
Natural Computing Series

Nelishia Pillay
Rong Qu

Hyper-
Heuristics:
Theory and
Applications

Natural Computing Series

Series Editors: G. Rozenberg
Th. Bäck A.E. Eiben J.N. Kok H.P. Spaink

Leiden Center for Natural Computing

˘

ttp://www.springer.com/series/More information about this series at h 4190

Advisory Board: S. Amari G. Brassard K.A. De Jong C.C.A.M. Gielen
T. Head L. Kari L. Landweber T. Martinetz Z. Michalewicz M.C. Mozer
E. Oja G. Paun J. Reif H. Rubin A. Salomaa M. Schoenauer
H.-P. Schwefel C. Torras D. Whitley E. Winfree J.M. Zurada

http://www.springer.com/series/4190

Nelishia Pillay • Rong Qu

Hyper-Heuristics:
Theory and Applications

Nelishia Pillay Rong Qu
School of Mathematics, Statistics School of Computer Science
and Computer Science University of Nottingham
University of KwaZulu-Natal Nottingham, UK
Pietermaritzburg, KwaZulu-Natal, South Africa

ISSN 1619-7127
Natural Computing Series
ISBN 978-3-319-96513-0 ISBN 978-3-319-96514-7 (eBook)
https://doi.org/10.1007/978-3-319-96514-7

Library of Congress Control Number: 2018957467

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein
or for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-96514-7

To my parents Perumal Manickum and
Sinathra Manickum

Nelishia Pillay
To my dear daughter Jessica Xue, who makes
me strong and happy

Rong Qu

Foreword

It is hard to believe that Hyper-Heuristics have been part of my life for almost twenty
years. The first paper I published on this topic was in 2001, together with my first
PhD student (Eric Soubeiga) and his co-supervisor (Peter Cowling). Since that time
I have published many other papers, on various topics, but my four most highly
cited papers are on hyper-heuristics. It is gratifying to see the wider community also
carrying out research in this area. A quick look at Scopus (27 Jun 2018) shows that
there have been 729 papers published on the topic of hyper-heuristics since 2001,
attracting 6,345 citations.

This book is an important text. It provides a single reference for anybody who has
an interest in hyper-heuristics. The field has been missing a go-to book on hyper-
heuristics for many years. This book fills that niche. Nelishia and Rong have pro-
duced a book that should be on the bookshelf of anybody who has an interest in this
area.

The book can be read in its entirety, but it can also be dipped into as the need
arises, choosing between the three distinct parts.

The first five chapters provide an excellent overview for those who are new to
this area, or those who have focused on one aspect of hyper-heuristics but now wish
to expand their horizons. Chapter 6 provides a more theoretical treatment.

Part II of the book should be of interest to the industrial community, as well
as to the scientific community. The focus is on the application of hyper-heuristics
to specific problem types. These include vehicle routing, nurse rostering, packing
problems and examination timetabling. The presented domains are interesting in
their own right but there is benefit in being able to generalize those domains to un-
derstand how they can be adapted for other problem types. Indeed, this is one of
the biggest advantages of hyper-heuristics, more so than many other search method-
ologies. Hyper-heuristics are designed to adapt to a changing environment and their
ability to produce high quality solutions across many domains is well documented
in the scientific literature.

The final section of the book considers the past, present and future of hyper-
heuristics. Two useful appendices conclude the book. One looks at the software

vii

viii Foreword

frameworks that can assist when developing hyper-heuristics. The final appendix
presents various benchmarks that are commonly used to evaluate hyper-heuristics.

I was honoured when Nelishia and Rong asked me to write this foreword and
I highly recommend this book to those who are working with hyper-heuristics, or
those who just want to know more about this exciting research area. This book will
be useful to those who would like a gentle introduction to hyper-heuristics, as well
those who have more experience in the domain. It will be the first place to look,
when starting a new project in this area.

I hope that you enjoy reading this book as much as I did and I congratulate
Nelishia and Rong on producing such an excellent tome.

Kuala Lumpur, Malaysia, June 2018 Graham Kendall

Preface

Hyper-heuristics is a fairly recent technique that aims at effectively solving various
real-world optimization problems. This is the first book on hyper-heuristics, and
aims to bring together both the theory and applications of hyper-heuristics, provid-
ing a solid foundation for the field.

The book is divided into three parts. The first part Hyper-Heuristics: Fundamen-
tals and Theory first provides an overview of the four types of hyper-heuristics,
namely, selection constructive, selection perturbative, generation constructive and
generation perturbative hyper-heuristics in Chapters 2 to 5, respectively. Since the
inception of hyper-heuristics, not much attention has been paid to the theoretical
aspects of search in the search space of a heuristic. Chapter 6 focuses on this: here a
formal definition of hyper-heuristics is provided, and a two-level framework defin-
ing the relationship between the heuristic and solution spaces is presented.

The second part of the book, Applications of Hyper-Heuristics, highlights the
application of hyper-heuristics to solve problems arising in the real world, partic-
ularly in industry. The use of the different types of hyper-heuristics for the vehicle
routing, nurse rostering, packing and examination timetabling problems is examined
in Chapters 7 to 10, respectively. Research on cross-domain hyper-heuristics aims
to increase the level of generality of hyper-heuristics by providing solutions across
different problem domains instead of for a specific domain. Chapter 11 introduces
cross-domain hyper-heuristics and highlights the advances made in this area.

Part three of the book, Past, Present and Future, first presents advanced topics
in the field of hyper-heuristics, namely, hybrid hyper-heuristics, hyper-heuristics for
automated design, automated design of hyper-heuristics, and hyper-heuristics for
continuous optimization. A summary of the field and future research directions in
hyper-heuristics are then provided.

In Appendix A, the book presents details of a hyper-heuristic framework and
a toolkit that can be used to get started with research in hyper-heuristics with-
out having to develop code from scratch. HyFlex is a framework for implement-
ing selection perturbative hyper-heuristics to solve problems across domains, and
provides libraries for six problem domains, with perturbative heuristics for these
domains. EvoHyp is a toolkit comprising libraries for genetic algorithm selection

ix

x Preface

hyper-heuristics and genetic programming generation constructive hyper-heuristics.
Various publicly available benchmark sets are commonly used in the applications of
hyper-heuristics presented in Chapters 7 to 10. Appendix B provides details of these
benchmark sets.

Links to the websites for HyFlex and EvoHyp, the details of the benchmark
sets and resources for the book can be found at https://sites.google.com/view/hyper-
heuristicstheoryandapps

The book is aimed at postgraduate students, researchers and practitioners work-
ing in the field of hyper-heuristics, and can also serve as a textbook for postgraduate
courses on hyper-heuristics.

Hyper-heuristics is a rapidly developing field with scope for growth, in terms of
both applications and research. We hope that the book provides you with a foun-
dation to get going with your research and applications in the field, contributing
to further developments of hyper-heuristics. We enjoyed very much authoring the
book, while overviewing the existing literature and establishing a bridge between
applications and theory in hyper-heuristics. We hope you enjoy reading the book,
and would welcome your advice and comments to us.

Pretoria, South Africa Nelishia Pillay
Nottingham, UK Rong Qu

May 2018

https://sites.google.com/view/hyper-heuristicstheoryandapps
https://sites.google.com/view/hyper-heuristicstheoryandapps

Acknowledgements

The authors would like to thank Prof. Graham Kendall for his invaluable feedback
on the final draft of the book. We would also like to thank Prof. Kendall for his
contribution in writing the foreword. Thank you to Mr. Derrick Beckedahl for de-
veloping the website for the book and EvoHyp and checking the final draft of the
book. Last but not least a big thank you to Mr. Ronan Nugent for his advice and
support throughout the writing of the book.

xi

Contents

Part I Hyper-Heuristics: Fundamentals and Theory

1 Introduction to Hyper-Heuristics . 3
1.1 Introduction . 3
1.2 Low-Level Heuristics . 3
1.3 Classification of Hyper-Heuristics . 4

2 Selection Constructive Hyper-Heuristics . 7
2.1 Introduction . 7
2.2 Case-Based Reasoning . 8
2.3 Local Search Methods . 10
2.4 Population-Based Methods . 11
2.5 Hybridization and Adaptive Methods . 14
2.6 Discussion . 14

3 Selection Perturbative Hyper-Heuristics . 17
3.1 Introduction . 17
3.2 Single-Point Search Selection Perturbative Hyper-Heuristics 18

3.2.1 Heuristic Selection Techniques . 18
3.2.2 Move Acceptance Techniques . 20

3.3 Multipoint Search Selection Perturbative Hyper-Heuristics 21
3.4 Discussion . 22

4 Generation Constructive Hyper-Heuristics . 25
4.1 Introduction . 25
4.2 Attributes and Representation of Low-Level Heuristics 26
4.3 Genetic Programming . 27
4.4 Disposability vs. Reusability . 28
4.5 Discussion . 29

xiii

xiv Contents

5 Generation Perturbative Hyper-Heuristics . 33
5.1 Introduction . 33
5.2 Generating Local Search Operators . 34
5.3 Creating Algorithms and Meta-Heuristics . 34
5.4 Discussion . 35

6 Theoretical Aspect—A Formal Definition . 37
6.1 Introduction . 37
6.2 A Formal Definition of Hyper-Heuristics . 38

6.2.1 Two Search Spaces Within the Formal Hyper-Heuristic
Framework . 39

6.2.2 Fitness Landscape of the Heuristic Space in the
Hyper-Heuristic Framework . 41

6.3 Example: A Selection Constructive Hyper-Heuristic for
Timetabling Problems . 42
6.3.1 A Graph-Based Selection Hyper-Heuristic (GHH)

Framework . 42
6.3.2 Analysis of Two Search Spaces in the GHH Framework 43
6.3.3 Performance Evaluation of GHH . 44
6.3.4 Fitness Landscape Analysis on GHH . 45

6.4 Discussion . 47

Part II Applications of Hyper-Heuristics

7 Vehicle Routing Problems . 51
7.1 Introduction . 51
7.2 Low-Level Heuristics for Vehicle Routing Problems 52

7.2.1 Constructive Low-Level Heuristics in Vehicle Routing
Problems . 52

7.2.2 Perturbative Low-Level Heuristics in Vehicle Routing
Problems . 54

7.3 Selection Hyper-Heuristics for Vehicle Routing Problems 54
7.3.1 Selection Hyper-Heuristics Using Perturbative Low-Level

Heuristics . 55
7.3.2 Selection Hyper-Heuristics with Both Constructive and

Perturbative Low-Level Heuristics . 55
7.4 Generation Hyper-Heuristics for Vehicle Routing Problems 56
7.5 Discussion . 59

8 Nurse Rostering Problems . 61
8.1 Introduction . 61
8.2 Low-Level Heuristics for Nurse Rostering Problems 62
8.3 Selection Hyper-Heuristics for Nurse Rostering Problems 63
8.4 Discussion . 65

Contents xv

9 Packing Problems . 67
9.1 Introduction . 67
9.2 Selection Constructive Hyper-Heuristics . 67

9.2.1 Low-Level Constructive Heuristics for Bin Packing 68
9.2.2 Methods Employed by the Hyper-Heuristics 69

9.3 Generation Constructive Hyper-Heuristics . 70
9.4 Discussion . 73

10 Examination Timetabling Problems . 75
10.1 Introduction . 75
10.2 Low-Level Constructive Heuristics for Examination Timetabling

Problems . 75
10.3 Low-Level Perturbative Heuristics for Examination Timetabling

Problems . 76
10.4 Selection Hyper-Heuristics for Examination Timetabling Problems . 77

10.4.1 Selection Perturbative Hyper-Heuristics for Examination
Timetabling Problems . 77

10.4.2 Selection Constructive Hyper-Heuristics for Examination
Timetabling Problems . 78

10.5 Generation Hyper-Heuristics for Examination Timetabling Problems 80
10.6 Discussion . 81

11 Cross-Domain Hyper-Heuristics . 83
11.1 Introduction . 83
11.2 Cross-Domain Heuristic Search Challenge (CHeSC) 83
11.3 Approaches Employed by the Hyper-Heuristics 85

11.3.1 Finalists of CHeSC 2011 . 85
11.3.2 Recent Approaches . 87

11.4 Discussion . 88

Part III Past, Present and Future

12 Advances in Hyper-Heuristics . 91
12.1 Introduction . 91
12.2 Hybrid Hyper-Heuristics . 91
12.3 Hyper-Heuristics for Automated Design . 92
12.4 Automated Design of Hyper-Heuristics . 94
12.5 Continuous Optimization . 95
12.6 Discussion . 96

13 Conclusions and Future Research Directions . 99

xvi Contents

A HyFlex and EvoHyp . 103
A.1 HyFlex . 104
A.2 EvoHyp . 106

A.2.1 GenAlg . 106
A.2.2 GenProg . 106
A.2.3 Distributed GenAlg and GenProg . 107
A.2.4 Accessing EvoHyp . 107

B Combinatorial Optimization Problems and Benchmarks 109
B.1 Packing Problems . 110

B.1.1 One-Dimensional Bin Packing . 110
B.1.2 Two-Dimensional Bin Packing . 110
B.1.3 Three-Dimensional Bin Packing . 111
B.1.4 Packing Benchmark Sets . 111

B.2 Nurse Rostering Problem . 112
B.2.1 The 2010 International Nurse Rostering Competition 113
B.2.2 The UK Benchmark Nurse Rostering Dataset 113
B.2.3 The Nottingham Benchmark Nurse Rostering Dataset 113

B.3 Vehicle Routing Problems . 114
B.3.1 Vehicle Routing Problem Benchmark Datasets 115

B.4 Examination Timetabling Problems . 115
B.4.1 Exam Timetabling Benchmark Datasets 116

References . 119

Index . 129

Acronyms and Notations

HH Hyper-heuristic
P The high-level combinatorial optimization problem, whose decision vari-

ables are heuristic configurations h
H The high-level search space of heuristic configurations h for P
h The heuristic configurations composed of low-level heuristics in L, h ∈ H
F The high-level objective function for P, F(h) → R
L The given set of domain specific low-level heuristics used to create heuris-

tic configurations h
p The optimization problem at hand under consideration
s The direction solutions for p
S The low-level solution space for p, s ∈ S
f The low-level objective function for p, f (s) → R
SCH Selection constructive hyper-heuristic
SPH Selection perturbative hyper-heuristic
GCH Generation constructive hyper-heuristic
GPH Generation perturbative hyper-heuristic
I Problem instances for problem p
i Single problem instance of p
A Attributes for a problem p, e.g. number of students in examination timetabling

xvii

Part I

Hyper-Heuristics: Fundamentals and
Theory

Chapter 1

Introduction to Hyper-Heuristics

1.1 Introduction

Research into solving combinatorial optimization problems such as timetabling, ve-
hicle routing and rostering problems has involved deriving techniques that improve
the results obtained by existing techniques for known benchmark sets. These bench-
mark sets are made publicly available for performance comparisons of different
techniques in solving these problems. This research has revealed that while a tech-
nique may produce the best results for one or two problem instances, quite often it
performs poorly on other problem instances.

The field of hyper-heuristics emerged as an attempt to provide more generalized
solutions to combinatorial optimization problems by performing well over a set of
problems, rather than deriving techniques that produce good results for just a few
problem instances for the domain. Hyper-heuristics achieve this by working in the
heuristic space rather than the solution space [35, 151]. As such, hyper-heuristics
either select or generate low-level heuristics, which are used to solve the problem at
hand. Different techniques such as case-based reasoning, local search and genetic
programming are employed by the hyper-heuristic to select or generate low-level
heuristics. Low-level heuristics are described in Section 1.2. Section 1.3 presents a
classification of hyper-heuristics.

1.2 Low-Level Heuristics

Hyper-heuristics either select low-level heuristics to construct or improve a solution,
or create new low-level heuristics. Low-level heuristics are categorized as construc-
tive or perturbative. These heuristics are usually defined for a particular problem
domain and hence are problem specific.

Constructive heuristics are usually used to create an initial solution to a prob-
lem. This initial solution serves as a starting point for optimization techniques such

3© Springer Nature Switzerland AG 2018
N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications,
Natural Computing Series, https://doi.org/10.1007/978-3-319-96514-7_1

https://doi.org/10.1007/978-3-319-96514-7_1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96514-7_1&domain=pdf

4 1 Introduction to Hyper-Heuristics

as tabu search or simulated annealing in solving the problem. For example, in the
domain of examination timetabling, constructive heuristics are used to select the
examination to schedule next based on a measure of the difficulty of scheduling it.
The constructive heuristics used to solve examination timetabling problems include
largest degree, largest weighted degree, largest colour degree, largest enrolment and
saturation degree [153]. In the case of population-based methods such as genetic
algorithms, the initial population of timetables is created using a low-level heuristic
rather than being randomly created. An initial solution, i.e. element of the popula-
tion, is created by sorting the examinations according to their heuristic value and
allocating them in order to the timetable [144]. Similarly, in the domain of one-
dimensional bin-packing problems, constructive heuristics are used to select which
bin to place an item in. Examples of constructive heuristics for this domain include
first-fit, best-fit, next-fit and worst-fit.

Perturbative heuristics are applied to improve an existing initial solution cre-
ated either randomly or by using a constructive heuristic. Low-level perturbative
heuristics make changes to the initial solution, and have the same effect as a move
operator in local search used to explore the neighbourhood of a search point. The
perturbation made is dependent on the problem domain. For example, in the case of
examination timetabling, examples of perturbative heuristics include swapping ex-
aminations between timetable periods, swapping rows in the timetable, deallocating
an examination and allocating an examination.

1.3 Classification of Hyper-Heuristics

Given that hyper-heuristics either select existing low-level heuristics or generate
new low-level heuristics, and these heuristics can be constructive or perturbative,
hyper-heuristics are classified as being selection constructive, selection perturbative,
generation constructive or generation perturbative [30].

Selection constructive hyper-heuristics select a low-level heuristic to apply at
each point of the solution construction. Techniques employed by hyper-heuristics
to select the low-level construction heuristics include case-based reasoning, lo-
cal search methods, population-based methods, adaptive methods and hybrid ap-
proaches. Chapter 2 examines selection constructive hyper-heuristics in detail.

Selection perturbative hyper-heuristics select low-level perturbative heuristics to
apply at each point of solution improvement. These can perform single-point or mul-
tipoint search. In the former case, the hyper-heuristic comprises two components,
one for heuristic selection to select a low-level perturbative heuristic, and a second
for move acceptance to determine whether the move made by the selected low-level
heuristic should be accepted or not. Various techniques are used for heuristic selec-
tion and move acceptance. Selection perturbative hyper-heuristics performing multi-
point search to select low-level heuristics use population based methods such as evo-
lutionary algorithms to explore the heuristic space. The population-based technique
by its nature performs both heuristic selection and move acceptance, and hence the

1.3 Classification of Hyper-Heuristics 5

hyper-heuristic does not contain separate components for these functions. Selection
perturbative hyper-heuristics are described in Chapter 3.

Generation constructive hyper-heuristics create new low-level constructive
heuristics for the problem domain. The generated heuristic is used to create an initial
solution, which is optimized further using other techniques. Genetic programming
[96] has chiefly been used by hyper-heuristics to generate construction heuristics.
The components of the low-level heuristic include existing low-level heuristics or
components of these heuristics as well as problem characteristics. These compo-
nents are combined using arithmetic operators and conditional operators such as
if-then-else. The evolved heuristic can be disposable or reusable [30]. Disposable
heuristics are used to solve a particular problem instance. Reusable heuristics are
generated using one or more problem instances and can be applied to unseen in-
stances, i.e. problem instances not used in the induction and generation of the heuris-
tic. Generation constructive hyper-heuristics are addressed in Chapter 4.

Generation perturbative hyper-heuristics produce new low-level perturbative
heuristics. The new low-level heuristics are created by combining existing low-level
perturbative heuristics and acceptance criteria using conditional statements, usually
if-then-else statements. Examples of conditions used include whether a solution is
found and whether a local optimum is reached [124]; see Chapter 5 for more details.

Chapter 2

Selection Constructive Hyper-Heuristics

2.1 Introduction

Selection constructive hyper-heuristics select a low-level heuristic at each point in
the construction of a solution to a combinatorial optimization problem. As discussed
in Chapter 1, the purpose of low-level construction heuristics is to construct com-
plete solutions, or initial solutions for optimization. Solving a problem begins at an
initial state and goes through a number of different problem states until the final
state or solution state is reached.

A selection constructive hyper-heuristic selects the low-level construction heuris-
tic to apply to go from one problem state to the next. The low-level heuristics are
problem dependent. A formal definition of selection constructive hyper-heuristics is
provided in Definition 2.1.

Definition 2.1. Given a problem p and a set of low-level construction heuristics L
= {L0, L1, ..., Ln} for the problem domain, a selection constructive hyper-heuristic
constructs a solution s for p by selecting and applying a low-level heuristic from L
to change from one problem state s’ to the next s”, beginning at the initial state and
stopping at the solution state s.

The hyper-heuristic generally employs a high-level technique such as a meta-
heuristic or case-based reasoning to select the low-level heuristics. The algorithm
generally employed by a selection constructive hyper-heuristic to solve the problem
is outlined in Algorithm 1.

An overview of the four categories of techniques, namely, case-based reason-
ing, local search methods, population-based methods and hybridization and adap-
tive methods, employed by selection constructive hyper-heuristics is presented in
the following sub-sections.

7© Springer Nature Switzerland AG 2018
N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications,
Natural Computing Series, https://doi.org/10.1007/978-3-319-96514-7_2

https://doi.org/10.1007/978-3-319-96514-7_2
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96514-7_2&domain=pdf

8 2 Selection Constructive Hyper-Heuristics

Algorithm 1 Selection constructive hyper-heuristic algorithm
1: procedure SELECTIONCONSTRUCTIVEHYPERHEURISTIC(p, L)
2: initialize solution s to be empty
3: repeat

4: use technique T to select a low-level construction heuristic Li from L
5: apply Lito extend the solution s
6: until solution s is completely constructed
7: return s
8: end procedure

2.2 Case-Based Reasoning

Case-based reasoning (CBR) generally solves new problems (new cases) based on
solutions of previous similar problems stored as previously solved source cases in
a case base [1]. Retrieval and matching algorithms are used to find a source case
that best matches the new case. The corresponding solution to the previous similar
case is either used or adapted for the new case, based on the assumption that similar
problems have similar solutions.

Case-based reasoning was one of the first techniques used to implement selection
constructive hyper-heuristics to solve combinatorial optimization problems. Algo-
rithm 2 illustrates the process of implementing a CBR selection constructive hyper-
heuristic.

Algorithm 2 Implementing a CBR selection constructive hyper-heuristic
1: Create an initial case base (Algorithm 3)
2: Define the similarity measure, which calculates the similarity between cases
3: Refine the features and weights used in the similarity measure by evaluating the case base on

a training set
4: Refine the set of cases by evaluating the performance of the CBR system on a training set

An initial case base is first created (see Algorithm 3). Each source case in the case
base comprises a description of the problem state and the best-performing heuris-
tic(s) for the source case. Each source case is usually described in terms of features
of the problem, although for some problems this can be in a complex form. For
example, for the examination timetabling problem typical features include the num-
ber of hard constraints, the number of soft constraints, the number of examinations
and the density of the conflict matrix, amongst others. A heuristic is stored for each
source case description and used to construct a solution. In the study conducted in
[37] the five best-performing heuristics are stored for each source case, in ascending
order of the objective value.

The set of appropriate features to represent and the set of source cases are crucial
to build an effective CBR system. As depicted in Algorithm 3 an initial set of fea-
tures needs to be further refined to obtain a set of features with higher effectiveness
at constructing solutions. The initial set of features usually include all the possible

2.2 Case-Based Reasoning 9

Algorithm 3 Creating an initial case base
1: Select an initial set of features
2: Select weights wi for each feature i
3: Choose a set of problem states of differing characteristics
4: Solve the problems using different construction heuristics
5: Store the problem states as cases represented by the problem features and corresponding best-

performing construction heuristic(s)

characteristics of the problem states. In the study by Burke et al. [40], the features
are categorized as simple, complex, or combinations of subsets of this initial set.

To find a solution to a new problem, a source case that is most similar to the
new problem case at hand is retrieved, and the retrieved heuristic or sequence of
heuristics are used to construct a solution to the problem. A similarity measure based
on the case features determines the similarity between cases. One commonly used
similarity measure is the nearest-neighbour [37, 40], as depicted in Equation 2.1:

S(SC,P) =
1√

j
∑

i=0
wi ∗ (f sci − f pi)2 +1

(2.1)

SC refers to the source case retrieved from the case base and P refers to the new
problem case being solved, and the ith feature is weighted by wi. The weighted sum
of all j pairs of features, fsci and fpi for the ith feature of SC and of P, respectively,
is calculated as S(SC,P) to define the similarity between SC and P, a higher value
indicating a greater similarity.

Based on an initial case base and similarity measure, features used to represent
source cases in the case base (line 4 of Algorithm 2) need to be refined to improve
the performance of the CBR system. First a set of training cases are labelled against
the best heuristics obtained for them using optimization methods. Then weights of
the features in the similarity measure are repeatedly adjusted according to the best
heuristics labelled for these training cases. This process continues until the heuris-
tics of the cases retrieved using the similarity measure match most of those specified
in the training cases. This training process can also be seen as a combinatorial op-
timization problem, and local search has been used in [40] to search for the best
combination of features and their weights.

To further refine source cases, only relevant and useful cases that contribute to
high accuracy of recommending the best heuristics are retained in the case base.
Various techniques can be used for such system training based on a set of training
cases. In Burke et al. [37], the “Leave-One-Out” method, which iteratively tests the
effect of removing one source case at a time, is used to obtain the highest accuracy
of retrieving the best heuristics.

CBR-based selection constructive hyper-heuristics have been used to solve
problems in the domain of educational timetabling, namely, university course
timetabling and examination timetabling [37, 40, 135].

10 2 Selection Constructive Hyper-Heuristics

2.3 Local Search Methods

Local search methods usually work in a solution space, iteratively exploring im-
proved neighbourhoods of an initial solution using move operators until no further
improvement can be made, i.e. a local optimum is reached. These methods gener-
ally differ in how they escape from local optima [19]. Tabu search (TS) attempts to
escape local optima by using short-term memory to prevent neighbours from being
revisited for a set number of iterations [70]. The current solution is replaced with
the best solution in its neighbor on each iteration until the termination criteria are
met. Variable-neighborhood search (VNS) escapes local optima by switching be-
tween different neighbourhood operators [74]. VNS iterates between the processes
of shaking, local search and move. On each iteration a neigbourhood of the current
solution is randomly selected and local search is applied. If the solution produced
by the local search is better than the current solution, it replaces the current solution
in the VNS. Iterated local search applies local search to an initial solution until a
local optimum is reached, at which point perturbation is performed to escape the
local optimum. The local search is applied in the new area of the search space to
which the perturbation has led the search [106].

When employed by a selection constructive hyper-heuristic, a local search
searches the heuristic space rather than the solution space. The local search explores
the neighbourhood of a heuristic combination, which is composed of low-level con-
struction heuristics for the problem domain. The process of constructing a solution
using a heuristic combination is outlined in Algorithm 4. Each heuristic is applied t
times to create a solution. The lower limit for t is 1 and the upper limit is problem
dependent. An example of a heuristic combination is h4h2h2h3h1h4h1. A construc-
tion heuristic may be included more than once, at different positions, in the heuristic
combination.

Algorithm 4 Constructing a solution using heuristic combination h
1: procedure CREATESOLUTION(h, t)
2: initialize an empty solution s
3: for i=1 do length(h)
4: for j=1 do t
5: apply the ith heuristic hi in h to extend the solution s
6: end for

7: end for

8: return s
9: end procedure

The algorithm generally employed by a local search to explore the heuristic space
is illustrated in Algorithm 5. The search is applied to an initial heuristic combina-
tion, which is either randomly created or composed of one specific low-level heuris-
tic [27], e.g. h3h3h3h3h3. The move operator (line 4) changes one or more low-level
heuristics in the heuristic combination. Each heuristic combination is used to cre-
ate a solution to the problem. The objective value of the resulting solution s forms

2.4 Population-Based Methods 11

the input to the mechanism of the particular local search employed to determine
whether H is accepted or not. For some problem domains the heuristic combina-
tions may result in solutions that are not valid, such as infeasible timetables [27].
The combinations resulting in invalid solutions are stored to ensure these areas of
the search space are not visited again.

Algorithm 5 Local search on the heuristic space
1: Create an initial heuristic combination h=h1 h2...hn
2: procedure SEARCH(h)
3: repeat

4: Change one or more heuristics hi in h
5: Use h to construct a solution s to the problem
6: Calculate the objective value f of s
7: Apply criteria specific to the local search used to decide whether to accept h given f
8: until Termination criteria are met
9: end procedure

Moves made in the heuristic space correspond to “moves” in the solution space.
Research has shown that, in selection constructive hyper-heuristics, small moves
in the heuristic space [38], e.g. changing one low-level heuristic in the heuristic
combination, can result in large moves in the solution space, thereby enabling the
search to move more quickly through larger regions in the solution space [38]. This
will be discussed further in Chapter 6.

In selection constructive hyper-heuristics, tabu search [38] and variable-
neighborhood search [28] have been used to explore the heuristic space for both the
examination and course timetabling problems. It was found in [151] that variable-
neighborhood search and iterated-local-search-based hyper-heuristics perform the
best for the benchmark course and examination timetabling problems based on com-
parisons of four local search methods. The study also analysed the search within two
search spaces, namely the heuristic and solution space; see more details in Chapters
6 and 10.

2.4 Population-Based Methods

Whereas local search methods move from one point in the search space to the next,
population-based searches explore multiple points simultaneously. The population
of solutions represents different points in the search space. Evolutionary algorithms
have chiefly been used to explore the heuristic space in the literature. Algorithm 6
presents a generational evolutionary algorithm. The genetic operators are applied to
the heuristic combinations and hence perform intensification and diversification in
the heuristic space.

Each element of the population, i.e. chromosome, is a heuristic combination.
The combination comprises low-level construction heuristics, with each heuristic

12 2 Selection Constructive Hyper-Heuristics

Algorithm 6 Generational evolutionary algorithm
1: Create an initial population
2: repeat

3: Evaluate the population
4: Select parents
5: Apply genetic operators to the parents to create offspring of the new generation
6: until Termination criteria are met

in the combination representing a heuristic selected by the selection constructive
hyper-heuristic. The selection as such is performed by the genetic algorithm by
the process of fitness evaluation, selection and regeneration. Each chromosome is
applied to solve one or more problem instances, and the fitness is the objective
value in the case of a single problem instance or a function of the objective values
for the different problem instances. If one problem instance is used for evaluation
the aim is to evolve a heuristic combination specific to the problem at hand and the
heuristic combination is disposable. More than one instance is used for evaluation
to evolve a reusable heuristic combination. In this case the problem instances are
divided into training and testing sets. The training set is used to evolve the heuristic
combination and the testing set is a set of unseen problems on which the evolved
heuristic combination is tested.

The representation used by the population-based approach has an effect on the
performance of the hyper-heuristic. The simplest chromosome representation is a
single heuristic combination consisting of low-level heuristics of a particular type.
For example in [139] each chromosome is composed of graph colouring heuris-
tics, which are used to create an initial timetable. The study compares three chro-
mosome representations, namely, fixed-length, variable-length and N-times. In the
fixed length representation, chromosomes have a fixed length equal to the number
of examinations to schedule and each heuristic is used to schedule one examination.
The length of a variable length chromosome is randomly chosen to be between one
and a preset maximum. If the number of examinations is larger than the chromosome
length, the combination is applied again beginning with the first heuristic. Similarly,
if the length of the chromosome is larger than the number of examinations the re-
maining heuristics are not applied. In the case of the N-times representation each
gene in the chromosome comprises an integer number n and a heuristic h, where h
is used to schedule n examinations. Each chromosome is composed of m genes in
the format n1h1n2h2...nmhm. The integers ni must add up to the number of exami-
nations to be allocated. The evolutionary algorithm hyper-heuristic employing the
variable-length representation was found to perform better than the fixed-length and
N-times representations. An evolutionary algorithm hyper-heuristic combining all
three representations was investigated and produced better results than the variable-
length evolutionary algorithm hyper-heuristic. For all representations the heuristic
combinations evolved are disposable.

A chromosome can also comprise more than one type of low-level heuristic. In
the study presented in [140] for the one-dimensional bin-packing problem, each
chromosome comprises two heuristic combinations, one comprising heuristics to

2.4 Population-Based Methods 13

select which bin to place the chosen item in, and one to choose the item to place.
The evolutionary algorithm hyper-heuristic using this representation was found to
perform better than an evolutionary algorithm heuristic with chromosomes consist-
ing of only a single heuristic combination comprised of bin selection heuristics. The
generated heuristic combinations were disposable.

Different low-level heuristics perform well for different problem instances. Fur-
thermore, a different construction heuristic would be more effective for different
states of the problem leading to the solution state. Thus, chromosomes combining
problem characteristics or the current state of the problem and low-level heuristics
have also been used. In the chromosome c1c2...cmh1h2...hn, the first m genes repre-
sent the characteristics or current state of the problem instances, and the remaining n
genes the corresponding low-level heuristics. Using this representation, each chro-
mosome represents a condition-action rule, with the condition being the problem
characteristic or current state and the action the construction heuristic to use [162].

Learning classifier systems are steady-state genetic algorithms incorporating re-
inforcement learning for fitness evaluation, in which each chromosome is repre-
sented as condition-action pairs, representing a classifier [24]. In the study con-
ducted by Ross et al. [162], a learning classifier system is employed to evolve a
reusable heuristic combination to solve the one-dimensional bin-packing problem.
Each chromosome is a condition-action rule comprising of genes representing the
current state of the problem and the corresponding heuristic to apply.

Messy genetic algorithms are a variation of genetic algorithms, in which chromo-
somes have variable length and solutions are evolved by combining shorter building
blocks to produce solution chromosomes iteratively [71]. Ross et al. [160] use a
messy genetic algorithm hyper-heuristic to solve the examination timetabling prob-
lem. The hyper-heuristic selects a construction heuristic to choose an examination
and a period heuristic to select a period. In [161] a messy genetic algorithm is used
to explore the heuristic space to solve the one-dimensional bin-packing problem. In
this study a chromosome is composed of blocks. Each block is a condition-action
rule with the condition presenting the problem state and the action the correspond-
ing heuristic to apply. The evolved rules are reusable. The same approach is taken
in [184] to solve the 2D-regular cutting-stock problem. Two types of heuristics are
included in each block, namely, selection heuristics for selecting figures and objec-
tives, and placement heuristics, which are used to place figures into objects. In both
studies a training set is used to evolve a heuristic combination, which is applied to a
test set. Each chromosome is applied to a different problem on each generation and
the fitness of the chromosome is a function of its fitness over the generations and
the number of problems the chromosome is applied to. Two crossover operators are
used: one is applied to each block across parents and the other to the chromosome to
exchange blocks. Mutation operators add and remove blocks from a chromosome,
as well as change the gene in a block. The same approach is taken in [181] to solve
the dynamic variable ordering in constraint satisfaction problems, and extended in
[182] to solve the irregular packing problem. In this study the low-level heuristics
are selection heuristics to choose the next variable in solving the problem.

