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Abstract In the mid-2010s, we began applying a combination of isogeometric anal-
ysis and immersed boundary methods to the problem of bioprosthetic heart valve
(BHV) fluid–structure interaction (FSI). This chapter reviews how our research
on BHV FSI (1) crystallized the emerging concept of immersogeometric analysis,
(2) introduced a new semi-implicit numerical method for weakly enforcing con-
straints in time dependent problems, which we refer to as the dynamic augmented
Lagrangian approach, and (3) clarified the important role of mass conservation in
immersed FSI analysis. We illustrate these contributions with selected numerical
results and discuss future improvements to, and applications of, the computational
FSI techniques we have developed.

1 Introduction

Heart valves are passive anatomical structures driven by hemodynamic forces. They
ensure proper unidirectional blood flow through the heart. At least 280,000 diseased
valves are replaced annually [1, 2]. The most popular replacements are bioprosthetic
heart valves (BHVs), fabricated from biologically derived materials [3]. Like native
valves, BHVs consist of flexible leaflets. BHVs have more natural hemodynamics
than the older “mechanical” prosthesis designs, which consist of rigid moving
parts [2]. However, the lifespans of typical BHVs remain limited to ∼10–15
years, with structural deterioration mediated by fatigue and tissue mineralization
[1, 2, 4, 5]. Much research has sought to prevent mineralization, but methods to
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extend durability remain less explored. Central to such efforts is an understanding
of the stresses in BHV leaflets over the cardiac cycle.

Computational methods may be used for stress analysis of heart valves. Some
previous computational studies on heart valve mechanics used (quasi-)static [6, 7]
and dynamic [8] structural analysis, with assumed pressure loads. However, pure
structural analysis is only accurate for static pressurization of a closed valve, which
represents just part of the full cardiac cycle. It is therefore important to simulate the
dynamics of heart valves interacting with blood, using computational fluid–structure
interaction (FSI).

1.1 Computational FSI Analysis of Heart Valves

Heart valves present several challenges for FSI analysis. Most notably, the valve
leaflets contact one another, changing the fluid subdomain’s topology. This section
updates the literature review of [3] to cover some additional recent work. Standard
arbitrary Lagrangian–Eulerian (ALE) [9–11] or deforming-spatial-domain/space–
time (DSD/ST) [12, 13] formulations, which continuously deform the fluid domain
from some reference configuration, are no longer directly applicable. One must aug-
ment these methods with special techniques to handle extreme deformations. One
solution is to generate a new mesh of finite elements or volumes for the fluid domain
whenever its deformation becomes too extreme [14–17]. This allows computations
to proceed, but introduces additional computational cost and numerical errors. Some
recent work by Takizawa and collaborators [18] introduced a novel space–time with
topology change (ST-TC) method that permits topology change without re-meshing.
Takizawa et al. [19] applied the ST-TC approach to CFD analysis of a heart valve,
and later extended the approach to include sliding interfaces in [20, 21], rendering
it suitable for future full FSI analysis.

In light of the aforementioned difficulties, the majority of work to-date on heart
valve FSI analysis has invoked Peskin’s immersed boundary concept [22]. While it
is not a universal convention, we follow [23–25] in applying the term “immersed
boundary method” broadly, to describe any numerical method for approximating
partial differential equations (PDEs) that allows boundaries of the PDE domain
to cut arbitrarily through a computational mesh. Researchers may have varying
interpretations of the term “immersed boundary method,” and we recommend that
writers clarify its meaning within a particular document.

Immersed boundary methods for FSI greatly simplify treatment of large struc-
tural deformations, but engender several disadvantages relative to ALE and DSD/ST
techniques [26]. In particular, they struggle to efficiently capture boundary layer
solutions near fluid–structure interfaces. Takizawa et al. [27] found that resolving
such layers is essential to obtaining accurate shear stresses in hemodynamic
analysis. A comprehensive overview of various immersed boundary methods and
their properties is beyond the scope of this literature review; we refer the interested
reader to [23, 24].

Peskin introduced the immersed boundary concept specifically to meet the
demands of heart valve FSI analysis [22]. The numerical method proposed by
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Peskin has found little if any direct application by bioengineers, though, due to
its crude representation of the heart valve as a collection of markers connected
by elastic fibers. However, deficient modeling of the structure subproblem is not
an inherent feature of immersed boundary methods. In the early 2000s, [28–
33] used an immersed boundary method introduced in [34] to couple finite
element discretizations of heart valves and blood flow. This allowed investigation
of various constitutive models, but numerical instabilities prevented analysis at
realistic Reynolds numbers and transvalvular pressures. Increasing availability of
parallel computing resources in the 2010s led to higher resolution simulations of
heart valves. Griffith [35] adapted Peskin’s original method to modern distributed-
memory computer architectures and included adaptive mesh refinement for the fluid
subproblem, to compute FSI of a native aortic valve throughout a full cardiac
cycle, with physiological flow velocities and pressure differences. Borazjani [36]
applied the curvilinear immersed boundary (CURVIB) method [37, 38] to simulate
systolic ejection through a bioprosthetic aortic valve, using nearly 10 million grid
points in the fluid domain. The valve leaflet models in the studies by Griffith
and Borazjani suffered from deficiencies, though, with [35] modeling the leaflets
in the style of Peskin, as markers connected by elastic fibers, and [36] omitting
bending stiffness. The CURVIB method was recently extended to include fluid–
shell structure interaction in [39, 40].

The immersed analyses cited above relied on academic research codes. As
early as the late 1990s, immersed methods in the commercial software LS-
DYNA [41] were used for FSI simulations of bioprosthetic and native aortic
valves [42–45]. The time-explicit procedures used by LS-DYNA result in severe
Courant–Friedrichs–Lewy conditions [46, 47], limiting stable time step size in
hemodynamic computations, because blood is nearly incompressible. References
[44, 45] circumvented this difficulty by artificially reducing the sound speed by
a significant factor, reporting that the fluid density variations introduced by this
deliberate modeling error were negligible. Other commercial analysis software for
heart valve FSI analysis may be usable through “black box” coupling algorithms
[48] that connect independent finite element analysis and CFD programs without
access to their internal details. Specialized methods are required for stable and
efficient black box coupling of fluids to thin, light structures such as heart valve
leaflets [49, 50]. Astorino et al. [51] applied a novel black box coupling algorithm
to FSI analysis of an idealized aortic valve. Remeshing functionality in ANSYS
software has also recently allowed for boundary-fitted simulations of heart valves
[52].

1.2 Immersogeometric Analysis

Following the majority of the studies cited in Sect. 1.1, our own work has employed
an immersed approach to heart valve FSI analysis. The goal of immersed methods
has always been to simplify the construction of analysis-suitable computational
models from available geometric data specifying the domain of a PDE system.
Traditional immersed boundary analysis eases this process by allowing subproblems
to be discretized separately, then coupled through a numerical method.
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Another technology for simplifying computational model generation is isogeo-
metric analysis (IGA) [53]. IGA is based on the insight that many geometries in
engineering design are specified in spline spaces that can be enriched, then used to
approximate PDE solutions. These spline spaces also have desirable mathematical
properties, including control over smoothness, improved approximation power [54],
and straightforward constructions of discrete de Rham complexes [55, 56]. Benefits
of these properties are evident in fluid and structural analyses, including studies
of incompressible flow [57–60], thin shells [61–64], extreme mesh distortion [65],
and contact [66, 67]. IGA encounters difficulties, though, when faced with realistic
engineering designs. Foremost among these are:

1. Many designs of volumes are specified in terms of bounding spline surfaces. If
analysts wish to solve PDEs in such volumes, then IGA, as originally conceived,
is inapplicable.

2. Spline surfaces in designs are frequently trimmed along curves that do not
conform to the parametric supports of the spline space’s basis functions. The
analysis space suggested by standard IGA is therefore not fitted to the boundaries
of the PDE domain.

These challenges could be addressed by changing the way in which engineering
products are designed: designers could transition to geometry representations that
are analysis-suitable. Changing the habits of designers throughout industry, though,
would require an incredible feat of mass persuasion. Undeterred, creators of
analysis-suitable design technologies (e.g., [68–70]) have succeeded at incorporat-
ing their work into some major commercial design platforms. It remains doubtful,
though, that analysis-suitable design will become standard any time soon. Further,
many designs specified in past formats will remain relevant long into the future.

