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Preface

These are the proceedings of the 6th International Congress on Mathematical Software,
which was held during July 24–27, 2018 at the Department of Applied and Compu-
tational Mathematics and Statistics at the University of Notre Dame.

The ICMS community believes that the appearance of mathematical software is one
of the most important current developments in mathematics, and this phenomenon
should be studied as a coherent whole. We hope this conference can serve as the main
forum for mathematicians, scientists, and programmers who are interested in devel-
opment of mathematical software.

The program of the 2018 meeting consisted of 20 topical sessions, each of which
provided an overview of the challenges, achievements, and progress in a subfield of
mathematical software research, development, and use. The topical sessions made up
the core of the program, consisting of more than 150 contributed talks. Session con-
tributors were given the option to submit their work for publication in these pro-
ceedings, and 59 papers were selected through a peer reviewing process.

The conference also featured three invited talks. Folkmar Bornemann spoke on
“Short of Proof: How Many Digits Are Nonetheless Correct?”; Thomas C. Hales spoke
on “Formal Abstracts in Mathematics”; and William Stein gave a talk about “CoCalc:
Making Open Source Mathematical Software Collaborative and Easily Available on
the Web.” Short abstracts of these talks also appear in these proceedings. We thank the
invited speakers for accepting our invitations to speak at ICMS 2018. We also thank all
the contributors, session organizers, Program Committee members, as well the local
arrangements team and the members of the advisory board for helping to make this
conference a success. Finally, we thank our sponsors, listed on the following pages, for
the financial support of the event.

June 2018 James H. Davenport
Manuel Kauers
George Labahn

Josef Urban
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Short of Proof: How Many Digits are
Nonetheless Correct?

Folkmar Bornemann

Technische Universität München
bornemann@tum.de

Ever since my participation in Nick Trefethen’s “SIAM 100-Digit Challenge” I have
been obsessed by asking and (trying to) answering that question. Though most text-
books on numerical analysis address sources and propagation of errors, they shy away
from providing tools to answer my question (short of proof, that is, when tools such as
interval arithmetic and verification are not an option). Most numerical software leaves
it to the discretion of the user to draw the line between the meaningful and the
contingent in the output. What kind of habits developed by experienced users to stay on
the safe side can be used to increase the accountability of numerical software? The
question becomes pertinent when writing software for the elaborate numerical evalu-
ation of a new class of special functions (such as higher-order gap probabilities in
random matrix theory) where users implicitly expect all but the last digit given to be
correct. And the question becomes a necessity when a community of users asks for
tables of numbers instead of the software itself. I will report on the tools that I use in
my software to put me at rest when providing such tables.



Formal Abstracts in Mathematics

Tom Hales

University of Pittsburg
hales@pitt.edu

A formal abstract is a statement of a mathematical theorem (and its accompanying
definitions) that is represented in both a computer and human readable way. The
computer representation of the theorem is required to be fully grounded in the foun-
dations of mathematics, so that the theorem statement can be manipulated according to
the rules of logic and mathematics. This talk will discuss an initiative to express large
bodies of published mathematics as formal abstracts.



CoCalc: Making Open Source Mathematical
Software Collaborative and Easily Available

on the Web

William Stein

University of Washington
wstein@uw.edu

In 2013, I created https://CoCalc.com (then called “SageMathCloud”), as an easy way
for students and instructors to streamline their use of open source mathematics software
such as R, SageMath, Octave, Jupyter notebooks, and LaTeX. Everything in CoCalc
now fully supports realtime synchronized editing, and there is a huge preinstalled
software stack. In this talk, I will explain how you can ensure software you write is
available in CoCalc and use CoCalc in teaching courses. I will also describe the current
architecture of CoCalc, which has undergone many rewrites due to increased usage,
and the introduction of major open source technologies, including Kubernetes and
React.

https://CoCalc.com
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Inferring Safe Maude Programs
with ÁTAME

Maŕıa Alpuente1, Demis Ballis2(B), and Julia Sapiña1

1 DSIC-ELP, Universitat Politècnica de València,
Camino de Vera s/n, 46022 Valencia, Spain

{alpuente,jsapina}@dsic.upv.es
2 DMIF, University of Udine, Via delle Scienze, 206, 33100 Udine, Italy

demis.ballis@uniud.it

Abstract. In this paper, we present ÁTAME, an assertion-based pro-
gram specialization tool for the multi-paradigm language Maude. The
program specializer ÁTAME takes as input a set A of system assertions
that model the expected program behavior plus a Maude program R to
be specialized that might violate some of the assertions in A. The out-
come of the tool is a safe program refinement R′ of R in which every
computation is a good run, i.e., it satisfies the assertions in A. The spe-
cialization technique encoded in ÁTAME is fully automatic and ensures
that no good run of R is removed from R′, while the number of bad runs
is reduced to zero. We demonstrate the tool capabilities by specializing
an overly general nondeterministic dam controller to fulfill a safety policy
given by a set of system assertions.

Keywords: Program specialization · Program adaptability
Assertions · Maude · Rewriting logic

1 Introduction

Adaptability refers to the ability of a piece of software to satisfy requirements
dedicated to the specific context in which it is used. In concurrent object-oriented
software, adaptability is very fragile as the slightest attempt to modify the foun-
dation of any program component may damage the whole system, ruining the
effectiveness of standard reusing mechanisms.

Maude is a high-level programming language and system that supports func-
tional, concurrent, logic, and object-oriented computations and provides equa-
tional reasoning modulo algebraic axioms such as associativity, commutativity,
and identity. In this paper, we propose an adaptation technique for Maude pro-
grams that integrates system assertions and program specialization.

This work has been partially supported by the EU (FEDER) and the Spanish
MINECO under grants TIN2015-69175-C4-1-R, and by Generalitat Valenciana ref.
PROMETEOII/2015/013.

c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 1–10, 2018.
https://doi.org/10.1007/978-3-319-96418-8_1
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2 M. Alpuente et al.

In the literature, program specialization is often used to mean partial evalu-
ation [5], which takes a program of n inputs and produces a simpler and usually
faster version where some of the inputs are fixed to particular values. In this
paper, we consider a somehow dual specialization transformation where we take
a program of n outputs, or more generally, a program that explores n execution
traces, and then we produce a more specific version of the original program where
we disregard some of the output traces according to the assertional constraints
being considered.

Our specialization technique works with Maude programs that are equipped
with system assertions, with each assertion consisting of a pair Π | ϕ where
Π (the state template) is a term and ϕ (the state invariant) is a quantifier-
free first-order formula with equality that defines a safety property ϕ which
must be enforced on all the system states that match (modulo equations and
axioms) the state template Π. In our technique, assertions take an active role
since they are directly embedded into the specialized program to safely guide
its execution. Given a set of system assertions A and an overly general Maude
program R = (Σ,E,R) (i.e., a program that deploys all desired traces but may
disprove some of the assertions), our transformation coerces R into a specialized
program R′ that enforces A. This means that: (i) every execution of R′ is an
execution of R (i.e., no spurious computation states are produced); and (ii) every
assertion in A is satisfied by all computation states in R′. The program R′ is
obtained from R by inserting suitable conditions (abetted by the assertions of
A) in the rules of R and defining them by means of new equations that are
added to E until a suitable adaptation of the original program is automatically
inferred which satisfies all the assertions.

The advantage of this technique is that more refined versions of a program
can be incrementally built without any programming effort by simply adding new
logical constraints into the given assertion set. Specifically, this makes it possible
to adapt existing Maude programs to predefined safety policies and allows the
inexperienced user to largely forget about Maude syntax and semantics.

This paper is organized as follows. After some technical preliminaries in
Sect. 2, we introduce a running example that we use to illustrate the kind of
specialization that we aim to produce automatically. Section 3 shows how safety
policies can actually be defined as system assertions in our rewriting setting, and
then applied for program specialization. Section 4 shows how software adapta-
tion can be performed efficiently in the ÁTAME system, which implements our
specialization methodology. Section 5 concludes the paper.

2 Modeling Software Systems in Maude

Nondeterministic as well as concurrent software systems can be formalized
through Maude programs. A Maude program essentially consists of two com-
ponents, E and R, where E is a canonical (membership) equational theory that
models system states as terms of an algebraic data type, and R is a set of rewrite
rules that define transitions between states. Algebraic structures often involve
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axioms like associativity (assoc), commutativity (comm), and/or identity (also
known as unity) (id) of function symbols, which cannot be handled by ordinary
term rewriting but instead are handled implicitly by working with congruence
classes of terms. More precisely, the membership equational theory E is decom-
posed into a disjoint union E = Δ�Ax, where the set Δ consists of (conditional)
equations and membership axioms (i.e., axioms that assert the type or sort of
some terms) that are implicitly oriented from left to right as rewrite rules (and
operationally used as simplification rules), and Ax is a set of algebraic axioms
that are implicitly expressed as function attributes and are only used for Ax-
matching.

The system evolves by rewriting states using equational rewriting, i.e., rewrit-
ing with the rewrite rules in R modulo the equations and axioms in E [7]. For-
mally, system computations (also called execution traces) correspond to rewrite
sequences t0

r0−→E t1
r1−→E . . ., where t

r−→E t′ denotes a transition (modulo E)
from state t to t′ via the rewrite rule of R that is uniquely labeled with label
r. The transition space of all computations in R from the initial state t0 can
be represented as a computation tree whose branches specify all of the system
computations in R that originate from t0.

The following Maude program will be used as a running example throughout
the paper.

Example 1. Consider a Maude program RDAM that models a simplified, non-
deterministic dam controlling system to monitor and manage the water volume
of a given basin1. In the program code, variable names are fully capitalized.

We assume that the dam is provided with three spillways called s1, s2, and
s3 each of which has 4 possible aperture widths of increasing discharge capacity
close, open1, open2, open3. Each spillway is formally specified by a term [S,O],
where S ∈ {s1, s2, s3} and O ∈ {close, open1, open2, open3}. A global spillway
configuration is a multiset [s1,O1] [s2,O2] [s3,O3] that groups together the
three spillways by means of the usual associative and commutative infix, union
operator (written in mixfix notation with empty syntax) whose identity is the
constant empty. System states are defined by terms of the form { SC | V | T
| AC } where SC is a global spillway configuration, V is a rational number that
indicates the basin water volume (in m3), T is a natural number that timestamps
the current configuration, and the Boolean flag AC, called apertureCommand,
enables changes of the spillway aperture widths only when its value is true.

Figure 1 shows the equational specification that formalizes basin water inflow
and outflow. To keep the exposition simple, we assume that the basin water
inflow is constant, while the basin outflow depends on the width of the spillway
apertures and can be computed as the sum of the outflows of each spillway in
the spillway configuration. Note that inflow and outflow values are measured in
1 Maude’s syntax is hopefully self-explanatory. Due to space limitations and for the
sake of clarity, we only highlight those details of the system that are relevant to
this work. A complete Maude specification of the dam controller is available at the
ÁTAME website at http://safe-tools.dsic.upv.es/atame. For more information about
the Maude language, see [4].

http://safe-tools.dsic.upv.es/atame


4 M. Alpuente et al.

eq inflow = 3000 . --- Basin water inflow

eq aperture(close) = 0 . --- Outflow for a closed spillway

eq aperture(open1) = 200 . --- Outflow for aperture width open1

eq aperture(open2) = 400 . --- Outflow for aperture width open2

eq aperture(open3) = 1200 . --- Outflow for aperture width open3

--- Basin water outflow for a given spillway configuration

eq outflow(empty) = 0 .

eq outflow([S,O] SS) = aperture(O) + outflow(SS) .

Fig. 1. Equational definition of basin inflow and outflow.

m3/min and are hard-coded into the dam controller. More realistic scenarios
could be easily defined by sophisticating the basin inflow and outflow functions.

The system dynamics is specified by the eight rewrite rules in Fig. 2, which
implement system state transitions. The openX-Y rewrite rules progressively
increment the aperture width of a given spillway (e.g., the rule open1-2 increases
the aperture of the spillway S from level open1 to level open2). Dually, closeX-Y
rewrite rules progressively decrement the aperture width of a spillway. The rule
nocmd specifies the empty command which basically states that no action is taken
on the spillway configuration by the dam controller at time instant T. The rule
is fired only when the AC flag is enabled, and its application disables the flag to
allow a new basin water volume to be computed in the next time instant. These
eight rules, called aperture command rules, implement instantaneous spillway
modifications that do not change the time instant or the basin water volume.

The temporal evolution of the basin water volume is specified by the condi-
tional rewrite rule volume that computes the volume V’ at time T + deltaT,
given the input volume V at time T. The parameter deltaT is measured in

rl [nocmd] : { SC | V | T | true } => { SC | V | T | false } .

rl [openC-1] :

{ [S,close] SS | V | T | true } => { [S,open1] SS | V | T | false } .

rl [open1-2] :

{ [S,open1] SS | V | T | true } => { [S,open2] SS | V | T | false } .

rl [open2-3] :

{ [S,open2] SS | V | T | true } => { [S,open3] SS | V | T | false } .

rl [close1-C] :

{ [S,open1] SS | V | T | true } => { [S,close] SS | V | T | false } .

rl [close2-1] :

{ [S,open2] SS | V | T | true } => { [S,open1] SS | V | T | false } .

rl [close3-2] :

{ [S,open3] SS | V | T | true } => { [S,open2] SS | V | T | false } .

crl [volume] : { SC | V | T | false } => { SC | V’ | (T + deltaT) | true }

if V’ := (V + inflow * deltaT) - (outflow(SC) * deltaT) .

Fig. 2. (Conditional) rewrite rules for the dam controlling system.



Inferring Safe Maude Programs with ÁTAME 5

minutes and can be set by the user. The volume computation changes the input
volume V by adding the water inflow and subtracting the corresponding water
outflow over the deltaT interval.

The use of the apertureCommand flag in the rule definitions guarantees a
fair interleaving between the applications of the rule volume and the remaining
aperture command rules. Specifically, this implies that a new basin water volume
is computed after each spillway aperture width modification.

Note that computations in RDAM may reach potentially hazardous system
states (e.g., an extremely high water volume). This is because RDAM does not
implement any spillway management policy that safely restricts the applications
of the aperture command rules.

3 Defining Safety Policies Through Assertions

A safety policy for a Maude program R is defined by means of a set A of system
assertions, each assertion being of the form Π | ϕ, which R must satisfy. Intu-
itively, system assertions specify those computation states such that, for every
subterm of a state that matches the algebraic structure of the state template Π
with substitution (modulo the axioms) σ, the constraints given by the instanti-
ated invariant ϕσ are satisfied. Besides the usual Boolean operators and Maude
predefined predicates, the state invariant ϕ may include user-defined predicates
as well as functions that can be specified via suitable equational definitions.

Example 2. Let us consider the user-defined function openSpillways(SC) that
returns the number of open spillways in the spillway configuration SC, whose
equational definition is

eq openSpillways(empty) = 0 .

eq openSpillways([S,O] SC) = if (O =/= close)

then (1 + openSpillways(SC))

else openSpillways(SC)

fi .

and the safety policy ADAM of Fig. 3 for the dam controller of Example 1 that
specifies some safety constraints to prevent basin critical situations.

More specifically, assertion a1 states that, in every system state, the basin
water volume must be less than 50 million m3 to avoid dam bursts and poten-
tially disastrous floods. Assertion a2 specifies that, whenever the basin water
volume is greater than 40 million m3, all of the spillways must be open and the
aperture width of at least one spillway must be maximal (level open3). Asser-
tion a3 requires the closure of all the spillways when the basin water volume
is particularly low (10 million m3). Finally, assertion a4 specifies the spillway
handling for an intermediate water volume (10 million m3 ≤ V ≤ 40 million m3);
in this scenario we require that exactly two spillways be constantly open.
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(a1) { SC | V | T | AC } | (V < 50000000)

(a2) { [ S1,O1 ] [ S2,O2 ] [ S3,O3 ] | V:Rat | T:TimeStamp | AC:Bool } |

(V:Rat > 40000000) implies (

(O1 == open3 and O2 =/= close and O3 =/= close) or

(O2 == open3 and O1 =/= close and O3 =/= close) or

(O3 == open3 and O1 =/= close and O2 =/= close))

(a3) { SC | V | T | AC } | (V < 10000000) implies

(openSpillways(SC) == 0)

(a4) { SC | V | T | AC } | ((V >= 10000000) and (V <= 40000000)) implies

(openSpillways(SC) == 2)

Fig. 3. Safety policy ADAM for the dam controller RDAM.

4 Computing Safe Maude Programs with ÁTAME

Program specialization techniques make it possible to automatically transform
a program into a specialized version, according to an execution context. In our
approach, we use assertions to set the specialization scenario and guide a two-
phase program specialization technique that allows a Maude program R to be
refined into a program R′ w.r.t. a safety policy A as follows.

The first phase translates the safety policy A to be fulfilled into an executable
equational definition Eq(A) that can be used to detect assertion violations within
system states. Roughly speaking, given a system state t, a violation of some
assertion in A is detected in t if t can be simplified into the special constant
fail by using the equational theory E of R extended with Eq(A).

The second phase transforms the original rewrite rules of R into guarded,
conditional rewrite rules that can only be fired if no system assertion is violated.
Intuitively, this is achieved by transforming each rewrite rule r : (λ ⇒ ρ if C) of
R into a refined version r′ : (λ ⇒ ρ if C∧check(ρ)=/=fail) of r that contains
the extra constraint check(ρ) =/= fail that holds when (the instances of) the
right-hand side ρ cannot by simplified to fail by using the extended equational

theory E ∪Eq(A). This ensures that any state transition t1
r′

−→E∪Eq(A) t2, that
yields the system state t2 by means of the application of the rule r′, is enabled
only if t2 is a safe state, that is, a state that does not violate any assertion.

Computations in the resulting program R′ are both reproducible in R and
guaranteed to meet A. In other words, for each computation C in R′, (i) C is
also a computation in R, and (ii) there is no system state t in C that violates
one or more system assertions of A.

The proposed specialization technique has been efficiently implemented in
a Maude tool called ÁTAME (Assertion-based Theory Amendment in MaudE)
that has been implemented in Maude itself by using Maude’s meta-level capabil-
ities. ÁTAME integrates a RESTful Web service that is written in Java, and an
intuitive Web user interface that is based on AJAX technology and is written in
HTML5 and Javascript. The implementation contains about 600 lines of Maude
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source code, 600 lines of C++ code, 750 lines of Java code, and 700 lines of
HTML5 and JavaScript code.

As an additional feature, ÁTAME provides the interconnection with the
ANIMA Maude stepper [1], which integrates program animation capabilities
into the ÁTAME system. Indeed, we can execute the computed specialization by
incrementally building and exploring the computation tree of R′ w.r.t. a given
input initial state. The tool ÁTAME is publicly available together with a number
of examples at http://safe-tools.dsic.upv.es/atame.

In order to demonstrate the tool capabilities, in the following we show the
specialization of the dam controller RDAM w.r.t. the safety policy ADAM that can
be achieved by ÁTAME.

Fig. 4. A fragment of the safe specialization for RDAM computed by ÁTAME.

Example 3. By feeding the ÁTAME system with the Maude program for the
dam controller RDAM of Example 1 and the safety policy ADAM of Example 2, a
program specialization R′

DAM for RDAM is automatically computed. Figure 4 shows
a fragment of such a specialization that includes Eq(ADAM) (i.e., the equations for
detecting assertion violations) and the constrained, conditional versions of the

http://safe-tools.dsic.upv.es/atame
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original rewrite rules. Note that all the operators in the equations of Eq(ADAM)
are renamed by adding the textual suffix -ren. This guarantees that assertion
checking is orthogonal to system computations, that is, there is no interference
between the assertion checking mechanism and the applications of the rewrite
rules that make the system evolve only through safe states that meet ADAM. A
fragment of the computation tree that is deployed by the Maude stepper ANIMA
for the initial state s= {[s1,open3] [s2,open1] [s3,open1] | 49970000 |
20 | true} in R′

DAM is shown in Fig. 5. Note that all of the states in the consid-
ered tree fragment fulfill the system assertions formalized in ADAM.

In practice, the runtime cost of checking the assertions must be weighed
against the saving gained from embedding them into the code and thus omitting
the need for executing programs within a monitored runtime environment. The
manual inclusion of safety policies as a piece of code is generally problematic,
since such conditions may not be easily coded by non-specialists. Moreover, as
shown in [2], the monitored runtime verification of external constraints generally
incurs more cost than running the specialized program that is automatically
inferred by our approach. In the case of the running example of this paper,
as expected the specialized program R′

DAM is slightly slower than the original
program RDAM. Nevertheless, running R′

DAM is 68% faster than running RDAM within
a runtime environment that supports dynamic assertion-checking. As for the time
necessary for computing the program specializations, it is almost negligible (a
few milliseconds). For a detailed empirical evaluation, we refer to [2].

5 Concluding Remarks

The technique described in this paper presents similarities with automated pro-
gram correction and related problems such as code fixing and repair techniques.
The discussion of these similarities is outside the scope of this paper; a detailed
comparison can be found in [2]. Loosely related to this work is also the concept
of program specialization of terminating programs based on output constraints
(i.e., program post-conditions) [6]. This methodology translates the constraints
into a characterization function for the program’s input that is used to guide
a partial evaluation process. In contrast, we deal with non-terminating concur-
rent programs and the specialization that we achieve cannot be produced by
any (conventional or unconventional) partial evaluation techniques for Maude
[3]. To our knowledge, the assertion-based functionality for molding programs
supported by ÁTAME is beyond the capabilities of all existing Maude tools.
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Abstract. Motivated by the ever-increasing difficulty of proofs of secu-
rity and correctness, cryptographers have drawn inspiration from the
more general software and hardware verification communities and inte-
grated formal methods tools and techniques into their workflows. Though
this practice of computer-aided cryptography is still comparatively
young, it has spawned a number of automated cryptographic analysis
tools. These tools can be categorized in one of two ways: tools focused
on theoretical, or “provable,” aspects of security; and tools focused on
verifying more practical implementation details. This paper discusses our
motivation for, and early work towards, finding an approachable middle
ground of the current cryptographic tool spectrum.

1 Introduction

The looming threat of a quantum computing breakthrough has shifted
researchers’ focus away from cryptographic schemes founded on simple alge-
braic properties towards those based on more complex abstractions. In addition
to not being as well studied as traditional cryptographic primitives, the under-
lying “hardness” assumptions of these new abstractions greatly challenge any
formal verification of their associated security and correctness properties. This
has exacerbated an already significant issue in that “[cryptographers] generate
more proofs than [they] carefully verify” [10] due to the commonly shared opinion
that “many proofs in cryptography have become essentially unverifiable” [3].

This problem is not unique to cryptography; complexity is the enemy of any
verification effort. Drawing inspiration from the more general software and hard-
ware verification communities, cryptographic researchers have begun employing
a variety of formal methods tools and techniques in their work, giving birth
to the comparatively new practice of computer-aided cryptography. The auto-
mated subset of cryptographic analysis tools, or AutoCrypto tools for short,
typically fall into two schools of thought. First, there are proof assistants like
EasyCrypt [1], which are specialized to reason about the theoretical security of
abstract cryptographic schemes in the game-based style of Shoup [12] and the
previously cited Bellare and Rogaway. The second mindset is more concerned

This is a U.S. government work and its text is not subject to copyright protection
in the United States; however, its text may be subject to foreign copyright protection 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 11–18, 2018.
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with establishing the practical security and functional correctness of specific
instantiations of a cryptographic scheme. The Cryptol language [9] perhaps best
exemplifies this approach.

Regardless of where on the spectrum AutoCrypto tools lie, there is what we
perceive to be a shared flaw among them in that their specification languages
are logically and, to a lesser degree semantically, distant from the mathematical
notations typically used to describe cryptographic algorithms. In our experience,
this has challenged the adoption of these tools by otherwise knowledgeable users
well beyond the usual growing pains that come with learning to apply formal
methods. Furthermore, we found it extremely difficult to experiment with, or
otherwise refine, a specification in environments where provable correctness was
a point of constant emphasis. This pushed us to first develop cryptographic pro-
totypes in an informal environment before attempting any notion of verification,
leading to duplicated and wasted effort.

Our hope is that by documenting our trials and tribulations we can further
motivate the need for more approachable formal methods tools. With that in
mind, the content that follows is one part experience report and one part work
in progress. Section 2 provides relevant background information and introduces
a simple cryptographic scheme to be used as a motivating example. Section 3
compares and contrasts the two AutoCrypto tools cited above, EasyCrypt and
Cryptol, and discusses our initial impressions of working with them. Finally,
Sect. 4 discusses our ongoing work to develop an approachable methodology for
the rapid prototyping of cryptographic systems that we envision sitting some-
where between these two tools – the titular “middle ground” that is being sought.

2 Background

Public-key encryption schemes are so named because secure communication
between two parties can be conducted by having the receiving party openly
share their encryption key with any sending party. Provided that the associated
decryption key remains private, ciphertext messages can be publicly transmitted
with a reasonable belief that adversaries can intercept them, but not recover the
original plaintext message. This property is referred to as one-wayness. A stricter
interpretation of privacy of communication would require that an adversary not
be able to recover any part of a plaintext from its associated ciphertext. This
property, semantic security, implies the indistinguishabilty of any two ciphertexts
produced by the same cryptographic scheme. Proving that a scheme possesses
these, and possibly other, security properties requires reasoning about the com-
putational assumptions of the underlying algorithms.

The hardness assumption mentioned in the introduction is tied to the notion
of a trap-door function; a mathematical problem that is computationally difficult
to solve in general, but can be easily solved given additional knowledge. As an
example, we take the discrete logarithm problem: Given a cyclic group G of order
q that is generated by element g, such that G = {g0, g1, ..., g(q−1)}, and some
gx ∈ G, where x ∈ Zq, compute the value of x. Depending on the structure of
the group G, the difficulty of this problem ranges from trivial to intractable.
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keyGen():

privKey ⇐ Zq

pubKey := gprivKey mod p

return(pubKey, privKey)

enc(pubKey, message):

r ⇐ Zq

shared := gr mod p

cipher := (pubKeyr mod p) ∗ message

return(shared, cipher)

dec(privKey, shared, cipher):

return(cipher ∗ (sharedprivKey mod p)−1 mod p)

Fig. 1. The ElGamal Cryptosystem for Fp

For the purposes of public-key encryption, we can reduce the discrete log-
arithm problem to a computationally equivalent problem: Given gx ∈ G and
gy ∈ G, again with x, y ∈ Zq, compute the value gxy ∈ G. This problem is
the basis of the Diffie-Hellman key exchange protocol, with G typically being
defined as a subset of some large prime field for prime p such that q divides
(p − 1) [7]. If two parties individually select x and y values and transmit
the corresponding group values gx mod p and gy mod p then they can estab-
lish a shared secret gxy mod p, as each can compute one side of the equation
(gy mod p)x mod p = (gx mod p)y mod p. All variants of the ElGamal cryptosys-
tem, regardless of the underlying group, use this shared secret to directly com-
pute the ciphertext for a given plaintext [8]. For ease of reference, we provide an
algorithmic definition of ElGamal over the prime field Fp in Fig. 1.

3 EasyCrypt and Cryptol

EasyCrypt is an interactive theorem prover whose design was inspired by the
increasingly popular game-based reasoning style of cryptographic security proofs.
Rather than providing the capability to reason exclusively about cryptographic
systems, EasyCrypt has extended this approach to allow users to construct
adversarial models for reasoning about the relations between more general pro-
cedures. In order to achieve this generality, EasyCrypt pairs an expression lan-
guage reminiscent of a polymorphic lambda calculus with a stateful procedure
language that includes primitives for probabilistic interactions with memory.
Additionally, EasyCrypt has a robust module language that promotes a high
level of specification and proof reuse.

EasyCrypt’s proof logic combines a higher-order logic that can be used to
reason about expressions with deterministic, probabilistic, and relational vari-
ants of a Hoare-style logic capable of reasoning about procedures. The proof
language itself is derived from earlier work on the CertiCrypt library [2], such
that EasyCrypt proofs look very similar to those of the Coq proof system. Rea-
soning can be conducted in either a forward or backward manner with large
proofs utilizing tactics to proceed in a subgoal-directed fashion, as is the style in
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most modern interactive proof systems. EasyCrypt also takes advantage of SMT
solvers to quickly reduce or eliminate arithmetic and other simple expressions.

proc kg(): group * t = {
var sk;
sk = $dt;
return (g ^ sk, sk);

}

proc enc(pk:group , m:group): group * group = {
var y;
y = $dt;
return (g ^ y, pk^y * m);

}

proc dec(sk:t, c:group * group): group option = {
var gy, gm;
(gy , gm) = c;
return Some (gm * gy^(-sk));

}

Fig. 2. The ElGamal cryptosystem in EasyCrypt

To continue with our motivating example, an EasyCrypt definition of the
ElGamal cryptosystem is provided in Fig. 2. This definition matches quite closely
with the specification from Fig. 1, with the exception that details of the modular
arithmetic have been abstracted away. Note that no information is given about
the construction of variable values in this specification beyond asserting that
they are elements of a cyclic group, or its related base type, as indicated by the
types group and t respectively. In theory, this abstract group type is intended to
represent all cyclic groups, regardless of their underlying structure.

In practice, however, the definition of cyclic groups and their prerequisite
operations in EasyCrypt are heavily axiomatized and tailored to the prime field
Fp. When we attempted to utilize EasyCrypt to reason about cryptographic
schemes based on groups of different structures, e.g. the elliptic curve variant
of the ElGamal system [11], we found its standard theories to be incompatible
with other models of computation. The root cause of this incompatibility was
not immediately obvious. Frequently we had constructed what we thought to be
a correct proof only to have some invocation of the smt tactic greet us with the
less than helpful error message “cannot prove goal (strict).”

This frustration aside, we were more concerned that EasyCrypt operated
at an abstraction level that might prevent us from verifying, or possibly even
ascribing, certain classes of cryptographic properties. For example, we previously
noted that the computational difficulties of the discrete logarithm and related
Diffie-Hellman problems are directly dependent on the structure of the cyclic
group on which the problem is defined. For the specific subset of cyclic groups
based on prime fields that we have discussed so far, this makes the selection of the
parameters p and q absolutely critical. However, in EasyCrypt these parameters
are largely ignored, with the exception of abstractly introducing the order of
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a prime field in a prelude theory to reason about the probability of sampling
random elements.

Sitting on the other end of the abstraction spectrum for AutoCrypto tools is
Cryptol. Cryptol’s driving goal is to bridge the gap between mathematical spec-
ifications of cryptographic algorithms and their actual implementations. To this
end, Cryptol represents an executable environment in which cryptographers can
develop and refine a specification, verify its correctness, and then ultimately use
it to generate code for an implementation that provably corresponds. In order to
facilitate this generation, Cryptol requires complete, unambiguous specification
of an algorithm, including statically inferable, concrete representations for all
data values.

The majority of these constraints and implementation details can be conve-
niently encoded at the type level. Given that Cryptol is both implemented in
and heavily inspired by the Haskell programming language, it should be of no
surprise that its type system is in the style of Hindley-Milner. More specifically,
Cryptol extends simple parametric polymorphism with support for fixed-size
types, type-level arithmetic, and basic type predicates.

When considering how to implement an ElGamal system in Cryptol, one
must move away from the general towards the specific. For the specific instance
of ElGamal over the finite field Fp where the random exponents are selected from
the subgroup Zq, one source recommends a 1024-bit prime for p and a 160-bit
prime for q [4]. Thus, assuming that messages are elements of the primary group,
we might end up with type signatures for algorithms of the scheme that look like
the ones shown below. Of course, it should be noted that these signatures do not
include any considerations about how to model random number generation or
potential decryption failures; they account only for the bit widths of the inputs
and outputs of the functions.

type pubKey = 1024
type privKey = 160
type plaintext = pubKey
type ciphertext = 2* plaintext

kg :: ([ pubKey], [privKey ])
enc :: [pubKey] -> [plaintext] -> [ciphertext]
dec :: [privKey] -> [ciphertext] -> [plaintext]

Similar to what you would expect to find in related systems with more robust
refinement types, Cryptol utilizes SMT solvers to assist with type inference and
reduction. For informal verification of specifications, Cryptol provides a capa-
bility for automated, random testing in the style of QuickCheck [5]. And, much
like EasyCrypt, the same SMT solvers that drive Cryptol’s type system can be
used to formally prove the correctness of specifications.

We found the executable environment of Cryptol quite pleasant to work in,
however, for us it had the opposite problem of EasyCrypt. We are not concerned
with practical implementations of cryptographic systems at this point in time,
such that it was frequently a burden to have to work with systems at a such
a high level of specificity. As an example, the modular arithmetic employed
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by ElGamal is significantly easier to implement and reason about for arbitrary
length integers compared to their fixed-size, bitstring equivalents.

4 The Middle Ground

To reiterate our concerns, we were of the opinion that the specification languages
of EasyCrypt and Cryptol were too abstract and too specific, respectively, for
our needs. Ultimately, what we desire is an environment for experimenting with
novel cryptographic schemes where we can specify constructs using a syntax
that more closely matches the mathematical notations we are familiar with. We
envision this new environment as being an informal precursor to formal reasoning
tools, such that we want to easily translate whatever specifications we develop to
EasyCrypt or Cryptol for further verification. Eventually we would like this new
system to exist as a standalone domain-specific language (DSL) that is purpose-
built to be highly approachable; however, for now we are content working within
the confines of Haskell.

class (CryptoScheme a, CyclicGroup (ValueSpace a),
ValueSpace a ~ Message a) => ElGamal a where

genVal :: a -> ValueSpace a
pVal :: a -> Integer
qVal :: a -> Integer

type PubKey a = ValueSpace a

encrypt :: ElGamal r => PubKey r -> Message r
-> CryptoM r (PubKey r, Message r)

encrypt pub m =
do y <- randInt pVal

g <- asks genVal
return (g .^ y, pub .^ y .* m)

Fig. 3. The ElGamal system in Haskell

Continuing with the motivating example of ElGamal, a subset of our Haskell
implementation is shown in Fig. 3. We began this implementation by abstracting
out commonly used structures to type classes, as is the standard approach in
Haskell. Type classes support a notion of inheritance, such that our definition of
the ElGamal class extends both the CryptoScheme class, where the ValueSpace and Message

type families are defined, and the CyclicGroup class, where the modular arithmetic
operators are defined.

We structured computation within our implementation using our CryptoM

monad which is a simple stacking of the Reader and IO monads. This allows us to
implicitly pass around a parameter set while providing access to effectful meth-
ods such as random number generation and exception handling. The resultant
pairing of type classes and the monadic implementation style can be seen in the
definition for our encrypt function. Our goal was to be able to write a definition
that matched closely with what we have already seen in the algorithmic and
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EasyCrypt specifications from Figs. 1 and 2, something that we feel we have
achieved.

Much like the developers of Cryptol, we believe there is value in perform-
ing informal testing before undertaking a formal verification effort. As such,
we have elected to follow their lead and test our cryptographic schemes using
QuickCheck. As an example, the functional correctness property for our ElGamal
implementation is shown below. Interestingly enough, given that we are working
with monadic definitions, our correctness property appears visibly closer to an
EasyCrypt procedure definition than a Cryptol property:

prop_elgamal :: (Eq (Message r), ElGamal r)
=> Message r -> CryptoM r Bool

prop_elgamal m =
do (pk, sk) <- generateKeys

c <- encrypt pk m
m’ <- decrypt sk c
return (m == m’)

Unlike EasyCrypt, however, we can easily instantiate and test this property
for a variety of cyclic group structures without requiring any modifications to the
scheme’s definitions. In order to simplify testing, we require that users specify
how to generate a random message for a given parameter set as part of providing
an instantiation for the CryptoScheme class. Provided we select appropriate param-
eter values, the prop_elgamal property presents an accurate test of correctness.
Shown below is an instance where a test failed because we tried to construct a
finite field with a non-prime value for the modulus p:

*Crypto.ElGamal > checkCryptoProp prop_elgamal badParams
*** Failed! Assertion failed (after 1 test):
PrimeField {prime = 10, val = 2}

5 Future and Related Work

We are in the process of implementing a large number of cryptosystems in the
same style as what was shown in Sect. 4. Our long-term goal is to use this
collection of cryptographic implementations to influence the design of a DSL for
the rapid prototyping of novel cryptographic systems. We are pursuing the DSL
approach because the vast majority of our research team (everyone except the
first author, in fact) are mathematicians, each with varying levels of comfort
with programming languages and formal methods.

Our hope is that, by tailoring the syntax and semantics of this DSL to fit
their academic strengths, we will end up with a computer-aided cryptographic
tool that they find to be more approachable and usable. Additionally, if this DSL
is embedded within Haskell, then the construction of parsers, interpreters, and
other tools to analyze the cryptographic constructs we write is greatly simplified.
The problem of moving to EasyCrypt or Cryptol, therefore, is reduced to figuring
out a translation semantics.

Our ultimate goal is not unlike that of Crockett and Peikert with their Λ o λ
project [6]. Their software framework, however, is targeting a very specific sub-
set of lattice-based cryptography, whereas we hope to provide a more general
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solution. We are both working with Haskell, though, so we are optimistic that
we should be able to interoperate with their library should we get to the point
of investigating that class of problems.
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1 Motivation and Introduction

Permutation polynomials in the context of Galois’ fields are very well studied in
particular for their applications in cryptography. The study of binary polynomi-
als (polynomials with coefficients in an integer ring modulo a power of 2) is less
extensive, but it has been shown recently that they are important for computer
security. As discussed in [1] and in [2], a straightforward application of binary
permutation polynomials is obfuscation. Here we define obfuscation as a way to
write computer programs that prevents reverse engineering of applications while
minimizing the overhead in memory/computation cost.

In comparison with finite field permutation polynomials, the binary polyno-
mials allow fast computation of bijective functions, since they can be directly
implemented with low level arithmetic operations on computers. Moreover their
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use adds diversity to obfuscation techniques. The last point is of primary concern
for obfuscation. Indeed, obfuscation usually does not rely on one overwhelming
method, but on an aggregation of several layers of different techniques that aim
to prevent automated attacks. For example, in [2] new classes of polynomials
were considered and proved to be resistant to the attacks defined in [3].

In this application context, the study of permutation polynomials is purely
algorithmic and a central operation is the computation of the inverse of such a
polynomial.

Newton’s method for inverting binary permutation polynomials is an effective
algorithm, but we present in this paper a new technique based on Lagrange
interpolation with two important properties:

– In a designer point of view, it is very important to measure the strength of any
obfuscation technique based on binary permutation polynomials. The interpo-
lation algorithm analyzed in this paper is proven to have a fixed complexity.
This provides a more precise framework when measuring attack complexi-
ties with regard to computational overhead of using a binary permutation
polynomial.

– From the reverse engineering point of view, this algorithm enables inversion
techniques in a black-box context (i.e. when an encoding function is given
as an evaluation function only). This is of importance when considering the
reliance of encodings based on binary permutation polynomials since this
algorithm can retrieve the explicit function through interpolation.

In addition, our version of Lagrange interpolation allows a better understand-
ing on how to use binary permutation polynomials. This should prove useful for
future work on the subject.

2 Interpolation of the Inverse Polynomial over Z2n

2.1 Reduction of Integer Polynomials

Integer multiples of Newton polynomials may be used to reduce any integer poly-
nomial to a polynomial of relatively small degree (no greater than n+log2 n) that
induces the same function on Z2n . The approach follows Mullen and Stevens [4]
and has recently been used in [2] in the context of inversion of polynomials by
using Largange interpolation and also Newton’s method.

For i ≥ 0, let ti be the largest integer � such that 2� divides �!, and let dn be
the largest integer i such that n − ti > 0. Note that dn is always odd and not
greater than n + log2 n. Define

Pi(x) = 2n−ti

i−1∏

j=0

(x − j) for i = 0, 1, . . . , dn, and Pdn+1(x) =
dn∏

j=0

(x − j).

Each polynomial Pi(x), for i = 0, 1, . . . , dn +1, is an integer multiple of the New-
ton polynomial

∏i−1
j=0(x−j) of degree i, and only the last one, Pdn+1(x), is monic.
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The ideal I of Z[x] generated by P0(x), . . . , Pdn+1(x) consists precisely of all inte-
ger polynomials that induce the zero function on Z2n . Define the set of reduced
polynomials Rn as the set of all integer polynomials b0 + b1x + . . . + bdn

xdn

of degree at most dn, such that, for i = 0, . . . , dn,

0 ≤ bi < 2n−ti .

For every integer polynomial P (x) there exists a unique reduced polynomial
PR(x) such that P (x) and PR(x) induce the same function on Z2n . The reduction
is performed as follows. First, P (x) is replaced by its reminder modulo the monic
polynomial Pdn+1(x), and this yields a polynomial R(x) of degree at most dn.
If R(x) is reduced we are done. Otherwise, let i be the largest degree such that
the i-coefficient of R(x) is not in the range from 0 to 2n−ti − 1 and let ci be the
value of this coefficient. Then there exists a nonzero q such that ci = 2n−tiq + r,
where 0 ≤ r ≤ 2n−ti − 1. Thus, the i-coefficient of the polynomial R(x)− qPi(x)
is equal to r, which is in the correct range. Continuing in the same fashion we
may push all coefficients, one by one, in the order from highest to lowest degree,
into the correct range and obtain a reduced polynomial.

2.2 Precise Description of the Inversion Problem

If the degree of the original integer polynomial P (x) is high and/or if its coeffi-
cients are large integers, the reduction procedure may take a long time. We are
not interested in this issue, our quadratic algorithm assumes that P (x) is given
either in reduced form or as a black box that can calculate the sequence of values
P (0), P (1), . . . , P (dn) in Z2n in O(n2) time. Note that if we are given a reduced
polynomial P (x), then we can calculate P (0), P (1), . . . , P (dn) in O(n2) time.

We formulate precisely the input and output for our problem.

Let P (x) be an integer polynomial that induces a permutation on Z2n .
Input: the sequence of values P (0), . . . , P (dn) in Z2n .
Output: the sequence of coefficients b0, b1, . . . , bdn

of the unique reduced
polynomial Q(x) that induces the inverse permutation to P (x) on Z2n .

We know with certainty that a polynomial solution exists, since P (x) induces
a permutation on a finite set, which implies that some iteration of P (x), which
is also a polynomial with integer coefficients, induces the inverse permutation.

Our quadratic “time” complexity actually refers to the number of multipli-
cations and/or additions and/or inversions of units in Z2n necessary to calculate
the sequence of coefficients of Q(x). The numbers involved in these calculations
have O(n) digits, but each addition/multiplication/inversion is counted as being
performed in unit time.

We state our main result.

Theorem 1. Let P (x) ∈ Z[x] be a polynomial that induces a permutation on
Z2n , given by its sequence of values P (0), . . . , P (dn) in Z2n . There exists an
algorithm of time complexity O(n2) that determines the sequence of coefficients
b0, b1, . . . , bdn

of the unique reduced polynomial Q(x) that induces the inverse
permutation to P (x) on Z2n .
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2.3 Binary Permutation Polynomials

There is a simple characterization of binary permutation polynomials in terms
of the coefficients of the polynomial. Namely, a polynomial P (x) = a0 + · · · +
amxm ∈ Z[x] induces a permutation on Z2n if and only if (i) a1 is odd, (ii) the
sum a3 + a5 + a7 . . . is even, and (iii) the sum a2 + a4 + a6 + . . . is even.

The criterion is stated and proved in this form by Rivest [5], but he points
out that it also follows easily from the following more general criterion: P (x)
induces a permutation on Zpn , where p is a prime and n ≥ 2, if and only if (i)
P (x) induces a permutation on Zp and (ii) P ′(a) �≡ 0 (mod p) for a ∈ Z. The
last criterion is stated in the work of Mullen and Stevens [4], who consider it a
direct corollary of Theorem 123. in the book by Hardy and Wright [6].

The following corollary is crucial for our purposes.

Corollary 1. The polynomial P (x) = a0 + · · ·+ amxm ∈ Z[x] induces a permu-
tation on Z2n if and only if, for all a, b ∈ R, with a �= b, the Newton quotient
ka,b = P (a)− P (b)

a − b is an odd integer.

Proof. Indeed, ka,b = a1A1 + a2A2 + · · · + amAm, where A1 = 1 and, for i =
2, 3, . . . ,m, Ai = ai−1 +ai−2b+ · · ·+abi−2 + bi−1. If both a and b are even then,
modulo 2, ka,b ≡ a1, if they have different parity then ka,b ≡ a1 + a2 + · · · + am,
and if they are both odd, ka,b ≡ a1 + a3 + a5 + . . . and the conclusion follows.

2.4 Solving the Associated Linear System

Fix n, and to simplify notation, set d = dn.
For i = 0, . . . , d, set xi = P (i) and yi = Q(xi) = i. We need to solve, over

Z2n , the linear system of equations

V [x0, x1, . . . , xd](b0, b1, . . . , bd)T = (y0, y1, . . . , yd)T ,

where V = V [x0, x1, . . . , xd] = [vi,j ](d+1)×(d+1) is the (d + 1) × (d + 1) Vander-
monde matrix in which vi,j = xj

i .
We will use the following two results by Oruç and Phillips.

Theorem 2 (Oruç-Phillips 2000 [7]). Let x0, x1, . . . , xm be distinct. An
explicit LDU decomposition of the Vandermonde matrix V = V [x0, x1, . . . , xm]
is given by V = LDU , where D is the diagonal matrix

Diag(1, x1−x0, (x2−x1)(x2−x0), . . . , (xm−xm−1)(xm−xm−2) . . . (xm−x0)),

L is the lower triangular matrix L = [�i,j ] given by

�i,j =
j−1∏

t=0

xi − xj−1−t

xj − xj−1−t
, 0 ≤ j ≤ i ≤ m,

and U is the upper triangular matrix U = [ui,j ] given by

ui,j = τj−i(x0, . . . , xi) 0 ≤ i ≤ j ≤ m,
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with the understanding that empty products are equal to 1 (thus all diagonal
entries in both L and U are equal to 1), and τr(x0, . . . , xi) is the complete sym-
metric function evaluated at x0, . . . , xi, that is,

τr(x0, . . . , xi) =
∑

λ0+λ1+···+λi=r

xλ0
0 xλ1

1 . . . xλi
i .

Example 1. For m = 4, we have

L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

1 1 0 0 0

1 x2−x0
x1−x0

1 0 0

1 x3−x0
x1−x0

(x3−x1)(x3−x0)
(x2−x1)(x2−x0)

1 0

1 x4−x0
x1−x0

(x4−x1)(x4−x0)
(x2−x1)(x2−x0)

(x4−x2)(x4−x1)(x4−x0)
(x3−x2)(x3−x1)(x3−x0)

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

U =

⎡

⎢⎢⎢⎢⎣

1 x0 x2
0 x3

0 x4
0

0 1 x0 + x1 x2
0 + x0x1 + x2

1 x3
0 + x2

0x1 + x0x
2
1 + x3

1

0 0 1 x0 + x1 + x2 x2
0 + x0x1 + x2

1 + x0x2 + x1x2 + x2
2

0 0 0 1 x0 + x1 + x2 + x3

0 0 0 0 1

⎤

⎥⎥⎥⎥⎦

The entries of U can be obtained recursively, by u0,j = xj
0, ui,i = 1, and

ui,j = ui−1,j−1 + ui,j−1 · xi, for 1 ≤ i < j. (1)

Theorem 3 (Oruç-Phillips 2000 [7]). Let x0, x1, . . . , xm be distinct. The
matrix L from the explicit LDU decomposition of the Vandermonde matrix
V = V [x0, x1, . . . , xm] given in Theorem2 decomposes as the product

L = L(1)L(2) . . . L(m)

of subdiagonal (m + 1) × (m + 1) matrices L(k) = [�(k)i,j ] with 1s on the diagonal
and the subdiagonal entries given, for j = 0, . . . , m − 1, by

�
(k)
j+1,j =

⎧
⎪⎪⎨

⎪⎪⎩

0, 0 ≤ j < m − k,

j−(m−k)−1∏

t=0

xj+1 − xj−t

xj − xj−1−t
, m − k ≤ j ≤ m.

Example 2. For m = 4, the following table provides the subdiagonal entries:

j �
(1)
j+1,j �

(2)
j+1,j �

(3)
j+1,j �

(4)
j+1,j

0 0 0 0 1

1 0 0 1 x2−x1
x1−x0

2 0 1 x3−x2
x2−x1

(x3−x2)(x3−x1)
(x2−x1)(x2−x0)

3 1 x4−x3
x3−x2

(x4−x3)(x4−x2)
(x3−x2)(x3−x1)

(x4−x3)(x4−x2)(x4−x1)
(x3−x2)(x3−x1)(x3−x0)
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The subdiagonal entries can be calculated recursively as follows. For fixed j

and k = m − j, we have �
(k)
j+1,j = 1, and for k > m − j + 1,

�
(k)
j+1,j = �

(k−1)
j+1,j · xj+1 − xm−k+1

xj − xm−k
. (2)

Going back to our situation, we see that the entries of U and D are inte-
gers and, as such, are well defined over Z2n . The entries of L and L(k) are not
necessarily integers, but they are still well defined over Z2n .

Proposition 1. Let P (x) ∈ Z[x] induce a permutation on Z2n .

(a) Each entry of L is has odd denominator in its simplest form.
(b) Each entry of L(k), for k = 1, . . . , d has odd numerator and odd denominator

in its simplest form.

Proof. (a) By Corollary 1, we have, for 0 ≤ j ≤ i ≤ d,

�i,j =
j−1∏

t=0

xi − xj−1−t

xj − xj−1−t
=

j−1∏

t=0

P (yi) − P (yj−1−t)
P (yj) − P (yj−1−t)

=
j−1∏

t=0

(yi − yj−1−t)ki,j−1−t

(yj − yj−1−t)kj,j−1−t

=
j−1∏

t=0

(i − j + 1 + t)ki,j−1−t

(1 + t)kj,j−1−t
=

(
i

j

) j−1∏

t=0

ki,j−1−t

kj,j−1−t
,

where each k∗,∗ is an odd integer.
(b) Let d − k ≤ j ≤ d and set s = j − (d − k) − 1. By Corollary 1, we have,

�
(k)
j+1,j =

s∏

t=0

xj+1 − xj−t

xj − xj−1−t
=

s∏

t=0

P (yj+1) − P (yj−t)
P (yj) − P (yj−1−t)

=
s∏

t=0

(yj+1−yj−t)kj+1,j−t

(yj −yj−1−t)kj,j−1−t

=
s∏

t=0

(1 + t)kj+1,j−t

(1 + t)kj,j−1−t
=

s∏

t=0

kj+1,j−t

kj,j−1−t
,

where each k∗,∗ is an odd integer.

We are ready to prove the main result.

Proof (Proof of Theorem 1). Recall that, in our situation, m = d = dn < n +
log2 n and we are solving the system LDUb = y. The recursive formulas (1)
and (2) show that the entries of U and the subdiagonal entries in all L(k),
k = 1, . . . , d, can be calculated in O(n2) steps. The diagonal entries of D can
also be calculated recursively in O(n2) steps. The inverse of L(k) is obtained by
simply changing the sign in all subdiagonal entries. Therefore, we can calculate
y′ = L−1y = L(m)−1

L(m−1)−1
. . . L(1)−1

y in O(n2) steps.
We then solve the system DUb = y′ by backward substitution in O(n2)

steps. Note that the i-entry of D has the form 2tifi, where fi is odd. Because of
our constraints on the coefficients of reduced polynomials, we are seeking only for
solutions for bi in the range 0 ≤ bi < 2n−ti , and a solution exists and is unique
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in this range. More precisely, once bi+1, . . . , bd are substituted in, we need to
solve for bi from an equation of the form 2tifibi = gi (mod 2n), for some odd fi

and some gi ∈ Z2n . We already know that a solution exists, so it must be that
gi = 2tig′

i for some g′
i ∈ Z2n . After canceling the term 2ti we solve for bi from

fibi = g′
i (mod 2n−ti) by inverting fi, and thus produce the unique solution in

the range 0 ≤ bi < 2n−ti .

2.5 Another Solution

If we are not interested in producing the coefficients of the inverse polynomial
Q(x), but rather just in calculating the values of Q(x) at various points, a slightly
different algorithm exists and we outline it here.

Let Un be the ring of units of the ring Z2n . Without loss of generality we
may assume that P (x) separately permutes Un, the odds, and its complement,
the evens (if it does not, we may replace P (x) by P (x) + 1).

The ideal I ′ of integer polynomials that induce the zero function on Un is
described in [8]. It is generated by Pi(x) = 2n−i−ti

∏i−1
j=0(x − (2j + 1)), for

i = 0, 1, . . . , d′
n, and Pd′

n+1(x) =
∏d′

n
j=0(x − (2j + 1)), where d′

n is the largest
integer i such that n− i− ti > 0. Every integer polynomial that permutes Un has
a unique representative modulo I ′, which is a polynomial of degree at most d′

n

with the i-coefficient in the range from 0 to 2n−i−ti − 1. The maximum degree
d′

n is approximately half of dn. We may calculate, by using the same approach as
above (the Vandermonde matrix will have dimension (d′

n +1)× (d′
n +1) and the

interpolation is preformed for xi = P (2i + 1), i = 0, . . . , d′
n) the coefficients of

the unique reduced polynomial Q(x) modulo I ′ that inverts the values of P (x)
on Un (and not necessarily on its complement).

By a similar approach, the coefficients of another polynomial, Q(x), of degree
at most d′

n that inverts the values of P (x) on the complement of Un may be
calculated. The two polynomials Q(x) and Q(x) may then be used to calculate
the values of Q(x) (use the former for odd x and the latter for even). Since the
degrees of Q(x) and Q(x) are, in general, smaller than the degree of Q(x), this
approach may be faster if we need to calculate many values of Q(x).

3 Interpolation of the Inverse Polynomial over Zpn

Fix a prime p and n > 1.
We claim that the same inversion technique works equally well for permuta-

tion polynomials over the ring Zpn .
The ideal of integer polynomials that induce the zero function on Zpn is

generated by the polynomials

Pi(x) = pn−tp,i

i−1∏

j=0

(x − j) for i = 0, 1, . . . , dp,n, and Pdp,n+1(x) =
dp,n∏

j=0

(x − j).
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where, for i ≥ 0, tp,i is the largest integer � such that p� divides �!, and dp,n

is the the largest integer i such that n − tp,i > 0. Each integer polynomial is
equivalent, as a function over Zpn , to a unique reduced polynomial, that is,
polynomial b0 + b1x + · · · + bdp,n

xdp,n of degree at most dp,n, such that, for
i = 0, . . . , dp,n, we have 0 ≤ bi < pn−tp,i (see [4, Theorem 2.1]).

We prove an analog of Corollary 1.

Proposition 2. The polynomial P (x) = a0 + · · · + amxm ∈ Z[x] induces a
permutation on Zpn if and only of, for all a, b ∈ Z, with a �= b, the Newton
quotient ka,b = P (a)− P (b)

a − b is an integer that is not divisible by p.

Proof. Recall that P (x) induces a permutation on Zpn if and only if it induces
a permutation on Zp and P ′(a) �≡ 0 (mod p), for all a.

We work modulo p. Let a �= b and, moreover, a − b �≡ 0. Since P (a) − P (b) ≡
(a − b)ka,b and a − b �≡ 0, we have P (a) − P (b) ≡ 0 if and only if ka,b ≡ 0. Thus,
P (x) induces a permutation on Zp if and only if ka,b �≡ 0, for all a �≡ b. Let a �= b,
but a ≡ b. Then, for i ≥ 2, we have Ai = ai−1+ai−2b+ · · ·+abi−2+bi−1 ≡ iai−1

and ka,b ≡ a1 + 2a2a + · · · + mamam−1 ≡ P ′(a). Thus, P ′(a) �≡ 0, for all a, if
and only if ka,b �≡ 0, for all a �= b with a ≡ b.

The rest of the proof is exactly the same as in the binary case, except,
of course, that the analog of Proposition 1 should state that, in their simplest
form, all denominators of the entries in L are integers not divisible by p, and all
numerators and denominators of the entries in L(k), k = 1, . . . , dp,n, are integers
not divisible by p. Thus, L and L(k) are well defined over Zpn .

Thus we may state a more general version of our main result.

Theorem 4. Let p be a prime and P (x) ∈ Z[x] a polynomial that induces a
permutation on Zpn , given by its sequence of values P (a), P (a+1), . . . , P (a+dp,n)
in Zpn for some a ∈ Zpn (not necessarily 0). There exists an algorithm of time
complexity O(n2) that determines the coefficients b0, b1, . . . , bdp,n

of the unique
reduced polynomial Q(x) that induces the inverse permutation to P (x) on Zpn .
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Abstract. Numerical algebraic geometry provides tools for approximat-
ing solutions of polynomial systems. One such tool is the parameter
homotopy, which can be an extremely efficient method to solve numer-
ous polynomial systems that differ only in coefficients, not monomials.
This technique is frequently used for solving a parameterized family of
polynomial systems at multiple parameter values. This article describes
Paramotopy, a parallel, optimized implementation of this technique, mak-
ing use of the Bertini software package. The novel features of this imple-
mentation include allowing for the simultaneous solutions of arbitrary
polynomial systems in a parameterized family on an automatically gen-
erated or manually provided mesh in the parameter space of coefficients,
front ends and back ends that are easily specialized to particular classes
of problems, and adaptive techniques for solving polynomial systems near
singular points in the parameter space.

1 Introduction

The methods of numerical algebraic geometry provide a means for approximating
the solutions of a system of polynomials F : C

N → C
n, i.e., those points z ∈ C

N

such that F (z) = 0. There are many variations on these methods, but the key
point is that polynomial systems of moderate size can be solved efficiently via
homotopy continuation-based methods. In the case of a parameterized family of
polynomial systems F : C

N × P → C
N , where the coefficients are polynomial in

the parameters p ∈ P ⊂ C
M , a particularly efficient technique comes into play:

the parameter homotopy [1]1.
The process of using a standard homotopy to solve a system F begins with the

construction of a polynomial system G that is easily solved. Once the system

1 In fact, this technique applies when the coefficients are holomorphic functions of the
parameters [1], but we restrict to the case of polynomials for simplicity.

c© Springer International Publishing AG, part of Springer Nature 2018
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G is solved, the solutions of G are tracked numerically by predictor-corrector
methods as the polynomials of G are transformed into those of F . Thanks to
the underlying geometry, discussed for example in [2] or [3], we are guaranteed
to find a superset ̂V of the set V of isolated solutions of F . The set ̂V is easily
trimmed down to V in a post-processing step [4].

Parameter homotopies are particularly powerful as the number of solutions
to be followed is exactly equal to the number of isolated solutions of F (z, p) for
almost all values of p ∈ P (under the common assumption that P has positive
volume in its ambient Euclidean space). Furthermore, the solution of a single G
will work for almost all values of p ∈ P, so only one round of precomputation is
needed regardless of the number of polynomial systems to be solved.

Parameter homotopies are not new and have been used in several areas of
application [5–8] and implemented in at least two software packages for solving
polynomial systems: Bertini [9] and PHCpack [10]. These implementations allow
the user to run a single parameter homotopy from one parameter value p0 with
known solutions to the desired parameter value, p1, with the solutions at p0
provided by the user. The software package that is the focus of this article
differs from these other two implementations in the following ways:

1. Paramotopy accepts as input the general form of the parameterized family
F (z, p) (p given as indeterminates), chooses a random p0 ∈ P, and solves
F (z, p0) via a Bertini run2;

2. Paramotopy builds a mesh in the parameter space given simple instructions
from the user (or uses a user-provided set of parameter values) and performs
parameter homotopy runs from p0 to each other p in the mesh;

3. Paramotopy carries out all of these runs in parallel, as available3;
4. Paramotopy includes adaptive schemes to automatically attempt to find the

solutions of F (z, p) from starting points other than p0 if ill-conditioning causes
path failure in the initial attempt; and

5. Paramotopy is designed to simplify the creation of front ends and back ends
specialized for particular applications.

The full version of this article [11] includes more background and examples.

2 Homotopies

2.1 Homotopy Continuation

Given a polynomial system F : C
N → C

N to be solved, standard homotopy
continuation consists of three basic steps:

1. Choose a start system G : C
N → C

N similar in some way to F (z) that is
“easy” to solve;

2 Bertini provides this functionality as well.
3 Bertini and PHCpack both have parallel versions, but not for multiple parameter

homotopy runs.
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2. Find the solutions of G(z) and form the new homotopy function H : C
N×C →

C
N given by H(z, t) = F (z) · (1 − t) + G(z) · t · γ, where γ ∈ C is randomly

chosen; and
3. Using predictor-corrector methods (and various other numerical routines [2,

12–14]), track the solutions of G at t = 1 to those of F at t = 0.

There are many variations on this general theme, but we focus here on the
basic ideas, leaving details and alternatives to the references. A discussion of the
choice of an adequate start system G goes beyond the scope of this paper. It is
enough to know that there are several such options [2,3,15,16].

Once G(z) is solved and H(z, t) is formed, the solutions of H(z, t) for varying
values of t may be visualized as curves. Indeed, as t varies continuously, the
solutions of H(z, t) will vary continuously, so each solution sweeps out a curve
or path (also sometimes called a solution curve or solution path) as t moves from
1 to 0. A schematic of four such paths is given in Fig. 1. Predictor-corrector
methods are used to follow the solutions of G to those of F along these paths.
See [11] for more background.

Fig. 1. A schematic depiction of a homotopy from system F to system G. There are
four solutions of G(z) at t = 1. Two solution paths diverge as t → 0, while the other
two lead to solutions of F at t = 0.

2.2 Parameter Homotopies

Suppose we wish to solve a parameterized polynomial system F (z, p) in variables
z and parameters p at a (possibly very large) number of points in parameter
space, i.e., we want to find z such that F (z, p′) = 0 for varying values p = p′.
If we know all isolated, finite, complex solutions at some generic point p =
p0 in a convex4 parameter space P, the underlying theory allows us to make

4 Handling non-convex parameter spaces is significantly more difficult and is described
later.
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use of a parameter or coefficient-parameter homotopy [1]. The usefulness of this
software becomes readily apparent from the following proposition, proved in
somewhat different language in [2]. The proposition guarantees that we can
find the isolated, finite, complex solutions of F (z, p′) simply by following paths
through the parameter space, P ⊂ C

M , from the solutions of F (z, p0).

Proposition 1. The number of finite, isolated solutions of F (z, p) is the same
for all p ∈ P except for a measure zero, algebraic subset B of P.

This proposition gives us a probability one guarantee that a randomly chosen
path through parameter space will avoid B. Assuming further that P is convex, a
straight line segment through parameter space from a randomly chosen p0 ∈ P to
a prespecified target p1 ∈ P will, with probability one, not pass through the set
B. This immediately implies a (known) technique for solving many polynomial
systems from the same parameterized family with parameter space P. First,
find all finite, isolated, complex solutions for some randomly chosen p0 ∈ P.
We refer to this as Step 1. Second, for each parameter value of interest, pi ∈ P,
simply follow the finite, isolated, complex solutions through the simple homotopy
H(z, t) = F (z, p0) · t+F (z, pi) ·(1− t). We refer to this as Step 2. Notice that the
randomly chosen γ from standard homotopies can be neglected in this homotopy
since p0 is chosen randomly. We describe in Sect. 3.2 how we monitor these Step
2 runs in case paths fail and also how we handle such failures.

For the cost of a single Step 1 solve at some random point p0 in the param-
eter space, we may rapidly solve many other polynomial systems in the same
parameterized family. Indeed, there are a minimal number of paths to follow in
each Step 2 run and there is no pre-computation cost beyond the initial solve.

3 Implementation

Paramotopy is a C++ implementation of parameter homotopies, relying heavily
on Bertini [9]. In this section, we provide many details about this software.

3.1 Main Algorithm

We first present the main parameter homotopy algorithm that is implemented in
Paramotopy. Note in particular the input value K and the while loop at the end,
both included to help manage path failures during the Step 2 runs. Also, note
that this algorithm assumes that P = C

M , for some M . The use of Paramotopy
for other parameter spaces is described in Sect. 3.3.

Remark 1. To find all solutions for all p ∈ L, we must have that all solutions of
F (z, p0) are nonsingular as we can only follow paths starting from nonsingular
solutions during the parameter homotopies after the first run. Deflation [17,18]
could be used to regularize singularities in Step 1 before beginning Step 2, but
this is not currently implemented.
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Input : F (z; p), a set of polynomial equations, variables z ∈ C
N , and

parameters p ∈ L ⊂ P = C
M ; � = | L | parameter values at which

the solutions of F (z; p) are desired; bound K on the number of times
to try to find solutions for any given p ∈ L, in the case of path
failures.

Output: List of solutions of F (z; p) = 0 for each p ∈ L.

1 Choose random p0 ∈ P;
2 Solve F (z; p0) = 0 with any standard homotopy. (Step 1);
3 Store all nonsingular finite solutions in set S;
4 Set F := ∅. (Beginning of Step 2.);
5 for i=1 to � do
6 Construct parameter homotopy from F (z; p0) to F (z; pi);
7 Track all |S| paths starting from points in S;
8 Set F := F ∪ {i} if any path fails;

9 Set k := 0. (Beginning of path failure mitigation.);
10 while |F| > 0 and k < K do
11 Set F ′ = ∅;
12 Choose random p′ ∈ P;
13 Solve F (z; p′) = 0 with a parameter homotopy from p0;
14 for m=1 to |F| do
15 Solve F (z; pF[m]) = 0 with a parameter homotopy from p′ to pF[m];
16 Set F ′ := F ′ ∪ {m} if any path fails;

17 Set F := F ′ and increment k;

Algorithm 1: Paramotopy.

3.2 Handling Path Failures During Step 2

If a path fails during a Step 2 run for some parameter value p ∈ L, Paramotopy
will automatically attempt to find the solutions at p by tracking from a differ-
ent randomly chosen parameter value p′ �= p0 ∈ P. It will repeat this process
K times, with K specified by the user. This is the content of the while loop at
the end of the Main Algorithm.

The idea behind this is that paths often fail for one of two reasons, either the
path seems to be diverging or the Jacobian matrix becomes so ill-conditioned
that either the steplength drops below the minimum allowed or the precision
needed rises above the maximum allowed. For parameter homotopies, a path
failure of the first type is possible for either of two reasons: either the path
really is diverging or the norm of the solution is above a particular threshold.
In the former case, it can happen that the nature of the solution set at target
value p differs from that at a generic point in the parameter space, e.g., there
could be fewer finite solutions at p. Such path failures are captured and reported
by Paramotopy, but there is simply no hope for “fixing” them as this result is
a natural consequence of the geometry of the solution set, i.e., p is inherently
different from other points in parameter space, so Paramotopy takes the correct
action in reporting it. In the latter case, it can happen that the scaling of the
problem results in solutions that are large in some norm, e.g., |z|∞ > 105 as is
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the default in the current version of Bertini. If this is suspected, the user could
rescale the system or adjust the threshold MaxNorm and run the problem again.

For the second type of path failure, the ill-conditioning is caused by the
presence of a singularity b ∈ B near or on the path between p0 and p. By choosing
new starting point p′ “adequately far” from p0, it should be feasible to avoid the
ill-conditioned zone around b unless b is near the target value p. In this last case,
it is unlikely that choosing different starting points p′ will have any value, which
is why we have capped the number of new starting points allowed at K.

For now, the new point p′ is chosen randomly in the unit hypercube. Future
work will detect where in parameter space the failures have occurred and bound
p′ away from this region. Since it cannot easily be determined which paths from p′

to p correspond to the failed paths from p0 to p, there is no choice but to follow
all paths from p′ to p. To find all solutions at p′, we simply use a parameter
homotopy to move the solutions at p0 to those at p′. Of course, if there are path
failures, we must choose yet another p′ and try again.

3.3 Handling Parameter Spaces Other Than C
M

As described near the end of Sect. 2.2, Paramotopy may be used to handle param-
eter spaces other than the simplest parameter space, C

M for some M . However,
some changes are needed in the algorithm.

If P ⊂ C
M is a proper, convex subset of C

M , Algorithm 1 needs only one
change: p0 must be somehow chosen within P. To accommodate this, Paramo-
topy allows the user to specify p0.

If P is a proper, non-convex set, more work is required. The Step 1 run would
be the responsibility of the user, as in the previous paragraph, and it would be
up to the user to string together subsequent Paramotopy runs to stay within P.

3.4 Parallelization and Data Management

One of the features of Paramotopy that sets it apart from Bertini is the use of
parallel computing for multiple parameter homotopies. Bertini includes parallel
capabilities for a single homotopy run, but not for a sequence of runs. Paralleliza-
tion was achieved using the head-worker paradigm, implemented with MPI. A
single process controls the distribution of parameter points to the workers, which
constitute the remainder of the processes. Workers are responsible for writing
the necessary files for Bertini and for writing their own data to disk.

Bertini creates structures in memory by parsing an input file. As input
is interpreted, several other files are created. These contain the straight line
program, coefficient values, variable names, etc. Since the monomial structure
of the polynomials in each Step 2 run is the same, almost all of these files are
identical from one run to the next, so almost all this parsing is unnecessary. The
only file that needs to be changed between runs is the file containing parameter
values.

To prevent proliferation in the number of files needed to contain the data
from the Paramotopy run, the Bertini output data is read back into memory,
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and dumped into a collective data file. The collective data files have a maximum
buffer size, and once the buffer size is reached, the data in the buffer is written
to the file, and the process repeats by storing the Bertini output data in memory
until the buffer is full once more.

Repeated writing and reading is taxing on hard drives and clogs a LAN if
the workers are using network drives. To free workers from having to physically
write temporary files to electronic media storage, an option is provided to the
user to exploit a shared memory location (or ramdisk), should it be available.

3.5 Front Ends and Back Ends

Real-world problems may involve many parameters. This could be problematic
when one wants to discretize a parameter space into a uniform sample as the
number of parameter points of interest can easily reach into the astronomical.
Hence, Paramotopy contains support for both linear uniform meshes of param-
eters as well as user-defined sets of parameter values stored in a text file. A
generic Matlab interface for gathering, saving, and plotting data from an arbi-
trary Paramotopy run is provided on the Paramotopy website. See [11] for further
details.

4 Conclusions

Paramotopy can be used to solve parameterized polynomial systems efficiently
for large numbers of parameter values. This extends the reach of numerical alge-
braic geometry in a new direction, particularly one that might be useful for math-
ematicians, scientists, and engineers who would like to rapidly test a hypothesis
or would like to find regions of a parameter space over which the polynomial
system has the same number of solutions. While Bertini and PHCpack have
some parameter homotopy capabilities, Paramotopy has been optimized for the
scenario of using many-processor computers to solve at many parameter values
of interest.

Acknowledgements. The authors appreciate the useful comments from several
anonymous referees and Andrew Sommese as these have greatly contributed to the
quality of this paper. The first author would also like to recognize the hospitality of
Institut Mittag-Leffler and the Mathematical Biosciences Institute, as well as partial
support from the NSF via award DMS-1719658.

References

1. Sommese, A., Morgan, A.: Coefficient-parameter polynomial continuation. Appl.
Math. Comp. 29, 123–160 (1989)

2. Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials
Arising in Engineering and Science. World Scientific Publishing, Singapore (2005)



Paramotopy 35

3. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerical Solution
of Polynomial Systems Using the Software Package Bertini. SIAM, Philadelphia
(2013)

4. Bates, D., Hauenstein, J., Peterson, C., Sommese, A.: A numerical local dimension
test for points on the solution set of a system of polynomial equations. SIAM J.
Numer. Anal. 47(5), 3608–3623 (2009)

5. Brake, D.A., Bates, D.J., Putkaradze, V., Maciejewski, A.A.: Illustration of numer-
ical algebraic methods for workspace estimation of cooperating robots after joint
failure. In: 15th IASTED International Conference on Robotics and Applications,
pp. 461–468 (2010)

6. He, Y.H., Mehta, D., Niemerg, M., Rummel, M., Valeanu, A.: Exploring the poten-
tial energy landscape over a large parameter-space. J. High Energy Phys. 2013(7),
1–29 (2013)

7. Newell, A.J.: Transition to superparamagnetism in chains of magnetosome crystals.
Geochem. Geophys. Geosy. 10(11), Q11Z08 (2009)

8. Rostalski, P., Fotiou, I.A., Bates, D.J., Beccuti, A.G., Morari, M.: Numerical alge-
braic geometry for optimal control applications. SIAM J Optimiz. 21(2), 417–437
(2011)

9. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.: Bertini: software for
numerical algebraic geometry (2006)

10. Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial
systems by homotopy continuation. ACM Trans. Math. Softw. (TOMS) 25(2),
251–276 (1999)

11. Bates, D., Brake, D., Niemerg, M.: Paramotopy: parameter homotopies in parallel.
arXiv.org/abs/1804.04183 (2018)

12. Bates, D., Hauenstein, J., Sommese, A., Wampler, C.: Adaptive multiprecision
path tracking. SIAM J. Numer. Anal. 46(2), 722–746 (2008)

13. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Stepsize control for
path tracking. Contemp. Math. 496, 21–31 (2009)

14. Bates, D.J., Hauenstein, J.D., Sommese, A.J.: Efficient path tracking methods.
Numer. Algorithms 58(4), 451–459 (2011)

15. Wampler, C.W.: Bezout number calculations for multi-homogeneous polynomial
systems. Appl. Math. Comput. 51(2), 143–157 (1992)

16. Li, T.Y.: Numerical solution of polynomial systems by homotopy continuation
methods. Handb. Numer. Anal. 11, 209–304 (2003)

17. Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for isolated
singularities of polynomial systems. Theoret. Comput. Sci. 359, 111–122 (2006)

18. Hauenstein, J., Wampler, C.: Isosingular sets and deflation. Found. Comput. Math.
13, 371–403 (2013)

http://arxiv.org/abs/org/abs/1804.04183


DiscreteZOO: Towards a Fingerprint
Database of Discrete Objects
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Abstract. There have been various efforts to collect certain mathemat-
ical results into searchable databases. In this paper, we present Discrete-
ZOO: a repository and a fingerprint database for discrete mathematical
objects. At the moment, it hosts collections of vertex-transitive graphs
and maniplexes, which are a common generalisation of maps and abstract
polytopes. The project encompasses a tool for handling and maintain-
ing collections of objects, as well as a website and SageMath package
for interacting with the database. The project aims to become a general
platform to make collections of mathematical objects easier to publish
and access.

Keywords: Fingerprint database · Vertex-transitive graphs
Maniplexes · SageMath package · Website

1 Introduction

Collections of mathematical results of various kinds are becoming more and more
common, which is not at all surprising given the technological advances and their
usefulness. Billey and Tenner [6] described an important concept in this context,
that of a fingerprint database,

a searchable, collaborative database of citable mathematical results
indexed by small, language-independent, and canonical data.

The more of these properties a database of mathematical results satisfies, the
more useful it is. Moreover, fingerprint databases also have the potential to
be more than just an efficient way to look things up: they can help uncover
connections between fields, provide a tool for mathematical experimentation. As
such databases make it easier to uncover prior work, they can improve refereeing.

Perhaps the most famous example of a database of mathematical results is the
On-Line Encyclopedia of Integer Sequences (OEIS) [16]. The OEIS is a search-
able and collaborative database of integer sequences, which serve as fingerprints

c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 36–44, 2018.
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for their associated entries. The sequences are citable via their unique identifier
(such as A000055) and the indexing is based on small, language-independent,
and canonical data: the first few elements of a sequence. The usefulness of OEIS
stems in part from the fact that the fingerprint is simple to search for.

Collections of mathematical objects such as the Foster census [7,9,10] of cubic
symmetric graphs are also natural candidates for searchable databases. These
collections are already commonly used to look up references and properties of
mathematical objects or to browse for patterns and counterexamples. They are
even more useful when they observe at least some of the fingerprint database
principles, and most importantly, when they are computer searchable.

We have started collecting various partially overlapping censuses of vertex-
transitive graphs [9,17,18] into a database with the intent to make the collections
of graphs searchable. We soon realised that we need not restrict ourselves to
graphs: we could store any discrete mathematical object, as long as there is an
efficient way to compute a fingerprint of said object. Thus, we have started the
DiscreteZOO project with the aim for it to become a repository and fingerprint
database for discrete mathematical objects.

Our fingerprint database is somewhat different from the idea of Billey and
Tenner. They require indexing mathematical statements by canonical data. We
also are interested in storing mathematical results and objects without a canon-
ical fingerprint. For these we use small and language-independent data which
are not necessarily canonical, but provide an intuitive way to search for objects.
The simplest example of such a “semantic fingerprint” that applies to nearly
all object types is size. Other examples for graphs include valency, degree of
symmetry, etc.

Any collection of mathematical results or objects beyond a certain size thresh-
old presents the author with a choice on how to make it available to the research
community. While a short collection can be simply included in a table in a paper,
this approach does not work with larger collections. There are two related diffi-
culties a researcher could face when publishing such a collection, and Discrete-
ZOO [2] aims to address both.

1. A searchable database is often out of the scope of a typical researcher’s work.
2. Most mathematical objects do not have a canonical fingerprint.

While every database of mathematical results necessarily has its own pecu-
liarities, they have enough in common for a reusable infrastructure to make
sense. This infrastructure can then provide common features to all databases
while being flexible enough to accommodate any database-specific features.

DiscreteZOO offers a service both to the authors of collections and the math-
ematical community in general. For the authors, it is a platform for publishing
a collection as a searchable database. For researchers, it provides interfaces for
interacting with the databases.
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2 Project Description

At the centre of DiscreteZOO is the core database and the connections to its
deriveddatabases. In addition to the objects and their properties, theDiscreteZOO
core database keeps track of additions and changes as well as records of references
for each object and object property. There are two main user interfaces: the web-
site and the SageMath package. Each of the interfaces uses a simplified database
optimised for its needs. In addition to the core and package databases, a user can
download a subset of the core database for offline use with the SageMath package.
This local database can store any properties that she computes. From here, she can
submit the changes she makes to the core database.

A typical DiscreteZOO database entry describes a single discrete object and
several of its properties, including description, identifiers in other databases,
and related objects. We intend to maintain a core set of features for each object
type supported by DiscreteZOO. For example, all objects included should have
a citable unique identifier and have a shareable encoding consisting of printable
characters. Such an encoding makes it possible to transfer an object between
software tools. Precomputed properties are properties stored in the database
for the purpose of searching and can be thought of as semantic fingerprints
mentioned earlier.

Every object has a GUID (globally unique identifier), a citable unique iden-
tifier, and any number of human-readable aliases and descriptions. Furthermore,
precomputed properties are stored with every object. For example, the object
representing the Petersen graph is marked as a graph, and has all the precom-
puted properties relevant to graphs. Additionally, this object is also marked as
being a vertex-transitive graph and a cubic vertex-transitive graph, and each of
these types carries its own additional properties.

A canonical form or labelling [1] of a graph G is a labeled graph Canon(G) �
G with the additional property that for every other graph H � G, H has the
same canonical labelling Canon(H) = Canon(G). DiscreteZOO uses software
such as Nauty [14] and Bliss [11] to obtain canonical labellings of graphs, which
are used to find a given graph or maniplex in the database.

2.1 GUIDs and Citable Unique Identifiers

In the OEIS [16], the sequence for the number of trees with n unlabeled nodes
is identified by A000055. One can obtain more information about an integer
sequence by typing the unique identifier after the domain in the URL, like so:
https://oeis.org/A000055. Databases like The Database of Permutation Pattern
Avoidance [20] and FindStat [19] use similar citable unique identifiers.

Each object in the DiscreteZOO repository has a unique identifier: the hexa-
decimal representation of the SHA-256 hash of some canonical string representa-
tion of the object. The use of a cryptographic hash function is a strong guarantee
that no two objects will ever be found to have the same identifier. The reason
for choosing such a hash-based identifier instead of a sequential one (as with
other databases) is the desire for decentralisation. For instance, a researcher may

https://oeis.org/A000055
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encounter an object that is not yet in the database; another researcher may then
reproduce her work and easily verify that they have obtained the same object by
comparing the identifier. Once the object is in the database, the identifier may
then be used to quickly access the object and its properties.

The resulting 64-character strings are infeasibly long for reproduction in a
text intended to be read by humans. We chose a standard abbreviation tech-
nique. In the Git versioning system [8], objects are identified by 40-character
hashes, but are usually referred to by simply taking the first 7 characters. In
DiscreteZOO, the citable unique identifier is obtained by taking the first 12 hex-
adecimal digits of the hash and using further characters when necessary to avoid
conflicts. The DiscreteZOO citable identifier is described in more detail in the
project documentation [4]. For readability, the characters are split into groups
of 4 characters and the letter Z is prepended:

123456789abcdef... → Z1234-5678-9abc. (1)

2.2 Collaborative Aspects

The databases have a journaling system that keeps track of the tables, rows, and
columns changed, as well as of who introduced the changes. The data reposi-
tory [3] is intended solely for the ease of adding information to the database and
exporting the database into usable forms. It is composed of the following three
parts.

– Contributions: user contributions to the database to be merged into the
main database.

– Datasets: specifications of datasets to be exported from the database for
local use.

– Objects: specifications of database objects.

To submit a contribution, an author can make a pull request to the data
repository. The request is then checked. If accepted, the contribution is merged
into the database, the database downloads are updated, and other users can
choose to update their local databases. A dataset is simply a collection of objects
in the database, identified by one of their identifiers, together with the specifi-
cation of the types of objects it describes. Datasets may also be nested – i.e., a
parent dataset will contain all objects in the child dataset (but will not neces-
sarily describe the same object types).

3 User Interfaces

Both the website and the SageMath package make it possible for users to search for
objects and filter object sets. The SageMath package supports adding new objects
and properties into the local database. If a researcher wants to submit some of
them to the core database, the package helps with preparing the changes file.
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In preparing the DiscreteZOO interfaces, we took advantage of the design
process as described in, for example, [12,15] from the beginning. The project
stemmed from the observation that at least some researchers wished for a tool to
work with collections of mathematical objects. We are constructing the interface
to support the features that are simplest to implement and that have the greatest
usability and we hope to improve the platform as researchers start to use it.

3.1 Website

The DiscreteZOO website is dedicated to simple searches, downloads and dis-
playing encyclopaedic information. For example, it is possible to download graph
search results in the sparse6 [13] format. For a search of symmetric objects, it
is possible to export the corresponding list of automorphism groups for certain
computer algebra systems like GAP, Magma and SageMath. The website also
provides a list of references (online resources, authors, papers) relevant to the
search result. These references can be conveniently downloaded in BibTeX for-
mat. The website also supports various other downloads, including code snippets
for datasets.

On the first page, a visitor is presented with the search box. Each result in
the search results display has options to copy data to the clipboard (such as a
link to the description page, references, formats for computer algebra systems,
etc.). In the following list, we describe the functionality of the search box shown
in Fig. 1.

1. The user selects the type of objects (graphs, maniplexes, etc.).
2. Corresponding contextual filters are shown in the adjacent area.
3. The number of matches found in the database is displayed in real time to give

instant feedback on the search.
4. The user can modify the search results display by choosing the properties

that get shown.
5. To optimise responsiveness, results are not displayed until the user presses

the “display results” button.
6. Search result downloads are supported for various formats and do not require

displaying the search results first.

Fig. 1. Search box

The contextual filters area shown in Fig. 2 contains all properties stored in
the database for the chosen object type and supports the functionality in list
below. Numeric properties can be filtered with simple equations.
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1. When there are many filtering options, the interface shows a filter search.
2. The filter list shows all filters available for the chosen type of objects.
3. On mouse over (or tap), the filter line shows further information. The defini-

tion of the filter is available as a tooltip on the question mark icon and the
arrow activates the filter.

4. The right hand side of the contextual filters area displays currently active
filters.

5. On mouse over, the filter line shows action options for an active filter: edit
and remove.

6. Filter edit mode.

Fig. 2. Sample contextual filters for graphs

Example 1. Alice wants to find more information about her favourite abstract
polytope. She does not remember its name, so she uses its properties to find it
in the database. She filters for self-dual and self-Petrial abstract polytopes with
the Schläfli symbol {12, 12} and is then able to access the description page of
the polytope.

Example 2. Bob wants to test a subgroup condition for automorphism groups
of certain maps. Since maps are exactly maniplexes of rank 3, he chooses these as
his object type, along with any other filters necessary to get the ones he wants.
Bob has GAP code that tests his subgroup condition. He downloads GAP code
with a list of the automorphism groups of the maps that he is interested in from
DiscreteZOO. Bob then runs his code against the list from GAP.

3.2 SageMath Interface

The objects in the database can also be accessed using the SageMath interface [5].
SageMath is an open source computer algebra system based on the Python
programming language, and it already provides many structures for representing
various mathematical objects. The DiscreteZOO SageMath interface defines its
own structures that inherit and override SageMath’s structures, thus allowing
a user to utilise the full potential of SageMath while adding the functionality
of accessing precomputed properties in the database, as well as storing newly
computed properties back to the database for later reuse.



42 K. Berčič and J. Vidali

After installing the interface and the database, the user can either import
the entire discretezoo package, or load submodules as needed. In the fol-
lowing examples, we will use the submodules for the census of connected
cubic vertex-transitive graphs by Potočnik et al. [17] (also known as the
CVT census). We only need to import the class CVTGraph and the object info

from the discretezoo.entities.cvt submodule as well as the objects from the
discretezoo.entities.cvt.fields submodule. The first submodule is intended for
cubic vertex-transitive graphs, while the latter contains the objects representing
the precomputed properties that a user can use in search queries.

The CVTGraph class extends the ZooGraph class representing general graphs in
the database, and the latter in turn extends SageMath’s Graph class. It is possible
to construct a CVTGraph instance by specifying the order and index as given in the
CVT census. For example, it is possible to compare the Petersen graph obtained
in such a way to SageMath’s builtin version using the is isomorphic method.

sage: G = CVTGraph(10, 3)
sage: G.is isomorphic(graphs.PetersenGraph())
True

Note that the object G already contains the precomputed properties from the
database. It is possible to use the usual SageMath methods to access them.

sage: G.girth()
5
sage: G.is cayley()
False

A graph may also be constructed manually – if the obtained graph is in the
database, it will be recognized and its precomputed properties will be loaded.

sage: CVTGraph([[(u, i) for u in GF(7) for i in (−1, 1)],
....: lambda (u, i), (v, j): i != j and u∗i + v∗j in (1, 2, 4)])
Heawood graph: cubic vertex−transitive graph

on 14 vertices , number 1

The info object is used to make queries to the database. The user may restrict
the queries by specifying conditions using those field objects, which share names
with the methods used to access the corresponding properties.

The simplest type of query is a counting query – how many objects satisfy
the given conditions. The user may also request that the counts be broken down
by the values of one or more properties.

Alternatively, the user may want to list graphs satisfying the specified prop-
erties. The info.all method returns a generator yielding the requested graphs.
It is thus possible to use the usual Python methods to either generate the graphs
one by one or to obtain all of them.
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Sometimes, we are only interested in a single graph with given properties –
this can be achieved using the info.one method.

sage: info.one(girth >= 7, diameter == 4, orderby = order)
Generalized Petersen graph (13, 5): cubic vertex−transitive graph

on 26 vertices , number 5

4 Future Work

DiscreteZOO started out as a database for symmetric graphs. We introduced
some large improvements with the new version and added maniplexes, which
are a common generalisation of maps and abstract polytopes. We are currently
working to add finite automata and plan to add other kinds of objects as the
project grows. We are also working to implement more search features, including
providing information on the completeness of search results. For example, we
want to be able to say up to which order the search results show all graphs
satisfying the search conditions.

DiscreteZOO will be used in a planned classification of maniplexes of small
ranks with a small number of orbits. We hope that it will be helpful with other
classification attempts as well. We would be delighted if authors of any of the
existing databases were interested in using DiscreteZOO, in which case we would
implement any missing features.
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Our main priority is for DiscreteZOO to be useful to the mathematical com-
munity, which is why we are planning to develop more features or change existing
ones as the need arises. We are confident that the project will be a valuable tool
for many mathematicians in near future.

References

1. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of the Fif-
teenth Annual ACM Symposium on Theory of Computing. pp. 171–183. STOC
1983. ACM, New York (1983). http://doi.acm.org/10.1145/800061.808746

2. Berčič, K., Vidali, J.: DiscreteZOO. http://discretezoo.xyz/
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Abstract. We offer a public-key encryption protocol where decryption
of a single bit by a legitimate party is correct with probability p that is
greater than 1/2 but less than 1. At the same time, a computationally
unbounded (passive) adversary correctly recovers the transmitted bit
with probability exactly 1/2.

1 Preface

It is well known (and easy to show) that unconditionally secure (i.e., secure
without any computational assumptions) public-key encryption is impossible if
the legitimate receiver decrypts correctly with probability exactly 1. The ques-
tion is: what if this probability is less than 1? More precisely, what if the sender
transmits a single encrypted bit and the legitimate receiver decrypts it correctly
with probability P greater than 1/2 but less than 1?

One can say “since the legitimate receiver has the same information about the
secret bit as the eavesdropper does, he cannot have any advantage over a com-
putationally unbounded eavesdropper, so the latter will decrypt correctly with
probability at least P”. This is, indeed, correct. Note however that if decryption
is not necessarily accurate (i.e., if decryption errors are possible), then the legit-
imate sender has an advantage over the eavesdropper since the sender, unlike
the eavesdropper, knows exactly what the transmitted secret bit is. Therefore,
if instead of making the receiver guess the transmitted bit we make the sender
guess the receiver’s decryption key, we may get some advantage. Thus, what we
do in our scheme is:
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We make the adversary compete with the sender, not with the receiver, in
contrast with the existing encryption schemes.

Competing with the sender is dramatically different from competing with the
receiver because the adversary and the sender have different goals:

The goal of the sender is to guess the receiver’s decryption key to have
him decrypt her secret bit correctly, whereas the goal of the adversary is
to guess the sender’s secret bit correctly.

Thus, the adversary and the sender may have different probability spaces
for making their guess and therefore it is not surprising that their probabilities
of success may be different. Note that the adversary’s guess of the receiver’s
decryption key is at least as good as that of the sender (for information-theoretical
reasons), but again – the goal of the adversary is to guess the sender’s bit, not
the receiver’s decryption key.

