
Efficient and Secure Delegation
to a Single Malicious Server:

Exponentiation over Non-abelian Groups

Giovanni Di Crescenzo1(B), Delaram Kahrobaei2, Matluba Khodjaeva3,
and Vladimir Shpilrain4

1 Perspecta Labs, Basking Ridge, NJ, USA
gdicrescenzo@perspectalabs.com

2 City University of New York, New York, NY, USA
DKahrobaei@gc.cuny.edu

3 John Jay College, City University of New York, New York, NY, USA
mkhodjaeva@jjay.cuny.edu

4 City University of New York, New York, NY, USA
shpil@groups.sci.ccny.cuny.edu

Abstract. Group exponentiation is an important and expensive oper-
ation used in many public-key cryptosystems and, more generally,
cryptographic protocols. To expand the applicability of these solutions to
computationally weaker devices, it has been advocated that this operation
is delegated from a computationally weaker client to a computationally
stronger server. Solving this problem in the case of a single, possibly mali-
cious, server, has remained open since a formal model was introduced in [8].
Recently, in [10] we proposed practical and secure solutions applicable to
a class of cyclic groups. In this paper, we propose efficient and secure solu-
tions applicable to a large class of multiplicative groups, possibly beyond
groups currently subject to quantum cryptanalysis attacks.

1 Introduction

In emerging applications related to Cloud Computing and the Internet of Things,
including RFID networks, interest is growing on deploying cryptography solu-
tions onto computationally weaker devices. To achieve that goal, it has been
advocated that the most expensive cryptographic operations are delegated from
a computationally weaker client to a computationally stronger server. Group
exponentiation is an important operation and among the most expensive ones
used in many public-key cryptosystems and, more generally, cryptographic pro-
tocols. Many studies have already been performed towards various types of del-
egation of group exponentiation, but almost exclusively in the case of abelian

D. Kahrobaei and V. Shpilrain—Research of Delaram Kahrobaei was partially sup-
ported by a PSC-CUNY grant from the CUNY research foundation, as well as the
City Tech foundation. Research of Vladimir Shpilrain was partially supported by the
NSF grant CNS-1117675. Research of Delaram Kahrobaei and Vladimir Shpilrain
was also supported by the ONR (Office of Naval Research) grant N000141210758.

c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 137–146, 2018.
https://doi.org/10.1007/978-3-319-96418-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96418-8_17&domain=pdf

138 G. Di Crescenzo et al.

groups; specifically, groups related to discrete logarithm or factoring problems
(see, e.g., [4,5,8,10] and references therein).

As progresses are being made towards building a large-scale quantum com-
puter, much attention is being devoted in the cryptography community to early
quantum computer algorithms such as Shor’s [9], capable of solving in quantum
polynomial time both the discrete logarithm and the factoring problem. More
specifically, the problem at the heart of Shor’s algorithms, also known as the
hidden subgroup problem, can be solved in quantum polynomial time over any
finite abelian group, but currently seems much harder over non-abelian groups.
Therefore, the study of cryptographic solutions over non-abelian, or just general,
groups is an appealing research direction within quantum-resistant cryptography
(see, e.g., [1,6,7] and references therein).

In this paper we consider the delegation of group exponentiation over a large
class of general multiplicative groups, not limited to abelian groups and thus
going beyond groups currently subject to quantum cryptanalysis attacks.

