
Chapter 3

Selection Perturbative Hyper-Heuristics

3.1 Introduction

Selection perturbative hyper-heuristics select which low-level perturbative heuris-
tic to apply at each point of improvement to a given initial complete solution to a
problem. The initial solution is usually created either randomly or using a construc-
tive low-level heuristic. It is usually iteratively refined by applying a perturbative
low-level heuristic until there is no further improvement, measured using problem
specific criteria such as the objective value of the perturbed solution. Starting from
the initial problem state (solution), the application of each low-level perturbative
heuristic results in moving from one problem state to the next until a final problem
state, which cannot be improved further, is reached. A formal definition of selection
perturbative hyper-heuristics is given in Definition 3.1.

Definition 3.1. Given a problem instance p, an initial solution s0 and a set of low-
level perturbative heuristics L = {L0, L1, ..., Ln} for the problem domain, a selection
perturbative hyper-heuristic SPH improves the solution s0 by selecting and applying
a perturbative heuristic Li from L to get from one problem state s’ to the next s” until
a problem state resulting in no further improvement of the solution si is reached.

As in the case of low-level constructive heuristics, the low-level perturbative
heuristics are problem dependent. For example, in the case of solving the exami-
nation timetabling problem, a perturbative heuristic will swap the examinations of
two timetable periods, while in the case of the travelling salesman problem a pertur-
bative heuristic inserts a subset of cities at a new position in the route.

Selection perturbative hyper-heuristics employ single-point or multipoint search
to select the low-level perturbative heuristics, as discussed further in Section 3.2
and Section 3.3, respectively. In single-point selection perturbative hyper-heuristics,
two decisions are usually made, namely heuristic selection and move acceptance
[30]. Multipoint selection perturbative hyper-heuristics employ population-based
methods such as evolutionary algorithms to search the space of perturbative heuris-
tics. By their nature, these search techniques perform both heuristic selection and

17© Springer Nature Switzerland AG 2018
N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications,
Natural Computing Series, https://doi.org/10.1007/978-3-319-96514-7_3

https://doi.org/10.1007/978-3-319-96514-7_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96514-7_3&domain=pdf

18 3 Selection Perturbative Hyper-Heuristics

move acceptance, and hence separate components for these functions are not needed
[5, 45, 60, 73, 157].

3.2 Single-Point Search Selection Perturbative Hyper-Heuristics

Algorithm 7 depicts the general algorithm employed by single-point search selection
perturbative hyper-heuristics.

Algorithm 7 Selection perturbative hyper-heuristic algorithm
1: procedure SELECTIONPERTURBATIVEHYPERHEURISTIC(p, L)
2: create an initial solution s0 using a random or constructive heuristic
3: repeat

4: use the heuristic selection technique h to select a perturbative heuristic Li from L
5: apply Li to solution si to produce the perturbed solution si+1
6: use the move acceptance technique M to accept the move or not
7: if the move is accepted si=si+1
8: until the termination criterion
9: return si

10: end procedure

A termination criterion commonly used is that there is no further improvement
in the solution si. Alternatively, the processes of heuristic selection and move ac-
ceptance can be performed for a set number of iterations. The following sections
provide an overview of heuristic selection and move acceptance techniques.

3.2.1 Heuristic Selection Techniques

This section provides an overview of early and commonly used techniques for
heuristic selection. It is by no means exhaustive as the list of techniques employed
by selection perturbative techniques is rapidly growing.

The simplest heuristic selection technique is random selection [3, 99, 118], which
randomly selects a perturbative heuristic from the available heuristics and applies it
to the current solution si. A variation of the random selection technique is ran-
dom gradient [3, 30], which selects a heuristic randomly and applies it iteratively,
beginning with solution si, until there is no further improvement. Random permu-
tation selects a sequence of perturbative heuristics randomly, they are applied in
order [3, 30]. Greedy [30] applies all the perturbative heuristics in L and selects the
heuristic producing the solution si+1 with the best objective value.