We will show that it is, in fact, not too hard to arrange for the sender to
have a higher probability of success (in her guessing) compared to that of the
adversary, see Proposition 2 in our Sect. 4.2. What is nontrivial is to have the
adversary’s probability of success in such a scenario to be equal to exactly 1/2,
which is what we claim in our scheme.

Finally, we note that in [4], the authors offered a simple public key encryption
scheme where a computationally unbounded adversary cannot recover a secret
bit with probability higher than 0.75 if she uses an encryption emulation attack.
At the same time, the legitimate party recovers a secret bit with probability very
close to 1. However, in that scheme the receiver’s private key can be uniquely
recovered from the public key, and therefore the private key is not secure against
a computationally unbounded adversary. This is not the case with the scheme
in the present paper; in fact, given a public key, any private key from the set of
all possible private keys can be associated to it with nonzero probability.

2 Introduction

We consider a scenario where one party, Alice, wants to transmit a secret bit to
another party, Bob, in the presence of a computationally unbounded (passive)
adversary, Eve. We allow the legitimate parties, Alice and Bob, to fail with some
controlled probability.

The way it works is roughly as follows. Bob applies a randomized (public)
function F to his private decryption key b and obtains the result B = F (b)
that he makes public. Based on B, Alice tries to guess b. The probability to
guess b is the same for Alice and Eve since they both have the same information
about b in that case. However, what Eve really wants is not to recover b, but
to recover Alice’s bit, which means she needs to recover not the actual b, but
rather what Alice thinks b is. (Think about a scenario where a customer Alice
wants to transmit her credit card number to an Internet retailer Bob. Then
what Eve really wants is Alice’s credit card number, not Bob’s decryption key.)
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Therefore, probability spaces for Alice and Eve are different in general, and by
(privately) manipulating her probability space Alice can get advantage over Eve
as far as their probabilities of success are concerned. Once again, success for Alice
(the sender) is to guess b while success for Eve is to guess the bit Alice wants to
transmit to Bob. Note that success for Alice is the same as success for Bob in
the sense that Bob decrypts Alice’s bit correctly if and only if Alice is successful
in our terminology.

Computing exact probabilities of success for Alice and Eve theoretically can
be tedious in general; we denote these probabilities by PA and PE , respectively.
We use the following trick to make computation of PE easy. Alice will select,
with equal probability, between two mutually exclusive strategies for guessing b,
thus making PE equal to exactly 1

2 .
Computing PA precisely remains a difficult theoretical task. However, in

Sect. 4 we give an “existence-type” argument showing that there exists a choice
of parameters that makes PA strictly greater than 1

2 , see Proposition 1. Experi-
mentally, the best we could do for PA is about 0.55, see our Sect. 6. It remains
an interesting theoretical question what the maximum possible value of PA (as
a function of n, the interval length) in our protocol in Sect. 3 is.

Finally, we mention that it is not immediately clear whether our protocol in
Sect. 3 has any practical significance; we discuss this in Sect. 5.

3 Basic Protocol

The protocol below is for transmitting a single secret bit from Alice to Bob.
There are (private or public) functions f(n) and g(n) and a public function

h(n) in the protocol below that have to be selected to maximize PA, Alice’s
probability of guessing Bob’s decryption key b. Parameters are discussed in our
Sect. 6.

1. Bob selects, uniformly at random on integers from the interval [0, n − 1], a
starting point b of his random walk. This b will be his private decryption key.
Bob then does a simple symmetric random walk with h(n) steps. Let B be
the end point of Bob’s random walk. If B ≥ n − 1, then Bob starts over.
Otherwise, he publishes B. Bob publishes B.

2. Step 2 is repeated by Alice m times, for a sufficiently large m.
Alice selects, uniformly at random on integers from the interval [B,n − 1],
a starting point a of her random walk. She then selects, with probability 1

2 ,
between f(n) steps and g(n) steps. Alice then does a random walk starting
at the point a with the number of steps selected. Denote by A the end point
of Alice’s random walk. After she does her random walk, Alice moves the end
point A either 1

2 left or 1
2 right, with probability 1

2 . She then moves the point
a 1

2 in the same direction. (This is needed to avoid situations where a = b or
A = B.)

3. Alice arranges all her m random walks at Step 2 in two groups: in one group
there are walks satisfying the condition A < B, while in the other group there
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are walks satisfying the condition B < A. Then she selects between the two
groups, with probability 1

2 .
4. Alice then splits all walks in the group selected at Step 3 in two groups

again: in one group there are walks with f(n) steps, in the other group there
are walks with g(n) steps. Then she selects between the two groups, with
probability 1

2 . If the selected group turns out to be empty, Alice starts over
from Step 2. If the selected group is not empty, then from this group, Alice
selects one random walk uniformly at random. Let a0 be the starting point
of that selected random walk.

5. If the random walk selected by Alice at Step 4 has f(n) steps and satisfies
A < B, she chooses the interval {x < a0}. If it has g(n) steps and satisfies
A < B, she chooses the interval {x > a0}. If it has f(n) steps and satisfies
A > B, she chooses the interval {x > a0}. If it has g(n) steps and satisfies
A > B, she chooses the interval {x < a0}.

6. Alice assumes that Bob’s decryption key b is in the interval she selected at
Step 5 of the protocol and encrypts her bit accordingly, i.e., by labeling the
selected interval with her secret bit c and the other interval with the bit 1−c.
She then sends the point a0 and the above interval labeling to Bob.

7. Bob recovers the bit corresponding to the label of the interval where his b is.

Remark 1. At Step 2 of the above protocol Alice selects a starting point a uni-
formly at random on integers from the interval [B,n − 1]. We note that, in fact,
the distribution of a on [B,n − 1] does not have to be uniform. It can be closer
to geometric, say (with points closer to B more likely to be selected). This will
not affect security, but can increase the probability of correct decryption by
legitimate party.

Below we summarize public as well as private information relevant to this
protocol.

Private information consists of:
Alice’s choices between the options at Steps 2, 3, 4.
Alice’s private key: point A (the end point of Alice’s random walk).
Bob’s private key: point b (the starting point of Bob’s random walk).
Functions f(n) and g(n) can be private but they do not have to be.

Public information consists of:
Public parameters: interval [0, n − 1]; the number h(n) of steps in Bob’s random
walk; the number m of Alice’s random walks at Step 2.
Transmitted information: point a0 (the starting point of Alice’s selected random
walk) and labeling of the interval {x > a0} by a bit.
Bob’s public key: point B (the end point of Bob’s random walk).

3.1 Informal Explanation

We think it will be helpful to the reader if we give an informal explanation of
what is actually going on in the above protocol. The core of the whole thing is
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the following non-obvious fact: if Alice and Bob do independent random walks
starting at two random points, a and b, respectively, then the conditional proba-
bility P (b < a | A < B < a) is higher when the number of steps in Alice’s random
walk is larger (with the number of steps in Bob’s random walk fixed). Refer to
our Appendix to see how to explain and theoretically quantify this statement.

Now suppose that the number f(n) of steps is large while g(n) is small.
Then, to increase her probability of success PA, Alice could have just done f(n)
steps and guess that b < a, conditioned on A < B < a. This guess would be
correct with high probability. However, what Alice tries to do in our protocol
is confuse Eve and make sure that Eve is unable to guess Alice’s transmitted
bit with probability greater than 1

2 . This is why Alice deliberately decreases
her probability of success by selecting, in case she does g(n) steps, the interval
{x > a} where the point b belongs with probability less than 1

2 , in the hope that
her total probability of success will still be greater than 1

2 . This is indeed the
case under appropriate choice of parameters, see our Sect. 6.

At the same time, the conditional probability P (b < a | B < A < a or B <
a < A) = P (b < a | B < A and B < a) “almost” does not depend on the
number of steps in Alice’s walk, so here Alice can have her probability of success
only slightly above 1

2 . Nevertheless, we need to include the walks satisfying this
condition in Alice’s probability space to make it “symmetric” since otherwise, if
we just use the walks satisfying A < B < a, Eve might get some idea about the
number of steps in Alice’s walk. Specifically, if the points B and a are far apart,
then the condition A < B < a makes it appear likely that the number of steps in
Alice’s walk was rather large than small. Symmetrizing Alice’s probability space
by adding walks with B < A eliminates this problem, but there is a price to pay
for that: the difference PA − 1

2 gets cut in half.
Finally, we note that the fact that P (b < a | B < A and B < a) “almost”

does not depend on the number of steps in Alice’s walk is in sharp contrast with
the fact that P (b < a | B < A) does strongly depend on the number of steps,
see [1].

4 Probabilities of Success

Recall that success for Alice (the sender) in our scenario is, given two intervals
{x > a} and {x < a}, to guess the interval where Bob’s private number b is. On
the other hand, success for Eve (the passive adversary) is to guess the bit Alice
wants to transmit to Bob, i.e., to “guess Alice’s guess” of the interval where
b is. We denote by PA and PE the probabilities of success for Alice and Eve,
respectively.

4.1 Alice’s Probability PA to Guess the Interval Where b Is

Proposition 1. There exists a choice of parameters that makes PA strictly
greater than 1

2 .
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Proof. Recall that, while executing the protocol in Sect. 3 (cf. Steps 3, 4), Alice
selects between two mutually exclusive options (selecting the interval {x < a}
or {x > a}) with probability 1

2 . Denote her probability of success if she uses the
option 1 by p, and her probability of success if she uses the option 2 by q. Then
PA = 1

2 (p + q). If it happens so that p + q < 1, then (1 − p) + (1 − q) > 1.
This means that if Alice switches the interval assignments between the options,
then PA = 1

2 ((1 − p) + (1 − q)) > 1
2 . This shows that there is a choice of interval

assignments that gives PA > 1
2 , unless p + q = 1 for any choice of parameters.

The latter however is impossible because by varying the number of steps in a
random walk for one of the two possible options, one varies the probability of
guessing in this option only, see our Sect. 3.1 and Appendix.

4.2 Eve’s Probability PE to Guess Alice’s Bit

The following follows directly from the protocol description.

Proposition 2. PE = 1
2 .

Proof. As follows from the protocol description (Steps 3, 4, 5), Alice selects, with
equal probability 1

4 , between 4 possibilities. Two of these possibilities result in
selecting the interval {x > a0}, while the other two result in selecting the interval
{x < a0}. Thus, any third party cannot guess Alice’s selection with probability
greater than 1

2 .

4.3 If PE = 1
2
, How Is It Possible That PA > 1

2
?

Note that, given Alice’s probability space {B < a}, the point B always belongs to
the interval {x < a}. This implies, in particular, that if Eve selects the interval
{x < a0} where the point B is, she will guess Alice’s bit with probability 1

2
because for any given point a, Alice selects between the intervals {x < a} or
{x > a} with probability 1

2 .
One might ask here: why is then PA > 1

2? Since the point b is either left or
right of a and Alice selects between left and right with probability 1

2 , then should
not PA be equal to 1

2 , too? An informal explanation is: the probability spaces for
Eve and Alice are different. Eve only sees one point a0, whereas Alice selects this
a0 from a pool with different points a. The point b may be left of some of these
points a but right of the others, so there is no contradiction between PA > 1

2
and PE = 1

2 .
The same kind of reasoning applies if Eve tries to emulate Bob: her proba-

bility space will include a fixed point B, which is not the case for Bob.
We note in passing that selecting the interval {x < a0} where the point B

is will let Eve guess, with significant probability (still less than 1), the interval
where the point b is. However, we remind the reader that success for Eve is not
to guess b but to guess Alice’s bit.
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5 How to Use This in Real Life

Given that, according to experimental results, the probability of successfully
transmitting a single bit from Alice to Bob is as low as 0.55 (see our Sect. 6.1), a
natural question now is: how can our scheme be used in real life? It is possible to
transform an encryption scheme susceptible to decryption errors into one that
is immune to these errors by using techniques from [2] or [3]. This, however, can
increase Eve’s probability of success as well.

We mention that the most straightforward way to boost the probability of
success is to run the protocol from our Sect. 3 k times (every time with fresh
randomness), every time transmitting the same bit c. If, say, k = 1000, then
the probability that there will be less than 501 occurrences of c out of 1000
is

∑501
i=0

(
k
i

)
(0.55)i(0.45)k−i ≈ 0.000846. (This was computed using the normal

approximation of the binomial distribution.) This means that if Bob goes with
the bit that has more occurrences out of k than the other bit does, he will recover
Alice’s bit correctly with probability at least 0.99915 if k = 1000.

However, different runs of the protocol are not independent in this case since
Alice is transmitting the same bit every time. Therefore, we cannot claim that
Eve’s probability of success will stay at 1

2 . In other words, statistical attacks
on multiple runs of the protocol for transmitting the same bit may be possible.
These statistical attacks would be based on the fact that for some points B
(specifically, those that are farther from Alice’s points a) Alice’s success rate
will be higher than with others. To counter these attacks, Bob will have to be
more proactive with his public key, e.g. make the correspondence between his
points B and b such that sometimes points closer to a make Alice more successful
and sometimes not. This could mean, in particular, fluctuating parameters of his
random walk, e.g. using random walks in random environment. This suggestion,
of course, is very informal; more precise proposals should be based on more
serious probability theory, so we leave this for a future work. Here we offer an
example of how Alice’s probability of success can be somewhat amplified if we
use two independent runs of the protocol. Note that Eve’s probability of success,
too, is amplified in this case.

Example 1. Instead of transmitting a bit, Alice can use the protocol in Sect. 3
to transmit an integer. Thus, in a single run of the protocol she transmits labels
m11 and m12 of two subintervals, where, say, m12 is the integer Alice wants Bob
to receive.

In the second run of the protocol, Alice transmits labels m21 and m22, and
let m22 be the integer Alice wants Bob to receive.

Thus, Bob receives m12 with probability (approximately) 0.55 and m22 also
with probability (approximately) 0.55. Therefore, Bob receives at least one of
these two numbers with probability 1 − (1 − 0.55)2 ≈ 0.8. To capitalize on that,
Alice now sends a polynomial P (x, y)+M to Bob, where P (x, y) is a polynomial
such that P (m12,m21) = P (m12,m22) = P (m11,m22) = 0, and M is a secret
number. Bob plugs in for x one of the two numbers he received from Alice,
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for y the other number and recovers the secret number M with probability
approximately 0.8.

Eve recovers the secret number M here with probability 3
4 = 0.75.

6 Parameters and Computer Experiment Results

Suggested parameter values for the protocol in Sect. 3 are: n = 256, h(n) = 2000,
g(n) = 2000, f(n) = 100, 000.

6.1 Computer Simulation Results

With f(n) = 100, 000 steps for Alice, success rate in a single run of the protocol
was 76%. With g(n) = 2000 steps for Alice, success rate in a single run of the
protocol was 34%. Thus, PA = 1

2 (0.76 + 0.34) = 0.55 for a single run.

7 Conclusions

– We offered a public-key encryption scheme where decryption of a single bit
by a legitimate party is correct with probability p that is strictly greater than
1/2. With suggested parameters, p ≈ 0.55.

– In this scheme, even a computationally unbounded (passive) adversary cannot
recover the transmitted bit correctly with probability greater than 1/2.

Appendix

How P (b < a|A < B < a) Depends on the Number of Steps

Let α > 0 and nα be the number of steps in Alice’s walk and suppose initially
that this number is odd (to avoid parity issues, although the conclusion that
P (b < a|A < B < a) depends on α still holds when the number of steps is
even). Let nβ be the fixed number of steps in Bob’s walk with 0 < β < 2. Then
P (b < a|A < B < a) depends on α as follows:

– When α is very small, P (b < a|A < B < a) is very close to 1/2.
– As α increases, P (b < a|A < B < a) tends to P (b < a|B < a), which tends

to 1 as n → ∞.

Suppose that nα = 1. Then P (b < a|A < B < a) is the probability that b < a,
given that Alice’s one step was to the left and Bob’s final location happens to
be between A and a, for which there is only one possibility B = a − 0.5 and
A = a − 1. In this case,

P (b < a|A < B < a) = P (b < B) =
1
2

− O
(
n−β/2

)
,
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or, if we remove the possibility that B = b, by shifting Bob’s end point by adding
or subtracting 0.5 with equal probability, then

P (b < a|A < B < a) = P (b < B) n→∞−−−−→ 1
2

The probability is not exactly equal to 1/2 due to the restriction that 0 ≤ b ≤
n − 1 and B < n − 1. However, as n

∞−→, the probability that b is close to 1 or
n goes to zero. As α increases, given that B < a, B is more likely to be farther
from a, and when B is farther from and to the left of a, b is more likely to be less
than a. This is because the number of steps in Bob’s walk remains fixed, and
Bob is (almost) equally likely have started to be to the left or to the right of B.
If b < B, certainly b < a. If B > b, the fact that A − a can be larger, increases
the probability that B < b < a. “Almost” because of the restriction on b and B
mentioned above.

Now, as α increases, the condition A < B < a implies that A will be far-
ther from a. Eventually, for α large enough, A will be outside of the interval
{0, 1, . . . , n − 1} with probability close to 1. The probability of A being in the
interval will be exponentially small in α. If A is outside of this interval, then
P (b < a|A < B < a) = P (b < a|B < a, Alice’s walk ends to the left of her
starting point) = P (b < a|B < a).

Lemma 1. P (b < a|B < a) → 1 as n → ∞.

To see that this is true, consider

P (b < a|B < a) = P (b < B < a|B < a) + P (B < b < a|B < a) (1)

The first term, P (b < B < a|B < a) = P (b < B) → 1/2 as n → ∞. If B is
distance O(nβ/2+ε) for small ε > 0, P (b < B) goes to 1/2 as n → ∞, as it is
just the probability that the endpoint of the walk is to the right of the starting
point. If B is close to 0, the probability is under 1/2 since Bob’s starting point
b is restricted to {0, 1, . . . , n − 1}. As n → ∞, the probability that B is close to
0 goes to zero. If B is close to n − 1, P (b < B) is actually close to 1, but the
probability that B is close to n − 1 also goes to zero.

The second term, P (B < b < a|B < a) n→∞−−−−→ 1/2 as well. Here, we consider
two possibilities:

– P (B < b < a|B < a, a−B ≥ nβ/2+ε) n→∞−−−−→ 1/2, since the probability of the
displacement being greater than O(nβ/2) is exponentially small.

– P (B < b < a|B < a, a − B < nβ/2+ε) is not close to 1, however,

P
(
a − B < nβ/2+ε

)
n→∞−−−−→ 0

From this,

P (B < b < a|B < a) n→∞−−−−→ P (B < b < a|B < a, a − B ≥ nβ/2+ε) n→∞−−−−→ 1/2.
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Why P (b < a|B < A < a or B < a < A) does not depend greatly
on the number of steps

Consider the two events in the condition separately and note that they are
disjoint.

– If B < a < A, then the probability that b < a does not depend on Alice’s
walk, and thus on α, at all, since the condition is that Alice ended to the right
of her starting point a (the probability of which is the same as Alice ending
to the left of a) and B is always to the left of a in our setup. Note also that
in the sample space consisting of the events {B < a < A} ∪ {B < A < a},
the event {B < a < A} has probability greater than 1/2 since Alice is more
likely to end to the right of A with no other restriction than to the left of a
but to the right of B.

– If B < A < a, the probability that b < a does depend on the number of steps
in both walks, however, if β < α are fixed, the probability will approach 1
as n → ∞. Thus, the dependence on α is weak, so long as β < α. We have
here that under this condition, Alice ended her walk to the left of where she
started, and Bob ended to the left of Alice’s endpoint. If Alice performed a
greater number of steps than Bob, to not have b < a, Bob’s displacement
would have to be greater than Alice’s.
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1 Introduction

The classification of cubic surfaces is a long-standing problem, whose roots trace
back to the 19th century, with groundbreaking work done by Cayley, Salmon,
Clebsch, Schlaefli and many more. It is well known that a smooth cubic surface
has 27 lines. In Fig. 1, the Clebsch surface with its 27 lines is shown.

The (affine) equation of the surface shown is

0 = −3x3 + 7x2y + 7x2z + 1x2 + 7xy2 − 2xyz − 14xy + 7xz2

−14xz + 3x − 3y3 + 7y2z + y2 + 7yz2 − 14yz + 3y − 3z3 + z2 + 3z − 1

where x, y, z are the coordinates of affine 3-space. The canonical (projective)
equation of the Clebsch surface is

x3
0 + x3

1 + x3
2 + x3

3 − (
x0 + x1 + x2 + x3

)3 = 0.

The somewhat complicated affine equation was chosen to give a pleasant picture
and to make sure that all 27 lines are real and hence visible.

What makes cubic surfaces very interesting is the existence of a special kind
of mapping which takes the points of a surface to points of a plane. Because
of [6] we call them Clebsch maps. This map proceeds in an almost one-to-one
way. These kinds of maps arise naturally, and they can be described algebraically
and geometrically. Objects which admit such a map are called rational. In the
algebraic description, there are polynomial equations which describe the maps
in both ways. In the geometric description, one argues that an arbitrary point
in PG(3, q) determines a unique line which intersects two given skew lines. This
line intersects the surface in three points, and a given plane in one (cf. Fig. 2).
c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 55–61, 2018.
https://doi.org/10.1007/978-3-319-96418-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96418-8_7&domain=pdf
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Fig. 1. The Clebsch surface with 27 lines

Fig. 2. The Clebsch map
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There is an exceptional locus where the map is either undefined or many-to-
one. On a cubic surface with 27 lines, six lines are mapped to points each. In the
plane, the reverse map is undefined on these six points. The isomorphism type of
the surface is determined by the position of the six points in the plane which are
associated to the exceptional locus of the map. Figure 3 is a picture of a cubic
(the Clebsch cubic), a planar circle and its image under the Clebsch map, which
is a certain curve lying on the surface. It is the same view as in Fig. 2, just with
the lines removed.

Fig. 3. The Clebsch map illustrated

2 Underlying Theory

The theory of cubic surfaces is very rich. For an account of the geometry over
finite fields, see [8]. Some notions which are relevant for this work are the fol-
lowing:

A double six is a set of twelve lines ai i = 1, . . . , 6 and bi i = 1, . . . , 6 such
that the six ai are pairwise skew, the six bi are pairwise skew and ai intersects
bj if and only if i �= 6. Often, a double six is denoted in the array

a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6

Once the double sixes in PG(3, q) are classified, the cubic surfaces in PG(3, q)
are classified. In order to classify the double sixes in PG(3, q), the algorithm first
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classifies the ways in which 5 pairwise skew lines with a common transversal can
be chosen. We can think of these configurations as the beginning of a double six,
such as

a1 a2 a3 a4 a5 ·
· · · · · b6

Some additional testing is needed if a double six can be completed from the set
of 5 lines a1, . . . , a5 with the common transversal b6. The five lines have to be
sufficiently general. Specifically, any three of the ai determine a hyperboloid and
the other two ai lines must be bisecants to it (cf. Fig. 4). In light of Schlaefli’s
theorem [11], the four lines need to have exactly two transversals. In the picture
on the left, the second transversal is not unique, which means that the four lines
cannot be embedded into a double six. On the right, the second transversal is
unique and this is what is needed.

Good Bad

Fig. 4. The condition on 4 lines

3 Functionality

Orbiter is an open source library of C++ classes for algebraic computations. It
offers functionality for finite groups such as permutation groups or matrix groups
over finite fields. It has geometry over finite fields, such as points lines, planes and
general linear subspaces of projective space. Besides that, Orbiter offers a suite
of algorithms to compute orbits. The main tool is a bosed based classification
algorithm which builds up orbits on bigger sets from orbits on smaller sets, using
a relation between the two sets. The main idea is outlined in [3]. This can be used
to classify combinatorial objects of many different kinds. Classification means
that a system of representatives is chosen, so that each isomorphism type of
object is represented exactly once. The stabilizers of the orbit representatives
are readily available. After the classification of a type of objects is complete, the
system can perform isomorphism tests for objects of this type. More specifically,
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the system can map objects to the chosen orbit representatives. If two objects
are given, both objects can be mapped to the orbit representative. If the orbit
representative is the same, an isomorphism between the two given objects can
be computed. Otherwise, proof that the objects are nonisomorphic is obtained.
A critical aspect in all of this is speed. Backtracking is avoided at the expense
of memory.

In this note, we focus on two applications of classifying cubic surfaces. In
one program, six-arcs not on a conic are classified in a plane PG(2, q). The
classification of six-arcs in a plane is then used to obtain a classification of the
cubic surfaces with 27 lines in PG(3, q). This algorithm has been described in [4]
and improved in [9]. In another program, double sixes of lines in PG(3, q) are
classified first, as described in Sect. 2.

4 Application

The classification of cubic surfaces over small finite fields is helpful in under-
standing better the theory of these objects. Determining the surfaces up to
isomorphism is very useful to any further investigation. Surfaces which are iso-
morphic have the same properties and hence can be studied all at once. Surfaces
which are not isomorphic show different behavior and need to be studied sepa-
rately. The goal is to form parametrized families of cubic surfaces which behave
in a certain way. The members of a family can be described in a unified fashion.
Known families of cubic surfaces are the Clebsch surface and the Fermat surface.
Another family of cubic surfaces was recently found based on the data of the
classification described in this paper. This new family is described in [5]. It exists
for every finite field Fq whose order q is odd. The equation of this surface is

x3
3 − b2(x2

0 + x2
1 + x2

2)x3 +
b3

a
(a2 + 1)x0x1x2 = 0.

where a, b are elements of Fq and a �∈ {0,±1}, a2 �= ±1, and b �= 0. This surface
has an automorphism group isomorphic to Sym4 of order 24. The projectivities
associated with the matrices

S1 =

⎡

⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥
⎥
⎦ , S2 =

⎡

⎢
⎢
⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ , S3 =

⎡

⎢
⎢
⎣

−1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

⎤

⎥
⎥
⎦

satisfy the Coxeter relations for Sym4 and generate this group. For certain con-
gruences on q, the surface is isomorphic to the Clebsch (or diagonal) surface
and for certain other congruences on q, the surface is isomorphic to the Fermat
(or equianharmonic) surface. The presence of the parameter b can be ignored as
all choices for b lead to isomorphic surfaces (for this reason, we can safely put
b = 1). The presence of the parameter a has an interesting consequence: For a
given q, the construction can give several nonisomorphic surfaces.
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Table 1 is taken from [5] and shows the number of isomorphism types of
cubic surfaces over all finite fields Fq for q ≤ 97. This table was computed
using the algorithm which classifies double sixes in PG(3, q). The table confirms
all previously known classification results. The numbers for q ≤ 9 are due to
Hirschfeld. The number for q = 11 is due to Sadeh. The number for q = 13 is
from [4], and the numbers for q = 17 and q = 19 have been confirmed in [9]
using the method of lifting six-arcs. The computing time for q = 97 was about
two to three weeks on a machine using a single CPU.

Table 1. Isomorphism types of cubic surfaces with 27 lines in PG(3, q)

q #
2 0
3 0
4 1
5 0
7 1
8 1
9 2

11 2
13 4

q #
16 5
17 7
19 10
23 16
25 18
27 11
29 34
31 43
32 11

q #
37 77
41 107
43 126
47 169
49 121
53 258
59 376
61 427
64 101

q #
67 595
71 731
73 813
79 1081
81 331
83 1292
89 1673
97 2304

5 Technical Contribution

Orbiter is an open source project, announced in [1] and available on github [2].
The main issue with Orbiter is the lack of a user-interface. At present, Orbiter is
best used using Makefiles, using command line interface to specify options. This
is not optimal for many users, but it has some advantages. The commands that
one issues are automatically saved in a file (the makefile), and computations can
be repeated. Also, all data that is computed by orbiter is stored in files. That
way, data is available for later re-use. Finally, the data from classification jobs
can be exported in C++ source code, which can then be compiled into Orbiter.
That way, a classification becomes mathematical knowledge that is available
for other users. Tables are hard-coded in the source files and are distributed in
later versions of Orbiter. For instance, the almost 10,000 cubic surfaces from the
classification described in [5] have been integrated into the Orbiter source code
as a catalogue of cubic surfaces over small finite fields (q ≤ 97). The equations
of those surfaces as well as the automorphism groups are readily available. A
program is distributed with Orbiter which recreates any of the surfaces from the
catalogue.
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1 Introduction

The classification problem for combinatorial objects can be expressed as a prob-
lem of computing orbits of groups. Let X be a finite set whose elements are the
instances of a certain kind of combinatorial structure. There is a group G acting
on X. Two objects in X are isomorphic if they belong to the same G-orbit.
The problem of classifying the combinatorial object is finding a transversal for
the orbits of G on X. Once a transversal has been computed, the recognition
problem is that of identifying the element in a transversal whose orbit contains
a given element x of X. The constructive recognition problem is finding a group
element g ∈ G such that xg is the unique element in the transversal representing
the orbit of x.

The groups and the associated sets whose orbits we need to compute can
get quite large. For this reason, it is required that we design efficient algorithms.
Two classes of algorithms have emerged. In the first class, the notion of canonical
orbit representative is important. This notion means that we are able to map
an arbitrary element of a group orbit to a specific element that is determined
through some algorithm. This specific element could be the lexicographically
least element in the orbit. Other variants distinguish this element by means of
an algorithm which computes the canonical form. The unique property that this
algorithm has is that two input elements have the same output if and only if the
two input elements are in the same group orbit.

There are two main issues with the canonical augmentation method. First,
the need to perform backtracking to compute the canonical form. Secondly, there
is only a limited number of implementations of the canonical form algorithm.
c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 62–70, 2018.
https://doi.org/10.1007/978-3-319-96418-8_8
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The present scarcity of implementations means that researchers interested in spe-
cific combinatorial objects have to devise clever ways of reducing the classifica-
tion problem to one for which a canonical form algorithm has been implemented.
The reduction from one combinatorial structure to another may be inefficient.

The algorithm described in this work avoids canonical forms and expensive
backtracking as much as possible. One of the main characteristics is that it uses
the symmetry in the most natural way, namely in the way that it appears in
the defining group action. The algorithm is available in the open-source software
package Orbiter [3,4]. Perhaps one of the most striking benefits of using Orbiter
is the way in which group actions can be set up. Starting from a set of atomic
groups which are builtin (symmetric group, semilinear and linear groups, various
subgroups thereof), induced group actions can be created. This way, combinato-
rial objects can be classified using the defining group actions. There is no need
to reduce the classification problem to a related classification problem of graphs.

2 Some Theory

Let G be a group and let A and B be sets on which G acts. Suppose that R is
a relation between A and B. Thus, R ⊆ A × B. The elements of R are called
flags. The relation R is assumed to be G-invariant, so (a, b) ∈ R implies that
(ag, bg) ∈ R also for all g ∈ G. Let Π1 and Π2 be the projection maps from
A × B onto the first and onto the second component. Thus, for (a, b) ∈ A × B,
we have Π1

(
(a, b)

)
= a and Π2

(
(a, b)

)
= b. For a ∈ A, let

Up(a) = R ∩ Π−1
1 (a) = {(a, b) ∈ {a} × B | (a, b) ∈ R}.

Likewise, for b ∈ B, let

Down(b) = R ∩ Π−1
2 (b) = {(a, b) ∈ A × {b} | (a, b) ∈ R}.

From now on, assume that A and B are both finite. Suppose that P1, . . . , Pm is
a transversal for the orbits of G on A. Likewise, suppose that Q1, . . . , Qn is a
transversal for the orbits of G on B. Thus

A =
m⋃

i=1

OrbG(Pi) and B =
n⋃

j=1

OrbG(Qj).

For i = 1, . . . ,m, let Gi := StabG(Pi) be the stabilizer of Pi in G. For j =
1, . . . , n, let Hj := StabG(Qj) be the stabilizer of Qj in G. Notice that Gi acts
on Up(Pi) and that Hj acts on Down(Qj). Let ti,r, r = 1, . . . , Ri be a set of orbit
representatives for the orbits of Gi on Up(Pi). Likewise, let sj,k, k = 1, . . . ,Kj

be a set of orbit representatives for the orbits of Hj on Down(Qj). Thus,

Up(Pi) =
Ri⋃

r=1

OrbGi
(ti,r) and Down(Qj) =

Kj⋃

k=1

OrbHj
(sj,k).
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We define
Ti,r = OrbGi

(ti,r), i = 1, . . . , m, r = 1, . . . , Ri

and
Sj,k = OrbHj

(sj,k), j = 1, . . . , n, k = 1, . . . ,Kj .

In this situation, we have the following Lemma. Part 1. is from [6]. Parts 2. and
3. are immediate.

Lemma 1. 1. There is a canonical bijection between the set of orbits {Ti,r |
i = 1, . . . ,m, r = 1, . . . , Ri} and the set of orbits {Sj,k | j = 1, . . . , n, k =
1, . . . ,Kj}.

2.
m∑

i=1

Ri =
n∑

j=1

Kj .

3. If Ti,r and Sj,k correspond under the canonical bijection from 1., then

|Ti,r| · |Hj | = |Sj,k| · |Gi|.

3 A Lifting Algorithm

Suppose that the orbits of G on A are known, and that P1, . . . , Pm have been
determined, together with the associated stabilizer subgroups Gi. Suppose fur-
ther that for an arbitray element a ∈ A we can determine the orbit repre-
sentative Pi such that Pi ∼G a. Suppose moreover that we can determine an
element g ∈ G such that ag = Pi. Suppose furthermore that Down(b) �= ∅ for all
b ∈ B. Then we can employ the following algorithm to classify the orbits of G
on B by listing orbit representatives Q1, . . . , Qn. We can provide the stabilizers
Hj = StabG(Qj), and provide an algorithm which for arbitrary b ∈ B determines
a group element g ∈ G such that bg = Qj for some j. The algorithm selects ele-
ments Δi,r ∈ G for i = 1, . . . ,m and r = 1, . . . ,Ki which need to be stored to
make the recognition procedure work. Here is the algorithm:

1. For i = 1, . . . ,m.
(a) Compute Up(Pi). Moreover, compute a transversal ti,r r = 1, . . . , Ki of

the orbits of Gi on Up(Pi). Let Ti,r = OrbGi
(ti,r).

2. Mark all Ti,r as unprocessed. Let j = 1.
3. While there is still an unprocessed Ti,r, do the following:

(a) Let Qj := Π2(ti,r). Let Δi,r = 1G be the identity element of G. Initialize
the group Hj with the group StabGi

(ti,r).
(b) Compute D = Down(Qj).
(c) Loop over all elements in D. Let d be the next unprocessed element in D.

i. Let a := Π1(d). Using the recognition algorithm for A, find α ∈ G
with aα = Pi′ for some i′ ≤ m.

ii. Find an element β ∈ Gi′ such that dαβ = ti′,r′ for some r′ ≤ Ki′ .
iii. If i′ = i and r′ = r then extend the group Hj by the element αβ.
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iv. Otherwise, mark the orbit Ti′,r′ as processed and set Δi′,r′ := (αβ)−1.
v. Continue with the next element d ∈ D in (c) until done.

(d) At this point, the group Hj is equal to StabG(Qj). Increment j and
continue with the next unprocessed orbit Ti,r in 3 until done.

4. Let n = j. The transversal Q1, . . . , Qn has been computed.

Once the procedure is finished, the group elements Δi,r can be used to pro-
vide constructive recognition. Given an element b ∈ B, the following algorithm
produces an element g ∈ G such that bg = Qj for some j ≤ n. We assume that
we have constructive recognition for A.

1. Compute D = Down(b).
2. Pick one element d ∈ D.
3. Let a := Π1(d).
4. Using the recognition algorithm for A, find α ∈ G with aα = Pi for some

i ≤ m.
5. Find an element β ∈ Gi such that dαβ = ti,r for some r ≤ Ki.
6. Let g := αβΔi,r and determine j ≤ n with Π2(d)g = Pj .

4 The Poset Classification Algorithm

In order to classify combinatorial objects, it is often helpful to utilize an ordered
structure, whose elements are the elements of X together with certain objects
which are “smaller” and serve as a stepping stone. The collection of all objects
forms a partially ordered set, and the group G acts on it. The lifting algorithm
described in the previous section forms the basis for a larger algorithm which
classifies the G-orbits on the poset and hence also on X.

The algorithm is based on a data structure which keeps track of all orbits
of the group on a poset associated with the set X. The classification algorithm
builds up this data structure. Once the data structure is established, the recog-
nition problem can be solved constructively. The requirement on the poset is
that it should be ranked, so that layers are defined. A layer is the set of elements
of equal rank.

There are many situations where a combinatorial object either has a sub-
structure or is related to a smaller combinatorial object. One can build a poset
structure from these substructures or related objects and apply the poset clas-
sification algorithm. Here are some of the most common examples:

In the set-situation, the objects are embedded in the lattice of subsets of
a set. The group acts on the poset. The rank function is the size of a subset.
The lifting algorithm proceeds from one layer to the next, by increasing the size
of the sets. In the subspace-situation, the objects are embedded in the lattice
of subspaces of a finite vector space. The rank function is the dimension of a
subspace. The lifting algorithm proceeds from one layer to the next, by increasing
the dimension of the subspaces. The orbit classification proceeds bottom up in
a breadth first manner. In the subset lattice, the level is the size of the subset.
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In the subspace lattice, the level is the dimension of the subspace. Other types
of posets can be considered also.

The presence of the relation in Lemma 1 is very important for practical
applications. It means that custom designed conditions can be imposed on the
partially ordered set and that the classification algorithm will work within the
scope of these constraints. By restricting the search, the algorithm can progress
faster and with less memory. The conditions on the poset is that it is invariant
under the group action and that it is hereditary. If an element is part of the poset,
all elements below it must be in the poset as well. In practical implementations,
one may define a test-function on the elements of the power set lattice (or of
the lattice of subspaces). The purpose of the test-function is to tell whether an
element needs to be considered. This kind of restricted search is very important
for practical computations, in order to keep the size of the poset under control,
and hence make the search feasible.

5 Applications

Let us look at some example problems to illustrate the poset classification
algorithm.

5.1 Graphs on n Vertices

In order to classify simple graphs on n vertices (no loops, no multi edges),
we consider the group G = Symn in its action on unordered pairs. Let
V = {0, . . . , n − 1}. Let X be the set of two-subsets of X. The graphs on n ver-
tices are identified with subsets of X. Two graphs are isomorphic if they belong
to the same orbit under the action of G. The poset classification starts from the
empty graph and uses the lifting algorithm to inductively classify graphs with
i + 1 edges from the known classification of graphs with i edges. It is possible to
adapt to certain specific classes of graphs if desired. For instance, it is possible to
classify graphs on n vertices which are regular of degree r for some r. To do so,
we consider the poset of those subsets of X where each element of V is incident
with at most r elements from the chosen set. Likewise, it would be possible to
ask for a girth of the graph by testing if the subset is free of cycles whose size is
less than the value of the girth.

5.2 Orbits of Linear Groups

Let G be a subgroup of PΓL(n, q) for some n and q. In order to classify the
orbits of G on subspaces, one starts from the zero subspace, and then uses the
lifting algorithm to classify the i + 1 subspaces from the previously computed
classification of i-subspaces.

There are too many applications to list here. One case that we will study
below is the problem of computing what is known as the Kramer-Mesner matrix
of t-subspaces versus k-subspaces. This matrix describes how the orbits of a
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group on t-dimensional subspaces relate to the orbits of the same group on k-
dimensional subspaces. An interesting group to consider is the group generated
by the Singer cycle, which is transitive on the points of the vector space. The
Kramer-Mesner matrix is interesting for the construction of geometric designs
(also known as q-analogs of t-designs).

5.3 Applications in Finite Geometry

Many problems in finite geometry reduce to problems involving orbits of a cer-
tain linear group on objects inside a projective space. For instance, in [1], the
orbits of an orthogonal group on subsets of the quadric Q(4, q) of size q+1 called
BLT-sets are important. The BLT-condition is just a condition which restricts
the way in which the set can be chosen. We call the objects satisfying the condi-
tion partial BLT-sets, and they form a poset which is invariant under the group
and hereditary. The most successful approach in this case is to use the poset
classification to classify the partial BLT-sets of Q(4, q) of size 5 and then pro-
ceed with a different technique to lift these sets to sets of size q + 1. The final
classification is obtained by applying Lemma 1 for the set A which is the partial
BLT-sets of size 5 and the set B which is the BLT-sets in Q(4, q).

Other objects that are often studied in finite geometry are arcs in projective
planes. These are sets of points where no more than d lie on a line. This problem
reduces to a poset classification problem if V is the set of points in the projective
plane under consideration and X is the set of subsets of V with no more than d
collinear. The poset classification plays an important role in the classification of
cubic surfaces with 27 lines as reported in a series of papers [7–9].

5.4 Applications in Coding Theory and Design Theory

A lot of work has been done in coding theory and design theory to utilize the
computer to perform searches and classifications. Some of it has been based on
the poset classification algorithm, and some other work has been done using
the canonical augmentation (see below). We refer to [5] for an application of
the poset classification algorithm and to [13] for applications of the canonical
augmentation procedure.

6 Time and Space Issues

The poset classification algorithm stores a lot of data. There are the orbit rep-
resentatives at every level in the search. In addition there are the associated
flag orbits Ti,r and the group elements Δi,r (the orbits Sj,k do not have to be
stored). The cost in memory is perhaps offset by the advantage in speed. The
algorithm which perform constructive recognition depends linearly on the rank
of the element times the cost to perform constructive recognition for the Ti,r.
The time to classify a class of combinatorial objects is the time to build up
the data structure. This depends on the number of orbits times the time for
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computing the relevant up and down sets and the time to compute the orbits
Ti,r on flags. In addition, for each node, the number of constructive recognition
steps is proportional to the size of the down set of that node. Since too many
of these quantities depend on the nature of the poset and the group acting on
it, an explicit analysis of the time and space complexity seems difficult at this
point.

7 Implementations

The poset classification algorithm has been described by several authors. The
original implementation is [18]. Orbiter [3,4] is an open-source software package
devoted to the poset classification algorithm and applications in combinatorics,
algebra and finite geometry. The poset classification algorithm for subspaces
has recently been implemented in GAP [12], using the package FinInG [2] by
the author together with Michel Lavrauw. Further implementations of the poset
classification algorithm have been reported by Koch [14] (subset situation) and
by Braun [11] (subspace situation).

8 Comparisons

The main competitors for the poset classification algorithm are based on the
notion of canonical form. These algorithms work quite differently, using a back-
tracking procedure to compute a canonical representative of each G-orbit. The
most popular implementation of the canonical representative procedures are
McKay’s program Nauty which relates to [16] and Jeff Leon’s partition back-
track algorithm [15]. A new development is described in [17]. Many of these
algorithms are available in Magma [10] or GAP [12], for instance. The main
advantage of these algorithms is that they classify the poset depth first, thereby
requiring minimal storage. On the other hand, the analysis of the backtrack
algorithm is difficult.

It may be illustrative to run some example problems on some of the avail-
able implementations. We choose benchmark problems from combinatorics, finite
geometry, and algebra. We measure execution time and peak memory usage. An
entry N/A means that no data is available. We measure the performances in
terms of time and memory. The notation is as follows: tX stands for measured
CPU time using software X, and mX stands for measured peak memory usage
under software X. The keys for the software systems are: O is orbiter [3], K is
Koch [14], N is Nauty (version 2.6) [17], and G is the author’s implementation in
GAP [12]. The data for tK and mK is taken from [14] (the Koch implementation
is not published). All other measurements were taken from actual runs.

The first benchmark is the problem of classifying graphs on n vertices (cf.
Table 1). We classify the complete poset, not taking into account the fact that
there is an obvious isomorphism between graphs with e edges and graphs with(
n
2

) − e edges (complementation). The next problem is that of computing the
orbits of the irreducible Singer group acting on the subspaces of Fn

q (cf. Table 2).
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We compute the orbits on the whole poset, disregarding the fact that under
duality, the orbits on subspaces of dimension t are in canonical correspondence
to the orbits on subspaces of dimension n − t. The next problem is that of
classifying arcs in PG(2, q) under the group PΓL(3, q) (cf. Table 3). The number
of orbits is the overall number of orbits at all levels in the poset.

Table 1. Classifying graphs with n vertices

n # orbits tO mO tK mK tN

8 12346 2 s 34 MB 1 min 47 s 11MB 0 s

9 274668 1 min 14 s 224 MB 1 h 40 min 11MB 0.18 s

10 12005168 3 h 38min 51 MB N/A N/A 3.77 s

11 1018997864 N/A N/A N/A N/A 4 min 58 s

Table 2. Classifying the orbits on subspaces of Fn
q under the irreducible Singer group

(n, q) # orbits tO mO tG mG

(6,2) 49 0 s 561 MB 11 s 8503MB

(7,2) 232 1 s 561 MB 1 min 40 s 8493MB

(8,2) 1643 33 s 567 MB 49 min 40 s 76GB

(9,2) 16214 22 min 27 s 634 MB N/A N/A

(10,2) 224617 17 h 21min 1912 MB N/A N/A

Table 3. Classifying arcs in PG(2, q)

q # orbits tO mO

11 73 0 s 562MB

13 438 0 s 563MB

16 4214 2 s 570MB

17 52420 23 s 631MB

19 711709 6 min 17 s 1556MB

The benchmarks allow for some interesting comparisons. The differences in
the running times can be striking. Classifying graphs is clearly best done with
Nauty, which is a factor of 2200 times faster than Orbiter, which is a factor of
100 faster than the Koch program. For geometric objects, Orbiter is a factor of
100 faster than the implementation in GAP. As pointed out before, for problems
in geometry, Nauty can only be used indirectly. For this reason, Nauty does not
appear in the benchmarks which involve problems from geometry. It is question-
able if a system like GAP should be used for classification at all. Nauty’s use for
geometric problems is unsettled.
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13. Kaski, P., Österg̊ard, P.: Classification Algorithms for Codes and Designs. Algo-
rithms and Computation in Mathematics, vol. 15. Springer, Heidelberg (2006).
https://doi.org/10.1007/3-540-28991-7

14. Koch, M.: Neue Strategien zur Lösung von Isomorphieproblemen. (German) [New
strategies for the solution of isomorphism problems] Ph.D. thesis. University of
Bayreuth (2015)

15. Leon, J.S.: Partitions, refinements, and permutation group computation. In:
Groups and Computation, II (New Brunswick, NJ, 1995), vol. 28. DIMACS
Series Discrete Mathematics Theoretical Computer Science, pp. 123–158. American
Mathematical Society, Providence (1997)

16. McKay, B.D.: Isomorph-free exhaustive generation. J. Algorithms 26(2), 306–324
(1998)

17. McKay, B.D., Piperno, A.: Practical graph isomorphism II. J. Symbolic Comput.
60, 94–112 (2014). https://doi.org/10.1016/j.jsc.2013.09.003

18. Schmalz, B.: Verwendung von Untergruppenleitern zur Bestimmung von Doppel-
nebenklassen. (German) [Use of subgroup ladders for the determination of double
cosets]. Bayreuth. Math. Schr. 31, 109–143 (1990)

https://doi.org/10.1145/2576802.2576832
https://github.com/abetten/orbiter
https://github.com/abetten/orbiter
https://doi.org/10.1007/3-540-31703-1
https://www.gap-system.org
https://doi.org/10.1007/3-540-28991-7
https://doi.org/10.1016/j.jsc.2013.09.003


A Rainbow Clique Search Algorithm
for BLT-Sets

Abdullah Al-Azemi1, Anton Betten2(B), and Sajeeb Roy Chowdhury2

1 Kuwait University, Kuwait City, Kuwait
alazmi95@gmail.com

2 Colorado State University, Fort Collins, USA
betten@math.colostate.edu, srchowdh@rams.colostate.edu

http://www.math.colostate.edu/∼betten/

Abstract. We discuss an algorithm to search for rainbow cliques in
vertex-colored graphs. This algorithm is a generalization of the Bron-
Kerbosch algorithm to search for maximal cliques in graphs. As an
application, we describe a larger algorithm to classify a certain type
of geometric-combinatorial objects called BLT-sets. We report on the
classification of BLT-sets of order 71.

Keywords: Classification · Rainbow clique · Graph · BLT-set
Finite geometry

1 Introduction

Let PG(n, q) denote the n-dimensional projective space over the field Fq. A
Q(4, q) space is a projective space PG(4, q) equipped with a quadratic form,
such as x2

0 + x1x2 + x3x4 = 0. There is an associated bilinear form β(x,y)
and a group which preserves the quadratic form (for more details, see [13]). By
considering the points and lines on the quadric with respect to inclusion, an
incidence structure of points and lines is obtained. There are (q2 + 1)(q + 1)
points and equally many lines. Each point is on q + 1 lines and each line has
q +1 points. It is an example of a finite generalized quadrangle [12]. This means
that if a point is not on a line, the point is collinear to exactly one point on
the line. The symmetry group of the incidence structure is the orthogonal group
PΓO(5, q).

A BLT-set (named after the initials of the authors of [2]) of Q(4, q) is a set
of q + 1 points such that no point on the quadric is collinear to three points
in the set. In terms of the collinearity graph associated to Q(4, q), a BLT-set
induces an equitable partition. BLT-sets are interesting because they give rise to
quadratic flocks, which in turn give rise to translation planes. In a curious twist,
BLT-sets predate themselves, having been introduced in [8] under the name
(0, 2)-sets (by the same author). BLT-sets give rise to generalized quadrangles
and other objects of interest to the finite geometry community. Two BLT-sets
over the same field Fq are equivalent if there is an orthogonal transformation
c© Springer International Publishing AG, part of Springer Nature 2018
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which takes one to the other. We consider the problem of classifying BLT-sets
up to equivalence. It is known that BLT sets in Q(4, q) exist if and only if q is
odd. A list of the 40 points Pi of Q(4, 3) is given in Table 1.

Table 1. The points of Q(4, 3)

0: 0, 1, 0, 0, 0

1: 0, 0, 1, 0, 0

2: 0, 0, 0, 1, 0

3: 0, 1, 0, 1, 0

4: 0, 1, 0, 2, 0

5: 0, 0, 1, 1, 0

6: 0, 0, 1, 2, 0

7: 0, 0, 0, 0, 1

8: 0, 1, 0, 0, 1

9: 0, 1, 0, 0, 2

10: 0, 0, 1, 0, 1

11: 0, 0, 1, 0, 2

12: 0, 1, 2, 2, 2

13: 0, 1, 2, 1, 1

14: 0, 1, 1, 2, 1

15: 0, 1, 1, 1, 2

16: 1, 2, 1, 0, 0

17: 1, 1, 2, 0, 0

18: 1, 2, 1, 2, 0

19: 1, 1, 2, 2, 0

20: 1, 2, 1, 1, 0

21: 1, 1, 2, 1, 0

22: 1, 2, 1, 0, 1

23: 1, 1, 2, 0, 1

24: 1, 2, 1, 0, 2

25: 1, 1, 2, 0, 2

26: 1, 0, 0, 2, 1

27: 1, 2, 0, 2, 1

28: 1, 1, 0, 2, 1

29: 1, 0, 1, 2, 1

30: 1, 0, 2, 2, 1

31: 1, 0, 0, 1, 2

32: 1, 2, 0, 1, 2

33: 1, 1, 0, 1, 2

34: 1, 0, 1, 1, 2

35: 1, 0, 2, 1, 2

36: 1, 1, 1, 1, 1

37: 1, 2, 2, 1, 1

38: 1, 1, 1, 2, 2

39: 1, 2, 2, 2, 2

Based on this labeling of points, Table 2 lists the 40 lines. Each line is repre-
sented as the set of points incident with it.

Table 2. The lines of Q(4, 3)

0: 0, 31, 32, 33

1: 0, 26, 27, 28

2: 1, 26, 29, 30

3: 1, 31, 34, 35

4: 15, 16, 28, 35

5: 14, 16, 30, 33

6: 14, 17, 27, 34

7: 15, 17, 29, 32

8: 6, 8, 13, 14

9: 8, 21, 35, 37

10: 8, 18, 29, 38

11: 5, 9, 12, 15

12: 9, 19, 30, 39

13: 9, 20, 34, 36

14: 10, 20, 32, 37

15: 10, 19, 28, 38

16: 4, 10, 12, 14

17: 11, 18, 27, 39

18: 11, 21, 33, 36

19: 3, 11, 13, 15

20: 5, 22, 27, 37

21: 4, 22, 29, 36

22: 13, 19, 22, 31

23: 6, 24, 32, 39

24: 3, 24, 34, 38

25: 12, 21, 24, 26

26: 6, 23, 28, 36

27: 12, 18, 23, 31

28: 3, 23, 30, 37

29: 5, 25, 33, 38

30: 13, 20, 25, 26

31: 4, 25, 35, 39

32: 0, 7, 8, 9

33: 1, 7, 10, 11

34: 7, 16, 22, 24

35: 7, 17, 23, 25

36: 0, 2, 3, 4

37: 1, 2, 5, 6

38: 2, 16, 18, 20

39: 2, 17, 19, 21

An example of a BLT-set in Q(4, 3) is the set {P0, P1, P14, P15}: Each point
of Q(4, 3) other than the four points in the BLT-set lies on either 0 or 2 lines in
pencils through these points (cf. Table 3).

The points which lie on two pencils are {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35}. The points which are not collinear to points
of the BLT-set are {2, 19, 19, 20, 21, 22, 23, 24, 25, 36, 37, 38, 39}. In terms of the
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Table 3. The pencils of lines through the points in the BLT-set

0, 31, 32, 33

0, 26, 27, 28

0, 7, 8, 9

0, 2, 3, 4

1, 26, 29, 30

1, 31, 34, 35

1, 7, 10, 11

1, 2, 5, 6

14, 16, 30, 33

14, 17, 27, 34

14, 6, 8, 13

14, 4, 10, 12

15, 16, 28, 35

15, 17, 29, 32

15, 5, 9, 12

15, 3, 11, 13

collinearity graph of Q(4, 3), we have an equitable partition with three classes
of size 4, 23 and 13, respectively.

Several infinite families of BLT-sets exist. However, many examples are
known that are currently sporadic. It is very likely that new infinite families
can be constructed from the known examples, though this might be a difficult
problem. Besides that, there is interest in resolving the problem of classifying
BLT-sets for additional finite fields. At present, all BLT-sets in Q(4, q) for q ≤ 67
have been classified [6]. In this note, the case q = 71 will be settled. Our compu-
tations are facilitated using the computer algebra package Orbiter [4]. Orbiter
is a library of C++ classes, devoted to the problem of classifying combinatorial
objects.

2 Underlying Theory

One of the centerpieces in the classification of BLT-sets is an algorithm to find
all rainbow cliques in a vertex colored graph. The reduction of the problem of
classifying BLT-sets to the problem of searching for rainbow cliques in graphs is
interesting. In this section, we wish to outline this reduction briefly.

Let Γ = (V,E) be a finite graph. For two vertices x, y ∈ V , we say that x
and y are adjacent in Γ , if {x, y} is an edge in E, and we express this by writing
x ∼ y. Also, for a vertex x ∈ V , let N(x) be the set of neighbors of x in Γ , i.e.
N(x) = {y ∈ V | x ∼ y}. A clique in Γ is a set T ⊆ V of vertices of Γ such that
x ∼ y for any two vertices of T . The Bron-Kerbosch algorithm [7] is a systematic
way to find all maximal cliques in a graph. A clique is called maximal if there is no
clique which strictly contains it. The automorphism group of a graph Γ = (V,E)
is the set of permutations of V which preserve the adjacency relation. This group
is denoted by Aut(Γ ). Two subsets X and Y of V are called equivalent if there
is an automorphism α ∈ Aut(Γ ) with Xα = Y .

Let C be a finite set, whose elements are called colors. A colored graph
is a tuple Γ = (V,E,C, c) where (V,E) is a graph, C is a set of colors, and
c : V → C is a function which assigns exactly one color to each vertex. We
assume that c(x) �= c(y) whenever x and y are adjacent. For k ∈ C, let Ck be
the set of vertices of Γ of color k, i.e. Ck = {y ∈ V | c(y) = k}. The set Ck

is called a color-class. A rainbow clique in Γ is a clique which intersects each
color class in exactly one element. Rainbow cliques are maximal but not every
maximal clique is a rainbow clique. In this paper, we will utilize rainbow cliques
to facilitate the classification of BLT-sets. This will be explained next.
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A partial BLT-set is a set S of points of Q(4, q) with the property that no
point of Q(4, q) is collinear with more than two points of S. A BLT-set is a
partial BLT-set of size q +1. An efficient way to construct and classify BLT-sets
is this:

– (Problem 1) Classify the partial BLT-sets of some size s, say. The output
from this step is a list S1, . . . , SN of representatives of the orbits of PΓO(5, q)
on the set of partial BLT-sets of size s.

– (Problem 2) Given a partial BLT-set of size s, find all BLT-sets containing it.
– (Problem 3) Given the data created when solving Problems 1 and 2, produce

the classification of BLT-sets of Q(4, q) under the action of PΓO(5, q).

For Problem 1, the poset classification algorithm described in [5] can be used.
Regarding Problem 2, the rainbow clique techniques described in this paper are
useful. For Problem 3, the algorithm of [5] is again useful.

The choice of the parameter s is important. If s is too large, we may not be
able to classify the partial BLT-sets of that size, so we fail with Problem 1. If s
is too small, we may either be unable to solve Problem 2 or we may end up with
too many solutions. Based on practical experiments, we find that s = 5 seems
to work well.

Let us now focus on solving Problem 2. Suppose we have a partial BLT-set
set S of size s > 0. The goal is to find all BLT-sets which contain S. To this
end, we define a graph ΓS . We say that a point P of Q(4, q) is alive with respect
to S if S ∪ {P} is a partial BLT-set of size s + 1. The vertices of the graph ΓS

are the live points. Two vertices of ΓS corresponding to points P1 and P2 are
adjacent in ΓS if S ∪ {P1, P2} is a partial BLT-set of size s + 2. Now, pick a line
through any point of S. Any line will do, but it is important that we fix this
line. So, suppose that S = {Q1, . . . , Qs}. Let � be a line through Q1, say. By
the generalized quadrangle property, the points of S \ {Q1} = {Q2, . . . , Qs} are
collinear to certain points on �. By the partial BLT-set property, these points are
all distinct. Let C = {C1, . . . , Cq+1−s} be the set of points of � \ {Q1} which are
not collinear to any of the points in {Q2, . . . , Qs}. The set C = {1, . . . , q +1−s}
will serve as the set of colors of ΓS . A live point P is collinear to exactly one
point of C. If P is collinear to the point Ck, then we set c(P ) = k. Assume that
P1 and P2 are live points collinear to the same point Q on �. Then Q is collinear
to P1, P2 and Q1, which contradicts the BLT-property. Hence S ∪{P1, P2} is not
a partial BLT-set, and so P1 �∼ P2 in ΓS . This shows that the function c : V → C
is a coloring of ΓS .

The following lemma from [3] is helpful to create the adjacency relation E of
ΓS . Let Nq be the set of non-squares in Fq, i.e.

Nq = {x ∈ Fq \ {0} | y2 �= x for all y ∈ Fq}.

Lemma 1. Let S be a non-empty partial BLT-set and let a ∈ S arbitrary. Let
x, y ∈ Q(4, q) such that both S ∪ {x} and S ∪ {y} are partial BLT-sets. Then
S ∪ {x, y} is partial BLT-set if and only if

−β(a, x)β(a, y)β(x, y) ∈ Nq.
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Every BLT-set containing S corresponds to a rainbow clique in ΓS . Inter-
estingly, the converse is true as well, though this is by no means obvious (the
proof depends on a specific property of BLT-sets, see [3]). This connection is
the basis of our classification algorithm. It reduces Problem 2 to the problem
of finding all rainbow cliques in all graphs ΓS associated to partial BLT-sets S
from a transversal of the equivalence classes found in Problem 1.

Consider the example of BLT-sets in Q(4, 3). Suppose we pick s = 1 in the
classification algorithm. Suppose we consider the partial BLT-set S = {P0},
and we wish to find all BLT-sets containing it. We may pick the line �0 =
{0, 31, 32, 33} through P0. The pencil of lines through P0 is the four lines

{0, 31, 32, 33}, {0, 26, 27, 28}, {0, 7, 8, 9}, {0, 2, 3, 4}.

Based on this list, the set of points which are alive is {1, 5, 6, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 29, 30, 34, 35, 36, 37, 38, 39}, which is all
points not contained in the pencil. The colored graph ΓS = (V,E,C, c) can
now be defined. The vertex set is the set V of live points just listed. The colors
are defined using the points 31, 32 and 33 on the line that we picked. By looking
at the pencil of lines through each of these points, we find that the color classes
are

C0 = {1, 12, 13, 18, 19, 22, 23, 34, 35},

C1 = {6, 10, 15, 17, 20, 24, 29, 37, 39},

C2 = {5, 11, 14, 16, 21, 25, 30, 36, 38}.

Thus we have a graph ΓS with 27 vertices and 3 colors. Each color class has size
9. For the adjacency relation, we note that 2 is the only non-square in F3. The
neighbors of 1 turn out to be {14, 15, 36, 37, 38, 39}. For instance, since

−β(P0, P1)β(P0, P14)β(P1, P14) = 2

is a nonsquare, 1 is adjacent to 14. Similarly, the other adjacencies can be
checked. The full adajcency list is shown in Table 4.

The search for rainbow cliques in this graph will be continued below.
A few words regarding the symmetry group of Q(4, q) are in order. The

orthogonal group O(n, q) is generated by elements known as Siegel transforma-
tions and orthogonal reflections. A vector v is singular if Q(v) = 0. The singular
vectors give rise to the points on the quadric. All q − 1 multiples of one singular
vector give rise to one projective point on the quadric. The bilinear form associ-
ated to Q gives rise to a polarity ⊥. Let u be a singular vector and let v ∈ 〈u〉⊥.
The linear map

ρu,v(x) = x + β(x, v)u − β(x, u)v − Q(v)β(x, u)u

is known as Siegel transformation. It belongs to the simple subgroup Ω(n, q) of
O(n, q). For a non-singular vector v, the linear map

tv(x) = x − Q(v)−1β(x, v)v
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Table 4. Adjacency in ΓS

35: 30, 11, 5, 20, 17, 24

22: 30, 38, 21, 20, 6, 15

1: 36, 38, 14, 39, 37, 15

13: 36, 16, 5, 39, 17, 10

18: 30, 36, 25, 24, 15, 10

34: 16, 21, 25, 6, 29, 10

19: 11, 25, 14, 37, 29, 24

12: 38, 16, 11, 37, 6, 17

23: 21, 5, 14, 20, 39, 29

30: 35, 22, 18, 6, 17, 10

36: 1, 13, 18, 37, 17, 24

38: 22, 1, 12, 20, 39, 17

16: 13, 34, 12, 39, 37, 29

21: 22, 34, 23, 39, 15, 10

11: 35, 19, 12, 20, 6, 29

25: 18, 34, 19, 37, 6, 15

5: 35, 13, 23, 29, 24, 10

14: 1, 19, 23, 20, 24, 15

20: 35, 22, 23, 38, 11, 14

39: 1, 13, 23, 38, 16, 21

37: 1, 19, 12, 36, 16, 25

6: 22, 34, 12, 30, 11, 25

17: 35, 13, 12, 30, 36, 38

29: 34, 19, 23, 16, 11, 5

24: 35, 18, 19, 36, 5, 14

15: 22, 1, 18, 21, 25, 14

10: 13, 18, 34, 30, 21, 5

is called orthogonal reflection and belongs to O(n, q) as well. Both types of ele-
ments suffice to generate the orthogonal group O(n, q). The projective orthog-
onal group PGO(n, q) is the factor group O(n, q)/ ± I, where I is the identity
transformation. For q odd, the orthogonal group O(2m + 1, q) has order

2qm
2

m∏

i=1

(
q2i − 1

)
.

The order of the projective group is half of this number. It is possible to create the
orthogonal group by creating generators which are either Siegel transformations
or orthogonal reflections at random. By using the order formula as a stopping
rule, the algorithm will produce the full group.

Let us consider an example. The orthogonal group PGO(5, 3) has order 51840.
Random generators are the six group elements

g1 = ρ(0,0,1,1,0),(0,1,2,0,2),
g2 = ρ(1,2,0,2,1),(2,0,1,2,2),
g3 = ρ(0,0,0,1,0),(1,0,0,0,0),

g4 = ρ(1,0,0,2,1),(2,0,2,0,1),
g5 = ρ(1,1,2,0,2),(0,2,2,0,2),
g6 = t(1,1,1,1,0).

This can be verified using the following piece of Magma [11] code, which confirms
the group order:

K := FiniteField(3);

GL53 := GeneralLinearGroup(5, K);

g1 := elt<GL53 | 1,0,0,0,0, 0,0,1,0,1, 0,0,2,1,0, 0,0,2,0,0, 0,2,2,1,2 >;

g2 := elt<GL53 | 0,0,1,2,2, 1,0,0,2,1, 1,1,2,0,1, 1,0,2,2,1, 0,2,1,1,1 >;

g3 := elt<GL53 | 1,0,0,2,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 2,0,0,2,1 >;

g4 := elt<GL53 | 2,0,2,1,0, 2,1,0,1,2, 0,0,1,0,0, 1,0,1,1,2, 0,0,2,2,0 >;

g5 := elt<GL53 | 2,0,1,0,1, 0,0,2,0,2, 1,2,1,0,0, 0,2,2,1,2, 0,0,0,0,1 >;

g6 := elt<GL53 | 0,2,2,2,0, 1,2,1,1,0, 1,1,2,1,0, 0,0,0,1,0, 1,1,1,1,1 >;

L := [g1,g2,g3,g4,g5,g6];

O := sub< GL53 | L >;
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The output of this code is 51840, the order of PGO(5, 3). For more back-
ground on the orthogonal group, we refer to [13].

3 Technical Contribution

The basis of this algorithm is the Bron-Kerbosch algorithm [7]. A modified ver-
sion for rainbow cliques is described next. Let Γ = (V,E,C, c) be a colored
graph. A partial rainbow clique is a clique which intersects each color class in
at most one element. We say that a color has been satisfied by a set R if there
is an element in R of that color. The algorithm considers a set R which is a
partial rainbow clique. The set R is implemented as a stack, so we can tell in
what order the elements have been added to R. The algorithm tries to extend R
in all possible ways that are reasonable. A set L of live points holds all vertices
under consideration at the current state. A set M ⊆ L is determined to be the
minimal color class. Vertices from M are used to extend R in the next step. Here
is the recursive algorithm:

1. Input: a partial rainbow clique R, a set L of live points.
2. Test if |R| = h. In this case, R is a rainbow clique and will be printed. Return

to the previous level in the search.
3. Let r be the element that was added last to R.
4. Let L = L ∩ N(r).
5. Determine the set M which is the smallest among the sets Ci ∩ L where Ci

varies over the color classes which have not yet been satisfied by R. If there
are several choices for M , pick one arbitrarily.

6. Loop over all elements m ∈ M .
7. Form R ∪ {m} and recurse.
8. Move to the next element m ∈ M and repeat, until M has been exhausted.
9. Return to the previous level of the backtrack search.

Initially, the algorithm is started with R = ∅ (the empty set) and L = {0, . . . , n−
1} (the set of vertices of Γ ).

In order to illustrate the algorithm, we continue the example of BLT-sets in
Q(4, 3). The search tree of the rainbow clique algorithm is illustrated in Fig. 1.

Fig. 1. The search tree
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The algorithm starts with the empty set, which is a partial rainbow clique.
This is the root node in the figure. At this point, the live point set is all of
the vertices. The algorithm then proceeds to pick a color class, say C0. Within
C0, there are nine possible vertices that can be picked. These possibilities are
represented as the nine nodes which descend from the root node. For each of
the possibilities, the neighbor set is computed, and the new live point set is
formed. As we have seen, there are three neighbors in each of the remaining two
color classes. The algorithm picks one of the remaining color classes, and then
loops over all three vertices. This amounts to the 9 × 3 = 27 vertices at depth
two in the search tree. For each choice, the new live point set has size one. The
algorithm picks the remaining color class and adds the unique live point to form
a rainbow clique. This amounts to the 27 nodes at the bottom of the search tree.
The resulting 27 rainbow cliques are listed in Table 5. The associated BLT-sets
are constructed by adding S, which amounts to adding P0.

Table 5. Rainbow cliques in ΓS

35, 30, 17

35, 11, 20

35, 5, 24

22, 30, 6

22, 38, 20

22, 21, 15

1, 38, 39

1, 36, 37

1, 14, 15

13, 36, 17

13, 5, 10

13, 16, 39

18, 36, 24

18, 25, 15

18, 30, 10

34, 25, 6

34, 16, 29

34, 21, 10

19, 25, 37

19, 14, 24

19, 11, 29

12, 11, 6

12, 16, 37

12, 38, 17

23, 5, 29

23, 21, 39

23, 14, 20

4 Application

We will now describe an application of this algorithm. The problem is that of
classifying BLT-sets in Q(4, 71). This is the next open case following the results
published in [6]. This in turn improves on earlier results published in [10].

Theorem 1. The number of BLT-sets in Q(4, 71) up to equivalence is 8. The
BLT-sets are the Linear, the Fisher, the Penttila, and the Fisher-Thas, together
with four more, which do not fall into any of the known families. The four
sporadic sets have automorphism groups of order 3, 8, 24 and 24. One of the sets
with automorphism group of order 24 was described in Law [9]. The two BLT-
sets with groups of order 24 can be distinguished by the number of planes which
intersect them in 4 points. One has 810 and the other has 876 such planes.

The computations leading to this result were performed on the Summit com-
pute cluster [1]. We used Orbiter [4] to perform all computations. The number
of partial BLT-sets of size 5 in Q(4, 71) is 196891. This is also the number of
instances of rainbow clique finding problems that had to be solved. Each graph
has 67 color classes, so each rainbow clique has size 67. In the hardest instance,
the graph had 18,211 vertices. The search for this instance took about 53 min.
On average, the graphs were smaller and the search was shorter, in part because
we used the lexicographic ordering reduction described in [6].
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Abstract. We present our implementation of an algorithm which func-
tions as a numerical oracle for the Newton polytope of a hypersurface in
the Macaulay2 package NumericalNP.m2. To showcase this software,
we investigate the Newton polytope of both a hypersurface coming from
algebraic vision and the classical Lüroth invariant.

1 Introduction

Often hypersurfaces are presented as the image of a variety under some map.
Determining the defining equation f ∈ C[x1, . . . , xn] of such a hypersurface
H ⊆ C

n is computationally difficult and often infeasible using symbolic methods
such as Gröbner bases. Moreover, many times the defining equation is so large
that it is not human-readable and so one naturally desires a coarser description
of the polynomial, such as the Newton polytope. The Newton polytope of f , or
equivalently that of H, is the convex hull of the exponent vectors appearing in the
support of f and provides a large amount of information about the hypersurface.
Newton polytopes are necessary to compute the BKK bound on the number of
solutions to a polynomial system [4] and can also provide topological information
such as the Euler characteristic of the hypersurface [10]. Knowing New(f) also
reduces the computational difficulty of finding f via interpolation: the size of
the linear system one must solve is |New(f)∩Z

n|, which is usually much smaller
than the näıve bound of

(
n+d−1

d

)
where d = deg(f).

In 2012 Hauenstein and Sottile [9] proposed an algorithm we call the HS-
algorithm and showed that this algorithm functions as a vertex oracle for linear
programming on New(H). This algorithm requires that the hypersurface is rep-
resented numerically by a witness set. Because a witness set is the only require-
ment, the HS-algorithm applies to hypersurfaces which arise as images of maps,
such as rational varieties. We observe that the HS-algorithm is stronger than a
vertex oracle and so we introduce the notion of a numerical oracle which returns
some information when the linear program is not solved by a vertex.

We implemented the HS-algorithm in the Macaulay2 [7] package Numer-
icalNP.m2. It uses the package Bertini.m2 [1] to call Bertini [2] to perform
numerical path tracking. Section 2 contains background on polytopes, numeri-
cal algebraic geometry, and a brief description of the HS-algorithm. Section 3
c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 80–88, 2018.
https://doi.org/10.1007/978-3-319-96418-8_10
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outlines the three main user functions in the package and Sect. 4 advertises its
strength on much larger examples.

2 Underlying Theory

2.1 Polytopes

A polytope P ⊆ R
n is the convex hull of finitely many points V ⊆ R

n. Equiv-
alently, P is the bounded intersection of finitely many halfspaces. The former
presentation is a V -representation of P while the later is an H-representation of
P . Given ω ∈ R

n the set Pω := {x ∈ P | 〈x, ω〉 is maximized} is called the face
of P exposed by ω and the function hP (ω) = max

x∈P
〈x, ω〉 is the support function

of P . We define a numerical oracle to be the function

OP : Rn → N
n ∪ {EEP}

ω 	→
⎧
⎨

⎩

Pω dim(Pω) = 0
min(Pω) 0 < dim(Pω) < dim(P )

EEP Pω = P

where min(Pω) is the coordinate-wise minimum of all points in Pω and EEP
abbreviates Exposes Entire Polytope. We remark that when a numerical ora-
cle returns a vertex v = OP (ω), it also reveals that {x ∈ R

n|〈x, ω〉 ≤ 〈v, ω〉} is
a halfspace containing P . Finding a V -representation given an oracle is difficult
but possible [6].

Given a polynomial

f =
∑

β∈A
cβxβ1

1 · · · xβn
n ∈ C[x1, . . . , xn] cβ �= 0,A ⊆ N

n, |A| < ∞

its Newton polytope New(f) is the convex hull of A. Motivated by language for
polynomials, we say that P is homogeneous whenever OP (1, 1, . . . , 1) = EEP and
define deg(P ) := hP (1, 1, . . . , 1). The homogenization of P denoted P̃ is the
convex hull of {(x,deg(P ) − |x|)∣∣x ∈ P} where |x| :=

∑n
i=1 xi.

2.2 Numerical Algebraic Geometry

Let X ⊆ C
N be an algebraic variety of dimension k and degree d appear-

ing as an irreducible component of the zero set of a collection of polynomials
FX ⊆ C[x1, . . . , xn]. For a generic N − k dimensional linear space L ⊆ C

N ,
the intersection S = X ∩ L is zero dimensional and consists of d points. The
triple (FX ,L, S) is called a witness set for X and is the fundamental data type
in numerical algebraic geometry. The standard numerical method of homotopy
continuation quickly computes any witness set (FX ,L′, S′) for X from a pre-
computed witness set (FX ,L, S) by numerically tracking the solutions S along
a homotopy from S to S′ [3]. A major feature of numerical algebraic geometry is
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that we can compute witness sets for varieties without access to their equations.
Let X ⊆ C

N be an irreducible and reduced component of a variety, π : X → C
n

a finite projection, and Y := π(X) the Zariski closure of its image. A witness
set for Y is encoded as a quadruple (FX , π,L′, S′) where S′ = L′ ∩ Y . Given a
witness set (FX ,L, S), we produce a witness set for Y by performing a linear
homotopy from the points in S to the points π−1(S′) = π−1(L′) ∩ X [8]. Since
every map is an embedding followed by a projection, this means we can compute
a witness set for the image of any map (Fig. 1).

Fig. 1. Computing a witness set for a projection

2.3 The HS-Algorithm

Let H ⊆ C
n be a degree d hypersurface defined by

f =
∑

α∈A
cαxα1

1 · · · xαn
n ∈ C[x1, . . . , xn] cα �= 0,A ⊆ N

n, |A| < ∞

so that New(f) is the convex hull of the points in A. Let ω ∈ R
n be a direction,

a, b ∈ (C∗)n, and consider the family of lines Lt parametrized by

s
Lt−→ (�(t,1)(s), . . . , �(t,n)(s))

where �(t,i)(s) = tωi(ais − bi). For any fixed t value, f(Lt) is a univariate poly-
nomial in s whose solutions p(t) := {p1(t), . . . , pd(t)} correspond to intersection
points of H and Lt. We may write f(Lt) as

f(�(t,1), . . . , �(t,n)) =
∑

α∈A
cα[tω1(a1s − b1)]α1 · · · [tωn(ans − bn)]αn

=
∑

α∈A
t〈ω,α〉(a1s − b1)α1 · · · (ans − bn)αn

As t → ∞, the terms Aω corresponding to points of A which maximize 〈ω, α〉
will dominate the behavior of the zeros and so the solutions p(t) will converge
to those of

fω(�(t,1), . . . , �(t,n)) :=
∑

α∈Aω

cα(a1s − b1)α1 · · · (ans − bn)αn .
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If Aω = {β} then fω is a monomial and so fω(�) has roots γi := bi/ai where
γi occurs with multiplicity βi. If |β| :=

∑
βi is less than d, then there are

β∞ := d − |β| points which have diverged towards infinity. One can see this
by observing that if we began with the homogenization F , this would be the
exponent of homogenizing variable in the term Fω.

If ω exposes the entire polytope defined by A, then the roots p(t) remain
constant as t varies since all f(Lt) are all scalar multiples of each other.

If ω exposes a proper non-trivial subset of A, then there is more than one
term in fω, but these terms will have a common factor of

∏n
i=1(ais−bi)mi where

the vector m is the coordinate-wise minimum of the points Aω. Therefore, mi

roots will converge to γi and m∞ := minβ∈Aω
(d − |β|) points will diverge to

infinity. All other roots will converge to generic points in C. These observations
give rise to the HS-algorithm.
⎡
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Algorithm 1 HS-Algorithm
Input:

– A witness set W for a hypersurface H ⊆ Cn

– A direction ω ∈ R
n

Output:

– O
˜New(H)

(ω)

Steps:

1. Pick random a, b ∈ C
n and construct {�(t,i)}n

i=1 described above
2. Track the witness points in W to the intersection H ∩ L1

3. Initialize vector β = 0 ∈ N
n+1

4. Track the witness points in H ∩ Lt from t = 1 toward ∞
5. If none of the solutions move, return EEP
6. If a solution has converged, stop tracking it

– If it has converged to some γi increment βi by one
7. If a solution has diverged increment β∞ by one
8. If all solutions have converged or diverged, return β = (β1, . . . , βn, β∞)

3 Functionality

We have implemented the HS-algorithm in NumericalNP.m2 via three main
functions. Function 1, computes a witness set for the image of an irreducible and
reduced variety X ⊆ C

N under a projection π : CN → C
n.
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Function 1 witnessForProjection
Input:

– I: Ideal defining X ⊆ C
N

– ProjCoord: List of coordinates which are forgotten by π
– OracleLocation (option): Path in which to create witness files

Output: A subdirectory /OracleLocation/WitnessSet containing

– witnessPointsForProj: Preimages of witness points of π(X)
– projectionFile: List of coordinates in ProjCoord
– equations: List of equations defining X ′ ⊆ X such that π|X′ is finite

and π(X ′) = π(X)

Function 2, witnessToOracle, creates all necessary Bertini files to track the
witness set H ∩ Lt as t → ∞ for any ω ∈ R

n. These files treat ω as a parameter
so that the user only needs to produce these files once.
⎡
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Function 2 witnessToOracle
Input:

– OracleLocation: Path containing the directory /WitnessSet

Optional Input:

– PointChoice: Prescribes a and b explicitly (see Algorithm 1)
– TargetChoice: Prescribes targets bi/ai

– NPConfigs: List of Bertini path tracking configurations

Output:

– A subdirectory /OracleLocation/Oracle containing all necessary
files to run the homotopy described in Algorithm 1.

Function 2 by default chooses a, b ∈ C
n such that γi := ai/bi are n-th roots

of unity. One may choose to either specify a and b (PointChoice), or γi := ai/bi

(TargetChoice) or request that these choices are random. When random, the
function ensures that the points γi are far from each other so that convergence to
γi is easily distinguished from convergence to γj . Bertini is called to track the
solutions in /OracleLocation/WitnessSet to points π(X) ∩ L1. These become
start solutions to the homotopy described in Algorithm 1 with parameters ω
and t. There are many numerical choices for Bertini’s native pathtracking algo-
rithms which can be specified via NPConfigs.
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Function 3 oracleQuery
Input:

– OracleLocation (Option): Location containing the directory /Oracle
– ω: A vector in R

n

Optional Input:
− Certainty − Epsilon − UseCauchy − MinTracks − MaxTracks
− StepResolution − MakeSageFile
Output:

– O
˜New(H)

(ω) or Reached MaxTracks

– A subdirectory /OracleLocation/OracleCalls/Call# containing
– SageFile: Sage code animating the paths p(t)
– OracleCallSummary: a human-readable file summarizing the

results

The fundamental function, oracleQuery, runs the homotopy in the HS-
algorithm, monitors convergence, and outputs the result of the numerical oracle.

To monitor convergence of solutions p(t) we track t → ∞ in discrete steps.
The option StepResolution specifies these t-step sizes. In each step, for each
path pi(t), a numerical derivative is computed to determine convergence or diver-
gence of the solution. If the solution is large and the numerical derivative exceeds
10Certainty in two consecutive steps the path is declared to diverge, and if the
numerical derivative is below 10−Certainty in two consecutive steps the point is
declared to converge. If UseCauchy is set to true a Cauchy loop is performed to
corroborate convergence. If a converged point is at most Epsilon from some γi,
then the software deems that it has converged to γi. When a point is declared
to converge or diverge, it is not tracked further. The option MaxTracks allows
the user to specify how long to wait for convergence of the paths p(t). The rate
of convergence is slower when ω is close to exposing a positive dimensional face
of New(H), as illustrated by Fig. 2. This figure shows the Newton polytope of
a plane sextic (see Example) and a graphic describing convergence rate of the
algorithm on different directions ω ∈ S1: the black rays indicate that the algo-
rithm returned Reached MaxTracks and the length of the green (grey) rays is
proportional to the number of steps it took the algorithm to finish. One may also
specify MinTracks which indicates the time step convergence should begin to be
monitored. The option to create a Sage [12] animation (see Fig. 3) of the solution
paths helps the user recognize pathological behavior in the numerical computa-
tions and fine tune parameters such as Certainty or Epsilon accordingly so
that the software is more careful.

Example: Consider the curve in X ⊆ C
3 defined by

I = 〈xyt − (x − y − t)2 + 3x + t, x + y2 + t2〉 ⊆ C[x, y, t]
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Fig. 2. (Left) Convergence of different ω for queryOracle on Newton polytope (Right)
(Color figure online)

and let π be the projection forgetting the t coordinate. The following Macaulay2
code computes a witness set for C := π(X), prepares oracle files for the HS-
algorithm and then runs the HS-algorithm in the direction (3, 2). The software
returns {2, 4, 0} indicating that New(π(X))(3,2) = (2, 4).

i1: loadPackage("NumericalNP");

i2: R=CC[x,y,t];

i3: I=ideal(x*y*t-(x-y-t)^2+3*x+t,x+y^2+t^2);

i4: witnessForProjection(I,{2},OracleLocation=>"Example");

i5: witnessToOracle("Example") ;

i6: time oracleQuery({3,2},OracleLocation=>"Example",MakeSageFile=>true)

-- used 0.178448 s

o6: {2,4,0}

The full Newton polytope of π(X) is displayed in Fig. 2 and snapshots of
the Sage animation created by queryOracle are shown in Fig. 3. There, the red
circles are centered at γ1 = 1 and γ2 = −1 and have radius epsilon.

Fig. 3. Three snapshots of Sage animation from example with viewing window [−4, 4]2

(Color figure online)
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4 Applications

4.1 Algebraic Vision Tensor

The multiview variety X of a pinhole camera and a two slit camera is a hyper-
surface in the space of 3 × 2 × 2 tensors given by the image of twelve particular
minors of

[
A B C

]
=

⎡

⎢
⎢
⎣

a1,1 a1,2 a1,3 b1,1 b1,2 c1,1 c1,2

a2,1 a2,2 a2,3 b2,1 b2,2 c2,1 c2,2

a3,1 a3,2 a3,3 b3,1 b3,2 c3,1 c3,2

a4,1 a4,2 a4,3 b4,1 b4,2 c4,1 c4,2

⎤

⎥
⎥
⎦ .

We consider X as a subvariety of P11 given by the image of

F : C28 → C
12 [ABC] F−→ {fi,j,k}i∈{1,2,3},j,k∈{1,2}

where fi,j,k is the minor not involving columns ai, bj , and ck. This map has
17 dimensional fibres so witnessForProjection automatically slices C

28 with
17 hyperplanes to compute a witness set for X which shows that deg(X) = 6.
Therefore, its defining polynomial has an a priori upper bound of 12376 terms.
There is a group action of G ∼= S3 × S2 × S2 on [ABC] permuting the a, b, and
c columns appropriately. This extends to a transitive action on the coordinates
of the Newton polytope. A few oracle calls quickly determine that New(X) is
contained in a 7-dimensional subspace of R

12 and only has 4 vertices and 2
facets up to the G-action. In total, New(X) has 60 vertices and 6 interior points.
With only 66 possible terms, interpolation recovers the polynomial found in
Proposition 7.5 of [11].

4.2 The Lüroth Polytope

A Lüroth quartic is a plane quartic which interpolates the ten intersection points
of a configuration of five lines. The set of all Lüroth quartics is a hypersurface
H of degree 54 in the 15 coefficients of a plane quartic called the Lüroth hyper-
surface. The group G = S3 acts on the vertices of New(H) by permuting the
three indeterminants of a homogeneous quartic. A face of New(H) was found
in [9]. Using our software, we have rediscovered that New(H) is 12-dimensional
and have, so far, found 1743 vertices, belonging to 1, 1, 28, and 276 orbits of sizes
1, 2, 3, and 6 respectively.

Up-to-date computations regarding the Lüroth invariant as well as the pack-
age NumericalNP.m2 can be found at the authors webpage [5].
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Abstract. The problem of detecting when two moving ellipsoids over-
lap is of interest to robotics, CAD/CAM, computer animation, etc. By
analysing symbolically the sign of the real roots of the characteristic
polynomial of the pencil defined by two ellipsoids A and B we use and
analyse the new closed formulae introduced in [9] characterising when A
and B overlap, are separate and touch each other externally for deter-
mining the interference of two moving ellipsoids. These formulae involves
a minimal set of polynomial inequalities depending only on the entries
of the matrices A and B (defining the ellipsoids A and B), need only to
compute the characteristic polynomial of the pencil defined by A and B
and do not require the computation of the intersection points between
them. This characterisation provides a new approach for exact collision
detection of two moving ellipsoids since the analysis of the univariate
polynomials (depending on the time) in the previously mentioned for-
mulae provides the collision events between them.

Keywords: Ellipsoids separation problem
Real quantifier elimination · Closed form solutions

1 Introduction

The problem of detecting the collisions or overlap of two ellipsoids is of interest
to robotics, CAD/CAM, computer animation, etc., where ellipsoids are often
used for modelling (or enclosing) the shape of the objects under consideration
(see for example [6,10–12,14,15]). The problem to be considered here is obtain-
ing closed formulae characterising the separation by a plane of two ellipsoids in
the three dimensional real affine space by using tools coming from Real Alge-
braic Geometry and Computer Algebra. Moreover this characterisation should
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provide easily the manipulation of the formulae for exact collision detection of
two ellipsoids under rational motions (see [2,3,16]).

Note that the problem considered in this paper is not the computation of
the intersection points between the two considered ellipsoids. This intersection
problem can be solved by any numerical nonlinear solver or by “ad–hoc” meth-
ods. Nevertheless, the results later described can be used as a preprocessing step
since any intersection problem is highly simplified if the structure of the inter-
section set is known in advance: i.e. nothing to compute if it is known that the
considered ellipsoids are separated by a plane.

Our approach is based on the characterisation presented in [17] where the
separation of two ellipsoids is determined by the sign of the real roots of the
characteristic polynomial of the matrix pencil defined by the two considered
ellipsoids.

The main result of this paper is to use and analyse the new formula,
introduced in [9], characterizing when two ellipsoids are separate, overlap or
touch each other externally improving the best existing one introduced in
[13]. Compared with this solution, this approach presents, at least, three clear
improvements:

1. Less polynomials are involved: the solution in [13] requires to deal with 5
polynomials and our solution does require only 4 polynomials.

2. Less arithmetic operations are required: 23 multiplications and 12 additions
(against 28 multiplications and 12 additions in [13]).

3. The way the relative positions are characterized is simpler than in [13] (less
sign conditions are involved).

These formulae generalise to the ellipsoids separation problem the approach
introduced in [1,7] to characterise in a similar way the relative positive positions
of two ellipses in the plane. Moreover the approach presented in this paper is
specially well suited for analysing the relative position of two ellipsoids depending
on a parameter t (or two moving ellipsoids; see [4] for the similar problem for
two moving ellipses).

This paper is divided into three sections. First one is devoted to show the
approach to be used for solving the interference problem for ellipsoids. Second
one shows how to compute the intervals where two moving ellipsoids do not
overlap. Last one introduces some examples where the introduced method is
applied.

2 Underlying Theory: Formulae for the Separation,
Overlapping and External Touching of Ellipsoids

The equation of any quadric A in R
3 can be written as

a11x
2 + a22y

2 + a33z
2 + 2a12xy + 2a13xz + 2a23yz

+2a14x + 2a24y + 2a34z + a44 = 0
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or in matricial form

[
x y z 1

]
A

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦ = 0

where A is the symmetric matrix:

A =

⎡

⎢
⎢
⎣

a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44

⎤

⎥
⎥
⎦ .

Moreover, if the quadric is an ellipsoid then det(A) < 0. We assume that the
interior of the ellipsoid A is defined by XTAX < 0.

We are going to consider three possible configurations for two ellipsoids when
regarded as a solid bounded by the boundary surface XTAX = 0: separation,
overlapping and external touching. Two ellipsoids are separate if they are sep-
arated by a plane not touching the ellipsoids, are overlapping if their interiors
share a common point and are touching each other externally if they are sepa-
rated by a plane tangent to both ellipsoids.

Given two ellipsoids A : XTAX = 0 and B : XTBX = 0, their characteristic
equation (or polynomial) is defined as

f(λ) = det(λA + B) = det(A)λ4 + . . . + det(B)

which is a quartic polynomial in λ with real coefficients.
The characterization of the relative position of two ellipsoids in terms of the

sign of the real roots of their characteristic equation was introduced by [17].

Theorem 1. Let A and B be two ellipsoids with the characteristic equation
f(λ). Then:

1. The characteristic equation f(λ) always has at least two negative roots.
2. A and B are separated if and only if f(λ) has two distinct positive roots.
3. A and B touch each other externally if and only if f(λ) has a positive double

root.

