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Abstract. I argue for a formal specification as a working understanding
of ‘computational creativity’. Geraint A. Wiggins proposed a formalised
framework for ‘computational creativity’, based on Margaret Boden’s
view of ‘creativity’ defined as searches in concept spaces. I argue that
the epistemological basis for delineated ‘concept spaces’ is problematic:
instead of Wiggins’s bounded types or sets, such theoretical spaces can
represent traces of creative output. To address this problem, I propose a
revised specification which includes dynamic concept spaces, along with
formalisations of memory and motivations, which allow iteration in a
time-based framework that can be aligned with learning models (e.g.,
John Dewey’s experiential model). This supports the view of computa-
tional creativity as product of a learning process. My critical revision of
the framework, applied to the case of computer systems that improvise
music, achieves a more detailed specification and better understanding
of potentials in computational creativity.

1 Introduction

So far, there is no known definitive description of what computational creativity
might be; to improve that end I argue for a formal specification as a working
understanding of computational creativity for music. My working understand-
ing supports an analytical view of machines that improvise co-creatively with
humans, and the specification can also serve as a generative tool for develop-
ment of new improvising systems (as in (Mogensen 2017b)).

A computational creativity is not necessarily in the same category as human
creativity and comparing these two ‘creativities’ may well, in logic, be a category
mistake. Kinds of what we call creativity may have in common what Wittgen-
stein called ‘family resemblances’, and so I take the creativity concept family as
a term covering possible ‘creativities’ that exhibit both similarities and differ-
ences. The vaguely defined ‘human creativity’ serves heuristically as prototype
for the creativity concept family only to the extent that I use terms derived
from ideas about human creativity to name and to guide the conceptualisations
of my proposed components in the specification for computational creativity, no
identity between human creativity and computational creativity is implied.
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I take as given that anything that a current digital computer (or a Universal
Turing Machine1) can do, can be represented in a formal specification. There-
fore, if a computer can in some way be programmed to perform creatively, in
other words produce a kind of ‘creativity’ and become a member of the creativity
concept family, then such a creativity must be definable as a formal specification
of ‘computational creativity’. Developing a more detailed formal specification for
computational creativity is an essential step towards understanding the poten-
tials of such technology; and such specification can additionally serve as a guide
for developing more capable implementations that can interact constructively
with human priorities.

Creativity is often referred to as consisting of some creative process, whereas
I argue for understanding creativity as determined by product achieved by a
learning process, so that creativity itself is not a process but instead is a product
(echoing Glickman (1976)). In support of this view of creativity I argue that the
formal specification allows alignment with learning models (e.g., John Dewey’s
experiential model (Dewey 1938), (Kolb 2015)).

I base my formal specification on my reworking, in effect replacement, of
Wiggins’s (2006a) formal framework, which in turn was based on Boden’s (2004)
conception of ‘creativity’ as searches in concept spaces. In order to allow the
alignment of the specification with the experiential learning model as mentioned,
I argue that the epistemological delineation of ‘concept spaces’, in the Wig-
gins/Boden framework, is problematic: instead of bounded types or sets (that
imply a rather static character), such theoretical spaces should more properly
represent traces of creative output.2 These emergent traces are much better rep-
resented by dynamic concept spaces. I examine my revised specification in the
context of computers that co-creatively improvise music together with human
performers.3

2 A Working Specification for Computational Creativity

My working specification for computational creativity, in Z-style notation,4 views
creativity as searches in conceptual spaces. In my initial adaptation of Wiggins’s
1 The Universal Turing Machine was presented in (Turing 1936). ‘The [Universal]

Turing Machine not only established the basic requirements for effective calculability
but also identified limits: No computer or programming language known today is
more powerful than the Turing Machine’ (Petzold 2008, p. 330). See Petzold’s (2008)
book for an insightful interpretation and discussion of Turing’s 1936 article.

2 I use the term ‘trace’ in the sense of Jean-Jacques Nattiez where ‘the symbolic form
[of the work] is embodied physically and materially in the form of a trace accessible
to the five senses’ (Nattiez 1990, p. 12).