Evolutionary algorithms have also been used for purposes of heuristic selection.
Two methods used for heuristic selection are tournament selection and fitness pro-
portionate selection [30]. These methods select a heuristic from the set L of avail-

3.2 Single-Point Search Selection Perturbative Hyper-Heuristics 19

able low-level perturbative heuristics. The fitness of each perturbative heuristic L j
is a problem specific measure, such as the objective value of the perturbed solution
si+1 resulting from applying L j to si. In the case of tournament selection, a set of
heuristics of fixed size is randomly selected from L, and the heuristic producing the
solution with the best objective value is selected. On the other hand fitness propor-
tionate selection creates a pool of heuristics based on the fitness of each heuristic Li
in L, and a heuristic is randomly selected from this pool.

The concept of a choice function was introduced for heuristic selection [30, 55,
89, 99]. A choice function calculates a rank for each heuristic L j in L based on its
performance, i.e. the improvements it has produced thus far and when it was last
applied during the process. The heuristic with the best rank is selected and applied.
The rank for each hi is calculated using the following formulae [55, 89, 99]:

f (hi) = α f1(hi)+β f2(hi)+δ f3(hi) (3.1)

f1(hi) = ∑
n

αn−1 In(hi)

Tn(hi)
(3.2)

f2(h j,hi) = ∑
n

β n−1 In(h j,hi)

Tn(h j,hi)
(3.3)

f3(hi) = τ(hi) (3.4)

f1 in equation 3.2 is a measure of the recent performance of heuristic hi over
its previous n invocations. In(hi) is the change in objective value from the last in-
vocation. Similarly, Tn(hi) is the difference in the time since the last invocation of
the heuristic hi. f2 in equation 3.3 is a measure of the pairwise performance of hi
with all other heuristics h j over n invocations of successive application of h j and hi.
In(h j,hi) is the difference in objective values from one successive application of h j
and hi to the next. Tn(h j,hi) is the difference in time since the last successive invoca-
tion of h j and hi. f3 indicated in equation 3.4 is a measure of the time taken in CPU
seconds since the heuristic was last applied during the improvement process. The
parameters α , β ∈ [0,1] set the importance of the recent performance of heuristic
hi. δ is a real-valued parameter used to maintain diversity. The basis of the choice
function is reinforcement learning.

Reinforcement learning has also been successfully used for heuristic selection in
selection perturbative hyper-heuristics [55, 85, 131, 132]. It assigns a score to each
heuristic in the set L based on its performance during the improvement process. At
the beginning of the improvement process all the heuristics are assigned the same
score. During the process if a low-level heuristic Li results in an improvement of
a candidate solution its score is increased whereas if it results in a worse solution
the score is decreased. The heuristic with the best score at the particular point of
improvement is selected and applied.

20 3 Selection Perturbative Hyper-Heuristics

A tabu list [70] has also been used as part of the heuristic selection component
[36, 90] to prevent a poorly performing heuristic from being reused or to prevent the
use of the same heuristic for a number of iterations in the improvement process.

Stochastic methods such as Markov chains are also used for heuristic selection
[91]. Each chain is composed of low-level heuristics from L. The heuristics are not
applied in sequences, a transition probability is associated with each heuristic and
is used to decide which heuristic to apply next. Roulette wheel selection is used to
choose the next heuristic to apply based on the transition probability.

Depending on the technique employed by the heuristic selection component,
learning may or may not take place in selecting a heuristic. For example, in the
case of random selection or random gradient, no learning is performed. However,
reinforcement learning involves learning in terms of the performance of the low-
level heuristics on previous iterations of the improvement process.

3.2.2 Move Acceptance Techniques

This section provides an account of early and commonly used move acceptance
techniques. As in the case of heuristic selection techniques, the list of move accep-
tance methods successfully employed by selection perturbative hyper-heuristics is
growing and the overview provided is not exhaustive. Move acceptance criteria are
used to decide whether to accept the solution si+1 produced by applying a pertur-
bative heuristic L j to si. The outcome of the move acceptance method is to either
accept si+1, in which case it replaces si, or reject si+1, in which case si remains
unchanged. The quality of solutions is measured in terms of the objective value of
si+1.