14 2 Selection Constructive Hyper-Heuristics

In [189] a dispatching-rule based genetic algorithm (DRGA) is used to evolve
rules to solve multi-objective and single-objective job shop problems. Each dis-
patching rule is composed of two sequences; the first is a sequence of low-level
construction heuristics and the second a sequence of integers indicating the number
of times each of the heuristics in the first sequence will be applied.

2.5 Hybridization and Adaptive Methods

Some of the earlier work in selection constructive hyper-heuristics did not employ a
search to explore the heuristic space, but examined different hybridizations of low-
level construction heuristics or adapted initial heuristic combinations in a second
phase based on heuristic performance in the first phase. This section provides an
overview of these hybrid and adaptive methods.

In the study in [41], the largest weighted degree and saturation degree construc-
tion heuristics are hybridized to create a restricted candidate list for GRASP for
the examination timetabling problem. It was found that saturation degree is essen-
tial to find an initial feasible candidate solution, but it does not perform well in the
early stages of timetable construction, as the majority of the examinations have the
same saturation degree. However, largest weighted degree performs better in the
early stages as more constrained examinations can be distinguished. In the hyper-
heuristic, a switching point (when to start using the saturation degree heuristic) in
the heuristic combination is thus adaptively determined until a feasible solution is
found. In [151] a large number of random heuristic combinations of four widely
used graph colouring construction heuristics are analysed to extract a trend in their
application to construct solutions for examination timetabling and graph colouring
problems. An adaptive hyper-heuristic is devised to hybridize the largest weighted
degree heuristic into heuristic combinations.

Sabar et al. [165] combine and hybridize four low-level graph colouring con-
struction heuristics for the examination timetabling problem. Four sequences of
these heuristics are created. Each sequence is applied hierarchically: the second
heuristic is used to break the tie from the use of the first heuristic and the third used
if there is a tie for the first two construction heuristics in the sequence. The four
heuristic sequences are used to create four lists of exams to be scheduled. The ranks
of each examination in the four lists summed to provide an overall measure of the
difficulty of scheduling the examination.

2.6 Discussion

The chapter overviews some of the methods employed by selection constructive
hyper-heuristics. Case-based reasoning (CBR) is one of the first techniques used
for this purpose. Such systems solve new problems based on knowledge of solv-

2.6 Discussion 15

ing previous similar problems. The knowledge is extracted using off-line learning
conducted on training cases with best constructive heuristics. The challenges posed
by CBR include to determine how these constructive heuristics can be reused for
similar problem states, and how to store such knowledge, i.e. the most appropriate
features to describe and represent each case. More research findings based on a large
number of training cases, and observations from other construction hyper-heuristics
are needed to establish effective CBR systems.

Both local searches and evolutionary algorithms have been effective in explor-
ing the heuristic space. Different research issues have been addressed. The set of
low-level heuristics to use to compose heuristic combinations needs to be carefully
chosen, and needs further research analysis. A large set with less useful construc-
tive heuristics can lead to a search space too large to explore for an optimal heuristic
combination within a limited runtime. In addition to low-level construction heuris-
tics, the heuristic space may alternatively consist of condition-action rules, with
the condition representing problem states and the action the corresponding heuris-
tic to apply. It has also been shown that different low-level construction heuristics
are needed at different points in constructing a solution, i.e. a different heuristic is
needed for each problem state from the initial state to the solution state. Adaptive
methods showed to be effective at adapting different types of constructive heuristics
at different stages of solution construction.

In the case of population-based techniques such as evolutionary algorithms, the
evolved heuristic combination or rule can be disposable or reusable. A disposable
combination or rule is used to solve one problem instance. Reusable combinations
or rules are evolved using a training set and are applied to unseen problems.

Table 2.1 provides a summary of application domains to which selection con-
structive hyper-heuristics have been applied and the techniques employed by the
hyper-heuristics. The studies listed include early work in the field and domains for
which there has been a fair amount of research into using selection constructive
hyper-heuristics.

For all the domains, the selection constructive hyper-heuristics produced bet-
ter results than each of the individual low-level heuristics. Results from the hyper-
heuristics are also competitive with, and in some cases better on some problem in-
stances than those of the state-of-the-art approaches. In some studies optimal results
have been produced for a majority of the problem instances ([139, 161, 162, 184]),
although this is not the main aim of selection constructive hyper-heuristics.

16 2 Selection Constructive Hyper-Heuristics

Table 2.1 Selection constructive hyper-heuristics for educational timetabling CBR: Case-based
reasoning; LSM: Local search methods; EA: Evolutionary algorithms; HSM: Hybridization and
adaptive methods

Problem CBR LSM EA HSM

Examination Burke et al. [37, 40] Burke et al. Pillay [139] Burke et al. [41]
timetabling [27, 38], Qu et al. Ross et al. [160] Qu et al. [152]

[28, 151] Sabar et al. [165]
Course Burke et al. [37, 40] Burke et al. [38] - -
timetabling Petrovic et al. [135] Qu et al. [151]
One- - - Pillay [140] -
dimensional Ross et al.
bin-packing [161, 162]
Cutting stock - Terashima-Marin -
problems et al. [182, 184]
Dynamic variable - - Terashima-Marin -
ordering et al. [181]
Job shop - - Vazquez-Rodriguez -
scheduling and Petrovic [189] -
1D and 2D - - López-Camacho -
packing - - et al. [105] -

Chapter 3

Selection Perturbative Hyper-Heuristics

3.1 Introduction

Selection perturbative hyper-heuristics select which low-level perturbative heuris-
tic to apply at each point of improvement to a given initial complete solution to a
problem. The initial solution is usually created either randomly or using a construc-
tive low-level heuristic. It is usually iteratively refined by applying a perturbative
low-level heuristic until there is no further improvement, measured using problem
specific criteria such as the objective value of the perturbed solution. Starting from
the initial problem state (solution), the application of each low-level perturbative
heuristic results in moving from one problem state to the next until a final problem
state, which cannot be improved further, is reached. A formal definition of selection
perturbative hyper-heuristics is given in Definition 3.1.

Definition 3.1. Given a problem instance p, an initial solution s0 and a set of low-
level perturbative heuristics L = {L0, L1, ..., Ln} for the problem domain, a selection
perturbative hyper-heuristic SPH improves the solution s0 by selecting and applying
a perturbative heuristic Li from L to get from one problem state s’ to the next s” until
a problem state resulting in no further improvement of the solution si is reached.

As in the case of low-level constructive heuristics, the low-level perturbative
heuristics are problem dependent. For example, in the case of solving the exami-
nation timetabling problem, a perturbative heuristic will swap the examinations of
two timetable periods, while in the case of the travelling salesman problem a pertur-
bative heuristic inserts a subset of cities at a new position in the route.

Selection perturbative hyper-heuristics employ single-point or multipoint search
to select the low-level perturbative heuristics, as discussed further in Section 3.2
and Section 3.3, respectively. In single-point selection perturbative hyper-heuristics,
two decisions are usually made, namely heuristic selection and move acceptance
[30]. Multipoint selection perturbative hyper-heuristics employ population-based
methods such as evolutionary algorithms to search the space of perturbative heuris-
tics. By their nature, these search techniques perform both heuristic selection and

17© Springer Nature Switzerland AG 2018
N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications,
Natural Computing Series, https://doi.org/10.1007/978-3-319-96514-7_3

https://doi.org/10.1007/978-3-319-96514-7_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96514-7_3&domain=pdf

18 3 Selection Perturbative Hyper-Heuristics

move acceptance, and hence separate components for these functions are not needed
[5, 45, 60, 73, 157].

3.2 Single-Point Search Selection Perturbative Hyper-Heuristics

Algorithm 7 depicts the general algorithm employed by single-point search selection
perturbative hyper-heuristics.

Algorithm 7 Selection perturbative hyper-heuristic algorithm
1: procedure SELECTIONPERTURBATIVEHYPERHEURISTIC(p, L)
2: create an initial solution s0 using a random or constructive heuristic
3: repeat

4: use the heuristic selection technique h to select a perturbative heuristic Li from L
5: apply Li to solution si to produce the perturbed solution si+1
6: use the move acceptance technique M to accept the move or not
7: if the move is accepted si=si+1
8: until the termination criterion
9: return si

10: end procedure

A termination criterion commonly used is that there is no further improvement
in the solution si. Alternatively, the processes of heuristic selection and move ac-
ceptance can be performed for a set number of iterations. The following sections
provide an overview of heuristic selection and move acceptance techniques.

3.2.1 Heuristic Selection Techniques

This section provides an overview of early and commonly used techniques for
heuristic selection. It is by no means exhaustive as the list of techniques employed
by selection perturbative techniques is rapidly growing.

The simplest heuristic selection technique is random selection [3, 99, 118], which
randomly selects a perturbative heuristic from the available heuristics and applies it
to the current solution si. A variation of the random selection technique is ran-
dom gradient [3, 30], which selects a heuristic randomly and applies it iteratively,
beginning with solution si, until there is no further improvement. Random permu-
tation selects a sequence of perturbative heuristics randomly, they are applied in
order [3, 30]. Greedy [30] applies all the perturbative heuristics in L and selects the
heuristic producing the solution si+1 with the best objective value.

Evolutionary algorithms have also been used for purposes of heuristic selection.
Two methods used for heuristic selection are tournament selection and fitness pro-
portionate selection [30]. These methods select a heuristic from the set L of avail-

3.2 Single-Point Search Selection Perturbative Hyper-Heuristics 19

able low-level perturbative heuristics. The fitness of each perturbative heuristic L j
is a problem specific measure, such as the objective value of the perturbed solution
si+1 resulting from applying L j to si. In the case of tournament selection, a set of
heuristics of fixed size is randomly selected from L, and the heuristic producing the
solution with the best objective value is selected. On the other hand fitness propor-
tionate selection creates a pool of heuristics based on the fitness of each heuristic Li
in L, and a heuristic is randomly selected from this pool.

The concept of a choice function was introduced for heuristic selection [30, 55,
89, 99]. A choice function calculates a rank for each heuristic L j in L based on its
performance, i.e. the improvements it has produced thus far and when it was last
applied during the process. The heuristic with the best rank is selected and applied.
The rank for each hi is calculated using the following formulae [55, 89, 99]:

f (hi) = α f1(hi)+β f2(hi)+δ f3(hi) (3.1)

f1(hi) = ∑
n

αn−1 In(hi)

Tn(hi)
(3.2)

f2(h j,hi) = ∑
n

β n−1 In(h j,hi)

Tn(h j,hi)
(3.3)

f3(hi) = τ(hi) (3.4)

f1 in equation 3.2 is a measure of the recent performance of heuristic hi over
its previous n invocations. In(hi) is the change in objective value from the last in-
vocation. Similarly, Tn(hi) is the difference in the time since the last invocation of
the heuristic hi. f2 in equation 3.3 is a measure of the pairwise performance of hi
with all other heuristics h j over n invocations of successive application of h j and hi.
In(h j,hi) is the difference in objective values from one successive application of h j
and hi to the next. Tn(h j,hi) is the difference in time since the last successive invoca-
tion of h j and hi. f3 indicated in equation 3.4 is a measure of the time taken in CPU
seconds since the heuristic was last applied during the improvement process. The
parameters α , β ∈ [0,1] set the importance of the recent performance of heuristic
hi. δ is a real-valued parameter used to maintain diversity. The basis of the choice
function is reinforcement learning.

Reinforcement learning has also been successfully used for heuristic selection in
selection perturbative hyper-heuristics [55, 85, 131, 132]. It assigns a score to each
heuristic in the set L based on its performance during the improvement process. At
the beginning of the improvement process all the heuristics are assigned the same
score. During the process if a low-level heuristic Li results in an improvement of
a candidate solution its score is increased whereas if it results in a worse solution
the score is decreased. The heuristic with the best score at the particular point of
improvement is selected and applied.

20 3 Selection Perturbative Hyper-Heuristics

A tabu list [70] has also been used as part of the heuristic selection component
[36, 90] to prevent a poorly performing heuristic from being reused or to prevent the
use of the same heuristic for a number of iterations in the improvement process.

Stochastic methods such as Markov chains are also used for heuristic selection
[91]. Each chain is composed of low-level heuristics from L. The heuristics are not
applied in sequences, a transition probability is associated with each heuristic and
is used to decide which heuristic to apply next. Roulette wheel selection is used to
choose the next heuristic to apply based on the transition probability.

Depending on the technique employed by the heuristic selection component,
learning may or may not take place in selecting a heuristic. For example, in the
case of random selection or random gradient, no learning is performed. However,
reinforcement learning involves learning in terms of the performance of the low-
level heuristics on previous iterations of the improvement process.

3.2.2 Move Acceptance Techniques

This section provides an account of early and commonly used move acceptance
techniques. As in the case of heuristic selection techniques, the list of move accep-
tance methods successfully employed by selection perturbative hyper-heuristics is
growing and the overview provided is not exhaustive. Move acceptance criteria are
used to decide whether to accept the solution si+1 produced by applying a pertur-
bative heuristic L j to si. The outcome of the move acceptance method is to either
accept si+1, in which case it replaces si, or reject si+1, in which case si remains
unchanged. The quality of solutions is measured in terms of the objective value of
si+1.

The simplest move acceptance approach accept all moves [30] accepts the re-
sulting solution produced by applying heuristic L j irrespective of the quality of the
perturbed solution si+1 produced. A variation of this method accepts heuristics pro-
ducing a worse perturbed solution si+1 with a specified probability [91]. An ex-
tended technique accept improving moves [55, 99] only accepts the application of
the heuristic L j to si if there is an improvement in quality of the resulting solution
si+1. Similarly, accept equal and improving [118, 131] accepts moves producing
solutions of the same or better quality. Misir et al. [118] extend this idea and in-
troduce two new move acceptance approaches, namely, Iteration Limited Threshold
Accepting (ILTA) and Adapted Iteration Limited Threshold Accepting (AILTA).
ILTA generally accepts improving and equal moves, and moves producing worse
solutions if the current iteration exceeds the specified iteration limit and the fitness
of the produced solution is less than a factor, specified by the threshold, of the best
fitness obtained thus far. Both the iteration limit and the threshold value are param-
eters. AILTA is similar to ILTA but allows for the threshold value to be adapted if
there is no improvement in the solutions perturbed.

Local search techniques have also been used for the purposes of move accep-
tance. These include simulated annealing [3, 55, 85], late-acceptance hill climbing

3.3 Multipoint Search Selection Perturbative Hyper-Heuristics 21

[55] and great deluge [3, 132]. This involves using the mechanism employed by
the local search to accept a move to decide whether to accept the solution resulting
from the application of the heuristic. The heuristic selected by the heuristic selec-
tion component is applied to solution si to produce the perturbed solution si+1. The
acceptance mechanism of the local search is used to determine whether to accept or
reject si+1. If si+1 is an improvement over si it is accepted; otherwise the criterion
specific to the local search for accepting worsening moves is applied. For example,
in the case of simulated annealing a worse perturbed solution is accepted based on
the temperature value.

3.3 Multipoint Search Selection Perturbative Hyper-Heuristics

Multipoint search selection perturbative hyper-heuristics employ population-based
methods such as genetic algorithms [73, 156, 157], particle swarm optimization [5]
and ant colonization [45, 60], to explore the heuristic space. The hyper-heuristic
produces a heuristic [5] or a sequence of heuristics [5, 45, 73, 157] to improve an
initial solution created randomly or using a constructive heuristic. When using parti-
cle swarm optimization each particle represents a heuristic or sequence of heuristics
[5]. Similarly, in the study employing ant colonization [45] each ant chooses the
next heuristic to apply. Genetic algorithms explore the space of low-level heuristic
sequences [73, 156, 157]. In the case of a single heuristic this is applied to improve
the initial solution, while a heuristic sequence is applied iteratively with each heuris-
tic of the sequence applied in order to improve the initial solution. This process is
depicted in Algorithm 8.

Algorithm 8 Applying a perturbative heuristic sequence
1: Given an initial solution s0 and heuristic combination h = h1...hn
2: for i ← 1,n do

3: Apply the chosen hi to si to create si+1
4: end for

5: Report sn

Genetic algorithms have been the most popular multipoint search method em-
ployed by selection perturbative hyper-heuristics. Each element of the population,
i.e. a chromosome, is a sequence of heuristics [73, 156, 157]. Research has shown
that variable-length chromosomes are more effective than fixed-length chromo-
somes in genetic algorithm selection perturbative hyper-heuristics [73]. Each se-
quence is created by randomly selecting low-level perturbative heuristics from the
available set of perturbative heuristics for the problem domain. An initial solution
is created randomly or using a constructive heuristic and is used to calculate the
fitness of each chromosome on each generation. The fitness of the chromosome is
determined by applying it to the initial solution using Algorithm 8. The fitness of the

22 3 Selection Perturbative Hyper-Heuristics

chromosome is a function of the objective value of the resulting perturbed solution
sn.

3.4 Discussion

The majority of the research on selection perturbuative hyper-heuristics has focused
on single-point search combining heuristic selection techniques and move accep-
tance criteria. The heuristic selection techniques used range from simple techniques
with no learning that randomly select a perturbative heuristic, to approaches with
learning and that select the heuristic based on its performance in previous iterations
during the improvement process. The simplest move acceptance techniques are de-
terministic and accept all moves or improving and/or equal moves only. Variations
include approaches that will also accept worsening moves based on certain criteria,
e.g. a specified threshold value or the iteration of the improvement process. The ac-
ceptance mechanisms of local searches such as simulated annealing, great deluge
and late-acceptance hill climbing have also proven to be effective for the purposes
of move acceptance.

More recently multipoint search techniques such as genetic algorithms and par-
ticle swarm optimization have been employed by selection perturbative hyper-
heuristics. An area that needs further investigation is comparative studies of single-
point search and multipoint selection perturbative hyper-heuristics for different
problem domains. Tables 3.1 and 3.2 list some of the application domains that
single-point search and multipoint search hyper-heuristics have been applied to, re-
spectively.

Table 3.1 Single-point search selection perturbative hyper-heuristic applications

Problem domain Heuristic Selection Move Acceptance

Maximum satisfiability [99] Random, choice function Improving only
Nurse rostering [36] Reinforcement learning Accept all moves

with tabu list
University course timetabling Reinforcement learning Accept all
[36] with tabu list
Multidimensional knapsack Random, choice function, Accept all, improving only, late
problem [36] reinforcement learning acceptance, simulated annealing
Examination timetabling [90] Tabu list Accept all
Examination timetabling [132] Reinforcement learning Great deluge
Examination timetabling [131] Reinforcement learning Improving or equal
Home care scheduling [118] Random Improving or equal, iteration limited

threshold accepting, adaptive iteration
limited threshold accepting

As the field is developing, the range of techniques employed by selection pertur-
bative hyper-heuristics is growing. Burke et al. [34] present a Monte Carlo selection
perturbative hyper-heuristic framework that can be used with different approaches

3.4 Discussion 23

Table 3.2 Multipoint Search Selection Perturbative Hyper-Heuristic Applications

Problem domain Multipoint Search Hyper-Heuristic

Geographically distributed course timetabling problem Genetic algorithm [73]
Student project presentation problem Genetic algorithm [73]
Travelling tournament problem Ant colonization [45]
Nurse rostering problem Genetic algorithm [156]
School timetabling Genetic algorithm [157]
Resource scheduling in a grid environment Particle swarm optimization [5]
Set covering problem Ant colonization [60]

for heuristic selection and move acceptance. Three Monte Carlo move acceptance
approaches are used in this framework, namely, simulated annealing, simulated an-
nealing with reheating and exponential Monte Carlo. In [91] Markov chains are used
for heuristic selection. Misir et al. [121] have introduced the use of an automaton
for heuristic selection.

Along with the research developments in meta-heuristics and evolutionary algo-
rithms, a range of different perturbative move operators and acceptance criteria have
been developed in various combinatorial optimization problems. The hybridizations
of these with other techniques showed to be effective when adapted in selection per-
turbative hyper-heuristics. For example, in vehicle routing problems (see Chapter 7),
both perturbative and constructive heuristics are selected by the high-level search to
construct and improve solutions. In nurse rostering (see Chapter 8), low-level pertur-
bative heuristics and acceptance criteria are selected as pairs at each decision point
during the solution improvement process.

Chapter 4

Generation Constructive Hyper-Heuristics

4.1 Introduction

In solving combinatorial optimization problems, a low-level constructive heuristic is
used to create an initial solution, which forms a starting point for optimization tech-
niques to solve the problem. These heuristics are problem dependent and are rules
of thumb, manually derived based on human intuition. Deriving constructive heuris-
tics is a time-consuming process. Generation constructive hyper-heuristics aim to
automate this process by generating low-level constructive heuristics using a given
set of problem attributes. Automating this process reduces the man-hours involved
in deriving low-level heuristics and may lead to the induction of new constructive
heuristics that humans would not think of. This allows constructive heuristics to
be tailored for a particular problem instance or to be induced for different classes
of problems. Hence, the generated heuristic can be disposable, i.e. created for a
specific problem instance, or reusable, i.e. used to solve similar unseen problems
[30]. A formal definition of generation constructive hyper-heuristics is provided in
Definition 4.1.

Definition 4.1. Given a problem instance i or a set of problem instances I = {I0,
I1, ..., Im} and a set of problem attributes A = {A0, A1, ..., An} for a problem do-
main, a generation constructive hyper-heuristic generates a new low-level construc-
tive heuristic lch, using the attributes in A, to produce an initial solution for either i
or the problems in I and similar problems.

The derived low-level heuristic is essentially a priority function that is used to or-
der events or entities to be chosen to create a solution. As such the derived low-level
heuristic is an arithmetic function or rule composed of the attributes and operators.
Genetic programming [96] and variations thereof have chiefly been used for induc-
ing these low-level heuristics. The hyper-heuristic achieves generality by using the
same technique to derive heuristics for different problem instances and domains
with the only change being the set of attribute values A used, which is problem de-
pendent. However, the low-level heuristic induced may generalize or not, i.e. it can
be reusable or disposable.

25© Springer Nature Switzerland AG 2018
N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications,
Natural Computing Series, https://doi.org/10.1007/978-3-319-96514-7_4

https://doi.org/10.1007/978-3-319-96514-7_4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96514-7_4&domain=pdf

26 4 Generation Constructive Hyper-Heuristics

4.2 Attributes and Representation of Low-Level Heuristics

Derived low-level heuristics comprise attributes of the problem and operators.
Hence, methods used to create low-level heuristics combine or configure the at-
tributes and operators in some way. It is important that an appropriate set of at-
tributes is chosen and that all aspects of the problem domain are represented. How-
ever, including too many attributes will result in a larger heuristic space, which may
lead to high processing times or a suitable heuristic not being found. According to
Branke et al. [21], the attributes should be in their most basic form, and it should be
left to the hyper-heuristic to create aggregated characteristics combining them. The
attributes for a problem domain include:

• Characteristics of the problem - These are represented as variables in the induced
heuristic, evaluated to a numerical value, for example, for the one-dimensional
bin-packing problem, the capacity of the bin, fullness of the bin, and size of the
item to be placed.

• Existing low-level constructive heuristics - The attributes can also include exist-
ing low-level heuristics that have been manually derived. For example, the largest
degree, largest enrolment, largest weighted degree and saturation degree heuris-
tics for the domain of examination and course timetabling.

• Components of existing low-level constructive heuristics - The basic components
making up existing low-level constructive heuristics may be more representative
of the problem domain than the heuristic as a whole. Existing low-level heuristics
are decomposed into basic components, and used as attributes.

The attributes are configured into one of the two representations, namely, arith-
metic functions or rules, to create new low-level heuristics. An arithmetic function
is used to combine attributes with standard arithmetic operators, namely, addition,
multiplication, subtraction and division. Constant values may also be included in the
combination. The arithmetic function is used to calculate the priority of choosing
events or entities when creating a solution. For example, in solving the examination
timetabling problem the arithmetic function is used to calculate the difficulty of al-
locating examinations. The examinations are sorted in descending order according
to this value, and allocated in this order to timetable periods to create an examina-
tion timetable. The arithmetic function may also contain a relational operator such
as ≤, which returns a value of 1 if its first argument is less than or equal to its sec-
ond argument, or -1 otherwise [32, 57]. Alternatively, the arithmetic function can be
a weighted sum of attributes [21]. In this case the amount that each attribute con-
tributes to the priority function is determined by the generated weight. The hyper-
heuristic induces a combination of heuristics and weights, where the weights are
constant integer or real values.

Rules comprise a condition component and an action component. The conditions
include probabilities for probabilistic branching [11], how much of the solution has
been created [11], or a comparison of attribute values, e.g. the number of enrolments
for one examination is less than or equal to that for another examination [137]. Ac-
tions vary from existing low-level heuristics or components of low-level heuristics

4.3 Genetic Programming 27

[11], arithmetic expressions combining the problem characteristics, or the entity
which should be given priority, e.g. which of two examinations should be scheduled
next for the examination timetabling problem [137]. In the domain of production
scheduling the generated heuristics are dispatching rules [21]. The dispatching rule
produces a priority index for each job, which is a combination of problem charac-
teristics and arithmetic operators.

Genetic programming and variations of genetic programming, such as grammar-
based genetic programming [110] and grammatical evolution [129], have been em-
ployed by generation constructive hyper-heuristics to generate low-level construc-
tive heuristics. In the case of grammar-based genetic programming and grammatical
evolution, a grammar is used to define the structure of the arithmetic function or rule
to represent the low-level heuristic. This also ensures that the functions and rules in-
duced have feasible syntax. It also reduces the search space by restricting the search
to areas with feasible functions and rules.

4.3 Genetic Programming

Genetic programming is an evolutionary algorithm that explores a program space
rather than a solution space [96]. Programs can represent arithmetic functions or
algorithms, which, when executed, will produce a solution to the problem at hand.
Each program is represented as an expression tree. The generational genetic pro-
gramming algorithm is depicted in Algorithm 9.

Algorithm 9 Genetic programming algorithm
1: Create an initial population
2: repeat

3: Evaluate the population
4: Select parents
5: Apply genetic operators to the parents to create offspring of the new generation
6: until Termination criteria are met

The algorithm begins with an initial population of programs, each an expression
tree representing a new constructive heuristic. A fitness function is applied to eval-
uate each program in the population, i.e. how good it is at solving the problem at
hand. In the case of evolving constructive heuristics the fitness of each expression
tree is determined by the resulting solution created using the program tree. A selec-
tion method chooses parents based on their fitness to create offspring of successive
generations. Tournament selection is generally used for genetic programming [96].
Genetic operators including reproduction, mutation and crossover are generally ap-
plied to the selected parents to create offspring of the next generation.

Each program in the population is created by randomly selecting elements from
a function set and a terminal set until a maximum tree depth is reached. Elements of
the function set are usually operators such as arithmetic operators and if-then-else

28 4 Generation Constructive Hyper-Heuristics

statements, which form the internal nodes in the expression tree. Elements of the
terminal set form leaf nodes in the expression tree, and act as arguments for the ele-
ments of the function set. To evolve constructive heuristics, the terminal set contains
constants and variables representing the attributes of the problem. The function set
comprises arithmetic operators in the case of arithmetic functions, and this set is
extended to include an if or if-then-else statement when creating arithmetic rules.

In evolving constructive heuristics, strong typing is used to ensure that the trees
produced by the initial population generation and the genetic operators represent
valid heuristics. Elements of the function and terminal sets are assigned a type. A
type is also specified for the arguments of function nodes. For example, an if-then-
else statement will have a first argument of type Boolean and if the actions for the
rule are arithmetic its remaining two children will be of type real. In some studies
Boolean operators are treated as integer values, and typing is not needed as both
functions and terminals will evaluate to a numerical value.

Grammar-based genetic programming is a variation of genetic programming in
which a grammar dictates the structure of the expression tree [110]. This ensures that
the expression trees created in the initial population and by mutation and crossover
are syntactically correct. This restricts the search to areas of the search space that
contain valid expression trees, and also reduces the space to be searched. Gram-
matical evolution is another variation of genetic programming that aims to reduce
redundant code in the evolved programs [129]. Binary chromosomes are converted
to denary values which are in turn mapped to production rules of a grammar in
Backus-Naur format. In both grammar-based genetic programming and grammat-
ical evolution, the grammar specifies how the attributes should be combined with
different operators, e.g. arithmetic operators, if-then-else statements, when evolving
low-level constructive heuristics. The study conducted by Harris et al. [75] shows
that the variation of genetic programming used by the hyper-heuristic can effect the
performance of hyper-heuristic.

4.4 Disposability vs. Reusability

The generated heuristic can be disposable or reusable [30, 33]. In the case of dis-
posable heuristics, the hyper-heuristic performs online learning to evolve a heuristic
for a particular problem instance [11, 175]. The generated heuristic is tailored for
the particular problem instance. As discussed in the previous section on genetic
programming algorithms which induce a heuristic, the fitness of the population of
candidate heuristics must be calculated. In the case of disposable heuristics, the fit-
ness of a program tree in the population is determined by the objective value of the
solution produced by the program or a function of the this objective value. For ex-
ample, in the domain of examination timetabling, the fitness is a function of the cost
of hard constraints and soft constraints in the constructed timetable [142].

A reusable heuristic is usually evolved for a class of similar problems [82], and
can be used to create an initial solution for other problem instances as well. A po-

4.5 Discussion 29

tential heuristic is applied to a set of problem instances, namely, the training set, to
calculate the heuristic’s fitness. One of the challenges is choosing an appropriate set
of training instances. As highlighted in [21], training on too few instances can lead
to overfitting, thus the heuristic may not perform well for other problem instances in
the class. However, including too many problem instances will consume excessive
computational time. This is easier to determine in some domains than others, for ex-
ample for the job shop scheduling problem domain the benchmark set is divided into
subsets of problem instances according to the number of jobs and machines [111].
Each subset corresponds to a problem class and a different heuristic is evolved for
each class. Some instances in a subset thus form the training set and the remainder
the test set. The research conducted in [82] shows that for some domains it may not
be possible to induce heuristics that are as effective on unseen problems, and better
results are achieved with disposable heuristics.

In calculating the fitness of a candidate heuristic, the heuristic is used to solve
all the problems in the training set, and the fitness function is a function of the
objective values obtained for each problem instance in the training set. The simplest
function used is to sum the objective values [32, 82]. Alternatively, the average
objective values or the sum of the deviations of the objective values from the known
optimum for each problem instance can be used as a fitness function [21]. In order to
generate more general heuristics, the instances in the training set can be chosen from
different classes of problems. In the study conducted by Burke et al. [33] this proved
to be effective in inducing general heuristics that were effective over all classes of
problems for the two-dimensional strip packing problem.

4.5 Discussion

The aim of generation constructive hyper-heuristics is to produce low-level con-
structive heuristics. These were previously derived manually based on human in-
tuition, which is a time-consuming and laborious process [21]. Hence automat-
ing this process will remove the onus from researchers and practitioners. Research
has shown that different low-level constructive heuristics are effective for different
classes of problems, and for some problem domains it is more effective to gener-
ate disposable heuristics for each problem instance. Deriving low-level constructive
heuristics then becomes expensive to do manually [56] and is probably an intractable
task.

Hence, two criteria should be used in assessing the performance of generation
constructive hyper-heuristics, namely, the time it takes to generate these heuris-
tics and the performance of the generated heuristics compared to existing manually
derived heuristics. The time taken by the generation constructive hyper-heuristic
should be less than it takes to manually derive these heuristics [11, 33]. It cannot be
expected that the performance of the generated low-level heuristics will be compa-
rable to the state of the art [32, 56]. As with manually derived heuristics, the aim
of these heuristics is to provide a starting point for optimization techniques. Thus,

30 4 Generation Constructive Hyper-Heuristics

the automatically generated heuristics should perform at least as well as the manu-
ally derived heuristics. However, from the research conducted in this field thus far,
the heuristics produced by generation constructive hyper-heuristics have showed to
outperform the existing heuristics.

Another important consideration is the interpretability of the generated construc-
tive heuristics. Is it necessary for the generated heuristic to be readable to determine
what it is doing, or should the generation constructive hyper-heuristic perform as
a black box? If the former is required, grammatical evolution a better option to
evolve heuristics, as standard genetic programming is susceptible to the growth of
redundant code called introns. This reduces the readability of the evolved heuristics.
Genetic programming can be employed with a tree size limit on the evolved trees,
with trees exceeding the limit penalized as part of the fitness [32].

There has been a fair amount of research into the use of generation constructive
hyper-heuristics for inducing low-level constructive heuristics for combinatorial op-
timization problems. Table 4.1 provides a summary of the genetic programming
variations for different combinatorial optimization problems. While genetic pro-
gramming, grammar-based genetic programming and grammatical evolution have
predominantly been used by generation constructive hyper-heuristics for heuris-
tic induction, some studies have investigated other techniques for this purpose. In
the study conducted by Sim and Hart [174] another variation of genetic program-
ming, namely single-node genetic programming, is used to evolve low-level con-
structive heuristics for the one-dimensional bin-packing problem. In [133] a ge-
netic algorithm is used to evolve low-level constructive heuristics for the online
one-dimensional bin-packing problem. Each heuristic is a policy matrix indicating
the weight for packing an item in a bin depending on the residual space of the bin.
The item with the highest weight is packed in the bin.

4.5 Discussion 31

Table 4.1 Generation constructive hyper-heuristics. GP: Genetic Programming; GBGP: Grammar-
Based Genetic Programming; GE: Grammatical Evolution

Problem domain GP GBGP GE Other
Examination Pillay [137] Bader-El-Den - -
timetabling
Course timetabling Pillay [141] - - -
School timetabling Pillay [138] - - -
One-dimensional Burke et al. [32] - - Sim and Hart
bin packing Hyde [82] ¨

Two-dimensional Burke et al. [33] - - -
bin packing Hyde [82]
Three-dimensional Hyde [82] - - -
timetabling
Vehicle routing Sim and Hart [175] - Drake et al. [57] -
Multidimensional Drake et al. [56] - - -
knapsack problem
Constraint satisfaction - Sosa-Ascencio - -
problems et al. [178]
Production scheduling Branke et al. [21] Branke et al. [21] - -

et al. [11]

 Ozcan[174]
and Parkes [133]

Chapter 5

Generation Perturbative Hyper-Heuristics

5.1 Introduction

Low-level perturbative heuristics are used to improve a solution created either ran-
domly or using a constructive heuristic for a combinatorial optimization problem.
The low-level perturbative heuristics are problem dependent, and often move oper-
ators defined for the problem domain when solving the problem using local search
techniques, e.g. the 2-opt move operator for the travelling salesman problem, are
used as perturbative heuristics. Hence, these are also referred to as local search
operators. Generation perturbative hyper-heuristics aim at creating new low-level
perturbative heuristics for a problem domain or instance. These heuristics are cre-
ated by combining or configuring existing low-level perturbative heuristics and/or
components of these heuristics. Genetic programming and variations thereof, e.g.
grammatical evolution, have chiefly been used to combine these heuristics, and com-
ponents with conditional branching and iterative constructs, to create new heuristics.

