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Abstract

Leukocyte (WBC) to endothelial cell (EC)
adhesion is a receptor-mediated process gov-
erned by the avidity and affinity of selectins,
which modulate adhesive forces during WBC
rolling, and integrins, which determine the
strength of firm adhesion. Adhesion receptors
on the EC surface lie below an endothelial
surface layer (ESL) comprised of the EC gly-
cocalyx and adsorbed proteins which, in vivo,
have a thickness on the order 500 nm. The
glycocalyx consists of a matrix of the gly-
cosaminoglycans heparan sulfate and chon-
droitin sulfate, bound to proteoglycans and en-
cased in hyaluronan. Together, these carbohy-
drates form a layer that varies in glycan con-
tent along the length of post-capillary venules
where WBC-EC adhesion occurs. Thickness
and porosity of the glycocalyx can vary dra-
matically during the inflammatory response
as observed by increased infiltration and dif-
fusion of macromolecules within the layer
following activation of the EC by cytokines
and chemoattractants. In models of inflam-
mation in the living animal, the shedding of
glycans and diminished thickness of the gly-
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cocalyx rapidly occur to facilitate penetra-
tion by the WBCs and adhesion to the EC.
The primary effectors of glycan shedding ap-
pear to be metalloproteases and heparanase
released by the EC. Retardation of glycan
shedding and WBC-EC adhesion has been
demonstrated in vivo using MMP inhibitors
and low-molecular-weight heparin (LMWH),
where the latter competitively binds to hep-
aranase liberated by the EC. Together, these
agents may serve to stabilize the ESL and
provide a useful strategy for treatment of in-
flammatory disorders.

1 Introduction

The inflammatory process revolves around a
sequence of events that leads to emigration of
leukocytes (WBCs) through the microvascular
wall into the tissue space. Convective transport
of WBCs to the microvasculature leads to
their radial migration to the microvessel wall
(margination), rolling along the endothelium and
firm adhesion to the endothelium (EC) prior
to diapedesis (Atherton and Born 1972, 1973;
Grant 1973), as depicted in Fig. 1. As blood
traverses the arteriolar network, hemodynamic
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Fig. 1 Leukocyte-endothelium adhesion in post-
capillary venules is an essential step in the inflammatory
process. As WBCs exit the capillaries, hemodynamic
forces and interactions with red cells cause the radial
migration of WBCs to the EC surface (margination)
with subsequent rolling along and firm adhesion to the
EC. WBC rolling is facilitated by the selectin family of
adhesion molecules that maintains WBC contact with

the EC surface. Arrest and firm adhesion follow due to
the strong adhesion mediated by integrins on the WBC
and their receptors on the EC. The selectins and integrin
receptors are buried within the endothelial surface layer
(ESL) that consists of the EC glycocalyx and adsorbed
proteins. The ESL is typically about 500 nm thick and
shields selectins and integrin receptors that protrude from
20 to 40 nm above the EC membrane

and topographical features promote WBC-EC
interaction (Bagge and Karlsson 1980; Braide
et al. 1984; Goldsmith and Spain 1984; Schmid-
Schonbein et al. 1980). As blood exits from
capillaries to post-capillary venules, WBC radial
migration to the EC occurs due to hemodynamic
forces and red blood cell (RBC) interactions
(Schmid-Schonbein et al. 1980). Rolling of
WBCs on the EC is then promoted by adhesive
interactions with the molecular surface layer
on the EC and receptor-mediated adhesion with
the selectin family of carbohydrates (Springer
and Lasky 1991). Subsequent firm adhesion of
WBCs ensues due to receptor-mediated adhesion
of integrins on the WBC surface to counter
receptors on the EC (Zarbock and Ley 2009;
Springer 1990). Successful completion of the
adhesion process hinges on the availability of
ligands in the EC surface layer (ESL) formed by
the EC glycocalyx and adsorbed proteins (Pries
et al. 2000; Reitsma et al. 2007; Weinbaum et al.
2007).

The interface between blood and endothe-
lium has been of interest for decades in light of
its role in inflammation, permeability to macro-
molecules, and thrombosis. Early studies on the

structural makeup of the capillary wall drew
attention to the surface of the endothelium as
an essential part of the “hematoparenchymal bar-
rier” (Zweifach 1955). The observations of mi-
crovascular function recognized that endothelial
cells continuously secrete substances that form
an “intercellular cement” and the basement mem-
brane. With advances in intravital microscopy,
direct visualization of the dynamics of blood-
endothelial cell (EC) interactions in the micro-
circulation led to hypotheses to explain the basis
for blood cell to EC adhesion, the clotting of
blood, and the transvascular exchange of fluid
and macromolecules. It is now recognized that
the surface of the endothelium is coated with
a layer of polysaccharides and transmembrane
proteins, as described in Chap. 1, that was sub-
sequently visualized by electron microscopy by
Bennett and others (Bennett et al. 1959; Luft
1966). In view of its predominant polysaccharide
constituents, Bennett (Bennett et al. 1959) termed
it the “glycocalyx,” as derived from the Latin for
“sweet husk.” Initially viewed as an extension of
the endothelial cell basement membrane onto the
luminal surface of the EC, the fine structure of
the glycocalyx has been described as a network
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Fig. 2 Visualization of the endothelial glycocalyx. (a)
Bright-field view of post-capillary venules in mesentery
of the rat. (b) Fluorescence microscopy of the glycocalyx
labeled with the fluorescently labeled lectin BS-1. (c) The
average radial profile of fluorescence along the measure-
ment line R shows a peak value at each wall with intensity

