msP rats (Hansson et al. 2006) and in alcohol-dependent rats (Gehlert
et al. 2007). CIE exposure – under conditions sufficient to increase alcohol drinking
and engender anxiety-like behaviors – increases Crh and Crh1 mRNA and transcript
expression in the amygdala (Sommer et al. 2008; Eisenhardt et al. 2015) and leads to
CRF1 receptor-mediated enhancement of GABA transmission in the CeA (Roberto
et al. 2010). Innate upregulation of Crhr1 transcript was found in several limbic brain
areas of alcohol-preferring msP rats as was a genetic polymorphism of the Crhr1
promoter (Hansson et al. 2006).

Two recent negative clinical studies examining CRF1 antagonist effects on
alcohol craving are remarkable considering the abundant preclinical evidence for
CRF1R as therapeutic target for AUD. In the first (Kwako et al. 2015), nonsignifi-
cant effects were likely due to the antagonist’s receptor binding kinetics. The second
study (Schwandt et al. 2016) used verucerfont, a CRF1 antagonist having a more
effective pharmacokinetic profile. Verucerfont administration decreased neuro-
endocrine responses to the Trier social stress test combined with alcohol cues and
attenuated amygdala responses to fearful face images. Personalized auditory-guided
imagery scripts, the Trier test, and alcohol cues also increased experimental
measures of alcohol craving and negative emotionality, but these responses were
not significantly altered by verucerfont administration.

The two clinical studies suggest that the therapeutic scope of selective CRF1
antagonists for AUDmay be narrower than hoped (Spierling and Zorrilla 2017). Yet,
as discussed by Spierling and Zorrilla (2017), the absence of an alcohol cue response
is consistent with animal studies showing that CRF1 antagonists do not affect cue
reinstatement of extinguished alcohol SA (Liu and Weiss 2002). At present, there is
no reason to believe that the negative human data arise from unknown distinctions
between the human and rodent CRF system. The absence of reliable brain-penetrant
PET radioligands targeting the CRF1 receptor or human postmortem CRF1 receptor
brain mapping studies diminishes our understanding of the human CRF1 system.
Nevertheless, nonhuman primate studies show remarkable consistency with rodent
data with respect to amygdala CRF mediation of anxious temperament (Kalin et al.
2016; and see Koob 2016 commentary).

Additional subject characteristics in Schwandt et al. may have influenced their
results. Because of CRF1-antagonist safety concerns in males, subjects were
females. In addition, they recruited subjects with high trait anxiety (Spielberger
State-Trait Anxiety Inventor (STAI) score >39). The subjects, therefore, could be
thought to have anxiety problems distinct from AUD or perhaps reflect Cloninger’s
type I alcoholism. According to the preclinical literature, which was performed
exclusively in male subjects, chronic drug exposure engages adaptations in CRF
circuits within the extended amygdala. Instead of a tonic, persistent negative mood
state, the resulting negative affective state has been characterized as a “dynamic,
active response to an acute stressor” (Koob and Zorrilla 2012) having features like
affective pain responses (Egli et al. 2012). Trait anxiety as measured by the STAI
may be distinct from the CRF-mediated negative affect component of AD. Hence, a
CRF1 antagonist may not have been the appropriate medication for the Schwandt
et al. subjects.
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The exploratory human CRF1-antagonist studies, rather than definitively
disconfirming the involvement of CRF in human AUD or conclusively ruling out
CRF1R as a therapeutic target, raise several important questions regarding CRF1R
pharmacology, as well as sex, species, and individual differences in CRF receptor-
mediated physiology and behavior that will repay richly if they are pursued rather
than abandoned.

4 Translation and Back Translation

I reviewed five medication targets for which clinically approved drugs showed
efficacy in preclinical AD models. Invoking the analogical argument, the preclinical
studies support the plausibility that (1) the targets contribute to human AUD and
(2) pharmacologically engaging the targets will ameliorate excessive drinking and
other AD symptoms. For ibudilast, mifepristone, CORT113176, and LY2940094,
early clinical studies were also encouraging. As illustrated in Fig. 2, preclinical
models, by design, do not account for every influential clinical variable. The
influence of the modeled variables on clinical outcome variables, relative to those
not modeled (e.g., expectancies, social influences), will determine the model’s
predictive relationship. The predictive relationship, therefore, will vary across
individuals and settings. The next step, however, is to address translation from
animals to humans.

4.1 Advancing Translational Studies

At a 1956 National Institute on Mental Health workshop devoted to evaluating
psychiatric pharmacotherapies in animals, the eminent behavioral psychologist
B. F. Skinner proposed that:

one moves from the experimental analysis at the lower level to the human level, not by
pointing out possible analogies, but by constructing an experimental situation in which the
same kind of variables are manipulated and the same changes in behavior measured.
(Skinner 1959)

Skinner’s prescient statement anticipated the current interest in translational
approaches to AUD medication evaluation (e.g., Mason and Higley 2013; Bartlett
and Heilig 2013; Kwako et al. 2017). Behaviors associated with AUD pathology are
complex and challenging to model in animals, however. Focusing on simpler
biological and behavioral laboratory measures in animals and in humans allows
investigators to compare drugs across species directly. While, at first, simplification
narrows the model’s scope, it promotes translation. Scope can be expanded through
additional studies.

Endophenotype-focused translational approaches (Anderzhanova et al. 2017)
capitalize on hypothesized neurophysiological substrates of behavior. Treatment-
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responsive examples for AUD medication evaluation include alcohol-induced DA
release, tonic central glutamate levels, network connectivity, and stress hormonal
responses (Ray et al. 2009; Heilig et al. 2016; Schwandt et al. 2016). Translational
endophenotypic measures are constrained by availability of safe, noninvasive in vivo
tools to measure molecular, cellular, and circuitry function in humans. Measures also
require causal relevance to clinical variables of interest. For example, verucerfont
blocked HPA axis response in rats and humans confirming drug activity in both
species (Schwandt et al. 2016), but it did not affect alcohol craving suggesting that
HPA axis response may not be a causally relevant biomarker for alcohol craving.

Constraints in measuring human brain function may be circumvented by using
surrogate behavioral tests with known brain mechanisms. For example, Kaye et al.
(2017) proposed cue-induced startle potentiation as a translational behavioral probe
to assess neuroadaptive changes in extrahypothalamic stress systems. Although the
measure has only been validated in animals, it is readily applied to humans and
rodents. Similarly, Cservenka et al. (2017a) developed an alcohol-specific predic-
tion-error task in humans derived from preclinical studies. Identifying further behav-
ioral assays dependent upon distinct brain mechanisms and with causal relevance to
AUD pathology will provide important translational tools.

Translational studies also reveal discrepancies between animals and humans.
Rather than translational failures, they are opportunities for discovery. For example,
species-appropriate stressors have temporally distinct effects on progressive-ratio
alcohol SA breakpoints depending on whether subjects are humans (McCaul et al.
2017) or mice (Norman et al. 2015). Experimentally identifying stressor or species
variables contributing to the distinct responses will enable the development of
translational paradigms for medication testing.

Once we have moved confidently from animals to humans, translational biochem-
ical and behavioral measures can be incorporated into RCTs to evaluate their
predictive relationship to trial outcomes. Thus, translational approaches may resolve
ongoing discussions about the impact of variables distinguishing non-treatment-
seeking subjects used in laboratory alcohol studies from treatment seeking subjects
used in AUD pharmacotherapy RCTs (Ray et al. 2017b; Rohn et al. 2017). Circling
back, translational measures predicting primary RCT outcomes can serve as preclin-
ical screens, and to the extent they are causally related to other definitive AUD
phenotypes, they can be included in novel mechanistic models.

4.2 Outcome Measures and Therapeutic Signals

There is no consensus about the most relevant clinical outcome measures (see
Witkiewitz et al. 2017 and associated commentaries). The question arises, then,
whether preclinical research can guide selection of clinical outcome measures and
other RCT design aspects. Excessive drinking is an important link between preclini-
cal models and clinical AUD, yet, the emphasis on excessive drinking does not
imply that reducing active drinking is the most important clinical outcome. Instead,
excessive drinking in preclinical models is best considered as a reliable behavioral
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“readout” of altered brain functioning relevant to AUD (Egli et al. 2016).
Demonstrating drug effects in pathologically relevant models that do not require
the presence of alcohol (e.g., CPP, reinstatement) supports the medication’s
potential efficacy in abstinent patients. With few exceptions, however (e.g., Liu
and Weiss 2002), pathologically relevant animal models tend to be universally
(or unsystematically) responsive or nonresponsive to test medications regardless of
whether drinking, cue effects, or stress effects are measured. Preclinical studies,
therefore, are essential for detecting efficacy signals, but they are likely to be only
minimally useful guides for preferring one RCT outcome measure over another.

An additional challenge is that patients meeting diagnostic criteria for AUD are
diverse. They differ in the specific criteria leading to their diagnosis, and they can be
subtyped according to additional psychological, physiological, and life history
measures. As a result, they respond differently to AUD medications (Litten et al.
2015). By extension, a medication’s therapeutic signal should be enhanced by
recruiting subjects representing specific, more homogeneous, patient populations
most likely to benefit from the medication (Addolorato et al. 2013). Although
subjects can be classified according to a spectrum of variables such as age of onset
or reinforcement-based phenotypes, genetic markers constitute the most reliably
measured. To that end, gene variants modulating AUD medication effects have
been identified through secondary analyses and, in some cases, validated in animal
models (Heilig et al. 2011; Jones et al. 2015; Cservenka et al. 2017b). Nevertheless,
prospective stratification by genotype has met with mixed success; differential
naltrexone responses were not observed as a function of A118G mu-opioid receptor
gene variant (Oslin et al. 2015; Schacht et al. 2017), whereas serotonin transporter
allelic variants significantly influenced ondansetron treatment response in a ran-
domly assigned prospective study (Johnson et al. 2011).

Linking genes to complex disease states such as AUD is not simple. Using gene
variants as predictors of treatment response assumes that their influence remains
constant throughout the course of a disease (Heilig and Leggio 2016). In addition,
causal relationships across biological and behavioral levels of analysis are complex.
The reductionist view is that variables at the micro level (e.g., genes and proteins)
constrain those at the macro level (emotions, behavior), yet it has been demonstrated
that causal relationships observed at the macro level often do not hold at the micro
level (Hoel et al. 2013). By implication, immediate downstream effects of AUD
disease genes can be altered by drug treatment while having minimal impact in the
larger causal environment of AUD recovery. Indeed, it is well established that
therapeutic effects of pharmacological treatment are strongly influenced by many
variables such as the magnitude of placebo effects (Litten et al. 2013a), physician
expectations (Spagnolo et al. 2015), and the presence of concurrent behavioral
interventions (Anton et al. 2008b). Therefore, systematically apprising the impact
of medication responses – genetically influenced or not – in the broader therapeutic
milieu may constitute a greater translational challenge than showing homology
between animals and humans.

The nascent field of computational psychiatry may offer solutions to these
challenges (see Redish and Gordon 2016). Taking advantage of increased
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computational power, emerging digital biometrics, and advanced neuroscience
technologies, computational psychiatry seeks to integrate observations across
biological and behavioral systems (from genes to behavior) over time through
sophisticated modeling to identify “fault points” leading to disease and to suggest
effective therapies. Rather than attempting to encompass the larger scope of the
computational model, preclinical studies will be essential for discovering and
confirming critical functional relationships within the model. The resulting research
enterprise will be radically different from traditional approaches and come nearer to
those in the advanced sciences. For example, rather than attempting to confirm
significant differences between medication and placebo conditions (i.e., null hypoth-
esis rejection), researchers will strive to demonstrate that recovery parameters
induced by treatment do not deviate significantly from those predicted by the
model (i.e., failure to reject the null hypothesis). When these goals are realized –

perhaps decades from now – the question as to whether observations derived from
individual subjects or a tightly defined cohort generalize to a broader diagnostic
category, like the diagnostic category itself, becomes only a minor concern.