3 I have previously examined ‘co-creativity’ in the musical context (Mogensen 2017b).
4 Briefly, the Z schema notation includes a declarations part above the central hori-

zontal line and predicates below the horizontal line. “The central horizontal line can
be read ‘such that’.” The axiomatic predicates (below the line in Fig. 1) “appearing
on separate lines are assumed to be conjoined together, that is to say, linked with
the truth-functional connective ∧” (Diller 1990, 6).
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framework I summarise Wiggins’s Axioms in Fig. 1 and his approach to deter-
mining ‘creative output’ in Fig. 2 (from (Mogensen 2017b) and (Wiggins 2006a,
pp. 451–453)). In Fig. 1 the declarations are interpreted as follows: C is a concept
space of type Σ in the universe of possible concepts U . C is a concept type and
c1, c2 are instances of C and � is the empty concept, all of which may be within
a concept space C . In Wiggins’s formalism “creativity” is seen as searches in
a conceptual space (C ), which is a subset of the universe of possible concepts
(U ).5

Wiggins proposed an approach to evaluating concepts, discovered through
the searches, which is summarised in Fig. 2: a Language (L ) gives the basis for
a Search strategy (T ) and Constraints (R) on the conceptual space (C ), along
with Evaluation criteria (E ), that are related to form part of the input to a
decision function which consists of an interpreter 〈〈., ., .〉〉 and an evaluator [[.]].

Fig. 1. My schema of Wiggins’s four Axioms.

I have previously (Mogensen 2017a) modified the specification by adding
Intrinsic Motivations and Extrinsic Motivations6 (see Figs. 3 and 4) based
on information theoretic types proposed in Oudeyer and Kaplan’s typology
of computational models of motivations, which combines psychological con-
cepts with generalisations of robot implementations (Oudeyer and Kaplan 2007,
pp. 4–5). The formalised representations of intrinsic motivation can indicate
a combination of motivations that can described as in the schema in Fig. 3.7

Four types of motivation components are included: 1. rl : Attraction to novelty;

5 For a full narrative explanation of more details of Wiggins’s framework I refer the
reader to his (2006a) paper.

6 Here I am representing M1 and M2 as arrays, rather than summing the individual
motivation components as I did in (Mogensen 2017a); the array is a less reductive
representation which I expect will be more useful for the framework development.

7 Oudeyer and Kaplan (2007) do not address issues of probability calculation and
I will also defer such issues. The references on which they base their typology do
include reports on implementations some of which may detail instances of probability
calculations.
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Fig. 2. My summary of Wiggins’s ‘[e]valuating members of the conceptual space’ with
the empty concept as a starting point.

Fig. 3. My adaptation of some types from the Oudeyer/Kaplan formal intrinsic moti-
vation typology.

2. rm : Information gain; 3. rn : Pleasure of surprise; 4. ro : Comfort of the
familiar. These four components are described as probability-based computa-
tions8 that operate on an experienced concept (ck(t)) in relation to the known
part of the concept space at the time (C (t)).

I proposed that extrinsic motivations can be formalised in a similar way,
although with a focus on external input as shown in Fig. 4. The four motivation
components are similar to those of the intrinsic motivations, except that for
extrinsic motivations (M2) the probability-based computations operate on an
external source of sensory input (Mk(t)) in relation to the known part of the
concept space at the time (C (t)).

8 These component descriptions are adapted from Oudeyer and Kaplan (2007).
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Fig. 4. My adaptation of reward structures from the Oudeyer/Kaplan typology for
extrinsic motivation.

My four choices of the formalisations of motivations (rl, rm, rn, ro) are only
part of the Oudeyer/Kaplan intrinsic motivation typology and it may be useful
to explore other types and hence other concepts of motivations in the frame-
work, but I leave this for future research. The four formalised motivation types
are based on human psychology and so would seem to contradict my proposal
in the Introduction that human and computational creativity are different cate-
gories. However, I argue that using theories of human motivation as the basis for
computational models does not mean that these are of the same categories, but
rather that the computational motivation models reference human motivation
in order to guide conceptualisation.

Memory : W (t) =
t−1⋃

p=1

(
Q(p) · [[E ]]

(
〈〈R,T ,E 〉〉(c(p)

)))
. (1)

This formalisation required a more explicit Memory representation, as
discussed in (Mogensen 2017b), which is defined as W (t) in expression 1 and
reappears in Fig. 5 in my version of the framework. W (t) is a memory of past
evaluations at time t: it is the set of past results of Wiggins’s evaluator functions.
Each element of the memory (subset of past interpreter function outputs) may
be attenuated by some time-dependent effect which I indicate as Q.