proportional to the concentration of lectins bound to the
EC surface. Reductions in peak fluorescence were taken
as a measure of the shedding of glycans from the EC
surface. (d) Variation of fluorescence intensity with length
L along a wall varies ±50% as shown for the wall next to
the dashed line

of glycoproteins on the order of 50–100 nm
thick, with a characteristic spacing of 20 nm
that accounts for the resistance to filtration of
small molecules (Squire et al. 2001). Recognition
that the EC surface contains an abundance of
negatively charged carbohydrates (Simionescu et
al. 1982) led to the use of lectins to visualize the
endothelial surface layer (Schnitzer et al. 1990a).
Visualization of the glycocalyx with lectin stain-
ing is illustrated in Fig. 2, where the surface of
post-capillary venules is stained with the fluo-
rescently labeled lectin BS-1 (Bandeiraea sim-

plicifolia) (Mulivor and Lipowsky 2004). Lectins
are carbohydrate-binding proteins that may be
used to loosely identify specific glycoproteins in
the EC surface layer (Schnitzer et al. 1990b).
As shown in Fig. 2a, staining of the glycocalyx
reaches a maximum at the vessel walls. The
average radial profile of fluorescence along the
length of a microvessel reveals a peak intensity
that is proportional to concentration of lectin-
binding sites on the EC surface. Peak staining
along the length of one wall (Fig. 2d) illustrates
the variability of glycans on the surface, which
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may vary ±50% about the mean. As shown in
the following, peak intensity of glycan staining
may be used to quantify the shedding of glycans
during the inflammatory process and changes in
glycan concentration with hemodynamic (shear)
conditions.

2 Microvascular
Hemodynamics

Historically, the role of the glycocalyx in affect-
ing microvascular hemodynamics arose from the
seminal studies of Klitzman and Duling (1979)
and Desjardin and Duling (1990) in their studies
of the basis for the anomalous levels of capillary
hematocrit observed in most tissues by intravital
microscopy. At that time, studies subsequent to
the pioneering observations of reduced small ves-
sel hematocrit by Poiseuille (1835) and Fahraeus
(1929) noted reductions in capillary hematocrit
that were well below 50% of systemic values
(Pries et al. 1990; House and Lipowsky 1987a).
Average values of capillary hematocrit on the
order of 10–20% of systemic hematocrit far ex-
ceeded the hypothetical maximum reduction of
50%, based upon red cell velocity profiles in
small tubes (Sutera et al. 1970) where, for a
parabolic velocity profile, peak velocity along the
vessel center line may reach a maximum of twice
the mean velocity. Klitzman and Duling (1979)
hypothesized that the low capillary hematocrits
arose from retardation of fluid on the endothelial
cell surface. To validate this hypothesis and ex-
plore the role of the glycocalyx in contributing
to the anomalous low capillary hematocrits, Des-
jardin and Duling (1990) inserted finely drawn
micropipettes into feeding vessels and perfused
individual capillaries with heparinase to strip off
the glycocalyx. Their results showed a twofold
rise in capillary hematocrit, presumably due to
the resultant increase in the effective capillary di-
ameter with degradation of the glycocalyx. Sub-
sequent studies have shown increases in capillary
hematocrit in response to its removal by perfu-
sion with hyaluronidase (Cabrales et al. 2007) or
degradation due to the presence of reactive oxy-

gen species derived from oxidized LDL (Con-
stantinescu et al. 2001).

To delineate the hemodynamic significance of
the glycocalyx insofar as it affects the resistance
to blood flow, studies have explored the effects
of its enzymatic removal by direct intravital mi-
croscopy. Measurements by Pries et al. of re-
gional pressure drops and flows in the mesenteric
microvasculature following enzymatic removal
of the glycocalyx, by perfusion with heparinase,
suggested a 14–20% decrease in the resistance to
flow (Pries et al. 1997). Their analysis of this di-
minished resistance suggested that removal of the
glycocalyx theoretically increased microvessel
diameter throughout the network by about 1 μm.
Consistent with these findings, a hydrodynami-
cally significant glycocalyx has been explicitly
shown by analysis of the velocity profiles of
small fluorescent microspheres in the in vivo mi-
crocirculation using techniques of particle image
velocimetry (PIV) (Potter and Damiano 2008;
Smith et al. 2003). Within small venules in the
exteriorized cremaster muscle, these studies re-
vealed a glycocalyx thickness on the order of
about 0.3–0.4 μm which displaces blood flow
from the surface of the endothelium. In contrast,
similar applications of PIV to analysis of particle
flow over cultured human umbilical vein and
bovine aortic endothelial cells revealed hydro-
dynamically significant thicknesses of only 0.03
and 0.02 μm, respectively (Smith et al. 2003).
Thus, in vitro models clearly fail to replicate the
in vivo structure of the glycocalyx.

