
Implementation of a Near-Optimal
Complex Root Clustering Algorithm

Rémi Imbach1(B), Victor Y. Pan2, and Chee Yap3

1 TU Kaiserslautern, Kaiserslautern, Germany
imbach@mathematik.uni-kl.de

2 City University of New York, New York, USA
victor.pan@lehman.cuny.edu

3 Courant Institute of Mathematical Sciences,
New York University, New York, USA

yap@cs.nyu.edu

http://www.mathematik.uni-kl.de/en/agag/members/,

http://comet.lehman.cuny.edu/vpan/, http://www.cs.nyu.edu/yap/

Abstract. We describe Ccluster, a software for computing natural ε-
clusters of complex roots in a given box of the complex plane. This
algorithm from Becker et al. (2016) is near-optimal when applied to the
benchmark problem of isolating all complex roots of an integer polyno-
mial. It is one of the first implementations of a near-optimal algorithm
for complex roots. We describe some low level techniques for speeding up
the algorithm. Its performance is compared with the well-known MPSolve

library and Maple.

1 Introduction

The problem of root finding for a polynomial f(z) is a classical problem from
antiquity, but remains the subject of active research to the present [6]. We con-
sider a classic version of root finding:

Local root isolation problem:
Given: a polynomial f(z) ∈ C[z], a box B0 ⊆ C, ε > 0.
Output: a set {Δ1, . . .,Δk} of pairwise-disjoint discs of radius
≤ ε, each containing a unique root of f(x) in B0.

It is local because we only look for roots in a locality, as specified by B0. The local
problem is useful in applications (especially in geometric computation) where we
know where to look for the roots of interest. There are several variants of this

Rémi’s work has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 676541.
Victor’s work is supported by NSF Grants # CCF-1116736 and # CCF-1563942 and
by PSC CUNY Award 698130048.
Chee’s work is supported by NSF Grants # CCF-1423228 and # CCF-1564132.

c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 235–244, 2018.
https://doi.org/10.1007/978-3-319-96418-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96418-8_28&domain=pdf

236 R. Imbach et al.

problem: in the global version, we are not given B0, signifying that we wish to
find all the roots of f . The global version is easily reduced to the local one by
specifying a B0 that contains all roots of f . If we omit ε, it amounts to setting
ε = ∞, representing the pure isolation problem.

Our main interest is a generalization of root isolation, to the lesser-studied
problem of root clustering [8,10,12]. It is convenient to introduce two definitions:
for any set S ⊆ C, let Zf (S) denote the set of roots of f in S, and let #f (S)
count the total multiplicity of the roots in Zf (S). Typically, S is a disc or a box.
For boxes and discs, we may write kS (for any k > 0) to denote the dilation of
S by factor k, keeping the same center. The following problem was introduced
in [16]:

Local root clustering problem:
Given: a polynomial f(z), a box B0 ⊆ C, ε > 0.
Output: a set of pairs {(Δ1,m1), . . .,(Δk,mk)} where

– Δi’s are pairwise-disjoint discs of radius ≤ ε,
– mi = #f (Δi) = #f (3Δi) for all i, and
– Zf (B0) ⊆ ⋃k

i=1 Zf (Δi).

This generalization of root isolation is necessary when we consider polynomials
whose coefficients are non-algebraic (or when f(z) is an analytic function, as in
[16]). The requirement that #f (Δi) = #f (3Δi) ensures that our output clusters
are natural [1]; a polynomial of degree d has at most 2d − 1 natural clusters
(see [16, Lemma 1]). The local root clustering algorithm for analytic functions
of [16] has termination proof, but no complexity analysis. By restricting f(z)
to a polynomial, Becker et al. [2] succeeded in giving an algorithm and also
its complexity analysis based on the geometry of the roots. When applied to
the benchmark problem, where f(z) is an integer polynomial of degree d
with L-bit coefficients, the algorithm can isolate all the roots of f(z) with bit
complexity Õ(d2(L + d)). Pan [13] calls such bounds near-optimal (at least
when L ≥ d). The clustering algorithm studied in this paper comes from [1],
which in turn is based on [2]. Previously, the Pan-Schönhage algorithm has
achieved near-optimal bounds with divide-and-conquer methods [13], but [1,2]
was the first subdivision algorithm to achieve the near-optimal bound for complex
roots. For real roots, Sagraloff-Mehlhorn [15] had earlier achieved near-optimal
bound via subdivision.

