
Chapter 6

Theoretical Aspect—A Formal Definition

6.1 Introduction

Along with the continuous developments in hyper-heuristic (HH), various descrip-
tive definitions for HH have emerged, leading to classifications of HH. Initially,
hyper-heuristics have been defined as a search technique “to decide (select) at a
higher abstraction level which low-level heuristics to apply” [51], “to combine sim-
ple heuristics” [162], or recently as a search method or learning mechanism for
selecting or generating heuristics to solve computational search problems [30]. HH
is thus categorized into four classifications, namely, selection perturbative / con-
structive, generation perturbative / constructive (see Chapters 3, 2, 5 and 4). Some
attempts have also been made to generalize these classifications of HH, to allow both
selection / generation and offline / online learning to interoperate within a reposi-
tory [180]. It has also been proposed that the “domain barrier” in the HH definition
should be moved so more knowledge can be easily incorporated in a more expres-
sive HH for inexperienced practitioners [179].

This chapter presents a formal definition of HH based on the existing conceptual
definitions in the literature [35]. Within the two-level framework of HH, two search
spaces, namely the heuristic space and the solution space, are under consideration.
Some fundamental issues are then discussed within this framework. In addition to
the different encoding and search operations, various objective functions are defined
in both spaces to evaluate searches on heuristics and direct solutions, respectively.

Within the two-level framework of HH, a selection constructive hyper-heuristic is
then demonstrated to illustrate the inter-relationship between the two search spaces.
A landscape analysis on the heuristic space reveals interesting characteristics for
designing more effective hyper-heuristics. Future potential research developments
are finally presented based on existing research advances addressing the theoretical
aspects of HH.

37© Springer Nature Switzerland AG 2018
N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications,
Natural Computing Series, https://doi.org/10.1007/978-3-319-96514-7_6

https://doi.org/10.1007/978-3-319-96514-7_6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96514-7_6&domain=pdf

38 6 Theoretical Aspect—A Formal Definition

6.2 A Formal Definition of Hyper-Heuristics

A hyper-heuristic HH can be defined as a search algorithm for solving an optimiza-
tion problem P, whose decision variables are heuristics, rather than direct solution
variables in the optimization problem p under consideration. To solve P, HH ex-
plores at a higher level a heuristic space H of heuristic configurations h, which at
a lower level generate direct solutions s in the solution space S for problem p. Two
search spaces can thus be defined, namely a heuristic space H of P and a solution
space S of p, each associated with an objective function, within the two-level frame-
work [155].

Definition 6.1. Within a two-level framework, a hyper-heuristic HH explores
heuristic configurations h ∈ H in the heuristic space H at a high level. The per-
formance of HH is measured using F(h) → R. At the low level, an objective func-
tion f (s) → R evaluates the direct solutions s ∈ S in the solution space S for the
optimization problem p under consideration.

Solution s is obtained by using a corresponding heuristic configuration h ∈ H,
i.e. h → s. Let M be a mapping function M: f (s)→ F(h). The objective of HH is to
search in H for the optimal heuristic configuration h*, which generates the optimal
solution(s) s*, so that F(h*) is optimized:

F(h* | h* → s*,h* ∈ H)← f (s*, s* ∈ S) = min{ f (s),s ∈ S} (6.1)

The following terminologies are defined in the formal HH definition [155].

• Problem p: an optimization problem under consideration, whose direct solutions
s ∈ S are evaluated against objective function f (s).

• Problem P: an optimization problem considered by HH, whose decision variables
are heuristic configurations h ∈ H evaluated against objective function F(h).

• Solutions s: direct solutions for p.
• Heuristic configurations h: configurations upon low-level heuristics in L for P.
• Solution space S: consists of s for p, obtained by using h, i.e. h → s.
• Heuristic space H: consists of h for P, explored by high-level heuristic algorithms

HLH in HH.
• Low-level heuristics L: a given set of domain specific heuristics configured by

HLH at the low level to compose h, i.e. L contains the set of domain values for
the decision variables in h.

• High-level heuristics HLH: search algorithms or configuration methods at the
high level upon L to search h ∈ H for P.