3 Structure of the Glycocalyx

As discussed in Chap. 1, several studies to date
have reviewed the structure of the endothelial
glycocalyx (Pries et al. 2000; Reitsma et al. 2007;
Weinbaum et al. 2007; Chappell et al. 2009a;
Gotte 2003). Salient features relevant to WBC
adhesion may be summarized as follows. The
most prominent components of the glycocalyx
are the glycosaminoglycans (GAGs) heparan sul-
fate (HS), chondroitin sulfate (CS), and hyaluro-
nan (HA). The GAGs HS and CS are covalently
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linked to membrane-bound proteoglycans (PGs).
Sulfate groups on HS and CS confer a negative
charge to these GAGs. The density of GAGs on
PGs and glycoproteins varies considerably (Re-
itsma et al. 2007), and each PG may carry multi-
ple chains of HS and CS, with a ratio of HS/CS
of about 4:1 (Rapraeger 1989), and their sulfation
level may change depending on the physiological
microenvironment (Rapraeger 1989; Vogl-Willis
and Edwards 2004). HA does not possess sulfate
groups and is not covalently linked to a proteo-
glycan core protein but is held in place by spe-
cific hyaluronan-binding proteins (Laurent and
Fraser 1992). In addition to GAG-carrying pro-
teoglycans, adsorbed blood-borne soluble pro-
teins comprise substantial components of the
glycocalyx and may be decreased by removing
plasma proteins (Adamson and Clough 1992;
Huxley and Curry 1991). Under normal physio-
logical conditions, the structure of the glycocalyx
layer is stable, and its molecular composition
represents a dynamic balance between continued
biosynthesis of new glycans and shear-dependent
alterations.

Studies of the dimensions and structure of the
endothelial glycocalyx have been confounded by
the methods of fixation and source of the cells
studied (Pries et al. 2000; Reitsma et al. 2007).
In vivo observations by direct microscopy have
revealed an apparent thickness of the glycoca-
lyx, estimated by the exclusion of erythrocytes
and macromolecules (Vink and Duling 1996), on
the order of 400–500 nm, which significantly
exceeds the dimensions obtained in either fixed
specimens or cultured cells. In vitro models with
cultured ECs fail to express a glycocalyx of thick-
ness comparable to that found ex vivo (Chap-
pell et al. 2009a). As shown therein, electron
microscopy studies of fixed umbilical vein EC
revealed a glycocalyx with an average thickness
of 878 nm, whereas cultured HUVECs revealed
a glycocalyx thickness ranging from only 29 to
118 nm.

Direct measurement of glycocalyx thickness
in post-capillary venules by intravital microscopy
is technically challenging. In the case of capillar-
ies with single-file motion of RBCs, the width of
the red cell column can be easily distinguished

from the anatomical capillary diameter (Vink and
Duling 1996) to reveal a distance to the EC
surface of about 500 μm. As shown therein,
infusion of fluorescently labeled 70 kDa dextran
(Dx70) revealed a lesser gap between the edge of
the fluorescent column and the EC on the order
of 400 nm. With cessation of flow, RBCs could
be observed to infiltrate the dextran exclusion
space completely with zero gap. Mathematical
modeling of fluid flow in the glycocalyx suggests
that fluid dynamical pressures generated within
the glycocalyx can lead to variations of red cell
shape and gap width with flow velocity (Feng
and Weinbaum 2000; Secomb et al. 2001) that
are consistent with in vivo observations (Vink
and Duling 1996). Studies of the width of the
molecular exclusion zone in capillaries (Vink and
Duling 2000) revealed that the edge of the dye
column is both charge and molecule size depen-
dent. However, anionic and neutral Dx70 main-
tained a discrete distance from the EC surface.
Application of such techniques has been applied
to measure the thickness of the glycocalyx in
venules, where WBC-EC adhesion occurs (Gao
and Lipowsky 2010). As shown in Fig. 3a for a
35 μm venule, the RBC column is surrounded
by a plasma layer that extends to the outer edge
of a dark refractive band on the EC surface. Fol-
lowing the infusion of fluorescently labeled Dx70
(Fig. 3b), the edge of the dye column becomes
diffuse due to the relatively large diameter and
path length along the optical axis. To objectively
demarcate the dye exclusion zone, a sigmoidal
fit of the radial intensity distribution was made
(Fig. 3c) and the edge of the glycocalyx taken as
the location of its inflection point. The thickness
of the glycocalyx was calculated as the distance
between the inflection point and the outer edge of
the dark refractive band.

Shown in Fig. 3d are measurements of the
thickness of this barrier to infiltration of Dx70
under controlled conditions and following infu-
sion of enzymes to remove specific GAGs from
the EC surface. Individually, all three major en-
zymes significantly reduced the layer thickness
below its normal 500 μm level, with hepari-
nase having the greatest effect. A mixture of
all three enzymes reduced the layer thickness
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Fig. 3 Measurement of the thickness of the glycocalyx
in a 35 μm diameter venule. (a) Bright-field view reveals
the plasma layer that surrounds the red cell (RBC) core. A
dark refractive band can be seen near the EC surface. The
outer edge of this band is at the EC surface. (b) Circulating
fluorescently labeled 70 kDa dextran is shown under
fluorescence microscopy and infiltrates the gap between
the RBC core and EC surface. (c) Radial distribution
of dextran fluorescence intensity exhibits a sigmoidal
distribution between the RBC column and EC surface
(outer edge of the dark refractive band) due to the varying