Our Contributions. We show two interactive protocols allowing a client to
delegate exponentiation in a general class of groups to a single, possibly mali-
cious, server, while satisfying natural requirements of correctness (i.e., if client
and server follow the protocol, then at the end of the protocol execution, the
client’s output is the desired exponentiation), security (i.e., if the client fol-
lows the protocol, no malicious adversary corrupting the server can convince
the client of an incorrect exponentiation, except with small probability), privacy
(i.e., if the client follows the protocol, no malicious adversary corrupting the
server can obtain some information about the client’s input exponent), and effi-
ciency (i.e., the client’s runtime is smaller than in a non-delegated computation
of the exponentiation). Our first protocol, in Sect. 3.1, consists of a direct parallel
repetition of (a slightly simplified version of) a protocol from [3] that achieves
security probability 1/2. Our main result, in Sect. 3.2, is a parameterized class of
protocols where, for some parameter values, the security probability is reduced
more efficiently than by direct parallel repetition. Their privacy and security
properties are satisfied even if the adversary corrupting the server is not limited
to run in (classical or quantum) polynomial time, and they achieve an efficiency
tradeoff, in that they improve the client’s runtime during the online protocol
phase, while increasing the server’s runtime and requiring offline computations
returning data to be stored on the client’s device. Our theoretical analysis, only
considering group exponentiations and multiplications, and neglecting simpler
operations such as equality checks and random element generations, suggests
that our first (resp., second) protocol reduces the client’s online runtime by
1 (resp., 2) orders of magnitude with respect to the textbook exponentiation
algorithm, while increasing the server runtime and the protocol communication
complexity by 2 (resp., 1) orders of magnitude and the offline client runtime
between a constant and 1 order of magnitude. Our software implementation, in
Python 3.6, using commodity computing resources and the gmpy2 package, con-
firms that both our protocols improve the client’s online runtime with respect
to the exponentiation algorithm available in the same package.

Delegation of Exponentiation over Non-abelian Groups 139

As in all previous work in the area, we consider a model with an offline
phase, where a client or another party can precompute fixed-base exponentia-
tions to random exponents, and store them on the client’s device to be later
used in the online protocol phase. We also consider a model where a client can
efficiently run group multiplications, which is partially justified by known appli-
cation on some RFID devices results (see, e.g., [2]). Our protocols are written so
to delegate FG,exp,g(x) = gx (i.e., variable-exponent, fixed-base exponentiation
over multiplicative group G), but can be reformulated so to delegate function
FG,exp,k(x) = xk (i.e., fixed-exponent, variable-base exponentiation).

2 Models and Definitions

In this section we define delegation protocols, and their correctness, security,
privacy and efficiency requirements, building on the definitional approach from
[3] (also based on [5,8]), and describe group notations and protocol preliminaries.

Participant and Protocol Models. We consider two types of parties: clients
and servers, where a client’s computational resources are expected to be more
limited than a server’s ones, and therefore clients are interested in delegating the
computation of specific functions to servers. In all our solutions, we consider a
single client, denoted as C, and a single server, denoted as S. We assume that
the communication link between each C and S is not subject to confidential-
ity, integrity, or replay attacks, and note that such attacks can be separately
addressed using well-known cryptography techniques. A client-server protocol
for the delegated computation of function F is an interactive protocol between C
and S, where both parties have a description of a function F , C knows an input
x, and at the end of a protocol execution, C outputs a value y (intended to be
= F (x)). The protocol can have two phases: an offline phase, including expen-
sive computations not based on input x, such as evaluating F on other inputs,
and an online phase, where C’s computations are based on input x but take less
time than what required to compute F (x). We require such protocols to satisfy
the following requirements of correctness, security, privacy and efficiency.

Correctness. Informally speaking, the correctness requirement states that if
both parties follow the protocol, at the end of the protocol execution, C’s output
y is, with high probability, equal to the output of function F on C’s input x.

Security. Informally speaking, the security requirement states that if C follows
the protocol, a malicious adversary corrupting S and even choosing C’s input
x can only convince C with a small probability to output, at the end of the
protocol, some y′ different from value y = F (x) or some failure symbol ⊥. We
will also call this probability as the security probability, and denote it as εs.
A desirable value for it will be 2−λ, for some statistical security parameter λ,
concretely set as, for instance, 128.