• Objective function f : fitness evaluation for p, i.e. f (s) → R evaluates s ∈ S, s
obtained using h ∈ H.

• Objective function F: fitness evaluation for P, i.e. F(h) → R evaluates h ∈ H
explored by HLH. The objective is to find the optimal h*, which obtains the
optimal solution s* for p, i.e. h* → s*.

• Mapping function M: F(h) ← f (s): each h maps an s, thus the performance of
HLH upon h is measured based on the evaluation of its mapping s. Note that

6.2 A Formal Definition of Hyper-Heuristics 39

F(h) may not be the same as f(s) although it is the case in most of the existing
HH literature.

In the HH literature, different optimization problems p can be solved by plugging
in a problem specific set L at the low level. The design of HH can thus be focused
on the design of the high-level HLH. Solving different p thus can be transferred to
solving a general optimization problem P; the latter can usually be encoded with
lower-dimension representation and is easier to explore [155]. The generality of HH
is also raised, as problem specific details and constraint handling are left with the
direct solutions s obtained at the low level for p. Due to the above definition of
the two search spaces at the two levels, the burdens of designing problem specific
algorithms are also eased, focusing on the high-level configurations of heuristics.
HH showed to be easy to implement, and has been successfully applied to a wide
range of combinatorial optimization problems [30].

In [151], a formal definition of selection constructive HH based on graph colour-
ing is presented. The above formal definition is extended to define both types of
selection and generation HH with constructive and pertubative L as classified in
[31]. Note that the p at hand may be either continuous or discrete. In most of the
current HH literature only combinatorial optimization problems are investigated.
The formal HH definition can also be extended to define continuous optimization
problems, which represents a new line of interesting future research directions.

6.2.1 Two Search Spaces Within the Formal Hyper-Heuristic
Framework

HH solves p by indirectly configuring and exploring h in H at the higher level,
which then used to search for direct solutions s in S. Therefore, it is necessary to
distinguish between the heuristic space H for P and the solution space S for p. In
the current literature, most HH mainly explore h ∈ H, aiming to find h* that maps to
(near-)optimal s* ∈ S, with less focus on the low-level S. Note, however, that within
S, search can also be conducted by applying standard meta-heuristics to directly
search s for p [151]. Table 6.1 compares the characteristics of the two search spaces
based on terminologies defined for HH in Section 6.2.

Table 6.1 Characteristics of the two search spaces in the formal hyper-heuristic framework

Search Space Heuristic Space H Solution Space S
Encoding Heuristic configurations h Direct solutions s
Operation High-level methods HLH upon Move or evolutionary operators

the given L to configure h on s
Objective Evaluation function F(h) upon h Objective function f (s) on s for
Function for P, F(h) ← f (s) p

40 6 Theoretical Aspect—A Formal Definition

In selection hyper-heuristics, operations in HH often employ evolutionary algo-
rithms or local search algorithms to configure h based on L [30]. Other configuration
methods are also studied, including choice functions and case-based reasoning [30],
see Chapters 2 and 3. In generation hyper-heuristics (see Chapters 4 and 5), genetic
programming and its variants [11, 193] are often used to generate h, which can act
as new problem specific heuristics to produce s ∈ S. Each h maps an s, thus the
process of configuring or searching h ∈ H simulates a search process exploring the
mapping s ∈ S.

In most of the HH literature, F(h) = f (s) [30]. Different evaluation functions,
however, can be used in H and S, respectively. For example, in [17, 52, 119], a
reward is used as F for a choice function to assess L and configure h at the high
level, and a different problem specific evaluation function is used to evaluate the
mapping s. Further in-depth studies may explore different M: F(h) ← f (s) in the
two-level framework, to design effective selection or generation HH with different
high-level configuration methods and problem specific L.

HH indirectly searches s ∈ S by exploring h ∈ H, thus may not directly explore
from s towards the (local) optimal solutions s* ∈ S, evaluated against f, as standard
meta-heuristics usually do. Depending on the type of L in HH, neighbourhood solu-
tions s’ explored in S mapped by h’ may or may not be the neighbourhood solutions
from their precedent s mapped by h.