One way to make IGA practical without changing the design process is to
incorporate immersed boundary methods. Difficulty 1 can be alleviated by creating
a convenient unfitted analysis space covering the volume of interest, then using an
immersed boundary method to enforce the desired boundary conditions on the spline
surfaces. Difficulty 2 can be addressed by using the natural isogeometric solution
space, and treating the trim curves as immersed boundaries. Promising work in both
of these directions has been carried out using an immersed boundary approach called
the finite cell method [71–75]. In addition to patching weaknesses of IGA, direct
application of immersed boundary techniques to design geometries can eliminate
the meshing and consequent geometrical approximation1 from traditional immersed
boundary analysis. In [77], we introduced the term immersogeometric analysis
(IMGA) to describe this symbiotic union of immersed boundary and isogeometric
technologies.2

1In practice, immersogeometric methods must frequently approximate integrals over the domain
geometry, which may be considered a type of geometrical approximation [76, Sections 4.3 and 4.4],
but this is conceptually distinct from the direct alteration of domain geometry that occurs in
traditional mesh generation.
2The word “immersogeometric” was originally coined in 2014 by T. J. R. Hughes, while traveling
in Italy; it is derived from the Italian word immerso, meaning “immersed.”
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1.3 Structure and Content of This Chapter

Section 2 states the coupled PDEs that we use to model the FSI system. Sec-
tion 3 describes the isogeometric spatial discretizations for the fluid and structure
subproblems. Section 4 completes the discretization with a semi-implicit coupling
scheme that we call the dynamic augmented Lagrangian (DAL) method. Section 5
demonstrates the accuracy of the proposed methods, looking at both norm conver-
gence and quantities of interest in nonlinear benchmark problems. Section 6 applies
DAL-based IMGA to BHV FSI simulation and compares the results to in vitro
experimental work. Finally, Sect. 7 sketches some future developments that may
improve on the technology described in this chapter, connect it to clinical practice,
and apply it to other FSI problems.

2 Mathematical Model of FSI

We model BHV leaflets as Kirchhoff–Love thin shells. We model the surrounding
fluid as incompressible and Newtonian. The subproblems are coupled through
kinematic and dynamic conditions on the fluid–solid interface. The thin structure
is modeled geometrically as a 2D surface embedded in the 3D fluid domain. We
state the model in a weak form, which is both suggestive of finite-dimensional
approximations and conducive to including distributional forces from immersed
boundaries.

Remark 1 We do not include a condition that the structure cannot intersect itself.
Inclusion of such a constraint would be redundant in light of FSI kinematics, since
a continuous velocity field is defined throughout the fluid–structure continuum [78].
While it is, in practice, useful to include some specialized treatment of structure-
on-structure contact in a numerical method, we consider that a feature of the
discretization, not the mathematical model.

2.1 Augmented Lagrangian Formulation of FSI

We start from the augmented Lagrangian framework for FSI introduced by Bazilevs
et al. [79], and specialize to the case of thin structures. The region occupied by
fluid at time t is (Ω1)t ⊂ R

d . The structure geometry at time t is modeled
by the hypersurface Γt ⊂ (Ω1)t . Let u1 denote the fluid’s velocity and p

denote its pressure. Let y denote the structure’s displacement from some reference
configuration, Γ0, and u2 ≡ ẏ denote the velocity of the structure. The fluid–
structure kinematic constraint, u1 = u2 on Γt , is enforced by the augmented
Lagrangian

∫
Γt

λ · (u1 − u2) dΓ + 1

2

∫
Γt

β|u1 − u2|2 dΓ , (1)
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where λ is a Lagrange multiplier and β ≥ 0 is a penalty parameter. The resulting
variational problem is: Find u1 ∈ Su, p ∈ Sp, y ∈ Sd , and λ ∈ S� such that, for all
test functions w1 ∈ Vu, q ∈ Vp, w2 ∈ Vd , and δλ ∈ V�

B1({u1, p}, {w1, q}; û) − F1({w1, q})

+
∫

Γt

w1 · λ dΓ +
∫

Γt

w1 · β(u1 − u2) dΓ = 0 , (2)

B2(y, w2) − F2(w2)

−
∫

Γt

w2 · λ dΓ −
∫

Γt

w2 · β(u1 − u2) dΓ = 0 , (3)

∫
Γt

δλ · (u1 − u2) dΓ = 0 , (4)

where Su, Sp, Sd , and S� are the trial solution spaces for the fluid velocity, fluid
pressure, structural displacement, and interface Lagrange multiplier solutions. Vu,
Vp, Vd , and V� are the corresponding test spaces. B1, B2, F1, and F2 are forms
defining the (weak) fluid and structure subproblems.

2.2 Fluid Subproblem

The fluid subproblem is incompressible and Newtonian:

B1({u, p}, {w, q}; û) =
∫

(Ω1)t

w · ρ1

(
∂u
∂t

∣∣∣∣
x̂
+ (

u − û
) · ∇u

)
dΩ

+
∫

(Ω1)t

ε(w) : σ 1(u, p) dΩ +
∫

(Ω1)t

q∇ · u dΩ

− γ

∫
(Γ1h)t

w · ρ1
{(

u − û
) · n1

}
− u dΓ , (5)

F1({w, q}) =
∫

(Ω1)t

w · ρ1f1 dΩ +
∫

(Γ1h)t

w · h1 dΓ , (6)

where ρ1 is the fluid mass density, ε is the symmetric gradient operator, σ 1(u, p) =
−pI + 2με(u), where μ is the dynamic viscosity, f1 is a prescribed body force,
and h1 is a prescribed traction on Γ1h ⊂ ∂Ω1. (Ω1)t deforms from some reference
configuration, (Ω1)0, according to the velocity field û, which need not equal u1.
∂(·)/∂t |x̂ indicates time differentiation with respect to a fixed point x̂ from (Ω1)0.
The last term of (5) is not usually considered to be part of the weak Navier–Stokes



IMGA of BHVs Using DAL 173

problem, but it enhances the stability of the problem in cases where flow enters
through the Neumann boundary Γ1h [80]. The function {·}− isolates the negative
part of its argument. The coefficient γ ≥ 0 controls the strength of this stabilizing
term and n1 is the outward-facing normal to Ω1.

2.3 Thin Structure Subproblem

Following the Kirchhoff–Love thin shell kinematic hypotheses (see, e.g., [61, 62,
64]), B2 and F2 are defined as

B2(y, w) =
∫

Γt

w · ρ2hth
∂2y
∂t2

∣∣∣∣
X

dΓ +
∫

Γ0

∫ hth/2

−hth/2
DwE : S dξ3dΓ (7)

and

F2(w) =
∫

Γt

w · ρ2hthf2 dΓ +
∫

Γt

w · hnet dΓ , (8)

where ρ2 is the structure mass density, f2 is a prescribed body force, hth is the
thickness of the shell, ξ3 is a through-thickness coordinate, and we have referred the
elasticity term to the reference configuration. E is the Green–Lagrange strain tensor
[81, (2.67)] corresponding to the displacement y, DwE is its functional derivative
in the direction w, and S is the second Piola–Kirchhoff stress tensor [81, (3.63)],
depending on E. The last term of F2 sums the prescribed tractions on the two sides
of Γt . ∂(·)/∂t |X indicates time differentiation with respect to a fixed material point.
The Green–Lagrange strain E is simplified to depend entirely on the shell structure’s
midsurface displacement, y : Γ0 → R

d , using Kirchhoff–Love shell kinematic
assumptions [61, 64], thus reducing the dimension of the PDE domain.

Any material model that accepts a Green–Lagrange strain E and returns a
2nd Piola–Kirchhoff stress S can be used directly in the structure subproblem
defined above. In the work summarized by this chapter, we model BHV leaflets as
hyperelastic, meaning that S = ∂Ψ/∂E, where Ψ maps strains to energy densities
[81, Chapter 6].

3 Discretization of Subproblems

Distinct fluid and structure subproblems may be isolated from the coupled problem
stated in Sect. 2 by setting the test function corresponding to the other subproblem
and the test function corresponding to the kinematic constraint to zero. Each of these
subproblems may be discretized by adapting existing techniques for computational
fluid and structural dynamics.
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3.1 Fluid Subproblem

The fluid subproblem may be isolated by setting w2 = δλ = 0, which yields (2),
in which the structure velocity u2 and the Lagrange multiplier λ should be viewed
as prescribed data. We describe two ways of discretizing this subproblem: the vari-
ational multiscale (VMS) approach3 (Sect. 3.1.1) and the divergence-conforming
B-spline approach (Sect. 3.1.2).

3.1.1 Variational Multiscale Formulation

Issues of discrete stability and turbulence modeling are simultaneously addressed
by the variational multiscale (VMS) [83] formulation of [58]. In short, it substitutes
an ansatz for subgrid velocities and pressures into the weak fluid subproblem. This
ansatz is consistent with the strong form of the Navier–Stokes equations, so that the
formulation smoothly transitions to high-order-accurate direct numerical simulation
as approximation spaces are refined.