path length along the optical axis. An objective measure of
the thickness of the glycocalyx was taken as the distance
between the intensity inflection point (IP) and outer edge
of the refractive band. (d) Thickness was observed to be
significantly (*p < 0.05) reduced following infusion (by
micropipette) with either heparanase, chondroitinase, or
hyaluronidase and reduced by 90% with a mixture of
all three enzymes. Activation of the endothelium with
fMLP significantly reduced thickness due to shedding
of glycans. Reproduced from Gao and Lipowsky (2010),
with permission

by almost 90%. Accounting for cross-reactivity
of the enzymes resulted in (by solving the si-
multaneous algebraic equations for each GAG)
contributions to the thicknesses of the barrier of
43.3, 34.1, and 12.3%, for HS, CS, and HA,
respectively. Thus, heparan sulfate appears to
represent the major component of the glycocalyx.
To simulate changes in the structure of the glyco-
calyx anticipated in the inflammatory response,
the chemoattractant fMLP was topically applied
(Fig. 3d) and revealed a significant 28% reduc-

tion in glycocalyx thickness that was not signifi-
cantly different from the losses due to enzymatic
cleavage.

Reductions in intensity of lectin staining of
the glycocalyx due to fMLP have been cor-
related with the shedding of glycans (Mulivor
and Lipowsky 2004). Loss of glycans has been
correlated with increased infiltration of macro-
molecules in the surface layer in response to
the cytokine TNF-α (Henry and Duling 1999,
2000). Quantitative estimates of changes in the



Role of the Glycocalyx as a Barrier to Leukocyte-Endothelium Adhesion 57

porosity of the ESL have been made by calcula-
tion of the diffusion coefficients (D) of the small
fluorescent molecule fluorescein isothiocyanate
(FITC, 350 Da) by applying a 1-D diffusion
model to measurements of radial concentration
gradients in the ESL (Gao and Lipowsky 2010).
By comparison of measured transients in radial
intensity of a bolus of FITC with that of a
computational model, a diffusion coefficient D
was obtained. Values of D were obtained cor-
responding to the thickness of the layer demar-
cated by Dx70 (DDx70), and a smaller sublayer
173 nm above the EC surface (D173), prior to and
following enzyme infusion and superfusion with
fMLP. The magnitude of DDx70 was twice that
of D173 suggesting that the glycocalyx is more
compact near the EC surface. Chondroitinase and
hyaluronidase significantly increased both DDx70

and D173. However, heparinase decreased DDx70

and did not induce any significant change for
the D173. These observations suggest that the
three GAGs are not evenly distributed throughout
the glycocalyx and that they each contribute to
permeability of the glycocalyx to a differing
extent.

4 Shedding of the Glycocalyx

Functional changes in the barrier formed by the
ESL have been observed in response to a broad
spectrum of agents. Topical stimulation of the
endothelium for prolonged periods (20–120 min)
with the cytokine TNF-α results in an increased
porosity of the glycocalyx in the absence of
WBC-EC adhesion (Henry and Duling 2000).
Significant shedding of components of the gly-
cocalyx in coronary vessels has been observed
following perfusion of isolated hearts for 20 min
with TNF-α, which was lessened by the serine
protease inhibitor antithrombin III (Chappell et
al. 2009b). Acute activation of the endothelium in
post-capillary venules with the chemoattractant
fMLP induced a rapid (<5 min) shedding of
glycans from the EC surface as evidenced by a
loss of lectin-laden microspheres bound to the
EC surface (Mulivor and Lipowsky 2004). Shed-

ding of proteoglycans and GAGs from cultured
endothelial cells, or their analogs, occurs in re-
sponse to a broad spectrum of agonists (Park et al.
2000; Colburn et al. 1994; Fux et al. 2009; Ihrcke
et al. 1993; Platt et al. 1990, 1991; Fitzgerald et
al. 2000). Shedding of heparan sulfate proteo-
glycans (namely, the ectodomain of syndecans
1–4) occurs in response to endotoxin (Colburn
et al. 1994), serine and/or cysteine proteinases
(Ihrcke and Platt 1996), complement activation
(Platt et al. 1991), thrombin and growth factors
(Subramanian et al. 1997), and activation of pro-
tein tyrosine kinase by phorbol ester (Fitzgerald
et al. 2000). Using hydroxamic acid inhibitors of
matrix metalloproteinases, it has been shown that
proteolytic cleavage of the syndecan ectodomain
results from the convergence of multiple intracel-
lular pathways that activate a cell surface metal-
loproteinase (Fitzgerald et al. 2000).

In vivo, shedding of the endothelial glycoca-
lyx has been found in response to inflammation
(Mulivor and Lipowsky 2004; Henry and Dul-
ing 2000), hyperglycemia (Zuurbier et al. 2005),
endotoxemia and septic shock (Hofmann-Kiefer
et al. 2009), presence of oxidized LDL (Con-
stantinescu et al. 2001), TNFα (Chappell et al.
2009b), atrial natriuretic peptide (Bruegger et al.
2005), abnormal blood shear stress (Gouverneur
et al. 2006; Haldenby et al. 1994), ischemia-
reperfusion injury (Mulivor and Lipowsky 2004),
light-induced production of free radicals (Vink
and Duling 1996), and bypass surgery (Rehm
et al. 2007; Svennevig et al. 2008). These ob-
servations have led to an underlying connection
between integrity of the glycocalyx and vascular
homeostasis (Mulivor and Lipowsky 2004; Zuur-
bier et al. 2005).