Privacy. Informally speaking, the privacy requirement states the following: if
C follows the protocol, a malicious adversary corrupting S cannot obtain any

140 G. Di Crescenzo et al.

information about C’s input x from a protocol execution. This is formalized
by extending the indistinguishability-based approach typically used in formal
definitions for encryption schemes. That is, the adversary can pick two inputs
x0, x1, then one of these two inputs is chosen at random and used by C in the
protocol with the adversary acting as S, and then at the end of the protocol the
adversary can only guess which input was used by C with probability 1/2.

Efficiency. We measure the efficiency of a client-server protocol (C,S) for the
delegated computation of function F by the efficiency metrics (tF , tP , tC , tS , cc),
meaning that F can be computed (without delegation) using tF atomic oper-
ations, the offline phase requires tP atomic operations, C requires tC atomic
operations in the online phase, S requires tS atomic operations, and C and S
exchange messages of total length at most cc. In our theoretical analysis, we only
consider the most expensive group operations as atomic operations (e.g., group
multiplications and/or exponentiation), and neglect lower-order operations (e.g.,
equality testing, random element generations, additions and subtractions over
Zn-type groups). While we naturally try to minimize all these efficiency metrics,
our main goal is to design protocols where tC << tF , even if possibly resulting in
tS being somewhat larger than tF and cc being somewhat larger than the length
of F ’s input and output. We note that, according to the textbook ‘square-and-
multiply’ algorithm, tF is, on average, = 1.5σ group multiplications, where σ
denotes the length of the binary representation of a group element. Our theo-
retical target are protocols where tC is smaller than σ group multiplications.

Group Notations. Let � denote the length of the binary representation of a
group’s elements. We say that a group is efficient if its description is short (i.e.,
has length polynomial in �), its associated operation ∗ and the inverse operation
are efficient (i.e., they can be executed in time polynomial in �). The security
parameter σ and the group element length � are typically set as the same value.
Let (G, ∗) be an efficient group, and let g be an element with order q, for some
large integer q known to the client, and let y = gx denote the exponentiation (in
G) of g to the x-th power; i.e., the value y ∈ G such that g∗· · ·∗g = y, where the
multiplication operation ∗ is applied x − 1 times. Also, let Zq = {0, 1, . . . , q − 1}
and let FG,exp,g : Zq → G denote the function that maps every x ∈ Zq to the
exponentiation (in G) of g to the x-th power.

Protocol Preliminaries. In all our protocols, inputs common to client and
server include a description of the function FG,exp,g to be delegated, a description
of group G, a group element g, a computational parameter 1σ and a security
parameter 1λ. Other inputs to the client include g’s order q and exponent x ∈ Zq.

3 Delegating Exponentiation in General Groups

In this section we present our protocols for the delegation of exponentiation
in a general class of groups to a single (possibly malicious) server. We note
that general conversion techniques are known in the cryptography literature to
transform a protocol secure against a honest adversary into one secure against

Delegation of Exponentiation over Non-abelian Groups 141

a malicious adversary. Typically these techniques are based on zero-knowledge
proofs of knowledge of secrets that certify computation correctness. In their most
general version, these techniques do not perform well with respect to many effi-
ciency metrics. Even considering their most simplified version, basic proofs of
knowledge of exponents in the literature require the verifier to perform group
exponentiations, which is precisely what the client is trying to delegate in our
protocols. Accordingly, new techniques are needed. Our 1st protocol, in Sect. 3.1,
uses a direct parallel repetition of an efficient subprotocol with security proba-
bility 1/2, this latter subprotocol being an improved version of our scheme from
(Sect. 5 of) [3]. Our 2nd protocol, in Sect. 3.2, is actually a parameterized class of
protocols where, for some values of two parameters c,m, the security probability
is reduced more efficiently than by direct parallel repetition.

3.1 Delegating Exponentiation: A Cut-and-choose Approach

We first describe a basic protocol (bC1, bS1) with constant security probability
(obtained by simplifying the protocol in Sect. 5 of [3]) and then the final protocol
(fC1, fS1), obtained as a parallel repetition of the basic protocol.

