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Preface

Computational fluid–structure interaction and flow simulation are challenging
research areas that bring solution and analysis to many classes of problems in
science, engineering, and technology. They have been attractive areas for investi-
gators under 40, with many doing frontier research. This book presents that frontier
research. Each chapter has a lead author who is under 40, and that author took the
lead role in the work presented in the chapter.

The idea of putting together such a book came from the intention of celebrating
the 40th birthday of Yuri Bazilevs and Kenji Takizawa, who will become 40 later
this year with a record of outstanding research accomplishments in computational
fluid–structure interaction and flow simulation. The book starts with the chapters
from Bazilevs and Takizawa and continues with the chapters from the other lead
investigators, in alphabetical order. I am confident that the readers will agree that
the research presented in all the chapters are impressive and a testament to how
much all the lead authors accomplished at such early stages of their careers.

The book is intended to be a valuable resource for early-career readers—not only
those interested in computational fluid–structure interaction and flow simulation
but also other fields of engineering and science, including fluid mechanics, solid
mechanics, and computational mathematics. They will have an opportunity to know
more about successful research conducted by researchers under 40 and think about
successful research directions and strategies in their own career paths. The book is
intended to be a valuable resource also for senior researchers who are interested in
knowing more about successful research led by those under 40. They can explore
offering collaboration to these researchers under 40 or just enjoy encouraging and
supporting the future leaders in these crucial research areas. Graduate students
doing or starting research in fluid–structure interaction or flow simulation, and also
undergraduate students considering research in these areas, will be able to learn
from the book about some of the frontier work. This will help them make better
early-stage decisions related to research directions and framework.

This book is a window to some of the state-of-the-art computational methods
and analysis in fluid–structure interaction and flow simulation and also a window
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to computational analysis of some of the most challenging problems in science,
engineering, and technology. It is comforting to know that what we see through the
window was all led by researchers under 40, and we expect to see even more from
them in the future.

Houston, TX, USA Tayfun E. Tezduyar
Tokyo, Japan
May 2018
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Simulating Free-Surface FSI and Fatigue
Damage in Wind-Turbine Structural
Systems

Y. Bazilevs, J. Yan, X. Deng, and A. Korobenko

Abstract This article reviews state-of-the-art numerical techniques for fluid–
structure interaction (FSI) of full-scale wind-turbine systems. Simulation of floating
wind turbines subjected to combined wind-flow and ocean-wave forcing, and mod-
eling of high-cycle fatigue failure of blades due to long-term cyclic aerodynamic
loading are the focal points of this article. Computational techniques including
advanced structural modeling based on isogeometric analysis (IGA), free-surface
FSI, and fatigue-damage modeling are presented. Representative computational
examples involving land-based and floating offshore wind-turbine designs illustrate
the versatility and power of the computational methods developed.

1 Introduction

1.1 Offshore Wind and the Need for Advanced Simulation

Offshore wind is an indigenous, clean, and inexhaustible source of energy. It is
also an emerging industry, with strong potential for job creation. According to the
prediction from National Renewable Energy Laboratory (NREL) in 2010, offshore
wind could produce electricity for almost 39 million households by 2020 [51].
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This figure could grow even faster beyond 2020, which would require advances
in offshore wind-turbine technology.

The current trend in wind energy is to go from land-based to offshore designs,
where the latter include wind turbines with bottom-fixed foundation installed
along the shoreline in relatively shallow depths, and wind turbines mounted on
a floating structure in deeper waters. Compared with land-based wind turbines,
the floating offshore wind turbines have the following advantages: (a) The winds
are stronger and more constant far from the shore, thus more energy can be
generated; (b) The size of turbines is not limited by land transportation, provided
the turbines can be assembled along the coastline and safely towed to their operating
locations; (c) The visual and noise impact of wind turbines can be avoided due to
operation far away from the shore; (d) Vast, open sea/ocean space is available. We
believe that performing leading-edge wind energy research and development, which
includes advanced fluid–structure interaction (FSI) modeling and simulation, will
be essential in order to better exploit the above advantages of offshore wind in the
future.

The current practice in simulating floating wind turbines makes use of either
steady (time-independent), lumped-parameter aerodynamics and hydrodynamics
models that are coupled with scaled down and/or simplified floating-wind-turbine
structure models. These models are simple to implement and easy to execute,
which makes them attractive, especially since they are routinely used as part of
large parametric studies. However, because floating wind turbines are subjected to
high wind speeds and violent sea states, and exhibit relatively complex mechanical
response to wave loading, including mechanical components in relative motion
superposed on elastic deformation of the blades and tower, these simplified models
are often unable to adequately describe this behavior, especially in more extreme
situations. Nevertheless, it is precisely these more extreme events that cause failures
and reduce the remaining useful life of these machines, leading to premature
maintenance and repair, and, as a result, to increased cost of offshore wind
energy.

1.2 Role of Simulation and Experimental Measurements in
Wind-Turbine Damage Prediction

Wind turbines operate for hundreds of millions of cycles during their lifetime.
Due to cyclic loading, fatigue damage in blades, as well as in other wind-turbine
structural and mechanical components, becomes an important issue. A thorough
overview of the early techniques for wind-turbine fatigue-damage estimation may
be found in [72], where it was noted that rigorous blade testing in a laboratory
environment, as well as in real operating conditions, is necessary to develop realistic
fatigue-damage forecasts. However, using experimental and field measurements
from sensor data alone is not sufficient to accurately describe the structure damage
initiation and progression. This is because sensor arrays typically produce signals
from a limited number of spatial points, and, more importantly, the quantities
measured do not directly quantify damage.
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As the computational methods mature, high-fidelity models based on these meth-
ods are starting to be adopted for damage prognosis in large-scale structures [18, 38].
However, computational modeling alone is also not sufficient for making prediction
about damage evolution because even the more sophisticated approaches contain
many assumptions about geometry, material composition, constitutive modeling,
boundary and initial conditions, etc., which do not always reflect physical reality.

Ideally, the computational model should be enriched, as much as possible, with
sensor and measurement data that is used to periodically update the model inputs to
maintain consistency with the measured data, and, thus, physical reality. Conversely,
the appropriately updated computational model is, in turn, able to produce higher-
fidelity outputs for the quantities directly linked to structural damage (e.g., the
spatial damage-variable distribution), for which direct measurements are not avail-
able. This conceptual framework, in which sensor and measurement data for a given
physical system co-exist in a symbiotic relationship with an advanced computational
model of that system, is referred to as the Dynamic Data-Driven Application System
(DDDAS) [35]. As shown in recent work, DDDAS provides a pathway for accurate
damage prediction in large-scale composite structures [18], and presents a new,
important paradigm in other engineering applications [5, 6, 19, 61].

1.3 Fatigue-Damage Modeling and Integration with FSI and
DDDAS

Structures made of laminated composites, such as the wind-turbine blades, exhibit
complex mechanical behavior [36] and, when it comes to fatigue-damage modeling,
present significant challenges stemming from the multiscale nature of the damage
process [66, 73, 74]. The fatigue-damage model, proposed in [64, 65] and presented
in this article, falls in the class of continuum damage models (CDMs) for fiber-
reinforced composites, in which space- and time-dependent damage variables are
evolved to quantitatively predict damage growth as a function of loading cycles [64,
65]. The model was deployed as part of the DDDAS framework to predict failure of
a full-scale wind-turbine blade in a laboratory fatigue test in [18].

Using standalone structural mechanics simulations, even in the presence of
sensor data, is also insufficient for predicting fatigue-damage growth in wind-
turbine blades. As shown in [60], aerodynamic loading and the structure response
to that loading contribute significantly to blade fatigue damage. However, it is
virtually impossible to rigorously and accurately account for aerodynamic loading
in laboratory fatigue tests. To increase the realism of the studies, one may attempt to
study fatigue damage “in the field” as the turbines operate. However, wind-turbine
blades are built to last hundreds of millions of cycles (here one cycle is assumed to
be one full revolution of the rotor), and, unless premature blade failure occurs due to
external factors, one needs to wait for upwards of a decade to see significant effects
of fatigue damage, which is not practical. On the other hand, the blade fatigue-
damage problem may be approached numerically, with the help of DDDAS, and
using appropriate coupling of advanced FSI and CDM, which is what we present in
this article.
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1.4 FSI Modeling Techniques Employed

The FSI framework employed in the present paper was originally developed by
the senior author in [12], and successfully applied to the simulation of horizontal-
and vertical-axis wind turbines at full-scale in [12, 12, 15, 17, 42, 45, 59]. For the
fluid dynamics and turbulence modeling we make use of the variational multiscale
(VMS) formulation [10] posed on a moving spatial domain using the Arbitrary
Lagrangian–Eulerian (ALE) technique [47] with the addition of weakly enforced
no-slip boundary conditions [10, 14, 20] to improve coarse boundary-layer mesh
accuracy. This methodology was named ALE-VMS in [76].

It should be noted that VMS-based methods for fluid mechanics showed excellent
results in many engineering applications involving turbulent flows, complex geom-
etry, and moving domains—see references [13, 18, 21, 22, 24, 25, 52, 57, 75, 77, 78,
86–92, 95] for the examples of challenging computations performed using the VMS
methodology in the context of ALE, space–time (ST), and fixed-grid techniques.

For FSI modeling of the floating offshore wind turbines, the level-set method [2–
4, 53, 62, 63] is adopted to track the evolution of the free surface. The aerodynamics
and hydrodynamics are governed by the Navier–Stokes equations of incompressible
two-fluid flow, in which the fluid density and viscosity are evaluated with the aid of
a level-set function.

The structural mechanics of wind turbines is modeled using isogeometric analy-
sis (IGA) [30, 46], which is beneficial for the present application from the standpoint
of both geometry modeling and accuracy. Since its conception, IGA has been widely
used in many areas of computational mechanics, engineering, and sciences, showing
improved performance over the standard FEM [30]. The main structural components
of on-land and offshore wind turbines, including blades, rotor, nacelle, tower, and
platform, are modeled as Kirchhoff–Love shells [26, 37, 54, 55] with the aid of the
bending strip method [54], while the main shaft and mooring lines are modeled
using the recently introduced rotation-free beam/cable formulation [67]. The IGA
shell is used in the modeling of the wind-turbine composite blades, both as part of
the FSI and fatigue-damage evolution simulations. For recent development in, and
applications of, IGA, the reader is referred to [7, 27, 39–41, 43, 56, 67, 71, 110–112].

The FSI methodology presented in this article assumes a non-matching dis-
cretization at the fluid–structure interface, which is handled by means of a recently
developed augmented Lagrangian FSI formulation with formal elimination of the
Lagrange multiplier variable [12]. In the FSI formulation, the fluid–structure inter-
face is tracked by the moving fluid mechanics mesh, while for the floating offshore
wind turbines the air–water interface is captured (i.e., not tracked) on that mesh.
In that sense, the method falls in the class of Mixed Interface-Tracking/Interface-
Capturing Techniques (MITICT) [99, 102], which were primarily introduced for
fluid–object interaction (FOI) with multiple fluids [81, 82]. To handle the added
mass effect, which presents a challenge in the case of floating turbines, quasi-direct
FSI coupling strategy [23, 79, 83, 85, 99, 104, 105, 107] is employed to solve the
discrete FSI equations at each nonlinear iteration within a time step.
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1.5 Outline

Governing equations of free-surface flows at the continuum and discrete levels
are presented in Sects. 2 and 3, respectively. IGA-based structural mechanics
formulation including a fatigue-damage model is presented in Sect. 4. Methods for
time integration and FSI coupling for free-surface flows, and for the case of fatigue
damage, are discussed in Sect. 5. FSI simulations employing the methods developed
and reviewed in this article are shown in Sect. 6. In Sect. 7 we draw conclusions.

2 Continuum Formulation of Free-Surface Flows

In this section, the governing differential equations of free-surface flow on a moving
domain are summarized. Let Ωt ∈ R

d , d = 2, 3 denote the combined air–water
domain at time t and let Γt denote its boundary. The domain Ωt is decomposed
into the water and air subdomains, denoted by Ωw

t and Ωa
t , respectively, and Γ aw

t

denotes the air–water interface. (See Fig. 1 for an illustration.)
In the present work, the level-set method is adopted to capture the air–water

interface. For this, we introduce a scalar function φ(x, t) and define the subdomains
and their interface as follows:

Ωa
t = {x | φ(x, t) < 0,∀x ∈ Ωt }, (1)

Ωw
t = {x | φ(x, t) > 0,∀x ∈ Ωt }, (2)

Γ aw
t = {x | φ(x, t) = 0,∀x ∈ Ωt }. (3)

In each subdomain, the fluid density ρ and viscosity μ are defined as

ρ = ρwH(φ)+ ρa(1−H(φ)), (4)

μ = μwH(φ)+ μa(1−H(φ)), (5)

Fig. 1 Fluid mechanics spatial domain with air and water subdomains, and interface between them
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where ρa and ρw are the constant densities of air and water, respectively, μa and μw

are the constant viscosities of air and water, respectively, and H(φ) is the Heaviside
function expressed as

H(φ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if φ ≤ 0,

1/2 if φ = 0,

1 if φ > 0.

(6)

With the fluid properties defined as above, the Navier–Stokes equations of
incompressible two-fluid flow in the ALE description [47] may be written as
follows:

ρ

(
∂u
∂t

∣
∣
∣
∣
x̂

+ (u− û) · ∇∇∇u− f
)

−∇∇∇ · σσσ = 0, (7)

∇∇∇ · u = 0, (8)

where the Cauchy stress tensor σσσ is defined as

σσσ(u, p) = −pI+ 2μ∇∇∇su, (9)

the fluid velocity and pressure are denoted by u and p, respectively, f is the body
force per unit mass, û is the velocity of the fluid domain, ∇∇∇s is the symmetric
gradient operator, and |x̂ is used to denote the fact that the time derivative is taken
with respect to a fixed referential domain (see [23] for more details).

The air–water interface is assumed to be convected by the flow, which is modeled
by means of an additional convection equation of the level-set function φ posed on
a moving domain using the ALE description as follows:

∂φ

∂t

∣
∣
∣
∣
x̂

+ (u− û) · ∇∇∇φ = 0. (10)

The above equations, together with the suitably chosen initial and boundary
conditions, constitute the free-surface flow formulation on a moving domain at the
continuous level.

3 Discrete Formulation of Free-Surface Flows

In this section we present the space-discrete version of the free-surface flow
equations. We adopt the ALE-VMS formulation [13, 76–78], which has been
applied to a variety of challenging fluid mechanics and FSI problems in [8, 15, 17,
18, 58, 59, 113], and also presented in the context of free-surface flow in [2–4, 53].
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3.1 ALE-VMS Formulation of Free-Surface Flow

Let V h denote the discrete trial space for the velocity-pressure-level set triple
{uh, ph, φh}, and let W h denote the discrete test space for the linear-momentum,
continuity and level-set equations {wh, qh, ηh}. The ALE-VMS formulation is
stated as follows: Find {uh, ph, φh} ∈ V h, such that ∀{wh, qh, ηh} ∈ W h:

∫

Ωt

wh · ρ
(
∂uh

∂t

∣
∣
∣
∣
x̂

+ (uh − ûh) · ∇∇∇uh − fh
)

dΩ +
∫

Ωt

∇∇∇wh : σσσ(uh, ph) dΩ

−
∫

Γ h
t

wh · h dΓ +
nel∑

e=1

∫

Ωe
t

qh∇∇∇ · uh dΩ

+
nel∑

e=1

∫

Ωe
t

τM

(

(uh − ûh) · ∇∇∇wh + ∇∇∇q
h

ρ

)

· rM(uh, ph) dΩ

+
nel∑

e=1

∫

Ωe
t

ρτC∇∇∇ · whrC(uh, ph) dΩ

−
nel∑

e=1

∫

Ωe
t

τMwh ·
(

rM(uh, ph) · ∇∇∇uh
)

dΩ

−
nel∑

e=1

∫

Ωe
t

∇∇∇wh

ρ
:
(
τMrM(uh, ph)

)
⊗
(
τMrM(uh, ph)

)
dΩ

+
∫

Ωt

ηh

(
∂φh

∂t

∣
∣
∣
∣
x̂

+ (uh − ûh) · ∇∇∇φh

)

dΩ

+
nel∑

e=1

∫

Ωe
t

τφ(uh − ûh) · ∇∇∇ηh

(
∂φh

∂t

∣
∣
∣
∣
x̂

+ (uh − ûh) · ∇∇∇φh

)

dΩ = 0. (11)

In Eq. (11), nel is the number of elements in the domain, rM(uh, ph) and rC(uh, ph)

are element-interior residuals of the strong-form momentum and continuity
equations, and τM , τC , and τφ are the stabilization parameters [28, 44, 92, 94,
98, 100, 104].

To alleviate the high computational costs of detailed resolution of viscous
turbulent boundary layers near solid surfaces without sacrificing the accuracy of
hydrodynamic loading on structures, the ALE-VMS formulation of the level-set
equations is augmented with weakly enforced no-slip boundary conditions. In this
case, the following terms are added to the left-hand side of Eq. (11):
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−
neb∑

b=1

∫

Γ b
t ∩Γ g

t

wh · σσσ(uh, ph)n dΓ

−
neb∑

b=1

∫

Γ b
t ∩Γ g

t

(
2μ∇∇∇swhn+ qhn

)
· (uh − gh) dΓ

−
neb∑

b=1

∫

Γ b
t ∩(Γ g

t )−
wh · ρ((uh − ûh) · n)(uh − gh) dΓ

+
neb∑

b=1

∫

Γ b
t ∩Γ g

t

wh · τB(uh − gh) dΓ. (12)

In Eq. (12), gh is the prescribed fluid velocity on the no-slip moving boundary Γ
g
t ,

which decomposed into neb surface elements denoted by Γ b
t , (Γ g

t )− denotes the
inflow part of Γ

g
t and τB is a boundary stabilization parameter. See [14, 20] for

more details on weakly enforced essential boundary conditions, as well as more
recent work in [93, 95] on weakly enforced essential boundary conditions in the
context of space–time methods.

3.2 Additional Level-Set Computational Technology

In discrete setting, the fluid density and viscosity are computed as

ρ = ρwHε(φ
h)+ ρa(1−Hε(φ

h)), (13)

μ = μwHε(φ
h)+ μa(1−Hε(φ

h)). (14)

Here Hε(φ) is a regularized version of the Heaviside function, namely,

Hε(φ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if φ < −ε,
1
2

(
1+ φ

ε
+ sin

(
φπ
ε

))
if |φ| ≤ ε,

1 if φ > ε,

(15)

where ε, assumed to scale with the local mesh size h, defines the interface width
between the air and water subdomains.

While the regularized Heaviside function in Eq. (15) gives a smooth transition
from zero to unity within a small band of elements around the interface, and is
numerically more favorable to the sharp discontinuity, this regularization places a
requirement on the level-set field φh to satisfy the so-called signed-distance property
in the transition layer between the two fluids. For this, we define an additional field,
φh
d , which satisfies the Eikonal partial differential equation, namely,
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∣
∣
∣
∣∇∇∇xφ

h
d

∣
∣
∣
∣ = 1 in Ωt, (16)

subject to the constraint that the interface defined by the zero level set of φh is
preserved, namely,

φh
d = φh = 0 on Γ aw

t (17)

In order to satisfy Eqs. (16) and (17), we make the Eikonal equation “pseudo-time”-
dependent (we denote pseudo-time by t̃), discretize it using a VMS technique, and
add a suitably constructed penalty term to enforce the interior constraint on φh

d given
by Eq. (17). The resulting semi-discrete form of the governing equations may be
stated as: Given φh, find φh

d , such that, ∀ηh
d ,

∫

Ωt

ηh
d

(
∂φh

d

∂t̃
+ a · ∇∇∇φh

d − Sε(φ
h)

)

dΩ

+
∫

Ωt

τφd
a · ∇∇∇ηh

d

(
∂φh

d

∂t̃
+ a · ∇∇∇φh

d − Sε(φ
h)

)

dΩ

+
∫

Ωt

ηh
dλpen

dHε(φ
h)

dφh
(φh

d − φh) dΩ = 0. (18)

Here, Sε(φ
h) = 2Hε(φ

h) − 1 is the regularized sign function, a =
Sε(φ

h)∇∇∇φh
d

/
∣
∣
∣
∣∇∇∇φh

d

∣
∣
∣
∣ is the effective “convective” velocity, τφd

is the stabilization

parameter, and λpen is the interface penalty parameter (see [3] for details). At each
time step, Eq. (18) is integrated in pseudo-time, which gives a new level-set field
φh
d with the signed-distance property and zero level set coincident with that of φh.

After this “re-distancing” process is done, we set φh = φh
d at the end of the time

step.

Remark It is important to note that dHε(φ
h)

dφh in Eq. (18) is only nonzero in a band
of elements around the air–water interface, and thus the penalty term is only active
near the air–water interface, which is the desired construction. Also note that the
presence of dHε(φ

h)

dφh produces the correct scaling of the penalty term and makes the
penalty parameter λpen independent of the mesh size.

Remark Level set convection and re-distancing introduce mass balance errors,
which accumulate as the equations are integrated in time. As a result, in the
computations, a simple procedure is employed where the resultant re-distanced
level-set field is perturbed by a constant to restore the mass balance. See [3] for
details as well as additional references [1, 31–33, 53, 99, 101] where other mass
correction techniques were proposed for free-surface flows.
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4 Structural Mechanics Formulation

The structural mechanics formulation is based on the principle of virtual work.
Let Vs and Ws denote the trial and test function sets for the structural mechanics
problem. The principle of virtual work leads to the weak form of the structural
mechanics problem, which may be stated as follows: Find d ∈ Vs , such that,
∀ws ∈ Ws ,

∫

Ωs
0

ws · ρs

(
d2d
dt2
− fs

)

dΩ +
∫

Ωs
0

δE : S dΩ −
∫

Γ s
0

ws · hs dΓ = 0, (19)

where d is the structural displacement, ρs is the density, E is the Green–Lagrange
strain tensor, δE is its variation, S is the second Piola–Kirchhoff stress, fs is the body
force per unit mass, and hs is the applied traction.

Since the structures simulated in this paper are essentially thin shells, we
introduce the thin shell kinematics into the above weak formulation. Furthermore, in
order to simulate laminated composite structures, we assume there are multiple plies
through the shell thickness, each modeled as the St. Venant–Kirchhoff material. As a
result, we obtain a Kirchhoff–Love shell formulation [55], which is written purely in
terms of the shell midsurface displacements (i.e., the formulation is “rotation-free”),
and which we discretize using IGA based on Non-Uniform Rational B-Splines
(NURBS) [30, 46]. The weak formulation of the rotation-free isogeometric shell
can be stated as: Find the shell midsurface displacement dh ∈ V h

s , such that,
∀wh

s ∈ W h
s ,

∫

Γ s
t

wh
s · ρshth

(
d2dh

dt2 − fs

)

dΓ

+
∫

Γ s
0

δ εh ·
(

Kexteε
h +Kcoupκh

)
dΓ

+
∫

Γ s
0

δ κh ·
(

Kcoupεh +Kbendκ
h
)

dΓ

+
∫

Γ b
0

δ κh ·Kb
bendκ

h dΓ

−
∫

Γ s
0

wh
s · hs dΓ = 0. (20)

In the above, V h
s and W h

s denote the trial and test function sets for the isogeometric
shell formulation, Γ s

0 and Γ s
t denote the shell midsurface in reference and current

configuration, respectively, hth is the local shell thickness, εh and κh are the tensors
of shell membrane strains and curvature changes expressed in Voigt notation and
written with respect to the local basis oriented on the first covariant basis vector of
the shell midsurface, δ εh and δ κh are the corresponding variations.
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Matrices Kexte, Kcoup, and Kbend are the extensional, coupling, and bending
stiffnesses, respectively, which, using the classical laminated plate theory [68], may
be computed as follows:

Kexte =
∫

hth

C dξ3 =
n∑

k=1

Cktk, (21)

Kcoup =
∫

hth

ξ3C dξ3 =
n∑

k=1

Cktkzk, (22)

Kbend =
∫

hth

ξ3
2C dξ3 =

n∑

k=1

Ck

(

tkz
2
k +

t3
k

12

)

. (23)

Here, ξ3 is the through-thickness coordinate, tk denotes the thickness of the kth ply,
zk denotes its centroid, and Ck is a constitutive material matrix for the kth ply in the
local coordinate system computed as

Ck = TT (φk) C̃k T(φk), (24)

T(φk) =
⎡

⎣
cos2 φk sin2 φk sinφk cosφk

sin2 φk cos2 φk − sinφk cosφk

−2 sinφk cosφk 2 sinφk cosφk cos2 φk − sin2 φk

⎤

⎦ , (25)

where T(φk) is a transformation matrix defined by the fiber orientation angle in the
ply φk , and C̃k is the constitutive matrix for the orthotropic material written with
respect to the principal material axes (or lamina axes) of the ply.

To enable modeling of structures comprised of multiple NURBS patches, and
with regions of reduced continuity (e.g., sharp edges or non-manifold surfaces),
the bending-strip technique is employed [54], which is expressed by means of
the second-to-last term on the left-hand side of Eq. (20). Here, Γ b

0 and Kb
bend are

the bending-strip domain in the shell reference configuration and the directional
bending stiffness, respectively.

The shell model is augmented with a newly proposed isogeometric rotation-
free bending-stabilized cable formulation [67], which may also be obtained by
introducing the appropriate kinematics into the virtual-work principle given by
Eq. (19), and reducing the formulation to the cable middle-curve displacement. The
resulting weak formulation may be stated as: Find the middle curve displacement
dh, such that, ∀wh

c ,

∫

S0

wh
c · ρsA0

(
d2dh

dt2
− fs

)

dS

+
∫

S0

δ εhc [EcA0
∣
∣
∣
∣G′
∣
∣
∣
∣4]εhc dS

+
∫

S0

δ κh
c [EcI0

∣
∣
∣
∣G′
∣
∣
∣
∣4]κh

c dS = 0 (26)
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In the above, S0 is the middle curve in reference configuration, A0 and I0 are the
cable cross-section area and area moment of inertia, respectively, εhc and κh

c are the
membrane strains and curvature changes written with respect to the basis vector
oriented on the tangent vector to the middle curve, denoted by G′, δεhc and δκh

c are
the corresponding variations, and Ec is the Young’s modulus.

4.1 Fatigue-Damage Model

The fatigue-damage model, proposed in [64, 65] and adapted to IGA-based
Kirchhoff–Love shells in [18] is briefly recalled here. The ply-level constitutive
matrix C̃k takes on the following form:

C̃k =
⎡

⎢
⎣

E1(1−D11)
1−ν21ν12

ν21E1
√
(1−D11)(1−D22)
1−ν21ν12

0
ν12E2

√
(1−D11)(1−D22)
1−ν21ν12

E2(1−D22)
1−ν21ν12

0

0 0 G12(1−D12)
1−ν21ν12

⎤

⎥
⎦ , (27)

where ν’s are the Poisson ratios, E1 and E2 are the Young’s moduli in the fiber and
matrix directions, respectively, G12 is the shear modulus, and D11, D22, and D12
are, respectively, the fiber, matrix, and shear damage indices expressed as

Dij = dt
ij + dc

ij (i, j = 1, 2), (28)

where dt
ij and dc

ij are the corresponding damage variables with the superscripts ‘t’
and ‘c’ used to distinguish between tensile and compressive damage modes. For the
case of high-cycle fatigue, assuming no damage growth occurs within the cycle, the
evolution law for the damage variables is defined in terms of damage growth rate
per cycle as

d(d
t,c
ij )

dN
= f

(
ck, d

t,c
ij ,D12,Σij

)
(i, j = 1, 2), (29)

where N denotes the cycle number, and reference [18] provides the detailed
expressions for f . The damage growth rate is, in particular, an empirical function of
material parameters ck (total of nine parameters for fully reversible cyclic loading)
that govern damage initiation and propagation, and failure indices

Σij =
Σ2D

ij

1+ (Σ2D
ij −Σ1D

ij )
(i, j = 1, 2), (30)

which can be seen as a combination of indices based on decoupled longitudinal,
transverse, and shear failure modes (Σ1D

ij ’s), and indices based on the Tsai–Wu

failure surface (Σ2D
ij ’s) wherein the failure modes are coupled [34].
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5 FSI Coupling and Time Integration

5.1 Framework for Free-Surface Flow

The free-surface flow and IGA-based structural mechanics formulations are coupled
as follows. In Eq. (12), which details the weak no-slip boundary conditions for
free-surface flow, the prescribed solid-wall velocity gh is replaced by the unknown
structural displacement rate ddh/dt computed from the shell formulation given by
Eq. (20). At the same time, the prescribed traction hs in Eq. (20) is replaced with the
unknown traction field computed from the free-surface flow equations. Conservative
fluid traction that is consistent with the weak enforcement of no-slip boundary
conditions (see [9] for a definition) is employed in this work. Additional fluid-
traction accuracy may be gained by employing a recently developed separated stress
projection (SSP) technique [80, 84, 96, 106, 108], where the pressure is projected as
a scalar and viscous traction is projected as a vector quantity.

Application of the Generalized-α time integration technique [11, 29, 48] to
the coupled free-surface FSI formulation leads to a coupled, nonlinear equation
systems that need to be solved at every time step. To solve the nonlinear equation
system, we employ the Newton–Raphson method, which requires solving a large
linear-equation system that couples the different components of the free-surface
FSI formulation. To increase the computational efficiency, we separate the linear
system into “physics” and “mesh” subsystems, and solve them sequentially as
follows. Increments of the fluid, level-set, and structure solution are obtained by
solving a reduced linear system that couples these three fields. The new structure
displacement is then used to update the fluid mechanics mesh configuration. The
mesh deformation is governed by the equations of elastostatics with jacobian-based
stiffening [49, 97, 99, 103, 104] to preserve the mesh quality. The overall approach
may be classified as a quasi-direct FSI coupling technique [79, 83, 85, 99, 104,
105, 107], which is used here to handle the large fluid added mass present in the
application.

In quasi-direct coupling, the off-diagonal tangent matrices are needed to solve
the coupled linear system. In order to avoid assembling the off-diagonal terms, a
flexible-GMRES (FGMRES) technique [69] with block-preconditioning is adopted.
Application of the FGMRES technique to the solution of the coupled equation
system requires computation of matrix-vector products, which are performed using
a matrix-free technique. To precondition the FGMRES, we make use of the left-
hand-side matrices of the individual fluid, level-set, and structure problems. The
linear systems associated with preconditioning of the fluid and level-set equations
are solved using a diagonally scaled GMRES technique [70], while the structure
problem is solved using a diagonally scaled conjugate gradient method. Other, more
sophisticated preconditioning options may also be considered (see, e.g., [23]).

Remark While level-set convection is performed inside the Newton-iteration loop,
level-set re-distancing and mass balance are performed once per time step. This is
done from considerations of computational efficiency.
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Remark We assume no coupling between the cables and surrounding fluid.
Although the cable cross-section is relatively small in the applications simulated,
hydrodynamic loading on cables may be an important factor in the overall dynamics
of the floating-wind-turbine structures considered in this article. For this, a simple
modification to the FSI formulation may consist in assuming one-way dependence,
as in [109], wherein the cable is subjected to fluid drag forces, while the fluid does
not “feel” the presence of the cable.

5.2 Algorithms for FSI Coupling with Fatigue Damage

Since we are interested in high-cycle fatigue for wind-turbine blades, and use a
CDM formulation that assumes that damage growth occurs on a time scale that is
much slower than a single rotor revolution, we feel it is sufficient to use a “frozen”
damage state during FSI computations of the spinning rotor. This motivated the
following overall algorithm:

1. We integrate the damage evolution law given by Eq. (29) using an explicit Euler
method. Damage evolution is computed at every Gaussian quadrature point of
the blade surface and at each composite ply.
To enhance the computational efficiency, a “cycle-jump” technique is employed.
Here the stress state that drives the damage model is obtained by solving
the coupled FSI system every NJUMP cycles of the damage evolution, where
NJUMP is a user-controlled parameter.

2. Every time a new stress state is needed to integrate the damage-evolution equa-
tions, we perform a full dynamic FSI simulation for a time interval corresponding
to a full (or partial) loading cycle, and extract the required stress data. The FSI
equations are integrated in time using the generalized-α method. As was reported
in prior work on wind turbines, in the absence of free-surface flow, block-iterative
FSI coupling strategy [23, 99, 104, 105, 107] is the most efficient choice for the
present application [15].

While using the cycle-jump technique makes the problem computable, further
reduction in computational time may be achieved by making the following observa-
tion: One rotor revolution may be decomposed into three 120◦ segments (see Fig. 2).
As Blade 1 moves through zone I, Blade 2 moves through zone II, and Blade III
moves through zone III. Because gravity and rotor–stator interaction are taken into
account, loads experienced by the blades in each zone differ in a significant manner.
Nevertheless, the three blades moving through their respective zones collectively
experience the same loading as a single blade undergoing a full revolution. As a
result, we perform the FSI computation of a full machine with three blades for only
1/3 of a revolution every NJUMP cycles. However, when collecting blade-stress data
to integrate the damage-evolution equations, time history of the stress from all three
blades is employed.
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Fig. 2 Decomposition of the rotor motion into three 120◦ segments. Simulation of the full
machine with three blades for only 1/3 of the revolution is equivalent to simulating a single blade
for a full revolution, from the standpoint of obtaining a full blade stress time history for driving the
fatigue-damage model

Remark In the FSI calculations, the initial conditions chosen are often such that
the coupled system undergoes unphysical transients, which eventually settle to
produce a physical time-dependent response. In the present computations, in order
to preclude this unphysical transient response from affecting the blade-damage
evolution, in the beginning of the simulation, as well as after each NJUMP cycle,
the FSI simulation is carried out for 1/3 of the revolution to ensure that the undesired
transients settle.

6 Applications

6.1 Free-Surface FSI Simulations of an Offshore Floating
Wind Turbine

In this section, we present a free-surface FSI simulation of an offshore floating wind
turbine. The whole floating wind turbine consists of a supporting spar buoy called
“Hywind,” developed by Statoil, and the NREL 5 MW baseline turbine. This design
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NacelleHub

Main shaft

Platform

Fig. 3 Structural model of the offshore floating wind turbine with zoom on the rotor

concept was chosen for its suitability for modeling and existence of a full-scale
prototype [50, 51]. The geometry of the complete floating structure is defined as
follows. The rotor has a diameter of 126 m. The base of the tower is located at an
elevation of 10 m above the still water level (SWL), while its top, which is coincident
with the bottom of nacelle, is located at 87.6 m above the SWL. The centerline
of the shaft passing through the center of the nacelle and hub corresponds to an
elevation of 90 m. The tower is 3.87 m in diameter at the top and 6.5 m in diameter
at the base. The latter dimension matches the diameter of the top of the floating
platform. The platform consists of two cylindrical regions with depths of 14 and
108 m, respectively, connected by a linearly tapered conical region with a depth of
8 m. The linearly tapered conical region extends from 4 to 12 m below the SWL.
The base of the platform has a diameter of 9.4 m and is located at 120 m below the
SWL. Three mooring cables are attached to the platform at 70 m below the SWL,
and are anchored at the seabed at 320 m below the SWL. From the top view, the
three cables, with the original length of 902 m, are distributed 120◦ apart. The whole
floating system is depicted in Fig. 3. Additional geometry and material data for this
turbine may be found in [114], which is the main source of the material presented
in this section.

The main wind-turbine structural components, including the rotor, nacelle,
tower, and platform, are modeled using IGA Kirchhoff–Love shells. The bending
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Fig. 4 Platform center-of-mass displacement for Airy-wave conditions

strip technique [54] is adopted to deal with the multiple-patch discretization.
The main shaft is modeled as a collection of beams, while mooring lines are
modeled as cables. Quadratic NURBS are employed for both shell, beam and cable
discretization. The total number of shell elements is 14,709, and the total number
of beam/cable elements is 33. The fluid domain is meshed with tetrahedra and
triangular prisms, and the number of nodes and elements in the simulations are
4,216,201 and 24,817,979, respectively. In addition, while the blades are flexible,
the rotor is not allowed to spin in the FSI simulations presented.

First the simulation is performed by using the Airy-wave inflow conditions with
zero mean flow, 6 m wave height and 156.13 m wave length. The time history of
average platform displacement is plotted in Fig. 4. The simulation results obtained
by NREL using the ADAMS code [50] are also plotted in Fig. 4 as a reference.
Although the NREL data is obtained from a simulation of the no-rotor configuration,
good agreement between the two simulations is nevertheless achieved. This is not
surprising, since the rotor mass is low compared to the overall mass of the floating
turbine. Furthermore, wind loading on the rotor is also very low due to zero-wind-
speed conditions employed in the simulation.

Although linear wave theory like Airy wave is often used to model sea wave, it is
insufficient to model more “violent” sea conditions. To generate some more realistic
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waves, a piston-type wave generation concept, which is widely used in offshore
engineering laboratories to generate irregular waves, is utilized numerically in this
work. Considering that the free-surface flow formulation is proposed in a moving
mesh, periodic horizontal motion of the inlet boundary is prescribed to mimic a
piston motion. After the waves are generated, the wave profile is transferred from
the numerical-wave-tank domain to the domain used for the FSI simulation of the
floating wind turbine to carry out the FSI computation.

Figure 5 shows the wave surface colored by streamwise velocity and the
corresponding velocity vector field in the water domain at different time instances.
The wave peak height is about 18 m in this simulation. The configurations of the
floating wind turbine are also shown in these two figures. Compared with Airy
wave conditions, more complex free-surface phenomena, such as splashing, is
observed when the waves impact the platform. In these stronger waves, the platform
displacement is much bigger that can be observed in Fig. 4. We also plot the time
history of the blade tip displacement for all three blades in Fig. 6 (See Fig. 3 for
blade numbering). While the displacement time histories of blades 2 and 3 are
very similar and relatively low in magnitude, blade 1, whose tip is at the highest
point on the wind-turbine structure (over 90 m higher than the tips of blades 2
and 3) undergoes displacement with a more complex time history and much larger
magnitude. The tip displacement time histories reveal the following behavior. When
the first wave peak reaches the turbine, the spar-buoy changes its direction of motion
at a time instant of 3.7 s. The change in the direction of motion of the tips of blades
2 and 3 occurs at about 4.5 s, while blade 1 changes direction at about 4.8 s. This
pattern repeats for other wave peaks.

6.2 FSI Modeling of Fatigue Damage in CX-100
Wind-Turbine Blades

We first deploy the DDDAS fatigue-damage framework on a full-scale cantilever
composite blade CX-100, which is calibrated by the measured acceleration data
collected from the indoor test [18]. The test blade was clamped at the root and
driven by a hydraulic forcing with a natural frequency of 1.82 Hz of the first flap-
wise bending mode. It was cyclically loaded until a fatigue-induced crack formed in
the blade root region after about 8.0 M loading cycles. The accelerometers installed
on the blade surface recorded the acceleration history. The blade mesh has 4647
quadratic NURBS elements. A time-periodic vertical displacement is applied at the
blade root to mimic the hydraulic system forcing in the fatigue experiment. Two-
DDDAS-loop scheme is devised to make use of the dynamic accelerometer data
to update the computational model of the system. Figure 7 shows the predicted
and measured accelerations in both time and frequency domains have good match.
Excellent agreement between the location of the zone with most damage predicted
by the simulation and the crack location observed in the fatigue test of the CX-100
composite blade is achieved, which may be seen in Fig. 7.
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Fig. 5 Snapshots of free surface colored by streamwise velocity (in m/s) and the corresponding
velocity filed in the water domain at different time instants for piston-generated wave conditions
(a)–(d) designate snapshots taken at different times during the FSI simulation
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Fig. 6 Magnitude of tip displacement of three blades for piston-generated wave conditions
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Fig. 7 Cycle count versus date for the fatigue test of the CX-100 blade. Triangular points indicate
the calibration stations at which the simulation results for damage growth and acceleration history
were compared to fatigue test data
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Fig. 8 Isocontours of air speed (in m/s) on a planar cut after 100,000 (a) and 150,000,000 (b)
cycles. (b) Corresponds to the cycle right before the blade failure. Large blade tip deflection is due
to significant loss of blade stiffness

For the next step, we simulate fatigue damage “in the field” as the wind turbine
operates. A coupled FSI and CDM simulation is carried out for the Micon 65/13M
wind turbine mounted with Sandia CX-100 blades under realistic wind and rotor
speed conditions [16]. This is a fixed-pitch, upwind horizontal-axis turbine with
rated power of 100 kW. The wind-turbine rotor spins at 55 rpm and is subjected to
a wind speed of 10.5 m/s. The fluid mesh consists of 2,877,958 linear elements,
which are triangular prisms in the rotor boundary layers and tetrahedra elsewhere
in the domain. The blade boundary-layer mesh has 15 layers of prismatic elements
generated with a growth ratio of 1.2. The size of the first boundary-layer element
in the wall-normal direction is 0.002 m. The time-step size is set to 6.0 × 10−5 s.
Figure 8 shows the large blade tip deflection due to the overall softening of the
blade by the time damage propagates through the blade, when the cycle count
reaches 150 M. Compared to the laboratory fatigue test, significant differences in
damage patterns are observed for simulated realistic blade operating conditions
(compare Figs. 7 and 9.) This result underscores the importance of considering
realistic structure loading when studying blade fatigue damage, and employing
advanced FSI in obtaining such loading data.
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Fig. 9 Damage index D1 in the DBM-1708 layer near the blade aerodynamic zone after
100,000,000 (left) and 150,000,000 (right) cycles

7 Conclusions

This article focused on FSI simulation of floating wind turbines subjected to
combined wind-flow and ocean-wave forcing, and on modeling of high-cycle fatigue
failure of blades due to long-term cyclic aerodynamic loading. Computational
techniques, including advanced structural modeling based on IGA, free-surface FSI,
and fatigue-damage modeling, were reviewed. A DDDAS framework for steering
FSI simulations of high-cycle fatigue damage in composite turbine blades was
also presented. Representative computational examples involving land-based and
floating offshore wind-turbine designs illustrate the versatility and power of the
computational methods developed.
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Abstract We present our computational methods for and results from aorta flow
analysis and heart valve flow and structure analysis. In flow analysis, the core
method is the space–time Variational Multiscale (ST-VMS) method. The other
key methods are the ST Slip Interface (ST-SI) and ST Topology Change (ST-TC)
methods and the ST Isogeometric Analysis (ST-IGA). The ST framework, in a
general context, provides higher-order accuracy. The VMS feature of the ST-VMS
addresses the computational challenges associated with the multiscale nature of
the unsteady flows in the aorta and heart valve. The moving-mesh feature of the
ST framework enables high-resolution computation near the valve leaflets. The
ST-SI connects the sectors of meshes containing the leaflets, enabling a more
effective mesh moving. The ST-TC enables moving-mesh computation even with
the TC created by the contact between the leaflets. It deals with the contact while
maintaining high-resolution representation near the leaflets. Integration of the ST-
SI and ST-TC enables high-resolution representation even though parts of the
SI are coinciding with the leaflet surfaces. It also enables dealing with leaflet–
leaflet contact location change and contact sliding. The ST-IGA provides smoother
representation of aorta and valve surfaces and increased accuracy in the flow
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solution. With the integration of the ST-IGA with the ST-SI and ST-TC, the element
density in the narrow spaces near the contact areas is kept at a reasonable level.
In structure analysis, we use a Kirchhoff–Love shell model, where we take the
stretch in the third direction into account in calculating the curvature term. The
computations presented demonstrate the scope and effectiveness of the methods.

1 Introduction

Aorta flow analysis and heart valve flow analysis are two of the computationally
challenging cases in cardiovascular fluid mechanics. The challenges in aorta flow
analysis include unsteady flow through a curved geometry with multiple outlets,
relatively high Reynolds numbers, and multiscale flow behavior. In heart valve flow
analysis, the challenges include unsteady flow through a complex geometry, solid
surfaces with large motion, and contact between the valve leaflets. The precursors
of the work presented in this article were reported for aorta flow analysis in [1, 2]
and for heart valve flow analysis in [3–5]. In this article, in the aorta flow analysis,
we target a smoother representation of the geometry, increased accuracy in the
flow solution, systematic determination of the mesh refinement influence, and an
assessment of flow periodicity in the cardiac cycles. In the heart valve analysis,
we do the flow computation with the leaflet deformation coming from a structure
analysis with a Kirchhoff–Love shell model. In the structure computation, we use a
prescribed, time-periodic, spatially uniform pressure difference between the upper
and lower surfaces of the leaflets.

1.1 Flow Analysis Methods

In flow analysis, the core component of our computational technology is the space–
time Variational Multiscale (ST-VMS) method [6–8]. The other key components
are the ST Slip Interface (ST-SI) [9, 10] and ST Topology Change (ST-TC) [3, 11]
methods and the ST Isogeometric Analysis (ST-IGA) [6, 12, 13]. Integration of these
components resulted in the ST-SI-TC [14] and ST-SI-TC-IGA [4, 5] methods, with
a significant increase in scope and accuracy.

1.1.1 ST-VMS

The ST-VMS is the VMS version of the Deforming-Spatial-Domain/Stabilized
ST (DSD/SST) method [15–17]. The DSD/SST was introduced for computation
of flows with moving boundaries and interfaces (MBI), including fluid–structure
interaction (FSI). In MBI computations the DSD/SST functions as a moving-mesh
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method. Moving the fluid mechanics mesh to track a fluid–solid interface enables
mesh-resolution control near the interface and, consequently, high-resolution rep-
resentation of the boundary layer. Because the stabilization components of the
DSD/SST are the Streamline-Upwind/Petrov-Galerkin (SUPG) [18] and Pressure-
Stabilizing/Petrov-Galerkin (PSPG) [15] stabilizations, the method is also called
“ST-SUPS.” The VMS components of the ST-VMS are from the residual-based
VMS (RBVMS) method [19–22]. The ST-VMS has two more stabilization terms
beyond those the ST-SUPS has, and these additional terms give the method better
turbulence modeling features. Conversely, we can see the ST-SUPS as a reduced
version of the ST-VMS. The ST-SUPS and ST-VMS, because of the higher-order
accuracy of the ST framework (see [6, 7]), are desirable also in computations that
do not involve MBI.

The Arbitrary Lagrangian–Eulerian (ALE) method is an earlier and more com-
monly used moving-mesh method. The ALE finite element method was introduced
in 1981 [23]. The ALE-VMS method [24–29] is the VMS version of the ALE. It
was introduced after the ST-SUPS [15] and ALE-SUPS [30] methods and preceded
the ST-VMS. The ALE-VMS and RBVMS are often supplemented with special
methods, such as those for weakly enforced no-slip boundary condition [31–33],
“sliding interfaces” [34, 35], and backflow stabilization [36]. They have been
successfully applied to many classes of FSI, MBI, and fluid mechanics problems.
The classes of problems include wind-turbine aerodynamics and FSI [37–44], more
specifically, vertical-axis wind turbines [45, 46], floating wind turbines [47], wind
turbines in atmospheric boundary layers [48], and fatigue damage in wind-turbine
blades [49], patient-specific cardiovascular fluid mechanics and FSI [24, 50–55],
biomedical-device FSI [56–61], ship hydrodynamics with free-surface flow and
fluid–object interaction [62, 63], hydrodynamics and FSI of a hydraulic arresting
gear [64, 65], hydrodynamics of tidal-stream turbines with free-surface flow [66],
and bioinspired FSI for marine propulsion [67, 68].

The ST-SUPS and ST-VMS have also been successfully applied to many classes
of FSI, MBI, and fluid mechanics problems. The classes of problems include
spacecraft parachute analysis for the main parachutes [27, 69–72], cover-separation
parachutes [73] and the drogue parachutes [74–76], wind-turbine aerodynamics
for horizontal-axis wind-turbine rotors [27, 37, 77, 78], full horizontal-axis wind-
turbines [43, 79–81] and vertical-axis wind-turbines [9], flapping-wing aerodynam-
ics for an actual locust [12, 27, 82, 83], bioinspired MAVs [80, 81, 84, 85] and
wing-clapping [11, 86], blood flow analysis of cerebral aneurysms [80, 87], stent-
blocked aneurysms [87–89], aortas [1] and heart valves [3–5, 11, 81], spacecraft
aerodynamics [73, 90], thermo-fluid analysis of ground vehicles and their tires
[8], thermo-fluid analysis of disk brakes [10], flow-driven string dynamics in
turbomachinery [91], flow analysis of turbocharger turbines [13, 92, 93], flow
around tires with road contact and deformation [14, 94], ram-air parachutes [95],
and compressible-flow parachute aerodynamics [96].

In the flow analyses presented here, the ST framework provides higher-order
accuracy in a general context. The VMS feature of the ST-VMS addresses the
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computational challenges associated with the multiscale nature of the unsteady
flows in the aorta and heart valve. The moving-mesh feature of the ST framework
enables high-resolution computation near the valve leaflets as they move.

1.1.2 ST-SI

The ST-SI was introduced in [9], in the context of incompressible-flow equations, to
retain the desirable moving-mesh features of the ST-VMS when we have spinning
solid surfaces, such as a turbine rotor. The mesh covering the spinning surface spins
with it, retaining the high-resolution representation of the boundary layers. The SI
between the spinning mesh and the rest of the mesh accurately connects the two
sides of the flow field. The starting point in the development of the ST-SI was the
ALE-VMS version for “sliding interfaces” [34, 35]. In the ST-SI, interface terms
similar to those in the ALE-VMS version are added to the ST-VMS formulation to
account for the compatibility conditions for the velocity and stress. An ST-SI version
where the SI is between fluid and solid domains with weakly enforced Dirichlet
boundary conditions for the fluid was also presented in [9]. The SI in this case is a
“fluid–solid SI” rather than a standard “fluid–fluid SI.” The ST-SI method introduced
in [10] for the coupled incompressible-flow and thermal-transport equations retain
the high-resolution representation of the thermo-fluid boundary layers near spinning
solid surfaces. These ST-SI methods have been successfully applied to aerodynamic
analysis of vertical-axis wind turbines [9], thermo-fluid analysis of disk brakes [10],
flow-driven string dynamics in turbomachinery [91], flow analysis of turbocharger
turbines [13, 92, 93], flow around tires with road contact and deformation [14, 94],
aerodynamic analysis of ram-air parachutes [95], and heart valve flow analysis
[4, 5].

In another version of the ST-SI method presented in [9], the SI is between a
thin porous structure and the fluid on its two sides. This enables dealing with the
fabric porosity in a fashion consistent with how the standard fluid–fluid SIs are
dealt with and how the Dirichlet conditions are enforced weakly with fluid–solid
SIs. Furthermore, this version enables handling thin structures that have T-junctions.
This method has been successfully used in incompressible-flow aerodynamic
analysis of ram-air parachutes with fabric porosity [95]. The compressible-flow ST-
SI methods were introduced in [96], including the version where the SI is between
a thin porous structure and the fluid on its two sides. Compressible-flow porosity
models were also introduced in [96]. These, together with the compressible-flow ST
SUPG method [97], extended the ST computational analysis range to compressible-
flow aerodynamics of parachutes with fabric and geometric porosities. That enabled
successful ST computational flow analysis of the Orion spacecraft drogue parachute
in the compressible-flow regime [96]. The computations were in the context of finite
element discretization.
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1.1.3 ST-TC

The ST-TC [3, 11] was introduced for moving-mesh computation of flow problems
with TC, such as contact between solid surfaces. Even before the ST-TC, the ST-
SUPS and ST-VMS, when used with robust mesh update methods, have proven
effective in flow computations where the solid surfaces are in near contact or create
other near TC, if the nearness is sufficiently near for the purpose of solving the
problem. Many classes of problems can be solved that way with sufficient accuracy.
For examples of such computations, see the references mentioned in [11]. The ST-
TC made moving-mesh computations possible even when there is an actual contact
between solid surfaces or other TC. By collapsing elements as needed, without
changing the connectivity of the “parent” mesh, the ST-TC can handle an actual TC
while maintaining high-resolution boundary layer representation near solid surfaces.
This enabled successful moving-mesh computation of heart valve flows [3–5], wing
clapping [86], and flow around a flow around tires with road contact and deformation
[14, 94].

In the heart valve flow analysis, the ST-TC enables moving-mesh computation
even with the TC created by the actual contact between the valve leaflets. It deals
with the contact while maintaining high-resolution representation near the leaflets.

1.1.4 ST-SI-TC

The ST-SI-TC is the integration of the ST-SI and ST-TC. A fluid–fluid SI requires
elements on both sides of the SI. When part of an SI needs to coincide with a
solid surface, which happens, for example, when the solid surfaces on two sides
of an SI come into contact or when an SI reaches a solid surface, the elements
between the coinciding SI part and the solid surface need to collapse with the ST-
TC mechanism. The collapse switches the SI from fluid–fluid SI to fluid–solid SI.
With that, an SI can be a mixture of fluid–fluid and fluid–solid SIs. With the ST-SI-
TC, the elements collapse and are reborn independent of the nodes representing a
solid surface. The ST-SI-TC enables high-resolution representation even when parts
of the SI are coinciding with a solid surface. It also enables dealing with contact
location change and contact sliding. This was used in heart valve flow analysis [4, 5]
and flow around tires with road contact and deformation [14, 94].

In the heart valve flow analysis, the ST-SI-TC enables high-resolution represen-
tation even though parts of the SI are coinciding with the leaflet surfaces. It also
enables dealing with leaflet–leaflet contact location change and contact sliding.

1.1.5 ST-IGA

The ST-IGA was introduced in [6]. It is the integration of the ST framework with
isogeometric discretization. First computations with the ST-VMS and ST-IGA were
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reported in [6] in a 2D context, with IGA basis functions in space for flow past
an airfoil, and in both space and time for the advection equation. The stability and
accuracy analysis given [6] for the advection equation showed that using higher-
order basis functions in time would be essential in getting full benefit out of using
higher-order basis functions in space.

In the early stages of the ST-IGA, the emphasis was on IGA basis functions in
time. As pointed out in [6, 7] and demonstrated in [12, 82, 84], higher-order NURBS
basis functions in time provide a more accurate representation of the motion of
the solid surfaces and a mesh motion consistent with that. They also provide more
efficiency in temporal representation of the motion and deformation of the volume
meshes, and better efficiency in remeshing. That is how the ST/NURBS Mesh
Update Method (STNMUM) was introduced and demonstrated in [12, 82, 84]. The
name “STNMUM” was given in [79]. The STNMUM has a wide scope that includes
spinning solid surfaces. With the spinning motion represented by quadratic NURBS
basis functions in time, and with sufficient number of temporal patches for a full
rotation, the circular paths are represented exactly, and a “secondary mapping”
[6, 7, 12, 27] enables also specifying a constant angular velocity for invariant speeds
along the paths. The ST framework and NURBS in time also enable, with the
“ST-C” method, extracting a continuous representation from the computed data
and, in large-scale computations, efficient data compression [8, 10, 91, 98]. The
STNMUM and desirable features of the ST-IGA with IGA basis functions in time
have been demonstrated in many 3D computations. The classes of problems solved
are flapping-wing aerodynamics for an actual locust [12, 27, 82, 83], bioinspired
MAVs [80, 81, 84, 85] and wing-clapping [11, 86], separation aerodynamics of
spacecraft [73], aerodynamics of horizontal-axis [43, 79–81] and vertical-axis [9]
wind-turbines, thermo-fluid analysis of ground vehicles and their tires [8], thermo-
fluid analysis of disk brakes [10], flow-driven string dynamics in turbomachinery
[91], and flow analysis of turbocharger turbines [13, 92, 93].

The ST-IGA with IGA basis functions in space provides more accurate repre-
sentation of the geometry and increased accuracy in the flow solution. It has been
utilized in ST computational flow analysis of turbocharger turbines [13, 92, 93],
ram-air parachutes [95], tires with road contact and deformation [94], and heart
valves [4, 5]. In the flow analyses presented here, the ST-IGA enables smoother
representation of aorta and valve surfaces and increased flow solution accuracy.

1.1.6 ST-SI-TC-IGA

The turbocharger turbine, ram-air parachute, tire, and heart valve computations
mentioned in the last paragraph of Sect. 1.1.5 were accomplished with the inte-
gration of the ST-IGA and ST-SI or ST-IGA, ST-SI and ST-TC. The turbocharger
turbine analysis was based on the integration of the ST-SI and ST-IGA. The
IGA basis functions were used in the spatial discretization of the fluid mechanics
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equations and also in the temporal representation of the rotor and spinning-mesh
motion. That enabled accurate representation of the turbine surfaces and rotor
motion and increased accuracy in the flow solution. The ram-air parachute analysis
was based on the integration of the ST-IGA, the ST-SI version that weakly enforces
the Dirichlet conditions, and the ST-SI version that accounts for the porosity of a thin
structure. The ST-IGA with IGA basis functions in space enabled, with relatively
few number of unknowns, accurate representation of the parafoil geometry and
increased accuracy in the flow solution. The volume mesh needed to be generated
both inside and outside the parafoil. Mesh generation inside was challenging near
the trailing edge because of the narrowing space. Using IGA basis functions
addressed that challenge and still kept the element density near the trailing edge at a
reasonable level. The tire flow analysis with road contact and deformation was based
on the integration of the ST-SI, ST-TC, and ST-IGA. The ST-SI-TC-IGA enabled
a more accurate representation of the geometry and motion of the tire surfaces,
a mesh motion consistent with that, and increased accuracy in the flow solution.
It also kept the element density in the tire grooves and in the narrow spaces near
the contact areas at a reasonable level. When solid surfaces come into contact, the
elements between the surface and the SI collapse. Before the elements collapse,
the boundaries could be curved and complex, and the narrow spaces might have
high-aspect-ratio elements. With NURBS elements, it is possible to deal with such
adverse conditions rather effectively.

The heart valve flow analysis is also based on the integration of the ST-SI, ST-
TC, and ST-IGA. The ST-SI-TC-IGA, beyond enabling a smoother representation of
the arterial surfaces and increased accuracy in the flow solution, keeps the element
density in the narrow spaces near the leaflet–leaflet contact areas at a reasonable
level. Also, the adverse conditions created by the high-aspect-ratio elements in the
narrow spaces between the curved and complex boundaries are again dealt with
rather effectively.

An SI also provides mesh generation flexibility in a general context by accurately
connecting the two sides of the solution computed over nonmatching meshes. This
type of mesh generation flexibility is especially valuable in complex-geometry flow
computations with isogeometric discretization, removing the matching requirement
between the NURBS patches without loss of accuracy. This feature was used in the
turbocharger turbine analysis. It is also used in the heart valve flow analysis, for the
purpose of independent meshing in the inlet and outlet regions of the computational
domain.

1.2 Structure Analysis Methods

A shell formulation based on the Kirchhoff–Love shell theory was implemented
using isogeometric discretization [38, 99, 100], which does not require rotational
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degrees of freedom. The formulation has been successfully used in a number of
computations, including wind-turbine FSI [26, 27, 40, 100, 101] and bioinspired
flapping-wing aerodynamics [85]. The extension to a more general constitutive law
can be found in [102]. The formulation has been used in bioprosthetic heart valve
computations with neo-Hookean [59] and Fung-type [60] material models.

In this article, we start with the formulation from [102], and take the stretch in
the third direction into account in calculating the curvature term. Fung’s model has
different versions. In the version used in [60], the first invariant of the Cauchy–
Green deformation tensor appears in a squared form. In the version we use in this
article, it appears without being squared, and this version has been used in a number
of arterial FSI computations [103–110] with continuum elements.

1.3 Computations Presented

In the aorta flow analysis, we use a geometry obtained from medical images
and conduct studies to determine the mesh refinement influence and to assess
flow periodicity in the cardiac cycles. To evaluate the performance of the shell
model presented, we do structural mechanics test computations with cylindrical and
spherical geometries and compare the results to near-analytical reference solutions.
In the heart valve analysis, we first do a structural mechanics computation with a
prescribed, time-periodic, spatially uniform pressure difference between the upper
and lower surfaces of the valve leaflets. Based on the leaflet deformation coming
from that computation, we next do a flow computation.

1.4 Outline of the Remaining Sections

In Sect. 2 we provide the governing equations. The hyperelastic shell model is
presented in Sect. 3. The aorta flow analysis is presented in Sect. 4, test computations
with cylindrical and spherical geometries in Sect. 5, heart valve analysis in Sect. 6,
and the concluding remarks in Sect. 7. In the Appendix, we provide the ST-VMS and
ST-SI methods, some mathematical derivations used in Sect. 3, and the constitutive
laws.

2 Governing Equations

2.1 Incompressible Flow

Let Ωt ⊂ R
nsd be the spatial domain with boundary Γt at time t ∈ (0, T ), where nsd

is the number of space dimensions. The subscript t indicates the time-dependence of
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the domain in general. The symbols ρ, u, and p will represent the density, velocity,
and pressure, respectively, and the stress tensor is defined as σσσ(u, p) = −pI +
2μεεε(u), where I is the identity tensor, μ = ρν is the viscosity, ν is the kinematic
viscosity, and εεε(u) = (

(∇∇∇u)+ (∇∇∇u)T
)
/2 is the strain-rate tensor. The Navier–

Stokes equations of incompressible flows are written on Ωt and ∀t ∈ (0, T ) as

ρ

(
∂u
∂t
+ u · ∇∇∇u− f

)

−∇∇∇ · σσσ = 0, (1)

∇∇∇ · u = 0, (2)

where f is the body force. The essential and natural boundary conditions for Eq. (1)
are represented as u = g on (Γt )g and n ·σσσ = h on (Γt )h, where (Γt )g and (Γt )h are
complementary subsets of the boundary Γt , n is the unit normal vector, and g and h
are given functions. A divergence-free velocity field u0(x) is specified as the initial
condition.

2.2 Structural Mechanics

In this article, we will not have a formulation requiring fluid and structure definitions
simultaneously. Therefore, for notation simplicity, we will reuse many of the
symbols used in the fluid mechanics equations to represent their counterparts in
the structural mechanics equations. To begin with, Ωt ⊂ R

nsd and Γt will represent
the structure domain and its boundary. The structural mechanics equations are then
written, on Ωt and ∀t ∈ (0, T ), as

ρ

(
d2y
dt2 − f

)

−∇∇∇ · σσσ = 0, (3)

where y and σσσ are the displacement and Cauchy stress tensor. The essential and
natural boundary conditions for Eq. (3) are represented as y = g on (Γt )g and n ·σσσ =
h on (Γt )h. The Cauchy stress tensor can be obtained from

σσσ = J−1FSFT , (4)

where F and J are the deformation gradient tensor and its determinant, and S is the
second Piola–Kirchhoff stress tensor. It is obtained from the strain-energy density
function ϕ as follows:
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S ≡ ∂ϕ

∂E
, (5)

where E is the Green–Lagrange strain tensor:

E = 1

2
(C− I) , (6)

and C is the Cauchy–Green deformation tensor:

C ≡ FT · F. (7)

From Eqs. (5) and (6),

S = 2
∂ϕ

∂C
. (8)

3 Hyperelastic Shell Model

We split the domain as Ωt = Γ t × (hth)t , where Γ t represents the midsurface of
the domain, which is parametrized by npd = nsd − 1, where npd is the number of
parametric dimensions. With the position x ∈ Γ t , we define a natural coordinate
system:

gα ≡
∂x
∂ξα

(9)

= x,α, (10)

where α = 1, . . . , npd, and the third direction is based on

n ≡ g3 (11)

= g1 × g2∥
∥g1 × g2

∥
∥
. (12)

The components of the metric tensor are

gαβ = gα · gβ, (13)

and this is known as the first fundamental form. Similarly, we define the components
of the metric tensor for the contravariant basis vectors as

gαβ = gα · gβ, (14)



Aorta Flow Analysis and Heart Valve Flow and Structure Analysis 39

and obtain the tensor components and contravariant basis vectors from

[
gαβ
] = [gαβ

]−1 (15)

and

gα = gαβgβ. (16)

We define

ΓΓΓ αβ = ∂2x
∂ξα∂ξβ

, (17)

and with that, components of the covariant curvature tensor are

bαβ = ΓΓΓ αβ · n (18)

= gβ,α · n, (19)

and this is known as the second fundamental form.
A position x ∈ Ωt is represented as

x = x+ nξ3, (20)

where −1 ≤ ξα ≤ 1 and ξ3 ∈ (hth)t . The basis vectors are represented as

gα ≡ x,α (21)

= gα + n,αξ
3 (22)

= gα − bαγ gγ ξ3. (23)

See section “Derivative of the Normal Vector” in Appendix 2 for the lines between
Eqs. (22) and (23). Because gα and gα are on parallel planes (from the Kirchhoff–
Love shell theory),

g3 = g3. (24)

With that, the metric tensor components in 3D space are

gαβ = gαβ − 2bαβξ
3 + bαγ g

γ δbβδ

(
ξ3
)2

, (25)

gα3 = 0, (26)
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g3α = 0, (27)

g33 = 1. (28)

Remark 1 The quadratic term may be omitted. However, if the metric tensor is
obtained from the basis vectors, the term will automatically be included.

We now provide similar definitions and derivations for the undeformed configu-
ration. We start with the basis vectors:

Gα = ∂X
∂ξα

0
(29)

= X,α, (30)

and

N ≡ G3 (31)

= G1 ×G2
∥
∥
∥G1 ×G2

∥
∥
∥
. (32)

A position X ∈ Ω0 is expressed as

X = X+ Nξ3
0 , (33)

where −1 ≤ ξα
0 ≤ 1 and ξ3

0 ∈ (hth)0. The basis vectors are represented as

Gα = X,α (34)

= Gα + N,αξ
3
0 (35)

= Gα − Bαγ G
γ
ξ3

0 , (36)

G3 = G3. (37)

The metric tensor components in 3D space are

Gαβ = Gαβ − 2Bαβξ
3
0 + BαγG

γδ
Bβδ

(
ξ3

0

)2
, (38)

G3α = 0, (39)

Gα3 = 0, (40)

G33 = 1, (41)
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and Bαβ is the second fundamental form for the midsurface of the undeformed
configuration. On the midsurface the parametric coordinates indicate the same
material points, and therefore, ξα = ξα

0 . In the third direction, however, because
of the normalization, the coordinates may not be the same. The relationship is

dξ3

dξ3
0

= λ3, (42)

where λ3 is the stretch in the third direction.

3.1 Kinematics

We obtain F from the following relationship:

gαdξα
0 + g3λ3dξ3

0 = F ·
(

Gαdξα
0 +G3dξ3

0

)
. (43)

This means that

gα = F ·Gα, (44)

λ3g3 = F ·G3. (45)

Then we can write F as

F = gαGα + λ3g3G3, (46)

and J as

J = 1

G3 · (G1 ×G2)
(F ·G3) · ((F ·G1)× (F ·G2)) (47)

= λ3
(g1 × g2) · n
(G1 ×G2) · N (48)

= λ3
‖g1 × g2‖
‖G1 ×G2‖ . (49)

From Eq. (7), we can write C as

C =
(

Gαgα + λ3G3g3

)
·
(

gβGβ + λ3g3G3
)

(50)

= gαβGαGβ + λ2
3G3G3, (51)
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and the determinant of C gives the square of J :

J 2 = det C (52)

= A2

A2
0

λ2
3, (53)

A2 = det
[
gαβ
]
, (54)

A2
0 = det

[
Gαβ

]
. (55)

From Eq. (6), we can write E as

E = 1

2

(
C−

(
GαβGαGβ +G3G3

))
(56)

= 1

2

(
gαβ −Gαβ

)
GαGβ + 1

2

(
λ2

3 − 1
)

G3G3. (57)

The covariant components of the in-plane strain tensor are

Eαβ = 1

2

(
gαβ −Gαβ

)
(58)

= 1

2

(
gαβ −Gαβ

)

︸ ︷︷ ︸
εαβ

+
(
−bαβξ3 + Bαβξ

3
0

)

+1

2

(

bαγ g
γ δbβδ

(
ξ3
)2 − BαγG

γδ
Bβδ

(
ξ3

0

)2
)

. (59)

We write ξ3
(
ξ3

0

)
as ξ3

(
ξ3

0

) = λ̂3
(
ξ3

0

)
ξ3

0 . From the Taylor expansion of λ̂3 around
ξ3

0 = 0, we obtain

ξ3 = λ3ξ
3
0 +

dλ̂3

dξ3
0

(
ξ3

0

)2 + O
((

ξ3
0

)3
)

. (60)

We note that λ3 is the stretch at ξ3
0 = 0, which is λ̂3 (0). With that,

Eαβ = εαβ +
(
−bαβξ3 + Bαβξ

3
0

)

+ 1

2

(
bαγ g

γ δbβδλ3
2 − BαγG

γδ
Bβδ

) (
ξ3

0

)2 + O
((

ξ3
0

)3
)

(61)

= εαβ +
(
−bαβξ3 + Bαβξ

3
0

)
+ O

((
ξ3

0

)2
)

. (62)
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3.2 Constitutive Equations

The total differential of the second Piola–Kirchhoff stress tensor is

dS = ∂S
∂E
: dE (63)

= ∂SIJ

∂EKL

GIGJ GKGL : dEMNGMGN (64)

= C
IJKLGIGJ dEKL, (65)

where I, J,K,L,M,N = 1, . . . , nsd. From Eq. (6), the following expression can
be used:

C
IJKL = 2

∂SIJ

∂CKL

. (66)

For shells,

dSIJ = C
IJγ δdEγδ + C

IJ33dE33, (67)

because dE3α = dEα3 = 0. From Eq. (67), we can write

dS33 = C
33γ δdEγδ + C

3333dE33, (68)

and from Eqs. (6) and (68), we can write

dS33 = 1

2
C

33γ δdCγδ + 1

2
C

3333dC33. (69)

From the plane stress condition S33 = 0, dS33 = 0, and consequently

dE33 = −C
33γ δ

C3333
dEγδ, (70)

which makes

dSαβ = C
αβγ δdEγδ − C

αβ33
C

33γ δ

C3333 dEγδ, (71)

and therefore we introduce

Ĉ
αβγ δ = C

αβγ δ − C
αβ33

C
33γ δ

C3333 . (72)
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In computing C33, we have different methods for incompressible and compressible
materials. In the case of incompressible material, from Eq. (51) we can write C33 =
λ2

3. Because J = 1,

λ3 = 1

A/A0
, (73)

and therefore

C33 = A2
0

A2
. (74)

In the case of compressible material, as can be found in [52], C33 can be calculated
by Newton–Raphson iterations that would make S33 = 0. Because Cγδ does not
change during the iterations, the iteration increment is

�Ci
33 = −

(
S33
)i

(
dS33/dC33

)i . (75)

From Eq. (69) and remembering that dCγδ = 0 during the iterations,

�Ci
33 = −2

(
S33
)i

(
C3333

)i . (76)

The update takes place as

Ci+1
33 = Ci

33 +�Ci
33, (77)

where superscript i is the iteration counter, and as the initial guess we have the
following three options:

C0
33 = 1, (78)

C0
33 =

A2
0

A2 , (79)

C0
33 =

1

2
gαβG

αβ. (80)

The option given by Eq. (80) comes from the constitutive law for zero bulk modulus.
To preclude C33 being negative, we introduce an alternative update method based
on the logarithm of C33:

lnCi+1
33 = lnCi

33 +
d lnC33

dC33
�Ci

33 (81)

= lnCi
33 +

�Ci
33

Ci
33

. (82)
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3.3 Variational Formulation

The variation of the in-plane components of the Green–Lagrange tensor is

δEαβ = δεαβ − δbαβξ
3 + bαβδξ

3. (83)

The variation of ξ3 can be dropped (see Appendix 3), and we obtain

δEαβ = δεαβ +
(−δbαβ

)

︸ ︷︷ ︸
δκαβ

ξ3. (84)

With that,

δWint = −
∫

Ω0

δE : SdΩ (85)

= −
∫

Γ 0

∫

(hth)0

δεαβGαGβ : Sγ δGγ Gδ

A0

A0
dξ3dΓ

−
∫

Γ 0

∫

(hth)0

ξ3δκαβGαGβ : Sγ δGγ Gδ

A0

A0
dξ3dΓ, (86)

which means

δWint = −
∫

Γ 0

δεαβ

∫

(hth)0

Sαβ A0

A0
dξ3dΓ −

∫

Γ 0

δκαβ

∫

(hth)0

ξ3Sαβ A0

A0
dξ3dΓ.

(87)

Remark 2 Evaluation of S requires a material point correspondence in the third
direction. We take that into account by integrating Eq. (42) with the 4th order
Runge–Kutta method, and λ3 can be obtained from the constitutive law given in
Sect. 5.1. In general, stretch at a convex side is less than the stretch at the concave
side, which results in a nonuniform λ3.

Now we derive what we need:

δεαβ = 1

2

(
δgα · gβ + gα · δgβ

)
(88)

= 1

2

(
∂δx
∂ξα
· gβ + gα ·

∂δx
∂ξβ

)

, (89)

δκαβ = −∂δgα

∂ξβ
· n− ∂gα

∂ξβ
· δn (90)

= −δΓΓΓ αβ · n+ΓΓΓ αβ · gγ
(
n · δgγ

)
(91)

= −
(
δΓΓΓ αβ −

(
ΓΓΓ αβ · gγ

)
δgγ

)
· n, (92)
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where

δΓΓΓ αβ = δx,αβ, (93)

and the variation of the normal vector (see section “Variation of the Normal Vector”
in Appendix 2) is

δn = −gγ
(
n · δgγ

)
. (94)

3.4 Linearization for the Newton–Raphson Iterations

The linearization for the Newton–Raphson iterations is done as

δaδbWint = −
∫

Γ 0

δaδbεαβ

∫

(hth)0

Sαβ A0

A0
dξ3dΓ

−
∫

Γ 0

δaδbκαβ

∫

(hth)0

ξ3Sαβ A0

A0
dξ3dΓ

−
∫

Γ 0

δaεαβ

∫

(hth)0

Ĉ
αβγ δ A0

A0
dξ3δbεγ δdΓ

−
∫

Γ 0

δaεαβ

∫

(hth)0

Ĉ
αβγ δξ3 A0

A0
dξ3δbκγ δdΓ

−
∫

Γ 0

δaκγ δ

∫

(hth)0

Ĉ
αβγ δξ3 A0

A0
dξ3δbεγ δdΓ

−
∫

Γ 0

δaκγ δ

∫

(hth)0

Ĉ
αβγ δ

(
ξ3
)2 A0

A0
dξ3δbκγ δdΓ. (95)

The variation with subscript a is associated with the variational formulation, and
the variation with subscript b is associated with the iteration linearization. Again,
the variation of ξ3 is dropped.

In this part too, we derive what we need:

δbδaεαβ = 1

2

(
∂δax
∂ξα
· ∂δbx
∂ξβ
+ ∂δbx

∂ξα
· ∂δax
∂ξβ

)

, (96)

δaδbκαβ = −
(

δaΓΓΓ αβ −
(
ΓΓΓ αβ · gγ

) ∂δax
∂ξγ

)

· δbn+ δb

(
ΓΓΓ αβ · gγ

)
δagγ · n

(97)

= −
(

δaΓΓΓ αβ −
(
ΓΓΓ αβ · gγ

) ∂δax
∂ξγ

)

· δbn
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+
(
δbΓΓΓ αβ · gγ +ΓΓΓ αβ · δbgγ

)
δagγ · n (98)

=
(

δaΓΓΓ αβ −
(
ΓΓΓ αβ · gγ

) ∂δax
∂ξγ

)

· gγ
(
n · δbgγ

)

+ δagγ · n
(

gγ · δbΓΓΓ αβ −ΓΓΓ αβ · gδgγ · δbgδ

)
(99)

=
(

δaΓΓΓ αβ −
(
ΓΓΓ αβ · gγ

) ∂δax
∂ξγ

)

· gγ
(
n · δbgγ

)

+
(

δbΓΓΓ αβ −
(
ΓΓΓ αβ · gδ

) ∂δbx
∂ξδ

)

· gγ
(
n · δagγ

)
. (100)

Here, we used

δgγ = −gδgγ · δgδ, (101)

and the proof for this can be found in Appendix 4.

4 Aorta Flow Analysis

We start with a geometry obtained from medical images and then use cubic T-
splines to represent the surface. The density and kinematic viscosity of the blood
are 1050 kg/m3 and 4.2× 10−6 m2/s.

4.1 Conditions

The computational domain and boundary conditions are shown in Fig. 1. The
diameters are given in Table 1. The inflow flow rate, plug flow, is in Fig. 2. The
peak value of the average inflow velocity is 0.709 m/s. We estimate the outflows as
distributed by Murray’s law [111]:

Qo ∝ D3
o, (102)

where Qo is the volumetric outflow rate, and the outlet diameter Do is defined based
on the outlet area Ao:

Do = 2

√
Ao

π
. (103)

We form a plug flow profile at the smaller outlets, and the main outlet is set to
traction free.
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Fig. 1 Aorta flow analysis.
Geometry and boundary
conditions

Table 1 Aorta flow analysis

Inlet Outlet 1 Outlet 2 Outlet 3 Outlet 4 Outlet 5

Diameter 25.6 5.81 3.90 4.41 6.43 19.9

Diameter (mm) of the inlet and outlets. The outlets are listed in the order of closeness to the inlet

4.2 Mesh

We create a quadratic NURBS mesh from the T-spline surface, using the technique
introduced in [92, 93]. Figure 3 shows one of the NURBS patches and five of the
patches together to illustrate the block-structured nature of the NURBS mesh. The
function space has only C0 continuity between the patches. Figure 4 shows the
base mesh. Figure 5 shows the base and refined meshes at the inlet. The meshes
are refined by knot insertion, therefore the geometry is unchanged, and the basis
functions for the coarser meshes are subsets of the basis functions for the finer
meshes. The refinement is in the normal direction, and at each refinement, the
element thickness is halved in half of the most refined layers. For the base mesh,
the element thickness in the normal direction is approximately 1% of the local
diameter. There is no refinement in the tangential directions. During the refinement,
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Fig. 2 Aorta flow analysis.
Volumetric flow rate at the
inlet

Fig. 3 Aorta flow analysis.
NURBS control mesh. One of
the patches (top) and five of
the patches together (bottom)
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Fig. 4 Aorta flow analysis.
Base Mesh. Control mesh and
surface (green). Red points
are control points

Fig. 5 Aorta flow analysis. Control mesh at the inlet. Base Mesh, Refinement Mesh 1, Refinement
Mesh 2, Refinement Mesh 3, and Refinement Mesh 4 (from left to right and top to bottom)
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Table 2 Aorta flow analysis nc ne

Base Mesh 202,497 151,513

Refinement Mesh 1 266,437 205,733

Refinement Mesh 2 330,377 259,953

Refinement Mesh 3 394,317 314,173

Refinement Mesh 4 458,257 368,393

Number of control points (nc) and ele-
ment (ne) for the quadratic NURBS meshes
used in the computations

the original plug flow profiles of the base mesh are retained. Table 2 shows the
number of elements and control points.

4.3 Mesh Refinement Study

We compute with the five meshes in Table 2. The time-step sizes are �t = 0.0025 s
for Base Mesh and Refinement Mesh 1 and 2, and �t = 0.00125 s for Refinement
Mesh 3 and 4. The number of nonlinear iterations per time step is 3, and the number
of GMRES iterations per nonlinear iteration is 800 for Base Mesh and Refinement
Mesh 1, and 1200, 1400, and 1600 for Refinement Mesh 2, 3, and 4, respectively.
The ST-SUPS method (see Appendix 1) is used and the stabilization parameters are
those given by Eqs. (2.4)–(2.6), (2.8), and (2.10) in [9].

We first compute nine cycles with Base Mesh, and the initial condition for the
refined meshes is obtained by knot insertion. The solution reported here is for
the 10th cycle. Figure 6 shows the solution computed with Refinement Mesh 4.
At the peak flow rate a complex flow pattern is formed, and the vortex structure
breaks down into smaller structures during the deceleration. The magnitude of the
WSS (hv) at the peak flow rate is shown for each mesh in Fig. 7. Qualitatively, all
results are in good agreement, and the convergence can be seen with refinement. To
quantify the mesh refinement level, we calculate the y+ value for the first-element
thickness h as

y+ = u∗h
ν

, (104)

where the friction velocity u∗ is based on the computed value of the WSS as follows:

u∗ =
√∥
∥hh

v

∥
∥

ρ
. (105)

Figure 8 shows the spatial distribution of y+ at the peak flow rate. It shows that
for the meshes used here, y+ range is from approximate maximum 10 to less than
1. Comparing Figs. 7 and 8, we see that the WSS values computed over different
meshes are in agreement where y+ ≤ 1.
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Fig. 6 Aorta flow analysis. Mesh refinement study. Computed with Refinement Mesh 4. Isosur-
faces corresponding to a positive value of the second invariant of the velocity gradient tensor,
colored by the velocity magnitude (m/s) (top). The time instants are shown with circles (bottom)

The time-averaged WSS magnitude (TAWSS) is shown in Fig. 9, and Fig. 10
shows the spatially averaged WSS magnitude in a cycle. Figure 11 shows the
oscillatory shear index (OSI), defined as

OSI = 1

2

⎛

⎝1−
∥
∥
∥
∫ T

0 hh
vdt
∥
∥
∥

∫ T

0

∥
∥hh

v

∥
∥ dt

⎞

⎠ . (106)

Overall for OSI, even Base Mesh is in a good agreement with others. However, if
we compare details such as branches, we see some difference even where y+ value
is small. To see the flow differences, using the solution from Refinement Mesh 4
as the reference solution, we inspect the velocity difference

∥
∥uh

k − uh
4

∥
∥, where the

subscripts indicate Base Mesh and Refinement Mesh k.
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Base Mesh
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Mesh 1
Refinement

Mesh 2
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Mesh 3
Refinement

Mesh 4

0.0 80.0

Fig. 7 Aorta flow analysis. Mesh refinement study. WSS (dyn/cm2) at the peak flow rate
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Mesh 1
Refinement

Mesh 2
Refinement

Mesh 3
Refinement

Mesh 4

0.1 1 10

Fig. 8 Aorta flow analysis. Mesh refinement study. y+ value for the first-element thickness, based
on the WSS computed at the peak flow rate

Remark 3 To calculate the velocity difference, all meshes and corresponding
solutions are refined by using the knot-insertion technique, and the control variables
are obtained based on Refinement Mesh 4. The visualization is done after taking
the difference between the control variables, interpolating the vector, and taking its
magnitude.

The spatial average of the difference is maximum at around 0.5 s. This indicates
that the vortex breakdown, due to the small-scale flow behavior that needs to be
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Fig. 9 Aorta flow analysis. Mesh refinement study. TAWSS (dyn/cm2)
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Fig. 10 Aorta flow analysis. Mesh refinement study. Spatially averaged WSS during a cycle

dealt with, would not be easy to resolve. Figure 12 shows the velocity difference
at 0.5 s.

In summary, good accuracy in the WSS magnitude can be obtained with locally
good representation, and the OSI requires a good flow representation overall,
including the vortex breakdown.
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Fig. 11 Aorta flow analysis. Mesh refinement study. OSI
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Mesh 1
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Mesh 2
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Mesh 3
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Fig. 12 Aorta flow analysis. Mesh refinement study. Velocity difference
∥
∥uh

k − uh
4

∥
∥ (m/s) at 0.5 s,

where the subscripts indicate Base Mesh and Refinement Mesh k
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0.0 1.0

Fig. 13 Aorta flow analysis. Periodicity study. Isosurfaces corresponding to a positive value of the
second invariant of the velocity gradient tensor, colored by the velocity magnitude (m/s). At 0.4 s
in cycles 7, 8, 9, and 10

4.4 Periodicity Study

In this study, we check to see if we reach flow periodicity in the cardiac cycles. We
use the base mesh. Figure 13 shows, for cycles 7–10, the vortex structure at 0.4 s,
and Figs. 14 and 15 show the TAWSS and OSI for those cycles. Despite the complex,
unsteady behavior, we do reach flow periodicity in the computations, already in the
7th cycle.

5 Shell Tests

We test the formulation given in Sect. 3 by using pressurized cylindrical and spher-
ical shells. The tests include shell models with compressible and incompressible
material and continuum models with compressible material.

5.1 Constitutive Models

We test two constitutive models: neo-Hookean and Fung’s. The elastic-energy
density functions are

ϕNH (C) = 1

2
μ (trC− nsd) , (107)
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0.0 20.0

Fig. 14 Aorta flow analysis. Periodicity study. TAWSS in cycles 7, 8, 9, and 10

0.0 0.5

Fig. 15 Aorta flow analysis. Periodicity study. OSI in cycles 7, 8, 9, and 10

ϕF (C) = D1

(
e(D2trC−nsd) − 1

)
, (108)

where μ is the shear modulus, and D1 and D2 are the coefficients of the Fung’s
model.
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For incompressible material, we use

ϕNHI (C) = ϕNH (C)+ p (J − 1) , (109)

ϕFI (C) = ϕF (C)+ p (J − 1) , (110)

where p is the pressure, which can be eliminated by the plane stress condition.
For compressible material, we use

ϕNHR (C) = ϕNH

(

J
− 2

nsd C
)

+ ϕvol (J ) , (111)

ϕFR (C) = ϕF

(

J
− 2

nsd C
)

+ ϕvol (J ) , (112)

where

ϕvol (J ) = 1

2
κ

(
1

2

(
J 2 − 1

)
− ln J

)

, (113)

and κ is the bulk modulus.