5 Conclusion: What Do Preclinical AD Models Tell Us?

Investigational drug HBJ714 is effective in a preclinical AD model. The plausibility
that HBJ714 is an effective AD medication will be determined by (a) the model’s
history of discriminating clinically effective from ineffective medications, (b) its
material similarity to a definitive AD phenotype, (c) parallels between the model’s
causal structure and causal influences in clinical AD, (d) the influence of modeled
variables on clinical outcome measures relative to variables ignored by the model,
and (e) evidence from previous studies. The preclinical test result, therefore, justifies
further research in the form of additional preclinical studies, translational human
laboratory studies, and appropriately designed confirmatory RCTs. Whether the
same conclusions and decisions would occur in the absence of the model determines
the model’s value.
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Abstract

For more than 25 years, researchers have made advances in developing medi-

cations to treat alcohol use disorder (AUD), highlighted by the US Food and

Drug Administration’s (FDA’s) approval of disulfiram, naltrexone (oral and

long-acting), and acamprosate. These medications are also approved in Europe,

where the European Medicines Agency (EMA) recently added a fourth medi-

cation, nalmefene, for AUD. Despite these advances, today’s medications have a

small effect size, showing efficacy for only a limited number of individuals with

AUD. However, a host of new medications, which act on variety of pharmaco-

logic targets, are in the pipeline and have been evaluated in numerous human

studies. This article reviews the efficacy and safety of medications currently

being tested in human trials and looks at ongoing efforts to identify candidate

compounds in human studies. As mentioned in the National Institute on Alcohol
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Abuse and Alcoholism’s Strategic Plan 2017–2021 (https://www.niaaa.nih.gov/

sites/default/files/StrategicPlan_NIAAA_optimized_2017-2020.pdf),

medications development remains a high priority. By developing more effective

and safe medications, and identifying those patients who will benefit the most

from these treatments, we can provide clinicians with the tools they need to treat

this devastating disorder, providing relief for patients and their families and

markedly improving public health and safety.

Keywords

Alcohol use disorder · Human studies · Medications development

· Pharmacotherapy

1 Introduction

In the United States, three medications have been approved by the US Food and

Drug Administration (FDA) for the treatment of alcohol use disorder (AUD):

disulfiram, naltrexone (oral and extended-release injectable), and acamprosate.

Yet most people, less than 20%, seek treatment for AUD during their lifetime,

and of these less than 4% receive FDA-approved medications (Grant et al. 2015;

Litten 2016). Medications for AUD have been available to clinicians for decades

but remain underutilized. In an effort to better inform clinicians about the benefits

of medications for treating AUD, the Substance Abuse and Mental Health Services

Administration (SAMHSA) and National Institute on Alcohol Abuse and Alcohol-

ism (NIAAA) recently published practical guidelines for prescribing these

FDA-approved medications in clinical practice (http://store.samhsa.gov/shin/con

tent//SMA15-4907/SMA15-4907.pdf).

Raising awareness about the medications available and offering guidelines for pre-

scribing themmay help. Still, clinicians’ reluctance tomake full use of pharmacotherapies

may be, in part, because the existingmedications have such small effect sizes, on average,

and show a wide range of efficacy across patients. Some of this variability is due to the

significant heterogeneity of AUD itself. We simply do not know which type of patient is

most likely to respond to each of thesemedications. Severity, duration, and family history

of the disorder, co-occurring disorders, demographic characteristics, and genetic markers,

among other factors, all can impact how a patient responds to medication. In other words,

there is no silver bullet for the treatment of this complex disorder.

Because of this, in recent years, the search for medications to treat AUD has

undergone a paradigm shift toward precision medicine. Medications development

is now actively seeking to identify subgroups of patients who will benefit the most

from specific compounds and have the fewest side effects. The goal is to provide

clinicians with a full menu of medication options from which to choose. This is not

an entirely new concept. Over two decades ago, NIAAA first explored the idea of

“matching” specific treatments to specific types of patients with AUD in a series of

groundbreaking studies conducted through the Project Match initiative (Project

MATCH Research Group 1997). Since then, with advances in neuroscience and the

underlying etiology of AUD, clinical trials have focused not only on whether a

580 R.Z. Litten et al.

https://www.niaaa.nih.gov/sites/default/files/StrategicPlan_NIAAA_optimized_2017-2020.pdf
https://www.niaaa.nih.gov/sites/default/files/StrategicPlan_NIAAA_optimized_2017-2020.pdf
http://store.samhsa.gov/shin/content//SMA15-4907/SMA15-4907.pdf
http://store.samhsa.gov/shin/content//SMA15-4907/SMA15-4907.pdf


medication works “on average” across a patient population but also if it works

better in certain patient subgroups based on a purported mechanism of action.

Most encouraging is the diversity and number of targets being studied today, as

well as the number of potential compounds currently in development. Preclinical

work is summarized in another chapter of this book (see Egli, M). Here we detail

the latest research on these medications, including their mechanism of action,

efficacy, and safety in treating AUD in humans. We include medications that

have exhibited efficacy in alcohol treatment clinical trials, medications that initially

showed promise but failed in subsequent multisite clinical trials, as well as

medications which are still in the early stages of evaluation in human studies

(Table 1).

1.1 Medications Exhibiting Efficacy in Alcohol Treatment Clinical
Trials

1.1.1 Nalmefene

Molecular and Functional Mechanisms of Action
Nalmefene is an opioid antagonist approved by the FDA to treat opioid overdose.

Although structurally similar to naltrexone, nalmefene has several differences that

may have advantages over naltrexone. It has a higher affinity for mu and kappa

opioid receptors, a lower likelihood to induce liver toxicity, and higher bioavail-

ability than naltrexone (Mann et al. 2016; Mason et al. 1999). In a three-group

(nalmefene, naltrexone, and placebo) human laboratory study, nalmefene reduced

alcohol-induced craving and stimulation compared with placebo. Similar results

also were found for naltrexone (Drobes et al. 2004).

Results of Clinical Trials
In a single-site 12-week randomized clinical trial (RCT), Mason et al. (1999) first

showed that alcohol-dependent patients who received either 20 mg or 80 mg of

nalmefene per day were less likely to relapse to drinking or to drink heavily,

compared with patients who were treated with placebo. Results were not signifi-

cantly different between the 20- and 80-mg doses, with both nalmefene groups

showing similar efficacy. In another 12-week multisite RCT in 270 alcohol-

dependent patients, nalmefene, evaluated at three different doses (5, 20, and 40 mg

per day), failed to show a difference in the number of heavy-drinking days (defined

as five or more drinks per day for men and four or more drinks per day for women),

alcohol craving, gamma-glutamyl transpeptidase (GGT), and carbohydrate-deficient

transferrin (CDT) levels (GGT and CDT are biomarkers of alcohol consumption)

(Anton et al. 2004). In contrast to the Anton et al. (2004) study, three recent large

RCTs of nalmefene showed a positive effect on drinking outcome, which, subse-

quently, led to approval of this medication for treatment of AUD in Europe. The first

24-week RCT was conducted in 604 alcohol-dependent patients across 39 sites in

Austria, Finland, Germany, and Sweden (Mann et al. 2013). Nalmefene was taken as

Advances in Pharmacotherapy Development: Human Clinical Studies 581



T
a
b
le

1
M
ed
ic
at
io
n
s
to

tr
ea
t
al
co
h
o
l
u
se

d
is
o
rd
er

M
ed
ic
at
io
n

(d
o
se
)

S
it
e
o
f
ac
ti
o
n

F
D
A
ap
p
ro
v
al

E
ffi
ca
cy

C
o
m
m
o
n
si
d
e
ef
fe
ct
s

M
ed
ic
at
io
n
s
ex
h
ib
it
in
g
ef
fi
ca
cy

in
al
co
h
o
l
tr
ea
tm

en
t
cl
in
ic
al

tr
ia
ls

N
al
m
ef
en
e

(1
8
m
g
/d
ay

as

n
ee
d
ed
)

O
p
io
id

an
ta
g
o
n
is
t

R
ev
er
sa
l
o
f
o
p
io
id

o
v
er
d
o
se
.
A
p
p
ro
v
ed

fo
r
al
co
h
o
l
d
ep
en
d
en
ce

in
E
u
ro
p
e

S
m
al
l
ef
fe
ct

in
re
d
u
ci
n
g
d
ri
n
k
in
g
in

th
re
e

re
ce
n
t
E
u
ro
p
ea
n
tr
ia
ls

N
au
se
a,
v
o
m
it
in
g
,
fa
ti
g
u
e,
in
so
m
n
ia
,
an
d

d
iz
zi
n
es
s

V
ar
en
ic
li
n
e

(2
m
g
/d
ay
)

P
ar
ti
al

α4
β2

an
d
fu
ll
α7

n
ic
o
ti
n
ic

ag
o
n
is
t

S
m
o
k
in
g
ce
ss
at
io
n

R
ec
en
t
m
u
lt
is
it
e
R
C
T
sh
o
w
ed

v
ar
en
ic
li
n
e

re
d
u
ce
d
d
ri
n
k
in
g
in

al
co
h
o
l-
d
ep
en
d
en
t

sm
o
k
er
s
an
d
n
o
n
sm

o
k
er
s.
V
ar
en
ic
li
n
e

m
ay

b
e
m
o
st
ef
fe
ct
iv
e
in

p
eo
p
le

w
it
h
le
ss

se
v
er
e
A
U
D
an
d
am

o
n
g
sm

o
k
er
s
w
h
o

re
d
u
ce
d
th
ei
r
sm

o
k
in
g

N
au
se
a,
ab
n
o
rm

al
d
re
am

s,
an
d

co
n
st
ip
at
io
n
.
In

ra
re

in
st
an
ce
s,
se
iz
u
re
s

m
ay

o
cc
u
r.
In

so
m
e
in
d
iv
id
u
al
s,

v
ar
en
ic
li
n
e
m
ay

af
fe
ct

th
ei
r
ab
il
it
y
to

to
le
ra
te

al
co
h
o
l

T
o
p
ir
am

at
e

(1
0
0
–
3
0
0
m
g
/

d
ay
)

F
ac
il
it
at
es

G
A
B
A
ac
ti
v
it
y
,
g
lu
ta
m
at
e

A
M
P
an
d
k
ai
n
it
e
an
ta
g
o
n
is
t,
b
lo
ck
s

L
-t
y
p
e
ca
lc
iu
m

ch
an
n
el
s,
re
d
u
ce
s
v
o
lt
ag
e-

d
ep
en
d
en
t
so
d
iu
m

ch
an
n
el

ac
ti
v
it
y
,

in
h
ib
it
s
ca
rb
o
n
ic

an
h
y
d
ra
se

P
ar
ti
al

an
d
to
n
ic
-c
lo
n
ic

se
iz
u
re
s
an
d

m
ig
ra
in
es
.C

o
m
b
in
at
io
n
o
f
to
p
ir
am

at
e
an
d

p
h
en
te
rm

in
e
as

ad
ju
n
ct

fo
r
o
b
es
it
y

S
ev
er
al

R
C
T
s,
in
cl
u
d
in
g
o
n
e
m
u
lt
is
it
e

st
u
d
y
,
h
av
e
d
em

o
n
st
ra
te
d
to
p
ir
am

at
e’
s

ef
fi
ca
cy

in
re
d
u
ci
n
g
al
co
h
o
l
co
n
su
m
p
ti
o
n
.

R
ec
en
t
st
u
d
y
in
d
ic
at
ed

th
at

g
en
et
ic

p
o
ly
m
o
rp
h
is
m

in
G
R
IK

1
g
en
e
p
re
d
ic
ts
a

m
o
re

fa
v
o
ra
b
le

re
sp
o
n
se

to
to
p
ir
am

at
e

w
it
h
fe
w
er

si
d
e
ef
fe
ct
s

D
iz
zi
n
es
s,
p
ar
es
th
es
ia
,
m
em

o
ry

o
r

co
n
ce
n
tr
at
io
n
im

p
ai
rm

en
t,
p
sy
ch
o
m
o
to
r

sl
o
w
in
g
,
n
er
v
o
u
sn
es
s,
ta
st
e
p
er
v
er
si
o
n
,

p
ru
ri
tu
s,
an
d
w
ei
g
h
t
lo
ss

Z
o
n
is
am

id
e

(4
0
0
–
5
0
0
m
g
/

d
ay
)

E
n
h
an
ce
s
G
A
B
A
ac
ti
v
it
y
,
b
lo
ck
s
v
o
lt
ag
e-

se
n
si
ti
v
e
so
d
iu
m

ch
an
n
el
s,
b
lo
ck
s
T
-t
y
p
e

ca
lc
iu
m

ch
an
n
el
s,
in
h
ib
it
s
ca
rb
o
n
ic

an
h
y
d
ra
se

A
d
ju
n
ct

fo
r
p
ar
ti
al

se
iz
u
re

In
p
re
cl
in
ic
al
,
h
u
m
an

la
b
o
ra
to
ry

an
d

o
p
en
-l
ab
el

st
u
d
ie
s,
zo
n
is
am

id
e
sh
o
w
ed

p
ro
m
is
e
fo
r
tr
ea
ti
n
g
A
U
D
.
T
h
is
w
as

co
n
fi
rm

ed
b
y
tw
o
si
n
g
le
-s
it
e
R
C
T
tr
ia
ls
,

w
h
ic
h
sh
o
w
ed

zo
n
is
am

id
e
w
as

ef
fe
ct
iv
e

in
re
d
u
ci
n
g
al
co
h
o
l
co
n
su
m
p
ti
o
n
.