In what follows, if A and B are two ellipsoids, we will turn monic its charac-
teristic polynomial and will be denoted by

f(λ) = λ4 + aλ3 + bλ2 + cλ + d.

Since A and B are ellipsoids and d = det(B)/det(A), we have d > 0.
This theorem moves to a simpler one the quantifier elimination problem over

the reals we want to solve: looking for the conditions ellipsoids A and B must
verify in order they do not share an interior common point. The problem we
will solve in the most efficient possible way will be the determination of the
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conditions the coefficients of f(λ) must verify in order to have two different
positive real roots (and knowing in advance that it is the characteristic equation
of two ellipsoids implying that has, at least, two negative real roots and that
d > 0).

Next theorems, proven in [9], present the formulae to be used for character-
ising when two ellipsoids are separate, overlap or touch each other externally.
The characterisation uses the subresultant polynomials of f(λ) and f ′(λ) (index
0 and 1) Δ(f), Δ1(f) and Δ10(f):

Δ(f) = −27d2a4 − 4a3c3 + 18a3dcb + a2c2b2 − 6a2c2d − 4a2b3d
+144a2bd2 − 192ad2c − 80ab2cd,

Δ1(f) = −6a3c + 2a2b2 − 12a2d + 28abc − 8b3 + 32bd − 36c2,
Δ10(f) = −9a3d + a2bc + 32abd + 3ac2 − 4b2c − 48cd.

Together with Descartes’ law of signs, they characterise the sign of the real roots
of f(λ) according to the conditions in Theorem 1. Subresultants and Descartes’
law of signs were also used in [13] to solve the problem at hand but the derived
formulae are different from those introduced in [9] and used here.

For a sequence of real numbers b0, b1, . . . , bn, Var(b0, b1, . . . , bn) will denote
the number of sign changes in b0, b1, . . . , bn after dropping the zeros in the
sequence.

Theorem 2. Let A and B be two ellipsoids with the characteristic equation

f(λ) = λ4 + aλ3 + bλ2 + cλ + d.

A and B are separate if and only if

1. Δ(f) > 0, Var(1, a, b, c, 1) = 2, or
2. Δ(f) = 0, Δ1(f) > 0, Δ10(f) > 0, aΔ1(f) − 2Δ10(f) < 0.

Theorem 3. Let A and B be two ellipsoids with the characteristic equation

f(λ) = λ4 + aλ3 + bλ2 + cλ + d.

A and B touch each other externally if and only if

1. Δ(f) = 0, Δ10(f)Δ1(f) < 0, or
2. Δ(f) = 0, Δ1(f) = 0, V(1, a, b, c, 1) = 2.

Theorem 4. Let A and B be two ellipsoids with the characteristic equation

f(λ) = λ4 + aλ3 + bλ2 + cλ + d.

A and B overlap if and only if

1. Δ(f) < 0, or
2. Δ(f) > 0, Var(1, a, b, c, 1) = 0, or
3. Δ(f) = 0, Δ1(f) = 0, V(1, a, b, c, 1) = 0, or
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4. Δ(f) = 0, Δ1(f) < 0, Δ10(f) < 0, or
5. Δ(f) = 0, Δ1(f) > 0, Δ10(f) > 0, aΔ1(f) − 2Δ10(f) > 0.

Compared with the best solution dealing with this problem (see [13]), our
approach presents, at least, two clear improvements:

1. Less polynomials are involved: we need to deal only with Δ(f), Δ1(f), Δ10(f)
and aΔ1(f)−2Δ10(f), while the solution in [13] requires to use two additional
polynomials (Δ2(f) = 3a2 − 8b and Δ20(f) = ac − 16d).

2. The way the relative position is determined is simpler than in [13]: starting
with the (strict) sign of Δ(f) and generically ending with the computation
of V(1, a, b, c, 1). When Δ(f) = 0, we continue by analysing the (strict) signs
of Δ1(f), Δ10(f) and aΔ1(f) − 2Δ10(f). And when Δ1(f) = 0, we end by
computing Var(1, a, b, c, 1).

3 Application: Moving Ellipsoids

The formulae presented in the previous section can be applied to study the case
of two ellipsoids depending on one parameter. For example, given two moving
ellipsoids A(t) : XTA(t)X = 0 and B(t) : XTB(t)X = 0, respectively, A(t) and
B(t) are said to be collision-free if A(t) and B(t) are separate for all t in a given
interval; otherwise A(t) and B(t) collide.

The characteristic equation of A(t) and B(t),

f(λ; t) := det (λA(t) + B(t)) = 0

is a degree four polynomial in λ with real coefficients depending on the param-
eter t. At any time t0, if A(t0) and B(t0) are separate then f(λ; t0) has two
distinct positive roots; otherwise A(t0) and B(t0) are either touching externally
or overlapping, and f(λ; t0) has a double positive root or no two positive roots,
respectively.

In order to determine the relative position of the considered ellipsoids, the
study of the sign behaviour of the roots of the characteristic polynomial for
all the possible values of the parameter t is required. This is accomplished by
using the formulae introduced in the previous section producing in an automatic
manner (and in terms of t) the behaviour of the sign of the real roots of f(t;λ).

We start by computing Δ(f) which is a polynomial in t. If it is not identically
zero then we determine the real roots γ1 < . . . < γs of the polynomials a(t), b(t),
c(t) and Δ(f). Next, we analyse the partition of R provided by them and keep
those points and intervals where

1. Δ(f) > 0, Var(1, a, b, c, 1) = 2, or
2. Δ(f) = 0, Δ1(f) > 0, Δ10(f) > 0, aΔ1(f) − 2Δ10(f) < 0.

If Δ(f) is identically zero and Δ1(f) is not identically zero then we determine its
real roots τ1 < . . . < τq and keep those intervals where Δ1(f) > 0, Δ10(f) > 0
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and aΔ1(f) − 2Δ10(f) < 0. In this way we obtain those values of t such that
A(t) and B(t) are separate.

If Δ1(f) is identically zero then, for every t, A(t) and B(t) touch each other
externally or overlap. The first case arises when Var(1, a, b, c, 1) = 2 and the
second one when Var(1, a, b, c, 1) = 0. In this situation it is enough to analyse
the partition of R provided by the real roots of a(t), b(t) and c(t).

4 Functionality

The formulae presented in the previous section allows to consider in a very
efficient way the problem of determining the non interference intervals for two
moving ellipsoids (see [2,3]). First experiments in Maple shows a very good
practical behaviour. According to Theorem 2, Theorem 3 and Sect. 3, we need
to compute the following polynomials:

Δ(f), Δ1(f), Δ10(f), aΔ1(f) − 2Δ10(f) .

Following [13] (and [5]) we proceed in the following way by denoting first:

b = −a

4
, c =

b

6
, d = − c

4
, e = d

and determining:

D2 = b
2 − c W1 = d − b c T = −9W 2

1 + 27D2D3 − 3W3D2

D3 = c2 − b d W3 = e − b d A = W3 + 3D3

B = −dW1 − eD2 − cD3

T2 = AW1 − 3bB
D1 = A3 − 27B2

Finally the searched polynomials are given by

Δ(f) = D1, Δ1(f) = T, Δ10(f) = T2, aΔ1(f) − 2Δ10(f) = aT − 2T2.

The above expressions take 23 multiplications and 12 additions (agains the 28
multiplications and the 12 additions in [13]).

Example 1. Let A(t) and B(t) be two moving ellipsoids defined by

t4 − 2 t2x + 2 t2 − 2 ty − 2 tz + x2 + y2 + z2 = 1

and

x2
(
t4 + 2t2 + 1

)
+ t2y2

(
t4 + 2 t2 + 1

)
+ t6 − 2 zt4 + t2z2 = t2

respectively, where t ∈ R. In this case Δ(f) is a degree 76 polynomial in t
with only three different real roots, γ1 = −0.8195884928, γ2 = 0 and γ3 =
1.035723920. The real roots of a(t), b(t) and c(t) are:

a(t) : γ4 = −0.9389188732, γ5 = 1.072516819
b(t) : γ6 = −0.7654533193, γ2 = 0, γ7 = 0.9435132848
c(t) : γ8 = −0.7536913873, γ2 = 0, γ9 = 1.070639969
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Analysing the partition of R given by the γi and the τj , we conclude that
Δf > 0 and Var(1, a, b, c, 1) = 2 in (−∞, γ1) and (γ3,+∞). By using Theorem 3,
this implies that A(t) and B(t) are separate when t belongs to (−∞, γ1) or
(γ3,+∞). Since Δ(f) < 0 in (γ1, γ3) we conclude that A(t) and B(t) overlap
when t ∈ (γ1, γ3). By continuity, we conclude that A(γi) and B(γi) (i = 1, 3)
touch each other externally. Figure 1 shows images of A(t) and B(t) for different
values of t.

Fig. 1. Upper left: A(γ1) and B(γ1). Upper right: A( 1
2
) and B( 1

2
). Down left: A(γ3)

and B(γ3). Down right: A( 5
4
) and B( 5

4
).

Example 2. Let A(t) and B(t) be two moving ellipsoids defined by

(x + 12t − 11)2

4
+ y2 + z2 = 1

and
(x − 3)2

4
+ (y − 4t + 2)2 + (z − 4t + 4)2 = 1,

respectively, where t ∈ [0, 1] (example extracted from [13]). In this case

f(λ; t) = λ4 +
(−68t2 + 96t − 32

)
λ3 +

(−136t2 + 192t − 66
)
λ2

+
(−68t2 + 96t − 32

)
λ + 1

= (λ + 1)2(λ2 + (−68t2 + 96t − 34)λ + 1),
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Δ(f) ≡ 0 and Δ1(f) = Δ10(f) is a degree 8 polynomial in t with only two
different real roots, γ1 = 0.5395042868 and γ2 = 0.8722604191. This implies, by
using Theorem 3, that A(γi) and B(γi) (i = 1, 2) touch each other externally
because

Var(1, a(γi), b(γi), c(γi), 1) = Var(1, 0,−2, 0, 1) = 2.

In this particular case, using Theorem 3.10 in [13] to determine the relative
position of A(ti) and B(ti) requires to compute the signs of Δ2(f) and Δ20(f)
evaluated at γ1 and γ2.

In order to determine the relative position of A(t) and B(t) when t belongs to
[0, γ1), (γ1, γ2) and (γ2, 1] we proceed by selecting a test point at each interval
and applying, since Δ(f) = 0, Theorem 2 (second condition) and Theorem 4
(forth condition):

– t = 1/4: Δ1(f) = Δ10(f) > 0 and a(1/4)Δ1(f) − 2Δ10(f) < 0 implies that
A(t) and B(t) are separate when t ∈ [0, γ1).

– t = 7/10: Δ1(f) = Δ10(f) < 0 implies that A(t) and B(t) overlap when
t ∈ (γ1, γ2).

– t = 9/10: Δ1(f) = Δ10(f) > 0 and aΔ1(f) − 2Δ10(f) < 0 implies that A(t)
and B(t) are separate when t ∈ (γ2, 1].

Fig. 2 shows images of A(t) and B(t) for different values of t.

Fig. 2. Upper left: A( 1
4
) and B( 1

4
). Upper center: A(γ1) and B(γ1). Upper right: A( 7

10
)

and B( 7
10

). Down left: A(γ2) and B(γ2). Down right: A( 9
10

) and B( 9
10

).
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The main difficulty of this approach relies on the degree of Δ(f) but there
are very efficient software packages computing very fast the real roots of the
polynomial arising as the discriminant of f(t;λ) = det(λA(t) + B(t)).
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Abstract. Given a finite set of distinct points, a separator family is
a set of polynomials, each one corresponding to a point of the given
set, such that each of them takes value one at the corresponding point,
whereas it vanishes at any other point of the set. Separator polynomi-
als are fundamental building blocks for polynomial interpolation and
they can be employed in several practical applications. Ceria and Mora
recently developed a new algorithm for squarefree separator polynomials.
The algorithm employs as a tool the point trie structure, first defined by
Felszeghy-Ráth-Rónyai in their Lex game algorithm, which gives a com-
pact representation of the relations among the points’ coordinates. In
this paper, we propose a fast implementation in C of the aforementioned
algorithm, based on an efficient storing and visiting of the point trie. We
complete the implementation with tests on some sets of points, giving
different configurations of the corresponding tries.

Keywords: Separator polynomials · Point trie

1 Introduction

Given a finite set of distinct points X := {P1, ..., PN} ⊂ kn, separator polyno-
mials for X are polynomials Q1, ..., QN ∈ k[x1, ..., xn] such that ∀1 ≤ i, j ≤ n,
Qi(Pj) = δi,j .

They have many applications in all fields of science, since they are the build-
ing blocks for polynomial interpolation. They are usually computed by means
of some version Moeller algorithm [5,6], which gives also the whole Groebner
basis for the ideal I(X) of the points. The currently available implementations
of Moeller algorithm have complexity O(n2N3) (see [7, Vol. 2, 29.4.2]); if the
improvement by Lundqvist would have been implemented (it is still not avail-
able) we would have complexity O(min(N,n)N3 + nN2). There are also some
formulas to compute such polynomials [2,4], but, as remarked in [4], they add
redundancy to the polynomials, which can be removed after computing them.

In [1], the authors developed an algorithm, based on Felszeghy-Ráth-Rónyai’s
point trie, which directly computes the separator polynomials, avoiding the
c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 98–104, 2018.
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redundancy so not needing to prune it afterwards. The complexity of the algo-
rithm is O(N2log(N)n + N min(N,nr)).

The aim of this paper is to describe an efficient implementation of the algo-
rithm in [1] which leans on an efficient storing and visiting of the point trie. We
complete the implementation with tests on some sets of points, giving different
configurations of the corresponding tries.

2 Notation

Throughout this paper we mainly follow the notation of [7]. We denote by P :=
k[x1, ..., xn] the ring of polynomials in n variables with coefficients in the field
k.

Let X = {P1, ..., PN} ⊂ kn be a finite set of distinct points

Pi := (a1,i, ..., an,i), i = 1, ..., N.

We call
I(X) := {f ∈ P : f(Pi) = 0, ∀i},

the ideal of points of X.
Finally we recall some definitions from Graph Theory, following the notation

of [2].

Definition 1. We call tree a connected acyclic graph. A rooted tree is a tree
where a special vertex (or node) called root is singled out.

We say that a vertex is on the h-th level of the tree if its distance from the root
is h, i.e. we have to walk on h edges to come from the root to the given vertex.
If v is a vertex different from the root, and u is the vertex preceding v on the
path from the root, then u is the parent of v and v is a child of u. Two vertices
with the same parent are called siblings. If v is a vertex different from the root
and u is on the path from v to the root, then u is an ancestor of v and v is a
descendant of u. Clearly the root has no parent. We call leaves all the vertices
having no children and we say that a branch is a path from the root to a leaf.

We consider always trees where all branches have the same length. The ver-
tices lying in the last level of the tree coincide with the leaves; there are no
vertices of the tree under them.

3 Separator Polynomials

In this section, following the notation of [4], we define separator polynomials.

Definition 2. A family of separators for a finite set of distinct points X =
{P1, ..., PN} is a set Q = {Q1, ...., QN} s.t. Qi(Pj) = δij, 1 ≤ i, j ≤ N , where
δij denotes the Kronecker delta.
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Separators are useful building blocks for polynomial interpolation, in the
sense that, every time one has to find a polynomial p ∈ k[x1, .., xn] such that
p(Pi) = bi for bi ∈ k, 1 ≤ i ≤ N , it is possible to find it by computing a separator
family for X and setting

p(x1, ..., xn) =
N∑

i=1

biQi(x1, ..., xn).

We denote the points in X, as in [1], so by Pi := (a1,i, ..., an,i), i = 1, ..., N,
and we define the witness matrix C = (ci,j) [4], as the symmetric matrix s.t.,
for i, j ∈ {1, ..., N}, ci,j = 0 if i = j and if i �= j, ci,j = min{h : 1 ≤ h ≤
n s.t. ah,i �= ah,j}. In other words, the witness matrix represents the minimal
index h such that two points share the first 1, ..., h−1 coordinates, but they have
different h-coordinate. Using this matrix and the coordinates of the points, we
can compute the polynomials we will use as constituting factors for our separator
polynomials:

p
[ci,j ]
i,j =

xci,j − aci,j ,j

aci,j ,i − aci,j ,j

In the paper [4], separator polynomials are built with the following variation
of Lagrange’s formula:

Ri =
∏

i�=j

xci,j − aci,j ,j

aci,j ,i − aci,j ,j
=

∏

j �=i

p
[ci,j ]
i,j .

Then, it is observed that repeated factors do not affect the values taken by the
polynomials Ri on the points of X, and so the repeated factors are indicated as
useless.

In the next section, we show how to compute directly the squarefree versions
of these polynomials.

4 An Algorithm for Computing Separator Polynomials

In this section, following [1], we show how it is possible to compute directly
squarefree separator polynomials, via a purely combinatorial algorithm. Our
tool is the point trie, defined in [2] and presented in details also in [4].

Definition 3. A trie is a rooted tree s.t. there is a symbol from a fixed alphabet,
written on each edge.

We use a trie of this kind, called point trie, to represent the points of the set
X and the reciprocal relations among their coordinates. In particular, we label
both the nodes and the edges:

– each edge is labelled by a coordinate; in particular the i-th coordinates are
those labelling edges connecting nodes at levels i − 1 and i;
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– the nodes, denoted by vi,u, contain as label sets Vi,u of indices, identifying the
points whose 1...i-th coordinates coincide (at least until level i). If for some
i, u, |Vi,u| ≥ 2 we call its elements twin points.

The trie is constructed iteratively on the points, appending to the trie the
branches corresponding to the points one by one, as shown in the Fig. 1, that
refers to the set X = {P1 = (1, 0, 0), P2 = (0, 1, 0), P3 = (1, 1, 2), P4 = (1, 0, 3)}
of [1].

Fig. 1. The trie construction

Let now give a description of the algorithm, following [1]; in the next sections,
we will give a closer look to the implementation.

If the given set X is composed by only one point X = {P1}, then the separator
polynomial is Q1 = 1. Suppose now to know the separator family {Q1, ..., QN−1}
for {P1, ..., PN−1} and to add the point PN getting X = {P1, ..., PN}. We com-
pute the separator family {Q′

1, ..., Q
′
N} for X, by computing the new polynomial

QN , associated to PN and by updating Q1, ..., QN−1, making them fulfill Defi-
nition 2 for the whole X:

1. set Q′
N = 1;

2. ∀j = 1, ..., n (the index j represent a level of the trie, i.e. a variable, so we
are actually performing a pre-order walk on the trie), consider the (unique)
node vj,u with N ∈ Vj,u.

3. ∀vj,u′ , sibling of vj,u, pick some i ∈ Vj,u′ and set Q′
N = Q′

Np
[j]

N,i
;

4. if, at level j, N has no twin points, i.e. if |Vj,u| = 1, then for each sibling vj,u′ ,
for each i ∈ Vj,u′ , we set Q′

i = Qip
[j]
i,N .
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Once concluded the above procedure, if, for some 1 ≤ h ≤ N a separator
polynomial Qh, has not been modified by the above steps, we set Q′

h = Qh,
getting a separator family {Q′

1, ..., Q
′
N} for X = {P1, ..., PN}.

5 How to Implement the Algorithm

In this section, we give some concrete details on the implementation and we
provide some results of our testing activities.

First of all, Fig. 2 shows a toy example and represents both the trie construc-
tion and the resulting separator polynomials for the set X = {P1 = (0, 0), P2 =
(1, 2), P3 = (4, 2), P4 = (1, 3), P5 = (7, 4)}:

Fig. 2. A toy example: trie and separator polynomials

This trie is implemented in C using structs and pointers [8]. A graphical repre-
sentation of its memory allocation is shown in Fig. 3

Fig. 3. Representation of the implemented trie for the toy example

We choose this approach because it minimizes the number of pointers allocated
for each node and it also provides the possibility to add nodes dynamically at
runtime. Moreover, the approach adopted avoids to store useless nodes, keeping,
for example, the twin nodes as a part of a single node. The advantages of this
approach can be appreciated as soon as the number of points grows consistently.
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Our testing activities has been executed on point sets over some fields of the
form k = F2m , m ∈ N. For simplicity, our implementation treats the elements of
F2m as positive integers. In particular we

– fix a primitive element α ∈ F2m ;
– set F2m = {0, α, α2, ..., α2m−1 = 1};
– identify αi with i.

Notice that the element 0 is actually identified with 0, whereas since 1 = α0 =
α2m−1, we associate 2m − 1 to the element 1 ∈ F2m .

In order to evaluate the performance of the algorithm, we run our code on
a laptop equipped with an Intel Core i7-7700HQ processor — cache 6 MB, base
frequency 2.8 GHz, maximum frequency 3.8 GHz, 4 cores, 8 threads — and 32 GB
of RAM. The operative system installed is Kubuntu 16.04.

In our testing activities, we generate points with three and four coordinates,
which give different configurations of the trie, but it is trivial to extend it to more
coordinates. The computational time spent to construct the trie and to compute
the separator polynomials runs between 0.01 s — best case, 1,024 points, three
coordinates — and 6 min. — worse case, 65,536 points, four coordinates (see
Table 1 for more details).

Table 1. Time spent to compute the separator polynomials

Number of points Number of coordinates Time spent (seconds)

1,024 3 0.01

4,096 3 1.02

12,341 3 2.68

16,384 3 8.41

65,536 3 240.52

512 4 0.01

65,536 4 373.37

6 Conclusions

In this paper, after recalling the definition an the importance of separator poly-
nomials for interpolation, we have shown how to implement the algorithm intro-
duced in [1] for computing them directly in a squarefree and redundancy-free
way, which does not require pruning useless multiplicative factors.

Our testing activities suggest that the implementation of the algorithm does
not use a large amount of memory and it runs quite fast enough, providing us the
possibility to run the code with a high number of nodes that is relevant w.r.t. the
numbers found in literature — see [3] for example. Notice that in [3] the number
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of variables is bigger than the number of points, but this is not relevant for the
resources and time employed by our implementation. Anyway, it is possible to
improve the performances of our implementation by keeping track of the last
sibling for each node and of the last twin stored in a node. Of course, at a cost
of increasing memory consumption, one can speed up the code, since insertion
of new points would not require reading all the siblings/twins anymore.
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2. Felszeghy, B., Ráth, B., Rónyai, L.: The lex game and some applications. J. Symbolic
Comput. 41(6), 663–681 (2006)

3. Laubenbacher, R., Stigler, B.: A computational algebra approach to the reverse
engineering of gene regulatory networks. J. Theor. Biol. 229(4), 523–537 (2004)

4. Lundqvist, S.: Vector space bases associated to vanishing ideals of points. J. Pure
Appl. Algebra 214(4), 309–321 (2010)

5. Marinari, M.G., Moeller, H.M., Mora, T.: Gröbner bases of ideals defined by func-
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Abstract. The computation of intersection points of generic tropical
hyper-surfaces is a fundamental problem in computational algebraic
geometry. An efficient algorithm for solving this problem will be a basic
building block in many higher level algorithms for studying tropical vari-
eties, computing mixed volume, enumerating mixed cells, constructing
polyhedral homotopies, etc. libtropicon is a library for computing inter-
section points of generic tropical hyper-surfaces that provides a unified
framework where the several conceptually opposite approaches coexist
and complement one another. In particular, great efficiency is achieve by
the data cross-feeding of the “pivoting” and the “elimination” step —
data by-product generated by the pivoting step is selectively saved to
bootstrap the elimination step, and vice versa. The core algorithm is
designed to be naturally parallel and highly scalable, and the implemen-
tation directly supports multi-core architectures, computer clusters, and
GPUs based on CUDA or ROCm/OpenCL technology. Many-core archi-
tectures such as Intel Xeon Phi are also partially supported. This library
also includes interface layers that allows it to be tightly integrated into
the existing ecosystem of software in computational algebraic geometry.

Keywords: Tropical hypersurfaces · Mixed volume · Mixed cells
BKK bound · Polyhedral homotopy

1 Introduction

Finding common solutions to a multivariate nonlinear polynomial system is a
fundamental problem in computational mathematics with a great variety of
important applications. While the most meaningful space for searching for such
common solutions is the field of complex numbers C due to the rather special
feature of being algebraic closed, the vastness of C, however, poses challenges for
computer programs. For instance, from a measure theory point of view, almost
no complex number can be represented exactly using floating point numbers. In
this light, the “tropical intersection problem” can be viewed as a particularly
attractive discretization of this problem. In this tropical version, C is replaced
c© Springer International Publishing AG, part of Springer Nature 2018
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by a tropical semiring [8] which is the extended real numbers with the addition
and multiplication operations defined as minimum and addition respectively.
The notion of polynomial functions and their zero sets can be extended to this
semiring, and we thus have the “tropicalized” problem of finding intersections of
zero sets for multivariate nonlinear polynomial systems in this context. Among
several different computational aspects in this rich framework, libtropicon focuses
on the problem of computing “generic intersections”. The finite and combinato-
rial nature of the generic intersection problem make it particularly suitable for
numerical computation (using floating point arithmetic). Yet great deal of infor-
mation of about the original algebraic problems can be uncovered from these
tropical intersections. For instance, generic root count (intersection number) of
a given polynomial system can be directly extracted from tropical intersections.
More importantly, from a computational view point, the rich data structures
produced by such tropical intersection points are also the necessary ingredient
for constructing a polyhedral homotopy method [3] for numerically locating all
complex roots of the original polynomial system.

2 Problem Statement

The mathematical problem that libtropicon solves is the computation of intersec-
tion points of generic tropical hypersurfaces. Interestingly, this problem coincide
with several different problems with seemingly independent origins. We briefly
describe some of the key formulations.

2.1 Tropical Formulation

Consider the tropical semiring T = (R ∪ {∞},⊕,�) with a ⊕ b = min(a, b) and
a�b = a+b. Given a Laurent polynomial (a polynomial with potentially negative
exponents) p(x) =

∑
a∈S caxa where xa = (x1, . . . , xn)(a1,...,an)

�
= xa1

1 · · · xan
n ,

it gives rise to the piecewise linear function

L(x) = min {ca + 〈a,x〉 | a ∈ S}, (1)

if addition and multiplication are to be interpreted as the tropical operations
⊕ and � respectively. The “zero set” V(p) of p over T is then defined to be
the set of points where L is not differentiable, i.e., points where two or more
linear pieces of L(x) meet. Following the terminology from algebraic geometry
(over C), such a zero set will be known as a tropical hypersurface when it is of
codimension one.

Problem 1. Given sets of monomials M1, . . . ,Mr ⊂ R[x±
1 , . . . , x±

n ], we consider
generic Laurent polynomials p1, . . . , pr in these sets of monomials, i.e., each pk is
a linear combination of monomials in Mk with generic (nonzero) real coefficients.
We want to find the intersection of the tropical hypersurface

⋂r
k=1 V(pk).
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2.2 Mixed Cells Formulation

The above problem has a nearly equivalent formulation rooted from general-
ized coherent subdivision problem for point configurations: Given finite sets
S1, . . . , Sr ⊂ R

n, an r-tuple (t1, . . . , tr) ∈ (Z+)r with
∑r

k=1 tk = n, and func-
tions ω1, . . . , ωr with each ωk : Sk → R having generic images, we define
Ŝk = {(a, ωk(a)) | a ∈ Sk} ⊂ R

n+1 for k = 1, . . . , r. The main problem is to find
all the r-tuple of faces of conv(Ŝ1), . . . , conv(Ŝr) matching the dimensions given
by (t1, . . . , tr) that can share the same “upward pointing” inner normal vector:

Problem 2. Given S1, . . . , Sr and ω1, . . . , ωr described above, we want to
find all possible r-tuples ({ai1,0 , . . . ,ai1,t1

}, . . . , {air,0 , . . . ,air,tr
}) of subsets of

Ŝ1, . . . , Ŝr respectively for which there exists an α ∈ R
n such that for each

k = 1, . . . , r

〈aik,0 , α + ωk(aik,0) = 〈aik,j
, α + ωk(aik,j

) for j = 1, . . . , tk

〈aik,1 , α + ωk(aik,1) < 〈a , α + ωk(a) for a ∈ Sk \ {aik,0 , . . . ,aik,tk
}.

It can be verified that in the r = n case, Problems 1 and 2 are equivalent
despite the rather different presentations. The r-tuples of points are known as
mixed cells [3] of type (t1, . . . , tr), and they play a crucial role in the construction
of polyhedral homotopies for solving a Laurent polynomial system.

2.3 Incremental Cayley’s Trick Formulation

Yet another formulation of this problem is connected to the well known Cayley’s
trick and the phase one problem in linear programming. By introducing a new
set of variables hk := 〈aik,0 , α〉 + ωk(aik,0) for k = 1, . . . , r as in Problem 2, we
obtain the equivalent system

〈aik,j
, α〉 − hk = −ωk(aik,j

) for j = 1, . . . , tk

〈a, α 〉 − hk > −ωk(a) for a ∈ Sk \ {aik,1 ,aik,2},

With this, we get a reformulation of Problem 2 that resembles a generalized
“Phase One” problem in linear programming:

Problem 3. Given S1, . . . , Sr, (t1, . . . , tr), and ω1, . . . , ωr described above, let Ǎk

to be the matrix whose rows are (a,−1) for points a ∈ Sk, and let ck be the
column vector with corresponding entries of −ωk(a) for a ∈ Sk. We want to find
all possible (α, h1, . . . , hr) ∈ R

n+r such that

Ǎk

[
α
hk

]

≥ ck with tk equalities hold, for each k = 1, . . . , r. (2)

Here, the term “incremental” Cayley’s trick refers to the fact that each group
of inequality in (2) is embedded into R

n+1 separately. Note that for each k, (2) is
a generalized version of the Phase-One problem in linear programming. Therefore
Problem 3 is a problem of simultaneous Phase-One problem: it requires the
solutions (α, h1), . . . , (α, hr) to the r different generalized Phase-One problem to
share the same projection onto the first n coordinates.
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3 Applications

While finding the generic intersection points of tropical hypersurfaces is an inter-
esting problem in its own right [5,9], the result also has a variety of important
applications in computational mathematics which we shall outline below.

3.1 Root Counting Problem and the BKK Bound

One direct application of the generic tropical intersection points is the root
counting problem. For each intersection point (component) in Problem 1, an
intersection number (multiplicity) can be defined. The generic intersection num-
ber of the tropical hypersurfaces is defined to be the sum of all the intersection
numbers at all the intersection points.

Theorem 1 (Huber and Sturmfels [3]). Given a system of n Laurent poly-
nomials f1, . . . , fn in n variables with generic coefficients, the total number of
isolated common zeros in (C∗)n equals the generic intersection number of the n
tropical hypersurfaces defined by f1, . . . , fn.

Here (C∗)n = (C \ {0})n is known as the “algebraic torus”. This generic root
count has since been known as the BKK bound or the mixed volume bound. This
restriction on the domain of the root counting problem is minor and can be
removed using the more general version of this theorem developed in [4,7,12].

3.2 Polyhedral Homotopy

The constructive proof of Theorem 1 gives rise to a numerical homotopy method
for solving polynomial systems. Given a system of (Laurent) polynomials F =
(f1, . . . , fn) in the n variables x = (x1, . . . , xn) with generic coefficients, finding
all isolated complex solutions of F (x) = 0, i.e., fk(x1, . . . , xn) = 0 for k =
1, . . . , n, is a fundamental problem in computational mathematics. If we write
the i-th polynomial in F as fi =

∑
a∈Si

caxa using the multi-index notation as
before, we could consider the homotopy H = (h1, . . . , hn) given by

hi(x, t) =
∑

a∈Si

ci,axa tω1(a) for i = 1, . . . , n (3)

where ωi : Si → R are functions with generic images that play the same roles
as the lifting functions in Problem 2. Clearly, H is continuous in x and t for
t > 0, and H(x, 1) = F (x). Moreover as t varies between 0 and 1, the isolated
solutions of H(x, t) = 0 in (C∗)n also move smoothly and form solution paths
reaching the solutions of F (x) = H(x, 1) = 0 at t = 1. The end points of these
paths include all solutions of the original system F (x) = 0 in (C∗)n. Numerical
continuation method can therefore be applied to trace these paths to reach the
solutions if their starting points are known.

The difficulty, however, is that the starting points of these solution paths
cannot be identified directly since at t = 0, H(x, 0) becomes identically zero.
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An ingenious observation in [4] is that the tropical intersection points are
exactly the right tool to resolve this difficulty: Under the genericity assump-
tion of the functions ωi, all solution paths escape (C∗)n as t → 0, and the
asymptotic behavior of each path is characterized by (y1 tα1 , . . . , yn tαn) for some
y = (y1, . . . , yn) ∈ (C∗)n and a tropical intersection point α = (α1, . . . , αn) in
Problem 1. Finding the tropical intersection points is therefore the key step in
bootstrapping the polyhedral homotopy construction.

3.3 Regular Triangulation of High Dimensional Polytopes

Finally, as a special case, libtropicon can be used to produce a regular triangu-
lation for any convex polytope of any dimension. Indeed, given a finite set of
vertices S1 ⊂ R

n, we consider the special case of Problem 2 with r = 1 and type
(t1) = (n). It can be verified that in this case, the mixed cells of type (n) are in
one-to-one correspondence with the cells in a regular triangulation of the convex
polytope conv(S).

4 Underlying Theory

To briefly outline the underlying theory behind libtropicon, we shall focus on the
formulation given in Problem 3. At a solution x to the system Ax ≥ c with
rank A = N = n + 1, a row a of A is said to be active if 〈a,x〉 = ck where ck is
the corresponding entry in c. If there are N linear independent active rows, x is
known as a basic feasible solution.

A level-k basic feasible solution is simply a basic feasible solution of the
combined system

Ǎij

[
α
hij

]

≥ cij with at least tij equalities hold for each j = 1, . . . , k (4)

for a subset {i1, . . . , ik} of the indices1 1, . . . , r.

4.1 The Intersection-Elimination-Pivot Scheme

A series of successful software packages [1,6,10,11] for computing intersections of
tropical hypersurfaces share a common basic incremental scheme that, in hind-
sight, could be described as an “intersection-elimination-pivot” scheme. This
scheme starts with all the basic feasible solutions of Ǎix ≥ ci for certain
i ∈ {1, . . . , n} and attempt to extend each into level-k extended basic feasi-
ble solutions for increasingly higher values of k until reaching all the level-r
extended basic feasible solutions.

1 Note that the level-k basic feasible solution defined here is but a simplified prototype
of the much more technical concept of “level-k subfaces” that is actually used in
family of algorithms [1,2,6,10] whence libtropicon inherits much of the core ideas.
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This scheme consists of several complicated algorithms. The organization and
detail of each algorithm will be outside the scope of this extended abstract. We
only outline the general mathematical problem behind each step and highlight
some of the new improvements over existing implementations. We refer to [1] for
the complex organization of these steps.

Intersection. Using the information from two level-1 basic feasible solutions of
Ǎix ≥ ci and Ǎjy ≥ cj respectively, the intersection step seeks to construct a
point α ∈ R

n together with hi and hj such that

Ǎi

[
α
hi

]

≥ ci and Ǎj

[
α
hj

]

≥ cj . (5)

This step also generalizes to the problem of finding a level-(k1+k2) basic feasible
solution using a level-k1 and level-k2 basic feasible solutions. This question can
be loosely interpreted as a local version of the tropical intersection problem.

Elimination. Using information produced from the previous step, the goal of
the elimination step is to eliminate the possibility of certain level-k basic feasible
solutions with minimum computational cost. This step closely resembles some
of the key ideas in integer programming.

The relation table proposed in [2] is one of the first data structure designed
for fast elimination. This simple idea has been proved to be extremely effective. It
also sparked a series of related works on this idea. The technique developed in [11]
is a major improvement on the relation table based method. libtropicon adopts
a far generalization of this general idea to drastically improve the effectiveness
of the elimination step with little computational cost. We will simply state the
main theorem behind this idea in Sect. 4.2.

Pivot. Finally the pivot step walks from one level-k basic feasible solution to
another. For a fixed k, the level-k basic feasible solutions are organized into a
(not necessarily connected) graph. The pivot step is therefore constructed as a
graph walking algorithm.

4.2 The Conic Elimination Method

Compare to other existing implementations, one distinguishing feature of libtrop-
icon is the adoption of the “conic elimination method” which brings substantial
improvement in the effectiveness of the elimination step.

Conic elimination is a series of tests that can quickly eliminate many can-
didates for level-(k + 1) basic feasible solutions using only the local geometric
information encoded in a level-k basic feasible solution. For brevity, we only state
one version of such conic elimination tests. Recall that in linear programming,
the set of indices of active constraints at a basic feasible solution is called basic
indices, and the sub-matrix formed by active constraints is the basic matrix.
Naturally, the inverse of the basic matrix is known as the basic inverse.
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Theorem 2. Let x and y be two level-1 basic feasible solutions to Ǎix ≥ ci and
Ǎjy ≥ cj respectively. Let Δx and Δy be the set of basic indices at x and y
respectively. Also let Di and Dj be the corresponding basic inverse matrix with
columns of Dj denoted by d� for � ∈ Δj. For two sets Fi ⊆ Δx and Fj ⊆ Δy, if
there exists some b1 ∈ Fi and b2 ∈ Δx such that

〈d�, ǎb2 − ǎb1〉 ≤ 0 for each � ∈ Δy \ Fj

〈y − x, ǎb2 − ǎb1〉 < 0

then the constraints indexed by Fi and Fj cannot belong to the same level-2 basic
feasible solutions.

This test can be easily extended to be used for eliminating general level-k
basic feasible solutions.

5 Technical Contribution

5.1 Data Cross-Feeding

One notable technical feature of libtropicon, compared to previous implementa-
tions, is that data from different algorithms are shared and reused. In particular,
the data by-product of the “intersection” step are selectively saved and used in
the elimination step and vice versa. Memory occupied by data that are no longer
needed can also be detected and freed immediately resulting in much more effi-
cient memory usage.

5.2 Parallelization on Shared-Memory Architectures via Task
Graphs

Today, parallel computation is an integral part of any high performance software
for numerical computation. Parallel computation on shared-memory architec-
tures such as modern multi-core systems are directly supported via a task-based
model (independent calculations are organized into “tasks” that can be sched-
uled to run in parallel). Task-based models are generally considered to be much
more scalable and flexible than thread-based models. While libtropicon inherited
the basic “task pool” framework adopted in Hom4PS-3 [1], this framework is
refined using the more flexible “task graphs” which organize the tasks into a
dependency graph. This change allows libtropicon to be scaled to systems with
more processor cores.

5.3 Low Latency GPU Implementations

An increasingly important trend in high performance computing is the use
of GPU (graphics processing units) devices in general purpose computing
tasks. GPU based parallel computation is also supported by libtropicon through
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NVidia’s CUDA and AMD’s ROCm OpenCL framework2. In the previous prelimi-
nary GPU-based implementation [1] the data structure that completely describes
the level-k basic feasible solutions are transferred back and forth between CPU
and GPU devices. Such data structures contains several N × N matrices in
double precision floating point numbers. Therefore, in hindsight, this is clearly
the main cause of the rather high latency. In libtropicon, only the very short
hash keys (256 bits by default) that identifies the basic feasible solutions are
passed between CPU and GPU devices while the actual data remains in the
GPU devices. This change greatly reduced the CPU-to-GPU latency.
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Abstract. We present a new method to plot planar implicit curve in a
given box B ∈ R

2. Based on analyzing the geometry of the level sets of
the given function, following the points with local maximal (or minimal)
curvatures on the level sets, we compute points on each components of
the given function in box B and trace each component to plot the curve.
We also used this method to find real zeros of bivariate function systems
in a given box. The experiments shows that our implementation works
well. It works for polynomials with degrees more than 10,000. It also
works for non-polynomial case.

Keywords: Plotting · Planar implicit curve · Level sets · Curvature
Real solving · Bivariate function systems

1 Introduction

Plotting planar implicit curves is a basic topic in computer aided geometric
design and computer graphics. There are some methods that plot implicit curves
with guaranteed topology, for example [9]. These methods require the topology
of the curves is known. Computing the topology of the curves mainly use sym-
bolic computation. One classic method is cylindrical algebraic decomposition
and relevant modified methods [1,5,10]. Subdivision methods are well studied
in plotting implicit curves, for example, marching cube, PV algorithm and the
related modified algorithms [13–18]. Continuation methods need to find sample
points on each component and then trace the curve components. The most diffi-
cult part is to find sample points on the components. There already exists some
work [7,12]. There are also some related softwares [2,3,8].

In this paper, we present a new method, which we call it level set sweeping
method. Before we present our new method, we introduce some notations.

Denote Ci(Ω) as a class of all i-order continuous differentiable functions
defined in Ω, where Ω ⊂ R

n. Let Σ = {f1, . . . , fm} ⊂ C2(Ω), Ω ⊂ R
n.
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We denote all the real zeros of Σ = 0 as V(Σ) and the gradient of f as
∇(f) = ( ∂f

∂x1
, . . . , ∂f

∂xn
). In the following, we always assume that f ∈ C2(Ω).

A point p ∈ Ω is called a stationary point or critical point of f , if
∇(f)(p) = 0. Let p0 ∈ Ω. If ∃δ > 0 s.t. U = {p | ||p − p0|| < δ} ⊂ Ω, and
f(p) ≤ f(p0) (f(p) ≥ f(p0)), ∀p ∈ U , then we call p0 is a maximum point
(minimum point) of f . The minimum and maximum points are both called
extreme points of f . It is clear that an extreme point of f is a stationary point
of f .

A point p ∈ Ω is called a saddle point of f , if p is a stationary point but
not an extreme point of f .

Definition 1. Let g ∈ Ck(Ω) with Ω ⊂ R
n. We call g = 0 singular if the

variety V(∇(g), g) ⊂ R
n is non-empty.

From the definitions, we can directly infer that g = 0 is singular if and only if
there exists at least one stationary point on the curve g = 0.

Definition 2. A level set of a real-valued function h of n real variables is a
set of the form Lr(h) = {(x1, · · · , xn) | h(x1, · · · , xn) = r, r ∈ R, (x1, · · · , xn) ∈
R

n}.
Definition 3. We call a zero set W ⊂ V(Σ) ⊂ R

n as a real connected
component (simply component without misunderstanding) if W is an isolated
real zero of the function system Σ, or there exists a connected real path on W
for any two distinct points on W .

The level set sweeping method works as below. The algorithm is contained
in [6] and the theoretical analysis is there.

Given a planar implicit curve f(x, y) = 0, we will plot the curve inside a
real box B. We use the level set f − r = 0 of f to sweep throughout B. We
follow the points on the level sets with local maximum (or minimum) curvature
to trace the level sets during we sweep in the region B with them. When one
real connected component splits into two or more real connected components
during r varying, there exists r′ ∈ R such that f − r′ = 0 is a singular curve.
We compute on each new component at least one sample point. Thus during the
level set sweeping and splitting, we get points on each component of the input
curve inside B when r is zero. In the end, we trace each component of the curve,
which we get the plotting of the curve. Some of the components of the curve
may be isolated singularities of the curve in B. We use the gradient method and
Newton’s method to get the points of the curve. We implement our algorithm
in Maple.

2 Outline of Level Set Sweeping Algorithm

In this section, we will show how to sweep the whole given region B with level
sets of f . We also need to find at least one point on each new component of the
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level sets of f when one component splits into two or more components during
the value r changes.

Consider a given bounded box B ⊂ R
2 and a real function f ∈ C2(B). It is

obvious that f is bounded in B, i.e. ∃r0, r
′
0, s.t. r′

0 ≤ f(p) ≤ r0,∀p ∈ B. Based
on the fact, if we regard r as a variable and vary r from r′

0 to r0 continuously,
the level set Lr(f) will sweep the whole box B continuously. When r varies from
r′
0 to r0, some two or more components will combine as one component (or one

component splits into two or more components), that is to say, ∃r∗ ∈ (r′
0, r0),

s.t. f − r∗ is singular in the process. Thus, if we trace the level set Lr(f) when
r varies from r′

0 to r0, we can get the real components of f = 0 finally.
But it is not easy to get the maximal value r0 in B and it is not necessary.

We can sweep B from some of its boundaries or endpoints from one side to the
other side. For example, we choose one endpoint p of B as a start point. It is
on the level set, say Lp : f − f(p). We choose the (negative) gradient direction
such that it points inside B. Choose a point, say q, on the line passing through
p on the (negative) gradient direction. It determines another level set of f , say
Lq : f − f(q). Tracing Lq inside B, we search some interesting points on it. We
trace the level set with a given step length, say Δh. From the points on Lq, we
find next level set close to it. It works as below.

For the points pi(i = 1, .., k) on Lq, we assume that the (negative) unit
gradient directions are {vi, i = 1, . . . , k}, respectively. For a given vertical step
length, say Δv, we define the constant value of the next level set r as below:

r =
k

min
i=1

f(pi − vi × Δv)( or r =
k

max
i=1

f(pi + vi × Δv)).

We call the tracing of the points on one level set horizontal tracing (see
[4]) and the tracing from one level set to another level set vertical tracing.
By horizontal tracing and vertical tracing (see Figs. 1 and 2 for an illustration),
we can sweep B by the level sets of f . During the tracing, we can compute the
singular points of the level sets which are related to some critical points of the
curve. Also, there are some critical points between two level sets, we compute
it by gradient method and Newton’s method with the points with maximal
(minimal) local curvature on the level set nearby. These critical points are always
related to the position where one component splits into two or more components
when the value of the level set varies. Thus we can get sample points on each

Fig. 1. Horizontal tracing Fig. 2. Vertical trac-
ing

Fig. 3. Tracing on bound-
ary.
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split components (see Fig. 4 for an illustration). When tracing near the boundary
of the box, for the points on the boundary, we may require to do vertical tracing
in two directions, see A1, A4 in Fig. 3 for example. For some level set, we need
to do vertical tracing on two sides, see B1, B2, B3 in Fig. 3 for example.

3 The Main Functions of the Software

We implement the algorithm in Maple. Here are the main functions of our imple-
mentation.

HorizontalTracing is to trace the curve component of the level set of f
inside B with a given step length Δh. The output is some points on the curve
segment including the points with maximal (minimal) local curvatures (see [11]
for details).

VerticalTracing is to trace the level set of f from Lr1(f) to Lr2(f) such
that the Hausdorff distance between two level sets inside B is bounded by a step
length Δv. The output is a value r2 related to the next level set Lr2(f) and some
point(s) on it.

TracingNearCriticalPoint is to trace the level set of f near a critical point
of f . The output is at least one sample point on each component of the level
sets of f near the critical point. The sample point(s) on the level set which has
(have) already been traced is (are) ignored.

4 Examples on Plotting Curves

We test some examples with our code.
Examples 1, 2, 3 are defined by the following polynomials:

Ex1 : (x2 + y2 − 1) ∗ (y − x2),
Ex2 : (x2 − 1)2 + (y2 − 1)2 − 1,

Ex3 : (x2 + y2 − 1) ∗ (2 ∗ x2 + 2 ∗ y2 − 1).

Their plotting curves are in Figs. 5, 6 and 7. Their computing information are
in Table 1.

Example 4 is defined by Ex4: g ∗ (h2 + 1), where g := 2 ∗ y2 − x3 − x2 and
h := x4490y550 +2x1052y3946 −2x1287y3697 −2x689y4290 −x4963y2 −x3471y1395 +
x3385y1447 −2x1766y3011 +2x3743y967 −2x4545y137 −2x4418y203 −2x2919y1671 +
x3258y1256 − x1525y2912 − x456y3915 − 2x143y4164 + 2x1351y2686 + 2x3253y748 +
x1802y1754 + 2x2728y724 + 2x2137y1253 − x2480y874 + 2x1201y2017 − x560y2582 −
x1844y1284 + x942y2117 − 2x1779y1192 + x1609y1347 + 2x1467y1370 + 2x2073y650 +
x1041y1563 + 2x1191y1366 − x48y2470 − 2x1782y425 − 2x1607y546 − 2x1073y1036 −
2x300y1714+x377y1600+2x635y1023−2x1045y550−x1421y92+x266y158. Its plotting
curve is in Fig. 8 and related information is in Table 1.



Plotting Planar Curves and Its Applications 117

Example 5 is formed as Example 4. Ex5: g1 ∗ (h2
1 + 1), where g1 = 4 ∗ x4 ∗

y + x3 ∗ y2 − 5 ∗ x2 ∗ y3 − 5 ∗ x ∗ y4 − 4 ∗ y5 − 4 ∗ x4 + 2 ∗ x3 ∗ y − x2 ∗ y2 −
4 ∗ x ∗ y3 − y4 − 4 ∗ x3 − 4 ∗ x ∗ y2 − y3 − 3 ∗ x2 − 4 ∗ x ∗ y + y2 − 4 ∗ x −
2 ∗ y − 4 and h1 = 2x4579y498 + 2x3949y1125 − 2x2612y2421 + 2x3215y1768 +
2x2600y2272 − 2x3448y1231 + 2x2315y2227 − 2x3584y947 − x3888y366 + x1386y2798 +
2x3920y236 + 2x2999y1107 − 2x2264y1723 + x2776y1208 − x567y3310 − 2x784y2867 +
x2496y1154 + 2x368y3182 − 2x2513y896 + x584y2806 − x2644y717 + 2x1242y1906 +
2x105y2978 − 2x1936y1044 − 2x1855y1071 − 2x2827y32 + x15y2486 + x861y1615 +
x357y2062+2x1206y1030−x477y1606+x1489y554+2x54y1944+x885y1100+x498y1471+
2x542y1066 + x272y1324 + x1235y330 + x180y866 + 2x124y826.

We plot it twice. The first time we plot with the given form g1 ∗ (h2
1 + 1).

The second time we plot with its expanded form. We can find that the expanded
version takes more time than the given one in Table 1. The plotting curve is
shown in Fig. 9.

Example 6 is defined as Ex6: g2 ∗ (h2
2 + 1), where g2 = −2 ∗ x5 + 5 ∗ x4 ∗

y + 2 ∗ x3 ∗ y2 + 5 ∗ x2 ∗ y3 − 2 ∗ x ∗ y4 − 2 ∗ y5 + 4 ∗ x3 ∗ y + 5 ∗ x2 ∗ y2 + 2 ∗
x ∗ y3 + 4 ∗ y4 − 4 ∗ x3 + 5 ∗ x ∗ y2 − 3 ∗ y3 + 2 ∗ x2 + x ∗ y − 4 ∗ y2 and h2 =
−3x4619y426+2x1535y3209+x1793y2862−3x175y4456−3x4485y75+3x2710y1846+
3x1671y2882+x1499y3002+2x2874y1367+2x550y3653−3x3046y1125−3x3834y153−
2x3068y889 + x2275y1594 + 3x3326y511 + x851y2964 − 3x1020y2727 − 2x1042y2662 −
3x766y2931 + x754y2936 + x3187y449 − 2x1057y2575 − 3x2268y1218 + x1925y1436 +
3x1940y1345 + 2x1253y2026 + 2x88y3121 − 3x2670y520 − x567y2416 − x2050y880 −
3x1985y758 − 3x1508y837 − x2015y211 − 3x670y1227 + 2x83y1808 − 3x1786y49 −
3x66y1732+x813y983−3x193y832−2x280y637−3x519y23+3x308y179. Its plotting
curve is in Fig. 10 and related information is in Table 1.

We also test some non-polynomial implicit curves.
Example 7 is defined by Ex7: sin(x + y)2 + cos(x − y)2 − 1/3. Its plotting

curve is in Fig. 11 and related information is in Table 1.
The last two examples can be found in Subsect. 5.2. They are two transcen-

dental functions in the system ΣG = {g1, g2}. The red curve is g1 and the green
one is g2. Their plotting curves are in Fig. 12 and related computing times are
in Table 1.

Fig. 4. Tracing near a critical
point

Fig. 5. Plotting of
Example 1

Fig. 6. Plotting of
Example 2
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Fig. 7. Plotting of Example 3 Fig. 8. Plotting of
Example 4

Fig. 9. Plotting of
Example 5

Fig. 10. Plotting of
Example 6

Fig. 11. Plotting of
Example 7

Fig. 12. Plotting g1 = 0
(red), g2 = 0 (green).
(Color figure online)

Table 1. Plotting of bivariate functions

Case d t |c| ≤ Box Δv Δh Times

Ex1 4 5 1 [−2,2] × [−2,2] 0.1 0.1 32.510 s

Ex2 4 5 2 [−2,2] × [−2,2] 0.1 0.1 25.725 s

Ex3 4 6 4 [−2,2] × [−2,2] 0.1 0.1 41.372 s

Ex4 10083 46 16 [−1,1] × [−1,1] 0.05 0.05 239.602 s

Ex5 10159 60 42 [−1,1] × [−1,1] 0.05 0.05 372.967 s

Ex5 (expanded) 10159 15590 42 [−1,1] × [−1,1] 0.05 0.05 21407.143 s

Ex6 10095 59 90 [−1,1] × [−1,1] 0.05 0.05 627.529 s

Ex6 (expanded) 10095 14447 90 [−1,1] × [−1,1] 0.05 0.05 38550.624 s

Ex7 \ \ \ [−3,3] × [−3,3] 0.1 0.1 181.928 s

ΣG : g1 \ \ \ [−2,2] × [−2,2] 0.03 0.03 2223.093 s

ΣG : g2 \ \ \ [−2,2] × [−2,2] 0.03 0.03 15887.017 s
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5 Real Solving of Bivariate Function Systems

We denote Σ = {f1, . . . , fm} ⊂ C2(Ω), Ω ⊂ R
2, f =

∑m
i=1 f2

i ∈ C2(Ω). We
regard f as a planar implicit curve inside a box B. It has only isolated singular-
ities. We get all the singularities of the curve inside B, which means we get the
real zeroes of the system Σ.

We do some experiments in the following.

5.1 Polynomial Case

Firstly, we consider the polynomial case. We randomly generate polynomial sys-
tems with different degrees, terms and coefficients.

Let Σ = {fi, i = 1, . . . , m}. Denote d as the maximal total degree of fi, t
as the maximal number of terms of fi and |c| as the maximal coefficients of fi.
#V(Σ) is the number of real zeros of Σ = 0 and #P is the number of real zeros
computed by our method of Σ = 0. Set B = x0 × y0 = [−3, 3] × [−3, 3]. The
horizontal step length and the vertical step length both are Δ = 0.1. The results
are in Table 2.

Table 2. Real solving of polynomial systems

Examples d t |c| ≤ #V(Σ) #P Times

poly1 2 2 10 4 4 41.652 s

poly2 3 2 10 2 2 85.317 s

poly3 25 50 10 10 10 298.398 s

poly4 25 dense 10 7 7 760.926 s

poly5 25 50 100 9 9 625.424 s

poly6 25 dense 100 7 7 1102.927 s

poly7 10001 1075 100 9 9 1041.728 s

poly8 20003 2392 100 6 6 3069.866 s

Remark 1. The poly 1, 2, 3, 4, 5, 6 are examples which are expanded. Here
poly1: f1 = x2 − 1, f2 = y2 − 1, poly2: f1 = x2 y + 1, f2 = x2 y + x2.

Remark 2. The poly 3, 4, 5, 6 are generated randomly in Maple. For large
systems poly 7, 8. We firstly generate two univariate polynomials g1(x) and
g2(y) with low degrees, we can compute their real roots. Then we gener-
ate two bivariate polynomials with high degrees: h1, h2. Let Σ = {f1, f2} =
{g1(h2

1 + 1), g2(h2
2 + 1)}. Assume that {g1, g2} have m real zeros, then Σ = 0

also have m real zeros. We do not display these systems since they are very big.
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5.2 Non-polynomial Case

Next, we do experiments on non-polynomial case. In [19], Strzebonski considers
solving exp-log-arctan type function (equations). We can also solve this kind of
equations and not limited to this kind. We also set B = x0×y0 = [−3, 3]×[−3, 3].
The horizontal step length and the vertical step length both are Δ = 0.1. The
results are in Table 3. The related function systems are as below.

Table 3. Real solving of non-polynomial function systems

Examples #V(Σ) #P Times

{sin(x + y), x2 + y2 − 1} 2 2 53.836 s

{xsin(y) − y2, cos(x + y2) + ex − 3} 2 2 232.504 s

{ex
2+2y2−1 − 1, cos(xy) − 2x2} 4 4 75.458 s

{sin(x + y), cos(x − y)} 8 8 92.103s

The below two examples are obtained from [20]:

(1) Let F(z) = tan(z) − ln(z + 3) − z2. F (z) = 0 has 4 complex roots in the box
−2 ≤ Re(z) ≤ 2 and −2 ≤ Im(z) ≤ 2. Let z = x + i ∗ y, and rewrite F (z)
to f1(x, y) + i ∗ f2(x, y), we have:

f1 = tan(x) − 1
2
ln((x + 3)2 + y2) − 2tanh(y)tan(x)xy

−tanh(y)tan(x)arctan(
y

x + 3
) − x2 + y2,

f2 = tanh(y) − arctan(
y

x + 3
) − 2xy − tanh(y)tan(x)y2

+
1
2
tanh(y)tan(x)ln((x + 3)2 + y2) + tanh(y)tan(x)x2.

Then, the complex roots of F (z) = 0 are the real roots of ΣF = {f1, f2} = 0.
(2) Let G(z) = tan(z3 + 1) − ez. G(z) = 0 has 23 complex roots in the box

−2 ≤ Re(z) ≤ 2 and −2 ≤ Im(z) ≤ 2. Let z = x + i ∗ y, and rewrite G(z)
to g1(x, y) + i ∗ g2(x, y), we have:

g1 = tan(x3 − 3xy2 + 1) − excos(y)−tanh(3x2y − y3)2tan(x3 − 3xy2 + 1)
−tanh(3x2y − y3)2tan(x3 − 3xy2 + 1)2excos(y),

g2 = tanh(3x2y − y3) − exsin(y)+tanh(3x2y − y3)tan(x3 − 3xy2 + 1)2

−tanh(3x2y − y3)2tan(x3 − 3xy2 + 1)2exsin(y).

Then, the complex roots of G(z) = 0 are the real roots of ΣG = {g1, g2} = 0.

We compute the real roots of ΣF = 0 and ΣG = 0. We set B = [−2, 2] ×
[−2, 2]. The result is in Table 4.
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Table 4. Real solving of transcendental function systems

Examples Δv Δh #V(Σ) #P Times

ΣF 0.1 0.1 4 4 164.362 s

ΣG 0.1 0.1 23 19 781.394 s

ΣG 0.03 0.03 23 21 4745.160 s

ΣG 0.015 0.015 23 23 27260.598 s
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Abstract. Management of software information is difficult for various
reasons. First, software typically cannot be reduced to a single object:
information about software is an aggregate of software code, APIs, doc-
umentation, installations guides, tutorials, user interfaces, test data,
dependencies on hardware and other software, etc. Moreover, secondary
information about software, especially use cases and experience with
employing the software, is important to communicate. Second, typically
named software, which we term here a ‘software product’, is taken to
stand for all versions of the software which can have different features and
properties and may produced different results from the same input data.

Software production is a dynamic process and software development
is, increasingly, widely distributed. Therefore GitHub, GitLab, Bitbucket
and other platforms for sharing are used. Information about software is
alos provided in different locations, on websites, repositories, portals,
etc. Each resource provides information about software from a partic-
ular point of view, but the information is often not linked together.
Therefore swMATH has developed a conception which covers portals
and a search engines for mathematical software, persistent and citable
landing pages for specific software, and a method for software archiv-
ing. Based on the publication-based approach, swMATH collects and
analyses semi-automatically the existing information about mathemati-
cal software found on the Web and makes it available in a user-oriented
way. In the talk, we discuss recent extensions of the swMATH concep-
tion. We focus on the connection between the swMATH landing pages
and different repositories for software.

Keywords: Knowlegde management · Digital preservation
Software · swMATH

1 Introduction

The discovery, description and long-term preservation of software in a scientific
environment is more and more becoming the focus of the sciences themselves.
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Traditionally, scientists publish in journals. These serve as a reference and secure
the first-time publication rights which may be important for the authors career.
Increasingly, however, results are created using software. It is well-known that
the solution of the four-color problem [1] was one of the first mathematical proofs,
which was essentially written down with the help of a computer program (and
lead to long discussions whether this is acceptable as a proof). Today, at least
in applied science, the use of software to identify new results does not need an
explanation.

The publications themselves mention the software used, but it is difficult to
verify and reproduce the results obtained with the software. On the one hand, it
needs access to the software and the input data itself, on the other hand, it must
be known with which version of the software is required to achieve the results.
In addition, there are the difficulties of properly embedding software systems in
the respective computing environment, such as the libraries used, the version
of the operating system and possibly also the existing (e.g. special) hardware.
Even the user interfaces are not self-explanatory, it requires handbooks, technical
manuals, descriptions of interfaces, just to name a few. Obviously, there are many
dependencies to consider when using software in a scientific environment. To
make matters worse, software development is a highly dynamic process. Software
is often created by several developers, there are different versions and different
releases. Existing interfaces are extended or changed, the documentation must be
adapted accordingly. Ultimately, a long-term availability of software should be
sought, which includes the individual versions and releases. In essence, it shows
that the software used is an integral part of publications that does not yet find
adequate consideration in these. But in a scientific context this is of particular
interest.

2 The swMATH Approach

The connection of scientific publications in mathematics and used software is at
the heart of the swMATH project. swMATH [2] wants to be a bridge between
mathematics and applications in other sciences. A major goal of swMATH is
to describe, index and present the content and other important features of
the software packages in the context of the publications. The search for suit-
able mathematical software for research or applications should be supported.
A connection with the published literature clarifies possible fields of applica-
tion and application scenarios. Software is often no longer designed just for one
application.

A special feature of swMATH is the publication-based approach. This means
that bibliographic information from publications related to mathematical soft-
ware is analyzed and used to describe the software. For each software, the list
of articles that relate to it is given. In this way the embedding of the software
in its mathematical context is achieved. The list of linked publications is also
an indicator of the relevance of software in various fields. For a detailed discus-
sion of this approach see the article of Wolfram Sperber’ Mathematical Research
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Data, Software, Models, and the Publication-based Approach’ in the conference
proceedings.

Originally, the database of the Zentralblatt für Mathematik, zbMATH [3],
was used as a starting point for the publications. zbMATH is one of the world’s
most comprehensive and longest-running abstract and review service in pure
and applied mathematics. The collection of publications in zbMATH is almost
complete. Newer data is automatically integrated into the swMATH database.
It makes sense to consider other sources established in the sciences such as
arXiv.org. Conversely, software development today increasingly takes place via
software platforms such as github [5], gitlab and bitbucket or software products
are made accessible in institutional web servers or user-specific repositories such
as CRAN [4]. These are also regularly inspected by swMATH in order to capture
the most important software products in the field of scientific applications in
mathematics and its environment.

Fig. 1. Software and zbMATH references (2015–2018)

As of beginning of 2018, swMATH has identified around 20,000 software
packages with more than 250,000 links generated from 160,000 scientific pub-
lications. Anyone can suggest new software or publications. The acquisition of
software and the related references within swMATH are shown in Fig. 1 above.

The number of accesses to swMATH are shown in Fig. 2 below. They show
a steady acceptance and a continuous growth. In three years traffic has tripled.

3 Citation Standard for Software

When analyzing scientific publications, the inconsistent style of software quotes
is an obstacle. It makes automatic detection difficult and hard to find out which
software was used in which version. Meanwhile, it has been recognized that there
is a high need for action. Within the Software Citation Implementation Working

http://arxiv.org


126 H. Chrapary and W. Dalitz

Fig. 2. Usage Statistic 2015–2018 per month including robots

Group [6] of the FORCE11 initiative [7], standards for the citation of software
are developed, we participate in these discussions. The goal is that the software
used needs to be clearly identifiable in a scientific context.

4 Landing Pages and the Web-Based Approach

The presentation of the software entries within swMATH follows a uniform
scheme, which can be understood as the concept of a landing page. In addi-
tion to a brief description, the publications that use the software are listed.
These references then also lead to the original entries of zbMATH or arXiv
[8] or other sources used. Moreover the information about the software exist-
ing in the Web is used, especially websites of the software. If recognizable, the
authors of the software are named and additional information is listed, such as
homepages, license terms, versions, dependencies on other software and refer-
ences to possible archives, where one can find this software. Within swMATH,
each software receives a unique, persistent ID. This is included in the URL, so
that any software can be quoted and referenced via swMATH. The scheme is
www.swmath.org/software/ID.

5 Archiving

One of the biggest challenges today is finding and retrieving the software used in
the specific version. Commercially-operated software usually relies on the archiv-
ing by the producers, the repositories and archives in the open-source context
are usually not permanently accessible and secured. Often one finds copies of the
website in the Internet Archive [9], which also reflects the timing of its collec-
tion. However, the completeness of the archived pages is quite different. swMATH
links the landing page of the software with the Internet Archive wherever there
are entries.

http://www.swmath.org/software/ID
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For evaluation and reproducing results which were achieved by software the
access to the software code plays a central role which are especially provided
on developer platforms. Moreover the Software Heritage Project [10] is paving
the way to fully capture all versions of software code created through github
or similar distributed development platforms. swMATH is strongly interested to
extend the swMATH landing pages to the software archive run by the Software
Heritage Project. This extension is currently under work.

6 Summary

In this talk we discuss the need for a powerful information infrastructure for
mathematical software. The main concepts of swMATH are presented. Based
on the publication-oriented approach, the web-oriented approach is pursued,
which provides additional important information about the software products
on landing pages. The current development of swMATH focuses on the linking
of landing pages with software archives available on the Internet, which also
takes into account different versions.
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Abstract. We describe the algebraic-geometric modeling platform Axl,
which provides tools for the manipulation, computation and visualisation
of semi-algebraic models. This includes meshes, basic geometric objects
such as spheres, cylinders, cones, ellipsoids, torus, piecewise polynomial
parameterisations of curves, surfaces or volumes such as b-spline param-
eterisations, as well as algebraic curves and surfaces defined by polyno-
mial equations. Moreover, Axl provides algorithms for processing these
geometric representations, such as computing intersection loci (points,
curves) of parametric models, singularities of algebraic curves or sur-
faces, certified topology of curves and surfaces, etc.

We present its main features and describe its generic extension mecha-
nism, which allows one to define new data types and new processes on the
data, which benefit from automatic visualisation and interaction facili-
ties. The application capacities of the software are illustrated by short
descriptions of plugins on algebraic curves and surfaces and on splines
for Isogeometric Analysis.

Keywords: Semi-algebraic model · Isogeometric analysis · b-splines
Algebraic surface · Algebraic-geometric computation
Generic programming

1 Introduction

Geometric modeling aims at providing shape descriptions and at developing com-
putational tools for processing the models. It has strong interactions with other
application domains such as graphical rendering and visualisation, Computer
Aided Design and Computer Aided Manufacturing, numerical simulation, etc.

Many of the models which are used are semi-algebraic sets. Meshes, classically
used to approximate shapes, are piecewise linear models. b-splines or NURBS
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curves and surfaces used in CAD-CAM are the images of piecewise polynomial
or rational parametrisation maps. Natural quadrics such as spheres, ellipsoids,
cylinders, cones or higher order surfaces such as torus are algebraic surfaces
defined by polynomial equations. Semi-algebraic models of order higher than one
have interesting properties of approximation and regularity, allowing to construct
high quality shape representations.

However, currently very few software are able to manipulate these different
types of semi-algebraic sets. Software like Meshlab are Paraview, propose
tools for visualization and computations with meshes. Blender or Rhino allow
one to manipulate b-spline parametric objects. Software like Surf are able to
render algebraic surfaces, but does not provide facilities to compute with them.

The goal of the Axl development project (axl.inria.fr) is to provide tools
for the manipulation, computation and visualisation of semi-algebraic models
of higher order. This includes meshes, basic algebraic objects, b-spline param-
eterisations of curves, surfaces or volumes and semi-algebraic sets defined by
polynomial equations. Additionally, Axl provides algorithms to process these
geometric representations such as computing intersection points or curves of
parametric models, singularities of algebraic curves or surfaces, certified topol-
ogy of curves and surfaces, etc.

To cope with the versatility of shape representations, Axl integrates a generic
extension mechanism, which allows one to define new data types and new pro-
cesses on this data. As soon as these new instances are constructed, visualisation
and interaction facilities are provided essentially automatically. Via the produc-
tion of dedicated plugins, external tools can be easily embedded, tested and
demonstrated in this framework.

In Sect. 2, we describe the main feature of Axl platform. In Sect. 3, we
describe the design of the code and its extension mechanism. In Sect. 4, we
present applications, with a short description of plugins, respectively, on alge-
braic curves and surfaces and on splines for Isogeometric Analysis.

2 Functionalities

Axl software provides different types of semi-algebraic representations of shapes
used in geometric modeling, such as the image of piecewise polynomial or rational
maps from a bounded parameter domain into R

2 or R3 or solutions of polynomial
equations or geometric constructions on these objects.

Basic geometric objects such as points, segments, circular arcs, planes,
spheres, cylinders, cones, ellipsoids or tori are available in the Axl library. These
types correspond to specific classes with compact representations (axlPoint,
axlLine, axlSphere, . . . ). For instance, an ellipsoid is represented by a cen-
ter point and 3 orthogonal vectors defining its principal axis. The coordinates
of these objects are stored as floating point numbers (double precision in the
IEEE 754 standard). These objects can be edited interactively in two ways:
either graphically via widget actors in the view window or through the object
inspector panel of the application by changing directly the value of the numerical

http://axl.inria.fr
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data representing the object. More complex objects such as meshes (axlMesh)
are also available; they are represented as arrays of points, edges and faces with
an arbitrary number of vertices. Normals or other attributes can be attached to
the points.

b-spline and NURBS (Non-Uniform Rational B-Spline) parametrisations of
curves, surfaces and volumes are provided by a specialized plugin bsplinetools,
which is based on the libraryGoTools1 developedbySINTEF. Suchparametrisa-
tionmaps are represented by arrays of control points, and knot sequences.Abstract
classes (axlAbstractCurveBSpline, axlAbstractSurfaceBSpline, . . . ) specify
the available methods, independently of the internal representation of the data.
Dedicated widget actors allow one to edit dynamically these objects by changing
graphically the control points, using the methods of the abstract interface classes.

Algebraic curves and surfaces defined by polynomial equations are imple-
mented in the plugin semialgebraictools. They are represented by arrays
of multivariate polynomials, with exact or approximate coefficients. They
are embedded in the Axl framework, through abstract interface classes
(axlAbstractCurveAlgebraic, axlAbstractSurfaceAlgebraic).

Geometric types of the Axl library derive from the generic class
axlAbstractData and share color, transparency and shader attributes. Addi-
tionally, field attributes can be attached to the geometric objects. They can be
scalar fields, visualized by a color map or vector fields visualized by small arrows.
Their representations can depend on the type of the supporting geometric object.
They can be discrete values at the vertices of a mesh, functions of the parameters
on a parametric curve or surface or functions of the spatial coordinates of the
points on the geometric object (Fig. 1).

(a) A collection of b-spline surfaces
with different color attributes.

(b) A mesh with a spatial scalar field
visualized by a color map.

Fig. 1. Visualization of different types of geometric objects

1 https://www.sintef.no/projectweb/geometry-toolkits/gotools/.

https://www.sintef.no/projectweb/geometry-toolkits/gotools/
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To be able to exchange data, each data type in Axl is equipped with a reader
and writer class. The writer class writes the information that define the objects
in a XML-like format, which is simple to access and exploit. The reader class
reads the XML text and constructs the corresponding Axl object. Here is an
example of format for an ellipsoid, with name and color attributes:

<ellipsoid name="E0" color="160 0 32 1">

<center>0.417312 0.466944 0.729041</center>

<semix>0.603441 0.0735849 -0.425506</semix>

<semiy>-0.00639521 0.395524 0.0593304</semiy>

<semiz>0.116345 -0.022291 0.161143</semiz>

</ellipsoid>

The library Axl also provides facilities to run computation on geomet-
ric objects. This is implemented via the concept of process, corresponding to
the abstract class axlAbstractProcess. A process class has input data, a run
method and output data. This construction allows one to run interactively spe-
cific computations, implemented in the run command, on selected data and to
view the result of the computation. Processes can be selected in the tool inspec-
tor panel of the application user interface and executed on the data selected
from the user interface. Processes can also be stored in XML-format via their
writer class and executed on data via their reader class.

A special type of process allows one to update interactively the result. It
involves the, so called, dynamic data class (axlDataDynamic), consisting of input
data, a process and output data. When the input data is modified, the output of the
dynamic data is recomputed. Output data can be the input data of other dynamic
objects. This allows one to develop complex constructions of geometric objects,
which are updated interactively when some of their components are modified.

Another type of process allows one to create animations in Axl. These consist
of input data and a run command, which transforms the input data according
to a time parameter and visualizes the transformed data according to this time
parameter.

3 A Generic Platform for Geometric Computation

The Axl application is developed in C++, depending on the Qt, VTK [12] and
dtk [13] libraries. Qt is a cross-platform application development framework
for applications that is compatible with various software and hardware plat-
forms and is used for the graphical user interface of Axl. The dtk library is
a meta-platform for modular scientific platform development, which provides
generic tools for data, processes and views. The visualization plugin of Axl,
axlVtkView, is based on VTK, which is an open source software system for 3D
computer graphics, image processing, and visualization.

Using polymorphism, which can be either static or dynamic, Axl is a modu-
lar platform, in the sense that it formalizes abstract concepts such as data, pro-
cesses or views. The latter are then virtual abstractions which can be specialized
through plugins, dynamic libraries loaded at runtime fulfilling an abstraction
specification. The extensive use of design patterns, such as factory, template
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method etc. makes it easy to specify the actual behavior of an algorithm by
selecting a combination of processes acting on various data representations via
their abstraction.

As a matter of fact, Axl provides a generic interface for geometric concepts
that which curves, surfaces and volumes with different representations (that can
be implicit, explicit or piecewise linear) and processes such as differentiation,
intersection, arrangements, singular points computation etc. Instances of these
concepts are commonly implemented by third-party libraries, using diverse algo-
rithms under the hood, that are, in principle, conflicting one another, making
their combination problematic. This problem is tackled by the abstraction level
of Axl, ensuring the consistency of the different implementations.

Let us describe some of them starting with the virtual hierarchy of data, then
some process and how they are combined in order to implement an algorithm.
We will not focus on the view concept implemented in the plugin axlVtkView
based on VTK, which basically renders the meshes output by the converters of
the semi-algebraic models and instantiates the graphical actors.

Starting from the virtual hierarchy of data in Axl, in a simple case they
inherit from the class axlAbstractData, described in previous section, which
inherit from dtkAbstractData. Figures 2a, b show the inheritance of axlPoint
and axlLine with more complex hierarchy. Likewise, Axl processes inherit
from class axlAbstractProcess, also described previously, that inherit from
dtkAbstractProcess (Fig. 2c, axlIntersection example). The use of the
abstract classes of data as the processes default input and output, allows pro-
cesses to handle multiple data-types when possible. In particular, the different
data-types and processes acquire a common input and output, thus they can be
easily combined or changed in their algorithmic implementation.

(a) Inheritance of
data. axlPoint is
a point defined
by 3 coordinates.

(b) Inheritance of data.
axlLine is a line (or segment)
defined by a starting and an
ending point (axlPoints)
deriving from the interface
abstract class of parametric
curve.

(c) Inheritance of processes.
axlIntersection intersects
two lines and returns the
point of intersection.

Fig. 2. Axl inheritance
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Axl provides also the tools to extend data-types and processes. New data-
types, which inherit from axlAbstractData, are created having their own reader,
writer, creator, converter etc., by inheriting the corresponding abstract class
(axlAbstractDataReader, axlAbstractDataWriter, etc.), in order to be prop-
erly integrated and functional in Axl. Also, new processes can be implemented
using their abstraction (axlAbstractProcess) by defining the input data, a run
method and the output data. The new data-types and processes can be used in
Axl as plugins, by creating new packages.

4 Applications

In this section we describe two application plugins, that tightly integrate into
Axl tools for real algebraic curves and surfaces and for isogeometric analysis.

4.1 Topology of Real Algebraic Sets

The Axl framework has been used to develop a plugin called semialgebraic-
tools, dedicated to the topology analysis of algebraic curves and surfaces and to
the computation of arrangements of such objects. Algebraic curves and surfaces
are defined as the real solutions of polynomial equations. In this implementa-
tion, planar algebraic curves defined by one equation, curves in R

3 defined by
two equations and surfaces in R

3 defined by one equation are considered. The
polynomials are represented in the Bernstein basis associated to a given domain
(that is, an axis aligned box of dimension 2 or 3) by a matrix or a tensor of con-
trol coefficients. The topology of the algebraic objects is analyzed in this region.
Subdivision methods are used to compute a mesh approximation of the algebraic
set, which is topologically certified. The subdivision steps consists in splitting
the domain in one direction and in computing the Bernstein basis representation
on each subdomain, using de Casteljau algorithm. Regularity criteria are used
to determine whether the topology of the algebraic object can be determined
from its intersection points with the edges (or faces) of the box [1].

The computation is performed on the tensor representation in the Bernstein
bases with lower and upper approximate coefficient bounds (double type of the
IEEE 754 standard). By choosing adequately the rounding mode during the
computation, the exact value of the coefficients is guaranteed to stay between
the computed lower and upper bounds [11].

New data types encoding the bounding box domain and the polynomial equa-
tions have been implemented in this plugin. The visualization of the algebraic
sets is performed by a converter class, which computes a mesh from the polyno-
mial equations by subdivision methods.

These subdivision methods have been used to compute the topology of alge-
braic curves [2,9] and algebraic surfaces [3], arrangements of curves [4], semi-
algebraic sets [10] and Voronöı diagrams of curved objects [5], see Fig. 3.
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(a) The regions defined by an alge-
braic curve with singular points of
degree 28, which contains the medial
axis of two ellipses.

(b) An algebraic surface with a sin-
gular curve (in red) and a special sin-
gular point (in orange) defining its
Whitney stratification and the appar-
ent contour (in light blue).

Fig. 3. Views of an algebraic curve and an algebraic surface. (Color figure online)

4.2 Modeling and Simulation

Isogeometric Analysis is a new, innovative numerical technique that generalizes
the Finite Element Method and uses splines or NURBS, normally used in Com-
puter Aided Design, for both representing the geometry of the computational
(physical) domain and for approximating the solution of the considered partial
differential equation. In this paragraph we present the related Axl plugin based
on the G+++SMO library (http://www.gs.jku.at/gismo).

G+++SMO is an open-source, object-oriented C++ library for isogeometric anal-
ysis [7,8]. The library makes use of object polymorphism and inheritance tech-
niques in order to support a variety of different discretisation bases, namely b-
spline, Bernstein, NURBS bases, hierarchical and truncated hierarchical b-spline
bases of arbitrary polynomial order. The implementation of basis functions and
geometries is dimension-independent, that is, curves, surfaces, volumes, bulks (in
4D) and other high–dimensional objects are instances of code templated with
respect to the parameter domain dimension.

Three general guidelines have been set for the development process. Firstly,
we promote both efficiency and ease of use; secondly, we focus on code quality
and cross-platform compatibility and, thirdly, we encourage the exploration of
new strategies, better suited for isogeometric analysis before adopting existing
finite element practices.

The library is partitioned into modules that implement different function-
alities. A basic module that is available is the NURBS module, which provides
a dimension independent implementation of classical tensor-product b-splines
and their rational counterpart. On top of the NURBS module we implemented
the hierarchical splines module [6]. The functionalities can be used seamlessly in
Axl via our plugin; Fig. 4 shows two instances of its use.

http://www.gs.jku.at/gismo
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(a) Peeling of a NURBS sphere interactively in
Axl. The original sphere is represented by a bi-
quadratic tensor-product NURBS surface. Editing
triggers evaluation of both the surface and the scalar
field on a grid of points in real-time.

(b) A THB-spline model in Axl;
note the accumulation of con-
trol point near the mouth re-
gion. A shader using isophotes
is applied.

Fig. 4. Two snapshots of the G+++SMO plugin.
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Abstract. Group exponentiation is an important and expensive oper-
ation used in many public-key cryptosystems and, more generally,
cryptographic protocols. To expand the applicability of these solutions to
computationally weaker devices, it has been advocated that this operation
is delegated from a computationally weaker client to a computationally
stronger server. Solving this problem in the case of a single, possibly mali-
cious, server, has remained open since a formal model was introduced in [8].
Recently, in [10] we proposed practical and secure solutions applicable to
a class of cyclic groups. In this paper, we propose efficient and secure solu-
tions applicable to a large class of multiplicative groups, possibly beyond
groups currently subject to quantum cryptanalysis attacks.

1 Introduction

In emerging applications related to Cloud Computing and the Internet of Things,
including RFID networks, interest is growing on deploying cryptography solu-
tions onto computationally weaker devices. To achieve that goal, it has been
advocated that the most expensive cryptographic operations are delegated from
a computationally weaker client to a computationally stronger server. Group
exponentiation is an important operation and among the most expensive ones
used in many public-key cryptosystems and, more generally, cryptographic pro-
tocols. Many studies have already been performed towards various types of del-
egation of group exponentiation, but almost exclusively in the case of abelian
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groups; specifically, groups related to discrete logarithm or factoring problems
(see, e.g., [4,5,8,10] and references therein).

As progresses are being made towards building a large-scale quantum com-
puter, much attention is being devoted in the cryptography community to early
quantum computer algorithms such as Shor’s [9], capable of solving in quantum
polynomial time both the discrete logarithm and the factoring problem. More
specifically, the problem at the heart of Shor’s algorithms, also known as the
hidden subgroup problem, can be solved in quantum polynomial time over any
finite abelian group, but currently seems much harder over non-abelian groups.
Therefore, the study of cryptographic solutions over non-abelian, or just general,
groups is an appealing research direction within quantum-resistant cryptography
(see, e.g., [1,6,7] and references therein).

In this paper we consider the delegation of group exponentiation over a large
class of general multiplicative groups, not limited to abelian groups and thus
going beyond groups currently subject to quantum cryptanalysis attacks.

Our Contributions. We show two interactive protocols allowing a client to
delegate exponentiation in a general class of groups to a single, possibly mali-
cious, server, while satisfying natural requirements of correctness (i.e., if client
and server follow the protocol, then at the end of the protocol execution, the
client’s output is the desired exponentiation), security (i.e., if the client fol-
lows the protocol, no malicious adversary corrupting the server can convince
the client of an incorrect exponentiation, except with small probability), privacy
(i.e., if the client follows the protocol, no malicious adversary corrupting the
server can obtain some information about the client’s input exponent), and effi-
ciency (i.e., the client’s runtime is smaller than in a non-delegated computation
of the exponentiation). Our first protocol, in Sect. 3.1, consists of a direct parallel
repetition of (a slightly simplified version of) a protocol from [3] that achieves
security probability 1/2. Our main result, in Sect. 3.2, is a parameterized class of
protocols where, for some parameter values, the security probability is reduced
more efficiently than by direct parallel repetition. Their privacy and security
properties are satisfied even if the adversary corrupting the server is not limited
to run in (classical or quantum) polynomial time, and they achieve an efficiency
tradeoff, in that they improve the client’s runtime during the online protocol
phase, while increasing the server’s runtime and requiring offline computations
returning data to be stored on the client’s device. Our theoretical analysis, only
considering group exponentiations and multiplications, and neglecting simpler
operations such as equality checks and random element generations, suggests
that our first (resp., second) protocol reduces the client’s online runtime by
1 (resp., 2) orders of magnitude with respect to the textbook exponentiation
algorithm, while increasing the server runtime and the protocol communication
complexity by 2 (resp., 1) orders of magnitude and the offline client runtime
between a constant and 1 order of magnitude. Our software implementation, in
Python 3.6, using commodity computing resources and the gmpy2 package, con-
firms that both our protocols improve the client’s online runtime with respect
to the exponentiation algorithm available in the same package.
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As in all previous work in the area, we consider a model with an offline
phase, where a client or another party can precompute fixed-base exponentia-
tions to random exponents, and store them on the client’s device to be later
used in the online protocol phase. We also consider a model where a client can
efficiently run group multiplications, which is partially justified by known appli-
cation on some RFID devices results (see, e.g., [2]). Our protocols are written so
to delegate FG,exp,g(x) = gx (i.e., variable-exponent, fixed-base exponentiation
over multiplicative group G), but can be reformulated so to delegate function
FG,exp,k(x) = xk (i.e., fixed-exponent, variable-base exponentiation).

2 Models and Definitions

In this section we define delegation protocols, and their correctness, security,
privacy and efficiency requirements, building on the definitional approach from
[3] (also based on [5,8]), and describe group notations and protocol preliminaries.

Participant and Protocol Models. We consider two types of parties: clients
and servers, where a client’s computational resources are expected to be more
limited than a server’s ones, and therefore clients are interested in delegating the
computation of specific functions to servers. In all our solutions, we consider a
single client, denoted as C, and a single server, denoted as S. We assume that
the communication link between each C and S is not subject to confidential-
ity, integrity, or replay attacks, and note that such attacks can be separately
addressed using well-known cryptography techniques. A client-server protocol
for the delegated computation of function F is an interactive protocol between C
and S, where both parties have a description of a function F , C knows an input
x, and at the end of a protocol execution, C outputs a value y (intended to be
= F (x)). The protocol can have two phases: an offline phase, including expen-
sive computations not based on input x, such as evaluating F on other inputs,
and an online phase, where C’s computations are based on input x but take less
time than what required to compute F (x). We require such protocols to satisfy
the following requirements of correctness, security, privacy and efficiency.

Correctness. Informally speaking, the correctness requirement states that if
both parties follow the protocol, at the end of the protocol execution, C’s output
y is, with high probability, equal to the output of function F on C’s input x.

Security. Informally speaking, the security requirement states that if C follows
the protocol, a malicious adversary corrupting S and even choosing C’s input
x can only convince C with a small probability to output, at the end of the
protocol, some y′ different from value y = F (x) or some failure symbol ⊥. We
will also call this probability as the security probability, and denote it as εs.
A desirable value for it will be 2−λ, for some statistical security parameter λ,
concretely set as, for instance, 128.

Privacy. Informally speaking, the privacy requirement states the following: if
C follows the protocol, a malicious adversary corrupting S cannot obtain any
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information about C’s input x from a protocol execution. This is formalized
by extending the indistinguishability-based approach typically used in formal
definitions for encryption schemes. That is, the adversary can pick two inputs
x0, x1, then one of these two inputs is chosen at random and used by C in the
protocol with the adversary acting as S, and then at the end of the protocol the
adversary can only guess which input was used by C with probability 1/2.

Efficiency. We measure the efficiency of a client-server protocol (C,S) for the
delegated computation of function F by the efficiency metrics (tF , tP , tC , tS , cc),
meaning that F can be computed (without delegation) using tF atomic oper-
ations, the offline phase requires tP atomic operations, C requires tC atomic
operations in the online phase, S requires tS atomic operations, and C and S
exchange messages of total length at most cc. In our theoretical analysis, we only
consider the most expensive group operations as atomic operations (e.g., group
multiplications and/or exponentiation), and neglect lower-order operations (e.g.,
equality testing, random element generations, additions and subtractions over
Zn-type groups). While we naturally try to minimize all these efficiency metrics,
our main goal is to design protocols where tC << tF , even if possibly resulting in
tS being somewhat larger than tF and cc being somewhat larger than the length
of F ’s input and output. We note that, according to the textbook ‘square-and-
multiply’ algorithm, tF is, on average, = 1.5σ group multiplications, where σ
denotes the length of the binary representation of a group element. Our theo-
retical target are protocols where tC is smaller than σ group multiplications.

Group Notations. Let � denote the length of the binary representation of a
group’s elements. We say that a group is efficient if its description is short (i.e.,
has length polynomial in �), its associated operation ∗ and the inverse operation
are efficient (i.e., they can be executed in time polynomial in �). The security
parameter σ and the group element length � are typically set as the same value.
Let (G, ∗) be an efficient group, and let g be an element with order q, for some
large integer q known to the client, and let y = gx denote the exponentiation (in
G) of g to the x-th power; i.e., the value y ∈ G such that g∗· · ·∗g = y, where the
multiplication operation ∗ is applied x − 1 times. Also, let Zq = {0, 1, . . . , q − 1}
and let FG,exp,g : Zq → G denote the function that maps every x ∈ Zq to the
exponentiation (in G) of g to the x-th power.

Protocol Preliminaries. In all our protocols, inputs common to client and
server include a description of the function FG,exp,g to be delegated, a description
of group G, a group element g, a computational parameter 1σ and a security
parameter 1λ. Other inputs to the client include g’s order q and exponent x ∈ Zq.

3 Delegating Exponentiation in General Groups

In this section we present our protocols for the delegation of exponentiation
in a general class of groups to a single (possibly malicious) server. We note
that general conversion techniques are known in the cryptography literature to
transform a protocol secure against a honest adversary into one secure against
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a malicious adversary. Typically these techniques are based on zero-knowledge
proofs of knowledge of secrets that certify computation correctness. In their most
general version, these techniques do not perform well with respect to many effi-
ciency metrics. Even considering their most simplified version, basic proofs of
knowledge of exponents in the literature require the verifier to perform group
exponentiations, which is precisely what the client is trying to delegate in our
protocols. Accordingly, new techniques are needed. Our 1st protocol, in Sect. 3.1,
uses a direct parallel repetition of an efficient subprotocol with security proba-
bility 1/2, this latter subprotocol being an improved version of our scheme from
(Sect. 5 of) [3]. Our 2nd protocol, in Sect. 3.2, is actually a parameterized class of
protocols where, for some values of two parameters c,m, the security probability
is reduced more efficiently than by direct parallel repetition.

3.1 Delegating Exponentiation: A Cut-and-choose Approach

We first describe a basic protocol (bC1, bS1) with constant security probability
(obtained by simplifying the protocol in Sect. 5 of [3]) and then the final protocol
(fC1, fS1), obtained as a parallel repetition of the basic protocol.