A formal definition of generation perturbative hyper-heuristics is provided in
Definition 5.1.

Definition 5.1. Given a problem instance i or a set of problem instances I = {I0, I1,
..., Im} and a set of low-level perturbative heuristics and/or components of heuris-
tics C = {C0, C1, ..., Cn} for a problem domain, a generation perturbative hyper-
heuristic GPH generates a new low-level perturbative heuristic lph, using the heuris-
tics and/or components in C with conditional branching and iterative constructs, to
produce a new perturbative heuristic for either i or the problem instances in I and
similar problems.

The low-level perturbative heuristics that generation perturbative hyper-
heuristics have been used to generate include local search operators [10, 63], al-
gorithms [49] to solve problems and meta-heuristics [88, 163], as discussed below.

33© Springer Nature Switzerland AG 2018
N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications,
Natural Computing Series, https://doi.org/10.1007/978-3-319-96514-7_5

https://doi.org/10.1007/978-3-319-96514-7_5
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96514-7_5&domain=pdf

34 5 Generation Perturbative Hyper-Heuristics

5.2 Generating Local Search Operators

Grammar-based genetic programming has been used to evolve local search opera-
tors [10, 63]. Existing human-derived local search operators for the problem domain
are decomposed into components. For example, the Boolean satisfiability problem
involves determining an assignment of true and false values to variables that re-
sults in the well-formed formula evaluating to true. One of the existing perturba-
tive heuristics, GSTAT [63], chooses a variable in the formula with the highest net
gain, while another perturbative heuristic, GWSTAT, randomly selects a variable in
a randomly broken clause. Examples of the components that these heuristics are
decomposed into include net gain, randomly select a broken clause, and return the
formula.

A grammar is used to define how the components can be recombined using
branching constructs to produce new heuristics that are syntactically correct. For
example for the Boolean satisfiability problem, examples of conditional-branching
constructs used include IF-RAND-LT and IF-TABU [63]. IF-RAND-LT takes a
floating-point number and two variables as arguments. If randomly generated
floating- point number is less than the floating point argument, the first variable is
returned; otherwise the second variable is returned. IF-TABU takes an integer value
representing age as input and two variables. If the age of the first variable is less
than the age argument, the second variable is returned; otherwise the first variable
is returned.

In the study conducted in [63], a new genetic operator composition is introduced
which combines two elements of the population, i.e. two heuristics, into one com-
posite heuristic.

Sabar et al. [164] employed grammatical evolution with an adaptive mem-
ory mechanism to create perturbative heuristics for combinatorial optimization
problems. Each heuristic is a combination of acceptance criteria, neighbourhood
structures and neigbourhood structure combinations. The neighbourhood struc-
tures are problem dependent, e.g. swapping two examinations for the examination
timetabling problem. The neighbourhood combinations combine the neighbourhood
structures, e.g. union which applies two neighborhood structures consecutively. The
adaptive memory aims to maintain diversity by maintaining a population of solu-
tions, which are initially created using a construction heuristic and regularly updated
when improvements on the population are found. The generative hyper-heuristic
was applied to the examination timetabling and vehicle routing problems, and per-
formed competitively with state-of-the-art techniques in solving these problems.

5.3 Creating Algorithms and Meta-Heuristics

Low-level perturbative heuristics evolved by generation perturbative hyper-
heuristics also include algorithms. Genetic programming has been used to gener-
ate algorithms to solve the automatic clustering and travelling salesman problems

5.4 Discussion 35

[49]. Each candidate algorithm comprises standard algorithm constructs, namely, a
conditional-branching construct, an if-then-else statement, an iterative construction,
namely, a while loop, and the logical AND operator. These constructs are combined
with problem specific terminals. For example, the terminals for the travelling sales-
man problem add cities to the tour, e.g. the best neighbour heuristic adds a city
which is the closest to the last city added, and the near centre heuristic adds the city
nearest to the central point.

Generation perturbative hyper-heuristics have also been used to evolve meta-
heuristics. Linear genetic programming has been employed for this purpose [88].
The candidate meta-heuristics comprise components of the meta-heuristics and low-
level perturbative heuristics for the domain. Conditional-branching constructs are
combined with components of the low-level perturbative heuristics for the problem
domain, e.g. for the travelling salesman problem IF2-CHANGE will apply the 2-
CHANGE operator if this results in a shorter tour. The meta-heuristic components
also include an iterative construct, namely, REPEAT-UNTIL-IMPROVEMENT. A
grammar is used to specify the correct syntax of the generated meta-heuristics. The
evolved meta-heuristics were found to perform better than hill climbing and greedy
hill climbing in solving an instance of the travelling salesman problem. In a similar
study [163], Cartesian genetic programming is used to evolve a memetic or iterated
local search algorithm to solve the travelling salesman problem. Each algorithm
contains a while loop with a sequence of existing low-level perturbative heuristics
for the problem domain; each sequence is automatically generated using Cartesian
genetic programming.

5.4 Discussion

This chapter presents generation constructive hyper-heuristics, which create new
low-level perturbative heuristics. The low-level heuristics have taken the form of
new local search operators and new algorithms for solving specific combinato-
rial optimization problems, and new meta-heuristics. As with generated construc-
tive heuristics, the new perturbative heuristics can be disposable [10] or reusable
[49, 63]. Disposable heuristics are created for a particular problem instance, while
reusable heuristics are induced using a training set of problem instances and the
generated heuristics can be used to solve other problem instances. The generated
perturbative heuristics are composed of existing low-level perturbative heuristics or
components thereof combined with conditional-branching constructs and/or itera-
tive constructs. Generation pertubative hyper-heuristics have not been researched as
thoroughly as other hyper-heuristics, and the domains that they have been applied to
include the travelling salesman problem, the Boolean satisfiability problem and the
automatic clustering problem. Table 5.1 provides an overview of these applications.

36 5 Generation Perturbative Hyper-Heuristics

Table 5.1 Generation perturbative hyper-heuristics

Problem domain Local search operator Algorithms Meta-heuristics
Boolean satisfiability Bader-El-Den and Poli [10] - -

Fukunaga [63] - -
Examination timetabling Sabar et al. [164] - -
Vehicle routing Sabar et al. [164] - -
Travelling salesman - Contreras-Bolton Keller et al. [88]

- Ryser-Welsch et al.[163]
Automatic clustering - Contreras-Bolton -
problem -

and Parada [49]

and Parada [49]

Chapter 6

Theoretical Aspect—A Formal Definition

6.1 Introduction

Along with the continuous developments in hyper-heuristic (HH), various descrip-
tive definitions for HH have emerged, leading to classifications of HH. Initially,
hyper-heuristics have been defined as a search technique “to decide (select) at a
higher abstraction level which low-level heuristics to apply” [51], “to combine sim-
ple heuristics” [162], or recently as a search method or learning mechanism for
selecting or generating heuristics to solve computational search problems [30]. HH
is thus categorized into four classifications, namely, selection perturbative / con-
structive, generation perturbative / constructive (see Chapters 3, 2, 5 and 4). Some
attempts have also been made to generalize these classifications of HH, to allow both
selection / generation and offline / online learning to interoperate within a reposi-
tory [180]. It has also been proposed that the “domain barrier” in the HH definition
should be moved so more knowledge can be easily incorporated in a more expres-
sive HH for inexperienced practitioners [179].

This chapter presents a formal definition of HH based on the existing conceptual
definitions in the literature [35]. Within the two-level framework of HH, two search
spaces, namely the heuristic space and the solution space, are under consideration.
Some fundamental issues are then discussed within this framework. In addition to
the different encoding and search operations, various objective functions are defined
in both spaces to evaluate searches on heuristics and direct solutions, respectively.

Within the two-level framework of HH, a selection constructive hyper-heuristic is
then demonstrated to illustrate the inter-relationship between the two search spaces.
A landscape analysis on the heuristic space reveals interesting characteristics for
designing more effective hyper-heuristics. Future potential research developments
are finally presented based on existing research advances addressing the theoretical
aspects of HH.

37© Springer Nature Switzerland AG 2018
N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications,
Natural Computing Series, https://doi.org/10.1007/978-3-319-96514-7_6

https://doi.org/10.1007/978-3-319-96514-7_6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96514-7_6&domain=pdf

38 6 Theoretical Aspect—A Formal Definition

6.2 A Formal Definition of Hyper-Heuristics

A hyper-heuristic HH can be defined as a search algorithm for solving an optimiza-
tion problem P, whose decision variables are heuristics, rather than direct solution
variables in the optimization problem p under consideration. To solve P, HH ex-
plores at a higher level a heuristic space H of heuristic configurations h, which at
a lower level generate direct solutions s in the solution space S for problem p. Two
search spaces can thus be defined, namely a heuristic space H of P and a solution
space S of p, each associated with an objective function, within the two-level frame-
work [155].

Definition 6.1. Within a two-level framework, a hyper-heuristic HH explores
heuristic configurations h ∈ H in the heuristic space H at a high level. The per-
formance of HH is measured using F(h) → R. At the low level, an objective func-
tion f (s) → R evaluates the direct solutions s ∈ S in the solution space S for the
optimization problem p under consideration.

Solution s is obtained by using a corresponding heuristic configuration h ∈ H,
i.e. h → s. Let M be a mapping function M: f (s)→ F(h). The objective of HH is to
search in H for the optimal heuristic configuration h*, which generates the optimal
solution(s) s*, so that F(h*) is optimized:

F(h* | h* → s*,h* ∈ H)← f (s*, s* ∈ S) = min{ f (s),s ∈ S} (6.1)

The following terminologies are defined in the formal HH definition [155].

• Problem p: an optimization problem under consideration, whose direct solutions
s ∈ S are evaluated against objective function f (s).

• Problem P: an optimization problem considered by HH, whose decision variables
are heuristic configurations h ∈ H evaluated against objective function F(h).

• Solutions s: direct solutions for p.
• Heuristic configurations h: configurations upon low-level heuristics in L for P.
• Solution space S: consists of s for p, obtained by using h, i.e. h → s.
• Heuristic space H: consists of h for P, explored by high-level heuristic algorithms

HLH in HH.
• Low-level heuristics L: a given set of domain specific heuristics configured by

HLH at the low level to compose h, i.e. L contains the set of domain values for
the decision variables in h.

• High-level heuristics HLH: search algorithms or configuration methods at the
high level upon L to search h ∈ H for P.

• Objective function f : fitness evaluation for p, i.e. f (s) → R evaluates s ∈ S, s
obtained using h ∈ H.

• Objective function F: fitness evaluation for P, i.e. F(h) → R evaluates h ∈ H
explored by HLH. The objective is to find the optimal h*, which obtains the
optimal solution s* for p, i.e. h* → s*.

• Mapping function M: F(h) ← f (s): each h maps an s, thus the performance of
HLH upon h is measured based on the evaluation of its mapping s. Note that

6.2 A Formal Definition of Hyper-Heuristics 39

F(h) may not be the same as f(s) although it is the case in most of the existing
HH literature.

In the HH literature, different optimization problems p can be solved by plugging
in a problem specific set L at the low level. The design of HH can thus be focused
on the design of the high-level HLH. Solving different p thus can be transferred to
solving a general optimization problem P; the latter can usually be encoded with
lower-dimension representation and is easier to explore [155]. The generality of HH
is also raised, as problem specific details and constraint handling are left with the
direct solutions s obtained at the low level for p. Due to the above definition of
the two search spaces at the two levels, the burdens of designing problem specific
algorithms are also eased, focusing on the high-level configurations of heuristics.
HH showed to be easy to implement, and has been successfully applied to a wide
range of combinatorial optimization problems [30].

In [151], a formal definition of selection constructive HH based on graph colour-
ing is presented. The above formal definition is extended to define both types of
selection and generation HH with constructive and pertubative L as classified in
[31]. Note that the p at hand may be either continuous or discrete. In most of the
current HH literature only combinatorial optimization problems are investigated.
The formal HH definition can also be extended to define continuous optimization
problems, which represents a new line of interesting future research directions.

6.2.1 Two Search Spaces Within the Formal Hyper-Heuristic
Framework

HH solves p by indirectly configuring and exploring h in H at the higher level,
which then used to search for direct solutions s in S. Therefore, it is necessary to
distinguish between the heuristic space H for P and the solution space S for p. In
the current literature, most HH mainly explore h ∈ H, aiming to find h* that maps to
(near-)optimal s* ∈ S, with less focus on the low-level S. Note, however, that within
S, search can also be conducted by applying standard meta-heuristics to directly
search s for p [151]. Table 6.1 compares the characteristics of the two search spaces
based on terminologies defined for HH in Section 6.2.

Table 6.1 Characteristics of the two search spaces in the formal hyper-heuristic framework

Search Space Heuristic Space H Solution Space S
Encoding Heuristic configurations h Direct solutions s
Operation High-level methods HLH upon Move or evolutionary operators

the given L to configure h on s
Objective Evaluation function F(h) upon h Objective function f (s) on s for
Function for P, F(h) ← f (s) p

40 6 Theoretical Aspect—A Formal Definition

In selection hyper-heuristics, operations in HH often employ evolutionary algo-
rithms or local search algorithms to configure h based on L [30]. Other configuration
methods are also studied, including choice functions and case-based reasoning [30],
see Chapters 2 and 3. In generation hyper-heuristics (see Chapters 4 and 5), genetic
programming and its variants [11, 193] are often used to generate h, which can act
as new problem specific heuristics to produce s ∈ S. Each h maps an s, thus the
process of configuring or searching h ∈ H simulates a search process exploring the
mapping s ∈ S.

In most of the HH literature, F(h) = f (s) [30]. Different evaluation functions,
however, can be used in H and S, respectively. For example, in [17, 52, 119], a
reward is used as F for a choice function to assess L and configure h at the high
level, and a different problem specific evaluation function is used to evaluate the
mapping s. Further in-depth studies may explore different M: F(h) ← f (s) in the
two-level framework, to design effective selection or generation HH with different
high-level configuration methods and problem specific L.

HH indirectly searches s ∈ S by exploring h ∈ H, thus may not directly explore
from s towards the (local) optimal solutions s* ∈ S, evaluated against f, as standard
meta-heuristics usually do. Depending on the type of L in HH, neighbourhood solu-
tions s’ explored in S mapped by h’ may or may not be the neighbourhood solutions
from their precedent s mapped by h.

• In most HH employing perturbative L, individual low-level heuristics in h oper-
ate consecutively on complete direct solutions s, thus s can be seen as explored
directly by the high-level search towards the (near)-optimal solutions s* in S,
guided by f on direct solutions s.

• In HH employing constructive L, solutions s and s’ are constructed by h and h’,
thus s’ obtained indirectly in S by h’ may not be the neighbours of s, even if its
corresponding h’ is the neighbour of h. This is because during the solution con-
struction using h’, any different values assigned to variables in a partial solution
using a different low-level heuristic in h’, compared to h, are likely to lead to a
different complete solution s’. Thus s’ produced by the successive h’ explored
from h may not be neighbours of s in S.

Figure 6.1 presents the relationship between h ∈ H and s ∈ S within HH. In H, h2
and h3 are two successors of h1 using an operation at the high level. In an HH that
employs constructive L, their mapping corresponding solutions s2 and s3 in S may
not be neighbours as defined using different (or even the same) operations upon the
direct solution s1 in S, obtained from h1.

Given the characteristics in Table 6.1, it is noted that the size of H is very likely
to be different from the size of S. In particular, S consists of all the possible direct
solutions s for p, while H consists of heuristic configurations h for P. However,
depending on how encoding and operation are defined, some of the s may not be
obtained from any h ∈ H. This is reflected in Figure 6.1: s4 may be a neighbour
of s1 ∈ S using a specific operation; however, it may not have any corresponding h
∈ H depending on how h is configured at the high level. In the example presented

6.2 A Formal Definition of Hyper-Heuristics 41

Fig. 6.1 Search in the two spaces H and S

in Section 6.3, this interesting issue has been investigated to explore search within
both P and S to reach all s ∈ S for p.

6.2.2 Fitness Landscape of the Heuristic Space in the
Hyper-Heuristic Framework

In meta-heuristics, the concept of fitness landscape has been adapted to analyze
the search space of solutions [115], revealing useful characteristics for designing
more effective algorithms. For example, analysis of the landscape of the travelling
salesman problem reveals an interesting feature called a “big valley”, indicating a
positive correlation between solutions and their fitnesses with the optimal s*, i.e.
solutions closer to s* are of better quality [128]. This observation may be used to
design effective encodings and operators to guide the search towards s* in TSP and
other problems with similar features in the landscape.

Based on the definitions of fitness landscape in state space theory [115], the fit-
ness landscape of H for the optimization problem P in the HH framework (Section
6.2) can then be defined with three factors, namely an encoding using some finite
alphabet in L to represent all possible heuristic configurations h; a successor opera-
tor to define how h ∈ H are connected (explored), and a fitness function F(h) → R
that assigns a fitness value R to each h ∈ H.

In some HH where h are encoded as one-dimensional sequences of low-level
heuristics in L, it is possible and useful to conduct landscape analysis on H, whose
spatial structure can be defined using the operation and a distance metric D on h.
This proved to be very difficult, if not impossible, for s ∈ S for many complex
combinatorial optimization problems with n-dimensional solutions, n ≥ 2. In the
literature, fitness distance correlation fdc has been mostly used to analyze landscape
properties and measure problem difficulty. Given a set of encodings h1, h2, ..., hn
and their fitness F, and the distance of h ∈ H to their nearest optimum hopt ∈ H, the
fdc coefficient is defined as follows [87]:

f dc : σ(F,Dopt) =Cov(F,Dopt)/σ(F)σ(Dopt) (6.2)

42 6 Theoretical Aspect—A Formal Definition

where Cov(.,.) denotes the covariance of two random variables and σ(.) the standard
deviation. In the literature, the optimal hopt is estimated by the h which leads to the
best solution s* found for p. For hi, fdc thus indicates how closely their F and D are
related to that of hopt . A value of σ = 1.0 (σ = -1.0) for maximization (minimization)
problems indicates F and D are perfectly correlated to hopt [87], and thus provide
perfect guidance to hopt ; thus P is an easy problem in HH. In a landscape analysis,
a value of fdc ≤ 0.5 (fdc ≥ 0.5) for maximization (minimization) problems usually
indicates an easy P in HH.

More landscape analysis could be conducted using other measures including
auto-correlation [192], which calculates the fitness correlation of a series of h
recorded along a random walk over a time series T. The longer the time lag between
two correlated h in the random walk, the less rugged is the landscape of H thus the
easier the problem for HH. This also indicates from another aspect the difficulty of
search problem P in H.

6.3 Example: A Selection Constructive Hyper-Heuristic for

Timetabling Problems

A graph-based selection constructive hyper-heuristic in [32] is re-defined in this sec-
tion based on the formal definitions of HH in Section 6.2 for educational timetabling
problems. Based on an analysis of the two search spaces, a hybrid HH [151] is
demonstrated, together with a landscape analysis on H in this HH framework [127].
More details of the work can be found in the original papers [32, 127, 151, 155].

6.3.1 A Graph-Based Selection Hyper-Heuristic (GHH)
Framework

In timetabling, graph colouring heuristics (see more details in Section 10.2) are
constructive heuristics that order the events using some difficulty measure strategies.
The ordered events are then assigned, one by one starting with the most difficult
ones, to construct complete timetable solutions. The basic assumption is that the
most difficult events need to be scheduled earlier to avoid problems at a later stage.
For example, if SD (Saturation Degree) is used in an exam timetabling problem, the
exams are ordered by the number of remaining valid slots in the partial timetable
during the solution construction, and the most difficult one is scheduled first to avoid
the problem of no valid slots left at a later stage.

A graph-based selection constructive hyper-heuristic (GHH) is defined as fol-
lows: On the high-level space H, a local search algorithm as the high-level heuristic
HLH explores heuristic sequences h ∈ H using the low-level graph colouring con-
structive heuristics in L = {LD, LWD, SD, LE, CD}, as explained in Section 10.2.

6.3 Example: A Selection Constructive Hyper-Heuristic for Timetabling Problems 43

Each h = {h1, ..., hn}, hi ∈ L, is evaluated by F(h) → R. n is the problem size, i.e.
the number of decision variables in p.

At the lower level of GHH, a timetable solution s ∈ S is constructed iteratively
by using an h ∈ H, considering constraints and f for the timetabling problem p (see
Appendix B.4). At iteration i, hi∈ h is employed to order the events not yet sched-
uled in p using its corresponding ordering strategy. The first event in the ordering
(i.e. the most difficult one using hi) is then scheduled in s. In the next iteration, hi+1
in h is used to reorder and schedule the most difficult remaining events. This process
is repeated until a complete s is constructed. Any h that leads to infeasible solutions
is discarded. The objective function f (s) → R evaluates s ∈ S for p (see Appendix
B.4).

The mapping function is defined as M: F(h) = f (s), h → s. The optimization
problem P in the HH framework is thus to search for h* of L at a higher level in H
which constructs (near-)optimal solution(s) s*.

6.3.2 Analysis of Two Search Spaces in the GHH Framework

In the GHH defined above, different local search algorithms are employed at the
high level [151] to search for h ∈ H, and a greedy steepest descent method is used at
the low level to exploit local optima from s ∈ S; s is obtained using the correspond-
ing h. Thus search has been conducted within both H and S, with characteristics
given in Table 6.2. Note that different meta-heuristics can be employed at both lev-
els, and the objective functions at the two levels can be different.

Table 6.2 Characteristics of the two search spaces in the GHH framework

Search Space Heuristic Space H Solution Space S
Encoding Sequences of heuristics h Direct timetable solutions s
Upper Bound of ne (e: length of h; te (t: no. of slots;
the Search Space n: size of L, i.e. |L|) e: no. of events)
Operator Randomly change two hi in h Move events in s to new slots
Objective Function Cost of s constructed by the new h Cost of the new neighbour s

Within GHH, the high-level search explores h rather than direct solutions s. As
an s is constructed by an h step by step, similar neighbouring h in H may construct
quite different s, likely to be widely distributed in S. As illustrated in Figure 6.1, by
making local neighbourhood moves from h1 to h2 or h1 to h3 at the high level in H,
GHH can explore s2 or s3 across very different regions in S. A local search at the low
level upon s in S, on the other hand, usually generates similar local solutions, i.e. s3
to s4. The GHH search thus can be seen as exploring much larger neighbourhood
regions in S using a local search in H, similarly to the search behaviour of large-
neighbourhood search algorithms.

44 6 Theoretical Aspect—A Formal Definition

In [151], a fast steepest descent method is hybridized at the low level within GHH
to further exploit a local optimum from s ∈ S. The motivation is twofold: First, the
steepest descent in S can exploit local areas around s3 to reach local optima quickly;
Second, GHH thus is able to explore the whole search space S including s4, which
may not be reached by any h ∈ H.

6.3.3 Performance Evaluation of GHH

In [151], four different local search algorithms, namely steepest descent, tabu
search, variable-neighbourhood search and iterated local search, have been used as
the high-level search to explore h for both the course and exam timetabling prob-
lems, employing the same L, as presented in Section 6.3.1.

It was found that although variable-neighbourhood search and iterated local
search performed slightly better, in general high-level search within GHH did not
play a crucial role. This may be because that at the high level, the h are not con-
cerned with the actual assignments of decision variables in s for p, but are indirect
configurations of constructive heuristics, which are then used to build s. s sampled
by h at the high level tend to jump within S; thus s and s’ from the neighbouring h
and h’ are not successive neighbours. The different search methods used in H thus
did not directly lead to different performance of HH upon S.

When employing steepest descent at the low level in S on each complete s con-
structed by h, GHH obtained significantly better results. Although the local optimum
h in H at the high level might not map a local optimum s in S, the steepest descent
upon s further explores S, leading to locally optimal solutions for p. Within GHH,
the role of the high-level local search in H can thus be seen as to explore S indirectly,
while the steepest descent search at the low level is to exploit local regions in S.

Penalties of timetable solutions obtained by GHH using iterated local search on
the exam timetabling problems (see Appendix B.4) are presented in Table 6.3, com-
pared against existing algorithms. In [151] exactly the same GHH is applied to both
the exam and course timetabling problems. The only difference is f (s) → R on s
∈ S for different p. Note that some of the existing approaches in Table 6.3 are not
hyper-heuristics, and are specially designed for solving the specific problem under
consideration, thus may not have been applied to solve both problems.

The overall idea of the exploration in H and exploitation in S using search at two
levels in GHH is similar to that of memetic algorithms or genetic local search, where
genetic operators applied to the population of solutions in S facilitate global explo-
ration, while the local search on solutions in the population conducts exploitation
within local regions. The difference is that GHH explores S by indirectly searching
H, at a high level, in the manner of local search. The hybrid GHH is much simpler
yet is capable of exploring and exploiting the search space S at two levels.

HH aims to increase the level of generality in solving multiple problems and
problem instances, while most of the existing HH approaches have been applied
to one problem domain, or evaluated by specific objective functions for different

6.3 Example: A Selection Constructive Hyper-Heuristic for Timetabling Problems 45

Table 6.3 Penalties of timetable solutions by GHH on benchmark exam timetabling problems
against existing approaches; details of the problem and penalty function can be found in Appendix
B.4

car91 car92 ear83 I hec92 I kfu93 lse91 sta83 I tre92 ute92 uta93 I yok83 I
GHH 5.3 4.77 38.39 12.01 15.09 12.72 159.2 8.74 30.32 3.42 40.24
LNS [2] 5.21 4.36 34.87 10.28 13.46 10.24 159.2 8.7 26 3.63 36.2
Fuzzy [6] 5.2 4.52 37.02 11.78 15.81 12.09 160.4 8.67 27.78 3.57 40.66
Adaptive [39] 4.6 4.0 37.05 11.54 13.9 10.82 168.7 8.35 25.83 3.2 36.8
Local search[25] 4.8 4.2 35.4 10.8 13.7 10.4 159.1 8.3 25.7 3.4 36.7
Hybrid [42] 6.6 6.0 29.3 9.2 13.8 9.6 158.2 9.4 24.4 3.5 36.2
Heuristics [43] 7.1 6.2 36.4 10.8 14.0 10.5 161.5 9.6 25.8 3.5 41.7
Tabu Search [67] 6.2 5.2 45.7 12.4 18.0 15.5 160.8 10.0 29.0 4.2 42.0
Hybrid [114] 5.1 4.3 35.1 10.6 13.5 10.5 157.3 8.4 25.1 3.5 37.4

problems, respectively. Thus the generality of HH approaches have not yet been
assessed using a uniform or consistent measure. In recent research, a performance
assessment for HH, at four different levels of generality, has been proposed [147].
Such study shows a welcome attempt to address the fundamental aspects of further
research developments in HH.

6.3.4 Fitness Landscape Analysis on GHH

In the literature some landscape analysis has been conducted using measures such
as fdc and auto-correlation, both indicating from different aspects the difficulty of
search in H. An example analysis using fdc as explained in Section 6.2 to analyze H
in GHH is presented in this section. More details can be found in [127].

Based on a variant of GHH using two low-level heuristics, LWD and SD as de-
fined in Section 10.2, in [127] the landscape of H in GHH has been analyzed to gain
insight into the global structure of H. As in the literature, the best known h obtained,
hopt , is used as an estimation of the optimal solution in the fdc analysis (Equation
6.2). h ∈ H can thus be represented by binary strings, whose distance D is measured
using Hamming distance.

In the fdc analysis, locally optimal h are measured against hopt to reveal landscape
features of H, indicated by the correlations between their distances and costs. A set
of h is first randomly generated, one of each distance j, j = 1, ..., l, away from hopt ,
l is the length of hopt . A non-deterministic steepest descent search using one-flip
neighbourhood moves is then applied 10 times to these binary h to generate 10
locally optimal h for each j. In total LO = 10 × l locally optimal h are thus obtained
and their correlations with hopt using (Eq. 6.2) are calculated. More details can be
found in [127].

The fitness values of these LO for two example timetabling instances, hec92 I
and sta83 I, are plotted in Figure 6.2, ordered increasingly by their costs. The plots
show a number of local optima of the same cost especially for sta83 I, demonstrating
several plateaus in H.

46 6 Theoretical Aspect—A Formal Definition

Fig. 6.2 Cost of local optimal h in GHH [127].

Figure 6.3 shows the best 10% of these LO local optima. Some interesting pat-
terns can be extracted especially at the beginning of h. For example, values at certain
positions hi in the top h are fixed, i.e. the first four positions in h for hec92 I are al-
ways LWD. It is not surprising to see that random patterns appear at the end of h, as
the last steps of solution construction tend to make less impact on the quality of s.
No obvious patterns can be observed on lower-quality h.

Fig. 6.3 The best 10% local optimal h in GHH: hec92 I (left), sta83 I (right). Note: at each hori-
zontal line white and black plots indicate low-level heuristics LWD and SD, respectively

The scatter plots between F(h), h ∈ LO, and their distances to hopt indicate a
moderate-to-high positive correlation (in the range of 0.51 to 0.64). This is a very
useful “big valley” feature in the landscape of H, similar to that of TSP observed in
the literature [128], meaning better local optima are closer to hopt in H. This also
indicates that search in H is probably easier, as F(h) of locally optimal h provides a
useful indication of how close they are to hopt .

Other patterns can also be observed, revealing some interesting features in the
landscape of H. Although presenting similar positive correlation, the scatter plot for

6.4 Discussion 47

instance sta83 I shows several wide plateaus of the same cost f at different levels.
In addition, those h with a cost below 38 (around l/2 bits away from h*) are of
low-quality, and show no clear correlation i.e. they are randomly located in H. More
details can be found in [127].

Due to the simple one-dimensional structure of h, it is possible to conduct land-
scape analysis on H. This showed to be very difficult, if not impossible, for s in S
for some problems investigated including the timetabling, vehicle routing and nurse
rostering problems.

6.4 Discussion

Along with more recent advances in HH research addressing different theoretical as-
pects, more interesting research issues have emerged that require a formal definition
of different types of HH in the literature. Based on the existing different conceptual
definitions, a formal definition of HH [155] is presented in this chapter as an opti-
mization problem to provide a unified fundamental basis for further explorations of
emerging research directions in future HH research.

To demonstrate the formal HH framework, an existing selection constructive
hyper-heuristic employing high-level local search algorithms [151] has been re-
defined, along with a landscape analysis for educational timetabling problems.
Within the two-level HH framework, two search spaces, namely, the heuristic space
H and solution space S can be explored separately, each with its own objective func-
tion. Landscape of the high-level search space H with one-dimension sequences of
h showed the “big valley” feature by using the fdc analysis. The relation / mapping
between the two search spaces is worth further investigation under the formal HH
framework for the four types of HH [31] described in Chapters 2, 3, 4 and 5.

Based on this HH framework, several future research directions are worth further
exploration.

HH aims to raise the generality of algorithms for solving multiple problems. This
poses an interesting research question, namely how the No Free Lunch Theorem
(NFL) applies to this new type of search algorithms. Some interesting discussions
in [150] analyzed the conditions under which the NFL applies to HH. Based on the
statement, if a set of fitness functions associated with problems p are closed under
permutation [194], it would make no sense to find a solver for such p. However,
such a set of problems usually represents a small fraction of the whole, thus there
may be a free lunch developing HH approaches for not too large a set of problems.
It would be interesting to carry out more in-depth analysis on NFL within the formal
definition of the HH framework, to further explore the scope of p HH may address.

In [100], a runtime analysis is conducted on a selection HH using a randomized
local search. It is shown that configuring a set of neighbourhood operators with an
appropriate distribution is crucial, and is also problem dependent. It also shows that
online reinforcement learning on configuring operators may perform more poorly
than fixed distribution of operators in selection perturbative hyper-heuristics. A fur-

48 6 Theoretical Aspect—A Formal Definition

ther investigation within the formal HH framework for both selection and generation
HH with constructive and perturbative low-level heuristics would establish the the-
oretical foundations of HH as that of runtime analysis for evolutionary algorithms
[100].

Performance measures on most of the current HH approaches in the literature
are problem specific, even where multiple problems are concerned, when assessing
the performance of HH. Some progress has been made in [147] to devise a new
generality performance measure for HH of different levels of generality for differ-
ent problems. With the aim of raising the generality of search algorithms, this new
performance measure can be associated with the formal HH framework, to provide
evaluations of different HH across various problems.

A unifying mathematical formulation for hyper-heuristics is proposed in [180],
where by using a high-level controller, elements of heuristic design (both construc-
tive and perturbative heuristic activities) compete for resources within a shared
repository workspace to configure better heuristics. There is thus no distinction be-
tween online and offline activities, and heuristic activities interoperate based on in-
formation shared from other heuristics. The formal HH framework defined in this
chapter could be integrated with this unifying framework, where the heuristic space
H of P is explored by the high-level controller to solve multiple problems p.

Recent research on landscape analysis observes that multiple “sub-valleys” exist
in a single big valley for TSP [128]. Similar analysis of the high-level H in the
HH framework, where h is encoded as one-dimensional strings or sequences, might
reveal more insights into the high-level landscape in HH, and inspire the design of
more effective HH across different problems p.

Part II

Applications of Hyper-Heuristics

Chapter 7

Vehicle Routing Problems

7.1 Introduction

Vehicle routing problems (VRP) [72, 50, 186] represent one of the most investi-
gated combinatorial optimization problems [134], due to the problem complexity
and their potential impact on real-world applications especially in logistics and sup-
ply chains. The basic VRP involves constructing a set of closed routes from and
to a depot, each serviced by a vehicle of certain capacity. In each route, a vehicle
delivers the required demand in an ordered list of tasks for customers. The objective
is to minimize the total distance, satisfying the capacity for all customers on each
route. In some problem variants the number of vehicles used is also minimized.
More details of the problem models and benchmark datasets are given in Appendix
B.3.

In Operational Research, combinatorial optimization problems (see Appendix B)
represent a subset of optimization, which consists of assigning discrete domain val-
ues to integer decision variables in a problem. As one of the mostly studied combina-
torial optimization problems, the basic VRP is NP-hard [65, 101]. When modelling
real-world VRP applications such as routing in transport logistics, the introduction
of a wide range of constraints further increases the complexity. Variants of VRP
thus have been studied in research integrating common features ranging from time
windows, to capabilities to uncertainties of the tasks. Meta-heuristics integrating
simple techniques as well as exact methods [185] thus represent one of the recent
promising directions addressing both the complexity and realistic features in vari-
ants of VRP (see surveys for VRP [97, 186], VRP with Time Windows (VRPTW)
[22], Capacitated VRP (CVRP) [68]) and Dynamic VRP (DVRP) [159, 136].