A protocol (bC1, bS1) with constant security probability. In an offline phase, bC1

randomly chooses u0, u1 ∈ Zq and computes v0 = gu0 and v1 = gu1 . In the
delegation phase, bC1 randomly chooses bit b ∈ {0, 1} and computes zb = ub and
z1−b = x−u1−b mod q, and sends (z0, z1) to bS1. Next, bS1 computes wi = gzi ,
for i = 0, 1 and sends (w0, w1) to bC1. Finally, bC1 checks that wb = vb; if not,
bC1 returns failure symbol ⊥; otherwise, bC1 returns y = w1−b ∗ v1−b.

We now show that protocol (bC1, bS1) satisfies correctness, privacy, security
(with probability 1/2), and efficiency (with tC = 1 multiplication plus 1 sub-
traction, tS = 2 exponentiations, and tP = 2 exponentiations).

The efficiency properties are verified by protocol inspection. The correctness
property follows by observing that if bC1 and bS1 follow the protocol, bC1’s
equality verification is satisfied, and thus C’s output y satisfies y = w1−b∗v1−b =
gz1−b ∗ gu1−b = gx−u1−b ∗ gu1−b = gx, which implies that y = FG,exp,g(x) for each
x ∈ G. The privacy property follows by observing that the message z0, z1 sent
by bC1 does not leak any information about x, since they are randomly and
independently distributed in Zq, as so are chosen u0 and u1. To see that the
security property is satisfied, for any probabilistic polynomial-time adversary
corrupting bS1, consider the values w0, w1 returned by the adversary to bC1. If
the adversary honestly computes wi = gzi for both i = 0, 1, then the probability
it fools bC1 into an incorrect output y is 0. Thus, assume the adversary computes
wc �= gzc , for some bit c ∈ {0, 1}. Then note that bC1 will find this out and return
failure symbol ⊥ when b = c, and, since the message (z0, z1) leaks no information
about b, the equality b = c holds with probability at least 1/2. This implies that
the probability that the adversary fools bC1 into an incorrect output y is ≤ 1/2.

A protocol (fC1, fS1) with exponentially small security probability. Protocol
(fC1, fS1) consists of λ parallel executions of the basic protocol (bC1, bS1), with
the only additional modification that the output of fC1 is defined as y if in all

142 G. Di Crescenzo et al.

λ parallel executions bC1 would return the same value y, or as failure symbol ⊥
otherwise (that is, if bC1 returns ⊥ in any one of the parallel executions, or two
different values �=⊥ in any two of the parallel executions).

Protocol (fC1, fS1) satisfies correctness, privacy, security (with probability
1/2λ), and efficiency (with tC = λ multiplications plus λ subtractions, tS = 2λ
exponentiations, tP = 2λ known-base exponentiations to random exponents, and
cc = O(λσ)). The proof of these properties is a direct extension of the proofs for
the properties of (bC1, bS1).

We remark that for the typical setting λ = 128, C only performs 128 group
multiplications and 128 subtractions modulo q. This is about 1 order of mag-
nitude smaller than 1.5σ, the average number of group multiplications in the
square-and-multiply algorithm, which can be = 3072, for the setting σ = 2048
which has been recommended on some commonly used groups in cryptography.

3.2 Delegating Exponentiation: Improved Probability Reduction

In this subsection we improve the approach in Sect. 3.1 by a computation-efficient
(in terms of C’s parameters tP , tC) reductions of the security probability εs. Our
overall approach towards this goal can be briefly summarized as follows: first, we
propose a basic protocol (bC2, bS2) with improved constant security probability
and then define a final protocol (fC2, fS2) that performs a suitable parallel
repetition (with a smaller number of repetitions) of this basic protocol.