The mesh-dependent VMS formulation is posed on a collection of disjoint fluid
elements {Ωe} such that Ω1 = ∪eΩe. {Ωe}, Ω1, and Γ remain time-dependent, but,
when there is no risk of confusion, we drop the subscript t to simplify notation. The
superscript h indicates association with discrete spaces defined over these elements.
The mesh {Ωe} deforms with velocity ûh. Let Vh

u and Vh
p be discrete velocity and

pressure spaces defined over {Ωe}. The semi-discrete VMS fluid subproblem is:
Find uh

1 ∈ Vh
u and ph ∈ Vh

p such that, for all wh
1 ∈ Vh

u and qh ∈ Vh
p ,

BVMS
1 ({uh

1, ph}, {wh
1, qh}; ûh) − F VMS

1 ({wh
1, qh})

+
∫

Γ

wh
1 · (λn2) dΓ +

∫
Γ

wh
1 · β(uh

1 − u2) dΓ = 0 , (9)

where

BVMS
1 ({u, p}, {w, q}; û) =

∫
Ω1

w · ρ1

(
∂u
∂t

∣∣∣∣
x̂
+ (u − û) · ∇u

)
dΩ

+
∫

Ω1

ε(w) : σ 1 dΩ +
∫

Ω1

q∇ · u dΩ

− γ

∫
Γ1h

w · ρ1
{(

u − û
) · n1

}
− u dΓ

3We use of the term “VMS” in this chapter to refer to the specific VMS formulation explained
in Sect. 3.1.1, applied to equal-order pressure–velocity discretizations. Our choice of terminology
should not be taken to mean that the concept of VMS analysis is incompatible with div-conforming
B-splines, which is demonstrably [82] not true.
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−
∑

e

∫
Ωe

(
(u − û) · ∇w + 1

ρ1
∇q

)
· u′ dΩ

−
∑

e

∫
Ωe

p′∇ · w dΩ

+
∑

e

∫
Ωe

w · (u′ · ∇u) dΩ

−
∑

e

∫
Ωe

1

ρ1
∇w : (

u′ ⊗ u′) dΩ

+
∑

e

∫
Ωe

(
u′ · ∇w

)
τ · (

u′ · ∇u
)

dΩ , (10)

and

F VMS
1 ({w, q}) = F1({w, q}) . (11)

The forms BVMS
1 and F VMS

1 are semi-discrete counterparts of B1 and F1. u′ is the
fine scale velocity ansatz,

u′ = −τM

(
ρ1

(
∂u
∂t

∣∣∣∣
x̂
+ (u − û) · ∇u − f

)
− ∇ · σ 1

)
, (12)

and p′ is the fine scale pressure,

p′ = −ρ1τC∇ · u . (13)

The stabilization parameters τM, τC, and τ are defined as

τM =
(

s

(
4

Δt2 + (u − û) · G(u − û) + CI

(
μ

ρ1

)2

G : G

))−1/2

, (14)

τC = (τMtrG)−1 , (15)

τ = (
u′ · Gu′)−1/2 , (16)

where Δt is a timescale associated with the (currently unspecified) temporal
discretization, CI is a dimensionless positive constant derived from element-wise
inverse estimates [84, 85], and G generalizes element size to physical elements
mapped through x(ξ) from a parametric parent element: Gij = ξk,iξk,j . s is a
dimensionless field such that, in most of Ω1, s = 1, but, in an O(h) neighborhood
of Γ , s = sshell ≥ 1. We introduced this field in [77] to improve mass conservation
near immersed boundaries. A theoretical motivation for this scaling is given in [86],
and a numerical investigation of its effect is given in [77].
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3.1.2 Divergence Conforming B-splines

A way to totally eliminate mass loss and obtain pointwise divergence-free velocity
solutions is to discretize the fluid in a divergence-conforming (or div-conforming)
manner, such that the divergence of every vector-valued function in the discrete
velocity space is a member of the discrete pressure space. If this property is satisfied,
then weak mass conservation implies strong (pointwise) mass conservation. A
discretization of this type was developed for Stokes and Navier–Stokes flows by
Evans and Hughes [59, 60, 87]. Evans and Hughes used B-splines to construct
velocity and pressure spaces with the necessary properties, then directly posed the
weak problem B1({uh

1, ph}, {wh
1, qh}; 0) = F1({wh

1, qh}) over these discrete spaces.
A caveat to the above reasoning is that, to truly obtain velocities that conform to the
incompressibility constraint, one would need to solve the discrete algebraic problem
exactly, which is impractical for realistic problems. We demonstrate in the 3D
numerical examples of Sects. 6.2 and 6.3, however, that the benefits of divergence-
conforming discretizations persist through common approximations in the assembly
and solution of the algebraic problem.

Evans and Hughes used Nitsche’s method to enforce no-slip boundary condi-
tions. For the computations of this chapter, the regularity of the fluid velocity
solution is at most H 3/2−ε(Ω1) and we use, for simplicity, a weakly consistent
penalty method, altering the problem to be

B1({u1, p}, {w1, q}; 0) + Cpen

∫
Γpen

(u1 − g) · w1 dΓ = F1 ({w1, q}) , (17)

where Cpen > 0 is a penalty parameter and g is the desired velocity on Γpen ⊂ ∂Ω1.

Construction for Rectangular Domains

Suppose, for now, that Ω1 is an axis-aligned d-dimensional rectangle. Then physical
space can serve directly as a d-variate B-spline parameter space.4 Define a d-variate
scalar B-spline space for the pressure on Ω1. Then, for 1 ≤ i ≤ d, we can k-refine
the pressure space once in the ith parametric direction to obtain a scalar space for the
ith Cartesian velocity component. Due to well-known properties of B-splines under
differentiation [88], the ith partial derivative of the ith velocity component will then
be in the pressure space. The scalar basis functions of the velocity component spaces
can be multiplied by their respective unit vectors to obtain a vector-valued basis for
the discrete velocity space. The divergence of a velocity will therefore be a sum of
d scalar functions in the pressure space.

4For readers unfamiliar with the construction and basic properties of B-splines, a comprehensive
explanation can be found in [88].
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Precise definitions are given in [59, Section 5.2]. In the notation of the cited
reference, the velocity space is R̂T h and the pressure space is Ŵh. Following the
terminology of [59], if the pressure space has polynomial degree k′ in all directions,
the entire pressure–velocity discretization is said to be of degree k′, despite the
presence of (k′ + 1)-degree polynomials in the velocity component spaces.

Generalization to Non-rectangular Domains

Div-conforming B-splines are not limited to rectangular domains. A point X in a
rectangular parametric domain Ω̂ may be mapped to a point x in a non-rectangular
physical domain Ω by x = φ(X). Vector-valued velocity basis functions defined on
Ω̂ are then pushed forward using the Piola transform. For arbitrary parametric-space
velocity function û, its pushforward u is

u(x) = 1

J (X)
F(X)̂u(X) , (18)

where

F = ∂φ

∂X
⇐⇒ FiJ = ∂φi

∂XJ

= φi,J , (19)

and J = det F. Using Nanson’s formula [81, (2.54)] and integration by parts, we get
the Piola identity

div u = 1

J
DIV û , (20)

where

div u = ∂uj

∂xj

= uj,j and DIV û = ∂ûB

∂XB

= ûB,B . (21)

We would like the divergence of every pushed-forward velocity function to exist in
the pushed-forward pressure space. For every û in the parametric velocity space,
there exists q̂ in the parametric pressure space such that q̂ = DIV û. Then,
recalling (20), the parametric pressure space function should be pushed forward
by

q(x) = 1

J (X)
q̂(X) . (22)

Div-confomring B-splines may be used on even wider classes of geometries
by joining deformed rectangular patches together with a discontinuous Galerkin
approach [59, Section 6.5].
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Stabilizing Advection

The Galerkin discretization used by Evans and Hughes can be straightforwardly
augmented to include SUPG stabilization [89]. However, the pressure gradient in the
momentum equation residual removes the property of the Galerkin approximation
that the error in the velocity solution is independent of pressure interpolation
error [60, (6.32)]. This property is valuable in the presence of immersed boundaries
that induce large discontinuities in the exact pressure solution. In this work, we
stabilize div-conforming discretizations with O(h) streamline diffusion: we add

+
∑

e

(τρ1uh
1 · ∇uh

1, uh
1 · ∇wh

1)L2(Ωe) (23)

to B1({wh
1, qh}, {uh

1, ph}), where {Ωe}Nel
e=1 are the Nel Bézier elements of the B-

spline mesh and

τ =
{(

uh
1 · Guh

1

)−1/2
uh

1 · Guh
1 > 0

0 otherwise
. (24)

While this is only weakly consistent, we do not expect high convergence rates from
immersed boundary discretizations of the type considered here, due to low regularity
of the exact solution.

3.2 Structure Subproblem

Setting w1 = δλ = 0 isolates the structure subproblem (3), in which u2 and λ are
considered prescribed data. This problem can be stably discretized using a Bubnov–
Galerkin method. However, for B2(y, w) to remain bounded, y and w need to be in
H 2(Γ ). It is sufficient for discrete spaces to be in C1(Γ ). Traditional finite element
spaces do not satisfy this requirement. However, isogeometric spline spaces can
be made C1 if geometry allows. Typical BHV leaflet geometries can be accurately
modeled by C1 spline surfaces, so, for the purposes of this chapter, the semidiscrete
structure subproblem amounts to choosing Vy in (3) to be (and enrichment of)
the smooth spline space used to model the geometry. The implementation of such
discretizations is documented exhaustively in [64]. We augment this discretization
with penalty-based contact, as described in [77], as mentioned in Remark 1.