• In most HH employing perturbative L, individual low-level heuristics in h oper-
ate consecutively on complete direct solutions s, thus s can be seen as explored
directly by the high-level search towards the (near)-optimal solutions s* in S,
guided by f on direct solutions s.

• In HH employing constructive L, solutions s and s’ are constructed by h and h’,
thus s’ obtained indirectly in S by h’ may not be the neighbours of s, even if its
corresponding h’ is the neighbour of h. This is because during the solution con-
struction using h’, any different values assigned to variables in a partial solution
using a different low-level heuristic in h’, compared to h, are likely to lead to a
different complete solution s’. Thus s’ produced by the successive h’ explored
from h may not be neighbours of s in S.

Figure 6.1 presents the relationship between h ∈ H and s ∈ S within HH. In H, h2
and h3 are two successors of h1 using an operation at the high level. In an HH that
employs constructive L, their mapping corresponding solutions s2 and s3 in S may
not be neighbours as defined using different (or even the same) operations upon the
direct solution s1 in S, obtained from h1.

Given the characteristics in Table 6.1, it is noted that the size of H is very likely
to be different from the size of S. In particular, S consists of all the possible direct
solutions s for p, while H consists of heuristic configurations h for P. However,
depending on how encoding and operation are defined, some of the s may not be
obtained from any h ∈ H. This is reflected in Figure 6.1: s4 may be a neighbour
of s1 ∈ S using a specific operation; however, it may not have any corresponding h
∈ H depending on how h is configured at the high level. In the example presented

6.2 A Formal Definition of Hyper-Heuristics 41

Fig. 6.1 Search in the two spaces H and S

in Section 6.3, this interesting issue has been investigated to explore search within
both P and S to reach all s ∈ S for p.

6.2.2 Fitness Landscape of the Heuristic Space in the
Hyper-Heuristic Framework

In meta-heuristics, the concept of fitness landscape has been adapted to analyze
the search space of solutions [115], revealing useful characteristics for designing
more effective algorithms. For example, analysis of the landscape of the travelling
salesman problem reveals an interesting feature called a “big valley”, indicating a
positive correlation between solutions and their fitnesses with the optimal s*, i.e.
solutions closer to s* are of better quality [128]. This observation may be used to
design effective encodings and operators to guide the search towards s* in TSP and
other problems with similar features in the landscape.

Based on the definitions of fitness landscape in state space theory [115], the fit-
ness landscape of H for the optimization problem P in the HH framework (Section
6.2) can then be defined with three factors, namely an encoding using some finite
alphabet in L to represent all possible heuristic configurations h; a successor opera-
tor to define how h ∈ H are connected (explored), and a fitness function F(h) → R
that assigns a fitness value R to each h ∈ H.

In some HH where h are encoded as one-dimensional sequences of low-level
heuristics in L, it is possible and useful to conduct landscape analysis on H, whose
spatial structure can be defined using the operation and a distance metric D on h.
This proved to be very difficult, if not impossible, for s ∈ S for many complex
combinatorial optimization problems with n-dimensional solutions, n ≥ 2. In the
literature, fitness distance correlation fdc has been mostly used to analyze landscape
properties and measure problem difficulty. Given a set of encodings h1, h2, ..., hn
and their fitness F, and the distance of h ∈ H to their nearest optimum hopt ∈ H, the
fdc coefficient is defined as follows [87]:

f dc : σ(F,Dopt) =Cov(F,Dopt)/σ(F)σ(Dopt) (6.2)

42 6 Theoretical Aspect—A Formal Definition

where Cov(.,.) denotes the covariance of two random variables and σ(.) the standard
deviation. In the literature, the optimal hopt is estimated by the h which leads to the
best solution s* found for p. For hi, fdc thus indicates how closely their F and D are
related to that of hopt . A value of σ = 1.0 (σ = -1.0) for maximization (minimization)
problems indicates F and D are perfectly correlated to hopt [87], and thus provide
perfect guidance to hopt ; thus P is an easy problem in HH. In a landscape analysis,
a value of fdc ≤ 0.5 (fdc ≥ 0.5) for maximization (minimization) problems usually
indicates an easy P in HH.