Z
o
n
is
am

id
e
ap
p
ea
rs
to

ex
h
ib
it
ef
fi
ca
cy

si
m
il
ar

to
to
p
ir
am

at
e

S
id
e-
ef
fe
ct
p
ro
fi
le
is
si
m
il
ar

to
to
p
ir
am

at
e,

al
th
o
u
g
h
so
m
ew

h
at

le
ss

se
v
er
e

G
ab
ap
en
ti
n

(6
0
0
–
1
,8
0
0
m
g
/

d
ay
)

A
p
p
ea
rs
to

in
te
ra
ct

w
it
h
v
o
lt
ag
e-
g
at
ed

ca
lc
iu
m

ch
an
n
el
s
to

in
d
ir
ec
tl
y
m
o
d
u
la
te

G
A
B
A
ac
ti
v
it
y

A
d
ju
n
ct

fo
r
p
ar
ti
al

se
iz
u
re
,
n
eu
ro
p
at
h
ic

p
ai
n
,
re
st
le
ss

le
g
s
sy
n
d
ro
m
e

S
ev
er
al

si
n
g
le
-s
it
e
R
C
T
s
d
em

o
n
st
ra
te
d

g
ab
ap
en
ti
n
is
ef
fe
ct
iv
e
in

in
cr
ea
si
n
g

ab
st
in
en
ce

an
d
th
e
n
u
m
b
er

o
f
n
o
h
ea
v
y
-

d
ri
n
k
in
g
d
ay
s

F
at
ig
u
e,
in
so
m
n
ia
,
an
d
h
ea
d
ac
h
es

B
ac
lo
fe
n

(3
0
–
8
0
m
g
/d
ay
)

G
A
B
A
B
ag
o
n
is
t

M
u
sc
le

sp
as
ti
ci
ty

S
ev
er
al

R
C
T
s
st
u
d
ie
s
sh
o
w
ed

m
ix
ed

re
su
lt
s
in

re
d
u
ci
n
g
d
ri
n
k
in
g

D
ro
w
si
n
es
s.
A
t
h
ig
h
d
o
se
s
m
o
re

ad
v
er
se

ev
en
ts
in
cl
u
d
in
g
fa
ti
g
u
e,
sl
ee
p
in
es
s,

d
ro
w
si
n
es
s,
d
iz
zi
n
es
s,
d
ry

m
o
u
th

H
ig
h
er

d
o
se
s

ar
e
b
ei
n
g

ex
p
lo
re
d

582 R.Z. Litten et al.



O
n
d
an
se
tr
o
n

(8
μg

/k
g
/d
ay
)

5
-H

T
3
an
ta
g
o
n
is
t

N
au
se
a
an
d
v
o
m
it
in
g

T
w
o
la
rg
e
si
n
g
le
-s
it
e
R
C
T
s
d
em

o
n
st
ra
te
d

ef
fi
ca
cy

o
f
o
n
d
an
se
tr
o
n
(l
o
w
d
o
se

o
f
8
μg

/

k
g
/d
ay
)
in

re
d
u
ci
n
g
d
ri
n
k
in
g
,
p
ar
ti
cu
la
rl
y

in
a
su
b
g
ro
u
p
o
f
al
co
h
o
l-
d
ep
en
d
en
t

p
at
ie
n
ts
.
T
h
e
fi
rs
t
R
C
T
sh
o
w
ed

th
at

p
at
ie
n
ts
w
it
h
ea
rl
y
o
n
se
t
o
f
al
co
h
o
li
sm

(2
5
y
ea
rs
o
r
y
o
u
n
g
er
)
re
sp
o
n
d
ed

to

o
n
d
an
se
tr
o
n
tr
ea
tm

en
t.
T
h
e
se
co
n
d
R
C
T

d
id

n
o
t
re
p
li
ca
te

th
is
fi
n
d
in
g
,
b
u
t
d
id

fi
n
d

th
at

g
en
et
ic

p
o
ly
m
o
rp
h
is
m
s
o
f
5
-H

T
T
,

5
-H

T
3
A
,
an
d
5
-H

T
3
B
g
en
es

sh
o
w
ed

a

g
re
at
er

re
sp
o
n
se

to
o
n
d
an
se
tr
o
n

N
o
n
e
re
p
o
rt
ed

in
th
e
tw
o
R
C
T
s.
F
D
A

sa
fe
ty

p
re
ca
u
ti
o
n
w
ar
n
s
th
at

ca
rd
ia
c
Q
T

p
ro
lo
n
g
at
io
n
is
p
o
ss
ib
le

at
h
ig
h
d
o
se
s

P
ra
zo
si
n
/

d
o
x
az
o
si
n

(1
6
m
g
/d
ay
)

S
el
ec
ti
v
e
α-
1
ad
re
n
er
g
ic

an
ta
g
o
n
is
t

H
y
p
er
te
n
si
o
n
an
d
b
en
ig
n
p
ro
st
at
ic

h
y
p
er
p
la
si
a

S
in
g
le
-s
it
e
R
C
T
s
h
av
e
sh
o
w
n
m
ix
ed

ef
fe
ct
s.
M
ay

w
o
rk

in
a
su
b
g
ro
u
p
w
it
h
a

fa
m
il
y
h
is
to
ry

an
d
h
ig
h
b
lo
o
d
p
re
ss
u
re

D
ro
w
si
n
es
s,
d
iz
zi
n
es
s,
fa
ti
g
u
e

A
B
T
-4
3
6

(8
0
0
m
g
/d
ay
)

V
as
o
p
re
ss
in

V
1
b
an
ta
g
o
n
is
t

N
o
t
ap
p
ro
v
ed

M
u
lt
is
it
e
R
C
T
sh
o
w
ed

in
cr
ea
se

in
%

d
ay
s

ab
st
in
en
t.
M
ay

w
o
rk

b
et
te
r
in

in
d
iv
id
u
al
s

re
p
o
rt
in
g
h
ig
h
er

b
as
el
in
e
le
v
el
s
o
f
st
re
ss

D
ia
rr
h
ea

A
ri
p
ip
ra
zo
le

(1
5
–
3
0
m
g
/d
ay
)

P
ar
ti
al

ag
o
n
is
t
at

D
2
an
d
5
-H

T
1
A

re
ce
p
to
rs
,
5
-H

T
2
an
ta
g
o
n
is
t

S
ch
iz
o
p
h
re
n
ia
,
b
ip
o
la
r
d
is
o
rd
er

ad
ju
n
ct

fo
r
m
aj
o
r
d
ep
re
ss
io
n

S
m
al
l
h
u
m
an

la
b
o
ra
to
ry

an
d
cl
in
ic
al

st
u
d
ie
s
su
g
g
es
te
d
ef
fi
ca
cy

fo
r
re
d
u
ci
n
g

d
ri
n
k
in
g
.
H
o
w
ev
er
,
a
m
u
lt
is
it
e
R
C
T

sh
o
w
ed

n
o
ef
fi
ca
cy

at
a
3
0
m
g
/d
ay

d
o
se

F
at
ig
u
e,
in
so
m
n
ia
,
re
st
le
ss
n
es
s,

so
m
n
o
le
n
ce
,
an
x
ie
ty
,
an
d
d
is
tu
rb
an
ce

in

at
te
n
ti
o
n
.
F
D
A
B
o
x
W
ar
n
in
g
fo
r
su
ic
id
al

th
o
u
g
h
ts
an
d
b
eh
av
io
rs

L
Y
2
9
4
0
0
9
4

(4
0
m
g
/d
ay
)

N
o
ci
ce
p
ti
o
n
(N

O
P
)
an
ta
g
o
n
is
t

N
o
t
ap
p
ro
v
ed

M
u
lt
is
it
e
R
C
T
sh
o
w
ed

re
d
u
ce
d
n
u
m
b
er

o
f

h
ea
v
y
-d
ri
n
k
in
g
d
ay
s
an
d
in
cr
ea
se

in
%

d
ay
s
ab
st
in
en
t

In
so
m
n
ia
,
an
x
ie
ty
,
v
o
m
it
in
g

L
Y
2
1
9
6
0
4
4

(2
5
0
m
g
/d
ay
)

O
p
io
id

an
ta
g
o
n
is
t

N
o
t
ap
p
ro
v
ed

M
u
lt
is
it
e
R
C
T
sh
o
w
ed

re
d
u
ce
d
n
u
m
b
er

o
f

d
ri
n
k
s
p
er

d
ay
.
M
ay

w
o
rk

b
et
te
r
in

in
d
iv
id
u
al
s
w
it
h
re
p
ea
t
L
D
R
D
4
g
en
e

p
o
ly
m
o
rp
h
is
m

G
as
tr
o
in
te
st
in
al
-r
el
at
ed

si
d
e
ef
fe
ct
s

si
m
il
ar

to
n
al
tr
ex
o
n
e
an
d
n
al
m
ef
en
e

M
ed
ic
at
io
n
s
th
at

h
av
e
sh
o
w
n
p
o
o
r
ef
fi
ca
cy

in
m
u
lt
is
it
e
al
co
h
o
l
p
h
ar
m
ac
o
th
er
ap
y
cl
in
ic
al

tr
ia
ls
d
es
p
it
e
p
ro
m
is
in
g
p
re
li
m
in
ar
y
st
u
d
ie
s

Q
u
et
ia
p
in
e

(3
0
0
–
8
0
0
m
g
/

d
ay
)

B
lo
ck
s
d
o
p
am

in
e
D
1
an
d
D
2
,
5
-H

T
1
A
,

5
-H

T
2
A
,
h
is
ta
m
in
e
H
1
,
an
d
ad
re
n
er
g
ic

α 1
an
d
α 2

S
ch
iz
o
p
h
re
n
ia
,
m
an
ic

ep
is
o
d
es

as
so
ci
at
ed

w
it
h
b
ip
o
la
r
1
d
is
o
rd
er
,
d
ep
re
ss
iv
e

ep
is
o
d
es

as
so
ci
at
ed

w
it
h
b
ip
o
la
r
d
is
o
rd
er
,

ad
ju
n
ct

fo
r
m
aj
o
r
d
ep
re
ss
iv
e
d
is
o
rd
er

D
es
p
it
e
p
ro
m
is
in
g
re
su
lt
s
in

p
re
li
m
in
ar
y

h
u
m
an

st
u
d
ie
s,
q
u
et
ia
p
in
e
w
as

n
o
t

ef
fe
ct
iv
e
in

se
v
er
al

m
u
lt
is
it
e
an
d
si
n
g
le

si
te

R
C
T
s.
In

th
e
m
u
lt
is
it
e
R
C
T
,
n
o

p
ro
m
is
in
g
su
b
g
ro
u
p
s
o
f
p
at
ie
n
ts
co
u
ld

b
e

id
en
ti
fi
ed

D
iz
zi
n
es
s,
d
ry

m
o
u
th
,
d
y
sp
ep
si
a,

in
cr
ea
se
d
ap
p
et
it
e,
se
d
at
io
n
,
an
d

so
m
n
o
le
n
ce
.
F
D
A
B
o
x
W
ar
n
in
g
fo
r

su
ic
id
al

th
o
u
g
h
ts
an
d
b
eh
av
io
rs

L
ev
et
ir
ac
et
am

(1
to

2
g
/d
ay
)

A
ct
iv
at
es

G
A
B
A
an
d
g
ly
ci
n
e
sy
st
em

s,

in
h
ib
it
s
g
lu
ta
m
at
e
A
M
P
A
,
d
ep
re
ss
es

so
d
iu
m
-c
al
ci
u
m

ch
an
n
el

cu
rr
en
t,

m
o
d
u
la
te
s
sy
n
ap
ti
c
v
es
ic
le

p
ro
te
in

2
A

A
d
ju
n
ct

fo
r
m
y
o
cl
o
n
ic
se
iz
u
re
,
p
ar
ti
al

se
iz
u
re
,
to
n
ic
-c
lo
n
ic

se
iz
u
re

S
ev
er
al

si
n
g
le

si
te

an
d
m
u
lt
is
it
e
R
C
T
s

tr
ia
ls
sh
o
w
ed

n
o
ef
fe
ct

o
n
re
d
u
ci
n
g

d
ri
n
k
in
g

F
at
ig
u
e.
F
ew

er
si
d
e
ef
fe
ct
s
th
an

th
e

an
ti
co
n
v
u
ls
an
ts
to
p
ir
am

at
e
an
d

zo
n
is
am

id
e

(c
o
n
ti
n
u
ed
)