A protocol (bC1, bS1) with constant security probability. In an offline phase, bC1

randomly chooses u0, u1 ∈ Zq and computes v0 = gu0 and v1 = gu1 . In the
delegation phase, bC1 randomly chooses bit b ∈ {0, 1} and computes zb = ub and
z1−b = x−u1−b mod q, and sends (z0, z1) to bS1. Next, bS1 computes wi = gzi ,
for i = 0, 1 and sends (w0, w1) to bC1. Finally, bC1 checks that wb = vb; if not,
bC1 returns failure symbol ⊥; otherwise, bC1 returns y = w1−b ∗ v1−b.

We now show that protocol (bC1, bS1) satisfies correctness, privacy, security
(with probability 1/2), and efficiency (with tC = 1 multiplication plus 1 sub-
traction, tS = 2 exponentiations, and tP = 2 exponentiations).

The efficiency properties are verified by protocol inspection. The correctness
property follows by observing that if bC1 and bS1 follow the protocol, bC1’s
equality verification is satisfied, and thus C’s output y satisfies y = w1−b∗v1−b =
gz1−b ∗ gu1−b = gx−u1−b ∗ gu1−b = gx, which implies that y = FG,exp,g(x) for each
x ∈ G. The privacy property follows by observing that the message z0, z1 sent
by bC1 does not leak any information about x, since they are randomly and
independently distributed in Zq, as so are chosen u0 and u1. To see that the
security property is satisfied, for any probabilistic polynomial-time adversary
corrupting bS1, consider the values w0, w1 returned by the adversary to bC1. If
the adversary honestly computes wi = gzi for both i = 0, 1, then the probability
it fools bC1 into an incorrect output y is 0. Thus, assume the adversary computes
wc �= gzc , for some bit c ∈ {0, 1}. Then note that bC1 will find this out and return
failure symbol ⊥ when b = c, and, since the message (z0, z1) leaks no information
about b, the equality b = c holds with probability at least 1/2. This implies that
the probability that the adversary fools bC1 into an incorrect output y is ≤ 1/2.

A protocol (fC1, fS1) with exponentially small security probability. Protocol
(fC1, fS1) consists of λ parallel executions of the basic protocol (bC1, bS1), with
the only additional modification that the output of fC1 is defined as y if in all
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λ parallel executions bC1 would return the same value y, or as failure symbol ⊥
otherwise (that is, if bC1 returns ⊥ in any one of the parallel executions, or two
different values �=⊥ in any two of the parallel executions).

Protocol (fC1, fS1) satisfies correctness, privacy, security (with probability
1/2λ), and efficiency (with tC = λ multiplications plus λ subtractions, tS = 2λ
exponentiations, tP = 2λ known-base exponentiations to random exponents, and
cc = O(λσ)). The proof of these properties is a direct extension of the proofs for
the properties of (bC1, bS1).

We remark that for the typical setting λ = 128, C only performs 128 group
multiplications and 128 subtractions modulo q. This is about 1 order of mag-
nitude smaller than 1.5σ, the average number of group multiplications in the
square-and-multiply algorithm, which can be = 3072, for the setting σ = 2048
which has been recommended on some commonly used groups in cryptography.

3.2 Delegating Exponentiation: Improved Probability Reduction

In this subsection we improve the approach in Sect. 3.1 by a computation-efficient
(in terms of C’s parameters tP , tC) reductions of the security probability εs. Our
overall approach towards this goal can be briefly summarized as follows: first, we
propose a basic protocol (bC2, bS2) with improved constant security probability
and then define a final protocol (fC2, fS2) that performs a suitable parallel
repetition (with a smaller number of repetitions) of this basic protocol.

Informal Discussion. Our main approach consists of reducing the security prob-
ability by a more time-efficient approach than the direct parallel repetition
approach in Sect. 3.1. While we do not know how to avoid the above parallel
repetition, we show that we can reduce the number of repetitions by designing
a more efficient protocol with security probability much smaller than 1/2. As a
first simple example of this approach, by starting from protocol (bC1, bS1) with
security probability 1/2 from Sect. 3.1, and including 2 random ‘decoy’ values in
Zq in the client’s message to the server, we obtain a protocol with the following
properties: (1) it does not increase the client’s number of multiplications, (2) it
only slightly increases computation by the server; (3) it can be seen to reduce
the security probability from 1/2 to 1/3. Our protocol generalizes this idea of
using random decoy values in Zq to a parameterized number m, also represent-
ing an upper bound on the number of values that the client sends to the server.
This generalization reduces the security probability, even though not as much
as we would like. Accordingly, the other idea is that of increasing the number
of equality checks, and introducing a second parameter c, representing an upper
bound on the number of equality checks that the client wants to execute (and
thus, the number of pre-computed exponentiations that the client can afford).
Specifically, in the resulting protocol, of the m values in Zq sent by the client to
the server, one value is used to compute the function output, c − 1 values are
used to perform equality checks, and m−c values are decoy values. The resulting
protocol achieves a security probability which is, very roughly speaking, linear
in 1/c, and thus the number of repetitions to reduce the probability to 2−λ,
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can be reduced to about λ/ log2 c. We actually define a class of protocols that is
parameterized by c and m and analyze what values for these parameters give us
a more time-efficient reduction of the security probability than what achieved in
Sect. 3.1. The two main high-level takeaways on that analysis are: (1) a some-
what large value for m is just as good as a huge value; (2) values of c ∈ {4, . . . , 9}
result in a reduced number of group multiplications from the client.

A protocol (bC2, bS2) with constant security probability. We first formally describe
the basic protocol (bC2, bS2) and then discuss its properties.

Offline instructions:

1. bC2 randomly chooses distinct j1, . . . , jm ∈ {1, . . . , m}
2. bC2 randomly chooses ui ∈ Zq, sets vi = gui and zji = ui, for i = 1, . . . , c
3. bC2 randomly and independently chooses zjc+1 , . . . , zjm ∈ Zq

Online instructions:

1. bC2 sets zjc = (x − uc) mod q and sends z1, . . . , zm to bS2

2. bS2 computes wj = gzj for j = 1, . . . ,m
bS2 sends w1, . . . , wm to bC2

3. if wj1 �= vj1 or wj2 �= vj2 or . . . or wjc−1 �= vjc−1 then
bC2 returns: ⊥ and the protocol halts
bC2 computes y = wjc ∗ vc and returns: y

We now observe that protocol (bC2, bS2) satisfies correctness, privacy, security
(with probability O(1/c)), and efficiency (with tC = 1 multiplication in G plus
1 subtraction in Zq, tS = m exponentiations, and tP = m exponentiations).

The efficiency properties of (bC2, bS2) are verified by protocol inspection.
The correctness properties follows by observing that if bC2 and bS2 follow the
protocol, none of the inequality verifications in step 3 will be satisfied. Thus,
bC2’s output is �=⊥ and is equal to y = wjc ∗ vc = gzjc ∗ vc = gzjc ∗ guc =
gx−uc∗guc = gx, which implies that bC2’s output is = FG,exp,g(x) for each x ∈ Zq.
The privacy property follows by observing that the message z1, . . . , zm sent by
bC2 is distributed as m random and independent group values and therefore does
not leak any information about x.

To prove the security property against a malicious bS2 we compute an upper
bound εs on the security probability that bS2 convinces bC2 to output a y such
that y �= FG,exp,g(x). This is performed by a long case analysis (omitted here for
lack of space) for all c and m, and depending on whether the server replies to the
client with correct or incorrect answers. Examples of results from this analysis
include the following: (1) when c = 2, using m−2 decoy elements in Zq, we have
that εs gets very close to 1/4 as m grows; (2) when c = 3, using m − 3 decoy
elements in Zq, we obtain εs < 1/6 when m = 100, and increasing m to 1000 does
not reduce εs significantly. For general c,m, we computed the exact value for εs

for all values of c that guarantee some improved efficiency on the number tC
(of client’s group multiplications during the protocol). Specifically, we looked at
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all values of c such that the obtained εs is smaller than what could be obtained by
a parallel repetition of �c/2	 executions of the atomic protocol from Sect. 3.1 with
security probability 1/2. It turns out that only values c = 4, 5, . . . , 9 guarantee
some improved efficiency on tC , with respect to the protocol in Sect. 3.1. The
obtained values for εs when c = 4, . . . , 10 are in Table 1 below. Note that when
c = 4, . . . , 9 the obtained value for εs is strictly smaller than the value 2−�c/2�

that could be obtained using the protocol from Sect. 3.1. Instead, when c = 10,
the value εs = 0.03894 is > 0.03125 = 2−5, and the protocol from Sect. 3.1 starts
offering a much better efficiency tradeoff.

Table 1. Values of εs for protocol (bC2, bS2), for c = 4, . . . , 10 and m = 100, 1000

c = 4 5 6 7 8 9 10

m = 100, εs = .10763 .08403 .06719 .05875 .05118 .04538 .04080

m = 1000, εs = .10568 .08213 .06529 .05686 .04929 .04351 .03894

A protocol (fC2, fS2) with exponentially small security probability. Protocol
(fC2, fS2) consists of r = 
λ/ log(1/εs)� parallel executions of the basic pro-
tocol (bC2, bS2), with the only additional modification that the output of fC1 is
defined as y if in all λ parallel executions bC1 would return the same value y, or
as failure symbol ⊥ otherwise (that is, if bC1 returns ⊥ in any one of the parallel
executions, or two different values �=⊥ in any two of the parallel executions).

Protocol (fC2, fS2) satisfies correctness, privacy, security (with probability
1/2λ), and efficiency (with tC = r group multiplications, rc − r group equal-
ity checks and r subtractions in Zq; tS = mr group exponentiations, tP = rc
known-base group exponentiations to random exponents, and cc = O(mrσ)).
The proof of these properties is obtained by extension of the proofs for the prop-
erties of (bC2, bS2). We remark that for the typical setting λ = 128, C performs
about 30 group multiplications, 30 subtractions in Zq, and less than 300 group
equality checks. The number of group multiplications is about 2 orders of mag-
nitude smaller than 1.5σ, the average number of group multiplications in the
square-and-multiply algorithm, which can be = 3072, for the setting σ = 2048,
recommended on some commonly used groups in cryptography.

3.3 Implementation and Performance Results

We implemented our protocols in Sects. 3.1 and 3.2 for the multiplicative group
(Z∗

p, · mod p), for p = 2q + 1, and p, q are large primes such that |p| = 2048.
Our implementation of the offline phase, the client’s online program and the
server’s program was carried out on a macOS High Sierra Version 10.13.4 laptop
with 2.7 GHz Intel Core i5 processor with memory 8 GB 1867 MHz DDR3. The
protocols were coded in Python 3.6 using the gmpy2 package. Table 2 contains
parameters c,m, r, running times tF , tP , tC , tS and improvement ratio tF /tC
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for protocol (fC1, fS1) from Sect. 3.1 and protocol (fC2, fS2) from Sect. 3.2.
Here, parameter r represents the number of parallel repetitions of (bC1, bS1)
and (bC2, bS2) needed to get desired security probability εs = 2−128 in protocols
(fC1, fS1) and (fC2, fS2), respectively. The main takeaway is that in the two
protocols, the client’s online running time is better than non-delegated compu-
tation by half or one order of magnitude, respectively.

Table 2. Performance of protocols (fC1, fS1) and (fC2, fS2), for εs = 2−128

tF .003838

(fC1, fS1) (fC2, fS2)

c n/a 5 6 7 8

m n/a 60 100 60 100 60 100 60 100

r 128 36 36 34 33 32 32 30 30

tP .953298 .686819 .684862 .769721 .770282 .850836 .862347 .910533 .962034

tC .000779 .000393 .000268 .000443 .000270 .000378 .000289 .000367 .000304

tS .957278 8.05238 13.2509 7.58752 12.4730 7.15478 12.1795 6.70609 11.7280
tF
tC

4.92654 9.76534 14.3201 8.66315 14.2140 10.1528 13.2795 10.4572 12.6243

4 Conclusions

We studied the problem of a computationally weak client delegating group expo-
nentiation to a single, possibly malicious, computationally powerful server, as
originally left open in [8]. We solved this problem by two protocols that prov-
ably satisfy formal correctness, privacy (against adversaries of unlimited power),
security (with exponentially small probability) and efficiency requirements, in a
general class of multiplicative groups, possibly going beyond groups on which
quantum cryptanalysis attacks are currently known. Problems of both theoret-
ical and practical interest include: (a) achieving better efficiency tradeoffs as
done in [10] for discrete logarithm groups; and (b) reducing the dependency of
the offline computations on the number of delegated computations of F .
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Abstract. We present a classifier for the Mathematics Subject Clas-
sification (MSC) system, combining techniques in unsupervised learn-
ing such as nearest neighbors, and supervised learning such as neural
networks. We will discuss the challenges presented in the classification
task, such as the large number of possible classes, many with overlapping
scope; and describe the data processing and experimental methodologies
employed.

Keywords: Text classification · NLP · Neural networks

1 Introduction

Mathematics Subject Classification (MSC) system consists of five-digit alphanu-
meric sequences, such as 14D24 or 34L20, used to index a mathematical subject.
They are widely used by a variety of journals in mathematics and mathematical
physics. For authors, it can be time-consuming to find the right classification
amongst thousands of choices, despite the fact that MSC labels naturally follow
a hierarchical structure, and are usually presented in a sorted manner. Further-
more, often a piece of research involves several subtopics in addition to the main
area of focus, thus having an automatic classifier that finds the non-focal yet
related topics can be of great assistance.

In this paper, we present a classifier for 4575 MSC classes, using a combi-
nation of techniques such as K-nearest neighbors (KNN) and neural networks
(NN). We devise an accurate classifier with the goal of speed and simplicity dur-
ing both training and prediction. The models are trained and tested using papers
obtained through the arXiv Bulk Data Access program hosted on Amazon S3
[4], out of which 160471 papers that contain MSC labels are used as training
data, and 1000 as test data. Note that each paper serves as a sample point for
multiple classes, as each paper almost always contains multiple MSC labels.

Previously, Řeh̊uřek and Sojka [1] compared and contrasted methods includ-
ing naive Bayes, KNN, and support vector machines to classify documents
amongst 31 two-digit MSC prefix classes that had sufficient samples from two
retrodigitization projects. The current work differs in its use of a larger training
set from the arXiv, different text preprocessing techniques, and neural networks,
as well as its classification amongst 4575 five-digit classes.
c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 147–155, 2018.
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2 Underlying Theory

2.1 Data Processing and Representation

To classify text, we need to first represent strings of texts in a computable form.
We can vectorize texts treating either characters or words as the atomic units.
Character-based models are often more powerful, as they are not constrained by
a predefined vocabulary, and can better make inference on unseen words in test
sets that share spelling similarities with words in the training set. But character-
based models require larger training sets and longer training times, since these
models need to learn how characters fit together and represent a semantic unit
in the human language.

Given the high number of classes to training data ratio, we choose words as
the atomic units, this gives the net the prior knowledge to treat each word as
a semantic unit. The dependence on any particular form of a word is alleviated
by uniformizing vocabulary words to their stems.

Term Selection. An initial list of terms is chosen based on term frequencies in
the arXiv corpus, where two thresholds, a high and a low, are used to exclude
the most and least frequent terms. The most frequent terms are excluded as they
do not sufficiently discriminate amongst different subject classes, since they are
ubiquitously used under many different contexts, e.g. “map.” The most infre-
quent terms are excluded as they are not sufficiently frequent to be a general
feature of a subject class. A nontrivial subset of these infrequent terms are rare
spelling variations of more frequent words or typos. These two thresholds are
determined by hand inspection.

In addition, the frequencies of terms in the arXiv corpus are compared with
their frequencies in the 450 million-word Corpus of Contemporary American
English [8], where terms with a large frequency difference are counted as math-
ematical terms. For instance, “function,” while being a common English word,
occurs much more frequently in a mathematical corpus than a generic English
corpus. A score threshold dividing selected and unselected terms is determined
by hand inspection.

Term selection also includes n-grams for n ∈ {2, 3}, for instance “Dedekind
domain” and “cyclotomic field.” n-grams are gathered based on the frequencies
of groups of words occurring together, as well as conditional probabilities of a
word wi+1 occurring immediately following a given word wi, to detect n-grams
containing the word sequence “wiwi+1.” For instance, if 40% of all words follow-
ing “Dedekind” is “domain,” “Dedekind domain” is determined to be a 2-gram.
To select 3-gram, the frequencies of all third words following any given two-tuple
are used.

Words are normalized by techniques such as stemming and desingularization,
e.g. “annihilate,” “annihilator,” “annihilating” are all normalized to “annihilat.”
Additionally, a set of key terms are automatically harvested from some hand-
selected Wikipedia pages on mathematics, such as the page on list of theorems
[3]. A list of the most frequent English words, verified by inspection to exclude
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any potentially useful mathematical term, is used as stop words to be excluded
from the corpus. These processes combined created a vocabulary consisting of
23852 key terms.

Term Vectorization. To represent vocabulary words as fixed-length vectors,
there exist two major approaches:

– Assign each word w with an index iw, where iw ∈ [0,Size(vocabulary)), then
the vector representation for the word w is the norm-1 vector with 1 at index
iw, and 0 elsewhere. A variation of this approach is to assign a word weight
instead of 1 at the index iw: this is our approach.

– Embed words into a vector space, e.g. word2vec [5], GloVe [6]. These vectors
are produced by unsupervised models trained on texts such as news corpora
(word2vec). The resulting vectors are able to capture much semantic meaning
of words, e.g. the vector for “dentist” has cosine distance 0.72 to the vector
for “doctor,” but has distance 0.51 to the vector for “dinosaur.”

Challenges. There are a number of challenges underlying the MSC classifica-
tion task:

– Small training data size to number of classes ratio. The training data con-
sist of 160471 MSC-labeled papers amongst 4575 classes. This ratio is small
despite the fact that each paper almost always contains multiple classes, thus
simultaneously serving as a data point for multiple classes.

– Imbalanced class representation. For instance, classes such as 53D (symplectic
geometry) appear more often than classes such as 70F (dynamics of a system
of particles) by an order of magnitude.

– Overlapping classes. Many classes share overlapping content. For example,
many documents involving fiber bundles can belong to either 55R, which
falls under algebraic topology, or 18F, which falls under category theory.

To address these challenges, we devise a hybrid approach that uses neural
networks to predict the three-digit prefixes of the most likely classes, and K-
nearest neighbors to predict the five-digit MSC starting with these top prefixes.

2.2 K-Nearest Neighbors (KNN)

Due to the large number of classes relative to the limited set of hand-labeled
data, training neural networks directly on all the five-digit classes does not pro-
duce a model that captures the characteristics of each subject class, leading to
inaccurate predictions. Instead, we use the fact that a test sample is highly likely
to share subject classes with the samples in the training data that are the most
similar with regard to their terms vector representations.

Therefore, given a paper p to be classified, we take the top k papers in
the training set whose vector representations are closest to that of p. All subject
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classes of the k closest papers are taken, with multiplicity, and weighted inversely
proportionally to their rank amongst the closest papers. Then the m classes
with the highest scores are taken, where m is the desired number of subject
classification recommendations for p.

Dimension Reduction. Due to the high dimension of the feature space (num-
ber of key terms, which is 23852), taking the Euclidean distance between the
query vector with every training vector at runtime is computationally expensive.
Instead, we reduce the dimension of the feature space by projecting it down to
the space spanned by the singular vectors corresponding to the largest singular
values.

Specifically, let M be the term-document matrix, whose rows correspond
to terms, and columns correspond to papers in the arXiv corpus. To reduce
the dimension of the row space of M , M can be approximated by a truncated
singular value decomposition (SVD) that keeps the n largest singular values:

M → UDV T .

Here M has dimension 23852 × 17027 for 17027 randomly selected papers,
U and V T are orthogonal matrices of dimensions 23852 × n and n × 17027,
respectively, and D is a diagonal matrix of dimension n × n.

By inspecting the absolute values of all the singular values (diagonal entries
of D), n is determined to be 150, to retain the singular values above a certain
magnitude threshold. This reduces the representation of each document to a
150-dimensional vector, and KNN is performed in this space. This technique is
known as latent semantic analysis [2], and has the benefit of consolidating terms
that share semantic similarity besides reducing the feature space dimension.

When a query paper p with vector representation vp ∈ R
23852 needs to be

classified, vp is projected to the reduced space R
n by v̂p = D−1UT v, and the

closest column vectors in V T (since its column space represents the documents
space) with respect to Euclidean distance are selected as the papers most similar
to p.

Note that instead of taking all 160471 papers in the training set as columns
of the term-document matrix M , 17027 were randomly selected. In experiments,
KNN prediction accuracy with respect to the number of papers represented
in M reaches the point of diminishing returns at this point, indicating that
the additional data samples do not drastically affect the projection onto the
subspace corresponding to the top n singular values in the truncated SVD for
our selected n.

Reducing the column space dimension of M , and hence V T , from 160471 to
17027 significantly reduces the classifier runtime cost of searching for the query
vector’s nearest representation in the corpus. It also avoids the large bottleneck,
albeit during precomputation, of performing SVD on a 23852 × 160471 matrix.
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2.3 Neural Architecture

While KNN can often provide accurate predictions, sometimes the top predic-
tions are only indirectly related to the query paper. This could be due to several
reasons: while the projected vectors capture most of the semantic information
of a document, some is bound to be lost in the reduction. This is corroborated
by the fact that not reducing the dimension at all, or keeping a higher number
of singular values, improves the prediction accuracy.

Also, KNN is an instance-based method, and as such, subject to peculiarities
of instances. For example, a paper that contains a portion that is relevant to the
query paper, but contains a nontrivial amount of less related content, is likely
to not be the closest in distance, even though it carries target MSC labels. This
applies to any distance metric and normalization method.

Due to this dependence on the particulars of the few papers that are closest
to the query paper, KNN predictions do not utilize the full spectrum of features
characterizing a given subject class, and so has less interpolation power than
approaches such as neural networks. Thus, taking advantage of the fact that
MSC’s are organized hierarchically with respect to their two- and three-digit
prefixes, we train two neural networks to predict the two- and three-digit subject
class prefixes, henceforth referred to as the two-digit net and the three-digit net.

The network is based on a modified version of fastText [9], which is an efficient
architecture for training on textual data. Specifically, our network consists of a
trainable embedding layer, an average pooling layer, and a dense linear layer.
The same network architecture is used for both the two- and three-digit nets.

To train, the net takes an input consisting of a variable-length sequence of
word indices; to create the target output, the MSC labels of each document are
turned into a vector of dimension equal to the number of all two-digit or three-
digit MSC classes for the two-digit or three-digit nets, respectively, this vector
has entry 1 at every index corresponding to a labeled class, and 0 otherwise.

Layer Details. The embedding layer takes an input consisting of a variable-
length sequence of word indices (ordering does not matter), and outputs an
N -dimensional dense vector, where N = 128 for the two-digit network, and
N = 256 for the three-digit network.

For example, take the tautological statement “a unitary matrix is unitary,”
and suppose “unitary” and “matrix” have term indices 3 and 5, respectively,
then this statement corresponds to the sequence {3, 5, 3} as input to the embed-
ding layer. Note the non-key terms “a” and “is” are redacted since they do not
belong to the vocabulary, and term multiplicity is preserved, thus giving more
frequently-occurring key words more weight. The input sequence includes the
indices for all key words in a paper.

The embedding layer initializes the vector representation of each word uni-
formly randomly, and trains these representations to best approximate the true
classification function as the training error is backpropagated.

The average pooling layer computes the mean of the n word embeddings,
where n is the length of the word list for a paper. While this averaging procedure
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loses the sequential information for a paper’s key words, we found it still effec-
tively retains the characteristics of papers for determining MSC.

Finally, using a dense layer with linear activation, where the number of
neurons is the number K of possible output classes (68 two-digit and 622 three-
digit classes), the N dimensional vector is turned into a vector of dimension
equal to K. The most probable classes are those whose indices correspond to the
largest entries in the output vector.

The use of the final dense layer avoids a costly softmax computation, which
normalizes the probability across all classes, this is especially useful when the
number of output classes is high.

The models are trained with the mean squared error loss function, where the
loss is minimized with the optimizer algorithm Adam [7].

Fig. 1. Overview of the three-digit net architecture. The input to the embedding layer
is a variable-length sequence of word indices, each of which represents a processed key
word in the text. The vectors are subsequently averaged in a pooling layer, before
being converted by a dense layer into a vector of dimension equal to the total number
of classes. This architecture was devised with the goal of simplicity and speed.

Experimentation shows that combining two neural networks produces more
accurate results than the three-digit net alone. The results are combined by
taking the top k2 predictions of the two-digit net, and then selecting the top
k3 predictions of the three-digit net whose first two digits coincide with the
two-digit predictions. k2 and k3 are determined based on the number of desired
five-digit predictions, in particular, they can be taken to be the same as this
desired number.

The recommendations of KNN are then filtered by predictions of the two
NN, where only the top KNN results that have the same three-digit prefix as
the NN predictions are taken.

3 Results

We use a test set of 1000 papers, whose MSC labels span 1878 two-digit classes,
2313 three-digit classes, and 2747 five-digit classes. (All three-digit classes are
also counted towards two-digit classes, similarly for five. Some papers do not
specify the full five-digit classes.) When the classifier is allowed to make 8 five-
digit predictions, the results contained 122 false negative (is actual label, but
missed by classifier) two-digit classes, 220 false negative three-digit classes, and
329 false negative five-digit classes. Note that the three-digit false negatives
include all two-digit false negatives, similarly for five.
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This gives a recall rate (ratio between true positives and total predicted
positives) of 0.88 for five-digit, 0.90 for three-digit, 0.93 for the two-digit classi-
fication. Recall that the recall rate measures the extent to which target classes
are predicted.

While 8 classes are more than most authors need to specify, this number is
to account for the large overlaps amongst classes. Also, it is much easier for a
human to quickly decide if a prediction should be discarded based on a one-
line description, than to realize a class is missing. The somewhat arbitrariness
of this number renders the false positive rate less indicative of the classifier’s
performance, hence we focus on the recall rate.

Note that due to inherent subjectivity in human-labeled classes, predictions
can’t reach 100% accuracy on the test set. This is particularly true for this task,
since there exist large overlaps amongst classes.

4 Experimentation

4.1 Text Processing

A vector representation based on a list of 23852 vocabulary words is created
for each paper in the arXiv corpus that contain MSC classes. Each word in the
vocabulary has been stemmed and desingularized, and can be the representative
of several words.

Stemming is performed by creating a trie from all words in the corpus, where
stems are detected by a roughly uniformly-split dropoff in frequency from a par-
ent node to children nodes. For instance, suppose the trie nodes for “annihilate”
and “annihilator” contains frequencies 1541 and 1104, respectively c, and the
trie node corresponding to their common prefix “annihilat” contains frequency
2645, the trie-based algorithm then uniformizes “annihilate” and “annihilator”
to their stem “annihilat.”

Desingularization is performed with a heuristic that considers common plu-
ralization e.g. “ring” → “rings,” “proxy” → “proxies,” as well as unusual cases
such as “matrix” → “matrices.”

4.2 Neural Networks

To create a more balanced training set across subject classes, classes that have
relatively few representatives in the training set are oversampled, wherein the key
terms for papers in these classes are randomly sampled (without replacement),
to generate sets of terms, where each set represents an artificially generated
paper. Since this procedure does not enrich the information entropy of a subject
class, we do not oversample to the extent of equalizing the number of training
samples per class, but rather bring the number of samples per class to a minimum
percentage of the original average number per class.

The predictions by the three-digit net filtered by the predictions of the two-
digit net are more accurate than that of the three-digit net alone. One explana-
tion is that it is easier for the network to get the top two-digit labels correct,
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since the difference amongst the two-digit classes is more pronounced than the
difference amongst three-digit classes, by the virtue of there being 622 three-
digit classes but only 68 two-digit ones. In addition, the three digit classes are
naturally grouped together by their two-digit prefixes – a pattern that the two-
digit net does not need to recognize since it is not applicable, but which the
three-digit net needs to learn.

The nets are trained with CPU on a 24-core machine with 64 GB RAM
using the Wolfram Language, and can be recreated with any machine learning
framework. The two-digit net is trained until the batch loss falls below 10−2,
which takes on average 2 h. The three-digit net is trained until the batch loss
falls below 2 × 10−3, which takes on average 4 h 20 min.

Note that a minimum number of features is required within a piece of text
for the classifier to make a meaningful prediction, the classifier is wrapped by
a conditional that checks if the number of features is above an experimentally-
determined threshold.

The classifier will be made available to the public on a standalone web
platform.

5 Future Improvements

In lieu of using KNN to predict the five-digit subject classes which share the
three-digit prefixes predicted by the NN, one can train gradient-boosted trees
for each of the 68 two-digit classes. This may generate better accuracy, since
it addresses KNN’s dependence on the particulars of a small subset of all data
within a class, as it learns based on all individuals in the class.

6 Conclusion

We presented a way to automatically classify a piece of mathematical text
amongst 4575 MSC classes. The automatic detection is especially useful in find-
ing classes that are outside the immediate focus of the paper, but are related
to its scope. This in turn improves any application that uses classification-based
indexing and search.

Acknowledgments. We would like to thank Jeremy Michelson and Michael Trott
for continuously lending their ears and ideas throughout this project, and the ICMS
reviewer for constructive comments on an earlier draft of this paper.
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Abstract. We present a recommender system covering math and math
physics papers from the arXiv, to assist researchers to quickly retrieve the-
orems and discover similar results from this vast corpus. The retrieval aims
to discover not just syntactic, but also semantic similarity. We will discuss
the challenges encountered and the experimental methodologies used.
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1 Introduction

As the number of academic publications grows rapidly, it becomes increasingly
important to categorize and index these bodies of knowledge for fast and accurate
information retrieval.

Tools such as Google Scholar [1] and Microsoft Academic [2] have proven to be
very useful in finding academic sources relevant to a given query. These retrieval
systems focus on entire documents. We present Mathematical Theorem Search,
henceforth referred to as Theorem Search, a framework for analyzing and search-
ing only the most important statements in a paper: theorems, propositions, con-
jectures, lemmas, and definitions, henceforth broadly referred to as “theorems.”

Theorem Search complements existing tools, since it allows the query to specif-
ically target theorems only, and all statements are presented in their entireties on
the same page, instead of in fragments as in existing tools.

Byproviding entire theorem statements on or related to a particular query, such
a platform is useful both for quickly gleaning knowledge about a topic, as well as
checking if a particular or related statement has been proved before in the search
corpus.

The search corpus covers all math and math physics papers on arXiv to date.
The corpus is obtained through the arXiv Bulk Data Access program [4]. A total
of 2,335,254 theorems are extracted from over 770,000 papers.

2 Semantic Search – Textual Understanding
andRepresentation

We present a multipronged approach for retrieving and ranking relevant results,
combining approaches based on words and semantics. The words-based approach
c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 156–164, 2018.
https://doi.org/10.1007/978-3-319-96418-8_19
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retrieves results containing the query words or words related to the query, and the
semantics-based approach ranks these results based on how closely their semantic
structures align with that of the query.

There are numerous challenges present in this task: theorems and their con-
textual statements need to be extracted from non-standardized raw TeX files, and
then parsed to gather semantic information; the large amount of files and data
require a robust preprocessing pipeline, as well as algorithms and data structures
for efficient retrieval, while respecting memory constraints.

2.1 Parsing

To effectively retrieve a piece of text, the system needs to understand that text,
such as knowing the objects discussed in the text, the relations between them, and
whether the text is hypothetical (e.g. “Suppose property p holds”), or assertive
(e.g. “X is uniquely determined”). Each piece of text is parsed to understand the
objects in the text, and the relations between them.

Objects. A vocabulary is created to represent known objects. An initial list of
terms is chosen based on term frequencies in the arXiv corpus, where two thresh-
olds, a high and a low, are used to exclude the most and least frequent terms. These
two thresholds are determined by hand inspection.

In addition, the frequencies of terms in the arXiv corpus are compared with
their frequencies in the 450 million-word Corpus of Contemporary American
English [6], where terms with a large frequency difference are counted as math
terms. For instance, “function,” while being a common English word, occurs much
more frequently in a math corpus than a generic English corpus.

Words are normalized by techniques such as stemming and desingulariza-
tion, e.g. “annihilate,” “annihilator,” “annihilating” are normalized to “annihi-
lat.” Thus, each word in the vocabulary can be the representative of several words.

N-grams are gathered based on the frequencies of groups of words occuring
together, as well as conditional probabilities of a word wi+1 occurring immedi-
ately following a given word wi; this detect n-grams containing the word sequence
“wiwi+1.” Additionally, a set of key terms are automatically harvested from select
Wikipedia pages on math. These processes combined created a vocabulary con-
sisting of 23,852 key terms. Each vocabulary word is assigned an index, which will
be used throughout.

For parsing, the likely parts of speech (POS) are recorded for the most
frequently-occurring vocabulary words. These POS tags are obtained either by
consulting with a list of common English words and their possible POS [7], or cre-
ated by hand.

Relations. To understand the relations between objects, a parse tree is created
for each piece of text (Fig. 1). The parser implements a bottom-up dynamic pro-
gramming algorithm.
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First, the text is tokenized. A token usually corresponds to a term (could be
an n-gram) that serves as one POS. For instance, “the topological group G is
extremely amenable,” is tokenized into {{the}, {topological group}, {G}, {is},
{extremely amenable}}, with tags {article, entity, symbol, verb singular, adjec-
tivial qualifier}, respectively.

The possible POS for each term is either retrieved from the vocabulary list from
above, or determined based on the Stanford POS tagger [10]. A token can also carry
multiple POS tags, in which case ambiguities are resolved by the main parser.

The tokens and associated data are then given to the main parser, which uses
a set of hand-created context-free grammar (CFG) rules to combine tokens into
increasingly larger grammatical units: words into phrases, phrases into clauses,
clauses into sentences.

This grammar-rule-reduction is iterated until all tokens in a statement have
reduced to a single head symbol, where the set of tokens can follow multiple
paths to different head symbols, since at each stage multiple grammar rules can
apply. Each head symbol serves as the root of its associated parse tree. At each
step, the least-probable combinations are pruned via beam search, to avoid com-
binatorial explosion of symbol formations. Some examples of grammar rules are
verbphrase → verb entity, assert → entity verbphrase, pobj → poss csubj,
where each underscore joins the components being reduced. Note by convention,
the rule is written where the RHS combination reduces to the LHS.

Each grammar rule is associated with a probability, which is determined based
on a combination of hand curation and the Universal Dependencies framework [5],
a system of grammatical annotations. Adjustments are made whenever empirical
observations on parses warrant a precedence change. The probabilities not only
serve to rank the resulting trees according to likelihood, but also allow the for-
mation of long combinations that rely on an unlikely, but possible, link. The low
probability associated with such a link ensures that it does not interfere when more
likely rules apply.

Once a winning parse tree is selected, another set of rules are used to categorize
the tree into a set of statement types. Some possible types of statements include:
“ThereExists ...,” “... HasProperty ....”

This set of rules serves to uniformize text amongst a known set of semantic
structures. For instance, “the ring R has finite type” and “the ring R is of finite
type” are both uniformized to the “HasProperty” relation, specifically {the ring
R} ∼HasProperty∼ {finite type}. Statement type assignment is done by match-
ing (with backtracking) rule components with tree components. Given a query,
one weight in the search scoring system depends on whether a result candidate’s
structure aligns with that of the query.

2.2 Context Vectors

Vector representations of text capturing at least partial object relations can be cre-
ated based on the parse tree, henceforth referred to as context vectors. Specifically,
given a parse tree, the entry at the index corresponding to a qualifier is the index
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Fig. 1.The parse tree generated for “The fundamental group of any fake projective plane
decomposes as a free nontrivial product with amalgamation.” A tree symbol represents
an entity, and apple symbol a property. This bottom-up parser uses context-free grammar
rules to progressively combine token symbols to create subtrees, selecting the highest-
scoring root symbol as the winning tree.

of the object it’s qualifying. For any given nonzero entry at index i, all previously-
trivial terms related to the term corresponding to i will also share this entry value.

During search, a context vector vq is formed for the query, and a score is created
between vq and candidate context vectors from the corpus, by counting the non-
zero coincidences between vq and each candidate context vector. In other words,
this counts the number of qualifier relation coincidences between the query and
theorems in the corpus. Since the context vectors are sparse, for efficient memory
representation, the nonzero entries for each vector are stored in a hashmap.

2.3 Related Terms

For both terms-based and semantics-based search, knowing which terms are
related can be useful in finding results with the same meaning, but different phras-
ing. Related terms are found by training a neural network to create semantic
embeddings of words using the word2vec model architecture [3], where the train-
ing data are created by removing TeX expressions and markup from all texts,
and canonicalizing the remaining words to their lexemes. Future work may cross-
reference these embeddings with the arXiv word embeddings by the KWARC
group [8].

For each vocabulary word, its related terms are selected as all words
whose vector representations have a cosine distance above an experimentally-
determined threshold with the vocabulary word. Related terms are terms that
occur under similar contexts, but which are not necessarily synonymous in
meaning.
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For instance, the terms {“artinian,” “noetherian,” “dualizing”} are found as
related, not because “noetherian” and “artinian” are synonymous, but because
both are often used before “ring” and “module.”

2.4 TeX Parsing

Context. TeX expressions constitute a substantial portion of theorems, and are
integral in conveying their meaning. For example, suppose the statement “G is
abelian” appears in a theorem, the standalone theorem is ambiguous if it doesn’t
also contain what G refers to.

To get the contextual information on symbols referred to in TeX expressions,
we parse the entire paper. As the parser parses surrounding texts, it picks up vari-
able definitions such as “Let G be a group,” “given a group G,” etc. The parser
attaches this information to a stateful object as itmoves along, andwhen it encoun-
ters an unknown variable in a theorem, it first looks to see if the variable is defined
locally anywhere in the theorem, which could happen after a variable’s first men-
tion. If not, the parser selects the most recently-encountered definition for a vari-
able. Practically, this is implemented by parsing the theorem twice, first time to
collect variable definitions within the theorem, and then resolve unknown vari-
ables.

Display. Due to the immense variety of TeX conventions and styles used in
the corpus, any platform that renders the search results properly must under-
stand the definitions of custom TeX commands, which are usually defined in
the preamble of the TeX document. Therefore, a parser was implemented to
parse TeX macros specified by the likes of such as “\newcommand \plusbinomial
[3][2]{(#2+#3)ˆ#1}” or “\def\plus[#1]#2{#1+#2}.”

Throughout each document, the TeX parser scans all TeX expressions
and replaces any occurrence of commands defined by macros with their full
definitions.

3 Other SearchMethods

3.1 Term-Based Search

The terms-based intersection search takes the intersection of sets of theorems,
where each set corresponds to one term in the query, and all theorems in that set
contains its term. Each term can be an n-gram forn ∈ {1, 2, 3}. Each term’s related
terms are also used to retrieve theorems. This is useful for prioritizing results that
only contain a proper subset of the query terms literally, but which also contain
terms related to the complement of that subset, over those that only contain that
subset and no related terms. One example of this is, for the query “symmetric
matrix”, the algorithm prioritizes theorems containing “Hermitian matrix” over
those containing just “matrix”, because “Hermitian” is related to “symmetric”.

For each term, every theorem containing that term is weighted by the score of
the term, and each theorem’s score is tallied based on all terms it contains.
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3.2 Latent Semantic Analysis

If the terms-based and semantics-based searches do not produce sufficiently many
results, the theorems closest to the query in terms of reduced term-frequency-
inverse-document-frequency (tf-idf) vector representation are returned. This tech-
nique is known as latent semantic analysis [9]. The tf-idf statistic measures a word’s
importance to a document within a corpus, it is proportional to the number of
times a term appears in a document, and inversely proportional to the number of
times it appears in the corpus.

A vector representation is formed for each theorem in the corpus, where the
entry corresponding to a term in the vocabulary is filled with its tf-idf score.

Dimension Reduction. Due to the large number of theorems in the corpus and
the high dimension of the feature space (number of key terms, which is 23,852),
taking the distance, regardless of metric, between the query vector with every cor-
pus vector in the original dimension at runtime is computationally expensive.

Instead, we reduce the dimension of the feature space by projecting it down
to the space spanned by the singular vectors corresponding to the largest singular
values. This rank lowering process also consolidates the dimensions associatedwith
terms that have similar meanings, which helps retrieve semantically related results
that are not literal matches.

To perform the dimension reduction, let M be a tf-idf term-document matrix,
whose rows correspond to terms, and columns correspond to 49256 uniformly ran-
domly selected documents in the arXiv corpus. A subset instead of all papers is
used, to ensure computational feasibility of the dimension reduction. To reduce
the dimension of the row space of M , M can be approximated by a truncated sin-
gular value decomposition (SVD) that keeps the n largest singular values:

M → UDV T .

HereM has dimension 23852×49256,U and V T are orthogonal matrices of dimen-
sions 23852×n andn×49256, respectively, andD is a diagonal matrix of dimension
n × n.

n is determined to be 35, by inspecting the absolute values of all the singu-
lar values (diagonal entries of D), to retain the eigenvalues above a given magni-
tude threshold. This low dimension is needed so search results are produced effi-
ciently in terms of speed, since distances are taken between the query vector and
all 2,335,254 corpus vectors. This reduces the representation of each document to
a 35-dimensional vector. Each vector vp ∈ R

23852 in the corpus is projected to R
35

by the operation v̂p = D−1UT v.
Given a search query q, a vector representation based on the query terms is

created andprojected down toR35, in the exact sameway as how the corpus vectors
are processed. The search results are taken to be the corpus vectors that are the
nearest in terms of cosine distance.
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4 Results Ranking

The scoring mechanism combines the above methods together into one ranking.
A list of scores is consulted in decreasing priority, where each subsequent score is
used to tie-break the ranking generated by the previous scores.

The terms-based score is used first to rank theorems that contain any of the
query terms, then context vectors and structural similarities as determined by
the parse are considered, followed by the count of the query terms that appear in
each result candidate. Finally, the latent-semantics-based ranking is used to return
additional results when the above methods do not generate sufficiently many.

4.1 Examples

Queries can take any colloquial or technical form. Simple queries consisting
entirely of mathematical structures and concepts, such as “fundamental theorem
of calculus,” yield results including both the statements of the theorem, and the-
orems that apply it. Similarly, research results can be retrieved on queries such
as “reductive group action on complete variety,” “Mordell-Weil group of elliptic
curve,” or “smooth intersection of quadrics.” Results also include variations on the
query terms: searching for “Lyubeznik number” also brings up the more general
Hartshorne-Speiser-Lyubeznik invariant.

Queries containing logical implications yield results based on both the terms
contained and the statement logic. For example, searching for “curvature is mod-
ule map” returns results such as “the curvature RE is a right module map if . . . ”
amongst the top hits. Querying “group representation is completely reducible”
gives conditions on groups for which this is true.

Queries for theorems by particular authors are also supported.

5 Notes on Implementation

5.1 Preprocessing

Most of the data statistics on the corpus are precomputed for better search effi-
ciency at runtime. In particular, the entire corpus is parsed, context vectors and
structural metadata are created for each theorem, the indices of all theorems con-
taining a given word are recorded, and the tf-idf vector representations are com-
puted. The preprocessing takes ∼5 days on a 24-core CentOS machine with 64 GB
RAM.

5.2 Scalability

A total of 2,335,254 theorems are extracted from over 770,000 math and math
physics papers. This presents the challenge that not all theorems and their stateful
information can fit in the random access memory (RAM) at the same time. While
this problem can be alleviated by increasing the amount of RAM, adding memory
is not sustainable as the corpus continues to grow.
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A MySQL database is created to host the preprocessed data associated with
each theorem. An added benefit of the database is that the SQL querying structure
naturally supports queries such as “theorems on X by author p,” or “theorems on
X between years t1 and t2.”

An earlier iteration of the platform used a FIFO (first-in-first-out) cache
instead of a database, where bundles each containing 10,000 theorems and associ-
ated data are loaded and ejected from the cache. The cache suffers from the issue of
latency whenever a new bundle of theorems needs to be loaded in memory, where
latency is caused by data deserialization during loading. While each fetch from
a database takes slightly longer than the time the cache takes to fetch a theorem
from memory, the database does not suffer the noticeable latency that affects select
queries, since it fetches one piece of theorem data at a time.

All together, search results return within a few hundred miliseconds per query.
The timing variation depends on the length of the query, and how many search
mechanisms are triggered, where queries consisting of simple combinations of
phrases contained in the vocabulary list yield results the fastest.

The search platform will be made available to the public on a standalone web
platform.

6 Future Improvements

Context-free grammars are limited by their context-freeness, unable to take priori-
ties into account amongst reductions with the same scores. For example, in parsing
“A extension of fields over Q,” the rule entp → entity prep, where prep denotes
a reduced preposition and entity combination (i.e. “of fields” and “over Q”), can
be first applied to reduce either “an extension of fields” or “fields over Q,” both
of which result in the same score. To address this, taking into account parse sub-
trees of depth 3 and beyond (CFG reductions correspond to depth-2 parse trees)
has been shown to significantly improve parsing [11], Future work will explore how
using deeper subtrees can produce more semantically accurate parse trees and vec-
tor representations of theorems, potentially leading to improved search results.

Recent advancements in machine learning have created vector embeddings of
entire sentences [12–14]. These sentence embeddings have shown promising results
on tasks such as sentiment analysis and paraphrase detection. Our experiments on
adopting sentence embeddings on Theorem Search have not yielded better results
than the approaches outlined here, largely due to length differences amongst theo-
rems leading to large distances between their embeddings, even for theorems that
share strong semantic connections. We hope to improve upon these experiments
and use sentence embeddings to improve semantic matching.

Acknowledgments. We would like to thank Jeremy Michelson and Michael Trott for
continuously lending their ears and ideas throughout this project, as well as Rob Y. Lewis
and the ICMS reviewer for helpful comments on an earlier draft of this paper.
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Abstract. While there has been some discussion on how Symbolic Com-
putation could be used for AI there is little literature on applications in
the other direction. However, recent results for quantifier elimination
suggest that, given enough example problems, there is scope for machine
learning tools like Support Vector Machines to improve the performance
of Computer Algebra Systems. We survey the author’s own work and
similar applications for other mathematical software.

It may seem that the inherently probabilistic nature of machine learn-
ing tools would invalidate the exact results prized by mathematical soft-
ware. However, algorithms and implementations often come with a range
of choices which have no effect on the mathematical correctness of the
end result but a great effect on the resources required to find it, and thus
here, machine learning can have a significant impact.

Keywords: Machine learning · Mathematical software

1 Introduction

Machine Learning, refers to tools that use statistical techniques to give computer
systems the ability to learn rules from data; that is, improve their performance
on a specific task, without changing their explicit programming. Although many
of the core approaches date back decades, machine learning has found great
success in recent years, driven by the advances in both computer hardware and
the availability of data. There have well publicised successes of machine learning
recently such as Google’s AlphaGo being the first to beat a professional human
Go player1. We are all likely to have interactions with software that at least
partially learns on a daily basis, whether through traffic signal control [40] or
the extraction and interpretation of our views [39].

Most industries have felt some effect from the advance of these tools, and
software engineering itself is no different. Indeed, the idea of using machine
learning in the software development process is not a new one [41]. In particular,
machine learning is now a common tool in the testing and security analysis of

1 https://research.googleblog.com/2016/01/alphago-mastering-ancient-game-of-go.
html.
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software [21]. Machine learning is at its most attractive when the underlying
functional relationship to be modelled is complex or not well understood. It may
seem that machine learning is hence not relevant to the sub-field of mathematical
software where underlying functional relationships are the key object of study.
Further, the inherently probabilistic nature of machine learning tools seems like
it would invalidate the exact mathematical results prized by such software.

However, as most developers would acknowledge, mathematical software
often comes with a range of choices which, while having no effect on the correct-
ness of the end result, could have a great effect on the resources required to find
it. These choices range from the low level (in what order to perform a search that
may terminate early) to the high (which of a set of competing exact algorithms
to use for this problem instance). In making such choices we may be faced with
decisions where the underlying relationships are not fully understood, but are
not themselves the key object of study. Thus in practice we will use a, usually
fairly crude, man-made heuristic in order to proceed with the implementation.

It is possible that many of these decisions could be improved by allowing
learning algorithms to analyse the data. It is even possible that such study could
lead to a better understanding of the underlying relationship. For example, a
standard step in the use of machine learning is feature selection: identifying a
minimal number of features about the data to use in making the decision. The
primary reasons for this are to reduce the resources required to train a classifier,
and reduce the risk of over-fitting. However, in identifying the most important
features the developers of mathematical software may also get insight on new
mathematical results, or at least hypotheses to guide future development.

We proceed by surveying the author’s own work applying machine learning
in one particular area of symbolic computation. We then consider where else
in computer algebra and mathematical software more broadly there may be
potential applications and existing inspiration.

2 Machine Learning for CAD

The author has been involved in two applications of machine learning [22,23] to
improve the performance of a particular algorithm. Cylindrical Algebraic Decom-
position (CAD) refers to both a mathematical object and the algorithms to
produce them, both first introduced by Collins in the 1970s. Here:

– decomposition means a partition of Rn into connected subsets called cells;
– algebraic is short for semi-algebraic and means that each cell may be described

by a conjunction of polynomial constraints;
– cylindrical refers to the structure of the decomposition: the projections of any

two cells, onto a lower coordinate space with respect to the given variable
ordering, are either identical or disjoint.

CADs were originally produced as sign-invariant for a set of input polynomials2,
meaning each polynomial is to have constant sign on each cell. However, for
2 See for example [2] for a description of the original CAD algorithm.
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almost all applications what is truly required is a decomposition truth-invariant
for logical formulae: where each formula has constant truth value on each cell. A
sign-invariant decomposition for the polynomials in the formulae produces truth
invariance, but it can be achieved more efficiently [5,18,28].

In either case, the invariance properties mean only a finite number of sample
points need to be queried to solve problems. In particular, CADs offer a tool
to perform Quantifier Elimination (QE). Through QE there are a multitude
of applications throughout engineering and the sciences (see for example [33]).
Additional application of CAD directly include identification of steady states in
biological networks [4], and programming with multi-valued functions [14].

However, CAD is well known for its worst case complexity doubly exponential
[15]3. Hence it is important to optimise how CAD is used, such as the setting of
any optional parameters and the presentation of input.

2.1 Deciding Whether to Pre-condition

One choice a user could make is whether to give their problem to CAD directly, or
to first precondition it. One common technique for input formulae with multiple
equations is the use of a Gröbner Basis (GB). A GB is a particular generating
set of an ideal with useful properties: although our task is not to study the ideal
it turns out the GB can give a simpler representation for CAD to work with.

To be precise: let E = {e1, e2, . . . } be a set of polynomials; G = {g1, g2, . . . }
be a GB for E; and B be any Boolean combination of constraints. Then

Φ = (e1 = 0 ∧ e2 = 0 ∧ . . . ) ∧ B and
Ψ = (g1 = 0 ∧ g2 = 0 ∧ . . . ) ∧ B

are equivalent, and a CAD truth-invariant for Ψ can solve problems involving Φ.
This was studied first in 1991 [10] and then again in 2012 [36]. In both cases

the conclusion was that usually GB pre-conditioning is beneficial for CAD, but
there are some examples where it is greatly detrimental. In [22] we considered
using machine learning to decide when to use GB. On a dataset of over a thou-
sand randomly generated problems with multiple equations we found 75% were
easier to study after a GB was taken. We trained a Support Vector Machine
(SVM) classifier [13] with radial basis function (see for example [31]) to make
the decision. We used as problem features simple algebraic properties (degrees,
density of occurrence of variables etc.) of both the input polynomials and the
GB. Only when including those of the GB could the classifier make good deci-
sions: not a problem since for any problem where CAD is tractable GB is trivial.
The classifier chooses, not whether to construct the basis, but whether to use it.
In [22] we also showed how feature selection experiments (identifying a minimal
subset of the features) could improve accuracy (reducing the risk of over-fitting).

3 Doubly exponential usually in the number of variables, although the logical structure
can be used to improve this somewhat [5,18,19].



168 M. England

2.2 Choosing a Variable Ordering

Another choice a user may have to make for CAD is the variable ordering, used
in the definition of cylindricity, and crucial to the computational path of the
algorithm. Depending on the application this may be free, constrained or fixed.

For example, for QE one must order variables as they are quantified; but
there is no restriction on free variables and adjacent quantifiers of the same
type may be swapped. It is well known that this choice can dramatically affect
the feasibility of a problem. In fact, there are a class of problems in which one
variable ordering gives output of double exponential complexity in the number of
variables and another output of a constant size [9]. There are heuristics available
to make the choice but each can be misled by certain examples.

In [23] we investigated machine learning for this choice. In this case the
choice is not binary but from many different orderings4, not a typical context
for machine learning classification. Instead of the ordering itself, we aimed for
machine learning to pick which of three existing heuristics [6,8,16] we should
follow. Experiments on over 7000 problems identified substantial subclasses on
which each of the three heuristics made the best decision. This time we trained
three SVM classifiers, one for each heuristic, and used the relative magnitude of
their margin values to choose the one to follow for each problem. We found this
machine learned choice did significantly better than any one heuristic overall.

3 Potential Use in Symbolic Computation

3.1 Machine Learning Elsewhere in CAD/QE

It seems [23] was the first publication on the application of machine learning to
symbolic computation. The only similar work since is [24] which applied machine
learning to decide the order of sub-formulae solving for their QE procedure5.

There are certainly other decisions to be made when using CAD: such as the
designation of equational constraints [5,18,28]; and for some CAD algorithms
even the order of polynomials and formulae [17]. Perhaps of most importance is
the high level choice of which CAD implementation to use for a problem: most
comparison experiments will show problem instances where different solvers pros-
per. Looking wider still, if the application problem were Quantifier Elimination
then there are a multitude of non-CAD approaches, such as virtual substitution
[33] or QE by comprehensive GB [20], superior for classes of input. The author
will be leading an upcoming EPSRC project (EP/R019622/1) on these topics.

3.2 Machine Learning Elsewhere in Computer Algebra

Computer Algebra Systems (CASs) often have a choice of algorithms to use when
solving a problem. Since a single one is rarely the best for the entire problem

4 If the choice is completely free then n variables have n! possible orderings.
5 The feature set they used for their SVM was seeded from those in [23].
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space, CASs usually use meta-algorithms to choose, where decisions are often
based on some numerical parameters [11]. A prominent example would be how
and when to simplify mathematical expressions (see [32] and references within).
Could machine learning be more effective? In a presentation at ICMS 2016 it
was reported that Maple’s user level symbolic integration command calls 16
different integration procedures in sequence until one returns an answer. It is
likely that the optimal order of calls would vary with problem instance. Ever
broader, a generic command like Maple’s solve or Mathematica’s Solve has
to contend with not knowing exactly what the user means by “solve”, inferring
from the input. Machine learning could possibly assist with this, perhaps not
just by viewing the input, but also the user’s session history.

4 Machine Learning Elsewhere in Mathematical Software

4.1 Satisfiability Checking

There has been some use of machine learning within the satisfiability checking
community for their SAT-solvers [3]. These are tools dedicated to the solution
of the Boolean SAT problem (given a Boolean formula decide if there is an
allocation of values to variables that satisfies it). Despite the SAT problem being
NP-Complete, there exist solvers which can process formulae with millions of
variables, and they are a common tool in many industries.

There is rarely a single dominant SAT solver; instead, different solvers per-
form best on different instances. The portfolio solver SATZilla [38] takes sets
of problem instances and solvers, and constructs a portfolio optimizing a given
objective function (such as mean runtime, percent of instances solved, or score
in a competition). SATZilla did well in SAT competitions6.

Machine learning within the actual search algorithms was a prominent part of
the MapleSAT [27] solver. The developers view the question of solver branching
as an optimisation problem where the objective is to maximize the learning rate,
defined as the propensity for variables to generate learnt clauses. Experiments
showed this to correlate well with efficiency, but the cost of an absolute solution
could outweigh the savings. Hence the chosen approach was to use machine
learning to gain a heuristic solution to the optimisation problem.

Another use of machine learning in SAT is the choice of initial value to
variable allocation to begin the search. In [37] the author describes using a
logistic regression model to predict the satisfiability of formulae after fixing the
values of a certain fraction of the variables and adapting MiniSAT to determine
the preferable initial values using this and a Monte-Carlo approach. The author
reported a high accuracy in the setting of backbone variables (variables that
have the same value in all solutions of the formula) on initiation.

6 Although, because problems change little between competitions there is a risk of
over-fitting being rewarded: www.msoos.org/2018/01/predicting-clause-usefulness.

www.msoos.org/2018/01/predicting-clause-usefulness
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4.2 Satisfiability Modulo Theories

SAT-solvers can be applied to problems outside of the Boolean domain. The
approach, called Satisfiability Module Theories (SMT), is to iteratively use a
SAT solver to find solutions to the Boolean skeleton of a formula and then query
whether this is a solution in the domain, learning new logical restrictions when
not [Chap. 26][3]. In the domain of non-linear real arithmetic, symbolic algo-
rithms developed for QE are the basis of these theory solvers and so the results
and potentials in Sects. 2 and 3.1 all apply. There are likely similar questions of
which tool to use for an instance in many of the other domains also.

Machine learning can also be applied to fundamental questions regarding the
Boolean encoding. In [30] the authors studied whether it was best to encode
atomic subformulas with Boolean variables, or to encode integer variables as
bit-vectors, for working in separation logic with uninterpreted functions. They
concluded that a hybrid approach was needed after evaluating a wide range
of benchmarks and used statistical techniques to decide what to do: an early
application of a machine learning approach to SMT-solvers.

4.3 Mathematical Knowledge Management

Perhaps the area of mathematical software with the greatest potential for
machine learning applications is Mathematical Knowledge Management (MKM)
[12] since many of the tasks are similar to Natural Language Processing (NLP)
where machine learning has seen extensive use. For example, [35] describes the
automatic identification of a suitable top level from the Mathematics Subject
Classification (MSC) system for thousands of articles using an SVM; while [29]
describes how NLP techniques were adapted to build a part of speech tagger
used for key phrase extraction in the database zbMATH.

4.4 Automated Reasoning

Theorem Provers (TPs) prize correctness to a greater extent than even computer
algebra systems. They piece together mathematical results from the most basic
rules of logic to give a certificate of correctness. The search space for proofs can
be huge so we need techniques to cut it down or guide searches through. So it is
perhaps not surprising that Automated Reasoning has been looking at how best
to use machine learning for some time.

The work surveyed in Sect. 2 followed [7] which used SVMs and Gaussian
processes to select from different search strategies for the E prover (see references
within for other studies). Elsewhere, machine learning is used to select the most
relevant theorems and definitions to use when proving a new conjecture in the
MaLARea system [34]. An overview of such premise selection approaches is
given in [26] with the first deep learning approach detailed in [1].

These approaches are relevant also for proof assistants. For example, Sledge-
hammer allows for Isabelle/HOL to send goals to a variety of automated TPs
and SMT solvers. A relevance filter heuristically ranks the thousands of facts
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available and selects a subset based on syntactic similarity to the goal, with the
MaSh option based on machine learning outperforming the standard [25].

5 Summary

There are challenges in applying machine learning to mathematical software:

– Formulating choices in a way suitable for machine learning: e.g. choosing from
existing heuristics rather than an ordering directly (Sect. 2.2).

– Obtaining datasets of sufficient size for training: for the work in Sect. 2.1
we had to build random polynomials while for that in Sect. 2.2 we borrowed
benchmark sets from another discipline (SMT).

– Making related choices in tandem: for example the best variable ordering for
CAD may change after GB preconditioning! How best to deal with this?

However, we have described successful applications in diverse areas and noted
some potentials − an ICMS 2018 session should provide further inspiration.
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26. Kühlwein, D., van Laarhoven, T., Tsivtsivadze, E., Urban, J., Heskes, T.: Overview
and evaluation of premise selection techniques for large theory mathematics. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol.
7364, pp. 378–392. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31365-3 30

27. Liang, J.H., V.K., H.G., Poupart, P., Czarnecki, K., Ganesh, V.: An empirical
study of branching heuristics through the lens of global learning rate. In: Gaspers,
S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 119–135. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66263-3 8

28. McCallum, S.: On projection in CAD-based quantifier elimination with equational
constraint. In: Proceedings of 1999 International Symposium on Symbolic and
Algebraic Computation (ISSAC 1999), pp. 145–149. ACM (1999). https://doi.org/
10.1145/309831.309892
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Abstract. Mathematical proofs will play a crucial role in building a
universal digital mathematics library (UDML). Traditional and formal
style proofs do not adequately fulfill all the purposes that mathematical
proofs have. We propose a new style of proof that fulfills seven purposes
of mathematical proofs. We believe this style of proof is needed to build
a highly interconnected UDML.
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1 Introduction

Over the course of the next few decades, mathematical software systems will
revolutionize how mathematical knowledge is expressed, organized, and applied.
The end product of this revolution will be a universal digital mathematics
library (UDML) containing vast amounts of highly interconnected mathematical
knowledge.

We believe that the mathematical knowledge in a UDML should be repre-
sented in accordance with the little theories method [2] as a theory graph [4] con-
sisting of axiomatic theories as nodes and theory morphisms as directed edges.
The theories—which may have different underlying logics—serve as abstract
mathematical models. The morphisms—which are meaning-preserving mappings
from the formulas of one theory to the formulas of another—serve as informa-
tion conduits that enable theory components such as definitions and theorems
to be transported across the graph [1]. A theory graph enables mathematical
knowledge to be formalized in the most convenient underlying logic at the most
convenient level of abstraction using the most convenient vocabulary and then
applied in many different contexts. In addition, the morphisms and other con-
nections in a theory graph provide an infrastructure for finding relevant concepts
and facts in the theory graph, e.g., all the definitions that are equivalent to a
given definition.
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As one would expect, mathematical proofs will have a crucial role to play in
the building of a UDML. They will serve as threads that tie the knowledge in
a UDML together. We will argue that both the traditional proofs that appear
in mathematical books and articles and the formal proofs developed using proof
assistants are not adequate for the job and that a new style of proof is needed.

2 Styles of Mathematical Proof

A proof is an argument intended to show that a mathematical statement is a log-
ical consequence of a set of premises. There are many styles of proof. Some proofs
describe a deduction of the statement from the premises, while other proofs pre-
scribe the steps needed to produce the deduction. Many proofs are presented
in a two-column format where each line in the left column is an intermediate
result in a deduction and the corresponding line in the right column explains
why the result is justified. Some proofs contain computations (e.g., numeric or
algebraic simplifications) or constructions (e.g., via straightedge and compass).
Geometry proofs are deductions guided by a geometric drawing. Visual proofs
are presented by a series of diagrams or an animation.

The proofs presented in mathematical books and articles usually exhibit a
particular style that we call the traditional proof style. Proofs of this style are
arguments written in a stylized form of natural language with a heavy use of spe-
cial symbols. In traditional proofs the terminology and notation may be ambigu-
ous, assumptions may be unstated, and the argument may contain logical gaps.
However, the reader is expected to be able to resolve the ambiguities, identify the
unstated assumptions, and fill in the gaps in the argument. The writer—whose
purpose is to serve some particular community of readers—has the freedom to
express the argument in whatever manner is deemed most effective. This includes
exhibiting other styles of proof within the traditional style.

The formal proof style is to present a proof as a derivation in a proof system
for a formal logic. Using software systems, formal proofs can be interactively
developed and mechanically checked. This style of proof is highly constrained
by the logic, proof system, and the fact that every detail must be verified. On
the other hand, there is a very high level of assurance that the statement proved
is indeed a theorem of the proof system. Although the traditional proof style
dominates mathematics, the formal proof style is beginning to make some modest
inroads in mathematical practice.

3 Purposes of Mathematical Proof

Mathematical proofs serve (at least) seven purposes. For each of the seven, we
describe what the purpose is and compare how well traditional and formal proofs
fulfill the purpose.
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Purpose 1: Communication

The main purpose of a proof given in a textbook or scientific article is to commu-
nicate to the reader why a mathematical statement follows from a set of premises.
Proofs constructed for communication are used to convey insight and to build
intuition. The highly flexible style of traditional proofs is usually a much better
vehicle for communication than the highly constrained style of formal proofs.
This is especially true when the writer is more concerned about high-level ideas
than low-level details (that often can be mechanically checked by computation).
However, formal proofs can be much more effective at presenting intricate syn-
tactic manipulations than traditional proofs.

Purpose 2: Certification

Another important purpose of a proof is to certify that a mathematical statement
follows from a set of premises. Such a proof serves as a certificate that can
be independently checked. Since a traditional proof is written for a particular
audience, it may not be easily checked by someone outside of this audience.
Moreover, a traditional proof may contain mistakes that are not easily noticed
by a reader, even a reader in the intended audience. In contrast, a formal proof
can be mechanically checked by software alone. A formal proof thus offers the
highest level of certification.

Purpose 3: Discovery

A proof is often formulated to be a provisional argument that a mathematician
can use to discover new theorems. This idea is brilliantly expressed in Proofs
and Refutations by Imre Lakatos [7]. See also Yehuda Rav, “Why Do We Prove
Theorems?” [8]. Traditional proofs are well suited for expressing provisional argu-
ments that can be analyzed by humans. Formal proofs are too rigid to express
provisional arguments and thus are poorly suited for this task. On the other
hand, machines can be used to discover various kinds of structure embodied in
a formal proof, but it is much more difficult to analyze traditional proofs in this
way.

Purpose 4: Learning

The most effective way to learn mathematics is to read and write proofs. Tra-
ditional proofs are today generally much easier to read and write than formal
proofs. However, a reader of a traditional proof may have to work harder on
resolving ambiguities, identifying unstated assumptions, and filling in the gaps
in the argument, and a writer may have to work harder on verifying that each
step of the argument is valid. With effective software support, reading and writ-
ing formal proofs could become almost as easy as reading and writing traditional
proofs.
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Purpose 5: Universality

A proof is universal if it is expressed without any superfluous ideas and can thus
be applied in any context in which the conditions of the proof hold. Traditional
proofs can be expressed in a universal manner, but the underlying mathematical
foundation is usually implicit. Traditional proofs are thus untethered; they do not
have a precise mathematical home. Formal proofs have a precise mathematical
home, but the home is usually not connected to many other contexts in which
the proof can be applied. Hence both traditional and formal proofs fall short in
achieving universality.

Purpose 6: Coherency

A theorem is coherent with a body of mathematical knowledge if it properly
fits into the body without any contradictions or unexpected relationships. A
proof by itself does not establish that the theorem it proves is coherent. Most
mathematicians are reluctant to accept a theorem on only the basis of its proof.
There is always the possibility of error, especially if the proof is not machine
checked. Georg Kreisel has noted in several of his papers, e.g., in [5, p. 126]
and [6, p. 145], that a better way to avoid error than carefully checking a proof
is to use cross checks to compare the result with known facts. For example,
the proof can be checked against similarly structured proofs and the theorem
can be compared with consequences of the theorem or related versions of the
theorem that have been independently proven. Although cross checks are very
important, they are rarely written down and are not considered as part of either
a traditional or a formal proof.

Purpose 7: Beauty

Mathematics is a utilitarian art form like architecture or industrial design.
The desire to create beauty (what mathematicians call elegance) is one of the
strongest driving forces in mathematics. Mathematicians seek to develop proofs
that are beautiful as well as correct. Indeed some mathematicians will not accept
a theorem until an elegant proof of the theorem has been found. It is safe to say
that most mathematicians find it easier to write beautiful proofs in the highly
flexible traditional proof style than in the highly constrained formal proof style.

Summary

Table 1 summarizes the differences between traditional and formal proofs. As
can be seen, neither traditional proofs nor formal proofs fulfill all the purposes
that mathematical proofs have. Furthermore, both styles lack the capacity to
fully achieve universality and coherency.
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Table 1. Traditional vs. formal proofs

Traditional proofs Formal proofs

Communication � ��

Certification

�� �

Discovery (human) � �

Discovery (machine) � �

Learning (reading) �� ��
Learning (writing) �� ��
Universality

�� ��

Coherency � �

Beauty � �

� : high; �� : medium high;
��

: medium low; � : low.

4 A Proposed New Style of Proof

Since traditional and formal proofs do not adequately achieve universality and
coherency, they are not adequate for building a highly interconnected UDML. We
therefore propose a new style of proof that is better suited for threading together
the concepts and facts in a UDML. This new proof style has four components:

1. A home theory HT consisting of a formal logic Log, a language Lang in Log,
and a set Axms of formulas in Lang that serve as the axioms of the theory.

2. A theorem Thm that is a formula in Lang purported to be a logical conse-
quence of Axms.

3. An argument that shows Thm is a logical consequence of Axms.
4. A set CC of cross checks that compare the argument with similar arguments

and the theorem with related theorems.

The home theory is a node in a UDML and a formal context for the proof. It
is connected via meaning-preserving morphisms to other theories in the UDML.
Ideally, the home theory is at the optimal level of abstraction for the proof
and contains only the concepts and assumptions needed to express the proof’s
argument and theorem.

The theorem is a formal statement of what the proof’s argument shows.
It can be transported via appropriate morphisms to other theories in which
the conditions of the proof hold. The home theory HT and the theorem Thm
together thus serve as a specification of the set of theories T and formulas A in
the UDML’s theory graph such that T is an instance of HT, A is an instance
of Thm, and A is a theorem of T . In this way, the proof fulfills the purpose of
universality.

The argument has both a traditional component for communication, human-
oriented discovery, learning, and beauty and a formal component for certification,
machine-oriented discovery, and learning. The two components are tightly inte-
grated so that, for example, a reader of the traditional component can switch,
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if desired, to the formal component when a gap in the argument is reached. It
is not necessary that the formal component is a complete formal proof of the
theorem. The formal component can even be totally absent. Thus the proof is
flexiformal [3].

The set of cross checks should be carefully chosen to show that the theorem
is coherent with the web of previously established facts in the UDML. There are
various kinds of cross checks that can be in CC. One kind is a similar proof of
a similar theorem. A second kind is a logical consequence of Thm in HT that
has been proved independently of Thm. For example, the logical consequence
could be a special case of Thm or a corollary of Thm. A third kind is an instance
of Thm in an instance of HT that has been proved independently of Thm. For
example, the instance of Thm could be an expression of Thm in a more concrete
setting than HT or the dual of Thm in HT under some notion of duality. With
the set CC the proof thus fulfills the purpose of coherency.

Of course, it is possible that a cross check fails. This could indicate that a
mistake has been made or that something is not adequately understood. Thus
failed cross checks are valuable because they can lead to finding hidden mistakes
and making new discoveries.

In summary, the new style of proof we propose is a mixture of the traditional
and formal proof styles in which the context of the proof and the statement
proved are formal, the argument of the proof is expressed in a traditional style,
and parts of the argument may be integrated with formal derivations. The home
theory of the proof is a node in a theory graph of a UDML that is an optimal
expression of the context of the proof. And the cross checks of the proof connect
the proof and the theorem to similar proofs and related theorems in the theory
graph.

5 Conclusion

We have proposed a new style of proof that contains elements of the traditional
and formal styles of proof. It fulfills the seven purposes of mathematical proofs
including universality and coherency. We believe this proof style is the thread
that is needed to interconnect the concepts and facts in a UDML. We also
believe its use will promote the formalization of mathematical knowledge while
preserving the benefits of both traditional and formal proofs.
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Abstract. A major area in neuroscience research is the study of how the
brain processes spatial information. Neurons in the brain represent exter-
nal stimuli via neural codes. These codes often arise from stereotyped
stimulus-response maps, associating to each neuron a convex receptive
field. An important problem consists in determining what stimulus space
features can be extracted directly from a neural code. The neural ideal is
an algebraic object that encodes the full combinatorial data of a neural
code. This ideal can be expressed in a canonical form that directly trans-
lates to a minimal description of the receptive field structure intrinsic to
the code. Here, we describe a SageMath package that contains several
algorithms related to the canonical form of a neural ideal.

Keywords: Canonical form · Neural codes · Neural ideal · Neural ring

1 Introduction

Due to many recent technological advances in neuroscience, the ability to collect
neural data has increased dramatically. With this comes a need for new methods
to process and understand this data. One major question faced by researchers is
to determine how the brain encodes spatial features of its environment through
patterns of neural activity, as with place cell codes [2]. Curto et al. [1] phrase
this question as, “What can be inferred about the underlying stimulus space
from neural activity alone?”

To answer this question, Curto et al. [1] introduced the neural ideal—an
algebraic object encoding the full combinatorial data of a neural code. The neural
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ideal can be expressed in a canonical form that directly translates to a minimal
description of the receptive field structure intrinsic to the code.

In this article we describe a SageMath [3] package containing several algo-
rithms to compute the neural ideal, and its canonical form. We also leverage
the power of specialized algorithms in SageMath to compute Gröbner bases and
other algebraic objects related to the neural ideal. Our main contribution is a
new algorithm to compute canonical forms. This algorithm is significantly more
efficient than the original method outlined by Curto et al. [1].

The outline of this paper is as follows. Section 2 introduces the algebraic
geometry of neural codes. Section 3 describes the new iterative algorithm to
compute canonical forms. Section 4 gives a tutorial of our SageMath package.
Section 5 proves the correctness of the algorithm introduced in Sect. 3.

2 Background

A neural code C ⊆ {0, 1}n is a set of binary strings that represent neural activity.
A ‘1’ represents a firing neuron, while a ‘0’ represents an idle neuron. Given
v ∈ {0, 1}n, denote by ρv the characteristic function for v:

ρv =
n∏

i=1

(1 − vi − xi) =
∏

{i|vi=1}
xi

∏

{j|vj=0}
(1 − xj).

Note that ρv(v) = 1 and ρv(x) = 0 for any x �= v ∈ {0, 1}n. Given a neural
code C ⊆ {0, 1}n, the neural ideal JC is the ideal in F2[x1, . . . , xn] generated by
the polynomials ρv with v /∈ C, that is,

JC = 〈ρv | v /∈ C〉.

Many systems of neurons react to stimuli which have a natural geographic
association. For example, place cells in rats are associated to place fields or
regions of the rat’s 2-dimensional environment [2]. In such a geographic setup,
we would assume that if two neurons are observed to fire together, then the sets
of stimuli for these neurons must overlap. The idea of a realization for a code
formalizes this notion. Suppose U = {U1, . . . , Un} is a collection of open subsets
of a set X ⊂ R

n. Here, X represents the space of possible stimuli, and Ui is
the receptive field of the ith neuron, i.e., the set of stimuli which will cause that
neuron to fire. We say that U is a realization for a code C, or that C = C(U), if

C = {v ∈ {0, 1}n | (
⋂

vi=1

Ui)\
⋃

vj=0

Uj �= ∅}.

Given any code C, a realization of C in R
1 always exists. However, such

realization will not generally be representative of the space of stimuli in any
geometric sense unless we place additional restrictions on the sets in U , such as
convexity or connectedness. The ideal JC for the code C completely determines
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the interaction of the Ui in any realization U of C. This information is more
simply described by the canonical form of the neural ideal JC .

A polynomial f ∈ F2[x1, . . . , xn] is a pseudo-monomial if f has the form

f =
∏

i∈σ

xi

∏

j∈τ

(1 − xj),

where σ ∩ τ = ∅. An ideal J ⊆ F2[x1, . . . , xn] is a pseudo-monomial ideal if
J can be generated by a set of pseudo-monomials. Note that the neural ideal
JC is a pseudo-monomial ideal. Let J ⊆ F2[x1, . . . , xn] be an ideal, and f ∈ J
a pseudo-monomial. Then f is a minimal pseudo-monomial of J if there is no
other pseudo-monomial g ∈ J with deg(g) < deg(f) such that f = gh for some
h ∈ F2[x1, . . . , xn]. The canonical form of a pseudo-monomial ideal J , denoted
CF(J), is the set of all minimal pseudo-monomials of J .

Given a pseudo-monomial ideal J , the canonical form CF(J) is unique and
J = 〈CF(J)〉. Even though CF(J) consists of minimal pseudo-monomials, it is
not necessarily the case that CF(J) is a minimal generating set for J .

The following theorem describes the set of relations on any realization U of
C provided by CF(J). Given σ ⊆ {1, . . . , n}, let Uσ :=

⋂
i∈σ Ui, with U∅ = X.

Theorem 1 ([1, Theorem 4.3]). Let C ⊆ {0, 1}n be a neural code, and let
U = {U1, . . . , Un} be any collection of open sets in a nonempty stimulus space X
such that C = C(U). The canonical form of JC is the union of the following sets:

{xσ | σ is minimal w.r.t. Uσ = ∅} ,
{

xσ

∏

i∈τ

(1 − xi) | σ, τ �= ∅, σ ∩ τ = ∅, Uσ �= ∅,
⋃

i∈τ

Ui �= X,

and σ, τ are minimal w.r.t. Uσ ⊆
⋃

i∈τ

Ui

}
,

{
∏

i∈τ

(1 − xi) | τ is minimal w.r.t. X ⊆
⋃

i∈τ

Ui

}
.

We call the above three (disjoint) sets of relations comprising CF(JC) the
minimal Type 1, Type 2 and Type 3 relations, respectively. Since the canonical
form is unique, by Theorem 1, any receptive field representation of the code
C = C(U) satisfies the following relationships:

Type 1: xσ ∈ CF(JC) implies Uσ = ∅, and Uγ �= ∅, for all γ � σ.
Type 2: xσ

∏
i∈τ (1−xi) ∈ CF(JC) implies Uσ ⊆ ⋃

i∈τ Ui, with σ and τ minimal.
Type 3:

∏
i∈τ (1 − xi) ∈ CF(JC) implies X ⊆ ⋃

i∈τ Ui, and τ is minimal.

The minimality above refers to the fact that the inclusions fail for any proper
subset of σ and τ .
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3 The Iterative Algorithm

Curto et al. [1] detailed an algorithm to obtain the canonical form via the pri-
mary decomposition of the neural ideal. Here we present an iterative algorithm
that requires only simple polynomial arithmetic. This algorithm begins with
the canonical form for a code consisting of a single codeword, and iterates by
adding the remaining codewords one by one and adjusting the canonical form
accordingly. Algorithm 1 describes the process for adding in a new codeword.

Algorithm 1. Iterative step to update CF after adding code word c

Input : CF(JC) = {f1, . . . , fk}, where C ⊆ {0, 1}n is a code on n neurons, and
a codeword c ∈ {0, 1}n

Output: CF(JC∪{c})
begin

L ←− {}, M ←− {}, N ←− {}
for x ←− 1 to k do

if fi(c) = 0 then
L ←− L ∪ {fi}

else
M ←− M ∪ {fi}

end

end
for f ∈ M do

for j ←− 1 to n do
if (xj − cj)f is not a multiple of an element of L and
(xj − cj − 1) � f then

N ←− N ∪ {(xj − cj)f}
end

end

end
return L ∪ N = CF(JC∪{c})

end

Each f ∈ CF(JC) for which f(c) = 0 is included in CF(JC∪{c}). For each
f ∈ CF(JC) with f(c) = 1, we consider the product of f with each linear term
(xj − cj), since (xj − cj)f evaluated at c is 0. We add each of those products to
CF(JC∪{c}) unless it is a multiple of a pseudo-monomial already in the canonical
form, or a multiple of a Boolean polynomial x2

j − xj . Certainly, any polynomial
f returned by Algorithm 1 satisfies f(v) = 0 for all v ∈ C ∪ {c}. A proof that
this algorithm outputs exactly CF(JC∪{c}) is found in Sect. 5.

Algorithm 1 has been implemented in Matlab [4] and also in our SageMath
package. Table 1 displays some runtime statistics regarding the SageMath imple-
mentation. These runtime statistics summarize the running times on 100 ran-
domly generated sets of codewords for each dimension n = 4, . . . , 10. These
computations were performed on SageMath 7.2 running on a Macbook Pro with
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a 2.8 GHz Intel Core i7 processor and 16 GB of memory. We performed a simi-
lar test for our implementation of the original canonical form algorithm [1] and
also on the Matlab implementation of our iterative method. However, even in
dimension 5 the performance of the original algorithm is subpar. In our tests,
we found several codes for which the original algorithm took hundreds or even
thousands of seconds to finish. For example, the iterative algorithm takes 0.01 s
to compute the canonical form of the code below, but the original method takes
1 h and 8 min to perform the same computation.

10000, 10001, 01011, 01010, 10010, 01110, 01101, 01100, 11111,

11010, 11011, 01000, 01001, 00111, 00110, 00001, 00010, 00011, 00101.

We found several codes in dimension 5 for which the original algorithm halts
due to lack of memory. We also found examples in dimension 6 for which our
Matlab implementation took thousands of seconds to finish.

Table 1. Runtime statistics (in seconds) for the iterative CF algorithm in SageMath.

Dimension min max mean median std

4 0.000077 0.0034 0.0016 0.0018 0.00076

5 0.000087 0.014 0.0076 0.0082 0.0034

6 0.00012 0.108 0.049 0.051 0.024

7 0.00012 0.621 0.298 0.323 0.135

8 0.000097 4.011 1.964 2.276 1.036

9 0.698 39.28 24.86 27.38 9.976

10 0.229 350.5 237.45 271.3 87.1

4 SageMath Tutorial

The latest stable version of the NeuralIdeals package can be downloaded from
https://github.com/e6-1/NeuralIdeals. We will assume that SageMath is prop-
erly installed on the system and that the files iterative canonical.spyx,
neuralcode.py and examples.py are downloaded in the folder NeuralIdeals.
NeuralIdeals can also be installed in CoCalc (https://cocalc.com/) following
similar commands. The package is loaded by:

sage: load("NeuralIdeals/iterative_canonical.spyx")
sage: load("NeuralIdeals/neuralcode.py")
sage: load("NeuralIdeals/examples.py")

The first file contains the iterative algorithm in Cython, so loading it requires
a C compiler. The file neuralcode.py contains all other functions in the package.
The file examples.py has some additional examples that can be loaded with
sage: neuralcodes().

https://github.com/e6-1/NeuralIdeals
https://cocalc.com/
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Now, we exemplify the main commands of NeuralIdeals. First, we define a
neural code:

sage: neuralCode = NeuralCode([’001’,’010’,’110’])

We can compute the neural ideal:

sage: neuralIdeal = neuralCode.neural_ideal()
sage: neuralIdeal
Ideal (x0*x1*x2 + x0*x1 + x0*x2 + x0 + x1*x2 + x1 + x2 + 1,
x0*x1*x2 + x1*x2, x0*x1*x2 + x0*x1 + x0*x2 + x0,
x0*x1*x2 + x0*x2, x0*x1*x2) of Multivariate Polynomial Ring
in x0, x1, x2 over Finite Field of size 2

We can compute the primary decomposition using a custom algorithm:

sage: pm_primary_decomposition(neuralIdeal)
[Ideal (x2 + 1, x1, x0), Ideal (x2, x1 + 1)]

We can compute the canonical form of the neural ideal.

sage: canonicalForm = neuralCode.canonical()
sage: canonicalForm
Ideal (x1*x2, x1*x2 + x1 + x2 + 1, x0*x1 + x0, x0*x2)

The method canonical() uses the iterative algorithm by default. In order
to use the procedure described in [1], we need the following flag

sage: neuralCode.canonical(algorithm="original")
Ideal (x1*x2, x0*x1 + x0, x1*x2 + x1 + x2 + 1, x0*x2)

This procedure uses by default the specialized primary decomposition of
pseudo-monomial ideals outlined in [1]. One can make this explicit with the flag
canonical(algorithm="original", decomposition algorithm="pm"). The
method canonical can also use the general primary decomposition methods
implemented in SageMath, namely, Shimoyama-Yokoyama and Gianni-Trager-
Zacharias with the flags sy and gtz, respectively. We also compared these pri-
mary decomposition algorithms. In our tests, gtz generally outperforms pm. How-
ever, gtz is meant to be used in characteristic 0 or in large positive characteristic.
But in small characteristic it may not terminate.

The method canonical() returns an ideal whose generators are not factored,
and hence not easy to interpret in our context. The following command outputs
these polynomials in factored form:

sage: neuralCode.factored_canonical()
[x2 * x1, (x1 + 1) * x0, (x2 + 1) * (x1 + 1), x2 * x0]

From this output we can easily read off the RF structure of the neural code.
But this can be obtained directly with the following command
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sage: neuralCode.canonical_RF_structure()
Intersection of U_[’2’, ’1’] is empty
X = Union of U_[’2’, ’1’]
Intersection of U_[’0’] is a subset of Union of U_[’1’]
Intersection of U_[’2’, ’0’] is empty

We can also compute Gröbner bases and the Gröbner fan of a neural ideal. We
could compute the neural ideal and use the built in groebner basis() method,
but that approach does not impose the Boolean relations (x2 + x = 0). Our
method uses the specialized and very efficient Gröbner basis algorithm for ideals
in Boolean rings; thus taking into account the Boolean relations.

sage: neuralCode.groebner_basis()
Ideal (x0*x2, x1 + x2 + 1)
sage: neuralIdeal.groebner_basis()
[x0*x2, x1 + x2 + 1, x2^2 + x2]

The current stable version of NeuralIdeals dates from 2016. However, this
package continues to be actively developed. Currently we are implementing meth-
ods to test convexity and also to draw realizations in R, S1 and R

2.

5 Correctness Proof for Algorithm 1

Here, we show that the process described in Algorithm 1 gives CF(JC∪{c}) from
CF(JC) and c. Throughout, we use the following conventions and terminology:
C and D are neural codes on n neurons; so, C,D ⊆ {0, 1}n. A polynomial is
multilinear if it is linear in each of its variables. Note that there is a unique
multilinear representative of every equivalence class of F2[x1, . . . , xn]/〈xi(1−xi)〉.
For h ∈ F2[x1, . . . , xn], let hR denote the unique multilinear representative of
the equivalence class of h in F2[x1, . . . , xn]/〈xi(1 − xi)〉.

Assuming CF(JC) = {f1, . . . , fr} and CF(JD) = {g1, . . . , gs}, we define the
set of reduced products

P (C,D) def= {(figj)R | i ∈ [r], j ∈ [s]}.

Note that since pseudo-monomials are multilinear, for each pair i, j we have
either (figj)R = 0 or (figj)R is a multiple of both fi and gj . We define the
minimal reduced products as

MP(C,D) def= {h ∈ P (C,D) |h �= 0 and h �= fg for any f ∈ P (C,D),deg g ≥ 1}.

Lemma 1. If C,D ⊆ {0, 1}n, then CF(JC∪D) = MP (C,D).

Proof. First, we show MP(C,D) ⊆ JC∪D. For any h ∈ MP(C,D), there is some
fi ∈ CF(JC) and gj ∈ CF(JD) so h = (figj)R. In particular, h ∈ JC as h is
a multiple of fi, and h ∈ JD as it is a multiple of gj . Thus h(c) = 0 for all
c ∈ C ∪ D, so h ∈ JC∪D.
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Suppose h ∈ CF(JC∪D). Then as JC∪D ⊆ JC , there is some fi ∈ CF(JC)
so that h = h1fi, and likewise there is some gj ∈ CF(JD) so h = h2gj where
h1, h2 are pseudo-monomials. Thus h is a multiple of (figj)R and hence is a
multiple of some element of MP(C,D). But as every element of MP(C,D) is an
element of JC∪D, and h ∈ CF(JC∪D), this means h itself must actually be in
MP(C,D). Thus, CF(JC∪D) ⊆ MP(C,D). For the reverse containment, suppose
h ∈ MP(C,D); by the above, h ∈ JC∪D. It is thus the multiple of some f ∈
CF(JC∪D). But we have shown that f ∈ MP(C,D), which contains no multiples.
So h = f is in CF(JC∪D).

Proof (Correctness Proof for Algorithm 1). Note that if c ∈ C, then
L = CF(JC), so the algorithm ends immediately and outputs CF(JC); we will
generally assume c /∈ C.

To show that Algorithm 1 produces the correct canonical form, we apply
Lemma 1; it suffices to show that the set L ∪ N equals MP(C, {c}). We must
consider all the products in P (C, {c}), and then remove any redundancies. Note
that CF(J{c}) = {xi − ci | i ∈ [n]}.

We will look at L and M separately. Let g ∈ L. Since g(c) = 0, we know
(g · (xi − ci))R = g for at least one i. So g ∈ MP(C, {c}). Any other product
(g · (xj −cj))R will either be 0, g, or a multiple of g, and hence will not appear in
MP(C, {c}). Thus, all products of linear terms with elements of L are considered,
and all multiples or zeros are removed. It is impossible for elements of L to be
multiples of one another, as L ⊆ CF(JC).

Now consider all products of elements of M with the linear elements of
CF(J{c}). We discard them if their reduction is 0, or if they are a multiple
of something in L. If neither holds, we add them to N . So it remains to show
that no element of N can be a multiple of any other element in N , and no ele-
ment of N can be a multiple of anything in L, and thus that we have removed all
possible multiples. First, no element of N may be a multiple of an element of L,
since if g ∈ L, f · (xi −ci) ∈ N , and f · (xi −ci) ·p = g for some pseudo-monomial
p, then f | g. But this is impossible as f, g are both in CF(JC). Now, suppose
f ·(xi−ci) = h·g ·(xj −cj) for f, g ∈ CF(JC) and f ·(xi−ci), g ·(xj −cj) ∈ N , and
h a pseudo-monomial. Then as f � g and g � f , we have i �= j, and so (xj −cj) | f .
But this means f · (xj − cj) = f and therefore f ∈ L, which is a contradiction.
So no elements of N may be multiples of one another.
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Abstract. In this paper, we introduce the concept of universal Gröbner
basis for a parametric polynomial ideal. In this direction, we present a
new algorithm, called UGS, which takes as input a finite set of parametric
polynomials and outputs a universal Gröbner system for the ideal gen-
erated by input polynomials, by decomposing the space of parameters
into a finite set of parametric cells and for each cell associating a finite
set of parametric polynomials which is a universal Gröbner basis for the
ideal corresponding to that cell. Indeed, for each values of parameters
satisfying a condition set, the corresponding polynomial set forms a uni-
versal Gröbner basis for the ideal. Our method relies on the parametric
variant of the Gröbner basis conversion and also on the PGBMain algo-
rithm due to Kapur et al. to compute parametric Gröbner bases. The
proposed UGS algorithm has been implemented in Maple-Sage and its
performance is investigated through an example.