Shedding of the glycocalyx in response to cy-
tokines and chemoattractants occurs in all three
principal divisions of the microvasculature: ar-
terioles (Henry and Duling 2000), capillaries
(Constantinescu et al. 2001; Henry and Duling
2000), and venules (Mulivor and Lipowsky 2004;
Henry and Duling 2000). To illustrate, shown
in Fig. 4 is the intensity of glycans in the ESL
stained with a fluorescently labeled lectin (BS-1)
in the three principal divisions of the mesenteric
microvasculature (rat) (Lipowsky et al. 2011).
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Fig. 4 Shedding of glycans on the EC surface of post-
capillary venules in mesentery (rat) in response to top-
ical application of the chemoattractant fMLP (10−7 M)
compared to control values obtained with superfusion of
the tissue with Ringer’s solution. Glycan concentration
was assumed proportional to the intensity of fluorescently
labeled lectin (BS-1) on the EC surface and normalized

to initial values. Shown are mean values ± SE for ar-
terioles, capillaries, and venules. Intensity of the lectin
stain falls rapidly within the first 5 min of onset of the
fMLP and steadily decreases during the entire observation
period. After 30 min exposure to fMLP, thickness of the
glycocalyx decreased significantly (*p < 0.05). Data are
mean ± SE. From Lipowsky et al. (2011), with permission

The normalized intensity is shown under resting
conditions and following topical application of
the chemoattractant fMLP (10−7 M). About 30%
of all lectin-stained glycans were shed from the
EC during a 30 min exposure to fMLP. This
shedding appears to be accompanied by a sig-
nificant reduction in thickness in each division
(Fig. 4d). Although it has been postulated that
such reductions in thickness are insufficient to
expose WBC adhesion receptors (Marki et al.
2015), concomitant increases in porosity (Henry
and Duling 1999, 2000) and deformability (Pad-
berg et al. 2014; Wiesinger et al. 2013) of the
ESL may promote WBC infiltration and adhesion
during inflammation.

5 Enzymatic Cleavage
of the Glycocalyx

With the majority of WBC adhesion receptors
situated in post-capillary venules, as, for exam-
ple, in the case of ICAM-1 (Iigo et al. 1997),
shedding of the venular glycocalyx may play
an important role in the inflammatory process.
The cellular signaling cascades resulting from
pathological conditions and initiating shedding
of the glycocalyx are not fully understood. How-
ever, direct in situ observations of shedding in
post-capillary venules suggest that several key
enzymes may be responsible for shedding of the
glycocalyx components (Mulivor and Lipowsky
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2009). Matrix metalloproteases (MMPs) on the
surface of the venular endothelium are rapidly
activated by superfusion of the mesenteric tissue
with fMLP and may be inhibited by superfusion
with subantimicrobial doses (0.5 μM) of the
antibiotic doxycycline (Mulivor and Lipowsky
2009). The inhibitory activity of doxycycline on
shedding results from its direct effect on MMP
activation and not by its ability to chelate divalent
cations (Lipowsky et al. 2011), as evidenced
by inhibition of MMP activation by the zinc-
chelating hydroxamic acid inhibitor GM6001,
and lack of inhibition by chelation of cations
with EDTA. The possible role of doxycycline as
a scavenger of reactive oxygen species (ROS) has
been raised (Golub et al. 1998). However, direct
evidence that ROS cause shedding in response
to chemoattractants or cytokines remains to be
obtained. In addition, MMP inhibition has been
shown to have no effect on ROS-induced shed-
ding (Lipowsky and Lescanic 2013).

Fluid shear stresses acting on the EC surface
may affect the structure of the glycocalyx by ei-
ther disrupting molecular constituents, affecting
biosynthesis of new components, or activating
proteases and lyases synthesized by the endothe-
lium (Mulivor and Lipowsky 2004; Arisaka et al.
1995). Increased synthesis of GAGs by cultured
monolayers of ECs occurs with prolonged expo-
sure to high shear stresses of 15 or 40 dyn/cm2

(Arisaka et al. 1995). These results were in con-
trast to prior studies that revealed a decrease in
proteoglycan synthesis when ECs were cultured
under low levels of shear stress (Grimm et al.
1988). In vivo studies of the accumulation of
glycans on the surface of post-capillary venules
during a 1 h period of ischemia demonstrated
a 15–40% increase in glycan content on the
surface of the EC (Mulivor and Lipowsky 2004).
Upon reperfusion of these venules, this excess of
surface glycans was washed out, and glycan lev-
els (indicated by accumulation of lectins on the
EC surface) momentarily fell below pre-ischemic
(control) conditions before returning to normal
levels. This postischemic fall below pre-ischemic
levels was inhibited by superfusion of the tissue
with pertussis toxin, thus suggesting a G-protein-

mediated activation of enzymatic cleavage of
GAGs and/or proteoglycans on the EC surface.