The most studied variants of VRP in HH (Appendix B.3) are reviewed in this
chapter to obtain observations and draw conclusions about the performance of
Hyper-heuristics (HH) for the problems. At the low level, a range of domain specific
llh, which are either low-level heuristics in selection HH or components in gener-
ation HH, are adaptively selected (Section 7.2). At the high level, both selection
and generation HH (Sections 7.3 and 7.4) have been developed to configure both

51© Springer Nature Switzerland AG 2018
N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications,
Natural Computing Series, https://doi.org/10.1007/978-3-319-96514-7_7

https://doi.org/10.1007/978-3-319-96514-7_7
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96514-7_7&domain=pdf

52 7 Vehicle Routing Problems

types of these llh. Due to the generality of HH, some of the research developed HH
approaches across different problem domains. Representative work along a line /
series of research developments, with focus on VRP, has been reviewed. HH across
multiple domains is discussed in Chapter 11.

In the rich literature of VRP research, a large number of VRP variants (VRP,
VRPTW, CVRP, and DVRP, etc.) have been modelled, with benchmark datasets
established when evaluating meta-heuristics. Although VRP has not been examined
extensively in HH as in meta-heuristic algorithms, most of these widely studied
benchmark VRP (see Appendix B.3) have also been considered in HH, and in some
cases evaluated against meta-heuristics. Interesting observations that emerged are
discussed in Section 7.5, leading to new lines of future potential research on real
VRP applications with more real constraints or problem features.

7.2 Low-Level Heuristics for Vehicle Routing Problems

In the most commonly used solution encoding in the VRP literature, customers or
tasks are usually represented as nodes in a graph representing the routing network.
This graph-based representation is used in this chapter. Based on the classifications
of HH [31], llh used in VRP are grouped into constructive in Section 7.2.1 and
perturbative in Section 7.2.2. These llh, configured by the high-level heuristics in
HH, operate upon nodes, which represent either customers or tasks. Most of these
llh are usually problem specific, and have been extended or hybridized in HH for
VRP variants with different constraints and features.

7.2.1 Constructive Low-Level Heuristics in Vehicle Routing
Problems

Two types of constructive llh are used in the VRP literature for selection and gener-
ation HH, respectively.

• In selection HH, classic constructive heuristics such as the Saving heuristic by
Clarke and Wright [48] have been employed to construct routes in VRP. In some
HH approaches, perturbative heuristics are also used together with these con-
structive llh to further improve the generated solutions; see Section 7.3.

• In generation HH, problem attributes (state attributes or problem features) are
used and combined using function operators or grammars to generate new heuris-
tic functions (trees) or sequences of heuristic templates, see Section 7.4. These
attributes and operators / grammars can also be seen as elements of constructive
llh, which are configured by the high-level heuristics in HH to construct solutions
for the VRP.

7.2 Low-Level Heuristics for Vehicle Routing Problems 53

In selection constructive HH, the most commonly used constructive llh are sum-
marized as follows. These heuristics and their extensions and hybridizations are
widely used in the VRP literature.

• Greedy: insert randomly selected customers, subject to constraints, into those
routes incurring the minimum cost

• Saving by Clarke and Wright [48]: merge two routes into one, based on the sav-
ings obtained on the distance of the resulting route

• Insertion by Mole and Jameson [123]: insert customers into a route that leads to
the minimum cost resulting from the insertion

• Sweep by Gillett and Miller [69]: subject to the capacity of vehicles, form clusters
of nodes by rotating a ray through (i.e. sweeping) customers clockwise or anti-
clockwise from the central depot; each route is then built by considering each
cluster of nodes as a travelling salesman problem

• Ordering: heuristics that order and insert customers into the routes using certain
criteria, i.e. increasing / decreasing demand, and farthest / nearest to the depot,
etc.

In generation constructive HH, each heuristic is represented as a tree or grammar,
with terminals (i.e. problem attributes) combined by function operators (i.e. internal
nodes) or grammars. These constructive heuristics are generated either online or
offline based on a set of VRP training instances [175, 104], and used to choose
nodes in the network when constructing routes for the VRP. The function operators
(see Table 7.1) or grammars are usually general across different problems; see also
Chapter 9 for packing problems. Terminals (problem attributes) are usually problem
dependent; we show below the ones widely used in HH for VRP.

• demand: (expected) (normalized) demand of the task for a customer
• capacity / load: (normalized) capacity when leaving the pickup or delivery node
• cost: cost of delivering the demand for a customer
• distance: distance from the current node or the depot; average distance of the

current nodes to the remaining nodes; standard deviation of distance to the re-
maining nodes; and the total distance of routes, etc.

• time related: for a node, (normalized) start stw and end etw of the time window;
arrival at and departure dt times; service time st; wait time wt at the pickup or
delivery node; and time t from the current node or depot; etc.

• satisfied: proportion of nodes already being served
• depotCost: cost to reach the depot from the node
• most constrained: most constrained tasks by demand or capacity
• angle: in relation to the Sweep heuristic, the angle between the current node and

the depot
• density: node density in the routing network graph

54 7 Vehicle Routing Problems

Table 7.1 Most used function operators in genetic programming

7.2.2 Perturbative Low-Level Heuristics in Vehicle Routing
Problems

Widely used perturbative operators in meta-heuristics have been used as llh in se-
lection HH, in some research hybridized with constructive llh, for variants of VRP.
In the literature, there is no existing research employing perturbative llh in gener-
ation HH. In most selection perturbative HH approaches, a subset or extensions of
the following perturbative llh have been employed. Operations of these llh upon the
routing solutions are usually subject to the constraints in the VRP.

• shift: move a single node to a different route
• swap: swap two adjacent nodes in a route
• interchange: swap two nodes from different routes
• or-opt: move consecutive nodes to a different position in the same route
• λ -opt: exchange λ edges in a route
• Van Breedam [66]: relocate, exchange and cross strings between two routes
• crossover: exchange (part of) routes between two solutions
• ruin and recreate (remove and re-insert, or destroy and repair): remove a number

of nodes using some criteria (time or location based), and insert them back into
selected routes using heuristics. A new route is opened for nodes that cannot be
re-inserted due to constraints.

7.3 Selection Hyper-Heuristics for Vehicle Routing Problems

In the existing selection HH, a given set of perturbative llh are usually selected
to improve initial complete solutions. In some approaches, both constructive and
perturbative llh are selected to construct and then improve the VRP solutions within
one HH framework.

Function Operation
Addition (+) addition, which adds values of two child nodes
Subtraction (−) subtraction, which subtracts values of two child nodes
Multiplication (∗) multiplication, which multiplies values of two child nodes
Protected division division, which divides values of two child nodes; when
(/) denominator is zero a protected operation is used
Relational operators comparison, which returns true or f alse based on the values of two
(≤, <, >, ≥, =, 6=) child nodes
(exp) exponential function, which returns ex, where x is the value of the child node
(max) or (min) returns the maximum or minimum value of two child nodes
(angle) angle between the coordinates of the node and the origin of the

polar system (usually the depot)

7.3 Selection Hyper-Heuristics for Vehicle Routing Problems 55

7.3.1 Selection Hyper-Heuristics Using Perturbative Low-Level
Heuristics

A variety of techniques have been employed in HH to select perturbative llh for
VRP. These range from local search [149, 191], to classifiers [8], to a multi-armed-
bandit mechanism [166]. The selected perturbative llh (Section 7.2.2), using online
or offline learning, or by solution evaluations, are applied to iteratively improve
complete solutions for variants of VRP.

Although not named HH, an adaptive large-neighbourhood search at the master
(high) level within a unified framework is developed in [149] to address a unified
pickup and delivery problem with time windows for five variants of VRP. Using
roulette wheel selection, simple destroy and repair heuristics (see Section 7.2.2)
compete to modify a large number of variables in complete solutions based on the
scores adjusted during online learning. The general framework has improved a large
number of best results across all five different variants, demonstrating a highly ef-
fective and robust approach with little tuning effort for large-scale real-world VRP
with mixed constraints and features.

VRP is one of the combinatorial optimization problems in the problem library
provided by HyFlex [29], see Appendix A.1, with different types of perturbative
llh (mutation, ruin and recreate, local search and crossover). An empirical study is
conducted in the HyFlex framework [177] using an iterated local search selection
HH with multi-armed bandit for VRPTW variants (Solomon, Gehring-Homberger,
see Appendix B.3), as well as course timetabling problems. Statistical analysis and
fitness-landscape-probing techniques are used on a set of training instances to iden-
tify a compact subset of the eight most effective llh. It is found that operators’ evolv-
ability (number of neighbours with better or equal fitness) can be used as an indica-
tor to distinguish and select llh within HH. Using HyFlex, an iterated local search
is employed in [191] as the high-level search to select from the 12 perturbative llh
using online learning. In [8], offline apprenticeship learning is used in HyFlex to
train classifiers based on small VRP instances to select from the 10 llh to improve
solutions for unseen instances.

In [166], VRPTW problems are decomposed into sub-problems. Sub-solutions
generated using column generation are combined and improved by a selection HH
by selecting from seven perturbative llh for the benchmark Gehring-Homberger
VRP (Appendix B.3. A multi-armed-bandit method is used based on online accu-
mulative rewards, and solutions are accepted using a Monte Carlo mechanism.

7.3.2 Selection Hyper-Heuristics with Both Constructive and
Perturbative Low-Level Heuristics

Some of the selection HH approaches employ meta-heuristics at the high level to
select both constructive and perturbative llh. The high-level heuristics usually ex-

56 7 Vehicle Routing Problems

plore or configure sequences of llh operators, which are applied to construct and
iteratively improve direct VRP solutions.

In [113], heuristic rules are used in a multi-agent system to select perturbative llh
to improve solutions for distance-constrained VRP. Within an agent meta-heuristic
framework, a coalition of agents explore the search space concurrently. In addition
to learning by individual agents, the agents are also improved by exchanging infor-
mation based on collective online learning. The llh operators are grouped as inten-
sifier (improvement) or diversifier (generation, mutation and crossover) operators to
strike a balance in the search. As the operators are used in both the initialization
and during optimization, the HH can be seen as configuring and hybridizing both
constructive and perturbative llh.

An evolutionary algorithm is developed in [66] at the high level to evolve se-
quences of constructive-perturbative llh pairs of variable lengths for 21 instances
of Kilby’s benchmark dynamic VRP [94]. Three types of llh are used, namely an
ordering llh to rank customers, four constructive llh to construct solutions, and four
repair heuristics to improve solutions. It is found that the llh evolved vary consider-
ably for static and dynamic parts of the problem. It is crucial to design simple and
effective llh considering adaption, average performance and speed. A diverse set of
simple llh is recommended to improve the coordination among the llh during the
evolution based on the communication of information on problem partial states.

In [122] a selection HH using an evolutionary algorithm is developed to evolve
sequences of action units of llh (problem specific variations and mutations) like
those in [66] for CVRP. It is observed that the best-evolved sequences of llh are
composed of multiple actions of variations and mutations, indicating that larger
neighbourhood structures are more effective at escaping local optima and producing
high-quality solutions.

7.4 Generation Hyper-Heuristics for Vehicle Routing Problems

Compared to selection HH, generation HH aim to generate new heuristic functions
or rules based on given llh. The newly generated functions or heuristics are then
applied when solving new problems. The pre-defined set of llh usually includes
problem attributes or features that are combined or configured using function
operators or grammars by the high-level heuristics or methods. In the current
literature, the most used high-level configuration methods for VRP are genetic
programming [84, 175, 193, 104] and grammatical evolution [57, 164], using
problem attributes (see Section 7.2.1) and genetic operators as shown in Table 7.1
for variants of benchmark VRP.

Genetic Programming HH In a two-level HH using GP, heuristic configurations at
the high level are represented by trees, where terminal nodes representing problem
attributes are connected by internal nodes representing function operators. The role
of GP is to find the best heuristic configurations, usually by conducting training on a

7.4 Generation Hyper-Heuristics for Vehicle Routing Problems 57

small subset of problem instances. In VRP, the design of GP consists of choosing a
subset of the function set in Table 7.1, and the problem attributes as the terminal set
(see Section 7.2.1). In [84, 193, 104] GP employs standard sub-tree crossover and
mutation to evolve via generations new constructive heuristics based on selected
training instances. The newly evolved heuristic functions or rules are applied to new
instances of the same problem. Table 7.2 summarizes GP HH approaches for VRP.

Table 7.2 GP HH for VRP variants
[193] [104] [84] [175]

Terminals six attributes of seven problem 11 problem attributes 20 attributes and nine
set vehicle behaviours attributes route selectors
Function +,−,∗,/,exp +,−,∗,/,min +,−,∗,/,max,exp compare
set max,sin,angle max
VRP static and uncertain DVRP (Saint-Guillain CVRPTW (Solomon
variant dynamic CARP CARP in Appendix B.3) in Appendix B.3)
High- Trees as heuristic functions h to calculate and assign the next vehicle (i.e.
level h value for the next decision variable) until a complete solution s is constructed
Low-level s The direct solution, i.e. a set of routes, constructed using h

In [193] the newly generated mathematical function is used to construct solutions
of tours for five sets of capacitated arc routing problems (CARP), a counterpart of
VRP where arcs rather than nodes are served by the vehicles. Six vehicle behaviours
including demand, load, cost, satisfied, and depotCost, etc. (see Section 7.2.1) are
used in the terminal set, configured and operated using eight mathematical operators
(see Table 7.2, explained in Table 7.1) at the high level. The same problem objective
function is used at both levels. The study also analyzed the features of the high-level
search problem using two indirect representations in GP. The dimension of heuristic
configurations is independent of problem size, and much smaller than that of direct
solutions, as studied in [151]. The evolved new mathematical functions showed to
perform well on both static and dynamic CARP.

A GP is developed based on training instances of Uncertain Capacitated Arc
Routing Problems (UCVRP) with environment changes in [104]. The generated
trees of new heuristics are used to order vehicle tasks during solution construction.
Changes of task demand and edge accessibilities are addressed based on average
and worst costs of the resulting solutions. Domain specific knowledge is studied
to design effective GP HH. Three functions showed to be effective, by selecting
a promising set of candidate tasks, detecting edge failures, and addressing route
failures due to environment changes. Six function operators as shown in Table 7.2
are used, to configure problem attributes including demand, cost, load, depotCost,
satisfied, and constant, etc.

Dynamic VRP with new arrival tasks is addressed in [84] using a GP HH. Av-
erage costs of training instances of nine different scenarios are used to measure the
performance of HH to address the stochastic feature of real-time new task requests.
In addition to a number of problem attributes including normalized travel time to
the depot, normalized travel time from the current location, normalized service time,

58 7 Vehicle Routing Problems

normalized demand, and vertex density, etc., two other terminals, the expected num-
ber of future requests and the probabilities of new requests, are also considered. The
automatically generated heuristics are able to update routes with new arrival tasks,
and significantly outperformed three manual heuristics. It is found that simple llh
using probabilities as terminals does not improve the new heuristics generated.

In [175], GP is used to generate new constructive heuristics to construct solutions
for a benchmark CVRPTW (Solomon in Appendix B.3) and a new real world VRP.
A large number of problem attributes is considered in the terminal set. These can
be catogerized into selecting nodes (average distance of the node to the remaining
nodes, distance saving, first come fist served, slack in time window, time saving,
and those in Section 7.2.1), and selecting routes (first route, least / most used route
by time, route with most possible nodes, random route). Perturbative llh, local
search and crossover operators are then selected by an iterated local search at the
high level of HH to improve the initial solutions generated by the new heuristics.
The newly generated heuristics alone showed to be competitive against seven
standard constructive heuristics in VRP.

Grammatical Evolution HH In an HH using GE, high-level heuristic configu-
rations are represented by a string genotype of variable length, i.e. a four-tuple
Backus-Naur Form (BNF) <T, N, S, P> (see Table 7.3). Starting with a symbol
in S, a production rule P in the form of a BNF grammar sentence is composed based
on user-defined terminals T connected by operators or methods in a non-terminal
set N. P can be recursively interpreted until all elements in P are terminals in T, to
generate executable programs for the VRP. The generated programs (parsed trees)
are evolved by using genetic operators in GE.

Due to the nature of indirect genotype encoding in GE, the BNF grammar can
be easily defined by users and the resulting trees are evolved using high-level con-
figuration methods for solving different problems. The newly generated grammar
thus potentially could be more easily reused for other problem instances compared
to the newly generated constructive heuristics by genetic programming. In the lit-
erature, however, GE is less studied for VRP compared to genetic programming in
generation HH; see Table 7.3.

Table 7.3 BNF grammars in GE HH for VRP

BNF Sabar et al. [164] Drake, Killis and Özcan [57]

Terminals Neighbourhood operators and 11 symbols 26 attributes in Section 7.2.1
set T (AllMoves and Great Deluge, etc.)
Non-terminal Acceptance criteria, LST configurations, 12 arithmetic and relational operators
set N Neighbourhood structures / combinations in Table 7.1
Start symbol S <LST>: Local Search Template <Initialization><Ruin><Recreate>
Production P Rules composed of S followed by Rules / sentences consists of elements

elements in N and T in N and T
Problem DVRP (Christofides and Golden [72], CVRP, VRPTW (Augerat, Solomon

exam timetabling (Carter, ITC2007 in in Appendix B.3)
Appendix B.4)

7.5 Discussion 59

In [57], heuristics generated by GE are used not only to build the initial solutions
for a variable neighborhood search (VNS) algorithm, but also to select ruin and
insertion operators within the VNS for two VRP variants. Instead of systematically
switching operators in a predefined order in VNS, GE is used to automatically select
operators during the search. Another GE HH is devised in [164], using perturbative
llh to automatically generate and evolve templates of neighbourhood operators and
eight acceptance criteria for both dynamic VRP and exam timetabling problems.
The GE is associated with an adaptive memory of high-quality solutions to increase
diversity, leading to high performance in both problem domains.

7.5 Discussion

Current research in HH for VRP has addressed a diverse range of interesting issues.
Both perturbative and constructive llh have been hybridised and selected in one se-
lection HH, providing general methods applicable to real-world VRP with various
features. In selection HH, studies on identifying a compact subset of effective llh
revealed ideas to build more efficient HH frameworks. Combined llh (larger neigh-
bourhood operators) in selection perturbative HH showed to be more effective at
escaping from local optima. Online and offline learning for dynamic VRP obtained
more insights on dealing with uncertainties in VRP, and increased the robustness
and generality of HH. HH approaches serve as the mechanisms to explore and con-
figure integrated approaches based on either online or offline learning, indicating
promising future developments across both HH and meta-heuristics.

On the other hand, although generation constructive HH has been successfully
applied to generate new heuristics or functions for variants of VRP, more research
needs to be conducted to obtain in-depth analysis on generating new effective con-
structive and perturbative heuristics for different instances or problem variants.

Compared to other less-studied problem domains such as nurse rostering, VRP
variants have attracted relatively more attention in HH partially due to the wide
range of different constraints and problem features. Due to the high demand for its
real-world applications, however, there is much more potential in HH to provide
general solution methods for variants of VRP.

In VRP, perturbative llh configured by different selection HH approaches (evo-
lutionary algorithms, iterated local search, and classifiers, etc.) have showed to be
applicable directly to different VRP instances or variants. Automatically generated
new constructive heuristics configured using offline learning on training instances
based on problem state features, however, raise the question of reusability to vari-
ants of VRP. More analysis is needed on how the same generation HH framework
with different constructive llh could be reused, with offline or online learning, to
provide more insight to address this issue.

More findings of llh can facilitate more general and effective HH for a wider
range of VRP applications. This chapter focuses on benchmark VRP with several
different constraints or features in VRP variants. The high-level search in HH con-

60 7 Vehicle Routing Problems

figures llh, which encapsulate details in the specific problem. A range of llh for
VRP have been investigated, either on problem attributes with function operators
in genetic programming or grammatical evolution, general move operators in local
search, or genetic operators in evolutionary algorithms. Based on emerged findings,
some of these llh can be extended to encapsulate other problem specific features,
constraints and uncertainties, and applied to real VRP. A library of simple elemen-
tary llh, categorized to address specific aspects of vehicle / customer behaviour and
constraints, focus of search (intensification or diversification), and acceptance cri-
teria, and easily portable and extendable (i.e. via the form of XML) can facilitate
designing such more effective and general HH frameworks for real-world VRP.

Chapter 8

Nurse Rostering Problems

8.1 Introduction

Personnel scheduling problems arise from various real-world scenarios, including
supermarket staff scheduling, call centre staff allocation, police force scheduling,
and, the most studied, nurse rostering in hospitals. Due to the demands of quality
healthcare, limited resources, and the tight constraints of specific legislation world-
wide, the nurse rostering problem (NRP) has received extensive research attention
in the last five decades [26].

The NRP consists of assigning a set of nurses with different skills to a set of
shifts of different types on each day or timeslot of a scheduling period, satisfying a
set of constraints including coverage, legislation, personal preferences, and problem
specific requirements. The objective is to minimize the violations of soft constraints
(which ideally should be avoided, i.e. nurse preferences) while satisfying hard con-
straints (which must be satisfied, i.e. all shift demands must be covered during the
scheduling period).

As an NP-complete problem [130], nurse rostering presents a research challenge
in operational research and meta-heuristics. Algorithms or methods investigated in-
clude mathematical programming in operational research, evolutionary algorithms
in artificial intelligence and hybrid approaches across different disciplines. Current
research in HH on NRP has led to some interesting results based on the extensive
research on meta-heuristic algorithms [30].

Along with the extensive NRP research in the last five decades, benchmark NRP
datasets have been established, representing a good coverage of real-world problems
with different features. These NRP datasets have been applied in HH research; more
details can be found in Appendix B.2.

• UK dataset: One of the early datasets is derived from a major UK hospital, where
a set of 411 pre-processed valid shift patterns / sequences is defined with associ-
ated costs calculated based on various constraint violations.

• INRC2010 datasets: The First International Nurse Rostering Competition [76]
(INRC2010) also established a set of benchmark datasets, aiming to bridge the

61© Springer Nature Switzerland AG 2018
N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications,
Natural Computing Series, https://doi.org/10.1007/978-3-319-96514-7_8

https://doi.org/10.1007/978-3-319-96514-7_8
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96514-7_8&domain=pdf

62 8 Nurse Rostering Problems

gaps between theory and practice and promote advances of a range of new ap-
proaches.

• Nottingham datasets: An NRP web site has been established at the University of
Nottingham, providing a collection of a range of NRP problems derived from
hospitals worldwide, and the lower-bound solutions reported in the literature.

The majority of current HH approaches for NRP are selection based (Section
8.3), using a diverse set of techniques at the high level to configure a large set of low-
level heuristic (llh) perturbative operators associated with different acceptance crite-
ria for several well-established NRP benchmarks widely used in the meta-heuristics
community. Based on the success of some meta-heuristic algorithms implemented
for real-world NRP, more advances in both meta-heuristics and HH might further
address the gaps between research and practice for this highly constrained combi-
natorial optimization problem.

8.2 Low-Level Heuristics for Nurse Rostering Problems

Due to the hard constraints in NRP, perturbative llh operators are usually defined
subject to the fixed coverage requirement of specific shifts on the same day. Swaps
of shifts, either consecutive or not, are made between selected nurses on the same
day subject to the nurses’ skill types. Different methods employed a different subset
of the following llh and their extensions in the literature [119, 8, 76]:

• change shift: change the shift type of a (randomly) selected nurse based on his /
her skill type.

• swap shifts: between two nurses, swap shifts on n consecutive or non-consecutive
weekdays or weekends. Nurses may be randomly selected, or heuristically se-
lected based on the number of their conflicts with others, subject to their shift
types or skills.

• move shift: move the shift of a nurse to another nurse using certain criteria (ran-
domly without considering the costs, or heuristically with the least cost incurred).

• ruin and recreate: un-assign and re-assign all shifts of a set of selected nurses in
the roster solution randomly or heuristically.

The above list is not exclusive, but presents the most widely used llh in HH for NRP.
These llh have been used with different settings, mostly as simple operators, to gain
useful insights into their impact on the performance of different HH approaches.
Note that some of the llh of smaller size (which make smaller changes to problem
solutions) may be redundant given the other larger llh (i.e. one larger llh operation
may be equivalent to the application of several smaller llh operations), but both
types have been found to contribute to the flexibility of search at different stages of
problem solving for instances of different landscapes.

Along with perturbative operators, acceptance criteria have also been investi-
gated and compared in experimental studies [119]. Improving moves are usually
accepted, while worsening moves are accepted using various criteria, to strike a

8.3 Selection Hyper-Heuristics for Nurse Rostering Problems 63

balance between exploration and exploitation. Most widely used move acceptance
criteria in meta-heuristics are not problem specific, thus can be easily employed in
HH.

• All Move or Naive Acceptance: All neighbourhood solutions by each llh are ac-
cepted.

• Only Improving: Worse neighbourhood solutions are not accepted to encourage
exploitation. This can be first improvement, which accepts the first better neigh-
bour obtained, or best improvement to accept the best among a set of neighbours.

• Improving or Equal: Neighbourhood solutions of equal and better quality are
accepted.

• Late Acceptance: A solution better than the last n previously visited solutions is
accepted.

• Simulated Annealing: Worse solutions are accepted with a probability dependent
on the difference from the neighbourhood solutions, and a temperature parame-
ter. The probability gradually decreases, accepting less worse solutions at later
stages of the search.

• Great Deluge: Worse solutions within a threshold t are accepted, and t is reduced
during the search. Various strategies can be used to gradually reduce the thresh-
old.

• Adaptive Iteration Limited Threshold Accepting: This criterion checks a list of
recent neighbourhood solutions, and accepts new best solutions found after a
number of worse moves, or uses fitness values of recent moves as a threshold for
accepting worse solutions.

In HH, a subset of the above perturbative operators, associated with different
acceptance criteria, have been used as operator-acceptance llh pairs, and selected
in selection HH adaptively [17, 119, 8]. In other selection HH approaches, a fixed
acceptance criterion is used at the high level, and only perturbative operators are
considered and selected as llh. In some selection perturbative HH, these simple op-
erators are integrated with acceptance criteria as one combined llh, and selected by
the high-level heuristics [36, 52, 12, 4].

8.3 Selection Hyper-Heuristics for Nurse Rostering Problems

A diverse set of high-level methods have been used in selection HH, mainly on
three benchmark datasets detailed in Appendix B.2, namely the UK dataset with
411 shift patterns, the Nottingham benchmark dataset, and the INRC2010 competi-
tion dataset. These methods include choice functions, adaptive strategies, Bayesian
network and local search algorithms, and provide interesting findings on selecting
perturbative llh. A summary of different selection HH research in NRP is presented
in Table 8.1; details explained in this section.

Early research in HH developed various approaches for 52 instances derived from
a major UK hospital by selecting different perturbative llh as listed in Section 8.2.

64 8 Nurse Rostering Problems

Table 8.1 Selection perturbative hyper-heuristics for nurse rostering problems

High-level method llh Dataset

Cowling et al. [52] Choice Function 9 perturbative operators UK
Burke et al. [36] Tabu Search 9 perturbative operators UK
Aickelin et al. Bayesian Network rules to select the 411 UK
[4] shift patterns UK
Bai et al. [12] Simulated Annealing 9 perturbative operators UK
Bilgin et al. [17] Random, Choice 12 swap shifts and move INRC2010

Function, Dynamic shift operators, with 4
Strategy acceptance criteria

Misir et al. [119] Two adaptive strategies 29 swap shifts and move INRC2010
shift operators, with 7 instances
acceptance criteria

Shahriar et al. Iterated Local Search 4 types of perturbative Nottingham
[173] based on tensor analysis operators

A set of 411 pre-defined valid shift patterns has been obtained for this problem,
and the llh selected by the high-level methods operate upon these shift patterns.
The problem solutions thus are improved using llh to perturb the available patterns
/ sequences of shifts rather than individual shifts.

In [52], a choice function learns to select from nine perturbative llh with the first
improving acceptance criterion as defined in Section 8.2 to operate upon the 411
shift patterns in the UK benchmark NRP . The evaluation at the high level therefore
rewards each llh based on its online performance, i.e. the cost of the resulting roster
solutions. This same set of llh has also been employed in [36], where llh are selected
by a high-level tabu search within a unified HH framework for the same UK NRP
and also benchmark course timetabling problems. In [12], a simulated annealing
HH (SAHH) is hybridized with a genetic algorithm to exploit local optima more
efficiently. Based on the performance of the acceptance ratio of the nine llh, the
411 shift patterns are selected. Results demonstrate the high efficiency of the SAHH
approach compared to those in the literature.

An interesting approach is investigated in [4], where a Bayesian network is used
as the high-level method to select a string of rules. Each rule chooses from the
collection of 411 shift patterns to build roster solutions. Based on a set of training
instances, an estimation of distribution algorithm is used to learn the probabilities of
the rules that contribute to constructing high-quality roster solutions. The evaluation
at the high level is thus a measure of the likelihood the rules lead to good quality
rosters. This novel approach can be seen as a selection constructive HH that selects
llh rules using a statistical model to combine shift patterns to construct high-quality
roster solutions.

For the Nottingham benchmark NRP dataset with a large number of diverse prob-
lems at hospitals worldwide, a tensor-based machine learning technique is used in
[173] to extract patterns from the performance of llh. An iterative multi-stage al-
gorithm is then used to automatically select four types of llh operators (mutation,
crossover, local search, ruin and recreate) with improving and equal and naive ac-

8.4 Discussion 65

ceptance in the HyFlex framework [29] (see Appendix A.1) based on the knowledge
learned by the machine learning model.

The INRC2010 competition attracted a new line of HH research, where a large
number of perturbative llh are systematically investigated. In [17], three high-level
selection methods, namely random selection, choice function, and dynamic heuristic
set strategy, are used to select in total 12 variants of swap shifts and move shift op-
erators described in Section 8.2. These llh are categorized in three groups, by days,
weekdays and weekends, and n (non)-contiguous days, for two randomly chosen
nurses. Results have been compared against solutions obtained from integer linear
programming within similar computational time.

Another intensive study in [119] employs a monitor to manage two high-level
selection methods, namely hill climbing and tournament selection, and seven accep-
tance criteria to select nine heuristic sets. In total 36 variants of the HH approaches
with different settings for the high-level search and llh are studied to evaluate its di-
versification and intensification on 10 instances in INRC2010, and also another two
healthcare problems. At the high level, the monitoring mechanism manages at the
low level four types of acceptance criteria and in total 29 llh perturbative operators
of different sizes (number of changes to solutions) and speed (execution speed when
applied). The effects of heuristic selection and acceptance are analyzed based on the
frequencies of llh being called and the number of new best solutions found by each
llh.

The in-depth analysis in [119, 76] revealed some interesting research findings
within selection perturbative HH for NRP. A large number of different perturbative
operators and acceptance criteria have been automatically selected and combined to
develop general algorithms across different problems. HH can be seen as serving as
a general framework, where different elements at the two levels can be configured.
It was found that it is crucial to combine llh of distinct characteristics that can work
together. Such a simple framework can also offer a flexible analytical tool to support
effective algorithm design in meta-heuristics.

8.4 Discussion

Based on the existing rich research in nurse rostering problems (NRP) using a va-
riety of techniques and algorithms, some interesting findings have been obtained
on selection perturbative HH approaches. The analysis conducted on simple llh of
different behaviours, number of changes (sizes) and execution speed has led to a
deeper understanding of their performance on different instances [76]. With devel-
opments along different lines of research on problem specific llh, classifications of
NRP, and diverse sets of benchmark problems, HH can be further extended to ad-
dress a wider range of research issues in the meta-heuristic communities for these
highly constrained combinatorial optimization problems.

In selection perturbative HH, investigations have been conducted to examine the
effect of llh elements including perturbative / move operators and the associated ac-

66 8 Nurse Rostering Problems

ceptance criteria, on benchmark NRP [76, 119]. Analysis of the synergies between
different operators and acceptance criteria at the low level has provided insights into
effective search. In this sense, HH can be seen as an analytical tool and framework,
to support in-depth analysis of different elements within local search algorithms.
Research findings on the combinations among perturbative llh, in conjunction with
different acceptance criteria, can be extracted to facilitate advanced design of effi-
cient local search algorithms.

As highly constrained combinatorial optimization problems, various NRP have
been investigated with a wide range of constraints and problem specific features
from different countries. Compared to the diverse research using a variety of high-
level algorithms for vehicle routing and examination timetabling problems (Chap-
ters 7 and 10), current research in HH for NRP has mainly focused on selection
perturbative approaches. There is a lack of research on constructive HH for NRP.
More developments of constructive HH may require further research findings on
effective modelling of the complex NRP problems, hybridized with perturbative ap-
proaches. For example, for the UK NRP dataset (Appendix B.2.2), a set of valid shift
patterns are pre-defined considering various constraints. Selection HH can thus be
effectively applied. For the highly constrained NRP, developing generation HH to
generate new effective heuristics presents more challenges compared to selection
HH; thus simple heuristics and operators are easier to apply to different instances
and problems.

Based on the existing rich literature in NRP, HH can also be advanced by further
extending llh addressing different constraints in different NRP. Research effort has
already been made to categorize llh. Classifications of NRP have also been proposed
[44], using similar notations to those used in the scheduling literature. Given the
highly constrained nature of NRP, problem specific simple elementary llh could be
classified according to which and how many constraints thy address. Both the HH
and meta-heuristics communities may benefit from such a systematic study of the
synergies between different categories of constructive and perturbative llh.

The extensive study of meta-heuristics for NRP has motivated the establishment
of several diverse benchmark datasets; the findings obtained have also motivated HH
research. The pre-processing of the dataset from a UK major hospital has demon-
strated the effectiveness of constraint handling, by encapsulating the problem com-
plexity into a collection of pre-defined valid shift patterns. Similar studies in the
NRP literature [83, 188, 23] have also showed promising results using pre-defined
valid shift sequences (also called workstretches or stints) of high quality, i.e. with
fewer or no violations of constraints. The other two benchmark datasets, the NRP
benchmark site maintained at the University of Nottingham (see more details at
http://www.schedulingbenchmarks.org/), and the three tracks of datasets at the first
nurse rostering competition INRC2010 provide lower bounds as well as a unified
format of the problem description. Such efforts are highly valuable and are strongly
encouraged to promote future advances in both HH and meta-heuristics communi-
ties.

http://www.schedulingbenchmarks.org/

Chapter 9

Packing Problems

9.1 Introduction

The packing of items into a container or bin so as to minimize cost is a com-
mon problem experienced in industry. This chapter examines the use of hyper-
heuristics for solving bin packing problems presented in Appendix B.1. Selection
constructive hyper-heuristics and generation constructive hyper-heuristics have been
successfully employed to solve bin packing problems. The use of selection con-
structive hyper-heuristics is presented in Section 9.2 and generation constructive
hyper-heuristics in Section 9.3. The chapter concludes with a discussion on hyper-
heuristics for packing problems, including future research directions.

9.2 Selection Constructive Hyper-Heuristics

Selection constructive hyper-heuristics have been effective in creating initial solu-
tions for bin packing problems. The aim of selection constructive hyper-heuristics,
like low-level constructive heuristics, is to produce a good initial solution. This sec-
tion provides an overview of using selection constructive hyper-heuristics for the
one-dimensional bin-packing problem. Selection constructive hyper-heuristics se-
lect constructive heuristics to apply at each point in constructing a solution for the
problem. In the context of bin packing problems this involves selecting a heuristic to
choose a bin to place the next item in [105, 140, 161, 162]. Some of these heuristics
by definition also choose the item to place in a bin, e.g. first-fit decreasing. How-
ever, the hyper-heuristic can select a heuristic to choose both the item and the bin in
constructing a packing solution [140].