Keywords: Parametric polynomials · Gröbner bases
Gröbner systems · Gröbner fan · Universal Gröbner bases
Universal Gröbner systems

1 Introduction

Gröbner bases are a powerful computational tool in computer algebra with many
interesting applications in Mathematics, science, and engineering. These bases
and the first algorithm to compute them were introduced by Buchberger in his
PhD thesis [3]. On the other hand, a universal Gröbner basis (UGB) introduced
by Schwartz [14] is a finite basis for a polynomial ideal which remains a Gröbner
basis with respect to any monomial order. However, his results are not construc-
tive. Later, Weispfenning [18] presented an approach to construct UGBs. We
refer to [16] for more details on UGBs and their applications.

In this paper, we are interested in computing a universal Gröbner system
(UGS) for a given parametric polynomial ideal, i.e. we want to decompose the
c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 191–199, 2018.
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space of parameters into a finite set of cells and for each cell we want to give
a finite set of parametric polynomials which forms a UGB for the ideal corre-
sponding to that cell. Indeed, UGS is a natural generalization of the concept
of Gröbner system (GS). The concept of GS for a parametric ideal was intro-
duced by Weispfenning in [19]. Montes in [12] proposed an efficient algorithm
based on Buchberger’s algorithm to compute a GS for a parametric ideal (see
also [5]). Kapur et al. [11] gave a new algorithm for computing GS by combining
Weispfenning’s algorithm with the Suzuki and Sato algorithm [17].

In this paper, after reviewing some basic notations and definitions related to
Gröbner bases, GSs and UGSs (see Sect. 2) we describe an algorithm to compute
a UGS for a parametric ideal (see Sect. 3). This algorithm has been implemented
in Maple-Sage and it is illustrated through an example (see Sect. 4).

2 Preliminaries

In this section, we review the required concepts such as Gröbner basis, GS and
Gröbner fan for a polynomial ideal. Let R = K[x] be the polynomial ring over
a field K in x = x1, . . . , xn. Let I = 〈f1, . . . , fk〉 be the ideal of R generated
by the fi’s. Also let f ∈ R and ≺ be a monomial order on R. The leading
monomial of f is the greatest monomial (with respect to ≺) appearing in f ,
where we denote it by LM(f). The leading monomial ideal of I is defined to be
LM(I) = 〈LM(f)|f ∈ I〉. A finite subset {g1, . . . , gt} ⊂ I is called a Gröbner
basis for I w.r.t. ≺ if LM(I) = 〈LM(g1), . . . ,LM(gt)〉. The construction of a
Gröbner basis depends on the choice of a monomial order. However, a Gröbner
basis is universal if it has the Gröbner property w.r.t. each monomial order.

Definition 1. A universal Gröbner basis (UGB) of I is a finite basis which is
a Gröbner basis for I with respect to all monomial orders.

Schwartz in [14, Corollary 31] showed that any polynomial ideal possesses a
finite UGB. Then, Weispfenning in [18] studied the construction of these bases,
together with upper complexity bounds. Bobson et. al. in [2, Theorem 4.2] proved
that there is a polynomial time algorithm for computing a UGB for a zero-
dimensional polynomial ideal, i.e. any ideal having a finite set of common zeros.
Computation of UGBs is based on the computation of Gröbner fans. The Gröbner
fan of a polynomial ideal was introduced by Mora and Robbiano [13]. For recalling
the concept of Gröbner fan, it is required to mention some preliminaries on convex
geometry but due to the lack of space we give a short review.

Definition 2. Let G = {xαi +
∑

j cijx
βij }�

i=1 be the reduced Gröbner basis of I
w.r.t. a monomial order ≺ (where the leading terms w.r.t ≺ are underlined and
in this case G is called a marked basis). The Gröbner cone of I associated to ≺
is C≺(I) = {w ∈ R

n
+ | w.(αi − βij) ≥ 0, for each i and j}.

According to [13, Property 4.1] and [16, Theorem 1.2], there exist only finitely
many different reduced Gröbner bases for a given ideal I. So, the Gröbner fan
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of I is a fan consisting of the cones corresponding to different monomial orders
for I. In other words, the set of all distinct Gröbner cones of an ideal I is called
the Gröbner fan of I. It is shown that the Gröbner fan of an ideal is a fan (see
[7,16]). An implementation of the Gröbner fan is available via the package Gfan
[9], based on the article of Fukuda et al. [7] which is included in some computer
algebra systems such as Singular [4] and Sage [15]. Computing a Gröbner fan is
equivalent to computing all reduced Gröbner bases of the ideal. Thus, one can
define and compute a UGB based on Gröbner fans. Below, we will explain how
one can apply the Gfan algorithm from [7] to compute UGBs. In the following
algorithm, there is a global variable U which is initially the empty set and at
each iteration of the algorithm, a new reduced Gröbner basis is added into this
set and at the end it is a UGB of the input ideal.

Algorithm 1. UGB
Require: G; the reduced Gröbner basis of I w.r.t. a monomial order ≺
Ensure: a UGB of I

Facets := the list of all facets of C≺(G)
for F in Facets do

if F is a valid facet then
G′ :=Convert(G, F )
Add G′ to U
UGB(G′)

end if
end for

Return(U)

We refer to the PhD thesis of Jensen [10] for the proof of termination and cor-
rectness of this algorithm. He associated an undirected graph Γ to the Gröbner
fan of a polynomial ideal with two maximal cones being connected if they share
a common facet. Then he proved that the reverse search technique [1] can be
used for traversing the graph Γ (reverse search technique is a strategy which
is applied for enumerating vertices of a polytope). In fact, he showed that the
graph Γ associated to the Gröbner fan of a polynomial ideal may be oriented
easily without cycles and with a unique sink. His idea is to define a spanning
tree of the graph which can be easily traversed by the reverse search technique.
In the above algorithm, a facet F is valid iff

• the associated edge to facet F is incoming,
• the corresponding cone to the new Gröbner basis obtained by Convert(G,F )

has not been visited already.

Furthermore, Convert is the following local Gröbner basis change procedure
which is one iteration of the generic Gröbner walk algorithm [6].

Algorithm 2. Convert
Require: G; a reduced Gröbner basis w.r.t. a monomial order ≺ and F ; a facet of C≺(G)
Ensure: G′; a reduced Gröbner basis different from G whose Gröbner cone also has F as a facet

LPv(G) := {LPv(g) | g ∈ G} where v is an interior point of F
H := marked reduced Gröbner basis of LPv(G) w.r.t. ≺−α where α is the normal vector of F
H′ := {f − NormalForm(f, G) | f ∈ H}
G′ := AutoReduce(H′) to transform H′ into a reduced Gröbner basis

Return(G′)
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Here the leading part of g w.r.t. v denoted by LPv(g) is the sum of all terms
aixαi in g such that v.αi is maximal.

Now consider S = K[a,x] where a = a1, . . . , am is a sequence of parameters.
Let ≺x be a monomial order on the variables and ≺a be a monomial order on
the parameters. The lexicographic combination of ≺x and ≺a gives rise to an
ordering on S, denoted by ≺x,a which is defined as follows: For all α, β ∈ N

n and
γ, δ ∈ N

m, xαaγ ≺x,a xβaδ ⇐⇒ xα ≺x xβor (xα = xβand aγ ≺a aδ). Let us
consider σ : K[a] → K as a specialization of parameters where K is the algebraic
closure of K. This morphism can be considered as a substitution of parameters
in f ∈ K[a] with elements of K

m
. Also, for a finite set F ⊂ R, we call V(F ) the

variety of F which is the set of common zeros of F . Now, we recall the definition
of a Gröbner system for a parametric polynomial ideal.

Definition 3. Let F ⊂ S and G = {(Ni,Wi, Gi)}�
i=1 be a finite set of triples

where Ni,Wi ⊂ K[a] and Gi ⊂ S are finite for i = 1, . . . , �. The set G is called
a Gröbner system (GS) of 〈F 〉 w.r.t. ≺x,a on V ⊆ K

m
if for any i we have

• For any specialization σ : K[a] → K satisfying (Ni,Wi) the set σ(Gi) ⊂ K[x]
is a Gröbner basis of 〈σ(F )〉 w.r.t. ≺x. (We say that σ satisfies (Ni,Wi) if
σ(p) = 0 for all p ∈ Ni and σ(q) �= 0 for some q ∈ Wi)

• V ⊆ ⋃�
i=1 V(Ni) \ V(Wi)

Each (Ni,Wi, Gi) is called a branch of the Gröbner system G and we can consider
(Ni,Wi) as a condition set where Ni is the null condition set and Wi the non-null
condition set. Furthermore, G is called a Gröbner system of F if V = K

m
.

Weispfenning [19, Theorem 2.7] showed that any parametric polynomial ideal
has a GS and described an algorithm to compute it. We use the efficient PGB-
Main algorithm due to Kapur et al. [11] for computing GSs.

Example 1. Let F = {(1 − c)y − ax2, x + by2} ⊂ K[a, b, c, x, y] where a, b, c
are parameters and x, y are variables. Using our implementation of PGBMain
algorithm in Maple, we obtain the following GS for 〈F 〉 w.r.t. the product
ordering y ≺lex x and c ≺lex b ≺lex a

⎧
⎨

⎩

([ ], [ab2], [ab2y4 − y + cy, x+ by2])
([ab2], [c − 1], [cy − y, x+ by2])
([c − 1, ab2], [ ], [x+ by2]).

For instance, if a = 2, b = 0 and c = 3 then the second branch corresponds to
these values of parameters. Therefore, {x, y} will be a Gröbner basis for the ideal
〈F 〉 |a=2,b=0,c=3 = 〈−2y − 2x2, x〉.

Similarly the notion of a universal Gröbner system (UGS) may be defined
for a parametric ideal.
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3 Computation of Universal Gröbner Systems

In this section, we present an algorithm for computing a Gröbner fan of a para-
metric ideal. For this, we first introduce Pconvert which is a parametric variant
of the local change algorithm based on the article [8].

Algorithm 3. Pconvert
Require: (N, W, G); a branch of the Gröbner system G w.r.t. a monomial order ≺ and F ; a facet

of C≺(G)

Ensure: {(Ni, Wi, Gi)}�
i=1; some branches different from G whose Gröbner cone also has F as a

facet.
G′ := { }
LPv(G) := {LPv(g) | g ∈ G} where v is an interior point of F

H := {(Ni, Wi, Gi)}k
i=1 a Gröbner system of the parametric ideal LPv(G) according to the

condition set (N, W ) w.r.t. ≺−α where α is the normal vector of F
for i from 1 to k do

Hi := {f − NormalForm(f, G) | f ∈ Gi}
Gi := AutoReduce(Hi)
G′ := G′ ∪ {(Ni, Wi, Gi)}

end for

Return (G′)

The following algorithm takes as input a finite set of parametric polynomials
and outputs a UGS for the ideal generated by the input polynomials. For this, we
decompose the parameter space into a finite set of parametric cells and for each
cell, we give the corresponding UGB. In this algorithm, we use a global variable
Sys which is initially the empty set and at each iteration of the algorithm, some
new branches are added to the set. Also, we initialize U as the empty set. If the
universal Gröbner basis of a parametric cell is completed, it will be added into
U and at the end U is a UGS for the input ideal.

Algorithm 4. UGS
Require: {f1, . . . , fk}; set of parametric polynomials, ≺x, ≺a; monomial orders
Ensure: a universal Gröbner system for I = 〈f1, . . . , fk〉

G := {(Ni, Wi, Gi)}�
i=1 a Gröbner system of I w.r.t. ≺x, ≺a

Sys := Sys ∪{[(Ni, Wi, Gi)]}�
i=1

while Sys is not empty do
H := the last element of Sys and remove it from Sys
if All members of H are marked branches then

Add H to U
else

R := {[(Ni, Wi, Gi)]}|H|
i=1

for i from 1 to |H| do
if (Ni, Wi, Gi) is a unmarked branch then

Facets := the list of all facets of the Gröbner cone corresponding to Gi

for F in Facets do
if F is a valid facet then

G′ := Pconvert((Ni, Wi, Gi), F )

R := {Ri ∪ [(Nj , Wj , Gj)]
|G′|
j=1}|R|

i=1
Remove incompatible members of R

end if
end for

end if
end for
Sys := Sys ∪R

end if
end while

Return(U)
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It should be noted that for checking the validity of F , we first compute the
set of Gröbner cones for each member of R. Then, two points mentioned in the
previous section are considered for each set separately. In the above algorithm, a
marked branch is a visited branch, if it has been underlined in an iteration of the
algorithm. Also, a member of R will be incompatible if at least one of its branches
is incompatible (A branch (N,W,G) is incompatible if V(N) \ V(W ) = ∅).

Theorem 1. UGS algorithm terminates after finitely many steps and is correct.

Proof. At the beginning of the algorithm, we compute a Gröbner system G of
the ideal generated by the input polynomials w.r.t.≺x,≺a. According to the
PGBMain algorithm, G is a set of branches with decomposition of the space
of parameters into a finite set of parametric cells. Each of these branches is a
candidate for a UGB w.r.t. its specific parametric cell. We define a path as a set
of branches with compatible null and non-null conditions which is converted into
a UGB after execution of some iteration of the algorithm. So, we consider each
branch of G as a separate path and run the Gfan algorithm [10] for them sepa-
rately. In each iteration of the algorithm, when we consider a branch (N,W,G),
this branch is converted, w.r.t. some of its valid facets, into some new branches,
say {(N ′

i ,W
′
i , G

′
i)}k

i=1 based on [8], where condition (N,W ) is decomposed into
some sub conditions (N ′

i ,W
′
i )

k
i=1. These new branches create new paths in the

algorithm. For example, according to the following picture, suppose there is a
path with one branch A and A has two valid facets F1 and F2. Also, suppose
the branch A with facets F1 and F2 is converted into two branches sets {B,C}
and {D,E} respectively. Now, four paths {A,B,D}, {A,B,E}, {A,C,D} and
{A,C,E} are added in the algorithm and the Gfan algorithm must be consid-
ered for them separately.

A

Facet F2

ED

Facet F1

CB

In fact, it is possible that a path in an iteration of the algorithm is separated
to some new paths. At the end of the algorithm, each completed path is a UGB
w.r.t. a specific parametric cell. It is necessary to mention two points. Firstly,
each branch of a path is considered just once in the algorithm and if a branch
has been considered before, it will be not considered any more. Secondly, if there
is at least one incompatible branch in a path, the path will be removed from
the algorithm. As a result, since the algorithm UGS is a combination of the
Gfan algorithm from [10] and the PGGW algorithm from [8] (an algorithm
for converting a GS of an arbitrary parametric polynomial ideal into a GS of
the ideal w.r.t. another monomial order), the termination and correctness of the
new algorithm is warranted by the termination and correctness of Gfan and
PGGW, which ends the proof. ��
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4 A Simple Example

We have implemented the UGS algorithm in Maple (by applying some auxil-
iary functions from Sage) and the code of the implementation of our algorithms
is available at http://amirhashemi.iut.ac.ir/softwares. To illustrate the execu-
tion of the UGS algorithm, let I = {ax + byx, cuy + z − 2u} ⊂ K[a,x] =
K[a, b, c, x, y, z, u] where a, b, c are parameters and x, y, z, u are variables. First,
we compute a GS for I w.r.t. the lexicographic combination of ≺x: u ≺lex z ≺lex

y ≺lex x and ≺a: c ≺lex b ≺lex a as follows.

G =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(N1,W1, G1) = ([b], [a, c], [cuy − 2u+ z, x])

(N2,W2, G2) = ([b, a], [c], [cuy − 2u+ z])

(N3,W3, G3) = ([c, b, a], [ ], [z − 2u])
(N4,W4, G4) = ([c, b], [a], [z − 2u, x])
(N5,W5, G5) = ([c], [b], [z − 2u, bxy + ax])

(N6,W6, G6) = ([ ], [b, c], [cuy − 2u+ z, bxz − acux − 2bux, bxy + ax])

For this, we called PGBMain([ ], [1], I,≺a,≺x) from our code. So, we obtain

Sys = {[(N1,W1, G1)], [(N2,W2, G2)], [(N3,W3, G3)], [(N4,W4, G4)],
[(N5,W5, G5)], [(N6,W6, G6)]}.

By selecting the last member of Sys, we have H = [(N6,W6, G6)]. Since the
branch (N6,W6, G6) has not been considered yet, it is underlined and added
to R. Using the Sage function GroebnerCone(G6, {x}) two facets F1 and F2

of this branch with normal vectors α1 = [0, 0, 1,−1] and α2 = [0, 1,−1, 1] are
computed. F1 is valid (the test of validity is done by checkValid(R,α1, v, {x})
available in our code where v is an interior point of F1). Therefore,

G′ =
{
(N ′

1,W
′
1, G

′
1) = ([ ], [b, c, ac+ 2b], [xu(ac+ 2b) − bzx, bxy + ax, cuy − 2u+ z])

(N ′
2,W

′
2, G

′
2) = ([ac+ 2b], [b, c], [bxy + ax, cuy − 2u+ z, bzx]).

This conversion is done by the function flip(G6, v, α1, {a}, {x}) imple-
mented in Maple. The second facet also is valid. So, G′ = {(N ′′

1 ,W ′′
1 , G′′

1) =
([ ], [b, c], [z + cuy − 2u, bxy + ax])}. Now, the set R is updated as follows

R =
{

[(N6,W6, G6), (N ′
1,W

′
1, G

′
1), (N

′′
1 ,W ′′

1 , G′′
1)]

[(N6,W6, G6), (N ′
2,W

′
2, G

′
2), (N

′′
1 ,W ′′

1 , G′′
1)].

Since all members of R are compatible, they are added to Sys. In the next
iteration of the algorithm, we have

H = [(N6,W6, G6), (N ′
2,W

′
2, G

′
2), (N

′′
1 ,W ′′

1 , G′′
1)].

The branch (N6,W6, G6) is marked, but two other unmarked branches must be
considered. Each of these branches has an invalid facet. Therefore, the algorithm
does not make any new branch and in the next iteration, H is added to U as

([ac + 2b], [b, c], {[cuy − 2u + z,−acux − 2bux + bxz, bxy + ax],
[bxy + ax, cuy − 2u + z, zbx], [cuy − 2u + z, bxy + ax]})

http://amirhashemi.iut.ac.ir/softwares
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If we consider all the remaining branches of Sys, we obtain the following
universal Gröbner system for I:

• ([c], [b], {[z − 2u, bxy + ax], [bxy + ax, 2u − z]})
• ([c, b], [a], {[z − 2u, x], [x, 2u − z]})
• ([a, b, c], [ ], {[z − 2u], [2u − z]})
• ([a, b], [c], {[cuy − 2u + z], [cuy − 2u + z]})
• ([b], [a, c], {[cuy − 2u + z, x], [x, cuy − 2u + z]})
• ([ac+2b], [b, c], {[cuy −2u+ z,−acux−2bux+ bxz, bxy +ax], [bxy +ax, cuy −

2u + z, zbx], [cuy − 2u + z, bxy + ax]})
• ([ ], [ac+2b, b, c], {[cuy−2u+z,−acux−2bux+bxz, bxy+ax], [−zbx+xu(ac+

2b), bxy + ax, cuy − 2u + z], [cuy − 2u + z, bxy + ax]}).
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(eds.) AAECC 1987. LNCS, vol. 356, pp. 408–417. Springer, Heidelberg (1989).
https://doi.org/10.1007/3-540-51082-6 96
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Abstract. Computational tools in numerical algebraic geometry can
be used to numerically approximate solutions to a system of polyno-
mial equations. If the system is well-constrained (i.e., square), Newton’s
method is locally quadratically convergent near each nonsingular solu-
tion. In such cases, Smale’s alpha theory can be used to certify that
a given point is in the quadratic convergence basin of some solution.
This was extended to certifiably determine the reality of the correspond-
ing solution when the polynomial system is real. Using the theory of
Newton-invariant sets, we certifiably decide the reality of projections of
solutions. We apply this method to certifiably count the number of real
and totally real tritangent planes for instances of curves of genus 4.

Keywords: Certification · Alpha theory · Newton’s method
Real solutions · Numerical algebraic geometry

1 Introduction

For a well-constrained system of polynomial equations f , numerical algebraic
geometric tools (see, e.g., [2,12]) can be used to compute numerical approxi-
mations of solutions of f = 0. These approximations can be certified to lie in
a quadratic convergence basin of Newton’s method applied to f using Smale’s
α-theory (see, e.g., [3, Chap. 8]). When the system f is real, α-theory can be
used to certifiably determine if the true solution corresponding to an approxi-
mate solution is real [6]. That is, one can certifiably decide whether or not every
coordinate of a solution is real from a sufficiently accurate approximation. It is
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often desirable in computational algebraic geometry to instead decide the reality
of a projection of a solution of a real polynomial system. In this manuscript, we
develop an approach for this situation using Newton-invariant sets [4].

The paper is organized as follows. Section 2 provides a summary of Smale’s α-
theory and Newton-invariant sets. Section 3 provides our main results regarding
certification of reality of projections. Section 4 applies the method to certifying
real and totally real tritangents of various genus 4 curves.

2 Smale’s Alpha Theory and Newton-Invariant Sets

Our certification procedure is based on the ability to certify quadratic conver-
gence of Newton’s method via Smale’s α-theory (see, e.g., [3, Chap. 8]) and
Newton-invariant sets [4]. This section summarizes these two items following [4].

Assume that f : Cn → C
n is an analytic map and consider the Newton

iteration map Nf : Cn → C
n defined by

Nf (x) :=
{

x − Df(x)−1f(x) if Df(x) is invertible,
x otherwise,

where Df(x) is the Jacobian matrix of f at x. The map Nf is globally defined
with fixed points {x ∈ C

n | f(x) = 0 or rank Df(x) < n}. Hence, if Df(x) is
invertible and Nf (x) = x, then f(x) = 0.

One aims to find solutions of f = 0 by iterating Nf to locate fixed points.
To that end, for each k ≥ 1, define Nk

f (x) := Nf ◦ · · · ◦ Nf︸ ︷︷ ︸
k times

(x).

Definition 1. A point x ∈ C
n is an approximate solution of f = 0 if there

exists ξ ∈ C
n such that f(ξ) = 0 and ‖Nk

f (x) − ξ‖ ≤ (
1
2

)2k−1 ‖x − ξ‖ for
each k ≥ 1 where ‖·‖ is the Euclidean norm on C

n. The point ξ is the associated
solution to x and the sequence {Nk

f (x)}k≥0 converges quadratically to ξ.

Smale’s α-theory provides sufficient conditions for x to be an approximate
solution of f = 0 via data computable from f and x. We will use approximate
solutions to determine characteristics of the corresponding associated solutions
using Newton-invariant sets.

Definition 2. A set V ⊂ C
n is called Newton invariant with respect to f if

Nf (v) ∈ V for every v ∈ V and limk→∞ Nk
f (v) ∈ V for every v ∈ V such that

this limit exists.

For example, the set V = R
n is Newton invariant with respect to a real

map f . The algorithm presented in Sect. 3 considers both the set of real numbers
as well as other Newton-invariant sets to perform certification together with the
following theorem derived from [3, Chap. 8] and [4].



202 J. D. Hauenstein et al.

Theorem 1. Let f : Cn → C
n be analytic, let V ⊂ C

n be Newton invariant with
respect to f , let x, y ∈ C

n such that Df(x) and Df(y) are invertible, and let

α(f, x) := β(f, x) · γ(f, x), β(f, x) := ‖x − Nf (x)‖ = ‖Df(x)−1f(x)‖,

γ(f, x) := supk≥2

∥
∥
∥

Df(x)−1Dkf(x)
k!

∥
∥
∥

1
k−1

, δV (x) := inf
v∈V

‖x − v‖

where the norms are the corresponding vector and operator Euclidean norms.

1. If 4 · α(f, x) < 13 − 3
√

17, then x is an approximate solution of f = 0.
2. If 100 ·α(f, x) < 3 and 20 · ‖x−y‖ ·γ(f, x) < 1, then x and y are approximate

solutions of f = 0 with the same associated solution.
3. Suppose that x is an approximate solution of f = 0 with associated solution ξ.

(a) Nf (x) is also an approximate solution with associated solution ξ and

‖x − ξ‖ ≤ 2β(f, x) = 2‖x − Nf (x)‖ = 2‖Df(x)−1f(x)‖.

(b) If δV (x) > 2β(f, x), then ξ /∈ V .
(c) If 100 · α(f, x) < 3 and 20 · δV (x) · γ(f, x) < 1, then ξ ∈ V .

The value β(f, x) is the Newton residual. When f is a polynomial sys-
tem, γ(f, x) is a maximum over finitely many terms and thus can be easily
bounded above [11]. A similar bound for polynomial-exponential systems can be
found in [5]. The value δV (x) is the distance between x and V . The special case
of V = R

n was first considered in [6].
The following procedure from [4], which is based on Theorem 1, certifiably

decides if the associated solution of a given approximate solution lies in a given
Newton-invariant set V .

Procedure b = Certify(f, x, δV )
Input A well-constrained analytic system f : Cn → C

n such that γ(f, ·) can be
computed (or bounded) algorithmically, a point x ∈ C

n which is an approxi-
mate solution of f = 0 with associated solution ξ such that Df(ξ)−1 exists,
and distance function δV for some Newton-invariant set V that can be com-
puted algorithmically.

Output A boolean b which is true if ξ ∈ V and false if ξ /∈ V .
Begin

1. Compute β := β(f, x), γ := γ(f, x), α := β · γ, and δ := δV (x).
2. If δ > 2β, Return false.
3. If 100 · α < 3 and 20 · δ · γ < 1, Return true.
4. Update x := Nf (x) and go to Step 1.
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3 Certification of Reality

The systems under consideration are well-constrained polynomial systems

f(a, b1, . . . , bk, c1, . . . , c�, d1, . . . , d�) =

⎡
⎢⎢⎣

g(a)
p(a, bi) for i = 1, . . . , k
p(a, ci) for i = 1, . . . , �
p(a, di) for i = 1, . . . , �

⎤
⎥⎥⎦ (1)

with variables a ∈ C
m and br, cs, dt ∈ C

q, and polynomial systems g : Cm → C
u

and p : Cm+q → C
w which have real coefficients such that

u ≤ m and m + (k + 2�)q = u + (k + 2�)w. (2)

The first condition in (2) yields that a is not over-constrained by g while the
second condition provides that the whole system is well-constrained.

Example 1. To illustrate the setup, we consider an example with m = 3, k = 0,
� = 1, q = 1, u = 1, and w = 2 so that (2) holds, resulting in a well-constrained
system of 5 polynomials in 5 variables. Namely, we consider

f(a, c, d) =

⎡

⎢
⎢
⎣

g(a)

p(a, c)

p(a, d)

⎤

⎥
⎥
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2
1 + a2

2 + a2
3 − 1

a1 + (1 − c2)(a2c + a3c2)

a1(3c2 − 1) + a2(2c5 − 4c3 + 2c − 1)

a1 + (1 − d2)(a2d + a3d2)

a1(3d2 − 1) + a2(2d5 − 4d3 + 2d − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since the polynomial system f in (1) has real coefficients, we can use
Theorem 1 with V = R

n where n = m + (k + 2�)q = u + (k + 2�)w to cer-
tifiably determine if all coordinates of the associated solution are simultaneously
real.

Example 2. Let f be the polynomial system with real coefficients considered
in Example 1 with Newton-invariant set V = R

5. For the points P1 and P2,
respectively:

(
1543
8003 +

√−1
530485174 , −34488

50521 −
√−1

190996265 , 32768
46489 −

√−1
310964547 , 6713

18120 + 4777
√−1

19088 , 6713
18120 − 4538

√−1
18133

)
,

(
18245
111912 −

√−1
772703930 , 15244

38793 −
√−1

307556791 , 27099
29944 −

√−1
155308656 , −44817

40271 −
√−1

372454657 , 8603
8149 +

√−1
608134511

)
,

alphaCertified [6] computed the following information:

j upper bound of α(f, Pj) β(f, Pj) upper bound of γ(f, Pj) δR5(Pj)

1 1.32 · 10−5 2.05 · 10−8 6.40 · 102 0.35
2 2.38 · 10−4 1.47 · 10−8 1.63 · 102 7.98 · 10−9

Item 1 of Theorem 1 yields that both points P1 and P2 are approximate solutions
of f = 0. Suppose that ξ1 and ξ2, respectively, are the corresponding associated
solutions. Items 3b and 3c, respectively, provide that ξ1 /∈ R

5 and ξ2 ∈ R
5.
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Rather than consider all coordinates simultaneously, the following shows that
we can certifiably decide the reality of some of the coordinates.

Theorem 2. For f as in (1), the set

V =
{

(a, b1, . . . , bk, c1, . . . , c�, conj(c1), . . . , conj(c�)) ∈ R
m × (Rq)k × (Cq)2�

}

(3)

is Newton invariant with respect to f where conj() denotes complex conjugate.

Proof. Suppose that v = (a, b1, . . . , bk, c1, . . . , c�, d1, . . . , d�) ∈ V such that the
Jacobian matrix Df(v) is invertible. Let Δv = Df(v)−1f(v) and write

Δv =
[
ΔaT ΔbT

1 · · · ΔbT
k ΔcT

1 · · · ΔcT
� ΔdT

1 · · · ΔdT
�

]T
.

Since f has real coefficients, we know that

conj(Δv) = conj(Df(v)−1f(v)) = Df(conj(v))−1f(conj(v)).

Since v ∈ V , conj(v) = (a, b1, . . . , bk, d1, . . . , d�, c1, . . . , c�) ∈ V . Based on the
structure of f , it immediately follows that

conj(Δv) = Df(conj(v))−1f(conj(v)) =
[

ΔaT ΔbT
1 · · · ΔbT

k ΔdT
1 · · · ΔdT

� ΔcT
1 · · · ΔcT

�

]T .

Hence, conj(Δa) = Δa, conj(Δbi) = Δbi, and conj(Δcj) = Δdj . Thus, it
immediately follows that Nf (v) = v − Δv ∈ V .

The remaining condition in Definition 2 follows from the fact that V is
closed. 
�

All that remains to utilize Certify is to provide a formula for δV .

Proposition 1. For any x = (a, b1, . . . , bk, c1, . . . , c�, d1, . . . , d�) ∈ C
m+(k+2�)q

and V as in (3),

δV (x) =
1

2

∥∥∥∥ (a − conj(a), b1 − conj(b1), . . . , bk − conj(bk),
c1 − conj(d1), . . . , c� − conj(d�), d1 − conj(c1), . . . , d� − conj(c�))

∥∥∥∥ .

(4)

Proof. The projection of x = (a, b1, . . . , bk, c1, . . . , c�, d1, . . . , d�) onto V is

v = 1
2 (a + conj(a), b1 + conj(b1), . . . , bk + conj(bk),

c1 + conj(d1), . . . , c� + conj(d�), d1 + conj(c1), . . . , d� + conj(c�)).

Thus, δV (x) = ‖x − v‖ which simplifies to (4). 
�
Example 3. For the polynomial system f considered in Example 1, Theorem 2
provides that V = {(a, c1, conj(c1)) ∈ R

3 × C × C} is Newton invariant with
respect to f . Let ξ1 be the associated solution of the first point P1 from Exam-
ple 1. Since δV (P1) = 8.88 ·10−9, we know ξ1 ∈ V using the data from Example 2
together with Item 3c of Theorem 1, i.e., the first three coordinates of ξ1 are
real and the last two coordinates are complex conjugates of each other. Hence,
ξ1 ∈ V \ R

5.
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4 Tritangents

We conclude by applying this new certification method to a problem from real
algebraic geometry considered in [8,9]. A smooth space sextic is a nonsingular
algebraic curve C ⊂ P

3 which is the intersection of a quadric surface Q and
cubic surface Γ . The curve C is a curve of degree 6 and genus 4, and every
hyperplane of P3 intersects C in exactly 6 points (counting multiplicities). The
problem considered in [8,9] concerns counting the number of hyperplanes which
are tangent to C at all points of intersection.

Definition 3. A plane H ⊂ P
3 is a tritangent plane for C if every point in C ∩

H has even intersection multiplicity.

In the generic case, each tritangent plane intersects C in 3 points, each with
multiplicity 2, and there are a total of 120 complex tritangent planes. For sim-
plicity, we henceforth restrict our attention to the generic case. Each of the 120
tritangent planes can be categorized as either totally real, real, or nonreal.

Definition 4. A tritangent plane H is real if it can be expressed as the solu-
tion set of a linear equation with real coefficients and nonreal otherwise. A real
tritangent plane is totally real if each point in C ∩ H is real.

Example 4. The smooth space sextic curve C ⊂ P
3 equal to

{[x0, x1, x2, x3] ∈ P
3 | x2

0 +x0x3 = x1x2, x0x2(x0 +x1 +x3) = x3(x2
1 −x2

2 +x2
3)}

has 16 real tritangents, 7 of which are totally real, and 104 nonreal tritangents.

4.1 Counting Real and Totally Real Tritangents

Gross and Harris [7] prove that the number of real tritangents of a genus 4 curve
is either 0, 8, 16, 24, 32, 64 or 120. This number depends only on the topological
properties of the real part of the curve, as summarized in Table 1.

Example 5. Since the curve C in Example 4 has 16 real tritangents, it follows
from [7] that the real part of C consists of two connected components.

In contrast, totally real tritangents reflect the extrinsic geometry of the real
part of the curve. Indeed, Kummer [9] recently obtained bounds on the number
of totally real tritangents for each real topological type. We will use our certifica-
tion procedure to prove results that help close the gaps between the theoretical
bounds and instances which have actually been realized.

To that end, we formulate a well-constrained parameterized polynomial sys-
tem of the form (1) as follows. For a generic smooth space sextic C = Q ∩ Γ ⊂ P

3,
let q and c be quadric and cubic polynomials that define Q and Γ , respectively.
By assuming the coordinates are in general position, we solve in affine space
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by setting the first coordinate equal to 1. In particular, we are seeking a ∈ C
3,

x1, x2, x3 ∈ C
3, and λ1, λ2, λ3 ∈ C

2 such that

f(h, x1, λ1, x2, λ2, x3, λ3) =

⎡
⎣

p(h, x1, λ1)
p(h, x2, λ2)
p(h, x3, λ3)

⎤
⎦ = 0 with p(h, xi, λi) =

⎡
⎢⎢⎢⎢⎢⎣

H(Xi)
q(Xi)
c(Xi)⎡

⎣
∇xH(Xi)
∇xq(Xi)
∇xc(Xi)

⎤
⎦ Λi

⎤
⎥⎥⎥⎥⎥⎦

(5)

where H = [1, h] ∈ P̂
3, Xi = [1, xi] ∈ P

3, Λi = [1, λ] ∈ P
2, and ∇xζ([1, x]) ∈ C

3 is
the gradient of ζ with respect to x. In particular, f is a system of 18 polynomials
in 18 variables with the first 3 polynomials in p enforcing that Xi ∈ C ∩ H and
the last 3 polynomials providing that H is tangent to C at Xi. The values of
k and � from (1) are dependent on the number of real points in C ∩ H. A real
tritangent H will either have three or one real points in C ∩ H corresponding,
respectively to totally real tritangents (k = 3 and � = 0) and real tritangents
that are not totally real (k = � = 1).

Remark 1. For generic quadric q and cubic c, the condition f = 0 in (5) has
120 · 3! = 720 isolated solutions where the factor 3! = 6 corresponds to trivial
reorderings. By selecting one point in each orbit, (5) can be used as a parameter
homotopy [10], where the parameters are the coefficients of q and c, to compute
tritangents for generic smooth space sextic curves.

4.2 Computational Results

In the following, we utilize Bertini [1] to numerically approximate the tritangents
via a parameter homotopy following Remark 1. After heuristically classifying
the tritangents as either totally real, real, or nonreal, we use the results from
Sect. 3 applied to f in (5) to certify the results using alphaCertified [6]. More
computational details for applying our approach to the examples that follow
can be found at https://doi.org/10.7274/R0DB7ZW2. The reported timings are
based on using either one (in serial) or all 64 (in parallel) cores of a 2.4 GHz
AMD Opteron Processor 6378 with 128 GB RAM.

Example 6. For i = 1, 2, let Ci ⊂ P
3 be defined by qi = ci = 0 where

q1(x) = q2(x) = x0x3 − x1x2

c1(x) = (25x3
0 − 24x2

0x1− 89x2
0x2− 55x2

0x3− 14x3
1 − 31x2

1x2 + 86x1x2x3 + 74x2
2x3 − 45x2x2

3 − 62x3
3)/100

c2(x) = (89x3
0 − 41x2

0x1 − 87x0x2
1 − 26x0x2

2 − 25x2
1x2 + 42x2

1x3 + 56x1x2
2 + 87x3

2 − 67x2x2
3 − 42x3

3)/100.

We first use a parameter homotopy in Bertini following Remark 1 to numer-
ically approximate the solutions of f = 0 in (5). Each of these instances took
approximately 45 s in serial and 1.5 s in parallel to compute all numerical solu-
tions to roughly 50 correct digits. Converting to rational numbers and applying
alphaCertified to each instance shows that all numerical approximations com-
puted by Bertini are approximate solutions in roughly 33 minutes using rational
arithmetic with serial processing.

https://doi.org/10.7274/R0DB7ZW2
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First, we certify that we have indeed computed 120 distinct tritangents up to
the action of reordering. This is accomplished by comparing the pairwise dis-
tances between the h coordinates corresponding to the tritangent hyperplane
with the known error bound 2β from Item 3a of Theorem 1. In both of our
examples, 2β < 10−54 while the pairwise distances were larger than 10−2 show-
ing that 120 distinct tritangents were computed as expected.

Second, we compare the size of the imaginary parts of the h coordinates
with the error bound 2β to certifiably determine which are nonreal tritangets.
For both cases, this proves that there are 104 nonreal tritangents leaving 16
tritangents requiring further investigation.

Third, we apply Certify with V = R
18 to certifiably determine the number

of totally real tritangents. This proves that C1 and C2 have exactly 0 and 16
totally real tritangents, respectively.

The only remaining item is to show that the 16 tritangents for C1 are real
which follows from our new results in Sect. 3. We reorder the intersection points
so that the first one has the smallest imaginary part and apply Certify with V
as in (3) where k = 1 and � = 1, i.e., one real intersection point and a pair of
complex conjugate intersection points.

In summary, these computations prove that both C1 and C2 have 16 real
tritangents, where none and all of these 16 are totally real, respectively.

Example 6 provides two new instances of results that had not been realized
in [8]. Combining these two examples together with results from [8,9] shows
that any number between 0 and 16 totally real tritangents can be realized for a
smooth sextic curve which has 16 real tritangents. In Table 1 we summarize the
theoretical bounds from [9] for the number of totally real tritangents, together
with the values that are realized in [8] and our computations (including the
computations we describe below). In particular, the bold numbers show new
results we obtained using our certification approach. Only 4 open cases remain
to be realized or shown to be impossible: 120 real tritangents with between 80
and 83 totally real tritangents.

Table 1. Summary of results for tritangents of genus 4 curves with bold numbers
showing the new results obtained using our certification approach.

# real

tritangents [7]

# connected real

components

Dividing type? Range of #

totally real [9]

Realized # totally

real ([8] & our

results)

0 0 No [0, 0] [0, 0]

8 1 No [0, 8] [0, 8]

16 2 No [0, 16] [0,16]

24 3 Yes [0, 24] [0,24]

32 3 No [8, 32] [8, 32]

64 4 No [32, 64] [32,64]

120 5 Yes [80, 120] [84, 120]
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Typically, our computations to generate these results started with the Cayley
cubic c = −x2

0x2 + x2
0x3 + x2

1x2 + x2
1x3 + x2

2x3 − x3
3 and selected quadrics q

which intersected various real components of the Cayley cubic surface Γ defined
by c. We then randomly perturbed all of the coefficients of q and c to locally
explore the surrounding area of the parameter space of the selected instance.
As in Example 6, Bertini was used to compute numerical approximations of the
solutions with certification provided by alphaCertified.
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11. Shub, M., Smale, S.: Complexity of Bézout’s theorem. I. Geometric aspects. J.

Amer. Math. Soc. 6(2), 459–501 (1993)
12. Sommese, A.J., Wampler II, C.W.: The Numerical Solution of Systems of Polyno-

mials Arising in Engineering and Science. World Scientific Publishing, Hackensack
(2005)

http://bertini.nd.edu
https://doi.org/10.1007/978-1-4612-0701-6
https://doi.org/10.1007/978-3-319-72453-9_3
http://arxiv.org/abs/1712.06274
http://arxiv.org/abs/1802.05297


3BA: A Border Bases Solver
with a SAT Extension
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Abstract. Many search problems over Boolean variables can be for-
mulated in terms of satisfiability of a set of clauses or solving a sys-
tem of Boolean polynomials. On one hand, there exists a great variety
of software coming from different areas such as commutative algebra,
SAT or SMT, that can be used to tackle these instances. On the other
hand, their approaches to inferring new constraints vary and seem to
be complementary to each other. For instance, compare the handling of
XOR constraints in SAT solvers to that in computer algebra systems. We
present a C++ implementation of a platform that combines the power of
the Boolean Border Basis Algorithm (BBBA) with a CDCL SAT solver
in a portfolio-based fashion. Instead of building a complete fusion or a
theory solver for a particular problem, both solvers work independently
and interact through a communication interface. Hence a greater degree
of flexibility is achieved. The SAT solver antom, which is currently used
in the integration, can be easily replaced by any other CDCL solver.
Altogether, this is the first open-source implementation of the BBBA
and its combination with a SAT solver.

Keywords: Boolean Border Basis Algorithm · Boolean polynomial
Cryptographic attack · SAT solving

1 Introduction

Solving a Boolean system is a well-established problem in commutative algebra
that has interesting connections to many different areas such as cryptography
or hardware verification. The Gröbner Basis Algorithm (GBA) is a standard
method to tackle this problem. There exist well-tuned libraries that implement
the (Boolean) GBA, e.g., PolyBoRi [4], or FGb [5] with its linear algebra package
GBLA [3].

On the other hand, the Boolean Border Basis Algorithm (BBBA) is at an
early development stage. An implementation of the general border basis algo-
rithm can be found in [14]. Nevertheless, we are not aware of any specialized
implementation other than 3BA that provides the BBBA.

c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 209–217, 2018.
https://doi.org/10.1007/978-3-319-96418-8_25
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In this paper we present 3BA, which is a C++ implementation of the BBBA
and the integration of the BBBA with a SAT solver. 3BA is based on the theory
and the implementations developed successively in [7,9,10,12]. In comparison to
previous versions, we have improved the implementation in the following ways.
The system of numbering the terms allows us to develop efficient data structures
representing Boolean systems such that interreducing the leading terms is very
efficient. For this purpose, we introduce the definition of the map of reducers
that cache the “pivot polynomials” during the elimination. We have enhanced
the SAT support in 3BA to different techniques of clause and polynomial filtration
such that the communication between the solvers is now more robust. Because
of a new synchronization mechanism, the communication can be run for multi-
ple instances without shutting down the solving processes. The integration can
now be executed by running only one bash script, which makes the procedure
more user-friendly. Moreover, we extended the experiments to new benchmarks
coming from SAT competitions. On top of that, the entire code has been cleaned
substantially and documented carefully.

We tried rewriting 3BA using different libraries such as PolyBoRi [4], or
LELA [11] respectively, but surprisingly, we did not observe any speed-up, and
hence we stayed with a version without any external libraries. That is why 3BA
uses only the standard C++ libraries std and boost, which make 3BA very easily
portable.

3BA is publicly available upon request via email to the authors or under the
following link:

http://www.iti.uni-stuttgart.de/abteilungen/hardware-orientierte-informatik/projekte/

algebraische-fehlerangriffe/source-code.html

The article is structured as follows. In Sect. 2 the functionality of 3BA is
described. The main C++ classes of 3BA with underlying theory are explained
in Sect. 3. Finally, in Sect. 4 we present new experiments based on some SAT
competition benchmarks.

Unless explicitly stated otherwise, we use the basic definitions and results
in [7,9].

2 Functionality

In this section we describe the high-level functionality of 3BA.

1. Basic structures. 3BA classes realize various mathematical data structures
and operations that can be used independently in other projects. All of these
structures are provided in separated source files. We mention here only the
most import ones together with their operations.
(a) Squarefree order ideals. Computing order ideals minus a monomial ideal,

an order ideal membership test, determining a squarefree border, and
enlarging order ideals by a set of squarefree terms, are a few functions
available in 3BA.

http://www.iti.uni-stuttgart.de/abteilungen/hardware-orientierte-informatik/projekte/algebraische-fehlerangriffe/source-code.html
http://www.iti.uni-stuttgart.de/abteilungen/hardware-orientierte-informatik/projekte/algebraische-fehlerangriffe/source-code.html
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(b) Boolean polynomials. The following functions are provided: addition of
Boolean polynomials, multiplying a Boolean polynomial by an indetermi-
nate, accessing the indeterminates that occur in its support, getting the
degree or the leading term of a Boolean polynomial.

(c) Sparse matrices over F2. These matrices are interpreted as coefficient
matrices of a Boolean system w.r.t. the given term ordering (e.g., lex,
deglex). Besides standard methods such as computing the row echelon
form, a function for converting a given row to a Boolean polynomial (and
vice versa) is provided.

2. BBBA. Computation of Boolean border bases of the ideal I generated by a
set of Boolean polynomials.
(a) Standard version. This variant corresponds to the algorithm described

in [9].
(b) Substitution version. The previous algorithm is extended by substituting

linear polynomials xi, xi +xj , xi +xj +1, xi +xj into the derived polyno-
mials, whenever these special polynomials are found. E.g., if xi + xj + 1
with its leading term xi is found in the ideal, we rewrite all polynomials
containing xi found so far by xi �→ xj +1. Thus we reduce the number of
indeterminates in the system by one.

(c) Signature version. This algorithm was presented in [10]. It stores a history
of creation of derived polynomials, i.e., the signature (i, t) with i ∈ N and
a squarefree term t associated to a polynomial g indicates that g is some
linear reduction of the i-th input polynomial multiplied by the term t.
Using this mechanism, many reductions to zero can be predicted and
skipped.

3. Conversion methods. Different conversion methods from ANF (algebraic
normal form) to CNF (conjunctive normal form) and vice versa are available
in 3BA. Recall that a logical formula in CNF corresponds to a set of clauses,
and a formula in ANF corresponds to a squarefree polynomial over the binary
field. Each F2-rational zero of an ANF then corresponds to a model of a con-
verted CNF and vice versa. For details on the conversions and the definitions
of CNF and ANF, we refer the interested reader to [8].

4. BBBA + SAT. Using the above conversions, 3BA provides an integration of
BBBA with the SAT solver antom.
(a) BBBA supports SAT. In this case, the BBBA is called by a SAT solver to

enhance the conflict analysis, and henceforth, to produce better conflict
clauses.

(b) SAT supports BBBA. The SAT solver runs in parallel on the converted
system of Boolean polynomials. Whenever a short clause (i.e., a clause
that contains only a few literals) is generated, it is converted to ANF and
added to the ANF database of the BBBA.

Note that Functionality 2.(b) outperforms the standard version 2.(a) if a
linear polynomial is derived during the computation. Sometimes one substitution
leads to further substitutions, and hence to reducing the complexity of solving
the system even more. Similarly, Functionality 2.(c) is strictly better than 2.(a)
because many useless reductions in 2.(a) are skipped.
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3 Theory and Implementation

The set of squarefree terms in the indeterminates x1, . . . , xn is denoted by S
n.

A squarefree term t = xi1 · · · xik ∈ S
n with 1 ≤ i1 < · · · < ik ≤ n is implemented

in the class SparseTerm as the sorted array of uint t̃ = (i1, . . . , ik). For more
details, see [9, Remark 7.1]. The arrays are allocated length d ∈ N. The number
d corresponds to the maximal degree occurring in the run of the algorithm,
and it has to be determined before the run of the algorithm. Typically, d is set
according to the amount of RAM memory available on a computer. To give a
sense of scale, the maximal degree does not exceed 7 for the examples of quadratic
systems in [6]. Thus we use only terms in S

n with degree at most d. This set is
denoted by S

n
≤d.

The squarefree terms are ordered by a degree compatible term order-
ing σ because the BBBA is a degree-by-degree algorithm. Moreover, 3BA can
rearrange the indeterminates according to how frequently they appear in the
input, where x1 is the most frequent. The rearrangements can speed up the
BBBA in some cases. The terms used in the algorithm are “hashed” to numbers
such that these numbers reflect the term ordering σ.

Definition 1. The unique bijective map ψσ,d : Sn
≤d → {1, . . . ,#S

n
≤d} ⊆ N with

the property ψσ(t) ≤ ψσ(t′) if and only if t ≤σ t′ for t, t′ ∈ S
n
≤d is called the

numbering of terms in S
n
≤d induced by σ.

Throughout this section, we use the following numbering of terms in the
examples.

Example 1. Using σ = deglex, d = 2 and n = 2, the map ψσ,d defined by 1 �→ 1,
x2 �→ 2, x1 �→ 3, x1x2 �→ 4 is a numbering of terms in S

n
≤d induced by σ.

An order ideal is a divisor-closed set of terms. We refer the reader to [9,
Sect. 7] and [7, Sect. 2] for details, for the data structures which have been used,
and how to perform the operations effectively.

Let F2 = Z/2Z be the binary field and F2[x1, . . . , xn] a polynomial ring
over F2. The ring Bn = F2[x1, . . . , xn]/F with F = 〈x2

1 + x1, . . . , x
2
n + xn〉 is

called the ring of Boolean polynomials in the indeterminates x1, . . . , xn.
A Boolean polynomial g = t1 + · · · + tk, where t1 <σ t2 <σ · · · <σ tk are

terms in S
n
≤d, is represented in the class SparseRow as a vector<int128 t> via

g̃ =
(
ψσ,d(t1), . . . , ψσ,d(tk)

) ∈ N
k, where ψσ,d is the numbering of terms induced

by σ. Note that we can choose a different map instead of ψσ,d, but then accessing
the leading term would have linear complexity instead of the constant one.

Example 2. Using ψσ,d from Example 1, we represent g = 1 + x2 + x1x2 ∈ B2 as
the vector g̃ = (1, 2, 4).

Multiplication of g by an indeterminate xi in Bn is done by translating g̃
back to terms in the support of g via ψ−1

σ,d and handled there. The result is
then converted back using ψσ,d. These conversions do not slow down the overall
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performance according to our profiling. Moreover, the conversions are cached.
The BBBA spends more than 95% in addition of two Boolean polynomials, and
this is very fast in this representation, namely only a symmetric difference of
two sorted vectors.

Example 3. Using ψσ,d from Example 1, we represent f = 1 + x2 + x1x2 ∈ B2

as the vector f̃ = (1, 2, 4) and g = 1 + x1 + x1x2 ∈ B2 as g̃ = (1, 3, 4). The sum
f + g = x2 + x1 in B2 corresponds to (2, 3).

A system of Boolean polynomials V is implemented in the class
SparseMatrix2 as a vector<SparseRow>Ṽ , where the inner collections repre-
sent individual Boolean polynomials. At this point, we may remark that the
numbering of terms from Definition 1 can be alternatively defined only for the
terms appearing in the system, and hence the representation would consist of
smaller numbers. However, the representation of the entire system would have
to be rewritten every time when a new term is introduced.

We say that a set of Boolean polynomials G ⊆ Bn is LTσ-interreduced if
LTσ(g) 	= LTσ(g′) for all g, g′ ∈ G with g 	= g′. For more details, see [7, Sect. 3].
The reducers are cached on-the-fly such that the polynomial that has the same
leading term as a given polynomial is easily accessible. This idea is captured in
the next definition.

Definition 2. Let V ⊆ Bn be an LTσ-interreduced set of Boolean polynomials.
A map � : Sn → V ∪ {�} such that

�(t) =

{
v ∈ V if there exists v ∈ V with LTσ(v) = t,

� otherwise.

holds for t ∈ Sn is called a map of reducers of V .

To illustrate how a system is LTσ-interreduced and how Definition 2 is used,
we present the following example.

Example 4. With the setting of Example 1, we want to LTσ-interreduce W =
{f, g, h} with f = 1 + x2 + x1x2, g = 1 + x1 + x1x2 and h = 1 + x1 in B2.
We initialize Ṽ = ∅ and � =

(
1 : � | x1 : � | x2 : � | x1x2 : �

)
. Starting

with f , we define Ṽ =
(
(1, 2, 4)

)
and � =

(
1 : � | x1 : � | x2 : � | x1x2 : f

)
.

We continue with g as in Example 3 and get Ṽ =
(
(1, 2, 4), (2, 3)

)
and � =(

1 : � | x1 : x2 + x1 | x2 : � | x1x2 : f
)
. Finally, we reduce h, and we get

Ṽ =
(
(1, 2, 4), (2, 3), (1, 2)

)
and � =

(
1 : � | x1 : x2 + x1 | x2 : 1 + x2 | x1x2 : f

)
.

Thus the result is 1 + x2 + x1x2, x2 + x1 and 1 + x2.

The conversion methods between CNF and ANF can be found in
the class BooleanPoly2 that implements a Boolean polynomial as the
vector<SparseTerm> of its terms. This representation is more suitable here.
On the other hand, addition of two Boolean polynomials is here far slower than
the representation based on ψσ,d. Thus we do not use BooleanPoly2 as the
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main representation of Boolean polynomials in the BBBA. The theory behind
the conversions is described in [8].

The SAT extension to the BBBA is implemented in the class BBA SAT2 based
on [7, Sect. 5]. The most crucial part is how to filter the incoming and outgoing
data. The original approach has been improved and scaled by four parameters
a, b, c, d ∈ N as follows. In principle, the BBBA waits until it receives a set of
clauses of cardinality a from the SAT solver. These clauses can be sorted (e.g.,
w.r.t. to the size, or in the lexicographical order, etc.) after that. Then b is set to
be the maximal number of clauses after the filtration. The clause filtration (cf. [8,
Algorithm 2]) outputs a set of clauses C of cardinality ≤ b such that C shares as
many logical variables as possible. After converting C to the ANF and running
the BBBA, we use a polynomial filtration to select the polynomials. Again, we
may sort polynomials in the database (e.g., according to the degree and then
the size of the support, etc.). We consider only the polynomials of degree ≤ c
and convert them to the CNF on an as-they-come basis. We send only at most
d clauses back to the SAT solver, and then we start again from the beginning.

In the following toy example we illustrate the synergy of the algebraic solver
with a resolution-based SAT solver.

Example 5. Let f = 1+x2 +x1x2 and g = 1+x1 +x1x2 both from B2. It is easy
to verify that there exists no common F2-rational zero of {f, g}. Let us compute
f + g = x2 + x1 in order to get rid of the leading term. We convert f (resp.
f + g) into CNF via the sparse method described in [8, Example 1] and get{{X1,X2}, {X̄1,X2}, {X̄1, X̄2}

}
(resp.

{{X1, X̄2}, {X̄1,X2}
}
. Resolution then

yields {X1} and {X̄1}, and hence certifies inconsistency. Note that the BBBA
can find the element 1 as follows. Firstly, multiply f +g by x1 and get x1 +x1x2.
Secondly, interreduce the latter polynomial with g and get 1.

4 Application and Performance

3BA can be used for two types of inputs: Boolean systems or CNF formulae. In the
first case, 3BA actually computes extensions of Boolean Gröbner bases because
the order ideals are restricted to a special form (cf. [9, Example 2.3]). Thus 3BA
can be used to tackle various problems ranging from hardware verification to
algebraic attacks. The BBBA uses a different approach than the GBA (see [9,
Sect. 9]) to create low-degree polynomials. To show a comparison between those
methods, we refer to the experiments in [9, Sect. 8].

In the second case, 3BA can be used to find a model of an arbitrary CNF
formula in the DIMACS format (i.e., the standard format for SAT solvers). This
option seems to be effective when the input contains a rich algebraic structure,
e.g., many XOR constraints (see [7, Table 2]). Note that such benchmarks are
quite common in cryptanalysis. Most SAT solvers do not use the rich XOR struc-
ture hidden in modern cryptosystems (e.g., in ARX ciphers or in permutation-
substitution networks, etc.) at all. Thus an integration with the BBBA, which
naturally works with addition modulo 2, may come in handy. The initial exper-
iments with the integration are provided in [7, Table 2].
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The most promising application of 3BA seems to be Functionality 4.(a) pre-
sented in Sect. 2. That is why we focus on this function. Before providing some
more experiments, we discuss the impact of a new clause coming from the alge-
braic reasoning in 3BA on the SAT solver antom. There are three basic scenarios:

(i) The new clause is not satisfied by the partial model constructed by the SAT
solver, and hence the SAT solver is forced to backtrack.

(ii) The new clause eliminates a large portion of assignments, and hence these
assignments do not have to be considered.
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Fig. 1. Measuring CPU timings of antom and the antom integration in 3BA tested on
various CNF benchmarks.
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(iii) The new clause effects the statistics carried out by the SAT solver. That
is why a different decision is chosen in the next level of branching by the
heuristics.

On one hand, scenarios (i) and (ii) have a positive effect on solving. On
the other hand, scenario (iii) may affect the integration in both positive and
negative ways, depending on the state of the SAT solver and the example under
consideration.

We have extended our experiments to the SAT competition benchmarks [1,2],
together with incorporating the new improvements from Sect. 3. The results
are shown in Fig. 1. Timings in this paper were obtained on a Linux server
having a 2.60 GHz Intel Core i7-5600U CPU and a total of 16 GB RAM. The
timeout limit was set to 2500 seconds. We choose the parameters (a, b, c, d) =
(40, 10, 3, 20) with the sorting enabled before both filtrations. On the x-axis we
put the names of the CNF instances, and on the y-axis the CPU timings are
displayed. We focused on the examples where the 3BA integration outperforms
the vanilla antom. On one hand, there exist cases where the integration is slower.
On the other hand, we found 8 instances, for which the integration finished before
the timeout, whereas the vanilla antom did not. (These cases are not displayed
in the figure.)
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Abstract. In this paper we discuss the Hidden Subgroup Problem
(HSP) in relation to post-quantum cryptography. We review the relation-
ship between HSP and other computational problems, discuss an optimal
solution method, and review results about the quantum complexity of
HSP. We also overview some platforms for group-based cryptosystems.
Notably, efficient algorithms for solving HSP in the proposed infinite
group platforms are not yet known.
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1 Introduction

In August 2015 the National Security Agency (NSA) announced plans to upgrade
security standards; the goal is to replace all deployed cryptographic protocols
with quantum secure protocols. This transition requires a new security standard
to be accepted by the National Institute of Standards and Technology (NIST).
Proposals for quantum secure cryptosystems and protocols have been submitted
to the standardization process. There are six main primitives currently pro-
posed to be quantum-safe: (1) lattice-based (2) code-based (3) isogeny-based (4)
multivariate-based (5) hash-based, and (6) group-based cryptographic schemes.

One goal of cryptography, as it relates to complexity theory, is to analyze
the complexity assumptions used as the basis for various cryptographic proto-
cols and schemes. A central question is determining how to generate intractable
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instances of these hard problems, upon which to implement an actual crypto-
graphic scheme. The candidates for these instances must be platforms in which
the relevant hardness assumption is reasonable. Determining if these group-based
cryptographic schemes are quantum-safe begins with determining the groups in
which these hardness assumptions are invalid in the quantum setting.

In what follows we address the quantum complexity of the Hidden Subgroup
Problem (HSP) to determine the groups in which the hardness assumption still
stands. The Hidden Subgroup Problem (HSP) asks the following: given a descrip-
tion of a group G and a function f : G → X for some finite set X is guaranteed
to be strictly H-periodic, i.e. constant and distinct on left (resp. right) cosets of
a subgroup H ≤ G, find a generating set for H. It is important to note that
Simon’s problem of computing a XOR-mask, Shor’s algorithm for factoring and
finding the discrete log, Boneh’s algorithm for finding a hidden linear function,
and Kitaev’s algorithm for the abelian stabilizer problem are all special cases of
HSP. Therefore, the HSP is directly related to problems such as breaking one-
time pad, discrete logarithm problem, graph isomorphism problem (which is now
known to be in quali-polynomial), lattice-based problems, and the problem for
factoring for RSA.

The classical complexity of HSP is known [1]: Suppose that G has a set H
of N subgroups, such that H1 ∩ H2 ∩ . . . ∩ HH = eG. Then a classical computer
must make Ω(

√
N) queries to solve the HSP. The classical cases in which HSP

is easy are the cases in which G has only a polynomial number of subgroups,
allowing brute-force for the function f on all subgroups.

We provide a survey of results regarding the complexity of quantum algo-
rithms for solving HSP in various group platforms. We also provide informa-
tion on the relationship between HSP and other computational problems. These
results provide insight into potential platforms for quantum safe cryptography,
when the underlying hard problem is reducible to HSP.

2 Group-Based Cryptography

Group-based cryptography could be shown to be post-quantum if the underlying
security problem is NP-complete or intractable; firstly, we need to analyze the
problem’s equivalence to HSP, then analyze the applicability of Grover’s search
algorithm. Cryptanalysis based on a reduction to solving HSP creates some
obstacles, as the groups under consideration below are mostly infinite and do not
have an efficient algorithm for HSP. In the following cryptosystems a connection
to HSP can assist in the analysis of security.

For example in [2] a practical cryptanalysis of WalnutDSA was proposed,
a post-quantum cryptosystem using the conjugacy search problem (CSP) over
braid groups that was submitted to the NIST competition in 2017 [3]. It has been
argued since the braid group does not contain any non-trivial finite subgroups,
there does not seem to be any viable way to connect CSP with HSP. It has been
shown there is no reduction between CSP and HSP, [4,5]. As for analysis via
Grover’s algorithm [6], it has been mentioned that a majority of the time for
signature verification in WalnutDSA is repeated E-Multiplications.
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Aside from WalnutDSA, there are alternative group-theoretic problems and
classes of groups which have been proposed for post-quantum cryptography.
For example, the first proto-cryptosystem based on groups was proposed by
Wagner-Magyarik in [7] on the assumption that the word choice problem was
hard. Later on Flores-Kahrobaei-Koberda proposed right-angled Artin groups for
various other cryptographic protocols [8,9]. Eick and Kahrobaei proposed Poly-
cyclic groups for cryptography, based on the Conjugacy Search Problem [10].
Later, Gryak-Kahrobaei proposed other group-theoretic problems for considera-
tion when using polycyclic groups in their survey [11]. Kahrobaei-Koupparis [12]
proposed a post-quantum digital signature using polycyclic groups. Kahrobaei-
Khan proposed a public-key cryptosystem using polycyclic groups [13]. Habeeb-
Kahrobaei-Koupparis-Shpilrain proposed the use of a semigroup of matrices with
a semidirect product structure [14].

Thompson groups have been considered by Shpilrain-Ushakov based on the
Decomposition Search Problem [15]. Hyperbolic groups have been proposed by
Chatterji-Kahrobaei-Lu using properties of subgroup distortion and the Geodesic
Length Problem [16]. Free metabelian groups have been proposed based on the
Subgroup Membership Search Problem by Shpilrain-Zapata [17]. Kahrobaei-
Shpilirain proposed Free nilpotent p-groups for a semidirect product public key
cryptosystem [18]. Linear groups were proposed by Baumslag-Fine-Xu [19]. Grig-
orchuk groups, have been proposed by [20]. Groups of matrices were proposed
by Grigoriev-Ponomarenko for a Homomorphic Encryption scheme [21].

3 Relation of HSP to Other Computational Problems

Many computational problems are special cases of the HSP; in many cases an
efficient algorithm for HSP over a certain group implies an efficient algorithm for
some other computational problem. It is important to note that one method of
determining an efficient quantum solution to a hard problem consists of reducing
the problem to an instance of HSP over a group with a known efficient solution.
This process consists of determining the appropriate group G, the subgroup H
and the strongly H-periodic function f . For example, Simon’s problem can be
viewed as an instantiation of HSP over G = Z

n
2 with a subgroup H of order 2.

Duetsch’s algorithm solves a variant of HSP where H is either {0} (f is balanced)
or Z2 (f is constant). Shor’s algorithm solves period finding as a special case of
HSP, allowing for an efficient quantum algorithm for factoring and discrete log.

The graph automorphism (resp. isomorphism) problem can also be framed
as an instance of HSP. To solve graph automorphism we consider HSP in the
symmetric group on n letters, G = Sn, any function f which hides the trivial
subgroup is an automorphism. Analogously the graph isomorphism problem is
an instance of HSP over the wreath product G = Sn � S2 [22]. Also, solutions to
HSP can solve the abelian stabilizer problem; when G is acting on a finite set X
and where StG(x) is the stabilizer of x we have that fx : G → X can be defined
such that g �→ g(x) is strongly StG(x)-periodic.

A solution to a particular instance of HSP is a solution to the problem of
hidden linear functions [23]; if g is a permutation of ZN and h : Z × Z → ZN is
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such that x, y �→ x+ay mod N , we have f = g◦h hiding 〈(−a, 1)〉. Additionally,
self-shift-equivalent polynomials can be framed as an instance of HSP, in this
case Grigoriev shows how to compute the hidden subgroup [24].

Regev showed that an efficient solution to the dihedral HSP implies a quan-
tum solution to lattice problems [25]. Specifically, the g(n)-Unique Shortest Vec-
tor Problem (USVP) is NP-hard for g(n) = O(1), and has a polynomial time
classical solution when g(n) is large. A solution to the dihedral HSP based on
the standard-method (found in Sect. 4) can be used to solve poly(n)-USVP. HSP
over the symmetric and dihedral groups are highly motivated open questions in
post-quantum group-based cryptography.

Another related computational problem is the Hidden Shift Problem, which
has been proposed as a basis for post-quantum cryptography in symmetric cryp-
tosystems that are quantum-CPA secure [26]. Other than the use of a general-
ization of Simon’s algorithm, and Kuperberg’s algorithm discussed above, very
little is known about the Hidden Shift Problem. Clearly, this problem is closely
related to HSP as some solutions coincide. It is important to note that construc-
tions based on the Hidden Shift problem have also remained quantum secure.

4 Solution Methods

The standard method of solving HSP over G performs the following steps. First,
the algorithm queries the H-periodic function f in superposition and discards
the register which holds the output. This leaves the first register entangled in
a hidden subgroup state, a superposition of coset representatives for some left
traversal K ⊂ G. Following this, the state can be sampled using post-processing
techniques to determine H. In the following we have |gH〉 = |H|−1/2

∑
h∈H |gh〉

as the coset state. This approach reduces the problem to a problem of quantum
mechanics: how to distinguish the members of an ensemble of quantum hidden
subgroup states.

|G|1/2
∑

g∈G

|g, 0〉 �→ |G|1/2
∑

g∈G

|g, f(g)〉 �→ ρH = |H||G|−1
∑

g∈K

|gH〉〈gH|

How do we measure the state? The problem of distinguishing these quantum
states has some proposed solutions. Most namely, the often optimal solution enti-
tled Pretty Good Measurement (PGM) can be used. An obstacle to performing
PGM is the lack of an efficient QTF/CFT in the underlying group. For these
instances we know of no efficient quantum algorithm for solving HSP.

5 Results

Finite Abelian and Finite Near-Abelian. The infamous quantum algorithms of
Simon and Shor provide quantum solutions to HSP in the abelian cases where
G = (Z/2)n and G = Z respectively. Shor’s algorithm extends to the gen-
eral abelian case as well, providing a polynomial time quantum algorithm with
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bounded error [27–29]. The probability of success can be improved to 1 when G is
abelian of smooth order, i.e. if all prime factors of |G| are at most (log |G|)c [30].

In the case that G is nearly abelian, i.e. if the value κ(G) = {∩H≤GN(H)}
(where N(H) is the normalizer for H) is sufficiently large, then there are estab-
lished computational bounds on HSP. The size of this intersection relative to
the group is a measure of the abelianness of G. If [G : κ(G)] = 2O(log

1
2 n) then

Grigni et al. have an efficient algorithm for solving HSP [31]. These results were
improved upon by Gavinsky [32] gave results to show that an efficient algorithm
exists when [G : κ(G)] = poly(log |G|).

There is a polynomial time quantum algorithm which solves HSP when H
is a hidden normal subgroup of a solvable group or permutation group, also
finding hidden subgroups of groups with small commutator subgroup and of
groups admitting an elementary abelian normal 2-subgroup of small index or
with cyclic factor group [33]. Subexponential algorithms for HSP in any solvable
group have been given by Friedl et al. [34].

When G is a known finite abelian group with a subgroup H ≤ G, given
black-box access to the H-hiding function f , a quantum computer can uniquely
and completely determine f in poly log(|G|) time and query complexity. When
G is “nearly” abelian, or built from abelian parts, one can leverage this fact to
obtain an efficient algorithm for HSP.

Finite, Non-Abelian. The finite non-abelian case of HSP is much more elusive.
Shor’s algorithm extends to any group G when H is normal if the quantum fourier
transform (QFT) can be efficiently computed over the group [35]. The algorithm
also extends to when H has few conjugates, this time requiring the quantum
character transform (QCT) over the group algebra C[G] [31]. This variation is
not applicable when H has many conjugates, as in some of the following cases.
Alternatively, when H is normal in G, a black-box group, generators for H can
be found in time polynomial in the input size + v(G) [33] without requiring an
efficient QFT over G. Additionally, the quantum computation of the discrete log
in semi-groups [36] is an instance of HSP.

When G is the (discrete) Heisenberg group, Hp = 〈(a, b, c)|a, b, c ∈ Zp〉 with
group law (a1, b1, c1)(a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2 + a1b2), it is suffi-
cient to be able to distinguish cyclic subgroups of order p: Ha,b = 〈(a, b, 1)〉 =
{(a, b, 1)x|x ∈ Zp}. Thus, finding an arbitrary H reduces to determining two
parameters a, b, given the coset state produced by the standard method with
the f which hides Ha,b. This can be efficiently computed with an overall success
probability close to 1

2 .
In a more difficult case we consider instances of HSP in the dihedral group of

order 2N , DN , where the function f hides H of order 2. In this case H is a hid-
den reflection and has many conjugates in G. Therefore the QCT based solution
is not applicable. Kuperberg stated that finding an arbitrary hidden subgroup H
of DN reduces to finding the slope of a hidden reflection and provides a quantum
algorithm with both time and query complexity of 2O(

√
logN), applicable to DN

for all values of N but achieving an even tighter complexity bound for specific
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smooth values of N [37]. Kuperberg’s algorithm also provides a solution to the
hidden shift problem in an arbitrary finitely generated abelian group G. Regev
improved upon the bounds of Kuperberg’s original algorithm providing a poly-
nomial space variation to the original superpolynomial space algorithm, which
still achieves subexponential complexity [38].

When G is a type of wreath product Wn = Z
n
2 � Z2, Roetteler et al. [39]

provide a positive result for finding an efficient solution to the non-abelian HSP
within Wn. This result is due to the existence of an efficient non-abelian QFT in
Wn. Wreath product groups are in turn a subset of semi-direct product groups.
When G is (one of some groups that are) a semidirect product of abelian groups,
alternative efficient algorithms have been proposed. The polycyclic HSP has been
addressed for Zpk � Z2 for fixed prime power pk [40], Zq � Zp with q|(p − 1) and
q = p

polylog(p) , certain affine groups [41], Z
m
pr � Zp [42], with p ∈ P, Zpr � Zqs

where pr/q = poly(log p2 where p, q ∈ P and r, s ∈ N [43], and ZN � Zqs where
N has a special prime factorization [44].

In general, when G is a group of finite order HSP has quantum query com-
plexity of poly(log |G|), as shown by Ettinger, Høyer and Knill [45]; for any
group G, O(log |G|) queries provides sufficient statistical information to solve
HSP. This result provides no guarantees on computational complexity. The new
problem is determining how to implement queries efficiently, as well as how to
control the amount of postprocessing required by the algorithm. In the case of
the dihedral group, an algorithm with the lower bound on query complexity
has been constructed, but the postprocessing required is exponential. In many
cases the inefficiency of a proposed quantum algorithm is primarily due to the
inefficiency of the required quantum measurement or post-processing within the
group.

Infinite. What seems to be an obstacle for infinite groups is that the quantum
computer should assume the state: |G〉 = |G|−1/2

∑
g∈G |g〉. The meaning of this

is clear for finite groups.
The abelian infinite HSP was clearly first considered with Shor’s algorithm,

over Z. In [46], infinite-dimensional HSP has been mentioned, particularly for
infinite abelian groups Z

N . Additionally, HSP has been defined and considered
for infinite abelian groups of the form R

k × Z
l × (R/Z)s × H for some finite

group H [47]. Other than the cases of Z
N , R

N, T
N , and combinations of these

in which an efficient algorithm exists, the infinite and continuous HSP has not
been addressed within the literature for the non-abelian case.
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44. Gonçalves, D., Fernandes, T., Cosme, C.: An efficient quantum algorithm for the
hidden subgroup problem over some non-abelian groups. TEMA (São Carlos)
18(2), 215–223 (2017)

45. Ettinger, M., Høyer, P., Knill, E.: The quantum query complexity of the hidden
subgroup problem is polynomial. Inf. Process. Lett. 91(1), 43–48 (2004)

46. Kissinger, A., Gogioso, S.: Fully graphical treatment of the quantum algorithm for
the hidden subgroup problem. arXiv preprint quant-ph 1701.08669 (2017)
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Abstract. Previous work on orbital graphs has shown that they are a
powerful pruning tool in backtrack algorithms. In this article we con-
sider a few questions that are relevant from this perspective, focussing
on properties of orbital graphs that can be detected by an efficient algo-
rithm. Roughly speaking, the challenge is to decide when to use orbital
graphs and, possibly, how to choose a “best” orbital graph, and to make
this decision early in the algorithm at low computational costs. In this
note we discuss how to decide whether or not a given digraph is an orbital
graph for some group and what groups are recognisable by their orbital
graphs (or even just one orbital graph). We approach these problems
from a theoretical point of view.

Keywords: Orbital graphs · Backtrack search · Permutation groups

1 Introduction

Orbital graphs can be used to significantly improve backtrack search algorithms
for computing normalisers of subgroups in permutation groups. This has been
demonstrated by Theißen in his PhD thesis (see [5]), where he uses these new
methods for the construction of primitive permutation groups. He also men-
tions that improvements in backtrack search methods will substantially impact
the performance of algorithms that compute the intersection of two permuta-
tion groups or the stabiliser of a set. This was confirmed recently: New refiners
that use orbital graphs make it possible to skip large parts of the search tree in
partition backtrack algorithms. Experiments in [3] show that for some typical
problems (e.g. calculating set stabilisers), these new refiners improve the per-
formance of partition backtrack by several orders of magnitude. These results
lead to more questions on the usefulness of orbital graphs as a pruning tool.
Therefore, in the present article we discuss some of these questions and indicate
how hard it will be to give complete answers.

For the remainder of this note we let n ∈ N, Ω := {1, ..., n} and G := Sn

(the symmetric group on Ω). For all γ ∈ Ω and all h ∈ H we write γh for the
image of γ under h in the natural permutation action.
c© Springer International Publishing AG, part of Springer Nature 2018
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Definition 1 (Orbital Graphs). Let H ≤ G and let α, β ∈ Ω be distinct
elements, chosen in this order. We define a digraph Γ = (Ω,A) where the set of
arcs A is defined as A := {(αh, βh) | h ∈ H}. This digraph is called the orbital
graph of H with base-pair (α, β), and is denoted by Γ (H,Ω, (α, β)).

Following [2] we say that an orbital graph is self-paired if and only if, for
all γ, δ ∈ Ω, it is true that (γ, δ) is an arc if and only if (δ, γ) is an arc.

We emphasise that this definition is directional (as it is in [1,2]), but that
there also exist versions that are undirected.

Hypothesis 1. Let H ≤ G and let α, β ∈ Ω be distinct.
Let Γ := Γ (H,Ω, (α, β)) and let A denote the set of arcs of Γ .

The statements in the next lemma are known, and a proof can be found for
example on p. 7 in [3].

Lemma 2. Suppose that Hypothesis 1 holds. Then we have the following:

(i) Γ = Γ (H,Ω, (γ, δ)) if and only if (γ, δ) ∈ A.
(ii) Γ is self-paired if and only if some h ∈ H interchanges α and β.
(iii) αH is precisely the set of vertices of Γ that are the starting point of some

arc, and βH is precisely the set of vertices of Γ that are the end point of
some arc.

(iv) The number of arcs starting at α is |βHα | and the number of arcs going
into β is |αHβ |.

Definition 2. Given Hypothesis 1, we denote by AutG(Γ ) the group of graph
automorphisms of Γ that are induced by elements of G.

Remark 3. Suppose that Hypothesis 1 holds. Then the definition of orbital
graphs implies that H induces graph automorphisms on Γ and therefore H ≤
AutG(Γ ). However, there are many examples where H �= AutG(Γ )!

Example 4. Let n = 4 and Ω = {1, 2, 3, 4}.
The group H := 〈(12)(34), (14)(23)〉 is transitive on Ω and one of its orbital

graphs is Γ1 := Γ (H,Ω, (1, 2)). The automorphism group AutG(Γ1) is isomorphic
to D8, hence strictly larger than H.

2 Recognising Graphs as Orbital Graphs

In this section we let Γ denote a directed graph with vertex set Ω.
How can we decide whether or not there is some subgroup H of G such that

Γ is an orbital graph for H?
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Definition 3. Suppose that Hypothesis 1 holds. We define three types of vertices
in Γ . A vertex ω ∈ Ω is said to be

– isolated if and only if it is not on an arc in Γ ,
– a starting vertex if and only if some arc in Γ starts at ω, and
– an end vertex if and only if some arc in Γ ends at ω.

Being a starting vertex is equivalent to being in αH and being an end vertex
is equivalent to being in βH (see Lemma 2).

Lemma 5. Suppose that Γ is an orbital graph. Then all connected components
with at least two vertices are isomorphic as digraphs. Moreover, all vertices of
the same type have the same incoming and outgoing valences.

Proof. We recall that H induces digraph automorphisms on Γ , so in particular all
connected components with at least two vertices are isomorphic. The remaining
statements are clear for isolated vertices, and for the other two types we consider
α as a representative for starting vertices and β as a representative for end
vertices. We start with the ingoing valency of end vertices: Let ω ∈ Ω be an end
vertex. Then there exist γ ∈ αH and h ∈ H such that (αh, βh) = (γ, ω). Now (i)
and (iv) of Lemma 2 imply that the ingoing valency of β and of ω is the same,
namely |αHβ |.

A similar argument shows that all starting vertices have the same outgoing
valency as α.

The following example illustrates why the problem of recognising a digraph
as an orbital graph is difficult:

Example 6. The digraph in the picture above, let us call it Γ , passes the obvious
tests on symmetry as suggested by Lemma5 above. It is connected and all vertices
have ingoing valency 2 and outgoing valency 2. So it might well be an orbital
graph!

In fact it is not, and we will briefly argue why:
Assume that Γ is an orbital graph for a group H. Then H ≤ S5, as we

see from the number of vertices. As (1, 2) is an arc, but (2, 1) is not, there is no
element in H that interchanges 1 and 2. For the same reason there is no element
in H that has a transposition in its cycle decomposition.
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Next we consider the arcs (1, 2) and (1, 3). By definition of orbital graphs
there is some h ∈ H such that 1h = 1 and 2h = 3. As h stabilises 1 and cannot
interchange 2 and 3, we conclude that h moves 3 to one of the numbers 4 or 5.

If 3h = 4, then the arc (1, 4) exists in Γ . However, it does not. If 3h = 5,
then the arc (1, 5) exists in Γ . However, it does not.

Therefore Γ is not an orbital graph.

The idea in this example, namely restricting the structure of a potential group
that has the given digraph as an orbital graph, can be refined and automated,
at least partly. Typically, in our examples, we quickly find a lower bound for
such a potential group by looking at the existing edges, and an upper bound
by considering a point stabiliser in the automorphism group of the digraph.
However, there is no general strategy, in particular because our current methods
depend on whether or not the graph is self-paired.

As a first step towards understanding this problem better in theory, we prove
a technical lemma characterising orbital graphs:

Lemma 7. Let Π be a directed graph with vertex set Ω, with at least one arc
and no loops. Let L be the group of digraph automorphisms of Π.

Then Π is an orbital graph for some subgroup H of Sym(Ω) if and only if L
acts arc-transitively on Π.

Proof. For the first direction let H be a subgroup of Sym(Ω) and let two α, β ∈ Ω
be distinct such that Π = Γ (H,Ω, (α, β)). We recall that H induces digraph
automorphisms on its orbital graphs, so we may consider H to be a subgroup
of L.

Let (γ, δ) be an arc in Π. By definition of orbital graphs there exists h ∈ H ≤
L such that (γ, δ) = (αh, βh). This implies that L acts arc-transitively on Π.

Conversely suppose that L acts arc-transitively on Π and let H denote
the subgroup of Sym(Ω) that consists of all the elements that induce digraph
automorphisms on Π. By hypothesis there exists an arc (α, β) in Π. Let
Γ := Γ (H,Ω, (α, β)) and let γ, δ ∈ Ω be distinct. We prove that (γ, δ) is an
arc in Γ if and only if it is an arc in Π.

If (γ, δ) is an arc in Γ , then there exists some h ∈ H such that (γ, δ) =
(αh, βh). As h induces a digraph automorphism on Π, it follows that (αh, βh) is
an arc of Π.

Conversely, if (γ, δ) is an arc of Π, then by the arc-transitive action there
exists a digraph automorphism φ of Π that maps (α, β) to (γ, δ). As φ permutes
the vertices in Ω, it is contained in H and therefore (γ, δ) is an arc of Γ . This
finishes the proof.

Now we look at this lemma from a computational perspective. Given a
digraph Γ , we would like to design an algorithm that checks whether or not
there exists a subgroup of some symmetric group such that Γ is one of its orbital
graphs.

A naive algorithm takes the number n of vertices of Γ and checks, for each
subgroup H of Sn and each of its orbital graphs, respectively, whether or not
this orbital graph is isomorphic to the given digraph Γ . This is very inefficient.
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Using Lemma 7 we can draft a more efficient algorithm:

1. Check if the digraph has at least one arc and no loops.
2. Check if all the (incoming and outgoing) valances are the same.
3. Compute the automorphism group L of the digraph.
4. Check if L acts arc-transitively on the digraph.

An alternative for the last two steps is to check for each pair of arcs if there
is a digraph automorphism that maps the first arc to the second one. As the
number of arcs is substantially smaller than the number of subgroups of Sn,
this is a major improvement. This idea also allows for conclusions about the
computational complexity of deciding whether or not a digraph is an orbital
graph.

Following [4] we say a problem A is polynomial-time many-one reducible to
a problem B if and only if there is a function f , computable in polynomial time,
that transforms instances of A into instances of B such that an instance x fulfils
the property stated in A if and only if f(x) fulfils the property stated in B.

Lemma 8. Deciding whether or not a given digraph Γ is an orbital graph has at
most the same computational complexity as graph isomorphism. More precisely,
there exists a polynomial-time many-one reduction from the problem of deciding
whether or not a digraph is an orbital graph to the graph isomorphism problem.

Proof. Let m be the number of arcs of Γ . If Γ has no arcs or at least one
loop, then it is not an orbital graph. This is detectable in polynomial time. So
suppose from now on that Γ has at least one arc and no loops. By Lemma 7
it is an orbital graph if and only if its group of digraph automorphisms acts
arc-transitively. Hence let a1, a2 be two arcs of Γ . We only need to consider the
m · (m − 1) possibilities where a1 �= a2.

We construct two digraphs Π1 and Π2 such that each of them has exactly
m · (m − 1) connected components. For each pair of different arcs a1, a2 of Γ a
label q = q(a1, a2) and two copies Δ1, Δ2 of the graph Γ are created: In Δ1 the
arc a1 is labelled q and in Δ2 the arc a2 is labelled q. The connected components
of the digraph Π1 are exactly the graphs created as Δ1 above, and the connected
components of Π2 are exactly the graphs created as Δ2 above. This construction
is possible in polynomial time.

We argue that Π1 and Π2 are graph isomorphic if and only if Γ is an orbital
graph. This implies that the given construction is a polynomial-time many-one
reduction, from the problem of deciding whether or not a digraph is an orbital
graph, to the graph isomorphism problem.

First let Π1 and Π2 be isomorphic as digraphs. Let φ be a graph isomorphism
from Π1 to Π2. Let a1, a2 be two arcs of Γ and let q be the corresponding label.
As there is a unique arc b1 in Π1 with the label q (corresponding to a1) and a
unique arc b2 in Π2 with label q (corresponding to a2), the isomorphism φ maps
b1 to b2. Also, since φ is a digraph isomorphism, it maps the whole connected
component Δ1 of Π1 containing the arc b1 to the connected component Δ2 of
Π2 containing the arc b2. Now φ, restricted to Δ1, is a digraph isomorphism



232 P. Hähndel and R. Waldecker

from Δ1 to Δ2. By ignoring the labels, φ becomes a digraph isomorphism from
one copy of Γ to another. Therefore there exists a digraph automorphism of Γ
that maps a1 to a2. Then it follows that Γ is an orbital graph.

Now suppose, conversely, that Γ is an orbital graph. Then for each pair a1, a2

of distinct arcs in Γ there exists a digraph automorphism ϑ of Γ that maps a1

to a2. Let q be the label corresponding to a1 in Δ1 and a2 in Δ2, respectively,
as described in the first paragraph. Then ϑ induces a digraph isomorphism from
Δ1 to Δ2. As this construction is possible for all connected components of Π1,
there exists a digraph isomorphism from Π1 to Π2.

3 Recognising Groups from Their Orbital Graphs

In Example 4 we saw a group that could not be recovered from the orbital graph
that we constructed. Let us briefly look at an example where it works and then
phrase a definition that captures this phenomenon.

Example 9. Let n = 4, Ω = {1, 2, 3, 4} and H := 〈(1234)〉.
Then Γ := Γ (H,Ω, (1, 2)) is just a directed cycle of length 4, and AutG(Γ )

is in fact H itself.

Definition 4. The group H is orbital graph recognisable (short: OGR) if
and only if

H =
⋂

α,β∈Ω,α�=β

AutG(Γ (H,Ω, (α, β))).

The group H is strongly OGR if and only if there are two distinct elements
α, β of Ω such that H = AutG(Γ (H,Ω, (α, β))) holds.

The group H is absolutely OGR if and only if for any pair α, β of distinct
elements of Ω it is true that H = AutG(Γ (H,Ω, (α, β))).

This concept captures how many different orbital graphs we need in order
to (possibly) recognise the group H. For example if a group is absolutely OGR,
then for any randomly generated orbital graph Γ the group AutG(Γ ) is a perfect
estimate for the group H. There are obvious implications in one direction, but
we will give examples showing that the reverse implication is false in general.

Example 10

(a) As in Example 4, let n = 4, Ω = {1, 2, 3, 4} and H = 〈(12)(34), (14)(23)〉.
We have already seen Γ1 := Γ (H,Ω, (1, 2)). The other two possible orbital
graphs are Γ2 := Γ (H,Ω, (1, 3)) and Γ3 := Γ (H,Ω, (1, 4)). These digraphs
only differ by the number of arcs.

Intersecting their automorphism groups induced by G yields the group H,
so H is OGR, but in all three cases the automorphism group is isomorphic
to D8. Therefore H is not strongly OGR.

We would like to point out what this means: If in an algorithm we wish to
replace the group H by a graph, because this is more efficient in computa-
tions, then one orbital graph is not sufficient.
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(b) Next let H := 〈(1234)〉, let Γ1 := Γ (H,Ω, (1, 2)) and Γ2 := Γ (H,Ω, (1, 3)).
Then AutG(Γ1) = H, but AutG(Γ2) is isomorphic to D8. Therefore H is
strongly OGR and not absolutely OGR.

(c) Finally let H := 〈(13), (12)(34)〉 and let Γ1 := Γ (H,Ω, (1, 2)) and Γ2 :=
Γ (H,Ω, (1, 3)). These are the only orbital graphs of H and we see that both
of them have H as its automorphism group in G. Hence H is absolutely
OGR.

(d) All alternating group of degree at least 4 are not OGR because their orbital
graphs are complete (see Lemma 11).

The last example does not occur accidentally, as the next lemma shows. It
also illustrates that for small 2-transitive subgroups H of symmetric groups G
of large degree, the group AutG(Γ ) is a very bad estimate for the group H.

Lemma 11. (a) If n ≥ 2, then G(= Sn) is absolutely OGR.
(b) If H ≤ G, then H is 2-transitive if and only if AutG(Γ ) = G. In particular,

proper 2-transitive subgroups of G are never OGR.

Proof. If H ≤ G is 2-transitive and Γ is an orbital graph for H on Ω, then Γ is
a complete graph because the 2-transitive action of H gives all possible arcs. In
particular AutG(Γ ) = G. This implies (a) and one direction of (b).

For the other direction of (b) suppose that H ≤ G and AutG(Γ ) = G. Then
every permutation of the vertices of Γ induces a digraph automorphism, and
hence all possible arcs exist. Then Γ is a complete digraph and this implies that
H acts 2-transitively on Ω. The last statement in (b) follows from this.

One last result before we list some open questions:

Lemma 12. Suppose that H ≤ G and that α ∈ Ω is such that Hα = 1. Then
H is OGR.

Proof. Let D :=
⋂

γ,δ∈Ω,γ �=δ

AutG(Γ (H,Ω, (γ, δ))). Then H ≤ D because every

element of H induces a graph automorphism on every orbital graph of H on Ω.
Assume for a contradiction that D �= H and let g ∈ D\H. Let β ∈ Ω \ {α}

and set Γ1 := Γ (H,Ω, (α, β)). Then g induces a graph automorphism on Γ1 by
choice, so (αg, βg) is an arc of Γ1. By definition of orbital graphs let h ∈ H ≤ D
be such that (αh, βh) = (αg, βg) and set d := g ·h−1. We note that d �= 1 because
g /∈ H. Now d ∈ D and it follows that

(αd, βd) = ((αg)h−1
, (βg)h−1

) = ((αh)h−1
, (βh)h−1

) = (α, β).

In particular d fixes the points α and β, so it lies in Gα ∩ Gβ .
As d �= 1, there exists some element of Ω that is not fixed by d. Let γ ∈ Ω

be such that γd �= γ and let Γ2 := Γ (H,Ω, (α, γ)).
We recall that d ∈ D, hence d ∈ AutG(Γ2) and therefore (αd, γd) is an arc

of Γ2. Let e ∈ H be such that (αe, γe) = (αd, γd) = (α, γd). Then e ∈ Hα = 1.
Therefore (αd, γd) = (αe, γe) = (α, γ), which contradicts the fact that

γd �= γ. So it follows that H = D and H is OGR.
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We point out that H does not need to be transitive in this lemma!