4 Dynamic Augmented Lagrangian Coupling

The augmented Lagrangian coupling the subproblems is discretized using a semi-
implicit time integration scheme, in which the penalty is treated implicitly and
the Lagrange multiplier is updated explicitly. We call this the dynamic augmented



IMGA of BHVs Using DAL 179

Lagrangian (DAL) method. DAL circumvents difficulties with fully implicit cou-
pling, while forbidding leakage through the structure in steady-state solutions and
retaining the stability that eludes fully explicit approaches.

4.1 Separation of Normal and Tangential Coupling

The constraint that u1 = u2 on Γ can be separated into no-penetration

u1 · n2 = u2 · n2 (25)

and no-slip

u1 − (u1 · n2) n2 = u2 − (u2 · n2) n2 , (26)

where n2 is normal to Γ . These constraints are enforced by normal and tangential
components of λ.

No-penetration is critical to the qualitative structure of solutions. No-slip is less
essential, and strong enforcement may even be detrimental to solution quality on
coarse meshes [90–94]. We therefore discretize these constraints differently. For
no-penetration, we discretize a scalar multiplier field, λ = λ · n2. For no-slip, we
approximate the tangential component of λ by a weakly consistent penalty force.
Because Γt can cut through the fluid domain in arbitrary ways, we do not attempt
to construct inf-sup stable combinations of velocity and multiplier spaces. Instead,
we circumvent the inf-sup condition by regularizing the no-penetration constraint
residual:

(u1 − u2) · n2 → (u1 − u2) · n2 − r

β
λ , (27)

where r ≥ 0 is a dimensionless constant. Much as the slip penalization can be
derived as a degenerate case of Nitsche’s method [77, Section 4.1], the regularization
of the no-penetration constraint can be viewed as a degenerate case of strongly
consistent Barbosa–Hughes stabilization [95].

The problem we discretize in time is then: Find u1 ∈ Su, p ∈ Sp, y ∈ Sd , and
λ ∈ S� such that, for all test functions w1 ∈ Vu, q ∈ Vp, w2 ∈ Vd , and δλ ∈ V�

B1({w1, q}, {u1, p}; û) − F1({w1, q}) + B2(w2, y) − F2(w2)

+
∫

Γt

(w1 − w2) · λn2 dΓ

+
∫

Γt

(w1 − w2) · τB
NOR ((u1 − u2) · n2) n2 dΓ



180 M.-C. Hsu and D. Kamensky

+
∫

Γt

(w1 − w2) · τB
TAN ((u1 − u2) − ((u1 − u2) · n2) n2) dΓ

+
∫

Γt

δλ ·
(

(u1 − u2) · n2 − rλ

τB
NOR

)
dΓ = 0, (28)

where we split the penalty term into normal and tangential components. We propose
to scale the tangential penalty like

τB
TAN = CTAN

μ

h
, (29)

where CTAN is a dimensionless O(1) constant and h is a measure of the fluid element
diameter, with units of length. We propose that the normal penalty scale like

τB
NOR = max

{
Cinert

NOR
ρ1h

Δt
, Cvisc

NOR
μ

h

}
, (30)

where Cinert
NOR and Cvisc

NOR are dimensionless constants and Δt is a time scale from the
temporal discretization.

4.2 Time Integration Algorithm

We now state the time-marching procedure for the coupled system. The algorithm
computes approximate solutions discrete time levels, indexed by n and separated by
steps of size Δt . At time level n, the discrete fluid velocity is defined by a coefficient
vector Un, the fluid time derivative by U̇n, the fluid pressure by Pn, and the structure
displacement, velocity, and acceleration by Yn, Ẏn, and Ÿn. The multiplier at level
n is λn, considered a function with domain Γt , and represented discretely as a set
of samples at quadrature points of a (Lagrangian) integration rule on Γt . Consider
solution variables at level n known. The first step of DAL is to construct a system of
equations for all (n + 1)-level fluid and structure unknowns, with λn+1 kept equal
to λn:

Res
(

Un+αf , U̇n+αm, Yn+αf , Ẏn+αf , Ÿn+αm, Pn+1, λn+1(= λn)
)

= 0 , (31)

Un+1 = Un + Δt
(
(1 − γ )U̇n + γ U̇n+1

)
, (32)

U̇n+αm = U̇n + αm

(
U̇n+1 − U̇n

)
, (33)

Un+αf = Un + αf

(
Un+1 − Un

)
, (34)

Yn+1 = Yn + ΔtẎn + Δt2

2

(
(1 − 2β)Ÿn + 2βŸn+1

)
, (35)
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Ẏn+1 = Ẏn + Δt
(
(1 − γ )Ÿn + γ Ÿn+1

)
, (36)

Ÿn+αm = Ÿn + αm

(
Ÿn+1 − Ÿn

)
, (37)

Ẏn+αf = Ẏn + αf

(
Ẏn+1 − Ẏn

)
, (38)

Yn+αf = Yn + αf

(
Yn+1 − Yn

)
, (39)

where αm, αf , β, and γ are time integration parameters. Res(. . .) is the algebraic
residual corresponding to the discretization of (28) with δλ = 0. This penalty-
coupled problem is resolved by block iteration, which alternates between solving
for fluid and structure increments, as described further in Sect. 4.3. Equations (31)–
(39) are based on the generalized-α method [96]. Following [97, Section 4.4], we
work within a subset of generalized-α methods, parameterized by ρ∞ ∈ [0, 1],
which controls numerical damping and defines the free parameters as

αm = 1

2

(
3 − ρ∞
1 + ρ∞

)
, αf = 1

1 + ρ∞
, (40)

γ = 1

2
+ αm − αf , β = 1

4

(
1 + αm − αf

)2 . (41)

The backward Euler method can also be conveniently implemented within the
generalized-α predictor–multi-corrector scheme of [97] by setting the generalized-α
parameters to αm = αf = γ = β = 1 and modifying the displacement predictor.

Note that, because the multiplier is fixed in (31)–(39), the (regularized) α-level
constraint residual

Rn+α =
((

uh
1

)n+αf −
(

uh
2

)n+αf
)

· n
n+αf

2 − rλn+1

τB
NOR

(42)

is not necessarily zero on Γt+αf
. To motivate the development of the multiplier

update step in DAL, consider the case of r = 0. If Rn+α = 0 and r = 0, then
the normal component of the α-level penalty force, τB

NORRn+α , will be zero and
the normal α-level fluid–structure force will be due only to the Lagrange multiplier,
λn+1. This suggests the explicit update

λn+1 ← λn+1 + τB
NORRn+α , (43)

in which λn+1 is set equal to the α-level fluid–structure forcing. Equations (31)–
(39) are of course no longer satisfied with the updated λn+1, but one may attempt to
iterate the steps

1. Solve (31)–(39) with λn+1 fixed.
2. Update λn+1 by (43).
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until ‖Rn+α‖L2(Γt )
is converged to some tolerance. As explained in [77, Sec-

tion 4.2.1], the r = 0 case of this iteration corresponds to the classic augmented
Lagrangian algorithm of [98, 99]. For r = 0, though, the convergence criterion of
‖Rn+α‖L2(Γt )

< ε is too strict to arrive at a non-locking solution; it effectively
demands pointwise constraint satisfaction between non-matching velocity spaces of
the fluid and structure. We found, accordingly, that the iteration does not typically
converge, but circumvented this difficulty by truncating to a single pass, leading to
the semi-implicit time marching scheme of first solving (31)–(39) with λn+1 = λn,
then updating λn+1 by (44) and continuing directly to the next time step, i.e.,

λn+1 = λn + τB
NORRn+α . (44)

This augmented-Lagrangian-based explicit multiplier update is the distinguishing
feature of DAL. Use of r = 0 is effective for transient problems, but may run into
difficulties in the steady limit, when the Lagrange multiplier and velocity discrete
spaces are not chosen stably. Choosing r > 0 can improve robustness. In that
case, (44) is an implicit formula, but it can be recast in explicit form:

λn+1 =
λn + τB

NOR

((
uh

1

)n+αf − (
uh

2

)n+αf
)

· n
n+αf

2

1 + r
. (45)

Some caution is warranted, however, in perturbing the kinematic constraint. Sec-
tion 4.4.4 provides an illustrative example of the effects of this consistency error.

4.3 Block Iterative Solution of the Implicit Problem

The implicit step of DAL amounts to a penalty regularization of fluid–structure
coupling, with a prescribed loading λnnn+αf along Γ n+αf . The penalty value can
be moderate, rendering the regularized problem much easier to solve. A simple
block-iterative procedure turns out to be practical, even for applications with light
structures and heavy, incompressible fluids.