Informal Discussion. Our main approach consists of reducing the security prob-
ability by a more time-efficient approach than the direct parallel repetition
approach in Sect. 3.1. While we do not know how to avoid the above parallel
repetition, we show that we can reduce the number of repetitions by designing
a more efficient protocol with security probability much smaller than 1/2. As a
first simple example of this approach, by starting from protocol (bC1, bS1) with
security probability 1/2 from Sect. 3.1, and including 2 random ‘decoy’ values in
Zq in the client’s message to the server, we obtain a protocol with the following
properties: (1) it does not increase the client’s number of multiplications, (2) it
only slightly increases computation by the server; (3) it can be seen to reduce
the security probability from 1/2 to 1/3. Our protocol generalizes this idea of
using random decoy values in Zq to a parameterized number m, also represent-
ing an upper bound on the number of values that the client sends to the server.
This generalization reduces the security probability, even though not as much
as we would like. Accordingly, the other idea is that of increasing the number
of equality checks, and introducing a second parameter c, representing an upper
bound on the number of equality checks that the client wants to execute (and
thus, the number of pre-computed exponentiations that the client can afford).
Specifically, in the resulting protocol, of the m values in Zq sent by the client to
the server, one value is used to compute the function output, c − 1 values are
used to perform equality checks, and m−c values are decoy values. The resulting
protocol achieves a security probability which is, very roughly speaking, linear
in 1/c, and thus the number of repetitions to reduce the probability to 2−λ,

Delegation of Exponentiation over Non-abelian Groups 143

can be reduced to about λ/ log2 c. We actually define a class of protocols that is
parameterized by c and m and analyze what values for these parameters give us
a more time-efficient reduction of the security probability than what achieved in
Sect. 3.1. The two main high-level takeaways on that analysis are: (1) a some-
what large value for m is just as good as a huge value; (2) values of c ∈ {4, . . . , 9}
result in a reduced number of group multiplications from the client.

A protocol (bC2, bS2) with constant security probability. We first formally describe
the basic protocol (bC2, bS2) and then discuss its properties.

Offline instructions:

1. bC2 randomly chooses distinct j1, . . . , jm ∈ {1, . . . , m}
2. bC2 randomly chooses ui ∈ Zq, sets vi = gui and zji = ui, for i = 1, . . . , c
3. bC2 randomly and independently chooses zjc+1 , . . . , zjm ∈ Zq

Online instructions:

1. bC2 sets zjc = (x − uc) mod q and sends z1, . . . , zm to bS2

2. bS2 computes wj = gzj for j = 1, . . . ,m
bS2 sends w1, . . . , wm to bC2

3. if wj1 �= vj1 or wj2 �= vj2 or . . . or wjc−1 �= vjc−1 then
bC2 returns: ⊥ and the protocol halts
bC2 computes y = wjc ∗ vc and returns: y

We now observe that protocol (bC2, bS2) satisfies correctness, privacy, security
(with probability O(1/c)), and efficiency (with tC = 1 multiplication in G plus
1 subtraction in Zq, tS = m exponentiations, and tP = m exponentiations).

The efficiency properties of (bC2, bS2) are verified by protocol inspection.
The correctness properties follows by observing that if bC2 and bS2 follow the
protocol, none of the inequality verifications in step 3 will be satisfied. Thus,
bC2’s output is �=⊥ and is equal to y = wjc ∗ vc = gzjc ∗ vc = gzjc ∗ guc =
gx−uc∗guc = gx, which implies that bC2’s output is = FG,exp,g(x) for each x ∈ Zq.
The privacy property follows by observing that the message z1, . . . , zm sent by
bC2 is distributed as m random and independent group values and therefore does
not leak any information about x.