In applying a selection constructive hyper-heuristic, one has to decide on:

• The low-level constructive heuristics used for constructing solutions s.

67© Springer Nature Switzerland AG 2018
N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications,
Natural Computing Series, https://doi.org/10.1007/978-3-319-96514-7_9

https://doi.org/10.1007/978-3-319-96514-7_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96514-7_9&domain=pdf

68 9 Packing Problems

• The high-level method to select heuristic configurations, where each low-level
constructive heuristic is used at each point in constructing a solution s for prob-
lem P.

The following section describes the low-level constructive heuristics used in se-
lection constructive hyper-heuristics for bin packing problems. Section 9.2.2 de-
scribes methods that have been employed by selection constructive hyper-heuristics
in solving bin packing problems.

9.2.1 Low-Level Constructive Heuristics for Bin Packing

There are essentially two types of low-level constructive heuristics for packing prob-
lems, namely, heuristics that choose the bin to place the next item in, and heuristics
that choose the next item to be placed in the bin. Some heuristics combine both
of these functions. For example, the first-fit decreasing heuristic chooses the largest
item and places it in the first bin that it fits into. The low-level bin selection construc-
tive heuristics used in selection constructive hyper-heuristics [105, 140, 161, 162]
for bin packing problems include:

• First-fit (FF) - This heuristic places the item in the first bin that it fits into.
• Best-fit (BF) - The item is placed in the bin with the least amount of remaining

space once the item is placed.
• Next-fit (NF) - The item is placed into a new bin if it does not fit into the current

bin.
• Worst-fit (WF) - The item is placed into a bin with the most remaining space.
• First-fit decreasing (FFD) - The same as first-fit but items are sorted in descend-

ing order according to their size, and are allocated in order.
• Best-fit decreasing (BFD) - The same as best-fit but items are sorted in descend-

ing order according to their size, and are allocated in order.
• Next-fit decreasing (NFD) - The same as next-fit but items are sorted in descend-

ing order according to their size, and are allocated in order.
• Filler - This heuristic sorts the items to be placed in decreasing order according

to their size, and attempts to allocate as many items as will fit into the existing
bins. If none of the items fits, as many items as possible are placed in a new bin.

• Djang and Finch (DJD) - A bin is filled with items until it is one-third full, with
the largest items chosen first. Combinations of one to three items are tried to fill
the bin to its full capacity. If this is not successful, different combinations are
tried to fill the bin to within 1% of its capacity and then 2% of its capacity, and
so on. Variations of this heuristic have been used, such as Djang and Finch with
more tuples (DJT), which is the same as the DJD heuristic but combinations of
items from one to five instead of one to three are considered when attempting to
fill a bin.

9.2 Selection Constructive Hyper-Heuristics 69

The first-fit decreasing, best-fit decreasing and next-fit decreasing heuristics de-
cide on both the item to place next and which bin to place the item in. The following
item selection heuristics have been defined specifically for selecting an item [140]:

• Largest item - The largest item is chosen to be placed to a bin.
• Availability degree - The first item that fits into an existing bin is chosen.
• Saturation degree - The item that has the smallest number of bins available that

it can fit in is chosen next.

A selection constructive hyper-heuristic selects a heuristic to choose a bin, or
a heuristic to choose an item and another heuristic to choose a bin, at each point
in constructing a solution to the problem. The following section examines the tech-
niques that have been used by selection constructive hyper-heuristics for bin packing
problems.

9.2.2 Methods Employed by the Hyper-Heuristics

This section provides an overview of selection constructive hyper-heuristics em-
ployed to solve bin packing problems. Research in this area has basically taken one
of two approaches, namely, generating condition-action rules [105, 161, 162] or
heuristic combinations [140].

In the study conducted by Ross et al. [161, 162] the condition-action rules are
generated to select a constructive heuristic to select a bin to place the next item in.
The condition component of the rule defines the state of the problem in terms of:

• The number of huge items that still need to be packed. Huge items are those that
have size larger than half the bin capacity.

• The number of large items that still need to be packed. Large items are those that
have size in the range of a third to half the bin capacity.

• The number of medium items that still need to be packed. Medium items are
those with size in the range of a quarter to a third of the bin capacity.

• The number of small items that still need to be packed. Small items are those
with size less than a quarter of the bin capacity.

• The proportion of items that still need to be packed.

The action is the heuristic to be applied to choose a bin given the specified prob-
lem state. Each rule is composed of six numbers. The first five numbers are real val-
ues in the range 0 to 1 representing the problem state. The last number is an integer
value corresponding to one of the constructive low-level heuristics. Ross et al. have
used learning classifier systems (LCS) [162] and genetic algorithms (GA) [161].
The problem instances were divided into a training set and a test set. The training
set was used by the LCS and GA to induce condition-action rules, and the best-
performing rule was applied to the test set. In both studies the selection constructive
hyper-heuristics performed much better than each of the low-level heuristics applied
separately to solve the one- dimensional bin packing problem.

70 9 Packing Problems

López-Camacho et al. [105] take a similar approach and use a genetic algo-
rithm to evolve condition-action rules for selecting low-level bin selection con-
structive heuristics. As in the studies by Ross et al. [161, 162], the condition repre-
sents the state of the problem and the action the heuristic to apply. The problem
state is defined in the same way as in [161] and [162]. The selection construc-
tive hyper-heuristic was applied to the one-dimensional bin packing problem, the
two-dimensional regular bin packing problem and the two-dimensional irregular
bin packing problem. The problem instances for all three problems were divided
into a training set and a test set. The best condition-action rule evolved by the ge-
netic algorithm was applied to the test set of problem instances. The hyper-heuristic
performed better than the individual constructive heuristics applied separately for
all three problems.

In [140] the selection constructive hyper-heuristics use an evolutionary algorithm
to explore the space of constructive heuristic combinations. The heuristics in each
combination are applied in sequence to schedule an item, with one heuristic applied
for each item. Two hyper-heuristics were tested. The first evolves combinations of
heuristics to select a bin to place an item in. In the second hyper-heuristic each
chromosome comprises two combinations. The first is a combination of heuristics
to choose a bin and the second a combination of heuristics to choose an item. In this
case the hyper-heuristic evolves the combination of bin selection heuristics and the
combination of item selection heuristics simultaneously. Both hyper-heuristics pro-
duced better results than the low-level constructive heuristics applied separately for
one-dimensional bin packing. The hyper-heuristic evolving both the bin selection
heuristic combination and the item selection heuristic combination performed bet-
ter than the hyper-heuristic generating just the bin selection heuristic combination.
The combinations were evolved online for a particular problem instance.

9.3 Generation Constructive Hyper-Heuristics

Generation constructive hyper-heuristics have been found to be effective for bin
packing problems. In implementing a generation constructive hyper-heuristic the
researcher has to decide on:

• The operators that the new heuristics will consist of.
• The problem characteristics, existing heuristics and/or components of existing

heuristics that will be included in the new heuristics.
• The method that will be used to combine the operators and problem characteris-

tics and existing heuristics and/or components of the existing heuristics, into new
constructive heuristics.

For the domain of bin packing the operators used are basically arithmetic and
conditional-branching operators [82, 174]. These include:

• Addition (+): Performs the standard addition operation, which adds two values.

9.3 Generation Constructive Hyper-Heuristics 71

• Subtraction (-): Performs the standard subtraction operation, which subtracts two
values.

• Multiplication (*): Performs the standard multiplication operation, which multi-
plies two values.

• Protected division (%): Performs the standard protected-division operation,
which divides two values if the denominator passed to the operator is not zero. If
the denominator is zero the operation evaluates to an integer value such as 1 [82]
or -1 [174]. Due to the stochastic nature of the methods usually used to com-
bine operators and problem characteristics, such as genetic programming [96],
the denominator might evaluate to zero; hence a protected operator is used.

• Relational operators (≤, <, >): Perform the relational operations between two
values. For example, ≤ performs the less than and equal to operation. If the first
argument is less than or equal to the second argument the operation returns 1,
and -1 otherwise. Similarly, < and > return 1 if the first argument is less than or
greater than the second argument respectively, and -1 otherwise.

• Conditional branching operators: These operators perform a function similar to
if-then-else statements in a programming language. For example, the IGTZ [174]
executes its third argument otherwise.

The problem characteristics used depend on the bin packing problem being
solved. For example, problem characteristics used for the one dimensional bin pack-
ing problem include [82, 174]:

• The fullness of the bin, i.e. the sum of the sizes of the items contained in the bin.
• The capacity of the bin.
• The size of the item to be allocated.
• The residual space in the current bin.

Similarly, for the two-dimensional strip packing problem, the characteristics used
are specific to the problem [82]:

• The difference between the width of the bin and the width of the item.
• The bin height.
• The difference in heights of the bin and opposite bin, i.e. the bin to the right of

the bin.
• The difference in heights of the bin and the neighbouring bin.

In addition to problem characteristics, existing heuristics and components of
these heuristics can also be incorporated into the heuristics. For example, in the
study conducted by Sim and Hart [174] the following bin selection heuristic com-
ponents were also included in the heuristics:

• Attempts to pack the largest item into the current bin and returns 1 if the attempt
is successful and -1 otherwise.

• Attempts to pack the combination of two items with the largest combined size
into the current bin. If the attempt is successful 1 is returned, otherwise -1 is
returned.

72 9 Packing Problems

• Attempts to pack the combination of three items with the largest combined size
into the current bin. If the attempt is successful 1 is returned, otherwise -1 is
returned.

• Attempts to pack the combination of five items with the largest combined size
into the current bin. If the attempt is successful 1 is returned, otherwise -1 is
returned.

• Attempts to pack the smallest item into the current bin and returns a 1 if the
attempt is successful and -1 otherwise.

The generation constructive hyper-heuristic employs a technique to combine the
operators with problem characteristics and components of the existing heuristics to
create new low-level constructive heuristics. Genetic programming [96] has been
used for this purpose for bin packing problems. The operators form the function set
and variables representing the problem characteristics and components of existing
constructive heuristics form the terminal set for the genetic programming algorithm.
Integer constants can also be included in the terminal set and hence can be included
in the new evolved heuristics [174]. The function and terminal sets are used to cre-
ate an initial population, which consists of expression trees representing the low-
level heuristics. This initial population is iteratively refined through the processes
of evaluation, selection and application of genetic operators to evolve new low-level
constructive heuristics for the bin packing problem.

Sim and Hart [174] use a variation of genetic programming, single-node genetic
programming (SNGP), to generate constructive heuristics for the one-dimensional
bin packing problem. Instead of one implementation of SNGP, a distributed archi-
tecture, namely, an island model, is employed in order to explore more than one
area of the heuristic space simultaneously. The standard multiplication operator,
protected division, relational operators, namely, less than and greater than, and a
conditional-branching operator were used. The terminal set comprised of variables
representing problem characteristics, components of existing low-level heuristics
and integer constants. The problem instances were divided into a training set and a
test set. The training set was used by the SNGP island model to create a low-level
constructive heuristic, which was then applied to the test set. Hence, the heuristics
evolved were reusable. The evolved heuristics performed better than the existing
heuristics.

Hyde [82] examined the use of a genetic programming generation constructive
hyper-heuristic for the two-dimensional strip packing problem. The heuristics com-
prised the standard arithmetic operators, protected division and problem character-
istics. The evolved heuristics were disposable and performed better than existing
constructive heuristics applied separately.

In [82] a hyper-heuristic that creates heuristics for the one- dimensional, two-
dimensional and three-dimensional bin packing problems and knapsack problems
was investigated. The operators used are the standard addition, subtraction and mul-
tiplication operators and the protected-division operator. The problem characteris-
tics catered for all three dimensions and included the x, y and z coordinates of a
corner, the volume and value of an item, and three variables that measured the
wasted space for each item in terms of each two-dimension combination, i.e. xy,

9.4 Discussion 73

xz and yz. The evolved heuristics were disposable and performed just as well as the
best-performing existing heuristic applied individually.

9.4 Discussion

Hyper-heuristics have proven to be effective at solving bin packing problems. Se-
lection constructive hyper-heuristics have performed better than the existing human-
derived heuristics for the one-dimensional and two-dimensional bin packing prob-
lems. Similarly, generation constructive hyper-heuristics have created new low-level
constructive heuristics that outperform the human-derived existing heuristics for
the one-dimensional, two-dimensional and three-dimensional bin packing problems.
Furthermore, the time taken to induce these heuristics is less than that required to de-
rive manually. Hence, the use of generation constructive hyper-heuristics provides a
means of automating the design of constructive heuristics for bin packing problems.

Multipoint search algorithms have essentially been employed by selection con-
structive hyper-heuristics. Given the success of single-point search algorithms such
as tabu search and variable-neighbourhood search for other problem domains such
as examination timetabling [30], it would be interesting to see the effectiveness of
single-point search for exploring the heuristic space for bin packing problems. One
direction for future research would be to compare the performance of multipoint and
single-point algorithms in exploring the heuristic space for bin packing problems.

Given how well selection constructive and generation constructive hyper-
heuristics have performed independently for bin packing problems, it would be
interesting to examine a hybrid method combining both of these hyper-heuristics.
The generation constructive hyper-heuristic would create new heuristics that are
contained in the heuristic combinations or condition-action rules generated by the
selection constructive hyper-heuristic.

Genetic programming has essentially been used for inducing new constructive
heuristics, and has proven to be effective in [82]. However, in [174] single-node
genetic programming has been used instead and proved to be more effective than
standard genetic programming in inducing effective heuristics for bin packing prob-
lems. Furthermore, the heuristics evolved by genetic programming contain redun-
dant code, making the heuristics unreadable. Other techniques, such as grammatical
evolution, should be investigated for inducing heuristics.

There has not been sufficient research into the use of perturbative hyper-
heuristics for bin packing problems. Both selection constructive and generation
constructive hyper-heuristics as well as the hybridization of constructive and per-
turbative hyper-heuristics should be investigated for bin packing problems.

Chapter 10

Examination Timetabling Problems

10.1 Introduction

Examination timetabling represents one of the earliest and most studied problem
domains in hyper-heuristics (HH). Different interesting research issues have been
addressed in the literature, from high-level heuristic selection mechanisms and ac-
ceptance criteria and designing intelligent low-level heuristics, to fundamental stud-
ies on the formal definition of the two search spaces at the two levels. Promising
results have been obtained and progress has been made on designing simple and
effective approaches across different benchmarks as well as real-world problems.

The examination timetabling problem (ETTP) can be defined as assigning a set
of exams, each associated with a number of enrolled students, to a fixed number
of slots, subject to satisfying a number of predefined hard and soft constraints (see
Appendix B.4). In the literature on timetabling, a number of benchmark datasets
have been introduced in research and competitions, and extensively tested in the
last five decades [153]. The main focus has been on a wide range of heuristics and
meta-heuristics, and these approaches have been quickly employed in HH. A formal
definition of ETTP and the benchmark datasets are presented in Appendix B.4.

10.2 Low-Level Constructive Heuristics for Examination

Timetabling Problems

Early research in ETTP focused on constructive heuristics, leading to a rich set of
simple heuristics that can be easily used as low-level heuristics llh in constructive
HH. The basic timetabling problem can be modelled as a graph colouring problem
[153], thus graph colouring heuristics have been widely employed in constructive
HH, and they perform well across both examination and course timetabling prob-
lems [142].

75© Springer Nature Switzerland AG 2018
N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications,
Natural Computing Series, https://doi.org/10.1007/978-3-319-96514-7_10

https://doi.org/10.1007/978-3-319-96514-7_10
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96514-7_10&domain=pdf

76 10 Examination Timetabling Problems

The widely used graph colouring heuristics in constructive HH order exams
based on the difficulty of assigning them using the following criteria. The timetable
is constructed step by step by assigning the most difficult exams first.

• Largest Degree First (LD): exams are ordered in decreasing order by the number
of conflicts (i.e. degree) they have with all other exams.

• Saturation Degree First (SD): exams are ordered dynamically in ascending order
by the number of remaining feasible slots for them during the timetable construc-
tion.

• Largest Colour Degree First (LCD): exams are ordered in decreasing order by
the number of conflicts with those already assigned.

• Largest Enrolment First (LE): exams are ordered in decreasing order by the num-
ber of students enrolled.

• Largest weighted degree (LWD): exams are ordered using LD, weighted by the
number students involved in the conflict, i.e. taking both exams.

• Highest cost (HC): exams are ordered in decreasing order by the cost of violating
soft constraints incurred from assigning them to the current timetable.

10.3 Low-Level Perturbative Heuristics for Examination

Timetabling Problems

As in the other applications, perturbative HH in ETTP also use simple neighbour-
hood structures that change a single or multiple variables at each iteration of search.
In the literature, a subset of the following pool of llh (neighbourhood operators)
have usually been employed [34, 132] or extended with other features such as room
constraints [54] in perturbative HH.

• single move: a single exam is selected and moved to a new feasible slot
• swap: slots of two exams are swaped, subject to constraints
• move n exams: n randomly chosen exams are moved to new slots subject to con-

straints
• move whole slot: an entire randomly selected slot of exams is inserted into a

different slot
• swap slot: all the exams in two slots are swapped
• Kempe chain: a subset of conflicting exams in two slots are swapped
• constraint based: exams violating certain soft constraints are selected and moved

to a different slot

10.4 Selection Hyper-Heuristics for Examination Timetabling Problems 77

10.4 Selection Hyper-Heuristics for Examination Timetabling

Problems

In timetabling, research has mainly focused on selection HH that configure or
choose from the pool of llh defined in Sections 10.2 and 10.3.

10.4.1 Selection Perturbative Hyper-Heuristics for Examination
Timetabling Problems

Compared to selection constructive HH, less research has been conducted on selec-
tion perturbative HH, focusing on heuristic selection and move acceptance criteria
[34, 132, 54] at the high-level. The heuristic selection methods used range from
the simplest random selection [54] to genetic algorithms [33] to select llh from the
pool listed in Section 10.3. Move acceptance criteria are listed below. A summary
of perturbative HH is provided in Table 10.1.

• all moves: all moves are accepted
• only improving or equal: only moves to improving or equal solutions are accepted
• Monte Carlo or simulated annealing: non-improving solutions are accepted prob-

abilistically, and all improving solutions are accepted
• Great Deluge: solutions of fitness below a defined threshold are accepted, and

the threshold is gradually decreased at each iteration
• late acceptance: compared to the solutions in the last few iterations, solutions of

better quality are accepted

Table 10.1 Selection perturbative hyper-heuristics in examination timetabling problems

High-level method llh Datasets

Bilgin 7 heuristic selection, 5 move exam and slot selection Toronto, Yeditepe
et al. [18] acceptance based on conflicts function optimization
Özcan choice function with great exam selection based Toronto, Yeditepe
et al. [132] deluge acceptance on conflicts
Burke 4 heuristic selection, 3 Monte 4 exam selection based Toronto
et al. [34] Carlo-based acceptance on conflicts
Burke genetic algorithm 23 neighbourhood Toronto
et al. [33] structures
Demeester simple random tournament 4, 3 or 2 move operators, Toronto, ITC, KAHO
et al. [54] selection 4 acceptance criteria

In a series of research papers [18, 131, 132], a typical iteration of a selection
perturbative HH is defined as consisting of two steps, namely heuristic selection
and move acceptance at the high level. Combinations of different strategies in the
two steps have been analyzed in intensive experimental studies [18]. In [132] rein-
forcement learning in heuristic selection is investigated in a choice HH with linear

78 10 Examination Timetabling Problems

decreasing great deluge move criteria. Several factors such as additive and nega-
tive adaptation rates and memory length in the learning to reward or punish llh
have been examined. In [34], among the four different heuristic selection and three
Monte Carlo-based acceptance criteria, simulated annealing with reheating showed
to be promising when designing selection perturbative HH.

In [54], a simple tournament selection is used at the high level to select the
best neighbourhood operators from three groups of llh for three post-enrolment and
curriculum-based timetabling problems. In-depth analysis has led to observations
that are in line with [18], that no single combination of heuristic selection and move
acceptance dominates across different problem instances. The authors raised an in-
teresting research question on devising smarter llh in selection perturbative HH.

In [33] a new approach is investigated, where a genetic algorithm (GA) is em-
ployed to intelligently select appropriate neighbourhoods from a large pool for a
variable-neighbourhood search (VNS). The VNS can be seen as configured using a
GA, and produced some of the best results at the time. Although 10 out of the 23
neighbourhood operators contributed the most to the significantly improved results
in VNS, it is shown that other neighborhood operators are also useful; thus adaptive
selection is still needed to perform well across different instances.

10.4.2 Selection Constructive Hyper-Heuristics for Examination
Timetabling Problems

Selection constructive HH were the earliest studied for examination timetabling. A
summary of these HH is presented in Table 10.2.

Early research in HH focused on indirect encoding in GAs to overcome the lim-
itations of direct encoding and also to improve the generality of construction meth-
ods. In [183], indirect encodings of lists of constraint satisfaction strategies (vari-
able and value ordering with the colour degree heuristic) are evolved to construct
timetables. At the time the term “hyper-heuristics” had not been specifically used in
the paper, however, promising results indicated new directions for developing more
general algorithms by evolving combination of heuristics.

In [160] insightful analysis has been conducted on three different fitness mea-
sures on variance of solution quality, thus to reflect the overall generality of algo-
rithm performance, i.e. low variance means better generality solving different in-
stances. A steady-state GA with different crossover and mutation is used to evolve
a large number of event and slot selection llh extended from those in Section 10.2.
Using different descriptions of problem states, these llh are used to construct timeta-
bles for different timetabling problems. Promising results compared to fixed con-
structive heuristics indicate the synergistic effect from HH, thus encouraging future
extensions of research in the area.

A simple and effective graph-based selection hyper-heuristic (GHH) framework
is established in [32] to select graph-colouring-based llh (as listed in Section 10.2)
for constructing timetables. Tabu search is employed at the high level to search

10.4 Selection Hyper-Heuristics for Examination Timetabling Problems 79

heuristic sequences of five graph colouring llh and a random ordering strategy.
In [151] “two search spaces”, namely the heuristic space and solution space, are
formally defined within the framework. Interesting issues of both search spaces,
such as the upper bound of their sizes, representation and move operators, are dis-
cussed. Analysis shows that not all solutions in the solution space can be obtained by
the high-level search upon the heuristic space. A simple local search is hybridized
within GHH to further improve the solutions, by exploiting solutions not reachable
using the high-level search upon the heuristic space. It is proposed that the role of
high-level search in this selection constructive GHH is to explore wider regions of
solutions, and the local search further exploits solutions obtained in the solution
space.

The above GHH framework in [32] searches for heuristic sequences, where ap-
propriate llh are used at different stages of solution construction. Extensions of the
framework have been investigated in a series of papers. In [152] a two-stage adaptive
iterated local search is used at the high level to select those llh at the beginning of
the heuristic sequence. A local search is then used to improve the whole sequence.
Such an approach is designed based on an analysis of a large collection of high-
quality heuristic sequences on sample instances. It is observed that those llh at the
beginning of the heuristic sequences are crucial in constructing high-quality timeta-
bles. In [154] an EDA is used to learn those effective llh in high quality heuristic
sequences based on statistical information collected in a probability vector.

Based on the GHH framework, a type of knowledge-based system named case-
based reasoning (CBR) is used to select constructive graph colouring llh based on
offline knowledge extracted and stored in a case base [40]. Good llh used to con-
struct previous high-quality timetables on training instances are stored with their
corresponding solution construction scenarios in the case base, and retrieved in sim-
ilar scenarios when we construct timetables for new instances. Knowledge discov-
ery techniques are used to learn features representing scenarios, and the system
is trained based on a large set of randomly generated instances for both course and
exam timetabling problems. In [103], llh sequences are classified as “good” or “bad”
using a neural network model. Only good llh sequences are used to construct timeta-
bles, in order to significantly reduce the computational expenses of GHH. It has been
found that hidden patterns can be found by using a neural network and logistic re-
gression upon the llh sequences. This indicates a potential direction of developing
other knowledge-based methods for various problems.

Pairwise graph colouring llh are simultaneously considered to construct timeta-
bles in [7]. The overall “difficulty” of assigning exams is calculated by using fuzzy
logic to combine two llh, rather than by using a single llh as shown in Section 10.2.
The combined constructive llh has shown to outperform single llh, and reduce back-
tracks (re-assigning exams) in constructing feasible solutions. Although the focus
of the research is on combining, rather than selecting, constructive llh, the approach
could be extended to explore adaptive selection and combination of llh using fuzzy
models.

In [143], four hierarchical combinations of two graph colouring llh are studied.
The primary llh selects exams and the secondary llh breaks the ties while assigning

80 10 Examination Timetabling Problems

the most difficult exam to the lowest penalty slot. This presents a new way of apply-
ing constructive llh simultaneously compared with that in [7]. Results obtained are
competitive with existing ones in the literature.

The interesting issue of encoding in evolutionary algorithms has been addressed
in [148]. Three different encodings of llh sequences are compared. It is found that
variable-length combination of constructive llh performed better. With all three en-
codings, evolutionary algorithms always converge to the same best llh combinations
as obtained with individual encodings. The encodings have shown no correlation
with the problem characteristics, indicating the generality of this approach across
different problem domains.

In [165], a difficulty index is calculated based on four hierarchically ordered lists
created using llh, to adaptively assign the most difficult exams measured by the
combined difficulty. Roulette wheel selection is used to select slots for the chosen
exam. This simple and purely constructive approach has shown to be able to produce
competitive results compared against the best approaches in the literature.

Table 10.2 Selection constructive HH in ETTP
High-level method llh Dataset

Terashima-Marı́n GA with indirect coding CSP strategies with Toronto
et al. [183] colour degree
Ross et al. [160] GA with 3 crossover, 3 16 event selection, 28 Toronto, ITC class

mutation operators slot selection timetabling
Burke et al. [40] CBR LD, CD, SD, LE, LWD random
Burke et al. [38] tabu search LD, CD, SD, LE, LWD, Toronto, course

random timetabling
Qu et al. [152] adaptive ILS SD, LWD Toronto
Qu & Burke 4 local search LD, LE, CD, SD, LWD Toronto, course
[151] timetabling
Asmuni et al. [7] fuzzy combination of LD, LE, SD Toronto

constructive heuristics
Pillay & Banzhaf [143] 4 hierarchical combinations LD, LWD, SD, LE, HC Toronto
Li et al. [103] ANN, logistic regression LD, CD, SD, LWD Toronto
Pillay & Rae [148] EA with three encodings LD, LWD, SD, LE, HC Toronto
Sabar et al. [165] 4 hierarchical hybrids of llh LD, LCD, SD, LE Toronto, ITC07
Qu et al. [154] EDA heuristics 15 graph colouring Toronto

10.5 Generation Hyper-Heuristics for Examination Timetabling

Problems

In the current literature, there is not much research on generation HH for ETTP.
Existing llh have been decomposed to create components for high-level generation
methods. This requires a good understanding of the specific problems, which cannot
be easily transferred across problem domains. These present challenges for raising

10.6 Discussion 81

the generality of efficient generation HH and pose interesting issues for future re-
search in HH.

In [11], in-depth analysis has provided insights into designing effective genera-
tion constructive HH while striking a balance between the flexibility of the grammar
and the size of the search space. Special initialization is used to generate valid initial
trees using the grammar over standard deviation trees. The most widely used graph
colouring llh in Section 10.2 and slot selection heuristics have been decomposed
to create a rich set of components for the generation of sophisticated new heuris-
tics. The approach has shown to outperform other constructive HH as well as some
improvement methods due to its ability to evolve new heuristics.

Different high-level methods including genetic programming, genetic algorithms
and random generation have been investigated in [146] to evolve new constructive
heuristics based on a set of llh including problem attributes and period selection
heuristics. In two HH, namely arithmetic and hierarchical HH, the interesting issue
of two different encodings has also been studied. In genetic programming, trees are
used to combine llh using function operators, while in genetic algorithms strings of
llh are used. In hierarchical HH, ties are broken by applying the next attribute in
the string. In arithmetic HH, the first event in the ordered list using the generated
constructive heuristic is assigned to the period leading to the minimum cost; ties are
broken by selecting a random period with the same cost.

Two types of heuristics were examined, arithmetic heuristics and hierarchical
heuristics. Arithmetic heuristics were found to perform better than hierarchical
heuristics for the examination timetabling problem. It is also interesting that heuris-
tics generated by arithmetic HH are not readable.

10.6 Discussion

ETTP has been investigated in Operational Research and Artificial Intelligence for
more than five decades, leading to advanced research in meta-heuristics, exact meth-
ods such as mixed integer programming, and hybrid approaches. It also presents one
of the earliest-studied applications in HH, and interesting research discoveries have
been obtained across several sets of benchmark problems widely tested in the liter-
ature.

Based on the rich collection of constructive heuristics and search operators with
acceptance criteria, both selection constructive and selection perturbative HH have
been developed. Combinations and / or extensions of various heuristics and opera-
tors are selected by high-level methods to construct or improve timetable solutions
subject to different constraints. The current focus in selection HH for ETTP is on
designing a wide range of high-level selection methods, from simple choice func-
tions, random tournament selection and evolutionary algorithms, to various tech-
niques such as fuzzy logic, hybrid ordering strategies, artificial neural networks and
case-based reasoning. Research issues associated with developing effective high-
level methods include different encodings in evolutionary algorithms, and analysis

82 10 Examination Timetabling Problems

of the search spaces of heuristics and solutions, leading to interesting findings on
the generality and fundamentals of selection HH for ETTP.

There is, however, less research on generation HH for ETTP, compared with that
in other applications such as vehicle routing and packing problems. This may be
partially due to the lower demand for the generation of new constructive heuristics
for ETTP, which have been intensively investigated in meta-heuristics for the last
five decades. One potential issue of generation HH is that the generated heuristics
are often not readable or not easy to interpret, thus not always reusable for other
problems. This is the case not only for ETTP but also for all other problem applica-
tions with complex constraints.

Chapter 11

Cross-Domain Hyper-Heuristics

11.1 Introduction

Hyper-heuristics aim to provide heuristic algorithms of a higher level of general-
ity that produce good results for all problems in a domain rather than just for one or
two problem instances but poor results for the others. Cross-domain hyper-heuristics
extend this scope of generality across domains. These hyper-heuristics aim at pro-
ducing good results across problems for different domains rather than for one do-
main and poor results for another domain. This research has essentially focused
on solving discrete combinatorial optimization problems. Exclusively selection per-
turbative hyper-heuristics have been researched to provide cross-domain solutions.
This is due to the 2011 CHeSC competition, which challenged the hyper-heuristics
community to produce a selection perturbative hyper-heuristic that performs well
over six different discrete combinatorial optimization domains [126]. There have
been studies that have applied hyper-heuristics to more than one problem domain,
however their performance is evaluated separately for each problem domain and not
across different problem domains, and hence these are not considered to be cross-
domain hyper-heuristics.

Section 11.2 provides an overview of the CHeSC challenge. Selection perturba-
tive hyper-heuristics that have performed well in the challenge and some of the more
recent hyper-heuristics applied to solve this problem subsequent to the challenge are
outlined in Section 11.3.

11.2 Cross-Domain Heuristic Search Challenge (CHeSC)

In order to promote the use of hyper-heuristics across domains, thereby increasing
the level of generality of hyper-heuristics, the Cross-Domain Heuristic Search Chal-
lenge (CHeSC 2011) [126] was held in 2011. The HyFlex framework was developed
for this purpose, allowing competitors to implement a selection perturbative hyper-

83© Springer Nature Switzerland AG 2018
N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications,
Natural Computing Series, https://doi.org/10.1007/978-3-319-96514-7_11

https://doi.org/10.1007/978-3-319-96514-7_11
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96514-7_11&domain=pdf

84 11 Cross-Domain Hyper-Heuristics

heuristic that would produce good results over all six problem domains. CHeSC
2014 extends the cross-domain challenge by introducing “batching” and allowing
multi-threading strategies. The framework provides the following for each domain:

• Methods to create an initial solution.
• Methods to calculate fitness, i.e the objective value.
• Low-level perturbative heuristics.
• Problem instances for the problem domain.

The framework implements the above for the following combinatorial optimiza-
tion problems:

• Boolean satisfiability
• One-dimensional bin packing
• Permutation flow shop
• Personnel scheduling
• Travelling salesman
• Vehicle routing

The low-level heuristics made available for each of the six domains are generally
grouped into four categories [126]:

• Mutational heuristics: Also called perturbation heuristics. These heuristics make
small changes to the solution. The operations performed by these heuristics in-
clude swapping, changing, adding or deleting solution components.

• Ruin-recreate heuristics: These destruction-construction heuristics delete some
components of a solution, and then reconstruct the solution using problem spe-
cific low-level construction heuristics.

• Local search heuristics: Also called hill-climbing heuristics. These heuristics
make small changes to a solution iteratively. The new solution is only accepted
if it has fitness equal to or better than the original solution to which the heuristic
was applied. These heuristics guarantee that the new solution will be at least as
good as the original solution.

• Crossover: This heuristic is applied to two selected solutions and produces a
single offspring.

The performance of a hyper-heuristic is assessed over the problem instances for
all six problem domains in comparison with of the performance of other hyper-
heuristics also applied to these problems. The eight top-performing hyper-heuristics
are determined based on the objective value of the solution produced by the hyper-
heuristic. These hyper-heuristics are assigned a rank, with a higher rank indicating
a better performance. The remaining hyper-heuristics are not assigned a rank. These
ranks are then summed to indicate the performance of each hyper-heuristic over all
the problem instances and different problem domains.

11.3 Approaches Employed by the Hyper-Heuristics 85

11.3 Approaches Employed by the Hyper-Heuristics

This section provides an overview of the top five finalists in the CHeSC challenge in
Section 11.3.1 and recent approaches that produced good results in Section 11.3.2.

11.3.1 Finalists of CHeSC 2011

The winning approach in the challenge was AdapHH. AdapHH [117, 120] maintains
an adaptive dynamic heuristic set for heuristic selection. At the end of a set number
of iterations, the heuristics are evaluated according to their performance during these
iterations. A performance metric measuring heuristic performance in terms of how
well the heuristic performs, i.e. the best solutions produced, and its speed, is used for
this purpose. A performance index calculated by the performance metric is used to
calculate a quality index for each heuristic. The heuristics with a quality index below
the average quality index of all the heuristics are omitted from the set for a number
of iterations, referred to as the tabu duration. If the tabu duration of a heuristic
is increased due to consecutive omissions, and exceeds a maximum threshold, the
heuristic may be permanently removed from the heuristic set. After a set number
of iterations, extreme heuristic removal may occur, where heuristics not performing
well on all the iterations are removed from the set. A heuristic is selected from the
set using a selection probability, which is a function of its performance and time
taken when it is applied to the problem. The study also introduces the concept of
relay hybridization to identify a pair of heuristics that can be applied consecutively.
Adaptive iteration limited list-based threshold accepting is introduced as the move
acceptance to accept better moves. In addition it also accepts moves that result in
worse solutions when compared to a solution of a previous iteration, not the last
iteration.