5.2 Test Computations

The pressure, applied at r = rp, is normalized by the shear modulus (at the zero-
stress state):

p∗ = p

μ
(114)

for the neo-Hookean model,

p∗ = p

2D1D2
(115)

for the Fung’s model, and we use D2 = 8.365. We determine the bulk modulus from
the Poisson’s ratio ν as follows:

κ = 2μ (1+ ν)

3 (1− 2ν)
(116)

for the neo-Hookean model, and

κ = 4D1D2 (1+ ν)

3 (1− 2ν)
(117)

for the Fung’s model.
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How to deal with pressure acting on the inner surface is not easy because the
midsurface is the geometry we are using in the computation. Here we propose two
ways. In the first one, “midsurface model,” the pressure is applied on the midsurface
of the current configuration. In the second one,“innersurface model,” the structure
“midsurface” is moved to the inner surface and the pressure is applied there.

Remark 4 In applying the pressure, the midsurface model is physically wrong,
especially when the thickness is significant. The innersurface model will have larger
absolute value for ξ3, which would lead to larger discretization errors.

In the test cases, we use the inner and outer radii RI and RO, and the thickness
H = RO − RI. The condition used here is H

2RI
= 0.1, which is slightly thinner than

most arteries. To have a reference solution to compare the results to, we provide
in Appendix 5 the second Piola–Kirchhoff stress tensor expressed in terms of the
principal stretches. The results are compared by inspecting pressure as a function of
stretch. The stretch is λ1 ≡ rp

R
for the midsurface model, where rp = r , and λ1 ≡ rp

RI
for the innersurface model, where rp = rI. In the computations, we increase the
pressure gradually in obtaining the solution and calculate the stretch. In obtaining
the reference solutions, we use numerical integrations, which are explained in the
following subsections.

5.2.1 Pressurized Cylinder

We use orthogonal basis vectors: the first basis vector is in the radial direction, the
second one is in the cylinder axis direction, and the third one is normal to the surface.
The force equilibrium gives the following relationship:

p2rp = 2
∫ rO

rI

σ11dx3 (118)

= 2
∫ rO

rI

J−1λ2
1S11dx3 (119)

= 2
∫ RO

RI

J−1λ2
1S11λ3dX3 (120)

= 2
∫ RO

RI

λ1

λ2
S11dX3. (121)
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Fig. 16 Pressurized cylinder. Neo-Hookean model. Reference solutions. Midsurface model (left)
and innersurface model (right)
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Fig. 17 Pressurized cylinder. Fung’s model. Reference solutions. Midsurface model (left) and
innersurface model (right). Note that the pressure scale is logarithmic

Because the cylinder height does not change, λ2 = 1, and we obtain

p = 1

rp

∫ RO

RI

λ1S11dX3. (122)

See section “Cylinder” in Appendix 5 for S11. Figures 16 and 17 show the reference
solutions for the neo-Hookean and Fung’s models. We compute, in 2D, with
uniform, periodic cubic B-splines with eight elements. For comparison purposes, we
also compute with the continuum model, using 128 uniform, periodic cubic B-spline
elements in the circumferential direction, and one element in the radial direction.
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Fig. 18 Pressurized cylinder. Neo-Hookean model (ν = 0.45). Midsurface model (left), innersur-
face model (center), and continuum model (right). Solid curve is the reference solution
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Fig. 19 Pressurized cylinder. Neo-Hookean model (ν = 0.49). Midsurface model (left), innersur-
face model (center), and continuum model (right). Solid curve is the reference solution
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Fig. 20 Pressurized cylinder. Neo-Hookean model (incompressible). Midsurface model (left), and
innersurface model (right). Solid curve is the reference solution

Figures 18, 19, and 20 show the solutions for the neo-Hookean model, and
Figs. 21, 22, and 23 for the Fung’s model. Figures 18, 21 and 19, 22 show, for
ν = 0.45 and 0.49, the solutions from the midsurface, innersurface, and continuum
models. Figures 20 and 23 show, for incompressible material, the solutions from the
midsurface and innersurface models.
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Fig. 21 Pressurized cylinder. Fung’s model (ν = 0.45). Midsurface model (left), innersurface
model (center), and continuum model (right). Solid curve is the reference solution
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Fig. 22 Pressurized cylinder. Fung’s model (ν = 0.49). Midsurface model (left), innersurface
model (center), and continuum model (right). Solid curve is the reference solution
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Fig. 23 Pressurized cylinder. Fung’s model (incompressible). Midsurface model (left), and inner-
surface model (right). Solid curve is the reference solution

5.2.2 Pressurized Sphere

We use orthogonal basis vectors: the first two vectors are on the surface, and the
third vector is normal to the surface. The force equilibrium gives the following
relationship:

pπr2
p =

∫ rO

rI

2πx3σ11dx3 (123)

=
∫ rO

rI

2πJ−1λ2
1x3S11dx3 (124)
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Fig. 24 Pressurized sphere. Neo-Hookean model. Reference solutions. Midsurface model (left)
and innersurface model (right)

=
∫ RO

RI

2πJ−1λ2
1 λ1X3︸ ︷︷ ︸

x3

S11λ3dX3 (125)

=
∫ RO

RI

2π
λ2

1

λ2
X3S11dX3. (126)

Because of the symmetry between the two basis vector directions on the surface,
λ1 = λ2, and we obtain

p = 2

r2
p

∫ RO

RI

X3λ1S11dX3. (127)

See section “Sphere" in Appendix 5 for S11. Figures 24 and 25 show the reference
solutions for the neo-Hookean and Fung’s models.

We compute, in 3D, with a cubic T-spline mesh, which consists of 296 control
points and 534 Bézier elements (see Fig. 26). For comparison purposes, we also
compute with the continuum model, which is extruded in the thickness direction
with one element.

Remark 5 The number of elements used in the integration is the number of Bézier
elements, which is 534 in this case. The mesh was generated by a commercial
software, Rhinoceros with the T-splines plug-in. It actually has, in the finite element
sense, 294 elements.

Figures 27, 28, and 29 show the solutions for the neo-Hookean model, and
Figures 30, 31, and 32 for the Fung’s model. Figures 27, 30 and 28, 31 show, for
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Fig. 25 Pressurized sphere. Fung’s model. Reference solutions. Midsurface model (left) and
innersurface model (right). Note that the pressure scale is logarithmic

Fig. 26 Pressurized sphere.
T-spline mesh used in the
computations. Red circles
represent the control points
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Fig. 27 Pressurized sphere. Neo-Hookean model (ν = 0.45). Midsurface model (left), innersur-
face model (center), and continuum model (right). Solid curve is the reference solution
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Fig. 28 Pressurized sphere. Neo-Hookean model (ν = 0.49). Midsurface model (left), innersur-
face model (center), and continuum model (right). Solid curve is the reference solution
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Fig. 29 Pressurized sphere. Neo-Hookean model (incompressible). Midsurface model (left), and
innersurface model (right). Solid curve is the reference solution
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Fig. 30 Pressurized sphere. Fung’s model (ν = 0.45). Midsurface model (left), innersurface
model (center), and continuum model (right). Solid curve is the reference solution
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Fig. 31 Pressurized sphere. Fung’s model (ν = 0.49). Midsurface model (left), innersurface
model (center), and continuum model (right). Solid curve is the reference solution
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Fig. 32 Pressurized sphere. Fung’s model (incompressible). Midsurface model (left), and inner-
surface model (right). Solid curve is the reference solution

ν = 0.45 and 0.49, the solutions from the midsurface, innersurface, and continuum
models. Figures 29 and 32 show, for incompressible material, the solutions from the
midsurface and innersurface models.

6 Heart Valve

The heart valve we compute here is the aortic valve; there are three valve leaflets. We
first perform a structural mechanics computation with a prescribed, time-periodic,
spatially uniform pressure difference between the upper and lower surfaces of the
leaflets. Based on the leaflet deformation coming from that computation, we next
perform the flow computation with the ST-SI-TC-IGA.

6.1 Structural Mechanics

We use the Fung’s model, with D1 = 2.0611 × 104 Pa and D2 = 8.365. The
thickness and density are 0.0386 cm and 1000 kg/m3. We do the computation for
only one of the leaflets. The contact between the leaflet and the periodicity planes
on its two sides represent the contact with the other leaflets. The contact is handled
by not allowing the control points cross the planes. The pressure difference we
impose is given in Fig. 33. The profile is similar to the one used in [102]. We use
a cubic T-spline mesh. The number of control points and number of elements are
1349 and 1236. We add a mass-proportional damping, with damping coefficient
2.041 × 103 s−1. The generalized-α method with the parameters based on the
spectral radius, which we set to zero, is used with a time-step size of 0.5 ms.
The number of nonlinear iterations per time step is 6, and the number of GMRES
iterations per nonlinear iteration is 100. The shell model we use in this computation
is an earlier version of the one described in Sect. 3. In taking λ3 into account in the
curvature term, we use its midsurface value. Figure 34 shows the results for the first
half of the cycle. For the rest of the cycle, the leaflet shape does not change much.
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Fig. 33 Heart valve.
Pressure difference. The
profile is similar to the one
used in [102]
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Fig. 34 Heart valve
structural mechanics
computation. The time
instants are
0.036, 0.097, 0.158, 0.219,
0.281, 0.342 s (from left to
right and top to bottom). The
lines are T-spline element
boundaries
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Fig. 35 Heart valve fluid mechanics computation. Computational domain (left) and zoomed view
(right)

6.2 Fluid Mechanics

The fluid mechanics domain is shown in Fig. 35. The mesh is made of 231
quadratic NURBS patches, and it has five SIs. Three of the SIs connect the mesh
sectors containing the leaflets in the valve region of the aorta, and the other two,
which are the top and bottom circular planes, connect the meshes in the inlet and
outlet regions to the valve region. The number of control points and number of
elements are 584,964 and 438,000. The motion of the fluid boundaries on the
valve surfaces are prescribed based on the structural mechanics computation. To
do that, the displacement on the cubic T-spline mesh is projected to the boundary
of the fluid mechanics mesh. Figure 36 shows the T-spline and NURBS surfaces.
Figures 37 and 38 show the moving mesh. The mesh motion and master–slave
relationship [5, 11] are all prepared manually based on the position of the boundary.
The ST-SUPS method (see Appendix 1) is used, and the stabilization parameters
are those given by Eqs. (2.4)–(2.6), (2.8) and (2.10) in [9]. The time-step size is
0.00324 s. The number of nonlinear iterations per time step is 3, and the number
of GMRES iterations per nonlinear iteration is 300. Figures 39 and 40 show the
computational results.
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Fig. 36 Heart valve structure solution (left) and the fluid mechanics boundary obtained by
projection from the structure (right). The lines are T-spline and NURBS element boundaries

7 Concluding Remarks

We have presented our computational methods for aorta flow analysis and heart
valve flow and structure analysis. We have also presented results from the computa-
tions carried out with these methods. The computational challenges addressed in the
aorta flow analysis included unsteady flow through a curved geometry with multiple
outlets, relatively high Reynolds numbers, and multiscale flow behavior. The key
targets were smoother representation of the geometry and increased accuracy in the
flow solution. In the heart valve flow analysis, the challenges addressed included
unsteady flow through a complex geometry, solid surfaces with large motion, and
contact between the valve leaflets. The main target was computation with the leaflet
deformation coming from a structure analysis. In the flow computations, the core
method was the ST-VMS method, and the other key methods were the ST-SI and
ST-TC methods and the ST-IGA. For the structure analysis, we have presented a
Kirchhoff–Love shell model, where we take the stretch in the third direction into
account in calculating the curvature term.



70 K. Takizawa et al.

Fig. 37 Heart valve fluid
mechanics computation. A set
of selected NURBS elements,
at t =
0.000, 0.020, 0.039, 0.059, 0.078,
0.098 s (from left to right and
top to bottom)

The ST framework, in a general context, provides higher-order accuracy. The
VMS feature of the ST-VMS addresses the computational challenges associated
with the multiscale nature of the unsteady flows. The moving-mesh feature of the
ST framework enables high-resolution computation near moving solid surfaces. The
ST-SI connects the sectors of meshes containing different moving solid surfaces,
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Fig. 38 Heart valve fluid
mechanics computation. A set
of selected NURBS elements,
at t =
0.117, 0.137, 0.156, 0.176, 0.195,
0.215 s (from left to right and
top to bottom)
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Fig. 39 Heart valve fluid
mechanics computation.
Isosurfaces corresponding to
a positive value of the second
invariant of the velocity
gradient tensor, colored by
the velocity magnitude (m/s).
The time instants are the
same as those in Fig. 37

0.5 3.0
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Fig. 40 Heart valve fluid
mechanics computation.
Isosurfaces corresponding to
a positive value of the second
invariant of the velocity
gradient tensor, colored by
the velocity magnitude (m/s).
The time instants are the
same as those in Fig. 38

0.5 3.0
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such as the valve leaflets, enabling a more effective mesh moving. The ST-
TC enables moving-mesh computation even with the TC created by the contact
between the leaflets. It deals with the contact while maintaining high-resolution
representation near the leaflets. Integration of the ST-SI and ST-TC enables high-
resolution representation even when parts of the SI coincide with the leaflet surfaces.
It also enables dealing with leaflet–leaflet contact location change and contact
sliding. The ST-IGA provides smoother representation of aorta and valve surfaces
and increased accuracy in the flow solution. With the integration of the ST-IGA with
the ST-SI and ST-TC, the element density in the narrow spaces near the contact areas
is kept at a reasonable level.

In the aorta flow analysis, we used a geometry obtained from medical images and
conducted studies to systematically determine the mesh refinement influence and to
assess flow periodicity in the cardiac cycles. To evaluate the performance of the
shell model presented, we conducted structural mechanics test computations with
cylindrical and spherical geometries and compared the results to near-analytical
reference solutions. In the heart valve analysis, we first performed a structural
mechanics computation with a prescribed, time-periodic, spatially uniform pressure
difference between the upper and lower surfaces of the valve leaflets. Based on
the leaflet deformation coming from that computation, we next performed the flow
computation. The computations presented demonstrate the scope and effectiveness
of the methods.
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Appendix 1: ST-VMS and ST-SI Methods

We include from [9, 14] the ST-VMS and ST-SI methods.
The ST-VMS method is given as

∫

Qn

wh · ρ
(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)

dQ+
∫

Qn

εεε(wh) : σσσ(uh, ph)dQ

−
∫

(Pn)h

wh · hhdP +
∫

Qn

qh∇∇∇ · uhdQ+
∫

Ωn

(wh)+n · ρ
(
(uh)+n − (uh)−n

)
dΩ

+
(nel)n∑

e=1

∫

Qe
n

τSUPS

ρ

[

ρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)

+∇∇∇qh

]

· rM(uh, ph)dQ
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+
(nel)n∑

e=1

∫

Qe
n

νLSIC∇∇∇ · whρrC(uh)dQ

−
(nel)n∑

e=1

∫

Qe
n

τSUPSwh ·
(

rM(uh, ph) · ∇∇∇uh
)

dQ

−
(nel)n∑

e=1

∫

Qe
n

τ 2
SUPS

ρ
rM(uh, ph) ·

(
∇∇∇wh

)
· rM(uh, ph)dQ = 0, (128)

where

rM(uh, ph) = ρ

(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)

−∇∇∇ · σσσ(uh, ph), (129)

rC(uh) = ∇∇∇ · uh (130)

are the residuals of the momentum equation and incompressibility constraint. The
test functions associated with the velocity and pressure are w and q. A superscript
“h” indicates that the function is coming from a finite-dimensional space. The
symbol Qn represents the ST slice between time levels n and n+1, (Pn)h is the part
of the lateral boundary of that slice associated with the traction boundary condition
h, and Ωn is the spatial domain at time level n. The superscript “e” is the ST element
counter, and nel is the number of ST elements. The functions are discontinuous in
time at each time level, and the superscripts “−” and “+” indicate the values of
the functions just below and just above the time level. See [8, 9, 16, 17, 79] for
the definitions used here for the stabilization parameters τSUPS and νLSIC. For more
ways of calculating the stabilization parameters in finite element computation of
flow problems, see [112–133].

Remark 6 The ST-SUPS method can be obtained from the ST-VMS method by
dropping the eighth and ninth integrations.

In the ST-SI method, labels “Side A” and “Side B” represent the two sides of
the SI. We add boundary terms to Eq. (128). The boundary terms are first added
separately for the two sides, using test functions wh

A and qh
A and wh

B and qh
B. Putting

them together, the complete set of terms added becomes

−
∫

(Pn)SI

(
qh

BnB − qh
AnA

)
· 1

2

(
uh

B − uh
A

)
dP

−
∫

(Pn)SI

ρwh
B ·

1

2

((
F h

B −
∣
∣
∣F h

B

∣
∣
∣

)
uh

B −
(
F h

B −
∣
∣
∣F h

B

∣
∣
∣

)
uh

A

)
dP

−
∫

(Pn)SI

ρwh
A ·

1

2

((
F h

A −
∣
∣
∣F h

A

∣
∣
∣

)
uh

A −
(
F h

A −
∣
∣
∣F h

A

∣
∣
∣

)
uh

B

)
dP
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+
∫

(Pn)SI

(
nB · wh

B + nA · wh
A

) 1

2

(
ph

B + ph
A

)
dP

−
∫

(Pn)SI

(
wh

B − wh
A

)
·
(

n̂B · μ
(
εεε(uh

B)+ εεε(uh
A)
))

dP

− γACI

∫

(Pn)SI

n̂B · μ
(
εεε
(

wh
B

)
+ εεε
(

wh
A

))
·
(

uh
B − uh

A

)
dP

+
∫

(Pn)SI

μC

h

(
wh

B − wh
A

)
·
(

uh
B − uh

A

)
dP, (131)

where

F h
B = nB ·

(
uh

B − vh
B

)
, (132)

F h
A = nA ·

(
uh

A − vh
A

)
, (133)

h = hB + hA

2
, (134)

hB = 2

(
nent∑

α=1

nens∑

a=1

∣
∣nB · ∇∇∇Nα

a

∣
∣

)−1

(for Side B), (135)

hA = 2

(
nent∑

α=1

nens∑

a=1

∣
∣nA · ∇∇∇Nα

a

∣
∣

)−1

(for Side A), (136)

n̂B = nB − nA

‖nB − nA‖ . (137)

Here, (Pn)SI is the SI in the ST domain, v is the mesh velocity, nens and nent are the
number of spatial and temporal element nodes, Nα

a is the basis function associated
with spatial and temporal nodes a and α, γACI = 1, and C is a nondimensional
constant. For our element length definition, we typically set C = 1.

A number of remarks were provided in [9] to explain the added terms and to
comment on related interpretations. We refer the reader interested in those details to
[9].

Remark 7 A coefficient γACI was added in [14] to the sixth integration so that
we have the option of using γACI = −1. This option was added, in [96], also in
the context of compressible flows. Using γACI = 1 in a discontinuous Galerkin
method was introduced in the symmetric interior penalty Galerkin method [134],
and using γACI = −1 was introduced in the nonsymmetric interior penalty Galerkin
method [135]. Stabilized methods based on both γACI = 1 and −1 were reported
in [31] in the context of the advection–diffusion equation. In the computations
reported in this article, we set γACI = 1.
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Appendix 2: Derivative and Variation of the Normal Vector in
the Shell Model

Derivative of the Normal Vector

Derivative of the normal vector with respect to ξα can be obtained as follows:

n,α = ∂

∂ξα

(
g1 × g2(

g1 × g2
) · n

)

(138)

= (I− nn) · g1,α × g2 + g1 × g2,α
(
g1 × g2

) · n (139)

= (I− nn) ·
g1,α ×

(
n× g1

)
+ g2,α ×

(
n× g2

)

(
g1 × g2

)
· n(g1 × g2

) · n
(140)

= (I− nn) · (gβ,α ×
(
n× gβ

))
(141)

= (I− nn) · ((gβ,α · gβ
)

n− (gβ,α · n
)

gβ
)

(142)

= − (gβ,α · n
)

gβ + n
(
n · gβ

)

︸ ︷︷ ︸
=0

(
gβ,α · n

)
(143)

= −gβgβ,α · n (144)

= −gβbαβ. (145)

In the derivation, we used the following relationships, which generally hold:

g1 = g2 × g3
(
g1 × g2

) · g3
, (146)

g2 = g3 × g1
(
g1 × g2

) · g3
, (147)

(
g1 × g2

)
· g3 = ((g1 × g2) · g3)

−1 . (148)

Variation of the Normal Vector

From the steps given by Eqs. (138)–(144), the variation of the normal vector can be
written as

δn = −gβδgβ · n. (149)
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Appendix 3: Variation of ξ3 is a Second-Order Term

Taking the variation of both sides of Eq. (60), we obtain

δξ3 = δλ3ξ
3
0 + δ

dλ̂3

dξ3
0

(
ξ3

0

)2 + O
((

ξ3
0

)3
)

. (150)

For a representative value of the variation, we take the average over the thickness:

δξ3 ≡ 1

(hth)0

∫ (hth)0/2

−(hth)0/2
δξ3dξ3

0 (151)

= 1

(hth)0

(
2

3
δ

dλ̂3

dξ3
0

(
(hth)0

2

)3

+ O
(
(hth)

5
0

)
)

(152)

= 1

12
δ

dλ̂3

dξ3
0

(hth)
2
0 + O

(
(hth)

4
0

)
. (153)

Thus, the variation of ξ3 is a second-order term.

Appendix 4: Variation of the Contravariant Basis Vector

Here we show that δgγ can be expressed as

δgγ = −gδgγ · δgδ. (154)

We start with the transformation from the contravariant basis vectors to the
covariant basis vectors:

gα = gαδgδ. (155)

We take the variation of both sides:

δgα = δgαδgδ + gαδδgδ, (156)

and from that obtain

gαδδgδ = δgα − δgαδgδ. (157)
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From that and Eq. (13), we obtain

gαδδgδ = δgα − (δgα · gδ + gα · δgδ) gδ (158)

= δgα − δgα · gδgδ

︸︷︷︸
=I

−gα · δgδgδ (159)

= δgα − δgα − gα · δgδgδ (160)

= −gα · δgδgδ. (161)

Multiplying both sides with gγα , we obtain

gγαgαδ︸ ︷︷ ︸

=δγδ

δgδ = − gγαgα︸ ︷︷ ︸
=gγ

·δgδgδ. (162)

Thus,

δgγ = −gγ · δgδgδ (163)

= −gδgγ · δgδ. (164)

Appendix 5: Constitutive Law: Second Piola–Kirchhoff Tensor

(SNHI)11 = μ

(

1− λ2
3

λ2
1

)

, (165)

(SNHR)11 = μJ−
2
3

(

1− λ1 + λ2 + λ3

3λ2
1

)

+ 1

2λ2
1

κ
(
J 2 − 1

)
, (166)

(SFI)11 = 2D1D2e
(D2((λ1+λ2+λ3)−3))

(

1− λ2
3

λ2
1

)

, (167)

(SFR)11 = 2D1D2e

(

D2

(

J
−2
3 (λ1+λ2+λ3)−3

))

J−
2
3

(

1− λ1 + λ2 + λ3

3λ2
1

)

+ 1

2λ2
1

κ
(
J 2 − 1

)
. (168)
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Cylinder

(SNHI)11 = μ
(

1 − λ−4
1

)
, (169)

(SNHR)11 = μ (λ1λ3)
− 2

3

(

1 − λ1 + λ3 + 1

3λ2
1

)

+ 1

2
κ

(
λ2

3 − λ−2
1

)
, (170)

(SFI)11 = 2D1D2e

(
D2

((
λ1+λ−1

1 +1
)
−3

)) (
1 − λ−4

1

)
, (171)

(SFR)11 = 2D1D2e

(
D2

(
J

−2
3 (λ1+λ3+1)−3

))

(λ1λ3)
− 2

3

(

1 − λ1 + λ3 + 1

3λ2
1

)

+ 1

2
κ

(
λ2

3 − λ−2
1

)
. (172)

Sphere

(SNHI)11 = μ

(

1 − 1

λ6
1

)

, (173)

(SNHR)11 = μ
(
λ2

1λ3

)− 2
3

(

1 − 2λ1 + λ3

3λ2
1

)

+ 1

2
κ

(
λ2

3 − λ−2
1

)
, (174)

(SFI)11 = 2D1D2e

(
D2

((
2λ1+λ−2

1

)
−3

)) (

1 − 1

λ6
1

)

, (175)

(SFR)11 = 2D1D2e

(
D2

(
(
λ2

1λ3
)− 2

3 (2λ1+λ3)−3

))
(
λ2

1λ3

)− 2
3

(

1 − 2λ1 + λ3

3λ2
1

)

+ 1

2
κ

(
λ2

3 − λ−2
1

)
. (176)
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1 Introduction

Isogeometric divergence-conforming discretizations have recently arisen as an
attractive candidate for the spatial discretization of incompressible flow problem
[10, 20–24, 38, 47]. These discretizations comprise a discrete Stokes complex [19,
25] and may be interpreted as smooth generalizations of Raviart-Thomas-Nédélec
elements [41, 46]. When applied to incompressible flow problems, isogeometric
divergence-conforming discretizations produce pointwise divergence-free velocity
fields and hence exactly satisfy mass conservation. As a result, they preserve
the balance law structure of the incompressible Navier-Stokes equations, and in
particular, the properly conserve mass, linear momentum, angular momentum,
energy, vorticity, enstrophy (in the two-dimensional setting), and helicity (in
the three-dimensional setting) in the inviscid limit [23]. Moreover, isogeometric
divergence-conforming discretizations are pressure-robust in that the velocity error
is independent of the pressure field due to the pointwise satisfaction of the
divergence-free constraint [48]. Isogeometric divergence-conforming discretiza-
tions have recently been applied to Cahn-Hilliard flow [54], turbulent flow [51], and
fluid–structure interaction [39] where improved results were obtained in comparison
with state-of-the-art mixed finite element discretization procedures. Moreover, the
underlying structure of isogeometric divergence-conforming discretizations has
been recently exploited to develop fast and robust geometric multigrid solvers
[15] which converge faster than state-of-the-art multigrid solvers using Vanka [53],
Braess-Sarazin [9], and Uzawa [27] smoothers.

In this chapter, we present two new residual-based large eddy simulation
methodologies specifically designed for isogeometric divergence-conforming dis-
cretizations. Both of the methodologies are developed using variational multiscale
analysis, a theoretical framework for incorporating missing fine-scale effects into
numerical problems governing coarse-scale behavior [3, 31, 32, 34, 35]. The first
methodology arises from a structure-preserving variational multiscale analysis of
the incompressible Navier-Stokes equations and generalizes a recent methodology
introduced by the authors [51], while the second methodology combines ideas
from variational multiscale analysis and large eddy simulation methodologies
employing an eddy viscosity, yielding a residual-based eddy viscosity method [44].
We develop both quasi-static and dynamic models for each of these methodologies.
The new large eddy simulation methodologies preserve many of the key features
of isogeometric divergence-conforming discretizations, most notably preservation
of the pointwise divergence-free constraint for both the coarse-scales and the fine-
scales. The new large eddy simulation methodologies also are residual-based, so the
subgrid models associated with the methodologies automatically turn off when the
flow is either laminar or fully resolved by the discretization. Finally, the new large
eddy simulation methodologies are pressure robust as the discrete velocity field
is completely decoupled from the pressure field approximation. Numerical results
illustrate the new methodologies yield improved results as compared with standard
eddy viscosity based approaches when applied to a transitional flow problem,
namely the decay of the three-dimensional Taylor-Green vortex.
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An outline of the remainder of the chapter is as follows. In Sect. 2, we present the
problem of interest, namely the incompressible Navier-Stokes problem. In Sect. 3,
we discuss the construction of isogeometric divergence-conforming discretizations
for incompressible flow problems. In Sect. 4, we demonstrate how to construct a
structure-preserving variational multiscale method for an isogeometric divergence-
conforming discretization, and in Sect. 5, we present simplified quasi-static and
dynamic subgrid models for the structure-preserving variational multiscale method.
In Sect. 6, we discuss a methodology for discretizing the subgrid models presented
in Sect. 5. In Sect. 7, we present the final form of the residual-based variational mul-
tiscale method which can be actually employed in a computer implementation, and
we present the corresponding residual-based eddy viscosity method in Sect. 8. In
Sect. 9, we apply our two new residual-based large eddy simulation methodologies
to the simulation of Taylor-Green vortex flow, and finally, we present conclusions in
Sect. 10.

2 The Incompressible Navier-Stokes Problem

In this section, we present the problem of interest in this chapter, namely three-
dimensional, unsteady, incompressible fluid flow subject to no-penetration and free-
slip boundary conditions. With this in mind, let Ω ⊂ R

3 denote an open, Lipschitz
bounded domain, let ∂Ω denote the boundary of Ω , and let T ∈ R+. Given ν ∈ R+,
f : Ω×(0, T )→ R

3, and u0 : Ω → R
3, the strong form of the Navier-Stokes prob-

lem reads as follows: Find u : Ω×[0, T ] → R
3 and p : Ω×(0, T )→ R such that:

∂u
∂t
+ u · ∇u−∇ · (2ν∇su)+ ∇p = f for (x, t) ∈ Ω × (0, T )

∇ · u = 0 for (x, t) ∈ Ω × (0, T )

u · n = 0 for (x, t) ∈ ∂Ω × (0, T )
∂
∂n

(u · ti ) = 0 for (x, t) ∈ ∂Ω × (0, T ) and i = 1, 2
u|t=0 = u0 for x ∈ Ω.

(1)

Above, u denotes the velocity field, p denotes the pressure field, ν denotes the
kinematic viscosity, f denotes the force per unit mass, u0 denotes the initial velocity
field, n denotes the outward facing normal to ∂Ω , ti denotes the ith tangent vector
to ∂Ω , and ∇su denotes the symmetrized gradient of the velocity field defined by:

∇su = 1

2

(
∇u+ (∇u)T

)
.

The velocity field is uniquely specified by the Navier-Stokes problem while the
pressure field is unique up to a constant.

To state a weak formulation for the problem, we must first define suitable velocity
and pressure test and trial spaces. In this direction, let us first define velocity and
pressure test spaces:
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V := H1
n(Ω) :=

{
v ∈ H1(Ω) : v · n = 0 on ∂Ω

}

Q := L2
0(Ω) :=

{

q ∈ L2(Ω) :
∫

Ω

qdΩ = 0

}

,

and corresponding space-time velocity and pressure trial spaces:

VT :=
{

v ∈ C0 ([0, T ];V ) : ∂tv ∈ L2 ((0, T );V ∗)
}

QT := L2 ((0, T );Q)

where, for a real Banach space X, L2 ((0, T );X) is the space of all strongly
measurable functions φ : (0, T )→ X with:

∫ T

0
‖φ(t)‖2Xdt <∞

and C0 ([0, T ];X) is the space of all continuous functions φ : (0, T ) → X. Let
us further assume that f ∈ L2

(
(0, T );L2(Ω)

)
. With the above definitions and

assumptions in hand, the weak form of the Navier-Stokes problem is stated as
follows: Find u ∈ VT and p ∈ QT such that u(0) = u0 and, for almost every
t ∈ (0, T ),

a(v;u)− b(v, p)+ b(u, q) = �(v) (2)

for all v ∈ V and q ∈ Q where:

a(v;u) :=
∫

Ω

v · ∂u
∂t

dΩ −
∫

Ω

(∇sv
) : (u⊗ u) dΩ +

∫

Ω

2ν
(∇sv

) : (∇su
)
dΩ

b(v, p) :=
∫

Ω

(∇ · v) p dΩ

�(v) :=
∫

Ω

v · f dΩ.

With a weak form defined, we can turn to the matter of approximating the solution
of the Navier-Stokes problem.

3 Approximation of Velocity and Pressure Fields

In this section, we present a particular selection of velocity and pressure approxima-
tion spaces which is not only inf-sup stable but also yields pointwise divergence-free
discrete velocity fields when applied to the discretization of incompressible fluid
flow. Before doing so, however, we first introduce the so-called Stokes complex,
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which succinctly captures the fundamental theorem of calculus and expresses the
differential relationships between potential, velocity, and pressure fields.

3.1 The Stokes Complex

The Stokes complex [19, 25] is a cochain complex of the form:

0 −−−−→ Φ
∇−−−−→ Ψ

∇×−−−−→ V
∇·−−−−→ Q −−−−→ 0 (3)

in the three-dimensional setting where:

Φ := H 1
0 (Ω)

Ψ :=
{
ψ ∈ L2(Ω) : ∇ × ψ ∈ H1(Ω) and ψ × n = 0 on ∂Ω

}

V := H1
n(Ω)

Q := L2
0(Ω)

are infinite-dimensional spaces of scalar potential fields, vector potential fields,
velocity fields, and pressure fields. The Stokes complex is a smoothed version of the
classical L2 de Rham complex, and when the domain Ω ⊂ R

3 is simply connected
with simply connected boundary, the Stokes complex is exact. This means that
every pressure field may be represented as the divergence of a velocity field, every
divergence-free velocity field may be represented as the curl of a vector potential
field, and every curl-free vector potential field may be represented as the gradient of
a scalar potential field.

It has been shown in previous works that the Stokes complex endows the
incompressible Navier-Stokes problem with important underlying topological struc-
ture. In particular, the infinite-dimensional inf-sup condition may be derived from
the complex [19]. As such, there is impetus for developing finite-dimensional
approximations of the Stokes complex. Such discrete complexes are referred to as
discrete Stokes complexes, and when these complexes are endowed with special
commuting projection operators, they form the following commuting diagram with
the Stokes complex:

0 −−−−→ Φ
∇−−−−→ Ψ

∇×−−−−→ V
∇·−−−−→ Q −−−−→ 0

⏐
⏐
-Πφ

⏐
⏐
-Πψ

⏐
⏐
-Πv

⏐
⏐
-Πq

0 −−−−→ Φh
∇−−−−→ Ψ h

∇×−−−−→ Vh
∇·−−−−→ Qh −−−−→ 0

(4)

where Φh, Ψ h, Vh, and Qh are discrete scalar potential, vector potential, velocity,
and pressure spaces and Πφ : Φ → Φh, Πψ : Ψ → Ψ h, Πv : V → Vh, and Πq :
Q → Qh are the aforementioned commuting projection operators. Remarkably,
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when Vh and Qh are selected as velocity and pressure approximation spaces in
a mixed Galerkin formulation of the incompressible Navier-Stokes problem, the
resulting approximation scheme is inf-sup stable and free of spurious oscillations
and the returned discrete velocity solution will be pointwise divergence-free [21, 22].
Both of these properties are a direct consequence of the commuting diagram above,
and for the sake of completeness, we prove the second property below.

Lemma 1 Assume that the discrete velocity and pressure spaces Vh and Qh are
associated with a discrete complex which commutes with the Stokes complex.
Suppose vh ∈ Vh satisfies b(vh, qh) = 0 for every qh ∈ Qh. Then ∇ · vh = 0
pointwise.

Proof Let qh = ∇ · vh. Then ‖∇ · vh‖2L2(Ω)
= b(vh, qh) = 0 and the desired result

follows.

While we have demonstrated the benefit of using velocity and pressure spaces
coming from a discrete Stokes complex, we have not yet described how to arrive
at such spaces. In order to do so, we turn to the use of so-called isogeometric
compatible B-spline discretizations, which are the focus of the next two subsections.

3.2 Univariate and Multivariate B-splines

The basic building blocks of isogeometric compatible B-spline discretizations, like
any isogeometric analysis technology, are B-splines [18]. B-splines are piecewise
polynomial functions, but unlike C0-continuous finite elements, B-splines may
exhibit high levels of continuity. Univariate B-splines are constructed by first
specifying a polynomial degree p, a number of basis functions n, and an open knot
vector Ξ = {ξ0, ξ1, . . . , ξn+p+1

}
, a non-decreasing vector of knots ξi such that the

first and last knot are repeated p + 1 times. We assume without loss of generality
that the first and last knot are 0 and 1, respectively, such that the domain of the knot
vector is (0, 1). With a knot vector in hand, univariate B-spline basis functions are
defined recursively through the Cox-deBoor formula:

N̂i,p(ξ) := ξ−ξi
ξi+p−ξi N̂i,p−1(ξ)+ ξi+p+1−ξ

ξi+p+1−ξi+1
N̂i+1,p−1(ξ) for p > 0

N̂i,0(ξ) :=
{

1 ξi ≤ ξ < ξi+1

0 elsewhere.

Figure 1 shows example sets of unvariate B-spline basis functions. We can alterna-
tively define B-splines not from the knot vector itself, but instead a vector of unique
knot values ζ = {ζ1, ζ2, . . . , ζnk

}
and a regularity vector α = {α1, α2, . . . , αnk

}

such that the B-splines have αj continuous derivatives across ζj . By construction,
α1 = αnk

= −1. We will later employ the convention:

α − 1 = {−1, α2 − 1, . . . , αnk−1 − 1,−1
}
.
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Fig. 1 Maximal continuity univariate B-spline basis functions of varying polynomial degree
associated with a vector of unique knot values ζ = {0, 1, 2, 3, 4, 5, 6}: p = 0 (upper left), p = 1
(upper right), p = 2 (lower left), and p = 3 (lower right)

Given a set of knot vectors and polynomial degrees, multivariate B-spline
basis functions are obtained through a tensor-product of univariate B-spline basis
functions:

N̂i,p(ξ) :=
d∏

k=1

N̂ik,pk
(ξk)

where i = (i1, i2, . . . , id ) and p = (p1, p2, . . . , pd). We denote the corresponding
space of multidimensional B-splines over the parametric domain Ω̂ = (0, 1)d as:

S
p1,p2,...,pd
α1,α2,...,αd

(Mh) :=
{

f : Ω̂ → R

∣
∣
∣ f (ξ) =

∑

i

aiN̂i,p(ξ)

}

,

where αj is the regularity vector associated with the j th direction where j =
1, . . . , d and M h is the parametric mesh defined by the vectors of unique knot
values in each parametric direction. Note that the space is fully characterized by
the polynomial degrees, regularity vectors, and parametric mesh as indicated by the
notation. For ease of notation, however, we drop the dependence on the parameteric
mesh and instead use S

p1,p2,...,pd
α1,α2,...,αd

= S
p1,p2,...,pd
α1,α2,...,αd

(Mh) in what follows.

3.3 Isogeometric Compatible B-splines

We are now in a position to define isogeometric compatible B-splines. Their
definition is made possible through the observation that the derivatives of univariate
B-splines of degree p are univariate B-splines of degree p − 1. Since multivariate
B-splines are tensor-products of univariate B-splines, the aforementioned property
naturally generalizes to higher dimension, allowing us to build a discrete Stokes
complex of B-spline spaces [11, 19]. We first define such a discrete Stokes complex
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in the parametric domain Ω̂ = (0, 1)3 before constructing a discrete Stokes
complex in the physical domain of interest using a set of structure-preserving push-
forward/pull-back operators.

Consider the following B-spline spaces over the unit cube:

Φ̂h :=
{
φ̂h ∈ S

p1,p2,p3
α1,α2,α3 : φ̂h = 0 on ˆ∂Ω

}

Ψ̂ h :=
{
ψ̂h ∈ S

p1−1,p2,p3
α1−1,α2,α3

× S
p1,p2−1,p3
α1,α2−1,α3

× S
p1,p2,p3−1
α1,α2,α3−1 : ψ̂h × n = 0 on ˆ∂Ω

}

V̂h :=
{

v̂h ∈ S
p1,p2−1,p3−1
α1,α2−1,α3−1 × S

p1−1,p2,p3−1
α1−1,α2,α3−1 × S

p1−1,p2−1,p3
α1−1,α2−1,α3

: v̂h · n = 0 on ˆ∂Ω
}

Q̂h :=
{

q̂h ∈ S
p1−1,p2−1,p3−1
α1−1,α2−1,α3−1 :

∫

Ω̂

q̂hdΩ̂ = 0

}

,

where Φ̂h is the B-spline space of scalar potentials, Ψ̂ h is the B-spline space of
vector potentials, V̂h is the B-spline space of flow velocities, and Q̂h is the B-spline
space of pressures. These discrete spaces are endowed with the basis functions
{N̂φ

i }nφ

i=1, {N̂ψ
i }

nψ

i=1, {N̂v
i }nv

i=1, and {N̂q
i }

nq

i=1, respectively, where nφ is the number of
scalar potential basis functions, nψ is the number of vector potential basis functions,
nv is the number of velocity basis functions, and nq is the number of pressure basis
functions, all of which can be inferred from the chosen polynomial degrees and knot
vectors. It is easily shown that the above spaces form the following discrete Stokes
complex:

0 −−−−→ Φ̂h
∇−−−−→ Ψ̂ h

∇×−−−−→ V̂h
∇·−−−−→ Q̂h −−−−→ 0, (5)

and provided the functions in the B-spline pressure space are at least C0-continuous,
there exists a set of commuting projection operators that make the above discrete
complex commute with the Stokes complex [19].

To define compatible B-splines in the physical domain Ω , we need to first define
a piece-wise smooth bijective mapping F : Ω̂ → Ω . This mapping can be defined
using Non-Uniform Rational B-splines (NURBS), for instance, as is commonly
done in the isogeometric analysis community [18], although this is certainly not the
only way to define the mapping. With this mapping in hand, compatible B-spline
spaces are defined in the physical domain via the relations:

Φh :=
{
φh ∈ Φ : φh ◦ F ∈ Φ̂h

}

Ψ h :=
{
ψh ∈ Ψ : J−T ψh ◦ F ∈ Ψ̂ h

}

Vh :=
{

vh ∈ V : det (J) J−1vh ◦ F ∈ V̂h

}

Qh :=
{
qh ∈ Q : det (J) qh ◦ F ∈ Q̂h

}
,

where J = ∂ξ F is the Jacobian of the parametric mapping. Corresponding basis
functions in the physical domain are defined via push-forwards of the basis functions
in the parametric domain, and we denote the discrete velocity basis functions as
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{Nv
i }nv

i=1 and the basis functions for other quantities in analogous fashion. It is easily
shown that the compatible B-spline spaces in the physical domain also comprise
a discrete complex which commutes with the Stokes complex. The compatible
B-splines in the physical domain are referred to as isogeometric compatible B-
splines, as they are built from B-splines, the basic building blocks of geometric
modeling, and they are defined on the exact geometry of the problem of interest.
A discretization which employs Vh as the discrete velocity space and Qh as the
discrete pressure space is referred to as an isogeometric divergence-conforming
discretization since it automatically yields a divergence-free velocity field.

While we strictly consider three-dimensional compatible B-splines in this work,
it is easiest to visualize two-dimensional compatible B-splines, where we have a
discrete Stokes complex of the form:

0 −−−−→ Ψh
∇⊥−−−−→ Vh

∇·−−−−→ Qh −−−−→ 0. (6)

where Ψh is the B-spline space of streamfunctions, Vh is the B-spline space of flow
velocities, and Qh is the B-spline space of pressures. The proper construction of
these B-spline spaces is discussed in [19]. The degrees of freedom associated with
two-dimensional compatible B-splines are associated with the geometrical entries of
the underlying control mesh. This is graphically illustrated in Fig. 2, which shows

0 0.5 1.5 2.5 3.5 4

ξ1

0

0.5

1.5

2.5

3.5

4

ξ2

Fig. 2 Control mesh and degrees of freedom for maximal continuity compatible B-splines of
degree p1 = p2 = 2 associated with vectors of unique knot values ζ 1 = ζ 2 = {0, 1, 2, 3, 4}.
Filled circles denote streamfunction degrees of freedom, filled triangles denote velocity degrees of
freedom, and filled squares denote pressure degrees of freedom. Hollow markers indicate degrees
of freedom associated with boundary conditions
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Fig. 3 Streamfunction (upper left), velocity (upper right and lower left), and pressure (lower right)
basis functions associated with the circled degrees of freedom in Fig. 2

that streamfunction degrees of freedom are associated with control points, velocity
degrees of freedom are associated with (and aligned normal to) control edges,
and pressure degrees of freedom are associated with control cells. Each degree
of freedom corresponds to a particular basis function, and to visualize these basis
functions, we have selected four degrees of freedom in Fig. 2 and visualized the
respective basis functions in Fig. 3. Note that the velocity basis functions are in fact
vector-valued basis functions.

Analogous to the two-dimensional setting, the degrees of freedom associated
with three-dimensional compatible B-splines are associated with the geometrical
entries of the underlying control mesh. In particular, scalar potential degrees of
freedom are associated with control points, vector potential degrees of freedom
are associated (and aligned with) control edges, velocity degrees of freedom are
associated with (and aligned normal to) control faces, and pressure degrees of
freedom are associated with control cells.
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4 The Structure-Preserving Variational Multiscale Method

In this section, we define a structure-preserving variational multiscale (VMS)
method which allows us to capture the effect of unresolved fine-scale motion on the
resolved velocity and pressure fields. The VMS method was originally introduced
in [31] in order to identify the origins of stabilized finite element methods, and it
was quickly realized that the VMS method provides a theoretical framework for
incorporating missing fine-scale effects into numerical problems governing coarse-
scale behavior [3, 31, 32, 34, 35]. Construction of the VMS method is simple:
decompose the solution to a partial differential equation into a sum of coarse-
scale and fine-scale components, determine the fine-scale component analytically
in terms of the coarse-scale component, and solve for the coarse-scale component
numerically. The above scale decomposition is uniquely specified by identifying
a projector from the space of all scales onto the coarse-scale subspace. As a
consequence, the coarse-scale component is a priori guaranteed to best-fit the
solution in a variational sense.

To proceed forward, let us first define V h ⊂ V and Qh ⊂ Q to be
finite-dimensional compatible B-spline spaces of flow velocities and pressures as
described in the previous section, and let us define corresponding continuous, linear
projection operators Pv : V → Vh and Pq : Q → Qh. The projection
operator Pv naturally splits the velocity space V into coarse-scale and fine-scale
components as exhibited by the decomposition:

V = V h ⊕ V ′

where V ′ = ker(Pv) is the infinite-dimensional, fine-scale velocity space. Conse-
quently, each function v ∈ V is uniquely represented as the sum of a coarse-scale
function vh = Pvv ∈ V h and a fine-scale function v′ = v − vh ∈ V ′. Similarly,
the projection operator Pq naturally splits the pressure space Q into coarse-scale
and fine-scale components:

Q = Qh ⊕Q′

where Q′ = ker(Pq). Therefore, the velocity-pressure solution (u, p) ∈ V ×
Q to the Navier-Stokes problem can be decomposed into coarse-scale components
(uh, ph) ∈ Vh ×Qh and fine-scale components

(
u′, p′

) ∈ V ′ ×Q′.
Heretofore, we have discussed how to split the solution to the problem into

coarse-scale and fine-scale components, but we have not discussed how to obtain
said components via a numerical method. To do so, we simply use the decomposi-
tions V = V h⊕V ′ and Q = Qh⊕Q′ and bilinearity to perform a scale splitting of
the problem. First, however, we must define space-time trial spaces for coarse-scale
and fine-scale velocity and pressure fields as follows:

V h
T :=

{
v ∈ C0 ([0, T ];Vh) : ∂tv ∈ L2 ((0, T ); (Vh)

∗)}

Qh
T := L2 ((0, T );Qh)
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V ′T :=
{

v ∈ C0 ([0, T ];V ′) : ∂tv ∈ L2 ((0, T ); (V ′)∗)
}

Q′T := L2 ((0, T );Q′) .

The VMS method then takes the form: Find uh ∈ V h
T , u′ ∈ V ′T , ph ∈ Qh

T , and
p′ ∈ Q′T such that suitable initial conditions are satisfied,

a(vh;uh + u′)− b(vh, ph + p′)+ b(uh + u′, qh) = �(vh) (7)

for all vh ∈ Vh, qh ∈ Qh, and almost every t ∈ (0, T ) and

a(v′;uh + u′)− b(v′, ph + p′)+ b(uh + u′, q ′) = �(v′) (8)

for all v′ ∈ V ′, q ′ ∈ Q′, and almost every t ∈ (0, T ). The coarse-scale problem
is given by (7), whereas the fine-scale problem is given by (8). This is the split
variational problem that relates the effect of the fine scales on the coarse scales and
vice versa. It should be noted that at this point, the VMS method is exact, and the
solution of the problem satisfies uh =Pvu and ph =Pqp. However, the fine-scale
problem is an infinite-dimensional problem. Since this is, in general, intractable
to solve, some form of modeling must be employed. We will later discuss several
strategies in this direction.

At this juncture, the VMS method as presented is not structure-preserving in
that it is not guaranteed to yield a coarse-scale velocity field which is pointwise
divergence-free. To arrive at such a structure-preserving VMS method, we must
make certain assumptions regarding the form of the projection operators Pv and
Pq . Namely, we must assume that they along with the spaces V , Q, Vh, and Qh

form the commuting diagram:

V
∇·−−−−→ Q

⏐
⏐
-Pv

⏐
⏐
-Pq

Vh
∇·−−−−→ Qh.

(9)

It then follows that ∇ ·uh = ∇ ·Pvu =Pq∇ ·u = 0, and since u = uh+u′, it also
follows that ∇ · u′ = 0. If Pq is further assumed to be an L2-projection operator,
then we find that:

b(vh, p
′) =

∫

Ω

(∇ · vh) p
′dΩ = 0

for all vh ∈ Vh since ∇ · vh ∈ Qh for all vh ∈ Vh. Consequently, the fine-scale
pressure field has no influence on the coarse-scale velocity and pressure fields for a
structure-preserving VMS method.
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We can analytically solve for the fine-scale velocity and pressure fields in terms
of the residuals of the resolved scales [31, 32]. More specifically, we can write
u′ ∈ V ′ and p′ ∈ Q′ in terms of the momentum and continuity residuals as follows:

u′ = G ′vel (Resm (uh, ph) ,Resc (uh, ph)) (10)

p′ = G ′press (Resm (uh, ph,Resc (uh, ph))) (11)

where G ′vel and G ′press represent fine-scale Green’s operators [17, 31, 32] and:

Resm (uh, ph) := f− ∂tuh − uh · ∇uh + ∇ ·
(
2ν∇suh

)− ∇ph (12)

and:

Resc (uh, ph) := −∇ · uh. (13)

With a structure-preserving VMS method, Resc (uh, ph) ≡ 0, so we have the
simpler expressions:

u′ = G ′vel (Resm (uh, ph)) (14)

p′ = G ′press (Resm (uh, ph)) (15)

where we have employed the abuse of notation G ′vel (r) = G ′vel (r, 0) and G ′press (r) =
G ′vel (r, 0). In order to evaluate (14) and (15), we need to employ suitable approx-
imations for the fine-scale Green’s operators G ′vel and G ′press. This is addressed in
the next section. By inserting the above expressions for u′ and p′ back into the
coarse-scale problem, a final finite-dimensional system for the coarse-scale solution
(uh, ph) ∈ Vh ×Qh is attained.

The primary issue associated with the VMS method is that V ′ and Q′ are infinite-
dimensional spaces and thus solving the fine-scale problem is an intractable task.
Fortunately, for most problems of interest, it is sufficient to approximate the effect
of the fine-scales on the coarse-scale solution in order to produce stable and accurate
numerical solutions [17]. This motivates the need to pursue effective approaches for
modeling the fine-scale problem.

5 Quasi-Static and Dynamic Fine-Scale Models

In this section, we present two methodologies for approximating the fine-scale
problem appearing in the structure-preserving VMS method. To begin, we make a
rather strong assumption regarding the form of the fine-scale velocity field. Namely,
we assume that the fine-scale velocity field is zero along element boundaries. This
assumption is somewhat justified by the fact that the fine-scale Green’s function has
localized support [35], and it can be interpreted physically as assuming that the fine-
scale velocity field cannot transport mass between adjacent elements. Practically,
the above assumption implies that we can localize the fine-scale problem to a single
element. The resulting element-wise fine-scale problem takes the form:
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∂tu′ + uh · ∇u′ + u′ · ∇uh + u′ · ∇u′
−∇ · (2ν∇su′

)+ ∇p′ = Resm (uh, ph) for (x, t) ∈ Ωe × (0, T )

∇ · u′ = 0 for (x, t) ∈ Ωe × (0, T )

u′ = 0 for (x, t) ∈ ∂Ωe × (0, T )

u′
∣
∣
t=0 = u′0 for x ∈ Ωe

(16)

where Ωe is a single element in the domain. For an isogeometric divergence-
conforming discretization, an element is a Bézier element [7]. The fine-scale
pressure field is only uniquely specified up to a constant by the above problem,
so we enforce

∫

Ωe
p′dΩe = 0.

Unfortunately, the fine-scale problem given by (16) is nearly as difficult to solve
as the original Navier-Stokes problem. Fortunately, we are not interested in the
fine-scale solution field itself but rather its influence on the coarse-scale solution
field. This indicates that we can solve an approximate model problem for the fine-
scale solution field. We consider two candidate approximations to (16). In the first
approximation, denoted the quasi-static approximation, the fine-scale solution field
is assumed to be in local equilibrium with the coarse-scale momentum residual. This
yields the model:

Quasi-static: ∂tu′ +uh ·∇u′ +u′ ·∇uh+u′ ·∇u′ −∇ ·(2ν∇su′
) ≈ τ−1

qs u′ (17)

where τqs is a suitable time-scale for the fine-scale velocity field unsteadiness and
fine-scale advection and diffusion processes. In the second approximation, denoted
the dynamic approximation, the fine-scale solution field is not assumed to be in
local equilibrium with the coarse-scale momentum residual, but it is assumed that
fine-scale advection and diffusion processes can be approximated by the model:

Dynamic: uh · ∇u′ + u′ · ∇uh + u′ · ∇u′ − ∇ · (2ν∇su′
) ≈ τ−1

d u′ (18)

where τd is a suitable time-scale for the fine-scale advection and diffusion processes.
The quasi-static model is closely related to the original residual-based VMS method
proposed in [3], while the dynamic model is closely related to the dynamic subscales
method of Codina proposed in [13]. It remains to specify τqs and τd . To do so, we
first employ dimensional analysis to identify appropriate advective and diffusive
time scales for the fine-scales from the mesh size h, the viscosity ν, and the coarse-
scale velocity field uh, yielding:

Advective: τadv = h

CI |uh|
Diffusive: τdiff = h2

CII ν

where CI and CII are model constants. Next, we identify an additional time-scale
related to the unsteadiness of the fine-scale velocity and pressure fields. One option
which has its origins in stabilized methods (see, e.g., [33, 49]) is to relate the time-
scale to the time step size used in the numerical discretization:
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Unsteady: τuns = Δt

CIII

, (19)

where again CIII is a model constant. In the small time-step limit, however, this
yields an infinitely small time-scale which is certainly not proportional to the fine-
scale unsteadiness. Worse yet, this can yield an ineffective or even unstable method.
One solution to this problem is to employ element-vector-based stabilization param-
eters, as suggested originally in [50] and later in [30]. Alternatively, a time-scale can
be constructed directly from the time-derivative of the coarse-scale velocity field:

Unsteady: τuns = |uh|
CIII |∂tuh| . (20)

We will consider unsteady time-scales defined by both (19) and (20) later in this
chapter. Having defined appropriate time scales related to the advection, diffusion,
and unsteadiness of the fine-scale flow field, we can now propose models for τqs
and τd :

Quasi-static: τqs =
(
τ−2

uns + τ−2
adv + τ−2

diff

)−1/2

(21)

Dynamic: τd =
(
τ−2

adv + τ−2
diff

)−1/2

. (22)

Utilizing (21) and (22) in conjunction with (17) and (18), respectively, then defines
our approximation to the fine-scale problem. Note that the resulting approximate
fine-scale problem is still infinite-dimensional, so we will need to discretize it in
some form or fashion. We will turn to the so-called method of subgrid vortices in
the next section.

It remains to specify the model constants CI , CII , and CIII . Classically,
stability analysis has been employed to determine appropriate values for such model
constants [36]. Stability analysis in the context of a structure-preserving VMS
method is quite challenging and will not be presented here. Nonetheless, 2 is a
suitable value for both CI and CIII , and a suitable value for CII can be determined
using inverse inequalities [29]. It can be shown that a fine-scale model using these
values yields an energy-stable variational formulation [14].

6 Approximating the Fine-Scales with Subgrid Vortices

In the previous section, we developed two models, the quasi-static and dynamic
models, for the fine-scale velocity and pressure fields. However, these two models
are infinite-dimensional. In this section, we introduce a methodology for discretizing
these models. Without loss of generality, let us consider the quasi-static model which
takes the form of a Darcy problem with diffusivity τ−1

qs driven by the momentum
residual of the coarse-scale solution:
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τ−1
qs u′ + ∇p′ = Resm (uh, ph) for (x, t) ∈ Ωe × (0, T )

∇ · u′ = 0 for (x, t) ∈ Ωe × (0, T ).
(23)

The above problem is subject to the conditions:

u′ · n = 0 for (x, t) ∈ ∂Ωe × (0, T )
∫

Ωe

p′dΩe = 0 for (x, t) ∈ Ωe × (0, T )
(24)

where n is the outward-facing normal vector on the element boundary. Note that
while no-slip and no-penetration boundary conditions were applied in the original
fine-scale model proposed in the previous section, only no-penetration boundary
conditions are applied for the quasi-static model. This is due to the fact that the
Darcy problem does not have enough regularity for the enforcement of no-slip
boundary conditions.

To proceed forward, we write the quasi-static model in weak form. Defining the
function spaces:

V ′e :=
{
v′ ∈ H(div,Ωe) : v′ · n = 0 on ∂Ωe

}

Q′e :=
{

q ′ ∈ L2(Ωe) :
∫

Ωe

q ′dΩe = 0

}

,

the weak form of the quasi-static model becomes: Find u′ : (0, T ) → V ′e and
p′ : (0, T )→ Q′e such that appropriate initial conditions are satisfied and:

ae(v′,u′)− be(v′, p′)+ be(u′, q ′) = �e(v′) (25)

for all v′ ∈ V ′e , p′ ∈ Q′e, and almost every t ∈ (0, T ) where:

ae(v′;u′) :=
∫

Ωe

τ−1
qs v′ · u′ dΩe

be(v′, p′) :=
∫

Ωe

(∇ · v′)p′ dΩe

�e(v′) :=
∫

Ωe

v′ · Resm (uh, ph) dΩe.

Now, recall that the fine-scale pressure field does not affect the coarse-scales for
the structure-preserving VMS method. Consequently, we only need to solve for the
fine-scale velocity field in the above problem. With this in mind, we can restrict to
the divergence-free subspace of V ′e :
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V̊ ′e :=
{
v′ ∈ V ′e : ∇ · v′ ≡ 0

}
,

yielding the reduced problem: Find u′ : (0, T ) → V̊ ′e such that appropriate initial
conditions are satisfied and:

ae(v′,u′) = �e(v′) (26)

for all v′ ∈ V̊ ′e and almost every t ∈ (0, T ). While we have reduced the complexity
of the fine-scale problem, it is still infinite-dimensional. Thus, the premise of the
method of subgrid vortices is to replace the divergence-free subspace V̊ ′e with a
finite-dimensional approximation space V̊ ′h,e ⊂ V̊ ′e .

To arrive at a suitable finite-dimensional approximation space V̊ ′h,e ⊂ V̊ ′e , we
recall that the de Rham complex is exact when the underlying domain is simply
connected with simply connected boundary, which is in fact the case when the
domain consists of a single element. As such, any function v′ ∈ V̊ ′e can be written as
the curl of a function in H(curl,Ωe). Thus, we elect to construct V̊ ′h,e such that any

function v′h ∈ V̊ ′h,e can be written as the curl of a curl-conforming Nédélec finite
element [41]. To be more precise, let:

ˆNpf
:= Qpf−1,pf ,pf

× Qpf ,pf−1,pf
× Qpf ,pf ,pf−1 (27)

be the space of Nédélec finite elements of degree pf where Qr,s,t is the space of
tensor-product polynomials of degree (r, s, t) over the unit cube. Furthermore, let
Fe : Ω̂ → Ωe be the mapping between the unit cube and the element in physical
space, and let Je = ∂ξ Fe be the Jacobian of the mapping. Then, we select:

V̊ ′h,e :=
{

v′h ∈ V̊ ′e : v′h = curlψ ′h with ψ ′h ∈ Npf
(Ωe)

}
(28)

where:

Npf
(Ωe) :=

{
ψ ′h ∈ H(curl,Ωe) : J−Te ψh ◦ Fe ∈ ˆNpf

}
(29)

With this selection, a basis for V̊ ′h,e can be constructed by applying the curl operator
directly to a basis for Npf

(Ωe). When basis functions for Npf
(Ωe) are constructed

using Bernstein polynomials (which coincides with the isogeometric compatible B-
spline basis when there are no interior knots), their curls appear as single vortical
filaments or subgrid vortices, hence giving rise to the name of the method. The
subgrid vortices corresponding to polynomial degree pf = 2 and the unit cube are
illustrated in Fig. 4. Vorticity isosurfaces and streamlines are displayed to show the
structure of the subgrid vortices.

It should be noted that the application of the curl operator to a basis of Npf
(Ωe)

does not immediately yield a basis. This is because the resulting set of functions will
contain

(
pf − 1

)d linearly dependent subgrid vortices. There are many methods
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Fig. 4 Subgrid vortices of degree pf = 2 on the unit cube. There are a total of six subgrid vortices,
but one of the subgrid vortices can be represented as a linear combination of the other five subgrid
vortices

for removing linearly dependent subgrid vortices and extracting a basis, but the
method we have found to be most effective is to extract a basis from an element
mass matrix. Namely, we can first form an element mass matrix from all of the
subgrid vortices, and we can then perform an eigendecomposition of the element
mass matrix. The eigenvectors corresponding to non-zero eigenvalues then provide
the basis used to solve for the fine-scale velocity. This set of eigenvectors represents
a set of subgrid vortices residing in each element, organized by their energy content,
and the eigenvectors are also orthonormal with respect to the L2-norm. This reduces
the computational cost of the dynamic subgrid model.

We take a quick aside to show that the fine-scale solution fields arising from
the quasi-static model and its discretization are independent of the discrete pressure
field. Recall that:

�e(v′) =
∫

Ωe

v′ · Resm (uh, ph) dΩe.

Since:

Resm (uh, ph) = f− ∂tuh − uh · ∇uh +∇ ·
(
2ν∇suh

)−∇ph,

it holds by integration by parts that:

�e(v′) =
∫

Ωe

v′ · (f− ∂tuh − uh · ∇uh +∇ ·
(
2ν∇suh

))
dΩe +

∫

Ωe

∇ · v′ph dΩe.
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Thus, for v′ ∈ V̊ ′e , it follows that:

�e(v′) =
∫

Ωe

v′ · (f− ∂tuh − uh · ∇uh + ∇ ·
(
2ν∇suh

))
dΩe

and indeed the fine-scale solution field arising from the quasi-static model and its
discretization are independent of the discrete pressure field. This same property
can be shown for the dynamic model. In fact, a stronger property can be shown
for both the quasi-static and dynamic models, namely that a structure-preserving
VMS method employing either model is pressure-robust in that the velocity error is
independent of the pressure field [48].

7 Final Form of Residual-Based Variational Multiscale
Models

In this section, we present the final form of the residual-based VMS models
developed in the previous sections. In the coarse-scale problem, we neglect the
influence of the fine-scale unsteadiness and diffusion on the coarse-scale problem,
as is commonly done in practical implementations of the VMS method [36]. This
yields the following coarse- and fine-scale problems, wherein (·, ·) denotes the L2-
inner product:

Coarse-Scale Problem for both the Quasi-Static and Dynamic Models
Find uh ∈ V h

T and ph ∈ Qh
T such that suitable initial conditions are satisfied and

a(vh;uh)− (∇svh,uh ⊗ u′ + u′ ⊗ uh + u′ ⊗ u′)− b(vh, ph)+ b(uh, qh) = �(vh)

(30)
for all vh ∈ Vh, qh ∈ Qh, and almost every t ∈ (0, T ).

Fine-Scale Problem for the Quasi-Static Model
Find u′ : (0, T )→ V̊ ′h,e such that appropriate initial conditions are satisfied and:

ae(v′,u′) = �e(v′) (31)

for each element Ωe.

Fine-Scale Problem for the Dynamic Model
Find u′ : (0, T )→ V̊ ′h,e such that appropriate initial conditions are satisfied and:

(v′, ∂tu′)+ ae(v′,u′) = �e(v′) (32)

for each element Ωe.
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8 Residual-Based Eddy Viscosity Models

In this section, we present an alternative class of residual-based large eddy
simulation models for isogeometric divergence-conforming discretizations. These
models are predicated on the assumption that we can model the effect of unresolved
fluid motion on the coarse-scales through viscous diffusion using an appropriately
defined eddy viscosity. This yields the approximation:

a(vh;uh + u′) ≈ a(vh;uh)+ (2νt∇svh,∇suh) (33)

where νt is the eddy viscosity. Classically, the eddy viscosity has been expressed
algebraically in terms of invariants of the resolved strain rate tensor [45]. Residual-
based eddy viscosity (RBEV) models, which were originally proposed by Oberai et
al. [44], are built on a different idea. Note that the eddy viscosity scales like:

νt ∼ U � (34)

where U and � are velocity and length scales associated with the fine-scales.
Thus, it is natural to select � as the mesh size h, and it is natural within a VMS
framework to select U as the magnitude of the fine-scale velocity field. This yields
the prescription:

νt = C̄h
∣
∣u′
∣
∣ (35)

where C̄ is a model constant set to C̄ = 0.074 so that the subgrid approximation
represents all turbulent motion at length scales smaller than the grid resolution for
homogeneous isotropic turbulence [44]. We then solve the fine-scale velocity field u′
using the same quasi-static and dynamic models as before. This yields the following
coarse- and fine-scale problems:

Coarse-Scale Problem for both the Quasi-Static and Dynamic Models
Find uh ∈ V h

T and ph ∈ Qh
T such that suitable initial conditions are satisfied and

a(vh;uh)+ (2νt∇svh,∇suh)− b(vh, ph)+ b(uh, qh) = �(vh) (36)

for all vh ∈ Vh, qh ∈ Qh, and almost every t ∈ (0, T ).

Fine-Scale Problem for the Quasi-Static Model
Find u′ : (0, T )→ V̊ ′h,e such that appropriate initial conditions are satisfied and:

ae(v′,u′) = �e(v′) (37)

for each element Ωe.
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Fine-Scale Problem for the Dynamic Model
Find u′ : (0, T )→ V̊ ′h,e such that appropriate initial conditions are satisfied and:

(v′, ∂tu′)+ ae(v′,u′) = �e(v′) (38)

for each element Ωe.
Note that the above RBEV models are similar in appearance to the residual-based

VMS models presented previously. The main difference is in the utilization of the
fine-scale velocity field. In the residual-based VMS models, an expression is found
for the fine-scale solution which is then substituted directly into the coarse-scale
problem. In the RBEV models, the fine-scale velocity is used to construct an eddy
viscosity model for the coarse-scale equations. Note that RBEV models have an
automatic dynamic capability in that they return a null eddy viscosity when the flow
is either laminar or fully resolved, as do residual-based VMS models.

Residual-based eddy viscosity models have been applied previously to the decay
of incompressible and compressible homogeneous turbulence where they were
shown to be more accurate than the dynamic Smagorinsky model [44]. Residual-
based eddy viscosity models are arguably simpler than residual-based VMS models,
and they are more stable in that they are purely dissipative. However, as opposed to
residual-based VMS models, RBEV models are predicated on the assumption that
there is a one-way transfer of energy from coarse-scales to fine-scales, which is not
the case for flows with significant helicity [6].

9 Application to Taylor-Green Vortex Flow

In this section, we apply the residual-based large eddy simulation methodologies
developed in the previous chapters to three-dimensional Taylor-Green vortex flow.
Taylor-Green vortex flow is one of the simplest systems with which one can study
the generation of small scales through vortex stretching and the energy dissipation
from the resulting turbulence. The initial condition of Taylor-Green vortex flow is
laminar and consists of purely two-dimensional streamlines, but for all time t > 0,
the flow is three-dimensional. As the solution is evolved in time, vortex stretching
causes the generation of small-scale motion and eventual transition into turbulence.
Mathematically, the initial condition for this flow is:

u0 (x, y, z) =
⎡

⎣
sin (x) cos (y) cos (z)
− sin (x) sin (y) cos (z)

0

⎤

⎦ . (39)

The initial condition can be visualized in Fig. 5. The flow is periodic in all three
spatial directions in the domain Ω = (0, 2π)3 and, due to inherent symmetries in the
flow, the flow can be modeled within a computational domain of Ωh = (0, π)3 with
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Fig. 5 Isosurfaces of
enstrophy colored by
z-component of vorticity for
Taylor-Green vortex flow at
t = 0 s

no-penetration and free-slip boundaries. At low Reynolds numbers (Re < 400),
the flow is anisotropic for all time, but as the Reynolds number increases, the flow
experiences increased isotropy [8].

To assess the performance of the new residual-based large eddy simulation
methodologies, we compare them with four standard eddy viscosity based
approaches: the Smagorinsky model, the WALE model, the Vreman model, and
the Sigma model. In the Smagorinsky model, the eddy viscosity is calculated as:

νt = (CsΔ)2 |S| (40)

where Δ is the filter width, S is the resolved rate of strain tensor, and Cs is
the Smagorinsky constant [40]. For homogeneous isotropic turbulence, a value of
Cs = 0.18 has been shown to yield satisfactory results, but smaller values have
been required for other applications. Dynamic procedures can also be employed to
locally adapt the Smagorinsky constant [28], but with one exception, we adapted a
static Smagorinsky constant of Cs = 0.18 in our simulations since the new residual-
based models do not require an optimization procedure to tune model constants. The
filter width was also chosen as the mesh size in all our simulations.

In the WALE model, the traceless symmetric part of the square of the velocity
gradient tensor is used as an operator rather than the rate of strain tensor. This
operator is chosen as it goes naturally to zero near the wall without the use of
any damping functions nor dynamic procedure [43]. Using this operator, the eddy
viscosity is calculated as:

νt = (CwΔ)2

(
Sd
ij S

d
ij

) 3
2

(
Sij Sij

) 5
2 +

(
Sd
ij S

d
ij

) 5
4

(41)
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where Sd is the traceless symmetric part of the square of the resolved velocity
gradient tensor:

Sd
ij =

1

2

(
g2
ij + g2

ij

)
− 1

3
δij g

2
kk, (42)

δij is the Kronecker delta symbol, the components of the resolved velocity gradient
tensor g are defined as:

gij = ∂ūi

∂xj
, (43)

Δ is the filter width, S is the resolved rate of strain tensor, and Cw is a constant.
In the original work which introduced the model, an ideal value of Cw in the range
0.55 ≤ Cw ≤ 0.60 was reported for homogeneous turbulence [43], but later studies
by the authors suggest a lower value of Cw = 0.325 is more appropriate [1]. A value
of Cw = 0.325 was employed in the simulations reported here.

In the Vreman model, an alternative operator is used which is designed to
produce very low dissipation in transitional and near-wall regions. The eddy
viscosity is calculated as:

νt = 2.5C2
s

√
Bβ

αijαij

(44)

with:

αij = ∂ūj

∂xi
(45)

βij = Δ2
mαmiαmj (46)

Bβ = β11β12 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23 (47)

where Cs is the Smagorinsky constant [55].
Finally, in the Sigma model, the subgrid stress is related to the singular values

of the resolved velocity gradient tensor. The operator of this model is constructed
to deliver zero subgrid stress in cases of two-component or two-dimensional
flow as well as in cases of pure axisymmetric or isotropic contraction/expansion.
Furthermore, it has a cubic behavior near solid boundaries and thus naturally damps
near walls. The eddy viscosity is calculated as:

νt = (CσΔ)2 Dσ (48)



114 J. A. Evans et al.

with:

Dσ = σ3 (σ1 − σ2) (σ2 − σ3)

σ 2
1

(49)

where σ1 ≥ σ2 ≥ σ3 ≥ 0 are the three singular values of the velocity gradient tensor,
g [42]. The value of the constant, Cσ must be tuned based on the flow problem, the
grid resolution, and numerics, but a value of Cσ = 1.35 has been reported to provide
results comparable to the classical Smagorinsky model for homogeneous isotropic
turbulence [42]. A value of Cσ = 1.35 was employed in the simulations reported
here.

For all of the above models as well as the residual-based large eddy simulation
methodologies presented in this chapter, Taylor-Green vortex flow at Re = 1600
was simulated. The simulations were initialized using the initial conditions defined
in (39), and the simulations were advanced for 10 s. This is a long enough time
for the flow to develop and transition into fully turbulent flow. A time step size of
Δt = 0.125 h was used for all simulations to ensure that any temporal discretization
error was dominated by spatial discretization error and modeling error. For all
simulations, the Crank-Nicolson method was employed to discretize viscous terms
while the Adams-Bashforth multi-step method [2] was employed to discretize
nonlinear terms. All of the results were then compared with Fourier-based DNS
results using between 2563 and 5123 modes [8, 52].

The quantities of interest that we consider in what follows are the time history of
the kinetic energy dissipation rate, the Q-criterion, and the energy spectrum for the
solution at the final time instance of the simulation. The kinetic energy, Ek , of the
flow is given by:

Ek (t) = 1

|Ω|
∫

Ω

u (t) · u (t)

2
dΩ. (50)

The kinetic energy dissipation rate, ε, can be computed as the time derivative of Ek:

ε = −dEk

dt
. (51)

For incompressible flow, the kinetic energy dissipation rate is directly related to the
enstrophy, η:

ε = 2νη (52)

where the enstrophy is computed as:

η = 1

|Ω|
∫

Ω

ω · ω
2

dΩ, (53)
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where ω = ∇ × u is the vorticity. For large eddy simulation, application of (52)
to the resolved velocity field results in the resolved dissipation rate. This represents
the amount of kinetic energy dissipation that is present in the coarse scales. The
difference of the total dissipation rate and the resolved dissipation rate allows
for the calculation of the model dissipation rate, which gives a measure of how
much dissipation a particular subgrid scale model provides. Finally, the Q-criterion
represents the local balance between vorticity magnitude and shear strain rate,
and identifies vortices as regions where the vorticity magnitude is greater than the
magnitude of the rate of strain. The Q-criterion is calculated as:

Q = 1

2

(
|Ω|2 − |S|2

)
, (54)

where Ωij = 1
2

(
∂ūi

∂xj
− ∂ūj

∂xi

)
[37].

Before presenting the results for the residual-based models, we present a
comparison of traditional eddy-viscosity models. First, the time histories of the
dissipation rate are presented for simulations with h = π

32 and p = 3 and
the Smagorinsky, WALE, Vreman, and Sigma eddy viscosity models in Fig. 6.
Note that while p = 3, the velocity and pressure spaces are complete only to
quadratic polynomials. Furthermore, note that the mesh is coarse and the flow is
quite unresolved. This is intentional, as we would like to examine the performance
of the models in the unresolved setting. All of the models appear to predict the
same time evolution of the dissipation rate, and they actually demonstrate a decrease
in performance from the no-model baseline case. All of the models are overly

Fig. 6 Time history of total dissipation rate for simulation of the Taylor-Green vortex at Re =
1600 with p = 3 and and h = π

32 . Comparison of traditional subgrid-scale models (no model,
Smagorinsky, Sigma, Vreman, WALE) with DNS [8]



116 J. A. Evans et al.

Fig. 7 Time history of resolved and model dissipation rate for simulation of the Taylor-Green
vortex at Re = 1600 with p = 3 and h = π

32 . Comparison of traditional subgrid-scale models (no
model, Smagorinsky Sigma, Vreman, WALE) with DNS [8]. (a) Resolved dissipation. (b) Model
dissipation

dissipative, and they depart from the DNS from the very beginning of the simulation.
This suggests that all of the models are active even at the beginning of the simulation
when the solution is purely laminar. The models also yield a prediction of the peak
dissipation approximately one second earlier than the DNS data.

We can further elucidate the various models’ response to turbulence production
and transition by examining the resolved and model dissipation rates. The time
histories of both of these parameters for the same set of simulations are presented
in Fig. 7. Between the four models, there is not very much difference in the
resolved dissipation. The model dissipation reflects the same characteristics that
were observed with the total dissipation. At t = 0, all of the models have non-zero
model dissipation. Interestingly, all of the models exhibit more model dissipation
than resolved dissipation for almost all time.

In the next set of results, we evaluate the performance of the residual-based
models. Since the Sigma, Vreman, and WALE models did not show marked
improvement over the Smagorinsky model, we have selected the Smagorinsky
model as a representative eddy-viscosity model by which to measure the perfor-
mance of the residual-based models. First, the time histories of the dissipation rate
are presented for simulations with h = π

32 , p = 3, and pf = 2 in Fig. 8. From the
figure, it is clear that all of the residual-based models outperform the Smagorinsky
model. Furthermore, the dynamic models are more accurate than the quasi-static
models. It should be noted that in these simulations, (19) was employed to define
τuns for the quasi-static models. Since the Smagorinsky model has no mechanism to
reduce the eddy viscosity in laminar flows, it departs from the DNS solution very
early in the simulation. All of the residual-based models depart from the DNS at
roughly the same point in time, later than the Smagorinsky model, indicating that
in all four cases, the model is appropriately “turned off” when the solution lacks
subgrid-scale activity. Interestingly, at later times, both of the quasi-static residual-
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Fig. 8 Time history of total dissipation rate for simulation of the Taylor-Green vortex at Re =
1600 with p = 3, pf = 2, and h = π

32 . Comparison of subgrid-scale models (no model,
Smagorinsky, quasi-static VMS (QS-VMS), dynamic VMS (D-VMS), quasi-static RBEV (QS-
RBEV), and dynamic RBEV (D-RBEV)) with DNS [8]

based models become overly dissipative. Although both dynamic models have lower
kinetic energy than the DNS after the midpoint in the simulation, by the late times
both models match the DNS in terms of the dissipation rate.

In order to better understand how the residual-based models respond to tur-
bulence production and transition, we again examine the resolved and model
dissipation rates. The time histories of both of these parameters for the same set
of simulations are presented in Fig. 9. It is clear that the quasi-static models are not
activated until very late in the simulation, and even then they produce very little
modeling. The two dynamic models show similar performance.

In Fig. 10, we present the kinetic energy spectra for the various models at the end
time of the simulation. This occurs shortly after the point of maximum dissipation,
so the solution is fully turbulent with structures encompassing the full range of
turbulent scales present. From the spectra, it is clear that the dynamic models and
the Smagorinsky model exhibit the expected energy cascade. At this point, the flow
is essentially a “box of turbulence,” so the Smagorinsky model performs well. Note,
however, that it has lower energy overall due to its overly dissipative nature at earlier
times. The quasi-static models demonstrate some slight energy pileup in the higher
modes.

The displayed results so far have suggested that the quasi-static residual-based
models do not produce the correct amount of dissipation required to yield acceptable
results. A closer look at the construction of the quasi-static models provides some
insight into what is responsible for the poor performance of the models. Namely,
for the simulations reported on here, a very small time step size was employed,
rendering τqs so small as to essentially “turn off” the fine-scales in the quasi-static
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Fig. 9 Time history of resolved and model dissipation rate for simulation of the Taylor-Green
vortex at Re = 1600 with p = 3, pf = 2, and h = π

32 . Comparison of subgrid-scale models (no
model, Smagorinsky, quasi-static VMS (QS-VMS), dynamic VMS (D-VMS), quasi-static RBEV
(QS-RBEV), and dynamic RBEV (D-RBEV)) with DNS [8]. (a) Resolved dissipation. (b) Model
dissipation

Fig. 10 Energy spectra for simulation of the Taylor-Green vortex at Re = 1600 with p = 3,
pf = 2, and h = π

32 . Comparison of subgrid-scale models (no model, Smagorinsky, quasi-static
VMS (QS-VMS), dynamic VMS (D-VMS), quasi-static RBEV (QS-RBEV), and dynamic RBEV
(D-RBEV)) with DNS [8]

models. In order to explore the possibility of eliminating the sensitivity of τsq to
the time step size, we now consider the quasi-static VMS model using τqs defined
using the alternate formulation for τuns given by (20). The total dissipation rate
for the alternate quasi-static VMS model is compared with that of the dynamic
VMS model in Fig. 11. It is clear here that the quasi-static VMS model using the
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Fig. 11 Time history of total dissipation rate for simulation of the Taylor-Green vortex at Re =
1600 with p = 3, pf = 2, and h = π

32 . Comparison of the dynamic VMS model (D-VMS) and
the quasi-static VMS model using τuns defined by (20) (QS-VMS) with DNS [8]

Time (s)
0 2 4 6 8 10

D
is
si
p
at

io
n

ra
te

(
)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016 DNS

QS-VMS

D-VMS

(a)

Time (s)
0 2 4 6 8 10

D
is
si
p
at

io
n

ra
te

(
)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016 DNS

QS-VMS

D-VMS

(b)

Fig. 12 Time history of resolved and model dissipation rate for simulation of the Taylor-Green
vortex at Re = 1600 with p = 3, pf = 2, and h = π

32 . Comparison of the dynamic VMS model
(D-VMS) and the quasi-static VMS model using τuns defined by (20) (QS-VMS) with DNS [8].
(a) Resolved dissipation. (b) Model dissipation

alternate formulation of τuns provides results similar to the dynamic VMS model.
By examining the resolved and model dissipation rates, which are reported in
Fig. 12, it is further apparent that the alternate formulation for τuns is effective in
activating the fine scales. The result is an increase in the model dissipation rate and
a corresponding decrease in the resolved dissipation rate.

Up to this point, we have compared simulation results directly with DNS data.
However, for highly unresolved simulations, such as the ones reported here, the
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Fig. 13 Time history of resolved dissipation rate for simulation of the Taylor-Green vortex at Re

= 1600 with p = 3, pf = 2, and h = π
32 . Comparison of subgrid-scale models (no model,

Smagorinsky, quasi-static VMS (QS-VMS), dynamic VMS (D-VMS), quasi-static RBEV (QS-
RBEV), and dynamic RBEV (D-RBEV)) with filtered DNS data [26]

energy in the coarse-scale velocity field (as defined by the projection of the exact
velocity field into the coarse-scale space) is expected to be less than the energy
in the total velocity field. As such, rather than compare the time history of the total
dissipation rate for a given model with that of a DNS, it is arguably more appropriate
to compare the time history of the resolved dissipation rate with that associated with
filtered DNS data. With this in mind, the time histories of the resolved dissipation
rate for the Smagorinsky, VMS, and RBEV models with p = 3, pf = 2, and
h = π

32 are displayed in Fig. 13 alongside the time history of the dissipation rate
computed from filtered DNS data [26]. The filtered DNS data was obtained using
a sharp cut-off filter of size Δ = π

32 . From the figure, we see that the resolved
dissipation rate time histories associated with the residual-based models roughly
match the resolved dissipation rate time history computed from the filtered DNS
data. This indicates that the residual-based models are providing the correct amount
of dissipation to yield an optimal (in the sense of projection) coarse-scale velocity
field. The Smagorinsky model, on the other hand, is much too dissipative, and the
resolved dissipation rate is significantly smaller than the resolved dissipation rate
computed from the filtered DNS data. It should be noted that the definition of τuns
given by (20) was employed here, which explains the good behavior of the quasi-
static residual-based models. The VMS models perform marginally better than the
RBEV models.

Another way to compare the performance of the models is to look at the character
of the vortical structures present in the various solutions. Contours of Q = 1
colored by vorticity at a late time shortly after the time of maximum dissipation
(t = 9.57) for the Smagorinsky and dynamic VMS models are compared in Fig. 14.
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Fig. 14 Contours of Q = 1 colored by vorticity for simulation of the Taylor-Green vortex at Re =
1600 with p = 3, pf = 2, and h = π

32 . Comparison of Smagorinsky and dynamic VMS models.
(a) Smagorinsky model. (b) Dynamic VMS model

Compared to the dynamic VMS model, the Smagorinsky model damps out the
smallest turbulent structures. Only the larger vortical structures, with lower vorticity,
remain. In contrast, the dynamic VMS model more accurately predicts turbulent
structures in the smallest length scales that can be represented on the mesh.

To illustrate how the residual-based models are activating, contours of Q = 1
colored by vorticity are plotted alongside the magnitude of the fine scale velocity
for the dynamic VMS model in Fig. 15. Solutions at an early time (t = 0.25), an
intermediate time (t = 4.66), and a late time shortly after the time of maximum
dissipation (t = 9.57) are presented in order to provide a comparison of the
character of the solutions during various phases of transition from laminar to
turbulent flow. It is clear that the fine scales grow in amplitude as expected in regions
where more small-scale turbulent structures develop and the fine scale velocities
remain low in amplitude where only large-scale structures that can be resolved by
the mesh are present.

We now turn our attention to consistency of the residual-based models with
respect to mesh refinement. We limit our presentation in this regard to the dynamic
models since they have so far outperformed the quasi-static models using a τuns
given by (19) and performed similarly to the quasi-static models using a τuns given
by (20). In Fig. 16, the time histories of the total, resolved, and model dissipation
rate for the dynamic VMS and RBEV models are presented for various mesh sizes.
It is clear here that as the mesh is refined, the total dissipation rate for both models
converge to the DNS solution. This is accompanied by an appropriate increase
in the resolved dissipation rate as well as a corresponding decrease in the model
dissipation rate. It is also noted that the dynamic VMS model outperforms the
dynamic RBEV model for both coarse and fine meshes.