Consider Rf(uf, us) to be the nonlinear residual for the fully discrete fluid
subproblem at a particular time step, which depends on discrete fluid and structure
solutions, uf and us. Likewise, Rs(uf, us) is the residual for the discrete structure
subproblem. The block-iterative procedure to find a root of (Rf, Rs) is to start with
guesses for uf and us and repeat

1. Assemble Rf(uf, us) and a(n approximate) tangent matrix, Af ≈ ∂Rf/∂uf.
2. Solve the linear system AfΔuf = −Rf for the fluid solution increment.
3. Update the fluid solution: uf ← uf + Δuf.
4. Assemble Rs(uf, us) and As ≈ ∂Rs/∂us.
5. Solve AsΔus = −Rs for the structure solution increment.
6. Update the structure solution: us ← us + Δus.
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until Rf and Rs are sufficiently converged. To ensure predictable run-times and avoid
stagnation in pathological configurations, we typically choose a fixed number of
iterations rather than a convergence tolerance. While it is possible that error from
isolated, poorly solved time steps can pollute the future of an unsteady solution, we
find this ad hoc procedure effective for predicting quantities of engineering interest.

4.4 Discussion

We summarize here some alternate interpretations and qualitative analysis from [77,
100] of the algorithm stated in Sect. 4.2.

4.4.1 Modified Equation Interpretation of DAL

When r = 0, the multiplier becomes an accumulation of penalty tractions from
previous time steps. This is equivalent to replacing the multiplier and normal penalty
terms ∫

Γt

(w1 − w2) · (λn2) dΓ

+
∫

Γt

((w1 − w2) · n2) τB
NOR ((u1 − u2) · n2) dΓ (46)

by a penalization of (a backward Euler approximation of) the time integral of
pointwise normal velocity differences on the immersed surface Γt

∫
Γt

{
τB

NOR

Δt
(w1(x, t) − w2(x, t)) · n2(x, t)

∫ t

0

(
u1(ϕτ (ϕ

−1
t (x)), τ ) − u2(ϕτ (ϕ

−1
t (x)), τ )

)

·n2(ϕτ (ϕ
−1
t (x)), τ ) dτ

}
dΓ , (47)

where ϕτ (X) gives the spatial position at time τ of material point X ∈ Γ0 and dΓ

indicates integration over x ∈ Γt . To see this, first define (at fixed X)

λreg(t) = τB
NOR

Δt

∫ t

0
(u1(τ ) − u2(τ )) · n2(τ ) dτ . (48)

Then

˙(λreg) = ∂λreg

∂t

∣∣∣∣
X

= τB
NOR

Δt
(u1 − u2) · n2 . (49)
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The normal forcing on Γ in the implicit step of the semi-implicit time integrator is

(
λreg)n+1 = (

λreg)n + Δt ˙(λreg)
n+1

(50)

where (λreg)n is a sum of all previous approximations of λ and Δt ˙(λreg)
n+1

is the
current time step’s penalty forcing. Thus the forcing (47) is accounted for in a fully
implicit manner, using the stable backward Euler method.

For r > 0, we can draw a similar analogy, in which λreg advances through time
by backward Euler integration of

1

(1 + r)

∂λreg

∂t

∣∣∣∣
X

= τB
NOR

Δt
(u1 − u2) · n2 − r

Δt(1 + r)
λreg . (51)

Intuitively, the additional term causes a decay of λreg in the absence of constraint
violation, which highlights its stabilizing effect.

4.4.2 Analogy to Artificial Compressibility

The differential equation given in (49) closely resembles the method of artificial
compressibility [101]. In that scheme, the approximated Lagrange multiplier p

representing pressure in an incompressible flow evolves in an analogous way to
λreg (in the case r = 0):

∂tp = −1

δ
∇ · u1 , (52)

where the constraint is ∇ · u1 = 0 (instead of (u1 − u2) · n2 = 0), 1/δ is the penalty
parameter. A physical interpretation of DAL for FSI, similar to Chorin’s original
formulation of (52) in terms of a fictitious density variable, is that, for r = 0, DAL
penalizes displacement of the fluid through the structure. This interpretation makes
clear how penalizing the time integral of velocity prevents the steady creep of flow
through a barrier.

4.4.3 Relation to Feedback Boundary Conditions

The time-continuous interpretation of DAL with r = 0 may be interpreted as a
special case of an existing framework for enforcing Dirichlet boundary conditions
on the unsteady Navier–Stokes equation. Goldstein et al. [102] proposed to apply
concentrated surface forcing of the form [102, (3)]

f(xs , t) = α

∫ t

0
u1(xs , τ ) dτ + βu1(xs , t) , (53)
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for all xs on a stationary solid boundary with parameters α ≤ 0 and β ≤ 0. Goldstein
et al. interpreted this method, which we refer to here as the feedback method, in the
context of control theory, arguing heuristically that it provides negative feedback in
the case of constraint violation.

The initial implementation of [102] used a spectral fluid discretization and
applied smoothing to filter concentrated forces, reducing pollution effects from
the global nature of the spectral basis functions (cf. [103, Chapter I, Section 2]).
Goldstein and collaborators continue to use this methodology for DNS of turbulent
flows [104–109]. Saiki and Biringen [110, 111] extended the concept of feedback
forcing to finite difference fluid discretizations, using bilinear interpolation within
grid cells to evaluate velocity at quadrature points of the immersed boundary and
also to distribute concentrated feedback forces to grid points. Reference [110] was
the first application of the approach to moving boundaries, in which (53) becomes
(cf. [110, (1)] and (47))

f(ϕt (Xs), t) = α

∫ t

0

(
u1(ϕτ (Xs), τ ) − U2(Xs , τ )

)
dτ

+ β
(
u1(ϕτ (Xs), τ ) − U2(Xs , τ )

)
, (54)

where ϕt (Xs) represents the position at time t of a material point Xs on the moving
boundary with velocity U2(Xs , t). This naturally leads to FSI, and a recent series
of papers [112–116] demonstrated that feedback forcing is robust and accurate
for simulating light, flexible, immersed structures. A related approach has been
used in the commercial code LS-DYNA [41] for decades, to study automobile
airbag inflation and other challenging FSI problems [117–120], including heart
valve simulation [42–45]. We have seen no documentation explicitly relating
it to the feedback method, and assume that it was devised independently. The
repeated rediscovery of this formulation by engineers studying difficult CFD and
FSI problems suggests an inherent robustness to the approach.

4.4.4 Qualitative Effects of Multiplier Stabilization

The case of r > 0 is less physically intuitive than the r = 0 case. To provide some
intuition for the influence of r , consider a model of plug flow through a blocked tube:
a rigid barrier blocks a channel with slip boundaries, filled with a fluid assumed to
have a velocity, ue1, that is constant across space, but may vary with time.

The ends of the channel are subject to pressures P1 and P2, which define the
pressure drop, ΔP = P1 −P2. Suppose that the Lagrange multiplier field takes on a
single constant value across the barrier. Then the steady solution of the semi-implicit
time integration procedure described in Sect. 4.2 reduces to the conditions

1. Steadiness: λn+1 = λn = λ∞ ⇒ λ∞ = (
λ∞ + τB

NORu
)
/(1 + r).

2. Equilibrium: λ∞ + τB
NORu = ΔP .
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Leakage is then given by u = rΔP

τB
NOR(1+r)

, which asymptotes to inverse scaling with

the penalty parameter as r → ∞ and to zero as r → 0. For fixed r > 0, steady
leakage converges to zero with refinement at the same rate as it would for a pure
penalty method, but, if r is an adjustable parameter, one may reduce the steady-state
leakage arbitrarily without impacting the solvability of the discrete problem at each
time step.

5 Numerical Experiments

We demonstrate, through numerical experiments, that the DAL method is conver-
gent. We summarize here results from [77, 86], considering both convergence of
solutions in Sobolev norms for simple problems and convergence of quantities of
interest in more complicated problems.

5.1 Navier–Stokes Flow with Immersed Boundaries

Consider, first, Navier–Stokes flow with Dirichlet conditions on immersed bound-
aries.

5.2 Taylor–Green Vortex

The Taylor–Green vortex is a solution to the 2D Navier–Stokes equations posed
on the domain Ω = [−π, π ]2 with periodic boundary conditions and no external
forcing:

uTG(x, t) = (sin(x1)cos(x2)e1 − cos(x1)sin(x2)e2) e−2μt/ρ . (55)

We construct an interesting test problem by prescribing u = uTG as an initial
condition at t = 0 and also as a time-dependent Dirichlet boundary condition on
a closed immersed boundary Γ , then adding a body force fx = e1. The body
force induces a pressure gradient in the region enclosed by Γ without perturbing
the velocity solution there. The velocity outside of the region enclosed by Γ is
no longer equal to uTG for t > 0. There are jumps in the pressure and velocity
derivatives along Γ , so the regularity of the velocity solution is representative of
typical applications. We have not derived an exact solution on the entire domain,
but one can easily measure error in a subset Ωerr of the region enclosed by Γ . In
this section, we consider low Reynolds number flow, and choose μ = 0.01. A high
Reynolds-number test is carried out in Sect. 5.2.2.
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Fig. 1 The non-rectilinear
mesh of Ω avoids grid
alignment with Γ

Fig. 2 Simultaneous velocity magnitude (left) and pressure (right) snapshots of the Navier–Stokes
Taylor–Green problem, with annotations describing the problem setup

We choose Γ = ∂
(
(−π, π)2

)
. To avoid special behavior associated mesh-

aligned immersed boundaries, we distort the background mesh, as shown in Fig. 1.
Figure 2 illustrates the problem setup. Div-conforming B-splines of degree k′ =
1 are used to discretize the velocity and pressure spaces, and backward Euler
integration is applied in time. Error convergence is shown in Fig. 3, displaying
nearly first-order rates.