Advances in Pharmacotherapy Development: Human Clinical Studies 583



T
a
b
le

1
(c
o
n
ti
n
u
ed
)

M
ed
ic
at
io
n

(d
o
se
)

S
it
e
o
f
ac
ti
o
n

F
D
A
ap
p
ro
v
al

E
ffi
ca
cy

C
o
m
m
o
n
si
d
e
ef
fe
ct
s

P
ro
m
is
in
g
m
ed
ic
at
io
n
s:
o
n
g
o
in
g
st
u
d
ie
s

M
if
ep
ri
st
o
n
e

(6
0
0
m
g
/d
ay

fo
r

1
w
ee
k
)

G
lu
co
co
rt
ic
o
id

an
ta
g
o
n
is
t

P
re
g
n
an
cy

te
rm

in
at
io
n
,
ad
ju
n
ct

fo
r

h
y
p
er
g
ly
ce
m
ia

an
d
en
d
o
m
et
ri
o
si
s

R
ed
u
ce
d
al
co
h
o
l
cr
av
in
g
d
u
ri
n
g

la
b
o
ra
to
ry

se
ss
io
n
an
d
re
d
u
ce
d
al
co
h
o
l

co
n
su
m
p
ti
o
n
d
u
ri
n
g
1
w
ee
k
b
ef
o
re

an
d

af
te
r
h
u
m
an

la
b
o
ra
to
ry

se
ss
io
n

W
el
l-
to
le
ra
te
d
w
it
h
n
o
se
ri
o
u
s
ad
v
er
se

ev
en
ts

O
x
y
to
ci
n
(n
as
al

4
0
–
4
8
IU

/d
ay
)

O
x
y
to
ci
n
re
ce
p
to
r
ag
o
n
is
t

L
ab
o
r
in
d
u
ct
io
n
,
te
rm

in
at
io
n
o
f

p
re
g
n
an
cy
,
ad
ju
n
ct

in
m
an
ag
em

en
t
o
f

in
co
m
p
le
te
,
o
r
in
ev
it
ab
le

ab
o
rt
io
n

R
ed
u
ce
s
ac
u
te

al
co
h
o
l
w
it
h
d
ra
w
al

sy
m
p
to
m
s.
M
ay

w
o
rk

b
et
te
r
in

in
d
iv
id
u
al
s

w
it
h
h
ig
h
le
v
el
s
o
f
an
x
ie
ty

W
el
l-
to
le
ra
te
d

Ib
u
d
il
as
t

(1
0
0
m
g
/d
ay
)

N
o
n
se
le
ct
iv
e
p
h
o
sp
h
o
d
ie
st
er
as
e
in
h
ib
it
o
r

N
o
t
ap
p
ro
v
ed

In
su
b
g
ro
u
p
an
al
y
si
s,
in
d
iv
id
u
al
s
w
it
h

el
ev
at
ed

d
ep
re
ss
io
n
ex
p
er
ie
n
ce
d
re
d
u
ce
d

st
im

u
la
n
t
an
d
m
o
o
d
-a
lt
er
in
g
ef
fe
ct
s
o
f

al
co
h
o
l

W
el
l-
to
le
ra
te
d

D
-c
y
cl
o
se
ri
n
e

(a
cu
te

d
o
se

o
f

5
0
m
g
)

P
ar
ti
al

ag
o
n
is
t
at

g
ly
ci
n
e
m
o
d
u
la
to
ry

si
te

o
f
g
lu
ta
m
at
e
N
M
D
A
re
ce
p
to
r

T
u
b
er
cu
lo
si
s,
u
ri
n
ar
y
tr
ac
t
in
fe
ct
io
n

R
ed
u
ce
d
al
co
h
o
l
cr
av
in
g
an
d
d
ec
re
as
ed

b
ra
in

ac
ti
v
at
io
n
in

th
e
v
en
tr
al

an
d
d
o
rs
al

st
ri
at
u
m

W
el
l-
to
le
ra
te
d

584 R.Z. Litten et al.



needed (one 18-mg tablet per day) if the patient perceived a risk of relapse. Patients

taking nalmefene significantly reduced the number of days they drank heavily and

the total amount of alcohol they consumed compared with the placebo group (8.2

versus 10.7 heavy-drinking days; 33.3 versus 45.5 g of alcohol per day, respectively).

The design of the second 24-week RCT was similar to the first, with 718 alcohol-

dependent patients recruited across 57 sites in Belgium, the Czech Republic, France,

Italy, Poland, Portugal, and Spain (Gual et al. 2013). Again, patients taking

nalmefene as needed showed a significant reduction in the number of heavy-drinking

days and a reduction (nonsignificant) in the amount of alcohol they consumed

compared with the placebo group (6.6 versus 7.5 heavy-drinking days; 30 versus

33 g of alcohol per day, respectively). Interestingly, a secondary analysis of a

subgroup of the heaviest drinkers in the two trials showed even larger nalmefene

treatment effects (van den Brink et al. 2013). A year-long RCT trial was also

conducted in 675 alcohol-dependent patients across 60 sites in the Czech Republic,

Estonia, Hungary, Latvia, Lithuania, Poland, Russia, Slovakia, Ukraine, and the

United Kingdom (van den Brink et al. 2014). Although there was no significant

difference in drinking outcomes between those taking nalmefene as needed and the

placebo groups at 6 months, there was a significant reduction in heavy-drinking days

and alcohol consumption in the nalmefene group at 12 months. Nalmefene was well-

tolerated across the three studies, with the most common side effects being nausea,

vomiting, fatigue, insomnia, and dizziness. Although the oral formulation of

nalmefene is not yet available or approved for use in AUD in the United States, it

is approved for use in alcohol dependence in Europe.

1.1.2 Varenicline

Molecular and Functional Mechanisms of Action
Varenicline is a partial agonist at the α4β2 and a full agonist at α7 nicotinic

acetylcholine receptor (Mihalak et al. 2006). It has been approved by the FDA for

smoking cessation. Recent evidence indicates that varenicline also attenuates

drinking in alcohol-dependent individuals. In several human laboratory studies,

varenicline reduced alcohol craving and the subjective reinforcing effects of alco-

hol in non-alcohol-dependent heavy-drinking smokers, heavy-drinking smokers

and nonsmokers, and non-treatment-seeking alcohol-dependent individuals

(McKee et al. 2009; Roberts et al. 2017a, b; Schacht et al. 2014). Interestingly, in

one human laboratory study, varenicline was most effective in heavy drinkers with

high levels of depressive symptoms, in both reducing alcohol craving and alcohol

self-administration (Roberts et al. 2017b). Finally, Vatsalya et al. (2015) showed

that varenicline decreases activity in the striato-cortico-limbic regions of the brain,

which are associated with alcohol craving/urges in heavy drinkers.

Results of Clinical Trials
Several small RCTs of varenicline showed efficacy in problematic drinkers. Fucito

et al. (2011) conducted an 8-week RCT of varenicline (titrated up to 2 mg per day) in

30 heavy-drinking smokers. Varenicline was effective in reducing alcohol craving,
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resulting in fewer heavy-drinking days compared with those who received placebo.

In a 16-week RCT with 64 heavy-drinking smokers, varenicline (2 mg per day)

significantly reduced alcohol consumption compared with placebo (Mitchell et al.

2012b). In a 13-week RCT of 40 alcohol-dependent individuals, varenicline (2 mg

per day) reduced alcohol craving compared with placebo, but drinking outcomes

were similar (Plebani et al. 2013). However, smokers were less likely to report heavy

drinking when taking varenicline compared with those taking placebo.

Results of these small RCTs were confirmed by a larger 13-week multisite RCT

of varenicline (2 mg per day) in 200 alcohol-dependent individuals, approximately

40% of whom were smokers (Litten et al. 2013). Compared with the placebo group,

the varenicline group had significantly fewer heavy-drinking days (37.9% each

week versus 48.4%), drinks per day (4.4 versus 5.3), and drinks per drinking day

(5.8 versus 6.8). Furthermore, varenicline also reduced alcohol craving. The effi-

cacy was the same among smokers and nonsmokers. Notably, although the sub-

group of alcoholic smokers was not seeking treatment for smoking, varenicline still

reduced the number of cigarettes per day among smokers. A moderator analysis

indicated that varenicline was most effective in individuals with less severe AUD

and in those who reduced their smoking (Falk et al. 2015). Varenicline was well-

tolerated. The most common adverse effects were nausea, abnormal dreams, and

constipation. In another multisite RCT conducted in Sweden, 160 alcohol-

dependent individuals were given either varenicline (2 mg per day) or placebo for

12 weeks (de Bejczy et al. 2015). In this study, there were no differences in self-

reported drinking outcomes or reduction in smoking between the varenicline and

placebo groups. However, there were significant reductions in alcohol craving, the

number of reported AUD symptoms (measured using the Alcohol Use Disorders

Identification Test [AUDIT]), and blood levels of phosphatidyl ethanol (PEth), a

specific biomarker of alcohol consumption – all supporting an effect of varenicline

on alcohol consumption.

The FDA recently removed the Box Warning about possible neuropsychiatric

side effects on mood, behavior, or thinking when taking varenicline (https://www.

fda.gov/Drugs/DrugSafety/ucm532221.htm). However, the FDA has issued a warn-

ing that varenicline may change the way patients respond to alcohol, affecting their

ability tolerate its effects. Moreover, in rare accounts, seizures have been reported in

patients taking varenicline (https://www.fda.gov/Drugs/DrugSafety/ucm436494.

htm). However, none of these side effects were observed in the above RCTs.

1.1.3 Topiramate

Molecular and Functional Mechanisms of Action
Topiramate is an anticonvulsant approved by the FDA for treatment of seizures,

migraines, and obesity (combined with phentermine for the latter indication). It has

multiple pharmacologic effects in the brain. Topiramate antagonizes α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors, facilitates

GABA activity, blocks L-type calcium channels, reduces voltage-dependent sodium

channel activity, and inhibits carbonic anhydrase (Arnone 2005). In two human
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laboratory studies, topiramate reduced the frequency of heavy drinking and the

stimulating effects of alcohol in one study (Miranda et al. 2008) and alcohol craving

in the other (Miranda et al. 2016).

Results of Clinical Trials
Several clinical trials showed topiramate was effective in reducing drinking in

alcohol-dependent individuals, which was summarized by a recent meta-analysis

(Blodgett et al. 2014). Johnson et al. (2003) first demonstrated the efficacy of

topiramate in a single-site 12-week RCT with 150 alcohol-dependent individuals.

Individuals receiving topiramate (up to 300 mg per day) had fewer drinks per day,

more days abstinent, less heavy-drinking days, lower GGT, and less alcohol craving

than those treated with placebo. Notably, unlike previous alcohol pharmacotherapy

RCTs, this study did not require participants to be abstinent from alcohol before

starting the trial. Therefore, the study assessed when abstinence began rather than

how well it was maintained (i.e., abstinence initiation versus abstinence persis-

tence). Side effects included dizziness, paresthesia, psychomotor slowing, memory

or concentration impairment, nervousness, taste perversion, pruritus, and weight

loss. The results of this study were replicated in a larger 14-week multisite RCTwith

371 alcohol-dependent individuals (Johnson et al. 2007). Again, topiramate (titrated

up to 300 mg per day) significantly reduced the number of heavy-drinking days,

drinks per drinking day, and serum GGT levels and increased the number of days

abstinent. The side-effect profile was similar to the original study.

Several smaller RCTs of topiramate have since followed. Knapp et al. (2015)

conducted a single-site 14-week RCT in 21 alcohol-dependent individuals and

found that topiramate (300 mg per day) significantly reduced the number of drinks

per day, drinking days, and heavy-drinking days compared with placebo. Martinotti

et al. (2014) conducted a low-dose topiramate (100 mg per day) RCT in 52 alcohol-

dependent individuals and found it was effective in reducing daily alcohol con-

sumption and alcohol craving and increasing the number of days abstinent. The side-

effect profile for this lower dosage was more favorable than studies using 200 mg

per day and 300 mg per day. In another study, Kranzler et al. (2014) conducted a

12-week RCT of topiramate (200 mg per day) in 138 alcohol-dependent individuals.