We conclude by examining the effectiveness of the residual-based models at
capturing the dissipation rate for Taylor-Green vortex flow for a range of Reynolds
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Fig. 15 Q-criterion contours colored by vorticity and magnitude of fine scale velocity for
simulation of the Taylor-Green vortex at Re = 1600 with p = 3, pf = 2, and h = π

32 . (a)
Contours of Q = 1 at t = 0.25. Dynamic VMS model. (b) Fine scales at t = 0.25. Dynamic VMS
model. (c) Contours of Q = 1 at t = 4.66. Dynamic VMS model. (d) Fine scales at t = 4.66.
Dynamic VMS model. (e) Contours of Q = 1 at t = 9.57. Dynamic VMS model. (f) Fine scales
at t = 9.57. Dynamic VMS model
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Fig. 16 Time history of total, resolved, and model dissipation rate for simulation of the Taylor-
Green vortex at Re = 1600 under mesh refinement with p = 3 and pf = 2. (a) Total dissipation
rate. Dynamic VMS model. (b) Total dissipation rate. Dynamic RBEV model. (c) Resolved
dissipation rate. Dynamic VMS model. (d) Resolved dissipation rate. Dynamic RBEV model. (e)
Model dissipation rate. Dynamic VMS model. (f) Model dissipation rate. Dynamic RBEV model
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Fig. 17 Time history of total dissipation rate for simulation of the Taylor-Green vortex at various
Re with h = π

32 , p = 3, and pf = 2 for a variety of subgrid models and DNS [8, 52]. Left:
Assessment of static Smagorinsky, dynamic Smagorinsky, and Chollet subgrid. Right: Assessment
of dynamic VMS and RBEV subgrid models. (a) Total dissipation rate for Re = 800. Standard
eddy viscosity models. (b) Total dissipation rate for Re = 800. Residual-based models. (c) Total
dissipation rate for Re = 1600. Standard eddy viscosity models. (d) Total dissipation rate for
Re = 1600. Residual-based models. (e) Total dissipation rate for Re = 3000. Standard eddy
viscosity models. (f) Total dissipation rate for Re = 3000. Residual-based models
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Fig. 18 Time history of total dissipation rate for simulation of the Taylor-Green vortex at various
Re with h = π

64 , p = 3, and pf = 2 for the dynamic VMS and RBEV subgrid models and the
static Smagorinsky model versus DNS [8, 52]. (a) Total dissipation rate for Re = 800. (b) Total
dissipation rate for Re = 1600. (c) Total dissipation rate for Re = 3000

numbers. We first consider h = π
32 , p = 3, and pf = 2. In Fig. 17, we

display the total dissipation rate for both the dynamic VMS and RBEV models
for Re = 800, Re = 1600, and Re = 3000. We also display the total dissipation
rate for the dynamic Smagorinsky [28] model, which improves upon the classical
Smagorinsky model when the flow is transitional, and the Chollet [12] model.
Note that the dynamic VMS and RBEV models match the DNS data far better
than the dynamic Smagorinsky and the Chollet models for each Reynolds number
considered. Impressively, the results for the dynamic VMS and RBEV models
are indistinguishable from the DNS results for Re = 800. The results for the
dynamic VMS and RBEV models at higher Re are not quite as impressive, though
the dynamic VMS and RBEV models still perform much better than the dynamic
Smagorinsky and Chollet models. Moreover, at these Reynolds numbers, we do not
necessarily expect the dynamic VMS and RBEV models to exactly match the DNS
data as the energy in the filtered scales is likely less than the total energy.
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Fig. 19 Time history of resolved dissipation rate for simulation of the Taylor-Green vortex at
various Re with h = π

64 , p = 3, and pf = 2 for the dynamic VMS and RBEV subgrid models and
the static Smagorinsky model versus DNS [8, 52]. (a) Resolved dissipation rate for Re = 800. (b)
Resolved dissipation rate for Re = 1600. (c) Resolved dissipation rate for Re = 3000

We next consider a refined mesh, namely, h = π
64 , p = 3, and pf = 2. In Fig. 18,

we display the total dissipation rate for both the dynamic VMS and RBEV models as
well as the (static) Smagorinsky model for Re = 800, Re = 1600, and Re = 3000.
Note that the results for the dynamic VMS and RBEV models are indistinguishable
from the DNS results for Re = 800 and Re = 1600, and they nearly match the
DNS results for Re = 3000 except near the time of max dissipation rate which
they slightly underpredict. The Smagorinsky model performs considerably worse by
comparison, and it overpredicts the dissipation rate at early times, underpredicts the
time of max dissipation rate, and underpredicts the max dissipation rate for each of
the three Reynolds numbers. The results in Fig. 18 seem to suggest that the dynamic
VMS and RBEV models are not active for any of the Reynolds numbers since the
no model, dynamic VMS, and dynamic RBEV total dissipation rates are so similar.
However, an examination of the resolved dissipation rate time histories for each of
the models, which are depicted in Fig. 19, reveals this is not the case. From this
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figure, we see that the dynamic models are quite active near the time of maximum
dissipation, especially for the Re = 3000 case, so it is likely that energy pileup in
the no model case is responsible for the similar total dissipation rate time histories
between the no model, dynamic VMS, and dynamic RBEV cases.

10 Conclusions

In this chapter, a novel paradigm for the large eddy simulation of turbulent flows
utilizing residual-based subgrid modeling has been presented. By combining isoge-
ometric divergence-conforming discretizations with structure-preserving variational
multiscale subgrid modeling, a large eddy simulation simulation capability which
addresses many of the shortcomings of classical large eddy simulation approaches
has been developed. In particular, the new subgrid models appropriately turn off
when the flow is either laminar or fully resolved in contrast with standard eddy
viscosity approaches. Furthermore, the new subgrid models contain no “tunable”
parameters, and thus the models can be applied across a wide range of flows.
The models come in two general categories, namely residual-based variational
multiscale models and residual-based eddy viscosity models, and quasi-static and
dynamic models were developed for each of these categories. For a transitional flow
problem, the models were seen to outperform not only static eddy viscosity models
such as the Smagorinsky, WALE, Vreman, and Sigma models but also the dynamic
Smagorinsky model. Of all of the presented residual-based models, the dynamic
variational multiscale model yielded the most promising results.

The models are currently being applied to the large eddy simulation of wall-
bounded and rotational flows, and initial results are very encouraging. In these
simulations, no-slip boundary conditions are being enforced in a weak manner using
a combination of Nitsche’s method for diffusive terms and upwinding for convection
terms [4]. Such an approach may be interpreted as a variationally consistent wall
model [5]. In the future, the models presented here will be further enhanced by
improving the modeling of the fine-scale problem, in light of promising recent work
in the arena of scalar transport [16].

Acknowledgements This material is based upon work supported by the Air Force Office of
Scientific Research under Grant No. FA9550-14-1-0113.
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Interaction of Multiphase Fluids
and Solid Structures

Hector Gomez and Jesus Bueno

Abstract Fluid–Structure Interaction (FSI) problems are ubiquitous in almost
every branch of engineering and science. Their nonlinear and time-dependent nature
makes usually the analytical solution very difficult or even impossible to obtain,
requiring the use of experimental analysis and/or numerical simulations. This fact
has prompted the development of a great variety of numerical methods for FSI.
However, most of the efforts have been focused on classical fluids governed by the
Navier–Stokes equations, which cannot capture the physical mechanisms behind
multiphase fluids. Here, we present several models for the interplay of solids and
multiphase flows, which we apply to particular problems such as phase-change-
driven implosion, droplet motion, and elastocapillarity.

In this work, the behavior of the structure is described by the nonlinear
equations of elastodynamics and treated as a hyperelastic solid. In particular, we
employ a Neo-Hookean and a Saint Venant–Kirchhoff model. Our approach for
the multiphase fluid is based on the diffuse-interface or phase-field method. The
Navier–Stokes–Korteweg equations are used to describe compressible fluids that
are composed of two phases of the same component, which may undergo phase
transformation. The Navier–Stokes–Cahn–Hilliard equations are used to describe
two-component immiscible flows with surface tension. As FSI technique, we adopt
a boundary-fitted approach with matching discretization at the interface. This choice
leads to a natural monolithic FSI coupling with strong, exact enforcement of the
kinematic conditions. We use the Lagrangian description to derive the semidiscrete
form of the solid equations and the Arbitrary Lagrangian–Eulerian description for
the fluid domain. For the spatial discretization we adopt isogeometric analysis based
on Non-Uniform Rational B-Splines. Regarding the time integration, we use a
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generalized-α scheme. The nonlinear system of equations is solved using a Newton–
Raphson iteration procedure, which leads to a two-stage predictor-multicorrector
algorithm. A quasi-direct monolithic formulation is adopted for the solution of the
FSI problem.

1 Introduction

Fluid–structure interaction (FSI) encompasses a group of problems in which a
deformable or movable solid interacts with an internal or surrounding fluid flow,
that is, problems with an interdependence between a fluid and a solid structure. The
nature of this kind of problems makes them ubiquitous in almost every branch of
engineering and science, such as biomedical research [5], aerospace engineering
[33, 81], or marine engineering [90] to name but a few.

In the last decades, significant progress has been made in FSI research. How-
ever, a comprehensive study of FSI problems remains a challenge due to their
nonlinear and time-dependent nature. In most cases, an analytical solution is very
difficult or even impossible to obtain and experimental analysis and/or numerical
simulations need to be employed. The same challenges appear in the interaction
of multiphase/multicomponent fluids and solid structures. The unusual mechanical
nature of this kind of fluids usually produces much richer physics than classical
fluids when they interact with solids, especially at small scales. Despite this fact,
the computational mechanics community has traditionally focused its efforts on the
interaction of solids and classical fluids governed by the Navier–Stokes equations
[6, 58, 76, 80, 82], which cannot capture the physical mechanism behind multiphase
and multicomponent fluids. The number of works that model the interaction of
multiphase fluids and solids is very limited. The first publication we know of is
[13]; more recent papers include [12, 14, 88]. We present several models for the
interplay of solids and multiphase flows. The development of accurate and efficient
computational methods for this kind of FSI problems could potentially benefit a
number of disciplines, such as mechanobiology, microfabrication, or engineering:

– Mechanobiology. Cells can migrate in response to gradients in stiffness (duro-
taxis) and gradients in strain (tensotaxis) of the underlying substrate [57, 77].
The understanding of these mechanisms is still very limited but they seem to
be controlled to a significant extent by mechanics, and it seems plausible that,
at cellular scale, capillary forces play an important role. A theoretical model
that allowed to study durotaxis and/or tensotaxis would contribute to a better
understanding of these processes, and would allow to explore scenarios that are
difficult to probe experimentally.

– Engineering. There is an enormous variety of engineering problems in which
multiphase fluids play a prominent role. Among them, one of the most rele-
vant problems is the implosive collapse of thin structures [48, 67]. Structures
containing a compressible fluid at a pressure below the external pressure have
the potential to collapse inwards. For example, an air-filled structure may suffer
an implosive collapse when it is immersed underwater due to the increase of
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the external pressure. In other situations, phase transformations may trigger the
implosion of vapor-filled structures. Thermal variations may transform the vapor
into liquid, reducing the internal pressure, which, in turn, may lead to a violent
and rapid collapse of the structure, producing strong compressions and large
deformations [49].

– Microfabrication. The growing interest for micro-devices has brought attention
to the effects that surface tension may have in soft or slender structures. As
the dimensions of a system are scaled down, capillary forces decrease slower
than pressure and gravity forces and eventually become dominant, being able
to deform elastic structures. This process is known as elastocapillarity [68, 74].
Understanding the physical mechanisms underlying elastocapillary phenomena
is essential for the design of new materials and devices at the micrometer and
nanometer scale.

We present different models for the interplay of solid structures and multi-
phase/multicomponent flows. Our computational method uses a boundary-fitted
approach with a sharp fluid–solid interface. However, our approach for the fluid is
based on the diffuse-interface or phase-field method. We apply the proposed models
to particular problems such as phase-change-driven implosion, droplet motion, and
elastocapillarity.

1.1 Phase Transitions and Computational Challenges

Traditionally, phase transition phenomena has been modeled using sharp-interface
methods [3, 52]. However, this approach presents several limitations. For many
classes of problems, the appropriate sharp interface model is unknown [65] and
the numerical simulation turns out to be extremely difficult. The most challenging
aspect is the interaction between topologically complex interfaces that undergo
merging and pinch-off during the course of a phase transformation. Note that one
must solve simultaneously the partial differential equations that govern each phase
dynamics and the boundary conditions that hold on a moving, and a priori unknown
interface, and this usually results in complex numerical treatments.

An alternative to deal with moving interface problems are phase-field models
[2, 25, 41, 60]. The principal characteristic of this approach is the assumption that
the interface actually represents a rapid but smooth transition of physical quantities
between the bulk values—for this reason, phase-field models are also called diffuse-
interface models. The idea of diffuse interfaces dates back to Poisson [64], Gibbs
[36], and van der Waals [89]. However, it is in the last decades, when these models
are gaining increasing interest in many fields, such as physics, material science, and
engineering. They have been applied with great success to solidification dynamics
[62], foams [34], brittle fracture [51], dendritic growth [46], vesicle dynamics [9],
microstructure evolution in solids [35], planet formation [86], infiltration of water
into a porous medium [21, 38], coalescence of bubbles [40], cancer growth [91, 92],
elastocapillarity [88], or the description of partial wetting [22] to mention a few
applications.
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In phase-field models, the sharp description of the interface is replaced with
a thin boundary layer by introducing an auxiliary field—the phase field or order
parameter—that varies smoothly on the entire computational domain and that acts as
marker of the location of the different phases. This idea avoids some of the problems
associated with sharp interface models. The numerics are notably simplified because
the governing equations can now be solved on the entire computational domain,
which is usually known and fixed. In general, instead of the boundary conditions at
the interfaces, we have to solve a partial differential equation for the evolution of
the order parameter. Phase-field models also present important challenges that are
currently being addressed (see [39, 41, 56]) and that make it difficult to use these
approaches for quantitative modeling of experimentally relevant situations. For
example, the presence of thin interfaces that must be captured by the computational
mesh renders phase-field equations very stiff. The same way, the kinetics of the
interface limits the numerical time steps that can be adopted in diffuse-interface
theories, which makes difficult to model realistic time scales. Finally, from the
computational point of view, another disadvantage is that the phase-field equation
typically includes higher-order partial differential operators. This fact significantly
limits the use of classical finite element methods (FEM) since we need to employ
basis functions of high global continuity, which can be very difficult or even
impossible in 3D complicated geometries. In order to use FEM it is usually
necessary to adopt a mixed formulation adding new degrees of freedom. The
aforementioned difficulties can be tackled by using Isogeometric Analysis (IGA) for
the spatial discretization of the problem, which permits to generate basis functions
with controllable continuity on non-trivial geometries. IGA is a generalization of
the finite element method that was introduced in [43]. The main idea behind IGA
is to use functions from computational geometry to represent both the solution and
the domain of a boundary-value problem. The most frequently utilized functions
are Non-Uniform Rational B-Splines (NURBS) and they are also our choice for
the simulations presented here. The higher-order global continuity of NURBS leads
to a more accurate and stable solution of the thin layers that naturally arise in the
solution of phase-field theories [37].

Phase field models are connected to thermodynamics, in the sense that they
can be derived from free-energy functionals using the classical theory of ther-
momechanics and Coleman–Noll approaches [20]. As an example, the classical
Cahn–Hilliard equations as well as the Navier–Stokes–Korteweg (NSK) equations
can be derived using this framework. The former represents a theory for two-
component immiscible fluids with surface tension. The latter is the most widely
accepted theory for single-component two-phase flow with phase transformations.
For a more thorough discussion on phase-field methods, the reader is referred to
[2, 17, 41, 71].
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1.2 Fluid–Structure Interaction Technique

When solving FSI problems it is essential to choose the most suitable computational
technique for the problem that we want to solve. In this regard, FSI methods may
be classified into two main groups: boundary-fitted [7, 8, 78, 79] and immersed
approaches [47, 63, 93]. In the former, the shape of the fluid-subdomain changes to
adapt to the motion of the structure, that is, the fluid mesh tracks the interface and is
updated as the flow evolves. This allows to control the mesh resolution close to the
interface but it may result in important mesh distortions. In immersed approaches,
the solid moves arbitrarily on top of a background fluid mesh in a non-conforming
fashion. The interface is simply “captured” by the fluid mesh covering the region
where it is located. This method results in a less accurate representation of the
interface than boundary-fitted approaches although it is more flexible since it does
not require mesh updating.

In our particular case, the idea is to conceive a model capable of reproducing
the implosive collapse of vapor-filled structures as well as droplet motion and
elastocapillarity. In all these problems, the accuracy at the fluid–solid interface is
crucial, especially, in elastocapillary problems, as we need a rigorous control of the
contact angle between the liquid–vapor interface and the solid surface as well as
a precise fulfillment of the compatibility conditions. For this reason, a boundary-
fitted approach or in particular an Arbitrary Lagrangian–Eulerian method (ALE)
[28, 29, 44], in which the fluid and the solid discretizations match at the interface,
seems to be the most suitable choice. We are aware that very strong implosion
problems can lead to significant distortions in the solid and the fluid mesh and,
as a consequence, require remeshing procedures. We try to tackle this challenge by
focusing on moderately strong implosions and by adopting the appropriate elastic
coefficients for the moving mesh problem.

2 Kinematics and Computational Domain

In Arbitrary Lagrangian–Eulerian methods, the material particles of the fluid are in
relative motion with respect to a referential domain. Let us use x̂ to refer to the
coordinates of that reference domain Ωx̂ which is fixed in time. Ωx̂ is arbitrary and
may take on different interpretations. We define a function φ̂ : Ωx̂×]0, T [→ Ωt

that maps the reference domain Ωx̂ into its spatial configuration at time t , Ωt , where
]0, T [ is the time interval of interest. Let us denote x the coordinates in the spatial
configuration, i.e., Ωt � x = φ̂(̂x, t). We also use the notation φ̂t (̂x) = φ̂(̂x, t).
Using the mapping φ̂, we can define the displacement of a point in the referential
domain û(̂x, t) = φ̂(̂x, t)− x̂, and its velocity

v̂ = ∂û

∂t
. (1)
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Let us also define the mapping φ : ΩX×]0, T [→ Ωt that transforms each material
particle X into its spatial coordinate at time t , that is, x = φ(X, t). Note that the
mapping φ can be understood as a particular case of φ̂. In this work, we use different
notations since each mapping is employed for different purposes. From the function
φ, we can define the deformation gradient F = ∂φ/∂X, the particle displacement
u(X, t) = φ(X, t)−X, and the particle velocity

v = ∂φ

∂t
= ∂u

∂t
. (2)

In what follows, to avoid ambiguity in our notation we will use subscripts to clarify
how derivatives are to be understood. We adopt the subscript X (respectively, x̂) to
indicate that the derivative is taken by holding X (respectively, x̂) fixed. When no
subscript is specified, the derivative is assumed to be taken by holding the spatial
coordinate x fixed.

Let Ω0 denote the initial configuration of the entire domain of our problem,
that is, the fluid and solid domains combined. Ω0 will be adopted as the reference
configuration and also as the material configuration. We may decompose Ω0 as

Ω0 = Ω
f

0 ∪Ωs
0, with Ω

f

0 ∩Ωs
0 = ∅, where s and f refer to the solid and the fluid

domain, respectively. We may also decompose the spatial configuration of Ω0 at

time t , namely Ωt , as Ωt = Ω
f
t ∪Ωs

t with Ω
f
t ∩Ωs

t = ∅. Let Γ0 and Γt be the
fluid–solid interface where the subscripts 0 and t denote the initial and the current
configuration, respectively. We will denote by Γ s

0 and Γ s
t (respectively, Γ f

0 and Γ
f
t )

the boundary of the solid (respectively, the fluid) subdomain without the part of the
fluid–structure interface. In Fig. 1, we show an illustration with the notation that we
have adopted for the reference and the spatial domains.

Fig. 1 Reference and spatial
domain of our fluid–structure
interaction problem. The
superscripts “s” and “f ”
stand for solid and fluid,
respectively. The absence of
superscript makes reference
to the fluid–structure
interface. The subscript “0”
(respectively “t”) denotes the
initial (current) configuration
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3 Phase-Change-Driven Implosion of Thin Structures

Thin structures that enclose a compressible fluid may collapse inwards when the
external pressure is larger than the internal pressure. This may happen, for example,
if an air-filled structure is immersed underwater [32, 45, 49, 67, 87]. Also, thermal
variations may trigger the collapse of vapor-filled structures. A decrease in the
internal temperature can make vapor transform into liquid, reducing the internal
pressure and triggering the collapse of the structure. We refer to the latter as
phase-change-driven implosion. In order to model this phenomenon we employ
the Navier–Stokes–Korteweg theory for the fluid subdomain, that is, a single-
component two-phase theory in which the fluid can undergo phase transformations.
The structure is a hyperelastic material governed by the nonlinear equations of
elastodynamics.

3.1 Governing Equations

3.1.1 Solid Mechanics

The behavior of the solid is described by the Lagrangian form of the momentum
balance equation

ρs
0
∂2u

∂t2

∣
∣
∣
∣
X

= ∇X · P + ρs
0f

s , (3)

where ρs
0 is the mass density in the initial configuration, f s represents body

forces per unit mass, and P is the first Piola–Kirchhoff stress tensor. To define P

we use as constitutive theory a hyperelastic model, namely, the generalized neo-
Hookean model with dilatational penalty proposed by Simo and Hughes [69]. The
aforementioned material model can be described by the stored elastic energy density

W = μs

2

(
J−2/d tr(C)− d

)
+ κs

2

(
1

2

(
J 2 − 1

)
− ln J

)

, (4)

where tr(·) denotes the trace operator and d is the number of spatial dimensions;
κs is the material bulk modulus and μs is the shear modulus, also known as the
second Lamé parameter. κs and μs can be related to the Young modulus Es and the
Poisson ratio νs using the relations κs = Es/(3(1−2νs)) and μs = Es/(2(1+νs));
J is the determinant of the deformation gradient, i.e., J = det(F ), where F can be
computed as F = I + ∇Xu. Here, I denotes the identity tensor. Finally, C =
F T F is the Cauchy–Green deformation tensor. The second Piola–Kirchhoff stress
tensor can be computed from W by taking its derivative with respect to the Green–
Lagrange strain tensor E = (C − I )/2, i.e.,
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S = ∂W

∂E
= μsJ−2/d

(

I − 1

d
tr(C)C−1

)

+ κs

2

(
J 2 − 1

)
C−1. (5)

The first Piola–Kirchhoff stress tensor is obtained by taking P = FS. The Cauchy
stress tensor in the solid is given by σ s = J−1FSF T = J−1PF T .

3.1.2 Fluid Mechanics

In our model, the behavior of the fluid is governed by the NSK equations,
which account for mass, momentum, and energy conservation. The Navier–Stokes–
Korteweg theory fits into classical thermodynamics and can be derived from
a Helmholtz free-energy potential [41]. The NSK system constitutes the most
widely accepted theory for the description of single-component two-phase flows
and naturally allows for phase transformations in the fluid, which can happen
spontaneously without precursors. In the ALE description, the NSK equations can
be written as

∂ρ

∂t

∣
∣
∣
∣
x̂

+ (v − v̂) · ∇ρ + ρ∇ · v = 0, (6a)

ρ
∂v

∂t

∣
∣
∣
∣
x̂

+ ρ (v − v̂) · ∇v − ∇ · σ f − ρf = 0, (6b)

∂ (ρs)

∂t

∣
∣
∣
∣
x̂

+ (v − v̂) · ∇ (ρs)+ ρs∇ · v + ∇ ·
(q

θ

)

= k
1

θ2
|∇θ |2 + 1

θ
τ : ∇v + ρr

θ
+ ρf · v

θ
, (6c)

where⊗ denotes the usual vector outer product and x̂ is a coordinate in the reference
domain (see Sect. 2); ρ is the fluid density, v denotes the fluid velocity vector, and
v̂ is the fluid domain velocity; f represents body forces per unit mass, θ is the
temperature of the fluid, and r is the heat supply per unit mass; q denotes the heat
flux, which is assumed to satisfy the isotropic Fourier law, i.e., q = −k∇θ , where
k is the thermal conductivity. The Cauchy stress tensor of the fluid σ f is defined as
σ f = τ − pI + ς . Here, p is the thermodynamic pressure, τ is the viscous stress
tensor of a Newtonian fluid, and ς denotes the so-called Korteweg tensor that gives
rise to capillary forces that are withstood at liquid–vapor interfaces, i.e.,

τ = μ̄
(
∇v + ∇T v

)
+ λ̄∇ · vI , (7a)

ς = λ

(

ρΔρ + 1

2
|∇ρ|2

)

I − λ∇ρ ⊗∇ρ. (7b)
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In the previous expressions, μ̄ and λ̄ are the viscosity coefficients, which are
assumed to fulfill the Stokes hypothesis, that is, λ̄ = −2μ̄/3; | · | represents the
Euclidean norm of a vector and λ > 0 denotes the capillarity coefficient. λ is related
to the surface tension at the liquid–vapor interface γLV through the expression
γLV � K0

√
λ where K0 is a constant for a given temperature; see [27] for more

details. Finally, the thermodynamic pressure p and the entropy density s are the
state variables of a van der Waals fluid (see, for example, [27, 55]),

p = Rb

(
ρθ

b − ρ

)

− aρ2, (8a)

s = −R log

(
ρ

b − ρ

)

+ cv log

(
θ

θc

)

, (8b)

where R is the specific gas constant, and a and b are positive constants; cv is the
specific heat capacity and θc is the critical temperature θc = 8ab/(27R). Figure 2
shows a non-dimensional plot of van der Waals pressure with respect to density for
three different values of temperature. For θ > θc, p is a monotonically increasing
function of ρ, and the only phase that is stable is the vapor phase. However, for
θ < θc the pressure is no longer monotone, and we can differentiate three regions:
ρ ∈ (0, ρv) where the vapor phase is stable (red line), ρ ∈ (ρl, b) that corresponds
to the liquid phase (blue line), and the region ρ ∈ (ρv, ρl) that has no physical
meaning (grey line). In our theory, the latter interval may be understood as a smooth
interface between the two phases that spans over a length scale

√
λ/a. For further

details on the NSK equations, the reader is referred to [27, 40, 55].

3.2 Numerical Formulation

3.2.1 Continuous Problem in the Weak Form

Solid Mechanics Problem Let us assume that the solid boundary Γ s
0 can be

decomposed into Neumann and Dirichlet parts denoted by (Γ s
0 )N and (Γ s

0 )D ,
respectively. We define a trial solution functional space X s = X s(Ωs

0) whose
members verify the Dirichlet boundary conditions of the problem, and a weighting
function space Ys = Ys(Ωs

0) which is identical to X s , but verifies homogeneous
conditions on (Γ s

0 )D . The variational formulation can be stated as follows: Find
u ∈ X s such that ∀ws ∈ Ys ,

Bs(ws ,u) = F s(ws), (9)

where
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Fig. 2 Non-dimensional plot of van der Waals pressure as a function of density. The pressure is a
non-monotone function of density for θ < θc. ρM

v and ρM
l denote the Maxwell states [27] for the

vapor and the liquid phase, respectively

Bs(ws ,u) =
∫

Ωs
0

(

ws · ρs
0
∂2u

∂t2

∣
∣
∣
∣
X

+ ∇Xws : P
)

dΩs
0 (10)

and

F s(ws) =
∫

Ωs
0

ws · ρs
0 f sdΩs

0 +
∫

(Γ s
0 )N

ws · ĥ d(Γ s
0 )N . (11)

The previous variational formulation weakly enforces the Neumann boundary
condition P n̂s = ĥ on (Γ s

0 )N , where n̂s is the unit outward normal to the solid
boundary in the reference domain; ĥ is a given traction, which takes the form of
a follower load p in the direction of the inner normal to the solid boundary, i.e.,
ĥ = −pJF−T n̂s .

Fluid Mechanics Problem For the fluid problem, let us assume solid-wall bound-
ary conditions. Additionally, due to the third-order spatial derivative on the density
in the linear momentum equations, we enforce the boundary condition ∇ρ · nf =
|∇ρ| cosα where nf denotes the unit outward normal to the fluid boundary, and
α is the contact angle between the liquid–vapor interface and the solid surface
measured in the liquid phase; see Fig. 3. The imposition of the aforementioned
boundary condition can be simplified by introducing a new variable Υ = Δρ in the
momentum equation. Note that this step is not strictly necessary with isogeometric
analysis since IGA allows to use the globally C1-continuous basis functions that
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Fig. 3 Contact angle α

between the liquid–vapor
interface and the solid
surface. The interface is
assumed to be centered at the
mean value of the liquid and
vapor densities and spans
over a length scale

√
λ/a.

The boundary condition
∇ρ · nf = |∇ρ| cosα
imposed at the fluid–structure
interface permits to control
the contact angle α

are required to approximate the NSK equations in primal form; see [40]. Let us
introduce the trial solution space X f = X f (Ω

f
t ) whose members satisfy all

Dirichlet boundary conditions. The weighting functions space Yf = Yf (Ω
f
t ) is

identical to X f , but all restrictions on the Dirichlet boundary are homogeneous.
The variational formulation is stated as follows: Find U = {ρ, v, Υ, θ} ∈ X f such
that ∀W = {w1,w2, w3, w4} ∈ Yf ,

Bf (W ,U ; v̂) = 0, (12)

where

Bf (W ,U ; v̂) =
∫

Ω
f
t

w1
(
∂ρ

∂t

∣
∣
∣
∣
x̂

+ (v − v̂) · ∇ρ + ρ∇ · v
)

dΩf
t

+
∫

Ω
f
t

w2 ·
(

ρ
∂v

∂t

∣
∣
∣
∣
x̂

+ ρ (v − v̂) · ∇v − ρf

)

dΩf
t

+
∫

Ω
f
t

∇w2 : (τ − pI ) dΩf
t

+
∫

Ω
f
t

∇ · w2λ

(

ρΥ + 1

2
|∇ρ|2

)

dΩf
t

−
∫

Ω
f
t

∇w2 : λ∇ρ ⊗∇ρdΩf
t

−
∫

Γ
f
t ∪Γt

w3|∇ρ| cosα d(Γ f
t ∪ Γt )

+
∫

Ω
f
t

w3Υ dΩf
t +

∫

Ω
f
t

∇w3 · ∇ρdΩf
t

−
∫

Ω
f
t

w4
(
ρr

θ
+ ρf · v

θ

)

dΩf
t
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+
∫

Ω
f
t

w4
(
∂ (ρs)

∂t

∣
∣
∣
∣
x̂

+ (v − v̂) · ∇ (ρs)

)

dΩf
t

−
∫

Ω
f
t

∇w4 · q
θ

dΩf
t

+
∫

Ω
f
t

w4
(

ρs∇ · v − 1

θ
τ : ∇v − k

1

θ2
|∇θ |2

)

dΩf
t . (13)

If Dirichlet boundary conditions are not set on the entire boundary for velocity or
temperature, the variational formulation (13) weakly imposes the conjugate stress-
free condition or vanishing heat flux at the wall, respectively.

Fluid Domain Motion The goal of this problem is to produce a smooth evolution
of the fluid domain given the displacement data on the fluid–solid interface. This
motion is associated to the mapping φ̂, and can be understood as a succession of
fictitious linear elastic boundary-value problems. Let us define the displacement of
the reference domain at time t as ût (̂x) = û(̂x, t) = φ̂t (̂x) − x̂. To determine φ̂t ,
and thus, the motion of the fluid domain, we use the identity φ̂t (̂x) = φ̂ t̃ (̂x) +(
ût − ût̃

)
(̂x), where ût − ût̃ is obtained from a linear elastic boundary-value

problem. Here, t̃ < t is a time instant close to t . In general, in our problems t̃ is
the final configuration of the previous time step.

Let us define um as um = ût − ût̃ . um is obtained by solving fictitious linear
elastic boundary-value problems, subject to the Dirichlet boundary conditions um =
ut ◦ φ−1

t − ut̃ ◦ φ−1
t̃

on Γt̃ , where ut and ut̃ are the particle displacement at times
t and t̃ , respectively. These Dirichlet boundary conditions are strongly built into the
trial solution space Vm = Vm(Ω

f

t̃
). The corresponding weighting function space—

which satisfies homogeneous conditions on the boundary—is denoted by Wm =
Wm(Ω

f

t̃
). The variational formulation can be stated as follows: Find um ∈ Vm

such that ∀wm ∈Wm,

Bm(wm,um) = 0, (14)

where

Bm(wm,um) =
∫

Ω
f

t̃

∇sym

x̃
wm : 2μm∇sym

x̃
umdΩf

t̃
+
∫

Ω
f

t̃

∇x̃ · wmλm∇x̃ · umdΩf

t̃
.

(15)

Here, μm and λm denote the Lamé parameters of a fictitious elastic problem; ∇x̃

denotes the gradient operator on Ωt̃ and ∇sym

x̃
is its symmetric part, that is, ∇sym

x̃
=

1/2
(∇x̃ +∇T

x̃

)
.

Coupled FSI Problem Now we have all the ingredients to define the coupled fluid–
structure interaction problem. The variational formulation of the problem may be
stated as follows: Find U = {ρ, v, Υ, θ} ∈ X f , u ∈ X s and um ∈ Vm such that
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∀W = {w1,w2, w3, w4} ∈ Yf , ∀ws ∈ Ys and ∀wm ∈Wm,

Bf (W ,U ; v̂)+ Bs(ws ,u)+ Bm(wm,um) = F s(ws), (16)

with the following constraints at the fluid–structure interface:

v = ∂u

∂t
◦ φ̂
−1

on Γt , (17)

w2 = ws ◦ φ̂
−1

on Γt . (18)

The purpose of Eq. (17) is to enforce the compatibility of kinematics at the fluid–
solid interface. Equation (18), however, leads to a weak enforcement of traction
compatibility at the interface, that is, σ f nf + σ sns = 0 on Γt . Here, ns denotes the
unit outward normal to the solid in the spatial configuration.

3.2.2 Semidiscrete Formulation

We use NURBS-based isogeometric analysis for the spatial discretization of the
FSI problem. We define finite-dimensional approximations of the functional spaces,
i.e, X f

h , X s
h and Vm

h such that X f
h ⊂ X f , X s

h ⊂ X s , and Vm
h ⊂ Vm. We also

define Yf
h ⊂ Yf , Ys

h ⊂ Ys , and Wm
h ⊂ Wm. The coupled FSI problem (16)

can be approximated by the following variational problem over the finite element
spaces: Find Uh = {ρh, vh, Υh, θh} ∈ X f

h , uh ∈ X s
h and um

h ∈ Vm
h such that

∀Wh = {w1
h,w

2
h,w

3
h,w

4
h} ∈ Yf

h , ∀ws
h ∈ Ys

h and ∀wm
h ∈Wm

h ,

Bf (Wh,Uh; v̂h)+ Bs(ws
h,uh)+ Bm(wm

h ,um
h ) = F s(ws

h), (19)

where

ρh(x, t) =
∑

A∈If
ρA(t)NA(x, t), w1

h(x, t) =
∑

A∈If
w1

ANA(x, t), (20a)

uh(X, t) =
∑

A∈Is
uA(t)N̂A(X), ws

h(X) =
∑

A∈Is
ws

AN̂A(X), (20b)

um
h (x̃, t̃) =

∑

A∈If
ûA(t̃)ÑA(x̃, t̃), wm

h (x̃, t̃) =
∑

A∈If
wm

AÑA(x̃, t̃), (20c)

v̂h(x, t) =
∑

A∈If

∂ûA

∂t
(t)NA(x, t). (20d)

The rest of the variables (vh, θh and Υh) and the weighting functions (w2
h, w3

h and
w4

h) are defined analogously to ρh and w1
h, respectively. In Eq. (20), the N̂A’s are a
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set of basis functions defined on Ω0 that are fixed in time. In the context of IGA,
these functions are splines with controllable continuity. Is denotes the global-index
set of the N̂A’s that correspond to the solid domain. NA is the push forward of N̂A to

the spatial domain Ωt , i.e., NA(x, t) = N̂A ◦ φ̂h
−1

(x, t), where φ̂h
−1

is the discrete

counterpart of φ̂
−1

. Likewise, ÑA is the push forward of N̂A to the spatial domain

at time t̃ , i.e., ÑA(x̃, t̃) = N̂A ◦ φ̂h
−1

(x̃, t̃). If is the global-index set of the NA’s
that correspond to the fluid domain.

We enforce the compatibility conditions at the fluid–structure interface by using
a unique set of trial and test functions for the velocity at the fluid–structure interface.
This leads to strong (pointwise) satisfaction of the kinematics condition and weak
satisfaction of the traction compatibility constraint.

3.2.3 Time Discretization

We use the generalized-α method [19] as a time integration scheme. The nonlinear
system of equations is solved using a Newton–Raphson iteration procedure, which
leads to a two-stage predictor-multicorrector algorithm. The resulting linear system
is solved using a preconditioned GMRES method. To solve the FSI equations, we
adopt a quasi-direct solution strategy (see [85]), where the fluid and solid equations
are solved in a coupled fashion. The mesh motion problem is solved separately,
using input data from the fluid–solid solve.

Let U , U̇ , Ü denote the vectors of control variable degrees of freedom of
the fluid–structure system, and its first and second time derivatives, respectively.
Let V , V̇ , V̈ denote the vectors of control variable degrees of freedom of mesh
displacements, velocities, and accelerations. We define the residual vectors

Rcont = {Rcont
A }, (21a)

Rmom = {Rmom
A,i }, (21b)

Raux = {Raux
A }, (21c)

Rener = {Rener
A }, (21d)

Rmesh = {Rmesh
A,i }, (21e)

where A is a control-variable index and i is an index associated to the spatial
dimensions. The residual components are defined as

Rcont
A = Bf ({NA, 0, 0, 0}, {ρh, vh, Υh, θh}; v̂h), (22a)

Rmom
A,i = Bf ({0, NAei , 0, 0}, {ρh, vh, Υh, θh}; v̂h)

+ Bs(N̂Aei ,uh)− F s(N̂Aei ), (22b)

Raux
A = Bf ({0, 0, NA, 0}, {ρh, vh, Υh, θh}; v̂h), (22c)
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Rener
A = Bf ({0, 0, 0, NA}, {ρh, vh, Υh, θh}; v̂h), (22d)

Rmesh
A,i = Bm(ÑAei ,u

m
h ), (22e)

where ei is the ith cartesian basis vector. The time stepping scheme can be stated as
follows: Given the discrete approximation to the global vectors of control variables
at time tn, namely, Un, U̇n, Ün, V n, V̇ n, V̈ n and the current time step Δt = tn+1−tn
find Un+1, U̇n+1, Ün+1, V n+1, V̇ n+1, V̈ n+1 such that

Rcont (Un+αf
, U̇n+αf

, Ün+αm,V n+αf
, V̇ n+αf

, V̈ n+αm) = 0,

Rmom(Un+αf
, U̇n+αf

, Ün+αm,V n+αf
, V̇ n+αf

, V̈ n+αm) = 0,

Raux(Un+αf
, U̇n+αf

, Ün+αm,V n+αf
, V̇ n+αf

, V̈ n+αm) = 0,

Rener (Un+αf
, U̇n+αf

, Ün+αm,V n+αf
, V̇ n+αf

, V̈ n+αm) = 0,

Rmesh(Un+αf
, U̇n+αf

, Ün+αm,V n+αf
, V̇ n+αf

, V̈ n+αm) = 0, (23)

U̇n+1 = U̇n +Δt((1− γ )Ün + γ Ün+1),

Un+1 = Un +ΔtU̇n + Δt2

2

(
(1− 2β)Ün + 2βÜn+1

)
,

V̇ n+1 = V̇ n +Δt((1− γ )V̈ n + γ V̈ n+1),

V n+1 = V n +ΔtV̇ n + Δt2

2

(
(1− 2β)V̈ n + 2βV̈ n+1

)
, (24)

where

Un+αf
= Un + αf (Un+1 − Un) , (25a)

Un+αm = Un + αm (Un+1 − Un) , (25b)

We choose the parameters αf , αm, γ , and β according to [4]. The nonlinear system
of equations (23) may be solved using a Newton–Raphson iteration procedure; see
[13] for more details.

3.3 Numerical Examples

The solution of very strong implosions at full scale is extremely difficult for two
main reasons. On the one hand, strong implosions usually result in important fluid
mesh distorsions that may require remeshing procedures. On the other hand, very
strong implosions are generally associated to strong temperature reductions in the
fluid. However, the van der Waals equation is significantly less accurate for low
temperatures than for high temperatures. For these reasons, the numerical examples
that we are showing in this work only focus on moderately strong implosions.
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The problems that we are presenting here were solved in a non-dimensional
form. We rescaled the units of measurement of length, mass, time, and temperature
by L0, bL3

0, L0/
√
ab, and θc, respectively, where L0 = 1 denotes a length scale

of the computational domain size. Using this non-dimensionalization, our FSI
problem can be rewritten using seven dimensionless numbers: μ̂ = μ̄/(L0b

√
ab),

γ̂ = (
√
λ/a)/L0, Pr = L0ab

2
√
ab/(θck), c = 8cv/(27R), Ê = (Es/ρs

0ab),
f̂

s = f s/(ab/L0) and the Poisson ratio νs . The dimensionless numbers γ̂ and μ̂

were chosen according to the methodology proposed in [40], which relates these
parameter to the mesh size. In particular, we take

γ̂ = h/L0 and μ̂ = h/(ηL0), (26)

where h is a characteristic length scale of the spatial mesh and η is an O(1) constant.

3.3.1 Implosion of a Vapor-Filled Ring

The first numerical example of phase-change-driven implosion is the collapse
of a vapor-filled ring; see Fig. 4. The circular structure has the external radius
L0 = 1, and the thickness L0/40. The system is initially in thermal and mechanical
equilibrium since we impose along the external surface a follower load of identical
value than the initial vapor pressure. We trigger the implosion by imposing a low
temperature [θD in Fig. 4a] at the fluid–solid interface using the temperature bound-
ary condition. The temperature reduction makes the vapor condensate, reducing the
internal pressure and increasing the density.

Figure 4 shows the time evolution of the density (middle column) and tempera-
ture (right column) in the fluid subdomain. Initially, all the fluid is in gaseous state
(red color in the density plots). The thin grey color that encloses the fluid represents
the structure. The initial value of the fluid density is the one corresponding to
the Maxwell state at θ0 = 0.85. On the fluid–structure interface we apply the
temperature boundary condition θD = 0.5 < θ0. As a consequence, the temperature
of the gas close to the structure is reduced and the vapor turns into liquid (blue);
see Fig. 4d. The pressure decreases inside and the structure is deformed due to the
external pressure. The process continues so that all the gas is transformed into liquid
and the structure is completely collapsed.

3.3.2 Three-Dimensional Implosion of Thin Structures

The second numerical example is the collapse of a three-dimensional box of side
2L0 and thickness L0/40; see Fig. 5. We adopt the same parameters and initial
conditions than in the two-dimensional case, however the collapse is stronger
because the structure is geometrically softer. Figure 5 shows the evolution of the
density (left column) and temperature (middle column). We can observe that the
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Fig. 4 Two-dimensional implosion of a vapor-filled ring. (a) Computational domain. The symme-
try of the problem permits to compute a quarter of the circular domain. The symmetry conditions
for v, ρ, θ , and u are indicated on the left and bottom boundaries. The external pressure p is
modeled as a follower load acting on the structure. We impose the temperature θD and the contact
angle α along the fluid–structure interface. (b) and (c) Initial configuration for the density and the
temperature variables. (b) Initially, the structure (grey) is filled with water-vapor (red). (c) A low
temperature θD = 0.5 (white) is applied at the fluid–structure interface. (d) and (e) plot of density
and temperature at time t = 2.8. The vapor close to the boundaries reduces its temperature and
increases its density, turning into liquid (blue). The pressure inside is reduced and the structure
deforms due to the external load. We have used the parameters μ̂ = 1/256, γ̂ = 0.0078125,
Pr = 0.013, c = 0.73, Ê = 2.25, νs = 0.125

temperature boundary condition triggers the transformation of vapor into liquid
creating a blue area in the density plot that represents liquid water. Panel (e) in
Fig. 5 presents the streamlines of the fluid velocity. As it was expected, the velocity
magnitude is higher close to the solid structure and reduces as we converge to the
central point of the computational domain.

4 Droplet Motion: Tensotaxis

One of the fields that could benefit the most from a computational model for
the interaction of multicomponent fluids and solid structures is droplet dynamics.
A model that allows a better understanding in this area could have important
implications in a wide range of disciplines, such as the design of new materials and
devices at small scales [26, 66, 83], droplet-based microfluidic platforms [1, 31, 70],
or geologic carbon sequestration [18] to name but a few.

Significant efforts have been made in the last decade to understand droplet
motion in deformable substrates. Recently, Style et al. [75] showed that droplets
could undergo durotaxis, that is, motion due to gradients in the stiffness of the
underlying substrate. The experiments conducted by Style revealed that wetting
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Fig. 5 Evolution of density (left column) and temperature (middle column) in a 3D phase-
change-driven implosion. Initially, water-vapor (red) is filling up a hollow structure (a) and a
low temperature θD = 0.5 is applied at the fluid–structure interface (b). The vapor close to the
boundaries increases its density and turns into liquid (blue) (c), while the temperature decreases
close to the solid walls (d). The pressure inside is reduced and the structure deforms due to the
external load. (e) shows the streamlines of the fluid velocity colored with the velocity magnitude.
We have used the parameters μ̂ = 1/256, γ̂ = 0.0078125, Pr = 0.013, c = 0.73, Ê = 2.25,
νs = 0.125

droplets deposited on substrates with non-uniform stiffness move toward the softer
parts of the substrate, in contrast to the behavior previously observed in cells
[57]. This finding has revived the debate about the relevance of mechanics in cell
migration. It seems plausible that at cellular scale capillary forces play an important
role. A theoretical model that allows studying droplet motion on soft substrates
would contribute to a better understanding of the process and would permit to
explore scenarios that are difficult to probe experimentally.

Here, we focus on the case of tensotaxis, that is, motion along strain gradients.
This mechanism is still not well understood although new models have been
proposed in recent years [11, 61]. The main reason is that experimental studies
of this mechanism are particularly challenging because prestraining the substrate
is often followed by an increase in the substrate stiffness due to the nonlinear
material response [54], thus producing a combination of tensotaxis and durotaxis.
We develop a model that allows to isolate the effects of tensotaxis and we carry out
several numerical experiments, which show that liquid droplets on soft substrates
move toward areas of higher compressive strains in agreement with the behavior
observed in cells.

The static configuration that droplets adopt on infinitely rigid and flat substrates
is governed by the Young–Dupré equation [24], γSL + γLV cosα = γSV . Here, α
is the static contact angle, and γLV , γSV , and γSL denote the interfacial tension at
the liquid–vapor, solid–vapor, and solid–liquid interfaces, respectively; see Fig. 6a.
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Fig. 6 Wetting on rigid and deformable substrates at small scales. (a) Liquid droplet (blue)
deposited on a rigid substrate (gray). The shape of the droplet and thus, the static contact angle α,
is given by the Young–Dupré equation. (b) Liquid droplet on a soft substrate (gray). The Laplace
pressure Δp dimples the solid below the droplet and the surface tension γLV produces a ridge at
the contact line. The apparent contact angle ϕ differs from the contact angle α predicted by the
Young–Dupré equation

When the substrate is soft, the Laplace pressure inside the liquid may create a dimple
under the droplet and the elastocapillary forces may produce a ridge at the contact
line. There is a rotation of the liquid–vapor interface [72] and the angle formed
by the liquid–vapor interface and the undeformed surface of the substrate (apparent
contact angle ϕ) differs from α; see Fig. 6b. Elastocapillary forces are relevant when
the elastocapillary length lec = γLV /Es (Es is the Young modulus of the solid) is
comparable to the droplet radius. For values of lec much smaller than the droplet
radius, the deformation of the solid is negligible.

We hypothesize that, for non-zero Poisson ratio and in absence of gravity, forces
applied on the plane of the substrate may cause a strain gradient, which in turn,
has an impact on the apparent contact angle causing an imbalance of forces that
may trigger the motion of the droplet towards the compressed part of the solid. To
verify our hypothesis, we have adapted the model presented in Sect. 3. Most models
for the interaction of droplets and deformable substrates that have been presented
so far are based on thin film descriptions of the fluid problem and linear elastic
solids [50, 73]. The approaches are variational and allow computing a minimum-
energy configuration. We use a three-dimensional model that couples the nonlinear
dynamics of a solid with a fluid composed of a liquid and a gaseous phase. Using
this computational approach, we mimic the cell locomotion experiments reported in
[57]. A microneedle is inserted into the substrate and exerts a force either toward
the droplet or away from the droplet.

4.1 Governing Equations

In order to avoid the combination of tensotaxis and durotaxis, we propose an FSI
model in which the solid is defined by a Saint Venant–Kirchhoff theory. This choice
allows to consider geometric nonlinearities with a linear material response. The fluid
is governed by the isothermal Navier–Stokes–Korteweg equations (see Sect. 3.1)
allowing for the stable coexistence of a liquid and a gaseous phase.
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4.1.1 Solid Mechanics Equations

The behavior of the solid is described by the Lagrangian form of the momentum
balance equation; see Eq. (3). In this case, to define the first Piola–Kirchhoff stress
tensor P , we adopt a Saint Venant–Kirchhoff constitutive theory [7, 59]. The stored
elastic energy density takes the form

W = λs

2
(tr(E))2 + μs tr(E2). (27)

Here, λs and μs are the first and second Lamé parameters, which can be written as
a function of the Young modulus Es and the Poisson ratio νs : λs = νsEs/((1 +
νs)(1− 2νs)) and μs = Es/(2(1+ νs)).

4.2 Numerical Formulation

The computational approach adopted for this problem is identical to that used for
the implosion example; see Sect. 3.2. The reader is referred to [12] for more details.

4.3 Numerical Examples

The results presented in this section are in non-dimensional form. Our FSI problem
can be defined using six dimensionless numbers: a dimensionless viscosity μ̂ =
μ̄/(L0b

√
ab), a dimensionless surface tension γ̂ = (

√
λ/a)/L0, a dimensionless

temperature θ̂ = θ/θc, a dimensionless Young modulus Ê = (Es/ρs
0ab), a

dimensionless body force f̂
s = f s/(ab/L0), and the Poisson ratio νs .

4.3.1 Unraveling Droplet Tensotaxis

The first numerical example that we carried out mimics the experiments conducted
for cells [57]; see Fig. 7. The left panels in Fig. 7 correspond to the case in which

�
Fig. 7 (continued) moves in the direction of the applied force. The dashed black line represents the
position of the droplet at the initial time. (e) and (f) Time evolution of the apparent contact angles
at the left (blue line) and right (red line) contact lines of the droplet. The difference in apparent
contact angles between the two contact lines is responsible for the motion of the droplet. (g) and (h)
Droplet velocity with respect to time for different Poisson ratios νs . (i) and (j) Droplet velocity with
respect to the position of the droplet center Xc. In all cases the velocity is reduced as the Poisson
ratio drops, and for νs = 0 the applied force induces no droplet motion. The computational domain
is the rectangle Ω = [0, 1.0] × [0, 0.5], which is discretized with a uniform mesh of 128× 64 C1-
quadratic elements. The static contact angle is α = 75◦. We have used the parameters νs = 0.45,

μ̂ = 1/256, γ̂ = 1/64, Ê = 0.7554, θ̂ = 0.39, and
∣
∣
∣f̂

s
∣
∣
∣ = 0.16215
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Fig. 7 Mechanism of tensotaxis. Left panels refer to the case in which the applied force pulls the
droplet. In the right panels the applied force pushes the droplet. (a) and (b) Initial configuration
of a droplet on a deformable substrate. We apply a force per unit mass that points away from
the droplet (a) and toward the droplet (b) in the marked rectangular region. (c) and (d) The droplet
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we pull the droplet. The right panels present the results when we push the droplet.
The effect of the needle is modeled as a horizontal force per unit mass applied
on a localized area; see striped area in panels (a) and (b). Our results show that
droplets move in the direction of the applied force, in agreement with the behavior
observed in cells; see panels (c) and (d) in which the black dashed line represents
the initial position of the droplets. The applied load produces vertical displacements
in the solid, as it would be expected in a material with a nonzero Poisson ratio. The
vertical displacements are positive where the load induces compressive stresses, and
negative on the side where the load induces tensile stresses. As a consequence, there
is a rotation of the contact lines, that is, the solid deformation produces different
apparent contact angles at each of the contact lines [panels (e) and (f)], leading to an
imbalance of horizontal forces. The tensotaxis mechanism is independent of gravity,
which is neglected in our simulations.

From the velocity plots in Fig. 7 we can see the different behavior of the droplets
depending on the direction of the applied force. Pulling produces increasing droplet
velocities as the contact line approaches the region where the external force is
applied. However, at certain point the velocity decreases and the droplet gets trapped
in the loaded area; see panels (g) and (i). On the other hand, pushing repels the
droplet monotonically with a time-decreasing velocity magnitude; see panels (h)
and (j). We have repeated the same computations for different Poisson ratios; see
grey curves in panels (g)–(j). The results show that the maximum droplet velocity
increases with the Poisson ratio νs . When νs = 0 the droplet remains immobile,
which is consistent with the proposed mechanism.

4.3.2 Three-Dimensional Tensotaxis

We have also performed three-dimensional simulations of tensotaxis in order to
obtain a more faithful reproduction of the reality. In the left column of Fig. 8, we
present the 3D analogue of the needle experiment. The external load applied at the
center of the substrate induces droplet motion in the direction of the force; see panel
(b). Panel (c) shows the vertical displacements induced by the external load, the
surface tension at the liquid–vapor interface and the Laplace pressure inside the
droplet. The vertical displacements are positive where the load induces compressive
stresses. Negative displacements occur under the droplet and on the side where the
load induces tensile stresses. In the right column of Fig. 8 we use tensotaxis to
induce the coalescence of two liquid droplets of different sizes. The droplets are
“pushed” toward each other by the action of two localized forces; see panel (d).
The droplets approach each other and eventually coalesce in a single droplet. The
resulting droplet is trapped by the forces of different sign, which illustrates the
potential of tensotaxis to manipulate liquid droplets. Note that the presence of
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Fig. 8 Three-dimensional droplet motion triggered by tensotaxis. Left panels present the 3D
analogue of the needle experiment. Right panels show how tensotaxis can be used to induce
the coalescence of liquid droplets. (a) A liquid droplet is deposited on a deformable substrate.
A horizontal force is applied at the center of the substrate. (b) The droplet moves in the direction
of the applied force. (d) Two forces of the same magnitude are applied on the substrate, pushing
the droplets towards the center of the domain. (e) When the droplets are sufficiently close, capillary
forces promote coalescence of the two droplets. The black, dashed line indicates the initial position
of the droplet. (c) and (f) Vertical displacement of the solid–liquid interface at the diagonal plane
[green color in panels (b) and (e)] at different times. In both experiments the computational domain
Ω = [0, 0.8]× [0, 0.8]× [0, 0.4] is discretized with 80× 80× 40 C1-quadratic elements. We have
adopted νs = 0.45, μ̂ = 1/200, γ̂ = 1/50, Ê = 0.7554, θ̂ = 0.39, and α = 75◦. The load that

triggers droplet motion is a body force per unit mass of value
∣
∣
∣f̂

s
∣
∣
∣ = 1.376 and

∣
∣
∣f̂

s
∣
∣
∣ = 2.7519 for

the left and right columns, respectively

multiple droplets increases the complexity of the problem, as we must consider
their mechanical interactions through the deformable substrate, as well as through
the fluid domain.
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5 Ellastocapillarity

The FSI models presented so far describe the physics of single-component two-
phase flows interacting with hyperelastic structures. However, there are a number
of physical and engineering problems in which the fluid is not formed by phases of
the same component. It is the case, for example, of gas injection for oil recovering,
fuel sprays in combustion processes, air-water flows, etc. For modeling this kind of
problems, we propose a computational model that couples nonlinear hyperelastic
solids with two-component immiscible fluids described by the Navier–Stokes–
Cahn–Hilliard (NSCH) equations.

We use the proposed theory to study a variety of problems in which capil-
lary forces at fluid–fluid interfaces deform soft and/or slender structures. This
phenomenon—elastocapillarity [68, 74]—can be observed, for example, when
water interacts with hair and other flexible fibers, which tend to assemble into
bundles [10, 30]. However, it is in micro and nanotechnologies, where the effect of
elastocapillary forces is sparking greatest interest. Understanding elastocapillarity is
essential for the design of new materials and devices at small scales. Capillary forces
can damage microelectromechanical structures [66, 83] and carbon nanotube carpets
[16]. However, under control, they can be used as a fabrication technique to deform
straight pillars and build complex and robust 3D geometries at the micrometer
and nanometer scales [26, 84]. We think that our theory could be a useful tool
to understand elastocapillary phenomena and thus, contribute to a better design of
manufacturing processes at small scales.

5.1 Governing Equations

In our model, the behavior of the structure will be governed by the momentum
balance equation, which has been previously presented in Sect. 3.1; see also [14].
The dynamics of the fluid system is governed by the Navier–Stokes–Cahn–Hilliard
equations, which describe the behavior of two immiscible and incompressible fluids
with matched density and viscosity. The ALE form of the NSCH equations can be
written as follows:

∇ · v = 0, (28a)

ρ

(
∂v

∂t

∣
∣
∣
∣
x̂

+ (v − v̂) · ∇v

)

−∇ · σ f = 0, (28b)

∂ψ

∂t

∣
∣
∣
∣
x̂

+ (v − v̂) · ∇ψ − ∇ ·
(

MψγLG∇
(

1

ε
W ′ψ − εΔψ

))

= 0, (28c)
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where v̂ is the velocity of the fluid domain [4], ρ is the fluid density that we
consider to be constant, f represents body forces per unit mass, and ψ ∈ [−1, 1]
is the phase-field variable. Wψ is a double-well potential, which we define as

Wψ =
(
ψ2 − 1

)2
/4. The constant γLG denotes the liquid–gas surface tension and

ε is the interface thickness. Mψ represents the mobility, which is assumed to be
constant for the examples presented herein. The fluid Cauchy stress tensor σ f is
given by σ f = τ − pI − γLGε∇ψ ⊗ ∇ψ, Here, p represents the mechanical
pressure and τ is the viscous stress tensor of an incompressible Newtonian fluid,
i.e., τ = μ̄

(∇v +∇T v
)
, where μ̄ is the viscosity coefficient. We will assume that

the viscosity μ̄ is a constant parameter for the problems presented in this work.
In the fluid mechanics problem we focus on solid-wall boundary conditions by

setting the velocity to a given value. Additionally, and with the purpose of attaining
well-posedness in the NSCH system, we impose the following boundary conditions
on the phase-field variable,

∇ψ · nf = |∇ψ | cos(α) on Γt , (29a)

∇ψ · nf = 0 on Γ
f
t , (29b)

and

MψγLG∇
(

1

ε
W ′ψ − εΔψ

)

· nf = 0 on Γ
f
t ∪ Γt , (30)

where nf is the unit outward normal to the fluid boundary and α denotes the contact
angle between the fluid–fluid interface and the solid, measured in the phase of value
ψ = 1. The imposition of boundary condition (29) can be notably simplified by
introducing in our problem a new variable Υ = Δψ . This implies that the phase-
field equation (28c) is split into two lower-order equations, allowing to use the
classical finite element method for the spatial discretization of the problem.

5.2 Numerical Formulation

The numerical scheme for our FSI problem is similar to those presented in [4]
and [13]. We solve the coupled system composed by Eqs. (3) and (28) subject
to the kinematic compatibility and traction balance constraints. We compute the
variational form of the system and discretize in space using isogeometric analysis.
The reader is referred to [14] for more details.
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5.2.1 Semidiscrete Formulation

We use NURBS-based isogeometric analysis for the spatial discretization of the
problem. Additionally, in order to stabilize the NSCH equations, we make use of
the VMS method and split the weighting and the trial solution spaces corresponding
to the pressure and the velocity field into a coarse and a fine scale subspaces. Let
H 1 be the Sobolev space of square-integrable functions with square-integrable first
derivatives. We denote by Xψ

h and XΥ
h a finite-dimensional aproximation of the

trial solution spaces for Υ and ψ , respectively. Xψ
h and XΥ

h are subsets of H 1(Ω
f
t ).

Let Yψ
h and YΥ

h be the corresponding finite-dimensional weigthing function spaces.

Yψ
h and YΥ

h are identical to Xψ
h and XΥ

h , respectively. Analogously, let us define
a finite-dimensional trial solution space for the coarse scales of v and p, which we
denote by X v

h and X p
h , respectively. X v

h is a subset of H 1(Ω
f
t ) whose members

satisfy all Dirichlet boundary conditions. The weighting function space for p, i.e.,
Yp
h is identical to X p

h . Let X s
h and Vm

h be a finite-dimensional approximation of
the trial solution spaces for the solid and mesh displacement variables u and um,
respectively. X s

h and Vm
h are subsets of H 1

(
Ωs

0

)
and H 1(Ω

f

t̃
), respectively, whose

members satisfy all Dirichlet boundary conditions; see Sect. 3.2 for more details on
the fluid mesh motion problem. Finally, we denote by Ys

h and Wm
h the corresponding

finite-dimensional weighting function spaces, which are identical to X s
h and Vm

h ,
except that all restrictions on the Dirichlet boundary are homogeneous.

With the previous considerations, we can approximate our FSI problem by the
following variational formulation over the finite element spaces: Find ph ∈ X p

h ,

vh ∈ X v
h , ψh ∈ Xψ

h , Υh ∈ XΥ
h , uh ∈ X s

h and um
h ∈ Vm

h such that ∀w1
h ∈ Yp

h ,

w2
h ∈ Yv

h , w3
h ∈ Yψ

h , w4
h ∈ YΥ

h , ws
h ∈ Ys

h and wm
h ∈Wm

h ,

B
f
MS(w

1
h,w

2
h,w

3
h,w

4
h, ph, vh, ψh, Υh; v̂h)+Bs(ws

h,uh)+Bm(wm
h ,um

h )=F s(ws
h),

(31)

where Bs and F s constitute the weak form of the solid equations defined in Eqs. (10)
and (11), respectively. Bm denotes the weak form of the mesh motion problem; see
Eq. (15). Finally, Bf

MS stands for the stabilized weak form of the fluid problem, i.e.,

B
f
MS(w

1
h,w

2
h,w

3
h,w

4
h, ph, vh, ψh, Υh; v̂h) =

∫

Ω
f
t

w1
h∇ · vhdΩf

t

+
∫

Ω
f
t

w2
h · ρ

(
∂vh

∂t

∣
∣
∣
∣
x̂

+ (vh − v̂h) · ∇vh

)

dΩf
t +

∫

Ω
f
t

∇w2
h : σ f

h dΩf
t

+
∫

Ω
f
t

w3
h

(
∂ψh

∂t

∣
∣
∣
∣
x̂

+ (vh − v̂h) · ∇ψh

)

dΩf
t

+
∫

Ω
f
t

∇w3
h ·MψγLG∇

(
1

ε
W ′ψ − εΥh

)

dΩf
t
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+
∫

Ω
f
t

w4
hΥhdΩf

t +
∫

Ω
f
t

∇w4
h · ∇ψhdΩf

t −
∫

Γt

w4
h|∇ψh| cos(α)dΓt

+
nel∑

e=1

∫

Ω
f,e
t

τSUPS

(

(vh − v̂h) · ∇w2
h +
∇w1

h

ρ

)

· rMdΩf
t

+
nel∑

e=1

∫

Ω
f,e
t

νLSICρ∇ · w2
hrCdΩf

t −
nel∑

e=1

∫

Ω
f,e
t

τSUPSw2
h · (rM · ∇vh) dΩf

t

−
nel∑

e=1

∫

Ω
f,e
t

∇w2
h

ρ
: (τSUPSrM ⊗ τSUPSrM) dΩf

t

−
nel∑

e=1

∫

Ω
f,e
t

τSUPS

ρ
w3

hrM · ∇ψhdΩf
t (32)

Here, nel is the total number of elements on the fluid mesh and Ω
f,e
t the region of

the physical space occupied by element e at time t . In Eq. (32), rM and rC are given
by

rM = ρ

(
∂vh

∂t

∣
∣
∣
∣
x̂

+ (vh − v̂h) · ∇vh

)

−∇ · σ f
h , (33a)

rC = ∇ · vh, (33b)

where σ
f
h = μ̄

(∇vh +∇T vh

) − phI − γLGε∇ψh ⊗ ∇ψh. For the stabilization
parameters τSUPS and νLSIC we use the expressions

τSUPS =
(

4

Δt2
+ (vh − v̂h) ·G (vh − v̂h)+ CIν

2G : G
)−1/2

, (34a)

νLSIC = (tr(G) τSUPS)
−1 , (34b)

where Δt is, in a time-discrete context, the time step; CI = 1/12 is a positive
constant; ν is the kinematic viscosity; and G denotes the element metric tensor [7].

5.2.2 Time Integration

For the time integration we adopt the generalized-α method. The nonlinear system
of equations is solved using a Newton–Raphson iteration procedure; see [14].
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5.3 Numerical Examples

5.3.1 Static Wetting on Soft Substrates

The static configuration that single droplets adopt at small scales on flat and
infinitely rigid substrates is relatively well understood. It is known that droplets tend
to form a spherical cap with an equilibrium contact angle α given by Young–Dupré
equation [23], i.e., α = arccos[(γSG − γSL)/γLG]; γSG and γSL denote the inter-
facial tension at the solid–gas and solid–liquid interfaces, respectively. However,
when droplets interact with sufficiently soft solids, Young–Dupré equation breaks
down. This happens for droplets smaller than the elastocapillary length scale lec =
γLG/Es . In these cases, the Laplace pressure inside the droplet creates a dimple
in the wet area and capillary forces produce a ridge at the contact line. We show
that our model can successfully predict this phenomenon by reproducing one of the
experiments reported in [72]; see Fig. 9. A glycerol droplet of radius R = 225.5 μm
is deposited on a soft substrate with Young modulus Es = 3.0 kPa. The droplet
deforms the substrate as shown on the left panel of Fig. 9. The contact angle α

imposed at the fluid–structure interface is larger than the apparent contact angle
(measured with respect to the undeformed surface of the substrate). Analogously to
[88], we compare our measurements of the vertical displacements at the fluid–solid
interface close to the contact line with the experimental data reported in [72]; see
right panel in Fig. 9. The results show a good agreement between both curves.

Fig. 9 Glycerol droplet deposited on a soft substrate. Stationary configuration (left) and vertical
displacements of the fluid–solid interface y close to the contact line (right). dc in the horizontal
axis represents the distance to the center of the droplet. The blue points are the experimental
measurements reported in [72]. The computational results are reported at t = 21.0ms (red),
when the solution is considered to be stationary. The horizontal dashed line y = 0 corresponds
to the fluid–solid interface before deformation. We use a uniform mesh of 400 × 200 quadratic
elements. We adopted the values of surface tension reported in [72], i.e., γLG = 46.0 mN/m,
γSA = 31 mN/m and γSL = 36 mN/m. For the viscosity and density parameters, we use
values for glycerol: μ = 1412.0 mPa s and ρ = 1.26 pg/μm3. We took ε = 2.0 μm and
Mψ = 0.1 μm3μs/pg. The parameters for the solid correspond to a silicone gel with Es = 3.0 kPa,
νs = 0.499 and ρs = 12.6 pg/μm3
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5.3.2 Capillary Origami

We use our theory to simulate the spontaneous wrapping of glycerol droplets with
elastic membranes in two and three dimensions; see Fig. 10. We place a semicircular
droplet (blue) of radius R = 146.0 μm on an elastic membrane (grey) and let the
capillary forces fold the membrane in absence of gravity forces; panels (a) and
(d) show the setup of the problem. In the two-dimensional problem we impose
different contact angles α along the fluid–structure interface. In particular, we
show the results for two cases, α = 60◦ [panel (b)] and α = 120◦ [panel (C)].
The capillary forces are able to deform the structure, which gradually wraps the
droplet. The configurations adopted by the system differ considerably depending
on the contact angle at the fluid–solid interface. The results suggest that droplet
encapsulation occurs faster for more wetting fluids. This observation can be used to
have better control in the process of self-assembly of micro- and nano-structures.
Figure 10b, c also show the streamlines of the fluid velocity at times t = 0.065 s
and t = 0.302 s, respectively. The flow inside the droplet is predominantly vertical.
Outside the droplet, the membrane’s motion produces well-defined vortices.

Fig. 10 Spontaneous wrapping of glycerol droplets in 2D (upper panels) and 3D (lower panels).
(a) Initial condition. A semicircular droplet (blue) is deposited on an elastic membrane (grey).
(b) and (c) Current configuration for two different contact angles: α = 60◦ and α = 120◦ at
t = 0.065 s and t = 0.302 s, respectively. Panels (b) and (c) also show the streamlines of the
fluid velocity colored with the velocity magnitude. The arrows present the direction of the velocity
field. (d) Initial configuration of the 3D problem. The elastic membrane is clamped to the lateral
boundaries of the computational domain. (e) Capillary forces fold the membrane and lead to the
partial wrapping of the liquid droplet. (f) A wrinkling instability is developed on the structure,
triggered by the non-axisymmetric shape of the membrane. We use a uniform mesh of 200 × 100
and 100× 100× 50 quadratic elements for the 2D and 3D problems, respectively. The parameters
employed in this computation for the fluid correspond to a glycerol droplet, i.e., μ = 1412.0 mPa s,
γLG = 46.0 mN/m, and ρ = 1.26 pg/μm3. We also take Mψ = 0.1 μm3μs/pg, νs = 0.45, and
ρs = 12.6 pg/μm3. For the 2D case, we have adopted ε = 5.0 μm and Es = 30.0 kPa, νs = 0.45.
In the 3D problem, ε = 10.0 μm and Es = 0.6 kPa
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In the three-dimensional problem [Fig. 10d–f] the elastic membrane covers an
entire horizontal plane of the computational domain. The solid structure is clamped
to the lateral boundaries, where we are preventing the motion in normal and vertical
directions. The droplet is a wetting liquid that forms a static contact angle of α =
60◦ with the elastic membrane. Panels (e) and (f) show an upper and bottom view
of the problem, respectively. The surface tension at the interface folds the solid
resulting in the partial wrapping of the droplet; see panel (e). The initial square shape
of the elastic membrane leads to a non-axisymmetric deformation of the structure
and results in the formation of wrinkles; see panel (f). Different patterns of the
wrinkling instability could be obtained for different values of surface tension and
solid stiffness [15, 42].

5.3.3 Wetting of Elastic Micropillars

At small scales, capillary forces may deform or even collapse slender structures.
Surface tension may cause important damage in microelectromechanical systems
[66], destroy micropatterns in photoresist materials [68], or produce the collapse
of carbon nanotube carpets [53]. For this reason, wetting of fibrous media has
been widely studied in recent years. However, most of the efforts focused on rigid
fibers. Here, we use our FSI model to study quantitatively the deformation of elastic
micropillars produced by capillary forces; see Fig. 11. We place a small amount of
liquid (blue) between two micropillars (grey) and let capillary forces deform the
fibers. The micropillars are clamped at the bottom, where we are preventing the
displacements in horizontal and vertical directions. Panels (b) and (c) show how
surface tension deforms the fibers and brings them closer to each other, which, in
turn, produces the rise of the liquid. The insets in panels (b) and (c) present the mesh

Fig. 11 Wetting of elastic micropillars. (a) Setup of the problem. A small amount of liquid (blue)
is placed between two elastic micropillars (grey). (b) and (c) show the configuration of the problem
at two different time instants. The capillary forces deform the fibers producing the rise of the
liquid. The computational domain is discretized with a uniform mesh of 2002 quadratic elements.
We use a wetting liquid with contact angle α = 60◦. The parameters are μ = 1412.0 mPa s,
γLG = 46.0 mN/m, ε = 2.5 μm, ρ = 1.26 pg/μm3, Mψ = 0.1 μm3μs/pg, Es = 320.0 kPa,
νs = 0.45 and ρs = 12.6 pg/μm3



Interaction of Multiphase Fluids and Solid Structures 161

distortion close to the tip of the micropillars. We have compared the deformation
of the fibers for different amounts of liquid (not shown here) and we observed
that the volume of liquid plays a key role in the dynamics of the problem. For a
given geometrical configuration, larger volumes of liquid produce larger and faster
deformations of the structure.
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Immersogeometric Analysis of
Bioprosthetic Heart Valves, Using the
Dynamic Augmented Lagrangian Method

Ming-Chen Hsu and David Kamensky

Abstract In the mid-2010s, we began applying a combination of isogeometric anal-
ysis and immersed boundary methods to the problem of bioprosthetic heart valve
(BHV) fluid–structure interaction (FSI). This chapter reviews how our research
on BHV FSI (1) crystallized the emerging concept of immersogeometric analysis,
(2) introduced a new semi-implicit numerical method for weakly enforcing con-
straints in time dependent problems, which we refer to as the dynamic augmented
Lagrangian approach, and (3) clarified the important role of mass conservation in
immersed FSI analysis. We illustrate these contributions with selected numerical
results and discuss future improvements to, and applications of, the computational
FSI techniques we have developed.

1 Introduction

Heart valves are passive anatomical structures driven by hemodynamic forces. They
ensure proper unidirectional blood flow through the heart. At least 280,000 diseased
valves are replaced annually [1, 2]. The most popular replacements are bioprosthetic
heart valves (BHVs), fabricated from biologically derived materials [3]. Like native
valves, BHVs consist of flexible leaflets. BHVs have more natural hemodynamics
than the older “mechanical” prosthesis designs, which consist of rigid moving
parts [2]. However, the lifespans of typical BHVs remain limited to ∼10–15
years, with structural deterioration mediated by fatigue and tissue mineralization
[1, 2, 4, 5]. Much research has sought to prevent mineralization, but methods to
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extend durability remain less explored. Central to such efforts is an understanding
of the stresses in BHV leaflets over the cardiac cycle.

Computational methods may be used for stress analysis of heart valves. Some
previous computational studies on heart valve mechanics used (quasi-)static [6, 7]
and dynamic [8] structural analysis, with assumed pressure loads. However, pure
structural analysis is only accurate for static pressurization of a closed valve, which
represents just part of the full cardiac cycle. It is therefore important to simulate the
dynamics of heart valves interacting with blood, using computational fluid–structure
interaction (FSI).

1.1 Computational FSI Analysis of Heart Valves

Heart valves present several challenges for FSI analysis. Most notably, the valve
leaflets contact one another, changing the fluid subdomain’s topology. This section
updates the literature review of [3] to cover some additional recent work. Standard
arbitrary Lagrangian–Eulerian (ALE) [9–11] or deforming-spatial-domain/space–
time (DSD/ST) [12, 13] formulations, which continuously deform the fluid domain
from some reference configuration, are no longer directly applicable. One must aug-
ment these methods with special techniques to handle extreme deformations. One
solution is to generate a new mesh of finite elements or volumes for the fluid domain
whenever its deformation becomes too extreme [14–17]. This allows computations
to proceed, but introduces additional computational cost and numerical errors. Some
recent work by Takizawa and collaborators [18] introduced a novel space–time with
topology change (ST-TC) method that permits topology change without re-meshing.
Takizawa et al. [19] applied the ST-TC approach to CFD analysis of a heart valve,
and later extended the approach to include sliding interfaces in [20, 21], rendering
it suitable for future full FSI analysis.

In light of the aforementioned difficulties, the majority of work to-date on heart
valve FSI analysis has invoked Peskin’s immersed boundary concept [22]. While it
is not a universal convention, we follow [23–25] in applying the term “immersed
boundary method” broadly, to describe any numerical method for approximating
partial differential equations (PDEs) that allows boundaries of the PDE domain
to cut arbitrarily through a computational mesh. Researchers may have varying
interpretations of the term “immersed boundary method,” and we recommend that
writers clarify its meaning within a particular document.

Immersed boundary methods for FSI greatly simplify treatment of large struc-
tural deformations, but engender several disadvantages relative to ALE and DSD/ST
techniques [26]. In particular, they struggle to efficiently capture boundary layer
solutions near fluid–structure interfaces. Takizawa et al. [27] found that resolving
such layers is essential to obtaining accurate shear stresses in hemodynamic
analysis. A comprehensive overview of various immersed boundary methods and
their properties is beyond the scope of this literature review; we refer the interested
reader to [23, 24].

Peskin introduced the immersed boundary concept specifically to meet the
demands of heart valve FSI analysis [22]. The numerical method proposed by
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Peskin has found little if any direct application by bioengineers, though, due to
its crude representation of the heart valve as a collection of markers connected
by elastic fibers. However, deficient modeling of the structure subproblem is not
an inherent feature of immersed boundary methods. In the early 2000s, [28–
33] used an immersed boundary method introduced in [34] to couple finite
element discretizations of heart valves and blood flow. This allowed investigation
of various constitutive models, but numerical instabilities prevented analysis at
realistic Reynolds numbers and transvalvular pressures. Increasing availability of
parallel computing resources in the 2010s led to higher resolution simulations of
heart valves. Griffith [35] adapted Peskin’s original method to modern distributed-
memory computer architectures and included adaptive mesh refinement for the fluid
subproblem, to compute FSI of a native aortic valve throughout a full cardiac
cycle, with physiological flow velocities and pressure differences. Borazjani [36]
applied the curvilinear immersed boundary (CURVIB) method [37, 38] to simulate
systolic ejection through a bioprosthetic aortic valve, using nearly 10 million grid
points in the fluid domain. The valve leaflet models in the studies by Griffith
and Borazjani suffered from deficiencies, though, with [35] modeling the leaflets
in the style of Peskin, as markers connected by elastic fibers, and [36] omitting
bending stiffness. The CURVIB method was recently extended to include fluid–
shell structure interaction in [39, 40].

The immersed analyses cited above relied on academic research codes. As
early as the late 1990s, immersed methods in the commercial software LS-
DYNA [41] were used for FSI simulations of bioprosthetic and native aortic
valves [42–45]. The time-explicit procedures used by LS-DYNA result in severe
Courant–Friedrichs–Lewy conditions [46, 47], limiting stable time step size in
hemodynamic computations, because blood is nearly incompressible. References
[44, 45] circumvented this difficulty by artificially reducing the sound speed by
a significant factor, reporting that the fluid density variations introduced by this
deliberate modeling error were negligible. Other commercial analysis software for
heart valve FSI analysis may be usable through “black box” coupling algorithms
[48] that connect independent finite element analysis and CFD programs without
access to their internal details. Specialized methods are required for stable and
efficient black box coupling of fluids to thin, light structures such as heart valve
leaflets [49, 50]. Astorino et al. [51] applied a novel black box coupling algorithm
to FSI analysis of an idealized aortic valve. Remeshing functionality in ANSYS
software has also recently allowed for boundary-fitted simulations of heart valves
[52].

1.2 Immersogeometric Analysis

Following the majority of the studies cited in Sect. 1.1, our own work has employed
an immersed approach to heart valve FSI analysis. The goal of immersed methods
has always been to simplify the construction of analysis-suitable computational
models from available geometric data specifying the domain of a PDE system.
Traditional immersed boundary analysis eases this process by allowing subproblems
to be discretized separately, then coupled through a numerical method.
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Another technology for simplifying computational model generation is isogeo-
metric analysis (IGA) [53]. IGA is based on the insight that many geometries in
engineering design are specified in spline spaces that can be enriched, then used to
approximate PDE solutions. These spline spaces also have desirable mathematical
properties, including control over smoothness, improved approximation power [54],
and straightforward constructions of discrete de Rham complexes [55, 56]. Benefits
of these properties are evident in fluid and structural analyses, including studies
of incompressible flow [57–60], thin shells [61–64], extreme mesh distortion [65],
and contact [66, 67]. IGA encounters difficulties, though, when faced with realistic
engineering designs. Foremost among these are:

1. Many designs of volumes are specified in terms of bounding spline surfaces. If
analysts wish to solve PDEs in such volumes, then IGA, as originally conceived,
is inapplicable.

2. Spline surfaces in designs are frequently trimmed along curves that do not
conform to the parametric supports of the spline space’s basis functions. The
analysis space suggested by standard IGA is therefore not fitted to the boundaries
of the PDE domain.

These challenges could be addressed by changing the way in which engineering
products are designed: designers could transition to geometry representations that
are analysis-suitable. Changing the habits of designers throughout industry, though,
would require an incredible feat of mass persuasion. Undeterred, creators of
analysis-suitable design technologies (e.g., [68–70]) have succeeded at incorporat-
ing their work into some major commercial design platforms. It remains doubtful,
though, that analysis-suitable design will become standard any time soon. Further,
many designs specified in past formats will remain relevant long into the future.

One way to make IGA practical without changing the design process is to
incorporate immersed boundary methods. Difficulty 1 can be alleviated by creating
a convenient unfitted analysis space covering the volume of interest, then using an
immersed boundary method to enforce the desired boundary conditions on the spline
surfaces. Difficulty 2 can be addressed by using the natural isogeometric solution
space, and treating the trim curves as immersed boundaries. Promising work in both
of these directions has been carried out using an immersed boundary approach called
the finite cell method [71–75]. In addition to patching weaknesses of IGA, direct
application of immersed boundary techniques to design geometries can eliminate
the meshing and consequent geometrical approximation1 from traditional immersed
boundary analysis. In [77], we introduced the term immersogeometric analysis
(IMGA) to describe this symbiotic union of immersed boundary and isogeometric
technologies.2

1In practice, immersogeometric methods must frequently approximate integrals over the domain
geometry, which may be considered a type of geometrical approximation [76, Sections 4.3 and 4.4],
but this is conceptually distinct from the direct alteration of domain geometry that occurs in
traditional mesh generation.
2The word “immersogeometric” was originally coined in 2014 by T. J. R. Hughes, while traveling
in Italy; it is derived from the Italian word immerso, meaning “immersed.”
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1.3 Structure and Content of This Chapter

Section 2 states the coupled PDEs that we use to model the FSI system. Sec-
tion 3 describes the isogeometric spatial discretizations for the fluid and structure
subproblems. Section 4 completes the discretization with a semi-implicit coupling
scheme that we call the dynamic augmented Lagrangian (DAL) method. Section 5
demonstrates the accuracy of the proposed methods, looking at both norm conver-
gence and quantities of interest in nonlinear benchmark problems. Section 6 applies
DAL-based IMGA to BHV FSI simulation and compares the results to in vitro
experimental work. Finally, Sect. 7 sketches some future developments that may
improve on the technology described in this chapter, connect it to clinical practice,
and apply it to other FSI problems.

2 Mathematical Model of FSI

We model BHV leaflets as Kirchhoff–Love thin shells. We model the surrounding
fluid as incompressible and Newtonian. The subproblems are coupled through
kinematic and dynamic conditions on the fluid–solid interface. The thin structure
is modeled geometrically as a 2D surface embedded in the 3D fluid domain. We
state the model in a weak form, which is both suggestive of finite-dimensional
approximations and conducive to including distributional forces from immersed
boundaries.

Remark 1 We do not include a condition that the structure cannot intersect itself.
Inclusion of such a constraint would be redundant in light of FSI kinematics, since
a continuous velocity field is defined throughout the fluid–structure continuum [78].
While it is, in practice, useful to include some specialized treatment of structure-
on-structure contact in a numerical method, we consider that a feature of the
discretization, not the mathematical model.

2.1 Augmented Lagrangian Formulation of FSI

We start from the augmented Lagrangian framework for FSI introduced by Bazilevs
et al. [79], and specialize to the case of thin structures. The region occupied by
fluid at time t is (Ω1)t ⊂ R

d . The structure geometry at time t is modeled
by the hypersurface Γt ⊂ (Ω1)t . Let u1 denote the fluid’s velocity and p

denote its pressure. Let y denote the structure’s displacement from some reference
configuration, Γ0, and u2 ≡ ẏ denote the velocity of the structure. The fluid–
structure kinematic constraint, u1 = u2 on Γt , is enforced by the augmented
Lagrangian

∫

Γt

λ · (u1 − u2) dΓ + 1

2

∫

Γt

β|u1 − u2|2 dΓ , (1)
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where λ is a Lagrange multiplier and β ≥ 0 is a penalty parameter. The resulting
variational problem is: Find u1 ∈ Su, p ∈ Sp, y ∈ Sd , and λ ∈ S� such that, for all
test functions w1 ∈ Vu, q ∈ Vp, w2 ∈ Vd , and δλ ∈ V�

B1({u1, p}, {w1, q}; û)− F1({w1, q})

+
∫

Γt

w1 · λ dΓ +
∫

Γt

w1 · β(u1 − u2) dΓ = 0 , (2)

B2(y,w2)− F2(w2)

−
∫

Γt

w2 · λ dΓ −
∫

Γt

w2 · β(u1 − u2) dΓ = 0 , (3)

∫

Γt

δλ · (u1 − u2) dΓ = 0 , (4)

where Su, Sp, Sd , and S� are the trial solution spaces for the fluid velocity, fluid
pressure, structural displacement, and interface Lagrange multiplier solutions. Vu,
Vp, Vd , and V� are the corresponding test spaces. B1, B2, F1, and F2 are forms
defining the (weak) fluid and structure subproblems.