Why the emphasis on “subdivision”? It is because such algorithms are imple-
mentable and quite practical (e.g., [14]). Thus the near-optimal real subdivision
algorithm of [15] was implemented shortly after its discovery, and reported in [11]
with excellent results. In contrast, all the asymptotically efficient root algorithms
(not necessarily near-optimal) based on divide-and-conquer methods of the last
30 years have never been implemented; a proof-of-concept implementation of
Schönhage’s algorithm was reported in Gourdon’s thesis [9]. Computer algebra
systems mainly rely on algorithms with a priori guarantees of correctness. But in
practice, algorithms without such guarantees are widely used. For complex root

Implementation of Complex Root Clustering 237

isolation, one of the most highly regarded multiprecision software is MPSolve [3].
The original algorithm in MPSolve was based on Erhlich-Aberth (EA) iteration;
but since 2014, a “hybrid” algorithm [4] was introduced. It is based on the secular
equation, and combines ideas from EA and eigensolve [7]. These algorithms
are inherently global solvers (they must approximate all roots of a polynomial
simultaneously). Another theoretical limitation is that the global convergence of
these methods is not proven.

In this paper, we give a preliminary report about Ccluster, our1 implemen-
tation of the root clustering algorithm from [1].

Fig. 1. Left: the connected components isolating all roots of the Bernoulli polyno-
mial of degree 100. Right: the connected components isolating all roots of the Spiral
polynomial of degree 64.

To illustrate the performance for the local versus global problem, consider the
Bernoulli polynomials Bernd(z) :=

∑d
k=0

(
d
k

)
bd−kzk where bi’s are the Bernoulli

numbers. Figure 1(Left) shows the graphical output of Ccluster for Bern100(z).
Table 1 has four timings τX (for X = �, g, u, s) in seconds: τ� is the time for
solving the local problem over a box B0 = [−1, 1]2; τg is the time for the global
problem over the box B0 = [−150, 150]2 (which contains all the roots). The other
two timings from MPSolve (τu for unisolve, τs for secsolve) will be explained later.
For each instance, we also indicate the numbers of solutions (#Sols) and clusters
(#Clus). When #Sols equals #Clus, we know the roots are isolated. Subdivision
algorithms like ours naturally solve the local problem, but MPSolve can only
solve the global problem. Table 1 shows that MPSolve remains unchallenged for
the global problem. But in applications where locality can be exploited, local
methods may win, as seen in the last two rows of the table. The corresponding
time for Maple’s fsolve is also given; fsolve is not a guaranteed algorithm and
may fail.

1 Irina Voiculescu informed us that her student Dan-Andrei Gheorghe has indepen-
dently implemented the same algorithm in a Masters Thesis Project (May 18, 2017)
at Oxford University. Sewon Park and Martin Ziegler at KAIST, Korea, have imple-
mented a modified version of Becker et al. (2016) for polynomials having only real
roots being the eigenvalues of symmetric square matrices with real coefficients. See
the technical report CS-TR-2018-415 at https://cs.kaist.ac.kr/research/techReport.

https://cs.kaist.ac.kr/research/techReport

238 R. Imbach et al.

Table 1. Bernoulli polynomials with five timings: local (τ�), global (τ�), unisolve (τ�),
secsolve (τ�) and Maple’s fsolve (τf).

d Ccluster local (B0 = [−1, 1]2) Ccluster global (B0 = [−150, 150]2) unisolve secsolve fsolve