More landscape analysis could be conducted using other measures including
auto-correlation [192], which calculates the fitness correlation of a series of h
recorded along a random walk over a time series T. The longer the time lag between
two correlated h in the random walk, the less rugged is the landscape of H thus the
easier the problem for HH. This also indicates from another aspect the difficulty of
search problem P in H.

6.3 Example: A Selection Constructive Hyper-Heuristic for

Timetabling Problems

A graph-based selection constructive hyper-heuristic in [32] is re-defined in this sec-
tion based on the formal definitions of HH in Section 6.2 for educational timetabling
problems. Based on an analysis of the two search spaces, a hybrid HH [151] is
demonstrated, together with a landscape analysis on H in this HH framework [127].
More details of the work can be found in the original papers [32, 127, 151, 155].

6.3.1 A Graph-Based Selection Hyper-Heuristic (GHH)
Framework

In timetabling, graph colouring heuristics (see more details in Section 10.2) are
constructive heuristics that order the events using some difficulty measure strategies.
The ordered events are then assigned, one by one starting with the most difficult
ones, to construct complete timetable solutions. The basic assumption is that the
most difficult events need to be scheduled earlier to avoid problems at a later stage.
For example, if SD (Saturation Degree) is used in an exam timetabling problem, the
exams are ordered by the number of remaining valid slots in the partial timetable
during the solution construction, and the most difficult one is scheduled first to avoid
the problem of no valid slots left at a later stage.

A graph-based selection constructive hyper-heuristic (GHH) is defined as fol-
lows: On the high-level space H, a local search algorithm as the high-level heuristic
HLH explores heuristic sequences h ∈ H using the low-level graph colouring con-
structive heuristics in L = {LD, LWD, SD, LE, CD}, as explained in Section 10.2.

6.3 Example: A Selection Constructive Hyper-Heuristic for Timetabling Problems 43

Each h = {h1, ..., hn}, hi ∈ L, is evaluated by F(h) → R. n is the problem size, i.e.
the number of decision variables in p.

At the lower level of GHH, a timetable solution s ∈ S is constructed iteratively
by using an h ∈ H, considering constraints and f for the timetabling problem p (see
Appendix B.4). At iteration i, hi∈ h is employed to order the events not yet sched-
uled in p using its corresponding ordering strategy. The first event in the ordering
(i.e. the most difficult one using hi) is then scheduled in s. In the next iteration, hi+1
in h is used to reorder and schedule the most difficult remaining events. This process
is repeated until a complete s is constructed. Any h that leads to infeasible solutions
is discarded. The objective function f (s) → R evaluates s ∈ S for p (see Appendix
B.4).

The mapping function is defined as M: F(h) = f (s), h → s. The optimization
problem P in the HH framework is thus to search for h* of L at a higher level in H
which constructs (near-)optimal solution(s) s*.

6.3.2 Analysis of Two Search Spaces in the GHH Framework

In the GHH defined above, different local search algorithms are employed at the
high level [151] to search for h ∈ H, and a greedy steepest descent method is used at
the low level to exploit local optima from s ∈ S; s is obtained using the correspond-
ing h. Thus search has been conducted within both H and S, with characteristics
given in Table 6.2. Note that different meta-heuristics can be employed at both lev-
els, and the objective functions at the two levels can be different.

Table 6.2 Characteristics of the two search spaces in the GHH framework

Search Space Heuristic Space H Solution Space S
Encoding Sequences of heuristics h Direct timetable solutions s
Upper Bound of ne (e: length of h; te (t: no. of slots;
the Search Space n: size of L, i.e. |L|) e: no. of events)
Operator Randomly change two hi in h Move events in s to new slots
Objective Function Cost of s constructed by the new h Cost of the new neighbour s

Within GHH, the high-level search explores h rather than direct solutions s. As
an s is constructed by an h step by step, similar neighbouring h in H may construct
quite different s, likely to be widely distributed in S. As illustrated in Figure 6.1, by
making local neighbourhood moves from h1 to h2 or h1 to h3 at the high level in H,
GHH can explore s2 or s3 across very different regions in S. A local search at the low
level upon s in S, on the other hand, usually generates similar local solutions, i.e. s3
to s4. The GHH search thus can be seen as exploring much larger neighbourhood
regions in S using a local search in H, similarly to the search behaviour of large-
neighbourhood search algorithms.