Those receiving topiramate experienced fewer heavy-drinking days, reduced serum

levels of GGT, and more abstinent days relative to placebo. Moreover, a post hoc

analysis revealed that topiramate’s increased efficacy was moderated by a single

nucleotide polymorphism (SNP). Patients with the CC genotype of the rs2832407

GRIK1 gene encoding the glutamate kainate GluK1 receptor showed improvement

in drinking outcomes, whereas the other genotypes (AC and AA genotype) did not

show efficacy with topiramate. Notably, a previous small laboratory study with

heavy drinkers showed that individuals with the CC genotype of the rs2832407

GRIK1 gene had significantly fewer topiramate-related side effects and

lower topiramate blood concentrations (Ray et al. 2009). A two-site RCT currently

is being conducted in alcohol-dependent European-Americans and African-

Americans to see if these promising findings can be replicated, both in terms of

efficacy and safety/tolerability (ClinicalTrials.gov NCT02371889).
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Interestingly, Anthenelli et al. (2017) recently conducted a 12-week RCT of

topiramate (200 mg per day) in 129 alcohol-abstinent (mean of ~6 months) alcohol-

dependent male smokers (80% had other substance use disorders). In this popu-

lation, topiramate was not effective in reducing relapse to alcohol or smoking or

other drug use. Thus, topiramate may be more useful in preventing or reducing

alcohol consumption in current drinkers than in preventing relapse to drinking in

individuals with AUD who are abstinent. This finding was consistent with other

positive RCTs (Johnson et al. 2003, 2007) where abstinence initiation rather than

abstinence persistence was assessed.

As a final note, it appears that topiramate has gained acceptance with some large

clinical care provider organizations, such as the Veterans Health Administration

(Del Re et al. 2013). Nonetheless, research continues to explore other medications

with similar mechanisms of action but with a more favorable safety profile, parti-

cularly regarding cognitive dysfunction (see zonisamide and levetiracetam below).

1.1.4 Zonisamide

Molecular and Functional Mechanisms of Action
Zonisamide is approved by the FDA as an adjunct treatment for partial seizures. Like

topiramate, it has multiple molecular actions in the brain, including blocking voltage-

sensitive sodium channels and T-type calcium channels, facilitating GABA activity, and

serving as aweak inhibitor of carbonic anhydrase (Kothare andKaleyias 2008). However,

the side-effect profile of zonisamide appears to be more favorable than topiramate, with

the most common being somnolence, anorexia, dizziness, decreased cognitive dysfunc-

tion, headache, nausea, and agitation/irritability (Kothare andKaleyias 2008; https://www.

accessdata.fda.gov/drugsatfda_docs/label/2006/020789s019lbl.pdf). In a human labora-

tory study of risky drinkers, zonisamide reduced alcohol craving and alcohol intake in a

self-administration paradigm compared with placebo (Sarid-Segal et al. 2009).

Results of Clinical Trials
Several open-label trials (no placebo group) suggest that zonisamide may be

effective in reducing alcohol consumption and craving in alcohol-dependent

individuals (Knapp et al. 2010; Rubio et al. 2010). Zonisamide was well-tolerated

in these studies. This preliminary work was followed by a 12-week RCT of

zonisamide (up to 500 mg per day) in 40 alcohol-dependent individuals (Arias

et al. 2010). Zonisamide significantly reduced the number of heavy-drinking days,

drinks per week, and alcohol craving compared with placebo. It was well-tolerated

with no serious side effects. In another RCT, 85 alcohol-dependent individuals were

administered either zonisamide (400 mg per day), topiramate (300 mg per day),

levetiracetam (200 mg per day), or placebo for 14 weeks (Knapp et al. 2015).

Zonisamide and topiramate significantly reduced the percent of drinking days per

week, drinks per day, and heavy drinking per week compared with placebo (results

were slightly more favorable for topiramate). Levetiracetam was only effective in

decreasing the percent of heavy-drinking days per week. Neurotoxicity and cogni-

tive function were also evaluated for the three compounds. Individuals treated with
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zonisamide or topiramate were more likely to experience impairments in verbal

fluency and verbal working memory. Those treated with topiramate also had visual

memory impairments, and were slower to recall events, compared with zonisamide.

This indicates less severe side effects with zonisamide compared with topiramate.

Levetiracetam did not produce any performance decreases on the neuropsycho-

logical tests.

Several ongoing trials are being conductedwith zonisamide in veteran and non-veteran

AUD patients with and without posttraumatic stress disorder (ClinicalTrials.gov

NCT02368431, NCT01847469, NCT02901041, and NCT02900352).

1.1.5 Gabapentin

Molecular and Functional Mechanisms of Action
Gabapentin is approved by the FDA for the treatment of epileptic seizures, neuro-

pathic pain, and restless legs syndrome. Its mechanism of action is thought to be

related to its inhibition of voltage-gated calcium channels, which indirectly modu-

late GABA activity (Sills 2006). In a human laboratory study, Mason et al. (2009)

demonstrated that gabapentin (1,200 mg per day) was effective in reducing alcohol

craving and improving sleep quality.

Results of Clinical Trials
Several single-site RCTs of gabapentin have been conducted in alcohol-dependent

patients. Furieri and Nakamura-Palacios (2007) conducted a 4-week RCT of

gabapentin (600 mg per day) in 60 male alcohol-dependent patients from a

Brazilian public outpatient drug treatment center. Gabapentin significantly reduced

the number of drinks per day and number of heavy-drinking days and increased the

percent of days abstinent. Brower et al. (2008) conducted a small 6-week RCT trial

of gabapentin (titrated to 1,500 mg per day) in 21 alcohol-dependent individuals

who also were diagnosed with insomnia. Gabapentin significantly delayed the onset

of heavy drinking compared with placebo, but did not differ from the placebo group

in improving insomnia. In another RCT, gabapentin (up to 1,200 mg per day for

39 days) was combined with flumazenil (20 mg per day for first 2 days) in 60 -

alcohol-dependent patients (44 with relatively fewer and 16 with relatively more

pretreatment alcohol withdrawal symptoms) (Anton et al. 2009). Individuals with

more alcohol withdrawal symptoms before treatment had an increase in the percent

of days abstinent and a longer delay to heavy drinking when taking combined

gabapentin and flumazenil compared with placebo. On the other hand, those with

fewer alcohol withdrawal symptoms before treatment did not differ in drinking

outcomes compared with the placebo groups. In another RCT, 150 alcohol-

dependent individuals received either 16 weeks of naltrexone (50 mg per day) or

naltrexone (50 mg per day) combined with gabapentin (up to 1,200 mg per day for

the first 6 weeks) or double placebo (Anton et al. 2011). During the first 6 weeks, the

combined medication group experienced a longer delay to heavy drinking, less

heavy-drinking days, and fewer drinks per drinking day than the group taking

naltrexone alone or those receiving the placebo. In addition, the naltrexone/
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gabapentin group reported significantly better sleep than the other two groups.

Finally, Mason et al. (2014) conducted a 12-week RCT of gabapentin (900 mg

per day and 1,800 mg per day) in 150 patients with alcohol dependence. Gabapentin

significantly improved the rates of abstinence and no heavy drinking. The absti-

nence rate was 4.1% for the placebo group, 11.1% for the 900 mg group, and 17.0%

for the 1,800 mg group, while the rate of no heavy drinking was 22.5% for the

placebo group, 29.6% for the 900 mg group, and 44.7% in the 1,800 mg group.

Gabapentin also showed a dose effect on alcohol craving, mood, and sleep.

Gabapentin was well-tolerated with the most common side effects being fatigue,

insomnia, and headaches.

Although gabapentin is considered to have no abuse potential, a recent report

indicates that gabapentin potentially may be misused in substance abuse populations,

especially those who abuse opioids (Smith et al. 2016). NIAAA currently is conducting

a multisite RCT on enacarbil gabapentin, an extended-release prodrug (a medication

that is metabolized into a pharmacologically active drug after administration) designed

to increase its bioavailability (ClinicalTrials.gov: NCT02252536).

1.1.6 Baclofen

Molecular and Functional Mechanisms of Action
Baclofen is a GABAB agonist approved by the FDA for the treatment of muscle

spasticity. Several human laboratory studies suggest that baclofen may affect

alcohol drinking behavior by changing the subjective effects of alcohol (Evans

and Bisaga 2009; Farokhnia et al. 2017; Leggio et al. 2013).

Results of Clinical Trials
Several RCTs have provided mixed results on the efficacy, optimal dose, and safety

of baclofen. Addolorato et al. (2002) conducted a 4-week RCT of baclofen (30 mg

per day) in 39 alcohol-dependent individuals. The results showed that baclofen

increased abstinence rates and the number of days abstinent compared with pla-

cebo. The medication also reduced alcohol craving and state anxiety levels. The

same group conducted a larger 12-week RCT of baclofen (30 mg per day) in

84 alcohol-dependent individuals with co-occurring liver cirrhosis (Addolorato

et al. 2007). Individuals treated with baclofen experienced a higher rate of absti-

nence compared with placebo (71% versus 29%, respectively). Baclofen also

significantly increased number of days abstinent and reduced alcohol craving.

Baclofen was well-tolerated with no additional hepatic side effects. Indeed, there

was an improvement of blood liver tests in the baclofen group versus placebo, most

likely because of baclofen’s effects in facilitating alcohol abstinence. In contrast,

Garbutt et al. (2010) found no effect of baclofen (30 mg per day) in a 12-week RCT

with 80 alcohol-dependent individuals. There were no differences in number of

heavy-drinking days, percent of days abstinent, time to first drink, or time to relapse

to heavy drinking between the baclofen and placebo groups. However, baclofen

reduced the level of anxiety state, consistent with its mechanism of reducing the

symptoms of alcohol withdrawal. Baclofen was well-tolerated with the most

590 R.Z. Litten et al.

http://clinicaltrials.gov


common side effect being drowsiness. Morley et al. (2014) conducted a 12-week

RCT with 42 alcohol-dependent individuals using 30 mg per day of baclofen, 60 mg

per day of baclofen, or placebo. There were no differences in time to first heavy-

drinking day, time to first drink, number of heavy-drinking days, drinks per

drinking day, or percent of days abstinent between the baclofen and placebo groups.

In a subgroup analysis, individuals who received 30 mg per day of baclofen and

who had a lifetime or current anxiety disorder experienced a significant increase in

the time to first drink and time to first heavy-drinking day. Again, the major side

effect of baclofen was drowsiness. Finally, a small 12-week RCT was conducted to

determine if baclofen (80 mg per day) was effective in treating alcohol-dependent

individuals who also were smokers (n ¼ 30) (Leggio et al. 2015). Baclofen,

compared with placebo, significantly increased the number of days abstinent from

alcohol and tobacco co-use, but did not significantly increase the number of days

abstinent from alcohol use alone.

Two anecdotal reports showing that high doses of baclofen [up to 140 mg per

day (Bucknam 2007) and up to 300 mg per day (Ameisen 2005)] resulted in

abstinence from alcohol led researchers to wonder if it was more effective in

these higher amounts. Muller et al. (2015) conducted a RCT with a high dose of

baclofen (up to 250 mg per day) in 56 alcohol-dependent individuals. Those treated

for 12 weeks with 250 mg per day had a greater abstinence rate (68.2% versus

23.8% for placebo) and more cumulative abstinence duration (67.8 versus 51.8 for

placebo). No serious adverse events were observed. In contrast to these findings,

Beraha et al. (2016) conducted a RCT of baclofen in 151 alcohol-dependent

individuals who were administered a high dose (150 mg per day; 6 weeks titration,

10 weeks of high dose), a low dose (30 mg per day), or placebo. There were no

differences in time to first relapse or abstinence rates among the three groups

(although only 15.5% of those in the high dose group reached the 150 mg per

day). The high dose group experienced more adverse events, particularly fatigue,

sleepiness, drowsiness, dizziness, and dry mouth. In another multisite RCT, baclo-

fen (180 mg per day) or placebo was administered to 320 alcohol-dependent

individuals for 24 weeks (Reynaud et al. 2017). Although baclofen significantly

reduced alcohol craving, there were no significant differences in percent of absti-

nence and drinks per day between the baclofen and placebo groups. However, in a

subgroup analysis, baclofen was more effective than placebo in reducing drinking

in individuals who were drinking heavily at the start of the study. There were no

major adverse effects; the most common were somnolence, sleep disorders, asthe-

nia, and dizziness.