(#Sols:#Clus) (depth:size) τ� (s) (#Sols:#Clus) (depth:size) τg (s) τu (s) τs (s) τf (s)

64 (4:4) (9:164) 0.12 (64:64) (17:1948) 2.10 0.13 0.01 0.1

128 (4:4) (9:164) 0.34 (128:128) (16:3868) 9.90 0.55 0.05 6.84

191 (5:5) (9:196) 0.69 (191:191) (17:5436) 32.5 2.29 0.16 50.0

256 (4:4) (9:164) 0.96 (256:256) (17:7300) 60.6 3.80 0.37 >1000

383 (5:5) (9:196) 2.06 (383:383) (17:11188) 181 >1000 1.17 >1000

512 (4:4) (9:164) 2.87 (512:512) (16:14972) 456 >1000 3.63 >1000

767 (5:5) (9:196) 6.09 (767:767) (17:22332) 1413 >1000 10.38 >1000

Overview of Paper. In Sect. 2, we describe the experimental setup for
Ccluster. Sections 3–5 describe some techniques for speeding up the basic algo-
rithm. We conclude with Sect. 6.

2 Implementation and Experiments

The main implementation of Ccluster is in C language. We have an interface
for Julia2. We based our big number computation on the arb3 library. The
arb library implements ball arithmetic for real numbers, complex numbers and
polynomials with complex coefficients. Each arithmetic operation is carried out
with error bounds.

Test Suite. We consider 7 families of polynomials, classic ones as well as some
new ones constructed to have interesting clustering or multiple root structure.

(F1) The Bernoulli polynomial Bernd(z) of degree d is described in Sect. 1.
(F2) The Mignotte polynomial Mignd(z; a) := zd − 2(2az − 1)2 for a positive

integer a, has two roots whose separation is near the theoretical minimum
separation bound.

(F3) The Wilkinson polynomials Wilkd(z) :=
∏d

k=1(z − k).

(F4) The Spiral Polynomial Spird(z) :=
∏d

k=1

(
z− k

de4kiπ/n
)
. See Fig. 1(Right)

for Spir64(z).
(F5) Wilkinson Multiple: WilkMul(D)(z) :=

∏D
k=1(z − k)k. WilkMul(D)(z) has

degree d = D(D + 1)/2 where the root z = k has multiplicity k (for
k = 1, . . .,D).

(F6) Mignotte Cluster: MignClud(z; a, k) := xd − 2(2az − 1)k(2az + 1)k. This
polynomial has degree d (assuming d ≥ 2k) and has a cluster of k roots
near 2−a and a cluster of k roots near −2−a.

2 https://julialang.org/. Download our code in https://github.com/rimbach/Ccluster.
3 http://arblib.org/. Download our code in https://github.com/rimbach/Ccluster.jl.

https://julialang.org/
https://github.com/rimbach/Ccluster
http://arblib.org/
https://github.com/rimbach/Ccluster.jl

Implementation of Complex Root Clustering 239

(F7) Nested Cluster: NestClu(D)(z) has degree d = 3D and is defined by induc-
tion on D: NestClu(1)(z) := z3 − 1 with roots ω,ω2,ω3 = 1 where ω =
e2πi/3. Inductively, if the roots of NestClu(D)(z) are

{
rj : j = 1, . . .,3D

}
,

then we define NestClu(D+1)(z) :=
∏3D

j=1

(
z−rj − ω

16D

)(
z−rj − ω2

16D

)(
z−

rj − 1
16D

)
See Fig. 2 for the natural ε-clusters of NestClu(3)(z).

Fig. 2. Left: 3 clusters of NestClu(3) found with ε = 1. Right: Zoomed view of 9
clusters of NestClu(3) found with ε = 1

10
. Note: The initial box is in thick lines; the

thin lines show the subdivisions tree.