44 6 Theoretical Aspect—A Formal Definition

In [151], a fast steepest descent method is hybridized at the low level within GHH
to further exploit a local optimum from s ∈ S. The motivation is twofold: First, the
steepest descent in S can exploit local areas around s3 to reach local optima quickly;
Second, GHH thus is able to explore the whole search space S including s4, which
may not be reached by any h ∈ H.

6.3.3 Performance Evaluation of GHH

In [151], four different local search algorithms, namely steepest descent, tabu
search, variable-neighbourhood search and iterated local search, have been used as
the high-level search to explore h for both the course and exam timetabling prob-
lems, employing the same L, as presented in Section 6.3.1.

It was found that although variable-neighbourhood search and iterated local
search performed slightly better, in general high-level search within GHH did not
play a crucial role. This may be because that at the high level, the h are not con-
cerned with the actual assignments of decision variables in s for p, but are indirect
configurations of constructive heuristics, which are then used to build s. s sampled
by h at the high level tend to jump within S; thus s and s’ from the neighbouring h
and h’ are not successive neighbours. The different search methods used in H thus
did not directly lead to different performance of HH upon S.

When employing steepest descent at the low level in S on each complete s con-
structed by h, GHH obtained significantly better results. Although the local optimum
h in H at the high level might not map a local optimum s in S, the steepest descent
upon s further explores S, leading to locally optimal solutions for p. Within GHH,
the role of the high-level local search in H can thus be seen as to explore S indirectly,
while the steepest descent search at the low level is to exploit local regions in S.

Penalties of timetable solutions obtained by GHH using iterated local search on
the exam timetabling problems (see Appendix B.4) are presented in Table 6.3, com-
pared against existing algorithms. In [151] exactly the same GHH is applied to both
the exam and course timetabling problems. The only difference is f (s) → R on s
∈ S for different p. Note that some of the existing approaches in Table 6.3 are not
hyper-heuristics, and are specially designed for solving the specific problem under
consideration, thus may not have been applied to solve both problems.

The overall idea of the exploration in H and exploitation in S using search at two
levels in GHH is similar to that of memetic algorithms or genetic local search, where
genetic operators applied to the population of solutions in S facilitate global explo-
ration, while the local search on solutions in the population conducts exploitation
within local regions. The difference is that GHH explores S by indirectly searching
H, at a high level, in the manner of local search. The hybrid GHH is much simpler
yet is capable of exploring and exploiting the search space S at two levels.

HH aims to increase the level of generality in solving multiple problems and
problem instances, while most of the existing HH approaches have been applied
to one problem domain, or evaluated by specific objective functions for different

6.3 Example: A Selection Constructive Hyper-Heuristic for Timetabling Problems 45

Table 6.3 Penalties of timetable solutions by GHH on benchmark exam timetabling problems
against existing approaches; details of the problem and penalty function can be found in Appendix
B.4

car91 car92 ear83 I hec92 I kfu93 lse91 sta83 I tre92 ute92 uta93 I yok83 I
GHH 5.3 4.77 38.39 12.01 15.09 12.72 159.2 8.74 30.32 3.42 40.24
LNS [2] 5.21 4.36 34.87 10.28 13.46 10.24 159.2 8.7 26 3.63 36.2
Fuzzy [6] 5.2 4.52 37.02 11.78 15.81 12.09 160.4 8.67 27.78 3.57 40.66
Adaptive [39] 4.6 4.0 37.05 11.54 13.9 10.82 168.7 8.35 25.83 3.2 36.8
Local search[25] 4.8 4.2 35.4 10.8 13.7 10.4 159.1 8.3 25.7 3.4 36.7
Hybrid [42] 6.6 6.0 29.3 9.2 13.8 9.6 158.2 9.4 24.4 3.5 36.2
Heuristics [43] 7.1 6.2 36.4 10.8 14.0 10.5 161.5 9.6 25.8 3.5 41.7
Tabu Search [67] 6.2 5.2 45.7 12.4 18.0 15.5 160.8 10.0 29.0 4.2 42.0
Hybrid [114] 5.1 4.3 35.1 10.6 13.5 10.5 157.3 8.4 25.1 3.5 37.4