To prove the security property against a malicious bS2 we compute an upper
bound εs on the security probability that bS2 convinces bC2 to output a y such
that y �= FG,exp,g(x). This is performed by a long case analysis (omitted here for
lack of space) for all c and m, and depending on whether the server replies to the
client with correct or incorrect answers. Examples of results from this analysis
include the following: (1) when c = 2, using m−2 decoy elements in Zq, we have
that εs gets very close to 1/4 as m grows; (2) when c = 3, using m − 3 decoy
elements in Zq, we obtain εs < 1/6 when m = 100, and increasing m to 1000 does
not reduce εs significantly. For general c,m, we computed the exact value for εs

for all values of c that guarantee some improved efficiency on the number tC
(of client’s group multiplications during the protocol). Specifically, we looked at

144 G. Di Crescenzo et al.

all values of c such that the obtained εs is smaller than what could be obtained by
a parallel repetition of �c/2	 executions of the atomic protocol from Sect. 3.1 with
security probability 1/2. It turns out that only values c = 4, 5, . . . , 9 guarantee
some improved efficiency on tC , with respect to the protocol in Sect. 3.1. The
obtained values for εs when c = 4, . . . , 10 are in Table 1 below. Note that when
c = 4, . . . , 9 the obtained value for εs is strictly smaller than the value 2−�c/2�

that could be obtained using the protocol from Sect. 3.1. Instead, when c = 10,
the value εs = 0.03894 is > 0.03125 = 2−5, and the protocol from Sect. 3.1 starts
offering a much better efficiency tradeoff.

Table 1. Values of εs for protocol (bC2, bS2), for c = 4, . . . , 10 and m = 100, 1000

c = 4 5 6 7 8 9 10

m = 100, εs = .10763 .08403 .06719 .05875 .05118 .04538 .04080

m = 1000, εs = .10568 .08213 .06529 .05686 .04929 .04351 .03894

A protocol (fC2, fS2) with exponentially small security probability. Protocol
(fC2, fS2) consists of r =
λ/ log(1/εs)� parallel executions of the basic pro-
tocol (bC2, bS2), with the only additional modification that the output of fC1 is
defined as y if in all λ parallel executions bC1 would return the same value y, or
as failure symbol ⊥ otherwise (that is, if bC1 returns ⊥ in any one of the parallel
executions, or two different values �=⊥ in any two of the parallel executions).

Protocol (fC2, fS2) satisfies correctness, privacy, security (with probability
1/2λ), and efficiency (with tC = r group multiplications, rc − r group equal-
ity checks and r subtractions in Zq; tS = mr group exponentiations, tP = rc
known-base group exponentiations to random exponents, and cc = O(mrσ)).
The proof of these properties is obtained by extension of the proofs for the prop-
erties of (bC2, bS2). We remark that for the typical setting λ = 128, C performs
about 30 group multiplications, 30 subtractions in Zq, and less than 300 group
equality checks. The number of group multiplications is about 2 orders of mag-
nitude smaller than 1.5σ, the average number of group multiplications in the
square-and-multiply algorithm, which can be = 3072, for the setting σ = 2048,
recommended on some commonly used groups in cryptography.

3.3 Implementation and Performance Results

We implemented our protocols in Sects. 3.1 and 3.2 for the multiplicative group
(Z∗

p, · mod p), for p = 2q + 1, and p, q are large primes such that |p| = 2048.
Our implementation of the offline phase, the client’s online program and the
server’s program was carried out on a macOS High Sierra Version 10.13.4 laptop
with 2.7 GHz Intel Core i5 processor with memory 8 GB 1867 MHz DDR3. The
protocols were coded in Python 3.6 using the gmpy2 package. Table 2 contains
parameters c,m, r, running times tF , tP , tC , tS and improvement ratio tF /tC

Delegation of Exponentiation over Non-abelian Groups 145

for protocol (fC1, fS1) from Sect. 3.1 and protocol (fC2, fS2) from Sect. 3.2.
Here, parameter r represents the number of parallel repetitions of (bC1, bS1)
and (bC2, bS2) needed to get desired security probability εs = 2−128 in protocols
(fC1, fS1) and (fC2, fS2), respectively. The main takeaway is that in the two
protocols, the client’s online running time is better than non-delegated compu-
tation by half or one order of magnitude, respectively.