Some final comments:
When using orbital graphs in partition backtrack search algorithms, perfor-

mance is improved if only a small number of orbital graphs is built and if the
ones that are built carry as much information as possible. Therefore, recognis-
ing groups that are OGR and using this theory in implementations of search
algorithms makes the concept of orbital graph refiners even more useful.

Questions:

1. How can we characterise groups that are OGR (strongly OGR, absolutely
OGR) in a way that can be checked quickly in an algorithm?

2. For a group that is strongly OGR: How can we quickly detect an orbital graph
that is a witness for the strong OGR property?

3. For a group H that is OGR, but not strongly OGR: Can we efficiently find
a small number of orbital graphs such that H is the intersection of their
automorphism groups? (In Example 10(a) two orbital graphs already suffice.)

4. We know that 2-transitive groups do not provide useful orbital graphs for
our pruning methods (see Lemma 27 in [3]). But primitive groups that are
not 2-transitive are useful, by the same lemma, and it is known that all their
orbital graphs are connected (Theorem 3.2A in [2]). How else does primitivity
influence the structure of the orbital graphs? Here we need some specific
experiments in order to phrase conjectures and develop more theory.

5. We already have results about groups that are absolutely OGR and act tran-
sitively, but not primitively. In general, how can we efficiently pick the most
useful orbital graph for non-primitive groups? To begin with, what is the
appropriate definition for a “most useful orbital graph”? Here we have some
conjectures that we would like to test with experiments, implementing partic-
ular choices of orbital graphs into existing algorithms that use orbital graphs
in partition backtrack.

6. We have seen (in Example 6) that basic checks for symmetry are not sufficient
for deciding whether or not a digraph is an orbital graph. Currently we are
working on further strategies that can be automated and that enable us to
identify a graph as “not an orbital graph”.
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Abstract. We describe Ccluster, a software for computing natural ε-
clusters of complex roots in a given box of the complex plane. This
algorithm from Becker et al. (2016) is near-optimal when applied to the
benchmark problem of isolating all complex roots of an integer polyno-
mial. It is one of the first implementations of a near-optimal algorithm
for complex roots. We describe some low level techniques for speeding up
the algorithm. Its performance is compared with the well-known MPSolve

library and Maple.

1 Introduction

The problem of root finding for a polynomial f(z) is a classical problem from
antiquity, but remains the subject of active research to the present [6]. We con-
sider a classic version of root finding:

Local root isolation problem:
Given: a polynomial f(z) ∈ C[z], a box B0 ⊆ C, ε > 0.
Output: a set {Δ1, . . .,Δk} of pairwise-disjoint discs of radius
≤ ε, each containing a unique root of f(x) in B0.

It is local because we only look for roots in a locality, as specified by B0. The local
problem is useful in applications (especially in geometric computation) where we
know where to look for the roots of interest. There are several variants of this

Rémi’s work has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 676541.
Victor’s work is supported by NSF Grants # CCF-1116736 and # CCF-1563942 and
by PSC CUNY Award 698130048.
Chee’s work is supported by NSF Grants # CCF-1423228 and # CCF-1564132.

c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 235–244, 2018.
https://doi.org/10.1007/978-3-319-96418-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96418-8_28&domain=pdf


236 R. Imbach et al.

problem: in the global version, we are not given B0, signifying that we wish to
find all the roots of f . The global version is easily reduced to the local one by
specifying a B0 that contains all roots of f . If we omit ε, it amounts to setting
ε = ∞, representing the pure isolation problem.

Our main interest is a generalization of root isolation, to the lesser-studied
problem of root clustering [8,10,12]. It is convenient to introduce two definitions:
for any set S ⊆ C, let Zf (S) denote the set of roots of f in S, and let #f (S)
count the total multiplicity of the roots in Zf (S). Typically, S is a disc or a box.
For boxes and discs, we may write kS (for any k > 0) to denote the dilation of
S by factor k, keeping the same center. The following problem was introduced
in [16]:

Local root clustering problem:
Given: a polynomial f(z), a box B0 ⊆ C, ε > 0.
Output: a set of pairs {(Δ1,m1), . . .,(Δk,mk)} where

– Δi’s are pairwise-disjoint discs of radius ≤ ε,
– mi = #f (Δi) = #f (3Δi) for all i, and
– Zf (B0) ⊆ ⋃k

i=1 Zf (Δi).

This generalization of root isolation is necessary when we consider polynomials
whose coefficients are non-algebraic (or when f(z) is an analytic function, as in
[16]). The requirement that #f (Δi) = #f (3Δi) ensures that our output clusters
are natural [1]; a polynomial of degree d has at most 2d − 1 natural clusters
(see [16, Lemma 1]). The local root clustering algorithm for analytic functions
of [16] has termination proof, but no complexity analysis. By restricting f(z)
to a polynomial, Becker et al. [2] succeeded in giving an algorithm and also
its complexity analysis based on the geometry of the roots. When applied to
the benchmark problem, where f(z) is an integer polynomial of degree d
with L-bit coefficients, the algorithm can isolate all the roots of f(z) with bit
complexity Õ(d2(L + d)). Pan [13] calls such bounds near-optimal (at least
when L ≥ d). The clustering algorithm studied in this paper comes from [1],
which in turn is based on [2]. Previously, the Pan-Schönhage algorithm has
achieved near-optimal bounds with divide-and-conquer methods [13], but [1,2]
was the first subdivision algorithm to achieve the near-optimal bound for complex
roots. For real roots, Sagraloff-Mehlhorn [15] had earlier achieved near-optimal
bound via subdivision.

Why the emphasis on “subdivision”? It is because such algorithms are imple-
mentable and quite practical (e.g., [14]). Thus the near-optimal real subdivision
algorithm of [15] was implemented shortly after its discovery, and reported in [11]
with excellent results. In contrast, all the asymptotically efficient root algorithms
(not necessarily near-optimal) based on divide-and-conquer methods of the last
30 years have never been implemented; a proof-of-concept implementation of
Schönhage’s algorithm was reported in Gourdon’s thesis [9]. Computer algebra
systems mainly rely on algorithms with a priori guarantees of correctness. But in
practice, algorithms without such guarantees are widely used. For complex root
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isolation, one of the most highly regarded multiprecision software is MPSolve [3].
The original algorithm in MPSolve was based on Erhlich-Aberth (EA) iteration;
but since 2014, a “hybrid” algorithm [4] was introduced. It is based on the secular
equation, and combines ideas from EA and eigensolve [7]. These algorithms
are inherently global solvers (they must approximate all roots of a polynomial
simultaneously). Another theoretical limitation is that the global convergence of
these methods is not proven.

In this paper, we give a preliminary report about Ccluster, our1 implemen-
tation of the root clustering algorithm from [1].

Fig. 1. Left: the connected components isolating all roots of the Bernoulli polyno-
mial of degree 100. Right: the connected components isolating all roots of the Spiral
polynomial of degree 64.

To illustrate the performance for the local versus global problem, consider the
Bernoulli polynomials Bernd(z) :=

∑d
k=0

(
d
k

)
bd−kzk where bi’s are the Bernoulli

numbers. Figure 1(Left) shows the graphical output of Ccluster for Bern100(z).
Table 1 has four timings τX (for X = �, g, u, s) in seconds: τ� is the time for
solving the local problem over a box B0 = [−1, 1]2; τg is the time for the global
problem over the box B0 = [−150, 150]2 (which contains all the roots). The other
two timings from MPSolve (τu for unisolve, τs for secsolve) will be explained later.
For each instance, we also indicate the numbers of solutions (#Sols) and clusters
(#Clus). When #Sols equals #Clus, we know the roots are isolated. Subdivision
algorithms like ours naturally solve the local problem, but MPSolve can only
solve the global problem. Table 1 shows that MPSolve remains unchallenged for
the global problem. But in applications where locality can be exploited, local
methods may win, as seen in the last two rows of the table. The corresponding
time for Maple’s fsolve is also given; fsolve is not a guaranteed algorithm and
may fail.

1 Irina Voiculescu informed us that her student Dan-Andrei Gheorghe has indepen-
dently implemented the same algorithm in a Masters Thesis Project (May 18, 2017)
at Oxford University. Sewon Park and Martin Ziegler at KAIST, Korea, have imple-
mented a modified version of Becker et al. (2016) for polynomials having only real
roots being the eigenvalues of symmetric square matrices with real coefficients. See
the technical report CS-TR-2018-415 at https://cs.kaist.ac.kr/research/techReport.

https://cs.kaist.ac.kr/research/techReport
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Table 1. Bernoulli polynomials with five timings: local (τ�), global (τ�), unisolve (τ�),
secsolve (τ�) and Maple’s fsolve (τf ).

d Ccluster local (B0 = [−1, 1]2) Ccluster global (B0 = [−150, 150]2) unisolve secsolve fsolve

(#Sols:#Clus) (depth:size) τ� (s) (#Sols:#Clus) (depth:size) τg (s) τu (s) τs (s) τf (s)

64 (4:4) (9:164) 0.12 (64:64) (17:1948) 2.10 0.13 0.01 0.1

128 (4:4) (9:164) 0.34 (128:128) (16:3868) 9.90 0.55 0.05 6.84

191 (5:5) (9:196) 0.69 (191:191) (17:5436) 32.5 2.29 0.16 50.0

256 (4:4) (9:164) 0.96 (256:256) (17:7300) 60.6 3.80 0.37 >1000

383 (5:5) (9:196) 2.06 (383:383) (17:11188) 181 >1000 1.17 >1000

512 (4:4) (9:164) 2.87 (512:512) (16:14972) 456 >1000 3.63 >1000

767 (5:5) (9:196) 6.09 (767:767) (17:22332) 1413 >1000 10.38 >1000

Overview of Paper. In Sect. 2, we describe the experimental setup for
Ccluster. Sections 3–5 describe some techniques for speeding up the basic algo-
rithm. We conclude with Sect. 6.

2 Implementation and Experiments

The main implementation of Ccluster is in C language. We have an interface
for Julia2. We based our big number computation on the arb3 library. The
arb library implements ball arithmetic for real numbers, complex numbers and
polynomials with complex coefficients. Each arithmetic operation is carried out
with error bounds.

Test Suite. We consider 7 families of polynomials, classic ones as well as some
new ones constructed to have interesting clustering or multiple root structure.

(F1) The Bernoulli polynomial Bernd(z) of degree d is described in Sect. 1.
(F2) The Mignotte polynomial Mignd(z; a) := zd − 2(2az − 1)2 for a positive

integer a, has two roots whose separation is near the theoretical minimum
separation bound.

(F3) The Wilkinson polynomials Wilkd(z) :=
∏d

k=1(z − k).

(F4) The Spiral Polynomial Spird(z) :=
∏d

k=1

(
z− k

de4kiπ/n
)
. See Fig. 1(Right)

for Spir64(z).
(F5) Wilkinson Multiple: WilkMul(D)(z) :=

∏D
k=1(z − k)k. WilkMul(D)(z) has

degree d = D(D + 1)/2 where the root z = k has multiplicity k (for
k = 1, . . .,D).

(F6) Mignotte Cluster: MignClud(z; a, k) := xd − 2(2az − 1)k(2az + 1)k. This
polynomial has degree d (assuming d ≥ 2k) and has a cluster of k roots
near 2−a and a cluster of k roots near −2−a.

2 https://julialang.org/. Download our code in https://github.com/rimbach/Ccluster.
3 http://arblib.org/. Download our code in https://github.com/rimbach/Ccluster.jl.

https://julialang.org/
https://github.com/rimbach/Ccluster
http://arblib.org/
https://github.com/rimbach/Ccluster.jl
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(F7) Nested Cluster: NestClu(D)(z) has degree d = 3D and is defined by induc-
tion on D: NestClu(1)(z) := z3 − 1 with roots ω,ω2,ω3 = 1 where ω =
e2πi/3. Inductively, if the roots of NestClu(D)(z) are

{
rj : j = 1, . . .,3D

}
,

then we define NestClu(D+1)(z) :=
∏3D

j=1

(
z−rj − ω

16D

)(
z−rj − ω2

16D

)(
z−

rj − 1
16D

)
See Fig. 2 for the natural ε-clusters of NestClu(3)(z).

Fig. 2. Left: 3 clusters of NestClu(3) found with ε = 1. Right: Zoomed view of 9
clusters of NestClu(3) found with ε = 1

10
. Note: The initial box is in thick lines; the

thin lines show the subdivisions tree.

Timing. Running times are sequential times on a Intel(R) Core(TM) i3 CPU 530
@ 2.93 GHz machine with linux. Ccluster implements the algorithm described
in [1] with differences coming from the improvements described in Sects. 3–5
below. Unless explicitly specified, the value of ε for Ccluster is set to 2−53;
roughly speaking, it falls back to asking for 15 guaranteed decimal digits.

MPSolve. For external comparison, we use MPSolve. It was shown to be
superior to major software such as Maple or Mathematica [3]. There are
two root solvers in MPSolve: the original unisolve [3] which is based on
the Ehrlich-Aberth iteration and the new hybrid algorithm called secsolve
[4]. These are called with the commands mpsolve -au -Gi -oγ -j1 and
mpsolve -as -Gi -oγ -j1 (respectively). -Gi means that MPSolve tries to find
for each root a unique complex disc containing it, such that Newton iteration is
guaranteed to converge quadratically toward the root starting from the center
of the disc. -oγ means that 10−γ is used as an escape bound, i.e., the algorithm
stops when the complex disc containing the root has radius less that 10−γ ,
regardless of whether it is isolating or not. Unless explicitly specified, we set
γ = 16. -j1 means that the process is not parallelized. Although MPSolve does
not do general local search, it has an option to search only within the unit disc.
This option does not seem to lead to much improvement.
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Fig. 3. ˜T G
k (Δ, k). |f̃ |i is the absolute value of the coefficient of the monomial of degree

i of f̃ , for 0 ≤ i ≤ d.

3 Improved Soft Pellet Test

The key predicate in [1] is a form of Pellet test denoted T̃G
k (Δ, k) (with implicit

f(z)). This is modified in Fig. 3 by adding an outer while-loop to control the
number of Graeffe-Dandelin iterations. We try to get a definite decision (i.e.,
anything other than a unresolved) from the soft comparison for the current
Graeffe iteration. This is done by increasing the precision L for approximating
the coefficients of f̃ in the innermost while-loop. Thus we have two versions of
our algorithm: (V1) uses the original T̃G

k (Δ, k) in [1], and (V2) uses the modified
form in Fig. 3. Let τV1 and τV2 be timings for the 2 versions. Table 2 shows
the time τV1 (in seconds) and the ratio τV1/τV2. We see that (V2) achieves a
consistent 2.3 to 3-fold speed up.

In (V2), as in [1], we use T̃G
0 (Δ) (defined as T̃G

k (Δ, 0)) to prove that a box
B has no root. We propose a new version (V3) that uses T̃G

∗ (Δ) (defined as
T̃G

k (Δ, d), where d is the degree of f) instead of T̃G
0 (Δ) to achieve this goal:

instead of just showing that B has no root, it upper bounds #f (B). Although
counter-intuitive, this yields a substantial improvement because it led to fewer
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Table 2. Solving within the initial box [−50, 50]2 with ε = 2−53 with versions (V1),
(V2) and (V3) of Ccluster. n1: number of discarding tests. n2: number of discarding
tests returning −1 (inconclusive). n3: total number of Graeffe iterations. τV1 (resp.
τV2, τV3): sequential time for V1 (resp. V2, V3) in seconds.

V1 V2 V3

(n1, n2, n3) τV1 (n1, n2, n3) τV1/τV2 (n1, n2, n3) τV1/τV3

Bern64(z) (2308, 686, 20223) 19.6 (2308, 686, 6028) 2.84 (2308, 8, 2291) 7.06

Mign64(z; 14) (2060, 622, 18018) 17.3 (2060, 622, 5326) 3.03 (2060, 20, 2080) 7.68

Wilk64(z) (2148, 674, 18053) 23.6 (2148, 674, 5692) 2.74 (2148, 0, 2140) 7.23

Spir64(z) (2512, 728, 22176) 22.2 (2512, 728, 6596) 2.39 (2512, 15, 2670) 4.46

WilkMul(11)(z) (724, 202, 6174) 9.69 (724, 202, 2684) 2.30 (724, 18, 2065) 3.37

MignClu64(z; 14, 3) (2092, 618, 18515) 20.0 (2092, 618, 5600) 3.00 (2092, 12, 2481) 6.57

NestClu(4)(z) (3532, 1001, 30961) 90.2 (3532, 1001, 9654) 3.09 (3532, 24, 4588) 6.81

Graeffe iterations overall. The timing for (V3) is τV3, but we display only the
ratio τV1/τV3 in the last column of Table 2. This ratio shows that (V3) enjoys
a 3.3-7.7 fold speedup. Comparing n3 for (V2) and (V3) explains this speedup.

4 Filtering

A technique for speeding up the evaluation of predicates is the idea of filters (e.g.,
[5]). The various Pellet tests can be viewed as a box predicate C that maps a box
B ⊆ C to a value4 in {true, false}. If C− is another box predicate with property
that C−(B) = false implies C(B) = false, we call C− a falsehood filter. If
C− is efficient relatively to C, and “efficacious” (informally, C(B) = false is
likely to yield C−(B) = false), then it is useful to first compute C−(B). If
C−(B) = false, we do not need to compute C(B). The predicate C0 used in
Ccluster is defined as follows: C0(B) is true if T̃G

∗ (ΔB) returns 0 (then B

contains no root of f) and is false if T̃G
∗ (ΔB) returns −1 or k > 0 (then B may

contain some roots of f). We next present the falsehood filter C−
0 (B) for C0.

Let fΔ denote the Taylor shift of f in Δ, f
[i]
Δ its i-th Graeffe iterate, (f [i]

Δ )j

the j-th coefficient of f
[i]
Δ , and |f [i]

Δ |j the absolute value of the j-th coefficient.
Let d be the degree of f . The assertion below is a direct consequence of the
classical test of Pellet (see [2, p. 12]) and justify the correctness of our filters:
(A) if |f [N ]

Δ |0 ≤ |f [N ]
Δ |1 + |f [N ]

Δ |d then T̃G
∗ (Δ) returns −1 or k > 0.

Our C−
0 filter computes |f [N ]

Δ |0, |f [N ]
Δ |1 and |f [N ]

Δ |d and checks hypothesis of (A)
using IntCompare. |f [N ]

Δ |0 and |f [N ]
Δ |d can respectively be computed as (|fΔ|0)2N

and (|fΔ|d)2N

. |f [N ]
Δ |1 can be computed with the following well known formula:

(f [i+1]
Δ )k = (−1)k((f [i]

Δ )k)2 + 2
k−1∑

j=0

(−1)j(f [i]
Δ )j(f

[i]
Δ )2k−j (1)

4 We treat two-valued predicates for simplicity; the discussion could be extended to
predicates (like ˜T G

∗ ) which returns a finite set of values.
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Obtaining |f [N ]
Δ |1 with Eq. (1) requires to know 2N−1 + 1 coefficients of f

[1]
Δ ,

2N−2 + 1 coefficients of f
[2]
Δ , . . . , and finally 3 = 21 + 1 coefficients of f

[N−1]
Δ . In

particular, it requires to compute entirely the iterations f
[i]
Δ such that 2N−i ≤ d,

and it is possible to do it more efficiently that with Eq. (1) (for instance with
the formula given in definition 2 of [2]).

Table 3. Solving within the initial box [−50, 50]2 with ε = 2−53 with versions (V3),
(V4) of Ccluster. n3: number of Graeffe iterations. τV3 and τV4: sequential time in
seconds.

V3 V4

n3 τV3 n3 τV3/τV4

Bernd(z) d = 64 2291 2.61 2084 1.08

d = 128 4496 14.5 3983 1.13

d = 256 8847 94.5 7714 1.19

d = 512 15983 620 11664 1.42

d = 767 19804 1832 13863 1.53

Mignd(z; a) (d, a) = (64, 14) 2080 2.41 1808 1.22

(d, a) = (128, 14) 3899 12.1 3257 1.21

(d, a) = (256, 14) 7605 88.3 6339 1.33

(d, a) = (512, 14) 15227 674 10405 1.57

Wilkd(z) d = 64 2140 3.27 1958 1.05

d = 128 2240 10.0 1942 1.09

d = 256 2414 36.6 2108 1.21

d = 512 2557 129 1841 1.43

Spird(z) d = 64 2670 4.43 2364 1.08

d = 128 5090 28.8 4405 1.07

d = 256 9746 182 8529 1.10

d = 512 19159 1340 14786 1.19

WilkMul(D)(z) (D, d) = (11, 66) 2065 2.87 1818 1.14

(D, d) = (12, 78) 2313 3.95 2053 1.12

(D, d) = (13, 91) 2649 5.89 2336 1.18

(D, d) = (14, 105) 2892 8.56 2537 1.29

MignClud(z; a, k) (d, a, k) = (64, 14, 3) 2481 2.94 2145 1.13

(d, a, k) = (128, 14, 3) 4166 14.4 3555 1.16

(d, a, k) = (256, 14, 3) 7658 86.0 6523 1.27

(d, a, k) = (512, 14, 3) 15044 650 10472 1.63

NestClu(D)(z) (D, d) = (4, 27) 1628 0.77 1459 1.07

(D, d) = (5, 81) 4588 13.2 4085 1.12

(D, d) = (6, 243) 13056 358 11824 1.26
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Our C−
0 filter takes as input a precision L, the Taylor shift fΔ of the L bit

approximation of f and its i-th Graeffe iteration f
[i]
Δ such that 2N−i ≤ d

4 and
2N−(i+1) > d

4 . It computes |f [N ]
Δ |0, |f [N ]

Δ |d and the 2N−j + 1 first coefficients of
f
[j]
Δ for i < j ≤ N with Eq. (1). Then it checks the hypothesis of (A) using
IntCompare, and returns false if it is verified, and true otherwise. In practice,
it is implemented within the procedure implementing T̃G

∗ (ΔB).
Incorporating C−

0 into Version (V3), we obtain (V4) and the speed up
can be seen in Table 3. Filtering with C−

0 becomes more effective as degree
grows and this is because one has 2N−i ≤ d

4 for smaller i (recall that N =
4 + �log2(1 + log2(d))�).

5 Escape Bound

The ε parameter is usually understood as the precision desired for roots. But we
can also view it as an escape bound for multiple roots as follows: we do not refine
a disc that contains a simple root, even if its radius is ≥ ε. But for clusters of
size greater than one, we only stop when the radius is < ε. MPSolve has a similar
option. This variant of (V4) is denoted (V4′). We see from Table 4 that (V4′)
gives a modest improvement (up to 25% speedup) over (V4) when − log ε = 53.
This improvement generally grows with − log ε (but WilkMul(11)(z) shows no
difference).

Table 4. Solving within the box [−50, 50]2 with versions (V4) and (V4′) of
Ccluster with three values of ε. τ53 (resp. τ530, τ5300): sequential time for (V4)
and (V4′) in seconds.

(V4) (V4′)

ε: 2−53 2−530 2−5300 2−53 2−530 2−5300

τ53 (s) τ530/τ53 τ5300/τ53 τ53 (s) τ530/τ53 τ5300/τ53

Bern64(z) 2.42 1.26 4.22 1.99 0.94 0.94

Mign64(z; 14) 1.97 1.63 4.56 1.61 1.45 1.38

Wilk64(z) 3.22 1.10 2.16 2.91 0.96 1.01

Spir64(z) 4.09 1.33 5.25 3.05 0.95 0.95

WilkMul(11)(z) 2.51 1.12 2.03 2.50 1.13 1.98

MignClu64(z; 14, 3) 2.60 1.89 4.15 2.20 1.70 1.80

NestClu4(z) 11.9 1.08 2.67 10.4 1.00 0.99

6 Conclusion

Implementing subdivision algorithms is relatively easy but achieving state-of-art
performance requires much optimization and low-level development. This paper
explores several such techniques. We do well compared to fsolve in Maple, but
the performance of MPSolve is superior to the global version of Ccluster. But
Ccluster can still shine when looking for local roots or when ε is large.
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thesis, École Polytechnique (1996)

10. Hribernig, V., Stetter, H.J.: Detection and validation of clusters of polynomial
zeros. J. Symb. Comput. 24(6), 667–681 (1997)

11. Kobel, A., Rouillier, F., Sagraloff, M.: Computing real roots of real polynomials...
and now for real! In: Proceedings of the ACM on International Symposium on
Symbolic and Algebraic Computation, pp. 303–310. ACM (2016)

12. Niu, X.-M., Sakurai, T., Sugiura, H.: A verified method for bounding clusters of
zeros of analytic functions. J. Comput. Appl. Math. 199(2), 263–270 (2007)

13. Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for numerical fac-
torization and root-finding. J. Symb. Comput. 33(5), 701–733 (2002)

14. Rouillier, F., Zimmermann, P.: Efficient isolation of polynomial’s real roots. J.
Comput. Appl. Math. 162(1), 33–50 (2004)

15. Sagraloff, M., Mehlhorn, K.: Computing real roots of real polynomials. J. Symb.
Comput. 73, 46–86 (2016)

16. Yap, C., Sagraloff, M., Sharma, V.: Analytic root clustering: a complete algorithm
using soft zero tests. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013.
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Abstract. We propose an extension of the automated theorem prover
E by the weighted path ordering. Weighted path ordering is theoretically
stronger than all the orderings used in E-prover, however its parametriza-
tion is more involved than those normally used in automated reasoning.
In particular, it depends on a term algebra. We discuss how the param-
eters for the ordering can be proposed automatically for particular the-
orem proving problem strategies. We integrate the ordering in E-prover
and perform an evaluation on the standard theorem proving benchmarks.
The ordering is complementary to the ones used in E prover so far.

Keywords: Automated reasoning · Term orderings
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1 Introduction

In the last two decades the superposition calculus has become one of the main
foundations of automated theorem provers for first-order logic. Indeed the sys-
tems regularly winning the yearly CADE ATP Systems Competition, such as
E [7] and Vampire [2] are based on the superposition calculus. Also for the prob-
lems not previously solved by humans, superposition calculus based Prover9 has
been most useful so far [5].

The use of powerful and efficient orderings is one of the major advantages
of the superposition calculus for classical first-order theorem proving. Orderings
allow provers to avoid redundant clauses, namely clauses which only differ in the
order of literals, as well as permit orienting equations and therefore rewriting
the clauses only in one direction. The three predominantly used orderings in
automated theorem proving are LPO, KBO, and RPO. In fact for the former
two optimized implementations are known [3,4].
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However, term rewriting research has shown that there exist more powerful
orderings, for example the weighted path order (WPO) [10] is one of the strongest
known orderings. With carefully selected parameters is can subsume most known
orderings including LPO, KBO, and RPO [11]. There are however two reasons,
why such stronger orderings have not been tried for automated reasoning so far.
First, they often rely on complicated parameters. For example WPO relies on
an algebra on terms as an argument. Second, the efficiency of KBO, LPO, or
even RPO has been optimized for the most common cases, whereas the more
advanced orderings have been stated in a general manner, without optimizing
their efficiency.

In this paper we attempt to overcome both of these obstacles and propose
an efficient way to implement WPO as part of an automated reasoning system.
We also propose parameters that allow WPO to function efficiently within a
state-of-the-art automated theorem prover and help with actual theorem proving
problems. After discussing the preliminaries on term orderings in Sect. 2 and on
their use in the superposition calculus in Sect. 3, the particular contributions of
this paper are:

– We propose algebras that can be used efficiently for first-order theorem prov-
ing (Sect. 4),

– We present an optimized pseudocode for WPO in terms of typical ATP struc-
tures and implement an extension of E-prover that supports WPO (Sect. 4).

– We evaluate WPO against existing orderings in E-prover on parts of the
TPTP library, the proofs stemming from the AIM conjecture [9], and on the
CoqHammer proofs [1] in Sect. 5.

2 Term Orderings and Rewriting

We work in first-order logic (FOL). A signature Σ is a collection of symbols
with arities. The set of first-order variables is denoted V, and TΣ stands for the
terms over signature Σ and variables V. A literal is an atomic formula or its
negation, and a clause is a disjunction of literals. In ATPs, clauses are used to
describe both the input problem, and the knowledge inferred during the search.
On occasion, unit equality clauses of the form s = t are inferred. Such equalities
can be used to simplify other clauses using s → t or t → s as a rewriting rule.

Rewriting systems, described by finite sets of rewriting rules, are often used
inside ATPs to keep a set of clauses in normal forms. A crucial property for
ATPs is the termination of every rewriting chain on any term. The termination
of system R can be shown using a well-founded term ordering >T on terms T ,
that orients every rule (s → t) ∈ R, meaning s >T t. Terminating rewriting
systems are called reduction orders. See [6,11] for details.

Reduction orders are successfully used in many state-of-the-art ATPs. Com-
mon orders [6,11] are lexicographic path order (LPO) and Knuth-Bendix order
(KBO). LPO extends a precedence >Σ on symbols to a reduction order on TΣ

by a variety of subterm comparisons. KBO is generated by a precedence and
symbol weights. Terms in KBO are first compared by weights and the subterm
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comparisons are necessary only if the weights differ. WPO further abstracts the
idea of symbol weight comparisons to comparisons in algebras as follows.

Definition 1. An algebra A over Σ consists of a well-ordered carrier set and
of an interpretation fA : Nn → N for every n-ary function symbol f from Σ.
An algebra A is weakly monotone iff a ≥ b implies f(. . . , a, . . .) ≥ f(. . . , b, . . .),
and weakly simple iff f(. . . , a, . . .) ≥ a for every f ∈ Σ.

In this work, we consider the carrier set always to be N with the standard
order on N. Given a variable assignment σ : V → N, we can structurally interpret
every term t ∈ TΣ using interpretations from algebra A as the number σA(t) ∈ N,
formally as follows.

σA(x) = σ(x) σA(f(s1, . . . , sn)) = fA(σA(s1), . . . , σA(sn)))

Thus the algebra A induces the following ordering >A on terms: s >A t iff
σA(s) > σA(t) for every variable assignment σ. Similarly, we write s ≥A t iff
σA(s) ≥ σA(t) for every σ. The following defines WPO induced by A.

Definition 2 (WPO [11]). Given a precedence >Σ and an algebra A over Σ,
the weighted path order >wpo on TΣ is defined as follows: s = f(s1, . . . , sn) >wpo

t iff (1) s >A t, or (2) s ≥A t and one of the following holds:

2a. ∃i ∈ {1, . . . , n}. si ≥wpo t, or
2b. t = g(t1, . . . , tm), ∀j ∈ {1, . . . , m}. s >wpo tj and either

(i) f >Σ g, or
(ii) f = g and (s1, . . . , sn) >lex

wpo (t1, . . . , tn).

Only terms comparable in A are comparable in >wpo. Strict order s >A t
alone implies s >wpo t. Otherwise s ≥A must hold and various subterm condi-
tions are checked. In (2a), ≥wpo is the reflexive closure of >wpo, while >A and
≥A are separately defined orders induced by A. In (2b/ii) the lexicographical
extension >lex

wpo of >wpo to n-tuples is used when the compared terms have the
same head symbol.

If the WPO algebra A is weakly monotone and weakly simple, then >wpo

is a reduction order [11, Theorem 13]. With different algebras, WPO is known
to behave like LPO [11, Theorem 19], or like KBO [11, Theorem 16], or to sub-
sume both [11, Theorem 20]. Instantiations of WPO with different algebras are
discussed in Sect. 4.

3 Orderings in Superposition Calculus

Saturation based automated theorem provers, like E prover [7], attempt to prove
a first-order goal conjecture G in a theory T , that is, T � G. First, theory axioms
with the negated conjecture T ∪{¬G} are translated to a logically equivalent set
of clauses. Then, a saturation process is initiated, which selects an unprocessed
clause C and computes all possible inferences of C with all the previously pro-
cessed clauses. Clause C is then marked as processed and another unprocessed



248 J. Jakub̊uv and C. Kaliszyk

clause is selected. This process continues until an empty clause (contradiction)
is derived, or there are no more unprocessed clauses (the set of processed clauses
becomes saturated), or the prover runs out of resources.

The saturation process uses term orderings for various purposes depending
on the selected inference rules. The classical resolution rule allows to infer the
clause (C1 ∨C2)σ from clauses (L1 ∨C1) and (¬L2 ∨C2) provided L1 and L2 are
unifiable with the unifier σ. The ordered resolution restricts the classical resolu-
tion rule to literals maximal in each clause (w.r.t. a fixed term ordering >T ). In
paramodulation, inferred unit equality clauses of the form s = t, which can be
oriented using the ordering (either s >T t or t >T s), can be used as rewriting
rules (s → t or t → s, respectively). The processed clauses are then kept in their
normal form with respect to the inferred rewriting rules (called demodulators).
All these extensions restrict the number of possible inferences preserving com-
pleteness (that is, they do not prevent the inference of the empty clause). Clearly,
the more terms are comparable, the more inferences are restricted, which leads
to a more effective search space reduction.

E prover implements LPO and KBO. The desired term ordering can
be selected using a command-line option. E implements approximately ten
signature-independent methods to generate the precedence on the symbols. In
this work, we shall consider the following.

(arity/iarity) Symbols are sorted by arity or reverse arity. Symbols with higher
arity are larger/smaller.

(freq/ifreq) Symbols are sorted by the frequency of their occurrence in the
input problem. Frequently occurring symbols are larger/smaller. In the case
of the same frequency, symbols are sorted by arity.

(ufirst) Same as arity but unary symbols are smaller. In the case of the same
arity, symbols are sorted by frequency.

(ufreq) Same as ifreq but unary symbols are always smaller.

KBO is additionally parametrized by a weight function (w,w0). E implements
several ways of generating weights for a given problem. We shall consider the
following. All of these set the variable weight w0 to 1 and only differ in w.

(const) The weights of all the symbols are set to the constant 1.
(arity/iarity) The weight of an n-ary function symbol is set to n + 1 (respec-

tively to m − n + 1, where m is the largest symbol arity).
(prec/iprec) Given a symbol precedence <, the weight of symbol f is the

number of symbols smaller/larger than f increased by 1.
(fcount/ifcount) The weight of symbol f is the number of occurrences of f in

the input problem (respectively m minus the number of occurrences, where
m is the frequency of the most occurring symbol).

(frank/ifrank) Sort all function symbols by frequency of occurrence (which
induces a total quasi-ordering). The weight of a symbol is the rank of it’s
equivalence class, with less frequent symbols getting lower/higher weights.
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Additionally, E allows user-defined weights for all constant symbols, which
override the weight assigned by the above weight generation schemes. Finally, E
allows both a specific user-defined precedence and specific symbol weights. We
do not, however, consider these specific settings as they depends on a signature.
Our implementation of WPO in E Prover is described in the next Sect. 4.

4 Implementation of WPO in E Prover

This section describes our implementation of WPO in E Prover. We introduce
two specific algebras from the literature [11]. Both algebras are weakly monotone
and simple, and hence instantiate WPO to a reduction order. We discuss the
implementation of algebra comparisons and provide several coefficient genera-
tion schemes for WPO. We conclude by a brief description of our main WPO
comparison method. First we introduce Sum-algebras which sum the arguments
with a positive multiplier.

Definition 3 (Sum-algebra). A Sum-algebra A over Σ induced by (w, c) is
an algebra over Σ where an n-ary function symbol f is interpreted as

fA(a1, . . . , an) = w(f) +
n∑

i=1

c(f, i) ∗ ai

where w(f) > 0 is the weight of f and c(f, i) > 0 is the coefficient of the i-th
argument of f (called subterm coefficient).

Both the weights and subterm coefficients can be zero under certain addi-
tional conditions [11, Theorems 5 and 13]. All E weight generation schemes used
in this work produce non-zero weights, and hence we consider only positive coef-
ficients, mainly to simplify the implementation. Experimenting with non-zero
values is left as future work. The carrier set of A can be instantiated by a subset
of N ({n ∈ N : n ≥ w0} for some w0 ∈ N). Note, that a restriction of such a
Sum-algebra to w0 > 0 and c(f, i) = 1 is equivalent to KBO [11, Theorem 16].

Given a Sum-algebra A over Σ, every term s ∈ TΣ can be interpreted in A as
an expression of the grammar “E ::= N | V | (E +E) | (N∗E)”. This expression
contains variables vars(s) = {x1, . . . , xn}. The expression can transformed to the
equivalent expression sA of the following form, which we say interprets s in A
(for appropriate ci ∈ N).

sA(x1, . . . , xn) = c0 + c1 ∗ x1 + · · · + cn ∗ xn

Since the definitions of >A and ≥A involve an infinite number of variable
assignments, it is necessary to provide an efficient algorithm to check the algebra
comparisons in WPO. The following lemma helps us to achieve that. Note that,
we take the liberty of reordering variables so that shared variables come first.
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Lemma 1. Given Sum-algebra A over Σ and terms s, t ∈ TΣ, let vars(t) ⊆
vars(s) = {x1, . . . , xn} and let vars(t) = {x1, . . . , xm} for some m ≤ n. Let

sA(x1, . . . , xn) = c0 + c1 ∗ x1 + · · · + cn ∗ xn

tA(x1, . . . , xm) = d0 + d1 ∗ x1 + · · · + dm ∗ xm

be the interpretations of s and t in A. Then the following holds.

s >A t iff ∀i ∈ {1, . . . , m}. ci ≥ di and c0 > d0
s ≥A t iff ∀i ∈ {0, . . . , m}. ci ≥ di

Clearly, s >A t (and also s ≥A t) implies vars(t) ⊆ vars(s), hence the variable
requirement is not a limitation. WPO requires algebras to be weakly monotone
to generate a reduction order. Similarly, the notion of strictly monotone algebras
can be defined (using strict comparisons instead of weak ones). Sum-algebras
are strictly (and hence weakly) monotone. We next define the Max -algebras,
which use max instead of addition, making them weakly monotone.

Definition 4 (Max -algebra). A Max-algebra A over Σ induced by (w, c) is
an algebra over Σ where an n-ary function symbol f is interpreted as

fA(a1, . . . , an) = max
(
w(f) ,

n
max
i=1

(c(f, i) + ai)
)

where w(f) > 0 is the weight of f and c(f, i) > 0 is the coefficient of the i-th
argument of f (called subterm penalty).

Again, zero weights and penalties are allowed under certain conditions, which
we omit in this presentation. For example, setting all the weights and penalty
coefficients to zeros makes WPO behave like LPO [11, Theorem 19]. Similarly
to Sum-algebras, given a Max -algebra A over Σ, every term s ∈ TΣ with
vars(s) = {x1, . . . , xn} can be interpreted by an expression sA of the following
form, which is said to interpret s in A.

sA(x1, . . . , xn) = max(c0, x1 + c1, . . . , xn + cn)

The following allows efficiently comparing terms in Max -algebras.

Lemma 2. Let Max-algebra A over Σ and terms s, t ∈ TΣ be given. Let
vars(t) ⊆ vars(s) = {x1, . . . , xn} and vars(t) = {x1, . . . , xm} for some m ≤ n.
Let

sA(x1, . . . , xn) = max(c0, x1 + c1, . . . , xn + cn)
tA(x1, . . . , xm) = max(d0, x1 + d1, . . . , xm + dm)

interpret s and t in A. Let cmax = max(c0, . . . , cn) and dmax = max(d0, . . . , dm).
Then the following holds.

s >A t iff cmax > dmax and ∀i ∈ {1, . . . , m}. ci > di

s ≥A t iff cmax ≥ dmax and ∀i ∈ {1, . . . , m}. ci ≥ di
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Note that in s >A t, as opposed to Lemma 1, we require all the coefficients
to be strictly greater. Otherwise max(x+2, y +1) would be strictly greater than
max(x+1, y+1). We do not compare the constant coefficients c0 and d0, because,
for example, max(1, x + 3) is always greater than max(2, x + 2) even though the
constant coefficients are not. The proof of Lemma 2 follows from the observation
that c0 can be substituted by cmax without affecting the value of sA.

Inspired by precedence/weight generation schemes in E, we have implemented
the following subterm coefficient generation schemes. These schemes generate
coefficients c(f, i) to be used both in Sum and Max -algebras.

(constant) All coefficients are set to 1.
(arity) For an n-ary function symbol f we set c(f, i) = n.
(firstmax) For all f , the first coefficient c(f, 1) is set 2 while the others to 1.
(firstmin) For all f , the first coefficient c(f, 1) is set 1 while the others to 2.
(asc/desc) Set up ascending/descending coefficients. For an n-ary function

symbol f we set c(f, i) = i (respectively c(f, i) = n − i + 1).

To implement a new term ordering >T in E, a term comparison method is
required. The method takes two terms s and t as input and returns whether
s <T t, or s >T t, or s = t, or the terms are incomparable. We have implemented
the WPO comparison methods for Sum and Max algebras. Our implementation
mostly follows Definition 2. At first we check strict algebra comparisons >A. To
do that, we compute coefficients ci and di from Lemma 1 or 2 by a traversal of s
and t. If the coefficients are the same, we clearly have both s ≥A t and t ≥A s.
If s >A t, we return s >wpo t (and vice versa). For terms incomparable with
>A, we proceed with the weak comparison ≥A. If they are weakly comparable,
we proceed with the subterm checks.

5 Experimental Evaluation

We evaluate our experimental implementation1 of WPO in E Prover on four
complementary benchmarks with 200 problems each. Benchmark problems are
from two TPTP [8] categories (LAT and REL), from the Abelian Inner Mappings
project (AIM) [9], and from CoqHammer [1]. We evaluate all instances of LPO,
KBO, and WPO induced by the generation schemes described above, in order
to estimate the value of WPO for E. This gives us a collection of about 800
benchmark problems which we believe are reasonably orthogonal to allow us to
perform an objective evaluation. As we evaluate around 1400 different ordering
instances on all of the benchmark problems, it is important to limit the number
of problems so that the evaluation can be done in a reasonable time.2 The
limit of 1000 processed clauses, instead of time limit, is used for an evaluation
independent on implementation effectiveness. We use a single good-performing
E strategy with the different term orders.
1 https://github.com/ai4reason/eprover/tree/WPO.
2 The evaluation took around 2 days employing 32 cores of Intel(R) Xeon(R) CPU

E5-2698 v3 @ 2.30 GHz with 128 GB memory in total.

https://github.com/ai4reason/eprover/tree/WPO
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We have 6 instances of LPO, 108 instances KBO, and 1296 of WPO. The
results for each benchmark are in Table 1. For each ordering, the column “by”
shows the least number of instances necessary to solve the number in the col-
umn solved. Number of problems solved by E’s automated term order selection
is shown in column “Auto”. The “all” columns show combined performance.
Table 2 shows the best-performing instance for every order type, measuring num-
ber problems solved and the number of problems solved additionally to Auto
mode (column “E+”). The parameters of the instances select the generation
schemes for precedence, weights, algebra, and coefficients.

Table 1. Total number of problems solved by all LPO, KBO, and WPO instances.

Table 2. Best instances of LPO, KBO, and WPO for each benchmark.

WPO helped to solve more problems for each benchmark. It also solved
problems unsolved by Auto. Furthermore, the strongest WPO is usually equal
or better than the strongest version of LPO and KBO. LPO(arity) is often the
best of LPOs. As for WPO, Sum often performs better than Max overall but
Max can solve unique problems. The algebra coefficients generated by desc
often perform best.
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As stated above, we used a limit on processed clauses rather than on runtime,
in order to abstract from implementation details. In order to asses the effective-
ness of our implementation, we have additionally evaluated the best performing
ordering instances from Table 2 on the benchmark problems with runtime limit
of 5 s. For each benchmark category (AIM, COQ, etc.) we have computed the
average runtime on the problems solved by all the instances. The results vary on
different categories but LPO is usually the fastest and KBO is in average from
10% to 40% slower. The speed of WPO varies, but in average it is from 40%
to 140% slower than LPO. However, for example on TPTP/REL, our imple-
mentation of WPO is in average faster than both LPO and KPO. We conclude
that our implementation can be definitely made more effective, but even in the
current state, it can provide a valuable gain.

6 Conclusion

In this paper we proposed efficient implementations of algebras that allow inte-
grating more powerful orderings in the superposition calculus. The resulting E
strategies are more precise, resulting in complementary proofs on the various
corpora and have a potential to benefit E prover and superposition calculus
ATPs in general.

As future work, we would like to experiment with further algebras, additional
coefficient settings, and with zero weights, as this might further reduce the num-
ber of derived clauses. We would also like to further optimize the efficiency of
the algebra comparisons, as well as the computation of the ordering itself, as
well as perform more thorough evaluations.
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Abstract. We present an implementation of arbitrary-precision numer-
ical integration with rigorous error bounds in the Arb library. Rapid
convergence is ensured for piecewise complex analytic integrals by use of
the Petras algorithm, which combines adaptive bisection with adaptive
Gaussian quadrature where error bounds are determined via complex
magnitudes without evaluating derivatives. The code is general, easy to
use, and efficient, often outperforming existing non-rigorous software.

Keywords: Numerical integration · Interval arithmetic
Special functions

1 Introduction

Many users can attest that there is a non-negligible chance of getting an incorrect
answer when asking a numerical package or computer algebra system for an
approximation of a definite integral

∫ b

a
f(x)dx, as rapid variation, narrow peaks,

non-smooth points, cancellation or ill-conditioned numerical evaluation of f are
prone to break widely used heuristic numerical integration methods.

One remedy is to compute rigorous error bounds using interval arithmetic.
However, little work has been done to date on efficient arbitrary-precision imple-
mentations. Here, we present a new implementation of rigorous numerical inte-
gration in Arb, a C library for ball arithmetic1 [4]. The integration code is easy
to use directly in C, or can be wrapped from high-level languages. For exam-
ple, an interface in Sage [11] exists (thanks to Marc Mezzarobba and Vincent
Delecroix), which we demonstrate by computing

∫ 8

0
sin(x + ex) dx:

sage: C = ComplexBallField(333) # 333-bit precision

sage: C.integral(lambda x, d: sin(x+exp(x)), 0, 8)

[0.347400172657247807879512159119893124657456254866180183885492713616748

21398878532052968510434660 +/- 5.97e-96]

1 Arb (http://arblib.org) is open source (GNU LGPL) software. For documentation
and example code related to this paper, see http://arblib.org/acb calc.html.

c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 255–263, 2018.
https://doi.org/10.1007/978-3-319-96418-8_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96418-8_30&domain=pdf
http://arblib.org
http://arblib.org/acb_calc.html
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We obtain nearly 100 digits with a rigorous error bound in 0.04 s (0.02 s
when using C directly). This relatively difficult test integral (f(x) changes sign
950 times) was introduced by Rump [9] who observed that the quad function in
Matlab took over a second only to return the erroneous 0.2511 (Rump’s interval
package Intlab computes 7 digits in about one second; see also [7]).

2 Algorithm and Implementation

We consider integration of a function f : C → C on a segment [a, b], a, b ∈ C. We
represent real numbers as mid-rad intervals (balls) [m±r] and complex numbers
as rectangles [m1±r1]+[m2±r2]i (which we also refer to as balls with slight abuse
of terminology). True complex balls B(m1 + m2i, r) would sometimes provide
slightly better bounds, but rectangles are usually more convenient.

The user supplies the integrand f as a pointer to a C function func imple-
menting its evaluation (we refer to the documentation for the detailed API). In
effect, func gets called with the argument z and an extra flag d. If d = 0, func
is to evaluate f(z) without any assumptions about regularity. If d = 1, func is
to evaluate f(z) and also check that f is analytic on z, returning a non-finite
ball (e.g. NaN) otherwise. For meromorphic f , the user can ignore d since f(z)
automatically blows up at poles, but d needs to be handled for functions with
branch cuts like

√
z and log(z) (here by checking whether z overlaps (−∞, 0]).

We use the Petras algorithm [8], which combines bisection with Gaussian
quadrature of variable degree n. Error bounds for Gaussian quadrature use com-
plex magnitudes. If f is analytic with |f | ≤ M on an ellipse E with foci ±1 and
semiaxes X,Y, then |∫ 1

−1
f(x)dx − ∑n

k=1wkf(xk)| ≤ Mρ−2nCρ, ρ = X+Y , where
e.g. Cρ < 50 if ρ > 1.1. The tradeoff is that a larger E increases M , with M = ∞
if E hits a singularity of f , but also improves convergence as n → ∞. Of course,
the computed bound for M will not just depend on the function f but also on
the stability of its evaluation in ball arithmetic if E is large.

Degree adaptivity ensures near-optimal complexity (O(p) evaluations of f)
for analytic f at high precision p, while space adaptivity (bisection) helps if there
are singularities near [a, b] or if the ball enclosures are not optimal. For piecewise
analytic f with discontinuities on [a, b] the complexity is typically O(p2), i.e. a
bit worse but still polynomial in p. Degree or space adaptivity used alone would
give 2O(p) complexity or fail to converge for common types of integrals.

Our version of the integration algorithm can be described as follows:

– Initialize sum S ← 0, subinterval work queue Q ← [(a, b)].
– While Q = [(a1, b1), . . . , (aN , bN )] is not empty:

1. Pop (α, β) = (aN , bN ) from Q.
2. Compute the direct box enclosure I = (β − α)f([α, β]) (evaluating f on

z = [α, β] with d = 0). If I meets the tolerance goal, if α, β overlap, or if
evaluation limits have been exceeded, set S ← S + I and go to 1.

3. Try to find an ellipse E with foci (α, β) and an n ≤ nmax such that f
is analytic on E (evaluating f(E) with d = 1) and the error bound for
n-point Gaussian quadrature determined via |f(E)| meets the tolerance
goal. If successful, compute this integral J , set S ← S + J and go to 1.
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4. Interval bisection: let m = α+β
2 and extend Q with (α,m), (m,β).

Compared to Petras [8], there are minor differences. Our ρ is not fixed; we
try several sizes of E in step 3 to reduce n. The handling of tolerances is slightly
different. We also compute quadrature nodes (wk, xk) at runtime, without using
pre-made tables. A key point is that generating nodes for high-precision Gaus-
sian quadrature used to be considered too costly [1], but the recent work [6]
solves this problem.2 With default settings, computing nodes takes a few mil-
liseconds for 100-digit precision and a few seconds for 1000 digits.3 Nodes are
automatically cached, so this cost is amortized for repeated integrations at the
same or lower precision (possible n are restricted to a sparse sequence ≈ 2k/2 to
avoid computing nodes for many nearby n). As an optional tuning parameter,
the user can change the allowed range of n which defaults to nmax = 0.5p + 60.

2.1 Tolerances and Evaluation Limits

Besides the working precision p, the user specifies absolute and relative tol-
erances εabs and εrel. In effect, the algorithm attempts to achieve an error of
max(εabs, V εrel) where V is the magnitude of the integral. Reasonable values
(used as defaults by the Sage wrapper) are εabs = εrel = 2−p. Other values can
be useful, e.g. if low accuracy is sufficient but a higher p must be used for numer-
ical reasons. One might also set εabs = 0 to use relative tolerance only, though
for efficiency, it is better to supply εabs ≈ V εrel if an estimate for V is known
when V 	≈ 1. This Sage code shows computation of

∫ 1

0
e−1000+x sin(10x)dx:

sage: C = ComplexBallField(64); f = lambda x, _: exp(-1000+x)*sin(10*x)

sage: C.integral(f, 0, 1)

[+/- 4.09e-434] # time 0.013 ms

sage: C.integral(f, 0, 1, abs_tol=0)

[1.574528586972758e-435 +/- 7.36e-451] # time 1.1 ms

sage: C.integral(f, 0, 1, abs_tol=exp(-1000)/2^64)

[1.574528586972758e-435 +/- 7.27e-451] # time 0.38 ms

Conversely, for a large integrand:

sage: f = lambda x, _: exp(1000+x)*sin(10*x)

sage: C.integral(f, 0, 1)

[6.11102916709322e+433 +/- 1.98e+418] # time 1.1 ms

sage: C.integral(f, 0, 1, abs_tol=exp(1000)/2^64)

[6.11102916709322e+433 +/- 1.95e+418] # time 0.39 ms

In reality, εabs and εrel are only guidelines and the algorithm does not strictly
achieve the goal max(εabs, V εrel). Indeed, due to the fixed working precision and

2 Clenshaw-Curtis or double exponential quadrature could be used instead of Gaussian
quadrature, but typically require more points for equivalent accuracy. We could also
use Taylor series, but this makes supplying f more cumbersome for the user, and
computing f, f ′ . . . , f (n) tends to be more costly than n evaluations of f .

3 In benchmark results, we omit the first-time nodes precomputation overhead.
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possibly inexact parameters, the goal cannot generally be achieved. It is implied
that the user will work with some guard bits and if needed adjust (p, εabs, εrel)
based on the reliable a posteriori information in the output ball radius.

Use of εrel further depends circularly on V (V is essentially what we are trying
to compute!), so the algorithm must guess V. A too large guess means loss of
accuracy and a too small guess means unnecessary work. Our approach is to
start with the tolerance εabs and continuously update εabs ← max(εabs, Iaεrel),
εabs ← max(εabs, Jaεrel) where |I| = [Ia, Ib] and |J | = [Ja, Jb] are intervals
computed in steps 2 and 3; Ia and Ja will then be lower bounds for V (we err
on the side of preserving accuracy), modulo global cancellation in the integral.
As noted above, the user should exploit knowledge about V if possible since Ia

and Ja may be pessimistic. More clever globally adaptive strategies are possible,
but we settled for this simple approach in the present version.

To abort gracefully when convergence is too slow, evaluation limits include
a bound on the number of calls to f (default 1000p + p2) and a bound on the
size N of the work queue Q (default 2p). By default, Q acts as a stack and step 4
puts the new subinterval with the larger error at the top; optionally, Q can be
switched to a global priority queue, which may improve results if convergence is
so slow that evaluation limits are exceeded. This has the downside of sometimes
requiring N nearly as large as the number of calls to f (e.g. N ∼ p2), whereas
we always have N � p with the stack. A more clever algorithm might use a
top-level priority queue down to some depth before switching to a stack locally.

3 Benchmarks

We test various integrals with precision between about 10 and 1000 digits. Tim-
ings were obtained on an Intel Core i5-4300U CPU. We compare Arb to the
heuristic arbitrary-precision integration routines intnum in Pari/GP [10] and
quad in mpmath [5]. Both use double exponential quadrature without adaptive
subdivision, although quad is degree-adaptive. Further comparisons with other
numerical and interval packages (as well as alternative methods in Pari/GP and
mpmath4) would be useful, but out of scope for this brief overview.

We do not show the outputs, but note that in all cases, Arb computes correct
balls with radius a small multiple of 2−p. On some test cases, mpmath with
default settings silently returns an inaccurate answer due to exceeding its limit
on the quadrature degree, but it provides an optional mechanism to catch this.
We increased the degree limit to let mpmath run to full accuracy in all cases,
and have written (!) after a timing where the default is insufficient. Pari/GP is
not adaptive and silently returns inaccurate answers without providing a catch
mechanism or a way to increase the degree. It does provide an option to split the
interval non-adaptively into 2t parts, but it is up to the user to find a correct t.
We have done so where necessary, which is also marked in the timings.

4 For example, mpmath provides quadgl for Gaussian quadrature, which is 2–3 times
faster on some examples, but its precomputations are prohibitive at high precision.
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3.1 Integrals Without Singularities on the Path

Table 1 shows examples with smooth f on [a, b]. For meromorphic f , the number
of subintervals largely depends on the location of the poles and does not change
with p. The “spike integral” I1 (Fig. 1) is a well known pathological example [2,3];
all ordinary numerical integrators we have tested (Mathematica, GSL, SciPy,
etc.) give inaccurate results with default settings. This integrand has poles near
the real axis, forcing many local bisections. It is a piece of cake for the Petras
algorithm, but Pari/GP and mpmath converge slowly unless the user manually
splits the path at the peaks. I2 could be sped up 40% in Arb by using cos2(x) =
1
2 (1+cos(2x)) for wide x to bound the denominator more tightly.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
−0.3

0.0

0.3

Fig. 1. Left: f(x) = sech2(10(x−0.2))+ sech4(100(x−0.4))+ sech6(1000(x−0.6)), with subin-
tervals used by Arb. Right: complex ellipses used. The dots show the poles of f .

For entire functions (I4, I5, I6), the efficiency improves with larger p since
arbitrarily large bounding ellipses can be used. I5 is Rump’s example again,
and I6 (whose graph has two sharp “bends”) was provided by Silviu-Ioan Filip.

The code is seen to work well with special functions. In I3 we integrate the
Lambert W function, where we need to check for the branch cut on (−∞,−1/e]
in the evaluation. I7 also illustrates integration on a complex path.

Overall, Arb is faster than Pari/GP and mpmath, despite the fact that rig-
orous error bounds create extra work. The speedup is in part explained by
faster arithmetic and transcendental functions in Arb and lower overhead due
to using C, as well as the advantage of Gaussian quadrature over the double
exponential method for smooth integrands. However, if these differences are
accounted for, we can still conclude that the Petras algorithm in ball arith-
metic holds up extremely well for high-precision integration, on top of giving
rigorous bounds.

3.2 Endpoint Singularities and Infinite Intervals

The methods in Pari/GP and mpmath are designed to support typical integrals
with infinite intervals or endpoint singularities, which often arise in applica-
tions. Arb requires finite a, b and a bounded f to return a finite result, but
the user may provide a manual truncation (say

∫ ∞
0

f(x)dx ≈ ∫ N

ε
f(x)dx) to work

around this restriction. Tail bounds must then be added based on symbolic
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Table 1. Integrals without singularities on [a, b]. Timings (Pari/GP, mpmath, Arb)
are in seconds. Sub = number of terminal subintervals (requiring no further bisection)
used by Arb, Eval = total number of integrand evaluations used by Arb.

p Pari/GP mpmath Arb Sub Eval Pari/GP mpmath Arb Sub Eval

I0 =
∫ 1
0 1/(1 + x2)dx I1 =

∫ 1
0

∑3
k=1 sech2k(10k(x − 0.2k)) dx

32 0.00039 0.00057 0.000025 2 32 0.54 (t = 8) 1.9 (!) 0.0030 49 795

64 0.00039 0.0011 0.000036 2 52 0.54 (t = 8) 5.0 (!) 0.0051 49 1299

333 0.0043 0.0058 0.00018 2 188 12 (t = 9) 38 (!) 0.038 49 4891

3333 1.0 0.13 0.014 2 2056 3385 (t = 9) - 8.7 49 48907

I2 =
∫ π
0 x sin(x)/(1 + cos2(x))dx I3 =

∫ 1000
0 W0(x)dx

32 0.00077 0.0021 0.00033 14 229 0.0037 0.012 0.00041 12 163

64 0.00077 0.0046 0.00054 14 373 0.0037 0.032 0.00093 12 273

333 0.0088 0.037 0.0040 14 1401 0.052 (t = 1) 0.25 0.0099 12 1109

3333 2.2 4.4 1.0 14 14401 11 (t = 2) 25 1.3 12 12043

I4 =
∫ 100
0 sin(x)dx I5 =

∫ 8
0 sin (x + ex) dx

32 0.0012 (t = 1) 0.0019 0.000047 1 53 0.063 (t = 6) 0.23 (!) 0.0048 33 2115

64 0.0012 (t = 1) 0.0014 0.000074 1 72 0.063 (t = 6) 0.25 (!) 0.0055 27 2307

333 0.015 (t = 1) 0.018 0.00030 1 139 0.22 (t = 4) 0.58 (!) 0.017 22 4028

3333 2.0 0.71 0.032 1 526 14 (t = 2) 12 1.1 8 10417

I6 =
∫ 1

−1 e−x erf
(√

1250 x + 3
2

)
dx I7 =

∫ 1+1000i
1 Γ(x)dx

32 0.024 (t = 3) 0.018 (!) 0.0025 7 297 0.031 (t = 2) 0.028 0.00076 11 103

64 0.024 (t = 3) 0.057 (!) 0.0055 6 438 0.054 (t = 3) 0.093 0.0035 12 280

333 0.50 (t = 3) 0.22 0.047 4 791 0.65 (t = 3) 1.1 0.081 14 1304

3333 173 (t = 2) 466 5.7 2 2923 561 (t = 3) 847 48 14 16535

knowledge about f . This is not ideal in terms of usability or efficiency, but since
the Petras algorithm works well even with an endpoint very close to a singularity
(or ∞), evaluating improper integrals to high precision in this way is at least
feasible.5

In Table 2, E0, E1 and E2 have algebraic or logarithmic singularities or decay,
with E1 requiring N ≈ 2p and E2 requiring ε ≈ 2−p (no truncation is needed for
E0, as f is bounded at the algebraic branch point singularity x = 1). Here Arb
needs O(p) subintervals and O(p2) evaluations, while the double exponential
algorithm in Pari/GP and mpmath only needs roughly O(p) evaluations and
therefore scales better.6 For integrals with exponential decay (E3, E4 and E5),
a cutoff of N ∼ p is sufficient, and here Arb retains excellent performance.

In a future extension of this work, some reasonable class of improper integrals
could be supported more efficiently and conveniently (e.g. with the user providing
a symbolic bound like |f(x)| < Cxα exp(−βxγ)).

5 An exception is when f has an essential singularity inducing oscillation combined
with slow decay. Oscillation with exponential decay is not a problem (as in E4, E5),
but integrals like

∫ 1

0
sin(1/x)dx=

∫ ∞
1

sin(x)/x2 (not benchmarked here) require 2O(p)

work, so we can only hope for 5–10 digits without specialized oscillatory algorithms.
6 As a means to improve performance, we note the standard trick of manually changing

variables to turn algebraic growth or decay into exponential decay. Indeed, x →
sinh(x) gives E1 = E3. Similarly x → tanh(x) and x → e−x can be used in E0, E2.



Numerical Integration in Ball Arithmetic 261

Table 2. Improper integrals and integrals with endpoint singularities. For integration
with Arb, all improper integrals (i.e. excluding E0) have been truncated manually at
a lower bound ε or upper bound N , chosen so that the omitted part is smaller than
2−p.

p Pari/GP mpmath Arb Sub Eval Pari/GP mpmath Arb Sub Eval

E0 =
∫ 1
0

√
1 − x2dx E1 =

∫ ∞
0 1/(1 + x2) dx

32 0.00041 0.00055 0.00022 22 234 0.00060 0.0010 0.00079 94 997

64 0.00041 0.00067 0.00057 44 674 0.00060 0.0012 0.0022 190 2887

333 0.0044 0.0060 0.015 223 12687 0.0068 0.011 0.048 997 51900

3333 0.94 0.18 6.6 2223 1187293 1.7 0.24 27 9997 4711128

E2 =
∫ 1
0 log(x)/(1 + x)dx E3 =

∫ ∞
0 sech(x) dx

32 0.00081 0.00080 0.00042 34 361 0.0011 0.0019 0.00017 9 144

64 0.00081 0.00094 0.0012 67 1026 0.0011 0.0043 0.00032 10 251

333 0.011 0.011 0.038 336 19254 0.013 0.098 0.0030 14 1277

3333 1.7 1.08 106 3336 1787191 3.5 3.3 0.95 17 16593

E4 =
∫ ∞
0 e−x2+ixdx E5 =

∫ ∞
0 e−x Ai(−x) dx

32 0.0014 0.0067 0.00011 1 71 - 0.19 0.0028 4 269

64 0.0014 0.016 0.00018 1 98 - 0.91 (!) 0.012 9 842

333 0.017 0.13 0.0016 2 397 - 26 (!) 0.94 124 24548

3333 4.7 7.1 0.47 4 3894 - 10167 (!) 502 1205 709889

3.3 Piecewise and Discontinuous Functions

Piecewise real analytic functions can be integrated efficiently using piecewise
complex analytic extensions. For example, |x| on R extends to the function

√
z2

of z = x + yi, which equals z in the right plane and −z in the left plane with
a branch cut on Re(z) = 0.7 We provide as library methods such extensions of
sgn(x), |x|, �x�, x�, max(x, y), min(x, y), with builtin branch cut detection.

Table 3. Integrals with point discontinuities in f or f ′. Here p(x) = x4+10x3+19x2−
6x − 6 in D0, and u(x) = (x−�x�− 1

2
), v = max(sin(x), cos(x)) in D3. For D3, the

function evaluation limit had to be increased for convergence at p = 3333.

p Arb Sub Eval Arb Sub Eval Arb Sub Eval Arb Sub Eval

D0 =
∫ 1
0 |p(x)| ex dx D1 =

∫ 100
0 �x� dx D2 =

∫ −1+i
−1−i

√
x dx D3 =

∫ 10
0 u(x)v(x)dx

32 0.00058 38 412 0.0054 2208 6622 0.00064 68 506 0.011 699 5891

64 0.0016 70 1093 0.014 5536 16606 0.0021 132 1462 0.035 1437 19653

333 0.049 339 18137 0.12 33512 100534 0.067 670 28304 1.4 7576 436 K

3333 101 3339 1624951 1.6 345512 1036534 35 6670 2669940 2805 76101 42 M

7 This works for integrating |f | when f is real, but since | · | on C is not holomorphic,
integrating |f | for nonreal f must use direct enclosures, with 2O(p) cost. In that case,
the user should instead construct complex-extensible real and imaginary parts f =
g+hi (e.g. via Taylor polynomials if no closed forms exist) and integrate

√
g2 + h2.
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Table 3 shows integrals with mid-interval jumps or kinks, including one
complex integral crossing a branch cut discontinuity (D2). The example D0,
where p(x) changes sign once on [0, 1], is due to Helfgott (see comments in [7]).

We see that a mid-interval singularity leads to use of O(p) subintervals and
O(p2) evaluations to isolate the problematic point by bisection. With k such
points (D1 and D3), the cost simply increases by another factor k, and the user
may have to raise the evaluation limits accordingly to let the algorithm complete
(which we did for D3). In contrast, Pari/GP and mpmath cope poorly with mid-
interval singularities and cannot achieve high accuracy on these examples unless
the user manually splits the interval precisely at the problematic points.

4 Complex Analysis

We conclude by illustrating integration as a tool for complex analysis. First,
we consider computing derivatives via the Cauchy integral formula. Denote by
℘(z; τ) =

∑∞
n=−2an(τ)zn the Weierstrass elliptic function for the lattice (1, τ).

We fix τ = i (placing the poles of ℘ at the Gaussian integers) and compute the
Laurent coefficients an = 1

2πi

∫
γ

z−n−1℘(z)dz by integrating along the square
connecting ±0.5 ± 0.5i. We ignore symmetry and compute all four segments.
With p = 333, some results are (note that a−1 = a100 = 0 and all an are real):

a[-2] = [1.00000000000000000000000... +/- 3.57e-98] + [+/- 1.89e-98]*I

a[-1] = [+/- 4.11e-98] + [+/- 2.57e-98]*I

a[2] = [9.45363600646169261465306... +/- 4.44e-97] + [+/- 2.48e-97]*I

a[98] = [395.999999999999648281345... +/- 2.90e-68] + [+/- 1.17e-68]*I

a[100] = [+/- 4.95e-68] + [+/- 4.95e-68]*I

We lose about n bits of precision to cancellation due to the integrand magni-
tude growing with n. Apart from this, the difficulty increases quite slowly with n:
a−2 takes 0.67 s while a98 and a100 take 0.85 s at this precision.

As a second example, the number N(T ) of zeros ρk of the Riemann zeta func-
tion ζ(s) on the box [0, 1] + [0, T ]i can be computed via the argument principle

N(T )−1 =
1

2πi

∫

γ

ζ ′(s)
ζ(s)

ds =
θ(T )

π
+

1
π

Im

⎡

⎣
∫ 1+ε+Ti

1+ε

ζ ′(s)
ζ(s)

ds +
∫ 1

2+Ti

1+ε+Ti

ζ ′(s)
ζ(s)

ds

⎤

⎦

where γ traces the boundary of [−ε, 1 + ε] + [0, T ]i (plus an excursion for the
pole at s = 1, whence the −1 term). The more numerically useful formula on the
right, where ε > 0 now is arbitrary, is a well-known consequence of the functional
equation, where θ(T ) is the Hardy theta function. We set ε = 99 (!) so that only
the horizontal segment is difficult, and evaluate the integrals with εabs = 10−6:

T p Time (s) Sub Eval N(T )
103 32 0.51 109 1219 [649.00000 +/- 7.78e-6]

105 32 12 353 4088 [138069.000 +/- 3.10e-4]

107 48 42 391 4500 [21136125.0000 +/- 5.53e-5]

109 48 1590 677 8070 [2846548032.000 +/- 1.95e-4]
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We obtain balls that provably determine N(T ), and the method scales rea-
sonably well. Unfortunately, the evaluation of ζ(s) in Arb is currently not well
tuned for all s, which makes large T slower than necessary and can make this
computation extremely slow with slightly different settings. In general, for com-
plicated integrals, the user may need to customize the integrand evaluation to
handle wide balls or large parameters optimally for a given path and precision.
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Abstract. We report on enumerating the triangulations of cyclic poly-
topes with the new software MPTOPCOM. This is relevant for its connection
with higher Stasheff–Tamari orders, which occur in category theory and
algebraic combinatorics.

1 Introduction

For an integer d ≥ 1 the d-th moment curve is the map

μd : R → R
d , t �→ (t, . . . , td).

Picking n real numbers t1 < t2 < · · · < tn, where n > d, the convex hull

C(n, d) = conv{μd(t1), μd(t2), . . . , μd(tn)} (1)

is the d-dimensional cyclic polytope with n vertices. The combinatorics of C(n, d)
is given by Gale’s evenness criterion; cf. [16, Theorem 0.7]. In particular, the
combinatorial type does not depend on the values t1, t2, . . . , tn but just on their
number. The cyclic polytopes are neighborly, and hence their f -vectors attain
McMullen’s upper bound [16, Theorem 8.23]. The higher Stasheff–Tamari orders
are certain poset structures on the set of all triangulations of C(n, d). Their study
was initiated by Kapranov and Voevodsky [10] in the context of category theory;
see also [6,12,14]. Here we address the problem raised in [10, Sect. 5.2], which
asks for determining the number of triangulations of C(n, d). We report on new
computational results, obtained via the new software MPTOPCOM [9]. This verifies
and extends previous results of Rambau and Reiner [14, Table 1], which were
obtained with TOPCOM [13]. The general question remains wide open. Notice that
the planar case d = 2 gives the Catalan numbers.

Triangulations of polytopes and of finite point configurations are the subject
of the monograph [5] by De Loera, Rambau and Santos. Cyclic polytopes are
discussed in [5, Sect. 6.1]. For a combinatorial encoding of triangulations of cyclic
polytopes see [11,15]. We are indebted to Jörg Rambau and Francisco Santos for
suggesting to apply MPTOPCOM to cyclic polytopes and for many useful comments
on an earlier version of this text.
c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 264–271, 2018.
https://doi.org/10.1007/978-3-319-96418-8_31
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2 The First Higher Stasheff–Tamari Order

Let P ⊂ R
d be a finite point configuration. A circuit of P is a minimally affinely

dependent subconfiguration. A triangulation of P is a subdivision of the convex
hull conv(P ) whose vertices form a subset of the points in P . Two triangulations
of P differ by a flip if they agree outside a circuit. Here we are interested in the
triangulations of the point configuration given by the vertices of C(n, d) and their
flips.

There is a canonical projection of the (d+1)-dimensional simplex C(d+2, d+
1) onto C(d + 2, d) by forgetting the last coordinate. There are precisely two
triangulations of C(d + 2, d), and these correspond to projecting the lower and
the upper hull of C(d + 2, d + 1). Consequently, we call them the lower and
the upper triangulation of C(d + 2, d), respectively. From the construction (1) it
is immediate that each circuit of C(n, d) looks like C(d + 2, d). Combined with
the observation on the two triangulations of C(d + 2, d), this has far reaching
consequences for the structure of the triangulations of C(n, d) for arbitrary n > d.

Let Δ and Δ′ be two triangulations of C(n, d) which differ by a flip. Then
there is subset C of the vertices of cardinality d+2 such that Δ and Δ′ restricted
to C look like the upper and the lower triangulations of C(d + 2, d). If Δ is the
lower and Δ′ is the upper triangulation, then we call the flip [Δ � Δ′] from Δ
to Δ′ an up-flip. Conversely, the reverse flip [Δ′ � Δ] is a down-flip. In this case
we write

Δ ≤1 Δ′. (2)

The partial ordering on the set of all triangulations of C(n, d) which is obtained as
the transitive and reflexive closure of the relation (2) is the first higher Stasheff-
Tamari order, denoted as HST 1(n, d); cf. [5, Definition 6.1.18] and [12]. Figure 3
below shows HST 1(6, 2) as an example.

On the same set of triangulations of C(n, d) there is a second natural partial
ordering, the second higher Stasheff-Tamari order, HST 2(n, d); cf. [5, Definition
6.1.16]. It is known that HST 1(n, d) is a weaker partial order than HST 2(n, d).
Moreover, these two orders coincide for d ≤ 3 and n − d ∈ {1, 2, 3}; cf. [14]. In
general, it is open whether or not they agree.

3 GKZ-Vectors

For a triangulation Δ of an affine spanning point configuration P ⊂ R
d the

GKZ-vector is
gkzΔ =

(
gkzΔ(p) | p ∈ P

)
,

where gkzΔ(p) is the sum of the normalized volumes of those simplices in Δ
which contain p as a vertex. The normalized volume is the Euclidean volume
multiplied by d!.
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1 2 3 4
123, 134
(8,2,8,6)

1 2 3 4
124, 234
(6,8,2,8)

Fig. 1. Lower (left) and upper (right) triangulations of C(4, 2) with their GKZ-vectors.
In the lower triangulation the gaps are 4 and 2, i.e., even; whereas in the upper trian-
gulation the gaps are 3 and 1. Here d = 2 is even.
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1234, 1245, 2345
(84,96,24,96,84)
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1
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x
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z

1235, 1345
(96,48,96,48,96)

Fig. 2. Lower (left) and upper (right) triangulations of C(5, 3) with their GKZ-vectors.
In the lower triangulation the gaps are 4 and 2, i.e., even; whereas in the upper trian-
gulation the gaps are 5, 3 and 1. Here d = 3 is odd.
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In order to determine the GKZ-vectors of triangulations of cyclic polytopes,
we need to choose coordinates. To keep it simple we can take the lattice points
μd(1), μd(2), . . . , μd(n) as the vertices of C(n, d). The normalized volume of any
d-simplex spanned by μd(i1), μd(i2), . . . , μd(id+1) with i1 < i2 < · · · < id+1, is
the Vandermonde determinant

det

⎛

⎜
⎜
⎜
⎝

1 i1 · · · id1
1 i2 · · · id2
...

...
. . .

...
1 id+1 · · · idd+1

⎞

⎟
⎟
⎟
⎠

=
∏

1≤k<�≤d+1

(i� − ik). (3)

In particular, these values do not change when we replace the standard parame-
ters 1, 2, . . . , n for the moment curve by any other set of n consecutive integers;
cf. Fig. 1, where we chose the parameters −1, 0, 1 and 2, while we keep the labels
1, 2, 3, 4. We fix the natural ordering of the vertices on the moment curve in
order to identify GKZ-vectors of triangulations of C(n, d) with vectors in R

n.
The following basic observation is crucial.

Proposition 1. Let Δ and Δ′ be two triangulations of C(n, d) related by a flip
[Δ � Δ′]. Then we have

Δ ≤1 Δ′ ⇐⇒
{

gkzΔ >lex gkzΔ′ if d even,
gkzΔ <lex gkzΔ′ if d odd.

Proof. Since each circuit looks like C(d + 2, d) it suffices to consider the case
n = d + 2. We exploit the relationship of the triangulations of C(d + 2, d) with
the upper and lower hull of C(d + 2, d + 1) previously explained.

The Oriented Gale’s Evenness Criterion from [5, Corollary 6.1.9] describes
the upper and lower facets of C(d+2, d+1). Let F ⊆ C(d+2, d+1) be a facet,
then F can be written as a subset of [d+2], the set of indices of vertices in F . The
gaps of F are the elements of [n]\F . A gap i of F is even if the number of elements
in F that are larger than i is even. It is called odd otherwise. Correspondingly, a
facet is called odd/even if all its gaps are odd/even. The odd facets correspond
to the upper triangulation of C(d + 2, d) and the even facets give rise to the
lower triangulation of C(d + 2, d).

Assume that 1 is a gap of F . Since every facet of C(d+2, d+1) is a simplex,
F must be {2, 3, . . . , d + 2} and 1 is the only gap of F . Hence, if d is odd, then
F is even. Conversely, if d is even, then F must be odd. We conclude that, if d
is odd, then all odd facets contain 1. However, if d is even, then only the even
facets contain 1.

Assume now that d is even. The odd case is similar.
Let Δ and Δ′ be the lower and upper triangulations of C(d + 2, d), i.e.

Δ ≤1 Δ′. Then Δ contains all the even facets of C(d + 2, d + 1). But any even
facet contains 1, thus the first entry of gkzΔ is the entire normalized volume
of C(d + 2, d). The facet {2, 3, . . . , d + 2} is odd, and hence it belongs to Δ′.
Since it does not contain 1, we infer that gkzΔ(1) > gkzΔ′(1). Hence we obtain
gkzΔ >lex gkzΔ′ .

This argument can be reversed, and this completes the proof. ��
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123, 134, 145, 156
(40, 2, 8, 18, 32, 20)

123, 134, 456, 146
(38, 2, 8, 38, 2, 32)

123, 456, 346, 136
(32, 2, 38, 8, 2, 38)

456, 346, 236, 126
(20, 32, 18, 8, 2, 40)

123, 156, 345, 135
(38, 2, 20, 2, 38, 20)

123, 345, 136, 356
(32, 2, 40, 2, 8, 36)

345, 356, 236, 126
(20, 32, 20, 2, 8, 38)

156, 345, 125, 235
(32, 18, 8, 2, 40, 20)

345, 126, 235, 256
(20, 38, 8, 2, 20, 32)

145, 156, 234, 124
(38, 8, 2, 20, 32, 20)

156, 234, 245, 125
(32, 20, 2, 8, 38, 20)

234, 126, 245, 256
(20, 40, 2, 8, 18, 32)

234, 124, 456, 146
(36, 8, 2, 40, 2, 32)

234, 456, 126, 246
(20, 38, 2, 20, 2, 38)

Fig. 3. First higher Stasheff-Tamari order HST1(6, 2) with reverse search tree marked.
The lowest triangulation has the lexicographically largest GKZ-vector.

Figures 1 and 2 depict the situation considered in the proof above for (n, d) =
(4, 2) and (n, d) = (5, 3), respectively. The interest in Proposition 1 comes from
the following.
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In [8] Imai et al. described an algorithm for computing all (regular) trian-
gulations of a given point configurations, which is based on the reverse search
enumeration scheme of Avis and Fukuda [2]. That algorithm, which we call
down-flip reverse search, was improved and implemented by Skip Jordan with
the authors of this extended abstract [9]. The basic idea is to orient each flip
according to lexicographic ordering of the GKZ-vectors. Then down-flip reverse
search produces a directed spanning tree of those triangulations which can be
obtained from some seed triangulation by monotone flipping; cf. [5, Sect. 5.3.2].
For the cyclic polytopes we arrive at two choices for orienting the flips, one
by GKZ-vectors, one according to the first higher Stasheff–Tamari order. Now
Proposition 1 says that these two choices fortunately agree.

Corollary 1. Down-flip reverse search computes a directed spanning tree of the
first Stasheff-Tamari poset HST 1(n, d), rooted at the triangulation with the lexi-
cographically largest GKZ-vector. For d even, the root is the lowest triangulation
of C(n, d), whereas, for d odd, the root is the highest triangulation. In particular,
each triangulation of a cyclic polytope can be obtained by monotone flipping from
the respective roots.

The first higher Stasheff–Tamari order HST 1(6, 2) with GKZ-vectors is
shown in Fig. 3.

4 Computations with MPTOPCOM

The open source software MPTOPCOM is designed for computing triangulations in
a massively parallel setup. Its algorithm is the down-flip reverse search method
of Imai et al. [8] with several improvements as described in [9]. As its key feature
reverse search is output sensitive, and this makes it attractive for extremely large
enumeration problems. Our parallelization, based on the MPI protocol, employs
budgeting for load balancing; cf. [1,3]. In this way MPTOPCOM can enumerate the
(regular) triangulations of much larger point sets than other software before;
extensive experiments are described in [9, Sect. 7]. MPTOPCOM uses linear algebra
and basic data types from polymake [7], triangulations and flips from TOPCOM
[13] and the budgeted parallel reverse search from mts [3].

The most recent census of triangulations of cyclic polytopes that we are
aware of is by Rambau and Reiner [14, Table 1]; we use their notation and
introduce the parameter c := n − d. Note that there are two rather obvious
typos in the rows c ∈ {10, 11} of the column d = 1 in [14, Table 1]. Apart from
that we can confirm their results; cf. Table 1. Our new results are the values for
(c, d) ∈ {(12, 3), (8, 5), (6, 8), (5, 14)}.

Our experiments used MPTOPCOM, version 1.0, on a cluster with four nodes,
each of which comes with 2 x 8-Core Xeon E5-2630v3 (2.4 GHz) and 64 GB per
node. We ran MPTOPCOM with 40 threads. The operating system is SMP Linux
4.4.121. For instance, the computation for c = 5 and d = 14, i.e., n = 19 took
71191 seconds, i.e., less than 20 h.

Azaola and Santos [4, p. 30] implicitly raised the following question.
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Table 1. The number of triangulations of C(c + d, d). The column d = 2 contains the
Catalan numbers, while the row c = 4 is known by results of Azaola and Santos [4].
The rows c ∈ {1, 2, 3} are trivial and only listed for completeness. The row c = 5 and
the column d = 2 are marked for their relevance to Question 1. Our new results are
written in blue; the rest of the table agrees with [14, Table 1].

c \ d: 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 5 6 7 8 9 10 11
4 14 25 40 67 102 165 244
5 42 138 357 1 233 3 278 12 589 35 789
6 132 972 4 824 51 676 340 560 6 429 428 68 007 706
7 429 8 477 96 426 5 049 932 132 943 239
8 1 430 89 405 2 800 212 1 171 488 063
9 4 862 1 119 280 116 447 760
10 16 796 16 384 508
11 58 786 276 961 252
12 208 012 5 349 351 298

c \ d: 9 10 11 12 13 14

1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 12 13 14 15 16 17
4 387 562 881 1 264 1 967 2 798
5 159 613 499 900 2 677 865 9 421 400 62 226 044 247 567 074

Question 1. Is there an absolute constant β > 1 such that, for all n ≥ 7:

1
β

≤ #{triangulations of C(n, n − 5)}
#{triangulations of C(n, 2)} ≤ β? (4)

This relates the row c = 5 with the column d = 2; these are marked in Table 1.
From MPTOPCOM’s results we can derive the series (4) for n ∈ {7, 8, . . . , 19}:

1, 1.045, 0.832, 0.862, 0.674, 0.750, 0.609,
0.767, 0.673, 1.001, 0.972, 1.760, 1.910.

Note that the sequence in [4, p. 30] lists the reciprocals of the above; moreover,
that sequence contains two more (trivial) values for n ∈ {5, 6}, which we omit.
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29, Birkhäuser, Basel, pp. 43–73 (2000). MRMR1785292 (2001f:52033)

8. Imai, H., Masada, T., Takeuchi, F., Imai, K.: Enumerating triangulations in general
dimensions. Int. J. Comput. Geom. Appl. 12(6), 455–480 (2002). MR1945594

9. Jordan, C., Joswig, M., Kastner, L.: Parallel enumeration of triangulations.
Preprint arXiv:1709.04746 (2017)

10. Kapranov, M.M., Voevodsky, V.A.: Combinatorial-geometric aspects of polycate-
gory theory: pasting schemes and higher Bruhat orders (list of results). Cahiers
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Abstract. Principal component analysis is one of the most popular unsu-
pervised learning methods for reducing the dimension of a given data set in
a high-dimensional Euclidean space. However, computing principal com-
ponents on a space of phylogenetic trees with fixed labels of leaves is a chal-
lenging task since a space of phylogenetic tree is not Euclidean. In 2017,
Yoshida et al. defined a notion of tropical principal component analysis
and they have applied it to a space of phylogenetic trees. The challenge,
however, they encountered was a computational times.

In this paper we estimate tropical principal components in a space
of phylogenetic trees using the Metropolis-Hasting algorithm. We have
implemented an R software package to efficiently estimate tropical prin-
cipal components and then we have applied it to African coelacanth
genomes data set.

Keywords: Phylogenetic trees · Polytopes · Tropical geometry

1 Introduction

Principal component analysis (PCA) is one of the most popular and robust unsu-
pervised learning methods for reducing the dimension of a high-dimensional data
set in Euclidean spaces. PCA is a statistical method that takes data points in
a high dimensional Euclidean space into a lower dimensional plane which mini-
mizes the sum of squares between each point in the data set and their orthogonal
projection onto the plane. It has been used for clustering high dimensional data
points for statistical analysis and it is one of the simplest and most robust ways
of doing such dimensionality reduction in a Euclidean vector space. However,
it assumes the properties of a Euclidean vector space while the space of rooted
equidistant trees on n leaves, a polyhedral complex of dimension n − 2, realized
as the set of all ultrametrics is not Euclidean.

This is a U.S. government work and its text is not subject to copyright protection
in the United States; however, its text may be subject to foreign copyright protection 2018
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One classical way to conduct a statistical analysis on phylogenetic trees with
n leaves is to map each tree to a vector in R(n2), for example using the dissimilar-
ity map. Given any tree T of n leaves with branch length information, one may
produce a corresponding distance matrix, D(T ). The distance matrix is an n×n
symmetric matrix of non-negative real numbers, with elements corresponding to
dij(T ), the sum of the branch lengths between pairs of leaves in the tree. To
calculate dij(T ), one simply determines which edges of the tree form the path
from a leaf i to a leaf j, and then sums the lengths of these branches. Since
D(T ) is symmetric and has zeros on the diagonal, the upper-triangular portion
of the matrix contains all of the unique information found in the matrix. We can
vectorize T by enumerating this unique portion of the distance matrix,

vd(T ) := (d12(T ), d13(T ), . . . , d23(T ), . . . , dn−1n(T ))

which is called the dissimilarity map of a tree T and is a vector in R(n2). If it is
clear we simply abbreviate D(T ) with D.

Let D be a distance matrix computed from a phylogenetic tree, that is, a
nonnegative symmetric n×n-matrix D = (dij) with zero entries on the diagonal
such that all triangle inequalities are satisfied:

dik ≤ dij + djk for all i, j, k in [n] := {1, 2, . . . , n}.

If a distance matrix D is computed from an equidistant tree, it is well-known
that elements in D satisfy the following strengthening of the triangle inequalities:

dik ≤ max(dij , djk) for all i, j, k ∈ [n]. (1)

If (1) holds then the metric D is called an ultrametric. The set of all ultrametrics
contains the ray R≥01 = (a, a, . . . , a), where s ∈ R, spanned by the metric
1 = (1, 1, . . . , 1), which is defined by dij = 1 for 1 ≤ i < j ≤ n. The image of the
set of ultrametrics in the quotient space R(n2)/R1 is denoted Un and called the
space of ultrametrics. Therefore, we can consider the space of ultrametrics as a
treespace for all possible equidistant phylogenetic trees with n leaves.

However, the space of phylogenetic trees with n leaves is not an Euclidean
space. In fact, it is a union of lower dimensional polyhedral cones in R(n2). There-
fore we cannot directly apply classical PCA to a set of gene trees. Nye showed an
algorithm in [11] to compute the first order principal component over the space
of phylogenetic trees of n leaves using the unique shortest connecting paths, or
geodesics, defined by the CAT(0)-metric introduced by Billera-Holmes-Vogtman
(BHV) over the tree space of phylogenetic trees with fixed labeled leaves [3]. Nye
in [11] used a convex hull of two points, i.e., the geodesic, on the tree space as
the first order PCA. However, we could not generalize this idea for computing
higher order principal components with the BHV metric because, in 2017, Lin
et al. showed that the convex hull of three points with the BHV metric over the
tree space has an arbitrary dimension [9]. On the other hand the tropical metric
in tree space defined by the tropical convexity in the max-plus algebra is well
studied [10].
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Now we turn to tropical mathematics [13]. This furnishes a metric and a
convexity structure on the tree space which is radically different from BHV. Let
e =

(
n
2

)
. Tropical geometry gives an alternative geometric structure on Un, via

the graphic matroid of the complete graph [10, Example 4.2.14], i.e., Un can
be written as a tropical linear space under the max-plus algebra. We mostly
use the max-plus algebra, so our convention is opposite to that of [10,12]. The
connection between phylogenetic trees and tropical lines, identifying tree space
with a tropical Grassmannian, has been explained in many sources, including [10,
Sect. 4.3], [12, Sect. 3.5], and [13, Fact 6]. However, the restriction to ultrametrics
[2, Sect. 4] offers a fresh perspective.

In 2017, Yoshida et al. defined a notion of tropical principal components [14]:
Tropical convex hull, i.e., tropical polytope, which minimizes the sum of squares
between each point in the data set and their orthogonal projection onto the trop-
ical polytope with the tropical metric dtr. They have introduced a mathematical
foundation on tropical principal components and they have applied it to comput-
ing tropical principal components in Un. However, it is not efficient to compute
tropical principal components using their implementations even though the time
complexity of computing tropical principal components is still unknown.

In this paper we have developed a method to estimate tropical principal
components via Metropolis-Hasting algorithm and then we have applied it to
coelacanths genome and transcriptome data from Liang et al. [8]. This paper is
organized as follows: In Sect. 2 we discuss the basics of tropical geometry and
review the interpretation of the space of equidistant trees as a tropical linear
space. Then we review the tropical principal components introduced by Yoshida
et al. In Sect. 3 we describe our algorithm and then in Sect. 4 we apply our
method to the coelacanths genome data set.

2 Tropical Principal Components

In this section we review some basics of tropical geometry and then we review
the tropical principal components developed by [14]. See [10] or [6] for more
detail.