2.2 Fluid Subproblem

The fluid subproblem is incompressible and Newtonian:

B1({u, p}, {w, q}; û) =
∫

(Ω1)t

w · ρ1

(
∂u
∂t

∣
∣
∣
∣
x̂
+ (u− û

) ·∇u
)

dΩ

+
∫

(Ω1)t

ε(w) : σ 1(u, p) dΩ +
∫

(Ω1)t

q∇ · u dΩ

− γ

∫

(Γ1h)t

w · ρ1
{(

u− û
) · n1

}

− u dΓ , (5)

F1({w, q}) =
∫

(Ω1)t

w · ρ1f1 dΩ +
∫

(Γ1h)t

w · h1 dΓ , (6)

where ρ1 is the fluid mass density, ε is the symmetric gradient operator, σ 1(u, p) =
−pI + 2με(u), where μ is the dynamic viscosity, f1 is a prescribed body force,
and h1 is a prescribed traction on Γ1h ⊂ ∂Ω1. (Ω1)t deforms from some reference
configuration, (Ω1)0, according to the velocity field û, which need not equal u1.
∂(·)/∂t |x̂ indicates time differentiation with respect to a fixed point x̂ from (Ω1)0.
The last term of (5) is not usually considered to be part of the weak Navier–Stokes
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problem, but it enhances the stability of the problem in cases where flow enters
through the Neumann boundary Γ1h [80]. The function {·}− isolates the negative
part of its argument. The coefficient γ ≥ 0 controls the strength of this stabilizing
term and n1 is the outward-facing normal to Ω1.

2.3 Thin Structure Subproblem

Following the Kirchhoff–Love thin shell kinematic hypotheses (see, e.g., [61, 62,
64]), B2 and F2 are defined as

B2(y,w) =
∫

Γt

w · ρ2hth
∂2y
∂t2

∣
∣
∣
∣
X

dΓ +
∫

Γ0

∫ hth/2

−hth/2
DwE : S dξ3dΓ (7)

and

F2(w) =
∫

Γt

w · ρ2hthf2 dΓ +
∫

Γt

w · hnet dΓ , (8)

where ρ2 is the structure mass density, f2 is a prescribed body force, hth is the
thickness of the shell, ξ3 is a through-thickness coordinate, and we have referred the
elasticity term to the reference configuration. E is the Green–Lagrange strain tensor
[81, (2.67)] corresponding to the displacement y, DwE is its functional derivative
in the direction w, and S is the second Piola–Kirchhoff stress tensor [81, (3.63)],
depending on E. The last term of F2 sums the prescribed tractions on the two sides
of Γt . ∂(·)/∂t |X indicates time differentiation with respect to a fixed material point.
The Green–Lagrange strain E is simplified to depend entirely on the shell structure’s
midsurface displacement, y : Γ0 → R

d , using Kirchhoff–Love shell kinematic
assumptions [61, 64], thus reducing the dimension of the PDE domain.

Any material model that accepts a Green–Lagrange strain E and returns a
2nd Piola–Kirchhoff stress S can be used directly in the structure subproblem
defined above. In the work summarized by this chapter, we model BHV leaflets as
hyperelastic, meaning that S = ∂Ψ/∂E, where Ψ maps strains to energy densities
[81, Chapter 6].

3 Discretization of Subproblems

Distinct fluid and structure subproblems may be isolated from the coupled problem
stated in Sect. 2 by setting the test function corresponding to the other subproblem
and the test function corresponding to the kinematic constraint to zero. Each of these
subproblems may be discretized by adapting existing techniques for computational
fluid and structural dynamics.
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3.1 Fluid Subproblem

The fluid subproblem may be isolated by setting w2 = δλ = 0, which yields (2),
in which the structure velocity u2 and the Lagrange multiplier λ should be viewed
as prescribed data. We describe two ways of discretizing this subproblem: the vari-
ational multiscale (VMS) approach3 (Sect. 3.1.1) and the divergence-conforming
B-spline approach (Sect. 3.1.2).

3.1.1 Variational Multiscale Formulation

Issues of discrete stability and turbulence modeling are simultaneously addressed
by the variational multiscale (VMS) [83] formulation of [58]. In short, it substitutes
an ansatz for subgrid velocities and pressures into the weak fluid subproblem. This
ansatz is consistent with the strong form of the Navier–Stokes equations, so that the
formulation smoothly transitions to high-order-accurate direct numerical simulation
as approximation spaces are refined.

The mesh-dependent VMS formulation is posed on a collection of disjoint fluid
elements {Ωe} such that Ω1 = ∪eΩe. {Ωe}, Ω1, and Γ remain time-dependent, but,
when there is no risk of confusion, we drop the subscript t to simplify notation. The
superscript h indicates association with discrete spaces defined over these elements.
The mesh {Ωe} deforms with velocity ûh. Let Vh

u and Vh
p be discrete velocity and

pressure spaces defined over {Ωe}. The semi-discrete VMS fluid subproblem is:
Find uh

1 ∈ Vh
u and ph ∈ Vh

p such that, for all wh
1 ∈ Vh

u and qh ∈ Vh
p ,

BVMS
1 ({uh

1, p
h}, {wh

1, q
h}; ûh)− FVMS

1 ({wh
1, q

h})

+
∫

Γ

wh
1 · (λn2) dΓ +

∫

Γ

wh
1 · β(uh

1 − u2) dΓ = 0 , (9)

where

BVMS
1 ({u, p}, {w, q}; û) =

∫

Ω1

w · ρ1

(
∂u
∂t

∣
∣
∣
∣
x̂
+ (u− û) · ∇u

)

dΩ

+
∫

Ω1

ε(w) : σ 1 dΩ +
∫

Ω1

q∇ · u dΩ

− γ

∫

Γ1h

w · ρ1
{(

u− û
) · n1

}

− u dΓ

3We use of the term “VMS” in this chapter to refer to the specific VMS formulation explained
in Sect. 3.1.1, applied to equal-order pressure–velocity discretizations. Our choice of terminology
should not be taken to mean that the concept of VMS analysis is incompatible with div-conforming
B-splines, which is demonstrably [82] not true.
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−
∑

e

∫

Ωe

(

(u− û) · ∇w+ 1

ρ1
∇q
)

· u′ dΩ

−
∑

e

∫

Ωe

p′∇ · w dΩ

+
∑

e

∫

Ωe

w · (u′ · ∇u) dΩ

−
∑

e

∫

Ωe

1

ρ1
∇w : (u′ ⊗ u′

)
dΩ

+
∑

e

∫

Ωe

(
u′ · ∇w

)
τ · (u′ · ∇u

)
dΩ , (10)

and

FVMS
1 ({w, q}) = F1({w, q}) . (11)

The forms BVMS
1 and FVMS

1 are semi-discrete counterparts of B1 and F1. u′ is the
fine scale velocity ansatz,

u′ = −τM

(

ρ1

(
∂u
∂t

∣
∣
∣
∣
x̂
+ (u− û) · ∇u− f

)

− ∇ · σ 1

)

, (12)

and p′ is the fine scale pressure,

p′ = −ρ1τC∇ · u . (13)

The stabilization parameters τM, τC, and τ are defined as

τM =
(

s

(
4

Δt2 + (u− û) ·G(u− û)+ CI

(
μ

ρ1

)2

G : G
))−1/2

, (14)

τC = (τMtrG)−1 , (15)

τ = (u′ ·Gu′
)−1/2 , (16)

where Δt is a timescale associated with the (currently unspecified) temporal
discretization, CI is a dimensionless positive constant derived from element-wise
inverse estimates [84, 85], and G generalizes element size to physical elements
mapped through x(ξ) from a parametric parent element: Gij = ξk,iξk,j . s is a
dimensionless field such that, in most of Ω1, s = 1, but, in an O(h) neighborhood
of Γ , s = sshell ≥ 1. We introduced this field in [77] to improve mass conservation
near immersed boundaries. A theoretical motivation for this scaling is given in [86],
and a numerical investigation of its effect is given in [77].
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3.1.2 Divergence Conforming B-splines

A way to totally eliminate mass loss and obtain pointwise divergence-free velocity
solutions is to discretize the fluid in a divergence-conforming (or div-conforming)
manner, such that the divergence of every vector-valued function in the discrete
velocity space is a member of the discrete pressure space. If this property is satisfied,
then weak mass conservation implies strong (pointwise) mass conservation. A
discretization of this type was developed for Stokes and Navier–Stokes flows by
Evans and Hughes [59, 60, 87]. Evans and Hughes used B-splines to construct
velocity and pressure spaces with the necessary properties, then directly posed the
weak problem B1({uh

1, p
h}, {wh

1, q
h}; 0) = F1({wh

1, q
h}) over these discrete spaces.

A caveat to the above reasoning is that, to truly obtain velocities that conform to the
incompressibility constraint, one would need to solve the discrete algebraic problem
exactly, which is impractical for realistic problems. We demonstrate in the 3D
numerical examples of Sects. 6.2 and 6.3, however, that the benefits of divergence-
conforming discretizations persist through common approximations in the assembly
and solution of the algebraic problem.

Evans and Hughes used Nitsche’s method to enforce no-slip boundary condi-
tions. For the computations of this chapter, the regularity of the fluid velocity
solution is at most H 3/2−ε(Ω1) and we use, for simplicity, a weakly consistent
penalty method, altering the problem to be

B1({u1, p}, {w1, q}; 0)+ Cpen

∫

Γpen

(u1 − g) · w1 dΓ = F1 ({w1, q}) , (17)

where Cpen > 0 is a penalty parameter and g is the desired velocity on Γpen ⊂ ∂Ω1.

Construction for Rectangular Domains

Suppose, for now, that Ω1 is an axis-aligned d-dimensional rectangle. Then physical
space can serve directly as a d-variate B-spline parameter space.4 Define a d-variate
scalar B-spline space for the pressure on Ω1. Then, for 1 ≤ i ≤ d, we can k-refine
the pressure space once in the ith parametric direction to obtain a scalar space for the
ith Cartesian velocity component. Due to well-known properties of B-splines under
differentiation [88], the ith partial derivative of the ith velocity component will then
be in the pressure space. The scalar basis functions of the velocity component spaces
can be multiplied by their respective unit vectors to obtain a vector-valued basis for
the discrete velocity space. The divergence of a velocity will therefore be a sum of
d scalar functions in the pressure space.

4For readers unfamiliar with the construction and basic properties of B-splines, a comprehensive
explanation can be found in [88].
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Precise definitions are given in [59, Section 5.2]. In the notation of the cited
reference, the velocity space is R̂T h and the pressure space is Ŵh. Following the
terminology of [59], if the pressure space has polynomial degree k′ in all directions,
the entire pressure–velocity discretization is said to be of degree k′, despite the
presence of (k′ + 1)-degree polynomials in the velocity component spaces.

Generalization to Non-rectangular Domains

Div-conforming B-splines are not limited to rectangular domains. A point X in a
rectangular parametric domain Ω̂ may be mapped to a point x in a non-rectangular
physical domain Ω by x = φ(X). Vector-valued velocity basis functions defined on
Ω̂ are then pushed forward using the Piola transform. For arbitrary parametric-space
velocity function û, its pushforward u is

u(x) = 1

J (X)
F(X)̂u(X) , (18)

where

F = ∂φ

∂X
⇐⇒ FiJ = ∂φi

∂XJ

= φi,J , (19)

and J = det F. Using Nanson’s formula [81, (2.54)] and integration by parts, we get
the Piola identity

div u = 1

J
DIV û , (20)

where

div u = ∂uj

∂xj
= uj,j and DIV û = ∂ûB

∂XB

= ûB,B . (21)

We would like the divergence of every pushed-forward velocity function to exist in
the pushed-forward pressure space. For every û in the parametric velocity space,
there exists q̂ in the parametric pressure space such that q̂ = DIV û. Then,
recalling (20), the parametric pressure space function should be pushed forward
by

q(x) = 1

J (X)
q̂(X) . (22)

Div-confomring B-splines may be used on even wider classes of geometries
by joining deformed rectangular patches together with a discontinuous Galerkin
approach [59, Section 6.5].
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Stabilizing Advection

The Galerkin discretization used by Evans and Hughes can be straightforwardly
augmented to include SUPG stabilization [89]. However, the pressure gradient in the
momentum equation residual removes the property of the Galerkin approximation
that the error in the velocity solution is independent of pressure interpolation
error [60, (6.32)]. This property is valuable in the presence of immersed boundaries
that induce large discontinuities in the exact pressure solution. In this work, we
stabilize div-conforming discretizations with O(h) streamline diffusion: we add

+
∑

e

(τρ1uh
1 · ∇uh

1,uh
1 · ∇wh

1)L2(Ωe) (23)

to B1({wh
1, q

h}, {uh
1, p

h}), where {Ωe}Nel
e=1 are the Nel Bézier elements of the B-

spline mesh and

τ =
{(

uh
1 ·Guh

1

)−1/2
uh

1 ·Guh
1 > 0

0 otherwise
. (24)

While this is only weakly consistent, we do not expect high convergence rates from
immersed boundary discretizations of the type considered here, due to low regularity
of the exact solution.

3.2 Structure Subproblem

Setting w1 = δλ = 0 isolates the structure subproblem (3), in which u2 and λ are
considered prescribed data. This problem can be stably discretized using a Bubnov–
Galerkin method. However, for B2(y,w) to remain bounded, y and w need to be in
H 2(Γ ). It is sufficient for discrete spaces to be in C1(Γ ). Traditional finite element
spaces do not satisfy this requirement. However, isogeometric spline spaces can
be made C1 if geometry allows. Typical BHV leaflet geometries can be accurately
modeled by C1 spline surfaces, so, for the purposes of this chapter, the semidiscrete
structure subproblem amounts to choosing Vy in (3) to be (and enrichment of)
the smooth spline space used to model the geometry. The implementation of such
discretizations is documented exhaustively in [64]. We augment this discretization
with penalty-based contact, as described in [77], as mentioned in Remark 1.

4 Dynamic Augmented Lagrangian Coupling

The augmented Lagrangian coupling the subproblems is discretized using a semi-
implicit time integration scheme, in which the penalty is treated implicitly and
the Lagrange multiplier is updated explicitly. We call this the dynamic augmented
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Lagrangian (DAL) method. DAL circumvents difficulties with fully implicit cou-
pling, while forbidding leakage through the structure in steady-state solutions and
retaining the stability that eludes fully explicit approaches.

4.1 Separation of Normal and Tangential Coupling

The constraint that u1 = u2 on Γ can be separated into no-penetration

u1 · n2 = u2 · n2 (25)

and no-slip

u1 − (u1 · n2)n2 = u2 − (u2 · n2) n2 , (26)

where n2 is normal to Γ . These constraints are enforced by normal and tangential
components of λ.

No-penetration is critical to the qualitative structure of solutions. No-slip is less
essential, and strong enforcement may even be detrimental to solution quality on
coarse meshes [90–94]. We therefore discretize these constraints differently. For
no-penetration, we discretize a scalar multiplier field, λ = λ · n2. For no-slip, we
approximate the tangential component of λ by a weakly consistent penalty force.
Because Γt can cut through the fluid domain in arbitrary ways, we do not attempt
to construct inf-sup stable combinations of velocity and multiplier spaces. Instead,
we circumvent the inf-sup condition by regularizing the no-penetration constraint
residual:

(u1 − u2) · n2 → (u1 − u2) · n2 − r

β
λ , (27)

where r ≥ 0 is a dimensionless constant. Much as the slip penalization can be
derived as a degenerate case of Nitsche’s method [77, Section 4.1], the regularization
of the no-penetration constraint can be viewed as a degenerate case of strongly
consistent Barbosa–Hughes stabilization [95].

The problem we discretize in time is then: Find u1 ∈ Su, p ∈ Sp, y ∈ Sd , and
λ ∈ S� such that, for all test functions w1 ∈ Vu, q ∈ Vp, w2 ∈ Vd , and δλ ∈ V�

B1({w1, q}, {u1, p}; û)− F1({w1, q})+ B2(w2, y)− F2(w2)

+
∫

Γt

(w1 − w2) · λn2 dΓ

+
∫

Γt

(w1 − w2) · τB
NOR ((u1 − u2) · n2)n2 dΓ
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+
∫

Γt

(w1 − w2) · τB
TAN ((u1 − u2)− ((u1 − u2) · n2)n2) dΓ

+
∫

Γt

δλ ·
(

(u1 − u2) · n2 − rλ

τB
NOR

)

dΓ = 0, (28)

where we split the penalty term into normal and tangential components. We propose
to scale the tangential penalty like

τB
TAN = CTAN

μ

h
, (29)

where CTAN is a dimensionless O(1) constant and h is a measure of the fluid element
diameter, with units of length. We propose that the normal penalty scale like

τB
NOR = max

{

Cinert
NOR

ρ1h

Δt
, Cvisc

NOR
μ

h

}

, (30)

where Cinert
NOR and Cvisc

NOR are dimensionless constants and Δt is a time scale from the
temporal discretization.

4.2 Time Integration Algorithm

We now state the time-marching procedure for the coupled system. The algorithm
computes approximate solutions discrete time levels, indexed by n and separated by
steps of size Δt . At time level n, the discrete fluid velocity is defined by a coefficient
vector Un, the fluid time derivative by U̇n, the fluid pressure by Pn, and the structure
displacement, velocity, and acceleration by Yn, Ẏn, and Ÿn. The multiplier at level
n is λn, considered a function with domain Γt , and represented discretely as a set
of samples at quadrature points of a (Lagrangian) integration rule on Γt . Consider
solution variables at level n known. The first step of DAL is to construct a system of
equations for all (n + 1)-level fluid and structure unknowns, with λn+1 kept equal
to λn:

Res
(

Un+αf , U̇n+αm,Yn+αf , Ẏn+αf , Ÿn+αm,Pn+1, λn+1(= λn)
)
= 0 , (31)

Un+1 = Un +Δt
(
(1− γ )U̇n + γ U̇n+1

)
, (32)

U̇n+αm = U̇n + αm

(
U̇n+1 − U̇n

)
, (33)

Un+αf = Un + αf

(
Un+1 − Un

)
, (34)

Yn+1 = Yn +ΔtẎn + Δt2

2

(
(1− 2β)Ÿn + 2βŸn+1

)
, (35)
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Ẏn+1 = Ẏn +Δt
(
(1− γ )Ÿn + γ Ÿn+1

)
, (36)

Ÿn+αm = Ÿn + αm

(
Ÿn+1 − Ÿn

)
, (37)

Ẏn+αf = Ẏn + αf

(
Ẏn+1 − Ẏn

)
, (38)

Yn+αf = Yn + αf

(
Yn+1 − Yn

)
, (39)

where αm, αf , β, and γ are time integration parameters. Res(. . .) is the algebraic
residual corresponding to the discretization of (28) with δλ = 0. This penalty-
coupled problem is resolved by block iteration, which alternates between solving
for fluid and structure increments, as described further in Sect. 4.3. Equations (31)–
(39) are based on the generalized-α method [96]. Following [97, Section 4.4], we
work within a subset of generalized-α methods, parameterized by ρ∞ ∈ [0, 1],
which controls numerical damping and defines the free parameters as

αm = 1

2

(
3− ρ∞
1+ ρ∞

)

, αf = 1

1+ ρ∞
, (40)

γ = 1

2
+ αm − αf , β = 1

4

(
1+ αm − αf

)2 . (41)

The backward Euler method can also be conveniently implemented within the
generalized-α predictor–multi-corrector scheme of [97] by setting the generalized-α
parameters to αm = αf = γ = β = 1 and modifying the displacement predictor.

Note that, because the multiplier is fixed in (31)–(39), the (regularized) α-level
constraint residual

Rn+α =
((

uh
1

)n+αf −
(

uh
2

)n+αf
)

· nn+αf

2 − rλn+1

τB
NOR

(42)

is not necessarily zero on Γt+αf
. To motivate the development of the multiplier

update step in DAL, consider the case of r = 0. If Rn+α = 0 and r = 0, then
the normal component of the α-level penalty force, τB

NORR
n+α , will be zero and

the normal α-level fluid–structure force will be due only to the Lagrange multiplier,
λn+1. This suggests the explicit update

λn+1 ← λn+1 + τB
NORR

n+α , (43)

in which λn+1 is set equal to the α-level fluid–structure forcing. Equations (31)–
(39) are of course no longer satisfied with the updated λn+1, but one may attempt to
iterate the steps

1. Solve (31)–(39) with λn+1 fixed.
2. Update λn+1 by (43).
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until ‖Rn+α‖L2(Γt )
is converged to some tolerance. As explained in [77, Sec-

tion 4.2.1], the r = 0 case of this iteration corresponds to the classic augmented
Lagrangian algorithm of [98, 99]. For r = 0, though, the convergence criterion of
‖Rn+α‖L2(Γt )

< ε is too strict to arrive at a non-locking solution; it effectively
demands pointwise constraint satisfaction between non-matching velocity spaces of
the fluid and structure. We found, accordingly, that the iteration does not typically
converge, but circumvented this difficulty by truncating to a single pass, leading to
the semi-implicit time marching scheme of first solving (31)–(39) with λn+1 = λn,
then updating λn+1 by (44) and continuing directly to the next time step, i.e.,

λn+1 = λn + τB
NORR

n+α . (44)

This augmented-Lagrangian-based explicit multiplier update is the distinguishing
feature of DAL. Use of r = 0 is effective for transient problems, but may run into
difficulties in the steady limit, when the Lagrange multiplier and velocity discrete
spaces are not chosen stably. Choosing r > 0 can improve robustness. In that
case, (44) is an implicit formula, but it can be recast in explicit form:

λn+1 =
λn + τB

NOR

((
uh

1

)n+αf − (uh
2

)n+αf
)
· nn+αf

2

1+ r
. (45)

Some caution is warranted, however, in perturbing the kinematic constraint. Sec-
tion 4.4.4 provides an illustrative example of the effects of this consistency error.

4.3 Block Iterative Solution of the Implicit Problem

The implicit step of DAL amounts to a penalty regularization of fluid–structure
coupling, with a prescribed loading λnnn+αf along Γ n+αf . The penalty value can
be moderate, rendering the regularized problem much easier to solve. A simple
block-iterative procedure turns out to be practical, even for applications with light
structures and heavy, incompressible fluids.

Consider Rf(uf, us) to be the nonlinear residual for the fully discrete fluid
subproblem at a particular time step, which depends on discrete fluid and structure
solutions, uf and us. Likewise, Rs(uf, us) is the residual for the discrete structure
subproblem. The block-iterative procedure to find a root of (Rf, Rs) is to start with
guesses for uf and us and repeat

1. Assemble Rf(uf, us) and a(n approximate) tangent matrix, Af ≈ ∂Rf/∂uf.
2. Solve the linear system AfΔuf = −Rf for the fluid solution increment.
3. Update the fluid solution: uf ← uf +Δuf.
4. Assemble Rs(uf, us) and As ≈ ∂Rs/∂us.
5. Solve AsΔus = −Rs for the structure solution increment.
6. Update the structure solution: us ← us +Δus.



IMGA of BHVs Using DAL 183

until Rf and Rs are sufficiently converged. To ensure predictable run-times and avoid
stagnation in pathological configurations, we typically choose a fixed number of
iterations rather than a convergence tolerance. While it is possible that error from
isolated, poorly solved time steps can pollute the future of an unsteady solution, we
find this ad hoc procedure effective for predicting quantities of engineering interest.

4.4 Discussion

We summarize here some alternate interpretations and qualitative analysis from [77,
100] of the algorithm stated in Sect. 4.2.

4.4.1 Modified Equation Interpretation of DAL

When r = 0, the multiplier becomes an accumulation of penalty tractions from
previous time steps. This is equivalent to replacing the multiplier and normal penalty
terms

∫

Γt

(w1 − w2) · (λn2) dΓ

+
∫

Γt

((w1 − w2) · n2) τ
B
NOR ((u1 − u2) · n2) dΓ (46)

by a penalization of (a backward Euler approximation of) the time integral of
pointwise normal velocity differences on the immersed surface Γt

∫

Γt

{
τB

NOR

Δt
(w1(x, t)− w2(x, t)) · n2(x, t)

∫ t

0

(
u1(ϕτ (ϕ

−1
t (x)), τ )− u2(ϕτ (ϕ

−1
t (x)), τ )

)

·n2(ϕτ (ϕ
−1
t (x)), τ ) dτ

}
dΓ , (47)

where ϕτ (X) gives the spatial position at time τ of material point X ∈ Γ0 and dΓ

indicates integration over x ∈ Γt . To see this, first define (at fixed X)

λreg(t) = τB
NOR

Δt

∫ t

0
(u1(τ )− u2(τ )) · n2(τ ) dτ . (48)

Then

˙(λreg) = ∂λreg

∂t

∣
∣
∣
∣
X
= τB

NOR

Δt
(u1 − u2) · n2 . (49)
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The normal forcing on Γ in the implicit step of the semi-implicit time integrator is

(
λreg)n+1 = (λreg)n +Δt ˙(λreg)

n+1
(50)

where (λreg)n is a sum of all previous approximations of λ and Δt ˙(λreg)
n+1

is the
current time step’s penalty forcing. Thus the forcing (47) is accounted for in a fully
implicit manner, using the stable backward Euler method.

For r > 0, we can draw a similar analogy, in which λreg advances through time
by backward Euler integration of

1

(1+ r)

∂λreg

∂t

∣
∣
∣
∣
X
= τB

NOR

Δt
(u1 − u2) · n2 − r

Δt(1+ r)
λreg . (51)

Intuitively, the additional term causes a decay of λreg in the absence of constraint
violation, which highlights its stabilizing effect.

4.4.2 Analogy to Artificial Compressibility

The differential equation given in (49) closely resembles the method of artificial
compressibility [101]. In that scheme, the approximated Lagrange multiplier p

representing pressure in an incompressible flow evolves in an analogous way to
λreg (in the case r = 0):

∂tp = −1

δ
∇ · u1 , (52)

where the constraint is ∇ · u1 = 0 (instead of (u1− u2) · n2 = 0), 1/δ is the penalty
parameter. A physical interpretation of DAL for FSI, similar to Chorin’s original
formulation of (52) in terms of a fictitious density variable, is that, for r = 0, DAL
penalizes displacement of the fluid through the structure. This interpretation makes
clear how penalizing the time integral of velocity prevents the steady creep of flow
through a barrier.

4.4.3 Relation to Feedback Boundary Conditions

The time-continuous interpretation of DAL with r = 0 may be interpreted as a
special case of an existing framework for enforcing Dirichlet boundary conditions
on the unsteady Navier–Stokes equation. Goldstein et al. [102] proposed to apply
concentrated surface forcing of the form [102, (3)]

f(xs , t) = α

∫ t

0
u1(xs , τ ) dτ + βu1(xs , t) , (53)
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for all xs on a stationary solid boundary with parameters α ≤ 0 and β ≤ 0. Goldstein
et al. interpreted this method, which we refer to here as the feedback method, in the
context of control theory, arguing heuristically that it provides negative feedback in
the case of constraint violation.

The initial implementation of [102] used a spectral fluid discretization and
applied smoothing to filter concentrated forces, reducing pollution effects from
the global nature of the spectral basis functions (cf. [103, Chapter I, Section 2]).
Goldstein and collaborators continue to use this methodology for DNS of turbulent
flows [104–109]. Saiki and Biringen [110, 111] extended the concept of feedback
forcing to finite difference fluid discretizations, using bilinear interpolation within
grid cells to evaluate velocity at quadrature points of the immersed boundary and
also to distribute concentrated feedback forces to grid points. Reference [110] was
the first application of the approach to moving boundaries, in which (53) becomes
(cf. [110, (1)] and (47))

f(ϕt (Xs), t) = α

∫ t

0

(
u1(ϕτ (Xs), τ )− U2(Xs , τ )

)
dτ

+ β
(
u1(ϕτ (Xs), τ )− U2(Xs , τ )

)
, (54)

where ϕt (Xs) represents the position at time t of a material point Xs on the moving
boundary with velocity U2(Xs , t). This naturally leads to FSI, and a recent series
of papers [112–116] demonstrated that feedback forcing is robust and accurate
for simulating light, flexible, immersed structures. A related approach has been
used in the commercial code LS-DYNA [41] for decades, to study automobile
airbag inflation and other challenging FSI problems [117–120], including heart
valve simulation [42–45]. We have seen no documentation explicitly relating
it to the feedback method, and assume that it was devised independently. The
repeated rediscovery of this formulation by engineers studying difficult CFD and
FSI problems suggests an inherent robustness to the approach.

4.4.4 Qualitative Effects of Multiplier Stabilization

The case of r > 0 is less physically intuitive than the r = 0 case. To provide some
intuition for the influence of r , consider a model of plug flow through a blocked tube:
a rigid barrier blocks a channel with slip boundaries, filled with a fluid assumed to
have a velocity, ue1, that is constant across space, but may vary with time.

The ends of the channel are subject to pressures P1 and P2, which define the
pressure drop, ΔP = P1−P2. Suppose that the Lagrange multiplier field takes on a
single constant value across the barrier. Then the steady solution of the semi-implicit
time integration procedure described in Sect. 4.2 reduces to the conditions

1. Steadiness: λn+1 = λn = λ∞ ⇒ λ∞ = (λ∞ + τB
NORu

)
/(1+ r).

2. Equilibrium: λ∞ + τB
NORu = ΔP .
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Leakage is then given by u = rΔP

τB
NOR(1+r)

, which asymptotes to inverse scaling with

the penalty parameter as r → ∞ and to zero as r → 0. For fixed r > 0, steady
leakage converges to zero with refinement at the same rate as it would for a pure
penalty method, but, if r is an adjustable parameter, one may reduce the steady-state
leakage arbitrarily without impacting the solvability of the discrete problem at each
time step.

5 Numerical Experiments

We demonstrate, through numerical experiments, that the DAL method is conver-
gent. We summarize here results from [77, 86], considering both convergence of
solutions in Sobolev norms for simple problems and convergence of quantities of
interest in more complicated problems.

5.1 Navier–Stokes Flow with Immersed Boundaries

Consider, first, Navier–Stokes flow with Dirichlet conditions on immersed bound-
aries.

5.2 Taylor–Green Vortex

The Taylor–Green vortex is a solution to the 2D Navier–Stokes equations posed
on the domain Ω = [−π, π ]2 with periodic boundary conditions and no external
forcing:

uTG(x, t) = (sin(x1)cos(x2)e1 − cos(x1)sin(x2)e2) e
−2μt/ρ . (55)

We construct an interesting test problem by prescribing u = uTG as an initial
condition at t = 0 and also as a time-dependent Dirichlet boundary condition on
a closed immersed boundary Γ , then adding a body force fx = e1. The body
force induces a pressure gradient in the region enclosed by Γ without perturbing
the velocity solution there. The velocity outside of the region enclosed by Γ is
no longer equal to uTG for t > 0. There are jumps in the pressure and velocity
derivatives along Γ , so the regularity of the velocity solution is representative of
typical applications. We have not derived an exact solution on the entire domain,
but one can easily measure error in a subset Ωerr of the region enclosed by Γ . In
this section, we consider low Reynolds number flow, and choose μ = 0.01. A high
Reynolds-number test is carried out in Sect. 5.2.2.
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Fig. 1 The non-rectilinear
mesh of Ω avoids grid
alignment with Γ

Fig. 2 Simultaneous velocity magnitude (left) and pressure (right) snapshots of the Navier–Stokes
Taylor–Green problem, with annotations describing the problem setup

We choose Γ = ∂
(
(−π, π)2

)
. To avoid special behavior associated mesh-

aligned immersed boundaries, we distort the background mesh, as shown in Fig. 1.
Figure 2 illustrates the problem setup. Div-conforming B-splines of degree k′ =
1 are used to discretize the velocity and pressure spaces, and backward Euler
integration is applied in time. Error convergence is shown in Fig. 3, displaying
nearly first-order rates.

5.2.1 Translating Taylor–Green Vortex

Adding a uniform velocity to an initial condition in a periodic domain yields
a Galilean transformation of the original solution. In this section, we add v =
−0.87e1 − 0.5e2 to the initial condition of the Taylor–Green vortex and translate
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Fig. 3 Convergence of the L2(Ωerr) and H 1(Ωerr) errors for r = 0 and r = 0.1 for Navier–Stokes
flow with a stationary boundary and positive viscosity

Fig. 4 Annotated snapshot
of velocity magnitude at time
T for Navier–Stokes flow
with moving boundaries and
positive viscosity

Γt at the same velocity. The solution at time T is shown in Fig. 4. Figure 5 indicates
that convergence on Ωerr remains intact.

5.2.2 Infinite Reynolds Number

To demonstrate the robustness at realistic Reynolds numbers, we repeat the test of
Sect. 5.2.1 with μ = 0. The exact solution becomes tangentially discontinuous at
Γt . This behavior is captured reasonably well, as shown in Fig. 6. The nearly linear
convergence rates in L2(Ωerr) and H 1(Ωerr) are maintained, as shown in Fig. 7,
despite the fact that the H 1(Ω) norm of the exact solution is not well-defined. This
example uses r = 0, for reasons explained in [86].
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Fig. 5 Convergence of the L2(Ωerr) and H 1(Ωerr) errors for r = 0 and r = 0.1 for Navier–Stokes
flow with moving boundaries

Fig. 6 Annotated snapshot
of velocity magnitude at time
T for Navier–Stokes flow
with moving boundaries and
zero viscosity

5.3 2D Non-coapting Valve

This section considers a 2D valve-inspired benchmark problem investigated pre-
viously by Gil et al. [121], Hesch et al. [122], Wick [123], and Kadapa et al.
[124]. The structure does not contact itself, so it is straightforward to compute
converged solutions using verified body-fitted methods, making the problem a
valuable benchmark for new immersed approaches.

5.3.1 Description of the Problem

The problem consists of two cantilevered elastic beams immersed in a 2D channel
filled with incompressible Newtonian fluid, as shown in Fig. 8. The fluid and
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Fig. 7 Convergence of the L2(Ωerr) and H 1(Ωerr) errors for r = 0 for Navier–Stokes flow with
moving boundaries and zero viscosity

Fig. 8 Geometry and boundary conditions of the 2D heart valve benchmark

structure have equal densities of ρ1 = ρ2 = 100. The viscosity is μ = 10. The
structure is a St. Venant–Kirchhoff material with Young’s modulus E = 5.6 × 107

and Poisson ratio ν = 0.4. The top and bottom of the channel have no-slip boundary
conditions, the right end is traction-free, and the left end has a prescribed, time-
dependent velocity profile,

u1 (y e2, t) =
{

5(sin(2πt)+ 1.1)y(1.61− y)e1 , t > 0
0 , otherwise

, (56)

where the origin of the spatial coordinate system is at the bottom left corner of the
domain. The parameter γ in (5) is set to zero.
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Fig. 9 The reference configuration of the body-fitted mesh for the 2D valve problem, with leaflets
highlighted in magenta and areas of softened mesh highlighted in green

Fig. 10 The deformation of
the body-fitted fluid mesh at
t = 0.5

5.3.2 Body-Fitted Reference Computation

The mesh for the body-fitted reference computation is shown in Fig. 9. We use
generalized-α time integration with ρ∞ = 0.5 and a time step of Δt = 0.005.
The selected resolution ensures that the displacement history of the upper beam tip
changes negligibly with further refinement.

The fluid mesh deforms from one time step to the next according to the solution
of a fictitious isotropic linear elastic problem that takes the location of the beam as a
displacement boundary condition. The velocity of this deformation enters into (10)
as ûh. Mesh quality is preserved throughout the deformation with Jacobian-based
stiffening [97, 125–129]. In the present problem, we also find it necessary to soften
the fictitious material governing the deformation of elements between the leaflets.
The resulting deformed mesh at time t = 0.5 is shown in Fig. 10.

5.3.3 Immersogeometric Computations

We test three immersogeometric discretizations of the problem, using the VMS fluid
formulation. The first, M1, evenly divides the fluid domain into 128× 32 quadratic
B-spline elements and each beam into 64 quadratic B-spline elements. The other
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Fig. 11 The x- and y-displacements of the upper leaflet tip, computed on the immersed and body-
fitted meshes

two are uniform refinements of M1. We refine also in time, using Δt = 0.01 with
M1, Δt = 0.005 with M2, and Δt = 0.0025 with M3.

The time integration of the fluid–structure coupling is done using DAL with r =
0 and generalized-α parameters determined by ρ∞ = 0.5. Following (29) and the
low-Reynolds number branch of (30), we scale penalty parameters τB

(·) inversely

with mesh size, choosing τB
(·) = 104 on M1, τB

(·) = 2×104 on M2, and τB
(·) = 4×104

on M3. VMS parameters are scaled near the structure using sshell = 106.

5.3.4 Comparison of Results

Figure 11 shows the x- and y-displacements of the upper beam tip for the body-
fitted and immersed computations. Displacement histories from M1, M2, and M3
converge toward the body-fitted result. Comparisons of pressure contours at time
t = 0.5 are given in Fig. 12, showing general agreement between immersogeometric
and body-fitted flow fields. Velocity streamlines at t = 0.5 for M1 are shown in
Fig. 13.

5.4 Benchmark Testing with Div-conforming B-splines

To verify the IMGA implementation using div-conforming B-splines for the fluid
subproblem, we again use the 2D benchmark problem defined in Sect. 5.3. Although
the problem domain is rectangular, we demonstrate convergence with distorted fluid
meshes by deforming the interior of the parametric domain, as shown in Fig. 14. For
the coarsest mesh, M1, the B-spline knot space is subdivided into 32 × 128 Bézier
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(a) (b)

(c) (d)

Fig. 12 Pressure contours at t = 0.5, from immersed boundary computations on M1, M2, and
M3, along with the body-fitted reference. (a) Immersed M1. (b) Immersed M2. (c) Immersed M3.
(d) Body-fitted reference

elements and div-conforming B-spline velocity and pressure spaces of degree k′ = 1
are defined on this mesh. The meshes M2 and M3 are uniform refinements of M1.

Normal-direction Dirichlet boundary conditions on mesh boundaries are
enforced strongly, while tangential boundary conditions are enforced by penalty. For
computations on mesh M(N+1), penalty parameters are τB

NOR = τB
TAN = Cno slip =

1000×2N . We use the backward Euler method in time, with Δt = 1.0×10−2×2−N .
Figures 15 and 16 compare x- and y-displacement histories of the upper beam

tip in the three immersogeometric computations and the body-fitted reference.
Figure 17 shows snapshots of the computed pressure and velocity solutions.
Refinement of immersogeometric discretizations clearly brings this quantity of
interest closer to the boundary-fitted reference curve.
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(a) (b)

(c) (d)

Fig. 13 Velocity streamlines superimposed on a velocity magnitude contour plot, at t = 0.5, from
immersogeometric computations on M1, M2, and M3, and the body-fitted reference. (a) Immersed
M1. (b) Immersed M2. (c) Immersed M3. (d) Body-fitted reference

Fig. 14 The physical image of the B-spline parameter space, showing the mesh of unique knots
(thin lines) for M1 in relation to the beams (thick lines)
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Fig. 15 The x-direction displacement of the tip of the upper beam
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Fig. 16 The y-direction displacement of the tip of the upper beam

6 Application to BHV FSI Analysis

We first review some valve simulations using DAL-based IMGA. Section 6.3 then
describes an initial effort toward validating the mathematical model for BHV FSI
put forward in Sect. 2.
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Fig. 17 The pressure field (left) and the velocity magnitude (right) at time t = 0.5 on M2

Fig. 18 Snapshots of the valve FSI computation from [77], showing valve deformations and
volume renderings of fluid velocity magnitude

6.1 Overview of BHV Simulations

All of the computations reviewed in this section use the VMS discretization
of the fluid subproblem described in Sect. 3.1.1 and DAL for fluid–structure
coupling. Some of them incorporate phenomena that are beyond the scope of the
mathematical problem stated in Sect. 2, such as deforming arteries. However, these
BHV simulations illustrate the versatility and practical effectiveness of DAL and
IMGA, so we summarize the results while providing citations for additional details.

We introduced the initial variant of DAL in [77], along with the adjustments
to VMS and contact penalty needed to effectively simulate a BHV. A crude BHV
model immersed in a rigid artery illustrated the effectiveness of the numerics,
although the use of an unrealistic pinned boundary condition on the attached
edges of the leaflets led to qualitatively incorrect deformations. Further, the rigid
artery and resistance outflow boundary condition provided no hydraulic compliance,
causing an abnormal flow rate history [77, Figure 28]. Some snapshots of the valve
deformations and velocity fields are rendered in Fig. 18.
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Fig. 19 Snapshot of the
valve FSI computation from
[132], showing valve
deformation and volume
rendering of fluid velocity
magnitude

The model of [77] was augmented with hydraulic compliance in a follow-
up publication [130], by modeling the artery wall as an elastic solid. Unlike the
immersed valve, the fluid–artery interface was discretized with a boundary-fitted
method, which is a special case of FSITICT [123, 131]. The compliance of the
elastic artery led to more realistic flow rates [130, Figure 8].

Hsu et al. [132] realized the potential of IMGA to streamline the design-through-
analysis process for BHVs. A parametric design-through-analysis framework was
used to generate an analysis-suitable T-spline [133] model of a BHV and IMGA
allowed for the BHV design geometry to be directly immersed into a discretization
of an artery and lumen. The BHV model incorporated a realistic stent geometry,
clamped boundary conditions representative of typical industrial BHVs (cf. patent
illustrations in [134]), and a soft tissue constitutive model. A snapshot of the
resulting BHV FSI simulation is shown in Fig. 19.

6.2 Div-conforming BHV Simulation

We now look at a BHV simulation using div-conforming B-splines in the fluid
subproblem. A capability that is not verified by the div-conforming FSI benchmark
testing in Sect. 5.4 is effective simulation of closing heart valves. In principle,
div-conforming B-splines should prevent mass loss altogether, but, in practice, for
3D problems, one generally does not solve the discrete algebraic problem exactly,
calling this result into question.

6.2.1 Test Problem Definition

A variant of the BHV geometry constructed in [77, Section 5.1] is immersed in a
cylindrical fluid domain of radius 1.25 cm and height 3 cm. Rigid extensions are
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added to the leaflets, blocking flow passing around the attached boundaries of the
leaflets. The fluid subproblem posed on the cylindrical domain has traction boundary
conditions on the ends and no-slip and no-penetration conditions on the sides. The
bottom of the cylinder is subject to a time-dependent flux condition h1 = P(t)e3,
with

P(t) =
⎧
⎨

⎩

P1 t < T1

at + b T1 ≤ t ≤ T2

P2 t > T2

. (57)

P1 = 2 × 104 dyn/cm2, T1 = 0.05 s, P2 = −105 dyn/cm2, T2 = 0.1 s, a = (P2 −
P1)/(T2−T1), and b = P1−aT1. The top face is subject to the Neumann condition
h1 = 0. The Neumann boundary stabilization is set to γ = 1. Properties of the
fluid are ρ1 = 1 g/cm3 and μ = 4 cP. The valve is modeled as an incompressible
neo-Hookean material with shear modulus μs = 600 kPa and density ρ2 = 1 g/cm3.
The shell thickness is hth = 0.04 cm. The attached edges of the leaflets are subject
to a clamped boundary condition. The fluid and structure are initially at rest at time
t = 0. This problem is not intended to be a realistic FSI model of a BHV, but rather
to exhibit the similar flow conditions, and demonstrate robustness of div-conforming
B-splines.

6.2.2 Discretization

The cylindrical fluid domain is discretized using a B-spline knot space Ω̂1 =
[−1, 1]2 × [−1, 2]. A point X in this knot space is mapped to the physical domain
Ω1 by

φ1 = RX1

√

1− 1

2
X2

2 , φ2 = RX2

√

1− 1

2
X2

1 , φ3 = LX3 , (58)

with R = 1.25 cm and L = 1 cm. The knot space is evenly subdivided into 42 ×
42 × 40 knot spans and div-conforming B-spline velocity and pressure spaces of
degree k′ = 1 are defined on this mesh. The no-penetration constraint on the sides
of the cylinder is enforced strongly and the no-slip condition is enforced weakly
by velocity penalization, with penalty Cno slip = 10 dyn/cm2/(cm/s). Penalty values
are τB

NOR = 1000 dyn/cm2/(cm/s), τB
TAN = 10 dyn/cm2/(cm/s), and r = 0. The

backward Euler method is used in time with Δt = 5.0× 10−4 s.

6.2.3 Results

The valve opening is illustrated in Fig. 20. The closed state is shown in Fig. 21.
The flow rate history through the bottom of the cylinder is given in Fig. 22,
indicating that the valve blocks flow. These results illustrate the basic soundness of
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t = 0.01 s t = 0.02 s t = 0.04 s

Fig. 20 Velocity magnitude is plotted on a slice, using a color scale ranging from 0 (blue) to
≥ 200 cm/s (red)

Fig. 21 Pressure is plotted
on a slice, using a color scale
ranging from
≤ −1.1× 105 dyn/cm2 (blue)
to ≥ 104 dyn/cm2 (red)

using div-conforming B-splines as a fluid discretization for BHV FSI simulations.
We now take a closer look at the mass conservation in the computed solutions.
Because we use an iterative solver to approximate the fluid increments in the block
iteration, ∇ · uh

1 is not exactly zero. For the results presented above, we solve
for fluid increments with a Krylov method, to a relative tolerance of 10−2 for the
preconditioned residual. Even with this loose tolerance, there is no disastrous mass
loss. We now recompute one step at a time when the valve is closed, under a large
pressure jump, with a range of relative tolerances. For this experiment, we use the
un-preconditioned residual to measure convergence, so that results generalize more
readily to other iterative solvers. The residual is assembled in centimeter–gram–
second (CGS) units, without any scaling to compensate for the difference in units
between entries of the momentum and continuity equation residuals. The velocity
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Fig. 22 The volumetric flow rate through the cylinder

Table 1 The effect of
relative tolerance in the
approximate inversion of Af
on mass conservation

Solver tolerance ‖∇ · u1‖L2(Ω1)
(CGS units)

10−1 3.9× 10−5

10−2 1.2× 10−5

10−3 3.0× 10−7

10−4 2.0× 10−8

10−5 1.2× 10−9

10−6 2.4× 10−10

10−7 4.3× 10−11

divergence L2 norms of the solutions to this time step are collected in Table 1. As
expected, velocity divergence approaches zero as the tolerance decreases.

6.3 Simulating an In Vitro Experiment

This section serves both to further illustrate the application of div-conforming B-
splines to realistic problems and to argue that the modeling assumptions from
Sect. 2 can represent the dynamics of an artificial heart valve immersed in fluid,
by summarizing the validation effort detailed in [86, Section 7].

6.3.1 Description of the Experiment

The validation experiment uses a latex valve in an acrylic tube. We constructed the
valve by gluing latex leaflets to an aluminum stent. Leaflet are cut from a flat sheet
of latex with thickness 0.054 cm. The valve is shown in Fig. 24. The acrylic tube,
illustrated in Fig. 23, has an inner diameter varying between 2 and 3 cm along the
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Fig. 23 A to-scale diagram
of the tube, showing its
relation to the valve and stent

length of the tube, and is roughly the size of a typical human ascending aorta. A
hole is included in the side of the tube, for capturing images with a borescope.

Water is pumped through the tube using a flow loop system similar to the
bioreactor detailed in [135]. Volumetric flow rate through the tube is measured using
an ultrasonic flow meter. We use the IMGA with DAL and div-conforming B-splines
to simulate only the segment of tubing containing the artificial aortic valve.

6.3.2 Mathematical Model of the Experiment

This section specifies an instance of the mathematical problem stated in Sect. 2 that
models the experiment described in Sect. 6.3.1.

Fluid Subproblem

The mathematical model simplifies the geometry of the region occupied by fluid.
Ω1 is the image of a parametric space Ω̂1 = (−1, 1)2 × (−1, 4.5) ⊂ R

3 under the
mapping φ, which is defined by

φ1 = R(X3)X1

√

1− 1

2
X2

2 , φ2 = R(X3)X2

√

1− 1

2
X2

1 , φ3 = LX3 , (59)

where L = 1 cm and R(X3) is defined by

R(X3) =

⎧
⎪⎨

⎪⎩

Rin X3 < z1

Rout X3 > z2

(Rout − Rin)sin2
(
π(X3−z1)
2(z2−z1)

)
+ Rin otherwise

, (60)

with z1 = −0.45 cm, z2 = 0, Rin = 1 cm, and Rout = 1.4025 cm.
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Fig. 24 A visual comparison of the physical valve and its computational model

The lateral sides of Ω1 are subject to no-slip and no-penetration conditions.
The inflow face of the domain is subject to a time-dependent plug flow condition
with experimentally measured volumetric flow rate. The outflow is a homogeneous
Neumann boundary with γ = 1. The fluid velocity initial condition is u0

1 ≡ 0. To
model water, the viscosity of the fluid is μ = 1 cP and the density is ρ1 = 1.0 g/cm3.

Structure Subproblem

The latex leaflets are modeled as incompressible neo-Hookean material with shear
modulus μs = 8.7 × 106 dyn/cm2 (based on uniaxial stretching experiments). The
geometry of the stress-free reference configuration Γ0 is specified by manually
selecting B-spline control points to approximate the pattern used to cut the leaflets
out of the latex sheet. The leaflets are therefore flat in Γ0. These leaflets are deformed
into a static equilibrium configuration Γ ′0, (a discrete approximation of) which is
shown in Fig. 24. The boundary corresponding to the attached edge is subject to
a strongly enforced clamped boundary condition. In a slight abuse of the notation
introduced in Sect. 2, the leaflets are considered to be initially at rest in the deformed
configuration Γ ′0, rather than the stress-free configuration Γ0.

6.3.3 Discretization of the Mathematical Model

The fluid parametric domain Ω̂1 is split evenly into 64× 64× 99 Bézier elements,
used to define div-conforming B-spline spaces of degree k′ = 1. No-slip and inflow
Dirichlet boundary conditions are enforced by velocity penalization, with penalty-
constants of Cno slip = 10 dyn/cm2/(cm/s) and Cinflow = 1000 dyn/cm2/(cm/s).
No-penetration on the lateral sides of the flow domain is enforced strongly.
The structure is discretized with a 936-element quadratic B-spline mesh. The
equilibrium configuration Γ ′0 is approximated by driving a dynamic simulation
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t = 0.11 s t = 0.029 s

t = 0.039 s t = 0.084 s

Fig. 25 Several snapshots of the computed solution, compared with experimental images. At each
time instant, the computed solution is shown in the left-hand frame and at the bottom of the right-
hand frame. The experimental results are shown in the top of the right-hand frame. Colors indicate
fluid velocity magnitude on a slice. Color scale: 0 (blue) to ≥200 cm/s (red)

with mass damping from Γ0 to a steady solution. The attached edges of the
leaflets are then clamped into this configuration. The FSI penalty parameters
are τB

NOR = 1000 dyn/cm2/(cm/s) and τB
TAN = 10 dyn/cm2/(cm/s). The DAL

stabilization parameter r is set to zero. Backward Euler time integration is used
with Δt = 2.5× 10−4 s.

6.3.4 Comparison of Results

We now compare computational and experimental results. Experimental results are
a sequence of images taken through a borescope. Figure 25 compares the computed
deformations at several time points with images collected in the experiment.
For direct comparison with experimental images, the computed deformations are
rendered using perspective, from a vantage point corresponding to the tip of the
borescope in the experiment.
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The main qualitative difference between these sets of images is in the degree
of symmetry of the leaflet deformations during the transition to the fully open
state. This difference is expected, given that the initial condition to the computer
simulation is symmetrical while the physical valve is not. Asymmetry is mainly
due to experimental errors introduced by manually gluing each initially flat leaflet
into the stent. The qualitative agreement of results indicates that the modeling
assumptions of Sect. 2 are not wildly inappropriate for predicting the deformations
of BHV leaflets immersed in physiological flow fields, and may be able to predict
quantities of interest related to deformation (such as strain) with practical accuracy.
The computed results also agree with qualitative features of artificial valve leaflet
deformations observed in other in vitro experiments. The computed solution at time
t = 0.029 s shows the opening process, as characterized by reversal of leaflet
curvature, beginning primarily near the attached edge, as observed by Iyengar et
al. [136]. Hsu et al. [132] found that this behavior is not captured by simulations
using only structural dynamics.

7 Conclusions and Further Work

This chapter reviews the development, verification, and application of a novel
numerical method combining IMGA and DAL to simulate thin structures with
spline-based geometries immersed in viscous incompressible fluids. We find that
this method is sufficiently robust to survive application to FSI analysis of BHVs
functioning under physiological conditions.

The method described here is not limited to BHV simulation. We have also
applied it to IMGA of the hydraulic arresting gears that help dissipate the kinetic
energy of fixed-wing aircraft landing on short runways. Initial results, published in
[137], compare favorably with earlier body-fitted simulations of such devices [138].
The flexibility provided by immersogeometric FSI analysis allowed for automated
optimization of the device geometry.

Despite its successful application to BHV FSI and other problems, the DAL
method outlined here can be improved. The present guidelines for selecting free
penalty parameters are based on imprecise dimensional analysis. More precise and
rational selection of parameters will likely stem from further numerical analysis of
linear model problems, building on the initial work of [86]. Another undesirable
aspect of the method presented in this dissertation is the trade-off between con-
servation and stability parameterized by the stabilization coefficient r (introduced
in Sect. 4.1). A possible improvement is to apply the inconsistent stabilization of
r > 0 only to fine scales of the interface Lagrange multiplier, while retaining strong
consistency on coarse scales. Initial work on this was published in [139] and is
analyzed in a forthcoming paper [140].

Lastly, the promising initial results of immersogeometric FSI analysis using
div-conforming B-spline discretizations of the fluid subproblem indicate that div-
conforming B-splines merit further investigation. Casquero et al. [141] have also
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recently applied div-conforming B-splines in conjunction with the immersed-
boundary numerical approach of [142–144] and efficient solvers from [145].
The ideas of immersogeometric FSI analysis and div-conforming B-spline flow
discretizations appear to enjoy a symbiotic connection, in that the strong mass
conservation of structure preserving flow discretizations improves the quality of
immersogeometric FSI solutions, while the application of div-conforming B-splines
to increasingly complicated and realistic problems motivates the development of
more powerful implementations.
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A Numerical Analysis of Rheology of
Capsule Suspensions Using a
GPU-Accelerated Boundary Element
Method

Yohsuke Imai and Daiki Matsunaga

Abstract Understanding the behavior of capsules in flow and the rheology of
capsule suspensions is of fundamental importance for diverse problems in nature
and engineering. The particle Reynolds number of capsules is often small, and the
flow field is given by the boundary integral formulation of the Stokes equations. The
boundary element method (BEM) based on the boundary integral formulation is thus
one of the most accurate methods for simulating capsules under Stokes flow regime.
A high computational cost of BEM, however, has limited its application to relatively
small scale problems. We have developed a graphics process unit (GPU) computing
of BEM for capsules and biological cells in Stokes flow. We have investigated
rheological properties of capsules, and those of capsule suspensions using the GPU-
accelerated BEM. Here, we provide an overview of our recent studies, particularly
focusing on the shear viscosity of dense suspensions of capsules in simple shear
flow; an overshoot phenomenon of the capsule deformation in oscillating shear flow;
and the sedimentation of red blood cells.

1 Introduction

A capsule refers to a liquid droplet enclosed by a thin membrane [1]. Capsules are
widely found in natural and engineering products. Red blood cells, for example,
consist of a hemoglobin solution enclosed by a lipid-bilayer membrane. Artificial
capsules are developed in food and pharmaceutical industries, and are also used
for biomedical applications, where a substrate such as flavor and living cells is
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encapsulated. Capsules are often highly deformable, change their shapes in response
to fluid forces, and thus may rupture before reaching their targeting positions. The
presence of capsules also alters the flow field, and affects the macroscopic rheology
of capsule suspensions. Therefore, understanding the dynamics of capsules in flow
is important for predicting not only the transport and breakup of capsules, but also
the rheological properties of the suspension.

A difficulty in numerical simulations of the capsule dynamics arises from fluid–
membrane interaction. The fluid mechanics of the internal and external fluids is
coupled with the solid mechanics of the membrane. The kinematic and dynamic
boundary conditions must be imposed at interfaces inside and outside of the nearly-
zero-thickness membrane. These conditions are often given by no-slip and stress
jump conditions on the membrane. Another difficulty arises from hydrodynamic
interaction between capsules. Capsules in flow change their positions arbitrarily,
and a capsule approaches other capsules within a very small separation distance.
We may encounter these difficulties, particularly in mesh resolution for immersed
boundary methods or in mesh generation for finite element methods.

Cells and artificial capsules considered here are relatively small. The radius of
red blood cells is a ≈ 4 μm. Shear rate in microvascular blood flow is γ̇ ≈ 102–
103 s−1. The particle Reynolds number is then estimated as

Re = ργ̇ a2

μ
≈
(
103
) · (5× 102

) · (4× 10−6
)2

10−3
= 8× 10−3, (1)

where ρ and μ are the density and viscosity of the external fluid. When Re ! 1,
inertial terms can be ignored in the Navier–Stokes equations, and the velocity field
is given by the boundary integral formulation of the Stokes equations [2]. For such
Stokes flow problems, the boundary element method (BEM) based on the boundary
integral formulation can be the most accurate method. Both the no-slip and stress
jump conditions are directly imposed in the formulation.

BEM has been used to investigate the dynamics of capsules in Stokes flow.
Pioneering works were done by Pozrikidis and colleagues [3, 4], in which BEM
was applied to clarify large deformation of a spherical capsule in simple shear
flow. Because the membrane tension is linked to the rupture of the capsule, it has
also been studied in detail using BEM [5–7]. These studies have been extended to
ellipsoidal capsules [8–10] and red blood cells [11, 12]. A drawback of BEM is
its heavy computational load. It may take several hours to simulate even a single
capsule, and the computational time increases with the square of the computational
nodes, or the number of capsules. Therefore, the application of BEM has been
limited to relatively small scale problems, for example, a single capsule was often
simulated for a short time period. We have developed a graphics processing unit
(GPU) computing of BEM for simulating the dynamics of capsules and biological
cells in Stokes flow [13]. We have investigated rheological properties of capsules,
and those of capsule suspensions using the GPU-accelerated BEM. In this chapter,
we provide an overview of our recent studies, particularly focusing on the shear
viscosity of dense suspensions of capsules in simple shear flow [14]; an overshoot
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phenomenon of the capsule deformation in oscillating shear flow [15]; and the
sedimentation of red blood cells [16].

2 Governing Equations and Numerical Methods

2.1 Fluid Mechanics

2.1.1 Boundary Integral Formulation

We first consider flow in a control volume V bounded by closed surfaces S as shown
in Fig. 1, where the normal vector n is directed into the control volume [2, 17]. When
Re ! 1, inertial terms can be ignored in the Navier–Stokes equations, and we have
the Stokes equations:

∇ · v = 0, (2)

and

∇ · σ = 0, (3)

where v is the velocity vector, and σ is the stress tensor. The stress tensor for
Newtonian fluids is given by

σ = −pI+ μ
{
∇ ⊗ v+ (∇ ⊗ v)T

}
, (4)

where μ is the viscosity of the fluid. The velocity field v(x) in the control volume is
described by the boundary integral formulation of the Stokes equations [2, 17]:

v (x) = − 1

8πμ

∫

S

J (x, y) · σ (y) · n (y) dS (y)

+ 1

8π

∫

S

v (y) ·K (x, y) · n (y) dS (y) , (5)

Fig. 1 A control volume V is
bounded by closed surfaces
S, where the normal vector n
is directed to the control
volume
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Fig. 2 A capsule with
volume V (2) and surface S is
suspended in unbounded flow
with volume V (1). Viscosities
of the external and internal
fluids of the capsule are μ and
λμ, respectively. The normal
vector n is defined as a unit
vector pointing outwards

where x and y are the position vectors, and J and K are the Green’s functions. For
infinite unbounded flow, the free-space Green’s functions are

J (x, y) = I
r
+ r⊗ r

r3 , (6)

and

K (x, y) = −6
r⊗ r⊗ r

r5 , (7)

where r = y − x, and r = |r|. The free-space Green’s function J is also called the
Stokeslet or the Oseen–Burgers tensor, and K is the stress tensor.

We then consider a capsule suspended in an unbounded flow of v∞ (x) as
illustrated in Fig. 2, where the viscosity of the external fluid is μ, and that of
the internal fluid is λμ. The velocity field outside the capsule is given by the
boundary integral formulation of the external flow v(1)(y) with associated stress
tensor σ (1)(y),

v (x) = v∞ (x)− 1

8πμ

∫

S

J (x, y) · σ (1) (y) · n (y) dS (y)

+ 1

8π

∫

S

v(1) (y) ·K (x, y) · n (y) dS (y) , (8)

where the normal vector n is defined as a unit vector pointing outwards. The
reciprocal identity also gives the boundary integral of the internal flow v(2)(y) with
associated stress tensor σ (2)(y) as

0 = + 1

8πλμ

∫

S

J (x, y) · σ (2) (y) · n (y) dS (y)

− 1

8π

∫

S

v(2) (y) ·K (x, y) · n (y) dS (y) . (9)
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Combining these equations with the continuity of velocity v(1)(y) = v(2)(y), we
have

v (x) = v∞ (x)− 1

8πμ

∫

S

J (x, y) · [σ (y)] · n (y) dS (y)

+1− λ

8π

∫

S

v (y) ·K (x, y) · n (y) dS (y) , (10)

where [σ (y)] = σ (1) (y)−σ (2) (y) is the stress jump at the membrane. The velocity
field inside the capsule is also given by

λv (x) = λv∞ (x)− 1

8πμ

∫

S

J (x, y) · [σ (y)] · n (y) dS (y)

+1− λ

8π

∫

S

v (y) ·K (x, y) · n (y) dS (y) . (11)

The velocity of the capsule membrane is obtained from Eq. (10) or Eq. (11) when
x approaches S. The boundary integral formulation then becomes

1+ λ

2
v (x) = v∞ (x)− 1

8πμ

∫

S

J (x, y) · [σ (y)] · n (y) dS (y)

+1− λ

8π

∫ PV

S

v (y) ·K (x, y) · n (y) dS (y) , (12)

where the superscript PV refers to the principal value integral over S − x. The
surface of the capsule is closed, and Eq. (12) can be rewritten by

v (x) = v∞ (x)− 1

8πμ

∫

S

J (x, y) · [σ (y)] · n (y) dS (y)

+1− λ

8π

∫

S

{v (y)− v (x)} ·K (x, y) · n (y) dS (y) . (13)

2.1.2 Image System

When the fluid domain is bounded by an infinite plane wall, the semi-infinite
Green’s functions with the image system [18] are used to satisfy the no-slip
condition at the surface of the wall. Consider that the wall is located at yw

3 as shown
in Fig. 3. The distance between the wall and a pole y is denoted by h = y3 − yw

3 ,
and the image of the pole is Y = y − 2δi3h. The semi-infinite Green’s function
of a Stokeslet consists of the free-space Green’s function J0 and associated image
system Jw as

J (x, y) = J0 (x, y)+ Jw (x, y) . (14)
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Fig. 3 A schematic of the image system. An infinite plane wall is located in the e1–e2 plane. The
distance between a pole y and the wall is h, and the image of the pole is Y

They are written in the Einstein notation as

J 0
ij (x, y) = δij

r
+ rirj

r3 , (15)

and

Jw
ij (x, y) = −J 0

ij (x,Y)− 2h2 (1− 2δj3
)
MD

ij (x,Y)+ 2h
(
1− 2δj3

)
JD
i3j (x,Y) ,

(16)
where

J 0
ij (x,Y) = δij

R
+ RiRj

R3 , (17)

MD
ij (x,Y) = − δij

R3 +
3RiRj

R5 , (18)

and

JD
i3j (x,Y) = δi3Rj − δ3jRi − δijR3

R3 + 3RiR3Rj

R5 , (19)

are the image Stokeslet, the image source dipole, and the image Stokeslet dipole
with R = Y− x, and R = |R|, respectively.

The free-space Green’s function for the stress tensor K0 is written by a
combination of a point source M0 and Stokeslet dipoles,
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K0
ijk (x, y) = −2δikM

0
j (x, y)−

{
JD
ijk (x, y)+ JD

kji (x, y)
}

= −6rirj rk
r5 , (20)

and its image system also consists of an image source and image Stokeslet dipoles
[19, 20],

Kw
ijk (x, y) = −2δikM

w
j (x, y)−

{
J
D,w
ijk (x, y)+ J

D,w
kji (x, y)

}
. (21)

The image source and the image Stokeslet dipoles are given by

Mw
j (x, y) = M0

j (x,Y)− 2hMD
3j (x,Y)+ 2JD

j33 (x,Y) , (22)

and

J
D,w
ijk (x, y)+ J

D,w
kji (x, y)

= − (1− 2δk3) J
D
ijk (x,Y)− (1− 2δi3) J

D
kji (x,Y)

−2δ3k
(
1− 2δj3

) {
2hMD

ij (x,Y)− JD
i3j (x,Y)

}

−2δ3i
(
1− 2δj3

) {
2hMD

kj (x,Y)− JD
k3j (x,Y)

}

−2 (1− 2δk3)
(
1− 2δj3

) {
h2M

Q
ijk (x,Y)+ h2M

Q
kji (x,Y)

}

+2 (1− 2δk3)
(
1− 2δj3

) {
hJ

Q
i3jk (x,Y)+ hJ

Q
k3j i (x,Y)

}
, (23)

where

M0
j (x,Y) = Rj

R3
, (24)

MD
ij (x,Y) = − δij

R3
+ 3

RiRj

R5
, (25)

and

M
Q
ijk (x,Y) = −3

δijRk + δjkRi + δikRj

R5 + 15
RiRjRk

R7 , (26)

are the image source, the image source dipole, and the image source quadrupole,
and

JD
ijk (x,Y) = δijRk − δjkRi − δikRj

R3 + 3
RiRjRk

R5 , (27)
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Fig. 4 A schematic of the Eward summation. A capsule is suspended in an original lattice γ = 0,
where γ is the lattice index

and

J
Q
ijkl (x,Y) = −3

δklRiRj + δjlRiRk + δilRjRk

R5
+ 15

RiRjRkRl

R7
, (28)

are the image Stokeslet dipole, and the image Stokeslet quadrupole.

2.1.3 Eward Summation

The Eward summation proposed by Beenakker [21] is used for an infinite periodic
domain, where the summation is decomposed into the summation of a real space
and that of a reciprocal space. A schematic of a periodic domain is shown in Fig. 4.
For simplicity, we consider that a capsule with viscosity ratio λ = 1 is suspended
in the original lattice, γ = 0, where γ is the lattice index. The boundary integral
formulation is then given by

v(x) = v∞(x)− 1

8πμ

∞∑

γ

∫

Sγ

J(x, yγ ) · [σ (yγ )] · n(yγ )dS(yγ )

= v∞(x)− 1

8πμ

∫

S

JE(x, y0) · [σ (y0)] · n(y0)dS(y0). (29)
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JE is the Green’s function of the periodic system,

JE
ij (x, y0) =

∑

γ

J
EI

ij (rγ )+ 8π

V

∑

λ"=0

J
EII

ij (kλ) (30)

where

J
EI

ij (r) = δij

r
E1 + rirj

r3 E2, (31)

J
EII

ij (k) =
(
δij

k2
− kikj

k4

)(

1+ k2

4ξ2
+ k4

8ξ4

)

exp

(

− k2

4ξ2

)

cos(k · r), (32)

and

E1 = erfc(ξr)+ exp(−ξ2r2)√
π

(4ξ3r3 − 6ξr), (33)

E2 = erfc(ξr)+ exp(−ξ2r2)√
π

(2ξr − 4ξ3r3). (34)

2.1.4 Multipole Expansion

For dense suspensions of capsules, the direct integral of the whole capsules becomes
a difficult task because of its heavy computational load. We then employ multipole
expansion [22]. The Taylor series of the Green’s function with respect to y around
an arbitrary position yα is given by

J (x, y) = J (x, y)
∣
∣
y=yα + ∂J

∂y

∣
∣
∣
∣
y=yα

(
y− yα

)+ · · ·. (35)

The boundary integral is then rewritten by
∫

S

J (x, y) · q (y) dS (y)

=
∑

α

∫

Sα

{

J (x, y)
∣
∣
y=yα + ∂J

∂y

∣
∣
∣
∣
y=yα

(
y− yα

)+ · · ·
}

· q (y) dSα

=
∑

α

{

Jα

∫

Sα

q (y) dSα + ∂Jα

∂y

∫

Sα

(
y− yα

) · q (y) dSα · ··
}

, (36)

where

Jα = J (x, y)
∣
∣
y=yα ,

∂Jα

∂y
= ∂J

∂y

∣
∣
∣
∣
y=yα

(
y− yα

)
, · · ·, (37)

q = [σ ] · n and α is the pole index. The first term in the brackets of Eq. (36)
represents flow due to a point force Fα (yα), given by
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Jα
ij

∫

Sα

qj dS
α = Jα

ijF
α
j , (38)

where

Fα
j =

∫

Sα

qj dS
α. (39)

The second term is flow due to a point torque Ωα (yα) and a point stresslet Sα (yα),

∂J α
ij

∂yk

∫

Sα

(
yk − yα

k

)
qjdS

α = Rα
ijΩ

α
j + Lα

ijkS
α
jk (40)

where

Ωα
j =

∫

Sα

εjkl
(
yk − yα

k

)
qldS

α, (41)

and

Sα
jk =

1

2

∫

Sα

{(
yj − yα

j

)
qk +

(
yk − yα

k

)
qj − 2

3
δjk
(
yk − yα

k

)
ql

}

dSα. (42)

Rα and Lα are the Green’s functions,

Rij = 1

4
εilk

{
JD
ljk (x, y)− JD

kjl (x, y)
}
= εijk

rk

r3 , (43)

and

Lijk = 1

2

{
JD
ijk (x, y)+ JD

kji (x, y)
}
= − rj δik

r3 + 3
rirj rk

r5 , (44)

at the pole yα . Equation (36) then reduces to

∫

S

Jij qj dS =
∑

α

(
Jα
ijF

α
j + Rα

ijΩ
α
j + Lα

ijkS
α
jk

)
+O(r−3). (45)

2.2 Membrane Mechanics

2.2.1 Membrane Tension

Consider a material point on the surface of a capsule membrane [1]. Let X = XI eI
and x = xI eI be the position vectors of the material point in the reference and
deformed states of the capsule, respectively, where eI is the Cartesian base and I =
1, 2, 3. We introduce local curvilinear coordinates with local covariant bases,
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Fig. 5 Local curvilinear coordinates at a deformed state of a capsule membrane with local
covariant bases, g1, g2, and n. The vectors e1, e2, and e3 are the Cartesian bases

g1 = ∂x
∂ξ1 , g2 = ∂x

∂ξ2 , g3 = n, (46)

G1 = ∂X
∂ξ1 , G2 = ∂X

∂ξ2 , G3 = N, (47)

where n and N are the unit normal vectors in the deformed and reference states
(see also Fig. 5). Local contravariant bases are defined as gα · gβ = δαβ , g3 = n,

Gα ·Gβ = δαβ , and G3 = N, where α = 1, 2, and β = 1, 2.
A vector on the membrane dX = dξαGα is transformed into dx = dξαgα as

dx = Fs · dX, (48)

where Fs is the surface deformation gradient tensor given by

Fs = gα ⊗Gα. (49)

The right Cauchy–Green deformation tensor is then

C = FT
s · Fs

= gαβ(Gα ⊗Gβ), (50)

where gαβ = gα · gβ is the covariant metric tensor. The Green–Lagrange strain
tensor is given by

e = 1

2
{C− (I− N⊗ N)}

= 1

2

{
gαβ(Gα ⊗Gβ)−Gαβ(Gα ⊗Gβ)

}
, (51)
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and its invariants are

I1 = 2tr(e)

= gαβG
αβ − 2

= λ2
1 + λ2

2 − 2, (52)

and

I2 = 2 det(e)

= |gαβ ||Gαβ | − 1

= λ2
1λ

2
2 − 1

= J 2
s − 1, (53)

where λ1 and λ2 are the principal extension ratios, and Js = λ1λ2 = det(Fs) is the
area dilation ratio. Finally, the Cauchy stress tensor is described as

T = 1

Js
Fs · ∂ws

∂e
· FT

s

= 2

Js

∂ws

∂I1
Gαβ(gα ⊗ gβ)+ 2Js

∂ws

∂I2
gαβ(gα ⊗ gβ), (54)

and thus,

T αβ(gα ⊗ gβ) =
(

2

Js

∂ws

∂I1
Gαβ + 2Js

∂ws

∂I2
gαβ

)

(gα ⊗ gβ), (55)

where ws is the strain energy function.
The neo-Hookean constitutive law is widely used to describe the behavior of a

thin sheet of an isotropic volume-incompressible rubber-like material. The strain
energy function of the neo-Hookean membrane is given by

ws = Gs

2

(

I1 − 1+ 1

I2 + 2

)

, (56)

where Gs is the surface shear elastic modulus. Substituting Eq. (56) into Eq. (55),
we have

T αβ = Gs

{
1

Js
Gαβ − Js

(I2 + 1)2 g
αβ

}

. (57)

Skalak et al. [23] proposed a constitutive law to model biological membrane. The
strain energy function of Skalak’s law is

ws = Gs

4

(
I 2

1 + 2I1 − 2I2 + CI 2
2

)
, (58)
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and the Cauchy stress tensor is

T αβ = Gs

{
1

Js
(I1 + 1)Gαβ + Js (CI2 − 1) gαβ

}

, (59)

where C is the area dilation modulus.

2.2.2 Equilibrium Equation

Inertial terms are also ignored for the solid mechanics of the membrane. A weak
form of the equilibrium equation is then given by

∫

S

û · qsdS =
∫

S

ε̂ : TdS, (60)

where û is the virtual displacement, ε̂ is the virtual strain, and qs is the load on the
membrane.

2.2.3 Bending Stiffness

For bending stiffness of the membrane, Helfrich [24] proposed a bending energy

wb = Eb

2

∫

A

(2H − c0)dS, (61)

where Eb is the bending modulus, H is the mean curvature of the membrane surface,
and c0 is the reference curvature. The bending energy is converted to a membrane
load [25],

qb = −2Eb

{
ΔSH + (2H + c0)(H

2 −K − c0H)
}

n, (62)

where ΔS is the Laplace–Beltrami operator on the surface, and K is the Gaussian
curvature.

2.3 Boundary Conditions

The membrane velocity is given by the kinematic condition as

dx
dt
= v(x). (63)
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The load on the membrane q = qs + qb is balanced by the stress jump condition as

q = [σ ] · n. (64)

2.4 Numerical Methods

The boundary element method for fluid mechanics is coupled with the finite element
method for membrane mechanics [6]. An unstructured mesh with triangular ele-
ments is generated for the capsule membrane. The boundary integral equation (13)
is solved by the boundary element method, where the Gaussian quadrature method
is used for the integral over the elements. For singular elements, polar coordinates
are introduced. The weak form of the equilibrium equation (60) is solved by the
finite element method. Here, we use the explicit second-order Runge–Kutta method
or the Clank–Nicolson method is used for the time integration.

All the procedures are fully implemented in GPU computing. BEM is a compute-
bound process, with an arithmetic intensity [26] ≈ 100 FLOP/Byte, which is 100
times larger than the values of other numerical methods for computational fluid
dynamics. The performance of the GPU-accelerated BEM thus approaches the ideal
performance of GPU. For more details, please refer to [13–16].

3 Shear Viscosity of Capsule Suspensions in Simple Shear
Flow

The shear viscosity of particulate suspensions increases with the volume fraction of
particles. For a dilute suspension of rigid spheres, the shear viscosity may be given
by a linear function of the volume fraction of the particles,

μsp = 5

2
φ, (65)

called Einstein’s viscosity [27], where μsp is an increase in viscosity due to the
presence of the particles, and φ is the volume fraction. When the volume fraction
is increased, because of hydrodynamic interaction between the particles, second or
higher order terms appear. The shear viscosity then increases nonlinearly with the
volume fraction.

If the particles are able to deform, how does the deformability of the particles
affect the suspension viscosity? It is known that the shear viscosity exhibits a shear
thinning behavior for capsule suspensions [28], and the shear thinning property is
pronounced when the volume fraction is increased [29]. We further investigated the
rheology of a capsule suspension in simple shear flow using the GPU-accelerated
BEM [14]. We found that the effect of high-order terms on the shear viscosity of
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Fig. 6 A schematic of a
capsule in simple shear flow.
A capsule deforms into an
ellipsoidal shape with major
and minor radii L1 and L2
and an orientation angle θD
with respect to the flow
direction

the capsule suspension is much smaller than that of the rigid-particle suspension.
We also discussed how the macroscopic viscosity is related to the deformation and
orientation of the capsules in the suspension.

3.1 Deformation and Orientation of Capsules

Consider a spherical capsule with radius a suspended in simple shear flow. The
capsule is assumed to be neutrally buoyant, and the internal fluid has the same
viscosity as the external fluid (λ = 1). The neo-Hookean law is used for the
constitutive equation of the capsule membrane. The capillary number defined by

Ca = μγ̇ a

Gs

(66)

is the ratio of the viscous force to the elastic force, where μ is the fluid viscosity, γ̇
is the shear rate, and Gs is the surface shear elastic modulus of the membrane.

In simple shear flow, the capsule deforms into an ellipsoidal shape at an
orientation angle θD with respect to the flow direction (Fig. 6), and exhibits “tank-
tread motion,” characterized by membrane rotation. The Taylor parameter is often
used to quantify the extent of the capsule deformation:

D12 = |L1 − L2|
|L1 + L2| , (67)

where L1 and L2 are major and minor lengths of the capsule in the shear plane. We
use the inertia tensor,

A =
∫

V

[(x · x) I− x⊗ x] dV

= 1

5

∫

S

n · [(x · x) x⊗ I− x⊗ x⊗ x] dS, (68)

to approximate the capsule shape as an ellipsoid.
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Fig. 7 The Taylor parameter
D12 for a neo-Hookean
capsule in simple shear flow
as a function of the capillary
number Ca
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Fig. 8 Orientation angle of a
neo-Hookean capsule in
simple shear flow with
respect to the flow direction
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The Taylor parameter for a neo-Hookean capsule is shown as a function of the
capillary number in Fig. 7. When the capillary number is increased, the capsule is
more elongated, and the Taylor parameter is increased. The orientation angle of the
capsule also changes with the capillary number. The orientation angle is lower for
higher capillary numbers as shown in Fig. 8.

We then consider multiple capsules. How does the presence of other capsules
affect the deformation and orientation of a capsule? To investigate the effect of
hydrodynamic interaction between capsules, we simulate dense suspensions of
capsules at volume fractions up to φ = 0.4. Capsules are suspended in a triply
periodic flow field under simple shear flow. The Eward summation is used to
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Fig. 9 A snapshot of neo-Hookean capsules in simple shear flow. The volume fraction of the
capsules is φ = 0.3 and the capillary number is Ca = 0.3. The bright cubic region shows the
original lattice, and the dark region is Ewald periodic images. Note that periodic boxes around the
original domain are moving with the applied shear

Fig. 10 Ensemble average of
the Taylor parameter D12 as a
function of the volume
fraction of capsules φ. The
deformation is increased as
the volume fraction is
increased
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compute flow in an infinite periodic domain. Multipole expansion is also used for
accelerating the computation. Figure 9 is a typical snapshot of dense suspensions of
capsules in simple shear flow. The hydrodynamic interaction between the capsules
is complex, and each capsule exhibits a different instantaneous deformation from
the other capsules. We calculate the ensemble average of the Taylor parameter
for the capsules in the suspension. Figure 10 shows that the capsule deformation
is increased as the volume fraction is increased. The ensemble average of the
orientation angle is also shown in Fig. 11. The orientation angle is decreased as
the volume fraction is increased.
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Fig. 11 Orientation angle of
capsules with respect to the
flow direction. The
orientation angle is decreased
as the volume fraction is
increased
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3.2 Suspension Viscosity

The deformation and orientation of capsules change with the volume fraction
of capsules. These changes result in a non-Newtonian rheology of the capsule
suspensions. We next consider the viscosity of capsule suspensions.

Particle stress is the particle contribution to the total stress of a suspension (see
textbooks, for example, [30]). The particle stress tensor is given by Batchelor [31]

Σp = nc 〈S〉 , (69)

where nc is the particle number density. 〈S〉 is the ensemble average of the
hydrodynamic stresslet of the capsules:

S =
∫

S

1

2
(x⊗ q+ q⊗ x) dS, (70)

where x is the position vector, and q is the load on the capsule membrane. The
specific viscosity μsp measures an increase in viscosity due to the particle shear
stress,

μsp = Σ
p

12

μγ̇
. (71)

The specific viscosity of particle suspensions is often described by a polynomial
equation of the volume fraction:

μsp = a1φ + a2φ
2 + a3φ

3 + · · ·. (72)
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Fig. 12 Specific viscosity of
the suspension of
neo-Hookean capsules in
simple shear flow as a
function of the volume
fraction of the capsules. The
specific viscosity of a
rigid-sphere suspension [32]
is also shown
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Einstein [27] derived the specific viscosity for the dilute limit of rigid-sphere
suspensions as Eq. (65). Krierger and Dougherty [32] also proposed an empirical
expression:

μsp =
(

1− φ

φm

)− 5
2φm

− 1, (73)

where φm is the maximum packing fraction. Using a Taylor series expansion of
Eq. (73) around φ = 0, we have

ai =
i∏

n=1

{
1

n

(
5

2
+ n− 1

φm

)}

, (74)

where
∏

is the product operator.
We compare the specific viscosity of a neo-Hookean capsule suspension with

that of a rigid-sphere suspension in Fig. 12, where the maximum packing fraction
is assumed to be φm = 0.63 for random close packing [33]. The specific viscosities
increase nonlinearly with the volume fractions both for the rigid-sphere and capsule
suspensions. The values are lower for higher capillary numbers at a given volume
fraction.

We obtain the coefficient for the first-order term, a1, from the result of the dilute
limit, and then estimate the coefficient of the second-order term, a2, by a least-
squares fitting to plots of

(
μsp − a1φ

)
. Note that we set a range of the volume

fraction as 0 ≤ φ ≤ 0.1 for the least-squares fitting. Figure 13 shows that both the
coefficients a1 and a2 become smaller when the capillary number is increased, and
a2 decreases more rapidly than a1.
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Fig. 13 Coefficients of
polynomial equation (72) as a
function of the capillary
number
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Fig. 14 Ratio of
(a1φ + a2φ

2) to μsp . The
contribution of the first- and
second-order terms on the
shear viscosity is much larger
for a capsule suspension than
a rigid-sphere suspension
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This result implies that the effect of high-order terms is small for deformable
particles. We plot the ratio of

(
a1φ + a2φ

2
)

to μsp in Fig. 14. We find that
the contribution of the first- and second-order terms is much larger for capsule
suspensions than rigid-sphere suspensions. While the first- and second-order terms
only account for approximately 50% of μsp for the rigid-sphere suspension at φ =
0.4, these terms account for 92% even for the capsule suspension with the lowest
capillary number examined, Ca = 0.1.

3.3 Relationship Between the Deformation and Orientation
and the Shear Viscosity

Non-Newtonian behaviors of particle suspensions are often discussed with the
microstructure of suspensions [30]. The deformation and orientation of capsules
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Fig. 15 Ensemble average of
the principal stresslet
difference of capsules in
simple shear flow. The
principal stresslet difference
is increased when the volume
fraction of the capsules is
increased
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may, however, more directly affect the suspension rheology and also the suspension
microstructure. Here, we discuss the relationship between the deformation and
orientation of capsules and the suspension rheology.

The specific viscosity is proportional to the shear component of the hydrody-
namic stresslet of capsules. The shear component of the stresslet tensor of a capsule
may be written as

S12 = 1

2
(S1 − S2) sin 2θS, (75)

where S1 and S2 are the principal stresslets (the eigenvalues of the stresslet tensor)
in the shear plane. The strength of the stresslet is given by the principal stresslet
difference S1−S2, and its direction is given by the orientation angle θS with respect
to the flow direction. Equation (75) is valid only for dilute suspensions, but may be
applicable to the ensemble average of the stresslets as an approximation,

〈S12〉 ≈ 1

2
〈S1 − S2〉 sin 2 〈θS〉 . (76)

When the viscosity ratio λ = 1, the principal stresslet difference is associated
with the deformation of the capsules. When the volume fraction of the capsules is
increased, the capsule deformation is increased. The principal stresslet difference
is then also increased as shown in Fig. 15. The increase in the deformation thus
amplifies the magnitude of the particle stress, resulting in an increase in the specific
viscosity. However, the orientation angle of the capsules is also decreased at the
same time, i.e. the capsule direction is closer to the flow direction. Figure 16 shows
the principal direction of the stresslet. The direction of the stresslet also becomes
closer to the flow direction, and the shear component of the stresslet tensor is
decreased. Hence, the change in the orientation of capsules suppresses an increase
in the shear viscosity.
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Fig. 16 Ensemble average of
the principal direction of the
stresslet of capsules, where
the angle θS is defined as an
angle with respect to the flow
direction. When the volume
fraction of the capsules is
increased, the principal
direction becomes closer to
the flow direction
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Fig. 17 First normal stress of
the suspension of
neo-Hookean capsules in
simple shear flow. The first
normal stress difference is
larger for higher capillary
numbers
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In this relationship, the first normal stress difference,

N1

μγ̇
= Σ

p

11 −Σ
p

22

μγ̇
, (77)

may be larger for higher capillary numbers, because the difference in the normal
components of the stresslet is given by

〈S11 − S22〉 ≈ 〈S1 − S2〉 cos 2 〈θS〉 . (78)

In Fig. 17, we find that the first normal stress difference is increased as the volume
fraction is increased. The first normal stress difference becomes larger for higher
capillary numbers.
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4 Deformation of Capsules in Oscillating Shear Flow

We next consider the deformation of capsules in oscillating shear flow. While
previous studies have clarified the dynamics of capsules in steady flows, only a
few studies have investigated the capsule dynamics in unsteady flows [34]. We
simulated the deformation of a neo-Hookean capsule in oscillating shear flow and
found “overshoot phenomenon” in the deformation of the capsule [15].