Timing. Running times are sequential times on a Intel(R) Core(TM) i3 CPU 530
@ 2.93 GHz machine with linux. Ccluster implements the algorithm described
in [1] with differences coming from the improvements described in Sects. 3–5
below. Unless explicitly specified, the value of ε for Ccluster is set to 2−53;
roughly speaking, it falls back to asking for 15 guaranteed decimal digits.

MPSolve. For external comparison, we use MPSolve. It was shown to be
superior to major software such as Maple or Mathematica [3]. There are
two root solvers in MPSolve: the original unisolve [3] which is based on
the Ehrlich-Aberth iteration and the new hybrid algorithm called secsolve
[4]. These are called with the commands mpsolve -au -Gi -oγ -j1 and
mpsolve -as -Gi -oγ -j1 (respectively). -Gi means that MPSolve tries to find
for each root a unique complex disc containing it, such that Newton iteration is
guaranteed to converge quadratically toward the root starting from the center
of the disc. -oγ means that 10−γ is used as an escape bound, i.e., the algorithm
stops when the complex disc containing the root has radius less that 10−γ ,
regardless of whether it is isolating or not. Unless explicitly specified, we set
γ = 16. -j1 means that the process is not parallelized. Although MPSolve does
not do general local search, it has an option to search only within the unit disc.
This option does not seem to lead to much improvement.

240 R. Imbach et al.

Fig. 3. ˜T G
k (Δ, k). |f̃ |i is the absolute value of the coefficient of the monomial of degree

i of f̃ , for 0 ≤ i ≤ d.

3 Improved Soft Pellet Test

The key predicate in [1] is a form of Pellet test denoted T̃G
k (Δ, k) (with implicit

f(z)). This is modified in Fig. 3 by adding an outer while-loop to control the
number of Graeffe-Dandelin iterations. We try to get a definite decision (i.e.,
anything other than a unresolved) from the soft comparison for the current
Graeffe iteration. This is done by increasing the precision L for approximating
the coefficients of f̃ in the innermost while-loop. Thus we have two versions of
our algorithm: (V1) uses the original T̃G

k (Δ, k) in [1], and (V2) uses the modified
form in Fig. 3. Let τV1 and τV2 be timings for the 2 versions. Table 2 shows
the time τV1 (in seconds) and the ratio τV1/τV2. We see that (V2) achieves a
consistent 2.3 to 3-fold speed up.

In (V2), as in [1], we use T̃G
0 (Δ) (defined as T̃G

k (Δ, 0)) to prove that a box
B has no root. We propose a new version (V3) that uses T̃G

∗ (Δ) (defined as
T̃G

k (Δ, d), where d is the degree of f) instead of T̃G
0 (Δ) to achieve this goal:

instead of just showing that B has no root, it upper bounds #f (B). Although
counter-intuitive, this yields a substantial improvement because it led to fewer

Implementation of Complex Root Clustering 241

Table 2. Solving within the initial box [−50, 50]2 with ε = 2−53 with versions (V1),
(V2) and (V3) of Ccluster. n1: number of discarding tests. n2: number of discarding
tests returning −1 (inconclusive). n3: total number of Graeffe iterations. τV1 (resp.
τV2, τV3): sequential time for V1 (resp. V2, V3) in seconds.

V1 V2 V3

(n1, n2, n3) τV1 (n1, n2, n3) τV1/τV2 (n1, n2, n3) τV1/τV3

Bern64(z) (2308, 686, 20223) 19.6 (2308, 686, 6028) 2.84 (2308, 8, 2291) 7.06

Mign64(z; 14) (2060, 622, 18018) 17.3 (2060, 622, 5326) 3.03 (2060, 20, 2080) 7.68