The simplest move acceptance approach accept all moves [30] accepts the re-
sulting solution produced by applying heuristic L j irrespective of the quality of the
perturbed solution si+1 produced. A variation of this method accepts heuristics pro-
ducing a worse perturbed solution si+1 with a specified probability [91]. An ex-
tended technique accept improving moves [55, 99] only accepts the application of
the heuristic L j to si if there is an improvement in quality of the resulting solution
si+1. Similarly, accept equal and improving [118, 131] accepts moves producing
solutions of the same or better quality. Misir et al. [118] extend this idea and in-
troduce two new move acceptance approaches, namely, Iteration Limited Threshold
Accepting (ILTA) and Adapted Iteration Limited Threshold Accepting (AILTA).
ILTA generally accepts improving and equal moves, and moves producing worse
solutions if the current iteration exceeds the specified iteration limit and the fitness
of the produced solution is less than a factor, specified by the threshold, of the best
fitness obtained thus far. Both the iteration limit and the threshold value are param-
eters. AILTA is similar to ILTA but allows for the threshold value to be adapted if
there is no improvement in the solutions perturbed.

Local search techniques have also been used for the purposes of move accep-
tance. These include simulated annealing [3, 55, 85], late-acceptance hill climbing

3.3 Multipoint Search Selection Perturbative Hyper-Heuristics 21

[55] and great deluge [3, 132]. This involves using the mechanism employed by
the local search to accept a move to decide whether to accept the solution resulting
from the application of the heuristic. The heuristic selected by the heuristic selec-
tion component is applied to solution si to produce the perturbed solution si+1. The
acceptance mechanism of the local search is used to determine whether to accept or
reject si+1. If si+1 is an improvement over si it is accepted; otherwise the criterion
specific to the local search for accepting worsening moves is applied. For example,
in the case of simulated annealing a worse perturbed solution is accepted based on
the temperature value.

3.3 Multipoint Search Selection Perturbative Hyper-Heuristics

Multipoint search selection perturbative hyper-heuristics employ population-based
methods such as genetic algorithms [73, 156, 157], particle swarm optimization [5]
and ant colonization [45, 60], to explore the heuristic space. The hyper-heuristic
produces a heuristic [5] or a sequence of heuristics [5, 45, 73, 157] to improve an
initial solution created randomly or using a constructive heuristic. When using parti-
cle swarm optimization each particle represents a heuristic or sequence of heuristics
[5]. Similarly, in the study employing ant colonization [45] each ant chooses the
next heuristic to apply. Genetic algorithms explore the space of low-level heuristic
sequences [73, 156, 157]. In the case of a single heuristic this is applied to improve
the initial solution, while a heuristic sequence is applied iteratively with each heuris-
tic of the sequence applied in order to improve the initial solution. This process is
depicted in Algorithm 8.

Algorithm 8 Applying a perturbative heuristic sequence
1: Given an initial solution s0 and heuristic combination h = h1...hn
2: for i ← 1,n do

3: Apply the chosen hi to si to create si+1
4: end for

5: Report sn

Genetic algorithms have been the most popular multipoint search method em-
ployed by selection perturbative hyper-heuristics. Each element of the population,
i.e. a chromosome, is a sequence of heuristics [73, 156, 157]. Research has shown
that variable-length chromosomes are more effective than fixed-length chromo-
somes in genetic algorithm selection perturbative hyper-heuristics [73]. Each se-
quence is created by randomly selecting low-level perturbative heuristics from the
available set of perturbative heuristics for the problem domain. An initial solution
is created randomly or using a constructive heuristic and is used to calculate the
fitness of each chromosome on each generation. The fitness of the chromosome is
determined by applying it to the initial solution using Algorithm 8. The fitness of the

22 3 Selection Perturbative Hyper-Heuristics

chromosome is a function of the objective value of the resulting perturbed solution
sn.