The mixed results of these RCTs suggest that baclofen works in a subgroup of

patients. In particular, it is conceivable that baclofen might be an effective medi-

cation in those patients with higher severity of alcohol dependence (Leggio et al.

2010). Whether higher doses are more effective remains unclear and controversial,

although higher doses may have a greater risk of adverse events. For example,

Rolland et al. (2015), in a study of 253 alcohol-dependent individuals, found a

positive relationship between the dose of baclofen and the likelihood of major

sedation. In addition, Boels et al. (2017) reported that baclofen, prescribed in high
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doses, may lead to severe poisoning (cardiovascular, neurological metabolic, respi-

ratory symptoms), particularly in patients with psychiatric illnesses. Currently,

several RCTs are being conducted using baclofen, which may shed light on its

efficacy, optimal dose (high versus low), safety, and possible subgroups who may

respond more favorably to this medication (ClinicalTrials.gov NCT02835365,

NCT 03034408, NCT01980706, NCT02723383, and NCT02596763).

1.1.7 Ondansetron

Molecular and Functional Mechanisms of Action
Ondansetron is a selective serotonin 5-HT3 antagonist approved by the FDA for the

treatment of nausea and vomiting. Several laboratory studies have shown that

ondansetron reduces the desire to drink and augments the stimulating and sedating

effects of alcohol (Johnson et al. 1993; Kenna et al. 2009; Swift et al. 1996).

Results of Clinical Trials
In a groundbreaking RCT, Sellers et al. (1994) administered 0.25 mg or 2.0 mg per

day of ondansetron or placebo to 71 alcohol-dependent individuals. After 6 weeks of

treatment, the 0.25 mg ondansetron group significantly decreased drinks per drink-

ing day compared with placebo (35% versus 21% reduction) in people consuming

ten or less drinks per drinking day at baseline. Interestingly, the daily 0.25 mg dose

of ondansetron was more effective than the 2.0 mg dose. In a subsequent 11-week

RCT, 271 alcohol-dependent individuals were randomized to receive 2 μg/kg, 8 μg/
kg, or 32 μg/kg per day of ondansetron or placebo (Johnson et al. 2000). An equal

number of patients with early (25 years of age or younger) and late (>25 years) onset

of alcoholism were recruited. Ondansetron significantly reduced the number of

drinks per day and the number of drinks per drinking day compared with placebo,

but only in people with early onset of alcoholism. The 8 μg/kg dose of ondansetron
was the most effective dose, increasing the percent of days abstinent and total

abstinence compared with placebo. Ondansetron was well-tolerated with no serious

adverse events. Kranzler et al. (2003) later confirmed these results by conducting an

open-label trial of ondansetron (8 μg per kg per day) in 40 early and late-

onset alcohol-dependent individuals. The early-onset individuals experienced a

greater decrease in drinks per day, drinks per drinking day, and alcohol-related

consequences compared with late-onset alcoholic individuals.

These clinical studies led researchers to question if a biological markermight be able

to predict a response to ondansetron. In particular, Johnson et al. (2011) hypothesized

that theremight be a pharmacogenetic interaction between ondansetron and the SLC6A4
gene. That gene encodes the serotonin transporter, 5-HTT, which is associated with

several psychiatric disorders. The SLC6A4 consists of two types of alleles, a long form
(L) and a short form (S) consisting of 44 less base pairs. Johnson et al. (2011) conducted

an 11-week RCT of ondansetron (8 μg/kg per day) in 283 dependent individuals

randomized to three different genotypes: LL, LS, and SS genotypes of 5-HTT.

Individuals with the LL genotype who received ondansetron had a significantly lower

number of drinks per drinking day and a higher percent of days abstinent than those
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treated with the LS/SS genotypes who received the medication or those who received

placebo regardless of their genotype. The research team also discovered another

functional single nucleotide polymorphism (T/G) rs1042173, in the 30-untranslated
region of the SLC6A4 gene. Individuals with the LL/TT genotype experienced a

significantly lower number of drinks per drinking day and higher percent of days

abstinent than all other genotypes and treatment groups combined. In a later analysis

from the same RCT, Johnson et al. (2013) found additional functional genetic

polymorphisms in the HTR3A and HTR3B genes, including AC in the rs17614942 in

the HTR3B gene and AG in the rs1150226 and GG in the rs1176713 portion of the

HTR3A gene. Ondansetron was more effective in reducing the number of drinks per

drinking day and the number of heavy-drinking days and increasing the percent of days

abstinent in people carrying one or more of these genetic variants. Kenna et al. (2014a)

conducted a laboratory study of ondansetron and sertraline in 77 non-treatment-seeking

alcohol-dependent individuals. Consistent with Johnson et al. (2011), Kenna et al.

(2014a) found a pharmacogenetic interaction between the LL genotype and ondan-

setron, but no effect was found for sertraline. Specifically, ondansetron was effective in

reducing the amount of drinks per drinking day in peoplewith theLLgenotype. In a later

analysis from the same human laboratory study, Kenna et al. (2014b) found that women

(not men) who had the LL genotype and equal or greater than 7 exon III repeats on the

dopamine receptor D4 gene (DRD4) experienced less alcohol intake after taking

ondansetron (0.5 mg per day for 3 weeks).

Finally, ondansetron given in doses cited above was much lower than that

required to treat nausea and vomiting (approximately 10 times less). The FDA

has issued a safety warning for ondansetron, indicating it may increase the risk of

abnormal electrical activity in the heart (https://www.fda.gov/Drugs/DrugSafety/

ucm271913.htm). However, this side effect may not be evident at the low doses

required to treat AUD.

NIAAA is currently supporting a two-site RCT of ondansetron to confirm these

promising genetic findings of Johnson et al. (2011, 2013) (ClinicalTrials.Gov

NCT02354703).

1.1.8 Prazosin and Doxazosin

Molecular and Functional Mechanisms of Action
Prazosin and doxazosin are both selective α-1 adrenergic antagonists approved by

the FDA to treat hypertension and benign prostatic hyperplasia. Fox et al. (2011)

conducted a human laboratory study on prazosin (16 mg daily) in 17 recently

abstinent, treatment-seeking alcohol-dependent individuals. Following cue and

stress exposure, the prazosin group significantly reduced alcohol craving and

reported lower levels of anxiety and negative emotions compared with the placebo

group.

Results of Clinical Trials
A 6-week study by Simpson et al. (2009) found that prazosin (16 mg per day),

compared with placebo, reduced drinking days per week and drinks per week in
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24 alcohol-dependent patients without posttraumatic stress disorder (PTSD). Sub-

sequently, Simpson et al. (2015) conducted a small 6-week RCT of prazosin (16 mg

per day) in 30 individuals with co-occurring alcohol dependence and PTSD.

Individuals treated with prazosin experienced a reduction in the percent of drinking

days and percent of heavy-drinking days compared with placebo. No significant

differences were found between the prazosin and placebo groups in terms of the

PTSD symptoms. This is surprising because prazosin has been shown to be effec-

tive in treating PTSD (Green 2014). The most common side effects of prazosin

were drowsiness, dizziness on standing, and fatigue. Petrakis et al. (2016) later

conducted a 13-week RCT of prazosin (16 mg per day) in 96 veterans with

co-occurring alcohol dependence and PTSD. There were no significant differences

between the prazosin and placebo groups in the drinking outcomes, alcohol craving,

or the PTSD symptoms. The mixed results of these studies suggest that the

medication may be effective only in subgroups. Raskind et al. (2016), for example,

reported that prazosin worked best in reducing PTSD symptoms in patients who had

a higher baseline standing blood pressure. Current studies are investigating this

compound in people with comorbid alcohol dependence and PTSD (ClinicalTrials.

gov NCT00585780 and NCT02226367).

Alcohol researchers also are investigating doxazosin, another α-1 adrenergic antag-
onist. The advantage of doxazosin over prazosin is that given its significantly longer

half-life, doxazosin requires only once-a-day dosing compared with prazosin’s two to

three dosages per day; frequency of side effects is lower; and, unlike prazosin, doxazosin

may be taken with or without food (Leggio and Kenna 2013). All these properties are

important in RCTs and in clinical practice as they could potentially increase medication

adherence.Kenna et al. (2015) conducted a 10-weekRCTof doxazosin (up to 16mg per

day) in 41 alcohol-dependent individuals. In themain analysis, no significant differences

were found in the drinking outcomes between the doxazosin and placebo groups.

However, in a priori moderator analyses, doxazosin-treated individuals with a greater

family history of alcoholism experienced a significant decrease in the number of drinks

per week and in the number of heavy-drinking days per week compared with placebo-

treated, high-family-history individuals. In a later analysis from the same RCT, Haass-

Koffler et al. (2017) found that doxazosin, compared with placebo, reduced the number

of drinks per week and heavy-drinking days per week in a subgroup of patients who had

higher baseline standing blood pressure.

These studies suggest that precision medicine may be important in using α-1
adrenergic antagonists to treat AUD.

1.1.9 ABT-436 (Vasopressin V1b Receptor Antagonist)

Molecular and Functional Mechanisms of Action
Vasopressin, a peptide released from the hypothalamus, acts on the type 1b receptor

(V1b) at the pituitary, activating the hypothalamic-pituitary-adrenal (HPA) axis,

which, in turn, regulates the body’s stress response (Milivojevic and Sinha 2017). In

addition, vasopressin acts on the extra-hypothalamic stress system, especially in the
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extended amygdala. Blocking the V1b receptors in various animal models has

resulted in decreased alcohol intake (Edwards et al. 2011; Zhou et al. 2011).

Results of a Clinical Trial
In a recent 12-week multisite RCT, ABT-436, a novel selective V1b receptor

antagonist, was evaluated in 150 alcohol-dependent individuals (Ryan et al. 2017).

ABT-436 (titrated to 800 mg per day) significantly increased the percent of days

abstinent compared with placebo (51.2 versus 41.6, respectively). The percent of

heavy-drinking days was lower in people receiving ABT-436 compared with pla-

cebo, although the difference was not statistically significant. Other measures of

drinking, alcohol craving, and alcohol-related consequences did not differ between

the ABT-436 and placebo groups. However, in smokers, the compound significantly

reduced the number of cigarettes consumed compared with placebo. In moderator

analyses, individuals reporting higher baseline levels of stress responded better to

ABT-436 than to placebo on drinking outcomes. ABT-436 was well-tolerated, with

diarrhea (mild-to-moderate severity) being the most common side effect. Unfortu-

nately, AbbVie, Inc. has recently discontinued development of this compound.

1.1.10 Aripiprazole

Molecular and Functional Mechanisms of Action
Aripiprazole is an atypical, antipsychotic medication approved by the FDA for the

treatment of schizophrenia, bipolar disorder, and for use as adjunct treatment for

major depression (Litten et al. 2016a). It has multiple pharmacological mechanisms

in the brain, including acting as a partial agonist for the dopamine D2 and serotonin

5-HT1A receptors and as an antagonist to the 5-HT2 receptors (Fleischhacker 2005).

Several human laboratory studies suggest that aripiprazole may affect drinking

behavior. Kranzler et al. (2008) reported that aripiprazole (2.5 mg and 10 mg per

day) increased the sedating effects of alcohol and, to a lesser degree, reduced the

euphoric effects. In another human laboratory study, Voronin et al. (2008) reported

that aripiprazole (up to 15 mg per day) reduced drinking in non-treatment-seeking

alcohol-dependent individuals, but had no effect on self-reported “high,” intoxica-

tion, or alcohol craving when compared with the placebo group. Finally, Myrick

et al. (2010) showed that aripiprazole (15 mg per day) blunted alcohol-cue-induced

brain activity in the right ventral striatum. Anton et al. (2017) recently completed a

human laboratory study of aripiprazole (15 mg per day) in 99 non-treatment-

seeking alcohol-dependent individuals. In a bar-lab setting, aripiprazole signifi-

cantly decreased alcohol self-administration among individuals with low self-

control and delayed the return to drinking in those with high impulsivity compared

with placebo.

Results of Clinical Trials
Martinotti et al. (2009) conducted a 16-week RCT of aripiprazole (up to 15 mg per

day) and naltrexone (50 mg per day) in 75 alcohol-dependent subjects. During

treatment, the aripriprazole and naltrexone groups displayed similar reductions on
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measures of abstinence, percent days abstinent and number of heavy drinking days.