Wilk64(z) (2148, 674, 18053) 23.6 (2148, 674, 5692) 2.74 (2148, 0, 2140) 7.23

Spir64(z) (2512, 728, 22176) 22.2 (2512, 728, 6596) 2.39 (2512, 15, 2670) 4.46

WilkMul(11)(z) (724, 202, 6174) 9.69 (724, 202, 2684) 2.30 (724, 18, 2065) 3.37

MignClu64(z; 14, 3) (2092, 618, 18515) 20.0 (2092, 618, 5600) 3.00 (2092, 12, 2481) 6.57

NestClu(4)(z) (3532, 1001, 30961) 90.2 (3532, 1001, 9654) 3.09 (3532, 24, 4588) 6.81

Graeffe iterations overall. The timing for (V3) is τV3, but we display only the
ratio τV1/τV3 in the last column of Table 2. This ratio shows that (V3) enjoys
a 3.3-7.7 fold speedup. Comparing n3 for (V2) and (V3) explains this speedup.

4 Filtering

A technique for speeding up the evaluation of predicates is the idea of filters (e.g.,
[5]). The various Pellet tests can be viewed as a box predicate C that maps a box
B ⊆ C to a value4 in {true, false}. If C− is another box predicate with property
that C−(B) = false implies C(B) = false, we call C− a falsehood filter. If
C− is efficient relatively to C, and “efficacious” (informally, C(B) = false is
likely to yield C−(B) = false), then it is useful to first compute C−(B). If
C−(B) = false, we do not need to compute C(B). The predicate C0 used in
Ccluster is defined as follows: C0(B) is true if T̃G

∗ (ΔB) returns 0 (then B

contains no root of f) and is false if T̃G
∗ (ΔB) returns −1 or k > 0 (then B may

contain some roots of f). We next present the falsehood filter C−
0 (B) for C0.

Let fΔ denote the Taylor shift of f in Δ, f
[i]
Δ its i-th Graeffe iterate, (f [i]

Δ)j

the j-th coefficient of f
[i]
Δ , and |f [i]

Δ |j the absolute value of the j-th coefficient.
Let d be the degree of f . The assertion below is a direct consequence of the
classical test of Pellet (see [2, p. 12]) and justify the correctness of our filters:
(A) if |f [N]

Δ |0 ≤ |f [N]
Δ |1 + |f [N]

Δ |d then T̃G
∗ (Δ) returns −1 or k > 0.

Our C−
0 filter computes |f [N]

Δ |0, |f [N]
Δ |1 and |f [N]

Δ |d and checks hypothesis of (A)
using IntCompare. |f [N]

Δ |0 and |f [N]
Δ |d can respectively be computed as (|fΔ|0)2N

and (|fΔ|d)2N

. |f [N]
Δ |1 can be computed with the following well known formula:

(f [i+1]
Δ)k = (−1)k((f [i]

Δ)k)2 + 2
k−1∑

j=0

(−1)j(f [i]
Δ)j(f

[i]
Δ)2k−j (1)

4 We treat two-valued predicates for simplicity; the discussion could be extended to
predicates (like ˜T G

∗) which returns a finite set of values.

242 R. Imbach et al.

Obtaining |f [N]
Δ |1 with Eq. (1) requires to know 2N−1 + 1 coefficients of f

[1]
Δ ,

2N−2 + 1 coefficients of f
[2]
Δ , . . . , and finally 3 = 21 + 1 coefficients of f

[N−1]
Δ . In

particular, it requires to compute entirely the iterations f
[i]
Δ such that 2N−i ≤ d,

and it is possible to do it more efficiently that with Eq. (1) (for instance with
the formula given in definition 2 of [2]).

Table 3. Solving within the initial box [−50, 50]2 with ε = 2−53 with versions (V3),
(V4) of Ccluster. n3: number of Graeffe iterations. τV3 and τV4: sequential time in
seconds.