problems, respectively. Thus the generality of HH approaches have not yet been
assessed using a uniform or consistent measure. In recent research, a performance
assessment for HH, at four different levels of generality, has been proposed [147].
Such study shows a welcome attempt to address the fundamental aspects of further
research developments in HH.

6.3.4 Fitness Landscape Analysis on GHH

In the literature some landscape analysis has been conducted using measures such
as fdc and auto-correlation, both indicating from different aspects the difficulty of
search in H. An example analysis using fdc as explained in Section 6.2 to analyze H
in GHH is presented in this section. More details can be found in [127].

Based on a variant of GHH using two low-level heuristics, LWD and SD as de-
fined in Section 10.2, in [127] the landscape of H in GHH has been analyzed to gain
insight into the global structure of H. As in the literature, the best known h obtained,
hopt , is used as an estimation of the optimal solution in the fdc analysis (Equation
6.2). h ∈ H can thus be represented by binary strings, whose distance D is measured
using Hamming distance.

In the fdc analysis, locally optimal h are measured against hopt to reveal landscape
features of H, indicated by the correlations between their distances and costs. A set
of h is first randomly generated, one of each distance j, j = 1, ..., l, away from hopt ,
l is the length of hopt . A non-deterministic steepest descent search using one-flip
neighbourhood moves is then applied 10 times to these binary h to generate 10
locally optimal h for each j. In total LO = 10 × l locally optimal h are thus obtained
and their correlations with hopt using (Eq. 6.2) are calculated. More details can be
found in [127].

The fitness values of these LO for two example timetabling instances, hec92 I
and sta83 I, are plotted in Figure 6.2, ordered increasingly by their costs. The plots
show a number of local optima of the same cost especially for sta83 I, demonstrating
several plateaus in H.

46 6 Theoretical Aspect—A Formal Definition

Fig. 6.2 Cost of local optimal h in GHH [127].

Figure 6.3 shows the best 10% of these LO local optima. Some interesting pat-
terns can be extracted especially at the beginning of h. For example, values at certain
positions hi in the top h are fixed, i.e. the first four positions in h for hec92 I are al-
ways LWD. It is not surprising to see that random patterns appear at the end of h, as
the last steps of solution construction tend to make less impact on the quality of s.
No obvious patterns can be observed on lower-quality h.

Fig. 6.3 The best 10% local optimal h in GHH: hec92 I (left), sta83 I (right). Note: at each hori-
zontal line white and black plots indicate low-level heuristics LWD and SD, respectively

The scatter plots between F(h), h ∈ LO, and their distances to hopt indicate a
moderate-to-high positive correlation (in the range of 0.51 to 0.64). This is a very
useful “big valley” feature in the landscape of H, similar to that of TSP observed in
the literature [128], meaning better local optima are closer to hopt in H. This also
indicates that search in H is probably easier, as F(h) of locally optimal h provides a
useful indication of how close they are to hopt .

Other patterns can also be observed, revealing some interesting features in the
landscape of H. Although presenting similar positive correlation, the scatter plot for

6.4 Discussion 47

instance sta83 I shows several wide plateaus of the same cost f at different levels.
In addition, those h with a cost below 38 (around l/2 bits away from h*) are of
low-quality, and show no clear correlation i.e. they are randomly located in H. More
details can be found in [127].

Due to the simple one-dimensional structure of h, it is possible to conduct land-
scape analysis on H. This showed to be very difficult, if not impossible, for s in S
for some problems investigated including the timetabling, vehicle routing and nurse
rostering problems.