In the tropical semiring (R ∪ {−∞},⊕,�), the basic arithmetic operations
of addition and multiplication are redefined as follows:

a ⊕ b := max{a, b}, a � b := a + b where a, b ∈ R.

The element −∞ is the identity element for addition and 0 is the identity element
for multiplication: for all a ∈ R ∪ {−∞}, we have a ⊕ −∞ = a and a � 0 = a.

With given scalars a, b ∈ R ∪ {∞} and vectors v = (v1, . . . , ve), w =
(w1, . . . , we) ∈ (R∪∞)e, we can define tropical scalar multiplication and tropical
vector addition as

a � v = (a + v1, a + v2, . . . , a + ve)

a � v ⊕ b � w = (max{a + v1, b + w1}, . . . ,max{a + ve, b + we}).
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In tropical geometry we often work in the tropical projective torus R
e/R1,

where 1 denotes the all-ones vector. Given two points v, w in the tropical pro-
jective torus, their tropical distance dtr(v, w) is defined as follows:

dtr(v, w) = max
{ |vi − wi − vj + wj | : 1 ≤ i < j ≤ e

}
, (2)

where v = (v1, . . . , ve) and w = (w1, . . . , we). This metric is also known as the
generalized Hilbert projective metric [1, Sect. 2.2], [4, Sect. 3.3].

A subset S ⊂ R
e is said tropically convex if it contains the point a�x⊕ b�y

for all x, y ∈ S and all a, b ∈ R. The tropical convex hull or tropical polytope
tconv(V ) of a given subset V ⊂ R

e is the smallest tropically convex subset
containing V ⊂ R

e. The tropical convex hull of V can be also written as the set
of all tropical linear combinations

tconv(V ) = {a1�v1⊕a2�v2⊕· · ·⊕ar �vr : v1, . . . , vr ∈ V and a1, . . . , ar ∈ R}.

Any tropically convex subset S of Re is closed under tropical scalar multiplica-
tion, R � S ⊆ S.

Let P be a tropical polytope P = tconv(D(1),D(2), . . . , D(s)), where the D(i)

are points in R
e/R1. There is a projection map πP sending any point D to a

closest point in the tropical polytope P as

πP(D) = λ1 � D(1) ⊕ λ2 � D(2) ⊕ · · · ⊕ λs � D(s), (3)

where λk = min(D−D(k)) for k = 1, . . . , s. This formula appears as [10, Formula
5.2.3].

Now we review how tropical geometry connects to the space of phylogenetic
trees. It is well known that all ultrametrics are tree metrics. In fact, all ultramet-
rics are derived from equidistant trees, where all leaves have the same distance to
some distinguished root vertex. Furthermore, the tree metric of an equidistant
tree is an ultrametric; hence ultrametrics and equidistant trees convey equivalent
information.

Let Ln denote the subspace of R
e defined by the linear equations xij −

xik + xjk = 0 for 1 ≤ i < j < k ≤ n. The tropicalization Trop(Ln) ⊆ R
e/R1

is the tropical linear space consisting of points (v12, v13, . . . , vn−1,n) such that
max(vij , vik, vjk) is obtained at least twice for all triples i, j, k ∈ [n].

Theorem 1. [14] The image of Un in the tropical projective torus Re/R1 coin-
cides with Trop(Ln).

A tropical principal component analysis defined in [14] is the tropical con-
vex hull of s points in Un minimizing the sum of distances between each point
in the sample to its projection onto the convex hull. While we can generalize
this to arbitrary s, here we focus on the second order principal components for
simplification. The second order tropical principal components can be written
as follows:
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Problem 1. We seek a solution for the following optimization problem:

min
D(1),D(2),D(3)∈Un

n∑

i=1

dtr(di, d′
i)

where

d′
i = λi

1 � D(1) ⊕ λi
2 � D(2) ⊕ λi

3 � D(3), where λi
k = min(di − D(k)), (4)

and
dtr(di, d′

i) = max{|di(k) − d′
i(k) − di(l) + d′

i(l)| : 1 ≤ k < l ≤ e} (5)

with
di = (di(1), . . . , di(e)) and d′

i = (d′
i(1), . . . , d′

i(e)). (6)

Even though we do not know the time complexity to solve the optimization
problem in Problem 1, the implementation by [14] was not efficient in general.
Therefore in this paper we have applied the Metropolis-Hasting algorithm to
approximate the optimal solution for Problem 1.

3 Algorithm

We consider two different data sets: Apicomplexa data set and Lungfish data
set. After reading these trees into R, we need to root each tree first and specify
the outgroup. During the rooting process, some of the trees cannot be rooted
with a specified outgroup. We remove these trees from the original data set and
then do the sampling.

f is the function for calculating the sum of tropical distances; g is the function
for calculating projected points.

Algorithm 2. (Markov Chain Monte Carlo sampling)

– Input: Initial distance vectors D of trees T , the number of principal compo-
nents P , the number of trees N .

– Output: The combination of trees comb, the projected points projPoints and
the sum of tropical distances tropDist.

– Algorithm:
1. Let pcs = P random trees selected from T , S = Z \ pcs, tropDist =

1000000;
2. For i = 1, ..., N

(a) a = Select one tree randomly from pcs;
(b) b = Select one tree randomly from S;
(c) ˆpcs = pcs \ a ∩ b;
(d) r = f(pcs)/f( ˆpcs);
(e) Randomly select a number u from uniform(0,1) distribution;

i. If u ≤ min(r, 1), pcs = ˆpcs;
A. If f(pcs) < tropDist projPoints = g( ˆpcs), tropDist =
f( ˆpcs), comb = ˆpcs

(f) S = S \ b;
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We implement this method in R. All the code for this article can be found at
https://github.com/QiwenKang/tropicalMCMC.git.

Before implementing our method, we should extract the distance matrix from
each phylogenetic tree and transfer it to a vector format, distVec all. This
could be done using disMat function. Outgroups should be stated as well. nr
is the number of repetition; pcs gives how many principle components would
be considered; to is tip labels of the raw trees and ordered by names; N is the
number of trees in whole data set.

distVec_all <- distMat(trees_ori, tipOrder = to,
outgp = c("Leucoraja","Scyliorhin","Callorhinc"))

tropMCMC(distVec_all, N, pcs, nr = 100)

In lungfish data set, 1156 trees are included in analysis. It takes around
6 mins to finish a round. The running time could be reduced if we consider
parallel computing. All the code is running on a computer with processor Intel
Core i7-6700 3.40 GHz × 8, memory 15.6 GB and OS type Ubuntu 18.04 64-bit.
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Fig. 1. Right: Projected topology frequencies from the Apicomplexa dataset: paren-
thesized numbers give the frequencies of each topology. Left: Projected points in the
tropical polytope PCA.

https://github.com/QiwenKang/tropicalMCMC.git


278 Q. Kang and R. Yoshida

4 Application to Empirical Datasets

4.1 Apicomplexa Data

The phylum Apicomplexa contains many important protozoan pathogens [7],
including the mosquito-transmitted Plasmodium spp., the causative agents of
malaria, T. gondii, which is one of the most prevalent zoonotic pathogens world-
wide, and the water-born pathogen Cryptosporidium spp. Several members of the
Apicomplexa also cause significant morbidity and mortality in both wildlife and
domestic animals. These include Theileria spp. and Babesia spp., which are tick-
borne haemoprotozoan pathogens that infect and cause disease in ungulates, and
several species of Eimeria, which are enteric parasites that are particularly detri-
mental to the poultry industry. Due to their medical and veterinary importance,
whole genome sequencing projects have been completed for multiple prominent
members of the Apicomplexa. The second order tropical principal components
computed from the Apicomplexa data set is shown in Fig. 1.
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Fig. 2. Right: Projected topology frequencies from the Coelacanths genome dataset:
parenthesized numbers give the frequencies of each topology. Left: Projected points in
the tropical polytope PCA.
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4.2 Coelacanths Genome and Transcriptome Data

We have applied the clustering methods to the data set comprising 1,290 nuclear
genes encoding 690,838 amino acid residues obtained from genome and tran-
scriptome data by [8]. Over the last decades, the phylogenetic relations between
coelacanths, lungfishes, and tetrapods have been controversial despite there has
been much work on the data set [5]. The dataset consisted of 1290 gene align-
ments for 10 species: lungfish, Protopterus annectens, and coelacanth, Latimeria
chalumnae; three tetrapods, frog, Xenopus tropicalis, chicken, Gallus gallus, and
human, Homo sapiens; two ray-finned fish, Danio rerio and Takifugu rubripes;
and three cartilaginous fish included as an out-group, Scyliorhinus canicula,
Leucoraja erinacea and Callorhinchus milii. The second order tropical principal
components computed from the Coelacanths genome and transcriptome data set
is shown in Fig. 2.
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Abstract. In any classroom, different groups of students may have
unequal voices. This “lack of democracy” may be particularly problem-
atic in STEM fields. To promote a more inclusive classroom, we devel-
oped and tested an online, real-time communication tool: the Mathe-
matics Classroom Collaborator (MC2). MC2 makes the entry of math-
ematics easy and intuitive, it includes an option for anonymity, and it
works on a variety of platforms, including smart phones, tablets, and
notebook computers. In this paper, we share our experience with employ-
ing MC2 in a statistics service course and an introductory probability
course. We describe how this tool creates new communication models for
the technologically-enhanced class — models that may help overcome
social barriers to create a more inclusive environment, and that may
lead to further democratization of learning, including increased partic-
ipation by women and/or English-language learners. The results of an
experiment to measure the effectiveness of MC2 compared to Microsoft
Word Equation for novice users are also presented.

Keywords: Technology-enhanced classes
Mathematics Classroom Collaborator · Democracy in the classroom

1 Introduction

Students’ interactions with instructors and classmates have long been a corner-
stone of learning in any field of study. For instructors, one challenge, therefore,
is to create a welcoming and inclusive classroom atmosphere by building rapport
with students, and to encourage them to take full advantage of office hours. In
STEM disciplines, however, a number of studies, including Eddy et al. (2015)
and Krupnick (1985), have suggested that certain groups — namely, female stu-
dents and English-language learners — may not have an equal voice, both in
in-class and out-of-class engagements, relative to other groups. To overcome this
barrier and build more “democratic” classrooms, we developed a novel online
technology: the Mathematics Classroom Collaborator (MC2). In this paper, we
will first describe MC2’s full functionality for students and instructors. We will
c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 280–288, 2018.
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then share our experience of utilizing this tool in an introductory course in Prob-
ability and a second course in Statistics. Finally, we will present, and discuss the
implications of, the results of a small-scale experiment designed to measure the
effectiveness of MC2, relative to Microsoft Word 2016 Equation.

2 Functionality

MC2 (http://mc2.trentu.ca) (Pollanen et al. (2017)) is a Web-based application
that works on a range of different hardware platforms — tablets, smartphones,
and laptop computers — running on a variety of different operating systems,
including Windows, MacOS, iOS, and Android. No installation or “sign-up”
stages are needed for students. Once an instructor creates a classroom, students
join the room with the name of the classroom and any self-selected anonymous
username (Fig. 1).

(a) MC2 Chat Screen (b) MC2 Mathematical Ed-
itor

Fig. 1. Left panel: MC2 Chat Screen (1) Text input field (2) Insert TEX into text
field (3) Input image from camera or gallery (4) Launch the mathematical expression
editor. (5) Dialogue Pane: clicking on an image or mathematical expression launches
the expression editor for annotating or modification (6) Chat Option: tab to expand the
options of On-line Users button and Logout button. Right Panel: MC2 Mathematical
Editor – non-TEX users can click on math symbols or Greek letters from the menu and
make a diagrammatic equation that can be either converted to a TEX expression and
sent to a text file, or sent directly to the dialogue pane as an image file.

The User-Side Interface: On its face, MC2 is designed to be like a familiar
texting application, with the addition of mathematical capabilities for both TEX

http://mc2.trentu.ca
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and non-TEX users. TEX users can click the TEX icon and write TEX expressions
with the extended chat window with the collection of commonly used TEX sym-
bols for easy access for smart phone users. Non-TEX users can click the math
icon to access the Math Editor where equations can be input using a diagram-
matic equation editor. The symbols can be selected, moved, and resized based
on the diagram editor UI. The expression is then recognized and converted to
TEX which then be displayed by the messenger. Students can also take a picture
from a smart phone, upload it, to share image of questions in the chat.

The Instructor-Side Interface: Instructors can do the following tasks: create
a classroom; announce (pin) a specific message; delete the message; zoom
in/out the message; assign TAs for the course; access the data of chat history;
upload and edit the images from the built-in library and send it to chat for
sharing with students (Fig. 2).

Fig. 2. Instructor side interface: create classroom, register TAs, access the data of chat
history

3 Application in the Classroom

We introduced MC2 into the classroom, and collected data from two different
courses representing two different student audiences. The two courses were: (1)
an introductory Probability course (STAB52, Fall 2017), consisting of 386 stu-
dents, mostly majoring in Mathematics, Statistics and Computer Science and
(2) a second service course in Statistics (STAB27, Winter 2018), consisting of
80 students, most of whom were majoring in the Social and Life Sciences. We
now turn to a description of how the software was employed in each course, and
of summary results from its use.

MC2 in the Introductory Probability Course
The Introduction to Probability (STAB52) course followed a semi-inverted class-
room format, where students were required to complete in-class worksheets
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immediately following each lecture. The lecture and worksheet portions of the
class were each one hour in length, occurring twice each week over a 12-week
semester. For the worksheets, students could get help from the instructor and
TAs and were allowed to work in groups, but they had to submit individual
answers which were graded for credit. The course had three sections sharing
the same instructor, and we chose one section per week to employ MC2 during
the worksheet activity, excluding the first two weeks, and the last week, of the
semester. During the weeks when MC2 was used in any given section, only the
instructor answered student questions submitted through the tool, while the TAs
provided face-to-face assistance. Students could post questions anonymously, and
their questions and answers were visible to everyone.
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Fig. 3. Boxplots of worksheet marks distribution, grouped by worksheet number and
lecture section.

To investigate the effect of MC2 on student performance, we examined stu-
dents’ worksheet marks (graded out of 20). In total, the tool was used in 15
worksheets, and Fig. 3 presents side-by-side boxplots of the marks distribution
by lecture section, worksheet number, and MC2 usage. Considerable variability
between worksheets and sections is evident, though the overall average was high
(>17/20). During the first two weeks of classes, when MC2 was not used, the
average marks were 18.61, 18.04, and 17.85 for Sects. 1, 2, and 3, respectively.
Figure 3 shows that, during the weeks of MC2 use, average worksheet scores
generally followed the same 1-2-3 ranking. There were, however, some excep-
tions to that rule that reveal mixed results. Most notably, on worksheet 19,
when Sect. 2 was using MC2, that section ranked first in average scores, for a
2-1-3 ranking. On the other hand, when Sect. 1 utilized MC2 on worksheet 17,
the section obtained the lowest average score (i.e., 2-3-1). So, at first glance, we
cannot discern a consistent change in the relative ordering of average marks.

To help us isolate the effect of MC2 on student performance, we ran an
ANCOVA analysis on the data. Clearly, there are other factors besides MC2

that affect worksheet marks. Variation both in the difficulty of topics across
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weeks and in individual student aptitude across sections could impact the marks.
To control for these differences, we used the worksheet number and students’
cumulative grade point averages (CGPA) at the start of the course as nuisance
variables, with worksheet marks as the response variable. We also looked at
the effect of MC2 by section because of differences in the way sections were
formed — Sect. 3, for example, was created only one week before the start of
the semester from wait-listed students. The ANCOVA results are presented in
Table 2, and show that all nuisance variables (LECTURE, WS, CGPA) are highly
significant (p-value � 10−10). The overall effect (across all sections) of MC2

was not statistically significant, but it differs significantly across sections at the
5% level (p-value = 0.01814). In fact, looking at the fitted model parameters
we find that MC2 use in Sect. 3 leads on average to an extra +0.49/20 marks,
relative to its effect in Sect. 1, but its use in Sect. 2 leads to −.29/20 fewer
marks, relative to Sect. 1. These results, although not consistent across the board,
suggest that MC2 has a more pronounced positive effect when used by weaker
students (Table 1).

Table 1. Analysis of Covariance Table: Average worksheet Marks by MC2 use (MC2),
lecture section (LECTURE), worksheet number (WS), student CGPA (CGPA), and
MC2:LECTURE interaction.

Source Df SSE MSE F-value P-value

MC2 1 1 0.69 0.0836 0.77244

LECTURE 2 2048 1023.88 123.9454 <2e−16∗∗∗

WS 14 14512 1036.60 125.4853 <2e−16∗∗∗

CGPA 1 1204 1203.85 145.7318 <2e−16∗∗∗

MC2:LECTURE 2 66 33.15 4.0131 0.01814∗

Residuals 4764 39354 8.26

Signif. codes: 0 ‘∗∗∗’ 0.001 ‘∗∗’ 0.01 ‘∗’ 0.05 ‘.’ 0.1 ‘’ 1

MC2 in Second Course in Statistics
In the Statistics II (STAB27) course, students were from various disciplines and
backgrounds. The class was composed of 49% female and 46% male students,
with 5% undefined. We examined whether MC2 usage depends on the gender or
the status (international/domestic) of students. MC2 was employed in weekly
group work sessions and two sessions of online office hours before the final exam
in the second half of the course.

We created a new dichotomous variable, Y , as follows: Y = 0, if MC2 is not
used; Y = 1, if MC2 is used one or more times. A logistic regression was fitted
to investigate which factors are statistically significant in terms of their impact
on the engagement of students with MC2.

Logit(πi) = β0 + β1(GENDER) + β2(LEG STATUS) + β3(Y EAR OF STUDY )
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.06003 0.78618 0.076 0.9391

GENDER(M) -0.90656 0.51299 -1.767 0.0772.

LEG_STATUS(International) -0.51626 0.57096 -0.904 0.3659

YEAR_OF_STUDY -0.05231 0.25646 -0.204 0.8384

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Controlling for the student’s year of study and the legal status, the gender of
the student was marginally significant factor (p-value < 0.1) in our estimation
of the probability of being engaged in MC2. Roughly 43.6% of female students
used MC2, while the figure was 24.3% for males, based on the Table 2.

Table 2. Two way table with MC2 usage and Gender

Y=0 (No, MC2) Y=1 (Yes, MC2)

Female Male Female Male

22 28 17 9

This partly supports Sankar et al. (2015) who found that, with the online
bulletin board tool Piazza, female STEM students were more likely to use the
anonymity feature than their male counterparts, although female undergraduate
students ask 37% fewer questions than their male peers in computer science.
There is also evidence that anonymity in the classroom boost the engagement
(Jong et al. (2013)).

The instructor conducted two types of extended office hours before the final
exam: face-to-face and online. During three hours of face-to-face office hours,
only 4 students visited the instructor’s office, while during one-hour online office
hour, 26 students logged in the session and 14 students actively participated in
conversations. Since students submit the questions simultaneously during online
office hours, “pinning a message” is a very useful tool for the instructor to
announce the message (it pins it to the top of the chat window) to which the
instructor is responding. We have yet to assess the impact of MC2 on students’
learning in this course. Marginal evidence that it encouraged females students
to engage in the course material through anonymous real-time communication
does, however, suggest that the tool creates a more inclusive environment.

4 Experiment

To measure the efficiency of using the math editor in MC2, relative to Microsoft
Equation (ME), we conducted an experiment involving 14 first-year students
(10 females and 4 males), none of whom had any previous experience in either
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software. We asked each student to enter each of the following 4 expressions into
each of the two software tools:

1. s =
√

1
n−1

∑n
i=1(x − x̄)2 2.

∫ ∞
0

e−ydy 3.
∫

1√
2π

e− x2
2 dx 4.

√ √
x2+2x+2

x

x2+1

A maximum time limit was set to allow students to submit incomplete equa-
tions. Figure 4 shows the completion time differences. Expression entry in MC2

takes longer than ME for each expression. The differences are statistically sig-
nificant.

Fig. 4. Boxplots of completion time differences between MC2 and Word of four equa-
tions, grouped by quality of completion by Word Equation

But students who submitted “poor” quality expressions, and who could
thus be considered the most novice in the use of technology or mathemat-
ics, showed statistically insignificant differences for all 4 expressions, based on
the non-parametric Wilcoxon signed-rank test. These results suggest that, for
more novice users in particular, although its user-interface has room to improve,
MC2’s usability could be comparable to Microsoft Equation (Table 3).

Table 3. Non-parametric test results by four equations of the poor quality group

Equation # Eq. 1 Eq. 2 Eq. 3 Eq. 4

Non-parametric test statistic 9 7 7 6

P-value 0.1975 0.625 0.625 0.875

Potential errors in the entry of the square roots in expressions 1 and 4 in ME
are illustrated by two examples:
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s =
√

1
n−1

∑n
i=1(x − x̄)2 and

√√
x2+2x+2

x

x2+1

These entries show that students had difficulty understanding the nested
concept in the software. A short survey was conducted to capture students’ views
on the usability of the two packages. On a scale of 1–5, the average response for
MC2 was 3 out of 5 for both quality groups, while the average usability score
for ME was 2.75 for the poor quality group and 4.5 for the good quality group.

Students comments about the challenges of ME included: “having to find
certain symbols and having to click on fractions or exponents (having to carefully
manage when I press certain functions to get the equations I want)” and “You
often end up deleting an equation when you’re only trying to highlight it to add
a function/square root on top”. Comments on the challenges of MC2 included:
“Having to be precise on the position of each character”, “at first, I did not know
how to make the equation show up properly when converting, but then I got the
hang of it”, and “It was a little difficult moving things around”.

There were also positive comments about MC2, including: “I like how it is
easy to move the symbols around to fit the equation”, “The program was really
cool. Really awesome how it can read the equations and send them in chat”.

5 Conclusion

In STEM subjects, there appear to be barriers to communication that prevent
certain groups, including women, from having an equal voice inside, and per-
haps outside, the classroom. This is particularly apparent in the quantitative
sciences, where communication may be suppressed by math or statistics anxiety.
These barriers may then prevent women from achieving their full potential. One
possibility for increasing communication is through the use of online technology
and the anonymity that technology can provide. Mathematics communication,
however, requires specialized user interfaces for input. To that end, we have
developed the Web-based application, MC2, that allows for easier entry and
communication of mathematical expressions on all devices.

We introduced the use of MC2 in a large first-year introductory probability
course and a second course in Statistics. We found a statistically significant
effect of MC2 on average work sheet difference by sections, after controlling for
other nuisance factors. We further found that females engaged at higher rates
than males in MC2 activities in the Statistics course. A small-scale experiment
suggests that the functionality of the Math Editor in MC2 is comparable to that
in Microsoft Equation.

Research into the use of anonymity in mathematics and statistics courses is
still in its infancy, and further research into how students write and perceive
mathematical expressions is also required. The results presented here, however,
suggest that the development of additional technologies to enable easy, anony-
mous communication and interaction in quantitative subjects is warranted.
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Abstract. In most fields, computational models and data analysis have
become a significant part of how research is performed, in addition to
the more traditional theory and experiment. Mathematics is no excep-
tion to this trend. While the system of publication and credit for theory
and experiment (journals and books, often monographs) has developed
and has become an expected part of the culture, how research is shared
and how candidates for hiring, promotion are evaluated, software (and
data) do not have the same history. A group working as part of the
FORCE11 community developed a set of principles for software citation
that fit software into the journal citation system, allow software to be
published and then cited, and there are now over 50,000 DOIs that have
been issued for software. However, some challenges remain, including:
promoting the idea of software citation to developers and users; collabo-
rating with publishers to ensure that systems collect and retain required
metadata; ensuring that the rest of the scholarly infrastructure, particu-
larly indexing sites, include software; working with communities so that
software efforts “count”; and understanding how best to cite software
that has not been published.

Keywords: Software citation · Credit · Software identifiers
Software metadata · Software repositories · Bibliometrics

1 Introduction

In most fields, computational models and data analysis have become a significant
part of how research is performed, in addition to the more traditional theory and
experiment. Evidence of the increased role and importance of software in today’s
research can be found in surveys and in papers, and while neither of these are
specific to mathematics, it is likely no exception.

Two recent surveys, one of UK academics at Russell Group Universities [9,
10], and one of members of (US) National Postdoctoral Research Association [14,
15] asked researchers asked how important software is to them, and found that
67%/63% (UK/US respectively) of respondents said, “my research would not
be possible without software.” 21%/31% said, “my research would be possible
c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 289–296, 2018.
https://doi.org/10.1007/978-3-319-96418-8_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96418-8_34&domain=pdf
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but harder,” while just 10%/6% said, “it would make no difference.” A similar
survey of mathematicians would be welcome.

One of the authors of this paper scanned six months of Science in mid-
2013, and found that about half the papers were software-intensive projects,
and most of the other papers also relied on some software. A formal study of
90 randomly selected papers in the biology literature in 2015 found that 80%
mentioned software, and that those articles mentioned an average of 4.85 software
packages [11]. A more recent study of Nature in Jan–Mar 2017 found software
mentioned in 32 of 40 research articles, with an average of 6.5 software packages
mentioned per article [16]. A similar study could be done of the mathematics
literature. And while these studies have been manually performed by humans,
natural language processing and machine learning could be used to expand their
reach.

The system of publication and credit for theory and experiment (journals
and books, often monographs) has developed and has become an expected part
of the culture, how research is shared and how candidates for hiring, promotion
are evaluated; software (and data) do not have the same history. In order to
cite software, we could overload the current citation system to add software or
alternatively, we could develop a new citation system that works for all kinds of
products. As developing a new citation system would be very difficult, current
efforts related to software citation have focused on the overloading approach.

2 Software Citation Principles

FORCE111 is a community of scholars, librarians, archivists, publishers and
research funders that has arisen organically to help facilitate the change toward
improved knowledge creation and sharing. In 2015 and 2016, a FORCE11 Soft-
ware Citation working group developed a set of software citation principles [19].
The group grew to about 60 members, including researchers, developers, pub-
lishers, repository developer and maintainers, and librarians.

The group worked on GitHub2 and on the FORCE11 web site3. It reviewed
existing community practices and developed a set of use cases for software cita-
tion, and then drafted a software citation principles document. To do this, the
group started with previously published data citation principles [5], updated
them based on software use cases and related work, and further updated them
based on working group discussions. This draft was then subjected to commu-
nity feedback and review through a variety of channels, including a workshop
at FORCE2016 in April 2016. In late 2016, the paper and its reviews were pub-
lished [19]. The paper includes a set of six principles (general statements), use
cases (where the principles should apply), and discussion (suggestions on how to
apply the principles).

1 https://www.force11.org.
2 https://github.com/force11/force11-scwg.
3 https://www.force11.org/group/software-citation-working-group.

https://www.force11.org
https://github.com/force11/force11-scwg
https://www.force11.org/group/software-citation-working-group
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The software citation principles, quoting from [19], are:

1. Importance. Software should be considered a legitimate and citable product
of research. Software citations should be accorded the same importance in the
scholarly record as citations of other research products, such as publications
and data; they should be included in the metadata of the citing work, for
example in the reference list of a journal article, and should not be omitted
or separated. Software should be cited on the same basis as any other research
product such as a paper or a book, that is, authors should cite the appropriate
set of software products just as they cite the appropriate set of papers.

2. Credit and Attribution. Software citations should facilitate giving schol-
arly credit and normative, legal attribution to all contributors to the software,
recognizing that a single style or mechanism of attribution may not be appli-
cable to all software.

3. Unique Identification. A software citation should include a method for
identification that is machine actionable, globally unique, interoperable, and
recognized by at least a community of the corresponding domain experts, and
preferably by general public researchers.

4. Persistence. Unique identifiers and metadata describing the software and
its disposition should persist – even beyond the lifespan of the software they
describe.

5. Accessibility. Software citations should facilitate access to the software itself
and to its associated metadata, documentation, data, and other materials nec-
essary for both humans and machines to make informed use of the referenced
software.

6. Specificity. Software citations should facilitate identification of, and access
to, the specific version of software that was used. Software identification
should be as specific as necessary, such as using version numbers, revision
numbers, or variants such as platforms.

There are now over 50,000 DOIs that have been issued for software, and more
than 60% of them have been issued since the FORCE11 group published the first
preprint of the principles paper [20].

3 Practices and Examples

In practice, the adoption of software citation depends on developing community
guidelines that implement the software citation principles within the context of
existing community scholarly communication and software development norms.

For some commonly used commercial software, there are mandatory cita-
tions, e.g. as specified by SAS [17] or Matlab [4]. In other cases, authors of
research software may provide a recommended general citation referring to suite
of related software, e.g. the HSL Mathematical Software Library [18]. However,
in many of these cases, the citations do not provide enough information to allow
crediting of the software authors (Principle 2), a machine actionable unique iden-
tifier (Principle 3) and persistent identifiers and metadata (Principle 4) or – in
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the case of HSL – an understanding of which version of the software was used
(Principle 6).

Examples of mandatory and general software citations that do not fully
implement the Software Citation Principles:

– The output for this paper was generated using SAS/STAT software, Ver-
sion 14.1 of the SAS System for Unix. Copyright c©2018 SAS Institute
Inc. SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc., Cary, NC,
USA.

– MATLAB and Statistics Toolbox Release 2012b, The MathWorks, Inc.,
Natick, Massachusetts, United States.

– HSL. A collection of Fortran codes for large scale scientific computation.
http://www.hsl.rl.ac.uk/

Some software frameworks and platforms provide clear guidance on how to
support particular versions or a specific citation for a package (Principle 6), e.g.,
by using the citation() function for R packages or the instructions for citing
the GAP system for computational discrete algebra [23]. However these still do
not provide persistent, machine actionable identifiers.

Examples of citations of specific packages as recommended by the software
platform they are distributed with that mostly implement the principles:

– Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K. (2018).
cluster: Cluster Analysis Basics and Extensions. R package version 2.0.7-
1.

– Emma J. Moore, Christopher D. Wensley, groupoids - a GAP package,
1.54, 29/11/2017, https://gap-packages.github.io/groupoids/

However most software used in research does not provide guidance on how
to cite it properly. If the software’s website, or a CITATION file or README
file with the source code, specifies how to cite the software, the author should
use this information; this might be a reference to a software paper, or other
publication. If the source code includes a codemeta.json [12] or Citation File
Format (CFF) [7] file, the metadata in these files can be used with appropriate
tooling to generate a citation automatically. Otherwise, the following guidance
will help to construct a citation that implements the principles:

– For the authors, try to include all contributors to the software or, if this is
not clear, name the project as the author. This may encourage some projects
to make citation metadata available, including listing the authors.

– Include the name of the software, along with specific version/release informa-
tion.

http://www.hsl.rl.ac.uk/
https://gap-packages.github.io/groupoids/
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– Try to include a method for identification that is machine actionable, globally
unique and interoperable. This ideally is a DOI but if there is no DOI, a URL
pointing to a specific release might be the next best option.

– If there is a landing page that includes metadata, point to that, not directly
to the software. Where you have the choice of pointing to a URL for general
landing page including metadata, versus a specific URL (e.g. to a tag of a
version) which does not contain sufficient metadata it is preferred to use
the URL for the general landing page as the identifier, and clearly state the
version.

Examples of citations for software using the suggested guidelines:

– Voevodsky, Vladimir and Ahrens, Benedikt and Grayson, Daniel and
others. UniMath — a computer-checked library of univalent mathematics.
https://github.com/UniMath/UniMath[accessed2018-04-27]

– Eigen Project. (2017). Eigen [software] version 3.3.4 Available from
https://bitbucket.org/eigen/eigen/[accessed2018-04-27]

For developers of a piece of software, there are several things that can be done
to make it easier for others to cite the software. At a minimum, the code should
be published using a clear version number and license. If the code is in GitHub,
the developer can make it easily citable using Github’s integration with Zenodo
[8]. Alternatively, the developer can manually deposit it in a digital repository
such as Zenodo or Figshare – supplying metadata including the authors, title
and version – and being provided with a Digital Object Identifier (DOI) and
often a recommended citation that adheres to the Software Citation Principles.
This information can be used to insert the citation that others should use into
the software documentation, preferably as a CITATION file.

Example of a citation generated by Zenodo that implements the principles:

– Vince Knight, & Ria Baldevia. (2018, January 31). drvinceknight/
Nashpy: v0.0.13 (Version v0.0.13). Zenodo. http://doi.org/10.5281/
zenodo.1163694

Of course, the fact that swMath [21] exists means that citation should be
integrated with it, providing suggested citations for software in it, and using it
to track and understand citations of math software.

4 Challenges

In May 2017, the FORCE11 Software Citation Working Group ended, and a
new Software Citation Implementation Working Group4 started. This group has
4 https://www.force11.org/group/software-citation-implementation-working-group.

https://github.com/UniMath/UniMath [accessed 2018-04-27]
https://bitbucket.org/eigen/eigen/ [accessed 2018-04-27]
http://doi.org/10.5281/zenodo.1163694
http://doi.org/10.5281/zenodo.1163694
https://www.force11.org/group/software-citation-implementation-working-group
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the goal of moving the software citation principles to implementation. Those
interested in following the new group can join it.

Many challenges remain, including:

– Encouraging citation of software by authors. Data citation is still not
commonplace in many disciplines, let alone software citation. Author guidance
for software citation is varied in the mathematical sciences. Both the Jour-
nal of Mathematical and Computer Simulation [22] and Journal of Statistical
Software [13] provide guidance that follows the Software Citation Principles,
but others - including the International Congress on Mathematical Software
- do not. This will require the community to work with journals, conferences,
and publishers to implement the Software Citation Principles in a way that
they can be adopted by researchers in the area, similar to efforts in astron-
omy [2]. Tools such as CiteAs [1] may also help.

– Promoting the idea of software citation to developers. The benefits of
making software more easily citable are not always obvious. The time taken to
submit metadata can be reduced by the use of formats such as CodeMeta [12]
and Citation File Format [7], particularly as they are adopted by repositories
[3] and citation tools.

– Citing unpublished software. When authors do not publish their software,
there is no archival link a citer can point to. The in-progress work to build a
software archive for all source code by Software Heritage [6] may solve this
problem.

– Ensuring quality of information. Even when information is provided,
it may be discarded in the publication process. Collaboration with publish-
ers, funders, and the identifier and citation infrastructure will be required to
ensure that systems collect and retain required metadata, making it easier to
discover and reuse software.

– Giving credit for software through citation. Ultimately, software cita-
tion will become widely practiced when the rest of the scholarly infrastructure,
particularly indexing sites, includes software, and research communities rec-
ognize the value of software as a research output, thus providing an incentive
for developers and authors to publish and reuse research software.

5 Conclusions

Although software citation is currently not standardized nor widely practiced,
the publication of the Software Citation Principles has acted as a foundation on
which to build community guidelines and improved tooling and infrastructure
to support citation. The FORCE11 Software Citation Implementation Working
Group is taking forward work to address the challenges standing in the way of
software citation, and looks to the mathematical sciences community to work
towards implementing the principles in the future.
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Abstract. Mathematical user interfaces for authoring, collaboration,
problem-solving and reasoning invariably rely on the ability to read, write
and manipulate complex mathematical expressions. However, very little
research has been done on how people read mathematical expressions,
let alone how they are understood by the mind. One technique which
researchers use to gain insight into how people read and comprehend
symbols and complex phenomena are studies using eye-tracking hard-
ware: focus on, and tracking of, pupils in order to determine the reader’s
attention and fixation. In this paper we will explore the results of a study
on two classes of students: mathematically “expert” (mathematical sci-
ences students) and non-expert (Faculty of Science majors from outside
the mathematical sciences). Each participant was presented with a series
of mathematical problems (stimuli) and their eyes and attention/focus
tracked as they worked through the problems mentally. We will discuss
the differences in the two classes, both with respect to the correctness of
responses to the problems and the structure of the scanning and iden-
tification of important components within the problem. This study has
applications in mathematical software usability, accessibility, and design
of interfaces, as comprehension of mathematical notation and formalism
is assumed in the implementation of the modified symbolism inherent in
structured mathematical software interfaces.

Keywords: Mathematical notation · Symbolism · Eye-tracking
Problem identification · Mathematical software interfaces

1 Introduction

Mathematics is limited and structured by the human brain and mental capac-
ity. In terms of brain- and mind-based mathematics, eye movement research can
reveal much about the working of the brain and mind, since our perception of
the world is heavily influenced by our sense of sight. Given their importance
for eye-mind research, surprisingly little is known about the cognitive basis of
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reading, understanding and solving mathematical questions. For this we investi-
gate implicit mathematical practices by conducting an eye-tracking experiment
on the answering of mathematical questions. The eye-mind hypothesis [5] claims
a correlation between the cognitive processing of information and the person’s
gaze at the specific location of the information. Implicit mathematical practices
can be made explicit by direct comparison of practices by expert (math familiar)
and non-expert (math unfamiliar) people.

2 Methods

Subjects: Twenty upper-year and graduate mathematics students (class: expert)
and eighteen science (non-mathematics) students (class: non-expert) volunteered
to participate in the present study. All provided written informed consent, and
were verbally debriefed at the end of the experiment. Trent University’s ethics
committee approved all experiments presented here, which were carried out in
accordance with the provisions of the World Medical Association Declaration
of Helsinki [1]. All participants reported normal or corrected-to-normal visual
acuity.

Stimuli: The stimulus for the present study consisted of fourteen mathematical
questions, all at approximately an 11th to 12th grade (secondary school) level.
The questions ranged from True/False to “Find the Error”, with one particular
question (the longest) showing particularly interesting findings, which we will
discuss below. Figures 1 and 2 show an example of the average question type
and the specific interesting problem (Question 07), respectively. Question 07 has
a sequence of mathematical equations, joined by logical statements (in words,
to the right).

Fig. 1. Stimuli for Question 01 of 14. Stimuli was displayed full-screen on a 1400× 900
pixel consumer monitor, as described in Procedure below.
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Materials: Eye-movements were tracked using a Gazepoint G3 model eye-
tracker. Calibration, stimulus presentation and response collection were con-
trolled using Gazepoint Analysis Software, Standard Edition v4.2.0. Stimuli were
presented to participants on an LG monitor attached to a Dell Optiplex (Intel
i3) desktop running Windows 7 Personal service pack 1.

Fig. 2. Stimuli for Question 07 of 14, the focus of this paper. Stimuli was displayed
full-screen on a 1400× 900 pixel consumer monitor, as described in Procedure below.

Procedure: Each subject was tested individually. The experimental session con-
sisted of 2 phases. During the first phase of the experiment the eye-tracker was
calibrated to the subject. A 9-point calibration was used. Calibration was not
accepted until all calibration points were within default criterion. During the
second phase of the experiment subjects were instructed to determine an answer
to the posed question (either True/False or “Find the Error”). The problems
included set theoretic, function, and matrix notation, as well as several common
algebraic and arithmetic logical errors.

Each subject answered a total of 14 questions. The questions were presented
in the same order for each subject. Only the particularly interesting case of Ques-
tion 07, a “Find the Error” problem containing a logical fallacy, is analyzed in
this paper. Each trial started by reminding the subject to read the problem care-
fully in order to determine what was being asked. A trial ended when the subject
looked off-screen in the bottom right hand corner and telling the researcher. The
researcher then asked them to indicate their response to the question, and the
trial was coded as correct or incorrect. Participants had a short break in between
trials, and at the end they were briefly interviewed to determine if any problems
were encountered. No major occurrences were recorded for problems in the trials.

Data Analysis: Prior to conducting statistical analyses of Question 07, blind
coders examined the fixation maps and identified two subjects that lost cali-
bration during the study. The data from these participants was not analyzed.
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One participant from the expert class was an outlier on all measures and was
also excluded from all analyses. The remaining data were analyzed in two steps.
First, a qualitative examination of individual scan paths led to the identification
of behavioral sequences that capture how students answered the question. A
second quantitative examination was also performed in order to assess whether
there were any clear differences in performance using standard [2–4] eye-tracking
techniques.

3 Quantitative Assessment

Four global measures of performance were examined: (1) total time until com-
pletion; (2) accuracy in identifying the source of the error; (3) the total num-
ber of eye-movements; and (4) the average fixation duration. Summaries of
the numerical results can be found in Table 1. No statistical difference was
found for total time to complete, F(1, 33) = 0.818, p = 0.372; total number of
fixations/eye-movements, F(1, 33) = 0.573, p= 0.454; or average fixation dura-
tion, F(1, 33) = 1.153, p= 0.291. However, there was some suggestion that the
novice group made more errors, F(1, 33) = 3.513, p= 0.0698.

As noted above the reading of the question can be broken down into two dis-
tinct periods: the first pass, where the initial attempt to solve the problem took
place, and a second pass which either constituted a double check (for those who
identified the error) or a second attempt to identify the error (for those who did
not find it during their first attempt). For the first pass, the expert class com-
pleted their scan-through much more quickly than the novices, F(1, 33) = 4.862,
p= 0.0345 (with significantly larger difference if three outliers are removed from
consideration, F(1, 30) = 10.8, p= 0.00259). For the outlier-removed samples, the
difference in the average time for the first pass is 14 s, with non-experts taking as
much as 50% longer to scan the question. This difference was reflected in more
fixations for the non-expert class, F(1, 33) = 6.68, p= 0.015.

As well, during the first pass, the expert class was much faster at reaching
the location of the error (9 s, F(1, 32) = 10.42, p= 0.00288). Much of this time
appeared to be due to the non-expert class participants spending more time read-
ing the first three rows of the problem, seemingly in an attempt to understand
the nature of the logical progression between stages.

4 Qualitative Assessment

For the qualitative analysis, videos were created from the fixation data for each
subject. The videos were then examined by research assistants blind to the exper-
imental conditions of the study (“blind coders”). The coders were instructed to
watch the videos and identify and tag behavioural tokens that give insight into
how people were solving the problems. Several behavioural markers were identi-
fied and are discussed below.

Many participants started by orienting themselves to the math problem.
For some, this only consisted of reading the instructions, whereas others both
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Table 1. Results for a variety of metrics across the two (expert and non-expert) classes
of participants in the study.

Expert (N = 18) Novice (N= 17)

Overall
performance

Total time (s) Mean 64 71

SD 50 57

Total fixations Mean 159 173

SD 24 23

Average fixation
Duration (ms)

Mean 306 316

SD 20 32

Accuracy (%) 39 12

50 33

First pass Total time (s) Mean 36 47

SD 16 15

Total fixations Mean 82 102

SD 36 34

Average fixation
Duration (ms)

Mean 306 323

SD 27 38

Error fixation Start time (s) Mean 26 35

SD 8 9

Total time (s) Mean 6 12

SD 5 13

Total fixations Mean 16 28

SD 12 29

Average fixation
Duration (ms)

Mean 303 327

SD 36 78

read the instructions and did a quick scan of the problem before starting to
read the mathematical statements. Surprisingly, some people neither read the
instructions nor explored the problem space. Unfortunately, we have been unable
to determine if this behaviour predicts performance at this time.

The initial exploration of the problem space was followed by a first pass
through the problem. The first pass consisted of the period after the initial
exploration and continued until there was clear evidence that the problem was
being re-read from the beginning. Two broad solutions were used during the
first pass. One, which we identified as linear reading, consisted of reading each
statement in the problem left to right and then proceeding to the next statement
in a top to bottom fashion. The other approach was more recursive and had
participants moving both forwards and backwards between adjacent statements.
For instance, the first statement would be read left to right before moving on to
the second statement. After the second statement was read left to right, such a



302 S. Kim et al.

participant would return to the previous statement and begin a brief amount of
time iterating between the two statements. The iterative approach appeared to
be preferred by the experts though it was demonstrated by both groups.

Fig. 3. Example for Question 07 of a single expert participant’s behaviour, showing
the triangular pattern common with this class of participant: (starting at the black
fixation) read left to right through a statement, then return to the previous statement’s
mathematical expression (grey fixation) for confirmation of logical linkage.

After the first pass through the problem, a second reading commonly took
place. Examination of the scan path data suggested that multiple strategies were
employed when rereading the problem. There was substantial variability in how
much time was spent re-reading the problem, with some spending as little as 3 s
and others spending over a minute. Some seemed to double check their answers,
whereas others proceeded to reread the entire problem again from beginning to
end. Future research will establish whether these differences are due to the type
of question, or represent individual strategies.

Finally, additional signatures were observed when lines 6 and 7 of Question
07 were read. These lines occur after the first mathematical error (line 5) but
contain evidence that a mathematical error has occurred (b = 2b and 1 = 2,
respectively). Often when these lines were read, participants exhibited large eye-
movements back and forth between the statements that a = b (located on the
first line) and line 6. We took these large movements as evidence that people
were aware that an error was made (though not necessarily that they know
what the error was). These large eye-movements appeared more common for the
novice group than for the expert group suggesting either they were unprepared
for them, or they were unaware that the error likely occurred on an immediately
preceding line.

4.1 Non-expert Participants

In general, the non-expert participants in the study tended toward exhaustive,
linear reading of the problem. They spent more time examining the associated
text of each statement rather than the symbols, didn’t recognize the error when
they found it, and were more erratic after observing that an error had occurred
(often a line or two after the actual error).

4.2 Expert Participants

In general, expert participants tended toward triangular (iterative) behaviour
(example in Fig. 3, moving carefully back and forth between steps in a triangle
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pattern, starting at black and ending at grey). Such participants tended to be
self-terminating (ending the problem once the error had been found), mostly
recognized the error when it occurred, and performed a variety of re-visiting
techniques for checking work.

5 Discussion

This paper examines the interplay between visual processing of mathematical
symbolism and problem identification. There are a few obvious limitations to
the study. First, while eye-tracking provides a “gaze into the mind’s eye” [5],
tracking eye movements does not actually give direct knowledge of thought pro-
cesses (and problem solving technique). Secondly, although the “expert” class
participants were recruited from the mathematics discipline (majors and joint
majors) at Trent University, and the “non-expert” class from non-mathematical
sciences, there remains a strong logical-mathematical intelligence in many non-
mathematical science students, making the division less clear than would be
preferred.

Previous eye movement research [2,3] has shown that the duration and fre-
quency of fixations and number of regressions are related to the level of mental
processing and effort needed to decipher the mathematical notation and sym-
bolism [6,7] used in the problem. Thus, the longer and more often participants
fixate on a particular component of notation, the more mental time and effort
they are placing on trying to understand it. This implies that the observed dif-
ferences in fixation number and transition time represent additional cognitive
load on the part of non-expert participants, something also observed in recent
studies of software interfaces [4] using similar techniques.

This study is relatively unique, as very few studies have looked at eye-tracking
in the context of mathematical symbolism and error tracking. There are obvious
applications to both mathematical software development and study and devel-
opment of interfaces for the same. The expert participants understood and made
use of the information logic paradigm, connecting the separate components of
the derivation in seamless and integrated fashion, while the non-expert partic-
ipants did not. This suggests that when presenting users with novel interface
paradigms that training could be undertaken to demonstrate and exhibit proper
logical pathways for understanding and mastery. This is particularly true when
dealing with the necessary complexities of mathematical software, where symbols
abound and, by necessity, interfaces tend toward the complex and hierarchical
versus simple and flat.

In addition, there is a common trend in technology for devices to become
smaller and smaller, as we move more functionality to smartphone-sized devices.
The question for interface designers is then how to capture the key and essential
functionality in such a small amount of screen real estate, especially for edu-
cationally oriented mathematical software. For example, software which allows
students to compose complex mathematical formula on a smartphone using only
touch requires a complex hierarchy of menus to encapsulate the required symbols
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– we hope this study will assist in understanding and development of how users
process and iterate through such symbolism.

In conclusion, this study of mathematical symbolism and error determination
has applications in mathematical software usability, accessibility, and design of
interfaces, as comprehension of mathematical notation and formalism is assumed
in the implementation of the modified symbolism inherent in structured math-
ematical software interfaces. In particular, common user experience paradigms
are used in many pieces of mathematical software, many of which are derived
from the mathematics underlying their key functionality.

Acknowledgments. This work was supported by research grants from eCampus
Ontario and Trent University’s University Research Grants Program (URGP).
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Abstract. The problem is to identify a movable object that is in some
sense known, if it is encountered later. Suppose we have a sensor, on a
fixed radar station or a moving platform. We have an object, say object
A, previously measured, with certain distinct identifiable points pi. We
know the distances between these points. We later encounter a similar
object B and want to know if it is A. We have a sensor that sends and
receives electronic signals, and so we measure the distances ti from the
sensor to the distinguished points on B.

We first consider the two-dimensional case. Assume there are three
distinct points on A. We have our measured distances t1, t2, t3 and pre-
viously known distances between the points on A, d1, d2, d3. We derive
a polynomial system relating these quantities and show that it is easy
to solve yielding a resultant that is the “signature” for A. Its use will
eliminate B if B is not A.

The generalization to three dimensions is immediate. We need a fourth
point. The polynomial system contains many parameters, but we solve
it symbolically. We then discuss generalizations involving flexibility. In
those cases we need five points and the systems are much more complex.

We compare solutions on Magma, Maple, and Fermat computer alge-
bra systems.

Keywords: Image analysis · Polynomial system · Resultant
Parameters · Dixon · Gröbner basis

1 Introduction

Identifying an object if it moves or if the perspective changes is a classic problem
in image recognition and computer vision [8,11]. In [8] we considered and solved
the so-called “Six-Line Problem”, in which a 3D object like a building has six dis-
tinguished lines. The object is considered “known” via these lines. The problem
is to decide if a similar object encountered later from another viewpoint is in fact
the same object. Via techniques of algebraic geometry, a system of polynomial
equations was derived. The variables in these equations were the transforma-
tion coordinates, and the parameters specified the characteristics of the lines.
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There were four equations in three variables and 13 parameters. The equations
were solved symbolically, i.e., the thirteen parameters are retained as symbolic
names. The resultant [2,12], a single polynomial in 239 terms, was computed
with the Dixon method [5,7]. To use this on a test object, numerical values for
its 13 parameters would be substituted. If the result is not 0, this is not the
original object. If it is 0, it is highly likely to be the original object.

In this work we consider a similar but actually simpler situation. Suppose we
have a sensor, on a fixed radar station or a moving platform. We have an object,
say object A, previously measured, with certain distinct identifiable points pi.
We know the distances between these points, di. We later encounter a similar
object B and want to know if it is A. The sensor sends and receives electronic
signals, and so we measure the distances ti from the sensor to the distinguished
points on B.

We first consider the two-dimensional case. Assume there are three distinct
points on A. We have our measured distances t1, t2, t3 and previously known
distances between the points on A, d1, d2, d3. We derive a polynomial system
relating these quantities and show that it is easy to solve yielding a resultant
that is the “signature” for A. Its use will eliminate B if B is not A.

The generalization to three dimensions is immediate. We need a fourth point.
The polynomial system contains many parameters, but we solve it symbolically.
We then discuss generalizations involving flexibility. In those cases we need five
points and the systems are much more complex.

2 Polynomial Systems

The theory of eliminating variables from a system of equations has a long history,
starting with Bezout around 1760. A key idea is the resultant of a system of
polynomial equations [2,12]. Bezout did this for one-variable polynomials. Dixon
[3] extended it to multivariate polynomials, and proved it would work in a certain
ideal situation. However, for real problems the ideal situation rarely applies and
often the method seems to fail. Kapur, Saxena, and Yang showed how to get
around all those problems in 1994 [1,5]. Lewis refined and greatly improved the
method in 2008 [7] to what is called Dixon-EDF. Gröbner bases can also be used
to eliminate variables [12].

The Kapur-Saxena-Yang (KSY) method seems to have not been noticed in
some research communities. Many researchers still try to use Gröbner bases even
though that technique frequently fails, especially when there are parameters. In
[6] it was shown than when there are parameters, Dixon-EDF is often enormously
superior. We find that to be true in this work.

3 The Standard 2D and 3D Cases

In two dimensions suppose the sensor is at point (x, y). Assume there are three
distinct points on A. We have our measured distances to B, t1, t2, t3 and previ-
ously known distances between the points on A, d1, d2, d3. Let the coordinates
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of the three points be (x1, y1), (x2, y2), (x3, y3). If A = B we get six equations
(set each to 0):

(x− x1)2 + (y − y1)2 − t21, (x− x2)2 + (y − y2)2 − t22,

(x− x3)2 + (y − y3)2 − t23, (x1 − x2)2 + (y1 − y2)2 − d21,

(x1 − x3)2 + (y1 − y3)2 − d22, (x2 − x3)2 + (y2 − y3)2 − d23

We don’t know the xi and yi so we have six equations in eight variables. However,
by choice of coordinate system we can assume x1 = y1 = 0 and y2 = 0, so there
are really five variables. We compute the resultant very easily, in a fraction of a
second with Dixon-EDF on Fermat [9,10]. Gröbner bases on Magma and Maple
also succeed in a bit more time. The answer has 22 terms:
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In three dimensions we need four points; see Fig. 1. There are now six mutual
distances and four ti, yielding ten equations just like the six above. After assum-
ing x1 = y1 = z1 = y2 = z2 = z3 = 0, there are nine variables to eliminate.
Dixon-EDF takes 5.2 s and 20MB of RAM. Maple running Faugere’s FGb pack-
age [4] takes 17 s and 2.2GB of RAM. Magma did not complete in 60min. The
resultant has 130 terms.

Fig. 1. Sensor and object in 3D, showing four points on yellow object. (Color figure
online)
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4 Flexible Objects

Motivated by airplanes that can flex their wings, we consider two cases: planes
in which the wings rotate up and down, pivoting around the fuselage, and those
in which the wings are swept back, maintaining the same altitude.

It is not hard to derive equations for these cases. A fifth point is needed, as
not all of the six mutual distances among four points remain fixed. These are
the ten equations for the first case:

z2 + y2 + x2 − t21, z2 + y2 + x2 − 2x2x+ x2
2 − t22,

z2 − 2z3z + y2 + x2 − 2x3x+ z23 + x2
3 − t23,

z2 − 2z4z + y2 − 2y4y + x2 − 2x4x+ z24 + y24 + x2
4 − t24,

z2 − 2z4z + y2 + 2y4y + x2 − 2x4x+ z24 + y24 + x2
4 − t25,

x2
2 − d21, z23 + x2

3 − 2x2x3 + x2
2 − d22, z23 + x2

3 − d23,

z24 + y24 + x2
4 − 2x2x4 + x2

2 − d24, z24 + y24 + x2
4 − d25

In the first case, Dixon-EDF finishes in 7 s, using 32 meg of RAM. The
resultant has 2373 terms. Maple with FGb takes 9min and 6.8 gig of RAM.
Magma did not finish in 21 h.

In the second case, Dixon-EDF finishes in 14 s, using 100 meg of RAM. The
resultant has 74668 terms. Maple with FGb crashed after 19 h and 62 gig of
RAM. Magma did not finish in 7 h.

Further generalizations are possible. Another flexible configuration, not
immediately identifiable as an airplane, takes Dixon-EDF 2 to 4 h to compute
(depending on the variation of EDF used) and has 189441 terms. Maple with
FGb crashed after 9 h and 60 gig of RAM. Magma was killed after 100 h.

One can also imagine scenarios in which five points are needed because one
may not be visible to the sensor at times.
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Pure Appl. Algebra 139, 61–88 (1999)

5. Kapur, D., Saxena, T., Yang, L.: Algebraic and geometric reasoning using Dixon
resultants. In: Proceedings of the International Symposium on Symbolic and Alge-
braic Computation. ACM Press (1994)

https://doi.org/10.1007/b138611
https://doi.org/10.1007/b138611


Identification of Objects 309

6. Lewis, R.H.: Dixon-EDF: The Premier Method for Solution of Parametric Polyno-
mial Systems. In: Kotsireas, I.S., Martinez-Moro, E. (eds.) Applications of Com-
puter Algebra, Proceedings in Mathematics & Statistics, Kalamata, Greece, vol.
198. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56932-1 16

7. Lewis, R.H.: Heuristics to accelerate the Dixon resultant. Math. Comput. Simul.
77(4), 400–407 (2008)

8. Lewis, R.H., Stiller, P.: Solving the recognition problem for six lines using the
Dixon resultant. Math. Comput. Simul. 49, 203–219 (1999)

9. Lewis, R.H.: Computer algebra system Fermat. http://home.bway.net/lewis/
10. Lewis, R.H.; Fermat code for Dixon-EDF. http://home.bway.net/lewis/dixon
11. Stiller, P.: Symbolic computation of object/image equations. In: Proceedings of the

International Symposium on Symbolic and Algebraic Computation, pp. 359–364.
ACM Press, New York (1997)

12. Sturmfels, B.: Solving systems of polynomial equations. In: CBMS Regional Con-
ference Series in Mathematics, vol. 97. American Mathematical Society (2003)

https://doi.org/10.1007/978-3-319-56932-1_16
http://home.bway.net/lewis/
http://home.bway.net/lewis/dixon


Resultants, Implicit Parameterizations,
and Intersections of Surfaces

Robert H. Lewis(B)

Fordham University, New York, USA
rlewis@fordham.edu

https://fordham.academia.edu/RobertLewis

Abstract. A fundamental problem in computer graphics and computer
aided design is to convert between a parameterization of a surface and
an implicit representation of it. Almost as fundamental is to derive a
parameterization for the intersection of two surfaces.

In these problems, it seems that resultants, specifically the Dixon
resultant, have been underappreciated. Indeed, several well known papers
from ten to twenty years ago reported unsuitability of resultant tech-
niques. To the contrary, we show that the Dixon resultant is an extremely
effective and efficient method to compute an implicit representation.

To use resultants to compute a parameterization of an intersection, we
introduce the concept of an “implicit parameterization.” Unlike the con-
ventional parameterization of a curve where x, y, and z are each explicitly
given as functions of, say, t, we have three implicit functions, one each for
(x, t), (y, t), and (z, t). This concept has rarely been mentioned before.
We show that given a (conventional) parameterization for one surface
and either an implicit equation for the second, or a parameterization for
it, it is straightforward to compute an implicit parameterization for the
intersection. Doing so is very easy for the Dixon resultant, but can be
very daunting even for well respected Gröbner bases programs.

Further, we demonstrate that such implicit parameterizations are use-
ful. We use builtin 3D plotting utilities of a computer algebra system to
graph the intersection using our implicit parameterization. We do this
for examples that are more complex than the quadric examples usually
discussed in intersection papers.

Keywords: Surface · Polynomial system · Resultant · Dixon
Parameters · Intersection · Gröbner basis

1 Resultants and Implicitization

A classic problem in computer graphics and computer aided design is to derive an
implicit equation for a surface given a parameterization of it. Since our surfaces
are in three-dimensional space, we conventionally have three equations

x = f(s, t).
y = g(s, t).
z = h(s, t).

c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 310–318, 2018.
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If homogeneous coordinates are being used, there is a fourth equation for w.
The implicit equation is produced by eliminating the s and t. As a very simple

two-dimensional example, for a circle of radius r, the parametric equations are
x = r cos(θ), y = r sin(θ). It is easy to eliminate θ by squaring and adding:

x2 + y2 = r2 cos2(θ) + r2 sin2(θ) = r2

yielding the familiar equation for a circle. (r is not a variable, but a parameter
in the other sense of the word “parameter.”) Real examples of interest are much
more complicated than this, and sophisticated elimination techniques are needed.

The simple example illustrates an important idea. Parametric systems fre-
quently involve trig functions, usually sine and cosine. Elimination techniques
usually require polynomial (or rational) functions. A system with sine and cosine
is easily converted to a polynomial system by replacing cosine with, say, ct, sine
with st, and adding a new equation ct2 + st2 − 1 = 0.

The theory of eliminating variables from a system of equations has a long
history, starting with Bezout around 1760. A key idea is the resultant of a system
of polynomial equations [3,18]. Bezout did this for one-variable polynomials.
Dixon [4] extended it to multivariate polynomials, and proved it would work in
a certain ideal situation. However, for real problems the ideal situation rarely
applies and often the method seems to fail. Kapur, Saxena, and Yang showed
how to get around all those problems in 1994 [1,5]. Lewis refined and greatly
improved the method in 2008 [7] to what is called Dixon-EDF. Gröbner bases
can also be used to eliminate variables [18].

In spite of the 1994 publication, the Kapur-Saxena-Yang (KSY) method
seems to have not been noticed by the computer graphics community. In 2000 the
authors of [2] explicitly reject resultants as unworkable. In 2004 Wang [19] was
aware of the Bezout-Dixon method but not KSY. He develops a new method to
implicitize surfaces and tests fifteen examples with his method, resultants, and
Gröbner bases. As in [2] he reports that in many cases resultants will not work
because the Dixon method returns 0. This is one of the situations that KSY
overcomes!

In the following table we compare Wang’s reported time using pre-KSY
Dixon, Wang’s method, and our solution today using Dixon-KSY-EDF. Our
computer is 2.3 times faster than Wang’s, so the final column is our time mul-
tiplied by 2.3. All times are in seconds. An asterisk ∗ means that Wang’s Dixon
failed after that many seconds. (The 47000 is not a typo.)

Example Wang’s Dixon Wang’s method Dixon-EDF 2.3 Dixon-EDF

6 0.31* 0.019 0.004 0.009

9 1.21* 0.25 0.057 0.13

10 1830* .051 0.09 .207

13 2673 47000 0.59 1.36
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In 2017 Shen and Goldman [16] also report a new method for certain implic-
itizations. They also say that some resultant matrices have a 0 determinant and
therefore resultants cannot be used. They do not refer to KSY.

In the following table we compare their reported times (in seconds) and our
solutions today using Dixon-EDF working on some of their examples. We assume
that our computers are comparable in speed.

Example Shen-Goldman Dixon-EDF

1 1.43 0.19

5 0.66 1.67

6 0.29 0.43

7 0.18 0.146

8 0.73 0.61

9 169.7 12.5

10 0.07 0.02

12 – 0.07

Example 5 has an answer with extremely large numerical coefficients.
Shen and Goldman describe their example 12 as a special case for which their

method does not work directly and they need to “take remedial action.” This
example is completely straightforward with Dixon-EDF and finishes in 0.07 s.

Shen and Goldman try resultants in the generalized Sylvester form as found
in [17] on their examples, and they also try Gröbner basis techniques. Gröbner
bases failed in every case, meaning that nothing was returned within 10 min.
Their resultants failed in the same way in every case except example 10.

Definition 1. In the following, Dixon always denotes the complete combination
Dixon-KSY-EDF.

2 Resultants and Intersection of Surfaces

A very important problem is to compute the intersection of two surfaces. Many
papers have addressed this question, such as [6,10,13,15]. Virtually all the papers
assume that the surfaces are quadric, i.e., degree 2. This means that the implicit
equation is of the form

ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz + j = 0

[10] asumes one is quadric and the other a torus (which is a degree 4 curve).
We describe here an apparently new way to compute intersections so long as

at least one of the surfaces is given by a conventional parameterization, as in the
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previous section. There is no restriction on the degrees of the surfaces, at least
theoretically. Suppose surface one is given by

x = f1(s1, t1), y = g1(s1, t1), z = h1(s1, t1)

and surface two is

x = f2(s2, t2), y = g2(s2, t2), z = h2(s2, t2)

For the intersection simply combine this to form a system of six equations. (N.B:
it is the same x, y, z.) Use Dixon to eliminate five variables, say y, z, t1, s2, t2.
That yields one equation (resultant) involving x and s1. If this is linear in x, solve
for x and obtain the parametric equation for the x-coordinate of the intersection
curve. Repeat for y and z. One could just as well express x in terms of s2, t1 or
t2. That might have computational advantages.

The process described above also works if one surface has a parameterization
and the second has an implicit definition, say p(x, y, z) = 0. We then have four
equations x = f1(s1, t1), y = g1(s1, t1), z = h1(s1, t1), p(x, y, z) = 0 and we
eliminate three variables, say y, z, t1.

If the resultant is degree 2 in x, one can easily use the quadratic formula
to get two possible expressions for x in terms of s1. Numerical testing could
determine which is correct. Of course, degree 3 or 4 could also be handled by
formulas, but the expressions would no doubt become daunting.

What if the degrees are higher than 2 or we don’t want to deal with messy
formulas? This leads to a new concept:

Definition 2. An implicit parameterization of a curve in 3-space is a set of
three equations

f(x, s) = 0, g(y, s) = 0, h(z, s) = 0

whose solution set includes the curve. s is called the curve parameter.

This is similar to the concept defined in [14]. f, g, and h could be any continuous
functions, but will be rational functions in this work.

Theorem 1. Given two surfaces defined as above with polynomial functions, the
Dixon resultant will produce an implicit parameterization of their intersection.

This follows immediately from the above discussion. The only possible flaw
is if the set of six (or four) equations does not have a zero-dimensional solution
space. That means for some values of the parameter s1 there are infinitely many
values of x. The authors of [1] show that Dixon can fail in that case.

3 Examples of Surface Intersections

We have found that when one of the surfaces is quadric and we use one of its
parameters as curve parameter, f, g, and h in Definition 2 are quadratic in the
variable. Explicit formulas for x, y, and z are then easy to compute.



314 R. H. Lewis

In the examples below, we always use equations that are as general as possi-
ble. That means we use parameters, in the other sense of the word “parameter.”
The parametric equations of a torus are

x = (R + r cps)cth, y = (R + r cps)sth, z = r sps

in which there are six parameters: r and R are the radii, cps = cos(ψ), sps =
sin(ψ), cth = cos(θ), sth = sin(θ). Similarly, below when we use spheres, ellipses,
cones, etc., the equations contain parameters for radii, axes, etc. Polynomials
using these parameters are fed to the Dixon resultant. That is symbolic compu-
tation. Only at the last step, when we want to produce a graph, do we substitute
numerical values for these parameters into the symbolic resultants.

We compute Dixon resultants using Fermat [8,9]. Numerical values for the
parameters were then substituted into the implicit resultants for x, y, and z. The
ensuing functions were fed to Mathematica [12]. A fairly straightforward group
of Mathematica commands [11] was used to produce the graphs.

3.1 Twisted Torus and Sphere

A twisted torus is defined by

x = (R + r cps)cth, y = (R + r cps)sth, z = r sps + 2 sth cth

Fig. 1. Twisted torus and sphere

Each implicit resultant is quadratic in the main variable. Their intersection
is in Fig. 2.
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Fig. 2. Twisted torus and sphere intersection

Fig. 3. Tilted ellipsoid and torus, cut-away view

3.2 Tilted Ellipsoid and Torus

Each implicit resultant is degree four in the main variable. Their intersection is
in Fig. 4
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Fig. 4. Tilted ellipsoid and torus intersection

3.3 Other Examples

– arbitrarily oriented cones:

Fig. 5. Skew cones and their intersection

– distorted “bowl torus” and ordinary torus.
– two distorted “bowl tori”

The computation of the resultants for the arbitrarily oriented cones is easy
for Dixon, but very hard for Gröbner basis implementations. Dixon running on
Fermat takes 1.7 s for each resultant. Magma was killed after 7 h. Maple running
FGb was killed after 8.5 h.
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Fig. 6. Distorted tori intersection

4 Summary

Computing an implicitization with Dixon is straightforward and routine. No
special conditions on the surfaces are needed.

The concept introduced here of “implicit parameterization” is easy to com-
pute with Dixon. No special conditions on the surfaces are needed.

Implicit parameterizations can be dealt with in fairly straightforward ways
with commercial software.

There is much room for further research. For example, how to decide which
parameter to use for the curve parameter?
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Abstract. In indoor and outdoor navigation, finding the local position
of a sphere in mapping space employing a laser scanning technique with
low-cost sensors is a very challenging and daunting task. In this con-
tribution, we illustrate how Gröbner basis techniques can be used to
solve polynomial equations arising when algebraic and geometric mea-
sures for the error are used. The effectiveness of the suggested method is
demonstrated, thanks to standard CAS software like Mathematica, using
numerical examples of the real world.

Keywords: Point cloud · Outliers · SOM · Numerical Gröbner basis

1 Introduction

Laser scanning usually requires local reference points that are usually spherical
in nature, from which the scanner registers coordinates of reflected points from
objects in their own coordinate system (see Fig. 1). It is often desirable to know
the object coordinates in the mapping space (also known as object space). To
achieve this, the scanner’s position should be known in mapping space, e.g. see
[1]. This position can be computed if the position of the scanner relative to the
reference point (center of a sphere) is known in the mapping space; see Fig. 1.

For outdoor and indoor navigation, low-cost sensors are generally employed,
e.g. Kinect [2]. The problem, however, is that with low-cost sensors, not only
are outliers present, but the data texture is not continuous and the resolution
of the data points is rather low, see Fig. 2. Therefore, the usual sphere-fitting
techniques provide low performance, e.g. [1,3–5].

Since the laser scanner is assumed to be moving in the mapping space, the
coordinates of the center (a, b, c) and sometimes the radius R of the spheres

c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 319–327, 2018.
https://doi.org/10.1007/978-3-319-96418-8_38
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mapping space

reference
  sphere

object

laser scanner

x

y

z

X

Y

Z

Fig. 1. Relative position of the laser scanner (x, y, z) in the mapping space (X,Y,Z).

Fig. 2. Cloud of data points with outliers caused by reflections, quantized levels caused
by round-off process, points cover only partly the spherical object, since the whole
object is not accessible via laser rays.
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having fixed position should be determined in real time, using scanner measure-
ments. We compute the parameters a, b, c or R with least square techniques [6]
using n data points (xi, yi, zi). Then two objectives to be minimized are:

Algebraic error:

A(a, b, c, R) =
∑n

i=1 δi
2 =

∑n
i=1

(
(xi − a) 2 + (yi − b) 2 + (zi − c) 2 − R2

)
2

Geometric error:

G(a, b, c, R) =
∑n

i=1 δi
2 =

∑n
i=1

(√
(xi − a) 2 + (yi − b) 2 + (zi − c) 2 − R

)
2

From the computational point of view, employing algebraic error is the eas-
ier task; however the geometric error is more appropriate. Our aim is to use
Mathematica to solve these computations employing Gröbner basis.

2 Algebraic Fitting

Sometimes the radius of the sphere is known, i.e., in the case of calibration, and
we want to find only the position of the sphere. Therefore there are three param-
eters a, b and c to be estimated. Now, we have an overdetermined polynomial
system to be solved,

(xi − a)2 + (yi − b)2 + (zi − c)2 − R2 = 0 i = 1, 2, ...n

2.1 Determined Case

The solution of this problem is not unique since the reduced Gröbner basis for the
determined polynomial subsystems (n = 3) consists of second order polynomials.

The prototype of the equations,

G = (x − a)2 + (y − b)2 + (z − c)2 − R2

proto = Table[(G/.{x → ηi,y → ξi, z → σi}), {i, 1, 3}]

{−R2 + (−a + η1)2 + (−b + ξ1)2 + (−c + σ1)2,−R2 + (−a + η2)2 + (−b + ξ2)2 +
(−c + σ2)2,−R2 + (−a + η3)2 + (−b + ξ3)2 + (−c + σ3)2}

The polynomial for a can be computed via Gröbner basis as:

grba = GroebnerBasis[proto,{a,b,c},{b,c}] // Simplify

The coefficient of the second order term is:

Coefficient[grba,a,2] // Simplify
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{4(η2
1ξ

2
2−2η2

1ξ2ξ3+η2
1ξ

2
3+ξ22σ

2
1−2ξ2ξ3σ

2
1+ξ23σ

2
1+η2

3(ξ
2
1−2ξ1ξ2+ξ22+(σ1−σ2)2)−

2ξ1ξ2σ1σ2 + 2ξ1ξ3σ1σ2 + 2ξ2ξ3σ1σ2 − 2ξ23σ1σ2 + η2
1σ

2
2 + ξ21σ

2
2 − 2ξ1ξ3σ

2
2 + ξ23σ

2
2 +

η2
2(ξ

2
1−2ξ1ξ3+ξ23+(σ1−σ3)2)+2η1η3(−ξ22+ξ1(ξ2−ξ3)+ξ2ξ3+(σ1−σ2)(σ2−σ3))+

2ξ1ξ2σ1σ3−2ξ22σ1σ3−2ξ1ξ3σ1σ3+2ξ2ξ3σ1σ3−2η2
1σ2σ3−2ξ21σ2σ3+2ξ1ξ2σ2σ3+

2ξ1ξ3σ2σ3−2ξ2ξ3σ2σ3+η2
1σ

2
3 +ξ21σ

2
3 −2ξ1ξ2σ

2
3 +ξ22σ

2
3 −2η2(η3(ξ21 +ξ2ξ3−ξ1(ξ2+

ξ3)+(σ1−σ2)(σ1−σ3))+η1(ξ1(ξ2−ξ3)−ξ2ξ3+ξ23 +σ1σ2−σ1σ3−σ2σ3+σ2
3)))}

And that of the third order term:

Coefficient[grba,a,3] // Simplify
{}

Thus a second order polynomial indicates a non-unique solution.

2.2 Over Determined Case

In case of n data points, the least square function to be minimized is

F =
∑n

i=1

(
(xi − a) 2 + (yi − b) 2 + (zi − c) 2 − R2

)
2

with the necessary conditions:

eq1 = d
da (F, a)

∑n
i=1(4a3 +4ab2 +4ac2 −4aR2 −12a2xi −4b2xi −4c2xi +4R2xi +12ax2

i −4x3
i −

8abyi + 8bxiyi + 4ay2
i − 4xiy

2
i − 8aczi + 8cxizi + 4az2i − 4xiz

2
i )

eq2 = d
db (F, b)

∑n
i=1(4a2b+4b3 +4bc2 −4bR2 −8abxi +4bx2

i −4a2yi −12b2yi −4c2yi +4R2yi +
8axiyi − 4x2

i yi + 12by2
i − 4y3

i − 8bczi + 8cyizi + 4bz2i − 4yiz
2
i )

eq3 = d
dc (F, c)

∑n
i=1(4a2c + 4b2c + 4c3 − 4cR2 − 8acxi + 4cx2

i − 8bcyi + 4cy2
i − 4a2zi − 4b2zi −

12c2zi + 4R2zi + 8axizi − 4x2
i zi + 8byizi − 4y2

i zi + 12cz2i − 4z3i )

Leading to a third order polynomial system with 18 parameters (i.e., pi, i =
1, ..., 18). For the first equation, for example,

eq1 = 4a3n+4ab2n+4ac2n−4aR2n−12a2p1 −4b2p1 −4c2p1 +4R2p1 +12ap2 −
4p3 − 8abp4 + 8bp5 + 4ap6 − 4p7 − 8acp8 + 8cp9 + 4ap10 − 4p11

where

p1 =
∑n

i=1 xi, p2 =
∑n

i=1 x2
i , . . . , p11 =

∑n
i=1 xiz

2
i
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Considering the additional two equations, we have a third order polynomial
system with 18 parameters. For given parameter values numeric Gröbner basis
works well and fast. We have three real solutions, and the proper one is that
which provides the smallest objective value.

Numerical Example 1

Real field measurements adopted from [5]. The number of the measured data
points is n = 2670 and the radius of the sphere is R = 0.152 m (see Fig. 2). Using
these data, the 18 parameters are computed using numerical Gröbner basis built
in NSolve function, giving the real solutions of the polynomial system as

solabc = NSolve[{eq1, eq2, eq3}/.{n → 2670, R → 0.152}, {a, b, c}, Reals]

{{a → −0.0431301, b → −0.0122755, c → 3.01883}, {a → −0.0737348, b →
−0.0155016, c → 2.89141}, {a → −0.0536333, b → −0.017366, c → 2.83447}}

From which the proper solution is selected by computing the value of the
objective function for each solution to find the candidate that provides the small-
est residual. This is the acceptable solution to the problem, i.e.,

{a → −0.0431301, b → −0.0122755, c → 3.01883}

3 Geometric Fitting

For the geometrical fitting, we have an overdetermined nonlinear equation sys-
tem that has to be solved for the parameter estimation problem even in case of
unknown R. However, in this case, the solution of the system is unique.

√
(xi − a)2 + (yi − b)2 + (zi − c)2 − R = 0 i = 1, 2, ...n

3.1 Determined Case

Considering 4 exact noiseless measurement points, then the prototype system
for these 4 points is,

G =
√

(x − a)2 + (y − b)2 + (z − c)2 − R

proto=Table[(G/.{x → ηi,y → ξi, z → σi}), {i, 1, 4}]

{−R +
√

(−a + η1)2 + (−b + ξ1)2 + (−c + σ1)2,
− R +

√
(−a + η2)2 + (−b + ξ2)2 + (−c + σ2)2,

− R +
√

(−a + η3)2 + (−b + ξ3)2 + (−c + σ3)2,
− R +

√
(−a + η4)2 + (−b + ξ4)2 + (−c + σ4)2}
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One can realize that the elimination of R reduces the system to,

protoR=Take[proto,{2,4}]/.R → √
(−a + η1)2 + (−b + ξ1)2 + (−c + σ1)2

{−√
(−a + η1)2 + (−b + ξ1)2 + (−c + σ1)2 +

√
(−a + η2)2 + (−b + ξ2)2 + (−c + σ2)2,

− √
(−a + η1)2 + (−b + ξ1)2 + (−c + σ1)2 +

√
(−a + η3)2 + (−b + ξ3)2 + (−c + σ3)2,

− √
(−a + η1)2 + (−b + ξ1)2 + (−c + σ1)2 +

√
(−a + η4)2 + (−b + ξ4)2 + (−c + σ4)2}

To get univariate polynomial for parameter a let us eliminate b and c from
the basis,

grba=GroebnerBasis[protoR,{a,b,c},{b,c}] // Simplify

The polynomial is:

grba[[1]]:

2aη2ξ3σ1 − η2
2ξ3σ1 − ξ22ξ3σ1 + ξ2ξ

2
3σ1 − 2aη2ξ4σ1 + η2

2ξ4σ1 + ξ22ξ4σ1 − ξ23ξ4σ1 −
ξ2ξ

2
4σ1 + ξ3ξ

2
4σ1 − 2aη1ξ3σ2 + η2

1ξ3σ2 + ξ21ξ3σ2 − ξ1ξ
2
3σ2 + 2aη1ξ4σ2 − η2

1ξ4σ2 −
ξ21ξ4σ2+ξ23ξ4σ2+ξ1ξ

2
4σ2−ξ3ξ

2
4σ2+ξ3σ

2
1σ2−ξ4σ

2
1σ2−ξ3σ1σ

2
2+ξ4σ1σ

2
2−2aη2ξ1σ3+

η2
2ξ1σ3 + 2aη1ξ2σ3 − η2

1ξ2σ3 − ξ21ξ2σ3 + ξ1ξ
2
2σ3 − 2aη1ξ4σ3 + η2

1ξ4σ3 + 2aη2ξ4σ3 −
η2
2ξ4σ3+ξ21ξ4σ3−ξ22ξ4σ3−ξ1ξ

2
4σ3+ξ2ξ

2
4σ3−ξ2σ

2
1σ3+ξ4σ

2
1σ3+ξ1σ

2
2σ3−ξ4σ

2
2σ3+

ξ2σ1σ
2
3 − ξ4σ1σ

2
3 − ξ1σ2σ

2
3 + ξ4σ2σ

2
3 + η2

4(ξ3(σ1 − σ2) + ξ1(σ2 − σ3) + ξ2(−σ1 +
σ3)) + 2aη4(ξ3(−σ1 + σ2) + ξ2(σ1 − σ3) + ξ1(−σ2 + σ3)) + 2aη2ξ1σ4 − η2

2ξ1σ4 −
2aη1ξ2σ4 + η2

1ξ2σ4 + ξ21ξ2σ4 − ξ1ξ
2
2σ4 + 2aη1ξ3σ4 − η2

1ξ3σ4 − 2aη2ξ3σ4 + η2
2ξ3σ4 −

ξ21ξ3σ4+ξ22ξ3σ4+ξ1ξ
2
3σ4−ξ2ξ

2
3σ4+ξ2σ

2
1σ4−ξ3σ

2
1σ4−ξ1σ

2
2σ4+ξ3σ

2
2σ4+ξ1σ

2
3σ4−

ξ2σ
2
3σ4 − ξ2σ1σ

2
4 + ξ3σ1σ

2
4 + ξ1σ2σ

2
4 − ξ3σ2σ

2
4 − ξ1σ3σ

2
4 + ξ2σ3σ

2
4 − 2aη3(ξ4(−σ1 +

σ2)+ξ2(σ1 −σ4)+ξ1(−σ2 +σ4))+η2
3(ξ4(−σ1 +σ2)+ξ2(σ1 −σ4)+ξ1(−σ2 +σ4))

It is a linear polynomial a; therefore the solution for parameter a is simple,

aG= − Coefficient[grba[[1]],a,0]
Coefficient[grba[[1]],a,1]

This means that from the coordinates of the corresponding 4 points, the
parameter can be directly computed. Similar expressions can be developed for
the other two parameters b and c.

3.2 Over Determined Case

Now, let us employ geometrical fitting to the data set used in Numerical Example
1. The approximation of the Gauss-Jacobi technique will be employed, but not

for
(

2670
4

)

subsets. We can reduce our data set and eliminate outliers at the

same time, employing a neural network algorithm, the so called Self-Organizing
Map (SOM), which uses a competitive learning technique to train itself in an
unsupervised manner. SOMs are different from other artificial neural networks
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in the sense that they use a neighborhood function to preserve the topological
properties of the input space. They have been used to create an ordered rep-
resentation of multi-dimensional data, which simplifies complexity and reveals
meaningful relationships.

In the last decade, a lot of research has been done to develop surface recon-
struction methods, see e.g. [7]. A more recent approach to the problem of surface
reconstruction is that of learning based methods. Learning algorithms are able
to process very large or noisy data, such as point clouds obtained from 3D scan-
ners and have been used to construct surfaces. Following this approach some
studies have employed SOM and their variants for surface reconstruction. SOM
is suitable for this problem because it can form topological maps and replicate
the distribution of input data. In our case, this mapping occurs from 3D space
to 2D.

We represent this cloud of data points by considerably fewer points using
Kohonen-map with a lattice SOM of size 5 × 5 code-book vectors with symmet-
rical neighborhood. To carry out the computation the Neural Networks package
of Mathematica was employed as follows, see e.g. [8].

<< NeuralNetworks‘
{som, fitrecord} = UnsupervisedNetFit[dataQ, 25, 100, SOM → 5, 5];
// Quiet

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

Iterations

Mean Distance

Fig. 3. The error of the Kohonen-map with a lattice of SOM of size 5 × 5 code-book
vectors.

This computation, which required 100 iteration steps (see Fig. 3) took less than
5 seconds. The 25 representing code-book vectors are

dataSOM = som[[1]];

Let us display the resulting code-book vectors with the sphere in Fig. 4.
Numerical Example 2
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Fig. 4. Data points after elimination of outliers via Self-Organizing Map (SOM) neural
network algorithm.

We can get a good approximation to compute the arithmetic average of the

solution of the
(

25
4

)

= 12650 subsets, which is an approximation of the Gauss-

Jacobi technique. In order to avoid ill - posed subsets, we computed the product
of the distances of every 4-point subset, and selected the only subsets for which
the product was higher than 2.5 × 10−5. In this way the number of the equa-
tions to be considered could be reduced to 1020. Using parallel computation, we
finally obtained.

{a → −0.0423085, b → −0.0137875, c → 3.02371, R → 0.152695}.

4 Conclusion

The two numerical examples employing real field data demonstrated the suc-
cessfulness and effectiveness of Gröbner basis in solving algebraic as well as
geometrical fitting in case of known or unknown sphere radius using standard
Computer Algebra System software like Mathematica.

References

1. Franaszek, M., Cheok, G.S., Saidi, K.S., Witzgall, C.: Fitting spheres to range data
from 3-D imaging systems. IEEE Trans. Instrum. Measur. 58(10), 3544–3553 (2009)
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Abstract. We describe the design and relationships of several
Macaulay2 packages that use numerical polynomial homotopy continua-
tion as their engine. Macaulay2 is a computer algebra system built around
the classical symbolic computation tools such as Gröbner bases. However,
recent Macaulay2 versions include its own fast implementation of homo-
topy continuation, interfaces to external numerical algebraic geometry
software (Bertini and PHCpack), and a unified data structures design
that allows the use of the internal and external capabilities interchange-
ably. The resulting numerical and hybrid tools are of general interest to
Macaulay2 users interested in computational experimentation.

Keywords: Polynomial homotopy continuation
Numerical algebraic geometry · Macaulay2

1 Introduction

This extended abstract is written with a general attendee of ICMS in mind. To
continue reading neither expertise in the subject nor familiarity with Macaulay2
is necessary.

The keywords homotopy continuation in our context refer to a technique that
deforms one system of equations into another system while tracking the path
that originates from an isolated solution of the former in hope that this path
leads to a solution of the latter. When these systems consist of multivariate
polynomials, under some mild assumptions, this hope may be upgraded to a
guarantee of locating a solution. The extent of polynomial homotopy continuation
is explained in a classic book by Morgan [14]. A currently booming area of
numerical algebraic geometry develops these basic ideas further and delivers
a powerful theoretical framework and computational machinery based on fast
floating-point implementations of homotopy continuation algorithms.

Developing tools for homotopy continuation in Macaulay2 [8] pursues a dual
goal. We not only build a fast implementation of basic homotopy continuation
routines, but also provide the possibility of setting up problems and solving them
using all other (not necessarily related to homotopy continuation) symbolic and
numerical capabilities of Macaulay2.

c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 328–334, 2018.
https://doi.org/10.1007/978-3-319-96418-8_39
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2 First Steps in Polynomial Homotopy Continuation

The basic problem to be solved is

Given polynomials f1, . . . , fn ∈ C[x1, . . . , xn] such that they generate a
0-dimensional ideal I = (f1, . . . , fn) find numerical approximations of all
points of the underlying variety V(I) = {x ∈ C

n | f(x) = 0}.

The main idea of homotopy continuation is to solve the target polynomial system

f = (f1, . . . , fn) = 0

by viewing it in a family of polynomial systems that also includes a start poly-
nomial system g = (g1, . . . , gn) possessing good properties; one typical property
is that g has regular solutions that one can approximate inexpensively.

Define a homotopy from g to f as

h = (1 − t)g + γtf ∈ C[x, t], γ ∈ C
∗, t ∈ [0, 1]. (1)

The h(t) = 0, t ∈ C, defines a complex curve in the space of polynomial systems.
One should imagine real segments of the branches of this curve projecting to the
real interval [0, 1]. Those real segments are continuation paths leading from start
solutions of g = h|t=0 to the target solutions of f = h|t=1.

As an example of a particular family giving rise to a homotopy technique
one can take the space of square systems of polynomials with fixed degrees
d1 = deg f1, . . . , dn = deg fn. Then, according to Bézout’s theorem, a generic
system in this family has d1 · · · dn regular solutions. One can take g = (xd1

1 −
1, . . . , xdn

n − 1) as a start system; its solutions are easy to construct.
The following meta-statement holds for the construction above and other

more special families that are complex spaces of polynomials.

– For a generic choice of γ ∈ C in (1) the homotopy continuation paths have
no singularities with a possible exception of the endpoints corresponding to
t = 1.

– Every isolated target solution is an endpoint, at t = 1, of some continuation
path.

The exceptional set of parameters γ is contained in a proper Zariski closed
subset of R2 � C. In practice, the exceptional set is hard to find and γ is chosen
at random on the unit circle.

The function solveSystem of the package NumericalAlgebraicGeometry
implements a basic homotopy continuation solver using the homotopy described
above.

i1 : needsPackage "NumericalAlgebraicGeometry"

i2 : R = CC[x,y];

i3 : sols = solveSystem {x^2+y^2-1, x*y}

o3 = {{1.10617e-24-3.28085e-24*ii, -1}, {-1.10617e-24+3.28085e-24*ii, 1},
{1,-3.59266e-24-6.15821e-24*ii}, {-1, 3.59266e-24+6.15821e-24*ii}}
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Differentiating the homotopy equation h = 0, we get a system of ODEs

dx

dt
= h−1

x ht, (2)

where hx = ∂h/∂x is the Jacobian and ht = ∂h/∂t. Following the solutions
of (2) for t ∈ [0, 1] with initial conditions given by the start solutions we can
approximate the continuation paths iteratively predicting where the next approx-
imation lies. As long as our approximation stays close to the tracked path one
can correct an approximate solution to the polynomial system h|t=t0

(x) = 0
using Newton’s method.

One can imagine a tracking procedure alternates predictor and corrector steps
as shown in Fig. 1.

10 t

Fig. 1. Predictor steps (using tangent method) are followed by corrector steps.

3 Some Aspects of Software Design

The top-level language of Macaulay2 is an interpreted language. That is why
the intensive part of homotopy continuation algorithm has been implemented
in C++ in the core of the system. There are two major bottlenecks in the core
functions track and trackHomotopy.

– Linear algebra subroutines: A linear system solver provided by lapack [1]
is used for double precision and a custom one using MPFR [7] is used for
arbitrary precision. The solvers are used at both predictor and corrector steps:
e.g., Runge-Kutta 4th order method for predictor and Newton’s method for
corrector both call the solver several times.

– Evaluation of polynomial functions and their derivatives: The function h as
well as its derivatives hx and ht have to be evaluated at all steps of the
algorithm. To speed up the computation, these are passed to the core as
straight line programs after the preprocessing step involving SLPexpressions

supporting package.
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Optional parameters allow users to experiment with various heuristic set-
tings for the homotopy tracker and set numerical thresholds that control the
accuracy of the computation. While the default precision is double precision,
setting Precision=>infinity is trackHomotopy and solveSystem, the blackbox 0-
dimensional system solver, instructs the tracker to adapt precision according to
an estimate on the condition number of hx at the current value of t.

One other notable option, Software gives a chance to use external homotopy
continuation software instead of Macaulay2 core routines: setting this to either
PHCPACK or BERTINI will invoke PHCpack [15] or Bertini [3], respectively. This is
done through the methods of corresponding Macaulay2 packages PHCpack.m2 [9]
and Bertini.m2 [2].

Given three main continuation Software choices — M2engine(default),
PHCPACK, and BERTINI — one may ask: which one to choose? There are several
answers to this question.

– Run them all: in many scenarios one is able to compute solutions to the same
problem via different implementations. Given the overall heuristic nature of
the continuation algorithms, having more than one option is a valuable fea-
ture.