V3 V4

n3 τV3 n3 τV3/τV4

Bernd(z) d = 64 2291 2.61 2084 1.08

d = 128 4496 14.5 3983 1.13

d = 256 8847 94.5 7714 1.19

d = 512 15983 620 11664 1.42

d = 767 19804 1832 13863 1.53

Mignd(z; a) (d, a) = (64, 14) 2080 2.41 1808 1.22

(d, a) = (128, 14) 3899 12.1 3257 1.21

(d, a) = (256, 14) 7605 88.3 6339 1.33

(d, a) = (512, 14) 15227 674 10405 1.57

Wilkd(z) d = 64 2140 3.27 1958 1.05

d = 128 2240 10.0 1942 1.09

d = 256 2414 36.6 2108 1.21

d = 512 2557 129 1841 1.43

Spird(z) d = 64 2670 4.43 2364 1.08

d = 128 5090 28.8 4405 1.07

d = 256 9746 182 8529 1.10

d = 512 19159 1340 14786 1.19

WilkMul(D)(z) (D, d) = (11, 66) 2065 2.87 1818 1.14

(D, d) = (12, 78) 2313 3.95 2053 1.12

(D, d) = (13, 91) 2649 5.89 2336 1.18

(D, d) = (14, 105) 2892 8.56 2537 1.29

MignClud(z; a, k) (d, a, k) = (64, 14, 3) 2481 2.94 2145 1.13

(d, a, k) = (128, 14, 3) 4166 14.4 3555 1.16

(d, a, k) = (256, 14, 3) 7658 86.0 6523 1.27

(d, a, k) = (512, 14, 3) 15044 650 10472 1.63

NestClu(D)(z) (D, d) = (4, 27) 1628 0.77 1459 1.07

(D, d) = (5, 81) 4588 13.2 4085 1.12

(D, d) = (6, 243) 13056 358 11824 1.26

Implementation of Complex Root Clustering 243

Our C−
0 filter takes as input a precision L, the Taylor shift fΔ of the L bit

approximation of f and its i-th Graeffe iteration f
[i]
Δ such that 2N−i ≤ d

4 and
2N−(i+1) > d

4 . It computes |f [N]
Δ |0, |f [N]

Δ |d and the 2N−j + 1 first coefficients of
f
[j]
Δ for i < j ≤ N with Eq. (1). Then it checks the hypothesis of (A) using
IntCompare, and returns false if it is verified, and true otherwise. In practice,
it is implemented within the procedure implementing T̃G

∗ (ΔB).
Incorporating C−

0 into Version (V3), we obtain (V4) and the speed up
can be seen in Table 3. Filtering with C−

0 becomes more effective as degree
grows and this is because one has 2N−i ≤ d

4 for smaller i (recall that N =
4 + �log2(1 + log2(d))�).

5 Escape Bound

The ε parameter is usually understood as the precision desired for roots. But we
can also view it as an escape bound for multiple roots as follows: we do not refine
a disc that contains a simple root, even if its radius is ≥ ε. But for clusters of
size greater than one, we only stop when the radius is < ε. MPSolve has a similar
option. This variant of (V4) is denoted (V4′). We see from Table 4 that (V4′)
gives a modest improvement (up to 25% speedup) over (V4) when − log ε = 53.
This improvement generally grows with − log ε (but WilkMul(11)(z) shows no
difference).

Table 4. Solving within the box [−50, 50]2 with versions (V4) and (V4′) of
Ccluster with three values of ε. τ53 (resp. τ530, τ5300): sequential time for (V4)
and (V4′) in seconds.

(V4) (V4′)

ε: 2−53 2−530 2−5300 2−53 2−530 2−5300

τ53 (s) τ530/τ53 τ5300/τ53 τ53 (s) τ530/τ53 τ5300/τ53

Bern64(z) 2.42 1.26 4.22 1.99 0.94 0.94

Mign64(z; 14) 1.97 1.63 4.56 1.61 1.45 1.38

Wilk64(z) 3.22 1.10 2.16 2.91 0.96 1.01

Spir64(z) 4.09 1.33 5.25 3.05 0.95 0.95

WilkMul(11)(z) 2.51 1.12 2.03 2.50 1.13 1.98

MignClu64(z; 14, 3) 2.60 1.89 4.15 2.20 1.70 1.80

NestClu4(z) 11.9 1.08 2.67 10.4 1.00 0.99

6 Conclusion

Implementing subdivision algorithms is relatively easy but achieving state-of-art
performance requires much optimization and low-level development. This paper
explores several such techniques. We do well compared to fsolve in Maple, but
the performance of MPSolve is superior to the global version of Ccluster. But
Ccluster can still shine when looking for local roots or when ε is large.