Consider a neo-Hookean capsule suspended in oscillating shear flow. The shear
rate of the oscillating shear flow is given in a form,

γ̇ (t) = γ̇0 exp j (2πf t) , (79)

where t is the time, γ̇0 is the amplitude of the shear rate, j is the imaginary unit, and
f is the oscillation frequency. The corresponding strain is then

γ (t) =
∫

t

γ̇ (t) dt = γ̇0

2πfj
exp j (2πf t) . (80)

The strain is inversely proportional to the oscillation frequency f , and thus the strain
given to the capsule is small at high oscillation frequencies. Using the amplitude of
the shear rate γ̇0, the capillary number is defined as

Ca = μγ̇0a

Gs

, (81)

where μ is the viscosity of the external fluid.
For high oscillation frequencies, the capsule deformation may be predicted by

the small deformation theory [28, 35]. In the small deformation theory, the Taylor
parameter is given by

D12 = 5

4πj (f/γ̇0) (2λ+ 3)
exp j (2πf t) , (82)

and the maximum Taylor parameter is

Dmax
12 =

5

4π (f/γ̇0) (2λ+ 3)
, (83)

where λ is the viscosity ratio between the internal and external fluids. The maximum
Taylor parameter is inversely proportional to f . We also note that Eq. (83) does not
include the elastic properties of the capsule membrane.

4.1 Deformation and Phase

Snapshots of the capsule in oscillating shear flow are shown in Fig. 18 for Ca =
0.5 and λ = 5 at various frequencies. The capsule largely deforms at oscillation
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Fig. 18 Snapshots of a neo-Hookean capsule in oscillating shear flow for Ca = 0.5 and λ = 5 at
oscillation frequency (a) f/γ̇0 = 10−2, and (b) f/γ̇0 = 100. The red line shows the strain, and the
blue triangle is the shear rate

phases 0 and π , where the shear rate is maximum, at a low oscillation frequency
f/γ̇0 = 10−2. When the oscillation frequency is increased, the capsule deformation
is decreased. The deformation peaks at phases approximately π /2 and 3π /2, where
the strain is maximum.

We plot the maximum Taylor parameter with the small deformation theory,
Eq. (83), in Fig. 19 as a function of the oscillation frequency. At low frequencies,
the maximum Taylor parameter is larger for higher capillary numbers, but weakly
depends on the oscillation frequency. When the oscillation frequency is increased,
the maximum Taylor parameter converges to values predicted by the small deforma-
tion theory. The capsule with a larger capillary number shows a faster convergence,
but finally the maximum Taylor parameter becomes independent of the capillary
number at high oscillation frequencies. The capsule deformation at high frequencies
is inversely proportional to the oscillation frequency, and is only determined by
viscosity ratio.
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Fig. 19 Maximum Taylor
parameter of a neo-Hookean
capsule in oscillating shear
flow as a function of the
non-dimensional oscillation
frequency f/γ̇0 for λ = 5.
The black line shows values
predicted by the small
deformation theory, Eq. (83)
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Fig. 20 Phase of a
neo-Hookean capsule in
oscillating shear flow as a
function of the
non-dimensional oscillation
frequency for λ = 5
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The phase of the capsule deformation is presented in Fig. 20. At low frequencies,
the capsule deformation is determined by the equilibrium between the fluid and
membrane forces, and the deformation phase follows the phase of the shear rate
(δD = 0). However, at high frequencies, the capsule deformation is limited by the
strain, and the phase of the deformation shifts toward the phase of the strain (δD =
π/2).

4.2 Overshoot Phenomenon

We now focus more on the capsule deformation at low frequencies. We compare
the Taylor parameter of the capsule in oscillating shear flow with that in steady
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Fig. 21 Maximum Taylor
parameter in oscillating shear
flow Dmax

12 normalized by the
Taylor parameter in steady
shear flow D

ssf

12 for λ = 5.
The capsule in oscillating
shear flow undergoes larger
deformation than that in
steady shear flow at low
frequencies. The dashed line
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Fig. 22 Time history of the
Taylor parameter of a
neo-Hookean capsule in
oscillating shear flow, where
λ = 5 and f/γ̇0 = 10−2. The
Taylor parameter D12 is
normalized by that in steady
shear flow D
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shear flow, and find “overshoot phenomenon.” Figure 21 shows the maximum Taylor
parameter in oscillating shear flow normalized by the Taylor parameter in steady
shear flow, Dmax

12 /D
ssf

12 for λ = 5 and various capillary numbers. This result
indicates that the capsule undergoes larger deformation in oscillating shear flow
than that in steady shear flow at low frequencies.

Figure 22 shows the time history of the Taylor parameter at f/γ̇ = 10−2 for
λ = 5. The Taylor parameter has a single peak in a half cycle and the maximum
value is nearly the same as D

ssf

12 at a low capillary number Ca = 0.3. When the
capillary number is increased, however, the maximum value becomes slightly larger
than that in steady shear flow. The Taylor parameter peaks before the shear rate
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Fig. 23 Time history of the
Taylor parameter of a
neo-Hookean capsule in
oscillating shear flow, where
Ca = 2.0 and f/γ̇0 = 10−2.
The Taylor parameter D12 is
normalized by that in steady
shear flow D
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reaches the maximum value, and at Ca = 2.0, the second peak also appears. When
the viscosity ratio is increased, the number of the deformation peaks is increased as
shown in Fig. 23.

4.3 Mechanism of Overshoot Phenomenon

What is the mechanism underlying the overshoot phenomenon? The overshoot
phenomenon also occurs during transient deformation in start-up shear flow [4].
Here, we consider start-up shear flow as the simplest case to discuss the mechanism
of the overshoot phenomenon.

The start-up shear flow consists of an extensional flow E∞12 = E∞21 = γ̇ /2 and
a rotational flow Ω∞12 = −Ω∞21 = γ̇ /2. When the start-up shear flow is applied to
a capsule, the capsule is elongated into the direction θ = π/4 by the extensional
flow. Meanwhile, the orientation of the capsule is changed from θ = π/4 to a lower
angle by the rotational flow. Finally, the capsule reaches equilibrium deformation
and orientation, and exhibits a steady tank-tread motion. Effective extension rate at
an orientation angle θ may be given by

ε̇ (θ) = γ̇

2
sin 2θ. (84)

and thus the effective extension rate is the largest at θ = π/4 and becomes smaller
as decreasing θ .

We plot the time history of the Taylor parameter as a function of the effective
extensional rate in Fig. 24 for Ca = 1.0 and three values of λ. Because the
orientation angle decreases from θ = π/4 during a transient process, the capsule
first undergoes the largest deformation, and then D12 decreases until the capsule
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Fig. 24 Time history of the
Taylor parameter in start-up
shear flow as a function of the
effective extension rate
με (θ) a/Gs for Ca = 1.0.
The dashed line represents
the Taylor parameter in
steady extensional flow. The
arrow shows the direction of
the time
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reaching an equilibrium state. At the equilibrium state, the effective extensional
flow is counterbalanced with the flow generated by the capsule membrane. Thus,
the equilibrium deformation in the start-up shear flow is nearly the same as that
in steady extensional flow. For a large value of λ, this process is not a monotonic
process. The effective extensional flow may be canceled by the flow due to the
membrane even at a different orientation angle from the final one, but the resultant
flow still changes the capsule to a different shape. The capsule therefore exhibits
swinging-like motion, repeating overshoot and undershoot until when the capsule
reaches the final equilibrium state.

Does a capsule undergo a larger overshoot when it has a smaller orientation angle
at its equilibrium state? Note that the equilibrium deformation and orientation in
start-up shear flow is identical to those in steady shear flow. Figure 25 is a contour
plot of the orientation angle of the capsule in simple shear flow for various values of
the capillary number and viscosity ratio. The orientation angle becomes lower for
higher capillary numbers and larger viscosity ratios. We also show the maximum
Taylor parameter of the capsule in start-up shear flow as a contour plot for Ca and
λ in Fig. 26. We find that a large overshoot well corresponds to a low orientation
angle. More than 10% overshoot, for example, are expected when the orientation
angle is θssf < 0.05π for the neo-Hookean capsule.

When the peak shear rate γ̇0 is fixed, the largest strain is given to the capsule
by start-up shear flow among oscillating shear flows. The overshoot deformation
presented in Fig. 26 thus also quantifies the upper limit of the capsule deformation
in oscillating shear flows.

We have shown that there are two frequency ranges in terms of the capsule
deformation. At low frequencies, the capsule deformation weakly depends on
the frequency and the overshoot phenomenon likely occurs. At high frequencies,
the capsule deformation decreases on the order of f−1 and follows the small
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Fig. 25 Contour plot of the
orientation angle of a
neo-Hookean capsule in
simple shear flow θssf as
functions of the capillary
number Ca and viscosity
ratio λ

Fig. 26 Contour plot of the
maximum Taylor parameter
of a neo-Hookean capsule in
start-up shear flow Dmax

12 as
functions of the capillary
number Ca and viscosity
ratio λ. The value is
normalized by the Taylor
parameter in simple shear
flow D

ssf

12

deformation theory. Finally, we roughly estimate the threshold frequency for the
overshoot phenomenon. Substituting D

ssf

12 into the left-hand side of Eq. (83), we
have the threshold frequency as

(
f

γ̇0

)

th

= 5

4πD
ssf

12 (2λ+ 3)
. (85)

This equation does not include membrane properties, and may be applicable to other
deformable particles, such as bubbles and drops.
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5 Sedimentation of Red Blood Cells

We have also applied the GPU-accelerated BEM to a numerical analysis of the
sedimentation of red blood cells [16]. Because the density of red blood cells
is slightly larger than that of plasma, red blood cells settle under gravity. The
settling velocity called erythrocyte sedimentation rate has been used for medical
practice [36].

A previous study reported that the number of red blood cells vertically oriented
was 2.5 times greater than those horizontally oriented [37]. Hoffman and Inoue [38]
also reported that under high centrifugal forces, red blood cells reoriented vertically
and deformed into a bag-like shape. To understand this phenomenon more detail,
we simulated the sedimentation of a red blood cell at various conditions.

A density difference between the internal and external fluids Δρ is given to a red
blood cell suspended in an infinite unbounded domain. The gravitational force is
added into the load on the membrane as

qg (y) = Δρ {y · g}n (y) , (86)

where y is the position vector, g is the gravity, and n is the normal vector pointing
outwards. The Skalak constitutive law, Eq. (58) is used for the red blood cell
membrane. The initial shape of the red blood cell is obtained by imposing bending
stiffness to a stretch-free oblate capsule, where the spontaneous curvature c0 = 0.
The aspect ratio of the oblate capsule is set to be 3.9 so that its reduced volume
is similar to a real value ∼0.637 [39]. The characteristic length of this problem is
defined by the radius of a sphere that has the same volume as the red blood cell. The
Bond number is then given by

Bo = L2Δρg

Gs

, (87)

where L is the characteristic length. Here, we also consider bending stiffness in the
non-dimensional form,

Be = Eb

GsL2 . (88)

While the Bond number varies from Bo = 2.5 × 10−3 to Bo = 2.5 × 10−1, the
bending stiffness is fixed to Be = 1.0× 10−2 in this chapter.

5.1 Sedimentation Under Standard Gravity

First, we consider a single red blood cell settling in plasma under standard gravity.
The corresponding Bond number is Bo = 2.5×10−3. We introduce local Cartesian
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Fig. 27 Sedimentation of a
single red blood cell under
gravity g. The red blood cell
settles and drifts at an
orientation angle θ . Vectors
ep and en are local Cartesian
bases

Fig. 28 Settling and drifting
velocities of a red blood cell
for Bo = 2.5× 10−3 as a
function of the orientation
angle of the cell. VS and VD

are the settling and drifting
velocities, respectively.
Dashed lines are obtained
from Eqs. (89) and (90)
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coordinates as shown in Fig. 27. The orientation angle of the red blood cell θ is
defined by the angle between the horizontal plane and the vector ep, and θ = 0
and θ = π/2 represent horizontal and vertical orientations, respectively. The red
blood cell is initially placed at an orientation angle θ = θ0, and then undergoes
sedimentation. While the red blood cell settles in the gravity direction, it also drifts
in the horizontal direction. For this Bond number, the angular velocity of the red
blood cell is small, and the cell orientation angle remains approximately θ = θ0. The
cell velocity also remains nearly constant after a transient state in the simulation.

The settling and drifting velocities change slightly with the orientation angle of
the red blood cell as shown in Fig. 28, where VS (θ) and VD (θ) refer to the settling
and drifting velocities at an orientation angle θ , respectively. The settling velocity
is slightly increased when the orientation angle is increased. The drifting velocity is
zero at orientation angles θ = 0 and θ = π/2, and peaks at θ0 = π/4.
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Fig. 29 A schematic of
subproblems. (a) A force of
g cos θen is applied to the
cell. (b) Another force of
g sin θep is applied to the cell +

(b)(a)

This is a Stokes flow problem. We decompose the problem into two subproblems:
a force of g cos θen is applied to the cell (Fig. 29a); another force of g sin θep is
applied to the cell (Fig. 29b). The cell velocities of these subproblems are V nen =
VS (0) cos θ en, and V pep = VS (π/2) sin θ ep. The settling and drifting velocities
are then given by the superposition of these velocities:

VS (θ) = V n cos θ + V p sin θ

= VS (0) cos2 θ + VS (π/2) sin2 θ, (89)

and

VD (θ) = −V n sin θ + V p cos θ

= {VS (π/2)− VS (0)} sin θ cos θ. (90)

In the numerical results, VS (0) ≈ 1.67 × 10−1L2Δρg/μ and VS (π/2) ≈ 2.04 ×
10−1L2Δρg/μ. We substitute these values into the right-hand side of Eqs. (89)
and (90), and compare these equations with the numerical results in Fig. 28. The
equations well describe the settling and drifting velocities of the red blood cell at
arbitrary orientation angles. When red blood cells settle in a suspension at random
orientation angles, the mean velocity of the cells is estimated as 1.67 μm/s. This
value is consistent with an experimental result, 1.69 μm/s [37].

5.2 Effect of Cell Deformation

We then consider effects of cell deformation. Figure 30 shows snapshots of the
sedimentation of the red blood cell for Bo = 2.5×10−3 and Bo = 2.5×10−1, where
λ = 1. The red blood cell deforms into a bag-like shape for Bo = 2.5 × 10−1 as
observed in previous experiments [38]. This is likely due to gravitational hydrostatic
pressure. A difference in the pressure between the upper and lower parts of the cell
drives the cell to deform asymmetry in the gravitational direction. The orientation
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Fig. 30 Snapshots of the
sedimentation of a red blood
cell for (a) Bo = 2.5× 10−3

and (b) Bo = 2.5× 10−1.
While the shape and
orientation are nearly
constant for
Bo = 2.5× 10−3, a bag-like
shape and an orientation
toward θ = π/2 are observed
for Bo = 2.5× 10−1

(b)(a)

angle of the red blood cell gradually increases for Bo = 2.5× 10−1, and converges
to θ = π/2 after a long time period. Such a vertical orientation of red blood cells
was also observed in previous experiments when a large gravitational acceleration
was applied [38].

The deformation of the red blood cell has a small effect on the settling and
drifting velocities of the cell. Figure 31 shows the time histories of the settling
and drifting velocities for Bo = 2.5 × 10−1 as a function of the instantaneous
orientation angle, where the sedimentation starts at various orientation angles. The
non-dimensional settling and drifting velocities for Bo = 2.5 × 10−1 converge to
those for Bo = 2.5 × 10−3. We also examined different viscosity ratio, and the
non-dimensional velocities also converged to the same velocities.

We also quantify the angular velocity of the cell, ω = dθ/dt . Time histories
of the angular velocities are shown in Fig. 32 as a function of the instantaneous
orientation angle. Even when the red blood cell departures at different initial
orientation angle, the angular velocities converge to the same velocity. We also find
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Fig. 31 Time histories of
settling and drifting velocities
for Bo = 2.5× 10−1 as a
function of the instantaneous
orientation angle, where the
sedimentation starts at
various orientation angles.
The dashed lines represent
the velocities for
Bo = 2.5× 10−3. The arrows
indicate the direction of the
time
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Fig. 32 Time histories of
angular velocities for
Bo = 2.5× 10−1 as a
function of the instantaneous
orientation angle, where the
sedimentation starts at
various orientation angles.
The arrow indicates the
direction of the time
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that the converged angular velocity becomes maximum around θ = π/4 and may
be written as

ω ∼ ωmax sin 2θ, (91)

where ωmax is the maximum angular velocity.
The maximum angular velocities are compared among different Bond numbers

and viscosity ratios in Fig. 33. The maximum angular velocity increases linearly
with the Bond number, in particular, for low Bond numbers. While the maximum
angular velocity is lower for a larger viscosity ratio at high Bond numbers, it does
not depend on the viscosity ratio at low Bond numbers.
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Fig. 33 Maximum angular
velocity as a function of the
Bond number. The dashed
line represents a linear
function of Bo
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5.3 Asymmetric Deformation and Reorientation

We have shown that the red blood cell changes its orientation into the vertical
direction during the sedimentation. The reorientation of the red blood cell is caused
by the asymmetric deformation of the red blood cell. The extent of the shape
asymmetry is quantified by the asymmetry parameter [40]:

χ

L
= XA − XV

L

= 1

S

∫

S

x
L
dS − 1

V

∫

V

x
L
dV

= 1

S

∫

S

x− XV

L
dS, (92)

where XA refers to the area centroid of the cell membrane, and XV is the volume
centroid of the cell. When the red blood cell settles at the vertical orientation θ =
π/2, the norm of the asymmetry parameter χ/L = |χ |/L is proportional to the
Bond number as shown in Fig. 34.

The shape asymmetry of the red blood cell changes with the instantaneous orien-
tation angle θ during the sedimentation. The shape asymmetry in the orientation
direction ep is calculated by χp = χ · ep. Figure 35 shows time histories of
the asymmetry parameter as a function of the instantaneous orientation angle for
Bo = 2.5 × 10−1. The shape asymmetry changes with a sin θ -like function and
peaks at θ = π/2.
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Fig. 34 Norm of the
asymmetry parameter,
χ/L = |χ |/L, at the vertical
orientation θ = π/2 as a
function of the Bond number
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Fig. 35 Time histories of the
asymmetry parameter χp/L

for Bo = 2.5× 10−1 as a
function of the instantaneous
orientation angle. The arrow
indicates the direction of the
time
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We now discuss the relationship between the shape asymmetry and the angular
velocity. We consider an asymmetric dumbbell consisting of two different-sized
spheres connected by a rigid rod. The asymmetric dumbbell also exhibits reorien-
tation because of a difference between the volume centroid and the hydrodynamic
center. The angular velocity of the dumbbell is then given by Mogami et al. [41]

ω (θ) = Δρgd

μ
R cos θ, (93)
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Fig. 36 Relationship
between the asymmetry
parameter and the angular
velocity. The dashed line is
Eq. (94) with Rm = 0.09
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where d is the distance between the volume centroid and the hydrodynamic center,
and R is the shape coefficient. Here, we use the asymmetric parameter χp instead
of the distance d, and we have the non-dimensional angular velocity as

μω

aΔρg
= χp

L
Rm cos θ, (94)

where Rm is the modified shape coefficient. In Fig. 36, we plot the non-dimensional
angular velocities at various orientation angles as a function of the parameter(
χp/L

)
cos θ . We find that the relationship between the shape asymmetry and the

angular velocity is well described by Eq. (94). The modified shape coefficient is
then estimated as Rm ∼0.09. Recalling that the asymmetry parameter χp/L is
proportional to Bo sin θ (Figs. 34 and 35), we have also the following relationship:

μω

LΔρg
∝ Bo sin 2θ. (95)

This is consistent with Eq. (91).

6 Conclusions

While BEM is one of the most accurate methods for simulating capsules in Stokes
flow, its heavy computational load has been a major issue, even when only a few
capsules are simulated. We have shown that the GPU-accelerated BEM is a solution
of this issue. While we have focused on the shear viscosity of capsule suspensions,
the capsule deformation in oscillating shear flow, and the sedimentation of red



250 Y. Imai and D. Matsunaga

blood cells in this chapter, we have also applied the GPU-accelerated BEM to
other problems, including the behavior of capsules near the wall [20, 40], the
cytoadhesion of red blood cells infected by Plasmodium falciparum malaria [42],
and the swimming of microorganisms [43, 44].

GPU computing is also effective for memory-bound processes. We have devel-
oped a GPU-accelerated lattice Boltzmann method, and have applied it to physiolog-
ical flow problems, including microcirculation [45–49], pulmonary air flow [50, 51],
and gastric flow [52, 53]. If you are interested in the GPU-accelerated LBM and its
biomedical applications, please refer to these papers.
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Recent Advances in ALE-VMS and
ST-VMS Computational Aerodynamic
and FSI Analysis of Wind Turbines

Artem Korobenko, Yuri Bazilevs, Kenji Takizawa, and Tayfun E. Tezduyar

Abstract We describe the recent advances made by our teams in ALE-VMS and
ST-VMS computational aerodynamic and fluid–structure interaction (FSI) analysis
of wind turbines. The ALE-VMS method is the variational multiscale version of
the Arbitrary Lagrangian–Eulerian method. The VMS components are from the
residual-based VMS method. The ST-VMS method is the VMS version of the
Deforming-Spatial-Domain/Stabilized Space–Time method. The ALE-VMS and
ST-VMS serve as the core methods in the computations. They are complemented
by special methods that include the ALE-VMS versions for stratified flows,
sliding interfaces and weak enforcement of Dirichlet boundary conditions, ST
Slip Interface (ST-SI) method, NURBS-based isogeometric analysis, ST/NURBS
Mesh Update Method (STNMUM), Kirchhoff–Love shell modeling of wind-turbine
structures, and full FSI coupling. The VMS feature of the ALE-VMS and ST-VMS
addresses the computational challenges associated with the multiscale nature of
the unsteady flow, and the moving-mesh feature of the ALE and ST frameworks
enables high-resolution computation near the rotor surface. The ST framework,
in a general context, provides higher-order accuracy. The ALE-VMS version for
sliding interfaces and the ST-SI enable moving-mesh computation of the spinning
rotor. The mesh covering the rotor spins with it, and the sliding interface or the
SI between the spinning mesh and the rest of the mesh accurately connects the
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two sides of the solution. The ST-SI also enables prescribing the fluid velocity
at the turbine rotor surface as weakly-enforced Dirichlet boundary condition. The
STNMUM enables exact representation of the mesh rotation. The analysis cases
reported include both the horizontal-axis and vertical-axis wind turbines, stratified
and unstratified flows, standalone wind turbines, wind turbines with tower or support
columns, aerodynamic interaction between two wind turbines, and the FSI between
the aerodynamics and structural dynamics of wind turbines. Comparisons with
experimental data are also included where applicable. The reported cases demon-
strate the effectiveness of the ALE-VMS and ST-VMS computational analysis in
wind-turbine aerodynamics and FSI.

1 Introduction

1.1 Role of Wind Turbines in Renewable-Energy Generation

Electricity generating wind turbines now present one of the biggest renewable-
energy-based power production facilities on the planet. Latest estimates from the
International Renewable Energy Agency [1] show that onshore wind is already
at grid parity, i.e., it is able to generate power at the so-called levelized cost of
electricity (LCOE) that is less than or equal to the price of purchasing power
from the electric grid. According to recent reports of the Energy Information
Administration of the U.S. Department of Energy [2] and the annual energy report
of the European Commission [3], LCOE for onshore wind falls within the range of
$0.04–$0.10 per kWh, making it cost-competitive with conventional power sources
such as coal, natural gas, and nuclear energy ($0.06–$0.12 per kWh). Moreover,
wind energy is also one of the fastest growing power production sectors: During
2000–2012, the installed capacity for wind power increased by 266 GW, while that
for solar power went up by 100 GW and nuclear power by only 9 GW [4]. In
addition, as noted in [1], wind energy technology has the largest remaining cost
reduction potential. As a result, countries around the world are putting substantial
effort into the development of wind energy technologies. The ambitious wind
energy goals put pressure on the wind energy industry research and development
to significantly enhance the current wind generation capabilities in a short period of
time and further decrease the associated costs. This calls for transformative concepts
and designs (e.g., floating offshore wind turbines) that must be created and analyzed
with high-precision methods and tools. These include complex-geometry, 3D, time-
dependent, multi-physics predictive simulation methods and software that will play
an increasingly important role as wind energy technology continues to develop.
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1.2 Computational Analysis of Wind Turbines

To obtain high-fidelity predictive simulation results for wind turbines, 3D modeling
is essential. However, simulation of wind turbines at full scale engenders a number
of challenges: the flow is fully turbulent, requiring highly accurate methods and
increased grid resolution. The presence of fluid boundary layers, where turbulence is
created, complicates the situation further. Wind-turbine blades are long and slender
structures, with complex distribution of material properties, for which the numerical
approach must have good efficiency and approximation power, and avoid locking.
Wind-turbine blades are laminated composite structures that require advanced
multiscale modeling approaches to accurately predict the onset and progression of
damage and to estimate their remaining useful fatigue life. Wind-turbine simulations
involve moving and stationary components, and the fluid–structure coupling must
be accurate, efficient, and robust to preclude divergence of the computations.

In recent years, several attempts were made to address some of the above chal-
lenges and to raise the fidelity and predictability levels of wind-turbine simulations.
Standalone aerodynamics simulations of wind-turbine configurations in 3D were
reported in [5–10], while standalone structural analyses of rotor blades of complex
geometry and material composition, but under assumed wind-load conditions
or wind-load conditions coming from separate aerodynamic computations, were
reported in [11–16].

While the above contributions present important advances in the aerodynamics
and structural modeling of wind turbines, the authors of the present paper feel that
fluid–structure interaction (FSI) simulations at full scale are essential for accurate
modeling of wind turbines. Indeed, in a recent work [17], it was shown that FSI
modeling and simulation of wind turbines is important for accurately predicting
their mechanical behavior at full scale. This is because the motion and deformation
of the wind-turbine blades depend on the wind speed and air flow, and the air flow
patterns depend on the motion and deformation of the blades. In order to simulate
the coupled problem, the equations governing the air flow and the blade motions and
deformations need to be solved simultaneously, with proper kinematic and dynamic
conditions coupling the two physical systems. Without that the modeling cannot be
realistic.

Additional modeling challenges stem from realistic scenarios of wind turbines
arranged in arrays, and operating in complex turbulent atmospheric boundary
layer (ABL) flows with a wide range of energy-containing scales and in different
atmospheric stability regimes. Wind turbines positioned downstream operate in
the wakes generated by upstream turbines, and have been observed to generate
less power compared to the upstream turbines. In addition, downstream turbines
experience higher variations in aerodynamic loads, which tend to shorten their
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fatigue life leading to premature blade failure [18]. Depending on the atmospheric
stability regime, spacing between turbines, the underlying surface topology, turbu-
lence intensity, and wind direction and speed, the power-generation deficit for the
downstream turbines may be as high as 40%, as was reported in [19, 20].

We feel that, to address the FSI modeling challenges described, it is important to
focus on the development and application of numerical techniques that are general,
accurate, robust, and efficient for the targeted class of problems. Such techniques
are summarized in what follows and are described in greater detail in the body of
this article.

1.3 Isogeometric Analysis

Isogeometric Analysis (IGA), first introduced in [21] and further expanded on
in [22–33], is adopted as the geometry modeling and simulation framework for wind
turbines in some of the examples presented in this paper. We use IGA based on
NURBS (non-uniform rational B-splines), which are more efficient than standard
finite elements for representing complex, smooth geometries, such as wind-turbine
blades. IGA was successfully employed for computation of turbulent flows [34–39],
nonlinear structures [15, 40–44], and FSI [45–48], and, in most cases, gave a clear
advantage over standard low-order finite elements in terms of solution per-degree-
of-freedom accuracy. This is in part attributable to the higher-order smoothness
of the basis functions employed. In addition, flows about rotating components are
naturally handled in an IGA framework because all conic sections, and in particular,
circular and cylindrical shapes, are represented exactly [49].

The wind-turbine structures are governed by the isogeometric rotation-free
shell formulation with the aid of the bending-strip method [15]. The method is
appropriate for thin-shell structures comprised of multiple C1- or higher-order
continuous surface patches that are joined or merged with continuity no greater than
C0. The Kirchhoff–Love shell theory, which relies on higher-order continuity of the
basis functions, is employed in the patch interior as in [44]. Although NURBS-based
IGA is used in this work, other discretizations that allow for local mesh refinement,
such as T-splines [28, 29] or subdivision surfaces [50–52], may also be employed.

In addition, an isogeometric representation of the analysis-suitable geometry can
be used in generating meshes for finite element computation with the ALE-VMS
and ST-VMS methods.
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1.4 ALE-VMS

The ALE-VMS method [8, 47] is the variational multiscale version of the Arbitrary
Lagrangian–Eulerian method [53]. The VMS components are from the residual-
based VMS (RBVMS) method given in [34, 39, 54, 55]. The ALE-VMS is a
moving-mesh method, suitable for computation of flows with moving boundaries
and interfaces (MBI), including FSI. Moving the fluid mechanics mesh to track
a fluid–solid interface enables mesh-resolution control near the interface and,
consequently, high-resolution representation of the boundary layer. The ALE-
VMS originated from the RBVMS formulation of incompressible turbulent flows
proposed in [34] for nonmoving meshes, and may be thought of as an extension
of the RBVMS method to moving meshes. As such, it was presented for the
first time in [47] in the context of FSI. Although ALE-VMS gave reasonably
good results for several important turbulent flows, it was evident in [34, 37] that
to obtain accurate results for wall-bounded turbulent flows the method required
relatively fine resolution of the boundary layers. This fact makes ALE-VMS a
somewhat costly technology for full-scale wall-bounded turbulent flows at high
Reynolds numbers, which are characteristic of the present application. For this
reason, weakly enforced essential boundary condition formulation was introduced
in [56], which significantly improved the performance of the ALE-VMS formulation
in the presence of unresolved boundary layers [35, 36, 39]. The weak boundary
condition formulation may be thought of as an extension of Nitsche’s method [57] to
the Navier–Stokes equations of incompressible flows. Another interpretation of the
weak boundary condition formulation is that it is a discontinuous Galerkin method
(see, e.g., [58]), where the continuity of the basis functions is enforced everywhere
in the domain interior, but not at the domain boundary. Recently, the ALE-VMS
and weakly enforced essential boundary condition formulations were extended to
the modeling of stratified turbulent flows in [59–61].

The ALE-VMS and RBVMS have been successfully applied to many classes
of FSI, MBI, and fluid mechanics problems. The classes of problems include
wind-turbine aerodynamics and FSI [8, 17, 62–67], more specifically, vertical-axis
wind turbines (VAWTs) [68, 69], floating wind turbines [70], wind turbines in
atmospheric boundary layers [71], and fatigue damage in wind-turbine blades [72],
patient-specific cardiovascular fluid mechanics and FSI [46, 47, 73–77], biomedical-
device FSI [78–83], ship hydrodynamics with free-surface flow and fluid–object
interaction [84, 85], hydrodynamics and FSI of a hydraulic arresting gear [86, 87],
hydrodynamics of tidal-stream turbines with free-surface flow [88], and bioinspired
FSI for marine propulsion [89, 90].
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1.5 ST-VMS and ST-SUPS

The Space–Time Variational Multiscale (ST-VMS) method [91–93] is the VMS ver-
sion of the Deforming-Spatial-Domain/Stabilized ST (DSD/SST) method [94–96].
The DSD/SST was introduced for computation of flows with MBI, including FSI. In
MBI computations the DSD/SST functions as a moving-mesh method. Some of the
earliest FSI computations with the DSD/SST formulation were reported in [97] for
vortex-induced vibrations of a cylinder and in [98] for flow-induced vibrations of a
flexible, cantilevered pipe (1D structure with 3D flow). The DSD/SST formulation
has been used extensively in 3D computations of parachute FSI, starting with the
3D computations reported in [99], and evolving within a decade to computations
with more sophisticated core and special methods [96, 100–102]. Because the sta-
bilization components of the DSD/SST are the Streamline-Upwind/Petrov-Galerkin
(SUPG) [103] and Pressure-Stabilizing/Petrov-Galerkin (PSPG) [94] stabilizations,
the method is also called “ST-SUPS.” The VMS components of the ST-VMS are
from the RBVMS. The ST-VMS has two more stabilization terms beyond those
the ST-SUPS has, and these additional terms give the method better turbulence
modeling features. Conversely, we can see the ST-SUPS as a reduced version of
the ST-VMS. The ST-SUPS and ST-VMS, because of the higher-order accuracy
of the ST framework (see [91, 92]), are desirable also in computations that do not
involve MBI. The thermo-fluid ST-VMS for the coupled incompressible-flow and
thermal-transport equations was introduced in [93]. It was derived by expanding the
incompressible-flow ST-VMS [91, 92] to include the thermal-transport equation and
the coupling between the flow and thermal-transport equations.

The ST-SUPS and ST-VMS have also been successfully applied to many
classes of FSI, MBI, and fluid mechanics problems. The classes of problems
include spacecraft parachute analysis for the main parachutes [104–108], cover-
separation parachutes [109] and the drogue parachutes [110–112], wind-turbine
aerodynamics for horizontal-axis wind-turbine (HAWT) rotors [8, 9, 105, 113], full
HAWTs [66, 114–116] and VAWTs [117], flapping-wing aerodynamics for an actual
locust [105, 118–120], bioinspired MAVs [115, 116, 121, 122] and wing-clapping
[123, 124], blood flow analysis of cerebral aneurysms [115, 125], stent-blocked
aneurysms [125–127], aortas [128, 129] and heart valves [116, 123, 129–132],
spacecraft aerodynamics [109, 133], thermo-fluid analysis of ground vehicles and
their tires [93], thermo-fluid analysis of disk brakes [134], flow-driven string
dynamics in turbomachinery [135], flow analysis of turbocharger turbines [136–
138], flow around tires with road contact and deformation [139, 140], ram-air
parachutes [141], and compressible-flow parachute aerodynamics [142].

In this article, in the ST computational flow analysis of a VAWT, the ST
framework provides higher-order accuracy in a general context. The VMS feature of
the ST-VMS addresses the computational challenges associated with the multiscale
nature of the unsteady flow. The moving-mesh feature of the ST framework enables
high-resolution computation near the turbine rotor surface.
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1.6 ST-SI

The ST Slip Interface (ST-SI) method [117, 134] was introduced in [117], in
the context of incompressible-flow equations, to retain the desirable moving-mesh
features of the ST-VMS when we have spinning solid surfaces, such as a turbine
rotor. The mesh covering the spinning surface spins with it, retaining the high-
resolution representation of the boundary layers. The SI between the spinning
mesh and the rest of the mesh accurately connects the two sides of the flow field.
The starting point in the development of the ST-SI was the ALE-VMS version
for sliding interfaces [49, 143]. In the ST-SI, interface terms similar to those in
the ALE-VMS version are added to the ST-VMS formulation to account for the
compatibility conditions for the velocity and stress. An ST-SI version where the
SI is between fluid and solid domains with weakly enforced Dirichlet boundary
conditions for the fluid was also presented in [117]. The SI in this case is a “fluid–
solid SI” rather than a standard “fluid–fluid SI.” The thermo-fluid ST-SI, introduced
in [134] for the coupled incompressible-flow and thermal-transport equations,
retain the high-resolution representation of the thermo-fluid boundary layers near
spinning solid surfaces. These ST-SI methods have been successfully applied to
aerodynamic analysis of VAWTs [117], thermo-fluid analysis of disk brakes [134],
flow-driven string dynamics in turbomachinery [135], flow analysis of turbocharger
turbines [136–138], flow around tires with road contact and deformation [139, 140],
aerodynamic analysis of ram-air parachutes [141], and heart valve flow analysis
[129, 131, 132].

In another version of the ST-SI presented in [117], the SI is between a thin porous
structure and the fluid on its two sides. This enables dealing with the fabric porosity
in a fashion consistent with how the standard fluid–fluid SIs are dealt with and
how the Dirichlet conditions are enforced weakly with fluid–solid SIs. Furthermore,
this version enables handling thin structures that have T-junctions. This method
has been successfully used in incompressible-flow aerodynamic analysis of ram-air
parachutes with fabric porosity [141]. The compressible-flow ST-SI methods were
introduced in [142], including the version where the SI is between a thin porous
structure and the fluid on its two sides. Compressible-flow porosity models were
also introduced in [142]. These, together with the compressible-flow ST SUPG
method [144], extended the ST computational analysis range to compressible-flow
aerodynamics of parachutes with fabric and geometric porosities. That enabled
successful ST computational flow analysis of the Orion spacecraft drogue parachute
in the compressible-flow regime [142]. The computations were in the context of
finite element discretization.

In this article, in the ST computational flow analysis of the VAWT, the ST-SI
enables moving-mesh computation of the spinning turbine rotor. The mesh covering
the rotor spins with it, and the SI between the spinning mesh and the rest of the
mesh accurately connects the two sides of the solution. It also enables, in one of the
computations, prescribing the fluid velocity at the rotor surface as weakly enforced
Dirichlet boundary condition.
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1.7 ST-IGA and STNMUM

The ST-IGA [91, 118, 136] was introduced in [91]. It is the integration of the ST
framework with isogeometric discretization. First computations with the ST-VMS
and ST-IGA were reported in [91] in a 2D context, with IGA basis functions in space
for flow past an airfoil, and in both space and time for the advection equation. The
stability and accuracy analysis given [91] for the advection equation showed that
using higher-order basis functions in time would be essential in getting full benefit
out of using higher-order basis functions in space.

In the early stages of the ST-IGA, the emphasis was on IGA basis functions
in time. As pointed out in [91, 92] and demonstrated in [118, 119, 121], higher-
order NURBS basis functions in time provide a more accurate representation
of the motion of the solid surfaces and a mesh motion consistent with that.
They also provide more efficiency in temporal representation of the motion and
deformation of the volume meshes, and better efficiency in remeshing. That is
how the ST/NURBS Mesh Update Method (STNMUM) [114, 118, 119, 121] was
introduced and demonstrated in [118, 119, 121]. The name “STNMUM” was given
in [114].

The STNMUM has a wide scope that includes spinning solid surfaces. With
the spinning motion represented by quadratic NURBS basis functions in time, and
with sufficient number of temporal patches for a full rotation, the circular paths
are represented exactly, and a “secondary mapping” [91, 92, 105, 118] enables also
specifying a constant angular velocity for invariant speeds along the paths.

The ST framework and NURBS in time also enable, with the “ST-C” method,
extracting a continuous representation from the computed data and, in large-scale
computations, efficient data compression [93, 134, 135, 145].

The STNMUM and desirable features of the ST-IGA with IGA basis functions
in time have been demonstrated in many 3D computations. The classes of prob-
lems solved are flapping-wing aerodynamics for an actual locust [105, 118–120],
bioinspired MAVs [115, 116, 121, 122] and wing-clapping [123, 124], separation
aerodynamics of spacecraft [109], aerodynamics of HAWTs [66, 114–116] and
VAWTs [117], thermo-fluid analysis of ground vehicles and their tires [93], thermo-
fluid analysis of disk brakes [134], flow-driven string dynamics in turbomachinery
[135], and flow analysis of turbocharger turbines [136–138].

The ST-IGA with IGA basis functions in space provides more accurate repre-
sentation of the geometry and increased accuracy in the flow solution. Because
it accomplishes that with less number of control points, and consequently with
larger effective element sizes, it enables using larger time-step sizes while keeping
the Courant number at a desirable level for good accuracy. It has been utilized
in ST computational flow analysis of turbocharger turbines [136–138], ram-air
parachutes [141], tires with road contact and deformation [140], and heart valves
[129, 131, 132].

In this article, in the ST computational flow analysis of the VAWT, the STNMUM
enables exact representation of the mesh rotation.
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1.8 Computations Reported

The analysis cases reported include both the HAWTs and VAWTs, stratified and
unstratified flows, standalone wind turbines, wind turbines with tower or support
columns, aerodynamic interaction between two wind turbines, and the FSI between
the aerodynamics and structural dynamics of wind turbines.

1.9 Outline of the Remaining Sections

In Sects. 2 and 3, we describe the methods for the aerodynamics parts of this
work, namely, the ALE-VMS, ST-VMS, ST-SUPS, weak enforcement of Dirichlet
boundary conditions, sliding-interface formulation, and the ST-SI with fluid–fluid
SI and fluid–solid SI. For ALE-VMS, the methods are presented in the context of
stratified incompressible flows used to model ABLs. Additional VMS modeling
terms and stabilization parameters, which arise due to coupling of the Navier–
Stokes momentum and temperature equations, are also presented. We also describe,
for the ST-VMS computations, a method with NURBS basis functions in time for
exact temporal representation of the rotor motion with constant angular velocity. In
Sect. 4, we describe our approach to structural modeling of wind turbines, which
is based on the Kirchhoff–Love thin-shell theory and the bending-strip method
(see [15, 17, 44]). We add the discussion of rotation-free bending-stabilized cables,
which are employed in conjunction with Kirchhoff–Love shells to produce full-
turbine structural models for use in FSI simulations. In Sect. 5, we describe the core
FSI coupling and mesh moving techniques and a recently proposed mesh moving
technique for sliding-interface computations that can accommodate complex turbine
motions [67]. Although developed and applied in the context of wind-turbine FSI,
the proposed mesh moving method is applicable in any situation that involves
rotating objects whose center of rotation also moves in space (e.g., turning maneuver
of a submarine with a spinning propeller). In Sect. 6, we provide a description
of the wind-turbine rotor geometry modeling and summarize the aerodynamics
computations for the 5 MW HAWT rotor in a stably stratified ABL flow. The results
presented are from reference [59] and include results from ALE-VMS finite element
computations. In Sect. 7, we present simulations of a three-blade, high-solidity
VAWT with rated power of 3.5 kW from [68]. One- and two-turbine simulations
are shown to illustrate the methods. No stratification is employed in the VAWT
simulations. In Sect. 8, we describe, from [117], finite-element-based ST-VMS
computational flow analysis of a VAWT with four support columns at the periphery.
We conduct test computations with 2D and 3D models. In Sect. 9 we present single-
wind-turbine FSI simulations from [67, 69] to highlight the use of the mesh moving
technique that accommodates sliding interfaces in relative motion. In Sect. 10, we
present simulations of two back-to-back 5 MW wind turbines operating in an ABL
in an effort to assess the effect of the upstream turbine on the wind loading and
power production characteristics of the downstream turbine. The simulations are
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from [61], and present an amalgamation of the computational techniques described
in this article. In addition, a multi-domain method, originally proposed in [146],
is adopted to carry out the simulations. In Sect. 11, we provide our concluding
remarks.

2 ALE-VMS Formulation of the Navier–Stokes Equations of
Incompressible Stratified Flows

2.1 Continuous Problem

Let Ωt ∈ R
nsd , d = 2, 3, be the spatial domain of the aerodynamics problem with

boundary Γt at time t ∈ (0, T ). The subscript t indicates that the fluid mechanics
spatial domain is time-dependent. The Navier–Stokes equations of incompressible
stratified flows in the ALE frame may be written on Ωt and ∀t ∈ (0, T ) as

ρ

(
∂u
∂t

∣
∣
∣
∣
x̂

+ (u− û
) ·∇u− f

)

−∇ · σ − b = 0, (1)

∇ · u = 0, (2)

∂φ

∂t

∣
∣
∣
∣
x̂

+ (u− û
) ·∇φ −∇ · νφ∇φ − f = 0, (3)

where ρ, u, and f are the density, velocity, and the external force, respectively, and
the stress tensor σ is defined as

σ (u, p) = −pI+ 2με (u) . (4)

Here p is the pressure, I is the identity tensor, μ is the dynamic viscosity, and ε (u)
is the strain-rate tensor given by

ε (u) = 1

2

(
∇u+∇uT

)
. (5)

In Eq. (3), φ is the fluid potential temperature and νφ is the diffusivity. The
temperature field φ has the decomposition

φ(x, t) = φ̄(x3)+ φ′(x, t), (6)

where φ̄(x3) is a background field varying only in the x3-direction (i.e., vertical
direction), and φ′(x, t) is a fluctuating field with full space and time dependence.
The Boussinesq forcing term denoted by b in Eq. (1) takes on the form

b = ρg
φ′

φ0
e3, (7)
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where φ0 is the reference temperature assumed constant in the Boussinesq approx-
imation, g is the gravitational-acceleration magnitude, and e3 is the Cartesian basis
vector pointing in the vertical direction.

The structure of the coupled system given by Eqs. (1)–(3) is as follows: The
temperature field φ enters the Navier–Stokes momentum equation through the
Boussinesq force, while the fluid velocity u appears in the convective term in Eq. (3).

Remark 1 In Eqs. (1) and (3), the notation
∣
∣
∣
x̂

implies that the time derivative is taken

with respect to a fixed referential-domain spatial coordinates x̂, and û is the velocity
of the fluid domain Ωt . The spatial gradients are taken with respect to the spatial
coordinates x of the current configuration.

Remark 2 In ABL simulations, the Earth rotation effects may be important. For
this, the Coriolis force is added to the Navier–Stokes momentum balance equation
given by Eq. (1) as

f = fcεij3uj ei , (8)

where fc is the Coriolis parameter and εijk’s are the Cartesian components of the
alternator tensor.

Remark 3 Equation (3) can also be used for problems with density stratification.
In this case, φ is associated with the fluid density, and the form of the Boussinesq
forcing term takes into account the density fluctuation and ratio of the inertial to
gravity forces. See [59–61] for details.

In the interest of generality, the theory sections of this article cover the full
stratified-flow case. The regular, unstratified-flow formulation may be recovered by
neglecting Eq. (3), and removing the Boussinesq forcing term from Eq. (1). The
computations presented in this article make use of both stratified- and unstratified-
flow models.

2.2 ALE-VMS

The ALE-VMS formulation of stratified incompressible flows is given as follows:
find uh ∈ Sh

u, ph ∈ Sh
p, and φh ∈ Sh

φ , such that ∀wh ∈ Vh
u, ∀qh ∈ Vh

p, and

ηh ∈ Vh
φ :

∫

Ωt

wh · ρ
(

∂uh

∂t

∣
∣
∣
∣
x̂

+
(

uh − ûh
)
·∇uh − fh

)

dΩ

−
∫

Ωt

wh · bh dΩ +
∫

Ωt

ε
(

wh
)
: σ
(

uh, ph
)

dΩ
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−
∫

(Γt )h

wh · hh dΓ +
∫

Ωt

qh∇ · uh dΩ

+
∫

Ωt

ηh

(
∂φh

∂t

∣
∣
∣
∣
x̂

+
(

uh − ûh
)
·∇φh − f h

)

dΩ

−
∫

Ωt

∇ηh · νφ∇φh dΩ −
∫

(Γt )h

ηhhh dΓ

+
nel∑

e=1

∫

Ωe
t

τSUPS

((
uh − ûh

)
·∇wh + ∇qh

ρ

)

· rM

(
uh, ph

)
dΩ

+
nel∑

e=1

∫

Ωe
t

ρνLSIC∇ · whrC(uh, ph) dΩ

−
nel∑

e=1

∫

Ωe
t

τSUPSwh ·
(

rM

(
uh, ph

)
·∇uh

)
dΩ

−
nel∑

e=1

∫

Ωe
t

∇wh

ρ
:
(
τSUPSrM

(
uh, ph

))
⊗
(
τSUPSrM

(
uh, ph

))
dΩ

+
nel∑

e=1

∫

Ωe
t

τSUPG

(
uh − ûh

)
·∇ηhrT

(
uh, φh

)
dΩ = 0. (9)

Here Ωt is divided into nel spatial finite element subdomains denoted by Ωe
t . The

finite dimensional trial function spaces Sh
u for the velocity, Sh

p for the pressure,

and Sh
φ for the temperature, as well as the corresponding test function spaces Vh

u,

Vh
p, and Vh

φ are assumed to be of equal order. In Eq. (9), h and h are the natural
boundary conditions for the Navier–Stokes momentum and temperature equations,
respectively, and (Γt )h is used to denote a part of the boundary where we specify
these conditions, ûh is the mesh velocity, and rM, rC, and rT are the residuals of the
momentum, continuity, and temperature equations, given as

rM(uh, ph) = ρ

(
∂uh

∂t

∣
∣
∣
∣
x̂

+
(

uh − ûh
)
·∇uh − fh

)

−∇ · σ
(

uh, ph
)
, (10)

rC(uh, ph) = ∇ · uh, (11)

rT(uh, φh) = ∂φh

∂t

∣
∣
∣
∣
x̂

+
(

uh − ûh
)
·∇φh −∇ · νφ∇φh − f h. (12)
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Also in Eq. (9), τSUPS, νLSIC, and τSUPG are the stabilization parameters defined
in [47] as

τSUPS =
(

4

Δt2 +
(

uh − ûh
)
·G
(

uh − ûh
)
+ CIν

2G : G
)−1/2

, (13)

νLSIC = (trG τSUPS)
−1 , (14)

τSUPG =
(

4

Δt2 +
(

uh − ûh
)
·G
(

uh − ûh
)
+ CIν

2
φG : G

)−1/2

, (15)

where

trG =
d∑

i=1

Gii (16)

is the trace of the element metric tensor G, Δt is the time-step size, and CI is
a positive constant, independent of the mesh size, derived from an appropriate
element-wise inverse estimate (see, e.g., [147–149]).

Remark 4 The stabilization parameters in the above equations originate from
stabilized finite element methods for fluid dynamics (see, e.g., [95, 103, 150–153]).
The notation “SUPS,” introduced in [91], indicates that there is a single stabilization
parameter for the SUPG and PSPG stabilizations, instead of two separate param-
eters. The notation “LSIC,” introduced in [153], denotes the stabilization based
on least-squares on the incompressibility constraint. The stabilization parameters
were designed and studied extensively in the context of stabilized finite element
formulations of linear model problems of direct relevance to fluid mechanics.
These model problems include advection–diffusion and Stokes equations. The
design of τSUPS, νLSIC, and τSUPG is such that optimal convergence with respect
to the mesh size and polynomial order of discretization is attained for these cases.
Furthermore, enhanced stability for advection-dominated flows and the ability to
conveniently employ the same basis functions for velocity and pressure variables
for incompressible flows are some of the attractive outcomes of this method. More
recently, the stabilization parameters were derived in the context of the variational
multiscale methods [54, 154] and were interpreted as the appropriate averages of
the small-scale Green’s function, a key mathematical object in the theory of VMS
methods (see [155] for an elaboration).

Remark 5 The ALE-VMS formulation is a moving-mesh extension of the RBVMS
turbulence modeling technique proposed for non-moving meshes in [34]. It was also
presented in [47] for moving meshes in the context of FSI. Recently, a VMS version
of the DSD/SST formulation, which is called both DSD/SST-VMST and ST-VMS,
was introduced in [91, 92] for computations with moving meshes (see next section).
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2.2.1 Additional VMS Modeling Terms and Stabilization Parameters

In the VMS framework, coupling between Navier–Stokes and temperature equations
brought about by the Boussinesq approximation gives rise to additional modeling
terms. In particular, it can be shown that the x3-component of the linear-momentum
equation and incompressibility constraint are coupled with the residual of the
advection-diffusion equation, and the following terms are added to the left-hand
side of Eq. (9):

+
nel∑

e=1

∫

Ωe
t

((
uh − ûh

)
·∇wh

3 +
1

ρ

∂qh

∂x3

)

τ̄ rT

(
uh, φh

)
dΩ. (17)

The stabilization parameter τ̄ may be obtained following the developments in
stabilized methods for advective–diffusive systems presented in [156–158], which
gives the following expression for τ̄ :

τ̄ = − a2

a1
√
a3 + a3

√
a1

, (18)

where ai’s are given by

a1 = 4

Δt2
+
(

uh − ûh
)
·G
(

uh − ûh
)
+ CIν

2G : G,

a2 = 4

Δt

ρg

φ0
,

a3 = 4

Δt2
+
(

uh − ûh
)
·G
(

uh − ûh
)
+ CIν

2
φG : G. (19)

Although the numerical examples presented in this article do not make use of these
additional terms, a recent study of stratified turbulent flows in [60] showed that
these additional VMS modeling terms can appreciably improve the performance of
ALE-VMS methods for this class of problems.

2.3 Weakly Enforced Essential Boundary Conditions

In this section we state the formulation of the weakly enforced essential boundary
conditions. This was first proposed in [56] for the advection–diffusion equation
and Navier–Stokes equations of incompressible flows in an effort to improve the
accuracy of stabilized and multiscale formulations in the presence of unresolved
boundary layers. In [35, 36, 39], the method for the weakly enforced boundary
condition was further refined and studied in a set of challenging wall-bounded
turbulent flows. Here, we present the method in the context of ABL flows.
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To account for the weak enforcement of the essential boundary conditions, we
remove them from the trial (Sh

u and Sh
φ) and test (Vh

u and Vh
φ) function sets, and

add the following terms to the left-hand side of Eq. (9):

−
neb∑

b=1

∫

Γ b
t

⋂
(Γt )g

wh · σ
(

uh, ph
)

n dΓ

−
neb∑

b=1

∫

Γ b
t

⋂
(Γt )g

(
2με

(
wh
)

n+ qhn
)
·
(

uh − gh
)

dΓ

−
neb∑

b=1

∫

Γ b
t

⋂
(Γt )
−
g

wh · ρ
((

uh − ûh
)
· n
) (

uh − gh
)

dΓ

+
neb∑

b=1

∫

Γ b
t

⋂
(Γt )g

τB
TAN

(
wh −

(
wh · n

)
n
)
·

((
uh − gh

)
−
((

uh − gh
)
· n
)

n
)

dΓ

+
neb∑

b=1

∫

Γ b
t

⋂
(Γt )g

τB
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(
wh · n

) ((
uh − gh

)
· n
)

dΓ

−
neb∑

b=1

∫
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t

⋂
(Γt )g

ηhνφ∇φh · n dΓ

−
neb∑

b=1

∫

Γ b
t

⋂
(Γt )g

νφ∇ηh · n
(
φh − gh

)
dΓ

−
neb∑

b=1

∫

Γ b
t

⋂
(Γt )
−
g

ηh
((

uh − ûh
)
· n
) (

φh − gh
)

dΓ

+
neb∑

b=1

∫

Γ b
t

⋂
(Γt )g

τB
φ ηh

(
φh − gh

)
dΓ (20)

Here (Γt )g is the part of the boundary where the velocity g and temperature g

are prescribed, and n is the unit outward normal vector. The boundary (Γt )g is
decomposed into neb surface elements denoted by Γ b

t , and (Γt )
−
g is defined as the

“inflow” part of (Γt )g, i.e.,

(Γt )
−
g =

{
x
∣
∣
∣

(
uh − ûh

)
· n < 0, ∀x ⊂ (Γt )g

}
. (21)

If (Γt )g coincides with the moving wall (rigid or flexible), then g is the prescribed
wall velocity.
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The terms in the first and sixth integral in Eq. (20) are the so-called consistency
terms. It is necessary to ensure that the discrete formulation is identically satisfied
by the exact solution of the Navier–Stokes and temperature equations, which, in
turn, has implications on the accuracy of the discrete formulation. Also note that
these terms cancel with the contributions coming from the integration-by-parts
of the stress and thermal diffusion terms in Eq. (9), thus correctly removing the
traction and thermal flux boundary conditions from the essential boundary. The
terms in the second and seventh integral are the so-called adjoint consistency terms.
Their role is less intuitive. These terms ensure that the analytical solution of the
adjoint equations, when introduced in place of the linear momentum, continuity, and
temperature equation test functions, also satisfies the discrete formulation. Adjoint
consistency is linked to optimal convergence of the discrete solution in lower-order
norms (see, e.g., [58]). The remaining terms are penalty-like, in that they penalize
the deviation of the discrete solution from its prescribed value at the boundary.
The terms in the third and eighth integral are also penalty-like, and lead to better
satisfaction of the inflow boundary conditions.

The penalty terms are necessary to ensure the stability (or coercivity) of the dis-
crete formulation, which may be lost due to the introduction of the consistency and
adjoint consistency terms. The weak boundary condition formulation is numerically
stable if

τB
TAN = τB

NOR =
CB

I μ

hn

, (22)

and

τB
φ =

CB
I νφ

hn

, (23)

where hn is the wall-normal element size, and CB
I is a sufficiently large posi-

tive constant computed from an appropriate element-level inverse estimate (see,
e.g., [147–149]). The constant CB

I depends on the space dimension d, the element
type (tetrahedron, hexahedron, etc.), and the polynomial order of the finite element
approximation. For a linear tetrahedron, it is sufficient to take 4.0 ≤ CB

I ≤ 8.0 to
obtain a stable discrete solution. The wall-normal element size may be computed
from the element metric tensor:

hn = (n ·Gn)1/2. (24)

Remark 6 Rather than setting the no-slip boundary conditions exactly, the weak
boundary condition formulation gives the no-slip solution only in the limit as hn→
0. As a result, coarse discretizations do not need to struggle to resolve boundary
layers; the flow simply slips on the solid boundary. Because of this added flexibility,
the weak boundary condition enforcement tends to produce more accurate results
on meshes that are too coarse to capture the boundary layer solution. However, as
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the mesh is refined to capture the boundary layer, the weak and strong boundary-
condition solutions converge to the same result (see [35]).

Remark 7 Although the weak boundary condition formulation is also stable for
very large values of CB

I , we do not favor that. Large values of CB
I place a heavy

penalization on the no-slip condition, and the above-mentioned flexibility of the
method is lost together with the associated accuracy benefits. We favor using a CB

I

that is just large enough to guarantee stability of the discrete formulation.

Remark 8 In reference [35], a connection was identified between the weakly
enforced boundary conditions and wall functions. The latter are commonly
employed in conjunction with RANS formulations of turbulent flows (see,
e.g., [159, 160]). In the case of wall function formulation, a no-slip boundary
condition is replaced with a tangential traction boundary condition, where the
traction direction is given by that of the local slip velocity, and the traction
magnitude is computed by invoking the “law-of-the-wall.” This is an empirical
relationship between the flow speed and the normal distance to the wall, both
appropriately normalized (see, e.g., [159]). The penalty parameter τB

TAN may be
defined as

τB
TAN =

ρu∗2

‖uh
TAN‖

, (25)

where uh
TAN =

((
uh − gh

)− ((uh − gh
) · n) n

)
is the tangential slip velocity, and

u∗ is the so-called friction velocity, which, among other factors, depends on the
magnitude of the slip velocity, and is computed from the law-of-the-wall formula
by nonlinear iterations. It was shown in [35], however, that when the boundary layer
mesh is fine enough, τB

TAN from Eq. (25) is independent of the local flow solution, and
reverts to the definition given by Eq. (22). This fact is remarkable in that Eq. (22) is
purely based on considerations of numerical stability, while Eq. (25) derives from
the physics of wall-bounded turbulent flows. In earlier work it was observed that
both the “numerics-based” and “physics-based” definitions of the penalty parameter
τB

TAN give very similar results [35].

Remark 9 Recently, in [161], a new near-wall model formulation was proposed in
the framework of weakly enforced no-slip conditions that is better aligned with
traditional near-wall modeling approaches than its predecessors. The new model
gives more accurate results for the mean flow and velocity fluctuations than its
older versions, while exhibiting better numerical stability than traditional near-wall
modeling techniques.

2.4 Sliding-Interface Formulation

In order to simulate the full wind turbine configuration and investigate the rotor–
tower interaction, we consider an approach that makes use of a moving subdomain,
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Fig. 1 Example of
computational domain
decomposition in the case of
two VAWTs. The two
cylindrical subdomains
(labeled “M”) spin with the
rotors, while the remaining
subdomain (labeled “S”) is
stationary

Fig. 2 Nonmatching meshes
at the sliding interface
between the stationary (black)
and moving (red) subdomains

which encloses the entire wind turbine rotor, and a stationary subdomain that
contains the rest of the wind turbine (see Fig. 1). The two domains are in relative
motion and share one or several sliding cylindrical interfaces. The meshes on each
side of an interface are nonmatching because of the relative motion (see Fig. 2).
As a result, a numerical procedure is needed to impose the continuity of the
kinematics and tractions at the stationary and rotating subdomain interfaces. Such a
procedure was developed in [49] in the context of IGA for computing flows about
rotating components. The advantage of IGA for rotating-component flows is that
the cylindrical sliding interfaces are represented exactly and no geometry errors
are incurred. In the case of standard finite elements employed here, the geometric
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compatibility is only approximate. We present the sliding-interface formulation in
the context of ABL flows in what follows.

Let the subscripts S and M denote the quantities pertaining to the fluid mechanics
problem on the stationary and moving subdomains, respectively. The subdomain
that encloses the rotor rotates with it, and the interior of the rotating subdomain is
allowed to deflect to accommodate the motion of the blades. However, the motion of
the outer boundary of the rotor subdomain is restricted to a rigid rotation to maintain
geometric compatibility with the stationary subdomain. To enforce the compatibility
of the fluid kinematics and tractions, as well as the compatibility of temperatures
and heat fluxes, across the sliding interface, we add the following terms to the
ALE-VMS formulation given by Eq. (9), which is now assumed to govern both the
stationary and moving subdomains:

−
neb∑

b=1

∫

Γ b
t

⋂
(Γt )SI

(
wh

S − wh
M

)
· 1

2
(σ SnS − σMnM) dΓ

−
neb∑

b=1

∫

Γ b
t

⋂
(Γt )SI

1

2
(δσ SnS − δσMnM) ·

(
uh

S − uh
M

)
dΓ

−
neb∑

b=1

∫

Γ b
t

⋂
(Γt )SI

wh
S · ρ

{(
uh

S − ûh
S

)
· nS

}

−

(
uh

S − uh
M

)
dΓ

−
neb∑

b=1

∫

Γ b
t

⋂
(Γt )SI

wh
M · ρ

{(
uh

M − ûh
M

)
· nM

}

−

(
uh

M − uh
S

)
dΓ

+
neb∑

b=1

∫

Γ b
t

⋂
(Γt )SI

CB
I μ

hn

(
wh

S − wh
M

)
·
(

uh
S − uh

M

)
dΓ

−
neb∑

b=1

∫

Γ b
t

⋂
(Γt )SI

(
ηh

S − ηh
M

)
· 1

2

(
νφ∇φh

SnS − νφ∇φh
MnM

)
dΓ

−
neb∑

b=1

∫

Γ b
t

⋂
(Γt )SI

1

2

(
νφ∇ηh

SnS − νφ∇ηh
MnM

)
·
(
φh

S − φh
M

)
dΓ

−
neb∑

b=1

∫

Γ b
t

⋂
(Γt )SI

ηh
S ·
{(

uh
S − ûh

S

)
· nS

}

−

(
φh

S − φh
M

)
dΓ
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−
neb∑

b=1

∫

Γ b
t

⋂
(Γt )SI

ηh
M ·
{(

uh
M − ûh

M

)
· nM

}

−

(
φh

M − φh
S

)
dΓ

+
neb∑

b=1

∫

Γ b
t

⋂
(Γt )SI

CB
I νφ

hn

(
ηh

S − ηh
M

)
·
(
φh

S − φh
M

)
dΓ (26)

where δσ is given by

δσ (w, q) n = 2με(w)n+ qn, (27)

(Γt )SI is the sliding interface, and {A}− denotes the negative part of A, that is,
{A}− = A if A < 0 and {A}− = 0 if A ≥ 0. The structure of the terms on the
sliding interface is similar to that of the weak enforcement of essential boundary
conditions. Note that, in the current application, ûh

S = 0, because the subdomain
S is stationary. However, as will be shown in the later sections of this paper, the
formulation is able to handle situations where both subdomains are in motion.

Remark 10 Nonmatching interface discretizations in the FSI and sliding-interface
problems necessitate the use of interpolation or projection of kinematic and traction
data between the nonmatching surface meshes (see, e.g., [63, 91, 92], where [92]
is more comprehensive than [91]). A computational procedure, which can simul-
taneously handle the data transfer for IGA and finite element discretizations, was
proposed in [63]. The procedure also includes a robust approach in identifying
“closest points” for arbitrary shaped surfaces. While such interface projections
are rather straightforward for weakly coupled FSI algorithms, they require special
techniques [92, 96, 104] for strongly coupled, direct, and quasi-direct methods [92,
96, 100, 104, 162] that are monolithic-like (i.e., become monolithic for matching
discretizations).

3 ST-VMS, ST-SUPS, and ST-SI

3.1 ST-VMS and ST-SUPS

We include from [117, 132, 139] the ST-VMS:

∫

Qn

wh · ρ
(
∂uh

∂t
+ uh ·∇uh − fh

)

dQ

+
∫

Qn

ε(wh) : σ (uh, ph)dQ−
∫

(Pn)h

wh · hhdP
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+
∫

Qn

qh∇ · uhdQ+
∫

Ωn

(wh)+n · ρ
(
(uh)+n − (uh)−n

)
dΩ

+
(nel)n∑

e=1

∫

Qe
n

τSUPS

ρ

[

ρ

(
∂wh

∂t
+ uh ·∇wh

)

+∇qh

]

· rM(uh, ph)dQ

+
(nel)n∑

e=1

∫

Qe
n

νLSIC∇ · whρrC(uh)dQ

−
(nel)n∑

e=1

∫

Qe
n

τSUPSwh ·
(

rM(uh, ph) ·∇uh
)

dQ

−
(nel)n∑

e=1

∫

Qe
n

τSUPS
2

ρ
rM(uh, ph) ·

(
∇wh

)
· rM(uh, ph)dQ

= 0, (28)

where

rM(uh, ph) = ρ

(
∂uh

∂t
+ uh ·∇uh − fh

)

−∇ · σ (uh, ph), (29)

rC(uh) = ∇ · uh (30)

are the residuals of the momentum equation and incompressibility constraint.
The symbol Qn represents the ST slice between time levels n and n + 1 (see
Fig. 3), (Pn)h is the part of the lateral boundary of that slice associated with
the traction boundary condition h, and Ωn is the spatial domain at time level
n. The superscript “e” is the ST element counter, and nel is the number of ST
elements. The functions are discontinuous in time at each time level, and the
superscripts “−” and “+” indicate the values of the functions just below and
just above the time level. See [93, 95, 96, 114, 117] for the definitions used here
for the stabilization parameters τSUPS and νLSIC. For more ways of calculating
the stabilization parameters in computation of flow problems, see [38, 163–184].
These include some recent stabilization parameters and element length definitions
[184] that target isogeometric discretization but are also applicable to finite element
discretization.

Remark 11 The ST-SUPS can be obtained from the ST-VMS by dropping the eighth
and ninth integrations.

Remark 12 One of the main differences between the ALE and ST forms of the
VMS method is that the ST form retains the fine-scale time derivative term
∂u′
∂t

∣
∣
∣
ξ
. Dropping this term is called the “quasi-static” assumption (see [8] for the
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tn, Ωn

tn+1, Ωn+1

t

x

Qn Pn

(wh)−
n

(wh)+n

(wh)−
n+1

(uh)+n

(uh)−
n

Qn−1

Qn

Qn+1

x1

x2

t

Fig. 3 ST slab in an abstract representation (top) and in a 2D context (bottom)

terminology). This is the same as the “WTSE” option in the DSD/SST formulation
(see Remark 2 of [96]). We believe that this makes a significant difference,
especially when the polynomial orders in space or time are higher (see [91]).

Remark 13 The thermo-fluid ST-VMS for the coupled incompressible-flow and
thermal-transport equations can be found in [93, 134]. It was derived by expanding
Eq. (28) to include the thermal-transport equation and the coupling between the flow
and thermal-transport equations.
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3.2 Rotation Representation with Constant Angular Velocity

This subsection, which is related to the ST-VMS computations, is from [114]. We
use quadratic NURBS functions, as described in [91, 92, 105, 118], to represent a
circular arc. We discretize time and position as follows:

t =
nent∑

α=1

T α(Θt (θ))t
α, (31)

x =
nent∑

α=1

T α(Θx(θ))xα. (32)

Here nent is the number of temporal element nodes, T α is the basis function, Θt(θ)

and Θx(θ) are the secondary mappings for time and position, and tα and xα are the
time and position values corresponding to the basis function T α . The basis functions
could be finite element or NURBS basis functions. For the circular arc, nent = 3 and
they are quadratic NURBS. The secondary mapping concept above was introduced
in [91], and the velocity can be expressed as follows:

dx
dt
=
(

nent∑

α=1

dT α

dΘx

dΘx

dθ
xα

)(
nent∑

α=1

dT α

dΘt

dΘt

dθ
tα

)−1

, (33)

leading to

dx
dt
=
(

nent∑

α=1

dT α

dΘx

xα

)(
nent∑

α=1

dT α

dΘt

tα

)−1 (
dΘx

dθ

dθ

dΘt

)

. (34)

Thus, the speed along the path can be specified only by modifying the secondary
mapping. For a circular arc, two methods were introduced in [92, 118] and also
described in [105]; one is modifying the secondary mapping for position and the
other one is modifying both such that dt

dθ is constant. We note that, in theory, the
secondary mapping selections do not make any difference as long as the relationship
dΘx

dΘt
is the same.

In our implementation, to keep the process general, we search for the parametric
coordinate θ by using an iterative solution method [92, 105, 118]. We use the latter
set of the secondary mappings, having constant dt

dθ .

Remark 14 When we use a secondary mapping for discretization of unknowns, the
selection of the mappings affects the numerical integration accuracy in the physical
domain.

3.3 ST-SI

We include from [117, 132, 139] the ST-SI.
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3.3.1 Two-Side Formulation (Fluid–Fluid SI)

Labels “Side A” and “Side B” represent the two sides of the SI. We add boundary
terms to Eq. (28). The boundary terms are first added separately for the two sides,
using test functions wh

A and qh
A and wh

B and qh
B. Putting them together, the complete

set of terms added becomes

−
∫

(Pn)SI

(
qh

BnB − qh
AnA

)
· 1

2

(
uh

B − uh
A

)
dP

−
∫

(Pn)SI

ρwh
B ·

1

2

((
F h

B −
∣
∣
∣F h

B

∣
∣
∣

)
uh

B

−
(
F h

B −
∣
∣
∣F h

B

∣
∣
∣

)
uh

A

)
dP

−
∫

(Pn)SI

ρwh
A ·

1

2

((
F h

A −
∣
∣
∣F h

A

∣
∣
∣

)
uh

A

−
(
F h

A −
∣
∣
∣F h

A

∣
∣
∣

)
uh

B

)
dP

+
∫

(Pn)SI

(
nB · wh

B + nA · wh
A

) 1

2

(
ph

B + ph
A

)
dP

−
∫

(Pn)SI

(
wh

B − wh
A

)
·
(

n̂B · μ
(
ε(uh

B)+ ε(uh
A)
))

dP

− γ

∫

(Pn)SI

n̂B · μ
(
ε
(

wh
B

)
+ ε

(
wh

A

))
·
(

uh
B − uh

A

)
dP

+
∫

(Pn)SI

μC

h

(
wh

B − wh
A

)
·
(

uh
B − uh

A

)
dP, (35)

where

F h
B = nB ·

(
uh

B − ûh
B

)
, (36)

F h
A = nA ·

(
uh

A − ûh
A

)
, (37)

h = min(hB, hA), (38)

hB = 2

(
nent∑

α=1

nens∑

a=1

∣
∣nB ·∇Nα

a

∣
∣

)−1

(for Side B), (39)

hA = 2

(
nent∑

α=1

nens∑

a=1

∣
∣nA ·∇Nα

a

∣
∣

)−1

(for Side A), (40)

n̂B = nB − nA

‖nB − nA‖ . (41)
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Here, (Pn)SI is the SI in the ST domain, û is the mesh velocity, nens and nent are the
number of spatial and temporal element nodes, Nα

a is the basis function associated
with spatial and temporal nodes a and α, γ = 1, and C is a nondimensional constant.
For our element length definition, we set C = 1.

Remark 15 A number of remarks were provided in [117] to explain the added terms
and to comment on related interpretations. We refer the reader interested in such
details to [117].

3.3.2 One-Side Formulation (Fluid–Solid SI)

Sometimes we prefer to specify on solid surfaces weakly imposed Dirichlet
conditions for the fluid [56, 185]. In such cases we use the ST-SI version where
the SI is between the fluid and solid domains. This version is obtained (see [117])
by starting with the terms added for Side B and replacing the Side A velocity with
the velocity gh coming from the solid domain. Then the terms added to Eq. (28) to
represent the weakly imposed Dirichlet conditions become

−
∫

(Pn)SI

qh
BnB · uh

BdP −
∫

(Pn)SI

ρwh
B · F h

B uh
BdP

+
∫

(Pn)SI

qh
BnB · ghdP

+
∫

(Pn)SI

ρwh
B ·

1

2

((
F h

B +
∣
∣
∣F h

B

∣
∣
∣

)
uh

B

+
(
F h

B −
∣
∣
∣F h

B

∣
∣
∣

)
gh
)

dP

−
∫

(Pn)SI

wh
B ·
(

nB · σ h
B

)
dP

− γ

∫

(Pn)SI

nB · 2με
(

wh
B

)
·
(

uh
B − gh

)
dP

+
∫

(Pn)SI

μC

hB
wh

B ·
(

uh
B − gh

)
dP. (42)

Remark 16 New versions of the fluid–fluid SI and fluid–solid SI were introduced
in [139, 186], including those with new element length definitions [186]. Some
of the new element length definitions were introduced in [186], and some were
straightforward extensions of the one in [184]. The option γ was introduced
in [139].

Remark 17 The thermo-fluid ST-SI for the coupled incompressible-flow and
thermal-transport equations can be found in [134].
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4 Wind-Turbine Isogeometric Structural Modeling

The main structural components of wind turbines are modeled using a combination
of the displacement-based Kirchhoff–Love shell [17, 44] and bending-stabilized
cable [187] formulations. The latter may be deployed in the regime of Euler–
Bernoulli beams as shown in [187]. The shell formulation is used to represent the
wind-turbine rotor, nacelle and tower, while the beam/cable formulation is used to
describe the main shaft, struts in the VAWT design, and mooring cables in offshore
wind applications (see Fig. 4 and references [67, 69, 70] for some examples). Both
are discretized using IGA [21, 26] based on NURBS [188]. This approach gives
a good combination of structural-mechanics accuracy due to the higher-order and
higher-continuity representation of the geometry and solution, and efficiency due to
the lack of rotational degrees of freedom in the formulation.

The variational formulation of structural mechanics is obtained from the prin-
ciple of virtual work (see, e.g., [189]), and is stated as: find the structural velocity
uh

2 ∈ Sh
y , such that ∀wh

2 ∈ V h
y :

Struts 

Main shaft 

Nacelle 

Tower 

Mooring cables 

Rotor

Fig. 4 NURBS-based IGA structural model of a HAWT, VAWT, and floating HAWT
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∫

Ωs
t

wh
2 · ρ2

(
duh

2

dt
− f2

)

dΩ +
∫

Ωs
0

(δE : S) dΩ

−
∫

(Γ s
t )2h

wh
2 · h2 dΓ = 0, (43)

where ρ2 is the structural density, f2 is the body force per unit mass, S is the second
Piola–Kirchhoff stress tensor, and δE is the variation of the Green–Lagrange strain
measure. Ωs

0 and Ωs
t denote the structural mechanics domain in the reference and

current configurations, respectively, and (Γ s
t )2h ∈ Γ s

t denotes a part of the boundary
where the traction h2 is specified.

4.1 Kirchhoff–Love Shell Formulation

With assumptions on the kinematics, the 3D solid formulation may be reduced
to that posed on the shell midsurface. We use Γ s

0 and Γ s
t to denote the shell

midsurface reference and deformed configurations, respectively. It assumed in the
Kirchhoff–Love theory that the shell director remains normal to its midsurface
during the deformation, which implies that the transverse shear strains are zero.
Normal through-thickness strains are also neglected. As a result, only in-plane
stress and strain measures are considered. As a strain measure we adopt the Green–
Lagrange strain tensor, defined in the local coordinate system as

E = εεε + ξ3κκκ, (44)

where εεε and κκκ are the membrane-strain and curvature-change tensors, and ξ3 is the
through-thickness coordinate. (See [44, 190] for more details.)

We assume the St. Venant–Kirchhoff constitutive law, and write the following
stress–strain relationship in the local coordinate system:

S = C E, (45)

where S is a vector of components of the second Piola–Kirchhoff stress tensor in the
local coordinate system, and C is a constitutive material matrix, which is symmetric.

To model a laminated composite blade structure, the Classical Laminated-Plate
Theory (CLPT) [191] is employed. The shell thickness is denoted by tth, the
thickness of the kth ply by tk , and its centroid by zk (see Fig. 5). The extensional,
coupling, and bending stiffnesses, denoted by Kexte, Kcoup, and Kbend, respectively,
may be computed for any layup as

Kexte =
∫

tth

C dξ3 =
n∑

k=1

Cktk, (46)
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Fig. 5 Composite layup with
nonuniform and
nonsymmetric distribution of
the lamina

Mid-plane of the laminate 

Ply center-line 

kz

kt

Kcoup =
∫

tth

ξ3C dξ3 =
n∑

k=1

Cktkzk, (47)

Kbend =
∫

tth

ξ3
2C dξ3 =

n∑

k=1

Ck

(

tkz
2
k +

t3
k

12

)

. (48)

Here, C is a constitutive material matrix given by

Ck = TT (φk)Cort T(φk), (49)

T(φ) =
⎡

⎣
cos2 φ sin2 φ sinφ cosφ
sin2 φ cos2 φ − sinφ cosφ

−2 sinφ cosφ 2 sinφ cosφ cos2 φ − sin2 φ

⎤

⎦ , (50)

where φ denotes the fiber orientation angle in each ply and Cort is the constitutive
matrix for an orthotropic material written with respect to the principal material axes
(see [15] for more details).

With the above definitions the complete variational formulation of the rotation-
free Kirchhoff–Love shell is stated as follows: find the velocity of the shell
midsurface uh

2 ∈ Sh
y , such that ∀wh

2 ∈ Vh
y ,

∫

Γ s
t

wh
2 · ρ2tth

(
duh

2

dt
− fh2

)

dΓ

+
∫

Γ s
0

δεεεh ·
(

Kexteεεε
h +Kcoupκκκ

h
)

dΓ

+
∫

Γ s
0

δκκκh ·
(

Kcoupεεε
h +Kbendκκκ

h
)

dΓ

−
∫

(Γ s
t )2h

wh
2 · h2 dΓ = 0. (51)
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Here, ρ2 is the through-thickness-averaged shell density given by

ρ2 = 1

tth

∫

tth

ρ2 dξ3. (52)

For real-life structures, the shell midsurface is typically described using a patch-
wise smooth (C1- or higher-order continuous) geometric mapping with reduced
regularity of the mapping (C0-continuity) at the patch interfaces. This reduction
in continuity makes the integrals involving the bending terms ill defined. To
alleviate this problem, the integrations in Eq. (51) are carried out patch-wise and
the formulation is augmented on the left-hand side with the term

+
∫

Γ b
0

δκκκh ·Kb
bendκκκ

h dΓ, (53)

which represents the contribution of bending-strip patches that are placed at the
NURBS-patch interfaces. The material in bending strip patches is assumed to have
zero mass, zero membrane stiffness, and non-zero bending stiffness (denoted by
Kb

bend in the above expression) only in the direction transverse to the patch interface.
This results in a correct transfer of the bending moment between the patches
(see [15, 17, 44] for more details).

Remark 18 Recently, in [192], a method for patch coupling based on the Nitsche
approach was developed for Kirchhoff–Love shells. In this case, C0-continuity of
the basis functions is no longer required at patch interfaces, which simplifies model
building significantly.

4.2 Bending-Stabilized Cable Formulation

We denote the cable middle curve as Ls
0 and Ls

t in the reference and deformed
configuration, respectively. The cable formulation is written purely in terms of
displacement degrees of freedom. The variational formulation is derived from the
principle of virtual work with the appropriate assumptions on the kinematics, and
may be stated as: find the velocity uh

2 ∈ Sh
y , such that ∀wh

2 ∈ Vh
y

∫

Ls
t

wh
2 · ρ2A0

(
duh

2

dt
− fh2

)

dL

+
∫

Ls
0

δεh · A0E0ε
h dL

+
∫

Ls
0

δκh · I0E0κ
h dL

−
∫

(Ls
t )2h

wh
2 · h2 dL = 0, (54)
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where A0, I0, and E0 are the cable cross-section area, second moment of area
and Young’s modulus, respectively. The formulation given by Eq. (51) models the
membrane effects, as well as bending action that is confined to the osculating
plane of the middle curve. For a complete derivation of the bending-stabilized cable
formulation, see [187].

Remark 19 In the present work the cable-shell coupling is achieved through
common control points. In the case when multiple cables are joined together, the
bending-strip formulation for rotation-free Kirchhoff–Love shells [15, 17, 44] is
adapted for the cable case.

5 FSI Coupling and Mesh Update

5.1 FSI Coupling Strategy for Wind-Turbine Simulations

In this section we briefly summarize our FSI coupling procedures for wind-turbine
simulations. Simulations based ALE-VMS make use of the Generalized-α time
integration method [193]. Within each time step, the coupled equations are solved
using an inexact Newton approach. For every Newton iteration the following steps
are performed. (1) We obtain the fluid solution increment holding the structure
and mesh fixed. (2) We update the fluid solution, compute the aerodynamic force
on the structure and compute the structural solution increment. The aerodynamic
force at control points or nodes is computed using the conservative definition (see,
e.g., [194, 195] for the importance of using the conservative definitions of fluxes near
essential boundaries and in coupled problems). (3) We update the structural solution,
and use the equations of linear elastostatics and Jacobian-based stiffening [196–
198] to update the fluid mechanics mesh position and velocity. The above three-step
iteration is repeated until convergence to an appropriately coupled discrete solution
is achieved. The proposed approach, also referred to as “block-iterative coupling”
(see [96, 100, 162] for the terminology), is stable because the wind-turbine blades
are relatively heavy structures. For a variety of mesh update strategies, the reader is
referred to [96, 100, 105, 107, 118, 199–203].

5.2 A Novel Mesh Update Technique for Sliding Interfaces in
Motion

To enable the FSI simulations of wind turbines with more complicated rotor motion
than just rotation around a fixed axis (e.g., yawing rotation or gyroscopic-like
behavior of floating wind turbines), a new mesh moving technique was developed
in [67] and is presented in what follows.
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Fig. 6 Illustration of the
wind turbine, the sliding
interface (dashed line), and
the key locations on the
nacelle. A slight offset is used
to illustrate that the sliding
interface has two definitions,
ΓI and ΓE. In the numerical
formulation the two interfaces
occupy the same region in 3D
space

I

E

xtip
xori

We denote by ΓI and ΓE the two sides of the sliding interface coming from the
interior and exterior subdomains (see Fig. 6). We begin with describing the motion
of ΓI. For this, we let x and X denote the position vector of the points on ΓI in the
current and reference configuration, respectively. We define xori and xtip to be the
current-configuration positions of the back and tip of the nacelle (see Fig. 6), and
we let Xori and Xtip be their reference-configuration counterparts. We restrict the
motion of ΓI to be that of a rigid object and write

x = R(X− Xori)+ xori. (55)

While xori is obtained directly from the motion of the wind-turbine structure, the
main challenge here is to obtain a suitable rotation matrix R in the above equation.
For this, we extract the instantaneous mean angular velocity of the wind-turbine
rotor as

ω = J−1m, (56)

where J is the rotor moment-of-inertia tensor in the current configuration given by

J =
∫

ΩR

ρ(x− xori) · (x− xori)I

− ρ(x− xori)⊗ (x− xori) dΩ, (57)
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and m is the rotor angular momentum given by

m =
∫

ΩR

(x− xori)× ρu dΩ. (58)

In the above integrals ΩR is the rotor structural domain in the current configuration,
ρ is the rotor material density, u is the rotor velocity, and I is the identity tensor.
This technique of extracting ω was employed earlier in [107] to remove a spinning
component of the structure motion in FSI modeling of parachute clusters.

Given the rotor instantaneous mean angular velocity ω, we compute the rotation
matrix R needed in Eq. (55) using the following ODE (see, e.g., [189]):

d

dt
R = ω × R, (59)

where the cross-product is taken column-wise.
To handle ΓE in the computations we use a similar approach. We also restrict the

motion of ΓE to be that of a rigid object and write

x = Rτ (X− Xori)+ xori, (60)

where the rotation matrix Rτ is obtained from the ODE:

d

dt
Rτ = ωτ × Rτ . (61)

The above ODE is driven by the angular velocity vector ωτ , which we define as

ωτ = ω − (ω · nrot)nrot, (62)

where

nrot = xtip − xori

‖xtip − xori‖ . (63)

Equation (62) effectively removes the spinning component from the motion of ΓE,
as desired. The location of the nacelle tip xtip is also obtained directly from the
motion of the wind-turbine structure.

Both Eqs. (59) and (61) are integrated in time using the midpoint rule, which
guarantees that R and Rτ retain their orthonormal property, and thus remain true
rotation matrices. This result is due to [204].

Long-time FSI simulations using the mesh-moving technique described above
may encounter a slight misalignment between ΓI and ΓE. In this case, it is necessary
to periodically correct the motion of ΓE to make sure that it is aligned with ΓI. This
may be accomplished using a modified version of Eq. (60):

x = RcorRτ (X− Xori)+ xori, (64)
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where Rcor is the rotation matrix between nI and nE, the two outward unit normal
vectors to ΓI and ΓE, respectively. (That is, Rcor is such that nI = RcornE.) The
normal vectors may be taken, for example, on the inflow plane of the cylindrical
domains. The matrix Rcor can be computed explicitly using the Rodrigues for-
mula [205] as

Rcor = cos θI+ sin θϒ + (1− cos θ)r⊗ r, (65)

where θ is the angle between the two normal vectors, r is the rotation axis defined
as

r = nI × nE

‖nI × nE‖ , (66)

and the components of ϒ are given by

Υik = εijkrj , (67)

where εijk are the components of the alternator tensor.