In [80, 81] a variable-neighbourhood search selection perturbative hyper-
heuristic (VNS-TW) is developed for the six combinatorial optimization problems.
This hyper-heuristic performs four steps, namely, shaking, local search, environ-
mental selection and periodic adjustment, iteratively. During shaking a low-level
heuristic from the mutation and ruin-create categories of heuristics is selected and
applied to a base solution. On the first iteration, the base solution is randomly se-
lected. Local search involves iteratively applying heuristics from the local search
heuristic category, and terminates when there is no improvement for a set number of
iterations. The number of iterations is a parameter, initially set to a maximum value
and adjusted during the periodic adjustment step. A dynamically sized population
of good solutions is maintained. During environmental selection, the new solution
produced at the end of local search replaces a worse solution in the population, and
a new base solution is selected from the population for the next iteration. Periodic
adjustment is invoked whenever the approach has been running for a set time bud-
get, to adjust the population size and the number of iterations for which there is no

86 11 Cross-Domain Hyper-Heuristics

improvement in the local search. This approach was placed second in the CHeSC
2011 challenge.

The approach ML using reinforcement learning employed by Larose [98] was
placed third in the challenge. ML iterates between a diversification cycle, an in-
tensification cycle and move acceptance. During the diversification cycle, heuristics
are selected from the mutation and recreate and no-op (has no effect) heuristics. The
intensification cycle selects local search operators. Reinforcement learning as em-
ployed in [113] is used to select the heuristics to apply. The heuristics are chosen
based on their performance during previous iterations. A weight matrix is main-
tained to keep track of heuristic performance, and is adjusted according to heuris-
tic performance. The solution produced after the intensification and diversification
phases is accepted if it is an improvement on the solution of the current iteration, or
there has been no improved solution for a set number of iterations.

PHunter, the selection perturbative hyper-heuristic employed by Chan et al. [53],
takes an analogy from pearl hunting. Pearl hunting involves a diver diving to retrieve
pearls and resurfacing. When the diver resurfaces the next dive will be moved to a
new area to retrieve the pearls from this area. The phases of diving and moving to
a new area are seen as analogous to the processes of intensification and diversifi-
cation in search. During the “move” or diversification phase, a heuristic is selected
from any category except the local search heuristics. If the resulting solution has an
objective value that is within a specified threshold, this process continues. During a
“dive” or intensification, local search heuristics are applied. Two types of dives are
performed, namely, snorkelling and deep dive. Snorkelling involves applying a short
sequence of hill climbers with a low search depth. Deep dive applies a long sequence
of hill climbers with a high search depth iteratively until there is an improvement
in the objective value. Snorkelling is first performed to obtain a set of solutions,
which are ranked. Deep dive is then applied to a subset of the best solutions result-
ing from snorkelling. PHunter also works in different modes. For example, if during
snorkelling and deep dive the heuristics produce the same solution, this is referred to
as “shallow water”. This results in only snorkelling being performed with a simpli-
fied sequence of heuristics. Offline learning is performed to determine the different
modes. PHunter was placed fourth in the challenge.

The fifth finalist was an evolutionary programming hyper-heuristic (EPH) [112].
It employs co-evolution, where a population of solutions and a population of heuris-
tic sequences are evolved at the same time. The solutions are initially created using
a construction heuristic for the problem domain, e.g. first-fit for the one-dimensional
bin-packing problem. The initial population of heuristic sequences is randomly cre-
ated. Each heuristic sequence comprises a perturbation segment followed by a local
search segment. The perturbation segment comprises one or two heuristics from the
mutation, crossover or ruin-create categories. The local search segment contains lo-
cal search heuristics. Each local search heuristic is applied either once, or iteratively
using variable-neighbourhood descent where only solutions with an improved ob-
jective value are accepted. Each heuristic sequence is evaluated by applying it to
a randomly selected solution from the population. The resulting solution replaces
the worst solution in the population if its objective value is better than at least one

11.3 Approaches Employed by the Hyper-Heuristics 87

solution in the population, and its objective value is different to that of the solutions
already in the population. Tournament selection and the mutation operator are used
to create successive generations of heuristic sequences.

Subsequent to the competition, there have been a number of initiatives to improve
the results obtained by the finalists for the challenge. The following section provides
an overview of these recent attempts.

11.3.2 Recent Approaches

As the field advances, some recent selection perturbative hyper-heuristics have per-
formed better than most of the finalists described in the previous section. In [168] the
low-level perturbative heuristics are modelled as a tree. Monte Carlo search is then
applied to this tree to select the heuristic to apply. The approach includes a memory
mechanism which stores a population of solutions that are produced by applying a
heuristic. Each heuristic is applied to a solution randomly selected from memory. If
the solution is better than the current solution, it replaces this solution in memory.
The move acceptance component accepts all improving solutions as well as worse
solutions according to a preset probability. This hyper-heuristic outperformed the
five finalists in the competition.

In [92] heuristic sequences consisting of low-level heuristics are first created.
These are then modelled as hidden Markov models, with each heuristic correspond-
ing to a hidden state in the Markov model and assigned a probability of being se-
lected. The move acceptance criterion is a binary decision that either accepts all
moves or accepts a solution if it is better than that produced by the previous heuris-
tic sequence evaluated. This selection perturbative hyper-heuristic outperformed the
five finalists in the challenge.

An iterated multi-stage hyper-heuristic is employed in [93]. In this study two
hyper-heuristics are applied in cycles. One of the hyper-heuristics, the stage2 hyper-
heuristic, is used to determine the effectiveness of the low-level heuristics by us-
ing a greedy selection method. Based on their performance, a score is assigned to
each low-level heuristic. The subset of the best-performing heuristics is used by
the second hyper-heuristic, the stage1 hyper-heuristic. In the stage1 hyper-heuristic,
roulette wheel selection is used to select a heuristic and threshold acceptance is used
to decide whether to accept the heuristic or not. Threshold acceptance accepts all
improving solutions and worse solutions that are not worse than the objective value
of the best solution obtained thus far by a threshold. The stage1 hyper-heuristic is
applied first with all the low-level heuristics scored equally. It also incorporates re-
lay hybridization, which pairs heuristics together and applies them consecutively.
Each low-level heuristic is applied for a set duration. The stage2 hyper-heuristic is
then applied to reduce the set of low-level heuristics. In cycling between the hyper-
heuristics, no further improvement objective value is used as the criterion to switch
between the two hyper-heuristics. This approach also outperformed the five finalists
presented in the previous section.

88 11 Cross-Domain Hyper-Heuristics

The authors in [9] employ a tensor-based hybrid move acceptance hyper-heuristic
for the cross-domain challenge. The hyper-heuristic performs five phases, namely,
noise elimination, tensor construction, tensor factorization, tensor analysis and hy-
brid move acceptance. Noise elimination determines the set of low-level heuristics
to use, i.e. it eliminates poorly performing heuristics. A tensor is constructed using
these heuristics and factorized to determine which pairs of heuristics perform well
together. Tensor analysis involves dividing the heuristics into two partitions, with
each partition using a different move acceptance method. These form two selection
perturbative hyper-heuristics, which are applied in a round-robin manner for a set
duration. This process is applied iteratively to solve the problem at hand. This hyper-
heuristic produced better results than four of the finalists, namely, ML, VNS-TW,
PHunter and EPH.

11.4 Discussion

This chapter presents cross-domain hyper-heuristics, i.e. hyper-heuristics that per-
form well over problem instances from different combinatorial optimization do-
mains. This research has essentially focused on selection perturbative hyper-
heuristics as a result of the CHeSC 2011 challenge and the public availability of the
HyFlex framework; see Appendix A.1. If we examine the top-performing selection
perturbative hyper-heuristics certain trends are apparent that appear to contribute
to the success of these cross-domain hyper-heuristics. A majority of these hyper-
heuristics include a mechanism for reducing the set of low-level heuristics at some
point. In AdapHH [120] a dynamic heuristic list is maintained from which poorly
performing heuristics are eliminated for a set duration or completely. Similarly, in
the study conducted by Kheiri and Özcan [93] a second hyper-heuristic is used to
determine the set of low-level heuristics to use, and the noise elimination phase in
[9] determines the set of low-level heuristics to use. Furthermore, the move accep-
tance methods employed also accept worsening moves in addition to moves to an
improvement in the objective value, which enables the search to escape local optima.
In two of the best performing hyper-heuristics, the effectiveness of relay hybridiza-
tion has been illustrated and warrants further investigation. A thorough theoretical
analysis of these hyper-heuristics, including fitness landscape analysis, needs to be
conducted to better understand their performance.

All the research in this area has involved selection perturbative hyper-heuristics.
There has also been some research into the automated generation of selection per-
turbative cross-domain hyper-heuristics [124, 167, 169]. These studies will be dis-
cussed in Chapter 13 on automated design of hyper-heuristics. However, there is
a lack of research into selection constructive hyper-heuristics or generation hyper-
heuristics to solve cross-domain problems. Future research is needed to address this.

Part III

Past, Present and Future

Chapter 12

Advances in Hyper-Heuristics

12.1 Introduction

The previous chapters have introduced the four types of hyper-heuristics, presented
the theoretical foundations and examined various applications of hyper-heuristics.
This chapter provides an overview of some advanced topics and recent trends in
hyper-heuristics, namely, hybrid hyper-heuristics, hyper-heuristics for automated
design, automated design of hyper-heuristics and hyper-heuristics for continuous
optimization.

12.2 Hybrid Hyper-Heuristics

Hybrid hyper-heuristics refers to combining two or more types of hyper-heuristics,
namely, selection constructive, selection perturbative, generation constructive and
generation perturbative, to solve a problem. In most of the studies conducted in this
area, two hyper-heuristics are combined. In [79], a generation constructive hyper-
heuristic employing genetic programming is used to create new constructive heuris-
tics. A genetic algorithm selection constructive hyper-heuristic is used to determine
the most effective sequence of the new heuristics to solve the problem. The hybrid
hyper-heuristic is applied to the capacitated vehicle routing problem and outper-
formed the constructive heuristics generally used to solve the problem.

Li et al. [102] use a hybrid hyper-heuristic to minimize the total weighted tar-
diness in the intercell scheduling problem considering transportation capacity. A
generation perturbative hyper-heuristic is used to evolve rules to improve a solution.
The rules to apply in solving the problem are selected using a selection perturba-
tive hyper-heuristic. The generation constructive hyper-heuristic employs genetic
programming to evolve the rules. The selection constructive hyper-heuristic uses a
genetic algorithm combined with local search to select which rules to apply. The hy-
brid hyper-heuristic outperformed the human-created rules for solving the problem.

91© Springer Nature Switzerland AG 2018
N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications,
Natural Computing Series, https://doi.org/10.1007/978-3-319-96514-7_12

https://doi.org/10.1007/978-3-319-96514-7_12
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96514-7_12&domain=pdf

92 12 Advances in Hyper-Heuristics

Sim and Hart [175] apply a hybrid hyper-heuristic to solve the vehicle routing
problem. A generation constructive hyper-heuristic employing genetic program-
ming is used to evolve constructive low-level heuristics, which are used to create
a population of solutions. A selection perturbative hyper-heuristic using a memetic
algorithm is then used to improve the population of initial solutions. The results pro-
duced by the hyper-heuristic were found to be competitive with the known optimum
for the vehicle routing problem instances tested.

Miranda et al. [116] employ a hybrid hyper-heuristic, supported by a knowledge
base, for the automated design of particle swarm optimization (PSO) algorithms.
A generation perturbative hyper-heuristic using grammar-based genetic program-
ming is used to produce the algorithms. The grammar specifies the procedures, e.g.
the strategy to use to initialize the swarm, and parameters, e.g. mutation probabil-
ity, that can be combined by the genetic programming algorithm to produce PSO
algorithms. A selection perturbative hyper-heuristic is used, based on a case-based
reasoning system, to select which evolved PSO algorithm to apply to solve the prob-
lem at hand. In case-based reasoning, a knowledge base stores characteristics of the
problem (i.e. fitness landscape of the problem) and the corresponding evolved algo-
rithm for solving the problem. When solving a new problem, the characteristics of
the problem are compared to those stored in the knowledge base to retrieve the algo-
rithm applied to the most similar previous problems to the new problem. Euclidean
distance is used to measure the similarities between the problems. The hybrid hyper-
heuristic performed better than standard PSO algorithms in solving 60 optimization
problems.

12.3 Hyper-Heuristics for Automated Design

Hyper-heuristics have proven to be effective at automating the design of various
machine learning and search techniques. Selection pertubative and generation per-
turbative hyper-heuristics have been used for this purpose. A summary of some of
the research conducted in this area is presented in this section. Selection perturba-
tive hyper-heuristics have been used to select parameter values, operators, selec-
tion methods and metaheuristics as the low-level heuristics. Generation perturbative
hyper-heuristics have been used to generate operators, rules and algorithms.

In the study conducted by Hong et al. [78], a generation pertubative hyper-
heuristic employing genetic programming is used to evolve mutation operators for
evolutionary programming for solving function optimization problems. The opera-
tors were induced using a training set, and were found to generalize well when used
in evolutionary programming to solve a test set of problems. Evolutionary program-
ming with the evolved mutation operators was found to perform better than when
used with human designed operators.

Branke et al. [20] have used a generation perturbative hyper-heuristic to generate
dispatching rules for dynamic stochastic job shop scheduling. The hyper-heuristic
employed an evolutionary algorithm to explore the space of dispatching rules. Three

12.3 Hyper-Heuristics for Automated Design 93

representations for the dispatching rules were compared, namely, expression trees,
neural networks and linear combinations. The tree representation showed to be the
most effective.

Lourenço et al. [107] employed a grammatical evolution selection perturbative
hyper-heuristic to automate the design of an evolutionary algorithm to solve the
knapsack problem. The hyper-heuristic selects the control model for the evolution-
ary algorithm, e.g. generational, the operators and their probabilities and the selec-
tion method and associated parameter values, e.g. tournament size. The performance
of the evolutionary algorithms produced by the hyper-heuristic were found to be
competitive with manually designed evolutionary algorithms.

Barros et al. [15] used a genetic programming generation pertubative hyper-
heuristic, HEAD-DT, to induce decision tree induction algorithms for data classi-
fication. The hyper-heuristic was tested on 20 binary and multiclass classification
problem instances. Its performance was compared to C4.5 and CART, which are
state-of-the-art decision tree induction algorithms. The induction algorithms pro-
duced by HEAD-DT outperformed both C4.5 and CART in terms of predictive ac-
curacy.

Falcão et al. [58] implemented a selection perturbative hyper-heuristic to select
meta-heuristics, and their parameters, to use at each state of solving a problem. In
this case, the low-level heuristics are the meta-heuristics and parameter values. The
hyper-heuristic was used to solve a scheduling problem involving the allocation of
tasks with limited resources. Reinforcement learning was used to perform these se-
lections. The hyper-heuristic outperformed a multi-agent approach applied to solve
this problem.

Maashi et al. [108] employed a selection pertubative hyper-heuristic to select a
multi-objective evolutionary algorithm to be applied at each point in solving a multi-
objective optimization problem. The low-level heuristics include NSGA-II, SPEA2
and MOGA. The hyper-heuristic used a choice function for heuristic selection and
great deluge or late acceptance for move acceptance. On solving two problem do-
mains, namely, the Walking Fish Group test suite and vehicle crashworthiness de-
sign problem, the hyper-heuristic performed competitively with NSGA-II.

In [64], a selection pertubative multi-objective evolutionary algorithm was used
to design a stacked neural network. The design decisions made by the hyper-
heuristic include the number of neural networks that must be included in the
stack, the weights of the outputs for the neural networks, and the number of hid-
den neurons for each neural network. The multi-objective evolutionary algorithm
hyper-heuristic combined NSGA-II with the quasi-Newton optimization algorithm.
The hyper-heuristic was tested on a real-world problem, namely, the modelling of
polyacrylamide-based multicomponent hydrogel synthesis. The stacked neural net-
works designed by the hyper-heuristic outperformed the human-designed stacked
neural networks.

94 12 Advances in Hyper-Heuristics

12.4 Automated Design of Hyper-Heuristics

While hyper-heuristics have been shown to be effective for the automated design of
various machine learning techniques and meta-heuristics, a recent research direction
in the field is the automated design of hyper-heuristics. This section reports on some
of the studies focusing on this. A majority of this research has focused on the design
of selection perturbative hyper-heuristics.

Choong et al. [46] used reinforcement learning, namely, Q-learning, to design
a selection perturbative hyper-heuristic. Q-learning is used to design the heuristic
selection component and move acceptance component of the hyper-heuristic by se-
lecting from six heuristic selection methods and five move acceptance techniques.
The selection perturbative hyper-heuristic is an iterated local search incorporating
the selected components. The iterated local search also includes an intensification
and diversification phase. The approach produced competitive results on the do-
mains in the CHeSC 2011 cross-domain challenge.

In the study conducted by Sabar et al. [169], gene expression programming was
used to induce the move acceptance component of a selection perturbative hyper-
heuristic. The evolved move acceptance components comprise arithmetic operators
and terminal values representing the quality of the previous and current solution,
the current iteration, and the number of iterations completed. The heuristic selec-
tion component uses a credit reward mechanism that takes into consideration the
previous performance of the heuristic. This mechanism is used together with a dy-
namic multi-armed bandit mechanism to determine which heuristic to use. The latter
takes into consideration the reward determined by the credit reward mechanism and
the number of times the heuristic was applied to decide which heuristic to use. The
approach performed competitively, outperforming some manually designed hyper-
heuristics when applied to the vehicle routing problem, examination timetabling
problem and domains in the CHeSC 2011 cross-domain challenge.

The research above was extended in [167], in which both the heuristic selec-
tion and move acceptance components of the selection perturbative hyper-heuristic
are induced using gene expression programming. Each element of the population is
composed of two components, one representing the heuristic selection and one the
move acceptance. Each component comprises arithmetic and logical operators com-
bined with terminal values. The terminal set for the heuristic component contains
different values representing the performance of the low-level perturbative heuris-
tic, while the terminal set for the move acceptance component consists of different
values pertaining to the quality of the previous and current solution and the cur-
rent and total number of iterations. In order to maintain diversity, the generated
selection perturbative hyper-heuristic maintains a memory mechanism containing
high-performing diverse solutions, which are updated throughout the application of
the hyper-heuristic. This approach was applied to the CHeSC 2011 cross-domain
challenge, and outperformed the finalists of the challenge.

Fontoura et al. [62] applied a similar approach using grammatical evolution to
generate a heuristic selection component and move acceptance component for a se-
lection perturbative hyper-heuristic for solving the protein structure prediction prob-

12.5 Continuous Optimization 95

lem. The generated heuristic selection components comprise arithmetic operators
combined with terminal values representing the previous performance of the low-
level perturbative heuristics. Similarly, the induced move acceptance components
comprise arithmetic operators and terminal values. These values represent the qual-
ity of previous and current solutions and the number of iterations performed. The
approach produced the best results for seven of the 11 protein structure predication
problem instances.

In [8], the authors used an apprenticeship-learning-based hyper-heuristic to gen-
erate a selection perturbative hyper-heuristic to solve the vehicle routing problem.
This hyper-heuristic produces a set of classifiers based on the performance of an
expert selection perturbative hyper-heuristic, i.e. the winner of the CHeSC 2011
challenge AdapHH, in solving the vehicle routing problem. Each classifier is essen-
tially a production rule, where the action is the low-level perturbative heuristic to
apply, the move acceptance criterion or a parameter value of a low-level heuris-
tic, and the condition represents the state of the search. The selection perturba-
tive hyper-heuristics produced by the apprenticeship-learning-based hyper-heuristic
were found to outperform the expert hyper-heuristics and other selection perturba-
tive hyper-heuristics in solving the vehicle routing problem.

A similar approach was taken in [187], where a time delay neural network in-
stead of apprenticeship learning is employed by the hyper-heuristic to generate the
classifiers. The parameters of the neural network are determined using Taguchi or-
thogonal arrays. In this study a single classifier is generated. The attributes for the
classifier are the difference in the objective value and the generated solution from
one iteration to the next, and the class is the low-level perturbative heuristic to ap-
ply. Hence, in this study, just the heuristic selection component of the selection
perturbative hyper-heuristic is induced. The move acceptance criterion is accept all
moves. The induced selection perturbative hyper-heuristics outperformed the expert
hyper-heuristic.

12.5 Continuous Optimization

Initially hyper-heuristics aimed at solving discrete optimization problems, and
hence a majority of the research has focused on this. However, recently the effec-
tiveness of hyper-heuristics in solving continuous optimization problems has been
illustrated. This section provides an overview of some the research conducted in this
area.

The selection perburbative hyper-heuristic applied by Maashi et al. [108] de-
scribed in the previous section to hybridize multi-objective evolutionary algorithms
has proven to be effective at solving continuous optimization problems. Similarly,
the genetic programming generation perturbative hyper-heuristic employed by Hong
et al. [78] to evolve mutation operators for the evolutionary programming algorithm
produced good results for function optimization problems.

96 12 Advances in Hyper-Heuristics

Segredo et al. [172] employed a selection perturbative hyper-heuristic to hy-
bridize differential evolution and a genetic algorithm to solve the problem instances
of the generalization-based contest on global optimization. In this case the low-
level perturbative heuristics are the differential evolution and genetic algorithm.
The hyper-heuristic assigns scores to the low-level heuristics based on previous per-
formance. The hyper-heuristic probabilistically selects whether to apply the best-
performing heuristic or a randomly selected heuristic. The hybrids created by the
hyper-heuristic performed better than differential evolution and the genetic algo-
rithm applied individually, and won two of the three contest prizes.

Walker and Keedwell [190] used a selection perturbative hyper-heuristic to select
a sequence of low-level perturbative heuristics to solve multi-objective continuous
optimization problems. The hyper-heuristic uses a hidden Markov model to deter-
mine the sequence of low-level perturbative heuristics, and performed competitively
with, and for some problems instances better than, existing algorithms when applied
to the problem instances from the DTLZ benchmark set.

12.6 Discussion

This chapter provides an overview of some advanced topics in hyper-heuristics. As
the field is constantly growing, this list is by no means complete. Hybrid hyper-
heuristics combining the strengths of two types of hyper-heuristics have been illus-
trated. This has illustrated the potential of hybridizing hyper-heuristics however, at
most two hyper-heuristics have been hybridized. Hence, further hybridization in-
cluding the combination of more than two hyper-heuristics should be investigated.
Furthermore, the reasons why these hybridizations work well and how best to com-
bine the different types of hyper-heuristics need to be examined by studying the the-
oretical aspects of the hybridization, such as movement through the search spaces,
correlations between search in the heuristic and solution spaces, fitness landscapes
and many more.

There has been a fair amount of research into the use of hyper-heuristics for
the automated design of machine learning and meta-heuristic techniques. Hyper-
heuristics have proven to be effective for this purpose. The design decisions made by
hyper-heuristics range from parameter selection, selection of operators and operator
probabilities, and hybridization of approaches, to the generation of new operators,
rules and algorithms. The use of hyper-heuristics for automated design reduces the
man-hours required, thereby enabling the researcher to focus on other aspects such
as the problem domain. The aim in using hyper-heuristics for automated design is
not to produce results that are competitive with state-of-the-art techniques, but to
automate the design process, leading to results at least as good as that achieved
by manual design. However, from the overview provided in the previous section,
it is evident that the automated design produces approaches that outperform the
manually designed approaches. Hyper-heuristics have employed various techniques
for automated design, with evolutionary algorithms being the most popular. Future

12.6 Discussion 97

research in this area should also focus on investigating which techniques are the
most appropriate for which design decisions.

A more recent area of research has been the automated design of hyper-heuristics,
the effectiveness of which has been illustrated in the overview of some of the studies
provided in this chapter. However, the research has only focused on selection pertur-
bative hyper-heuristics, and the majority of the applications have been to the CHeSC
2011 cross-domain challenge. The automated design of the remaining three types of
hyper-heuristics, namely, selection constructive, generation constructive and gener-
ation perturbative, needs to be investigated. Furthermore, the automated design of
hybrid hyper-heuristics should also be examined. Hyper-heuristics could be used
to generate hybrid hyper-heuristics, with the low-level heuristics being the hyper-
heuristics.

While the majority of the research in the area of hyper-heuristics to this date
has focused on applying hyper-heuristics to discrete optimization problems, there
has been recent research investigating their use to solve continuous optimization
problems. The majority of this research has involved using a hyper-heuristic to au-
tomate the design of the approach. Investigations are needed into using the four
types of hyper-heuristics to directly solve continuous optimization problems. The
use of cross-domain hyper-heuristics to solve continuous optimization problems and
cross-domain hyper-heuristics to solve both continuous and discrete optimization
problems also needs to be researched.

Chapter 13

Conclusions and Future Research Directions

Recent research advances have been made in different types of hyper-heuristics
(HH), namely selection HH and generation HH, employing both constructive and
perturbative low-level heuristics (llh). Among the four types of HH, selection HH
(Chapters 2, 3) received more research attention than generation HH (Chapters 4, 5).
This may be due to the research challenges in developing genetic programming and
grammatical evolution, which are the main high-level techniques used in generation
HH. These include the issue of bloating, which leads to the problem of readability
and interpretability [14]. Among most of the generation HH, the newly generated llh
have thus rarely been reused on new instances or problems. This presents challenges
but interesting research directions for further investigations.

A large number of high-level methods have been investigated in HH. These in-
clude single-point and multiple-point meta-heuristics including local search and
evolutionary algorithms, and various techniques including case-based reasoning
[16, 37, 40], choice function [17, 52, 89, 132], fuzzy logic [6, 7], grammatical evo-
lution [57, 146, 164], genetic programming [84, 96, 104, 82, 174, 193], Markov
chains [92, 91], Monte Carlo [168, 34], rules [4], simple random method [17, 54],
and hybridizations between them. Most of these have been studied in both selection
and generation HH for examination timetabling problems (Chapter 10). The inves-
tigations of genetic programming have been mostly conducted in generation HH for
vehicle routing problems (Chapter 7) but not in nurse rostering problems (Chapter
8). Investigations of these various techniques across different problem domains of
diverse problem characteristics can lead to further research findings and strengthen
fundamental discoveries on landscapes of high-level and low-level search spaces in
HH (see Chapter 6).

A good range of llh have been employed; some are problem specific while others
are commonly used across different applications. In the case of perturbative llh,
these can be combined together with acceptance criteria. These research findings on
different llh for different problem domains provide good ground for further in-depth

99© Springer Nature Switzerland AG 2018
N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications,
Natural Computing Series, https://doi.org/10.1007/978-3-319-96514-7_13

https://doi.org/10.1007/978-3-319-96514-7_13
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96514-7_13&domain=pdf

100 13 Conclusions and Future Research Directions

investigations in terms of the generality and efficiency of HH. For example, different
groups of llh with different execution speed and the number of changes to problem
solutions in selection HH [119] have been investigated to gain insights into their
contributions to the generality of HH performance. It is proposed that features of llh
in relation to the generality in HH should be analysed by particular mechanisms to
adaptively manage and select llh and to design general HH. The synergy between
constructive and perturbative llh should also be examined to further improve the
efficiency of HH.

A new formal definition for a general HH of different types is presented in Chap-
ter 6, based on an existing definition in [151] for selection HH with constructive llh.
Within the general HH, two optimization problems have been defined at two levels,
respectively, each associated with an objective function, namely f (s) for the low-
level search space of problem solutions s, and F(h) for the high-level search space
of heuristics h. A mapping function M associates the search within the two spaces,
i.e. M: f (s) → F(h). Some fundamental issues on landscape studies and analysis
of the features of the search spaces have been discussed. Further investigations and
understanding of the search spaces can facilitate the design of more effective HH.
Other fundamental studies, such as runtime analysis of selection perturbative HH,
have been conducted in [100]. It is shown that online reinforcement learning in
HH does not outperform that of HH with a fixed distribution of llh operators. Such
investigations into other types of HH may reveal further interesting findings; thus
underpinning the fundamentals and theory of general HH across more problems.

A good range of applications has been studied in recent HH research, includ-
ing vehicle routing in Chapter 7, nurse rostering in Chapter 8, packing problems in
Chapter 9, examination timetabling in Chapter 10, as well as real-world combina-
torial optimization problems [30]. This presents a nice and diverse range of repre-
sentative applications. Compared to the other applications, more results have been
obtained on generation HH for packing problems. At the time of writing this book,
there is a lack of research on generation HH for nurse rostering, which, compared
to the other applications, involves more types of constraints. For all the applica-
tions covered in this book, there exist well established benchmark datasets in the
existing literature; thus comparison studies can be conducted, leading to interesting
observations in both HH and meta-heuristic communities.

Although HH aims to increase the generality of search algorithms in solving
different problems and instances, in the existing literature the majority of HH ap-
proaches have been tested on a single, and some on several specific problem do-
mains, each evaluated separately against a particular objective function. The gener-
ality of the HH approaches has not been measured against certain standard or unified
criteria across different problem domains. In a recent study, an initial attempt has
been made to establish the measurement of four different levels of generality when
assessing the generality of HH approaches [147], compared against specific evalu-
ations for different problems. More such measurements in future HH developments
will underpin research towards designing general algorithms across a range of dif-
ferent combinatorial optimization problems.

101

Since the inception of the field, there have been various advances in HH research.
One such area is hybrid HH (Section 12.2). While there have been initial studies
in this area, there is a need for further investigations such as the hybridization of
more than two hyper-heuristics. HH have successfully been used for automated de-
sign (Section 12.3). The design decisions that have been automated using HH range
from parameter tuning to creating new operators. An emerging area is the auto-
mated design of HH, which has contributed to reducing the man-hours involved in
HH design [125]. The majority of HH research has focused on solving discrete op-
timization problems; however, more recently this been extended to continuous opti-
mization problems as well (Section 12.5). Additional emerging areas include using
HH to solve multi-objective optimization problems [108] and dynamic optimization
problems [95].

In HH, domain specific knowledge can be considered by the llh for the prob-
lem under consideration, leaving the high-level search problem independent. That
is, the general search is handled at the high level, isolated from the details of con-
straints and structure of solutions for the specific problem. In all the existing re-
search, constraint handling has been conducted at the low-level solution space, by
either discarding infeasible solutions constructed or generated, or by employing tar-
geted operators that explore only feasible solutions. Investigations on effective con-
straint handling techniques, in conjunction with their effect on the connectivity of
both search spaces, can enhance the performance HH for highly complex and con-
strained problems.

In HH approaches, both online and offline learning have been used to improve
the efficiency of search upon llh. These include the offline learning of rules by using
artificial neural networks [4] to construct nurse rostering solutions, and learning and
storing constructive heuristics in a case-based reasoning system to construct timeta-
bles at different stages [37]. Online learning is usually conducted by adaptively
adjusting the rewards or scores of llh based on the solutions generated. Examples
include choice function [89] and reinforcement learning [113, 132]. There is, how-
ever, no extensive study on different types of learning in HH. Such investigations,
employing for example machine learning techniques, could open new interesting
research directions and further enhance the generality of HH approaches. For ex-
ample, in [103], artificial neural networks have been trained offline to identify po-
tentially high-quality nurse rostering solutions. During the problem solving on new
instances, only those potential rosters of high quality are selected and evaluated, to
reduce the large amount of computational time spent unnecessarily evaluating all
roster solutions. Such a mechanism is highly effective in solving those complex and
constrained problems, which is the case in HH, where a large amount of computa-
tional time is spent evaluating the generated solutions at the low level. Other existing
research in machine learning, for example on fitness estimation in evolutionary al-
gorithms [86], could also be explored within HH in future research.

13 Conclusions and Future Research Directions

Appendix A

HyFlex and EvoHyp

Along with the recent advances in hyper-heuristics to raise the generality of search
algorithms across different problem domains, frameworks and toolkits have been
developed in the literature. In this book, details of a widely used framework HyFlex
and a toolkit EvoHyp are provided in Appendix A. These two software suites are
open-source, and can be accessed and used to develop hyper-heuristic approaches.

HyFlex is a framework that researchers and practitioners can use to implement
hyper-heuristics. This framework provides common software interfaces as well as
problem specific components for developing cross-domain general search method-
ologies. HyFlex has been widely used for nurse rostering (Chapter 8), vehicle rout-
ing (Chapter 7), and across different domains (Chapter 11). Details are provided in
Appendix A.1.

While HyFlex provides a framework within which users can implement selec-
tion perturbative hyper-heuristics to solve the six problems, EvoHyp provides a
toolkit for developing evolutionary algorithm hyper-heuristics to solve problems.
The problem domain must be implemented by the user. EvoHyp allows the user to
implement a genetic algorithm selection constructive, a genetic algorithm selection
perturbative or a genetic programming generation constructive hyper-heuristic to
solve a particular problem. EvoHyp also provides distributed versions of each of the
hyper-heuristics. Appendix A.2 provides an overview of EvoHyp.

A companion site1 with links to HyFlex and EvoHyp will be updated with other
software and sources in hyper-heuristics in the future.

1 https://sites.google.com/view/hyper-heuristicstheoryandapps

103© Springer Nature Switzerland AG 2018
N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications,
Natural Computing Series, https://doi.org/10.1007/978-3-319-96514-7

https://sites.google.com/view/hyper-heuristicstheoryandapps
https://doi.org/10.1007/978-3-319-96514-7

104 A HyFlex and EvoHyp

A.1 HyFlex

In the 2011 Cross-Domain Heuristic Search Challenge (CHeSC 2011) [29, 126],
the hyper-heuristics community was challenged to develop general hyper-heuristics
within a framework called HyFlex, written in Java, for solving the following six dis-
crete combinatorial optimization problems. For each problem domain, 10 training
instances have been derived from benchmark datasets at different sources. The last
two problem domains are used as the hidden problem domains in CHeSC2011.

• Boolean satisfiability: In this Maximum Satisfiability (MAX-SAT) problem, an
assignment of the Boolean variables in a formula needs to be determined so that
the whole formula is satisfied, i.e. evaluated to be true. The 10 instances with 250-
744 variables have been derived from the Maxsat Evaluation 2009 benchmark
datasets 2 and the two SAT competitions 3 4.

• One-dimensional bin packing: For the classic one-dimensional bin packing prob-
lems (see Appendix B.1), an alternative fitness function has been employed. The
10 instances with 160-5,000 items and bins of capacity 150-1,000 have been
derived from the European Special Interest Group on cutting and packing bench-
mark datasets 5.

• Permutation flow shop: In the permutation flow shop problems, a number of
given jobs need to be scheduled and processed on a set of machines, subject
to the ordering constraints, i.e. processed in a predefined order of machines. The
objective is usually to minimize the makespan (i.e. the completion time of the last
finished job). The 10 instances in HyFlex with 100 or 200 jobs to be scheduled
to 10 or 20 machines are derived from the flow shop benchmark datasets 6.

• Personnel scheduling: Personnel scheduling at hospital wards worldwide usually
involves a large number of constraints (see Appendix B.2). In Hyflex, problem
instances are derived from [83] and the staff rostering benchmark datasets 7. The
problems involve scheduling 12-51 staff to 3-12 shifts spanning 26-42 days.