However, patients treated with aripiprazole remained abstinent for a longer period

of time than those treated with naltrexone. Anton et al. (2008) conducted a 12-week

multisite RCT of aripiprazole with mixed results. Aripiprazole (titrated up to 30 mg

per day) was effective in reducing the number of drinks per drinking day compared

with the placebo group and reduced CDT at weeks 4 and 8. However, the ari-

piprazole group did not differ from the placebo group in percent of days abstinent,

number of heavy-drinking days, and time to first drinking day. The authors postu-

lated that these lackluster results possibly were related to dose-related attrition, as

the aripiprazole group had a higher dropout rate than the placebo group, especially

with the 30 mg dose. The most common side effects from aripiprazole were fatigue,

insomnia, restlessness, somnolence, anxiety, and disturbances in attention. It has

been suggested that aripiprazole may be efficacious at lower doses (15 mg per day).

NIAAA is currently supporting an aripiprazole RCT in individuals with AUD and

bipolar disorder, comparing the 15 and 30 mg daily doses (NCT02918370).

1.1.11 LY 2940094 (Nociceptin Receptor Antagonist)

Molecular and Functional Mechanisms of Action
The nociceptin (NOP) receptor (formerly known as opioid receptor-like) belongs to

the opioid receptor family. Several studies have shown that targeting this receptor

modifies alcohol drinking behavior in animal models (Aziz et al. 2016; Ciccocioppo

et al. 2004; Economidou et al. 2008, 2011). Recently, Lilly Research Laboratories

synthesized a NOP antagonist, LY2940094, that demonstrated an antidepressant

effect in individuals with major depressive disorder (Post et al. 2016a). In addition,

Rorick-Kehn et al. (2016) reported that LY2940094 was effective in decreasing

alcohol intake in animal models bred to show a preference for alcohol.

Results of a Clinical Trial
Post et al. (2016b) conducted an 8-week multisite RCT trial of LY2940094 (40 mg per

day) in 88 alcohol-dependent individuals. LY2940094 reduced the number of heavy-

drinking days compared with placebo (�24.5% versus �15.7%, respectively) and

increased the percent of days abstinent (9.1% versus 1.9%, respectively). Although

the primary endpoint, drinks per day, did not differ between the two groups in the full

sample, the compound did reduce drinks per day in two subgroups: thosewho drank less

at baseline and women. Because most of the women had lower baseline drinking, it was

difficult to determine which moderator had the most effect. The compound was well-

tolerated with no serious adverse effects. Themost common side effects were insomnia,

anxiety, and vomiting. Currently, BlackThorn Therapeutics has licensed the compound

from Lilly for further development.
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1.1.12 LY2196044 (Opioid Receptor Antagonist)

Molecular and Functional Mechanisms of Action
The novel compound LY2196044, synthesized by Eli Lilly and Company, is an

opioid receptor antagonist at the mu, kappa, and delta receptors. This compound has

been shown to reduce drinking in animal models (Wong et al. 2014) through a

mechanism similar to naltrexone and nalmefene.

Results of a Clinical Trial
In a 16-week multisite trial in 375 alcohol-dependent individuals, LY2196044

(up to 250 mg per day) significantly reduced the number of drinks per day from

baseline compared with placebo (�5.4 versus �4.7, respectively) (Wong et al.

2014). However, the number of heavy-drinking days and percent of days abstinent

did not differ significantly between the two groups. In a subgroup analysis,

LY2196044 significantly improved the drinking outcomes in people with the

dopamine receptor type 4 (DRD4) gene carrying tandem repeat L (which occurred

in 39% of the subjects), compared with L carriers who received only the placebo.

LY2196044-treated individuals had more gastrointestinal-related adverse events

than did placebo-treated individuals, a finding similar to other opioid antagonists,

such as naltrexone and nalmefene.

1.2 Medications That Have Shown Poor Efficacy in Multisite
Alcohol Pharmacotherapy Clinical Trials Despite Promising
Preliminary Studies

1.2.1 Quetiapine

Molecular and Cellular Mechanisms of Action
Quetiapine is an atypical antipsychotic medication approved by the FDA for treatment

of schizophrenia, manic episodes associatedwith bipolar I disorder, depressive episodes

associated with bipolar disorder, and as an adjunct treatment for major depression

(Litten et al. 2016a). Quetiapine hasmultiple actions in the brain, blocking the serotonin

5-HT1A and 5-HT2A receptors, the dopamine D1 and D2 receptors, the histamine H1

receptors, and the adrenergic α1 and α2 receptors (Ray et al. 2010). Two human

laboratory studies have found that non-treatment-seeking alcohol-dependent individuals

treated with quetiapine (400 mg per day) experienced reduced alcohol craving and

alcohol-induced sedation and impulsivity, compared with placebo (Moallem and Ray

2012; Ray et al. 2011).

Results of Clinical Trials
In three open-label studies, alcohol-dependent individuals who were treated with

quetiapine improved their drinking outcomes (Martinotti et al. 2008; Monnelly

et al. 2004; Sattar et al. 2004). Kampman et al. (2007) conducted a 12-week pilot

RCT of quetiapine (400 mg per day) in 61 Type A and Type B alcohol-dependent

individuals. [Type A alcoholics are characterized by late age of onset of problem
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drinking, low severity of alcohol dependence, few childhood risk factors, less

concomitant psychopathology, and reduced drug use. In contrast, Type B alcoholics

are characterized by early age of onset of alcohol problems, high severity of alcohol

dependence, polydrug use, and a high degree of concomitant psychopathology

(Babor et al. 1992).] Quetiapine-treated Type B alcoholic individuals experienced

fewer days of drinking and days of heavy drinking and less alcohol craving than

Type B alcoholic individuals treated with placebo. In contrast, among the Type A

alcoholic individuals, there were no differences between the quetiapine and placebo

groups.

To confirm these findings, Litten et al. (2012) conducted amultisite 12-week RCT

of quetiapine (titrated to 400 mg per day) in 224 alcohol-dependent individuals.

Surprisingly, there were no differences between the quetiapine and placebo groups in

percent of heavy-drinking days, drinks per day, drinks per drinking day, percent of

days abstinent, and percent of abstinent individuals. In a subgroup analysis, Type B

alcoholic individuals, regardless of whether they took quetiapine or placebo, did not

differ in drinking outcome. As expected, quetiapine improved sleep and symptoms

of depression. Quetiapine was well-tolerated, with the most common side effects

being dizziness, drymouth, dyspepsia, increased appetite, sedation, and somnolence.

This study was followed by another 12-week RCT of quetiapine (titrated to 600 mg

per day) in 90 alcohol-dependent individuals diagnosed with comorbid bipolar I or II

disorders and depressed or mixed mood state (Brown et al. 2014). The quetiapine

group did not differ from the placebo group in drinks per day, percent of days

abstinent, drinks per drinking day, and percent of heavy-drinking days. Finally, in

another 12-week RCT, Stedman et al. (2010) found that quetiapine (300–800mg per

day, flexible dosing) when added as an adjunct therapy with lithium or divalproex,

was no better than placebo in reducing alcohol use in 362 individuals with comorbid

alcohol dependence and bipolar I disorder. Together, these RCTs do not support the

use of quetiapine for AUD.

1.2.2 Levetiracetam

Molecular and Functional Mechanisms of Action
Like topiramate and zonisamide, levetiracetam is approved by the FDA to treat

seizures, yet it has fewer reported side effects (Litten et al. 2016a). It targets multiple

mechanisms in the brain, including activating the GABA and glycine systems,

inhibiting glutamate AMPA receptors, decreasing sodium/calcium channel currents,

and modulating the synaptic vesicle protein 2A (Abou-Khalil 2008; De Smedt et al.

2007, Fertig et al. 2012).

Results of Clinical Trials
Two open-label trials indicated that levetiracetam reduced alcohol consumption in

alcohol-dependent individuals (Mariani and Levin 2008; Sarid-Segal et al. 2008).

This was followed by multiple RCTs. As mentioned previously (in the topiramate

and zonisamide sections), Knapp et al. (2015) conducted a 14-week single-site RCT

with zonisamide (400 mg per day), topiramate (300 mg per day), and levetiracetam
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(2,000 mg per day) in 85 alcohol-dependent individuals. Levetiracetam showed less

efficacy than zonisamide and topiramate in reducing drinking (only reducing the

number of heavy-drinking days compared with placebo). Unlike zonisamide and

topiramate, levetiracetam showed no cognitive impairment. This confirmed an

earlier study by Gomer et al. (2007) that also found no cognitive impairment

from levetiracetam. Fertig et al. (2012) conducted a 16-week multisite trial of

levetiracetam (2,000 mg per day) in 130 alcohol-dependent individuals. There

were no differences on any drinking outcomes (percent of heavy-drinking days,

drinks per day, drinks per drinking day, or percent of days abstinent) between the

levetiracetam and the placebo groups. The medication was well-tolerated, with

fatigue being the only significant side effect. In another 16-week multisite RCT of

levetiracetam (2,000 mg per day) in 201 recently detoxified alcohol-dependent

individuals, Richter et al. (2012) found the compound did not affect the rate/time

of relapse compared with the placebo. In addition, Mitchell et al. (2012a) conducted

a 6-week single-site RCT of levetiracetam in 46 moderate-to-heavy drinkers.

Individuals were given a 500–1,000 mg dose per day, a 1,000–2,000 mg dose per

day, or placebo. Levetiracetam had no effect on drinking outcome. Interestingly,

individuals who initially were drinking less actually experienced an increase in

drinking with levetiracetam, compared with placebo. Thus, these RCTs indicate

that levetiracetam has very limited efficacy, if any, for treating AUD individuals.

1.3 Promising Medications: Ongoing Human Studies

1.3.1 Mifepristone

Molecular and Functional Mechanisms of Action
Mifepristone is a glucocorticoid receptor antagonist approved by the FDA for

terminating pregnancy (together with misoprostol) and for treating hyperglycemia

in patients with Cushing syndrome and type 2 diabetes mellitus and endometriosis.

Alterations in the brain glucocorticoid system are believed to drive compulsive-like

alcohol consumption in rats (Richardson et al. 2008; Simms et al. 2012; Vendruscolo

et al. 2012). Recently, Vendruscolo et al. (2015) tested the efficacy ofmifepristone in

both rats and humans.Mifepristone reduced alcohol intake in alcohol-dependent rats

but not in non-dependent rats. Vendruscolo et al. (2015) then tested the medication

(600 mg daily for 1 week) in a laboratory setting in 56 non-treatment-seeking

alcohol-dependent people. Mifepristone significantly reduced alcohol-induced crav-

ing during the laboratory session and reduced alcohol consumption during the

1-week treatment phase and 1-week posttreatment phase compared with placebo.

There were no serious adverse effects, and there were no differences in the type or

severity of adverse events during treatment between the mifepristone and placebo

groups. Currently, human laboratory and RCT studies are evaluating the efficacy and

safety of mifepristone (ClinicalTrials.gov: NCT02243709 and NCT02179749).
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1.3.2 Oxytocin

Molecular and Functional Mechanisms of Action
Oxytocin is a nine-amino acid polypeptide hormone approved by the FDA for

inducing labor and terminating pregnancy and as an adjunctive therapy in the

management of incomplete or inevitable abortion. It also plays a role in the brain’s

reward and stress systems, as well as in networks that have a role in social affiliations,

learning, and memory. Recent studies show that oxytocin affects alcohol drinking

behavior in animal models (Lee et al. 2016; Lee and Weerts 2016). In particular,

King et al. (2017) demonstrated reduced alcohol consumption in different models of

alcohol self-administration in mice, and Peters et al. (2016) reported that oxytocin

inhibited alcohol consumption and alcohol-induced dopamine release in the nucleus

accumbens of rats. A pilot RCT of oxytocin (48 IU per day, intranasal) was

conducted in 11 alcohol-dependent individuals admitted for medical detoxification

(Pedersen et al. 2013). Oxytocinwasmore effective than placebo in reducing craving

and the symptoms of alcohol withdrawal. Mitchell et al. (2016) conducted a human

laboratory study of oxytocin (40 IU, intranasal) in 32 non-treatment-seeking

individuals with alcohol abuse. Subjects receiving oxytocin had significant

improvements in social perception, compared with those receiving placebo, but

there was no effect on alcohol-induced craving. However, in a subgroup analysis,

oxytocin reduced alcohol craving in people with higher levels of attachment anxiety

and increased alcohol craving in those with lower levels of attachment anxiety.