6 Aerodynamic Simulations of a 5 MW Wind-Turbine Rotor
in Atmospheric Boundary Layer Flow

In this section we apply the methods presented to investigate the behavior of a
full-scale offshore wind-turbine rotor placed in a thermally stratified ABL. For
this, a standalone 3D large-eddy simulation (LES) computation of an ABL is
first performed on a cube with dimension 400 m and uniform mesh size of 5 m.
The LES [206, 207] employs a mixed spectral-finite difference algorithm and
dynamic eddy viscosity and eddy diffusivity models to simulate stratified flows.
The reference temperature is set to 260 K, and a vertical temperature gradient of
0.01 K/m is prescribed starting at 100 m above ground. The geostrophic wind speed
is set to 8 m/s, and the Coriolis parameter fc = 1.39 × 10−4 s−1 is employed in
the computation. The computational set-up is similar to that in [208]. The data from
the LES computation is used as inlet boundary conditions for the ALE-VMS wind-
turbine rotor computation, which is described in what follows.

The wind-turbine rotor problem domain is a cylinder 240 m in length and
diameter. A 5 MW wind-turbine rotor with 61 m blades is placed in the cylindrical
domain. The wind turbine blade is obtained by scaling down the 100 m baseline
blade designed by Sandia National Laboratory (SNL), based on the geometry of
the 61 m baseline offshore designs employed in the NREL, DOWEC, and UpWind
projects [209]. From the aerodynamics side, the wind turbine blade is identical to
the one used in [8, 9, 17, 63, 113, 114, 143] and only has minor modifications to
internal structures and composite layup to increase the load carrying capacity (the
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Table 1 Geometry data for
the SNL blade

Chord Twist Pitch

Blade length angle angle Airfoil

fraction (m) (deg) fraction type

0.000 5.694 13.308 0.500 Cylinder

0.195 7.628 12.915 0.380 DU99-W-405

0.358 6.923 9.166 0.375 DU97-W-300

0.602 5.417 4.743 0.375 DU93-W-210

0.732 4.621 2.735 0.375 NACA-64-618

0.765 4.422 2.348 0.375 NACA-64-618

0.846 3.925 1.380 0.375 NACA-64-618

0.895 3.619 0.799 0.375 NACA-64-618

0.944 2.824 0.280 0.375 NACA-64-618

0.957 2.375 0.210 0.375 NACA-64-618

0.972 1.836 0.140 0.375 NACA-64-618

0.986 1.208 0.070 0.375 NACA-64-618

1.000 0.100 0.000 0.375 NACA-64-618

The nomenclature follows that used in [8]. “Pitch Angle
Fraction” is the distance from the leading edge of the
blade pitch axis expressed as a cord-length fraction

structural details will be given in a later section). The details of the blade geometry
are provided in Table 1.

The rotor spins with a prescribed, constant angular velocity, and the problem
domain spins with it. The problem domain is discretized using triangular prisms
in the boundary layer region and tetrahedra elsewhere, resulting in 7,431,784
linear elements (see Fig. 7). The total of 10 layers of boundary-layer elements are
employed, and the size of the first element in the wall-normal direction is 1 cm. The
mesh is refined in the inner region of the domain in order to better resolve the ABL
turbulent flow that impacts the rotor.

To impose turbulent inlet velocity and temperature boundary conditions, the
solution data is transferred from the structured grid of the LES simulation to
the unstructured mesh of the spinning rotor problem. The spinning rotor domain
is immersed into a larger LES domain and the velocity and temperature data
assigned to the nodes of the cylinder inflow plane and lateral boundaries is obtained
by interpolating the finite-difference solution (see Fig. 8). At the outlet, traction
boundary conditions are prescribed. The distribution of outlet traction is obtained by
computing the problem on a non-spinning domain, with the rotor removed, and with
zero outlet traction boundary conditions. The inlet tractions produced as a result of
this computation are assigned as outlet traction boundary conditions in the rotating-
domain computation. We note that a similar concept was used in [93] for detailed
thermo-fluid analysis of the rear tires of a ground vehicle. In [93], the thermo-fluid
computation over the global domain (including all the tires) with a reasonable mesh
refinement is followed by a higher-resolution computation over the local domain
containing the rear set of tires, with the boundary and initial conditions coming
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Fig. 7 Wind-turbine rotor in an ABL. Mesh of computational domain in 2D and 3D views. The
rotor blades are numbered clockwise and arrow indicates rotation direction

Fig. 8 Wind-turbine rotor in an ABL. Velocity (in m/s) initial and boundary conditions obtained
by “immersing” the cylindrical spinning domain into a larger LES domain and performing
interpolation of the LES solution

from the data computed over the global domain. The data computed over the global
domain is stored using the data compression method introduced in [145].

Figure 9 shows the mean velocity and temperature as a function of the vertical
coordinate, at x1 = 120 m and x1 = 240 m locations downstream of the inflow.
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Fig. 9 Wind-turbine rotor in an ABL. Mean velocity and temperature as a function of the vertical
coordinate

The results are compared to the mean of the velocity and temperature imposed on
the inlet, which corresponds to the interpolated LES data. The two profiles are very
close, suggesting that ALE-VMS and LES ABL are mutually consistent.

For the wind-turbine simulation the rotor speed is set to 9 rpm. This rotor speed
chosen gives the optimal tip-speed ratio for 8 m/s wind speed [210], which is also the
geostrophic wind speed used in the computation. The time-step size of 2.0× 10−4 s
is employed. The flow is initialized using the LES data interpolated to the interior of
the rotor mesh, and the computation is started impulsively. Figure 10 shows vorticity
isosurfaces at t = 8.5 s. Due to the presence of the inversion layer, tip vortices travel
with different speeds, faster near the top and slower near the bottom of the domain.
As a result, the perfect helical pattern of tip vortices, which is expected in the case
of uniform flow, is no longer present. As the rotor turns and blades travel in and out
of the inversion layer, they introduce a certain amount of mixing in the flow, which
propagates downstream and gives a complex and largely unstudied wake behavior.

The next set of figures examine the time-dependent rotor loads. The rotor-thrust
time history is shown in Fig. 11, where thrust is plotted for each individual blade (see
Fig. 7 for blade numbering). The presence of ABL produces an 18% fluctuation in
the thrust load during the cycle. Figure 12 shows rotor-torque time history for each
individual blade, which exhibits an even larger variation during the cycle.

7 Simulation of Rotor–Tower Interaction

We present aerodynamics simulations of a three-blade, high-solidity VAWT with
rated power of 3.5 kW, taken from reference [68]. The prototype is a Darrieus H-
type turbine designed by Cleanfield Energy Corporation. Full-scale tests for this
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Fig. 10 Wind-turbine rotor
in an ABL. Vorticity
isosurfaces colored by flow
speed (in m/s) at t = 8.5 s
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Fig. 11 Wind-turbine rotor in an ABL. Time history of the thrust force acting on each blade
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Fig. 12 Wind-turbine rotor in an ABL. Time history of the aerodynamic torque acting on each
blade

turbine were conducted in the National Research Council (NRC) low-speed wind
tunnel at McMaster University (see Fig. 13). Experimental studies for this turbine
focused on the application of VAWTs in urban areas [211].

The turbine has a tower height of 7 m. The blades, 3 m in height, are connected
to the tower by the struts of length 1.25 m. This value is taken as the rotor radius. A
symmetric NACA0015 airfoil profile with chord length of 0.4 m is employed along
the entire length of the blades.

The computations were carried out for constant inflow wind speed of 10 m/s, and
constant, fixed rotor speed of 115 rpm. This set-up corresponds to the tip speed ratio
of 1.5, which gave maximum rotor power as reported in [211, 212]. However, it was
also reported for the wind tunnel tests that the control mechanism employed was
able to maintain an average rotor speed of 115 rpm with the deviation of ±2.5 rpm.
This means the actual rotor speed was never constant.

The air density and viscosity are set to 1.23 kg/m3 and 1.78 × 10−5 kg/(m·s),
respectively. On the inflow, the wind speed of 10 m/s is prescribed. On the
top, bottom and side surfaces of the stationary domain no-penetration boundary
conditions are prescribed, while zero traction boundary condition is set on the
outflow. No-slip boundary conditions are imposed weakly on the rotor blades and
tower. The struts are not modeled in this work to reduce computational cost. The
time step is set to 1.0× 10−5 s for all cases.
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Fig. 13 Full-scale prototype
of VAWT with Darrieus
H-type rotor in NRC
low-speed wind tunnel at
McMaster University

7.1 Single-Turbine Simulation

We first compute a single VAWT and assess the resolution demands for this class of
problems. The stationary domain has the outer dimensions of 50, 20, and 30 m in the
stream-wise, vertical, and span-wise directions, respectively. The VAWT centerline
is located 15 m from the inflow and side boundaries. The radius and height of the
spinning cylinder are both 4 m.

Three meshes are used with increasing levels of refinement. The overall mesh
statistics are summarized in Table 2. The finest mesh has over 17M elements. The
details of the boundary-layer discretization are as follows. For Mesh 1, the size of the
first element in the wall-normal direction is 0.000667 m, and 15 layers of prismatic
elements were generated with a growth ratio of 1.15. For Mesh 2, the size of the
first element in the wall-normal direction is 0.000470 m, and 21 layers of prismatic
elements were generated with a growth ratio of 1.1. For Mesh 3, the size of the
first element in the wall-normal direction is 0.000333 m, and 30 layers of prismatic
elements were generated with a growth ratio of 1.05. Figure 14 shows a 2D slice of
Mesh 2, focusing on the boundary-layer discretization of the blade.

Time history of the computed aerodynamic torque is plotted in Fig. 15 together
with the experimental value reported for these operating conditions. Only the mean
value of the torque was reported in [211, 212]. Note that after a couple of cycles a
nearly periodic solution is attained. Mesh 1 predicts the average torque of about
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Table 2 Statistics of the
finite element meshes of the
VAWT

Number of nodes Number of elements

Mesh 1 1,143,609 4,064,358

Mesh 2 2,478,993 7,324,964

Mesh 3 6,401,238 17,434,372

Fig. 14 2D slice of Mesh 2, focusing on the blade boundary-layer discretization
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Fig. 15 Time history of the aerodynamic torque for the three meshes used. The experimental result
is plotted for comparison

52 Nm, Mesh 2 gives the average torque of about 70 Nm, and Mesh 3 predicts
the average torque of about 80 Nm, while the targeted experimental value is about
90 Nm. Looking further at the curves we observe that the largest differences between
the predicted values of the torque between the meshes occur at the maxima and
minima of the curves. Also note that the torque fluctuation during the cycle is nearly
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Fig. 16 Vorticity isosurfaces at a time instant colored by velocity magnitude

200 Nm, which is over twice the average. One way to mitigate such high torque
variations is to allow variable rotor speed.

Figure 16 shows a snapshot of vorticity colored by flow speed. The upstream
blade generates tip vortices near its top and bottom sections. Note that no large
vortices are present in the middle section of the blade. There, as the flow separates
on the airfoil surface, larger vortices immediately break up into fine-grained trailing-
edge turbulence. The tip vortex and trailing-edge turbulence are then convected with
the ambient wind velocity, and impact the tower, as well as the blade that happens
to be in the downwind position in the spin cycle. However, as it is evident from the
torque time histories shown in Fig. 15, these do not produce a major impact on the
rotor loads, at least for a chosen set of wind and rotor speeds. The situation may, of
course, change for a different set of operating conditions.
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Fig. 17 Cross-section of the mesh for the two-VAWTs rotating counterclockwise

7.2 Two-Turbine Simulation

Here we investigate two counter-rotating turbines placed side-by-side in close
proximity to one another. The wind and rotor speeds are the same as before,
however, the turbines rotate out of phase, with the difference of 60◦. The distance
between the towers of the two turbines is 2.64R, where R = 1.25 m is the rotor
radius. This distance between the turbines falls in the range investigated in the
experimental work of [213].

The stationary domain has the outer dimensions of 50, 20, and 33.3 m in the
stream-wise, vertical, and span-wise directions, respectively. The centerline of each
VAWT is located 15 m from the inflow and 15 m from its closest side boundary. The
radius and height of the spinning cylinders are 1.45 and 4 m, respectively.

A 2D slice of the computational-domain mesh focusing on the two rotors is
shown in Fig. 17. The boundary layer discretization employed for this computation
is the same as that of Mesh 2 in the previous section.

Figure 18 shows the time history of the aerodynamic torque for the two-turbine
case. The curve corresponding to the second turbine is shifted by 60◦ such that both
curves are in phase. The time history of the torque for a single VAWT simulation
is shown for comparison. Note that while the maxima of all curves are virtually
coincident, the minima are lower for the case of multiple turbines. Also note that the
multiple-turbine torque curves exhibit some fluctuation near their minima, while the
single-turbine torque curve is smooth near its minima. This is likely due to the fact
that the blade from one turbine, as it approaches the plane defined by the centerlines
of the two towers, encounters the wake of the blade from another turbine. This, in
turn, produces higher drag on that blade and results in reduction of the aerodynamic
torque. A snapshot of vorticity colored by flow speed depicted in Fig. 19 shows
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Fig. 18 Time history of the aerodynamic torque for the two VAWTs. The data for the second
turbine is shifted by 60◦ to be in phase with the first turbine. Results from a single turbine
simulation are plotted for comparison

Fig. 19 Vorticity isosurfaces colored by flow speed for two VAWTs rotating counterclockwise
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Fig. 20 Air speed at a 2D cross-section for the two VAWTs rotating counterclockwise

that the short distance between the turbines has a noticeable effect on the resulting
aerodynamics. This effect may be seen more clearly in Fig. 20, which shows that
one of the blades from the VAWT on the right is about to enter the turbulent region
between the turbines.

8 ST Computational Flow Analysis of a VAWT

In the ST computational flow analysis of a VAWT we include from [117], we
conduct test computations with 2D and 3D models. The wind turbine has four
support columns at the periphery. In the 2D case we also test the ST-SUPS. In the
3D case, both the fluid–fluid SI and fluid–solid SI versions of the ST-SI are used.

Figure 21 shows the VAWT. The model is based on the wind turbine in [214]. The
rotor diameter is 16 m, and the machine height is 45 m. The three blades are based
on the NACA0015 airfoil, and the cord length and the blade height are 1.5 and
18 m, respectively. There are two connecting rods from the hub to each blade, and
the blades are supported without any tilt with respect to the tangent of the rotation
path. The four support columns are cylindrical with circular cross-section, and they
provide enough strength to support the rotor, which is estimated to weigh 3 t.

We carry out the computations at a constant free-stream velocity U∞ and with
prescribed rotor motion at constant angular velocity. The rotation is clockwise
viewed from the top. The air density and kinematic viscosity are 1.205 kg/m3 and
1.511 × 10−5 m2/s. We extract from the computations the instantaneous power
coefficient CPOW, defined as
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Fig. 21 ST computational
flow analysis of a VAWT. The
model

CPOW = P

1
2ρU

3∞A
, (68)

where P and A are the generated power and the projected area of the wind turbine.
We report the power coefficient as a function of the blade orientation as represented
by the angle φ seen in Fig. 22. With that orientation, the flow speed seen by a blade
can be calculated as

V = U∞
√

1− 2λ sinφ + λ2, (69)

where λ is the tip-speed ratio (TSR).
Based on that speed, we define the pressure coefficient as

Cp ≡ p − p∞
1
2ρV

2
(70)

≈ 1+ p − pmax
1
2ρV

2
, (71)

where p∞ is the free-stream pressure, and pmax is the maximum pressure on the
blade surface, which is essentially the stagnation pressure.

The computational-domain size is 62.5 times the rotor diameter in the wind
direction, with a distance of 18.75 times the rotor diameter between the upstream
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Fig. 22 ST computational
flow analysis of a VAWT.
Blade orientation as
represented by φ

0◦

90◦

180◦

270◦

φ

U∞

boundary and the center of the rotor. In the cross-wind direction, the domain size is
37.5 times the rotor diameter. In the 3D case, the domain height is 10 times the rotor
diameter.

The mesh position is represented by quadratic NURBS in time. There are three
patches that are 120◦ each, and the secondary mapping introduced in [105, 114, 118]
is used to achieve the constant angular velocity. In the computations reported here,
a patch has 120 time steps, resulting in 1.0◦ per time step. We report results for a
free-stream velocity of 12.56 m/s and a TSR value of 6. This results in a time-step
size of 0.001852 s.

8.1 2D Computations

Figure 23 shows the mesh used in the computations. There are 84,565 nodes and
83,304 quadrilateral elements. Figure 24 shows the mesh around a blade and also
the SI. The first element thickness is about 0.9 mm. There are a total of 18 layers,
each increasing in thickness with a progression ratio of about 1.1.

At the inflow and outflow boundaries we have free-stream velocity and traction-
free conditions, respectively. At the other lateral boundaries we have slip conditions.
The velocity at the rotor surface is prescribed as a strong Dirichlet boundary
condition. The prescribed velocity is evaluated at the temporal integration points
with the values extracted from the NURBS representation of the rotor surface
velocity.

We compute six cycles, the first cycle with the ST-SUPS only, and the second
to sixth cycles with both the ST-SUPS and ST-VMS. The number of nonlinear
iterations per time step is 4, and the number of GMRES iterations per nonlinear
iteration is 200. In the ST-VMS computation, the first two nonlinear iterations are
based on the ST-SUPS, and the last two iterations are based on the ST-VMS. The
stabilization parameters are from Eqs. (2.4)–(2.8) in [117]. In the case of the ST-
SUPS, we exclude “τSUGN4” from Eq. (2.4) in [117].
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Fig. 23 ST computational flow analysis of a VAWT. 2D computation. Mesh around the turbine

Fig. 24 ST computational flow analysis of a VAWT. 2D computation. Mesh around a blade and
the SI

We report results averaged over the third to sixth cycles. Figures 25 and 26
show the pressure coefficient at four different angles from computations with the
ST-SUPS and ST-VMS, respectively. Figure 27 shows the instantaneous power
coefficient. The power coefficient averaged over full rotation is −2.0 for the ST-
SUPS, and 0.24 for the ST-VMS.

Remark 20 The ST-SUPS solution is clearly not accurate, producing no power. The
reason can be understood by comparing Figs. 25 and 26. In the ST-SUPS case, the
flow on the suction side separates earlier than it does in the ST-VMS case.
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Fig. 25 ST computational
flow analysis of a VAWT. 2D
computation. Pressure
coefficient from computation
with the ST-SUPS, at φ = 0◦,
90◦, 180◦, and 270◦

−2 1
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Fig. 26 ST computational
flow analysis of a VAWT. 2D
computation. Pressure
coefficient from computation
with the ST-VMS, at φ = 0◦,
90◦, 180◦, and 270◦

−2 1
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Fig. 27 ST computational flow analysis of a VAWT. 2D computation. Instantaneous power
coefficient as a function of φ defined with respect to Blade 1. The total power coefficient (top) and
the power coefficient for the individual blades from the ST-SUPS (middle) and ST-VMS (bottom)
computations
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Fig. 28 ST computational flow analysis of a VAWT. Mesh for the 3D computation. Entire domain
(top) and around the turbine (bottom)

8.2 3D Computation

Here we report results only from the ST-VMS computation. Figure 28 shows the
mesh used in the computation. There are 2,822,109 nodes and 6,875,420 mixed
elements (hexahedron, pyramid, and tetrahedron). Figure 29 shows the mesh around
a blade and the SI. There are a total of 9 uniform-thickness layers with an element
thickness of about 6 mm.

At the inflow and outflow boundaries we have free-stream velocity and traction-
free conditions, respectively. At all other domain boundaries we have slip condi-
tions. We do not try to resolve the boundary layer near the ground since the blades
are positioned relatively high (see Fig. 21). The fluid velocity at the rotor surface
is prescribed as a weakly imposed Dirichlet boundary condition. As in the 2D case,
the prescribed velocity is evaluated at the integration points with the values extracted
from the NURBS representation of the rotor surface velocity.



304 A. Korobenko et al.

Fig. 29 ST computational flow analysis of a VAWT. A cut plane of the 3D mesh around a blade
and the SI, which is between the hexahedral and tetrahedral elements seen in the figure

Fig. 30 ST computational flow analysis of a VAWT. 3D computation. Volume rendering of the
vorticity magnitude at φ = 270◦. The flow is from left to right

We compute two cycles. The number of nonlinear iterations per time step is 4,
and the number of GMRES iterations per nonlinear iteration is 400. The first three
nonlinear iterations are based on the ST-SUPS, and the last iteration is based on the
ST-VMS. The stabilization parameters are from Eqs. (2.4)–(2.8) in [117], and we
use the symmetric version of τSUGN4, defined in Remark 3 in [117]. We report results
from the second cycle. Figure 30 shows the vorticity at φ = 270◦. Figure 31 shows
the pressure coefficient at four different angles. Figure 32 shows the instantaneous
power coefficient. The power coefficient averaged over full rotation is about 0.54.
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Fig. 31 ST computational
flow analysis of a VAWT. 3D
computation. Pressure
coefficient on a cut plane at
φ = 0◦, 90◦, 180◦, and 270◦

−2 1
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Fig. 32 ST computational
flow analysis of a VAWT. 3D
computation. Instantaneous
power coefficient as a
function of φ defined with
respect to Blade 1. The total
power coefficient (top) and
the power coefficient for the
individual blades (botom)
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9 FSI Modeling of Single Wind Turbines

9.1 Simulation of a 5 MW HAWT Yawing Motion

Here we present an FSI simulation of a 5 MW offshore wind turbine undergoing
yawing motion using the new mesh update technique described in Sect. 5.2. The
material in this section is taken from [67]. The wind turbine is equipped with a 61 m
blade, which is the scaled version of a 100 m baseline blade designed by Sandia
National Laboratory for large offshore wind turbines (referred to as SNL 100–00
blade). The blade geometry was described in Sect. 6. The blade has the trailing and
leading edge reinforcements together with the root build-up. Three shear webs are
placed to minimize the length of the unsupported panel (see Fig. 33 for details). The
blade laminate has six principal regions: root, spar cap, trailing edge reinforcement,
leading edge panels, aft panels, and shear webs.

Tables 3 and 4 list the materials used in the blade design. The root buildup is
composed of triaxial material (SNL Triax), and the whole internal and external
blade surfaces have a 5 mm layer of this material. As the root buildup tapers down
in thickness, the spar cap increases in thickness. The maximum thickness of the spar



ALE-VMS and ST-VMS Computational Analysis of Wind Turbines 307

Fig. 33 SNL 100–00 blade shell model with several cross-section cuts to show the arrangement
of the three shear webs

Table 3 Orthotropic
materials used in the SNL
100–00 blade

E-LT-5500/ Saertex/ SNL

Properties EP-3 EP-3 triax

E1 (GPa) 41.8 13.6 27.7

E2 (GPa) 14 13.3 13.65

G12 (GPa) 2.63 11.8 7.2

ν12 0.28 0.51 0.39

ρ2 (kg/m3) 1920 1780 1850

Lay-up [0]2 [ +45]4 [ +45]4[0]2

Table 4 Isotropic materials
used in the SNL 100–00 blade

Properties Foam Resin Gel coat

E1 (GPa) 0.256 3.5 3.44

E2 (GPa) 0.256 3.5 3.44

G12 (GPa) 0.022 1.4 1.38

ν12 0.3 0.3 0.3

ρ2 (kg/m3) 200 1100 1235

cap is 136 mm at maximum chord (19.5%), while the minimum thickness of the spar
cap is 5 mm, starting at 94.4% of the blade span and continuing almost all the way
to the tip. The trailing edge is reinforced with uniaxial laminate E-LT-5500/EP-3
and foam materials. The trailing edge reinforcement has a constant width of 1.0 m
that continues until 94.4% span, and then tapers to the tip. To improve buckling
resistance and minimize the weight, foam is also chosen as the core material for the
leading panel and aft panels. Longitudinal fibers of E-LT-5500/EP-3 are placed on
the spar cap to improve the flapwise bending stiffness. The spar cap has a constant
width of 1.5 m. As a result, the two principal shear webs, which begin at 2.4 m
and terminate at 94.4 m, are positioned 0.75 m before and after the pitch axis. The
third shear web starts at 14.6 m and terminates at 60.2 m, and is positioned at 78%
chord at its starting location and 68% chord at its terminal location. A combination
of foam and Saertex/EP-3 is used in shear webs to enhance the shear stiffness. An
extra 5 mm of epoxy resin is included in the internal blade surface, and the external
surface includes 0.6 mm of gelcoat. The same layup is employed for both low-
and high-pressure blade surfaces. Structural-mechanics validation of this blade was
presented in [67].

The wind turbine rotor is positioned at 80 m above ground and is tilted by 5◦ to
avoid the blade hitting the tower as the rotor spins. (Another way to have sufficient
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tower clearance is to “prebend” the rotor blades into the wind. See [215] for details.)
Furthermore, the wind turbine rotor plane is initially placed at 15◦ relative to the
wind direction. A fixed yawing rotational speed is applied to the gearbox to slowly
turn the rotor into the wind at 0.03 rad/s. The inflow wind speed is set to 11.4 m/s.
The initial rotor speed is set to 12.1 rpm, and the rotor is allowed to spin freely
during the prescribed yawing motion.

The structural mechanics mesh of the full turbine has 13,273 quadratic NURBS
shell elements and two quadratic NURBS beam elements. The aerodynamics mesh
has a total of 5,458,185 linear elements. Triangular prisms are employed in the blade
boundary layers, and tetrahedral elements are used elsewhere in the aerodynamics
domain. The size of the first boundary-layer element in the wall-normal direction is
1 cm. The time step of 0.0001 s is employed in the computation.

Snapshots of the structure deformed configuration are shown in Fig. 34,
while isosurfaces of vorticity colored by flow speed are shown in Fig. 35.

Fig. 34 FSI simulation of a HAWT undergoing a yawing motion. Snapshots of the top view of the
wind-turbine structure current configuration. The blades appear to be quite flexible and care needs
to be taken when designing the rotating subdomain to avoid the flexing blade crossing its boundary
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Fig. 35 FSI simulation of a
HAWT undergoing a yawing
motion. Snapshots of
vorticity colored by air speed
illustrating the air flow
complexity
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Fig. 36 FSI simulation of a HAWT undergoing a yawing motion. Time history of the angular
speed

Figures 36 and 37 show the time history of the axial component of the aerodynamic
torque and angular speed (i.e., the component in the direction of the vector nrot in
Eq. (63)). Both are slowly increasing as the rotor turns into the wind, as expected.
The level of the computed aerodynamic torque is consistent with the earlier
simulations for this wind turbine operating under similar wind- and rotor-speed
conditions (see, e.g., [8, 9, 17, 63, 113, 114, 143]).
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Fig. 37 FSI simulation of a HAWT undergoing a yawing motion. Time history of the rotor
aerodynamic torque

9.2 Simulation of the Windspire VAWT Start-Up Conditions

The FSI computations presented here are performed for a 1.2 kW Windspire
design [216], a three-bladed Darrieus VAWT. The material in this section is taken
from [69]. The total height of the VAWT tower is 9.0 m, and the rotor height is 6.0 m.
The rotor uses the DU06W200 airfoil profile with the chord length of 0.127 m, and
is of the Giromill type with straight vertical blade sections attached to the main shaft
with horizontal struts.

The outer aerodynamics computational domain has the dimensions of 50, 20, and
30 m in the stream-wise, vertical, and span-wise directions, respectively. The VAWT
centerline is located 15 m from the inflow and side boundaries. The aerodynamics
mesh has about 8 M elements, which are linear triangular prisms in the blade
boundary layers, and linear tetrahedra elsewhere. The boundary layer mesh is
constructed using 18 layers of elements, with the size of the first element in the wall-
normal direction of 0.0003 m, and growth ratio of 1.1. The aerodynamic validation
for this model may be found in [69].

The structural model is shown in Fig. 38. The rotor and struts are made of
aluminum, and the tower is made of steel. Quadratic NURBS are employed for
both the beam and shell discretizations. The total number of beam elements is 116,
and total number of shell elements is 7029.

As a part of the FSI simulations, we present a preliminary investigation of the
start-up issues in VAWTs. We fix the inflow wind speed at 11.4 m/s, and consider
three initial rotor speeds: 0, 4, and 12 rad/s. Of interest is the transient response of
the system. In particular, we focus on how the rotor angular speed responds to the
prescribed initial conditions, and what is the range of the tower tip displacement
during the VAWT operation. The VAWT is allowed to spin freely and accelerate
under the action of the ambient wind. The time step in the computations is set to
2.0× 10−5 s.
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Fig. 38 Windspire VAWT structural model with dimensions included: (a) Full model using
isogeometric NURBS-based rotation-free shells and beams; (b) Model cross-section 1 showing
attachment of the struts to the blades and tower shell; (c) Model cross-section 2 showing attachment
of the struts and tower shell

The mesh update technique described in Sect. 5.2 is applied to this case in a
straightforward fashion. The radius and height of the inner cylindrical domain that
encloses the rotor are 1.6 and 7 m, respectively. That is, the cylindrical domain
extends 0.5 m above and below the rotor blades. The rotor axis direction nrot is
defined according to Eq. (63), where the points xori and xtip are located at the bottom
and top intersections of the tower beam and shell, respectively. The instantaneous
rotor angular velocity is computed from Eq. (56), the spinning component is
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Fig. 39 Time history of the rotor speed starting from 0 rad/s
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Fig. 40 Time history of the rotor speed starting from 4 rad/s

removed as per Eq. (62), and the two angular velocities are used to update the
sliding-interface mesh positions.

Time history of the rotor speed is shown in Figs. 39, 40 and 41. For the 0 rad/s
case the rotor speed begins to increase suggesting this configuration is favorable for
self-starting. For the 4 rad/s case, the rotor speed has a nearly linear acceleration
region followed by a plateau region. In [217] the plateau region is defined as the
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Fig. 41 Time history of the rotor speed starting from 12 rad/s

regime when the turbine operates at nearly constant (i.e., steady-state like) rotational
speed. From the angular position of the blades in Fig. 40 it is evident that the plateau
region occurs approximately every 120◦ when one of the blades is in a stalled
position. It lasts until the blade clears the stalled region, and the lift forces are
sufficiently high for the rotational speed to start increasing again. As the rotational
speed increases, the angular velocity is starting to exhibit local unsteady behavior in
the plateau region. While the overall growth of the angular velocity for the 4 rad/s
case is promising for the VAWT to self start, the situation is different for the 12 rad/s
case (see Fig. 41). Here the rotor speed has little dependence on the angular position
and stays nearly constant, close to its initial value. It is not likely that the rotor speed
will reach to the operational levels in these conditions without an applied external
torque, or a sudden change in wind speed, which is consistent with the findings
of [218].

Figure 42 shows, for a full turbine, a snapshot of vorticity colored by flow
speed for the 4 rad/s case. The figures indicate the complexity of the underlying
flow phenomena and the associated computational challenges. Note the presence
of quasi-2D vortex tubes that are created due to massive flow separation, and that
quickly disintegrate and turn into fine-grained 3D turbulence further downstream.

Figure 43 shows the turbine current configuration at two time instances during
the cycle for the 4 rad/s case. The displacement is mostly in the direction of the
wind, however, lateral tower displacements are also observed as a result of the rotor
spinning motion. The displacement amplitude is around 0.10–0.12 m, which we find
reasonable given the tower height of 9 m, and one of the VAWT design objectives
being that the structure is not too flexible.
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Fig. 42 Vorticity isosurfaces
at a time instant colored by
velocity magnitude for the
4 rad/s case

10 Two Back-to-Back Wind Turbines in Turbulent ABL Flow

In this section, the techniques described in Sect. 2 are applied to the simulation of
two back-to-back NREL 5 MW wind turbines [210] operating in ABL flow. This
turbine design was previously simulated under uniform flow conditions in [8, 9, 17,
63, 67, 113, 114, 143] and aerodynamic rotor-only simulation in stably stratified
ABL was presented earlier in Sect. 6. Each turbine has a rotor with 61 m blades
mounted on an 80 m tower and operating at constant, fixed rotor speed of 9 rpm.
This rotor speed gives the optimal tip-speed ratio for 8 m/s wind [210], which is
also the geostrophic wind speed used in the present computations. The material
presented in this section is taken from [61].

10.1 Computational Set-up and Boundary Conditions

Two wind turbines are positioned one behind the other at a distance of 480 m, which
corresponds to four rotor diameters. As a result, the wake generated by the upstream
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Fig. 43 Turbine current configuration at two time instances for the 4 rad/s case. The tower
centerline in the reference configuration is shown using the dashed line to illustrate the range of
turbine motion during the cycle. The range of the tower tip displacement during the cycle is about
0.10–0.12 m

turbine needs to be accurately computed over a long domain before it impacts
the downstream turbine, which poses a significant computational challenge due to
a very large problem size. To circumvent this difficulty, a multi-domain method
(MDM), originally proposed in [146], is adopted in the present work to efficiently
separate the two turbine domains. We note that the MDM was successfully applied
to a number of challenging 3D problems, including flow around a small wing placed
in the wake of a larger wing [146], flow in the wake of a circular cylinder up to
300 diameters downstream [219, 220], and aerodynamics and FSI of a parachute
crossing the far wake of an aircraft [221, 222]. More recently, a spatially multiscale
version of the MDM was applied to thermo-fluid analysis of a ground vehicle and
its tires in [93].

In the present work the MDM is employed as follows. The problem domain is
divided into three subdomains (see Fig. 44 for dimensions and notation). Domains
labeled Turbine 1 and Turbine 2 contain the upstream and downstream turbines,
respectively, and domain labeled Box contains the space between the turbines.
The three domains are simulated in a sequential manner. Velocity and temperature
boundary conditions on the inflow boundary of Turbine 1, as well as lateral bound-
aries of all subdomains, are obtained from a standalone 3D LES computation of a
stratified ABL with a uniform grid size of 5 m. This stratified flow computational
model [207, 223, 224], which can be run in DNS or LES modes, makes use
of a mixed spectral/finite-difference algorithm and a subgrid model based on
dynamic eddy viscosity and diffusivity. Nodal values of the velocity and temperature
boundary conditions are obtained by interpolating the finite-difference solution from
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Fig. 44 Problem set-up for the multi-domain wind-turbine simulation. The subdomains are
labeled and all the dimensions are in m
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Fig. 45 Data flow between the subdomains. Velocity and temperature collected at location 1 are
applied as inlet boundary conditions at location 2. Velocity and temperature collected at location
3 are applied as inlet boundary conditions at location 4. At all lateral boundaries velocity and
temperature boundary conditions come from a standalone spectral/fine-difference LES

the structured grid of the LES simulation to the unstructured grids of the wind-
turbine simulations. This data transfer strategy, employing the same dataset as in
the present work, was successfully tested for the rotor-only ABL simulation in [59].
The background temperature φ̄(x3) is set to 260 K up to 100 m with an overlying
inversion of strength 0.01 Km−1 for all domains. The geostrophic wind speed is set
to 8 m/s, and the Coriolis parameter to fc = 1.39× 10−4. Velocity and temperature
inflow boundary conditions for Box are obtained using a similar data transfer
strategy, where, in this case, the data is obtained by interpolating the solution on
a plane positioned 10 m behind the turbine during pure aerodynamic simulation on
Turbine 1. Inflow boundary conditions for Turbine 2 are obtained by interpolating
the solution on the outflow plane of Box (see Fig. 45 for details.)

Traction boundary conditions are prescribed at the outlet boundaries of all sub-
domains. To generate the traction values, a simulation in Turbine 1 is performed first
with the wind turbine removed, and with zero outlet traction boundary conditions.
The inlet tractions produced as a result of this computation, shown in Fig. 46, are
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Fig. 46 Pressure profile used for outflow boundary conditions on all subdomains

then assigned as outlet boundary conditions for all subdomains. A similar strategy
was successfully employed in [59], as well as in [93] to perform a detailed thermo-
fluid analysis of the rear tires of a ground vehicle.

The subdomains are discretized using triangular prisms in the boundary layer
region near the wind-turbine rotors, and tetrahedra elsewhere (see Fig. 47). For
Turbine 1 and Turbine 2 the boundary-layer mesh design is based on that reported
in [67]. For Turbine 1 a total of 7,824,602 elements are used with a 4 m element
length on the outer boundaries. A finer grid resolution with 2 m element length
is used on a plane behind the upstream turbine where inlet data is collected for
the Box simulation. The Box domain, which has a refined inner region to more
accurately represent the wake turbulence, is discretized using 15,436,631 elements
The Turbine 2 domain, with a total of 9,153,426 elements, also contains a refined
inner region in front of the turbine for better wake resolution. The time step size
is set to 10−4 s for Turbine 1 and Turbine 2 simulations, and to 10−2 s for the Box

simulation.

10.2 Aerodynamics Simulation Results

Pure aerodynamics simulation results, which are also referred as “CFD,” are
reported in this section. During the CFD simulations the wind turbine rotor is
considered as a rigid rotating body. Figure 48 shows the velocity and temperature
contours at the domain centerline. No discernible discontinuity between the subdo-
mains is observed. A slight growth of the shear layer from the upper edge of the
upstream-turbine rotor can also be seen in Fig. 48. The bottom shear layer grows
much more rapidly, due to higher turbulent mixing and presence of the tower.

Figure 49 shows vorticity isosurfaces. Rotor-tip vortices of the upstream turbine
maintain a helical pattern for a distance of about one rotor diameter. They later break
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Fig. 47 Meshes employed in the wind-turbine aerodynamics and FSI simulations. Top-to-bottom:
Turbine 1, Box, Turbine 2

up, and eventually merge with vortices shed from the root and tower to form larger
structures at a distance between two and three rotor diameters (see Fig. 49.) These
larger flow structures impact the downstream-turbine rotor and tower, and break up
together with the rotor-tip vortices. The helical pattern of the rotor-tip vortices for
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Fig. 48 2D slice of the air speed (top) and temperature (bottom)

Fig. 49 3D view of vorticity isosurfaces colored by air speed

the downstream turbine is only maintained for a short distance behind the rotor.
This enhanced turbulent mixing gives a faster growth of the shear layer behind the
downstream turbine.

Remark 21 When simulating ABL flows, the computational domain should be large
enough to account for the wake drift due to side wind and Coriolis force. Figure 50
shows the front view of the vorticity isosurfaces, where the wake drift is clearly
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Fig. 50 Front view of
vorticity isosurfaces colored
by air speed

Fig. 51 Air speed averaged over six rotor revolutions and plotted at different locations along the
centerline as a function of the vertical coordinate

seen. While in the present simulations wake drift is not as significant, for stronger
side winds the computational domain needs to have a larger spanwise dimension.

Figure 51 shows the air speed, averaged over six rotor revolutions, at different
locations along the centerline as a function of the vertical coordinate. Air speed
profile at the inlet corresponds to that imposed from the LES simulation. A short
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distance past Turbine 1 the profile appears distorted, and slowly begins to recover
with increasing distance from the upstream turbine. By the location of Turbine 2
the profile begins to recover up to the hub height and above the upper-blade tip.
However, qualitative differences w.r.t. the inflow profile, e.g., less near-ground shear
and a higher shear above the top of the upper rotor, may be observed. In between
the hub-height and upper-blade-tip locations one can clearly see the velocity deficit,
which is on the order of 1–2 m/s. This velocity deficit leads to the power-production
drop, as discussed in the next section.

10.3 FSI Simulation Results

In this section we present FSI simulations of the same multi-domain set-up.
The wind-turbine geometry, materials, and mesh, which is comprised of 13,273
quadratic NURBS shell elements, are identical to those described in Sect. 9.1.
Figure 52 shows the aerodynamic torque acting on each blade of the upstream-
turbine rotor, and compares the pure aerodynamics (labeled “CFD”) and FSI results.
The FSI-simulation curves exhibit low frequency modes coming from the blade
flapwise bending motions, as well as high frequency modes coming from the blade
axial torsion motions. These modes are obviously not present in the CFD curves,
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Fig. 52 Time history of the aerodynamic torque for each blade of the upstream-turbine. Com-
parison of pure aerodynamics (labeled “CFD”) and FSI simulation results. See Fig. 44 for blade
numbering
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Fig. 53 Time history of the aerodynamic torque from FSI simulations for upstream (T1) and
downstream (T2) turbines. Aerodynamic torque for uniform wind speed of 8 m/s from [210] is
plotted for comparison

which underscore the importance of including FSI in the wind-turbine modeling,
especially if one is interested in predicting the remaining useful fatigue life of wind-
turbine structural components (see, e.g., [225]).

Figure 53 shows a comparison of the aerodynamic torque acting on the upstream
and downstream turbines. The results confirm power losses for the downstream
turbine of 10–15% relative to the upstream turbine, which are due to the velocity
deficit in the upstream-turbine wake. Also note that the amplitude of high-frequency
oscillations due to the blade torsional motions is a little higher for the downstream
turbine, which is due to higher turbulence intensity in the upstream-turbine wake
than in the free stream. The nominal aerodynamic torque from the NREL baseline
design for a uniform wind speed of 8 m/s [210] is also plotted for comparison
to underscore the importance of including realistic boundary-layer flow in the
aerodynamics and FSI modeling of wind turbines at full scale.

11 Concluding Remarks

We described the recent advances our teams made in ALE-VMS and ST-VMS
computational analysis of wind-turbine aerodynamics and FSI. The ALE-VMS and
ST-VMS are the VMS versions of the ALE and DSD/SST. The VMS components
are from the RBVMS. The ALE-VMS and ST-VMS served as the core methods in
the computations. They were complemented by special methods that included the
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ALE-VMS versions for stratified flows, sliding interfaces and weak enforcement
of Dirichlet boundary conditions, ST-SI, NURBS-based isogeometric analysis,
STNMUM, Kirchhoff–Love shell modeling of wind-turbine structures, and full FSI
coupling. The ST framework, in a general context, provides higher-order accuracy.
The VMS feature of the ALE-VMS and ST-VMS addressed the computational
challenges associated with the multiscale nature of the unsteady flow, and the
moving-mesh feature of the ALE and ST frameworks enabled high-resolution
computation near the rotor surface. The ALE-VMS version for sliding interfaces
and the ST-SI enabled moving-mesh computation of the spinning rotor. The mesh
covering the rotor spins with it, and the sliding interface or the SI between the
spinning mesh and the rest of the mesh accurately connects the two sides of the
solution. The ST-SI also enabled prescribing the fluid velocity at the turbine rotor
surface as weakly enforced Dirichlet boundary condition. The STNMUM enabled
exact representation of the mesh rotation. The analysis cases reported included both
the HAWTs and VAWTs, stratified and unstratified flows, standalone wind turbines,
wind turbines with tower or support columns, aerodynamic interaction between
two wind turbines, and the FSI between the aerodynamics and structural dynamics
of wind turbines. Comparisons with experimental data were also included where
applicable. The reported cases demonstrated the effectiveness of the ALE-VMS,
ST-VMS and the accompanying special methods in computational analysis of wind-
turbine aerodynamics and FSI. These methods brought the aerodynamic and FSI
analysis of wind turbines to a new level, where such analyses can actually support
design and testing.
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Space–Time Computational Analysis
of Tire Aerodynamics with Actual
Geometry, Road Contact, and Tire
Deformation

Takashi Kuraishi, Kenji Takizawa, and Tayfun E. Tezduyar

Abstract A new space–time (ST) computational method, “ST-SI-TC-IGA,” is
enabling us to address the challenges faced in computational analysis of tire
aerodynamics with actual geometry, road contact and tire deformation. The core
component of the ST-SI-TC-IGA is the ST Variational Multiscale (ST-VMS)
method, and the other key components are the ST Slip Interface (ST-SI) and ST
Topology Change (ST-TC) methods and the ST Isogeometric Analysis (ST-IGA).
The VMS feature of the ST-VMS addresses the challenge created by the turbulent
nature of the flow, the moving-mesh feature of the ST framework enables high-
resolution computation near the moving fluid–solid interfaces, and the higher-order
accuracy of the ST framework strengthens both features. The ST-SI enables high-
resolution representation of the boundary layers near the tire. The mesh covering
the tire spins with it, and the SI between the spinning mesh and the rest of the mesh
accurately connects the two sides of the solution. The ST-TC enables moving-mesh
computation even with the TC created by the contact between the tire and the road.
It deals with the contact while maintaining high-resolution representation near the
tire. Integration of the ST-SI and ST-TC enables high-resolution representation even
though parts of the SI are coinciding with the tire and road surfaces. It also enables
dealing with the tire-road contact location change and contact sliding. By integrating
the ST-IGA with the ST-SI and ST-TC, in addition to having a more accurate
representation of the tire surfaces and increased accuracy in the flow solution, the
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element density in the tire grooves and in the narrow spaces near the contact areas is
kept at a reasonable level. We present computations with the ST-SI-TC-IGA and two
models of flow around a rotating tire with road contact and prescribed deformation.
One is a simple 2D model, and one is a 3D model with an actual tire geometry
that includes the longitudinal and transverse grooves. The computations show the
effectiveness of the ST-SI-TC-IGA in tire aerodynamics.

1 Introduction

A new space–time (ST) method, “ST-SI-TC-IGA” [1], is enabling successful
computational analysis of tire aerodynamics with actual geometry, road contact, and
tire deformation. The computational challenges addressed with the ST-SI-TC-IGA
include the complexity of an actual tire geometry with longitudinal and transverse
grooves, turbulent nature of the flow, moving fluid–solid interfaces, spin of the tire,
and the topology change (TC) created by the road contact and tire deformation.
The ST-SI-TC-IGA was introduced [1] in the context of heart valve flow analysis.
Its core component is the ST Variational Multiscale (ST-VMS) method [2–4], and
the other key components are the ST Slip Interface (ST-SI) [5, 6] and ST-TC [7, 8]
methods and the ST Isogeometric Analysis (ST-IGA) [2, 9, 10].

1.1 ST-VMS

The ST-VMS is the VMS version of the Deforming-Spatial-Domain/Stabilized
ST (DSD/SST) method [11–13]. The DSD/SST was introduced for computation
of flows with moving boundaries and interfaces (MBI), including fluid–structure
interactions (FSI). In such computations, the DSD/SST functions as a moving-
mesh method. Moving the fluid mechanics mesh to track (i.e., follow) a fluid–solid
interface enables mesh-resolution control near the interface and, consequently,
high-resolution representation of the boundary layer. Because the stabilization com-
ponents of the DSD/SST are the Streamline-Upwind/Petrov-Galerkin (SUPG) [14]
and Pressure-Stabilizing/Petrov-Galerkin (PSPG) [11] stabilizations, the method is
now also called “ST-SUPS.” The VMS components of the ST-VMS are from the
residual-based VMS (RBVMS) method [15–18]. There are two more stabilization
terms beyond those the ST-SUPS has, and these additional terms give the method
better turbulence modeling features. The ST-SUPS and ST-VMS, because of the
higher-order accuracy of the ST framework (see [2, 3]), are desirable also in
computations that do not involve any MBI.



Tire Aerodynamic Analysis with Actual Geometry, Road Contact, and Tire Deformation 339

The Arbitrary Lagrangian–Eulerian (ALE) method is an older and more com-
monly used moving-mesh method. The ALE finite element method was introduced
in 1981 [19]. The ALE-VMS method [20–25] is the VMS version of the ALE.
It was introduced after the ST-SUPS [11] and ALE-SUPS [26] methods and
preceded the ST-VMS. The ALE-VMS and RBVMS are often supplemented with
special methods, such as those for weakly-enforced no-slip boundary condition [27–
29], “sliding interfaces” [30, 31] and backflow stabilization [32]. They have been
successfully applied to many classes of FSI, MBI, and fluid mechanics problems.
The classes of problems include wind-turbine aerodynamics and FSI [33–40], more
specifically, vertical-axis wind turbines [41, 42], floating wind turbines [43], wind
turbines in atmospheric boundary layers [44], and fatigue damage in wind-turbine
blades [45], patient-specific cardiovascular fluid mechanics and FSI [20, 46–51],
biomedical-device FSI [52–57], ship hydrodynamics with free-surface flow and
fluid–object interaction [58, 59], hydrodynamics and FSI of a hydraulic arresting
gear [60, 61], hydrodynamics of tidal-stream turbines with free-surface flow [62],
and bioinspired FSI for marine propulsion [63, 64].

The ST-SUPS and ST-VMS have also been successfully applied to many classes
of FSI, MBI, and fluid mechanics problems. The classes of problems include
spacecraft parachute analysis for the main parachutes [23, 65–68], cover-separation
parachutes [69] and the drogue parachutes [70–72], wind-turbine aerodynamics
for horizontal-axis wind-turbine rotors [23, 33, 73, 74], full horizontal-axis wind-
turbines [39, 75–77] and vertical-axis wind-turbines [5], flapping-wing aerodynam-
ics for an actual locust [9, 23, 78, 79], bioinspired MAVs [76, 77, 80, 81] and
wing-clapping [7, 82], blood flow analysis of cerebral aneurysms [76, 83], stent-
blocked aneurysms [83–85], aortas [86] and heart valves [1, 7, 8, 77], spacecraft
aerodynamics [69, 87], thermo-fluid analysis of ground vehicles and their tires [4],
thermo-fluid analysis of disk brakes [6], flow-driven string dynamics in turboma-
chinery [88], flow analysis of turbocharger turbines [10, 89, 90], flow around tires
with road contact and deformation [91], ram-air parachutes [92], and compressible-
flow parachute aerodynamics [93].

In the tire-aerodynamics computational analysis presented here, the VMS feature
of the ST-VMS addresses the challenge created by the turbulent nature of the flow,
the moving-mesh feature of the ST framework enables high-resolution computation
near the moving air–tire interface, and the higher-order accuracy of the ST frame-
work strengthens both features.

1.2 ST-SI

The ST-SI was introduced in [5], in the context of incompressible-flow equations, to
retain the desirable moving-mesh features of the ST-VMS when we have spinning
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solid surfaces, such as a turbine rotor. The mesh covering the spinning surface spins
with it, retaining the high-resolution representation of the boundary layers. The SI
between the spinning mesh and the rest of the mesh accurately connects the two
sides of the flow field. The starting point in the development of the ST-SI was the
ALE-VMS version for “sliding interfaces” [30, 31]. In the ST-SI, interface terms
similar to those in the ALE-VMS version are added to the ST-VMS formulation
to account for the compatibility conditions for the velocity and stress. An ST-SI
version where the SI is between fluid and solid domains with weakly enforced
Dirichlet boundary conditions for the fluid was also presented in [5]. The SI in
this case is a “fluid–solid SI” rather than a standard “fluid–fluid SI.” The ST-SI
method introduced in [6] for the coupled incompressible-flow and thermal-transport
equations retain the high-resolution representation of the thermo-fluid boundary
layers near spinning solid surfaces. These ST-SI methods have been successfully
applied to aerodynamic analysis of vertical-axis wind turbines [5], thermo-fluid
analysis of disk brakes [6], flow-driven string dynamics in turbomachinery [88],
flow analysis of turbocharger turbines [10, 89, 90], flow around tires with road
contact and deformation [91], aerodynamic analysis of ram-air parachutes [92], and
flow analysis of heart valves [1].

In another version of the ST-SI method presented in [5], the SI is between a
thin porous structure and the fluid on its two sides. This enables dealing with the
fabric porosity in a fashion consistent with how the standard fluid–fluid SIs are
dealt with and how the Dirichlet conditions are enforced weakly with fluid–solid
SIs. Furthermore, this version enables handling thin structures that have T-junctions.
This method has been successfully used in incompressible-flow aerodynamic
analysis of ram-air parachutes with fabric porosity [92]. The compressible-flow ST-
SI methods were introduced in [93], including the version where the SI is between
a thin porous structure and the fluid on its two sides. Compressible-flow porosity
models were also introduced in [93]. These, together with the compressible-flow ST
SUPG method [94], extended the ST computational analysis range to compressible-
flow aerodynamics of parachutes with fabric and geometric porosities. That enabled
successful ST computational flow analysis of the Orion spacecraft drogue parachute
in the compressible-flow regime [93]. The computations were in the context of finite
element discretization.

In the tire aerodynamics, the ST-SI enables high-resolution representation of the
boundary layers near the tire. The mesh covering the tire spins with it, and the SI
between the spinning mesh and the rest of the mesh accurately connects the two
sides of the solution.

1.3 ST-TC

The ST-TC [7, 8] was introduced for moving-mesh computation of flow problems
with TC, such as contact between solid surfaces. Even before the ST-TC, the ST-
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SUPS and ST-VMS, when used with robust mesh update methods, have proven
effective in flow computations where the solid surfaces are in near contact or create
other near TC, if the nearness is sufficiently near for the purpose of solving the
problem. Many classes of problems can be solved that way with sufficient accuracy.
For examples of such computations, see the references mentioned in [7]. The ST-
TC made moving-mesh computations possible even when there is an actual contact
between solid surfaces or other TC. By collapsing elements as needed, without
changing the connectivity of the “parent” mesh, the ST-TC can handle an actual TC
while maintaining high-resolution boundary layer representation near solid surfaces.
This enabled successful moving-mesh computation of heart valve flows [1, 8], wing
clapping [82], and flow around a rotating tire with road contact and prescribed
deformation [91].

In the tire aerodynamics, the ST-TC enables moving-mesh computation even
with the TC created by the actual contact between the tire and the road. It deals
with the contact while maintaining high-resolution representation near the tire.

1.4 ST-SI-TC

The ST-SI-TC is the integration of the ST-SI and ST-TC. A fluid–fluid SI requires
elements on both sides of the SI. When part of an SI needs to coincide with a
solid surface, which happens, for example, when the solid surfaces on two sides
of an SI come into contact or when an SI reaches a solid surface, the elements
between the coinciding SI part and the solid surface need to collapse with the ST-TC
mechanism. The collapse switches the SI from fluid–fluid SI to fluid–solid SI. With
that, an SI can be a mixture of fluid–fluid and fluid–solid SIs. With the ST-SI-TC,
the elements collapse and are reborn independent of the nodes representing a solid
surface. The ST-SI-TC enables high-resolution representation even when parts of the
SI are coinciding with a solid surface. It also enables dealing with contact location
change and contact sliding. This was used in the flow analysis of heart valves [1] and
finite element flow analysis around a tire with road contact and deformation [91].

In the tire aerodynamics, the ST-SI-TC enables high-resolution representation
even though parts of the SI are coinciding with the tire and road surfaces. It also
enables dealing with tire–road contact location change and contact sliding.

1.5 ST-IGA

The ST-IGA was introduced in [2]. It is the integration of the ST framework with
isogeometric discretization. First computations with the ST-VMS and ST-IGA were
reported in [2] in a 2D context, with IGA basis functions in space for flow past
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an airfoil, and in both space and time for the advection equation. The stability and
accuracy analysis given [2] for the advection equation showed that using higher-
order basis functions in time would be essential in getting full benefit out of using
higher-order basis functions in space.

In the early stages of the ST-IGA, the emphasis was on IGA basis functions in
time. As pointed out in [2, 3] and demonstrated in [9, 78, 80], higher-order NURBS
basis functions in time provide a more accurate representation of the motion of
the solid surfaces and a mesh motion consistent with that. They also provide more
efficiency in temporal representation of the motion and deformation of the volume
meshes, and better efficiency in remeshing. That is how the ST/NURBS Mesh
Update Method (STNMUM) was introduced and demonstrated in [9, 78, 80]. The
name “STNMUM” was given in [75]. The STNMUM has a wide scope that includes
spinning solid surfaces. With the spinning motion represented by quadratic NURBS
basis functions in time, and with sufficient number of temporal patches for a full
rotation, the circular paths are represented exactly, and a “secondary mapping”
[2, 3, 9, 23] enables also specifying a constant angular velocity for invariant speeds
along the paths. The ST framework and NURBS in time also enable, with the
“ST-C” method, extracting a continuous representation from the computed data
and, in large-scale computations, efficient data compression [4, 6, 88, 95]. The
STNMUM and desirable features of the ST-IGA with IGA basis functions in time
have been demonstrated in many 3D computations. The classes of problems solved
are flapping-wing aerodynamics for an actual locust [9, 23, 78, 79], bioinspired
MAVs [76, 77, 80, 81] and wing-clapping [7, 82], separation aerodynamics of
spacecraft [69], aerodynamics of horizontal-axis [39, 75–77] and vertical-axis [5]
wind-turbines, thermo-fluid analysis of ground vehicles and their tires [4], thermo-
fluid analysis of disk brakes [6], flow-driven string dynamics in turbomachinery
[88], and flow analysis of turbocharger turbines [10, 89, 90].

The ST-IGA with IGA basis functions in space have been utilized in ST compu-
tational flow analysis of turbocharger turbines [10, 89, 90], ram-air parachutes [92],
and heart valves [1]. These computations were accomplished with the integration of
the ST-IGA and ST-SI or ST-IGA, ST-SI and ST-TC.

1.6 ST-SI-TC-IGA

The turbocharger turbine analysis was based on the integration of the ST-SI and
ST-IGA. The IGA basis functions were used in the spatial discretization of the
fluid mechanics equations and also in the temporal representation of the rotor
and spinning-mesh motion. That enabled accurate representation of the turbine
surfaces and rotor motion and increased accuracy in the flow solution. The ram-air
parachute analysis was based on the integration of the ST-IGA, the ST-SI version
that weakly enforces the Dirichlet conditions, and the ST-SI version that accounts
for the porosity of a thin structure. The ST-IGA with IGA basis functions in space
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enabled, with relatively few number of unknowns, accurate representation of the
parafoil geometry and increased accuracy in the flow solution. The volume mesh
needed to be generated both inside and outside the parafoil. Mesh generation inside
was challenging near the trailing edge because of the narrowing space. Using IGA
basis functions addressed that challenge and still kept the element density near
the trailing edge at a reasonable level. The heart valve analysis was based on the
integration of the ST-SI, ST-TC, and ST-IGA. The ST-SI-TC-IGA, beyond enabling
a more accurate representation of the surfaces and increased accuracy in the flow
solution, kept the element density in the narrow spaces near the contact areas at
a reasonable level. When solid surfaces come into contact, the elements between
the surface and the SI collapse. Before the elements collapse, the boundaries could
be curved and rather complex, and the narrow spaces might have high-aspect-
ratio elements. With NURBS elements, it was possible to deal with such adverse
conditions rather effectively.

An SI provides mesh generation flexibility in a general context by accurately
connecting the two sides of the solution computed over nonmatching meshes. This
type of mesh generation flexibility is especially valuable in complex-geometry flow
computations with isogeometric discretization, removing the matching requirement
between the NURBS patches without loss of accuracy. This feature was used in the
flow analysis of heart valves [1] and turbocharger turbines [10, 89, 90].

In the tire aerodynamics, the ST-SI-TC-IGA enables a more accurate representa-
tion of the geometry and motion of the tire surfaces, a mesh motion consistent with
that, and increased accuracy in the flow solution. It also keeps the element density
in the tire grooves and in the narrow spaces near the contact areas at a reasonable
level.

1.7 Tire Models

We present computations with the ST-SI-TC-IGA and two models of flow around
a rotating tire with road contact and prescribed deformation. One is a simple 2D
model for verification purposes, and one is a 3D model with an actual tire geometry
that includes the longitudinal and transverse grooves. The tire deformation in the
3D model comes from the tire company.

1.8 Outline of the Remaining Sections

In Sect. 2 we describe the ST-VMS and ST-SI. The ST-SI-TC-IGA is described in
Sect. 3. The computations with the 2D and 3D models are presented in Sects. 4
and 5, and the concluding remarks are given in Sect. 6.
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2 ST-VMS and ST-SI

For completeness, in this section, we include from [1, 5, 91] the ST-VMS and ST-SI.

2.1 ST-VMS

The ST-VMS is given as

∫

Qn

wh · ρ
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∂uh
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+ uh · ∇∇∇uh − fh

)
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+
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where

rM(uh, ph) = ρ

(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)

−∇∇∇ · σσσ(uh, ph), (2)

rC(uh) = ∇∇∇ · uh (3)

are the residuals of the momentum equation and incompressibility constraint. Here,
ρ, u, p, f, σσσ , εεε, and h are the density, velocity, pressure, external force, stress
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tensor, strain rate tensor, and the traction specified at the boundary. The test
functions associated with the velocity and pressure are w and q. A superscript “h”
indicates that the function is coming from a finite-dimensional space. The symbol
Qn represents the ST slice between time levels n and n + 1, (Pn)h is the part of
the lateral boundary of that slice associated with the traction boundary condition h,
and Ωn is the spatial domain at time level n. The superscript “e” is the ST element
counter, and nel is the number of ST elements. The functions are discontinuous in
time at each time level, and the superscripts “−” and “+” indicate the values of
the functions just below and just above the time level. See [4, 5, 12, 13, 75] for
the definitions used here for the stabilization parameters τSUPS and νLSIC. For more
ways of calculating the stabilization parameters in finite element computation of
flow problems, see [96–117].

Remark 1 The ST-SUPS can be obtained from the ST-VMS by dropping the eighth
and ninth integrations.

2.2 ST-SI

2.2.1 Two-Side Formulation (Fluid–Fluid SI)

Labels “Side A” and “Side B” represent the two sides of the SI. We add boundary
terms to Eq. (1). The boundary terms are first added separately for the two sides,
using test functions wh

A and qh
A and wh

B and qh
B. Putting them together, the complete

set of terms added becomes
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n̂B = nB − nA

‖nB − nA‖ . (10)

Here, (Pn)SI is the SI in the ST domain, n is the unit normal vector, v is the mesh
velocity, nens and nent are the number of spatial and temporal element nodes, Nα

a is
the basis function associated with spatial and temporal nodes a and α, γ = 1, and
C is a nondimensional constant. For our element length definition, we set C = 1.

2.2.2 One-Side Formulation (Fluid–Solid SI)

Sometimes we prefer to specify on solid surfaces weakly imposed Dirichlet
conditions for the fluid [27, 29]. In such cases we use the ST-SI version where the SI
is between the fluid and solid domains. This version is obtained (see [5]) by starting
with the terms added for Side B and replacing the Side A velocity with the velocity
gh coming from the solid domain. Then the terms added to Eq. (1) to represent the
weakly imposed Dirichlet conditions become
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∫
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3 ST-SI-TC-IGA

For completeness, in this section, we include (1) from [1, 91] the aspects of the
ST-SI [5] and ST-TC [7] related to their integration as the ST-SI-TC [91] and the
advantages of the IGA in this context, and (2) from [1] the integration of all three
components as the ST-SI-TC-IGA.

3.1 ST-SI

We note that the ST-SI allows mesh slipping also in the one-side formulation, that
is, when the SI is between the fluid and solid domains (fluid–solid SI) where we
have weakly imposed Dirichlet conditions. The boundary terms added to Eq. (1) to
connect the two sides and to connect the fluid to the solid in the one-side formulation
were given in Sects. 2.2.1 and 2.2.2. The added terms (see Eqs. (4) and (11)) include
derivatives in the direction normal to the SI. Therefore the elements bordering the SI
need to have finite thickness in the normal direction. This places a limitation on the
meshes that can be used with the ST-SI because if an element bordering the interface
degenerates it might lead to a zero element thickness in the normal direction.

3.2 ST-TC

The ST-TC can deal with TC in ST moving-mesh computations. The discretization
is unstructured in time, but based on a parent mesh that is structured in time. The ST
parent mesh is extruded from a single spatial mesh. The key technology is element
degeneration, whenever and wherever needed, by using a special master–slave
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system. This special system allows changing, within an ST slab, master nodes to
slave nodes and slave nodes to master nodes. With that, elements can collapse
or be reborn. This way, within an ST slab, we can represent closing and opening
motions. Since an ST method naturally allows discretizations that are unstructured
in time, the rest of the method needs no modification. The method is very flexible,
and computationally as effective as a typical moving-mesh method. However, the
master–slave relationship has to be node to node; a point on a solid surface that is
not a node cannot be a master or slave node.

3.3 ST-IGA

With NURBS meshes, we can represent curved boundaries with less elements
compared to finite element meshes. With this desirable feature, a volume can also be
meshed with high-aspect-ratio elements. This is particularly helpful when we need
to generate meshes in very narrow spaces.

3.4 ST-SI-TC-IGA

Integration of the ST-SI, ST-TC, and ST-IGA brings a number of advantages. (1)
It enables high-resolution boundary layer representation near the solid surfaces
in contact even when the surfaces are covered by meshes with SI. (2) It enables
dealing with contact location change and contact sliding. This overcomes the ST-
TC restriction that a point on a solid surface that is not a node cannot be a master
or slave node. (3) When part of an SI needs to coincide with a solid surface, which
happens, for example, when the solid surfaces on two sides of an SI come into
contact or when an SI reaches a solid surface, the elements between the coinciding
SI part and the solid surface need to collapse with the ST-TC mechanism. Before
the elements collapse, the boundaries could be curved and complex, and the narrow
space might have high-aspect-ratio elements. With NURBS elements, we can deal
with such adverse conditions rather effectively.

Figure 1 is an example of Case (1), where we have a spinning solid surface in
contact with a planar solid surface. An SI is created around the spinning surface (see
Fig. 2). The SI enables the solid surface to spin together with the mesh around it.
The elements collapsed with the ST-TC mechanism are in the stationary mesh on
the lower side of the SI and in the spinning mesh in the contact area. Actually,
the collapse decision, which is the selection between the two-side and one-side
formulations, is made integration-point-wise, for each side separately, based on the
element length in the normal direction, as given by Eqs. (8) and (9). For example,
for Side B, the decision at an integration point is made with the following rules:
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Fig. 1 A spinning solid surface (red) in contact with a planar solid surface (blue), with no slip
between the surfaces

Fig. 2 A spinning solid surface (red) in contact with a planar solid surface (blue). The green line
is the SI. It coincides with the blue line and the flat part of the red line

• If hB = 0, we disregard the integration point, regardless of the value of hA.
• If hB > 0 and hA = 0, we use the one-side formulation.
• In other cases, we use the two-side formulation.

Figures 3 and 4 illustrate how the ST-SI-TC-IGA works.

Remark 2 A node on an SI coinciding with a solid surface must be a slave of the
corresponding node on that solid surface.

Remark 3 When for all integration points of an element edge hB = hA = 0, that
edge is a contact edge. Pressure is not treated as an unknown at a solid-surface
master node whose all slave SI nodes live only on contact edges. That node has no
role in the equation system beyond representing the geometry. Consequently, mesh
resolution plays no role in regions made of only contact edges. Note that in Fig. 4,
the stationary mesh in the contact area has very few elements.
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Fig. 3 Illustration of how the ST-SI-TC-IGA works for the example in Figs. 1 and 2. A part of the
control mesh is shown. The red and black points are the integration points on the two sides of the
SI. The outer part of the mesh is on the stationary side of the SI, and the inner part is rotating with
the spinning surface (red). The elements collapsed with the ST-TC mechanism are in the stationary
mesh on the lower side of the green surface and in the spinning mesh in the contact area
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Fig. 4 The close-up view of Fig. 3, where the collapsed elements are only on the stationary side
of the SI. The method switches to the one-side formulation on the part of the SI coinciding with
the planar surface, and remains as the two-side formulation on the other parts

4 Verification with a Simple 2D Model

This is a problem where a nonmoving mesh can be used to obtain the solution. That
will be the reference solution we will compare the ST-SI-TC-IGA solution to for
verification purposes. We will also do a verification study based on comparing the
solutions coming from two meshes with different refinements.

4.1 Problem Setup

A spinning solid surface is in contact with a planar solid surface and undergoes
deformation. The geometry of the model and the deformation pattern are shown
in Fig. 5. The rotation speed corresponds to a linear speed of U = 100 km/h at
the undeformed tire periphery. There is no slip between the spinning and planar
surfaces. The speed on the contact area is represented as

U0 = sin θ

θ
U, (12)
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Fig. 5 A simple 2D model.
The deformation region is the
circular sector with central
angle 30◦

15
◦

50
cm

Fig. 6 A simple 2D model. Computational domain and boundary conditions. The left (red) and
bottom (yellow) boundaries represent the inflow and the moving planar surface, where the velocity
is U0. The innermost (blue) circle is the spinning surface, where the velocity is U . The larger (pink)
circle is the SI. The bottom of the SI is coinciding with the planar surface and the interface of the
spinning and planar surfaces. The conditions at the right (green) and upper (cyan) boundaries are
traction-free and slip, respectively

where θ = 15◦ = 0.2618 rad, giving U0 = 98.86 km/h, which is also the speed of
the planar surface. The density and kinematic viscosity of the air are 1.205 kg/m3

and 1.512×10−5 m2/s.

4.2 Computational Domain, Boundary Conditions and Meshes

Figure 6 shows the computational domain and boundary conditions. The domain
size is 3.00 m × 1.98 m. We use two different quadratic NURBS meshes: a
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Fig. 7 A simple 2D model. Preliminary mesh. The number of control points and elements are
2204 and 1800. The checkerboard coloring is for differentiating between the NURBS elements

preliminary mesh and a refined mesh. Near the tire surface, the refined mesh has
twice the resolution in both the circumferential and normal directions. Figure 7
shows the preliminary mesh. The number of control points and elements are 2204
and 1800. The SI is not needed for nonmoving-mesh computations, but we include
it in computing the reference solution so that the solution with the ST-SI-TC-IGA
and the reference solution come from the same mesh. Figure 8 shows the moving
mesh at different instants during the computation with the ST-SI-TC-IGA. Figure 9
shows the mesh near the contact area during a period that is mostly between the 6th
and 7th frames in Fig. 8. Figure 10 shows the refined mesh. The number of control
points and elements are 7992 and 7200.

4.3 Computational Conditions

The computations are carried out with the ST-VMS. The stabilization parameters
are those given by Eqs. (2.4)–(2.8) in [5]. In the computations with the preliminary
mesh, there are 1000 time steps per rotation, which is equivalent to a time-step size
of 1.131×10−4 s. In the refined-mesh computations, the time-step size is reduced
to half of the value used with the preliminary mesh, making it 5.655×10−5 s. The
number of nonlinear iterations per time step is 3, and the number of GMRES [118]
iterations per nonlinear iteration is 300.

4.4 Results

Figures 11 and 12 show the velocity magnitude from the preliminary-mesh com-
putations with the nonmoving-mesh (ST-SI-IGA) and ST-SI-TC-IGA methods.
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Fig. 8 A simple 2D model. Preliminary mesh at uniformly spaced instants during a one-rotation
computation with the ST-SI-TC-IGA. The checkerboard coloring is for differentiating between the
NURBS elements. A band of elements in the inner mesh are colored blue to illustrate the mesh
rotation
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Fig. 9 A simple 2D model. Preliminary mesh near the contact area during a period that is mostly
between the 6th and 7th frames in Fig. 8. The checkerboard coloring is for differentiating between
the NURBS elements. A band of elements are colored blue to illustrate the mesh rotation
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Fig. 10 A simple 2D model. Refined mesh. The number of control points and elements are 7992
and 7200. The checkerboard coloring is for differentiating between the NURBS elements

Overall, the results from the two computations are very comparable. Figure 13
shows the horizontal component of the flow velocity computed with the nonmoving-
mesh (ST-SI-IGA) method, using the preliminary and refined meshes. The spinning
surface generates a flow relative to the planar surface, creating boundary layers near
the spinning and planar surfaces. The preliminary-mesh solution has just slightly
more fluctuations than the refined-mesh solution, and we can see convergence.
To compare the solutions obtained with the ST-SI-TC-IGA and nonmoving-mesh
(ST-SI-IGA) methods, Figs. 14 and 15 show the horizontal component of the flow
velocity computed with these two methods, using the preliminary and refined
meshes. The solutions obtained with the two methods are in close agreement,
indicating that the ST-SI-TC-IGA method can accurately represent the boundary
layers in this class of flow problems, including the boundary layers in regions near
the contact.

5 Tire Aerodynamics with an Actual Tire Geometry

We present a tire-aerodynamics computational analysis with an actual tire geometry.
The tire has a prescribed motion, is in contact with the road, and has a prescribed
deformation.

5.1 Problem Setup

The tire model is shown in Fig. 16. The diameter and width are 1.03 m and 260 mm.
There are three longitudinal grooves, and a transverse groove for every 5◦. The
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0 150 300

km/h

Fig. 11 A simple 2D model. Velocity magnitude from the preliminary-mesh computation with the
nonmoving-mesh (ST-SI-IGA) method, at ten uniformly spaced instants during a full rotation
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0 150 300

km/h

Fig. 12 A simple 2D model. Velocity magnitude from the preliminary-mesh computation with the
ST-SI-TC-IGA, at the same instants as in Fig. 11
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Fig. 13 A simple 2D model. Horizontal component of the flow velocity relative to the planar
surface, displayed along vertical lines at different distances from the leftmost contact point.
Computed with the nonmoving-mesh (ST-SI-IGA) method, using the preliminary (orange) and
refined (green) meshes

depth and width of the grooves are 11.071 and 11.692 mm for the center groove,
10.974 and 7.177 mm for the side grooves, and 11.085 mm and 8.489 mm for the
transverse grooves. Tire with the prescribed deformation is shown in Fig. 17. The
tire deformation is represented in time based on the deformation at five instants of
a 5◦ rotation, which was provided by the tire company. Figure 18 shows the tire
deformation at those five instants. The deformation representation in time is with
cubic NURBS basis functions and obtained by projection from the five-instant data.
The projection is done with the ST-C [95]. The rotation speed corresponds to a linear
speed of 103 km/h at the undeformed tire periphery. In this case, U0 = 100 km/h. The
density and kinematic viscosity of the air are 1.205 kg/m3 and 1.511×10−5 m2/s.

The computational domain is shown in Fig. 19. The domain size is 4.000 m and
5.489 m in width and height, and 8.000 m in the flow direction. The tire is placed at
2.000 m from the inflow boundary. The boundary conditions are 3D extensions of
the conditions in the simple 2D model, with slip conditions on the boundary planes
perpendicular to the tire axis.



360 T. Kuraishi et al.

−0.5 −0.4 −0.3 −0.2 −0.1 0.0
0.0

0.1

0.2

0.3

0.4

0.5

U0

Distance (m)

H
ei

gh
t

(m
)

Fig. 14 A simple 2D model. Horizontal component of the flow velocity relative to the planar
surface, displayed along vertical lines at different distances from the leftmost contact point.
Computed with the nonmoving-mesh (ST-SI-IGA) (orange) and ST-SI-TC-IGA (blue) methods,
using the preliminary mesh

5.2 Meshes

We use two different quadratic NURBS meshes: a preliminary mesh and a refined
mesh. The number of control points and elements for the two meshes are given in
Table 1. Figure 20 shows, for the two meshes, the refinement level near the tire
surface. As can be discerned from the figure, the refined mesh has twice the reso-
lution in the normal direction, and four times the resolution in the circumferential
direction. In the axial direction, it has four times the resolution across the treads,
and twice the resolution across the grooves.

5.3 Computational Conditions

In the computation with the preliminary mesh, the ST-SUPS is used, and in
the computation with the refined mesh, the ST-VMS is used. The stabilization
parameters are those given by Eqs. (2.4)–(2.8) in [5], without “τSUGN4” in the
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Fig. 15 A simple 2D model. Horizontal component of the flow velocity relative to the planar
surface, displayed along vertical lines at different distances from the leftmost contact point.
Computed with the nonmoving-mesh (ST-SI-IGA) (green) and ST-SI-TC-IGA (red) methods,
using the refined mesh

Fig. 16 Tire aerodynamics with an actual tire geometry. Tire model
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Fig. 17 Tire aerodynamics with an actual tire geometry. Deformed shape

computation with the ST-SUPS. In the computation with the preliminary mesh,
there are 1440 time steps per rotation, which is equivalent to a time-step size of
7.85×10−5 s. In the computation with the refined mesh, the time-step size is reduced
to one-fourth of the value used with the preliminary mesh, making it 1.96×10−5 s.
The number of nonlinear iterations per time step is 3, and the number of GMRES
iterations per nonlinear iteration is 300.

5.4 Results

Figures 21 and 22 show, for the two meshes, the velocity magnitude near the contact
area. In the solution obtained with the preliminary mesh, the flow patterns are closer
to the tire surface. Figures 23 and 24 show, for the two meshes, the isosurfaces
corresponding to a positive value of the second invariant of the velocity gradient
tensor, colored by the velocity magnitude. The solution obtained with the refined
mesh has a better resolution of the vortex structure. This confirms the importance
of having a good method and high resolution in computational analysis of tire
aerodynamics near contact areas.

6 Concluding Remarks

The ST-SI-TC-IGA, a new ST computational method, has enabled us to address
the challenges faced in computational analysis of tire aerodynamics with actual
geometry, road contact, and tire deformation. The core component of the ST-SI-
TC-IGA is the ST-VMS, and the other key components are the ST-SI, ST-TC, and
ST-IGA. The challenge created by the turbulent nature of the flow is addressed with
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Fig. 18 Tire aerodynamics
with an actual tire geometry.
Tire deformation near the
contact region at five instants
of a 5◦ rotation, provided by
the tire company
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Fig. 19 Tire aerodynamics
with an actual tire geometry.
Computational domain

Table 1 Tire aerodynamics
with an actual tire geometry

Preliminary Refined

nc 690,144 4,149,720

ne 376,560 2,921,552

Number of control points (nc)
and element (ne) for the two
quadratic NURBS meshes used
in the computations

Fig. 20 Tire aerodynamics with an actual tire geometry. Refinement level near the tire surface for
the preliminary (left) and refined (right) meshes. The checkerboard coloring is for differentiating
between the NURBS elements

the VMS feature of the ST-VMS. The moving-mesh feature of the ST framework
enables high-resolution computation near the moving air–tire interfaces. These two
features are enhanced with the higher-order accuracy of the ST framework. With
the ST-SI, the mesh covering the tire spins with it, and the SI between the spinning
mesh and the rest of the mesh accurately connects the two sides of the solution. This
enables high-resolution representation of the boundary layers near the tire. With the
ST-TC, we are able to do moving-mesh computations even with the TC created
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km/h

Fig. 21 Tire aerodynamics with an actual tire geometry. Computed with the preliminary mesh.
Velocity magnitude near the contact area, displayed on planes perpendicular to the tire axis
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Fig. 22 Tire aerodynamics with an actual tire geometry. Computed with the refined mesh. Velocity
magnitude near the contact area, displayed on planes perpendicular to the tire axis
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0 150

km/h

Fig. 23 Tire aerodynamics with an actual tire geometry. Computed with the preliminary mesh.
Isosurfaces corresponding to a positive value of the second invariant of the velocity gradient tensor,
colored by the velocity magnitude, viewed from the bottom. The gray zones are the contact areas
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Fig. 24 Tire aerodynamics with an actual tire geometry. Computed with the refined mesh.
Isosurfaces corresponding to a positive value of the second invariant of the velocity gradient tensor,
colored by the velocity magnitude, viewed from the bottom. The gray zones are the contact areas
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by the contact between the tire and the road. This enables dealing with the contact
while maintaining high-resolution representation near the tire. Integration of the ST-
SI and ST-TC enables high-resolution representation even though parts of the SI are
coinciding with the tire and road surfaces. It also enables dealing with the tire–road
contact location change and contact sliding. Integration of the ST-IGA with the ST-
SI and ST-TC not only enables a more accurate representation of the tire surfaces
and increased accuracy in the flow solution, but also keeps the element density in
the tire grooves and in the narrow spaces near the contact areas at a reasonable
level. We presented computations with two models of flow around a rotating tire
with road contact and prescribed deformation. One was a simple 2D model for
verification purposes, and one was a 3D model with an actual tire geometry that
included the longitudinal and transverse grooves. The 2D computations confirm
the reliability of the moving-mesh and TC features of the ST-SI-TC-IGA. The 3D
computations confirm the importance of having a good method and high resolution
in computational analysis of tire aerodynamics near contact areas. Overall, the
computations show the effectiveness of the ST-SI-TC-IGA in tire aerodynamics.
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Thermal Convection in the van der Waals
Fluid

Ju Liu

Abstract In this work, the van der Waals fluid model, a diffuse-interface model
for liquid–vapor two-phase flows, is numerically investigated. The thermodynamic
properties of the van der Waals fluid are first studied. Dimensional analysis is
performed to identify the control parameters for the system. An entropy-stable
numerical scheme and isogeometric analysis are utilized to discretize the governing
equations for numerical simulations. The steady state solution at low Rayleigh
number is presented, demonstrating the capability of the model in describing
liquid–vapor phase transitions. Next, two-dimensional nucleate and film boiling are
simulated, showing the applicability of the model in different regimes of boiling.
In the last, the heat transport property of the van der Waals model is numerically
investigated. The scaling law for the Nusselt number with respect to the Rayleigh
number in the van der Waals model is obtained by performing a suite of high-
resolution simulations.

1 Introduction

The Rayleigh-Bénard convection describes the buoyancy driven flow confined by
a hot bottom plate and a cold top plate. It is a canonical model for studying
hydrodynamic stability [6] and thermally driven turbulence [2]. The bulk trans-
port properties for the Rayleigh-Bénard convective flow is mysterious and still
attracts a tremendous amount of scientific interests world-widely. Traditionally,
the Oberbeck-Boussinesq (OB) approximation for buoyancy has been utilized as
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a standard mathematical model to investigate the Rayleigh-Bénard instability [8].
In the OB approximation, it is assumed that the fluid density varies linearly with
the temperature field, the flow is incompressible, and the heat produced by internal
friction is negligible. Based on the OB approximation, various scaling theories have
been developed to account for the relationship between the bulk fluid transport
properties (e.g., the Nusselt number Nu, the Reynolds number Re, etc.) and the
strength of the buoyant force, which is measured by the Rayleigh number Ra.
Theoretical, experimental, and numerical studies suggest that Nu ∝ RaγNu and
Re ∝ RaγRe [2]. Currently, the precise values of γNu and γRe at different fluid
regimes still remain under debate, and the existence of the theoretically predicted
“ultimate state” at high Rayleigh number still awaits experimental and numerical
confirmation [26].

Recent research activity has moved beyond the classical Oberbeck–Boussinesq
model [29], and investigations of the non-Oberbeck–Boussinesq (NOB) effects
have been carried out [1, 23]. In more practical situations, fluid properties can
be temperature dependent [27]; fluids may experience compressibility effects or
even phase transition. In the literature, numerical investigations of the convection
in ideal fluids and super–critical fluids have been performed [1, 11, 28]. A recent
research work has investigated the convection in multiphase fluids [29]. In [17, 23],
researchers modified the classical OB model by introducing point sources in the
balance equations to model the behavior of bubbles in boiling flows. This approach
necessitates empirical knowledge of several physical coefficients related to the
bubbles. The lattice Boltzmann model has been utilized in combination with non-
ideal gas models to study heat convection in two-phase flows [5, 7, 25].

In recent years, phase-field models are introduced as an effective modeling
technique for interfacial physics. It uses an order parameter to distinguish different
phases and postulates that the interface has finite width and material properties tran-
sit across the interfacial region smoothly but sharply. Traditional interface-capturing
and interface-tracking methods are designed based on geometrical information
of existing interfaces. When dealing with problems with phase transition, those
methods become intractable. The phase-field models enjoy solid thermodynamic
foundations [19], and this property allows them to describe complicated phase
transition phenomena without resorting to ad hoc modeling tricks. The first instan-
tiation of the phase-field models emanates from the work of van der Waals
[24] and Korteweg [16]. It is now commonly known as the van der Waals fluid
theory or the Navier–Stokes–Korteweg equations. In recent years, the van der
Waals model was systematically analyzed in rational mechanics framework and the
choice of the constitutive relations was carefully made to guarantee fundamental
thermomechanical principles [9, 20, 21]. Recently progress has been made in boiling
simulation using the Navier–Stokes–Korteweg equations. Boiling is regarded to be
highly challenging for numerical simulations [15, 17]. It involves several physical
mechanisms in multiple spatial-to-temporal scales. Most of the mechanisms are still
not well understood quantitatively. Due to its improved approximation property for
real fluids and its simplicity in describing boiling phenomena, it is appealing to
investigate the free convection for the van der Waals fluids.
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In this work, I will show that the van der Waals fluid model gives an accurate
description of gas and liquid phases for various single-component fluids over a wide
range of temperature. The satisfaction of the Clausius–Clapeyron relation demon-
strates the model’s capability in describing phase transition phenomena. The van
der Waals model is incorporated into the continuum mechanics equations, and the
resulting governing equations constitute a set of partial differential equations, which
involve a third-order differential operator. The solid thermodynamic foundation
allows this set of partial differential equations to describe bubble generation, phase
transition, and topology change of interfaces in a unified approach. The numerical
method for solving these equations is based on a provably unconditionally stable,
second-order accurate scheme [21]. Isogeometric analysis [13] is invoked to provide
high-resolution spatial discretization. With the numerical method, I will first study
the solutions of the Navier–Stokes–Korteweg equations at a small Rayleigh number.
The steady state solution of the system at different volumetric averaged densities
are solved and discussed. It will be shown that large volumetric averaged densities
lead to stratified single-phase fluid as the steady state solution. In contrast, liquid–
vapor two-phase fluid can be generated at low volumetric averaged densities. Next,
two numerical simulations are performed to study the capability of the model in
describing nucleate and film boiling. It will be shown that low fluid viscosity results
in nucleate boiling while high fluid viscosity leads to film boiling. In the last, a
suite of eighteen numerical simulations is performed to study the thermal convection
property in the van der Waals fluid at volumetric averaged density 0.8.