• Travelling salesman problem: TSP represents one of the most studied problems
in combinatorial optimization. The benchmark instances from the TSPLIB [158]
8 have been used in HyFlex, with problem sizes from 299 to 13,509 cities.

• Vehicle routing problem: Based on the Solomon dataset and Gehring and
Homberger datasets (see Appendix B.3), 10 instances of capacitated vehicle rout-
ing problems with time windows have been derived and included. These include
instances of 20 or 250 vehicles with capacity of 200 or 1,000, and 1,000 cus-
tomers of three types, namely located randomly, clustered in groups and clustered
randomly.

2 http://www.maxsat.udl.cat/
3 http://www.cril.univ-artois.fr/SAT07
4 http://www.cril.univ-artois.fr/SAT09/
5 http://paginas.fe.up.pt/∼esicup/
6 http://mistic.heig-vd.ch/taillard/
7 http://www.schedulingbenchmarks.org/
8 http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

http://www.maxsat.udl.cat/
http://www.cril.univ-artois.fr/SAT07
http://www.cril.univ-artois.fr/SAT09/
http://paginas.fe.up.pt/%E2%88%BCesicup/
http://mistic.heig-vd.ch/taillard/
http://www.schedulingbenchmarks.org/
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

A.1 HyFlex 105

Within the HyFlex framework, problem specific components include four cat-
egories of low-level perturbative heuristics and problem instances for the above
six combinatorial optimization problems. These categories of perturbative heuris-
tics are:

• Mutational heuristics - Equivalent to perturbation heuristics and operators, which
make small changes to the solution variables based on the gains of the evalua-
tion function. The operations performed by these heuristics include swapping,
changing, adding or deleting solution components.

• Ruin-recreate heuristics - These destruction-construction heuristics randomly re-
assign values to a proportion of variables in the solution, i.e. remove some com-
ponents of a solution, and then reconstruct it using problem specific low-level
construction heuristics.

• Local search heuristics - These hill-climbing heuristics iteratively make small
changes to randomly selected variables in a solution. The acceptance is first-
improvement, i.e. the first solution of a better or equal fitness is accepted.

• Crossover - These standard one-point or two-point crossover operators are ap-
plied to two selected solutions to produce a single offspring.

HyFlex is built with various general mechanisms and problem specific compo-
nents for developing selection perturbative hyper-heuristics. The general mecha-
nisms include methods to create an initial solution, and methods to calculate fitness,
i.e the objective value. Details of these mechanisms are provided in Chapter 11.
In CHeSC2014, HyFlex was extended to include “batching” with multi-threading
strategies.

Analysis of the winning approaches in CHeSC2011 are presented in Chapter 11.
More details of the results, resources and documentation are available on the CHeSC
website 9.

9 http://www.asap.cs.nott.ac.uk/external/chesc2011/

http://www.asap.cs.nott.ac.uk/external/chesc2011/

106 A HyFlex and EvoHyp

A.2 EvoHyp

EvoHyp is a Java toolkit to implement evolutionary algorithm hyper-heuristics.
EvoHyp provides four libraries: GenAlg, GenProg, DistrGenAlg and DistrGenProg
[145]. An overview of these libraries is given below.

A.2.1 GenAlg

GenAlg implements a generational genetic algorithm to provide a genetic algorithm
selection hyper-heuristic. This can be implemented as a selection constructive or a
selection perturbative hyper-heuristic. In the case of selection constructive hyper-
heuristics, the combination will be used to create an initial solution to the problem;
for selection perturbative hyper-heuristics, the heuristic combination is used to im-
prove an initial solution. Tournament selection is used to choose parents to which
the mutation and crossover operators are applied, to create the offspring of each gen-
eration. The genetic algorithm terminates when a maximum number of generations
has been reached.

In GenAlg, the user has to:

• Specify the parameter values, e.g. population size and number of generations, for
the genetic algorithm.

• Specify the characters representing the low-level heuristics.
• Define the problem domain in terms of:

– Implementation of the low-level heuristics.
– A method that will apply the heuristic combination produced by the hyper-

heuristic and calculate the fitness of the heuristic combination.
– A method that determines whether one heuristic combination is fitter than

another.

A.2.2 GenProg

GenProg employs a genetic programming algorithm to create new low-level heuris-
tics. These heuristics can be an arithmetic function or an arithmetic rule. In the
case of arithmetic functions, the hyper-heuristic combines arithmetic operators with
characters representing attributes of the problem domain to create new heuristics.
These attributes can also be existing low-level heuristics or components thereof. In
the case of arithmetic rules, the problem attributes are combined with arithmetic op-
erators as well as an if-then-else operator. Each element of the population is a parse
tree representing an arithmetic function or rule. The grow method [96] is used to
create the initial population. The generational algorithm is used to evolve the initial
population over a number of generations. As in the case of GenAlg the user has to

A.2 EvoHyp 107

provide a function to calculate the fitness of each parse tree in the population as part
of the problem domain implementation. Tournament selection is used to choose par-
ents to which mutation and crossover are applied to create the population of each
generation. The algorithm terminates when a maximum number of generations is
reached. The user has to:

• Specify the parameters for the genetic programming algorithm.
• Specify the characters representing the problem attributes.
• Define the problem domain in terms of:

– A method that uses the arithmetic function or rule to create a solution to the
problem. The method must calculate the fitness of the arithmetic rule or func-
tion based on the solution it produces.

– A method that determines which of two arithmetic functions or rules is fitter
than the other.

A.2.3 Distributed GenAlg and GenProg

EvoHyp includes libraries for the distributed versions of GenAlg and GenProg,
namely, DistrGenAlg and DistrGenProg, respectively. The aim of these libraries
is to reduce the runtimes associated with implementation of these evolutionary al-
gorithm hyper-heuristics. DistrGenAlg distributes the implementation of the genetic
algorithm over a multicore architecture. Similarly, DistrGenProg distributes the ge-
netic programming algorithm over a multicore architecture. In both instances, this
is achieved by dividing the population size by the number of cores available to ob-
tain n subpopulations. During initial population generation and application of the
genetic operators, each subpopulation is created and evaluated on a different core.

A.2.4 Accessing EvoHyp

EvoHyp can be accessed following the website10. There are currently two versions,
1.0 and 1.1. The difference in the versions is that EvoHyp1.1 displays the solution
created by the best-performing heuristic combination or heuristic on each genera-
tion, and 1.0 does not provide such details.

10 https://sites.google.com/view/hyper-heuristicstheoryandapps

https://sites.google.com/view/hyper-heuristicstheoryandapps

Appendix B

Combinatorial Optimization Problems and

Benchmarks

In hyper-heuristics, the most tested combinatorial optimization problems (COPs)
in operational research have been employed to demonstrate the generality of these
algorithms. This section presents the definition, problem model and constraints for
these COPs. Details of these are also provided online 1; they thus also serve as a
collection of benchmark COPs for scientific comparison and analysis in both hyper-
heuristics and meta-heuristics in artificial intelligence and optimization.

1 https://sites.google.com/view/hyper-heuristicstheoryandapps

109© Springer Nature Switzerland AG 2018
N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications,
Natural Computing Series, https://doi.org/10.1007/978-3-319-96514-7

https://sites.google.com/view/hyper-heuristicstheoryandapps
https://doi.org/10.1007/978-3-319-96514-7

110 B Combinatorial Optimization Problems and Benchmarks

B.1 Packing Problems

Packing problems essentially involve packing items into bins or containers, so that
a minimum number of bins or containers is used [13]. These packing problems can
be one dimensional (1D), two dimensional (2D) or three dimensional (3D).

B.1.1 One-Dimensional Bin Packing

The 1D bin packing problem requires a set of items of varying sizes to be packed
into bins so as to meet the following conditions:

• The capacity of each bin is not exceeded.
• A minimum number of bins is used.

A formal definition of the one-dimensional bin packing problem is provided in
Definition B.1

Definition B.1. Given a set of bins of capacity C, a given set of n items of different
sizes S = s1, ...,sn must be packed into a minimum number of bins m subject to the
capacity constraint, i.e. the fullness of each bin fi does not exceed the bin capacity,
i.e. fi ≤C, for i = 1, ...,m.

There are two versions of the problem, namely, offline and online. In the offline
version of the problem, the sizes of the items are known before packing, while in
the online version the sizes are only known at the time of packing [59, 171]. In most
versions of the problem, the capacity of each bin C is the same; however, in some
versions the capacity of each bin is different.

B.1.2 Two-Dimensional Bin Packing

The 2D bin packing problem is a variation of the 1D bin packing problem, where
the bin size is not defined in terms of capacity, but in terms of the width and height
of each bin. Furthermore, each item to be packed is specified in terms of a width and
height. The aim is to pack the items into the bins subject to the following constraints:

• The items in each bin must not exceed the dimensions of the bin.
• The items in a bin must not overlap.
• A minimum number of bins must be used.

A formal definition of the two-dimensional bin packing problem is presented in
Definition B.2.

B.1 Packing Problems 111

Definition B.2. In 2D bin packing, a set of n items with their widths W = w1, ...,wn
and heights H = h1, ...,hn must be packed into a minimum number of bins m so that
the fullness of each bin fi, i = 1, ...,m, does not exceed the width and height of each
bin, and the items do not not overlap in the bin.

There are a number of variations of the 2D bin packing problem such as the
orthogonal packing without rotation [13], 2D irregular packing [105] and the 2D
strip packing problems [82].

B.1.3 Three-Dimensional Bin Packing

The 3D bin packing problem is an extension of 2D bin packing, where the size of
each bin is defined in terms of a width, height and depth. Similarly, the size of each
item is also expressed in terms of a width, height and depth. The items must be
packed in the bins subject to the following conditions:

• The items in each bin must not exceed the dimensions, width, height and depth,
of the bin.

• The items in a bin must not overlap.
• A minimum number of bins must be used.

Definition B.3 provides a formal definition of the three-dimensional bin packing
problem.

Definition B.3. In 3D bin packing, a set of n items with width W =w1, ...,wn, height
H = h1, ...,hn and depth D = d1, ...,dn must be packed into a minimum number of
bins m so that the fullness of each bin fi, i = 1, ...,m, does not exceed the width,
height and depth of each bin, and the items do not not overlap in the bin.

As in the case of the 2D problem, based on how the items are permitted to be
packed, variations of this problem also exist [109].

B.1.4 Packing Benchmark Sets

The benchmark sets used for 1D online packing, 2D and 3D packing have been used
in the specific studies and a number of these sets have been generated as part of the
study. However, for the 1D bin packing problem, there are two benchmark sets that
are commonly used for the offline version of the problem, namely, the Falkenauer
benchmark set [59] and the Scholl benchmark set [171].

The Falkenauer dataset 2 consists of two classes of problems, namely, the uni-
form class and the triplets class. In the uniform class the problem instances require

2 http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/binpackinfo.html

http://people.brunel.ac.uk/%E2%88%BCmastjjb/jeb/orlib/binpackinfo.html

112 B Combinatorial Optimization Problems and Benchmarks

items of size uniformly distributed in the range 20 to 100 to be packed into bins with
capacity 150. The problem instances in the triplets class requires items with sizes in
the range 25 to 50 to be packed into bins with capacity 100.

The Scholl dataset 3 comprises of three datasets, namely, dataset 1, dataset 2 and
dataset 3. The datasets consist of 720, 480 and 10 problem instances respectively.
Dataset 3 contains hard problem instances. The datasets and instances comprising
each set differ in terms of the range of the sizes of the items and the capacities of
the bin.

B.2 Nurse Rostering Problem

Definition B.4. The Nurse Rostering Problem (NRP) involves constructing roster
solutions by assigning a set of nurses Nn with different skills to a set of shifts Ss
of different types over a scheduling period Dd , satisfying a set of constraints Cc.
The objective is to minimize the violations of constraints Cc in the generated roster
solutions.

Due to the diverse range of legislations across different countries, a large variety
of hard and soft constraints have been modelled in the NRP literature. Hard con-
straints must be satisfied. Those different constraints and requirements that may be
violated are defined as soft constraints. Violations of soft constraints are often used
to measure the quality of the rosters, and used by solution methods as the evalua-
tion function. The objective is to minimize the violations of soft constraints while
satisfying the hard constraints, examples of which are presented in Table B.1.

Table B.1 Examples of hard and soft constraints in NRP

Hard Constraints

Coverage: all shifts must be assigned during the scheduling period
One nurse can take at most one shift per day
Soft Constraints

Maximum / minimum number of shift assignments during the scheduling period
Maximum / minimum consecutive working days during the scheduling period
Maximum / minimum free days / weekends during the scheduling period
Maximum / minimum free days between shifts during the scheduling period
Personal preferences

Several benchmark datasets have emerged along with the extensive research on
NRP in the last five decades for research comparisons. The most common con-
straints have been included in the benchmark datasets.

3 https://www2.wiwi.uni-jena.de/Entscheidung/binpp/index.htm

https://www2.wiwi.uni-jena.de/Entscheidung/binpp/index.htm

B.2 Nurse Rostering Problem 113

B.2.1 The 2010 International Nurse Rostering Competition

The 2010 International Nurse Rostering Competition [76] (INRC2010) aims to close
the gap between theory and practice by introducing problem models with higher
complexity. Based on developments in the existing research, INRC2010 has pro-
moted a range of new approaches in NRP research.

The scheduling period consists of four weeks, with four or five shifts per day. The
two hard constraints are presented in Table B.1. Each nurse has a contract, which
defines the legal constraints as presented in Table B.1[76, 17].

With the same problem model, different computational times (seconds, minutes
and hours) and sizes are defined in three tracks of instances, namely Sprint, Middle
Distance and Long Distance to reflect different challenges in practice. All instances
are provided in XML and text format, along with the benchmarking of computa-
tional time for different machines and platforms. The problem data and competition
rules can be found at the competition site 4.

B.2.2 The UK Benchmark Nurse Rostering Dataset

One of the early NRP benchmark datasets includes 52 instances derived from three
wards in a major UK hospital [4]. In the problem, 20-30 nurses need to be assigned
to two shift types, day (early and late) and night shifts. Nurses of three grades are
contracted to work either days or nights in one week but not both. The aim is to
produce weekly roster schedules with evenly distributed unsatisfied requests and
unpopular shifts.

To address this highly constrained problem, various preferences and historical as-
signments of shifts to nurses have been used to build a collection of 411 valid weekly
shift patterns of day and night shifts, with their associated costs. The problem com-
plexity is thus captured in these patterns, the desirability of which for the nurses is
indicated by the costs. These valid pre-processed shift patterns are use to construct
weekly rosters in a range of hyper-heuristics (Chapter 8) and meta-heuristics in the
literature.

B.2.3 The Nottingham Benchmark Nurse Rostering Dataset

A benchmark NRP web site 5 has been established at the University of Notting-
ham to collect and maintain a wide range of NRP problems worldwide. Countries
involved include Belgium, Canada, Finland, Japan, Netherlands, and UK, etc. The
problem description is provided in an XML format, to formulate flexibly the features

4 http://www.kuleuven-kortrijk.be/nrpcompetition
5 http://www.schedulingbenchmarks.org/

http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.schedulingbenchmarks.org/

114 B Combinatorial Optimization Problems and Benchmarks

and complex and diverse constraints. The best solutions reported in the literature are
also provided with the lower bound obtained, and updated with the corresponding
references.

For NRP with highly complex constraints, collections of such problem instances
with the corresponding solutions in a consistent format are valuable to promote
research in the hyper-heuristics, meta-heuristics and optimization communities.

B.3 Vehicle Routing Problems

The basic vehicle routing problem (VRP) involves scheduling a set of closed routes
R1, ..., Rm beginning and ending at a depot v0, each taken by a vehicle k1, ..., km,
to serve an ordered list of tasks v1, ..., vn (customer locations). The objective is to
minimize the total distance of Rr. In some problem models, the number of vehicles
is also minimized. Definition 7 provides a definition of VRP.

Definition B.5. The basic VRP is usually modelled as a network G = (V, A), where
V = {v0, v1, ..., vn} is the set of nodes representing the depot v0 and customers v1,
..., vn, and A = {(vi,v j), vi,v j ∈ V, i �= j} represents the set of links between tasks /
customers vi and v j; each (vi,v j) is associated with a cost (distance) di, j.

A large number of VRP variants have been defined and investigated in the lit-
erature to evaluate different algorithms and techniques [97, 186]. The most studied
variants include the following features or constraints:

• VRP with time window constraints (VRPTW) [22]: each customer task v1...vn
is associated with a time window (ai, di), ai and di is the arrival and departure
times, respectively, within which vi must be served.

• VRP with capacity constraints (CVRP) [68]: each vehicle k1, ..., km is associ-
ated with a certain capacity c1, ..., cm, which must be satisfied when serving all
customers on each route R1, ..., Rm.

• VRP with different customer tasks, either pickup and delivery (VRPPD): the
remaining capacity varies depending on the task type.

• Open VRP where vehicles may not need to return to the depot (OVRP): each
route R1, ..., Rm starts at v0 but does not need to finish at v0.

• VRP with dynamic customer requests (DVRP) [136, 170, 159]: new customer
tasks vi may arrive within a time horizon of [0, T], and are added to VRP during
the scheduling period. The objective is to minimize the rejected customer tasks.

These variants may be combined or extended to form new VRP variants with mul-
tiple constraints and additional features (i.e. uncertainties). CVRPTW is one of the
most studied variants due to its common occurrence in real-world applications.

B.4 Examination Timetabling Problems 115

B.3.1 Vehicle Routing Problem Benchmark Datasets

Over the years, a number of datasets have been established, providing benchmarking
testbeds for research in meta-heuristics and evolutionary computation [97, 186, 68,
22, 72]. In addition to the problem size, different aspects of constraints and features
have been addressed, leading to a wide variety of problem instances to evaluate
the robustness of algorithms and techniques. Table B.2 presents a summary of the
features of the benchmark datasets used in hyper-heuristics reviewed in this book.
This also represents a set of most-used representative datasets in meta-heuristics and
evolutionary computation.

Table B.2 Benchmark VRP datasets
Datasets Problem Features

Christofides Seven CVRP instances with 50-200 customers randomly distributed R or grouped
Beasley [47] in clusters C in a Cartesian coordinate system
Solomon 56 CVRPTW instances with 100 customers, in six classes with different density
[176] of time windows, long and short scheduling horizons, and three types of customers:

R, C and RC, served by 7-19 vehicles. The objective is to minimize the number of
vehicles and travel distance

Fisher 12 instances with 25-199 customers, most of which are centralized around the
[61] depot, serviced by 3-16 vehicles of uniform capacity
Homberger 56 Solomon instances, and five groups, each of 60 VRPTW instances, with 200,
-Gehring 400, 600, 800 and 1,000 customers of three types: R, C and RC. The objective is
[77] to minimize the number of vehicles and total travel distance
CHeSC2011 Five CVRPTW instances taken from the Solomon and Gehring & Homberger

datasets, respectively, with 100 or 250 customers of three types: R, C and RC,
served by 20 or 250 vehicles with capacity of 200 or 1,000 (see Appendix A.1 and
Chapter 11). Also available at the SINTEF Transportation Optimization
Portal https://www.sintef.no/vrptw

Saint- Five classes of 15 DVRPTW instances with 100 stochastic customers, categorized
Guillain by low to high degrees of dynamism (ratio of dynamic requests). Each class has
[170] different distributions of early or late requests in three stages of the scheduling

horizon

B.4 Examination Timetabling Problems

Definition B.6. Examination timetabling problems can be defined as requiring a set
of exams E = {e1, e2, ..., ee} to be assigned to a limited number of ordered timeslots
(time periods) T = {t1, ..., tt} and into rooms of certain capacity C = {C1, ..., Ct} in
timeslot t, subject to a set of constraints [153].

In the timetabling literature, the complexities arise from the large variety of
constraints in different institutions. In general, constraints are categorized into two
types:

https://www.sintef.no/vrptw

116 B Combinatorial Optimization Problems and Benchmarks

• Hard Constraints cannot be violated under any circumstances. A timetable that
satisfies all of the hard constraints is said to be feasible.

• Soft Constraints are desirable but may be violated when it is impossible to satisfy
all of them. Soft constraints vary from one institution to another in both types and
importance [153]. The quality of timetables is usually measured based on to what
extent the soft constraints are violated in the timetables.

Due to the large variety of examination timetabling problems investigated in the
literature, it would be neither practical nor beneficial to present a comprehensive
list of all the hard and soft constraints. Some benchmark examination timetabling
problems have emerged in the last five decades [153]. Table B.3 lists some of the key
hard and soft constraints. A detailed list of hard and soft constraints can be found in
[153].

Table B.3 Example of common hard and soft constraints in examination timetabling problems

Hard Constraints Definition

Conflict: No exams with common students If exams ei and e j with Di j common students
assigned simultaneously assigned to timeslots ti and t j , then ti �= t j,

∀ei,e j ∈ E,ei �= e j,Di j > 0
Capacity: The total room capacity for all exams For all exams ei scheduled to timeslot t of a
scheduled in timeslot t needs to be sufficient total capacity Ct , each ei with si students,

Σei∈E si ≤Ct , ti = t, t ∈ T
Soft Constraints

Spread conflicting exams as much as possible throughout T
Schedule all large exams as early as possible

B.4.1 Exam Timetabling Benchmark Datasets

The Toronto dataset was first introduced in [43], and has been widely tested in the
last 30 years [153]. It consists of 13 instances from different institutions, among
which 11 have been more heavily investigated due to inconsistencies in the other
two instances. A detailed discussion of this dataset (and the difficulties caused by
different instances circulating under the same name) was given in [153]. The con-
straints in the problems can be outlined as follows:

• Hard constraint: no conflicting exams (with common students) should be sched-
uled in the same timeslot.

• Soft constraint: to spread conflicting exams across the timetable.

Table B.4 presents the characteristics of the 11 problems in the dataset. The “con-
flict density” provides the density of elements Ci j with value of 1 in the conflict ma-
trix, where element Ci j = 1 if events i and j conflict, Ci j = 0 otherwise. The penalty
of the timetable generated is the sum of costs per student, where costs wi, i ∈ {0, 1,

B.4 Examination Timetabling Problems 117

2, 3, 4}, is weighted by the number of timeslots with two conflicting exams. More
details can be found online 6 and in [153].

Table B.4 Characteristics of the benchmark exam timetabling problems

Instances car91 car92 I ear83 I hec92 I kfu93 lse91 sta83 I tre92 ute92 uta93 I yok83 I
Exams 682 543 190 81 461 381 139 261 184 622 181

Timeslots 35 32 24 18 20 18 13 23 10 35 21
Students 16,925 18,419 1,125 2,823 5,349 2,726 611 4,360 2,750 21,266 941
Conflict 0.13 0.14 0.27 0.42 0.6 0.6 0.14 0.18 0.8 0.13 0.29
Density

6 http://www.cs.nott.ac.uk/∼pszrq/data.htm

http://www.cs.nott.ac.uk/%E2%88%BCpszrq/data.htm

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological varia-
tions, and system approaches. Artificial Intelligence 1, 39–52 (1994)

2. Abdullah, S., Ahmadi, S., Burke, E., Dror, M.: Investigating Ahuja-Orlin’s large neighbour-
hood search for examination timetabling. OR Spectrum 29(2), 351–372 (2007)

3. Ahmed, L., Özcan, E., Kheiri, A.: Solving high school timetabling problems worldwide using
selection hyper-heuristics. Expert Systems with Applications 42, 5463–5471 (2015)

4. Aickelin, U., Li, J.: An estimation of distribution algorithm for nurse scheduling. Annals of
Operations Research 155(4), 289–309 (2007)

5. Aron, R., Chana, I., Abraham, A.: A hyper-heuristic approach for resource provisioning-
based scheduling in gird environment. Journal of Supercomputing 71, 1427–1450 (2015)

6. Asmuni, H., Burke, E., Garibaldi, J.: Fuzzy multiple ordering criteria for examination
timetabling. In: Burke E.K. and Trick M. (eds.) Selected Papers from the 5th International
Conference on the Practice and Theory of Automated Timetabling, pp. 334–353. Lecture
Notes in Computer Science 3616 (2005)

7. Asmuni, H., Burke, E., Garibaldi, J., McCollum, B., Parkes, A.: An investigation of fuzzy
multiple heuristic orderings in the construction of university examination timetables. Com-
puters & Operations Research 36(4), 4981–1001 (2009)

8. Asta, S., Özcan, E.: An apprenticeship learning hyper-heuristic for vehicle routing in Hyflex
pp. 1474–1481 (2014)

9. Asta, S., Özcan, E.: A tensor-based selection hyper-heuristic for cross-domain heuristic
search. Information Sciences 299, 412–432 (2015)

10. Bader-El-Den, M., Poli, R.: Generating SAT local-search heuristics using a GP hyper-
heuristic framework. In: Artificial Evolution: International Conference on Artificial Evo-
lution, pp. 37–49. Springer (2008)

11. Bader-El-Den, M., Poli, R., Fatima, S.: Evolving timetabling heuristics using a grammar-
based genetic programming hyper-heuristic framework. Memetic Computing 1, 205–219
(2009)

12. Bai, R., Burke, E., Kendall, G., Li, J., McCollum, B.: A hybrid evolutionary approach to the
nurse rostering problem. IEEE Transactions on Evolutionary Computation 14(4), 580–590
(2011)

13. Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin packing in multiple dimensions:
Inapproximability results and approximation schemes. Mathematics of Operations Research
31(1), 31–49 (2006)

119© Springer Nature Switzerland AG 2018
N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications,
Natural Computing Series, https://doi.org/10.1007/978-3-319-96514-7

https://doi.org/10.1007/978-3-319-96514-7

120 References

14. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction
On the Automatic Evolution of Computer Programs and Its Applications. Morgan Kaufmann
Publishers (1998)

15. Barros, R.C., Basgalupp, M.P., de Carvalho, A.C., Freitas, A.A.: A hyper-heuristic evolu-
tionary algorithm for automatically designing decision-tree algorithms. In: Proceedings of
the 14th Annual Conference on Genetic and Evolutionary Computation (GECCO’12), pp.
1237–1244 (2012)

16. Beddoe, G., Petrovic, S.: Selecting and weighting features using a genetic algorithm in a
case-based reasoning approach to personnel rostering. European Journal of Operational Re-
search 175(2), 649–671 (2006)

17. Bilgin, B., Demeester, P., Misir, M., Vancroonenburg, W., Berghe, G.: One hyper-heuristic
approach to two timetabling problems in health care. Journal of Heuristics 18(3), 401–434
(2012)

18. Bilgin, B., Özcan, E., Korkmaz, E.: An experimental study on hyper-heuristics and exam
timetabling. In: Proceedings of the International Conference on the Practice and Theory of
Automated Timetabling (PATAT 2006), pp. 394–412 (2006)

19. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual
comparison. ACM Computing Surveys 35(3), 268–308 (2003)

20. Branke, J., Hildebrandt, T., Scholz-Reiter, B.: Hyper-heuristic evolution of dispatching rules:
A comparison of rule representations. Evolutionary Computation 23(2), 249–277 (2015)

21. Branke, J., Nguyen, S., Pickardt, C., Zhang, M.: Automated design of production schedul-
ing heuristics: A review. IEEE Transactions on Evolutionary Computation 20(1), 110–124
(2016)

22. Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part ii: Metaheuris-
tics. Transportation Science 39, 119–139 (2005)

23. Brucker, P., Burke, E., Curtois, T., Qu, R., Berghe, G.: A shift sequence based approach for
nurse scheduling and a new benchmark dataset. Journal of Heuristics 16(4), 559–573 (2010)

24. Bull, L.: Applications of Learning Classifier Systems, Studies in Fuzziness and Soft Comput-
ing, vol. 150, chap. Learning Classifier Systems: A Brief Introduction, pp. 1–12. Springer
(2004)

25. Burke, E., Bykov, Y., Newall, J., Petrovic, S.: A time-predefined local search approach to
exam timetabling problems. IIE Transactions 36(6), 509–528 (2004)

26. Burke, E., Causmaecker, P.D., Berghe, G., Landeghem, H.: The state of the art of nurse
rostering. Journal of Scheduling 7(6), 441–499 (2004)

27. Burke, E., Dror, M., Petrovic, S., Qu, R.: Hybrid graph heuristics with a hyper-heuristic
approach to exam timetabling problems. In: B. Golden, S. Raghavan, E. Wasil (eds.) The
Next Wave in Computing, Optimizatin and Decision Technologies - Conference Volume of
the 9th Informs Computing Society Conference, 79-91 (2005)

28. Burke, E., Eckersley, A., McCollum, B., Petrovic, S., Qu, R.: Hybrid variable neighbourhood
approaches to university exam timetabling. European Journal of Operational Research (206),
46–53 (2015)

29. Burke, E., Gendreau, M., Hyde, M., Kendall, G., McCollum, B., Ochoa, G., Parkes, A.J.,
Petrovic, S.: The cross-domain heuristic search challenge - an international research compe-
tition. In: Springer, Proc. Fifth International Conference on Learning and Intelligent Opti-
mization (LION5), vol. 6683, pp. 631–634. Lecture Notes in Computer Science (2011)

30. Burke, E., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E.: Hyper-heuristics: A
survey of the state of the art. Journal of Operational Research Society 64, 1695–1724 (2013)

31. Burke, E., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.: A classification of
hyper-heuristic approaches. In: Handbook of metaheuristics, pp. 449–468 (2010)

32. Burke, E., Hyde, M., Kendall, G., Woodward, J.: Automatic heuristic generaiton with genetic
programming: Evolving a jack-of-all-trades or a master of one. In: Proceedings of the 9th
Annual Conference on Genetic and Evolutionary Computation, vol. 2, pp. 1559–1565 (2007)

33. Burke, E., Hyde, M., Kendall, G., Woodward, J.: A genetic programming hyper-heuristic
approach for evolving two dimensional strip packing heuristics. IEEE Transactions on Evo-
lutionary Computation pp. 942–958 (2010)

References 121

34. Burke, E., Kendall, G., Misir, M., Özcan, E.: Monte Carlo hyper-heuristics for examination.
Annals of Operations Research 196(1), 73–90 (2012)

35. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics: An
emerging direction in modern search technology. In: Handbook of metaheuristics, pp. 457–
474 (2009)

36. Burke, E., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for timetabling and ros-
tering. Journal of Heuristics 9, 451–470 (2003)

37. Burke, E., MacCarthy, B., Petrovic, S., Qu, R.: Knowledge discovery in a hyper-heurisitc for
course timetabling using case-based reasoning. In: Lecture Notes in Computer Science, vol.
2740, pp. 90–103. Springer (2002)

38. Burke, E., McCollum, B., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper-heuristic for
educational timetabling problems. European Journal of Operational Research 176, 177–192
(2007)

39. Burke, E., Newall, J.: Solving examination timetabling problems through adaptation of
heuristic orderings. Annals of operations Research 129, 107–134 (2004)

40. Burke, E., Petrovic, S., Qu, R.: Case-based heuristic selection for timetabling problems. Jour-
nal of Scheduling 9(2), 115–132 (2006)

41. Burke, E., Qu, R., Soghier, A.: Adaptive selection of heuristics within a grasp for exam
timetabling problems. In: Proceedings of the 4th Multidisciplinary International Scheduling
Conference: Theory and Applications (MISTA 2009), pp. 409–423 (2009)

42. Caramia, M., DellOlmo, P., Italiano, G.: New algorithms for examination timetabling. In:
Dell’ Olmo, Naher, S., Wagner, D. (eds.) Algorithm Engineering., pp. 230–241. Lecture
Notes in Computer Science 1982 (2001)

43. Carter, M., Laporte, G., Lee, S.: Examination timetabling: Algorithmic strategies and appli-
cations. Journal of Operational Research Society 47, 373–383 (1996)

44. Causmaecker, P.D., Berghe, G.: A categorization of nurse rostering problems. Journal of
Scheduling 14, 3–16 (2011)

45. Chen, P., Kendall, G., Berghe, G.: An ant based hyper-heuristic for the travelling tournament
problem. In: IEEE Symposium on Computational Intelligence in Scheduling (SCIS’07), p.
doi: 10.1109/SCIS.2007.367665 (2007)

46. Choong, S.S., Wong, L.P., Lim, C.P.: Automatic design of hyper-heuristic based on rein-
forcement learning. Information Sciences (2018). DOI doi:10.1016/j.ins.2018.01.005

47. Christofides, N., Beasley, J.: The period routing problem. Networks 14(2), 237–256 (1984)
48. Clarke, G., Wright, J.: Scheduling of vehicles from a central depot to a number of delivery

points. Operations Research 12(4), 568–581 (1964)
49. Contreras-Bolton, C., Parada, V.: Automatic design of algorithms for optimization problems.