My revised Creative Output formalisation is shown in Fig. 5 (Mogensen 2017a,
p. 8), which can be summarised as follows: the interpreter function uses con-
straints to interpret changes in intrinsic (M1) and extrinsic (M2) motivations
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Fig. 5. My revised version of the Creative Output formalisation.

as well as the current concept space (C (t)) and accumulated memory (W ).
This interpretation is processed by the evaluator function to give the Creative
Output.9

3 Concept Space Morphology

With my specification we can begin to examine the possibility that concept
spaces (C ) are not the delineated types (Σ) that seem to be used in the Wig-
gins/Boden framework; rather, concept spaces are dynamic and can represent
emergent qualities of the traces of creative output, and the structure over time
of these traces is generated from the experiences of the agents that operate on
and within them. In Fig. 6 I have formalised a view of dynamic concept spaces:
changes in constraints ΔR(t), search strategy ΔT (t) and value definitions ΔE (t)
are functions of memory W (t − 1) and motivations (M1(t − 1),M2(t − 1)). The
change of concept space at time t (ΔC (t)) is, in turn, a function of the changes
of constraints R(t), search strategy T (t) and value definition E (t) as well as the
latest concept c(t) and the concept space previously perceived C (t − 1).

This morphology of the concept space is examined from the agent perspec-
tive, since it is generated from inputs that include memory and motivations. So
here the concept space is not an ideal space encompassing all possibilities in a
particular domain, rather it is a dynamic space of possibilities as perceived by an
agent which may or may not correspond to a particular idealised domain. This
distinction is the key to refining this part of the formalism. To define an ideal
domain-based concept space would require omniscience, knowledge of the entire

9 Arguably, in Fig. 5 and expression 1 the component
(
c(p)

)
should be replaced by(

ΔM1(p), ΔM2(p), c(p),W (p − 1)
)

if we want to include memory of motivations.
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Fig. 6. A view of Concept Space morphology.

universe of possible concepts (U ) which is obviously not accessible; instead, we
might postulate that a dynamic possibility space (C ) may be on a trajectory
towards a possible ideal domain (Σ) in the universe (U ), while completion of
this trajectory seems unlikely to be a reachable goal.

I propose the dynamic concept space as a generated space, where the space at
time t is defined as a function of constraints, search strategy and value definition
moderated by memory, as shown in expression 2. This definition is then equal
to the last predicate in the specification in Fig. 6.

C (t) : f
(
R(t),T (t),E (t),W (t − 1)

)

= C (t − 1) · ΔC (t). (2)

Wiggins and Boden distinguish between ‘exploratory creativity’ and ‘trans-
formational creativity’. When a concept space is changed by the agent through
the action of searching, in other words when there is a morphology of the con-
cept space, then the Boden/Wiggins distinction between transformational and
exploratory creativity seems to break down. Instead of being separate categories,
exploratory creativity does transform the concept space and transformation of
the concept space is the result of exploratory action.

Consequent to the dissolution of the Boden/Wiggins distinction between
transformational and exploratory creativity is that the Axioms from Fig. 1 can
be simplified and redefined as shown in Fig. 7: we retain U as the universe of
possible concept types C and we want to be able to differentiate individual points
(c1, c2) in the concept universe. Wiggins’s empty concept �, which represents
nothing but which Wiggins used to initiate the search process (see Fig. 2), can
be omitted, since we use intrinsic motivation M1 as a driver of Creative Output
even if memory W is empty and regardless of whether there is any extrinsic
motivation M2 (see Fig. 5). The declaration of C : Concept Space is no longer
axiomatic since we define it in Fig. 6. Also, we no longer need the axiomatic
expression that a concept space is a subset of the universe (∀C |C ⊆ U ) since it
is conceivable that a C could become identical to U , although this is only as a
limiting case since it would mean omniscient knowledge of the universe.
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Fig. 7. The simplified set of Axioms for the specification including concept space
morphology.