2 Model

2.1 The van der Waals Model

In this work, a fixed, bounded, and connected domain Ω ⊂ R
nd is considered,

where nd represents the number of space dimensions. The time interval of interest
is denoted as (0, T ), with T > 0. The Navier–Stokes–Korteweg equations are posed
in the space-time domain Ω × (0, T ) as

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂(ρu)
∂t
+ ∇ · (ρu⊗ u)+∇p −∇ · τ −∇ · ς = ρg, (2)

∂(ρE)

∂t
+∇ · ((ρE + p)u− (τ + ς)u)+∇ · q+∇ ·Π = ρg · u+ ρr. (3)

Equations (1)–(3) describe the balance of mass, linear momentum, and energy,
respectively. In these equations, ρ is the fluid density, u is the velocity, p is the
thermodynamic pressure, τ is the viscous stress, ς is the Korteweg stress, g is the
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gravity, E is the total energy per unit mass, q is the heat flux, and Π represents the
power expenditure due to phase transitions [12, 21]. The constitutive relations for
the van der Waals fluid are given as follows.

τ = μ̄

(

∇u+ ∇uT − 2

3
∇ · uI

)

, (4)

ς =
(

λρΔρ + λ

2
|∇ρ|2

)

I− λ∇ρ ⊗∇ρ, (5)

p = Rbθ
ρ

b − ρ
− aρ2, (6)

q = −κ∇θ, (7)

Π = λρ∇ · u∇ρ, (8)

E = ι+ 1

2
|u|2, (9)

ι = ιloc + λ

2ρ
|∇ρ|2, (10)

ιloc = −aρ + Cvθ. (11)

In the above, μ̄ is the dynamic viscosity, λ is the capillarity coefficient, R is the
specific gas constant, a and b are fundamental fluid properties whose values for
typical fluids can be found in [14], κ is the thermal conductivity, Cv is the specific
heat capacity at constant volume, ι is the internal energy per unit mass, and ιloc is
the local part of the internal energy density.

Before proceeding further, let us introduce six additional thermodynamic quan-
tities. First, the isobaric thermal expansion coefficient β is defined as

β := − 1

ρ

∂ρ

∂θ
. (12)

Taking partial derivative with respect to θ at both sides of (6), one can readily obtain
an explicit expression of β for the van der Waals fluid as

β = Rb(b − ρ)

Rb2θ − 2aρ(b − ρ)2 . (13)

Second, the heat capacity at constant pressure is defined as

Cp := ∂ιloc

∂θ
− p

ρ2

∂ρ

∂θ
. (14)

Invoking the constitutive relations (6) and (11), one has
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Cp := Cv + Rbθ

b − ρ
β. (15)

It is known that Cv can be expressed as

Cv = &R, (16)

wherein the non-dimensional number & depends on the structure of the fluid
molecules [18]. Hence one may further rewrite Cp as

Cp = (& + bθβ

b − ρ
)R = (& + χ)R, (17)

χ := bθβ

b − ρ
= Rb2θ

Rb2θ − 2aρ(b − ρ)2 . (18)

Third, the local electrochemical potential is defined as

νloc := −2aρ + Rθ log

(
ρ

b − ρ

)

− Cvθ

(

log

(
θ

θref

)

− 1

)

+ Rbθ

b − ρ
, (19)

wherein θref > 0 is the reference temperature. Fourth, the entropy for the van der
Waals fluid is defined as

s := −R log

(
ρ

b − ρ

)

+ Cv log

(
θ

θref

)

. (20)

In the last, the kinematic viscosity ν̄ is defined as ν̄ := μ̄/ρ. The thermal diffusivity
α is defined as α := κ/Cpρ.

Remark 1 In the limit of ρ → 0, the relations (13) and (15) lead to

β → 1

θ
, Cp → Cv + R.

These two relations recover the thermal expansion coefficient and the Mayer’s
relation for ideal gases [18].

The van der Waals fluid model is regarded as a good approximation for fluids
in both vapor and liquid phases. In Fig. 1, the van der Waals equation of state (6)
is plotted as a uni-variate function of density at 0.95 of the critical temperature.
The ideal gas model and real fluid data [10] are plotted in the same figure for
comparison purpose. It can be observed that the val der Waals model gives a very
accurate description for various different fluids in both vapor and liquid phases.
It is worth mentioning that the approximation is particularly excellent for helium,
which is widely used as the working fluid in Rayleigh-Bénard experiments [4]. The
good approximation attribute makes the van der Waals model an ideal candidate for
studying the Rayleigh-Bénard convection for liquid–vapor two-phase fluids.
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Fig. 1 (a) Comparison of the van der Waals model and the ideal gas model with real fluids at
temperature θ = 0.95θ0, θ0 = 8ab/27R. The data for water, carbon dioxide, methane, propane,
and helium are obtained from [10] and scaled to dimensionless form. (b) gives a detailed view in
the vapor phase
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2.2 Dimensional Analysis

In this section, dimensional analysis is performed for the system of equations (1)–
(3) using M0, L0, T0, and θ0 as the reference scales of mass, length, time, and
temperature. If the reference scales are chosen as

M0

L3
0

= b,
M0

L0T
2
0

= ab2, θ0 = 8ab

27R
, (21)

and θref is selected as θref = θ0, the dimensionless system can be written as

∂ρ∗

∂t∗
+ ∇∗ · (ρ∗u∗) = 0, (22)

∂(ρ∗u∗)
∂t∗

+ ∇∗ · (ρ∗u∗ ⊗ u∗)+∇∗p∗ − ∇∗ · τ ∗ − ∇∗ · ς∗ = ρ∗g∗, (23)

∂(ρ∗E∗)
∂t∗

+ ∇∗ · ((ρ∗E∗ + p∗)u∗ − (τ ∗ + ς∗)u∗
)+∇∗ · q∗ + ∇∗ ·Π∗

= ρ∗g∗ · u∗ + ρ∗r∗, (24)

wherein

p∗ = 8θ∗ρ∗

27(1− ρ∗)
− ρ∗2, (25)

τ ∗ = μ̄∗
(

∇∗u∗ + ∇∗u∗T − 2

3
∇∗ · u∗I

)

, (26)

ς∗ = λ∗
((

ρ∗Δ∗ρ∗ + 1

2
|∇∗ρ∗|2

)

I− ∇∗ρ∗ ⊗ ∇∗ρ∗
)

, (27)

q∗ = −κ∗∇∗θ∗, (28)

Π∗ = λ∗ρ∗∇∗ · u∗∇∗ρ∗, (29)

ι∗ = ι∗loc +
λ∗

2ρ∗
|∇∗ρ∗|2, (30)

ι∗loc = −ρ∗ +
8&

27
θ∗, (31)

ν∗loc = −2ρ∗ + 8θ∗

27(1− ρ∗)
+ 8

27
θ∗ log

(
ρ∗

1− ρ∗

)

+ 8&

27
θ∗
(
1− log(θ∗)

)
,

(32)

s∗ = − 8

27
log

(
ρ∗

1− ρ∗

)

+ 8&

27
log
(
θ∗
)
, (33)
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μ̄∗ = μ̄

L0b
√
ab

, (34)

λ∗ = λ

aL2
0

, (35)

κ∗ = κ
8

27R(ab)1/2bL0
, (36)

g∗ = g
L0

ab
. (37)

The dimensionless isobaric thermal expansion coefficient β can be expressed as

β = cβ

θ0
, (38)

cβ = cβ(ρ
∗, θ∗) = 4(1− ρ∗)

4θ∗ − 27ρ∗(1− ρ∗)2
. (39)

The heat capacity at constant pressure can be expressed as

Cp = Cv + χR = (& + χ)R, (40)

χ = χ(ρ∗, θ∗) = cβθ
∗

1− ρ∗
= 4θ∗

4θ∗ − 27ρ∗(1− ρ∗)2 . (41)

The non-dimensional kinematic viscosity and thermal diffusivity are given as

ν̄∗ = ν̄

L0
√
ab

, α∗ = α
8 (& + χ)

27
√
abL0

. (42)

At a given temperature, the equilibrium states of vapor and liquid can be found
by equating the pressure and chemical potential [14, 21]. This solution procedure
involves solving a system of two nonlinear algebraic equations. Table 1 shows the
coexistent vapor and liquid densities and the corresponding values of cβ and χ

at several different temperatures. For multiphase fluids, the Clausius–Clapeyron
relation characterizes the energy released or absorbed during a phase transition
process. It relates the latent heat Δsθ0 with the coexistence curve in the pressure-
temperature diagram. In Fig. 2, the Clausius–Clapeyron relation for the van der
Waals fluid at various temperature is illustrated, demonstrating the capability of the
van der Waals fluid in modeling phase transition phenomena.

In this study, the reference length scale L0 is chosen such that |g∗| is −0.025,
wherein | · | denotes the l2-norm of a vector. The rest three reference scales can be
determined correspondingly from (21). Hence, the evolution of the system (22)–(24)
is governed by four non-dimensional parameters μ̄∗, λ∗, & , and κ∗ (or equivalently,
ν̄∗, λ∗, & , and α∗), the initial and boundary conditions, and the geometry of the
domain. In this work, I consider the fluid dynamics constrained by two parallel
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Table 1 The vapor and liquid densities at the Maxwell states are given for various temperatures

θ∗ ρ∗v ρ∗l cβ(ρ
∗
v , θ
∗) cβ(ρ

∗
l , θ
∗) χ(ρ∗v , θ∗) χ(ρ∗l , θ∗)

0.990 0.2682 0.4012 35.6607 31.5997 48.2414 52.2409

0.970 0.2228 0.4519 12.6242 10.2064 15.7562 18.0642

0.950 0.1930 0.4872 7.9449 6.0123 9.3528 11.1391

0.900 0.1419 0.5524 4.4078 2.9250 4.6231 5.8817

0.865 0.1161 0.5884 3.4974 2.1422 3.4226 4.5020

0.850 0.1066 0.6024 3.2397 1.9195 3.0822 4.1033

0.800 0.0799 0.6442 2.6789 1.4253 2.3292 3.2051

0.750 0.0591 0.6808 2.3701 1.1330 1.8892 2.6620

0.700 0.0427 0.7135 2.1957 0.9405 1.6055 2.2978

The values of the corresponding Cβ and χ are also evaluated
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Fig. 2 Clausius–Clapeyron relation at different temperatures. At a fixed temperature θ0, the liquid
and vapor densities at the Maxwell state are denoted as ρ

θ0
l and ρ

θ0
v . Δs = s(ρ

θ0
v , θ0)− s(ρ

θ0
l , θ0),

Δ(1/ρ) = 1/ρθ0
v − 1/ρθ0

l . Let pequ(θ) denote the equilibrium pressure at temperature θ , Δp/Δθ

at θ0 is evaluated using the central difference scheme: pequ(θ0 +Δθ)− pequ(θ0 −Δθ)/(2Δθ)

plates. The gravity points in the direction opposite to the z-axis. The height between
the two plates is denoted as H = H ∗L0; the length of the plates is denoted
D = D∗L0. The temperature on the bottom and top plates is denoted as θb and
θt respectively, and the temperature difference is Δθ := θb − θt = θ0(θ

∗
b − θ∗t ) =

θ0Δθ∗. The aspect ratio Λ characterizing the geometry of the domain is defined as
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Λ := D

H
= D∗

H ∗
. (43)

The Rayleigh number is defined as

Ra := g∗Δθ∗

κ∗μ̄∗
= g∗Δθ∗

ρ∗2α∗ν̄∗
. (44)

The Rayleigh number measures the relative strength of the buoyancy force in
comparison with the resistant effect due to the viscosity and conductivity. The
Prandtl number in the system is defined as

Pr := μ̄∗

κ∗
= ν̄∗

α∗
, (45)

which measures the ratio of the momentum diffusivity to the thermal conductivity. In
addition to the temperature difference Δθ∗, the values of the temperature on the top
and bottom boundaries will also affect the dynamics of the system since these values
may change the liquid–vapor coexistence state (see Table 1). Hence, I introduce the
arithmetic mean of the top and bottom temperature as one control parameter:

θm := θb + θt

2
. (46)

The initial state of the total mass within the box is another control parameter for the
system. It is described by the volumetric averaged density:

ρm :=
∫

Ω
ρdx

∫

Ω
dx

. (47)

A major question people strive to answer is the dependence of the heat transport
efficiency and the flow structure on the control parameters in the van der Waals fluid.
The heat transport efficiency is described by the Nusselt number, which measures
the relative strength of the total heat flux in comparison with the purely diffusive
heat flux. The heat flux can be measured either over a fixed horizontal plane or in
the whole body. The Nusselt number measured at a horizontal plane A is defined as

NuA,t :=
〈uzθ〉A,t − α∂z 〈θ〉A,t

αΔθH−1

= 8(& + χ)ρ∗
〈
u∗zθ∗

〉

A,t
− 27κ∗∂z∗ 〈θ∗〉A,t

27κ∗Δθ∗H ∗−1 . (48)

Here, uz is the velocity component in the z-direction; 〈·〉A,t denotes an average
operator over a horizontal plane A and over time for a quantity. If one average NuA,t

in the z-direction, the volume-averaged Nusselt number is obtained as
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NuV,t :=
8(& + χ)ρ∗

〈
u∗zθ∗

〉

V,t

27κ∗Δθ∗H ∗−1
+ 1. (49)

Here, 〈·〉V,t represents an average operator over the volume and over time. Hence-
forth, I will restrict my discussion to the dimensionless form, and the superscript ∗
will be omitted for notational simplicity.

3 Numerical Methods

The numerical method for solving the governing equations (22)–(24) is based on a
set of functional entropy variables. The mathematical entropy function associated
with the van der Walls fluid is

H := −ρs = 8

27
ρ log

(
ρ

1− ρ

)

− 8&

27
ρ log (θ) .

For three-dimensional problems, the vector of conservation variables is

UT = [U1, U2, U3, U4, U5] := [ρ, ρu1, ρu2, ρu3, ρE].

The entropy variables V T = [V1, V2, V3, V4, V5] are defined as the functional
derivatives of H with respect to U :

Vi[δvi] = δH

δUi

[δvi], i = 1, . . . , 5,

wherein δvT = [δv1, δv2, δv3, δv4, δv5] are the test functions. The entropy variables
V can be written explicitly as

V1[δv1] = 1

θ

(

νloc − |u|
2

2

)

δv1 + λ
1

θ
∇ρ · ∇δv1,

Vi[δvi] = ui−1

θ
δvi, i = 2, 3, 4, V5[δv5] = −1

θ
δv5.

The definition of the entropy variable V1 involves a non-local differential operator.
Inspired from this fact, a new independent variable V is introduced as

V := 1

θ

(

νloc − |u|
2

2

)

− λ∇ ·
(∇ρ

θ

)

.

The fundamental thermodynamic relation between p and νloc allows us to express
p in terms of V as
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p = ρV θ − ρΨloc + ρ|u|2
2
+ λρθ∇ ·

(∇ρ
θ

)

. (50)

Making use of the relation (50), the original strong-form problem (22)–(24) can be
rewritten as

∂ρ

∂t
+ ∇ · (ρu) = 0, (51)

∂(ρu)
∂t
+ ∇ · (ρu⊗ u)+∇

(

ρV θ + ρ|u|2
2
+ λρθ∇ ·

(∇ρ
θ

))

−
(

V θ + |u|
2

2
+ λθ∇ ·

(∇ρ
θ

))

∇ρ−H∇θ−∇ · τ−∇ · ς = ρb, (52)

∂(ρE)

∂t
+ ∇ ·

((

ρV θ − θH + λ|∇ρ|2 + ρ|u|2 + λρθ∇ ·
(∇ρ

θ

))

u
)

−∇ · ((τ + ς) u)+ ∇ · q+ ∇ ·Π = ρb · u+ ρr, (53)

V = 1

θ

(

νloc − |u|
2

2

)

− λ∇ ·
(∇ρ

θ

)

. (54)

The new strong-form problem (51)–(54) is an equivalent statement of the original
Navier–Stokes–Korteweg equations (22)–(24). Based on this new strong-form
problem, the numerical scheme can be constructed. Let the time interval (0, T ) be
divided into Nts subintervals (tn, tn+1), n = 0, · · · , Nts−1, of size Δtn = tn+1−tn.
I use the notation

Y h
n :=

[

ρh
n ,

uh
1,n

θh
n

,
uh

2,n

θh
n

,
uh

3,n

θh
n

,
−1

θh
n

, V h
n

]T

to represent the fully discrete solutions at the time level n. I define the jump of
density, linear momentum, and total energy over each time step as

�ρh
n� := ρh

n+1 − ρh
n , �ρh

nuh
n� := ρh

n+1uh
n+1 − ρh

nuh
n,

[
ρh
nE(ρh

n ,uh
n, θ

h
n )
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h

n+ 1
2
, θh

n+1)− (ρΨloc)(ρ
h

n+ 1
2
, θh

n )

+(ρΨloc)(ρ
h
n+1, θ

h

n+ 1
2
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h
n , θ

h

n+ 1
2
)

−θh

n+ 1
2

(
H(ρh

n+1, θ
h
n+1)−H(ρh

n , θ
h
n )
)

−θh
n+1 − θh

n

2

(

H(ρh

n+ 1
2
, θh

n+1)+H(ρh

n+ 1
2
, θh

n )

)
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+ (θh
n+1 − θh

n )
3

12

∂2H

∂θ2 (ρh

n+ 1
2
, θh

n+1)

+1

2

(
ρh
n+1|uh

n+1|2 − ρh
n |uh

n|2
)
+ λ

(
|∇ρh

n+1|2 − |∇ρh
n |2
)
.

With the jump operators defined above, the fully discrete scheme can be stated as
follows. In each time step, given Yh

n and the time step Δtn, find Yh
n+1 such that for

all wh
1 ∈ V h, wh = (wh

2 ;wh
3 ;wh

4 )
T ∈ (V h

)3
, wh

5 ∈ V h, and wh
6 ∈ V h,

BM(wh
1 ;Yh
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�ρh
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)

Ω

−
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1 , ρ
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n+ 1
2
uh

n+ 1
2

)

Ω

= 0, (55)
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(56)
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n�2
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(58)

The main results of the fully discrete scheme (55)–(58) are stated in the following
two theorems.

Theorem 1 The solutions of the fully discrete scheme (55)–(58) satisfy

∫
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∂3H

∂θ3 (ρh
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2
, θh
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)

)

dVx

≤ 0.

Theorem 2 The local truncation error in time Θ(t) = (Θρ(t);ΘT
u (t);ΘE(t)

)T

is bounded by |Θ(tn)| ≤ KΔt2
n15 for all tn ∈ [0, T ], where K is a constant

independent of Δtn and 15 = (1; 1; 1; 1; 1)T .

The above two theorems are proven in [21]. Theorem 1 states that the numerical
method is unconditionally stable in entropy. Theorem 2 states that the temporal
scheme is second-order accurate. The numerical scheme is implemented based
on the PETSc package [3], and code verification has been performed a thorough
comparison with manufactured solutions and “overkill” solutions [21]. In this
study, C1-continuous quadratic B-splines are employed to define V h as well as
the computational domain. Consequently, this approach may be considered as the
isogeometric analysis method [13]. In all simulations, I fix & = 3, Λ = 2. On
boundary surfaces, ninety-degree contact angle boundary condition ∇ρ · n = 0
is imposed for the density variable; no-slip boundary condition is imposed for the
velocity; Dirichlet boundary condition is imposed for the temperature on the top and
bottom surfaces, and the adiabatic condition is imposed on the vertical boundary
surfaces.
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4 Results

4.1 Solution at Small Rayleigh Number

When the Rayleigh number is below the onset of instability, the system will evolve
towards a steady state. The density and temperature profiles can be found by setting
all time derivatives and u as zero in (22)–(24):

∇p −∇ · ς = ρg, (59)

∇ · q = 0. (60)

In this example, the material moduli are chosen as μ̄ = 9.156 × 10−3, κ =
1.175 × 10−2, λ = 9.0 × 10−6, θm = 0.865, and Δθ = 0.17. Notice that, instead
of the thermal diffusivity α, the thermal conductivity κ is fixed as a constant in this
example. Hence, the Eq. (60) is a linear Laplace’s equation for the temperature field,
and it can be solved analytically. The analytic steady state temperature profile is
θ = θt +Δθz/H . Obtaining an analytic solution for the steady state density profile
is non-trivial since it involves solving a third-order partial differential equation (59).
The initial density is homogeneous and ρm = 0.8, 0.7, 0.6, and 0.5, respectively.
The density profiles of the steady state solutions are illustrated in Fig. 3. All the

Fig. 3 The density profile of the steady state solution for (a) ρm = 0.8, (b) ρm = 0.7, (c) ρm =
0.6, and (d) ρm = 0.5
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Fig. 4 The black solid line is the coexistence line in the ρ-θ phase space; the black dashed line
is the spinodal line; the solid grey horizontal lines correspond to the constant top and bottom
temperatures. The blue shaded area represents the vapor state; the green shaded area represents
the liquid state; the red shaded area represents the supercritical fluid state; the grey shaded area
corresponds to the unstable elliptic region [14]. A scattered plot of the temperature and density
values is superimposed. Their values are sampled at random spatial positions of the steady state
solutions for ρm = 0.8 (red squares), ρm = 0.7 (blue triangles), ρm = 0.6 (magenta diamonds),
and ρm = 0.5 (green circles)

steady state solutions show a stratification pattern with low-density fluid in the
bottom and high-density fluid in the top. The difference between the four solutions
can be better illustrated by sampling the density and temperature of the solutions
at random spatial locations (Fig. 4). For ρm = 0.8, 0.7, and 0.6, all the sampled
particles fall into the liquid state (the green shaded area in Fig. 4). Hence, the
corresponding solutions shown in Fig. 3a–c are all pure liquid with stratification.
Unlike classical fluid stratification where the low-density fluid is above the high-
density fluid, the Rayleigh number is small in these cases. The low Rayleigh number
implies the relative strength of the gravity is small, and hence the fluid stratification
is mainly driven by the temperature gradient. The linear temperature profile leads
to a steady state pattern with light fluid in the bottom and dense fluid in the top.
For ρm = 0.5, Fig. 4 shows that a fraction of the fluid transits to the vapor state.
Consequently, the result shown in Fig. 3d is different from the results in Fig. 3a–c.
The steady state solution for ρm = 0.5 consists of separated liquid and vapor states
and a thin transitional layer. The vapor state is located at the bottom of the domain
and the liquid state is located on top of the vapor fluid. This configuration is similar
to the steady state liquid–vapor two-phase solution obtained under zero gravity [22].
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Fig. 5 Two-dimensional nucleate boiling simulation: Density profiles at (a) t = 0.0, (b) t = 6.25,
(c) t = 17.50, (d) t = 37.50, (e) t = 75.0, and (f) t = 100.0

4.2 Nucleate and Film Boiling

In this section, I numerically study the capability of the van der Waals fluid model in
modeling different regimes of boiling. In the first simulation, parameters are chosen
as ν̄ = 1.150 × 10−4, α = 1.725 × 10−5, λ = 1.190 × 10−7, θm = 0.8625,
Δθ = 0.175, and ρm = 0.2424. The spatial domain is discretized by 2048 × 1024
quadratic B-splines and the time integration is performed up to T = 100.0 with a
fixed time step size Δt = 5.0× 10−4. In Fig. 5, snapshots of the density profiles are
illustrated at different time steps. The initial condition of this simulation represents
the liquid fluid at the bottom and the vapor fluid at the top. A static free interface
is located along z = 0.35, and the initial temperature is 0.775. During the initial
times, random small vapor bubbles are generated at the heated bottom surface and
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rise upward. At about t = 37.50, first a few bubbles reach the free surface, and
in the meantime, there are more bubbles generated from the bottom surface. The
coalescence of the vapor bubble with the free surface leads to surface waves. At
t = 37.50 and t = 75.0, one can observe the surface waves. At time t = 100.0, there
are tiny liquid droplets generated over the free surface as a result of the breakage of
the liquid film.

In the next example, the kinematic viscosity is chosen as 4.600× 10−4, which is
four times larger than that of the previous example. The increase in viscosity leads
to slower dynamics of the fluid motion, and consequently, the numerical integration
is performed up to T = 500.0. All the other parameters are identical to those in
the previous case. In Fig. 6, snapshots of the temperature at different time steps are
depicted. It can be seen that during the initial times, there is a thin film generated at

Fig. 6 Two-dimensional film boiling simulation: Temperature profiles at (a) t = 0.0, (b) t =
100.0, (c) t = 175.0, (d) t = 200.0, (e) t = 225.0, and (f) t = 500.0
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the bottom heated surface. As time evolves, the film becomes unstable and three
bubbles are formed. The bubbles gradually get detached from the film and rise
upward carrying heat away from the thin film. At the final state, there is a mixing
pattern of the temperature field driven by the free convection.

4.3 The Nusselt Number Scaling

In this section, the flow structure of the free convection in the van der Waals fluid
is explored by relating the Nusselt number with the Rayleigh number Ra at a fixed
Prandtl number Pr. In this suite of simulations, the volume averaged density ρm is
chosen as 0.8. The viscosity coefficient μ̄ and the conductivity κ are progressively
reduced so that the Rayleigh number ranges from 10 to 1.0× 109 while the Prandtl
number is maintained at 1.0. For Ra ≤ 108, two different meshes are used for
the same set of parameters to guarantee converged results for the Nusselt number.
As is revealed in Fig. 4, the fluid in this simulation remains in the liquid phase,
and the fluid density is stratified due to the temperature variation and the gravity
force. In Figs. 7 and 8, the density and the temperature are depicted at time t =
5000.0 for different Rayleigh numbers. At smaller Rayleigh numbers, there are two
convective rolls formed in the domain. For Rayleigh number 1.0 × 108, the rolls
become unstable and the symmetry is broken, as is shown in Fig. 8d. The simulation
results are reported in Table 2. In this set of simulations, the value of γNu is about
0.22 by least square fitting. In [28], the value of γNu for ideal gas is reported to be

Fig. 7 The density profiles of the solutions at time step t = 5000.0: (a) Ra = 1.0 × 105, (b)
Ra = 1.0× 106, (c) Ra = 1.0× 107, and (d) Ra = 1.0× 108
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Fig. 8 The temperature profiles of the solutions at time step t = 5000.0: (a) Ra = 1.0× 105, (b)
Ra = 1.0× 106, (c) Ra = 1.0× 107, and (d) Ra = 1.0× 108

Table 2 Summary of the simulation results with λ = 9.0 × 10−6, ρm = 0.8, θb = 0.95, and
θt = 0.78

Nx ×Nz μ̄ κ Ra(ρm, θm) Pr(ρm, θm) NuV,t

256×128 9.156×10−3 1.175×10−2 1.0× 101 1.0 1.000

512×256 9.156×10−3 1.175×10−2 1.0× 101 1.0 1.000

256×128 9.156×10−5 1.175×10−4 1.0× 105 1.0 2.921

512×256 9.156×10−5 1.175×10−4 1.0× 105 1.0 2.924

256×128 4.095×10−5 5.257×10−5 5.0× 105 1.0 4.608

512×256 4.095×10−5 5.257×10−5 5.0× 105 1.0 4.619

256×128 2.895×10−5 3.717×10−5 1.0× 106 1.0 5.532

512×256 2.895×10−5 3.717×10−5 1.0× 106 1.0 5.546

256×128 1.295×10−5 1.662×10−5 5.0× 106 1.0 8.032

512×256 1.295×10−5 1.662×10−5 5.0× 106 1.0 8.032

256×128 9.156×10−6 1.175×10−5 1.0× 107 1.0 9.236

512×256 9.156×10−6 1.175×10−5 1.0× 107 1.0 9.311

256×128 4.095×10−6 5.257×10−6 5.0× 107 1.0 12.187

512×256 4.095×10−6 5.257×10−6 5.0× 107 1.0 12.582

256×128 2.895×10−6 3.717×10−6 1.0× 108 1.0 14.264

512×256 2.895×10−6 3.717×10−6 1.0× 108 1.0 14.653

512×256 1.295×10−6 1.662×10−6 5.0× 108 1.0 19.952

512×256 9.156×10−7 1.175×10−6 1.0× 109 1.0 22.305

For the averaged density ρm and the arithmetic mean temperature θm, cβ(ρm, θm) = 0.3082,
χ(ρm, θm) = 1.3328. Consequently, Ra(ρm, θm) = 1.0762 × 10−3/(μ̄κ) and Pr(ρm, θm) =
1.2838μ̄/κ
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0.265; in [17], the value of γNu for bubbling flows is given to be between 1/5 and
1/3. This suggests that the numerically measured γNu in the van der Waals fluid
conforms to reported values.

5 Conclusion

In this work, the Rayleigh-Bénard free convection in the van der Waals fluid
is numerically investigated. Dimensional analysis is performed for the governing
equations, and the control parameters for the convection problem are identified.
The provably entropy stable algorithm and isogeometric analysis provide a reliable
high-resolution numerical method for studying the free convection problem. The
numerical results demonstrate the capability of the numerical model in describing
boiling in different regimes. A suite of two-dimensional numerical simulations is
also performed as an investigation of the heat transport property of the van der Waals
fluid. The preliminary results indicate that this work provides a suitable framework
to study the heat transport property for nucleate and film boiling. As the future work,
the Nusselt number scaling law will be further investigated under different choices
of the control parameters.
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A General-Purpose NURBS Mesh
Generation Method for Complex
Geometries

Yuto Otoguro, Kenji Takizawa, and Tayfun E. Tezduyar

Abstract Spatial discretization with NURBS meshes is increasingly being used
in computational analysis, including computational flow analysis with complex
geometries. In flow analysis, compared to standard discretization methods, isogeo-
metric discretization provides more accurate representation of the solid surfaces and
increased accuracy in the flow solution. The Space-Time Computational Analysis
(STCA), where the core method is the ST Variational Multiscale method, is
increasingly relying on the ST Isogeometric Analysis (ST-IGA) as one of its key
components, quite often also with IGA basis functions in time. The ST Slip Interface
(ST-SI) and ST Topology Change methods are two other key components of the
STCA, and complementary nature of all these ST methods makes the STCA power-
ful and practical. To make the ST-IGA use, and in a wider context the IGA use, even
more practical in computational flow analysis with complex geometries, NURBS
volume mesh generation needs to be easier and more automated. To that end, we
present a general-purpose NURBS mesh generation method. The method is based on
multi-block-structured mesh generation with existing techniques, projection of that
mesh to a NURBS mesh made of patches that correspond to the blocks, and recovery
of the original model surfaces to the extent they are suitable for accurate and robust
fluid mechanics computations. It is expected to retain the refinement distribution and
element quality of the multi-block-structured mesh that we start with. The flexibility
of discretization with the general-purpose mesh generation is supplemented with
the ST-SI method, which allows, without loss of accuracy, C−1 continuity between
NURBS patches and thus removes the matching requirement between the patches.
We present mesh-quality performance studies for 2D and 3D meshes, including
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those for complex models, and test computation for a turbocharger turbine and
exhaust manifold. These demonstrate that the general-purpose mesh generation
method proposed makes the IGA use in computational flow analysis even more
practical.

1 Introduction

This chapter is a revised and expanded version of a recent journal article [1].
The attractiveness of NURBS meshes in spatial discretization [2–5] led to their
increasing use in computational analysis, including computational flow analysis
with complex geometries. In flow analysis, compared to standard discretization
methods, isogeometric discretization provides more accurate representation of
the solid surfaces and increased accuracy in the flow solution. Because of that,
the Space-Time Computational Analysis (STCA), which has been evolving since
its inception in 1990 (see [1, 6–24]), has been increasingly relying on the ST
Isogeometric Analysis (ST-IGA) [9, 11, 22] as one of its key methods, quite
often also with IGA basis functions in time. The ST Variational Multiscale (ST-
VMS) method [9, 10, 19] is the core method of the STCA in fluid mechanics,
fluid–structure interactions (FSI), and flows with moving boundaries and interfaces
(MBI). The ST Slip Interface (ST-SI) [20, 21] and ST Topology Change (ST-TC)
[15, 17] methods are two other key methods.

1.1 ST-VMS and ST-SUPS

The ST-VMS method is the VMS version of the Deforming-Spatial-Domain/Stabilized
ST (DSD/SST) method [6–8]. The DSD/SST method was introduced to function as
a moving-mesh method for computation of flows with MBI, including FSI. Moving
the fluid mechanics mesh to track (i.e., follow) a fluid–solid interface enables mesh-
resolution control near the interface and, consequently, accurate flow representation
there. The stabilization components of the DSD/SST method are the Streamline-
Upwind/Petrov-Galerkin (SUPG) [25] and Pressure-Stabilizing/Petrov-Galerkin
(PSPG) [6] stabilizations, and for that the method is now also called “ST-SUPS.”
The VMS components of the ST-VMS method are from the residual-based VMS
(RBVMS) method [26–29]. The ST-VMS method has two more stabilization terms
beyond those the ST-SUPS method has, and these additional terms give the method
better turbulence modeling features. This significantly added to the scope and
accuracy of the ST-SUPS method. Both methods, because of their ST accuracy
features (see [9, 10]), are desirable also in computations that do not involve any
MBI.

The Arbitrary Lagrangian–Eulerian (ALE) method, with the ALE finite element
method introduced in 1981 [30], is an older and more commonly used moving-mesh
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method. The ALE-VMS method [4, 31–35], which is the VMS version of the ALE
method, was introduced after the ST-SUPS [6] and ALE-SUPS [36] methods and
preceded the ST-VMS method [9]. The ALE-VMS and RBVMS methods are often
used with special methods, such as those for weakly enforced no-slip boundary
condition [37–39], “sliding interfaces” [5, 40] and backflow stabilization [41]. They
have been successfully applied to different types of FSI, MBI, and fluid mechanics
problems. The classes of problems include wind-turbine aerodynamics and FSI [42–
49], more specifically, vertical-axis wind turbines [50, 51], floating wind turbines
[52], wind turbines in atmospheric boundary layers [53], and fatigue-damage in
wind-turbine blades [54], patient-specific cardiovascular fluid mechanics and FSI
[3, 4, 55–59], biomedical-device FSI [60–65], ship hydrodynamics with free-surface
flow and fluid–object interaction [66, 67], hydrodynamics and FSI of a hydraulic
arresting gear [68, 69], hydrodynamics of tidal-stream turbines with free-surface
flow [70], and bioinspired FSI for marine propulsion [71, 72].

The ST-SUPS and ST-VMS methods have also been successfully applied to
different classes of FSI, MBI, and fluid mechanics problems. The classes of
problems include spacecraft parachute FSI [13, 33, 73–79], wind-turbine aerody-
namics [14, 16, 20, 33, 42, 48, 80–82], flapping-wing aerodynamics [11, 12, 15, 16,
18, 33, 82–85], cardiovascular fluid mechanics [15–17, 24, 82, 86–89], spacecraft
aerodynamics [13, 90], thermo-fluid analysis of ground vehicles and their tires [19],
thermo-fluid analysis of disk brakes [21], flow-driven string dynamics in turboma-
chinery [91], flow analysis of turbocharger turbines [1, 22], flow around tires with
road contact and deformation [23], ram-air parachutes [92], and compressible-flow
parachute aerodynamics [93].

1.2 ST-TC

The ST-TC method [15, 17] was introduced for moving-mesh computation of
flow problems with TC, such as contact between solid surfaces. It made moving-
mesh computations possible even when there is an actual contact between solid
surfaces or other TC. It can handle an actual TC while maintaining high-resolution
boundary layer representation near solid surfaces. This enabled successful moving-
mesh computation of heart valve flows [17, 24], wing clapping [18], and flow around
a rotating tire with road contact and prescribed deformation [23].

1.3 ST-SI

The ST-SI method was introduced in [20], in the context of incompressible-flow
equations, to retain the desirable moving-mesh features of the ST-VMS method
when we have spinning solid surfaces, such as a turbine rotor. The mesh covering
the spinning solid surface spins with it, retaining the high-resolution representation



402 Y. Otoguro et al.

of the boundary layers. The SI between the spinning mesh and the rest of the
mesh accurately connects the two sides of the flow field. The starting point in the
development of the ST-SI method was the version of the ALE-VMS method for
“sliding interfaces” [5, 40]. In the ST-SI method, interface terms similar to those
in the ALE-VMS version are added to the ST-VMS formulation to account for the
compatibility conditions for the velocity and stress. An ST-SI version where the
SI is between fluid and solid domains with weakly enforced Dirichlet boundary
conditions for the fluid was also presented in [20]. The ST-SI method introduced
in [21] for the coupled incompressible-flow and thermal-transport equations retain
the high-resolution representation of the thermo-fluid boundary layers near spinning
solid surfaces. These ST-SI methods have been successfully applied to aerodynamic
analysis of vertical-axis wind turbines [20], thermo-fluid analysis of disk brakes
[21], flow-driven string dynamics in turbomachinery [91], flow analysis of tur-
bocharger turbines [1, 22], flow around tires with road contact and deformation [23],
aerodynamic analysis of ram-air parachutes [92], and flow analysis of heart valves
[24].

The ST-SI methods have some additional good features. The integration of the
ST-SI and ST-TC methods enables dealing with contact location change and contact
sliding. This was used in the flow analysis around a tire with road contact and
deformation [23] and in the flow analysis of heart valves [24]. The SI provides mesh
generation flexibility in a general context by accurately connecting nonmatching
meshes. This feature was used in the flow analysis of a heart valve [24] and a
turbocharger turbine [1, 22]. This type of mesh generation flexibility is especially
valuable in complex-geometry flow computations with isogeometric discretization,
removing the matching requirement between the NURBS patches without loss of
accuracy (see [1]). In another version of the ST-SI method presented in [20], the
SI is between a thin porous structure and the fluid on its two sides. With this, the
fabric porosity is dealt with in a fashion consistent with how the standard two-
sided SIs are dealt with and how the Dirichlet conditions are enforced weakly.
Furthermore, this version of the ST-SI method enables handling thin structures that
have T-junctions. This method has been successfully used in incompressible-flow
aerodynamic analysis of ram-air parachutes with fabric porosity [92].

The compressible-flow ST-SI methods were introduced in [93], including the
version where the SI is between a thin porous structure and the fluid on its two sides.
Compressible-flow porosity models were also introduced in [93]. These, together
with the compressible-flow ST SUPG method [94], extended the ST computational
analysis range to compressible-flow aerodynamics of parachutes with fabric and
geometric porosities. That enabled successful ST computational flow analysis of
the Orion spacecraft drogue parachute in the compressible-flow regime [93]. The
computations were in the context of finite element discretization.
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1.4 ST-IGA

The ST-IGA was introduced in [9]. It is the integration of the ST methods with
isogeometric discretization. First computations with the ST-VMS method and ST-
IGA were reported in [9] in a 2D context, with IGA basis functions in space for flow
past an airfoil, and in both space and time for the advection equation. The stability
and accuracy analysis given [9] for the advection equation showed that using higher-
order basis functions in time would be essential in getting full benefit out of using
higher-order basis functions in space.

In the early stages of the ST-IGA, the emphasis was on IGA basis functions
in time. As pointed out in [9, 10] and demonstrated in [11, 12, 83], higher-order
NURBS basis functions in time provide a more accurate representation of the
motion of the solid surfaces and a mesh motion consistent with that. They also
provide more efficiency in temporal representation of the motion and deformation of
the volume meshes, and better efficiency in remeshing. That is how the ST/NURBS
Mesh Update Method (STNMUM) was introduced and demonstrated in [11, 12, 83].
The name “STNMUM” was given in [14]. The STNMUM has a wide scope that
includes spinning solid surfaces. With the spinning motion represented by quadratic
NURBS basis functions in time, and with sufficient number of temporal patches for
a full rotation, the circular paths are represented exactly, and a “secondary mapping”
[9–11, 33] enables also specifying a constant angular velocity for invariant speeds
along the paths. The ST framework and NURBS in time also enable, with the
“ST-C” method, extracting a continuous representation from the computed data
and, in large-scale computations, efficient data compression [19, 21, 91, 95]. The
STNMUM and desirable features of the ST-IGA with IGA basis functions in
time have been demonstrated in many 3D computations. The classes of problems
solved are flapping-wing aerodynamics [11, 12, 15, 16, 18, 33, 82–85], separation
aerodynamics of spacecraft [13], wind-turbine aerodynamics [14, 16, 20, 48, 82],
thermo-fluid analysis of ground vehicles and their tires [19], thermo-fluid analysis of
disk brakes [21], flow-driven string dynamics [91], and flow analysis of turbocharger
turbines [1, 22].

The ST-IGA with IGA basis functions in space have been utilized in ST
computational flow analysis of a turbocharger turbine [22], ram-air parachute
[92], and a heart valve [24]. The turbocharger turbine analysis was based on the
integration of the ST-SI method and ST-IGA. The IGA basis functions were used in
the spatial discretization of the fluid mechanics equations and also in the temporal
representation of the rotor and spinning-mesh motion. That enabled accurate
representation of the turbine surfaces and rotor motion and increased accuracy in
the flow solution. The ram-air parachute analysis was based on the integration of the
ST-IGA, the ST-SI version that weakly enforces the Dirichlet conditions, and the ST-
SI version that accounts for the porosity of a thin structure. The ST-IGA with IGA
basis functions in space enabled, with relatively few number of unknowns, accurate
representation of the parafoil geometry and increased accuracy in the flow solution.
The volume mesh needed to be generated both inside and outside the parafoil. Mesh
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generation inside was challenging near the trailing edge because of the narrowing
space. Using IGA basis functions addressed that challenge and still kept the element
density near the trailing edge at a reasonable level. The heart valve analysis was
based on the integration of the ST-SI and ST-TC methods and ST-IGA. The “ST-
SI-TC-IGA,” beyond enabling a more accurate representation of the surfaces and
increased accuracy in the flow solution, kept the element density in the narrow
spaces near the contact areas at a reasonable level. When solid surfaces come into
contact, the elements between the surface and the SI collapse. Before the elements
collapse, the boundaries could be curved and rather complex, and the narrow spaces
might have high-aspect-ratio elements. With NURBS elements, it was possible to
deal with such adverse conditions rather effectively.

1.5 General-Purpose NURBS Mesh Generation

Complementary nature of the ST-SI and ST-TC methods and the ST-IGA makes
the STCA powerful and practical. To make the ST-IGA use, and in a wider
context the IGA use, even more practical in computational flow analysis with
complex geometries, NURBS volume mesh generation needs to be easier and more
automated. To that end, a general-purpose NURBS mesh generation method was
introduced in [1]. The method is based on multi-block-structured mesh generation
with existing techniques, projection of that mesh to a NURBS mesh made of patches
that correspond to the blocks, and recovery of the original model surfaces. The
recovery of the original surfaces is to the extent they are suitable for accurate
and robust fluid mechanics computations. The method is expected to retain the
refinement distribution and element quality of the multi-block-structured mesh that
we start with. Because there are ample good techniques and software for generating
multi-block-structured meshes, the method makes general-purpose mesh generation
relatively easy. The integration of the ST-SI method and ST-IGA allows, without
loss of accuracy, C−1 continuity between NURBS patches and thus removes the
matching requirement between the patches. We present mesh-quality performance
studies for 2D and 3D meshes, including those for complex models. We also present
test computation for a turbocharger turbine and exhaust manifold. The performance
studies and test computation demonstrate that the general-purpose NURBS mesh
generation method makes the IGA use in fluid mechanics computations even more
practical.

We describe the general-purpose NURBS mesh generation method in Sect. 2.
The mesh-quality performance studies are reported in Sect. 3. The ST-VMS and ST-
SI methods are given in Sect. 4. The test computations for the turbine and manifold
are presented in Sect. 5, and the concluding remarks are given in Sect. 6.
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2 NURBS Mesh Generation Techniques

First we provide a brief introduction to the basic concepts and terminologies of
NURBS meshes. We do that with figures. Figure 1 shows, as an example, a
NURBS control mesh for a stator blade of a turbocharger turbine, depicting the
NURBS patches and control points. Figure 2 shows the corresponding physical
mesh, depicting the physical patches and elements. The relationship between the
control and physical meshes is given by NURBS basis functions, defined on each
patch by the knot vectors of the patch, with each space direction having its own knot
vector.

2.1 Basic Technique

We start with a multi-block-structured mesh. Such grids are very common in finite
difference and finite volume computations. The mesh quality can be measured in
terms of the grid point distribution, grid line orthogonality, element aspect ratio,
and the adjacent-element-length ratio. Generating high-quality meshes requires a
number of skills and experience, but there are ample good techniques and software
for generating multi-block-structured meshes. We assume that the multi-block-
structured mesh we start with is the outcome of such techniques or software and
is of high quality. The mesh consists of trilinear elements. We see each block as a
precursor to a NURBS patch.

Fig. 1 Cross-section of a
NURBS control mesh around
a stator blade of a
turbocharger turbine. The red
circles represent the control
points, and the
different-colored areas are the
NURBS patches

Fig. 2 Cross-sectional
physical mesh corresponding
to the control mesh in Fig. 1.
The lines represent the
element boundaries



406 Y. Otoguro et al.

Fig. 3 A schematic 1D finite element mesh, over the domain [0, L]
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Fig. 4 NURBS basis functions in UPS corresponding to the finite element mesh in Fig. 3

The second step involves a number of projections. For those projections, we
define a common parametric space between each block and the corresponding patch.
We choose the parametric space to be ξξξ ∈ [0, 1]3. Then the knot vector of the patch
for a given direction becomes

ΞΞΞ = {0, 0, . . . 0
︸ ︷︷ ︸

p+1

, . . . , 1, . . . , 1
︸ ︷︷ ︸

p+1

}, (1)

where p is the polynomial order for the NURBS basis functions used in that
direction. We propose two methods to determine the knot values. In describing those
methods, we use a schematic 1D finite element mesh, over the domain [0, L], shown
in Fig. 3, which we view as corresponding to one of the directions.

2.1.1 Uniform Parametric Spacing (UPS)

In this method, in each direction, the knot spacing �ξ is calculated from the number
of elements in that direction. Supposing that there are nel elements, the spacing is
calculated as �ξ = 1/nel, and the knot vector becomes

ΞΞΞ =

⎧
⎪⎨

⎪⎩
0, 0, . . . 0
︸ ︷︷ ︸

p+1

,
1

nel
,

2

nel
, . . . ,

nel − 1

nel
, 1, . . . , 1
︸ ︷︷ ︸

p+1

⎫
⎪⎬

⎪⎭
. (2)

Figure 4 shows the resulting shape functions, NA, where A is the basis function
index, and Fig. 5 shows the absolute value of the physical-space derivative of the
basis functions.
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Fig. 5 Absolute value of the physical-space derivative of the basis functions in UPS
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Fig. 6 NURBS basis functions in PSPPS corresponding to the finite element mesh in Fig. 3

2.1.2 Parametric Spacing Proportional to Physical Spacing (PSPPS)

In this method, we first define in each direction an “element length” he for element
e, and from that we define se:

se =
e∑

k=1

hk. (3)

With that, the knot vector is defined as

ΞΞΞ =

⎧
⎪⎨

⎪⎩
0, 0, . . . 0
︸ ︷︷ ︸

p+1

,
s1

snel
,
s2

snel
, . . . ,

snel−1

snel
, 1, . . . , 1
︸ ︷︷ ︸

p+1

⎫
⎪⎬

⎪⎭
. (4)

Figure 6 shows the resulting basis functions, and Fig. 7 shows the absolute value of
the physical-space derivative of the basis functions.
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Fig. 7 Absolute value of the physical-space derivative of the basis functions in PSPPS

Remark 1 Since the knot vectors will be defined in each path in a multi-dimensional
context, to obtain the element length in each direction, we need to do some averaging
in the other two directions. For example, we can do the averaging for the element
length in the parametric direction 1 as

hi
1 =

1

(nel)3 (nel)2

(nel)3∑

j=k

(nel)2∑

j=1

h
i,j,k

1 , (5)

where h
i,j,k

1 is the element length for the (i, j, k) element of the structured mesh.

2.1.3 Projections

For each patch, the projections are done hierarchically. First the control points at
the corners of the patch are set to the same locations as the corner grid points of
the block. Then the edges between the corners are projected by using the common
parametric space:

∫ 1

0
wh ·

(
xh − χχχh

)
dξ = 0. (6)

Here χχχh is the position representation in the block, xh is the position representation
in the patch, and wh is the test function of the projection. The parametric coordinate
ξ used in the integration is a general representation for all edges. Next the surfaces
between the edges are projected:

∫ 1

0

∫ 1

0
wh ·

(
xh − χχχh

)
dξ1dξ2 = 0. (7)



A General-Purpose NURBS Mesh Generation Method for Complex Geometries 409

Here, the combination of the parametric coordinates ξ1 and ξ2 is a general
representation for all surfaces. The projection sequence is completed with the
projection of the volumes between the surfaces:

∫ 1

0

∫ 1

0

∫ 1

0
wh ·

(
xh − χχχh

)
dξ1dξ2dξ3 = 0. (8)

2.1.4 Merging the Patches

For two adjacent blocks, the projections described in Sect. 2.1.3 result in the same
control point positions over the surface they share, provided that the two blocks have
the same knot vectors over the shared surface. This happens automatically in UPS.
To make it happen in PSPPS, the requirement is taken into account while doing the
element length averaging. The control point variables are declared to be the same
between the adjacent patches over the shared surface, which results in C0 continuity
for the basis function across the surface.

Remark 2 Alternatively, as proposed and used in [22, 24], we can declare the
control point variables over the shared surface to be separate, resulting in C−1

continuity, and connect them with the ST-SI method.

2.2 Element Reduction

We know from our experience that, to generate good quality NURBS meshes with
the method proposed, in many cases we may need more elements in the finite
element mesh than the target number of NURBS elements. Therefore we apply a
reduction factor r to the number of elements in the block, which we can possibly
be different for each direction in the block. However, if we use different factors in
different directions, two adjacent blocks must have the same reduction factor in each
of the two directions of the surface they share. To make the number of elements an
integer, after applying the factor r , we raise the value to the next integer. After the
element reduction, we use the modified versions of the UPS and PSPPS methods,
which we describe in the following two subsections.

2.2.1 Element-Reduced UPS

We just define the knot vectors with uniform spacing based on the reduced number
of elements. Figure 8 shows the resulting basis functions in element-reduced UPS
corresponding to the finite element mesh in Fig. 3.
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Fig. 8 NURBS basis functions in element-reduced UPS (r = 0.5) corresponding to the finite
element mesh in Fig. 3
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Fig. 9 NURBS basis functions in element-reduced PSPPS corresponding to the finite element
mesh in Fig. 3

2.2.2 Element-Reduced PSPPS

We first define a 1D element spacing function h(ξ), integrate it as

s(ξ) =
∫ ξ

0
h(θ)dθ, (9)

and normalize the outcome as ŝ(ξ ) = s(ξ)/s(1). Then, the knot values are defined
as

ŝA = ŝ

(
A

nel

)

, (10)

where A = 0, 1, . . ., nel. Figure 9 shows the resulting basis functions in element-
reduced PSPPS corresponding to the finite element mesh in Fig. 3. In the multi-
dimensional context, we use the integration version of Eq. (5).
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Fig. 10 A finite element
mesh that includes a
boundary that is an arc (red
curve) in the exact
representation

2.3 Techniques for Recovering the Exact Surfaces

In the NURBS mesh generation method proposed, we can recover the exact surfaces,
instead of just relying on the surfaces represented by the finite element mesh.

2.3.1 Special Technique for Arc Surfaces

Suppose we have a finite element mesh with a boundary that is an arc in the exact
representation (see Fig. 10). We first represent the arc by three control points and
the corresponding quadratic NURBS basis functions. The arc template is shown in
Fig. 11, and the corresponding knot vector and weights are

ξξξ = {0, 0, 0, 1, 1, 1} (11)

and

w1 = 1, w2 = cos q, w3 = 1. (12)

For details, see [10, 33]. Figure 12 shows the NURBS representation of the arc,
superimposed on the finite element mesh. Then we insert to the knot vector given
by Eq. (11) the knots of the NURBS mesh we started with. From that, we obtain the
new control points and weights representing the boundary. The new mesh can be
seen in Fig. 13.
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Fig. 11 The arc template
with three control points
representing an arc with angle
2q

q

x1

x3

x2

Fig. 12 NURBS
representation of the arc,
superimposed on the finite
element mesh, where the
three red circles are the
control points

Fig. 13 NURBS control
mesh with the exact
representation of the arc
boundary
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2.3.2 General Technique for CAD Surfaces

If the CAD surface basis function space is a subset of our NURBS mesh basis
function space, we can recover the exact surface by knot insertion to the CAD space
to obtain our NURBS space. If not, the best we can do is to project the CAD surface
to our NURBS space.

3 Mesh-Quality Performance

In the context of 2D and 3D examples, we evaluate the mesh-quality performance of
the NURBS mesh generation method proposed. The quality measures are the grid
line orthogonality and adjacent-element-length ratio.

3.1 2D Mesh

Figure 14 shows the finite element mesh. Figure 15 shows the quadratic NURBS
mesh corresponding to the finite element mesh in Fig. 14. Figure 16 shows the
distribution of the grid line orthogonality measure for the finite element and NURBS
meshes, and Table 1 shows the adjacent-element-length ratio for the two meshes.

Figure 17 shows the element-reduced quadratic NURBS mesh (r = 0.5) corre-
sponding to the finite element mesh in Fig. 14. Figure 18 shows the distribution
of the grid line orthogonality measure for the finite element and element-reduced
NURBS meshes, and Table 2 shows the adjacent-element-length ratio for the two
meshes.

Fig. 14 2D mesh. Finite
element mesh

Fig. 15 2D mesh. Control
points and physical elements
of the quadratic NURBS
mesh corresponding to the
finite element mesh in Fig. 14
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Table 1 2D mesh FE mesh NURBS patch

Maximum value 1.46 1.46

Standard deviation 0.0654 0.0654

Adjacent-element-length ratio for the finite ele-
ment and NURBS meshes

Fig. 17 2D mesh. Control
points and physical elements
of the element-reduced
quadratic NURBS mesh (r =
0.5) corresponding to the
finite element mesh in Fig. 14

3.2 Aorta and Branches

This is an example for internal flows. The model we use for the aorta and branches
is shown in Fig. 19. Figure 20 shows the quadratic NURBS control mesh. Figure 21
shows the distribution of the grid line orthogonality measure for the finite element
and NURBS meshes, and Table 3 shows the adjacent-element-length ratio for the
two meshes.
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Fig. 18 2D mesh. Distribution of the grid line orthogonality measure for the finite element and
element-reduced NURBS meshes

Table 2 2D mesh FE mesh NURBS patch

Maximum value 1.46 2.37

Standard deviation 0.0654 0.1152

Adjacent-element-length ratio for the finite ele-
ment and element-reduced NURBS meshes

3.3 Disk-Gap-Band Parachute

This is an example for external flows. The model for the disk-gap-band parachute
is shown in Fig. 22. Figure 23 shows the quadratic NURBS control mesh. Figure 24
shows the distribution of the grid line orthogonality measure for the finite element
and NURBS meshes, and Table 4 shows the adjacent-element-length ratio for the
two meshes.

4 ST-VMS and ST-SI Methods

We include from [20, 23] the ST-VMS and ST-SI methods.
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Fig. 19 Aorta and branches.
Model

Fig. 20 Aorta and branches.
Quadratic NURBS control
mesh
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Fig. 21 Aorta and branches. Distribution of the grid line orthogonality measure for the finite
element and NURBS meshes

Table 3 Aorta and branches FE mesh NURBS patch

Maximum value 8.83 8.98

Standard deviation 0.2145 0.1677

Adjacent-element-length ratio for the finite ele-
ment and NURBS meshes

Fig. 22 Disk-gap-band parachute. Model
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Fig. 23 Disk-gap-band parachute. Quadratic NURBS control mesh
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Fig. 24 Disk-gap-band parachute. Distribution of the grid line orthogonality measure for the finite
element and NURBS meshes

Table 4 Disk-gap-band
parachute

FE mesh NURBS patch

Maximum value 4.24 3.88

Standard deviation 0.1477 0.1644

Adjacent-element-length ratio for the finite ele-
ment and NURBS meshes



A General-Purpose NURBS Mesh Generation Method for Complex Geometries 419

The ST-VMS method is given as

∫

Qn

wh · ρ
(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)

dQ+
∫

Qn

εεε(wh) : σσσ(uh, ph)dQ

−
∫

(Pn)h

wh · hhdP +
∫

Qn

qh∇∇∇ · uhdQ+
∫

Ωn

(wh)+n · ρ
(
(uh)+n − (uh)−n

)
dΩ

+
(nel)n∑

e=1

∫

Qe
n

τSUPS

ρ

[

ρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)

+∇∇∇qh

]

· rM(uh, ph)dQ

+
(nel)n∑

e=1

∫

Qe
n

νLSIC∇∇∇ · whρrC(uh)dQ

−
(nel)n∑

e=1

∫

Qe
n

τSUPSwh ·
(

rM(uh, ph) · ∇∇∇uh
)

dQ

−
(nel)n∑

e=1

∫

Qe
n

τ 2
SUPS

ρ
rM(uh, ph) ·

(
∇∇∇wh

)
· rM(uh, ph)dQ = 0, (13)

where

rM(uh, ph) = ρ

(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)

−∇∇∇ · σσσ(uh, ph), (14)

rC(uh) = ∇∇∇ · uh (15)

are the residuals of the momentum equation and incompressibility constraint. Here,
ρ, u, p, f, σσσ , εεε, and h are the density, velocity, pressure, external force, stress
tensor, strain rate tensor, and the traction specified at the boundary. The test
functions associated with the velocity and pressure are w and q. A superscript “h”
indicates that the function is coming from a finite-dimensional space. The symbol
Qn represents the ST slice between time levels n and n + 1, (Pn)h is the part of
the lateral boundary of that slice associated with the traction boundary condition h,
and Ωn is the spatial domain at time level n. The superscript “e” is the ST element
counter, and nel is the number of ST elements. The functions are discontinuous in
time at each time level, and the superscripts “−” and “+” indicate the values of
the functions just below and just above the time level. See [7, 8, 14, 19, 20] for
the definitions used here for the stabilization parameters τSUPS and νLSIC. For more
ways of calculating the stabilization parameters in finite element computation of
flow problems, see [96–117].

Remark 3 The ST-SUPS method can be obtained from the ST-VMS method by
dropping the eighth and ninth integrations.
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In the ST-SI method, labels “Side A” and “Side B” represent the two sides of
the SI. We add boundary terms to Eq. (13). The boundary terms are first added
separately for the two sides, using test functions wh

A and qh
A and wh

B and qh
B. Putting

them together, the complete set of terms added becomes

−
∫

(Pn)SI

(
qh

BnB − qh
AnA

)
· 1

2

(
uh

B − uh
A

)
dP

−
∫

(Pn)SI

ρwh
B ·

1

2

((
F h

B −
∣
∣
∣F h

B

∣
∣
∣

)
uh

B −
(
F h

B −
∣
∣
∣F h

B

∣
∣
∣

)
uh

A

)
dP

−
∫

(Pn)SI

ρwh
A ·

1

2

((
F h

A −
∣
∣
∣F h

A

∣
∣
∣

)
uh

A −
(
F h

A −
∣
∣
∣F h

A

∣
∣
∣

)
uh

B

)
dP

+
∫

(Pn)SI

(
nB · wh

B + nA · wh
A

) 1

2

(
ph

B + ph
A

)
dP

−
∫

(Pn)SI

(
wh

B − wh
A

)
·
(

n̂B · μ
(
εεε(uh

B)+ εεε(uh
A)
))

dP

− γACI

∫

(Pn)SI

n̂B · μ
(
εεε
(

wh
B

)
+ εεε
(

wh
A

))
·
(

uh
B − uh

A

)
dP

+
∫

(Pn)SI

μC

h

(
wh

B − wh
A

)
·
(

uh
B − uh

A

)
dP, (16)

where

F h
B = nB ·

(
uh

B − vh
B

)
, (17)

F h
A = nA ·

(
uh

A − vh
A

)
, (18)

h = hB + hA

2
, (19)

hB = 2

(
nent∑

α=1

nens∑

a=1

∣
∣nB · ∇∇∇Nα

a

∣
∣

)−1

(for Side B), (20)

hA = 2

(
nent∑

α=1

nens∑

a=1

∣
∣nA · ∇∇∇Nα

a

∣
∣

)−1

(for Side A), (21)

n̂B = nB − nA

‖nB − nA‖ . (22)

Here, (Pn)SI is the SI in the ST domain, n is the unit normal vector, v is the mesh
velocity, nens and nent are the number of spatial and temporal element nodes, Nα

a is
the basis function associated with spatial and temporal nodes a and α, γACI = 1,
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and C is a nondimensional constant. For our element length definition, we typically
set C = 1. In the computations reported in this article, C = 2.

A number of remarks were provided in [20] to explain the added terms and to
comment on related interpretations. We refer the reader interested in those details to
[20].

Remark 4 A coefficient γACI was added in [23] to the sixth integration so that
we have the option of using γACI = −1. This option was added, in [93], also in
the context of compressible flows. Using γACI = 1 in a discontinuous Galerkin
method was introduced in the symmetric interior penalty Galerkin method [118],
and using γACI = −1 was introduced in the nonsymmetric interior penalty Galerkin
method [119]. Stabilized methods based on both γACI = 1 and −1 were reported
in [37] in the context of the advection–diffusion equation. In the computations
reported in this article, we set γACI = 1.

5 Test Computation with a Turbocharger Turbine and
Exhaust Manifold

5.1 Mesh

The model we use is for a four-cylinder engine and is shown in Fig. 25. Figure 26
shows the quadratic NURBS control mesh. There are 427,371 control points and
285,519 elements. Table 5 shows the number of patches in different parts of the
mesh. The thickness of the first layer of elements near the solid surfaces is given in
Table 6. Figure 27 shows the four SIs of the mesh. Two of the SIs have an actual slip,
and the other two are just for mesh generation purpose and connect nonmatching
meshes.

Fig. 25 Turbocharger turbine
and exhaust manifold. Model
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Fig. 26 Turbocharger turbine
and exhaust manifold.
Quadratic NURBS control
mesh

Table 5 Turbocharger
turbine and exhaust manifold

Part Count

Manifold 59

Volute 36

Stator 40

Rotor 160

Outlet pipe 5

Number of patches

Table 6 Turbocharger
turbine and exhaust manifold

Part Range (mm)

Manifold 0.31 0.98

Volute 0.16 0.58

Stator 0.022 0.20

Rotor 0.037 0.15

Thickness of the first layer
of elements near the solid
surfaces

5.2 Problem Setup

The rotor diameter is 15 mm and the rotor speed is 220,000 rpm, which translates
to a rotation period of T = 2.7272×10−4 s. The engine speed is 2000 rpm. The
gas density and kinematic viscosity at the manifold inlets are 0.65 kg/m3 and
5.8×10−5 m2/s. The flow rate at each manifold inlet is shown in Fig. 28.
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Fig. 27 Turbocharger turbine
and exhaust manifold. The
SIs of the mesh. The red SIs
have an actual slip, and the
brown SIs are just for mesh
generation purpose and
connect nonmatching meshes

Fig. 28 Turbocharger turbine
and exhaust manifold.
Volumetric flow rate at each
manifold inlet
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5.3 Computational Conditions

In temporal representation of the mesh rotation, we again use quadratic NURBS
basis functions. There are 90 time steps per rotation, which is equivalent to a time-
step size of 3.03×10−6 s. The number of nonlinear iterations per time step is 3,
and the number of GMRES iterations per nonlinear iteration is 500. The first two
nonlinear iterations are based on the ST-SUPS method, and the last iteration is based
on the ST-VMS method. We use the stabilization parameters given in [20], which
mostly originate from those given in [7, 8, 19].
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Fig. 29 Turbocharger turbine
and exhaust manifold.
Velocity magnitude (m/s) at
the end of the 4th rotation

0 100 200

5.4 Results

Figure 29 shows the velocity magnitude at the end of the 4th rotation. Figures 30
and 31 show, from the end of the 3rd rotation to the end of the 9th rotation, the
volumetric flow rate for the turbine inlet and the turbine efficiency. The efficiency is
defined as

η = P

K
, (23)

where P is the power extracted from the turbine,

K = 1

T

∫ T

0

∫

ΓINF

(−n · u)
(

1

2
ρ‖u‖2 + p − pOUTF

)

d*dt, (24)

ΓINF is the inflow boundary, and pOUTF is the pressure at the outflow boundary.

6 Concluding Remarks

We have presented a general-purpose NURBS mesh generation method for STCA
in fluid mechanics with complex geometries. The components of the STCA are the
ST-VMS method, which serves as the core method, ST-SI and ST-TC methods, ST-
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Fig. 30 Turbocharger turbine and exhaust manifold. Volumetric flow rate for the turbine inlet
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Fig. 31 Turbocharger turbine and exhaust manifold. Turbine efficiency

IGA, and their integration. The ST-IGA, with IGA basis functions in space and
time, significantly increases the scope and accuracy of the STCA. The ST-IGA with
IGA basis functions in space enables more accurate representation of the surfaces
and increased accuracy in the flow solution. It also provides, with relatively few
number of elements, reliable discretization in parts of a fluid mechanics domain with
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narrowing space, such as near the trailing edge inside a parafoil. The integration of
the ST-SI method and ST-IGA enables accurate representation in the presence of
spinning solid surfaces, such as turbine rotors. The integration of the ST-IGA, the
ST-SI version that weakly enforces the Dirichlet conditions, and the ST-SI version
that accounts for the porosity of a thin structure enables accurate flow computations
with thin porous structures, such as a parachute. The integration of the ST-SI and ST-
TC methods and ST-IGA is the ST-SI-TC-IGA. Beyond enabling a more accurate
representation of the surfaces and increased accuracy in the flow solution, the ST-
SI-TC-IGA keeps the element density in the narrow spaces near the contact areas
at a reasonable level. Considering all these desirable features, the general-purpose
NURBS mesh generation method makes the ST-IGA use, and in a wider context the
IGA use, even more practical in fluid mechanics computations. The method is based
on multi-block-structured mesh generation with existing techniques, projection of
that mesh to a NURBS mesh made of patches that correspond to the blocks, and
recovery of the original model surfaces. The recovery of the original surfaces is to
the extent they are suitable for accurate and robust fluid mechanics computations.
The method is expected to retain the refinement distribution and element quality
of the multi-block-structured mesh that we start with. Because there are ample
good techniques and software for generating multi-block-structured meshes, the
method makes general-purpose mesh generation relatively easy. The integration of
the ST-SI method and ST-IGA allows, without loss of accuracy, C−1 continuity
between NURBS patches and thus removes the matching requirement between the
patches. Mesh-quality performance studies for 2D and 3D meshes, including those
for complex models, and test computation for a turbocharger turbine and exhaust
manifold demonstrate that the general-purpose mesh generation method makes the
IGA use in fluid mechanics computations even more practical.
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Interface-Reproducing Capturing (IRC)
Technique for Fluid-Structure
Interaction: Methods and Applications

Tomohiro Sawada

Abstract How to enhance the interface-capturing (IC) computation of fluid–
structure interaction (FSI) is a long-standing issue for IC approaches. This chapter
introduces approaches based on an extended finite element method (XFEM) and
a Lagrange multiplier (LM) method, as well as our contribution to the problem.
The XFEM-based approach develops a framework for an interface-reproducing
capturing (IRC) method whose spatial functions are locally equivalent to those
of interface-tracking (IT) methods. The XFEM enriches the velocity and pressure
function spaces of the local flow around the interface. This enrichment reproduces
requisite discontinuities at the interface. Simultaneously, the LM method imposes
continuity on the fluid and structure to couple them, and thus the fluid captures
the interface. This chapter gives an overview, describes the methods and solution
techniques, and shows verifications and applications, focusing mainly on computing
the fluid–thin-structure interaction (FTSI). The verifications reveal how continuity
and discontinuity at the interface affect the FSI computation and why the IRC
method is effective. Applications to flow-induced flutter of flexible thin objects
show the ability of the proposed method to take on the challenge of computing
complex FSI problems. Applications to flows past fixed objects show its ability to
compute simple problems with ease. The IRC method therefore has two aspects and
potentials. Open issues mentioned in this chapter indicate that there is still much
room for advancing the IC method.
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1 Introduction

Numerical methods for simulating fluid–structure interactions (FSI) [1–96] draw
a great deal of interest from various areas of computation and application. One
reason for this interest is that FSI methods and related techniques offer a basis
for continuum mechanics-based modeling and computation of various phenomena.
The method of handling material and spatial, namely Lagrangian and Eulerian
specifications of the computational FSI field simultaneously or alternatively, which
has been studied and advanced in the FSI area, is universal for any subjects.
This universality has been enhanced by interface-tracking (IT) [4–18, 20–53] and
interface-capturing (IC) [19, 28, 32–34, 37, 54–73, 75–96] approaches.

The IT approach generally uses interface-fitted coordinates and function spaces
to track the interface between a fluid and a structure, as represented by arbitrary
Lagrangian–Eulerian (ALE) [1–3] FSI methods [4–18, 47, 52, 53] and stabilized
space-time (SST) FSI methods [20–53]. In particular, the SST-based approach
[20–53] has advanced many essential techniques such as interface-matching tech-
niques, mesh-moving techniques, and solution techniques and stabilization tech-
niques [97–109] that are universal for all FSI methods, and it has facilitated various
advanced applications. Interface tracking is the standard way to verify FSI compu-
tation. In contrast, the IC approach generally uses spatially fixed coordinates with a
technique to capture moving structures by the fixed coordinates. That technique
is characteristic to each IC method and so there are various IC FSI methods
[19, 28, 32–34, 37, 54–73, 75–96]. A well-known one is the immersed boundary
(IB) method [54–61] in which structures in a fluid are described as part of the fluid
via the incompressible Navier–Stokes equations. Interface-capturing methods have
the advantage of being applicable to complex FSI problems because of the spatially
fixed coordinates, but they suffer in relation to theoretical compatibility and resultant
numerical accuracy, stability, and credibility. These drawbacks arise from the non-
interfacially fitted spatial coordinates and function spaces. The point at issue for IC
methods is how to solve or reduce the inconsistency arisen from non-interface-fitted
coordinates and enhance the utility of IC computation.

Based on efforts made over past decades, an IC approach has been proposed
that addresses the aforementioned issue directly [76–78]. It is based on an extended
finite element method (XFEM) [74, 110–114, 116] and a Lagrange multiplier (LM)
method [115–118]. The XFEM is a way to reproduce arbitrary functions (including
discontinuous ones) in a domain with finite support. For example, partition of unity
of XFEM can formulate FSI without the fictitious fluid domain that is introduced in
computational FSI models based on the IB method [54–61], the immersed finite
element (IFE) method [62–65], or the distributed Lagrange multiplier/fictitious
domain (DLM/FD) method [66–71]. Furthermore, an enriched form of XFEM
can reproduce discontinuities at the interface, something that is intrinsic to IT
methods but not to general IC methods. In FSI and fluid dynamics generally,
XFEM was applied first to Stokes flow around rigid particles [72, 73], then to
two-phase flow [74], and subsequently to flow in a microstructure [75] with a
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homogenization theory for fluid–solid mixtures. A version of XFEM for FSI is
proposed in [76–78] with extension to the enriched space-time (EST) method [80].
Further advancements are made in [79, 81–90] with consideration of fluid–solid
and fluid–thin-solid interactions [81, 83], fluid–shell interaction [79, 86, 88], par-
titioned iterative schemes [81], numerical integration [83, 86], discretization of
LMs [84, 86], and contact [85], among others. A combination of XFEM and the
IFE method [63, 64] is given in [65]. These studies develop a way of giving a
consistent FSI interface to the IC computation. The XFEM reproduces the requisite
discontinuities at the FSI interface, and the LM method embeds that interface in
a fluid mesh that captures the interface. By these means, XFEM-based methods
provide a framework for the interface-reproducing capturing (IRC) method as an
advanced IC method.

This chapter describes the IRC FSI method and its applications, focusing mainly
on the method that we proposed in [79, 86, 88]. Section 2 describes the governing
equations for FSI and flow problems in strong and weak forms, where the FSI
coupling condition at the interface is formulated weakly by the LM method. This
weak form is universal for IT, IC, and IRC methods. In Sect. 3, we describe the
XFEM for FSI interfaces, which covers fluid–thin-structure interactions (FTSI) [79,
86–90], fluid–solid interactions [81–85], and flow around fixed objects [75, 87].
Some remarks are made on enrichments such as numerical integration of enriched
elements [86]. In Sect. 4, we describe the finite element discretization of the LMs
and the constraint equation [86]. Because the IRC method discretizes these on a
Lagrangian mesh, we refer to the present LM method as the Lagrangian LM (LLM)
method. The LLM technique removes the need for interface-fitting background
procedures in the present IRC method in combination with quadrature of enriched
elements. Section 5 summarizes the spatial discretization techniques used for
FTSI computation [88]. Section 6 describes a time-integration algorithm for the
IRC method [88], which employs an implicit scheme based on the Newmark-β
method [119] and a quasi-direct solution technique.

In Sect. 7, we verify the IRC computation on a domain-partitioning interface
(DPI) problem [79, 86, 88]. The DPI problem assesses the accuracy of the numerical
integration of enriched elements [86], of the weak imposition of the FSI coupling
condition by the LLM technique [86], and of the enriched discontinuities [88].
Furthermore, we show how the enrichment and discontinuity affect the FSI com-
putation. The results indicate which terms are important when we compute FSI on
an IC mesh. Section 8 shows two-dimensional (2D) [88] and three-dimensional
(3D) [87, 90] applications of the IRC method to FTSI problems. In particular,
we introduce the fluttering/flapping of flexible thin objects in a flow. The FSI
phenomena are rich [120–128] and their numerical simulation remains a challenge.
We compare the IRC results with those obtained by the IT ALE FSI method [12, 13].
The 3D applications to flag flapping [90] and paper fluttering [87] show the ability
of the IRC approach to handle large deformations and complex geometry, and they
demonstrate its potential for further application. In Sect. 9, we show applications
to flows past fixed objects [89] and in a periodic microstructure [75] to introduce
another aspect of the IRC method. Section 10 concludes the chapter.
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2 Governing Equations in Strong and Weak Forms

In this section, we introduce the governing equations for the fluid and structures to
be addressed by the present method, followed by those for interactions and moving
boundaries. The basis of our IRC method for FSI and flow with moving boundaries
is given by Eqs. (20) and (21), which are written in weak form and for which we
used an LM method [76, 86, 115–118] for the fluid–structure coupling.

2.1 Fluid Flows

Let Ωf be the fluid domain with boundary Γf , and let x and t be the spatial coor-
dinates and time, respectively. We describe the Navier–Stokes equations governing
fluid flows in an Eulerian frame with x fixed in space. Under the assumption of
incompressibility, the Navier–Stokes equations are

ρf

(
∂v
∂t

∣
∣
∣
∣
x

+ v · ∇xv
)

= ∇x · Tf + ρf g, (1)

∇x · v = 0, (2)

where ρf , v, Tf , and g are the density, velocity, Cauchy stress, and the body
forces, respectively, and ∂(·)/∂t |x and ∇x denote the time-derivative and gradient
operators, respectively, with respect to the Eulerian coordinates x. We assume that
the Cauchy stress is given in Newtonian form:

Tf = −pI+ 2μf D, (3)

where p and μf are the pressure and the viscosity, respectively, I is the identity
tensor, and D is the deformation rate tensor given by

D = 1

2

{
(∇xv)+ (∇xv)T

}
. (4)

The Dirichlet and Neumann boundary conditions given at the corresponding subsets
of Γf , namely Γfv and Γf t , are written, respectively, as

v− v = 0 at Γfv, (5)

Tf · nf − tf = 0 at Γf t , (6)

where v and tf are given functions and nf is the unit normal vector of the boundary
pointing outward. Equation (5) denotes that the flow is subject to the no-slip
condition at the boundary.
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Let δ be the variational operator to the unknown functions and their functionals.
The weak form of the boundary value problem is given by

δWf = 0, (7)

where δWf is the virtual power given by

δWf =
∫

Ωf

δv · ρf

(
∂v
∂t

∣
∣
∣
∣
x

+ v · ∇xv− g
)

dΩ +
∫

Ωf

δD : Tf dΩ −
∫

Γf t

δv · tf dΓ

+
∫

Ωf

δp (∇x · v) dΩ, (8)

where δv and δp are the virtual velocity and pressure, respectively, and δD is

δD = 1

2

{
(∇xδv)+ (∇xδv)T

}
. (9)

2.2 Structural Deformations

Let Ω0s and Ωs be the initial and current domains of the structures, respectively,
with Γ0s and Γs the corresponding boundaries, respectively. Let X be the material
(i.e., Lagrangian) coordinates of the structures. We use the Cauchy equilibrium
equation to describe the deformation of a structure relative to its initial configu-
ration:

ρ0s
∂2u
∂t2

∣
∣
∣
∣
X

= ∇X ·
(

Ss · FT
)
+ ρ0sg, (10)

where ρ0s is the nominal density of the structure, u is the displacement, Ss and F are
the second Piola–Kirchhoff stress and deformation gradient tensors, respectively,
and ∂(·)/∂t |X and ∇X are the time-derivative and gradient operators, respectively,
with respect to the Lagrangian coordinates X. We assume that the stress tensor is
given in Saint-Venant form:

Ss = λs (trE) I+ 2μsE, (11)

where λs and μs are Lamé constants and E is the Green–Lagrange strain tensor
given by

E = 1

2

{
(∇Xu)+ (∇Xu)T + (∇Xu) · (∇Xu)T

}
. (12)
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The Dirichlet and Neumann boundary conditions given at the corresponding
boundaries Γsu and Γst are written, respectively, as

u− u = 0 at Γsu, (13)

Ts · ns − ts = 0 at Γst , (14)

where u and ts are given functions, Ts is the Cauchy stress, and ns is the outward
normal vector of the boundary.

We describe the weak form of the boundary value problem as

δWs = 0, (15)

where δWs is the virtual power given by

δWs =
∫

Ω0s

δu̇ · ρ0s

(
∂2u
∂t2

∣
∣
∣
∣
X

− g
)

dΩ +
∫

Ω0s

δĖ : SsdΩ −
∫

Γst

δu̇ · tsdΓ, (16)

where the dot above u̇ and Ė denotes the Lagrangian time derivative. Thus, δu̇ is the
virtual displacement rate and δĖ is given by:

δĖ = 1

2

{
(∇Xδu̇)+ (∇Xδu̇)T + (∇Xδu̇) · (∇Xu)T + (∇Xu) · (∇Xδu̇)T

}
.

(17)

2.3 FSI and Flow with Moving Boundaries

(i) FSI with No Slip We begin by considering the frequently used no-slip interface
as our fluid–structure interface, denoted by Γi . The FSI conditions for the no-slip
interface are given by

v− u̇ = 0 at Γi, (18)

−Tf · ni + Ts · ni = 0 at Γi, (19)

where ni is the normal vector of the interface and is defined by ni = ns = −nf .
We use an LM method to impose the FSI conditions weakly on the fluid and the

structures [76, 86, 118], giving a monolithic variational (weak) formulation of the
FSI problem:

δWf + δWs + δWi = 0, (20)
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where δWf and δWs are given by Eqs. (8) and (16), respectively, and δWi is the
weak form of the above FSI conditions and is written as

δWi =
∫

Γi

δλ · (v− u̇) dΓ +
∫

Γi

(δv− δu̇) · λdΓ, (21)

where λ is the LM function that corresponds to the coupling force at Γi and yields

Tf · ni = Ts · ni = λ at Γi (22)

in strong form (see [76]). Therefore, Eq. (21) ensures velocity continuity and force
balance simultaneously.

(ii) FSI with Slip Because finely adjusting the strong and corresponding weak
forms of the FSI conditions provides various interfacial cases, we describe some
useful cases below. For an interface with slip but no friction, velocity continuity is
written as a scalar constraint, namely

(v− u̇) · ni = 0 at Γi, (23)

and consequently Eq. (21) becomes

δWi =
∫

Γi

(δλnni ) · (v− u̇) dΓ +
∫

Γi

(δv− δu̇) · (λnni ) dΓ, (24)

where λn is the scalar LM function that forces continuity of the fluid and structural
velocities at Γi in the normal direction and forms a pressure jump at Γi .

If the interface has friction, we can decompose the vectorial LM λ into a normal
component λnni and tangential components λt ti . This decomposition provides an
augmented LM method with penalty terms when the tangential components are
projected formally onto the velocity function spaces:

δWi =
∫

Γi

(δλnni ) · (v− u̇) dΓ +
∫

Γi

(δv− δu̇) · (λnni ) dΓ

+
∫

Γi

(δv− δu̇) · α (v− u̇) dΓ, (25)

where α is the penalty parameter that models friction. The relative velocity in the
third term of Eq. (25) is the tangential velocity in practice because the first term
forces the relative velocity onto Γi (see [15, 18, 19]).

(iii) Weak Imposition of Dirichlet Boundary Conditions For flow with a bound-
ary or interface that moves according to a given displacement-rate function u̇(X, t),
we can rewrite Eq. (20) as
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δWf + δWiu̇ = 0, (26)

with the virtual power δWiu̇ being

δWiu̇ =
∫

Γiu̇

δλ · (v− u̇(X, t)
)
dΓ +

∫

Γiu̇

δv · λdΓ, (27)

where Γiu̇ denotes the moving interface or boundary. In that case, λ becomes
the reaction force from Γiu̇ to the flow. Equation (27) covers naturally the weak
imposition of Dirichlet boundary conditions of Eq. (5), where we mean that the
boundary does not move but the velocity of the flow is specified by a given function
v(x, t) at the boundary. In that case, we are able to replace u̇(X, t) in Eq. (27) by
v(x, t) to give

δWiv =
∫

Γiv

δλ · (v− v(x, t)
)
dΓ +

∫

Γiv

δv · λdΓ. (28)

where Γiv can also be written as Γfv .

3 Extended Finite Element Method for FSI Interfaces

The weak formulations of FSI conditions given by Eq. (21) or its variants enable a
fluid mesh to capture interfaces between structures while enabling structural meshes
to embed interfaces in a fluid mesh. In a broad sense, the weak formulation is
considered a technique for imposing fluid and structural continuity on the respective
equations. However, IC meshes do not have the interface-fitted function spaces
that IT meshes have with proper smoothness and discontinuity by nature. This
means that the capturing meshes cannot approximate boundary layers smoothly
and sharply, nor can they reproduce interfacial discontinuities with sufficient
smoothness and sharpness. These deficiencies decrease the quality and credibility
of computational results and convergence. This section describes the XFEM for FSI
interfaces as a solution to these issues. To the best of our knowledge, Legay and
Zilian (née Kölke) [76–78, 80], Gerstenberger [81–85], and Sawada [75, 79, 86–
90] are the pioneers in this area. As mentioned in Sect. 1, the methods proposed by
those authors can be referred to collectively as the IRC method or technique for FSI
and flow with moving boundaries. This is because the fluid elements crossed by the
interface not only capture the interface but also reproduce the discontinuity.
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Fig. 1 Illustration of spatial profiles of (a) velocity and (b) pressure at and near a no-slip interface
between a fluid and a thin structure. One way to approximate such a profile is to combine weak
and strong discontinuities

3.1 Fluid–Shell Interactions

We begin by considering FTSI, in which a thin structure is modeled as a 2D
(resp. 1D) surface in a 3D (resp. 2D) flow by structural elements such as shells,
membranes, and beams, and the interface Γi is approximated by a neutral plane
of structural elements [129]. In such cases, Γi partitions the fluid flow physically
into flows on either side of Γi , and this partitioning requires discontinuity for the
finite element function spaces of the flow. For no-slip interfaces, the discontinuity
is described by a weak (i.e., gradient) discontinuity of velocity and a strong
discontinuity of pressure, as illustrated in Fig. 1a, b, respectively [77]; for slip
interfaces, the discontinuity is described by a strong discontinuity for both. If the
discontinuities are not given to the function spaces of flow or if continuous fluid
elements are employed without care,1 flows on both sides can become coupled. This
coupling becomes worse and more apparent with Reynolds number and is observed
as, for example, penetration, inverse flow, artificial vortices, and underestimation of
pressure and FSI forces.

(i) Enrichments for No-Slip Interface To give the proper discontinuity to the
flow function spaces at Γi , we enrich the finite element function spaces of velocity
and pressure locally at the elements crossed by Γi with a framework of XFEM
enrichment [110–112]. Figure 2 shows a representative geometry for the fluid and
structural meshes. Let Qfi represent the set of nodes covering the fluid elements
crossed by Γi , let Qf represent all nodes including Qfi , and let us suppose the

1An elegant technique and concept proposed by Tezduyar and named FSILT-ED (fluid–solid
interface locator technique-extended domain) can be found in [28, 33, 34, 37]. FSILT-ED applies
a stabilized LM method or a penalty method at the interface, with an elaborate treatment of the
interpolation of pressure across the interface, introducing fluid domains extended virtually from
one side of the interface to the other. We consider the ED technique as a way to extrapolate from
one side to the interface in a finite element. See [28, 33, 34, 37].
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Fig. 2 Interface-capturing fluid mesh and interface-embedding Lagrangian mesh of a thin struc-
ture (filled square: fluid nodes enriched; open square: fluid nodes not enriched; filled circle:
Lagrangian nodes of structure)

elements to be Q1Q1 elements that have bi-linear shape functions for velocity and
pressure. The enrichments for the no-slip interface are written as

v (x, t) =
∑

I∈Qf

NIVI + e (x, t)
∑

I∈Qf i

NI ṼI , (29)

p (x, t) =
∑

I∈Qf

NIPI + h (x, t)
∑

I∈Qf i

NI P̃I , (30)

where NI is the Q1 shape function of fluid node I , VI and PI are the usual nodal
unknowns for the velocity and pressure, respectively, and ṼI and P̃I are the new
unknowns for the enrichments. In Fig. 2, the fluid nodes that have the new unknowns
(i.e., the enriched nodes) are depicted as black squares whereas the non-enriched
nodes are depicted as white squares.