5.2.1 Translating Taylor–Green Vortex

Adding a uniform velocity to an initial condition in a periodic domain yields
a Galilean transformation of the original solution. In this section, we add v =
−0.87e1 − 0.5e2 to the initial condition of the Taylor–Green vortex and translate
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Fig. 3 Convergence of the L2(Ωerr) and H 1(Ωerr) errors for r = 0 and r = 0.1 for Navier–Stokes
flow with a stationary boundary and positive viscosity

Fig. 4 Annotated snapshot
of velocity magnitude at time
T for Navier–Stokes flow
with moving boundaries and
positive viscosity

Γt at the same velocity. The solution at time T is shown in Fig. 4. Figure 5 indicates
that convergence on Ωerr remains intact.

5.2.2 Infinite Reynolds Number

To demonstrate the robustness at realistic Reynolds numbers, we repeat the test of
Sect. 5.2.1 with μ = 0. The exact solution becomes tangentially discontinuous at
Γt . This behavior is captured reasonably well, as shown in Fig. 6. The nearly linear
convergence rates in L2(Ωerr) and H 1(Ωerr) are maintained, as shown in Fig. 7,
despite the fact that the H 1(Ω) norm of the exact solution is not well-defined. This
example uses r = 0, for reasons explained in [86].
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Fig. 5 Convergence of the L2(Ωerr) and H 1(Ωerr) errors for r = 0 and r = 0.1 for Navier–Stokes
flow with moving boundaries

Fig. 6 Annotated snapshot
of velocity magnitude at time
T for Navier–Stokes flow
with moving boundaries and
zero viscosity

5.3 2D Non-coapting Valve

This section considers a 2D valve-inspired benchmark problem investigated pre-
viously by Gil et al. [121], Hesch et al. [122], Wick [123], and Kadapa et al.
[124]. The structure does not contact itself, so it is straightforward to compute
converged solutions using verified body-fitted methods, making the problem a
valuable benchmark for new immersed approaches.

5.3.1 Description of the Problem

The problem consists of two cantilevered elastic beams immersed in a 2D channel
filled with incompressible Newtonian fluid, as shown in Fig. 8. The fluid and
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Fig. 7 Convergence of the L2(Ωerr) and H 1(Ωerr) errors for r = 0 for Navier–Stokes flow with
moving boundaries and zero viscosity

Fig. 8 Geometry and boundary conditions of the 2D heart valve benchmark

structure have equal densities of ρ1 = ρ2 = 100. The viscosity is μ = 10. The
structure is a St. Venant–Kirchhoff material with Young’s modulus E = 5.6 × 107

and Poisson ratio ν = 0.4. The top and bottom of the channel have no-slip boundary
conditions, the right end is traction-free, and the left end has a prescribed, time-
dependent velocity profile,

u1 (y e2, t) =
{

5(sin(2πt) + 1.1)y(1.61 − y)e1 , t > 0
0 , otherwise

, (56)

where the origin of the spatial coordinate system is at the bottom left corner of the
domain. The parameter γ in (5) is set to zero.
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Fig. 9 The reference configuration of the body-fitted mesh for the 2D valve problem, with leaflets
highlighted in magenta and areas of softened mesh highlighted in green

Fig. 10 The deformation of
the body-fitted fluid mesh at
t = 0.5

5.3.2 Body-Fitted Reference Computation

The mesh for the body-fitted reference computation is shown in Fig. 9. We use
generalized-α time integration with ρ∞ = 0.5 and a time step of Δt = 0.005.
The selected resolution ensures that the displacement history of the upper beam tip
changes negligibly with further refinement.

The fluid mesh deforms from one time step to the next according to the solution
of a fictitious isotropic linear elastic problem that takes the location of the beam as a
displacement boundary condition. The velocity of this deformation enters into (10)
as ûh. Mesh quality is preserved throughout the deformation with Jacobian-based
stiffening [97, 125–129]. In the present problem, we also find it necessary to soften
the fictitious material governing the deformation of elements between the leaflets.
The resulting deformed mesh at time t = 0.5 is shown in Fig. 10.

5.3.3 Immersogeometric Computations

We test three immersogeometric discretizations of the problem, using the VMS fluid
formulation. The first, M1, evenly divides the fluid domain into 128 × 32 quadratic
B-spline elements and each beam into 64 quadratic B-spline elements. The other
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Fig. 11 The x- and y-displacements of the upper leaflet tip, computed on the immersed and body-
fitted meshes

two are uniform refinements of M1. We refine also in time, using Δt = 0.01 with
M1, Δt = 0.005 with M2, and Δt = 0.0025 with M3.

The time integration of the fluid–structure coupling is done using DAL with r =
0 and generalized-α parameters determined by ρ∞ = 0.5. Following (29) and the
low-Reynolds number branch of (30), we scale penalty parameters τB

(·) inversely

with mesh size, choosing τB
(·) = 104 on M1, τB

(·) = 2×104 on M2, and τB
(·) = 4×104

on M3. VMS parameters are scaled near the structure using sshell = 106.

5.3.4 Comparison of Results

Figure 11 shows the x- and y-displacements of the upper beam tip for the body-
fitted and immersed computations. Displacement histories from M1, M2, and M3
converge toward the body-fitted result. Comparisons of pressure contours at time
t = 0.5 are given in Fig. 12, showing general agreement between immersogeometric
and body-fitted flow fields. Velocity streamlines at t = 0.5 for M1 are shown in
Fig. 13.

5.4 Benchmark Testing with Div-conforming B-splines

To verify the IMGA implementation using div-conforming B-splines for the fluid
subproblem, we again use the 2D benchmark problem defined in Sect. 5.3. Although
the problem domain is rectangular, we demonstrate convergence with distorted fluid
meshes by deforming the interior of the parametric domain, as shown in Fig. 14. For
the coarsest mesh, M1, the B-spline knot space is subdivided into 32 × 128 Bézier
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(a) (b)

(c) (d)

Fig. 12 Pressure contours at t = 0.5, from immersed boundary computations on M1, M2, and
M3, along with the body-fitted reference. (a) Immersed M1. (b) Immersed M2. (c) Immersed M3.
(d) Body-fitted reference

elements and div-conforming B-spline velocity and pressure spaces of degree k′ = 1
are defined on this mesh. The meshes M2 and M3 are uniform refinements of M1.

Normal-direction Dirichlet boundary conditions on mesh boundaries are
enforced strongly, while tangential boundary conditions are enforced by penalty. For
computations on mesh M(N +1), penalty parameters are τB

NOR = τB
TAN = Cno slip =

1000×2N . We use the backward Euler method in time, with Δt = 1.0×10−2×2−N .
Figures 15 and 16 compare x- and y-displacement histories of the upper beam

tip in the three immersogeometric computations and the body-fitted reference.
Figure 17 shows snapshots of the computed pressure and velocity solutions.
Refinement of immersogeometric discretizations clearly brings this quantity of
interest closer to the boundary-fitted reference curve.
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(a) (b)

(c) (d)

Fig. 13 Velocity streamlines superimposed on a velocity magnitude contour plot, at t = 0.5, from
immersogeometric computations on M1, M2, and M3, and the body-fitted reference. (a) Immersed
M1. (b) Immersed M2. (c) Immersed M3. (d) Body-fitted reference

Fig. 14 The physical image of the B-spline parameter space, showing the mesh of unique knots
(thin lines) for M1 in relation to the beams (thick lines)
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Fig. 15 The x-direction displacement of the tip of the upper beam
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Fig. 16 The y-direction displacement of the tip of the upper beam

6 Application to BHV FSI Analysis

We first review some valve simulations using DAL-based IMGA. Section 6.3 then
describes an initial effort toward validating the mathematical model for BHV FSI
put forward in Sect. 2.
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Fig. 17 The pressure field (left) and the velocity magnitude (right) at time t = 0.5 on M2

Fig. 18 Snapshots of the valve FSI computation from [77], showing valve deformations and
volume renderings of fluid velocity magnitude

6.1 Overview of BHV Simulations

All of the computations reviewed in this section use the VMS discretization
of the fluid subproblem described in Sect. 3.1.1 and DAL for fluid–structure
coupling. Some of them incorporate phenomena that are beyond the scope of the
mathematical problem stated in Sect. 2, such as deforming arteries. However, these
BHV simulations illustrate the versatility and practical effectiveness of DAL and
IMGA, so we summarize the results while providing citations for additional details.