The hypothesis that matrix metallopro-
teinases (MMPs) may alter the endothelial
glycocalyx and thus facilitate shedding under
pathological conditions is well supported. Matrix
metalloproteinases represent a family of over
two dozen zinc-dependent proteases that play
a role in normal tissue remodeling during
bone growth, wound healing, reproduction,
cancer, inflammation, and cardiovascular disease
(Spinale 2007). MMPs (−1 and − 9) serve to
cleave the endothelial insulin receptor and CD18
on leukocytes in the spontaneously hypertensive
rat (DeLano and Schmid-Schonbein 2008).
Oxidative stress in the diabetic heart may activate
MMP-2 and lead to the development of diabetic
cardiomyopathy (Yaras et al. 2008). Modification
of the extracellular matrix by MMPs has been
shown to be a critical step in angiogenesis (Haas
et al. 2000) and atherosclerosis (Li et al. 1996).
MMP-2, MMP-7, and MMP-9 were shown to be
capable of directly cleaving chondroitin sulfate
(Gronski et al. 1997). In addition, MMP-1 was
shown to cleave the heparan sulfate proteoglycan
syndecan-1 (Endo et al. 2003). MMPs can be
stored within and released by the endothelium.
It has been shown (Taraboletti et al. 2002) that
both the active and proactive forms of MMP-2
and MMP-9 are stored in vesicles within the EC
and both forms of MMP-7 have a high affinity
for and bind to heparan sulfate (Yu and Woessner
Jr 2000). Therefore, mechanisms exist by which
MMP’s may be rapidly released by endothelial
cells. Innate inhibition of MMPs is derived
from tissue inhibitors of metalloproteinases
(TIMPs), a family of four different molecules
made unique by their expression, localization,
and inhibitory activity. Much like the MMPs,
TIMPs are capable of binding heparan sulfate
and chondroitin sulfate in the glycocalyx (Yu and
Woessner Jr 2000).

The putative role of MMPs in cleaving
glycans from the EC surface is supported by
studies of in situ microzymography to quantify
MMP activation on the surface of post-capillary
venules (Mulivor and Lipowsky 2009). Hence,
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it is likely that cleavage of GAG-bearing
proteoglycans by either membrane-bound or
cytosolic MMPs in the endothelial cell may
be responsible for shedding of the glycocalyx.
This hypothesis is also supported by studies of
syndecan-1 shedding from human embryonic
kidney cells caused by membrane type matrix
metalloproteinase-1 (MT1-MMP) (Endo et al.
2003), shedding of syndecan-1 and syndecan-
4 from HeLa tumor cells by MMP-9 (Brule
et al. 2006), shedding of syndecan-1 from
pancreatic carcinoma cells by MMP-7 (Ding
et al. 2005), and shedding of syndecan-1 by
MMP-7 during transmigration of neutrophils
from the interstitium to alveoli in the lung (Li et
al. 2002).

The effects of MMP inhibition on glycan
shedding and WBC-EC adhesion in response
to topical application of fMLP is illustrated in
Fig. 5. Without MMP inhibition, fMLP induces
a rapid (<10 min) shedding of glycans and
an eightfold increase in the number of WBCs
adhered to the walls of post-capillary venules
(Mulivor and Lipowsky 2009). Superfusing the
tissue with 0.5 μM. doxycycline results in a
significant attenuation of glycan shedding and
WBC-EC adhesion.

Whereas MMP activity presumably cleaves
the protein core of GAG-bearing proteoglycans,
cleavage of GAG chains by EC secretion of
heparanase may also contribute to shedding
(Chappell et al. 2008; Becker et al. 2015).
Heparin has long been recognized as an
inhibitor of heparanase activity (Bar-Ner et
al. 1987), and considerable experimental and
clinical evidence supports its anti-inflammatory
activity (Page 2013). The anti-inflammatory
properties of unfractionated and low-molecular-
weight heparins (LMWH) have been studied
extensively, although precise mechanisms have
not been established (Oduah et al. 2016). Several
studies have aimed to delineate the role of
heparin in WBC-EC rolling and adhesion, and
transmigration trough the microvessel wall.
Treatment with LMWH dramatically diminished
sepsis-induced neutrophil sequestration in the
lung (Ning et al. 2015) and attenuated shedding
of the glycocalyx in septic shock (Yini et al.

2015). Heparin has been reported to diminish
or protect against reperfusion injury in various
animal models (Young 2008). Intradermal
administration of heparin attenuated eosinophil
accumulation in response to inflammatory
stimuli in a dose-dependent manner (Teixeira
and Hellewell 1993). Binding of heparins to
selectins (Koenig et al. 1998), WBCs (Page
2013; Diamond et al. 1995; Lever et al. 2000),
and HSPGs and other constituents of the EC
glycocalyx (Nordling et al. 2015; VanTeeffelen
et al. 2007) has been shown to inhibit the
inflammatory process. Use of low-molecular-
weight heparin fractions has shown potential
for protecting the endothelial glycocalyx from
degradation in nephrosis (Gaddi et al. 2010),
diabetes (Eskens et al. 2013), thrombosis
(Daniels et al. 2006), retinal neovascularization
(Jo et al. 2014), and inflammation (Becker et al.
2015; Kolarova et al. 2014). These studies found
that the agent sulodexide, a mixture of low-
molecular-weight heparin and dermatan sulfates,
afforded significant protection of the glycocalyx
from degradation.