Wiggins required the third proposition in Fig. 1 because ‘for transformational
creativity to be meaningful, all conceptual spaces, C , are required to be non-
strict subsets of U ’ (Wiggins 2006a, p. 452). However, as mentioned above,
in this new specification for computational creativity the idea of ‘transforma-
tion creativity’ as distinct from ‘exploratory creativity’ is no longer meaningful:
instead, with dynamically generated concept spaces, exploratory creativity may
be said to be transformational of the concept space as expressed in the morphol-
ogy of the concept space over time. The resulting axiomatic expression for my
specification in Fig. 7 simply expresses that we can differentiate between some
different concepts in the universe of possible concepts.

According to Wiggins, Boden views transformational creativity as changes in
R, in other words, as changes in the constraints on the concept space. Wiggins
proposes a view of a transformational creative system ‘as an exploratory creative
system working at the meta-level of representation’ (Wiggins 2006a, p. 455). At
this ‘meta-level’ Wiggins uses his valuing function [[E ]] as a method for deter-
mining what impact an explored concept c(t) has on the current concept space
C (t). However, using a dynamic, generative concept space, any explored c(t)
will change the concept space C regardless of the results of using it as input to
an evaluation function. This seems to be an acceptable feature of the common
conception of creativity: any explored possibility becomes part of memory, and
so part of the concept space, regardless of whether it is valued at a given time
or not. Anecdotally: when teaching music composition and creative use of music
technology at Birmingham Conservatoire I often emphasise that any composi-
tional choice that is considered for, but isn’t applied in a particular musical work
becomes part of the space of compositional choices available for another compo-
sition later on. In other words, the musical ‘object’ produced represents a subset
of the dynamic concept space.

Figure 8 gives an informal overview of the present version of the frame-
work where Memory — W — Intrinsic and Extrinsic Motivations — M1

and M2 — and the current Musical ‘object’ — c(t) — are inputs to the
Evaluator(interpreter) function: [[.]]

(〈〈., ., .〉〉(., ., ., .)) in Fig. 5. The Evalua-
tor(interpreter) function results in Creative output (Fig. 5), and this in turn
becomes the next Musical ‘object’. The output of the Evaluator(interpreter)
function modifies the Dynamic concept space C . The Dynamic concept space is
the basis for Memory in my version of the framework. The components, aside
from the Musical ‘object’, form the Computational Creativity. I expand the
framework to include a wider context in another article (Mogensen 2018).



Dynamic Concept Spaces in Computational Creativity 65

Fig. 8. Overview of the framework.

4 Aligning Concept Space Morphology with an
Experiential Learning Model

Returning to Fig. 5 and Expression 2 the specification might appear to indicate
some circularity in the system: 1. the concept space is dependent on constraints,
strategy, value and memory; 2. memory is dependent on application of constrains,
strategy, value; 3. constrains, strategy, value are dependent on memory of the
concept space. But that is a misinterpretation: given discrete time t the equation
should be interpreted as a process of discrete iterations, and so the formalism
can be aligned with learning models. As an example I align the specification
with John Dewey’s experiential learning model (Dewey 1938).

Dewey’s model of experiential learning, in other words his ‘formation of pur-
poses’ in the case of learning music, can be understood as four steps that are
cyclically reiterated: 1. ‘Impulse’ (the desire to play or create); 2. ‘Observation’
(listening to uses of techniques and ideas); 3. ‘Knowledge’ (analytical insights
and embodied cognitive practice); 4. ‘Judgement’ (critical evaluation to make
choices which will guide the next ‘Impulse’) (Kolb 2015, pp. 33–34) (Kolb 1984,
pp. 22–23) (Dewey 1938, p. 69). This iterative process is illustrated in the dia-
gram in Fig. 9, adapted from Kolb’s (2015) interpretation of Dewey.

Fig. 9. Dewey’s model of experiential learning with iterations leading to ‘Purpose’,
where I: Impulse, O: Observation, K: Knowledge, J: Judgement, and t represents time.

I propose to align these four steps with components of the formal model so
that I represent Experiential Learning as generative recursion, shown in Fig. 10.
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In this interpretation, the Kolb/Dewey Impulse is represented by intrinsic moti-
vation M1; Observation is represented by extrinsic motivation M2; Knowledge
is the dynamic concept space C ; and Judgement is the Creative Output. Dewey’s
‘Purpose’, as a goal of the learning process, may be an artefact output that is con-
sidered ‘complete’ in some aesthetic or poietic10 sense. In the case of improvised
music, the ‘purpose’ may be the completion of a performance; the Judgements
(or Creative Outputs) of the generative recursion correspond to the playing of
the music; the dynamic concept space is the musical performance, which is here
represented in a discrete time sequence [0, .., t, t + 1, ..].