6.4 Discussion

Along with more recent advances in HH research addressing different theoretical as-
pects, more interesting research issues have emerged that require a formal definition
of different types of HH in the literature. Based on the existing different conceptual
definitions, a formal definition of HH [155] is presented in this chapter as an opti-
mization problem to provide a unified fundamental basis for further explorations of
emerging research directions in future HH research.

To demonstrate the formal HH framework, an existing selection constructive
hyper-heuristic employing high-level local search algorithms [151] has been re-
defined, along with a landscape analysis for educational timetabling problems.
Within the two-level HH framework, two search spaces, namely, the heuristic space
H and solution space S can be explored separately, each with its own objective func-
tion. Landscape of the high-level search space H with one-dimension sequences of
h showed the “big valley” feature by using the fdc analysis. The relation / mapping
between the two search spaces is worth further investigation under the formal HH
framework for the four types of HH [31] described in Chapters 2, 3, 4 and 5.

Based on this HH framework, several future research directions are worth further
exploration.

HH aims to raise the generality of algorithms for solving multiple problems. This
poses an interesting research question, namely how the No Free Lunch Theorem
(NFL) applies to this new type of search algorithms. Some interesting discussions
in [150] analyzed the conditions under which the NFL applies to HH. Based on the
statement, if a set of fitness functions associated with problems p are closed under
permutation [194], it would make no sense to find a solver for such p. However,
such a set of problems usually represents a small fraction of the whole, thus there
may be a free lunch developing HH approaches for not too large a set of problems.
It would be interesting to carry out more in-depth analysis on NFL within the formal
definition of the HH framework, to further explore the scope of p HH may address.

In [100], a runtime analysis is conducted on a selection HH using a randomized
local search. It is shown that configuring a set of neighbourhood operators with an
appropriate distribution is crucial, and is also problem dependent. It also shows that
online reinforcement learning on configuring operators may perform more poorly
than fixed distribution of operators in selection perturbative hyper-heuristics. A fur-

48 6 Theoretical Aspect—A Formal Definition

ther investigation within the formal HH framework for both selection and generation
HH with constructive and perturbative low-level heuristics would establish the the-
oretical foundations of HH as that of runtime analysis for evolutionary algorithms
[100].

Performance measures on most of the current HH approaches in the literature
are problem specific, even where multiple problems are concerned, when assessing
the performance of HH. Some progress has been made in [147] to devise a new
generality performance measure for HH of different levels of generality for differ-
ent problems. With the aim of raising the generality of search algorithms, this new
performance measure can be associated with the formal HH framework, to provide
evaluations of different HH across various problems.

A unifying mathematical formulation for hyper-heuristics is proposed in [180],
where by using a high-level controller, elements of heuristic design (both construc-
tive and perturbative heuristic activities) compete for resources within a shared
repository workspace to configure better heuristics. There is thus no distinction be-
tween online and offline activities, and heuristic activities interoperate based on in-
formation shared from other heuristics. The formal HH framework defined in this
chapter could be integrated with this unifying framework, where the heuristic space
H of P is explored by the high-level controller to solve multiple problems p.

Recent research on landscape analysis observes that multiple “sub-valleys” exist
in a single big valley for TSP [128]. Similar analysis of the high-level H in the
HH framework, where h is encoded as one-dimensional strings or sequences, might
reveal more insights into the high-level landscape in HH, and inspire the design of
more effective HH across different problems p.

	Chapter 6 Theoretical Aspect—A Formal Definition
	6.1 Introduction
	6.2 A Formal Definition of Hyper-Heuristics
	6.2.1 Two Search Spaces Within the Formal Hyper-Heuristic Framework
	6.2.2 Fitness Landscape of the Heuristic Space in the Hyper-Heuristic Framework

	6.3 Example: A Selection Constructive Hyper-Heuristic for Timetabling Problems
	6.3.1 A Graph-Based Selection Hyper-Heuristic (GHH) Framework
	6.3.2 Analysis of Two Search Spaces in the GHH Framework
	6.3.3 Performance Evaluation of GHH
	6.3.4 Fitness Landscape Analysis on GHH

	6.4 Discussion