244 R. Imbach et al.

References

1. Becker, R., Sagraloff, M., Sharma, V., Xu, J., Yap, C.: Complexity analysis of root
clustering for a complex polynomial. In: Proceedings of the ACM on International
Symposium on Symbolic and Algebraic Computation, pp. 71–78. ACM (2016)

2. Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algo-
rithm for complex root isolation based on the pellet test and newton iteration. J.
Symb. Comput. 86, 51–96 (2018)

3. Bini, D.A., Fiorentino, G.: Design, analysis, and implementation of a multiprecision
polynomial rootfinder. Numer. Algorithms 23(2–3), 127–173 (2000)

4. Bini, D.A., Robol, L.: Solving secular and polynomial equations: a multiprecision
algorithm. J. Comput. Appl. Math. 272, 276–292 (2014)

5. Brönnimann, H., Burnikel, C., Pion, S.: Interval arithmetic yields efficient dynamic
filters for computational geometry. Discrete Appl. Math. 109(1–2), 25–47 (2001)

6. Emiris, I.Z., Pan, V.Y., Tsigaridas, E.P.: Algebraic algorithms. In: Computing
Handbook, Third Edition: Computer Science and Software Engineering, pp. 10:1–
10:30. Chapman and Hall/CRC (2014)

7. Fortune, S.: An iterated eigenvalue algorithm for approximating roots of univariate
polynomials. J. Symb. Comput. 33(5), 627–646 (2002)

8. Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.-C.: On location and approxima-
tion of clusters of zeros of analytic functions. Found. Comput. Math. 5(3), 257–311
(2005)

9. Gourdon, X.: Combinatoire, Algorithmique et Géométrie des Polynomes. Ph.D.
thesis, École Polytechnique (1996)

10. Hribernig, V., Stetter, H.J.: Detection and validation of clusters of polynomial
zeros. J. Symb. Comput. 24(6), 667–681 (1997)

11. Kobel, A., Rouillier, F., Sagraloff, M.: Computing real roots of real polynomials...
and now for real! In: Proceedings of the ACM on International Symposium on
Symbolic and Algebraic Computation, pp. 303–310. ACM (2016)

12. Niu, X.-M., Sakurai, T., Sugiura, H.: A verified method for bounding clusters of
zeros of analytic functions. J. Comput. Appl. Math. 199(2), 263–270 (2007)

13. Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for numerical fac-
torization and root-finding. J. Symb. Comput. 33(5), 701–733 (2002)

14. Rouillier, F., Zimmermann, P.: Efficient isolation of polynomial’s real roots. J.
Comput. Appl. Math. 162(1), 33–50 (2004)

15. Sagraloff, M., Mehlhorn, K.: Computing real roots of real polynomials. J. Symb.
Comput. 73, 46–86 (2016)

16. Yap, C., Sagraloff, M., Sharma, V.: Analytic root clustering: a complete algorithm
using soft zero tests. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013.
LNCS, vol. 7921, pp. 434–444. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39053-1 51

https://doi.org/10.1007/978-3-642-39053-1_51
https://doi.org/10.1007/978-3-642-39053-1_51

	Implementation of a Near-Optimal Complex Root Clustering Algorithm
	1 Introduction
	2 Implementation and Experiments
	3 Improved Soft Pellet Test
	4 Filtering
	5 Escape Bound
	6 Conclusion
	References