The effects of graded concentrations of
LMWH (Lovenox

®
, relative molecular mass,

Mr. = 4500) on shedding of glycans and WBC-
EC adhesion (Lipowsky and Lescanic 2017)
are illustrated in Fig. 5b, d. With increasing
doses of LMWH up to 0.22 mg/kg, competitive
binding of LMWH to heparanase may attenuate
the initial shedding of glycans due to fMLP. With
greater doses (>0.6 mg/kg), glycan concentration
appears to rise due to a compaction of the
glycocalyx as HS chains are cleaved and the
layer collapses. Eventually, the inhibition of
shedding by LMWH is overwhelmed by activity
of either MMPs, heparanase, or other sheddases.
The WBC-EC adhesion response to fMLP (Fig.
5d) was significantly attenuated during the initial
10 min at the highest dose of LMWH but
eventually rose with prolonged exposure to the
chemoattractant. In these studies, WBC adhesion
correlated with intensity of the lectin stain for all
measurements and revealed a significant 40%
reduction in adhesion as intensity increased
50%. This relationship was attributed to LMWH
inhibition of heparanase and/or binding to
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Fig. 5 Enzymatic shedding of the glycocalyx and WBC-
EC adhesion in mesenteric venules. Glycan concentration
was taken in proportion to the intensity of fluorescently
labeled lectin (BS-1), normalized to initial values as
a function of time following topical application of
fMLP. (a) Glycan concentration in the glycocalyx fell
dramatically following onset of fMLP stimulation. This
fall was completely abolished by superfusion of the tissue
with the MMP inhibitor doxycycline at a concentration
of 0.5 μM. (b) Glycan concentration due to fMLP
following IV administration of low-molecular-weight
heparin (LMWH) of the indicated doses. Low doses

(0.22 mg/kg) inhibited the initial fall during the first
10 min. High doses (>0.60 mg/kg) resulted in a rise
in glycan concentration presumably due to ligation of
HS chains and subsequent collapse of the glycocalyx.
(c). The WBC-EC adhesion response to fMLP, with
and without superfusion with doxycycline. (d) WBC-
EC adhesion with infusion of LMWH. The high dose of
LMWH initially delayed the rise in WBC-EC adhesion.
Data are means ± SE. (a) and (c) redrawn from
Mulivor et al. (Atherton and Born 1972); (b) and (d)
redrawn from Lipowsky et al. (Atherton and Born 1973)
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components of the glycocalyx with a resultant
mitigation of glycan shedding, compaction of the
lectin stain, and stabilization of the glycocalyx.

6 Leukocyte Rolling
and Adhesion

Based upon the rolling and adhesion of WBCs on
either artificial surfaces coated with receptors for
specific ligands (Alon et al. 1995; Lawrence and
Springer 1991, 1993) or monolayers of cultured
endothelial cells (Arisaka et al. 1995; Hoover
et al. 1980; Lawrence et al. 1987), it has long
been held that adhesiveness is governed by reg-
ulation of the affinity and avidity of the integrin
molecules on the WBC and EC (Zarbock and
Ley 2009; Kinashi and Katagiri 2004; Laudanna
et al. 2002; Luo et al. 2007). In vivo studies of
post-capillary venules (Arfors et al. 1987; House
and Lipowsky 1987b; Ley et al. 1995) have sup-
ported this concept. In addition, the mechanical
properties of the glycocalyx may play a role
in the adhesion process in light of the ability
of microvilli on the surface of rolling WBCs
to penetrate the surface layer to reach adhesion
receptors (Zhao et al. 2001). WBC microvilli
may range in length from 0.3 to 0.7 μm (Wein-
baum et al. 2007). The ability to penetrate the
glycocalyx may depend on changes in porosity
and stiffness attendant to physiological stimuli
(Weinbaum et al. 2007; Platts et al. 2003; Platts
and Duling 2004). Under normal conditions, the
apparent thickness of the glycocalyx significantly
exceeds the lengths of endothelial cell (EC) re-
ceptors involved in leukocyte (WBC) rolling on
the EC (selectins) and firm adhesion to the EC
(integrins). The lengths of these receptors range
from 20 nm for the β2 integrin ligands to 30–
40 nm for E- and P-selectins (Springer 1990).
Thus, reduction in thickness of the glycocalyx
by either chemoattractants (e.g., fMLP) (Gao
and Lipowsky 2010) or cytokines (e.g., TNF-α)
(Henry and Duling 2000) accompanied by in-
creased porosity may enhance access to adhesion
receptors on the EC surface. It has been shown
that perfusion of post-capillary venules with hep-
arinase or superfusion of the tissue with fMLP

served to increase binding of circulating anti-
bodies to ICAM-1 on the EC surface (Mulivor
and Lipowsky 2002). Although in this study,
firm adhesion of WBCs was not stimulated by
perfusion of venules with heparinase, most likely
because substrates for leukocyte rolling were also
removed, subsequent studies using heparitinase
(which may cleave less sulfated heparan sulfate
chains) produced an increase in firm WBC adhe-
sion (Constantinescu et al. 2003). Alternatively,
it has been demonstrated that heparinase reduces
stimulated rolling and adhesion of WBCs in post-
capillary venules by inhibiting externalization of
P-selectin and/or compromising the structural in-
teractions between heparan sulfate proteoglycans
and selectins (Hayward et al. 1998).