We introduced the initial variant of DAL in [77], along with the adjustments
to VMS and contact penalty needed to effectively simulate a BHV. A crude BHV
model immersed in a rigid artery illustrated the effectiveness of the numerics,
although the use of an unrealistic pinned boundary condition on the attached
edges of the leaflets led to qualitatively incorrect deformations. Further, the rigid
artery and resistance outflow boundary condition provided no hydraulic compliance,
causing an abnormal flow rate history [77, Figure 28]. Some snapshots of the valve
deformations and velocity fields are rendered in Fig. 18.
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Fig. 19 Snapshot of the
valve FSI computation from
[132], showing valve
deformation and volume
rendering of fluid velocity
magnitude

The model of [77] was augmented with hydraulic compliance in a follow-
up publication [130], by modeling the artery wall as an elastic solid. Unlike the
immersed valve, the fluid–artery interface was discretized with a boundary-fitted
method, which is a special case of FSITICT [123, 131]. The compliance of the
elastic artery led to more realistic flow rates [130, Figure 8].

Hsu et al. [132] realized the potential of IMGA to streamline the design-through-
analysis process for BHVs. A parametric design-through-analysis framework was
used to generate an analysis-suitable T-spline [133] model of a BHV and IMGA
allowed for the BHV design geometry to be directly immersed into a discretization
of an artery and lumen. The BHV model incorporated a realistic stent geometry,
clamped boundary conditions representative of typical industrial BHVs (cf. patent
illustrations in [134]), and a soft tissue constitutive model. A snapshot of the
resulting BHV FSI simulation is shown in Fig. 19.

6.2 Div-conforming BHV Simulation

We now look at a BHV simulation using div-conforming B-splines in the fluid
subproblem. A capability that is not verified by the div-conforming FSI benchmark
testing in Sect. 5.4 is effective simulation of closing heart valves. In principle,
div-conforming B-splines should prevent mass loss altogether, but, in practice, for
3D problems, one generally does not solve the discrete algebraic problem exactly,
calling this result into question.

6.2.1 Test Problem Definition

A variant of the BHV geometry constructed in [77, Section 5.1] is immersed in a
cylindrical fluid domain of radius 1.25 cm and height 3 cm. Rigid extensions are
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added to the leaflets, blocking flow passing around the attached boundaries of the
leaflets. The fluid subproblem posed on the cylindrical domain has traction boundary
conditions on the ends and no-slip and no-penetration conditions on the sides. The
bottom of the cylinder is subject to a time-dependent flux condition h1 = P(t)e3,
with

P(t) =
⎧⎨
⎩

P1 t < T1

at + b T1 ≤ t ≤ T2

P2 t > T2

. (57)

P1 = 2 × 104 dyn/cm2, T1 = 0.05 s, P2 = −105 dyn/cm2, T2 = 0.1 s, a = (P2 −
P1)/(T2 −T1), and b = P1 −aT1. The top face is subject to the Neumann condition
h1 = 0. The Neumann boundary stabilization is set to γ = 1. Properties of the
fluid are ρ1 = 1 g/cm3 and μ = 4 cP. The valve is modeled as an incompressible
neo-Hookean material with shear modulus μs = 600 kPa and density ρ2 = 1 g/cm3.
The shell thickness is hth = 0.04 cm. The attached edges of the leaflets are subject
to a clamped boundary condition. The fluid and structure are initially at rest at time
t = 0. This problem is not intended to be a realistic FSI model of a BHV, but rather
to exhibit the similar flow conditions, and demonstrate robustness of div-conforming
B-splines.

6.2.2 Discretization

The cylindrical fluid domain is discretized using a B-spline knot space Ω̂1 =
[−1, 1]2 × [−1, 2]. A point X in this knot space is mapped to the physical domain
Ω1 by

φ1 = RX1

√
1 − 1

2
X2

2 , φ2 = RX2

√
1 − 1

2
X2

1 , φ3 = LX3 , (58)

with R = 1.25 cm and L = 1 cm. The knot space is evenly subdivided into 42 ×
42 × 40 knot spans and div-conforming B-spline velocity and pressure spaces of
degree k′ = 1 are defined on this mesh. The no-penetration constraint on the sides
of the cylinder is enforced strongly and the no-slip condition is enforced weakly
by velocity penalization, with penalty Cno slip = 10 dyn/cm2/(cm/s). Penalty values
are τB

NOR = 1000 dyn/cm2/(cm/s), τB
TAN = 10 dyn/cm2/(cm/s), and r = 0. The

backward Euler method is used in time with Δt = 5.0 × 10−4 s.

6.2.3 Results

The valve opening is illustrated in Fig. 20. The closed state is shown in Fig. 21.
The flow rate history through the bottom of the cylinder is given in Fig. 22,
indicating that the valve blocks flow. These results illustrate the basic soundness of
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t = 0.01 s t = 0.02 s t = 0.04 s

Fig. 20 Velocity magnitude is plotted on a slice, using a color scale ranging from 0 (blue) to
≥ 200 cm/s (red)

Fig. 21 Pressure is plotted
on a slice, using a color scale
ranging from
≤ −1.1 × 105 dyn/cm2 (blue)
to ≥ 104 dyn/cm2 (red)

using div-conforming B-splines as a fluid discretization for BHV FSI simulations.
We now take a closer look at the mass conservation in the computed solutions.
Because we use an iterative solver to approximate the fluid increments in the block
iteration, ∇ · uh

1 is not exactly zero. For the results presented above, we solve
for fluid increments with a Krylov method, to a relative tolerance of 10−2 for the
preconditioned residual. Even with this loose tolerance, there is no disastrous mass
loss. We now recompute one step at a time when the valve is closed, under a large
pressure jump, with a range of relative tolerances. For this experiment, we use the
un-preconditioned residual to measure convergence, so that results generalize more
readily to other iterative solvers. The residual is assembled in centimeter–gram–
second (CGS) units, without any scaling to compensate for the difference in units
between entries of the momentum and continuity equation residuals. The velocity
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Fig. 22 The volumetric flow rate through the cylinder

Table 1 The effect of
relative tolerance in the
approximate inversion of Af
on mass conservation

Solver tolerance ‖∇ · u1‖L2(Ω1) (CGS units)

10−1 3.9 × 10−5

10−2 1.2 × 10−5

10−3 3.0 × 10−7

10−4 2.0 × 10−8

10−5 1.2 × 10−9

10−6 2.4 × 10−10

10−7 4.3 × 10−11

divergence L2 norms of the solutions to this time step are collected in Table 1. As
expected, velocity divergence approaches zero as the tolerance decreases.

6.3 Simulating an In Vitro Experiment

This section serves both to further illustrate the application of div-conforming B-
splines to realistic problems and to argue that the modeling assumptions from
Sect. 2 can represent the dynamics of an artificial heart valve immersed in fluid,
by summarizing the validation effort detailed in [86, Section 7].

6.3.1 Description of the Experiment

The validation experiment uses a latex valve in an acrylic tube. We constructed the
valve by gluing latex leaflets to an aluminum stent. Leaflet are cut from a flat sheet
of latex with thickness 0.054 cm. The valve is shown in Fig. 24. The acrylic tube,
illustrated in Fig. 23, has an inner diameter varying between 2 and 3 cm along the
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Fig. 23 A to-scale diagram
of the tube, showing its
relation to the valve and stent

length of the tube, and is roughly the size of a typical human ascending aorta. A
hole is included in the side of the tube, for capturing images with a borescope.

Water is pumped through the tube using a flow loop system similar to the
bioreactor detailed in [135]. Volumetric flow rate through the tube is measured using
an ultrasonic flow meter. We use the IMGA with DAL and div-conforming B-splines
to simulate only the segment of tubing containing the artificial aortic valve.

6.3.2 Mathematical Model of the Experiment

This section specifies an instance of the mathematical problem stated in Sect. 2 that
models the experiment described in Sect. 6.3.1.

Fluid Subproblem

The mathematical model simplifies the geometry of the region occupied by fluid.
Ω1 is the image of a parametric space Ω̂1 = (−1, 1)2 × (−1, 4.5) ⊂ R

3 under the
mapping φ, which is defined by

φ1 = R(X3)X1

√
1 − 1

2
X2

2 , φ2 = R(X3)X2

√
1 − 1

2
X2

1 , φ3 = LX3 , (59)

where L = 1 cm and R(X3) is defined by

R(X3) =

⎧⎪⎨
⎪⎩

Rin X3 < z1

Rout X3 > z2

(Rout − Rin)sin2
(

π(X3−z1)
2(z2−z1)

)
+ Rin otherwise

, (60)

with z1 = −0.45 cm, z2 = 0, Rin = 1 cm, and Rout = 1.4025 cm.
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Fig. 24 A visual comparison of the physical valve and its computational model

The lateral sides of Ω1 are subject to no-slip and no-penetration conditions.
The inflow face of the domain is subject to a time-dependent plug flow condition
with experimentally measured volumetric flow rate. The outflow is a homogeneous
Neumann boundary with γ = 1. The fluid velocity initial condition is u0

1 ≡ 0. To
model water, the viscosity of the fluid is μ = 1 cP and the density is ρ1 = 1.0 g/cm3.