3.4 Discussion

The majority of the research on selection perturbuative hyper-heuristics has focused
on single-point search combining heuristic selection techniques and move accep-
tance criteria. The heuristic selection techniques used range from simple techniques
with no learning that randomly select a perturbative heuristic, to approaches with
learning and that select the heuristic based on its performance in previous iterations
during the improvement process. The simplest move acceptance techniques are de-
terministic and accept all moves or improving and/or equal moves only. Variations
include approaches that will also accept worsening moves based on certain criteria,
e.g. a specified threshold value or the iteration of the improvement process. The ac-
ceptance mechanisms of local searches such as simulated annealing, great deluge
and late-acceptance hill climbing have also proven to be effective for the purposes
of move acceptance.

More recently multipoint search techniques such as genetic algorithms and par-
ticle swarm optimization have been employed by selection perturbative hyper-
heuristics. An area that needs further investigation is comparative studies of single-
point search and multipoint selection perturbative hyper-heuristics for different
problem domains. Tables 3.1 and 3.2 list some of the application domains that
single-point search and multipoint search hyper-heuristics have been applied to, re-
spectively.

Table 3.1 Single-point search selection perturbative hyper-heuristic applications

Problem domain Heuristic Selection Move Acceptance

Maximum satisfiability [99] Random, choice function Improving only
Nurse rostering [36] Reinforcement learning Accept all moves

with tabu list
University course timetabling Reinforcement learning Accept all
[36] with tabu list
Multidimensional knapsack Random, choice function, Accept all, improving only, late
problem [36] reinforcement learning acceptance, simulated annealing
Examination timetabling [90] Tabu list Accept all
Examination timetabling [132] Reinforcement learning Great deluge
Examination timetabling [131] Reinforcement learning Improving or equal
Home care scheduling [118] Random Improving or equal, iteration limited

threshold accepting, adaptive iteration
limited threshold accepting

As the field is developing, the range of techniques employed by selection pertur-
bative hyper-heuristics is growing. Burke et al. [34] present a Monte Carlo selection
perturbative hyper-heuristic framework that can be used with different approaches

3.4 Discussion 23

Table 3.2 Multipoint Search Selection Perturbative Hyper-Heuristic Applications

Problem domain Multipoint Search Hyper-Heuristic

Geographically distributed course timetabling problem Genetic algorithm [73]
Student project presentation problem Genetic algorithm [73]
Travelling tournament problem Ant colonization [45]
Nurse rostering problem Genetic algorithm [156]
School timetabling Genetic algorithm [157]
Resource scheduling in a grid environment Particle swarm optimization [5]
Set covering problem Ant colonization [60]

for heuristic selection and move acceptance. Three Monte Carlo move acceptance
approaches are used in this framework, namely, simulated annealing, simulated an-
nealing with reheating and exponential Monte Carlo. In [91] Markov chains are used
for heuristic selection. Misir et al. [121] have introduced the use of an automaton
for heuristic selection.

Along with the research developments in meta-heuristics and evolutionary algo-
rithms, a range of different perturbative move operators and acceptance criteria have
been developed in various combinatorial optimization problems. The hybridizations
of these with other techniques showed to be effective when adapted in selection per-
turbative hyper-heuristics. For example, in vehicle routing problems (see Chapter 7),
both perturbative and constructive heuristics are selected by the high-level search to
construct and improve solutions. In nurse rostering (see Chapter 8), low-level pertur-
bative heuristics and acceptance criteria are selected as pairs at each decision point
during the solution improvement process.

	Chapter 3 Selection Perturbative Hyper-Heuristics
	3.1 Introduction
	3.2 Single-Point Search Selection Perturbative Hyper-Heuristics
	3.2.1 Heuristic Selection Techniques
	3.2.2 Move Acceptance Techniques

	3.3 Multipoint Search Selection Perturbative Hyper-Heuristics
	3.4 Discussion