Changes in the glycocalyx attendant to EC
activation also affect WBC rolling adhesive in-
teractions with the EC. Taking the rolling ve-
locity of WBCs (normalized with respect to es-
timated wall shear rates, S.R.) as a measure of
the adhesiveness of the EC surface (the lower
the ratio of VWBC/SR, the greater the adhesive-
ness), it was found that superfusion of the tissue
with inhibitors of MMP activity, such as doxy-
cycline or the zinc chelator GM6001, decreased
the rolling velocity, thus promoting adhesiveness
of the EC surface during WBC rolling. These
results suggest that there is a basal level of
sheddase activity on the EC surface that may be
suppressed by MMP inhibition, which leads to
an excessive accumulation of adhesion receptors
on the EC surface that retard the rolling mo-
tion of WBCs. The presence of a basal level of
MMP activity on the EC surface of post-capillary
venules has been demonstrated by measuring the
fluorescence activity of fluorescence substrates
circulating in the plasma, which is reduced with
MMP inhibition (Mulivor and Lipowsky 2009).
Interestingly, superfusion of the tissue with fMLP
alone causes a similar reduction in rolling ve-
locity, presumably due to a combination of con-
formational changes in adhesion receptors on
the EC surface and enhanced externalization of
adhesion receptors (e.g., P-selectin) and shedding
of the glycocalyx. While inhibition of MMP
activation and activation with fMLP both resulted
in diminished rolling velocity, the strength of the
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adhesive bond during firm adhesion was found to
be less with MMP suppression compared to that
with fMLP, presumably due to conformational
changes of WBC integrin receptors induced by
fMLP (Lipowsky et al. 2015).

Similar adhesive interactions have also been
observed, in part, by experiments in other tissues
and cells. Inhibition of L-selectin shedding from
WBCs by the metalloprotease inhibitor KD-IX-
73-4 was found to reduce WBC rolling velocity
in post-capillary venules of hamster cremaster
muscle (Hafezi-Moghadam et al. 2001), which
was attributed to inhibition of L-selectin shed-
ding on the leukocyte alone. Although KD-IX-
73-4 had no apparent effect on the endothelial
glycocalyx, these studies bring to light the poten-
tial for metalloprotease inhibition to affect leuko-
cyte rolling and adhesion. Further, comparison
of the inhibitory activity of KD-IX-73-4 on the
shedding of the endothelial protein C receptor
(EPCR) from EA.hy926 endothelial cells, with
inhibition of the MMP inhibitor GM6001, re-
vealed that the latter was ineffective in inhibiting
the release of EPCR (Xu et al. 2000). Thus, if
this endothelial selectivity of the MMP inhibitors
GM6001 and doxycycline applies to the reduc-
tions of WBC rolling velocity in venules, then the
role of MMP inhibition on affecting the adhesive
properties of the endothelial glycocalyx is further
supported. It has also been shown that reduced
rolling velocity of WBCs occurs following ex-
posure of cremaster venules to TNF-α (Jung
et al. 1998). Although these results were at-
tributed to conformational changes of adhesion
receptors in response to TNF-α, this trend may
reflect the shedding of glycans from the EC
surface, as noted previously (Henry and Duling
2000), and the enhanced access to adhesion lig-
ands (e.g., ICAM-1).

7 Conclusions

In summary, the endothelial surface layer, which
consists of the EC glycocalyx and a layer of
adsorbed proteins, has been implicated as a bar-
rier to WBC-EC adhesion. The primary glyco-
proteins are decorated with the principal gly-

cosaminoglycans (GAGS) heparan sulfate (HS)
and chondroitin sulfate (CS) that are encased in
a meshwork of hyaluronic acid (HA). Together,
these glycans form a layer that can be observed
in vivo on the surface of the EC that is on
the order of 500 μm thick. Measurement of the
precise thickness of the ESL is fraught with many
difficulties and is most easily implemented by ex-
clusion of macromolecules from the EC surface.
In vitro, the ESL is much smaller, on the order of
1/10th the in vivo thickness. Staining of glycans
with carbohydrate-binding proteins (lectins) per-
mits visualization of the ESL and reveals that the
composition of the glycocalyx readily changes
during the inflammatory process, as evidenced
by the shedding of glycans with activation of the
endothelium by chemoattractants and cytokines.
Reductions in thickness and increases in porosity
of the ESL due to an inflammatory stimulus facil-
itate greater access to WBC adhesion receptors
on the EC surface and thus promote WBC-EC
adhesion.

The effectors of ESL shedding are most likely
members of the family of metalloproteinases,
which cleave the core proteoglycans, and endo-
glycosidases (namely, heparanase), which cleave
GAGs attached to the core proteins. Direct in-
travital microscopic studies of shedding of the
glycocalyx have suggested that glycan shedding
may be inhibited by MMP inhibitors and com-
petitive binding to EC-derived heparanase. The
relative proportions of MMP and heparanase-
induced shedding remain to be fully delineated,
as well as the extent to which MMPs and hep-
aranase affect their mutual release and activation.
Identification of the specific proteases responsi-
ble for shedding is further complicated by the
ability of specific MMPs to activate other mem-
bers of the MMP family and for other proteases
to activate MMPs. There is also an indirect asso-
ciation between heparanase and MMP expression
(Purushothaman et al. 2008, 2011, 2010; Zcharia
et al. 2009). For example, blocking activation of
MMP-9 inhibited heparanase-induced syndecan-
1 shedding in myeloma cells (Purushothaman
et al. 2010), and overexpression of heparanase
in cultured human mammary carcinoma cells
resulted in diminished expression of MMP-2,
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MMP-9, and MMP-14 (Zcharia et al. 2009). It
is clear, however, that stabilization of the gly-
cocalyx during inflammation may indeed miti-
gate WBC-EC adhesion. Thus, the development
of new strategies to directly target shedding of
the glycocalyx may have significant therapeutic
value.
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