Structure Subproblem

The latex leaflets are modeled as incompressible neo-Hookean material with shear
modulus μs = 8.7 × 106 dyn/cm2 (based on uniaxial stretching experiments). The
geometry of the stress-free reference configuration Γ0 is specified by manually
selecting B-spline control points to approximate the pattern used to cut the leaflets
out of the latex sheet. The leaflets are therefore flat in Γ0. These leaflets are deformed
into a static equilibrium configuration Γ ′

0, (a discrete approximation of) which is
shown in Fig. 24. The boundary corresponding to the attached edge is subject to
a strongly enforced clamped boundary condition. In a slight abuse of the notation
introduced in Sect. 2, the leaflets are considered to be initially at rest in the deformed
configuration Γ ′

0, rather than the stress-free configuration Γ0.

6.3.3 Discretization of the Mathematical Model

The fluid parametric domain Ω̂1 is split evenly into 64 × 64 × 99 Bézier elements,
used to define div-conforming B-spline spaces of degree k′ = 1. No-slip and inflow
Dirichlet boundary conditions are enforced by velocity penalization, with penalty-
constants of Cno slip = 10 dyn/cm2/(cm/s) and Cinflow = 1000 dyn/cm2/(cm/s).
No-penetration on the lateral sides of the flow domain is enforced strongly.
The structure is discretized with a 936-element quadratic B-spline mesh. The
equilibrium configuration Γ ′

0 is approximated by driving a dynamic simulation
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t = 0.11 s t = 0.029 s

t = 0.039 s t = 0.084 s

Fig. 25 Several snapshots of the computed solution, compared with experimental images. At each
time instant, the computed solution is shown in the left-hand frame and at the bottom of the right-
hand frame. The experimental results are shown in the top of the right-hand frame. Colors indicate
fluid velocity magnitude on a slice. Color scale: 0 (blue) to ≥200 cm/s (red)

with mass damping from Γ0 to a steady solution. The attached edges of the
leaflets are then clamped into this configuration. The FSI penalty parameters
are τB

NOR = 1000 dyn/cm2/(cm/s) and τB
TAN = 10 dyn/cm2/(cm/s). The DAL

stabilization parameter r is set to zero. Backward Euler time integration is used
with Δt = 2.5 × 10−4 s.

6.3.4 Comparison of Results

We now compare computational and experimental results. Experimental results are
a sequence of images taken through a borescope. Figure 25 compares the computed
deformations at several time points with images collected in the experiment.
For direct comparison with experimental images, the computed deformations are
rendered using perspective, from a vantage point corresponding to the tip of the
borescope in the experiment.
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The main qualitative difference between these sets of images is in the degree
of symmetry of the leaflet deformations during the transition to the fully open
state. This difference is expected, given that the initial condition to the computer
simulation is symmetrical while the physical valve is not. Asymmetry is mainly
due to experimental errors introduced by manually gluing each initially flat leaflet
into the stent. The qualitative agreement of results indicates that the modeling
assumptions of Sect. 2 are not wildly inappropriate for predicting the deformations
of BHV leaflets immersed in physiological flow fields, and may be able to predict
quantities of interest related to deformation (such as strain) with practical accuracy.
The computed results also agree with qualitative features of artificial valve leaflet
deformations observed in other in vitro experiments. The computed solution at time
t = 0.029 s shows the opening process, as characterized by reversal of leaflet
curvature, beginning primarily near the attached edge, as observed by Iyengar et
al. [136]. Hsu et al. [132] found that this behavior is not captured by simulations
using only structural dynamics.

7 Conclusions and Further Work

This chapter reviews the development, verification, and application of a novel
numerical method combining IMGA and DAL to simulate thin structures with
spline-based geometries immersed in viscous incompressible fluids. We find that
this method is sufficiently robust to survive application to FSI analysis of BHVs
functioning under physiological conditions.

The method described here is not limited to BHV simulation. We have also
applied it to IMGA of the hydraulic arresting gears that help dissipate the kinetic
energy of fixed-wing aircraft landing on short runways. Initial results, published in
[137], compare favorably with earlier body-fitted simulations of such devices [138].
The flexibility provided by immersogeometric FSI analysis allowed for automated
optimization of the device geometry.

Despite its successful application to BHV FSI and other problems, the DAL
method outlined here can be improved. The present guidelines for selecting free
penalty parameters are based on imprecise dimensional analysis. More precise and
rational selection of parameters will likely stem from further numerical analysis of
linear model problems, building on the initial work of [86]. Another undesirable
aspect of the method presented in this dissertation is the trade-off between con-
servation and stability parameterized by the stabilization coefficient r (introduced
in Sect. 4.1). A possible improvement is to apply the inconsistent stabilization of
r > 0 only to fine scales of the interface Lagrange multiplier, while retaining strong
consistency on coarse scales. Initial work on this was published in [139] and is
analyzed in a forthcoming paper [140].

Lastly, the promising initial results of immersogeometric FSI analysis using
div-conforming B-spline discretizations of the fluid subproblem indicate that div-
conforming B-splines merit further investigation. Casquero et al. [141] have also
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recently applied div-conforming B-splines in conjunction with the immersed-
boundary numerical approach of [142–144] and efficient solvers from [145].
The ideas of immersogeometric FSI analysis and div-conforming B-spline flow
discretizations appear to enjoy a symbiotic connection, in that the strong mass
conservation of structure preserving flow discretizations improves the quality of
immersogeometric FSI solutions, while the application of div-conforming B-splines
to increasingly complicated and realistic problems motivates the development of
more powerful implementations.
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52. K. Cao, M. Bukač, and P. Sucosky. Three-dimensional macro-scale assessment of regional
and temporal wall shear stress characteristics on aortic valve leaflets. Computer Methods in
Biomechanics and Biomedical Engineering, 19(6):603–613, 2016.

53. T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and
Engineering, 194:4135–4195, 2005.

54. J. A. Evans, Y. Bazilevs, I. Babus̆ka, and T. J. R. Hughes. n-Widths, sup-infs, and optimality
ratios for the k-version of the isogeometric finite element method. Computer Methods in
Applied Mechanics and Engineering, 198:1726–1741, 2009.

55. A. Buffa, G. Sangalli, and R. Vázquez. Isogeometric analysis in electromagnetics: B-splines
approximation. Computer Methods in Applied Mechanics and Engineering, 199(17–
20):1143–1152, 2010.

56. A. Buffa, J. Rivas, G. Sangalli, and R. Vásquez. Isogeometric discrete differential forms in
three dimensions. SIAM Journal on Numerical Analysis, 49(2):814–844, 2011.

57. I. Akkerman, Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and S. Hulshoff. The role of continuity
in residual-based variational multiscale modeling of turbulence. Computational Mechanics,
41:371–378, 2008.

58. Y. Bazilevs, V. M. Calo, J. A. Cottrel, T. J. R. Hughes, A. Reali, and G. Scovazzi. Variational
multiscale residual-based turbulence modeling for large eddy simulation of incompressible
flows. Computer Methods in Applied Mechanics and Engineering, 197:173–201, 2007.

59. J. A. Evans. Divergence-free B-spline Discretizations for Viscous Incompressible Flows.
Ph.D. thesis, University of Texas at Austin, Austin, Texas, United States, 2011.

60. J. A. Evans and T. J. R. Hughes. Isogeometric divergence-conforming B-splines for the
steady Navier–Stokes equations. Mathematical Models and Methods in Applied Sciences,
23(08):1421–1478, 2013.

61. J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner. Isogeometric shell analysis with
Kirchhoff–Love elements. Computer Methods in Applied Mechanics and Engineering,
198:3902–3914, 2009.

62. J. Kiendl. Isogeometric Analysis and Shape Optimal Design of Shell Structures. PhD thesis,
Lehrstuhl für Statik, Technische Universität München, 2011.

63. N. Nguyen-Thanh, J. Kiendl, H. Nguyen-Xuan, R. Wüchner, K.U. Bletzinger, Y. Bazilevs,
and T. Rabczuk. Rotation-free isogeometric thin shell analysis using PHT-splines. Computer
Methods in Applied Mechanics and Engineering, 200:3410–3424, 2011.

64. J. Kiendl, M.-C. Hsu, M. C. H. Wu, and A. Reali. Isogeometric Kirchhoff–Love shell
formulations for general hyperelastic materials. Computer Methods in Applied Mechanics
and Engineering, 291:280–303, 2015.

65. S. Lipton, J. A. Evans, Y. Bazilevs, T. Elguedj, and T. J. R. Hughes. Robustness of
isogeometric structural discretizations under severe mesh distortion. Computer Methods in
Applied Mechanics and Engineering, 199:357–373, 2010.
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