Several human laboratory studies are currently underway to study the effects of

oxytocin in AUD individuals (ClinicalTrials.gov NCT03046836, NCT02407340,

and NCT02711189).

1.3.3 Ibudilast

Molecular and Functional Mechanisms of Action
Ibudilast (AV-411) is a nonselective phosphodiesterase inhibitor known to suppress

glial cell activation and neuroinflammation (Ledeboer et al. 2007). Bell et al. (2013)

showed that ibudilast reduced drinking in multiple animal models of alcohol

dependence. In a crossover human laboratory study, ibudilast (100 mg per day)

was no better than placebo in reducing subjective measures such as alcohol craving,

stimulation, sedation, positive mood, and negative mood (Ray et al. 2017). How-

ever, ibudilast, compared with placebo, was associated with improvements in mood

during stress- and alcohol-cue exposure. In a subgroup analysis, individuals with

elevated depression had reduced stimulant and mood-altering effects of alcohol

when given ibudilast, compared with those receiving placebo.

1.3.4 D-Cycloserine

Molecular and Functional Mechanisms of Action
D-cycloserine is a partial agonist at the glycinemodulatory site of the glutamate NMDA

receptor. It is FDA approved for the treatment of tuberculosis and urinary tract infection.
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The compound is also thought to enhance learning, memory, and decision making

because of its action on the NMDA receptor (Kelley 2004; Scholl et al. 2014). In

addition,D-cycloserine has been shown to reduce alcohol intake in rats (Seif et al. 2015).

Several human studies have been conducted with D-cycloserine to determine if the

medication enhances cue-exposure therapy in alcohol-dependent and problem-drinking

individuals. Watson et al. (2011) conducted a small human laboratory study in 16 absti-

nent alcohol-dependent individuals. D-cycloserine (single dose of 250mg) did not differ

from placebo in reducing the alcohol-induced cue response. However, because a high

percentage of individuals had little or no response to the cue exposure, it was difficult for

D-cycloserine to actually show an effect. In another human laboratory study, Hofmann

et al. (2012) found that D-cycloserine (50mg) increased alcohol craving compared with

placebo in 20 non-treatment-seeking problem drinkers during an alcohol-cue paradigm.

In contrast, MacKillop et al. (2015) later reported that D-cycloserine (50 mg) lowered

cue-elicited craving for alcohol in 37 treatment-seeking AUD individuals. In addition,

D-cycloserine reduced drinking during the 1-week interval between the cue-extinction

paradigms. Finally, Kiefer et al. (2015) conducted a human laboratory study of

D-cycloserine (50 mg) in 76 recently detoxified abstinent alcohol-dependent

individuals. Using functional magnetic resonance imaging (fMRI), D-cycloserine,

compared with placebo, decreased brain activation in the ventral and dorsal striatum,

areas of the mesolimbic system associated with addiction. Further studies are needed to

validate the efficacy of this compound for the treatment of AUD.

1.4 Other Promising Medications (Preclinical or Theoretical)

In addition to the medications above, NIAAA is supporting initial human studies of

compounds that have shown promise in preclinical studies and/or have rational theory

for efficacy in alleviating drinking in AUD individuals. These include the following

medications along with their cllinicaltrials.gov number: PF-5190457 (ghrelin receptor

inverse agonist) (NCT02707055), N-acetylcysteine (NAC) (precursor to glutathione)

(NCT02966873), guanfacine (α2A adrenoceptor agonist) (NCT02164422 and

NCT03137082), minocycline (inhibitor of 5-lipoxygenase) (NCT02187211), citicoline

(biosynthesis of phosphatidylcholine) (NCT02582905), dutasteride (5α-reductase
inhibitor) (NCT01758523), pregabalin (inhibitor of voltage-gated calcium channel)

(NCT02884908), and kudzu extract (mechanism unknown) (NCT03099590).

2 Final Remarks

From this review, it is clear that advances are being made in developing medications

to treat AUD, and researchers are exploring numerous targets involved in alcohol-

seeking and drinking behavior. Although progress has beenmade, the challenge over

the next decade will be to develop medications that are more effective than the

current ones and without serious side effects. To accomplish this, NIAAA has

identified two long-range goals to increase the effectiveness of alcohol treatment
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medications (Litten et al. 2016b): (1) advancing precision medicine and (2) discov-

ering more effective targets.

Advancing precision medicine (or personalized medicine) is an essential step in

identifying and targeting specific phenotypes that are most likely to respond favor-

ably to a given medication. Although precision medicine is in its early stages,

progress already is being made, especially in pharmacogenetics (Garbutt et al.

2014; Jones et al. 2015; Sun et al. 2016; see topiramate and ondansetron sections

above). Still, given the complexities of AUD, it is doubtful that one factor, such as a

person’s genetic makeup, will be sufficient to predict a positive outcome for that

individual (Litten et al. 2015). Most likely, multiple factors will need to be consid-

ered to successfully “match” an individual to a specific medication. Such factors

include biomarker signatures from the various “-omics,” including epigenomics,

transcriptomics, proteomics, and metabolomics (Litten et al. 2016b). Other factors

include biomarkers from brain imaging and electrophysiological variations, as well

as patients’ characteristics, such as demographics, drinking patterns, family history,

AUD severity, and psychiatric/medical comorbidity. Using this “treatment finger-

print,” an algorithm then could be established to describe a specific set of rules for

matching individuals with medications. NIH’s new groundbreaking initiative, the

“All of Us Program” (formerly known as the Precision Medicine Initiative) (https://

allofus.nih.gov), offers a tremendous resource for this. The program is drawing

together data on more than 1 million individuals. It will be useful not only for

identifying different phenotypes and genotypes but also will enable scientists to

test new information and computational approaches for deciphering the heterogene-

ity of complex diseases like AUD.

A second long-range goal in discovering medications is to identify targets in the

brain that will be effective across the multiple phenotypes of AUD. During the past

two decades, scientists have focused their research on targets that affect craving and

the urge/desire to drink. So far, these efforts have produced alcohol treatment

medications that have only small effect sizes (Zindel and Kranzler 2014). As we

begin to better understand the mechanisms underlying brain function, this undoubt-

edly will lead to new druggable targets. To help accomplish this goal, NIH has

initiated several major programs, including the “Brain Research through Advancing

Innovative Neurotechnologies (BRAIN) initiative.” Supporting research on inno-

vative technologies will enable us to examine how individual brain cells and neural

circuits interact to produce specific behaviors, such as AUD, which can disrupt

normal function (https://www.braininitiative.nih.gov/).

Another potential target involves the enzymes implicated in alcohol metabolism.

We know that a genetic variant of the alcohol dehydrogenase gene (ADH1B*2)
results in a more rapid alcohol metabolism, elevating acetaldehyde levels in the

body (Hurley and Edenberg 2012). Because of the toxic and aversive actions of

acetaldehyde, people with this genetic variant, which is common in Asian

populations, are less likely to drink heavily and to become dependent on alcohol

(Hurley and Edenberg 2012). Disulfiram, the first medication approved by the FDA

for use in AUD, uses a similar mechanism of action, increasing acetaldehyde levels

and making it uncomfortable to drink alcohol. However, disulfiram often is not
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effective because patient adherence tends to be low, probably because this medica-

tion does not reduce alcohol craving (Johnson 2008). One strategy is to develop a

compound that interferes with the alcohol metabolism, producing the desired

aversive effect while, at the same time, reducing craving for alcohol (Diamond

and Yao 2015). Another strategy is to produce a long-lasting compound that is

active for weeks or perhaps months, eliminating the need to take daily dosages.

And finally, developing a rational, systematic way to identify druggable targets

will be vital in the hunt for new medications. Currently, more than 30 targets have

been identified that appear to influence alcohol-seeking and drinking behavior

(Litten et al. 2016b). To better understand these targets, we need to know their

role in causing and/or maintaining problematic drinking, whether they are related or

independent of each other, and how they fit within the different domains of AUD

(e.g., incentive salience/reward, negative affect/emotionality, and cognitive func-

tion) to produce the wide variety of responses to alcohol that we see across the

population. It is particularly important to identify how these targets interrelate with

molecular pathways and other brain circuits. One approach is to develop, integrate,

and data mine biomolecular and cellular networks to discover druggable targets

(Hopkins 2008; Masoudi-Nejad et al. 2013; Yildirim et al. 2007). Those networks

are highly complex and include gene-gene, gene-protein, and protein-protein

interactions, metabolic differences, and variations in gene expression and regu-

latory networks (Gebicke-Haerter 2016; Robinson and Nielsen 2016; Tang et al.

2013). Researchers examining other complex disorders are using this approach,

including cancer, endocrine disorders, Huntington’s disease, mood disorders, and

schizophrenia (Collier et al. 2016; Morrow et al. 2010; Pirhaji et al. 2016; Yildirim

et al. 2007). Many believe complex diseases like AUD cannot be effectively treated

with one target–one medication; instead, successful treatment depends on multiple

targets and combinations of medications. To date, there is a paucity of clinical

studies where combined pharmacotherapies have been tested in AUD (Lee and

Leggio 2014). To facilitate this line of research in the alcohol field, NIAAA

recently issued a guide, Development, Integration, and Data Mining of Biomolecu-
lar and Cellular Networks for Discovering Druggable Targets for Alcohol Use
Disorder and Alcohol-Induced Organ Damage (https://grants.nih.gov/grants/guide/
notice-files/NOT-AA-17-007.html).

Ultimately, the success of our medications development program rests on our

ability to get people into treatment. In any given year, less than 10% of individuals

with AUD are offered or seek treatment (Grant et al. 2015). This meager rate would

not be acceptable if these individuals were affected by cancer or another chronic

medical condition. AUD is a chronic brain disorder. All patients suffering from

AUD need to receive adequate treatment. By providing addiction-oriented educa-

tion and training during medical school, clinical training, and beyond, we can help

physicians better understand the pharmacotherapy options available to them,

making AUD medications a routine part of standard practice.

In summary, the goals outlined abovewill be challenging but certainly are attainable.

The NIAAA, the alcohol research community, the pharmaceutical industry, the

clinicians, and the patients themselves all have a role in identifying, developing, and
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implementing the next generation of medications. By developing more effective

medications, with few side effects, and identifying the patients who will benefit the

most from these treatments, we can provide clinicians with the tools they need to treat

this devastating disorder, providing relief for patients and their families, and markedly

improving public health and safety.
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Fig. 1 Simplified diagram of transcriptional pathways and targets for intervention for alcohol use
disorder (AUD) treatment. (a) The cAMP-responsive element binding protein (CREB) pathway.
Adenylyl cyclase (AC) produces cAMP from AMP, activating protein kinase A (PKA). CREB is
phosphorylated (pCREB) by several kinases, one of which is PKA. Once phosphorylated, CREB
translocates to the nucleus and binds to cAMP-responsive elements (CRE) in the DNA to activate
transcription of genes associated with AUD such as Bdnf and Npy. One method to activate CREB is
to use compounds that inhibit the phosphodiesterases (PDEs) that hydrolyze cAMP, thus increasing
cAMP levels and activating PKA. PDE inhibitors reduce alcohol consumption in animal models of
AUD. (b) The peroxisome proliferator-activated receptor (PPAR) signaling pathway. PPARs are
activated by their endogenous ligands, fatty acids (FA), or by synthetic agonists such as the thiazo-
lidinediones and fibrates. Upon ligand binding, PPARs translocate to the nucleus and interact with
retinoid X receptor (RXR) at peroxisome proliferator response elements (PPREs) to regulate gene trans-
cription. PPAR agonists reduce alcohol consumption in animal models of AUD. (c) The nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. NF-κB exists as a dimer of different
subunits and is complexed with an inhibitory molecule, inhibitor κB (IκB) in the cytosol. Activation of
various receptors leads to activation of IκB kinase (IKKβ) and phosphorylation of IκB. This event
targets IκB for degradation, releasing NF-κB for translocation to the nucleus to regulate gene expres-
sion at κB elements. IKKβ inhibitors reduce alcohol consumption in mice. (d) Glucocorticoid receptor
(GR) pathway. GR is held in the cytosol by chaperone proteins. Once bound to its ligand, cortisol
(in humans/nonhuman primates) or corticosterone (in rodents) (CORT), GR translocates to the nucleus
and binds to glucocorticoid response elements (GREs) to regulate gene transcription. The GR antag-
onist mifepristone has shown efficacy in reducing alcohol consumption in rodents and humans
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