Fig. 10. Experiential Learning as generative recursion.

As a consequence of the expression in Fig. 10 the generative recursion of
this computational creativity specification can be understood as an experiential
learning process. If the Wiggins/Boden’s ‘searching’ in the universe of possible
concepts is a learning process then the ‘creativity’ of the system is expressed
in the emergent traces that are the Creative Output of this learning process.11

This resonates with the philosophical argument made by Jack Glickman (1976,
pp. 130–131) on the concept of creativity in the arts: that speaking of “‘creative
process”... is the wrong way to go about characterizing creativity, [instead] one
must attend to the artistic product rather than to the process’. So I propose
that creativity is not a process itself but is rather an artefact that may emerge
from a learning process.12

According to Kolb, there is a ‘dialectic... between the impulse that gives
ideas their “moving force” and reason that gives desire its direction’ in Dewey’s
model (Kolb 2015, p. 40). Applied in the formal model this may translate into

10 The term ‘poietic’ is from Nattiez (1990).
11 Kolb states that a characteristic of experiential learning models is that learning is

best described as a process (Kolb 2015, 37).
12 Wiggins appears to interchange the term ‘artefact’ with the term ‘concept’ and exam-

ines the ‘conceptual space in which the artefact is found’ (Wiggins 2006b, p. 209).
This seems to be a confusion of terms since ‘artefact’ refers to physical objects made
in some way by humans, whereas ‘concepts’ exist in human consciousness. What the
nature of the relations between concepts and artefacts is, is a question beyond the
present scope, but I expect that the distinction between these terms would still hold
when applied in the context of computational creativity.
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a relation between intrinsic motivation M1 and Creative Output, aligned with
Impulse and Judgement (expression 3).

M1 ←→ CreativeOutput ≈ Impulse ←→ Judgement (3)

Kolb’s ‘most current statement [of] experiential learning theory is described
as a dynamic view of learning based on a learning cycle driven by the resolution of
the dual dialectics of action/reflection and experience/abstraction’ (Kolb 2015,
pp. 50–51) and his working definition of learning is that experiential ‘[l]earning
is the process whereby knowledge is created through the transformation of expe-
rience’ (Kolb 2015, p. 49).13 Within the formal framework, these two dialectic
relations can be understood as shown in expressions 4 and 5. We can say that
reflection is evident in the change of concept space (ΔC (t)) which is in a dialec-
tic relation with Creative Output. The external input (Mk), whether cognitive or
computational, may be considered as ‘experience’ which is in a dialectic relation
with the concept space abstraction (C ). Further investigation of these relations
is beyond the present scope and are reserved for future work.

CreativeOutput ←→ ΔC (t) ≈ action ←→ reflection (4)

Mk ←→ C (t) ≈ experience ←→ abstraction (5)

5 Conclusion

The presented development of the formal specification and understanding of
its meaning opens up new possibilities for developing computational creativity.
In much current Artificial Intelligence work the goal of a search algorithm is
usually to find optimal solutions to search problems. In music, improvised music
in particular, a focus on searching for optimal solutions to a ‘problem’ may be
a category mistake. In other words the question, whether an optimal music has
been achieved seems to be a misleading question. Instead one should ask what
has been the value of the aesthetic experience of the music, and also has the
learning process, that aligns with the making of the music, been productive of a
transformed experience? In a creative system for improvising music there is no
imperative to find an ‘optimal’ solution, since the morphology of the search itself
can constitute a musical ‘solution’, a trace of a learning process, which counts as
a valuable contribution to an aesthetic event. In this specification the generative
search in the possibility space is a ‘solution’ to the improvisational performance
‘problem’.

13 One might question whether knowledge is ‘created’ and this becomes a questioning
of the constructivist stance. Perhaps it is more accurate to say that knowledge is
‘attained’ or ‘arrived at’ since knowledge potentially exists regardless of our access
to it? Resolving this question is beyond the present scope.
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