In: Proceedings of the 2015 Latin-America Congress on Computaitonal Intelligence (LA-
CCI2015) (2015)

50. Cordeau, J., Gendreau, M., Hertz, A., Laporte, G., Sormany, J.: New heuristics for the vehicle
routing problem. In: Logistics Systems: Design and Optimization, pp. 279–297 (2005)

51. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales sum-
mit. In: Practice and Theory of Automated Timetabling III, LNCS 2079, pp. 176–190 (2001)

52. Cowling, P., Kendall, G., Soubeiga, E.: Hyper-heuristics: A robust optimization method ap-
plied to nurse scheduling pp. 851–860 (2002)

53. C.Y. Chan Fan Xue, W.I., Cheung, C.: A hyper-heuristic inspired by pearl hunting.
http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/xue-chesc.pdf (2011)

54. Demeester, P., Bilgin, B., Causmaecker, P.D., Berghe, G.: A hyperheuristic approach to ex-
amination timetabling problems benchmarks and a new problem from practice. Journal of
Scheduling 15(1), 83–103 (2012)

55. Drake, J.: Crossover control in selection hyper-heuristics: Case studies using MKP and
Hyflex. Ph.D. thesis, School of Computer Science (2014)

56. Drake, J., Hyde, M., Ibrahim, K., Özcan, E.: A genetic programming hyper-heuristic for the
multidimensional knapsack problem. Kybernetes 43(9/10), 1500–1511 (2014)

http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/xue-chesc.pdf

122 References

57. Drake, J., Killis, N., Özcan, E.: Generation of VNS components with grammatical evolution
for vehicle routing. In: Proceedings of the 16th European Conference on Genetic Program-
ming (EuroGP’13), pp. 25–36 (2013)

58. Falcao, D., Madureira, A., Pereira, I.: Q-learning based hyper-heuristic for scheduling system
self-paramterization. In: Proceedings of the 2015 10th Iberian Conference on Information
Systems and Technologies (2015). DOI doi: 10.1109/CISTI.2015.7170394

59. Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics
2(1), 5–30 (1996)

60. Ferreira, A., Pozo, A., Gonçalves, R.: An ant colony based hyper-heuristic approach for the
set covering problem. Advances in Distributed Computing and Artificial Intelligence Journal
(2015)

61. Fisher, M.: Optimal solution of vehicle routing problems using minimum k-trees. Operations
Research 42(4), 626–642 (1994)

62. Fontoura, V.D., Pozo, A.T., Santana, R.: Automated design of hyper-heuristic components
to solve the psp problem with hp model. In: Proceedings of the 2017 IEEE Congress on
Evolutionary Computation, pp. 1848–1855 (2017)

63. Fukunaga, A.: Automated discovery of local search heuristics for satisfiability testing. Evo-
lutionary Computation 16(1), 31–61 (2008)

64. Furtuna, R., Curteanu, S., Leon, F.: Multi-objective optimization of a stacked neural network
using an evolutionary hyper-heuristic. Applied Soft Computing 12(1), 133–144 (2012)

65. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY, USA (1979)

66. Garrido, P., Riff, M.: Dvrp: a hard dynamic combinatorial optimisation problem tackled by
an evolutionary hyper-heuristic. Journal of Heuristics 16(6), 795–834 (2010)

67. Gaspero, L.D., Schaerf, A.: Tabu search techniques for examination timetabling. In: Burke
E.K. and Erben W. (eds.): Selected Papers from the 3rd International Conference on the
Practice and Theory of Automated Timetabling, pp. 104–117. Lecture Notes in Computer
Science 2079 (2001)

68. Gendreau, M., Laporte, G., Potvin, J.Y.: Chapter 6. metaheuristics for the capacitated VRP,
year = 2002. In: T. P., V. D. (eds.) The Vehicle Routing Problem, SIAM Monographs on
Discrete Mathematics and Applications, Vol. 9, pp. 129–154. Springer

69. Gillett, B., Miller, L.: A heuristic algorithm for the vehicle dispatch problem. Operation
Research 22, 340–349 (1974)

70. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers (1997)
71. Goldberg, D., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis and first

results. Complex Systems 3, 493–530 (1989)
72. Golden, B., Raghavan, S., Wasil, E.A.: The Vehicle Routing Problem: Latest Advances and

New Challenges. Springer Science & Business Media, Vol 43 (2008)
73. Han, L., Kendall, G.: Guided operators for a hyper-heuristic genetic algorithm. In: A1 2003:

Advances in Artificial Intelligence, pp. 807–820 (2003)
74. Hansen, P., Mladenovic, N.: Variable neighbourhood search: Principles and applications. Eu-

ropean Journal of Operational Research 130, 449–467 (2001)
75. Harris, S., Bueter, T., Tauritz, D.: A comparison of genetic programming variants for hyper-

heuristics. In: Proceedings of the 2015 Annual Conference on Genetic Programming and
Evolutionary Computation (GECCO’15), pp. 1043–1050 (2015)

76. Haspeslagh, S., Causmaecker, P.D., Schaerf, A., Stølevik, M.: The first international nurse
rostering competition 2010. Annals of Operations Research 218(1), 221–236 (2014)

77. Homberger, J., Gehring, H.: A two-phase hybrid metaheuristic for the vehicle routing prob-
lem with time windows. European Journal of Operational Research 162(1), 220–238 (2005)

78. Hong, L., Drake, J.H., Woodward, J.R., Ozcan, E.: A hyper-heuristic approach to automated
generation of mutation operators for evolutionary programming. Applied Soft Computing
62, 162–175s (2018)

79. Hruska, F., Kubalik, J.: Selection hyper-heuristic using a portfolio of derivative heuristics.
In: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic
and Evolutionary Computation (GECCO’15), pp. 1401–1402 (2015)

References 123

80. Hsiao, P.C., Chiang, T.C., Fu, L.C.: A variable neighbourhood search-based hyper-
heuristic for cross-domain optimization problems in CHeSC 2011 competition.
http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/hsiao-chesc.pdf (2011)

81. Hsiao, P.C., Chiang, T.C., Han, L.: A VNS-based hyper-heuristic with adaptive computa-
tional budget of local search. In: Proceedings of the WCCI 2012 World Congress on Com-
putational Intelligence, pp. 1–8 (2012)

82. Hyde, M.: A genetic programming hyper-heuristic approach to automated packing. Ph.D.
thesis, School of Computer Science, University of Nottingham (2010)

83. Ikegami, A., Niwa, A.: A subproblem-centric model and approach to the nurse scheduling
problem. Mathematical Programming 97(3), 517–541 (2003)

84. Jacobsen-Grocott, J., Mei, Y., Chen, G., Zhang, M.: Evolving heuristics for dynamic vehicle
routing with time windows using genetic programming pp. 1948–1955 (2017)

85. Jia, Y., Cohen, M., Harman, M., Petke, J.: Learning combinatorial interaction test generaiton
strategies using hyper-heuristics search. In: Proceedings of the 37th IEEE Conference on
Software Engineering, pp. 540–550 (2015)

86. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft
Computing 9, 3–12 (2005)

87. Jones, T.: Crossover, macromutation, and population-based search. In: Proceedings of the
Sixth International Conference on Genetic Algorithms, pp. 73–80 (1995)

88. Keller, R., Poli, R.: Self-adaptive hyper-heuristic and greedy search. In: Proceedings of 2008
IEEE World Congress on Computational Intelligence (WCCI’08), pp. 3801–3801. IEEE
(2008)

89. Kendall, G., Cowling, P.: Choice function and random hyperheuristics. In: Springer (ed.)
Proceedings of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning
(SEAL), pp. 667–671 (2002)

90. Kendall, G., Hussin, N.: An investigation of a tabu-search-based hyper-heuristic for exam-
ination timetabling. In: S.P. G. Kendall E.K. Burke, M. Gendreau (eds.) Multidisciplinary
Scheduling: Theory and Applications, pp. 309–328 (2005)

91. Kheiri, A., Keedwell, E.: Markov chain selection hyper-heuristic for the optimisation of con-
strained magic squares. In: UKCI 2015: UK Workshop on Computational Intelligence (2015)

92. Kheiri, A., Keedwell, E.: A sequence-based selection hyper-heuristic utilising a hidden
markov model. In: Proceedings of 2015 Annual Conference on Genetic and Evolutionary
Computation, pp. 417–424 (2015)

93. Kheiri, A., Özcan, E.: An iterated multi-stage selection hyper-heuristic. European Journal of
Operational Research 250, 77–90 (2016)

94. Kilby, P., Prosser, P., Shaw, P.: Dynamic VRPs: A study of scenarios. In: Report APES-06-
1998, http://www.cs.strath.ac.uk/ apes/apereports.html. University of Strathclyde (1998)

95. Kiraz, B., Uyar, A.S., Ozcan, E.: An investigation of selection hyper-heuristics in dynamic
environments. EvoApplications: Applications of Evolutionary Computations, Lecture Notes
in Computer Science 6624, 314–323 (2011)

96. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection, 1st edn. MIT (1992)

97. Laporte, G., Gendreau, M., Potvin, J., Semet, F.: Classical and modern heuristics for the
vehicle routing problem. International Transactions in Operational Research 7, 285–300
(2000)

98. Larose, M.: A hyper-heuristic for the CHeSC 2011.
http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/larose-chesc.pdf (2011)

99. Lassouaoui, M., Boughaci, D., Benhamou, B.: A hyper-heuristic method for MAX-SAT. In:
Proceedings of the International Conference on Metaheuristics and Nature Inspired Com-
puter (META’14), pp. 1–3 (2014)

100. Lehre, P., Özcan, E.: A runtime analysis of simple hyper-heuristics: To mix or not to mix
operators. In: Proceedings of the Twelfth Workshop on Foundations of Genetic Algorithms,
pp. 97–104 (2009)

101. Lenstra, J., Kan, A.: Complexity of vehicle routing and scheduling problems. Networks
11(2), 221–227 (1981)

http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/hsiao-chesc.pdf
http://www.cs.strath.ac.uk/apes/apereports.html
http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/larose-chesc.pdf

124 References

102. Li, D., Zhan, R., Zheng, D., Li, M., Kaku, I.: A hybrid evolutionary hyper-heuristic approach
for intercell scheduling considering transportation capacity. IEEE Transactions on Automa-
tion Science and Engineering 12(2), 1072–1089 (2016)

103. Li, J., Burke, E., Qu, R.: Integrating neural networks and logistic regression to underpin
hyper-heuristic search. Knowledge-Based Systems 24(2), 322–330 (2010)

104. Liu, Y., Mei, Y., Zhang, M., Zhang, Z.: Automated heuristic design using genetic program-
ming hyper-heuristic for uncertain capacitated arc routing problem pp. 290–297 (2017)

105. López-Camacho, E., Terashima-Marin, H., Ross, P., Ochoa, G.: A unified hyper-heuristic
framework for solving bin packing problems. Expert Systems with Applications 41, 6876–
6889 (2014)

106. Lourenco, H., Martin, O., Stutzle, T.: Handbook of Metaheuristics, International Series in
Operations Research and Management Science, vol. 57, chap. Iterated Local Search, pp.
320–353. Springer (2003)

107. Lourenco, N., Pereira, F., Costa, E.: The importance of the learning conditions in hyper-
heuristics. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary
Computation, pp. 1525–1532 (2013)

108. Maashi, M., Kendall, G., Özcan, E.: Choice function based hyper-heuristics for multi-
objective optimization. Applied Soft Computing 28, 312–326 (2015)

109. Martello, S., Pisinger, D., Vig, D.: The three-dimensional bin packing problem. Operations
Research 48(2), 256–267 (2000)

110. McKay, R., Hoai, N., Whigham, P., Shan, Y., O’Neill, M.: Grammar-based genetic program-
ming: A survey. Genetic Programming and Evolvable Machines 11(3), 365–396 (2010)

111. Mei, Y., Zhang, M.: A comprehensive analysis on reusability of GP-evolved job shop dis-
patching rules. In: Proceedings of the 2016 IEEE Congress on Evolutionary Computation
(CEC’16), pp. 3590–3597 (2016)

112. Meignan, D.: An evolutionary programming hyper-heuristic with co-evolution for chesc’11.
http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/meignan-chesc.pdf (2011)

113. Meignan, D., Koukam, A., Creput, J.: Coalition-based metaheuristic: a self-adaptive meta-
heuristic using reinforcement learning and mimetism. Journal of Heuristics 16(6), 859–879
(2010)

114. Merlot, L., Boland, N., Hughes, B., Stuckey, P.: A hybrid algorithm for the examination
timetabling problem. In: Burke, E. and Causmaecker, P. (eds.): Selected Papers from the 4th
International Conference on the Practice and Theory of Automated Timetabling, pp. 207–
231. Lecture Notes in Computer Science 2740 (2002)

115. Merz, P., Freisleben, B.: Fitness landscapes, memetic algorithms, and greedy operators for
graph bipartitiioning. Evolutionary Computation 1, 61–91 (2000)

116. Miranda, P., Prudencio, R., Pappa, G.: H3ad: A hybrid hyper-heuristic for algorithm design.
Information Sciences 414, 340–354 (2017)

117. Misir, M., Causmaecker, P.D., Berghe, G.V., Verbeeck, K.: An adaptive hyper-heuristic
for chesc 2011. http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/misir-chesc.pdf
(2011)

118. Misir, M., Verbeeck, K., Causmaecker, P.D., Berghe, G.: Hyper-heuristics with a dynamic
heuristic set for the home care scheduling problem. In: Proceedings of 2010 IEEE Congress
on Evolutionary Computation (CEC’2010), p. 10.1109/CEC.2010.5586348 (2010)

119. Misir, M., Verbeeck, K., Causmaecker, P.D., Berghe, G.: An investigation on the generality
level of selection hyper-heuristics under different empirical conditions. Applied Soft Com-
puting 13(7), 3335–3353 (2013)

120. Misir, M., Verbeeck, K., Causmaecker, P.D., Berghe, G.V.: A new hyper-heuristic as a general
problem solver: An implementation in hyflex. Journal of Scheduling 16, 291–311 (2013)

121. Misir, M., Wauters, T., Verbeeck, K., Berghe, G.: A hyper-heuristic with learning automata
for the travelling tournament problem. In: Metaheuristics: Intelligent Decision Making,
chap. 21, pp. 325–345. Springer (2012)

122. Mlejnek, J., Kubalik, J.: Evolutionary hyperheuristic for capacitated vehicle routing problem.
In: The 15th Annual Conference on Genetic and Evolutionary Computation, pp. 219–220
(2013)

http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/meignan-chesc.pdf
http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/misir-chesc.pdf

References 125

123. Mole, R., Jameson, S.: A sequential route-building algorithm employing a generalised sav-
ings criterion. Operational Research Quarterly 27, 503–511 (1976)

124. Nguyen, S., Zhang, M., Johnston, M.: A genetic programming based hyper-heuristic ap-
proach for combinatorial optimization. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’15), pp. 1299–1306. ACM (2015)

125. Nyathi, T., Pillay, N.: Comparison of a genetic algorithm to grammatical evolution for auto-
mated design of genetic programming classification algorithms. Expert Systems with Appli-
cations 104, 213–234 (2018)

126. Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J.A., Walker, J., Gendreau, M.,
Kendall, G., McCollum, B., J.Parkes, A., Petrovi, S., Burke, E.K.: Hyflex: A benchmark
framework for cross-domain heuristic search. In: Lecture Notes in Computer Science (Evo-
COP 2012), vol. 7245, pp. 136–147. Springer (2012)

127. Ochoa, G., Qu, R., Burke, E.: Analyzing the landscape of a graph based hyper-heuristic
for timetabling problems. In: The Genetic and Evolutionary Computation Conference
(GECCO’09), pp. 341–348 (2009)

128. Ochoa, G., Veerapen, N.: Deconstructing the big valley search space hypothesis. In: Chicano
F, Hu B, Garcı́a-Sánchez P (ed.) Evolutionary Computation in Combinatorial Optimization:
16th European Conference (EvoCOP 2016), pp. 58–73 (2016)

129. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an
Arbitrary Language. Springer (2003)

130. Osogami, T., Imai, H.: Classification of various neighborhood operations for the nurse
scheduling problem. In: Technical Report 135. The Institute of Statistical Mathematics
(2000)

131. Özcan, E., Misir, M., Burke, E.: A self-organizing hyper-heuristic framework. In: Proceed-
ings of the Multidisciplinary International Conference on Scheduling: Theory and Applica-
tions (MISTA 2009), pp. 784–787 (2009)

132. Özcan, E., Misir, M., Ochoa, G., Burke, E.: A reinforcement learning-great-deluge hyper-
heuristic for examination timetabling. International Journal of Applied Metaheursitic Com-
puting pp. 39–59 (2010)

133. Özcan, E., Parkes, A.: Policy matrix evolution for generation of heuristics. In: Proceedings
of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 2011–2018
(2011)

134. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity.
Dover (1998)

135. Petrovic, S., Qu, R.: Cased-based reasoning as a heuristic selector in a hyper-heuristic for
course timetabling problems. In: Knowledge-Based Intelligent Information Engineering Sys-
tems and Applied Technologies, Proceedings of KES’02, vol. 82, pp. 336–340 (2002)

136. Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.: A review of dynamic vehicle routing
problems. Networks 225(1), 1–11 (2013)

137. Pillay, N.: Evolving hyper-heuristics for the uncapacitated examination timetabling problem.
In: Proceedings of the Multidisciplinary International Conference on Scheduling, pp. 409–
422 (2009)

138. Pillay, N.: Evolving heuristics for the school timetabling problem. In: Proceedings of the
2011 IEEE Conference on Intelligent Computing and Intelligent Systems (ICIS 2011), vol. 3,
pp. 281–286 (2011)

139. Pillay, N.: Evolving hyper-heuristics for the uncapacitated examination timetabling problem.
Journal of Operational Research Society 63(47-58) (2012)

140. Pillay, N.: A study of evolutionary algorithm hyper-heuristics for the one-dimensional bin-
packing problem. South African Computer Journal 48, 31–40 (2012)

141. Pillay, N.: Evolving construction heuristics for the curriculum based university course
timetabling problem. In: Proceedings of the IEEE Congress on Evolutionary Computation
(CEC’16), pp. 4437–4443. IEEE (2016)

142. Pillay, N.: A review of hyper-heuristics for educational timetabling. Annals of Operations
Research 239(1), 3–38 (2016)

126 References

143. Pillay, N., Banzhaf, W.: A study of heuristic combinations for hyper heuristic systems for the
uncapacitated examination timetabling problem. European Journal of Operational Research
197, 482–491 (2009)

144. Pillay, N., Banzhaf, W.: An informed genetic algorithm for the examination timetabling prob-
lem. Applied Soft Computing 10, 457–467 (2010)

145. Pillay, N., Beckedahl, D.: EvoHyp-a Java toolkit for evolutionary algorithm hyper-heuristics.
In: Proceedings of the 2017 IEEE Congress on Evolutionary Computation, pp. 2707–2713s
(2017)

146. Pillay, N., Ozcan, E.: Automated generation of constructive ordering heuristics for educa-
tional timetabling. Annals of Operations Research pp. https://doi.org/10.1007/s10,479–017–
2625–x (2017)

147. Pillay, N., Qu, R.: Assessing hyper-heuristic performance. European Journal of Operational
Research (under review) (2018)

148. Pillay, N., Rae, C.: A survey of hyper-heuristics for the nurse rostering problem pp. 115–122
(2012)

149. Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Computers &
Operations Research 34(8), 2403–2435 (2007)

150. Poli, R., Graff, M.: There is a free lunch for hyper-heuristics, genetic programming and
computer scientists. In: European Conference on Genetic Programming (EuroGP 2009), pp.
195–207 (2009)

151. Qu, R., Burke, E.: Hybridisations within a graph based hyper-heuristic framework for univer-
sity timetabling problems. Journal of Operational Research Society 60, 1273–1285 (2009)

152. Qu, R., Burke, E., McCollum, B.: Adaptive automated construction of hybrid heuristics for
exam timetabling and graph colouring problems. European Journal of Operational Research
198(2), 392–404 (2009)

153. Qu, R., Burke, E., McCollum, B., Merlot, L., Lee, S.: A survey of search methodologies and
automated system development for examination timetabling. Journal of Scheduling 12(1),
55–89 (2009)

154. Qu, R., Pham, N., Bai, R., Kendall, G.: Hybridising heuristics within an estimation distribu-
tion algorithm for examination timetabling. Applied Intelligence 42(4), 679–693 (2015)

155. Qu, R., Pillay, N.: A theoretical framework for hyper-heuristics. IEEE Transactions on Evo-
lutionary Computation (under review) (2017)

156. Rae, C., Pillay, N.: Investigation into an evolutionary algorithm hyper-heuristic for the nurse
rostering problem. In: Proceedings of the 10th International Conference on the Practice and
Theory of Automated Timetabling, pp. 527–532 (2014)

157. Raghavjee, R., Pillay, N.: A genetic algorithm selection perturbative hyper-heuristic for solv-
ing the school timetabling problem. ORiON 31(1), 39–60 (2015)

158. Reinelt, G.: Tsplib, a traveling salesman problem library. ORSA Journal on Computing 3(4),
376–384 (1991)

159. Ritzinger, U., Puchinger, J., Hartl, R.: A survey on dynamic and stochastic vehicle routing
problems. International Journal of Production Research 54(1), 215–231 (2016)

160. Ross, P., Marin-Blazquez, J., Hart, E.: Hyper-heuristics applied to class and exam timetabling
problems. In: Proceedings of the IEEE Congress of Evolutionary Computation CEC’04, pp.
1691–1698 (2004)

161. Ross, P., Marn-Blazquez, J., Schulenburg, S., Hart, E.: Learning a procedure that can solve
hard bin-packing problems: A new GA-based approach to hyper-heuristics. In: Lecture Notes
in Computer Science - GECCO 2003, vol. 2724, pp. 1295–1306. Springer (2003)

162. Ross, P., Schulenburg, S., Marin-Blazquez, J., Hart, E.: Hyper-heuristics: Learning to com-
bine simple heuristics in bin-packing problems. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference, GECCO’02, pp. 942–948 (2002)

163. Ryser-Welch, P., Miller, J.F., Asta, S.: Generating human-readable algorithms for the travel-
ling salesman problem using hyper-heuristics. In: Proceedings of the Companion Publication
of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1067–1074.
ACM (2015)

https://doi.org/10.1007/s10,479%E2%80%93017%E2%80%932625%E2%80%93x
https://doi.org/10.1007/s10,479%E2%80%93017%E2%80%932625%E2%80%93x

References 127

164. Sabar, N., Ayob, M., Kendall, G., Qu, R.: Grammatical evolution hyper-heuristic for com-
binatorial optimization problems. IEEE Transactions on Evolutionary Computation 17(6),
840–861 (2013)

165. Sabar, N., Ayob, M., Qu, R., Kendall, G.: A graph colouring constructive hyper-heuristic for
examination timetabling problems. Applied Intelligence 37(1), 1–11 (2012)

166. Sabar, N., Zhang, X., Song, A.: A math-hyper-heuristic approach for large-scale vehicle rout-
ing problems with time windows, pp. 830–837 (2015)

167. Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: Automatic design of a hyper-heuristic frame-
work with gene expression programming for combinatorial optimization problems. IEEE
Transactions on Evolutionary Computation 19(3), 309–325 (2015)

168. Sabar, N.R., Kendall, G.: Population based Monte Carlo tree search hyper-heuristic. Infor-
mation Sciences 314, 225–239 (2015)

169. Sabar, N.R., Kendall, G., Qu, R.: A dynamic multi-armed bandit-gene expression program-
ming hyper-heuristic for combinatorial optimization problems. IEEE Transactions on Cy-
bernetics 45(2), 217–228 (2015)

170. Saint-Guillain, M., Devill, Y., Solnon, C.: A multistage stochastic programming approach
to the dynamic and stochastic VRPTW. In: International Conference on AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Problems, pp. 357–374.
Springer (2015)

171. Scholl, A., Klein, R., Jurgens, C.: Bison: A fast hybrid procedure for exactly solving the one-
dimensional bin packing problem. Computers and Operations Research 24(7), 5–30 (1997)

172. Segredo, E., Lalla-Ruiz, E., Hart, E., Paechter, B., Voss, S.: Hybridization of evolutionary
algorithms through hyper-heuristics for global continuous optimization. In: Proceedings of
the International Conference on Learning and Intelligent Optimization (LION 2016), pp.
296–305 (2016)

173. Shahriar, A., Özcan, E., Curtois, T.: A tensor based hyper-heuristic for nurse rostering.
Knowledge-Based Systems 98(1), 185–199 (2016)

174. Sim, K., Hart, E.: Generating single and multiple cooperative heuristics for the one di-
mensional bin packing problem using a single node genetic programming island model.
In: Proceedings of the 5th Annual Conference on Genetic and Evolutionary Computa-
tion(GECCO’13), pp. 1549–1556. ACM (2013)

175. Sim, K., Hart, E.: A combined generative and selective hyper-heuristic for the vehicle rout-
ing problem. In: Proceedings of the 21st Annual Conference on Genetic and Evolutionary
Computation (GECCO’16), pp. 1093–1100 (2016)

176. Solomon, M.: Algorithms for the vehicle routing and scheduling problems with time window
constraints. Operations Research 35(2), 254–265 (1987)

177. Soria-Alcaraz, J., Ochoa, G., Sotelo-Figeroa, M., Burke, E.: A methodology for determining
an effective subset of heuristics in selection hyper-heuristics. European Journal of Opera-
tional Research 260(3), 972–983 (2017)

178. Sosa-Ascencio, A., Ochoa, G., Terashima-Marin, H., Conant-Pablos, S.: Grammar-based
generation of variable-selection heuristics for constraint satisfaction problems. Genetic Pro-
gramming and Evolvable Machines 17(2), 119–144 (2015)

179. Swan, J., Causmaecker, P.D., Martin, S., Özcan, E.: A re-characterization of hyper-heuristics.
In: L. Amodeo, E.G. Talbi, F. Yalaoui (eds.) Recent Developments of Metaheuristics, pp. 1–
16. Springer (2016)

180. Swan, J., Woodward, J., Özcan, E., Kendall, G., Burke, E.: Searching the hyper-heuristic
design space. Cognitive Computation 6(1), 66–73 (2014)

181. Terashima-Marin, H., Ortiz-Bayliss, J., Ross, P., Valenzuela-Rendon, M.: Hyper-heuristics
for the dynamic variable ordering in constraint satisfaction problem. In: Proceedings of the
10th Annual Conference on Genetic and Evolutionary Computation (GECCO’08), pp. 571–
578. ACM (2008)

182. Terashima-Marı́n, H., Ross, P., López-Camacho, E., Valenzuela-Rendón, M.: Generalized
hyper-heuristics for solving 2D regular and irregular packing problems. Annals of Operations
Research 179, 369–392 (2010)

128 References

183. Terashima-Marı́n, H., Ross, P., Valenzuela-Rendón, M.: Evolution of constraint satisfaction
strategies in examination timetabling 1, 635–642 (1999)

184. Terashima-Marin, H., Zarate, C., Ross, P., Valenzuela-Rendon, M.: A ga-based method to
produce generalized hyper-heuristics for the 2D-regular cutting stock problem. In: Proceed-
ings of the 8th Annual Conference on Genetic Programming and Evolutionary Algorithms,
pp. 591–598. ACM (2006)

185. Toth, P., Vigo, D.: Models, relaxations and exact approaches for the capacitated vehicle rout-
ing problem. Discrete Applied Mathematics 123(13), 487–512 (2002)

186. Toth, P., Vigo, D.: An overview of vehicle routing problems. In: The Vehicle Rrouting Prob-
lem, pp. 1–26 (2002)

187. Tyasnurita, R., Özcan, E., John, R.: Learning heuristic selection using a time delay neural
network for open vehicle routing. In: 2017 IEEE Congress on Evolutionary Computation,
pp. 1474–1481 (2017)

188. Valouxis, C., Housos, E.: Hybrid optimisation techniques for the workshift and rest assign-
ment of nursing personnel. Artificial Intelligence in Medicine 20, 155–175 (2000)

189. Vázquez-Rodrı́guez, J., Petrovic, S.: A new dispatching rule based genetic algorithm for
the multi-objective job shop problem for the multi-objective job shop problem. Journal of
Heuristics 16, 771–793 (2010)

190. Walker, D.J., Keedwell, E.: Multi-objective optimisation with a sequence-based selection
hyper-heuristic. In: Proceedings of the 2016 Companion Conference on Genetic and Evolu-
tionary Computation, pp. 81–82 (2016)

191. Walker, J., Ochoa, G., Gendreau, M., Burke, E.: Vehicle routing and adaptive iterated local
search within the hyflex hyper-heuristic framework, pp. 265–276 (2012)

192. Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the difference.
Biological Cybernetics 63, 325–336 (1990)

193. Weise, T., Devert, A., Tang, K.: A developmental solution to (dynamic) capacitated arc rout-
ing problems using genetic programming, pp. 831–838 (2012)

194. Whitley, D., Watson, J.: Complexity theory and the no free lunch theorem. In: Burke, E.K.
and Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and
Decision Support Techniques, Chapter. 11, pp. 317–339 (2005)

Index

λ -opt, 54

arithmetic function for low-level heuristics, 26
attributes of a problem, 26

Boolean satisfiability problem, 34

case-based reasoning, 8, 79
choice function, 19, 64
chromosome representation, 12
classification of hyper-heuristics, 4
constructive heuristics, 3
Cross-Domain Heuristic Search Challenge

(CHeSC), 83, 104

EvoHyp toolkit, 106
exam timetabling benchmark datasets, 116
examination timetabling problems, 75, 115

fitness distance correlation, 41
fitness landscape, 41

generation constructive hyper-heuristics, 25,
31

generation perturbative hyper-heuristics, 33,
36

genetic programming, 27
genetic programming, function operators, 54
grammar, 34
grammar-based genetic programming, 28, 34
graph colouring heuristics, 76
graph-based selection hyper-heuristic, 42, 78

heuristic configurations, 38
heuristic space, 38
HyFlex framework, 83, 103
hyper-heuristic, definition, 38

hyper-heuristics, 3

International Nurse Rostering Competition
(INRC) dataset, 65, 113

interpretability, 30

learning classifier systems, 13, 69
local search, 10
low-level heuristics, 38
low-level perturbative heuristics, 33

mapping function in hyper-heuristic, 38
messy genetic algorithms, 13
move acceptance criteria, 20, 63, 77
multipoint search selection perturbative

hyper-heuristic applications, 23
multipoint search selection perturbative

hyper-heuristics, 21

Nottingham benchmark nurse rostering dataset,
64, 113

nurse rostering problem, 61, 112
nurse rostering problem datasets, 61

online and offline learning, 101
or-opt, 54

packing problems, 67, 110
perturbative heuristics, 4, 105
population-based methods, 11

reinforcement learning, 19
reusable heuristic, 28
ruin and recreate, 54
rules for low-level heuristics, 26

selection constructive hyper-heuristic
algorithm, 8

129© Springer Nature Switzerland AG 2018
N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications,
Natural Computing Series, https://doi.org/10.1007/978-3-319-96514-7

https://doi.org/10.1007/978-3-319-96514-7

130 Index

selection constructive hyper-heuristics, 7, 16
selection perturbative hyper-heuristic

algorithm, 18
selection perturbative hyper-heuristics, 17
similarity measure, 9
single-point search selection perturbative

hyper-heuristic applications, 22
solution space, 38

two search spaces in hyper-heuristic, 39, 40

UK benchmark nurse rostering dataset, 64, 113

vehicle routing problem benchmark datasets,
115

vehicle routing problems, 51, 114

	Foreword
	Preface
	Acknowledgements
	Contents
	Acronyms and Notations
	Part I Hyper-Heuristics: Fundamentals and Theory
	Chapter 1 Introduction to Hyper-Heuristics
	1.1 Introduction
	1.2 Low-Level Heuristics
	1.3 Classification of Hyper-Heuristics

	Chapter 2 Selection Constructive Hyper-Heuristics
	2.1 Introduction
	2.2 Case-Based Reasoning
	2.3 Local Search Methods
	2.4 Population-Based Methods
	2.5 Hybridization and Adaptive Methods
	2.6 Discussion

	Chapter 3 Selection Perturbative Hyper-Heuristics
	3.1 Introduction
	3.2 Single-Point Search Selection Perturbative Hyper-Heuristics
	3.2.1 Heuristic Selection Techniques
	3.2.2 Move Acceptance Techniques

	3.3 Multipoint Search Selection Perturbative Hyper-Heuristics
	3.4 Discussion

	Chapter 4 Generation Constructive Hyper-Heuristics
	4.1 Introduction
	4.2 Attributes and Representation of Low-Level Heuristics
	4.3 Genetic Programming
	4.4 Disposability vs. Reusability
	4.5 Discussion

	Chapter 5 Generation Perturbative Hyper-Heuristics
	5.1 Introduction
	5.2 Generating Local Search Operators
	5.3 Creating Algorithms and Meta-Heuristics
	5.4 Discussion

	Chapter 6 Theoretical Aspect—A Formal Definition
	6.1 Introduction
	6.2 A Formal Definition of Hyper-Heuristics
	6.2.1 Two Search Spaces Within the Formal Hyper-Heuristic Framework
	6.2.2 Fitness Landscape of the Heuristic Space in the Hyper-Heuristic Framework

	6.3 Example: A Selection Constructive Hyper-Heuristic for Timetabling Problems
	6.3.1 A Graph-Based Selection Hyper-Heuristic (GHH) Framework
	6.3.2 Analysis of Two Search Spaces in the GHH Framework
	6.3.3 Performance Evaluation of GHH
	6.3.4 Fitness Landscape Analysis on GHH

	6.4 Discussion

	Part II Applications of Hyper-Heuristics
	Chapter 7 Vehicle Routing Problems
	7.1 Introduction
	7.2 Low-Level Heuristics for Vehicle Routing Problems
	7.2.1 Constructive Low-Level Heuristics in Vehicle Routing Problems
	7.2.2 Perturbative Low-Level Heuristics in Vehicle Routing Problems

	7.3 Selection Hyper-Heuristics for Vehicle Routing Problems
	7.3.1 Selection Hyper-Heuristics Using Perturbative Low-Level Heuristics
	7.3.2 Selection Hyper-Heuristics with Both Constructive and Perturbative Low-Level Heuristics

	7.4 Generation Hyper-Heuristics for Vehicle Routing Problems
	7.5 Discussion

	Chapter 8 Nurse Rostering Problems
	8.1 Introduction
	8.2 Low-Level Heuristics for Nurse Rostering Problems
	8.3 Selection Hyper-Heuristics for Nurse Rostering Problems
	8.4 Discussion

	Chapter 9 Packing Problems
	9.1 Introduction
	9.2 Selection Constructive Hyper-Heuristics
	9.2.1 Low-Level Constructive Heuristics for Bin Packing
	9.2.2 Methods Employed by the Hyper-Heuristics

	9.3 Generation Constructive Hyper-Heuristics
	9.4 Discussion

	Chapter 10 Examination Timetabling Problems
	10.1 Introduction
	10.2 Low-Level Constructive Heuristics for Examination Timetabling Problems
	10.3 Low-Level Perturbative Heuristics for Examination Timetabling Problems
	10.4 Selection Hyper-Heuristics for Examination Timetabling Problems
	10.4.1 Selection Perturbative Hyper-Heuristics for Examination Timetabling Problems
	10.4.2 Selection Constructive Hyper-Heuristics for Examination Timetabling Problems

	10.5 Generation Hyper-Heuristics for Examination Timetabling Problems
	10.6 Discussion

	Chapter 11 Cross-Domain Hyper-Heuristics
	11.1 Introduction
	11.2 Cross-Domain Heuristic Search Challenge (CHeSC)
	11.3 Approaches Employed by the Hyper-Heuristics
	11.3.1 Finalists of CHeSC 2011
	11.3.2 Recent Approaches

	11.4 Discussion

	Part III Past, Present and Future
	Chapter 12 Advances in Hyper-Heuristics
	12.1 Introduction
	12.2 Hybrid Hyper-Heuristics
	12.3 Hyper-Heuristics for Automated Design
	12.4 Automated Design of Hyper-Heuristics
	12.5 Continuous Optimization
	12.6 Discussion

	Chapter 13 Conclusions and Future Research Directions
	Appendix A HyFlex and EvoHyp
	A.1 HyFlex
	A.2 EvoHyp
	A.2.1 GenAlg
	A.2.2 GenProg
	A.2.3 Distributed GenAlg and GenProg
	A.2.4 Accessing EvoHyp

	Appendix B Combinatorial Optimization Problems and Benchmarks
	B.1 Packing Problems
	B.1.1 One-Dimensional Bin Packing
	B.1.2 Two-Dimensional Bin Packing
	B.1.3 Three-Dimensional Bin Packing
	B.1.4 Packing Benchmark Sets

	B.2 Nurse Rostering Problem
	B.2.1 The 2010 International Nurse Rostering Competition
	B.2.2 The UK Benchmark Nurse Rostering Dataset
	B.2.3 The Nottingham Benchmark Nurse Rostering Dataset

	B.3 Vehicle Routing Problems
	B.3.1 Vehicle Routing Problem Benchmark Datasets

	B.4 Examination Timetabling Problems
	B.4.1 Exam Timetabling Benchmark Datasets

	References
	Index