Table 2. Performance of protocols (fC1, fS1) and (fC2, fS2), for εs = 2−128

tF .003838

(fC1, fS1) (fC2, fS2)

c n/a 5 6 7 8

m n/a 60 100 60 100 60 100 60 100

r 128 36 36 34 33 32 32 30 30

tP .953298 .686819 .684862 .769721 .770282 .850836 .862347 .910533 .962034

tC .000779 .000393 .000268 .000443 .000270 .000378 .000289 .000367 .000304

tS .957278 8.05238 13.2509 7.58752 12.4730 7.15478 12.1795 6.70609 11.7280
tF
tC

4.92654 9.76534 14.3201 8.66315 14.2140 10.1528 13.2795 10.4572 12.6243

4 Conclusions

We studied the problem of a computationally weak client delegating group expo-
nentiation to a single, possibly malicious, computationally powerful server, as
originally left open in [8]. We solved this problem by two protocols that prov-
ably satisfy formal correctness, privacy (against adversaries of unlimited power),
security (with exponentially small probability) and efficiency requirements, in a
general class of multiplicative groups, possibly going beyond groups on which
quantum cryptanalysis attacks are currently known. Problems of both theoret-
ical and practical interest include: (a) achieving better efficiency tradeoffs as
done in [10] for discrete logarithm groups; and (b) reducing the dependency of
the offline computations on the number of delegated computations of F .

References

1. Anshel, I., Atkins, D., Goldfeld, D., Gunnels, P.E.: Post Quantum Group Theoretic
Cryptography, November 2016. https://bit.ly/2svnv8z

2. Arbit, A., Livne, Y., Oren, Y., Wool, A.: Implementing public-key cryptography
on passive RFID tags is practical. Int. J. Inf. Sec. 14(1), 85–99 (2015)

3. Cavallo, B., Di Crescenzo, G., Kahrobaei, D., Shpilrain, V.: Efficient and secure
delegation of group exponentiation to a single server. In: Mangard, S., Schaumont,
P. (eds.) RFIDSec 2015. LNCS, vol. 9440, pp. 156–173. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24837-0 10

https://bit.ly/2svnv8z
https://doi.org/10.1007/978-3-319-24837-0_10

146 G. Di Crescenzo et al.

4. Dijk, M., Clarke, D., Gassend, B., Suh, G., Devadas, S.: Speeding up exponentiation
using an untrusted computational resource. Des. Codes Crypt. 39(2), 253–273
(2006)

5. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

6. Gryak, J., Kahrobaei, D.: The status of polycyclic group-based cryptography: a
survey and open problems. Groups Complexity Cryptology 8(2), 171–186 (2016)

7. Hart, D., Kim, D.H., Micheli, G., Pascual-Perez, G., Petit, C., Quek, Y.: A practical
cryptanalysis of WalnutDSATM. In: Abdalla, M., Dahab, R. (eds.) PKC 2018.
LNCS, vol. 10769, pp. 381–406. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-76578-5 13

8. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 15

9. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings of 35th IEEE Symposium on Foundations of Computer Science
(FOCS 1994), pp. 124–134 (1994)

10. Di Crescenzo, G., Khodjaeva, M., Kahrobaei, D., Shpilrain, V.: Practical and secure
outsourcing of discrete log group exponentiation to a single malicious server. In:
Proceedings of 9th ACM Cloud Computing Security Workshop (CCSW), pp. 17–28
(2017)

https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-319-76578-5_13
https://doi.org/10.1007/978-3-319-76578-5_13
https://doi.org/10.1007/978-3-540-30576-7_15

	Efficient and Secure Delegation to a Single Malicious Server: Exponentiation over Non-abelian Groups
	1 Introduction
	2 Models and Definitions
	3 Delegating Exponentiation in General Groups
	3.1 Delegating Exponentiation: A Cut-and-choose Approach
	3.2 Delegating Exponentiation: Improved Probability Reduction
	3.3 Implementation and Performance Results

	4 Conclusions
	References