The functions e(x, t) and h(x, t) are the enrichment functions for the weak and
strong discontinuities, respectively. We use the following functions [77, 86]:

e (x, t) = |f (x, t)| = h (x, t) f (x, t) , (31)

h (x, t) = sign {f (x, t)} , (32)

where f (x, t) is the level-set function defined as the signed distance from Γi

computed with the finite element approximation [112] as follows:
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Fig. 3 (a) Level-set function defining signed distance from interface; (b) edge and (c) Heaviside
enrichment functions for weak and strong discontinuities, respectively, with normal vector of
interface pointing to the right (filled square: enriched fluid nodes; center line: interface; bold line:
function)

f (x, t) =
∑

I∈Qf

NIFI , (33)

where FI is the nodal level set of fluid node I given by

FI = min
x∈Γi

|xI − x| · sign {(xI − x) · ni (x, t)} , (34)

where x and xI are the spatial coordinates of Γi and node I , respectively. The
level-set and enrichment functions are shown in Fig. 3 with the normal vector ni

pointing to the right. We call e(x, t) and h(x, t) the edge and Heaviside functions,
respectively, to distinguish between their different purposes.

Legay and Kölke [77] first proposed a set of the edge and Heaviside functions,
using it with Q1Q1 function spaces to enrich Q2Q1 velocity and pressure function
spaces that satisfied the well-known inf-sup condition. By comparison, our approach
proposed in [79] and described herein enriches Q1Q1 function spaces with the
same Q1Q1 spaces. Therefore, we employ the SUPG (streamline upwind/Petrov–
Galerkin), PSPG (pressure stabilizing/Petrov–Galerkin), and (if necessary) DCDD
(discontinuity-capturing directional dissipation) stabilization techniques proposed
by Brooks, Hughes, Tezduyar, and others [97–102, 105, 107, 109], which were
extended to the VMS (variational multiscale) method [103, 104, 106, 108], as
an enhanced Petrov–Galerkin formulation of Eq. (8) to stabilize flows with sharp
interfaces and the equal-order function spaces. The weak form of the no-slip FTSI
problem is given by Eqs. (20) and (21).

(ii) Enrichments for Slip Interface For interfaces with slip, we can apply the
Heaviside function h(x, t) to the velocity enrichment, giving

v (x, t) =
∑

I∈Qf

NIVI + h (x, t)
∑

I∈Qf i

NI ṼI , (35)
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Fig. 4 (a) Step and (b) edge functions for positive domain of level-set function (filled square: fluid
nodes; center line: interface; bold line: function)

on which Eq. (24) imposes the frictionless slip condition while Eq. (25) models slip
with friction. Note that Eq. (21) imposes the no-slip condition. If the edge function
e(x, t) is used on velocity instead of the Heaviside function, the slip becomes equal
on either side. In this way, enrichments provide a way to model various types of
interface in combination with the weak imposition of interfacial continuities.

3.2 Fluid–Solid Interactions

Gerstenberger and Wall [81] proposed XFEM for fluid–solid interactions. We
introduce their method herein as a precursor to Sect. 3.3.

(i) Step Function for a Thick Solid For fluid–solid interactions in which the
solid occupies a finite volume in the fluid mesh, the step function s(x, t) shown in
Fig. 4a is introduced to define the physical fluid domain in the mesh. The function
spaces are given by multiplying the original function spaces and the step function
as follows:

v (x, t) = s (x, t)
∑

I∈Qf

NIVI , (36)

p (x, t) = s (x, t)
∑

I∈Qf

NIPI , (37)

where s(x, t) cuts off non-physical spaces from the originals and reproduces
interface-fitted ones. Figure 5 shows the no-slip case. Equation (36) can also be
written as the following equation (pressure is omitted) considering that Qf includes
Qfi in the present notation:
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Fig. 5 Illustration of spatial
profiles of (a) velocity and
(b) pressure at and near a
no-slip interface between a
fluid and a solid structure

v (x, t) = s (x, t)
∑

I∈Qf \Qf i

NIVI + s (x, t)
∑

I∈Qf i

NIVI . (38)

The step function s(x, t) is given by the level-set function f (x, t). The weak form
of FSI is given by Eq. (20).

(ii) Multiple Step Functions for a Thin Solid For fluid–solid interactions in which
the solid is thick but the thickness does not exceed the width of a fluid element,
Gerstenberger and Wall [81] proposed the following multiple function spaces:

v (x, t) =
∑

I∈Qf \Qf i

NIVI+s+ (x, t)
∑

I∈Qf i

NIV+I +s− (x, t)
∑

I∈Qf i

NIV−I , (39)

where s+(x, t) and s−(x, t) are step functions that define the fluid domain on either
side of the thin solid. The function spaces can be written in a simple alternative form
corresponding to Eq. (36):

v (x, t) = s+ (x, t)
∑

I∈Qf

NIV+I + s− (x, t)
∑

I∈Qf

NIV−I . (40)

The pressure can be written in the same form. The weak form of an FSI problem
has two constraints for the two interfaces and is written as

δWf + δWs + δW+i + δW−i = 0, (41)

where δW+i and δW−i are given by Eq. (21) when the no-slip condition applies.

3.3 Flow Around Fixed Objects

To compute flow around fixed objects, Eqs. (36) and (37) provide suitable func-
tion spaces to find a solution of Eq. (26). In contrast, XFEM also provides an
approach [75, 89] that does not require the weak imposition of the no-slip condition
given by u̇(X, t) = 0 at Γi . The latter technique is given by shift-type enrichment:



448 T. Sawada

v (x, t) = s (x, t)
∑

I∈Qf \Qf i

NIVI + e+ (x, t)
∑

I∈Qf i

NIVI , (42)

where the enrichment function for the interfacial fluid nodes Qfi is shifted from
the step function s(x, t) to the one-sided edge function e+(x, t) shown in Fig. 4b,
compared with Eq. (38). Because the edge function is naturally zero at Γi , Eq. (42)
meets and reproduces the no-slip condition as shown in Fig. 5a. The pressure is given
by Eq. (37). The weak form to be solved is only δWf = 0 of Eq. (7), which requires
neither LMs nor penalties. Although the degeneration is valid for flows around fixed
bodies or along fixed boundaries, and blending elements/functions occur, there are
cases where this approach is useful. In practice, we apply the technique based on
Eq. (42) to compute flows in microstructures [75] with extension to fluid and solid
phases on a voxel mesh, and to develop a user-friendly tool for computational fluid
dynamics [89]. Applications are shown in Sect. 9.

3.4 Remarks on Enrichment

We make some remarks on enrichment and discuss some open issues and practical
solutions.

(i) Spatial Gradient Because enrichment functions tend to have spatial profiles,
the gradients are taken into account for the spatial gradients of unknown functions
through a chain rule as follows. Let a represent an unknown function such as a
velocity or pressure, with AI and ÃJ the usual and new nodal unknowns for a,
respectively. Let φ(x, t) represent the enrichment function. A general form of the
finite element approximation of a with enrichments can be written as

a (x, t) =
∑

I∈Qf

NI (x)AI (t)+
∑

J∈Qf i

φ (x, t)MJ (x) ÃJ (t) , (43)

where we have supposed cases for which NI = MJ and NI "= MJ . Thus, the spatial
gradient of a with respect to x is given by

∇xa =
∑

I∈Qf

(∇xNI )AI +
∑

J∈Qf i

{(∇xφ)MJ + φ (∇xMJ )} ÃJ . (44)

For functions such as the Heaviside function h(x, t), ∇xφ is zero and the corre-
sponding term of Eq. (44) vanishes. For functions such as the edge function e(x, t),
∇xφ has a finite value that we compute using Eq. (33) and the definition of φ(x, t).
For example, the gradient of e(x, t) is given by

∇xe (x, t) = h (x, t)∇xf (x, t) = h (x, t)
∑

I∈Qf

(∇xNI ) FI . (45)
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(ii) Time Derivative For FSI and flow with moving boundaries, the enrichment
function varies also in time at the spatial point x. In theory, this time dependence
affects the time derivatives of a as follows:

∂a
∂t

∣
∣
∣
∣
x

=
∑

I∈Qf

NI

∂AI

∂t

∣
∣
∣
∣
x

+
∑

J∈Qf i

MJ

(
∂φ

∂t

∣
∣
∣
∣
x

ÃJ + φ
∂ÃJ

∂t

∣
∣
∣
∣
∣
x

)

, (46)

where the second and third terms represent the time dependence. How to compute
the second and third terms when we apply XFEM to dynamical interfacial problems
remains an open issue. For example, Legay and Zilian proposed an enriched space-
time (EST) method for computing the time dependence in 2D applications [77, 78,
80]. Our approach employs a finite difference method in time, in which we compute
∂φ/∂t |x explicitly at every iteration step in an implicit time integration; this is the
same as computing a convective velocity using the Navier–Stokes equations. We

use the finite difference scheme to compute ∂ÃJ /∂t

∣
∣
∣
x

implicitly, as well as other

time-dependent quantities.

(iii) Integration of Fluid Elements Crossed by Interface Discontinuities at the
interface require practicable measures [130, 131] for numerical integration of the
fluid elements crossed by the interface. This point is a long-standing issue in XFEM.
One standard solution is to integrate each fluid element using locally interfacially fit-
ted triangular/tetrahedral cells as illustrated in Fig. 6a [76, 80, 81, 83, 110–112]. This
approach is reasonable in relation to consistency and practical accuracy. However, it
is often regarded as a drawback to XFEM because one of the expectations of XFEM
is that it is mesh-free. For FSI and flow with moving boundaries, this approach
requires triangulation/tetrahedralization at every iteration step in the nonlinear
time-dependent computations because the interfaces are moving. Considering these
drawbacks, we apply many-point Gaussian quadrature to the integration of enriched
elements as shown in Fig. 6b; the numerical accuracy are reported in [86], which
we summarize in Sect. 7. By this way, we remove such interface-fitting background
procedures from the computation of FSI based on XFEM, prioritizing instead its
enhanced applicability to geometrically complex problems in combination with
the LLM technique described later. If one is faced with unacceptable numerical
accuracy, triangulation or adaptive h-refinement quadrature (see [19, 132]) is
recommended as another solution.

4 Lagrange Multiplier Technique for FSI

This section describes the LLM technique for finite element computation of Eq. (21)
and its variants. The LLM technique was proposed in [79] and removes the need for
any interface-fitted background procedures in the present XFEM in combination
with quadrature of the LMs and the fluid elements crossed by Γi . The numerical
aspect and performance of the LLM technique are reported in [86, 88].
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Fig. 6 Domain integration of an fluid element crossed by an interface: (a) triangulation to
interfacially fitted sub-cells; (b) many-point Gaussian quadrature (filled square: fluid nodes;
triangle: integration points; thick line: interface)

Fig. 7 Finite element discretization of Lagrange multiplier (LM) space: (a) intersection approach;
(b) Lagrangian mesh approach (filled square, open square fluid nodes; filled circle: LM nodes)

(i) Intersections and Lagrangian Nodes Let us suppose an FTSI in which the
discontinuities at Γi are enriched by a set of edge and Heaviside functions. Figure 7
illustrates the LLM approach alongside a major approach in this area, namely the
intersection approach [76, 80, 81, 83]. The intersection approach discretizes the LM
function space at the intersections of Γi and the edges of the fluid elements and
triangulates them to complete the LM function spaces. An essential advantage is that
the FSI conditions can be imposed reliably, whereas a drawback is the geometrical
gap between the intersection line and the Lagrangian mesh line, which limits the
convergence. In contrast to the intersection approach, the LLM technique discretizes
the LMs at the Lagrangian nodes of the structural mesh on the interface Γi , and the
shape functions for displacement are also used for the LMs. In other words, the LLM
technique uses the Lagrangian mesh not only for structures but also for the LMs
to discretize Eq. (21) without triangulation. Compared with the intersection-based
method, the LLM approach involves no geometrical gaps between the Lagrangian,
Eulerian, and multiplier meshes.

(ii) Function Spaces for Constraints To describe the LLM technique, let Qs

represent the Lagrangian nodes on Γi with LJ the shape functions on Γi . For FTSI,
Γi is the neutral plane of a structural element and LJ are the shape functions defining
the plane. The finite element function spaces for the LM and its variational are
written, respectively, as
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λ (Xi , t) =
∑

J∈Qs

LJ (xi )ΛJ at Γi, (47)

δλ (Xi , t) =
∑

J∈Qs

LJ (xi ) δΛJ at Γi, (48)

where Xi represents the Lagrangian coordinates of Γi tracking the present position,
xi = x(Xi , t) and denotes that λ is the Lagrangian variable in the technique, and
ΛJ and δΛJ are the nodal unknowns and variational, respectively. ΛJ is the new
unknown for node J . The function spaces for the structural displacement rate and
its variational are the same as those for the LM and are written, respectively, as

u̇ (Xi , t) =
∑

J∈Qs

LJ (xi ) U̇J at Γi, (49)

δu̇ (Xi , t) =
∑

J∈Qs

LJ (xi ) δU̇J at Γi, (50)

where U̇J are the nodal displacement rates and thus UJ are the nodal displacements.
The function space for the velocity of the fluid at Γi is given through interpolation
from the fluid elements crossed by Γi and is written as

v (xi , t) =
∑

I∈Qf i

NI (xi )VI at Γi, (51)

δv (xi , t) =
∑

I∈Qf i

NI (xi ) δVI at Γi, (52)

from which the enrichment term of Eq. (29) ensuring weak discontinuity at Γi is
absent because in theory the edge function e(x, t) becomes zero at Γi . This property,
namely e(xi , t) = 0, enables us to discretize Eq. (21) using only the usual parts of
the FEM.2

2XFEM can accept various types of enrichment function φ(x, t). For example, as well as the edge
function e(x, t), the ramp function r(x, t) given by

r (x, t) =
∑

I∈Qf

NI |FI | − e (x, t) (53)

can reproduce a weak discontinuity and is generally considered superior to the edge function in
doing so because it can reproduce the discontinuity within crossed elements without the need for
partially enriched surrounding elements called blending elements in XFEM. However, if we adopt
the ramp function, the interfacial velocity has time-dependent enrichment terms as follows:

v (xi , t) =
∑

I∈Qf i

NI VI + r (xi , t)
∑

I∈Qf i

NI ṼI , with r (xi , t) =
∑

I∈Qf i

NI |FI | . (54)
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(iii) Integration for Constraint Equation The LLM technique applies Gaussian
quadrature to Eq. (21) on the Lagrangian mesh, taking care of any over- or under-
constraining fluid function spaces [118, 133, 134]. The practical strategy that we use
currently is as follows:

1. Over-constraints occur when a Lagrangian structural mesh is finer than the fluid
mesh. This is because the smoothness of the displacement rate of the structure
cannot be reproduced by the function space of the flow. Therefore, we apply the
LLM technique in well-conditioned situations in which (i) the resolutions of the
structural and fluid meshes are approximately equal around Γi and (ii) the fluid
mesh is finer than the structural mesh around Γi .

2. However, the preferred setting can give rise to under- or no-constraints if
there are too few quadrature points. The LLM technique increases the number
of quadrature points adaptively while considering locally the difference in
resolution between the fluid and structural meshes. In most cases, we use six
to ten points for each natural coordinate of a structural element. This adaptive
increase (or decrease) enhances the solution.

3. Although potential relaxation techniques already exist, basically we do not
introduce them because the restriction is reasonable considering the boundary-
layer resolution.

The LLM technique discretizes the first term of Eq. (21) as

∫

Γi

δλ · vdΓ =
∑

J∈Qs

∑

I∈Qf i

δΛJ · VI

∫

Γi

LJ

(
x∗i
)
NI

(
x∗i
)
dΓ, (55)

where x∗i denotes that the number of quadrature points of the structural element
has increased. At each x∗i , a fluid element is sought that covers x∗i , and the set of
interpolation functions NI (x∗i ) of the fluid velocity are computed by an iteration
scheme. After computation of a Lagrangian element, the LLM technique checks
whether there are unconstrained fluid elements crossed by the Lagrangian element.
If there are, the Lagrangian element is recomputed with adaptive increase of the
number of integration points. The third term of Eq. (21) is given by the transpose of
Eq. (55). The discretized form is given by

∫

Γi

δv · λdΓ =
∑

I∈Qf i

∑

J∈Qs

δVI ·ΛJ

∫

Γi

NI

(
x∗i
)
LJ

(
x∗i
)
dΓ. (56)

For FSI and flow with moving boundaries, enrichment functions that meet neither ∂φ(xi , t)/∂t = 0
nor φ(xi , t) = 0 seem to cause temporal instability even if the time dependence is accounted for
in the computation. We therefore select the edge function for the enrichment.
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For Eq. (55), the set of shape functions NI (x∗i ) is the interpolation of v(xi , t) from
the Eulerian nodes to the Lagrangian point. For Eq. (56), those are the distribution
of λ(Xi , t) from the Lagrangian point to the Eulerian nodes.

Meanwhile, the LLM technique completes the second term of Eq. (21) with the
Lagrangian mesh only. The discretized form is given by

∫

Γi

δλ · u̇dΓ =
∑

J∈Qs

∑

K∈Qs

δΛJ · U̇K

∫

Γi

LJ (xi ) LK (xi ) dΓ (57)

and is computed on the Lagrangian mesh with normal quadrature points. Its
transpose gives the final term of Eq. (21), which is written as

∫

Γi

δu̇ · λdΓ =
∑

K∈Qs

∑

J∈Qs

δU̇K ·ΛJ

∫

Γi

LK (xi ) LJ (xi ) dΓ. (58)

5 Spatial Discretizations of FTSI Equation

In previous sections, we have described FSI techniques for FTSI and fluid–solid
interactions, focusing on the interface. In practice, most of our applications are
of FTSI, in which the structure is modeled by structural elements such as shells,
beams, and membranes. The spatial discretization of Eq. (20) for FTSI problems is
summarized as follows [88]:

1. For deformation of thin structures, the Cauchy equilibrium equation described
in the total Lagrangian weak form δWs of Eq. (16) is employed. The δWs

is discretized by the MITC (mixed interpolation of tensorial components) Q1
shell elements proposed by Dvorkin, Bathe, and others [135–138]. The shell is
described using Reissner–Mindlin plate theory and has locking-free shear-strain
function spaces and finite rotation increments. The “Q1” denotes that the neutral
plane is defined by bi-linear shape functions.

2. For fluid flow, the Navier–Stokes equations given by δWf of Eq. (8) are
employed. The δWf is Eulerian and is discretized by mixed Q1Q1 elements with
the SUPG, PSPG, and DCDD stabilization techniques and formulations proposed
by Brooks, Hughes, Tezduyar, and others [97, 100, 101, 105, 107, 109].

3. At the interface, we assume the no-slip condition. The Q1Q1 elements crossed by
the interface are enriched by the set of edge and Heaviside functions proposed
by Legay and Kölke [77] to reproduce weak and strong discontinuities. These
enrichments are written as Eqs. (29) and (30).
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4. The no-slip condition is imposed by the weak form of δWi in Eq. (21). The δWi

is discretized by the LLM technique, which embeds Lagrangian interfaces in an
Eulerian mesh that thereby captures the interfaces.

For fluid–solid interactions, solid elements and a different set of enrichments such
as Eqs. (36) and (37) can be employed.

6 Time Integration

After completing the spatial discretization of Eq. (20), simultaneous nonlinear finite
element matrix equations are obtained as an assemblage and are solved as a
monolithic equation system in this method [88]. The Newmark-β method [119]
is employed as an implicit time integration scheme of the equation, in which the
Newton–Raphson method is employed as a tangential iteration scheme for solving
the nonlinear equation system.

(i) Matrix Equation The fully assembled matrix equation that we solve at every
nonlinear iteration to find the increments is written as

⎡

⎢
⎣

A∗ff O BT
if

O A∗ss −BT
is

Bif −Bis O

⎤

⎥
⎦ ·Δ

⎧
⎨

⎩

Φf

Φ̇s

Φ i

⎫
⎬

⎭
=
⎧
⎨

⎩

Rf

Rs

Ri

⎫
⎬

⎭
, (59)

where A∗ff is the fluid matrix composed of all terms with the secant form of the
convection term, A∗ss is the structure matrix composed of mass and tangent stiffness,
Bif and Bis are the LM matrices given by Eqs. (55) and (56), respectively, and Rf ,
Rs , and Ri are the residual vectors given by Eqs. (8), (16), and (21). The unknown
vectors Φf , Φ̇s , and Φi with increment notation Δ are defined, respectively, as

Φf =
{ · · · VI ṼI PI P̃I · · ·

}T
, (60)

Φ̇s =
{ · · · U̇J Θ̇J · · ·

}T
, (61)

Φi =
{ · · · ΛJ · · ·

}T
, (62)

with ṼI and P̃I set to zero for the non-enriched fluid nodes and where Θ̇J is
the nodal finite rotation rate of the shell element [135–138]. Equation (59) is
solved by the generalized minimal residual (GMRES) iterative solver [139] with
the incomplete LU(1) preconditioner, where the numeral in round brackets denotes
the fill-in level of the LU-decomposition-based preconditioner.

(ii) Time Integration Algorithm A typical computational algorithm uses the
following scheme:
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1. Generate Eulerian mesh for fluid domain
2. Generate Lagrangian meshes for thin structures
3. Start and advance the implicit time integration: t = t +Δt

(a) Search fluid nodes around structures to reduce XFEM computations below
(b) Compute level-set function of fluid nodes: f (x, t)
(c) Set up IRC fluid nodes: Qfi

(d) Compute finite element matrices and vectors of Eq. (59)
(e) Solve Eq. (59) as a monolithic equation by ILU(1)-GMRES
(f) Update unknown variables Φ and position of Lagrangian meshes
(g) Judge convergence. If not converged, go to (a).

4. Judge integrated time. If not finished, go to 3.

This algorithm does not differ much from the usual implicit scheme except for
3(a), 3(b), and 3(c), which are pre-conditions of XFEM, because no triangula-
tion/tetrahedralization procedures are used. Another merit is that the size and
structure of the LM array Φi do not change throughout the simulation despite
the fact that this array changes with every update of the interface position for the
intersection-based LM method. These features simplify the computation program
and scheme and also seem to have a stabilizing effect on the time integration of the
LM-based coupling.

7 Numerical Tests for Flows with a Domain-Partitioning
Interface

Before applying XFEM to FSI problems, the validity of the XFEM for FSI interfaces
is often checked using domain-partitioning interface (DPI) problems. The DPI
problems check whether a discontinuity enriched by XFEM can partition a flow
domain into two domains at the interface. Herein, we discuss a DPI problem that
we introduced in [86, 88] and show excerpts of the numerical results. The results
indicate which terms are important when we compute FSI problems using IC
methods.

Flow with a Cylindrical DPI The DPI problem in [86, 88] is an extension of the
flow around a cylinder. Figure 8a shows the setup, in which we consider a cylinder
in a square channel as a thin wall Γi partitioning the flow channel into inner and
outer domains of the cylinder. The diameter of the cylinder is half the length of
the channel. The left and right sides of the channel are the inflow and traction-free
outflow boundaries, respectively. The upper and lower sides are slip boundaries. At
the cylindrical Γi , the no-slip condition given by u̇ = 0 is imposed weakly by the
LLM technique, and the flow functions across Γi are enriched by the set of edge and
Heaviside functions. A weak form of the DPI problem is given by Eqs. (26) and (27)
with u̇(Xi , t) = 0. The Reynolds number is given by Re = ρf VD/μf , where D is
the diameter of the cylinder and V is the inflow speed at the left side of the channel.
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Fig. 8 Flow with a domain-partitioning cylinder and two types of fluid mesh: (a) problem setup;
(b) non-interface-fitted mesh; (c) interface-fitted mesh

The fluid mesh is regular and an example is shown in Fig. 8b. The boundary Γi is
also divided uniformly into Q1 LM elements. The divisions are determined by the
element-length equations:

ls = εlf with ls = πD/ns, lf = 2
√

2D/nf , (63)

where ls and lf are the element lengths of the multiplier and the fluid mesh,
respectively, and ns and nf are the respective divisions. The parameter ε is the
ratio of the resolution of the fluid mesh to that of the multiplier mesh; ε > 1
indicates that the fluid mesh is finer than the multiplier mesh. Normally, we have
ε = 1, which corresponds to having one LM per fluid element in general. The
interface-fitted mesh of Fig. 8c, which has nearly the same element length as that of
the non-interface-fitted mesh of Fig. 8b on average, gives a reference result.

7.1 Tests on Quadrature of Fully Enriched Fluid Elements

In [86], we conducted detailed numerical tests on Gaussian quadratures of the fully
enriched fluid elements crossed by the interface, in which we varied the number of
quadrature points, the mesh resolution, and the Reynolds number. Figures 9 and 10
extract the numerical results for

Re = 10, nf = 100, ε = 1, qf = 2, 3, 4, qi = 10,

and

Re = 1000, nf = 100, ε = 1, qf = 2, 4, 6, qi = 10,

respectively, where qf denotes the number of quadrature points of the enriched
elements per local coordinate and qi denotes the corresponding number for the LM
elements. The corresponding number for non-enriched fluid elements are two points.
Each figure shows computed nodal velocities and LMs after normalization by the
inflow velocity V and the reference pressure 1/2ρf V

2, respectively. Figures 9d
and 10d show the reference results obtained with the interface-fitted mesh.
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Fig. 9 Quadrature of enriched fluid elements: Re = 10 with nf = 100, ε = 1, and qi = 10. (a)
qf = 2. (b) qf = 3. (c) qf = 4. (d) Reference

Fig. 10 Quadrature of enriched fluid elements: Re = 1000 with nf = 100, ε = 1, and qi = 10.
(a) qf = 2. (b) qf = 4. (c) qf = 6. (d) Reference
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These results tell us the following:

1. The numerical solutions are enhanced by increasing the number qf of quadrature
points. They show convergence to the reference solution given by the interface-
fitted mesh.

2. For low Reynolds number (i.e., approaching Stokes flow), Gaussian quadrature
gives an acceptable result even if the number of quadrature points is small. As
the Reynolds number is increased, the integration accuracy gradually decreases.
However, Fig. 10 shows that the accuracy can be enhanced by applying more
quadrature points.

3. When the number of quadrature points is insufficient, the enrichments lose
smoothness along the interface and finally lose the discontinuity. The loss is often
observed as penetration/leakage and results in oscillation and underestimation of
LMs as can be seen in Fig. 10a.

4. If the numerical accuracy is considered acceptable, Gaussian quadrature can
be used as an approximate numerical integration scheme; otherwise, other
approaches such as interface-fitting triangulation should be considered.

For applications we are concerned with, we deem the quadrature (the number
of points of which can control the computational accuracy) to be acceptable.
Normally, we apply ten points per local coordinate considering accuracy and various
geometries.

7.2 Tests on Quadrature of Lagrange Multipliers

In [86], we also conducted numerical tests on Gaussian quadrature of the LM
elements, varying the number of quadrature points, the ratio ε of the resolution
of the fluid mesh to that of the LM mesh, and the Reynolds number to validate the
LLM technique. Figures 11 and 12 extract the numerical results for

Re = 10, nf = 100, ε = 2, qf = 10, qi = 2, 3, 4, 5,

and

Re = 1000, nf = 100, ε = 2, qf = 10, qi = 2, 3, 4, 5,

respectively, where we set qf = 10 to discuss the integration of LM elements only.3

All figures are drawn in the same way as were Figs. 9 and 10. The references are
given by Figs. 9d and 10d, respectively.

3The multiplier mesh for ε = 2 is twice as coarse as that for ε = 1 if nf is fixed. Therefore, the
multipliers shown in Figs. 11 and 12 are twice as coarse as those of Figs. 9 and 10, respectively.
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Fig. 11 Quadrature of Lagrangian LMs: Re = 10 with nf = 100, ε = 2, and qf = 10. (a) qi = 2.
(b) qi = 3. (c) qi = 4. (d) qi = 5

Fig. 12 Quadrature of Lagrangian LMs: Re = 1000 with nf = 100, ε = 2, and qf = 10. (a)
qi = 2. (b) qi = 3. (c) qi = 4. (d) qi = 5
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The numerical features of the results seem to accord with the quadrature of
enriched fluid elements. The strategies used by the LLM technique were summa-
rized in Sect. 4. For the cases of Figs. 11 and 12, the relative resolution of two (i.e.,
ε = 2) corresponds to there being roughly one LM per two or three fluid elements.
Therefore, for the LM elements, this case requires at least three quadrature points
per local coordinate. As the increase of qi , imposition of the constraint may become
smooth along the interface, which may enhance the results. When there are too few
integration points for the relative resolution ε, some elements may not be subject
to the constraint. Figures 11 and 12 meet the estimation and the inferences. The
numerical results recommend that we use more than 2ε points for better results.
Normally, we use 4ε points or more per local coordinate considering the smoothness
of the imposition and the safety factor against under-constraint. The computational
cost of doing so is nearly negligible compared with that of integrating the enriched
fluid elements. We note again that the LLM technique as it stands is unable to handle
cases for which ε < 1, as described in Sect. 4. Some results for the over-constrained
situation are also shown in [86].

7.3 Continuous Versus Discontinuous Interfaces

Using XFEM for FSI interfaces gives a way to identify numerically how the
presence of a discontinuity at the interface enhances the computational results
whereas its absence degrades them. In [88], we discussed the issue by conducting
numerical tests on four types of interface that could be modeled and reproduced by
the present XFEM. Herein, we discuss the issue, referring to the results in [88].

The four types of interface are given by turning the edge and Heaviside
function enrichments on or off separately. Doing so reproduces interfaces (a)
without discontinuity, (b) with weak discontinuity of velocity only, (c) with strong
discontinuity of pressure only, and (d) with both discontinuities. The four types
and the corresponding results will be denoted as Γ ∗∗i , Γ E∗

i , Γ ∗Hi , and Γ EH
i ,

respectively, with the two superscripts associated with the enrichments being on
or off (i.e., discontinuities). Figure 13 displays each numerical result for

Re = 10, nf = 48 ε = 1, qf = qi = 10,

and Fig. 14 does the same for

Re = 1000, nf = 48 ε = 1, qf = qi = 10.

The references are given by Figs. 9d and 10d (nf = 100), respectively.
We begin by confirming that Γ EH

i provides the most comparable results to the
corresponding references among the four interfaces. The results for Γ ∗Hi seem also
to be comparable, but the multipliers for Re = 10 have slight hour-glass mode
oscillations and a twin vortex is stimulated for Re = 1000 in the inner domain of
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Fig. 13 Continuous versus discontinuous interfaces: Re = 10 with nf = 48 and ε = 1. (a) For
Γ ∗∗i . (b) For Γ E∗

i . (c) For Γ ∗Hi . (d) For Γ EH
i

Fig. 14 Continuous versus discontinuous interfaces: Re = 1000 with nf = 48 and ε = 1. (a) For
Γ ∗∗i . (b) For Γ E∗

i . (c) For Γ ∗Hi . (d) For Γ EH
i
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Fig. 15 Continuous versus discontinuous interfaces: (a) no-slip constraint without gradient
discontinuity; (b) numerical slip for continuous function; (c) no-slip constraint with gradient
discontinuity

the cylinder. Although the results for Γ ∗∗i and Γ E∗
i seem out of the question, they

clearly show that pressure becomes dominant as the Reynolds number is increased.
Hence, Γ ∗∗i and Γ E∗

i underestimate the multipliers at an unacceptable level for
Re = 1000. The inner-domain flow is also in an unacceptable level and exhibits an
even stronger twin vortex. The flow is on the brink of penetration. For Γ EH

i , these
errors are not observed because of the existence of interfacial discontinuities. The
convergence rate of Γ EH

i shown in [88] is comparable to that of the interface-fitted
mesh. These results also remind us of the following:

1. When the FSI condition is imposed at the interface, we have to pay attention
to the numerical coupling of the flows on both sides. This coupling cannot be
neglected as the Reynolds number is increased.

2. Generally, an interface with no pressure discontinuity is unacceptable because
it causes the multiplier to be underestimated and thus also the coupling forces.
However, there is room for discussion in the case of Stokes flow.

3. One way to model the discontinuity is to use elements such as Q1P0 and
P1P0; however, these are considered to show only first-order convergence of the
discontinuity. The numerical performance is classified as Γ ∗Hi . By contrast, the
enriched Q1Q1 and P1P1 elements show second-order convergence [88] and are
more compatible with the SUPG/PSPG stabilization methods [97, 100, 101, 105,
107, 109].

4. Weak velocity discontinuity decouples the flows into separate ones on either
side and also makes the multiplier smoother. Figure 15 illustrates the underlying
mechanism [16]. If the velocity function space has no gradient discontinuity, the
no-slip condition at the interface cannot be satisfied without flow in the reverse
direction, as shown in Fig. 15a; otherwise, numerical slip or a gap is required
on the interface, as shown in Fig. 15b. The former case explains the twin vortex
stimulated in the inner domain and the hour-glass mode behavior of the multiplier
observed for Γ ∗Hi . Figure 15c corresponds to Γ EH

i .

In the aforementioned ways, XFEM for FSI interfaces and the present results
provide numerical data with which to discuss FSI interfaces.
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8 Applications to FTSI Problems

This section shows 2D and 3D applications of the present method to FTSI problems.
The method was summarized in Sect. 5. In particular, the fluttering of flexible thin
objects in a flow and its numerical simulation are introduced for benchmarking the
method and techniques. The FTSI problem contains essential difficulties of FSI
dynamics [120–128] and its numerical simulation is still classified as a theme worth
challenging because of the richness of the dynamics and the difficulties in handling
large deformations and complex geometries.

8.1 Flutter of a Flexible Filament in a Flow

We introduce 2D numerical simulations of a flexible filament in a flowing soap
flow. The given parameters are based mainly on the experiments of Zhang and
others [121], who studied the dynamics of flexible filaments as a model for 1D
flags in a 2D flow and revealed interesting quasi-statics and dynamics. Numerical
simulations of such a flow-induced flutter of a flexible object are reported in
[13, 14, 56, 59, 88, 91]. In [13] and [14], an IT ALE FEM [7], which has an interface-
fitted mesh, and a superposed-mesh version of the ALE method [14, 16] are used for
the simulation, respectively. In [88], the present method is applied, and in [56, 59],
an IB method [54, 55] is employed.

Setup Our computation approximates the experiment with a mesh of one-layer
3D elements under 2D constraints. Therefore, the parameters are written in 3D
space. We set a filament with its leading edge fixed in a flow channel. The length,
span, and thickness of the channel are 3.5L, 2.0L, and 3.0 μm, respectively, where
L = 3.6 cm is the length of the filament. The flow slips on the boundaries of the
channel. Figure 16a shows an enlarged view of the regular Eulerian fluid mesh
around the flapping filament; its resolution ratio to the Lagrangian mesh of the
filament is one (ε = 1). The density, Young’s modulus, and Poisson’s ratio of the
shell elements that discretize the filament are 1.132×103 kg/m3, 4.0 MPa, and zero,
respectively. The thickness and depth-direction width are 0.130 mm and 0.136 mm,
respectively. The density and viscosity of the fluid are 1.0×103 kg/m3 and 0.12 Pa·s,
respectively. The viscosity is increased from that of a soap solution to reduce the
computational cost and to refer to other simulations introduced above. The inflow
is uniform at a speed V of 2.2 m/s, and Reynolds number defined by the filament
length is 660. Gravity acts on the filament and the flow; the acceleration due to
gravity is 9.8 m/s2.

Results Figure 17a shows the simulation results. The left panels show the time
history of the horizontal displacement of the trailing edge of the filament. The others
show three snapshots in half a period of the local velocity norm of the flow, which
is normalized by the inflow speed V . There is no external disturbance except for
the inflow; nevertheless, the filament begins to flap and settles into a sustained
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Fig. 16 Finite element meshes for a flexible filament in a flow: (a) IC mesh for XFEM-LLM
method; (b) IT mesh for ALE method

flapping state under this condition. In [88], we also showed that if the interface
does not have a pressure discontinuity, namely for Γ ∗∗i or Γ E∗

i , the filament cannot
flap. The computed frequency of flapping is approximately 39.5 Hz. In [121], the
frequency recorded experimentally at 2.2 m/s is not stated unfortunately; however,
the frequency at 2.8 m/s is given as about 51 Hz. It is known experimentally [124]
and numerically [7] that the flapping frequency is approximately proportional to the
inflow speed because of the existence of a dominant traveling wave. The equivalent
value at 2.2 m/s is about 51×2.2/2.8 ≈ 40.1 Hz. Therefore, the computed frequency
is deemed to be reasonable. The flapping shapes shown in Fig. 17a are in good
agreement with an experimental snapshot shown in [121]. It is also known that
the filament does not flap when its mass (strictly speaking, the mass ratio to that
of the surrounding fluid) is smaller than some value [7, 56, 121, 128]. Figure 17b
shows the results for such a condition, in which the mass is half the experimental
value. The filament indeed does not flap but instead remains in what is known as the
dynamically stretched-straight state [121].

IRC Versus ALE We compute the flapping state with an IT ALE FEM [7]
to verify the IRC computation numerically. The IT mesh is shown in Fig. 16b,
where a flapping filament is almost in the same place as in Fig. 16a. The ALE
has nearly the same resolution as that of the Eulerian mesh. Figure 17c shows
the results. The time step used for the ALE computation is the same as that for
the IRC computation. Although there is a discrepancy between the IRC and ALE
computations if compared in detail, this comparison shows that the present IRC
method gives almost the same result with almost the same resolution as the IT ALE
method.
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Fig. 17 Flexible filament in a flow: (graphs) horizontal displacement of a trailing edge of a
filament; (images) numerical snapshots of norm of local flow velocity. (a) Results for IRC FTSI
method. (b) Half mass: results for IRC FTSI method. (c) Results for IT ALE FTSI method
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Fig. 18 Coupled flutter of two parallel filaments: (graphs) horizontal displacements of trailing
edges; (images) snapshots of local flow velocity; (parallel distance) d/L. (a) In-phase flapping
state: d/L = 0.15. (b) Anti-phase flapping state: d/L = 0.25

8.2 Coupled Flutter of Flexible Filaments in a Flow

In [121, 126], it is also shown experimentally that two parallel filaments in a flow
flap either in phase or in anti-phase with each other depending on the distance
between them. They flap in phase when they are closer together but in anti-phase
when they are farther apart. Of course, if the separation is large enough to sever
the coupling of the two filaments, they flap independently. For the experiment of
[121], the critical d distance separating in-phase and anti-phase flapping is given
in the range d/L = 0.21 ± 0.04 for L = 3.6 cm and V = 2.2 m/s. Although
the parameter values are either partially or totally different from those used in
the experiments, numerical simulations that capture the two states are reported in
[57, 92].

In Parallel We computed the cases for d/L = 0.15 and 0.25. The results are shown
in Fig. 18a, b, respectively. Each state is reproduced at the reasonable distance. It
is stated in [121] that the frequency of anti-phase flapping is approximately 35%
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Fig. 19 Coupled flutter of three filaments: (graphs) horizontal displacements of trailing edges;
(images) snapshots of local flow velocity; (parallel distance) d/L = 0.30. (a) One in front and two
behind. (b) Two in front and one behind

higher than that of in-phase flapping. The computed frequencies are 48.0 Hz and
33.0 Hz, respectively, which represents an increase of roughly 45%.

In Tandem Figure 18a, b shows the cases of one filament in front and two
parallel filaments behind it and vice versa, respectively. A similar simulation for
two tandem filaments (one in front and one behind) can be found in [60]. Normally,
two filaments in parallel at this distance (d/L = 0.30) flap in anti-phase, as is
the case for the front filaments of Fig. 19b. However, for the case of Fig. 19a,
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parallel filaments behind a flapping filament flap in phase with each other. Therefore,
the front filament is forcing the parallel filaments behind it to flap in phase. The
amplitudes are amplified by the flapping of the front filament. The frequencies of
the three filaments are the same, approximately 39.5 Hz. The Reynolds number
defined by twice the length of the filament is 1320. These applications demonstrate
that the present method can capture the physics of and can handle complex FTSI
problems.

8.3 Flapping Flag in a Wind

We carried out a 3D application involving a flag flapping in a wind [90] to check the
applicability of the present IRC method to FTSI problems with large deformation.
Therefore, the parameter values are partially artificial to amplify the deformation
while reducing the computational cost.

Setup The flag is 42 cm long and 30 cm wide. Its density, Young’s modulus,
Poisson’s ratio, and thickness are 1.0 × 103 kg/m3, 0.1 GPa, 0.3, and 1.0 mm,
respectively. Assuming that the flag is made of cloth, the in-plane anisotropy of the
cloth is modeled with a shear stiffness that is 3.0 × 10−4 times smaller than the
isotropic value. The density of the fluid is that of ordinary air, namely 1.2 kg/m3,
the wind speed is 10 m/s, and normal gravity acts on the flag. The fluid mesh used
is not fine enough to resolve actual boundary layers. Therefore, the viscosity is
increased so that the Reynolds number defined by the length of the flag becomes
1000. The Lagrangian mesh of the flag has a resolution ratio of ε ≈ 1.2, which
prevents the computation from locking. When two interfaces enter one fluid element
because of the large deformation, our FTSI program approximates the two as one
discontinuous surface.

Results Figure 20 shows the results for the flag flapping in the wind under gravity.
The previous applications to flexible filaments in a flow are 2D ones, whereas here
it is 3D. Each snapshot visualizes the flow around the flapping flag with streamlines
and velocity vectors at a cross section with colors representing local norms. Time
progresses from the upper-left snapshot to the lower-right snapshot. Although the
Reynolds number has been lowered, this simulation captures well the dynamical
competition between the flapping motion due to the wind and the drooping motion
due to gravity, which we see often in everyday life. We confirm the applicability of
the IRC method to an FTSI problem with large 3D deformation.

8.4 Dynamic Response of Papers to Air Blasts

As a more challenging application example, we introduce 3D simulations of the
dynamical behavior of a stack of papers to blasts of air. These simulations were
conducted in joint research with a company, so we are not allowed to describe the
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Fig. 20 3D simulation of a flag in a wind under gravity by IRC FTSI method

simulation conditions and material parameters exactly. Instead, we show some early
stage results that we reported in [87] in Japanese language.

Setup This application starts with placing a stack of papers horizontally with two
front points fixed in a rectangular computational domain, as shown in the upper
figures of Figs. 21 and 22. There are small inlets on the left and right sides of the
domain, and air blasts from these inlets flutter the papers. The bottom and sides of
the domain except for the inlets are no-slip and slip boundaries, respectively, while
the top is a traction-free open boundary. The FTSI method as it stands is unable
to handle contact between the papers. Therefore, there are small gaps between the
papers at the start of the FTSI computation. To resolve the dynamically changing
gaps, a thinly layered fluid mesh is used. To reduce the computational cost of the test
simulation, the air flow is computed only in the rectangular domain. For those parts
of the papers that leave the domain, only the structural computation is continued;
namely, no LMs are computed outside the domain. The Reynolds number of the gap
flow is estimated to be roughly 3000. The parameter values are all real ones.

Results Figures 21 and 22 show the dynamical responses of the papers and the air
flows for the cases of five thick and thin pieces of paper, respectively. The air flows
gradually into the gaps and opens the papers, and the five pieces of paper ascend
nearly sequentially. The dynamical response is more intricate for thin papers than it
is for thick papers. These results agree with experimental observations and tell us
that the flow of air passes into the gaps. From the spatial profile of the gap flow,
we can confirm no-slip conditions and discontinuities of the flow at and across the
papers. Although more accurate and real simulation is needed to advance the FTSI
method to compute the physics further (e.g., contact, friction, electrostatic effects),
the results suggest that the FTSI method is a base for doing so.
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Fig. 21 3D simulation of five thick pieces of paper with air blasts from the right and left inlets by
the IRC FTSI method. Velocity vectors of the flow are visualized at three time points by coloring
the norm: (left) diagonal views; (right) side views

Fig. 22 3D simulation of five thin pieces of paper with air blasts from the right and left inlets by
the IRC FTSI method. Velocity vectors of the flow are visualized at three time points by coloring
the norm: (left) diagonal views; (right) side views
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9 Applications to Flow Past/in a Fixed Object

The XFEM and LM method for FTSI problems is the full-set version of the
computation program. However, as described in Sect. 3.3, the method can be
simplified to compute flow past/in a fixed object. The simplified version is given
by Eqs. (42) and (37) and meets the no-slip condition on the interface and does
not require LM computation to impose the no-slip condition, which enables us to
automate computation of flow past/in a fixed object.

9.1 Flow Past Fixed Objects

Figure 23 shows an automated process for computing the flow past a cylinder fixed
in a slip channel [89]. The left and right sides are the inlet and outlet of the channel,
respectively. We begin by putting the surface data (mesh) of the cylinder into
the computational domain of the flow. The program generates the fluid mesh and
computes the level-set function f (x, t) of Fig. 23a from the surface of the cylinder
automatically. The level-set function gives the one-sided edge function e+(x, t) of
Fig. 23b. The program then begins to compute the flow. The results for velocity
and pressure at a particular sample time are shown in Fig. 23c, d, respectively. The
Reynolds number is 1000. Equations (42) and (37) can compute the flow without
the usual need for manual pre-processing such as interface-fitted mesh generation or
setting up the boundary conditions. Figure 24 shows a 3D application involving real
objects whose surface data were obtained by 3D scanning. The Stereolithography
(STL) data file outputted by the scanner defines the surface of each object. We have
to fix the STL file, but the rest of the process is automated and is the same as that

2.7 1.0

0.8

0.5

0.3

0.0

6.5

3.3

0.0

-3.3

-6.5

3.2

2.4

1.6

0.8

0.0

1.9

1.1

0.3

-0.5(a)

(c) (d)

(b)

Fig. 23 2D computation of flow past a fixed cylinder with function space given by Eqs. (42)
and (37): (a) fluid mesh and level-set function f (x, t); (b) one-sided edge function e+(x, t); results
for (c) velocity and (d) pressure of the flow
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Fig. 24 3D computation of flows past fixed objects with function space given by Eqs. (42)
and (37): (left) structured fluid mesh and surface data of real object(s) obtained by 3D scanning;
(center) automatically computed level-set function; (right) streamlines visualizing flow past
object(s). (a) Flow past an elephant ornament. (b) Flow past raccoon ornaments arranged in front
and behind

used in the 2D application. As shown in the previous section, the XFEM-based
method enables us to take on the challenge of computing complex FSI problems. It
also enables us to compute simple flow problems such as these in an elegant manner.

9.2 Flow in a Microstructure

Application to flow in a periodic microstructure is introduced in [75]. The XFEM-
based method is also useful for modeling microstructures that have fluid and solid
phases. The application shown in Fig. 25 models the two phases of a periodic body-
centered cubic (BCC) structure with a regular voxel-type mesh. To compute the
flow in the gaps of the BCC structure, we apply Eqs. (42) and (37) to the Stokes
equation, and to compute the stress distribution of the BCC structure, we apply
Eq. (36) to the displacement function spaces to solve the linear elasticity equation.
The pressure of the gap flow acts on the BCC structure. In practice, the formulation
is extended to a homogenization method for solid–fluid mixtures that computes the
macroscopic flow and stress with the homogenized material parameters of elasticity,
FSI compressibility, and permeability given by the microscopic computation shown
in Fig. 25. The validity of the IRC computation is shown in [75], compared with
results given by a surface-fitted mesh.
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Fig. 25 Flow in a BCC structure: (a) surface data of structure and voxel mesh; (b) Stokes flow in
gap at given pressure gradient; (b) von Mises stress of BCC structure at given fluid pressure

10 Concluding Remarks

This chapter gives a brief overview of the interface-reproducing capturing (IRC)
method based on extended finite element method (XFEM) and a Lagrange multiplier
method, and it introduces our contributions to the development of the IRC method
and techniques for fluid–thin-structure interaction (FTSI). The presented IRC
method and techniques open a new framework and concept whose function is locally
equivalent to that of interface-tracking (IT) methods. We show verifications of the
IRC FTSI method in computing flow with a domain-partitioning interface (DPI).
The DPI problem causes no problems for IT methods, which have interface-fitted
coordinates. However, for IC methods, the DPI problem causes a lot of problems and
reveals the essence of modeling an FSI interface numerically. The two- and three-
dimensional applications to flow-induced flutter of flexible thin objects demonstrate
the ability and potential of the IRC method. These applications include data not
published in international journals. To the best of our knowledge, there are only
a few published comparisons of the computational results of IT and IC methods
obtained under the same condition, namely the resolution. The application to flows
past fixed objects shows another aspect of the IRC method, which enables us to
take on the challenge of computing complex FSI problems. At the same time, it
enables us to compute simple problems with ease. We also describe open issues
associated with the IRC approach. The existence of problems that still require
solutions indicates that there is still much room for advancement.

Acknowledgements I would like to thank Professor Tayfun E. Tezduyar at Rice University, USA,
for useful comments on advanced FSI and stabilization techniques. I would also like to thank Dr.
Jun-ichi Matsumoto at AIST, Japan, for daily discussions about computational flow techniques.



474 T. Sawada

References

1. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formu-
lation for incompressible viscous flows. Comput Methods Appl Mech Engrg 29:329–349.

2. Belytschko T, Flanagan DP, Kennedy J (1982) Finite element method with user-controlled
meshes for fluid–structure interactions. Comput Methods Appl Mech Engrg 33:689–723.

3. Huerta A, Liu WK (1988) Viscous flow with large free surface motion. Comput Methods
Appl Mech Engrg 69:277–324.

4. Huerta A, Liu W (1988), Viscous flow structure interaction. J Pressure Vessel Tech 110:15–
21.

5. Nitikitpaiboon C, Bathe KJ (1993) An arbitrary Lagrangian–Eulerian velocity potential
formulation for fluid–structure interaction. Comput Struct 47(4):871–891.

6. Bathe K, Zhang H, Wang M (1995) Finite element analysis of incompressible and compress-
ible fluid flows with free interfaces and structural interactions. Comput Struct 56:193–213.

7. Zhang Q, Hisada T (2001) Analysis of fluid–structure interaction problems with structural
buckling and large domain changes by ALE finite element method. Comput Methods Appl
Mech Engrg 190:6341–6357.

8. Watanabe H, Hisada T, Sugiura S, Okada J, Fukunari H (2002) Computer simulation of blood
flow, left ventricular wall motion and their interrelationship by fluid–structure interaction
finite element method. JSME Int J Ser C 45(4):1003–1012.

9. Kuhl E, Hulshoff S, Borst DR (2003) An arbitrary Lagrangian Eulerian finite-element
approach for fluid–structure interaction phenomena. Int J Numer Meth Engng 57:117–142.

10. Watanabe H, Sugiura S, Hisada T (2004) Multiphysics simulation of left ventricular filling
dynamics using fluid–structure interaction finite element method. Biophys J 87(3):2074–
2085.

11. Ishihara D, Yoshimura S (2005) A monolithic approach for interaction of incompressible
viscous fluid and an elastic body based on fluid pressure Poisson equation. Int J Numer Meth
Engng 64:167–203.

12. Sawada T, Hisada T (2006) Fluid–structure interaction analysis of a two-dimensional flag-in-
wind problem by the ALE finite element method. JSME Int J Ser A 49(2):170–179.

13. Sawada T, Hisada T (2007) Fluid–structure interaction analysis of the two-dimensional flag-
in-wind problem by an interface-tracking ALE finite element method. Comput Fluids 36:136–
146.

14. Sawada T, Tezuka A, Hisada T (2007) Overlaying mesh method for large deformation fluid–
shell interaction analysis using interface-tracking ALE local mesh and immersed boundary
global mesh. Trans JSCES 20070029:1–10 (in Japanese Language).

15. Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid
mechanics. Comput Fluids 36:12–26.

16. Sawada T, Tezuka A, Hisada T (2008) Performance comparison between the fluid–shell
coupled overlaying mesh method and the immersed boundary method. Trans JSCES
20080005:1–14 (in Japanese Language).

17. Ishihara D, Horie Y, Denda M (2009) Two dimensional computational study on fluid–structure
interaction cause of wing pitch changes in dipteran flapping flight. J Exp Bio 212:1–10.

18. Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with
emphasis on non-matching discretizations, and with application to wind turbines. Comput
Methods Appl Mech Engrg 249–252: 28–41.

19. Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes
TJR (2015) An immersogeometric variational framework for fluid–structure interaction:
Application to bioprosthetic heart valves. Comput Methods Appl Mech Engrg 284: 1005–
1053.



Interface-Reproducing Capturing (IRC) Technique for FSI: Methods and Applications 475

20. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving
moving boundaries and interfaces – The deforming-spatial-domain/space–time procedure: I.
The concept and the preliminary numerical tests. Comput Methods Appl Mech Engrg 94:339–
351.

21. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations
involving moving boundaries and interfaces – The deforming-spatial-domain/space–time
procedure: II. Computations of free-surface flows, two-liquid flows, and flows with drifting
cylinders. Comput Methods Appl Mech Engrg 94:353–371.

22. Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible
flows with the finite element methods: Space–time formulations, iterative strategies and mas-
sively parallel implementations. New Methods in Transient Analysis, PVP-Vol.246/AMD-
Vol.143, ASME, New York, 7–24.

23. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element
computation of 3D flows. Computer 26(10):27–36.

24. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computa-
tions of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech
Engrg 119:73–94.

25. Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows –
fluid–structure interactions. Int J Numer Meth Fluids 21:933–953.

26. Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure
interactions in parachute systems. Comput Methods Appl Mech Engrg 190:321–332.

27. Tezduyar T, Osawa Y (2001) The multi-domain method for computation of the aerodynamics
of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Engrg
191:705–716.

28. Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and
interfaces. Arch Comput Meth Engng 8:83–130.

29. Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interac-
tions with large displacements. J Appl Mech 70:58–63.

30. Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension
mesh moving technique. Comput Methods Appl Mech Engrg 193:2019–2032.

31. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling
of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized
space–time formulation. Comput Methods Appl Mech Engrg 195:1885–1895.

32. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for
computation of fluid–structure interactions. Comput Methods Appl Mech Engrg 195:2002–
2027.

33. Tezduyar TE (2006) Interface-tracking and interface-capturing techniques for finite element
computation of moving boundaries and interfaces. Comput Methods Appl Mech Engrg
195:2983–3000.

34. Akin JE, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed
interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36:2–11.

35. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time
finite elements: Solution techniques. Int J Numer Meth Fluids 54:855–900.

36. Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007)
Modeling of fluid–structure interactions with the space–time finite elements: Arterial fluid
mechanics. Int J Numer Meth Fluids 54:901–922.

37. Cruchaga MA, Celentano DJ, Tezduyar TE (2007) A numerical model based on the mixed
interface-tracking/interface-capturing technique (MITICT) for flows with fluid–solid and
fluid–fluid interfaces. Int J Numer Meth Fluids 54:1021–1030.

38. Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time
finite elements: Contact problems. Comput Mech 43:51–60.

39. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction
modeling of a patient-specific cerebral aneurysm: Influence of structural modeling. Comput
Mech 43:151–159.



476 T. Sawada

40. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale
sequentially-coupled arterial FSI technique. Comput Mech 46:17–29.

41. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite
element computation of complex fluid–structure interactions. Int J Numer Meth Fluids
64:1201–1218.

42. Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element com-
putation of arterial fluid–structure interactions with patient-specific data. Int J Numer Meth
Biomed Engng 26:101–116.

43. Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction tech-
niques. Comput Mech 48(3):247–267.

44. Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure
interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J
Numer Meth Fluids 65:271–285.

45. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2011) Influencing factors in image-
based fluid–structure interaction computation of cerebral aneurysms. Int J Numer Meth Fluids
65:324–340.

46. Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure
interactions. Arch Comput Meth Engng 19:125–169.

47. Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for
patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Meth
Engng 19:171–225.

48. Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Mathemat-
ical Models and Methods in Applied Sciences 22(supp02):1230001.

49. Takizawa K, Tezduyar TE (2014) Main aspects of the space–time computational FSI
techniques and examples of challenging problems solved. Mechanical Engineering Reviews
1:CM0005, inaugural issue.

50. Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space–time interface-tracking with
topology change (ST-TC). Comput Mech 54:955–971.

51. Takizawa K, Tezduyar TE, Kolesar R, Boswell C, Kanai T, Montel K (2014) Multiscale
methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Comput
Mech 54:1461–1476.

52. Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and
ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Mathemat-
ical Models and Methods in Applied Sciences 24:2437–2486.

53. Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N,
McIntyre S (2014) Engineering analysis and design with ALE-VMS and space–time methods.
Arch Comput Meth Engng 21:481–508.

54. Peskin CS (1972) Flow patterns around heart valves: A numerical method. J Comput Phys
10:252–271.

55. Peskin CS (2002) The immersed boundary method. Acta Numerica 11:479–517.
56. Zhu L, Peskin CS (2002) Simulation of a flapping flexible filament in a flowing soap film by

the immersed boundary method. J Comput Phys 179:452–468.
57. Zhu L, Peskin CS (2003) Interaction of two flapping filaments in a flowing soap film. Phys

Fluids 15(7):1954–1960.
58. Peskin C (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25:220–252.
59. Huang WX, Shin SJ, Sung HJ (2007) Simulation of flexible filaments in a uniform flow by

the immersed boundary method. J Comput Phys 226:2206–2228.
60. Zhu L (2009) Interaction of two tandem deformable bodies in a viscous incompressible flow.

J Fluid Mech 635:455–475.
61. Li Z (1997) Immersed interface methods for moving interface problems. Numerical Algo-

rithms 14(4):269–293.
62. Boffi D, Gastaldi L (2003) A finite element approach for the immersed boundary method.

Comput Struct 81:491–501.



Interface-Reproducing Capturing (IRC) Technique for FSI: Methods and Applications 477

63. Wang X, Liu WK (2004) Extended immersed boundary method using FEM and RKPM.
Comput Methods Appl Mech Engrg 193:1305–1321.

64. Zhang L, Gerstenberger A, Wang X, Liu WK (2004) Immersed finite element method.
Comput Methods Appl Mech Engrg 193:2051–2067.

65. Wang H, Chessa J, Liu WK, Belytschko T (2008) The immersed/fictitious element method
for fluid–structure interaction: Volumetric consistency, compressibility and thin members. Int
J Numer Meth Engng 74:32–55.

66. Glowinski R, Pan TW, Périaux J (1998) Distributed Lagrange multiplier methods for
incompressible viscous flow around moving rigid bodies. Comput Methods Appl Mech Engrg
151:181–194.

67. Glowinski R, Pan TW, Hesla TI, Joseph DD, and Périaux J (1999) A distributed Lagrange
multiplier/fictitious domain method for flows around moving rigid bodies: application of
particulate flow. Int J Numer Meth Fluids 30:1043–1066.

68. Hart DJ, Peters GWM, Schreurs PJG, Baaijens FPT (2000) A two-dimensional fluid–structure
interaction model of the aortic valve. J Biomech 33:1079–1088.

69. Hart DJ, Baaijens FPT, Peters GWM, Schreurs PJG (2003) A computational fluid–structure
interaction analysis of a fiber-reinforced stentless aortic valve, J Biomech 36:699–712.

70. Loon RV, Anderson PD, Hart DJ, Baaijens FPT (2004) A combined fictitious domain/adaptive
meshing method for fluid–structure interaction in heart valves. Int J Numer Meth Fluids
46:533–544.

71. Yu Z (2005) A DLM/FD method for fluid/flexible-body interactions. J Comput Phys
207(1):1–27.

72. Wagner GJ, Moës N, Liu WK, Belytschko T (2001) The extended finite element method for
rigid particles in Stokes flow. Int J Numer Meth Engng 51:293–313.

73. Wagner GJ, Ghosal S, Liu WK (2003) Particulate flow simulations using lubrication theory
solution enrichment. Int J Numer Meth Engng 56:1261–1289.

74. Chessa J, Belytschko T (2003) An enriched finite element method and level sets for
axisymmetric two-phase flow with surface tension. Int J Numer Meth Engng 58:2041–2064.

75. Sawada T, Nakasumi S, Tezuka A, Fukushima M, Yoshizawa Y (2009) Extended-FEM for
the solid–fluid mixture two-scale problems with BCC and FCC microstructures. Interaction
& Multiscale Mech Int J 2(1):45–68.

76. Legay A, Chessa J, Belytschko T (2006) An Eulerian–Lagrangian method for fluid–structure
interaction based on level sets. Comput Methods Appl Mech Engrg 195:2070–2087.

77. Legay A, Kölke A (2006) An enriched space–time finite element method for fluid–structure
interaction – Part I: Prescribed structural displacement. Proc III ECCM, Solid Struct Coupling
Prob Eng, Lisbon Portugal, 5–8 Jun 2006.

78. Kölke A, Legay A (2006) An enriched space–time finite element method for fluid–structure
interaction – Part II: Thin flexible structures. Proc III ECCM, Solid Struct Coupling Prob Eng,
Lisbon Portugal, 5–8 Jun 2006.

79. Sawada T, Tezuka A, Hisada T (2007) Extended finite element method for the fluid–structure
interaction problems based on discontinuous interpolations on level set interfaces. Proc
APCOM’07–EPMESC XI, MS20-3(2):1–10, Kyoto Japan, 3–6 Dec 2007.

80. Zilian A, Legay A (2008) The enriched space–time finite element method (EST) for
simultaneous solution of fluid–structure interaction. Int J Numer Meth Engng 75:305–334.

81. Gerstenberger A, Wall WA (2008) An extended finite element method/Lagrange multiplier
based approach for fluid–structure interaction. Comput Methods Appl Mech Engrg 197:1699–
1714.

82. Gerstenberger A, Wall WA. (2008) Enhancement of fixed-grid methods towards complex
fluid–structure interaction applications. Int J Numer Meth Fluids 57:1227–1248.

83. Mayer UM, Gerstenberger A, Wall WA (2009) Interface handling for three-dimensional
higher-order XFEM-computations in fluid–structure interaction. Int J Numer Meth Engng
79:846–869.

84. Gerstenberger A, Wall WA (2010) An embedded Dirichlet formulation for 3D continua. Int J
Numer Meth Engng 82:537–563.



478 T. Sawada

85. Mayer UM, Popp A, Gerstenberger A, Wall WA (2010) 3D fluid–structure–contact interaction
based on a combined XFEM FSI and dual mortar contact approach. Comput Struct 46:53–67.

86. Sawada T, Tezuka A (2010) High-order Gaussian quadrature in X-FEM with the Lagrange-
multiplier for fluid–structure coupling. Int J Numer Meth Fluids 64:1219–1239.

87. Nakamoto H, Sawada T, Hattori S, Tezuka A (2010) Advanced simulation technology for
innovating air-assisted paper-feed mechanism. Toshiba Review 65(8):35–39 (in Japanese
Language).

88. Sawada T, Tezuka A (2011) LLM and X-FEM based interface modeling of fluid–thin structure
interactions on a non-interface-fitted mesh. Comput Mech 48:319–332.

89. Sawada T, Nagahama S, Sasaki S, Tezuka A (2011) Development of simulation-based design
(SBD) framework for flow with structure interfaces using X-FEM. Trans JSCES 20110003:1–
13 (in Japanese language).

90. Sawada T (2013) Foundation and application of extended finite element method. Nagare
32:221–225 (in Japanese language).

91. Farnell DJJ, David T, Barton DC (2004) Numerical simulations of a filament in a flowing
soap film. Int J Numer Meth Fluids 44:313–330.

92. Farnell DJJ, David T, Barton DC (2004) Coupled states of flapping flags. J Fluids Struct
19:29–36.

93. Cirak F, Radovitzky R (2005) A Lagrangian–Eulerian shell–fluid coupling algorithm base on
level sets. Comput Struct 85:491–498.

94. Takizawa K, Yabe T, Tsugawa Y, Tezduyar TE, Mizoe H (2007) Computation of free-surface
flows and fluid–object interactions with the CIP method based on adaptive meshless Soroban
grids. Comput Mech 40:167–183.

95. Wang H, Belytschko T (2009) Fluid–structure interaction by the discontinuous-Galerkin
method for large deformations. Int J Numer Meth Engng 77:30–49.

96. Hashimoto G, Ono K (2010) Interface treatment under no-slip conditions using level-set
virtual particles for fluid–structure interaction. Theor Appl Mech Japan 58:325–342.

97. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulation for con-
vection dominated flows with particular emphasis on the incompressible Navier–Stokes
equations. Comput Methods Appl Mech Engrg 32:199–259.

98. Tezduyar TE, Liou J, Ganjoo DK (1990) Incompressible flow computations based on the
vorticity-stream function and velocity-pressure formulations. Comput Struct 35:445–472.

99. Tezduyar TE, Mittal S, Shih R (1991) Time-accurate incompressible flow computations with
quadrilateral velocity-pressure elements. Comput Methods Appl Mech Engrg 87:363–384.

100. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with
stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput
Methods Appl Mech Engrg 95:221–242.

101. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computa-
tions. Adva Appl Mech 28:1–44.

102. Hannani SK, Stanislas M, Dupont P (1995) Incompressible Navier–Stokes computations with
SUPG and GLS formulations – A comparison study. Comput Methods Appl Mech Engrg
124:153–170.

103. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann
formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput
Methods Appl Mech Engrg 127:387–401.

104. Hughes TJR, Feij’oo GR, Mazzei L, Quincy JB (1998) The variational multiscale method – a
paradigm for computational mechanics. Comput Methods Appl Mech Engrg 166:3–24.

105. Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from
element matrices and vectors. Comput Methods Appl Mech Engrg 190:411–430.

106. Hughes TJR, Mazzei L, Jansen KE (2000) Large Eddy Simulation and the variational
multiscale method. Comput Visual Sci 3:47–59.

107. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization
parameters. Int J Numer Meth Fluids 43:555–575.



Interface-Reproducing Capturing (IRC) Technique for FSI: Methods and Applications 479

108. Hughes TJR, Sangalli G (2007) Variational multiscale analysis: the fine-scale GreenĄfs
function, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal
45:539–557.

109. Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability
of stabilized and multiscale formulations in flow simulations at small time steps. Comput
Methods Appl Mech Engrg 199:828–840.

110. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without
remeshing. Int J Numer Meth Engng 46(1):131–150.

111. Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements.
Int J Numer Meth Engng 50(4):993–1013.

112. Sukumar N, Chopp DL, Moës N, Belytschko T (2001) Modeling holes and inclusions by level
sets in the extended finite-element method. Comput Methods Appl Mech Engrg 190:6183–
6200.

113. Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle
complex microstructure geometries. Comput Methods Appl Mech Engrg 192:3163–3177.

114. Chessa J, Belytschko T (2004) Arbitrary discontinuities in space–time finite elements by level
sets and X-FEM. Int J Numer Meth Engng 61:2595–2614.

115. Barbosa HJC, Hughes TJR (1991) The finite element method with Lagrange multipliers on
the boundary: Circumventing the Babuska–Brezzi condition. Comput Methods Appl Mech
Engrg 85(1):109–128.

116. Ji H, Dolbow JE (2004) On strategies for enforcing interfacial constraints and evaluating jump
conditions with the extended finite element method. Int J Numer Meth Engng 61:2508–2535.

117. Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free
methods. Comput Methods Appl Mech Engrg 193(12–14):1257–1275.

118. Moës N, Béchet E, Tourbier M (2006) Imposing Dirichlet boundary conditions in the
extended finite element method. Int J Numer Meth Engng 67(12):1641–1669.

119. Newmark NM (1959) A method of computation for structural dynamics. J Engng Mech Div,
Proc ASCE 85(EM3):67–94.

120. Huber G (2000) Swimming in flatsea. Nature 408:777–778.
121. Zhang J, Childress S, Libchaber A, Shelley M (2000) Flexible filaments in a flowing soap

film as a model for one-dimensional flags in a two-dimensional wind. Nature 408:835–839.
122. Watanabe Y, Suzuki S, Sugihara M, Sueoka Y (2002) An experimental study of paper flutter.

J Fluids Struct 16:529–542.
123. Watanabe Y, Isogai K, Suzuki S, Sugihara M (2002) An theoretical study of paper flutter. J

Fluids Struct 16:543–560.
124. Shelley M, Vandenberghe N, Zhang J (2005) Heavy flags undergo spontaneous oscillations in

flowing water. Phys Rev Lett 94:094302(4).
125. Eloy C, Souilliez C, Schouveiler L (2007) Flutter of a rectangular plate. J Fluids Struct

23:904–919.
126. Schouveiler L, Eloy C (2009) Coupled flutter of parallel plates. Phys Fluids 21:081703(4).
127. Alben S, Shelley MJ (2008) Flapping states of a flag in an inviscid fluid: bistability and the

transition to chaos. Phys Rev Lett 100:074301(4).
128. Shelley MJ, Zhang J (2011) Flapping and bending bodies interacting with fluid flows. Annu

Rev Fluid Mech 43:449–465.
129. Singh RK, Kant T, Kakodkar A (1991) Coupled shell–fluid interaction problems with

degenerate shell and three-dimensional fluid elements. Comput Struct 38(5):515–528.
130. Ventura G, Gracie R, Belytschko T (2009) Fast integration and weight function blending in

the extended finite element method. Int J Numer Meth Engng 77(1):1–29.
131. Mousavi SE, Sukumar N (2010) Numerical integration of polynomials and discontinuous

functions on irregular convex polygons and polyhedrons. Comput Mech 47:535–554.
132. Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional

problems of solid mechanics. Comput Methods Appl Mech Engrg 197: 3768–3782.
133. Flemisch B, Wohlmuth BI (2007) Stable Lagrange multipliers for quadrilateral meshes of

curved interfaces in 3D. Comput Methods Appl Mech Engrg 196(8):1589–1602.



480 T. Sawada

134. Cho JY, Song YM, Choi YH (2008) Boundary locking induced by penalty enforcement of
essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Engrg
197(13–16): 167–1183.

135. Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four-node shell element for
general nonlinear analysis. Eng Comput 1:77–88.

136. Dvorkin EN (1988) On a non-linear formulation for curved Timoshenko beam elements
considering large displacement/rotation increments. Int J Numer Meth Engng 26:1597–1613.

137. Parisch H (1991) An investigation of a finite rotation four node assumed strain shell element.
Int J Numer Meth Engng 31:127–150.

138. Noguchi H, Hisada T (1993) Sensivity analysis in post-buckling problems of shell structures.
Comput Struct 47(4):699–710.

139. Saad Y, Schultz MH (1986) GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869.


	Preface
	Contents
	Simulating Free-Surface FSI and Fatigue Damage in Wind-Turbine Structural Systems
	1 Introduction
	1.1 Offshore Wind and the Need for Advanced Simulation
	1.2 Role of Simulation and Experimental Measurements in Wind-Turbine Damage Prediction
	1.3 Fatigue-Damage Modeling and Integration with FSIand DDDAS
	1.4 FSI Modeling Techniques Employed
	1.5 Outline

	2 Continuum Formulation of Free-Surface Flows
	3 Discrete Formulation of Free-Surface Flows
	3.1 ALE-VMS Formulation of Free-Surface Flow
	3.2 Additional Level-Set Computational Technology

	4 Structural Mechanics Formulation
	4.1 Fatigue-Damage Model

	5 FSI Coupling and Time Integration
	5.1 Framework for Free-Surface Flow
	5.2 Algorithms for FSI Coupling with Fatigue Damage

	6 Applications
	6.1 Free-Surface FSI Simulations of an Offshore Floating Wind Turbine
	6.2 FSI Modeling of Fatigue Damage in CX-100 Wind-Turbine Blades

	7 Conclusions
	References

	Aorta Flow Analysis and Heart Valve Flow and Structure Analysis
	1 Introduction
	1.1 Flow Analysis Methods
	1.1.1 ST-VMS
	1.1.2 ST-SI
	1.1.3 ST-TC
	1.1.4 ST-SI-TC
	1.1.5 ST-IGA
	1.1.6 ST-SI-TC-IGA

	1.2 Structure Analysis Methods
	1.3 Computations Presented
	1.4 Outline of the Remaining Sections

	2 Governing Equations
	2.1 Incompressible Flow
	2.2 Structural Mechanics

	3 Hyperelastic Shell Model
	3.1 Kinematics
	3.2 Constitutive Equations
	3.3 Variational Formulation
	3.4 Linearization for the Newton–Raphson Iterations

	4 Aorta Flow Analysis
	4.1 Conditions
	4.2 Mesh
	4.3 Mesh Refinement Study
	4.4 Periodicity Study

	5 Shell Tests
	5.1 Constitutive Models
	5.2 Test Computations
	5.2.1 Pressurized Cylinder
	5.2.2 Pressurized Sphere


	6 Heart Valve
	6.1 Structural Mechanics
	6.2 Fluid Mechanics

	7 Concluding Remarks
	Appendix 1: ST-VMS and ST-SI Methods
	Appendix 2: Derivative and Variation of the Normal Vector in the Shell Model
	Derivative of the Normal Vector
	Variation of the Normal Vector

	Appendix 3: Variation of ξ3 is a Second-Order Term
	Appendix 4: Variation of the Contravariant Basis Vector
	Appendix 5: Constitutive Law: Second Piola–Kirchhoff Tensor
	Cylinder
	Sphere

	References

	Residual-Based Large Eddy Simulation with Isogeometric Divergence-Conforming Discretizations
	1 Introduction
	2 The Incompressible Navier-Stokes Problem
	3 Approximation of Velocity and Pressure Fields
	3.1 The Stokes Complex
	3.2 Univariate and Multivariate B-splines
	3.3 Isogeometric Compatible B-splines

	4 The Structure-Preserving Variational Multiscale Method
	5 Quasi-Static and Dynamic Fine-Scale Models
	6 Approximating the Fine-Scales with Subgrid Vortices
	7 Final Form of Residual-Based Variational Multiscale Models
	8 Residual-Based Eddy Viscosity Models
	9 Application to Taylor-Green Vortex Flow
	10 Conclusions
	References

	Interaction of Multiphase Fluids and Solid Structures
	1 Introduction
	1.1 Phase Transitions and Computational Challenges
	1.2 Fluid–Structure Interaction Technique

	2 Kinematics and Computational Domain
	3 Phase-Change-Driven Implosion of Thin Structures
	3.1 Governing Equations
	3.1.1 Solid Mechanics
	3.1.2 Fluid Mechanics

	3.2 Numerical Formulation
	3.2.1 Continuous Problem in the Weak Form
	3.2.2 Semidiscrete Formulation
	3.2.3 Time Discretization

	3.3 Numerical Examples
	3.3.1 Implosion of a Vapor-Filled Ring
	3.3.2 Three-Dimensional Implosion of Thin Structures


	4 Droplet Motion: Tensotaxis
	4.1 Governing Equations
	4.1.1 Solid Mechanics Equations

	4.2 Numerical Formulation
	4.3 Numerical Examples
	4.3.1 Unraveling Droplet Tensotaxis
	4.3.2 Three-Dimensional Tensotaxis


	5 Ellastocapillarity
	5.1 Governing Equations
	5.2 Numerical Formulation
	5.2.1 Semidiscrete Formulation
	5.2.2 Time Integration

	5.3 Numerical Examples
	5.3.1 Static Wetting on Soft Substrates
	5.3.2 Capillary Origami
	5.3.3 Wetting of Elastic Micropillars


	References

	Immersogeometric Analysis of Bioprosthetic Heart Valves, Using the Dynamic Augmented Lagrangian Method
	1 Introduction
	1.1 Computational FSI Analysis of Heart Valves
	1.2 Immersogeometric Analysis
	1.3 Structure and Content of This Chapter

	2 Mathematical Model of FSI
	2.1 Augmented Lagrangian Formulation of FSI
	2.2 Fluid Subproblem
	2.3 Thin Structure Subproblem

	3 Discretization of Subproblems
	3.1 Fluid Subproblem
	3.1.1 Variational Multiscale Formulation
	3.1.2 Divergence Conforming B-splines
	Construction for Rectangular Domains
	Generalization to Non-rectangular Domains
	Stabilizing Advection

	3.2 Structure Subproblem

	4 Dynamic Augmented Lagrangian Coupling
	4.1 Separation of Normal and Tangential Coupling
	4.2 Time Integration Algorithm
	4.3 Block Iterative Solution of the Implicit Problem
	4.4 Discussion
	4.4.1 Modified Equation Interpretation of DAL
	4.4.2 Analogy to Artificial Compressibility
	4.4.3 Relation to Feedback Boundary Conditions
	4.4.4 Qualitative Effects of Multiplier Stabilization


	5 Numerical Experiments
	5.1 Navier–Stokes Flow with Immersed Boundaries
	5.2 Taylor–Green Vortex
	5.2.1 Translating Taylor–Green Vortex
	5.2.2 Infinite Reynolds Number

	5.3 2D Non-coapting Valve
	5.3.1 Description of the Problem
	5.3.2 Body-Fitted Reference Computation
	5.3.3 Immersogeometric Computations
	5.3.4 Comparison of Results

	5.4 Benchmark Testing with Div-conforming B-splines

	6 Application to BHV FSI Analysis
	6.1 Overview of BHV Simulations
	6.2 Div-conforming BHV Simulation
	6.2.1 Test Problem Definition
	6.2.2 Discretization
	6.2.3 Results

	6.3 Simulating an In Vitro Experiment
	6.3.1 Description of the Experiment
	6.3.2 Mathematical Model of the Experiment
	6.3.3 Discretization of the Mathematical Model
	6.3.4 Comparison of Results


	7 Conclusions and Further Work
	References

	A Numerical Analysis of Rheology of Capsule Suspensions Using a GPU-Accelerated Boundary Element Method
	1 Introduction
	2 Governing Equations and Numerical Methods
	2.1 Fluid Mechanics
	2.1.1 Boundary Integral Formulation
	2.1.2 Image System
	2.1.3 Eward Summation
	2.1.4 Multipole Expansion

	2.2 Membrane Mechanics
	2.2.1 Membrane Tension
	2.2.2 Equilibrium Equation
	2.2.3 Bending Stiffness

	2.3 Boundary Conditions
	2.4 Numerical Methods

	3 Shear Viscosity of Capsule Suspensions in Simple Shear Flow
	3.1 Deformation and Orientation of Capsules
	3.2 Suspension Viscosity
	3.3 Relationship Between the Deformation and Orientation and the Shear Viscosity

	4 Deformation of Capsules in Oscillating Shear Flow
	4.1 Deformation and Phase
	4.2 Overshoot Phenomenon
	4.3 Mechanism of Overshoot Phenomenon

	5 Sedimentation of Red Blood Cells
	5.1 Sedimentation Under Standard Gravity
	5.2 Effect of Cell Deformation
	5.3 Asymmetric Deformation and Reorientation

	6 Conclusions
	References

	Recent Advances in ALE-VMS and ST-VMS Computational Aerodynamic and FSI Analysis of Wind Turbines
	1 Introduction
	1.1 Role of Wind Turbines in Renewable-Energy Generation
	1.2 Computational Analysis of Wind Turbines
	1.3 Isogeometric Analysis
	1.4 ALE-VMS
	1.5 ST-VMS and ST-SUPS
	1.6 ST-SI
	1.7 ST-IGA and STNMUM
	1.8 Computations Reported
	1.9 Outline of the Remaining Sections

	2 ALE-VMS Formulation of the Navier–Stokes Equations of Incompressible Stratified Flows
	2.1 Continuous Problem
	2.2 ALE-VMS
	2.2.1 Additional VMS Modeling Terms and Stabilization Parameters

	2.3 Weakly Enforced Essential Boundary Conditions
	2.4 Sliding-Interface Formulation

	3 ST-VMS, ST-SUPS, and ST-SI
	3.1 ST-VMS and ST-SUPS
	3.2 Rotation Representation with Constant Angular Velocity
	3.3 ST-SI
	3.3.1 Two-Side Formulation (Fluid–Fluid SI)
	3.3.2 One-Side Formulation (Fluid–Solid SI)


	4 Wind-Turbine Isogeometric Structural Modeling
	4.1 Kirchhoff–Love Shell Formulation
	4.2 Bending-Stabilized Cable Formulation

	5 FSI Coupling and Mesh Update
	5.1 FSI Coupling Strategy for Wind-Turbine Simulations
	5.2 A Novel Mesh Update Technique for Sliding Interfacesin Motion

	6 Aerodynamic Simulations of a 5MW Wind-Turbine Rotor in Atmospheric Boundary Layer Flow
	7 Simulation of Rotor–Tower Interaction
	7.1 Single-Turbine Simulation
	7.2 Two-Turbine Simulation

	8 ST Computational Flow Analysis of a VAWT
	8.1 2D Computations
	8.2 3D Computation

	9 FSI Modeling of Single Wind Turbines
	9.1 Simulation of a 5MW HAWT Yawing Motion
	9.2 Simulation of the Windspire VAWT Start-Up Conditions

	10 Two Back-to-Back Wind Turbines in Turbulent ABL Flow
	10.1 Computational Set-up and Boundary Conditions
	10.2 Aerodynamics Simulation Results
	10.3 FSI Simulation Results

	11 Concluding Remarks
	References

	Space–Time Computational Analysis of Tire Aerodynamics with Actual Geometry, Road Contact, and Tire Deformation
	1 Introduction
	1.1 ST-VMS
	1.2 ST-SI
	1.3 ST-TC
	1.4 ST-SI-TC
	1.5 ST-IGA
	1.6 ST-SI-TC-IGA
	1.7 Tire Models
	1.8 Outline of the Remaining Sections

	2 ST-VMS and ST-SI
	2.1 ST-VMS
	2.2 ST-SI
	2.2.1 Two-Side Formulation (Fluid–Fluid SI)
	2.2.2 One-Side Formulation (Fluid–Solid SI)


	3 ST-SI-TC-IGA
	3.1 ST-SI
	3.2 ST-TC
	3.3 ST-IGA
	3.4 ST-SI-TC-IGA

	4 Verification with a Simple 2D Model
	4.1 Problem Setup
	4.2 Computational Domain, Boundary Conditions and Meshes
	4.3 Computational Conditions
	4.4 Results

	5 Tire Aerodynamics with an Actual Tire Geometry
	5.1 Problem Setup
	5.2 Meshes
	5.3 Computational Conditions
	5.4 Results

	6 Concluding Remarks
	References

	Thermal Convection in the van der Waals Fluid
	1 Introduction
	2 Model
	2.1 The van der Waals Model
	2.2 Dimensional Analysis

	3 Numerical Methods
	4 Results
	4.1 Solution at Small Rayleigh Number
	4.2 Nucleate and Film Boiling
	4.3 The Nusselt Number Scaling

	5 Conclusion
	References

	A General-Purpose NURBS Mesh Generation Method for Complex Geometries
	1 Introduction
	1.1 ST-VMS and ST-SUPS
	1.2 ST-TC
	1.3 ST-SI
	1.4 ST-IGA
	1.5 General-Purpose NURBS Mesh Generation

	2 NURBS Mesh Generation Techniques
	2.1 Basic Technique
	2.1.1 Uniform Parametric Spacing (UPS)
	2.1.2 Parametric Spacing Proportional to Physical Spacing (PSPPS)
	2.1.3 Projections
	2.1.4 Merging the Patches

	2.2 Element Reduction
	2.2.1 Element-Reduced UPS
	2.2.2 Element-Reduced PSPPS

	2.3 Techniques for Recovering the Exact Surfaces
	2.3.1 Special Technique for Arc Surfaces
	2.3.2 General Technique for CAD Surfaces


	3 Mesh-Quality Performance
	3.1 2D Mesh
	3.2 Aorta and Branches
	3.3 Disk-Gap-Band Parachute

	4 ST-VMS and ST-SI Methods
	5 Test Computation with a Turbocharger Turbine and Exhaust Manifold
	5.1 Mesh
	5.2 Problem Setup
	5.3 Computational Conditions
	5.4 Results

	6 Concluding Remarks
	References

	Interface-Reproducing Capturing (IRC) Technique for Fluid-Structure Interaction: Methods and Applications
	1 Introduction
	2 Governing Equations in Strong and Weak Forms
	2.1 Fluid Flows
	2.2 Structural Deformations
	2.3 FSI and Flow with Moving Boundaries

	3 Extended Finite Element Method for FSI Interfaces
	3.1 Fluid–Shell Interactions
	3.2 Fluid–Solid Interactions
	3.3 Flow Around Fixed Objects
	3.4 Remarks on Enrichment

	4 Lagrange Multiplier Technique for FSI
	5 Spatial Discretizations of FTSI Equation
	6 Time Integration
	7 Numerical Tests for Flows with a Domain-Partitioning Interface
	7.1 Tests on Quadrature of Fully Enriched Fluid Elements
	7.2 Tests on Quadrature of Lagrange Multipliers
	7.3 Continuous Versus Discontinuous Interfaces

	8 Applications to FTSI Problems
	8.1 Flutter of a Flexible Filament in a Flow
	8.2 Coupled Flutter of Flexible Filaments in a Flow
	8.3 Flapping Flag in a Wind
	8.4 Dynamic Response of Papers to Air Blasts

	9 Applications to Flow Past/in a Fixed Object
	9.1 Flow Past Fixed Objects
	9.2 Flow in a Microstructure

	10 Concluding Remarks
	References