– Pick the fastest: depending on the problem, each of the three may win the
race. Currently, M2engine and PHCPACK are observed to be faster than BERTINI

(on average) at solving 0-dimensional square systems with relatively well con-
ditioned solutions. However, BERTINI could be faster and more reliable at the
moment for dealing with overdetermined systems and numerical irreducible
decomposition of positive-dimensional varieties.

– Use particular features absent in other implementations: e.g., PHCPACK is the
only one that implements polyhedral homotopies.

4 A Higher Level Package Using Homotopy Continuation

Let us take MonodromySolver implementing a polynomial system solver
described in detail in [6] as an example.

The essence of homotopy continuation can be formalized in the language
outlined in Fig. 2.

The cartoon in Fig. 2 addresses a toy problem of computing all cubic roots.
However, one can use the same cartoon to help imagine the setup of Sect. 2
following homotopy (1). There the base space B is the space of systems of poly-
nomials of fixed degrees d1, . . . , dn with exactly d1 · · · dn solutions. These degrees
come from the target system f , which may or may not be in the branch locus D,
and a start system g, which is in B, is chosen in a particular way. The homotopy
(1) corresponds to a path in B that depends on the parameter γ.

The algorithmic framework dubbed monodromy solver introduced in [6] pro-
vides another way to solve a system corresponding to a generic point in B for
an arbitrary covering map π : V → B given that the total space (a.k.a. the solu-
tion variety) V is connected. The method starts by embedding a random graph
G in B and “seeding” one vertex-system of G with one solution. It proceeds,
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Fig. 2. Homotopy continuation in a nutshell: lifting paths from B to V .

in a randomized fashion, to track edges-paths of π−1(G) starting from known
solutions. The algorithm is guaranteed to succeed, i.e. discover all solutions for
some vertex-system of G as long as π−1(G) is connected.

This machinery ultimately powers several blackbox solvers: one is imple-
mented by the solveFamily method:

i1 : needsPackage "MonodromySolver";

i2 : R = CC[a,b,c,d,e,f][x,y];

i3 : (sys, sols) = solveFamily polySystem {a*x^2+b*y+c,d*x+e*y+f}

o3 = ({ (.23678 - .42551*ii)x^2 + (.536999 + .405563*ii)y + ... ,

(- .352525 - .818762*ii)x + (.168395 - .624005*ii)y + ... },

{ {-.355531-.934665*ii, -.652688+.757627*ii},

{1.32088+2.57812*ii, -5.47398-1.60337*ii} })

Another method, sparseMonodromySolve, provides an alternative to polyhe-
dral homotopy solvers implemented in PHCpack [15] and HOM4PS [5].

i4 : R = CC[x,y,z];

i5 : # sparseMonodromySolve polySystem {
1+11*x-3*y+30*x*y+55*x*y*z,
3-5*x+7*y+2*x*y+9*x*y*z,
6+13*x^2*y-5*y^2*z }

o5 = 5

The system above is an example from [10] with 5 solutions, while the Bézout
bound is 27; i.e., the method of Sect. 2 is inefficient as it has to track 22 diverging
paths.
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5 Numerics in Macaulay2

A constellation of packages that grew around NumericalAlgebraicGeometry,
whose early version was described in [12], has the following dependence structure
at the time of writing (in Macaulay2 version 1.11).

MonodromySolver Numerical
SchubertCalculus

Numerical
Implicitization

Numerical
AlgebraicGeometry

Numerical
Hilbert

PHCpack Bertini

SLPexpressions NAGtypes

Note that the Bertini and PHCpack interfaces use the same Macaulay2 types
defined for relevant data structures in NAGtypes facilitating the substitution of
the corresponding external solver in the core routines if desired.

Some numerical scheme-theoretic devices, such as a local Hilbert function,
are implemented in NumericalHilbert [11] and provided to the main package.

The package SLPexpressions provides a flexible way to create and manage
arithmetic circuits in Macaulay2 together with the necessary functionality for
automatic differentiation and routines for setting up straight line programs in
the system’s core. The efficient evaluation of SLPs is of particular importance for
homotopy methods, since evaluation subroutines are the most frequently called
ones in the main tracking algorithm.

Apart from MonodromySolver highlighted in Sect. 4, there are several pack-
ages that use homotopy continuation: NumericalImplicitization [4] sup-
ports user-friendly calculation of basic invariants of the image of a polyno-
mial map and NumericalSchubertCalculus implements algorithms for solving
instances of Schubert problems on Grassmannians; in particular, it implements
the Littlewood-Richardson homotopy algorithm [13].

Acknowledgement. Research of AL is supported in part by DMS-1719968 award
from NSF.
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Abstract. Systems of polynomial or algebraic equations with finitely
many solutions arise in many areas of applied mathematics. I will discuss
the design and implementation of a hybrid symbolic-numeric method
based on the endomorphism matrix approach pioneered by Stetter and
others. It makes use of numeric Gröbner bases and arbitrary-precision
eigensystem computations. I will describe how to assess accuracy, find
and remove parasite solutions in the case of fractional degrees in the
system, handle multiplicity, as well as some of the other finer points not
usually covered in the literature. This work is one of the methods used
in the Wolfram Language NSolve function.
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Numeric Gröbner bases · Endomorphism matrix · Eigensystem

1 Introduction

Systems of algebraic equations arise in many applied areas, including compu-
tational chemistry, computer-aided design, graphics, robotics, and elsewhere.
Often one is interested in all solutions, or at least all solutions that satisfy some
criterion, and in such cases a local solver such as Newton’s method and its ilk
simply do not suffice. As is well known, there are exact methods for handling
such systems e.g. [3,8]. As these involve computation of exact Gröbner bases,
and require a lexicographic term order, they tend to be quite expensive. Thus
there is a need for faster methods that might use approximate arithmetic in a
way that is reliable. Several global approximate methods are in current use. This
reports on one such, and is intended as a long overdue update to [13]. The solver
is based on prior literature spanning nearly 30 years (see e.g. [1,5,16]), and also
utilizes several computational heuristics that will be described below. The key
tools are numeric Gröbner bases, eigendecompositions in either machine arith-
metic or higher, and numerous tactics for recognizing and appropriately han-
dling multiplicity, spurious solutions, and other pathologies. The work described
is implemented in the Wolfram Language [25] and is one of the main methods
used by the function NSolve.

We start with a brief outline of the method. Given a polynomial system F
in a set of variables X, the zero set is an ideal in C[X]. If it has finitely many
c© Springer International Publishing AG, part of Springer Nature 2018
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solutions then it is straightforward to show that the quotient module C[X]/F
is a finite dimensional algebra [3,8]. The idea, first proposed in [1], is to obtain
a set of monomials that generates this algebra as a vector space, and then use
information about the eigensystems of certain endomorphisms to deduce solu-
tions. An early version of an implementation is described in [13]. One way to
obtain the vector space generators is to compute a Gröbner basis for F . This
may be prohibitive if using exact arithmetic and a lexicographic term order, but
there are two ways in which we can improve on matters. One is to use approxi-
mate arithmetic on the coefficients in order to avoid swell by limiting precision.
The other is that, for purposes of a finding a generating set and computing a
“good” endomorphism, we can use any term order. As the degree reverse lexi-
cographic order is typically much faster to compute than lexicographic, we use
that one. From here one typically finds an endomorphism matrix corresponding
to multiplication by a “random” linear polynomial in the algebra. As shown in
[1], eigenvalues of this matrix give the values of the solution set evaluated at that
element. For example (and ignoring the use of a random element for simplicity),
if we use multiplication by y then the eigenvalues give the solutions for y in the
ideal under study. Various methods may then be used to solve for all variables.
We say more about this presently.

The next sections discuss numeric Gröbner bases, the use of an eigensystem,
handling of problematic cases such as multiplicity (in particular the derogatory
case, wherein an eigenvalue has geometric multiplicity greater than one), and
assessment of correctness by computing and gauging residuals. We finish with
some brief and nontrivial examples. We point to some of the prior literature but
make no pretense that this is complete. This work is intended as a practical guide
to the method. We refer to the literature for most issues involving theoretical
considerations, and focus instead on empirical results and concerns that arise in
practice.

I thank Alexander Maletzky for a careful proof reading that caught numerous
issues with the exposition.

2 Numeric Gröbner Bases

Given a system of polynomials with rational coefficients, there are various ways
to go about computing a Gröbner basis using approximate arithmetic [2,9,11,12,
14,15,18–21,24]. The method used in the Wolfram Language, described in [12,
14], is most closely related to the original method of Shirayanagi [20,21]. Both use
an approximation of interval arithmetic. In brief, each arithmetic computation
retains a first order estimate of error, and coefficients whose error margin includes
the origin are deemed to be zero. Further details will be provided in the full
version of this paper.

Prior literature has placed some focus on what are called structural singu-
larities [9,11,22]. In this situation, a perturbation of the coefficients of such a
system will change the structure of the basis. Nonetheless, use of sufficiently
high but finite precision arithmetic, with precision tracking, will uncover this
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fact; in practice the needed precision is typically modest [14]. If instead a system
has coefficients that put it near but not at such a singularity, again a Gröbner
basis computation at sufficient precision will allow the later steps of the numeric
solver to proceed.

3 Eigendecomposition for a Multiplication Operator

A common method for solving polynomial systems sets up an eigendecomposi-
tion problem; this is done either with resultants [1], Gröbner bases [4,6,10,13,16],
or more general normal forms [17]. The idea is as follows. Start with the poly-
nomial system F for which we want to find the set of simultaneous zeros. As
noted earlier, the assumption of a finite solution set implies that the polynomial
algebra C[X]/F is a finite dimensional vector space. Moreover it is spanned by
the “normal set” of monomials with respect to a given Gröbner basis. These
are the monomials that are not reducible by the basis elements. One uses the
canonical reduction modulo this basis to set up an endomorphism matrix that
represents multiplication by a given polynomial, e.g. by the variable x [4]. Then,
as noted in [1] and elsewhere, the eigenvalues of this matrix give the values
of x on the solution set of F . We remark that all references above other than
[13,17] were developed in the setting of exact coefficient arithmetic (since 1998
the NSolve function of Mathematica has used approximate coefficient arithmetic
in its Gröbner basis computations, as noted in [13]).

The left eigenvectors also convey important information about the solutions
of F . Assume such an eigenvector corresponds to an eigenvalue with geometric
multiplicity of one. So it is the unique (up to scalar multiplication) eigenvector
for this eigenvalue. Each component corresponds to an element in the normal set
that spans the vector space C[X]/F , and one such component corresponds to the
monomial 1. The assumption of a one dimensional eigenspace implies that this
component is nonzero. Normalizing the eigenvector so that this component has
a value of 1, the values corresponding to the other generators are now the same
as the values of those generators on the solution set of F [7,16]. For example,
if the normal set is comprised of

{
1, y, y2, x

}
and an eigenvector is (1, 7, 49, 3),

then one solution has x = 3 and y = 7. Variables not in the normal set can be
solved for in terms of the values of the remaining monomials.

Before proceeding with an example we discuss a modest but important tech-
nical detail. Most polynomial systems one encounters in practice do not have
multiplicity (at least, such has been the authors experience). However it is not
so uncommon for different solutions to have the same values for one or more
coordinates even when there are no multiple solutions (in which case the ideal is
said to be “not in general position” with respect to these coordinates). Were we
to choose such a coordinate as our endomorphism generator, we would obtain one
or more multiple eigenvalues. We want to avoid this apparent multiplicity since
it complicates the later parts of the algorithm (more is said about this below),
and in particular would fool the code into treating the corresponding eigenspaces
as derogatory (since the geometric multiplicity would equal the algebraic multi-
plicity and hence be strictly larger than one). This avoidance is achieved by the



338 D. Lichtblau

simple tactic of choosing multiplication by a (pseudo)random linear polynomial
as endomorphism (see e.g. [16]). Practically speaking, this will always suffice to
separate solutions that are not multiple.

We now consider a simple example. It will be noticed that the input is already
a Gröbner basis with respect to the variable order y > x, and in this setting the
normal set is (1, x, y, xy}. We use a different order to show how NSolve handles
this particular system.
F =

{
x2 − 3y + 12, y2 − xy − 5y + 7

}
;F =

{
x2 − 3y + 12, y2 − xy − 5y + 7

}
;F =

{
x2 − 3y + 12, y2 − xy − 5y + 7

}
;

One can readily check, e.g. by direct substitution, that one solution is in fact
x = 3, y = 7. The Gröbner basis with variable order x > y and degree reverse
lexicographic term order is as below.
gb = GroebnerBasis[N [F , 100], {x, y},gb = GroebnerBasis[N [F , 100], {x, y},gb = GroebnerBasis[N [F , 100], {x, y},
MonomialOrder → DegreeReverseLexicographic];MonomialOrder → DegreeReverseLexicographic];MonomialOrder → DegreeReverseLexicographic];
N [gb]N [gb]N [gb]{−7. + 5.y + 1.xy − 1.y2, 12. + x2 − 3.y,−35. + 7.x + 44.y − 13.y2 + 1.y3

}

One will observe that the leading terms are
(
xy, x2, y3

)
and so a generating set

of monomials for the algebra C[x, y]/ < F > is in fact
{
1, y, y2, x

}
. We take as

our (pseudo)random algebra element the linear polynomial (−92291x)/87992 −
(121001y)/175984. The endomorphism matrix is as below.

⎛

⎜
⎜
⎝

0. −0.687568188017 0. −1.04885671425
−7.34199699973 5.24428357123 −1.73642490226 0.
−60.7748715792 69.0606986999 −17.3292401582 12.1549743158
7.77330325484 0.291270797345 −0.687568188017 0.

⎞

⎟
⎟
⎠

We form the eigensystem and normalize so that the first component, which
corresponds to the monomial 1, has value of 1.
{vals, vecs} = Eigensystem[mat];{vals, vecs} = Eigensystem[mat];{vals, vecs} = Eigensystem[mat];
vecsNormalized = Map[#/First[#]&, vecs];vecsNormalized = Map[#/First[#]&, vecs];vecsNormalized = Map[#/First[#]&, vecs];
Chop[First[vecsNormalized]]Chop[First[vecsNormalized]]Chop[First[vecsNormalized]]

{1., 7., 49., 3.}
We see that the remaining components, corresponding to y, y2, and x respec-

tively, are 7, 49, and 3. So we recover the solution x = 3, y = 7. There are three
other solutions, all obtained similarly from the three other eigenvectors. There
is one other real solution, at around x = 0.915, y = 4.279.

The above discussion assumes that the eigenvector corresponds to an eigen-
value of geometric multiplicity one. As is well known (see e.g. [8]), this must hap-
pen if the ideal is radical and in general position with respect to the polyno-
mial for which the endomorphism matrix was constructed ((−92291x)/87992 −
(121001y)/175984, in this discussion), since this forces every eigenvalue to be sim-
ple and that implies geometric multiplicity of one. Provided the ideal is radi-
cal, we can force that it be in general position simply by using for the endomor-
phism multiplication by a random linear combination of the polynomial variables
e.g. 3/5x − 11/7y. This is in fact the approach taken by NSolve. The remaining
bad case is when the solution set is not radical. This is the topic of the next section.
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4 Detection and Handling of Multiplicity

The case of algebraic multiplicity splits into two subcases. The easier one is where
geometric multiplicity is one; in this case eigenvectors are repeated at exactly the
algebraic multiplicity. This case is not too difficult to recognize, at least when
multiplicity is modest. First one determines multiplicity by recognizing equal
eigenvalues. This comparison is done at relatively lower precision than was used
to compute them, to account for precision loss. Once multiple eigenvalues are
grouped together, the corresponding eigenvectors are compared, again at lower
precision. If they are deemed to be equal, after normalizing, then we are in the
nonderogatory case. It has been shown [5,22,23] that a reliable way to handle this
case is by taking the arithmetic average of the approximately equal eigenvectors,
as the actual result is near the center.

In the derogatory case the eigenvectors that correspond to a multiple eigen-
value are not equal up to modest tolerance. The values cannot be used in this
case because one cannot tell what linear combination of them gives the correct
result. An empirical observation of the author is that these seem only to arise
when there is both multiplicity and a dimensional component of solutions at
infinity. But I have no proof as to whether this is either a necessary or a suf-
ficient condition. Regardless, we proceed as follows. We know the eigenvalue is
correct, hence we know the value of a particular linear combination of variables
at the solution. We use that in a back substitution step, invoking the solver
recursively. This new equation simplifies matters in that it both allows for elim-
ination of one variable, and removes multiplicity by intersecting the solution
set with a hyperplane. One back substitution is needed in order to fully deter-
mine the coordinate values at a given point of multiplicity (this is because in
effect a polynomial with multiple solutions is replaced by a linear polynomial).
As the new system is overdetermined, the recursive call uses lower precision so
that the system does not become inconsistent for purposes of computing the
new Gröbner basis. Further to this end we do not allow the term order to be
changed. The benefit here is that the new basis computation will tend to not
require too many operations, which carries the risks of both degrading precision
and causing an artificial inconsistency if the eigenvalue computation was not
sufficiently accurate.

5 Detection of Parasite Solutions and Other
Considerations

A system with radicals involving the variables can always be recast as a poly-
nomial system, simply by adding a new variable for each radical and a defining
equation for that radical. For example,

√
x2 − y can be rewritten as a new vari-

able, call it r, with defining polynomial r2 − (
x2 − y

)
. It is often the case that

some solutions to this new system will not be valid solutions to the original one,
since they may instead satisfy the system with the radical replaced by its conju-
gate. When radicals are present in the input, NSolve will attempt to detect and
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remove parasite solutions. The first step is to polish to higher precision using a
local solver. After that the high precision solution is plugged into the system,
and the residual is compared to zero. If the residual is not sufficiently small then
the solution under scrutiny is discarded.

Another consideration is at what precision should the eigendecomposition
be done. For best speed one would like to use Lapack library code at machine
precision, but in some cases this is not adequate. The default behavior of NSolve
is to compute the singular values of the endomorphism matrix and use these to
assess its conditioning. If it is sufficiently ill conditioned as to give a bad result,
the precision is artificially raised for the eigendecomposition step.

In practice such a precision increase is rarely needed. All the same, the
method of assessment is of interest since it works quite well in cases where
it is really needed. We note that the size of a residual is going to vary directly
with the scale of the input equations, even though multiplying an equation by a
constant has no effect on the solution set. We use a common convention to fix
a scale for measuring the residual. The first step is to scale each polynomial so
that its largest coefficient in norm is unity. As this still tends to give relatively
larger residuals for polynomials with many terms, we then divide each by its
number of terms. The solutions themselves are treated similarly since their size
has an effect on residuals; see the full version of this paper for details.

Yet another consideration is that one would like “sparse” solutions, that is
solutions with many components that are zero, to actually be sparse rather than
having “small” (relative to the precision and conditioning) values in those com-
ponents of the approximate solutions. Similarly, in the common case of inputs
with only real coefficients, one wants real-valued solutions not to be approxi-
mated with small imaginary components. As eigensystem methods are not in
general well able to distinguish between “small” values and zero, we use some
filtering heuristics to decide when to set values to zero. In particular, vector
components divided by the vector norm are deemed to be zero if they are zero
to a number of decimal places that is a modest fraction of the precision that was
used to compute them.

6 Examples

For brevity we show only two examples. First is the Caprasse system used fre-
quently as a benchmark in the literature. It has multiplicity in the solution set.
The second is a perturbation of this system. The original system is particularly
problematic insofar as the endomorphism matrix is derogatory.
polysCaprasse = {−2x + 2txy − z + y2z,polysCaprasse = {−2x + 2txy − z + y2z,polysCaprasse = {−2x + 2txy − z + y2z,
2 + 4x2 − 10ty + 4tx2y − 10y2 + 2ty3 + 4xz − x3z + 4xy2z,2 + 4x2 − 10ty + 4tx2y − 10y2 + 2ty3 + 4xz − x3z + 4xy2z,2 + 4x2 − 10ty + 4tx2y − 10y2 + 2ty3 + 4xz − x3z + 4xy2z,
−x + t2x − 2z + 2tyz,−x + t2x − 2z + 2tyz,−x + t2x − 2z + 2tyz,
2 − 10t2 − 10ty + 2t3y + 4xz + 4t2xz + 4z2 + 4tyz2 − xz3};2 − 10t2 − 10ty + 2t3y + 4xz + 4t2xz + 4z2 + 4tyz2 − xz3};2 − 10t2 − 10ty + 2t3y + 4xz + 4t2xz + 4z2 + 4tyz2 − xz3};

Timing[Length[solnsCaprasse = NSolve[polysCaprasse,Timing[Length[solnsCaprasse = NSolve[polysCaprasse,Timing[Length[solnsCaprasse = NSolve[polysCaprasse,
WorkingPrecision->200]]]WorkingPrecision->200]]]WorkingPrecision->200]]]
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{3.676, 56}
Max[Abs[polysCaprasse/.solnsCaprasse]]Max[Abs[polysCaprasse/.solnsCaprasse]]Max[Abs[polysCaprasse/.solnsCaprasse]]
3.2530617312876992019313229̀1.00556921532894*∧-186

polysCaprasseModified = {−2x + 2txy − (100001z)/100000 + y2z,polysCaprasseModified = {−2x + 2txy − (100001z)/100000 + y2z,polysCaprasseModified = {−2x + 2txy − (100001z)/100000 + y2z,

2000001/1000000 + 4x2 − 10ty + 4tx2y − 10y2 + 2ty3+2000001/1000000 + 4x2 − 10ty + 4tx2y − 10y2 + 2ty3+2000001/1000000 + 4x2 − 10ty + 4tx2y − 10y2 + 2ty3+
4xz − x3z + 4xy2z,−x + t2x − 2z + 2tyz,4xz − x3z + 4xy2z,−x + t2x − 2z + 2tyz,4xz − x3z + 4xy2z,−x + t2x − 2z + 2tyz,

2 − 10t2 − 10ty + 2t3y + 4xz + 4t2xz + 4z2 + tyz2 − xz3};2 − 10t2 − 10ty + 2t3y + 4xz + 4t2xz + 4z2 + tyz2 − xz3};2 − 10t2 − 10ty + 2t3y + 4xz + 4t2xz + 4z2 + tyz2 − xz3};
Timing[Length[solnsCaprasseModified = NSolve[polysCaprasseModified,Timing[Length[solnsCaprasseModified = NSolve[polysCaprasseModified,Timing[Length[solnsCaprasseModified = NSolve[polysCaprasseModified,
WorkingPrecision → 200]]]WorkingPrecision → 200]]]WorkingPrecision → 200]]]

{2.016, 56}
Max[Abs[polysCaprasseModified/.solnsCaprasseModified]]Max[Abs[polysCaprasseModified/.solnsCaprasseModified]]Max[Abs[polysCaprasseModified/.solnsCaprasseModified]]
2.405961788477611232531519785̀3.857117648856701*∧-146

The perturbed system suffered somewhat more from precision loss in the
Gröbner basis computation. This is not a surprise. A perturbation of a problem
that gave rise to a derogatory endomorphism matrix leads to an ill conditioned
system. Nonetheless we see that use of modest precision sufficed to give a reliable
result.
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Abstract. The Andrews-Curtis conjecture (ACC) remains one of the
outstanding open problems in combinatorial group theory. In short, it
states that every balanced presentation of the trivial group can be trans-
formed into a trivial presentation by a sequence of simple transforma-
tions. It is generally believed that the conjecture may be false and there
are several series of potential counterexamples for which required sim-
plifications are not known. Finding simplifications poses a challenge for
any computational approach - the search space is unbounded and the
lower bound on the length of simplification sequences is known to be at
least superexponential. Various specialised search algorithms have been
used to eliminate some of the potential counterexamples. In this paper
we present an alternative approach based on automated reasoning. We
formulate a term rewriting system ACT for AC-transformations, and
its translation(s) into the first-order logic. The problem of finding AC-
simplifications is reduced to the problem of proving first-order formulae,
which is then tackled by the available automated theorem provers. We
report on the experiments demonstrating the efficiency of the proposed
method by finding required simplifications for several new open cases.

1 Introduction

The topic of this paper can be described by two expressions: applied automated
reasoning and experimental mathematics. We show how automated first-order
theorem proving and disproving can be used to explore the Andrews-Curtis con-
jecture (ACC) [2]. This conjecture remains one of the outstanding open problems
in combinatorial group theory. In short, it states that every balanced presenta-
tion of the trivial group can be transformed into a trivial presentation by a
sequence of simple transformations. It is generally believed that the conjecture
may be false and there are several series of potential counterexamples for which
required simplifications are not known.

For a group presentation 〈x1, . . . , xn; r1, . . . rm〉 with generators xi, and rela-
tors rj , consider the following transformations.

AC1 Replace some ri by r−1
i .

AC2 Replace some ri by ri · rj , j �= i.
AC3 Replace some ri by w · ri · w−1 where w is any word in the generators.
c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 343–351, 2018.
https://doi.org/10.1007/978-3-319-96418-8_41
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AC4 Re-order the relators.
AC5 Introduce a new generator y and relator y or delete a generator y and

relator y.

We notice that AC4 rule is redundant in a sense that its effect can be achieved
by an application of a sequence of AC1 and AC2 rules. Indeed, for any two
relators ri and rj their transposition . . . ri . . . rj . . . �→ . . . rj , . . . ri . . . is the result
of the application of the sequence of rules AC2ij AC1i AC2ji AC1j AC2ij AC1i.
As any permutation is a composition of transpositions the statement follows.

Two presentations g and g′ are called Andrews-Curtis equivalent (AC-equiva-
lent) if one of them can be obtained from the other by applying a finite sequence
of transformations of the types (AC1)–(AC4). Two presentations are stably AC-
equivalent if one of them can be obtained from the other by applying a finite
sequence of transformations of the types (AC1)–(AC5).

A group presentation g = 〈x1, . . . , xn; r1, . . . rm〉 is called balanced if n = m,
that is a number of generators is the same as a number of relators. Such n we
call a dimension of g and denote by Dim(g).

Conjecture 1 (Andrews-Curtis [2])
If 〈x1, . . . , xn; r1, . . . rn〉 is a balanced presentation of the trivial group it is AC-
equivalent to the trivial presentation 〈x1, . . . , xn;x1, . . . xn〉.

The weak form of the conjecture states that every balanced presentation for
a trivial group is stably AC-equivalent (i.e. transformations AC5 are allowed) to
the trivial presentation.

In what follows we will assume that we are dealing with the strong form of
the conjecture unless stated otherwise.

Both variants of the conjecture remain open and challenging problems.
According to [4] the prevalent opinion is that the conjecture is false, but no
counterexamples have been found so far. There are, however, potential counterex-
amples and even infinite series of potential counterexamples, which provide an
opportunity to use a computational approach to explore the conjecture. Notice,
that if the statement of the conjecture holds for a particular presentation this fact
can be established, at least in principle, by enumeration and application of all
possible sequences of transformations until the trivial presentation is obtained.
Then, in principle, one may attack potential counterexamples for AC-conjecture
by the automated search of the AC-sequences leading to the trivial presentations
(AC-simplifying sequences). Such a search is a computationally difficult and the
search space grows exponentially with the length of the sequences. As it was
noticed in [18], neither total enumeration, nor random search can be effectively
applied here. More efficient search procedure using genetic algorithms has been
proposed in [18] and it was used to show that a well-known potential coun-
terexample 〈x, y|xyxy−1x−1y−1, x2y−3〉 is, in fact, AC-equivalent to the trivial
presentation, and by that it is not a counterexample. Further exploration and
improvement of genetic approach can be found in [13,20] where many new sim-
plifications are presented as well.
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In [12] it was shown that a systematic breadth-first search of the tree of
equivalent presentations is a viable alternative to genetic algorithms of [18] which
allowed to show, in particular, that the potential counterexample

〈x, y|xyxy−1x−1y−1, x3y−4〉

is unique up to the AC-equivalence among all balanced presentations of trivial
groups with two generators up to the length 13. This counterexample (AK-3)
is one of the infinite series of presentations proposed by Akbulut and Kirby
[1] and is the smallest for which it is not known whether it is AC-equivalent
to trivial presentation. The paper [16] discusses the implementation aspects of
the breadth-first search for AC-simplifications on high-performance computer
platform using disk-based hash tables. The approach is illustrated by success-
ful search of AC-simplifications for some known non-trivial cases. In [11] an
alternative approach for refuting the potential counterexamples based on the
methods from computational group theory was proposed. In this approach AC-
simplifications are extracted from the results produced by Todd-Coxeter coset
enumeration algorithm, by application of ad hoc techniques. The approach has
been used to find some non-trivial AC-simplifications.

Lower bound on the length of simplifications is known to be superexponen-
tial [7,14]. So the failure to deal AK-3 example by any known computational
approach should not be overestimated, we are still exploring very small part of
the huge search space.

In this paper we propose an alternative approach for testing the groups pre-
sentations as to whether they satisfy the Andrews-Curtis conjecture which is
based on use of term-rewriting systems and first-order logic. We formulate the
term rewriting system ACT for AC-transformations, and its translations into
the first-order logic. The problem of finding AC-simplifications is reduced to
the problem of proving first-order formulas, which is then tackled by the avail-
able automated theorem provers. We show that the approach is competitive
by demonstrating simplifications for a few open cases. An abstract with an
announcement of the proposed method and simplifications of known cases has
appeared in [15].

2 ACT Term Rewriting Systems

Let TG be the equational theory of groups defined by the following equations in
a vocabulary (·, r, e):

– (x · y) · z = x · (y · z)
– x · e = x
– x · r(x) = e

For each n ≥ 2 we formulate a term rewriting system modulo TG, which
captures AC-transformations of presentations of dimension n. We start with
dimension n = 2.
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For an alphabet A = {a1, a2} a term rewriting system ACT2 consists the
following rules:

–R1L f(x, y) → f(r(x), y))
–R1R f(x, y) → f(x, r(y))
–R2L f(x, y) → f(x · y, y)
–R2R f(x, y) → f(x, y · x)
–R3Li f(x, y) → f((ai · x) · r(ai), y) for ai ∈ A, i = 1, 2
–R3Ri f(x, y) → f(x, (ai · y) · r(ai)) for ai ∈ A, i = 1, 2

The term rewriting system ACT2 gives rise to the rewrite relation →ACT on
the set of all terms defined in the standard way [3]. For terms t1, t2 in groups
vocabulary we write t1 =G t2 if equality t1 = t2 is derivable in TG. We extend =G

homomorphically by defining f(t1, t2) =G f(s1, s2) iff t1 =G s1 and t2 =G s2.
Denote by [t]G the equivalence class of t wrt =G, that is [t]G = {t′ | t =G t′}.

Then rewrite relation →ACT/G for ACT modulo theory TG is defined [3] as
follows: t →ACT/G s iff there exist t′ ∈ [t]G and s′ ∈ [s]G such that t′ →ACT s′.

Claim (on formalization). The notion of rewrite relation →ACT/G captures ade-
quately the notion of AC-rewriting, as defined in Sect. 1 that is for presentations
p1 and p2 we have p1 →∗

AC p2 iff tp1 →∗
ACT/G. Here tp denotes a term encoding

of a presentation p, that is for p = 〈a1, a2 | t1.t2〉 we have tp = f(t1, t2).
The term rewriting system ACT2 can be simplified without changing the

transitive closure of the rewriting relation. Reduced term rewriting system
rACT2 consists of the following rules:

R1L f(x, y) → f(r(x), y))
R2L f(x, y) → f(x · y, y)
R2R f(x, y) → f(x, y · x)
R3Li f(x, y) → f((ai · x) · r(ai), y) for ai ∈ A, i = 1, 2

Proposition 1. Term rewriting systems ACT2 and rACT2 considered modulo
TG are equivalent, that is →∗

ACT2/G
and →∗

rACT2/G
coincide.

Proposition 2. For ground t1 and t2 we have t1 →∗
ACT2/G

t2 ⇔ t2 →∗
ACT2/G

t1,
that is →∗

ACT2/G
is symmetric.

Now we present two variants of translations of ACT2 into first-order logic
with an intention to use automated theorem proving to show AC-equivalence.

2.1 Equational Translation

Denote by EACT2 an equational theory TG ∪rACT= where rACT= includes the
following axioms (equality variants of the above rewriting rules):

E-R1L f(x, y) = f(r(x), y))
E-R2L f(x, y) = f(x · y, y)
E-R2R f(x, y) = f(x, y · x)
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E-R3Li f(x, y) = f((ai · x) · r(ai), y) for ai ∈ A, i = 1, 2

Proposition 3. For ground terms t1 and t2 t1 →∗
ACT2/G

t2 iff EACT2 � t1 = t2

Proof (sketch). By Proposition 2 t1 →∗
ACT2/G

t2 ⇔ t2 ↔∗
ACT2/G

t1. By
Birkhoff’s theorem [5,8,19] the latter condition is equivalent to EACT2 |= t1 = t2
and therefore EACT2 � t1 = t2.

In a variant of the equational translation the axioms E − R3Li are replaced
by “non-ground” axiom E − RLZ : f(x, y) = f((z · x) · r(z), y) and the corre-
sponding analogue of Proposition 3 holds true.

2.2 Implicational Translation

Denote by IACT2 the first-order theory TG ∪ rACT→
2 where rACT→

2 includes
the following axioms:

I-R1L R(f(x, y)) → R(f(r(x), y))
I-R2L R(f(x, y)) → R(f(x · y, y))
I-R2R R(f(x, y)) → R(f(x, y · x))
I-R3Li R(f(x, y)) → R(f((ai · x) · r(ai), y)) for ai ∈ A, i = 1, 2

Proposition 4. For ground terms t1 and t2 t1 →∗
ACT2/G

t2 iff IACT2 � R(t1) →
R(t2).

Similarly to the case of equational translation “non-ground” axiom I-R3Z:
R(f(x, y)) → R(f((z · x) · r(z), y)) can be used instead of I-R3Li with a corre-
sponding analogue of Proposition 4 holding true.

2.3 Higher Dimensions

For dimensions n > 2 the rewriting systems ACTn, their reduced versions
rACTn, their equational and implicational translations can be formulated such
that the analogues of Propositions 3 and 4 hold true. To cut a long story short
we show here only an equational translation rACT=

3 (“non-ground” variant):
f(x, y, z) = f(r(x), y, z) f(x, y, z) = f(x, r(y), z)
f(x, y, z) = f(x, y, r(z)) f(x, y, z) = f(x · y, y, z)
f(x, y, z) = f(x · z, y, z) f(x, y, z) = f(x, y · x, z)
f(x, y, z) = f(x, y · z, z) f(x, y, z) = f(x, y, z · x)
f(x, y, z) = f(x, y, z · y) f(x, y, z) = f((v · x) · r(v), y, z)
f(x, y, z) = f(x, (v · y) · r(v), z) f(x, y, z) = f(x, y, (v · z) · r(v)).

3 Automated Proving and Disproving for ACC
Exploration

Propositions 3 and 4 (and their analogues) suggest a way of using automated
reasoning for exploration of ACC. For any concrete pair of presentations p1 and
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p2, to establish whether they are AC-equivalent one can formulate a theorem
proving/disproving tasks of the form EACTn

� tp1 = tp2 , or IACTn
� R(tp1) →

R(tp2) (EACTn
�� tp1 = tp2 , or IACTn

�� R(tp1) → R(tp2)).
Unfortunately disproving by finite countermodel model finding has its fun-

damental limitations in the context of ACC. Based on the results of [6] it cannot
be used to disprove ACC. At the same time one can get some non-trivial results
on necessity of some of the rules for simplification, both in solved cases and
non-solved cases. For example we have:

Proposition 5. To simplify AK-3 (if at all it is possible) one really needs con-
jugation with both generators a and b.

We have used finite model builder Mace4 [17] to build countermodels of sizes
12 and 6 respectively for the cases where either of the conjugation rules was
missing.

3.1 Theorem Proving for Simplification

Known Cases. We have applied automated theorem proving using Prover9
prover [17] to confirm that all cases eliminated as potential counterexamples in
[11–13,16,18] can be eliminated by our method too.

New Cases. Using automated theorem proving we were able to eliminate the
following potential counterexamples for ACC, which are all irreducible cycli-
cally presented groups [10] whose status was open to the best of our knowledge
[9,10,13]. We use notation of [9] to refer to these examples. We also follow
the standard convention to use capital letters A,B,C . . . to denote inverse of
a, b, c, . . . respectively.

Dim = 2
T14 〈a, b | ababABB, babaBAA〉
T28 〈a, b | aabbbbABBBB, bbaaaaBAAAA〉
T36 〈a, b | aababAABB, bbabaBBAA〉
T62 〈a, b | aaabbAbABBB, bbbaaBaBAAA〉
T74 〈a, b | aabaabAAABB, bbabbaBBBAA〉

Dim = 3
T16 〈a, b, c | ABCacbb,BCAbacc, CABcbaa〉
T21 〈a, b, c | ABCabac,BCAbcba, CABcacb〉
T48 〈a, b, c | aacbcABCC, bbacaBCAA, ccbabCABB〉
T88 〈a, b, c | aacbAbCAB, bbacBcABC, ccbaCaBCA〉
T89 〈a, b, c | aacbcACAB, bbacBABC, ccbaCBCA〉

Dim = 4
T96 〈a, b, c, d | adCADbc, baDBAcd, cbACBda, dcBDCab〉
T97 〈a, b, c, d | adCAbDc, baDBcAd, cbACdBa, dcBDaCb〉
We were able to prove corresponding formulas in both equational and (vari-

ants of) implicational translations. The proofs for implicational translations are
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more transparent and more amenable for simplifying transformations extrac-
tions. The proofs generated by Prover9 for implicational translations are essen-
tially sequences of atomic formulas of the from R(r1, r2) (for Dim = 2) which
encompass simplification sequences of presentations 〈a, b | r1, r2〉. All such
atomic formulas produced with the references to the applied clauses which encode
particular rules from (AC1)–(AC3). In the Appendix we show a simplification
extracted manually from the proof for T16 (Dim = 3) presentation.

4 Conclusion

As it was noticed in [18] neither total enumeration, nor random search can be
effectively applied to disproving the Andrews-Curtis conjecture. We have shown
in this paper that systematic, goal-oriented search implemented in automated
theorem proving procedures provides an interesting and viable alternative.

Furthermore, although finite model finding can not be used directly to dis-
prove AC-conjecture, it can be a tool for establishing non-derivability for sub-
systems of transformations.

We have published all computer-generated proofs online1.

Appendix

5.1 Technical Details

We used Prover9 and Mace4 version 0.5 (December 2007) [17] and one of the
two following system configurations:

(A) AMD A6-3410MX APU 1.60 Ghz, RAM 4 GB, Windows 7 Enterprise
(B) Intel(R) Core(TM) i7-4790 CPU 3.60 Ghz, RAM 32 GB, Windows 7 Enter-

prise

Table 1. Time to prove simplifications for system configuration (B)

T14 T28 T36 T62 T74 T16 T21 T48 T88 T89 T96 97

Dim 2 2 2 2 2 3 3 3 3 3 4 4

Equational 6.02 s 6.50 s 7.18 s 24.34 s 57.17 s 12.87 s 11.98 s 34.63 s 57.69 s 17.50 s 114.05 s 115.10 s

Implicational 1.57 s 2.46 s 1.34 s 22.50 s 6.29 s 1.61 s 1.45 s 2.17 s 1.97 s 2.14 s 102.34 s 89.65 s

Implicational GC t/o t/o t/o t/o t/o 3.76 s 1.61 s t/o 0.86 s 0.75 s t/o t/o

“t/o” stands for timeout in 200s; “GC” means encoding with ground conju-
gation rules; all other encodings are with non-ground conjugation rules.

1 https://zenodo.org/record/1248986 DOI: 10.5281/zenodo.1248986.

https://zenodo.org/record/1248986
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5.2 AC-Trivialization for T16

Initial presentation:
〈a, b, c | ABCacbb,BCAbacc, CABcbaa〉

Simplification: 〈ABCacbb,BCAbacc, CABcbaa〉
x,y,z→x,y,azA−−−−−−−−−−→ 〈ABCacbb,BCAbacc, aCABcba〉
x,y,z→x,y,zx−−−−−−−−→ 〈ABCacbb,BCAbacc, aCABacbb〉
x,y,z→x,y,bzB−−−−−−−−−→ 〈ABCacbb,BCAbacc, baCABacb〉
x,y,z→x,y,zy−−−−−−−−→ 〈ABCacbb,BCAbacc, bac〉
x,y,z→x,y,czC−−−−−−−−−→ 〈ABCacbb,BCAbacc, cba〉
x,y,z→x′,y,z−−−−−−−−→ 〈BBCAcba,BCAbacc, cba〉
x,y,z→x,y,z′
−−−−−−−−→ 〈BBCAcba,BCAbacc,ABC〉
x,y,z→xz,y,z−−−−−−−−→ 〈BBCA,BCAbacc,ABC〉
x,y,z→x′,y,z−−−−−−−−→ 〈acbb,BCAbacc,ABC〉 x,y,z→x,y,z′

−−−−−−−−→ 〈acbb,BCAbacc, cba〉
x,y,z→x,y,azA−−−−−−−−−−→ 〈acbb,BCAbacc, acb〉 x,y,z→x,y,z′

−−−−−−−−→ 〈acbb,BCAbacc,BCA〉
x,y,z→x,y,zx−−−−−−−−→ 〈acbb,BCAbacc, b〉 x,y,z→x,y,z′

−−−−−−−−→ 〈acbb,BCAbacc,B〉
x,y,z→xz,y,z−−−−−−−−→ 〈acb,BCAbacc,B〉 x,y,z→xz,y,z−−−−−−−−→ 〈ac,BCAbacc,B〉
x,y,z→x,y′,z−−−−−−−−→ 〈ac, CCABacb,B〉 x,y,z→x,yz,z−−−−−−−−→ 〈ac, CCABac,B〉
x,y,z→x,y′,z−−−−−−−−→ 〈ac, CAbacc,B〉 x,y,z→x,y,z′

−−−−−−−−→ 〈ac, CAbacc, b〉
x,y,z→x′,y,z−−−−−−−−→ 〈CA,CAbacc, b〉
x,y,z→x,yx,z−−−−−−−−→ 〈CA,CAbacA, b〉 x,y,z→x,y′,z−−−−−−−−→ 〈CA, aCABac, b〉
x,y,z→x,yx,z−−−−−−−−→ 〈CA, aCAB, b〉 x,y,z→x,yz,z−−−−−−−−→ 〈CA, aCA, b〉
x,y,z→x′,y,z−−−−−−−−→ 〈ac, aCA, b〉 x,y,z→x,yx,z−−−−−−−−→ 〈ac, a, b〉
x,y,z→x,y′,z−−−−−−−−→ 〈ac,A, b〉 x,y,z→x,yx,z−−−−−−−−→ 〈ac, c, b〉
x,y,z→x,y′,z−−−−−−−−→ 〈ac, C, b〉 x,y,z→xy,y,z−−−−−−−−→ 〈a,C, b〉
x,y,z→x,yz,z−−−−−−−−→ 〈a,Cb, b〉 x,y,z→x,y′,z−−−−−−−−→ 〈a,Bc, b〉
x,y,z→x,y,zy−−−−−−−−→ 〈a,Bc, c〉 x,y,z→x,y,z′

−−−−−−−−→ 〈a,Bc,C〉
x,y,z→x,yz,z−−−−−−−−→ 〈a,B,C〉 x,y,z→x,y,z′

−−−−−−−−→ 〈a,B, c〉
x,y,z→x,y′,z−−−−−−−−→ 〈a, b, c〉
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Abstract. Data visualization and interaction with large data sets is
known to be essential and critical in many businesses today, and the
same applies to research and teaching, in this case, when exploring large
and complex mathematical objects. GAP is a computer algebra system
for computational discrete algebra with an emphasis on computational
group theory. The existing XGAP package for GAP works exclusively
on the X Window System. It lacks abstraction between its mathematical
and graphical cores, making it difficult to extend, maintain, or port. In
this paper, we present Francy, a graphical semantics package for GAP.
Francy is responsible for creating a representational structure that can
be rendered using many GUI frameworks independent from any partic-
ular programming language or operating system. Building on this, we
use state of the art web technologies that take advantage of an improved
REPL environment, which is currently under development for GAP. The
integration of this project with Jupyter provides a rich graphical envi-
ronment full of features enhancing the usability and accessibility of GAP.

Keywords: Visualization · Interaction · Graphics · Mathematics
GAP · Jupyter

1 Introduction

By providing a mechanism for quickly demonstrating a topic, or result, visual
learning has been proven effective and advantageous. It helps with engagement
and allows students to look at problems in a different way [1].

In mathematics, especially in group theory, having a graphical representation
of certain structures is invaluable when formulating conjectures and counterex-
amples, and when analyzing data. GAP is a computer algebra system (CAS)
focused on computational group theory and it helps to explore algebraic struc-
tures and solve a variety of problems [2]. The primary existing package for GAP,
which provides facilities displaying graphics and visualization of mathematical
data structures, is XGAP. This package is integrated with the Unix X-Window
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System, which provides a basic framework for a Graphical User Interface (GUI),
and includes a wide range of mathematical functionality focused on the lattice of
subgroup of a group [3]. Further such packages include Interactive Todd Coxeter
(ITC) which was developed using XGAP and provides an interactive environ-
ment for exploring coset enumerations [4]. GAP.APP is another project based
on XGAP and it provides a native Macintosh interface for GAP [5]. All of these
projects enable GAP to be used as a tool to visualize objects with computer
graphics.

Technology evolves quickly and today multiple web platforms allow users to
experience, learn, and share in a simple and fast paced environment. Jupyter
is one of these projects and, as mentioned on the official website [6], aims “to
develop open-source software, open-standards, and services for interactive com-
puting across dozens of programming languages”, leveraging learning processes
and the way people share their work. The purpose of the OpenDreamKit project
is to provide a framework for the advancement of mathematics in Europe, as
part of the Horizon2020 European Research Infrastructure, and Jupyter is a
core component of OpenDreamKit [7]. Jupyter allows a centralized system for
the dissemination of content and uses an intuitive interface where users inter-
act with notebooks containing live code, equations, visualizations and narrative
text.

Francy [8] arose from the necessity of having a lightweight framework for
building interactive graphics, generated from GAP, running primarily on the
web, primarily in a Jupyter Notebook. An initial attempt to re-use XGAP and
port it was made, but the lack of a standardized data exchange format between
GAP and the graphics renderer, and the simplistic initial requirements of the
project were the basis for the creation of a new GAP package.

2 Functionality

Francy provides an interface to draw graphics using objects. This interface is
based on simple concepts of drawing and graph theory, allowing the creation of
directed and undirected graphs, trees, line charts, bar charts and scatter charts.
These graphical objects are drawn inside a canvas that includes a space for menus
and to display informative messages. Within the canvas it is possible to interact
with the graphical objects by clicking, selecting, dragging and zooming.

In terms of interaction with the kernel, we use callbacks which allow the
execution of functions in GAP from the graphical objects. A callback holds the
function signature and any arguments that it requires. If a callback requires user
input, a modal window will be shown before the execution of the function.

3 Applications

Francy does not provide any mathematical functionality as it is intended to be
used by other mathematical software packages. Existing GAP packages can be
easily ported to use it. Francy has potentially many applications and can be
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used to provide a graphical representation of data structures, allowing one to
navigate through and explore properties or relations of these structures. In this
way, Francy can be used to enrich a learning environment where GAP provides
a library of thousands of functions implementing algebraic algorithms as well as
large data libraries of algebraic objects.

In the following code we show a simple usage of Francy to display interactively
the directed graph of all subgroups of the Symmetric Group S3, using the GAP
package Digraphs [9]:

LoadPackage("digraphs"); LoadPackage("francy");

G := SymmetricGroup(3); as := AllSubgroups(G); nodes := [];
d := Digraph(as, {H, K} -> IsSubgroup(H, K));

vertices := DigraphVertices(d); edges := DigraphEdges(d);

canvas := Canvas(Concatenation("Subgroups Digraph of ",
String(G)));

graph := Graph(GraphType.DIRECTED);
Add(canvas, graph);

customMessage := FrancyMessage(FrancyMessageType.INFO,
"Simple Groups", "A group is simple if it is nontrivial
and has no nontrivial normal subgroups.");

IsGroupSimple := function(i)
Add(canvas, simpleGroupMessage);
if IsSimpleGroup(as[i]) then

Add(canvas, FrancyMessage("Simple",
Concatenation("The vertex ", String(i),

", representing the subgroup ", String(as[i]),
", is simple.")));

else
Add(canvas, FrancyMessage("Not Simple",

Concatenation("The vertex ", String(i),
", representing the subgroup ", String(as[i]),
", is not simple.")));

fi;
return Draw(canvas);

end;

for i in vertices do
nodes[i] := Shape(ShapeType.CIRCLE, String(i));
Add(nodes[i], Menu("Is this subgroup simple?",

Callback(IsGroupSimple, [i])));
Add(graph, nodes[i]);
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od;

for i in edges do
Add(graph, Link(nodes[i[1]], nodes[i[2]]));

od;

Draw(canvas);

Fig. 1. The graphics produced by the code listing above.

4 Technical Contribution

In terms of software design, Francy follows some principles such as Separation
of Concerns and Modularity. These principles are perfectly articulated in the
Computer Science Handbook [10] “Any domain or application can be divided and
decomposed into major building blocks and components (separation of concerns).
This decomposition allows the application requirements to be further defined and
refined, while partitioning these requirements into a set of interacting components
(modularity). Changes to the application are (it is hoped) localized. In addition,
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team-oriented design and development can proceed with different team members
concentrating on particular components” (Fig. 1).

Francy consists of two main components, a GAP package that is respon-
sible for the semantic representation of graphics, and a second component, a
GUI library that is responsible for generating the actual interactive graphical
representation.

The GAP package creates a semantic representation of graphics, providing
a thin layer between GAP objects and graphical objects to be rendered. This
is done using JSON, a lightweight, text-based, language-independent data inter-
change format [11]. The semantic model follows a JSON Schema [12,13], and is
identified with the application/vnd.francy+json MIME type [14]. This creates an
abstraction and allows the development of new GUI libraries, using different data
rendering dependencies or even different programming languages, independently
of the GAP package. This package is somehow based in XGAP throughout its
application programming interface (API), but avoiding any non-GAP code. This
has been the main concern, in order to allow a smooth integration with other
GAP packages. In fact, Francy has only one dependency, the JSON package [15],
that is distributed with GAP by default, and it is needed to communicate with
Jupyter. Access to the GAP language shell (ReadEvalPrint Loop or REPL) is
abstracted and managed by a kernel [16,17].

At the moment, Francy has a JavaScript GUI library, based on d3.js [18],
for rendering the semantic representation produced by the GAP package. This
library is distributed both as a browser module and as a Jupyter extension. The
browser module can be used for displaying graphics outside a Jupyter environ-
ment or to build applications that can be integrated with GAP, for instance,
using WebSockets [19] and a web-based terminal emulator such as tty.js [20].
The Jupyter extension can be used in Jupyter Notebooks or Jupyter Lab, using
the Jupyter GAP Kernel [17] and the MIME type application/vnd.francy+json
to render the document.

5 Future Work

Many other interactive features can be implemented providing a richer learning
environment. Features such as rendering multiple topological graphs on the same
canvas would allow, for instance, easier comparison of data structures. Other
ways for users to input data would provide a more intuitive user experience.

Packages such as the Francy-Monoids [21], Subgroup Lattice [22] and the
Interactive Todd-Coxeter [23] still need to be polished and finished.

At the moment, the semantic model produced is not being validated against
the JSON Schema [12]. This can be addressed in the future by extending the
actual JSON package and implement the JSON Schema specification for valida-
tion of documents.

It would also be beneficial moving some of the processing JavaScript code
into Web Workers [24], such that rendering of huge structures does not block
the web page.
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In some cases, having a local installation of Francy could be a requirement,
and porting it to a desktop application is also possible as there are many tools
to help on this process, for instance with ElectronJS [25].
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Abstract. Our goal is to develop a high-performance code for factor-
ing a multivariate polynomial in n variables with integer coefficients
which is polynomial time in the sparse case and efficient in the dense
case. Maple, Magma, Macsyma, Singular and Mathematica all imple-
ment Wang’s multivariate Hensel lifting, which, for sparse polynomials,
can be exponential in n. Wang’s algorithm is also highly sequential.

In this work we reorganize multivariate Hensel lifting to facilitate
a high-performance parallel implementation. We identify multivariate
polynomial evaluation and bivariate Hensel lifting as two core compo-
nents. We have also developed a library of algorithms for polynomial
arithmetic which allow us to assign each core an independent task with
all the memory it needs in advance so that memory management is elim-
inated and all important operations operate on dense arrays of 64 bit
integers. We have implemented our algorithm and library using Cilk C
for the case of two monic factors. We discuss details of the implementa-
tion and present experimental timing results.

Keywords: Hensel lifting · Polynomial factorization · Cilk C

1 Introduction

Let a = fg where f and g are two irreducible polynomials in Z[x1, x2, . . . , xn].
Let α := (α2, α3, . . . , αn) ∈ Z

n−1 be an evaluation point. For a given polynomial
h ∈ Z[x1, x2, . . . , xn] let us use the notation hj = h(x1, . . . , xj , αj+1, . . . , αn) so
that a1 = a(x1, α2, . . . , αn). To factor a we first factor the image a1 over Z. With
high probability f(x1, α) and g(x1, α) will be irreducible so we obtain f1 and g1.
Next we use a process known as Multivariate Hensel Lifting (MHL) to recover
f and g from a, f1, g1. Maple, Magma, Macsyma, Singular and Mathematica all
implement Wang’s MHL from [7,8]. A complete description of Wang’s MHL may
be found in Chap. 6 of Geddes et al. [3].

The input to Wang’s MHL is a, α, f1, g1 and a lifting prime p. The evaluation
point α and prime p must satisfy gcd(f1, g1) = 1 in Zp[x1]. The algorithm lifts
the factors f1, g1 to f2, g2 then f2, g2 to f3, g3 etc. until we obtain fn, gn. At the

c© Springer International Publishing AG, part of Springer Nature 2018
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jth step we have aj − fjgj mod p = 0. At the end of this iteration we have
a − fngn mod p = 0. Thus for sufficiently large p we obtain the factorization
a = fg over Z. The reason Hensel lifting is done modulo a prime p is to avoid
an expression swell that would otherwise occur over Q.

Throughout the paper we restrict our presentation to two factors f and g
both monic in x1. We refer the reader to [3] for how to modify MHL for the non-
monic and multi-factor cases. Algorithm 1 below shows the jth step of MHL.

Algorithm 1. jth step of Multivariate Hensel Lifting for j > 1: Monic Case.
Input : p, αj ∈ Zp, aj ∈ Zp[x1, . . . , xj ], fj−1, gj−1 ∈ Zp[x1, . . . , xj−1] where
aj , fj−1, gj−1 are monic in x1 and aj(xj = αj) = fj−1gj−1.
Output : fj , gj ∈ Zp[x1, . . . , xj ] such that aj = fjgj or FAIL.

1: fj ← fj−1; gj ← gj−1.
2: error ← aj − fj gj .
3: for i = 1, 2, 3, . . . while deg(fj , xj) + deg(gj , xj) < deg(aj , xj) do
4: ci ← Taylor coefficient of (xj − αj)

i of error
5: if ci �= 0 then
6: Solve the MDP σigj−1 + τifj−1 = ci in Zp[x1, . . . , xj−1] for σi and τi.
7: (fj , gj) ← (fj + σi × (xj − αj)

i, gj + τi × (xj − αj)
i)

8: error ← aj − fj gj
9: end if

10: end for
11: if error = 0 then return fj , gj else return FAIL end if

There are two main computations in Algorithm 1, namely, the multivariate
polynomial diophantine equation (MDP) in Step 6, which typically dominates
the cost, and the multivariate multiplication of fj × gj in Steps 2 and 8. Wang’s
method for solving an MDP resembles his Hensel lifting. He first solves the
univariate polynomial diophantine equation

σi1 gj−1(x1, α2, . . . , αj−1) + τi1 fj−1(x1, α2, . . . , αj−1) = ci(x1, α2, . . . , αj−1)

using the Euclidean algorithm then recovers x2 then x3 etc. in σi and τi. For
each xj there is an iteration on the degree of xj similar to Algorithm 1. This
results in a highly serial algorithm which precludes a parallel implementation.

Wang’s solution to the MDP is exponential in j when the evaluation points
α2, α3, . . . , αj−1 are non-zero. This makes the whole Hensel lifting process expo-
nential for sparse f and g. Polynomial time algorithms were developed by Zippel
in 1981 [9], Kaltofen in 1985 [5], and Monagan and Tuncer in 2016 [6].

Let us use the notation supp(h) to denote the set of monomials appearing
in the polynomial h. Monagan and Tuncer [6] solved this exponential problem
by observing that if αj in Algorithm 1 is chosen at random from a sufficiently
large set then with high probability the monomials in σi for i ≥ 1 will be
contained in the monomials in fj−1, that is supp(σi) ⊆ supp(fj−1). Similarly,
supp(τi) ⊆ supp(gj−1) with high probability. They interpolate σi and τi by
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picking β2, . . . , βj−1 at random from Zp, computing sufficiently many images of
σik = σi(x1, β

k
2 , βk

3 , . . . , βk
j−1) and τik = τi(x1, β

k
2 , . . . , βk

j−1) for 1 ≤ k by solving
univariate diophantine equations

σik gj−1(x1, β
k
2 , . . . , βk

j−1) + τik fj−1(x1, β
k
2 , . . . , βk

j−1) = ci(x1, β
k
2 , . . . , βk

j−1)

for σik and τik in Zp[x1]. Equating coefficients we obtain linear systems. The
linear systems are Vandermonde systems which can be solved efficiently in
quadratic time and linear space – see Zippel [10]. This improves on Kaltofen’s
solution to the MDP which results in large unstructured linear systems. The
second author has installed this new approach in Maple. It will be available in
Maple 2019.

2 High Performance Considerations

Following Bernardin [1] we first reorganize the computation of ci in Algorithm 1
to avoid recomputing the entire product fj × gj . At the ith iteration of the loop
we have fj = fj−1 +

∑i−1
k=1 σk(xj −αj)k and gj = gj−1 +

∑i−1
k=1 τk(xj −αj)k and

ci = coeff(aj − fjgj , (xj − αj)i) =
aj

(i)(αj)
i!

−
i−1∑

k=1

σkτi−k

where a
(i)
j is the ith derivative of aj wrt xj . So we may write the loop in Algo-

rithm 1 as follows.
1: fj ← fj−1; gj ← gj−1; da ← deg(aj , xj); df ← 0; dg ← 0.
2: for i = 1, 2, 3, . . . while df + dg < da do
3: aj ← ∂aj/∂xj

4: ci ← aj(αj)/i! − ∑i−1
k=1 σk τi−k

5: Solve the MDP σigj−1 + τifj−1 = ci in Zp[x1, . . . , xj−1] for σi and τi.
6: if σi �= 0 set df ← i end if
7: if τi �= 0 set dg ← i end if
8: end for
9: fj ← fj−1 +

∑df
k=1 σk × (xj − αj)k

10: gj ← gj−1 +
∑dg

k=1 τk × (xj − αj)k

How can we parallelize this for a multi-core computer? We are using Cilk C
(see [2]), a parallel extension of C available with the gcc compiler. Because of the
time needed to start a Cilk process, the units of work should be of size at least 104

clock cycles, equivalently, at least 103 multiplications in Zp. Also, small units
of work must require no memory allocations, otherwise memory management
will become a parallel bottleneck. We propose to reduce the multivariate Hensel
lifting in Zp[x1, . . . , xj ] to Hensel lift bivariate images in Zp[x1, xj ]. That is we
will Hensel lift xj in

aj(x1, β
k
2 , . . . , βk

j−1, xj), fj−1(x1, β
k
2 , . . . , βk

j−1), and gj−1(x1, β
k
2 , . . . , βk

j−1).
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Algorithm 2. HenselLift1: Bivariate Hensel Lift of xj for j > 1.
Input: p, αj ∈ Zp, a ∈ Zp[x1, xj ], f0, g0 ∈ Zp[x1] where a, f0, g0 are monic in x1,
a(x1, αj)=f0 g0, gcd(f0, g0)=1 and p > deg(aj , xj).
Output : fj , gj ∈ Zp[x1, xj ] such that aj = fj gj .

1: da ← deg(a, xj); df ← 0; dg ← 0;
2: Solve sg0 + tf0 = 1 for s, t ∈ Zp[x1] using the Euclidean Alg. . . . . . . . . . . . . . . O(d2

1)
3: for i = 1, 2, 3, . . . while df + dg < da do
4: a ← ∂a/∂xj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(d1dj)
5: ci ← a(x1, xj = αj)/i! − ∑i−1

k=1 σk(x1) τi−k(x1) . . . . . . . . . . . . .O(d1dj) + O(id2
1)

6: Solve σig0 + τif0 = ci for σi, τi ∈ Zp[x1] via
7: σi ← (cis) rem f0; τi ← (ci − σig0) quo f0 . . . . . . O(d1 deg(f0, x1)) ⊂ O(d2

1)
8: if σi �= 0 then df ← i end if
9: if τi �= 0 then dg ← i end if

10: end for
11: We have fj = f0 +

∑df
i=1 σi(x1)(xj − αj)

i and gj = g0 +
∑dg

i=1 τi(x1)(xj − αj)
i.

12: return [f0, σ1, . . . , σdf ] and [g0, τ1, . . . , τdg]

Algorithm 2 is our main unit of work. The complexity estimates on the right
count arithmetic operations in Zp. Here d1 = deg(a, x1) and dj = deg(a, xj).

In Algorithm 2 the loop runs to either df = deg(fj , xj) or dg = deg(gj , xj),
whichever is greater. Now since df + dg = dj the most expensive step is the
sum of products Σ =

∑i−1
k=1 σi(x1) τk−i(x1) in Step 5 which costs

∑dj

i=1 O(id21) ∈
O(d2jd

2
1) in total. This is the same cost as Bernardin obtains in [1] for two factors.

To reduce the cost of Step 5 consider evaluating then interpolating x1 as follows.

5 Evaluate σil ← σi−1(l) and τil ← τi−1(l) for 0 ≤ l ≤ d1.
for l = 0 to d1 do cil ← ∑i−1

k=1 σkl × τ(i−k)l end for
Interpolate Σ(x1) from values {(l, cil) : 0 ≤ l ≤ d1}.
ci ← a(x1, xj = αj)/i! − Σ(x1).

Notice that the values σil and τil are reused in subsequent iterations. Using
Horner’s method for evaluation and Newton interpolation the cost of Step 5
becomes O(d21) + O(id1) + O(d21) + O(d1dj) and the total cost of Algorithm
2 is now O(d21dj + d1d

2
j ). The only new requirement is that p > d1. Note, if

deg(f0, x1) > deg(g0, x1) then one may either interchange f0 and g0 or use
τi ← (cit) rem g0 and σi ← (ci − τif0) quo g0 to minimize the cost of Step 7.

2.1 Implementation of HenselLift1

In Algorithm 2 there are univariate operations in Zp[x1] and bivariate opera-
tions in Zp[x1, xj ]. For a high performance implementation we have designed
a library of polynomial arithmetic for Zp[x1] and Zp[x1, . . . , xn]. The data
structure for Zp[x1] is just a dense array of coefficients. For Zp[x1, . . . , xn]
we use a sparse representation. We encode, e.g., the trivariate polynomial∑t

i=1 aiMi(x1, x2, x3) as two arrays of integers A = [a1|a2| . . . |at] and the mono-
mials X = [M1|M2| . . . |Mt] also stored as an array of integers, that is, each
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monomial xi
1x

j
2x

k
3 in X is stored as the 64 bit integer 242i + 221j + k. Each sub-

routine in our library has inputs which are either integers or arrays of integers
or arrays of arrays of integers. The arrays may be for inputs, outputs, and, if
needed, temporary storage. For example, in Step 7 the multiplications cis and
σig0 are done using the C routine

# define LONG long long int // 64 bit signed C integer

int polmul64s( LONG *A, LONG *B, LONG *C, int da, int db, LONG p );

Here da = deg(a, x), db = deg(b, x), the coefficients of a(x) and b(x) are
stored in the arrays A and B. The product c(x) = a(x)b(x) mod p is computed
in the array C which must be an array of size at least da + db + 1.

As a second example, in Step 4 we differentiate a(x1, xj) with respect to xj by
calling the routine poldiff64s(A,X, t, 2, 2, p) below. Here a(x1, xj) is input in
the arrays (A,X) and the routine overwrites (A,X) with the derivative ∂a/∂xj .

int poldiff64s( LONG *A, LONG *X, int t, int n, int j, LONG p ) {

// diff(a,x[j]): a is stored as pair (A,X) with t terms in n variables

// compute result in (A,X) and return the number of terms

To implement Algorithm 2 we first coded it by allocating space for the poly-
nomials in Algorithm 2, so including space for σ1, . . . , σdf for example. Then
we make all polynomials parameters of HenselLift1 so that Algorithm 2 does
not allocate any new memory. This is possible because all polynomials have
bounded degree. The resulting code will be called on many inputs in parallel
and the temporary space can be reused.

2.2 Reduction from Multivariate to Bivariate Hensel Lifting

Algorithm 3 describes how we reduce Hensel lifting of xj in fj−1, gj−1 to many
bivariate Hensel lifts of xj . When we implemented Algorithm 3 we tested it on
polynomials f and g with 100−8000 terms in n = 6−15 variables of degree 7. We
observed that almost all the time was spent evaluating aj at Yk in step 8. In the

Fig. 1. Homomorphism diagram depicting our evaluation/interpolation strategy
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next section we discuss how we implement evaluation and how we parallelized it.
Here we point out that if instead of evaluating out x2, . . . , xj−1 we evaluate out
x3, . . . , xj−1, and thus interpolate the σi and τi from bivariate images in x1, x2,
then we likely reduce the number of evaluations s thus leading to a speedup. We
describe what we have implemented using a homomorphism diagram.

Algorithm 3. Hensel Lift xj

Input: Prime p, αj ∈ Zp, Monic polynomials aj ∈ Zp[x1, . . . , xj ] fj−1, gj−1 ∈
Zp[x1, . . . , xj−1] with j > 2, s.t. aj(x1, . . . , xj−1, αj) = fj−1gj−1.

1: Let fj =
∑df

i=0 σi(x2, ..., xj−1)x
i
1 where σi =

∑si
k=1 aikMik where xi

1Mik are the
monomials in supp(fj−1) and df = deg(fj−1, x1).

2: Let gj =
∑dg

i=0 τi(x2, ..., xj−1)x
i
1 where τi =

∑ti
k=1 bikNik where xi

1Nik are the
monomials in supp(gj−1) and dg = deg(gj−1, x1).

3: Set s = max(si, ti).
4: Pick (β2, . . . βj−1) ∈ Zp at random.
5: Compute monomial evaluation sets

{Si = {mik = Mik(β2, . . . , βj−1) : 1 ≤ k ≤ si} : 0 ≤ i ≤ df} and
{Ti = {nik = Nik(β2, . . . , βj−1) : 1 ≤ k ≤ ti} : 0 ≤ i ≤ dg}.
If any |Si| �= si or any |Ti| �= ti try a different choice for (β2, . . . , βj−1).
If this fails return FAIL(1). (p is not big enough)

6: for k from 1 to s in parallel do (Compute univariate images of σi and τi )
7: Let Yk = (x2 = βk

2 , . . . , xj−1 = βk
j−1).

8: Evaluate: ak, f0, g0 ← aj(x1, Yk, xj), fj−1(x1, Yk), gj−1(x1, Yk).
9: if gcd(f0, g0) �= 1 return FAIL(2) (an unlucky evaluation)

10: Call HenselLift1(p, αj , ak, f0, g0) to compute σik(x1) and τik(x1) such that
ak − fkgk = 0 where fk =

∑df
i=0 σik(xj − αj)

i and gk =
∑dg

i=0 τik(xj − αj)
i.

11: end for
12: for i from 0 to df do
13: Construct and solve the si × si linear system

{
si∑

k=1

aik mn
ik = coefficient of xi

1 in σin(x1) for 1 ≤ n ≤ si

}

for the coefficients aik of σi(x2, . . . , xj−1). Because it is a Vandermonde system in
mik which are distinct by Step 5 it has a unique solution.

14: end for
15: Do the same for the ti × ti linear systems to solve for the coefficients bik of the τi.
16: Substitute the solutions for aik into fj and bik into gj and return( fj , gj ).

In Fig. 1 the reader will see two Hensel lifting steps which represent two
possible ways of computing fj(x1, x2, β

k, xj) and gj(x1, x2, β
k, xj). In the first

way (the top Hensel lift) the diophantine equations σig0 + τif0 = ci in Step 6
of Algorithm 2 are in Zp[x1, x2] thus bivariate. One can solve these using dense
evaluation and interpolation of x2 in O(d21d2 +d1d

2
2) arithmetic operations in Zp

where d2 = deg(aj , x2). See Monagan and Tuncer [6].
We coded this approach in Maple as an experiment and found that the most

expensive computation is the sum of products Σ =
∑i−1

k=1 σk(x1, x2)τi−k(x1, x2)



High-Performance Multivariate Hensel Lifting 365

in Step 5 of Algorithm 2 which are now bivariate multiplications which cost
O(id21d

2
2). To reduce this cost, we experimented with evaluating and interpolating

x2 which is described by the bottom Hensel lift in Fig. 1. So the number of
univariate images fj(x1, γl, β

k, xj), gj(x1, γl, β
k, xj) needed to interpolate x2 is

max(deg(fj , x2),deg(gj , x2)) < deg(aj , x2) = d2. In our current implementation
we have parallelized the computation of the Hensel lifts of these images.

2.3 Parallelizing Evaluation

We describe how we parallelize the evaluations in Step 8 of Algorithm 3. Let
aj = (A,X) where the monomials in X are sorted in lexicographical order with
x1 > x2 > · · · > xj . We first sort the monomials into x1 > xj > x2 > · · · >
xj−1. Now when we evaluate aj(x1, xj , β

k
2 , . . . , βk

j−1) the evaluated monomials
will be sorted on x1 > xj . Let aj =

∑t
i=1 aix

di
1 xei

j Mi(x2, . . . , xj−1). Let A =
[a1, a2, . . . , at] be the array of coefficients, mi = Mi(β2, . . . , βj−1) and B =
[m1,m2, . . . ,mt] be the array of monomial evaluations and let Y be the array of
monomials [xd1

1 xe1
j , . . . , xdt

1 x
ej
j ]. If we initialize C0 := A = [a1, . . . , at] and define

Ck = [a1m
k
1 , . . . , atm

k
t ] then we have

aj(x1, xj , β
k
2 , . . . , βk

j−1) =
t∑

i=1

aim
k
i x

di
1 xei

2 =
t∑

i=1

CkiYi

and we can compute Ck+1 from Ck and B using t multiplications with

Ck+1 ← [B1 × Ck1, . . . , Bt × Ckt] = [a1m
k+1
1 , . . . , atm

k+1
t ]

Then we assemble the result from
∑t

i=1 Ck+1,iYi which requires adding coeffi-
cients of equal monomials in x1, xj . Since the monomials in Yi are already sorted
on x1 > xj this is O(t). Thus the total number of multiplications needed is st
plus those needed to compute m1, . . . ,mt.

Our first attempt to parallelize this for N cores was to do N evaluations at a
time as done by Hu and Monagan in [4]. First compute C1, C2, . . . , CN and the
array Γ = [mN

1 ,mN
2 , . . . ,mN

t ]. To obtain the next N evaluations in parallel, on
the kth core compute Ck+N ← [Ck1×Γ1, . . . , Ckt×Γt] = [a1m

k+N
1 , . . . , atm

k+N
1 ].

One problem with this approach is that we require #a words of memory for each
C1, . . . , CN . For one of our benchmark problems where #a = 64, 000, 000 this is
about a half a gigabyte per core. Another problem is that we did not obtain full
parallel speedup on our 16 core computer as the computation becomes memory
bound when #a is this large. The following works.

Split aj = (A,X) into N blocks of size t/N terms. Each core evaluates a block
of aj at βk+1 which must be combined later. Numbering the cores 0, 1, . . . , N −1
core c computes Ckl × Bl for c�t/N	 < l ≤ (c + 1)�t/N	. We found that we
obtained a 20% improvement by also computing the evaluation βk+2 at the
same time so that we compute two evaluations at a time.
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3 Experimental Results

We give two sets of experimental results. The first set (see Table 1) is for poly-
nomials in many variables with relatively low degree. Here, evaluation of aj is
the bottleneck in our method – the time spent Hensel lifting images is negligible.
The second set (see Table 2) is for polynomials with higher degree where Hensel
lifting becomes the bottleneck. All experiments were performed on a server with
two Intel E5-2660 8 core CPUs running at 2.2 GHz (base) and 3.0 GHz (turbo)
hence the maximum theoretical parallel speedup is a factor of 16.2/3.0 = 11.7.

In Tables 1 and 2 the factors f and g are of the form xd
1 +

∑t
i=2 ai

∏n
j=1 x

eji
j

where the coefficients ai are chosen randomly from [1, 999] and the exponents eji
randomly from [0, d − 1]. The timings are for Hensel lifting xn the last variable
only, which is always most of the time. The quantity s in column 4 is the num-
ber of images needed to interpolate x3, . . . , xn in Fig. 1. Table 1 shows we achieve
very good parallel speedup for evaluations. To obtain the parallel speedups for
the Hensel lifting in Table 2 we needed to parallelize the evaluations and inter-
polations of x2 in Fig. 1 as well as the Hensel Lifts.

For Maple we report two timings. The first is the best case of Wang’s method
where the evaluation points α2, . . . , αn are all 0. To obtain this timing we forced
Maple to use x1 as the main variable (by default, it chooses a variable of least
degree) and we added a constant to f and g as Maple requires that the leading
and trailing coefficient in x1 not vanish at α. The second timing is the worst
case for Wang’s method where all evaluation points are non-zero. It is the actual
timing for Maple on these inputs.

Table 1. Timings (real time in seconds) for increasing n and t. NA = not attempted.

n d t s New times (1 core) New times (16 cores) Maple 2018

Total (hensel) (eval) Total (hensel) (eval) Best Worst

6 7 500 18 0.098 (0.015) (0.042) 0.074 (0.019) (0.008 – 5.2x) 0.411 28.84

6 7 1000 30 0.414 (0.025) (0.247) 0.180 (0.027) (0.030 – 8.2x) 1.140 58.46

6 7 2000 47 1.593 (0.041) (1.132) 0.285 (0.042) (0.121 – 9.4x) 3.066 99.88

6 7 4000 81 5.072 (0.069) (4.070) 0.814 (0.074) (0.380 – 10.7x) 7.173 162.49

6 7 8000 145 12.75 (0.122) (10.95) 1.896 (0.130) (0.939 – 11.7x) 15.61 NA

9 7 500 16 0.105 (0.013) (0.040) 0.101 (0.024) (0.010 – 4.0x) 1.171 7564.9

9 7 1000 29 0.524 (0.025) (0.297) 0.233 (0.026) (0.030 – 11.4x) 3.704 10010.4

9 7 2000 50 2.838 (0.042) (1.973) 0.483 (0.045) (0.193 – 10.2x) 13.43 NA

9 7 4000 93 18.35 (0.078) (14.84) 2.325 (0.083) (1.350 – 11.0x) 51.77 NA

9 7 8000 164 116.6 (0.139) (102.5) 11.50 (0.145) (7.947 – 12.9x) NA NA
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Table 2. Timings (real time in seconds) for increasing degree.

n d t s New time (1 core) New time (16 cores) Maple 2018

Total (hensel) (eval) Total (hensel) (eval) Best Worst

6 10 500 10 0.099 (0.029) (0.025) 0.081 (0.024 – 1.2x) (0.006) 0.571 92.49

6 15 500 6 0.134 (0.070) (0.016) 0.093 (0.034 – 2.1x) (0.006) 0.751 7956.5

6 20 500 5 0.238 (0.168) (0.017) 0.130 (0.065 – 2.6x) (0.005) 0.919 48610.1

6 40 500 3 1.207 (1.128) (0.015) 0.282 (0.203 – 5.6x) (0.006) 1.615 NA

6 60 500 3 4.580 (4.486) (0.015) 0.732 (0.631 – 7.1x) (0.011) 3.343 NA

6 80 500 3 13.76 (13.65) (0.016) 1.674 (1.554 – 8.8x) (0.012) 4.485 NA

6 10 2000 30 1.775 (0.089) (1.067) 0.374 (0.055 – 1.6x) (0.121) 5.237 976.94

6 15 2000 18 1.616 (0.221) (0.706) 0.413 (0.107 – 2.1x) (0.061) 7.166 23128.5

6 20 2000 12 1.635 (0.451) (0.480) 0.431 (0.150 – 3.0x) (0.040) 9.195 NA

6 40 2000 6 4.008 (2.993) (0.260) 0.854 (0.505 – 5.9x) (0.038) 15.98 NA

6 60 2000 6 14.25 (13.15) (0.292) 1.926 (1.500 – 8.8x) (0.052) 42.32 NA

6 80 2000 4 26.34 (25.25) (0.217) 3.340 (2.839 – 8.9x) (0.050) 57.33 NA

4 Implementation Notes and Cilk C

We end with some comments about programming in Cilk C. Cilk has a very
simple task model. One starts a new task using the spawn directive. Typically
one creates several tasks in a C for loop inside a C function. One may wait for all
the tasks started inside the function to complete using the Cilk sync; directive.
And that’s essentially it! We had few problems with Cilk. But ...

Coding in Cilk C basically means we are coding in C where we must manage
the memory needed for every polynomial operation. Naively calling malloc and
free in every subroutine will ruin parallel performance and degrade serial per-
formance. Having to manage memory greatly increases coding effort. To reduce
memory allocations we re-designed many algorithms to run in-place, that is, to
require no additional memory.

It was very hard work getting an algorithm that took about two days to code
in Maple to work in Cilk C. In C there is no array bounds checking. Incorrect
memory references result in corrupted data which is difficult to track down.
Maintaining an identical version of the code in Maple is helpful here. What we
would find helpful is to code in C++ using the array data type, which does
not support bounds checking, but have some tool for automatically converting
arrays to C++ vectors where array bounds checking is available.

The data structure we use for multivariate polynomials assumes monomials
can be packed into a 64 bit integer which limits the degree and number of
variables that our software can handle. To accommodate more variables we plan
to use the 128 bit integer type available in gcc, thus doubling the number of
variables of a given degree that we can handle.
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Abstract. We consider the use of Quantifier Elimination (QE) technol-
ogy for automated reasoning in economics. There is a great body of work
considering QE applications in science and engineering but we demon-
strate here that it also has use in the social sciences. We explain how
many suggested theorems in economics could either be proven, or even
have their hypotheses shown to be inconsistent, automatically via QE.

However, economists who this technology could benefit are usually
unfamiliar with QE, and the use of mathematical software generally. This
motivated the development of a Mathematica Package TheoryGuru,
whose purpose is to lower the costs of applying QE to economics. We
describe the package’s functionality and give examples of its use.

Keywords: Quantifier elimination · Economic reasoning

1 Introduction

A general task in economic reasoning is to determine whether, with variables
v = (v1, . . . , vn), a hypothesis H(v) follows from assumptions A(v), i.e. is it
the case that ∀v . A ⇒ H? Ideally the answer would be True or False, but in
practice life is more complicated: the answer could differ depending on the value
of v; or the assumptions could even be contradictory, i.e. A(v) alone is False.

We can categorise these possibilities via the outcome of a pair of quantified
statements (Table 1). Should technology provide any one automatically then
an economist gains important information: either a proof or a disproof of her
theory; or an identification of where her theory may be true (a description of
{v : A(v) ⇒ H(v)}); or the knowledge that her assumptions contradict.

Such technology could also allow for exploration. An economist could vary
the question: the assumptions generating a True result can be weakened, or those
generating a Mixed result strengthened, by quantifying more or less of v.

c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 369–378, 2018.
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Table 1. Possible outcomes from a potential theorem ∀v . A ⇒ H

¬∃v[A ∧ ¬H] ∃v[A ∧ ¬H]

∃v[A ∧ H] True Mixed

¬∃v[A ∧ H] Contradictory assumptions False

For example, we can partition v into v1,v2 and ask for {v1 : ∀v2 . A(v1,v2) ⇒
H(v1,v2)}. The result is a formula in the free variables v1 that weakens or
strengthens the assumptions. If generated automatically the economist gains
information about how to reformulate assumptions that justify her hypothesis.

1.1 Quantifier Elimination

Such problems fall within the framework of Quantifier Elimination (QE): the
generation of an equivalent quantifier-free formula from one that contains quan-
tifiers. QE is known to be possible over real closed fields thanks to the seminal
work of Tarski [17]. Practical implementations followed with Collins’ Cylindrical
Algebraic Decomposition [4] and Weispfenning’s Virtual Substitution [18]. There
are modern implementations of QE in many computer algebra systems.

QE has found many applications within engineering and the life sciences.
Recent examples include: the derivation of optimal numerical schemes [5], weight
minimisation for truss design [3], and biological network analysis [1]. However,
applications in the social sciences are lacking (the nearest we can find is [8]). On
the few occasions when QE has been mentioned in economics it has been dis-
missed as infeasible, e.g. “something that is do-able in principle, but not by any
computer that you and I are ever likely to see” [12]. But that dismissal is based
on theoretical complexity results rather than experience with actual software
applied to actual economic reasoning. Many meaningful economics problems
can be studied with modern QE implementations1, with the barrier to further
use acceptance by the community, and experience with the software.

1.2 A New Mathematica Package TheoryGuru

This motivated the development of a new tool to aid the application of QE to
economics: a package called TheoryGuru to run in the Mathematica computer
algebra system [19]. This is able to parse input from economists, run some error
and sanity checks, and then utilise Mathematica’s QE tools and offer inter-
pretations of the results. These QE tools are accessed by the Mathematica
Resolve command with some of the underlying algorithms described in [13–16].
The paper proceeds in Sect. 2 by introducing the functionality of TheoryGuru.
Then in the remaining sections we describe examples of its use.

1 A dataset of 45 economic reasoning examples that may be tackled with QE technol-
ogy is available here: https://doi.org/10.5281/zenodo.1226892.

https://doi.org/10.5281/zenodo.1226892
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2 Functionality

2.1 Main Functionality

The purpose of TheoryGuru is to lower the costs of applying QE to economics.
Hence it assumes the expression of reasoning in the format traditional to the
field: as a conclusion to be possibly deduced from a set of assumptions.
The core functionality of TheoryGuru is then as follows:

Check for errors: Provide warnings on likely typographical errors in variables
(e.g., when a variable appears only once in the entire formula) or formula
structure (e.g. the user may have confused = with ==).

Parse input: This includes identifying from context whether a variable is a
vector, scalar, or boolean; processing input given in a pretty mathematical
notation (e.g. derivatives) into a format accepted by Resolve; standardiz-
ing dot products and integrals (e.g., distribute plus and alphabetically sort
arguments of commutative operators).

Adding standard assumptions: If dot products are present, then add to user
assumptions the necessary and sufficient conditions for the Gramian matrix
(representing dot products for all pairs of vectors) to be positive semi-definite.
This rules out vectors with imaginary elements.

Check assumptions: The package will next check that the assumptions pro-
vided are not mutually contradictory: the situation of the bottom left entry
in Table 1. This is done via a call to Resolve to check there is at least one
solution to A(v) − a fully existentially quantified QE sub-problem.

Form main QE input: Automatically assemble the two Tarski formulae for
the main calls (as given in Table 1).

Make algorithm choices: Currently this refers to (a) whether to process a
universal or existential sentence and (b) the variable ordering determining
the sequence for eliminating quantifiers. It is well known that the choice (b),
while not affecting the correctness of the output, can have a large effect on
computational resources required [6].

Output interpretation: Then after making the two calls to Mathematica’s
Resolve, the package interprets the results by identifying the relevant cell
from Table 1. The package also suggests what to do next: e.g., when appli-
cable, show a counterexample, solve simultaneous equations appearing in the
assumptions, or redo the QE with some free variables.

2.2 Access and Documentation

To access TheoryGuru the reader will need a modern version of Mathematica2

and then installation follows from simply running the command:
Get[“http://economicreasoning.com”] which produces an interface as in Fig. 1.
Not only does this install the underlying code, it also provides links to tutorials,
2 The Resolve function has evolved and improved over the years and so the perfor-

mance of TheoryGuru will alter correspondingly.

http://economicreasoning.com
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tips, help and a large bank of examples (as shown in Fig. 1). The examples
are also available online at http://examples.economicreasoning.com/ as both
interactive Mathematica notebooks and static pdfs.

Fig. 1. Initial load screen of TheoryGuru

The main functionality is accessed via the function TheoryGuru which
requires two arguments: a collection of assumptions and a hypothesis.

3 Examples of TheoryGuru Use

3.1 Tax Incidence

Our first, admittedly simple, Tax Incidence example is about the effect of a tax
on buyers and sellers in a market. Each transaction involves the buyer paying
price to the seller in addition to paying tax to the government. The symbolic
functions demand(.) and supply(.) represent the quantities that buyers pur-
chase and sellers sell, respectively, as a function of the price they pay or receive
(so for the buyer that includes the tax). A market equilibrium price has the
quantity demanded equal to the quantity supplied. The equilibrium condition
can be input to Mathematica as shown in the top cell of Fig. 2, which assigns
the condition the natural language name Equilibrium.

Fig. 2. Tax Incidence example in TheoryGuru

The first argument of the call to TheoryGuru in the second cell of Fig. 2 is a
set of assumptions. The first of these is that changing the tax changes the market
from one equilibrium to another3. The remaining two constrain the slope of the
3 The notation is consistent with an economist saying that she “totally differenti-

ates the equilibrium condition”. This differentiation is automatically performed by
Mathematica when the TheoryGuru function is evaluated.

http://examples.economicreasoning.com/
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demand and supply curves in the neighborhood of the market equilibrium. The
second argument is the hypothesis the user wishes to test, in this case whether
the price impact is negative or zero.

The call causes TheoryGuru to automatically assemble Tarski formulae,
in which it recognizes demand’(price+tax) and supply’(price) as partially
interpreted functions [7, p. 73]. Following the generic format presented above,
there are two QE problems for TheoryGuru to consider: the existence of an
example and the existence of a counterexample. Here the output is simply True
because there is no counterexample: i.e., no way to have a positive price impact
while satisfying the assumptions.

Fig. 3. The TheoryGuru dashboard

When TheoryGuru evaluates, a dashboard (Fig. 3) appears summarizing the
calculation and offering the user possible next steps. In the tax incidence exam-
ple, the user may be wondering what else can be concluded about the price
impact. The button labelled “Deduce univariate hypotheses” on the dashboard
serves this purpose. Pressing it automatically generates a call to the function
TheoryPossibilities as shown in Fig. 4. Here, one or more free variables are
provided by the user, or else variables are chosen by the software (giving pri-
ority to total derivative variables and alphabetical order). The assumptions are

Fig. 4. TheoryPossibilities call from dashboard button to propose new hypothesis
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then projected on each of the free variables separately (eliminating existential
quantifiers from all variables except that one), with the resulting formulae sim-
plified. In this example we discover the price impact must be strictly between −1
and 0.

Users can be forgetful or have an imperfect understanding of an economic
model. In the top cell of Fig. 5 no definitive conclusion about price impact is
reached because the user has forgotten to constrain the supply curve’s slope.

Fig. 5. Example use of TheorySufficient to recommend additional assumptions

The forgotten assumption can be discovered with TheorySufficient. It
assembles the formula A ∧ ¬H defining counterexamples. It then projects that
set on each of the axes (three in this example). It then shows the disjunction of
each formula, after each is simplified based on the assumptions and then negated.
Here two formulae are discarded because they are False or identical to H. The
third is the missing supply-slope restriction output in the second cell of Fig. 5.
Note that, by construction, any of TheorySufficient’s disjunction branches,
together with the user’s (insufficient) assumptions, imply the user’s hypothesis.

3.2 Gender Wage Gap

We now look at a more involved Gender Wage Gap example that studies the
effect of wage inequality on women’s supply of human capital to the market.
Women are assumed to have (possibly correlated) skills h and r in market work
and non-market activities, respectively. These skills have a population distribu-
tion modelled with the joint density function f(h, r), which is normalized to have
unconditional means of zero. Women work if and only if their non-market log
wage r + μr is less than σh + μw, their market log wage. It follows that mean
non-market and market log wages are μr and μw, respectively. The employment

Fig. 6. Defining variables for the Gender Wage Gap example
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rate of women is p(σ, μw −μr) as defined in the top cell of Fig. 6, and the average
skill in the market is S(σ, μw − μr) as defined in the next cell.

In [11] the Gaussian model is used to show how wage inequality, as modelled
by σ, affects the average skill in the market. However, the selection rule result –
that is, the effect of σ on S holding constant p by varying μr – does not require
the Gaussian assumption. To show this, we define z to be any change in σ and
μr that increases σ and holds p constant, as defined in the third cell of Fig. 6
(DefineExperiment). Figure 7 then assigns natural language to two definitions
(top and bottom cells) as well as restrictions on partially interpreted functions
(middle cell). The top cell of Fig. 8 shows that a positive skill impact can be
deduced from the assumed properties of the partially interpreted functions. In
economics terms: inequality increases the average skill that women supply to the
market, thereby narrowing the measured wage gap with men.

Fig. 7. Further definitions and restrictions to the Gender Wage Gap example.

Fig. 8. Evaluating the Gender Wage Gap example

At first glance, the gender wage gap example appears to involve integrable
probability density functions rather than the scalar variables required by the QE
algorithms employed by Mathematica’s Resolve function. But the reasoning in
this and many other examples depends on the probability density functions only
as they are summarized by various scalars. TheoryGuru automatically discovers
these scalar variables, which can be viewed by the user who clicks “Show space”
on TheoryGuru’s dashboard. The result of that click is the last cell of Fig. 8.

4 Run Times

Figure 9 shows the run times for several of the function calls shown above. As
explained, each evaluation involves preparation of a QE problem for Mathe-
matica’s Resolve function, followed by that QE call. The cell numbers refer to
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those used by Mathematica in the screen shots above. The figure’s first run
time column is for the entire evaluation of the TheoryGuru command. The next
column shows, when applicable, the amount of time it took for just the “univer-
sal” QE regarding the existence of a counterexample. The final column is the
amount of time it took for just the “existential” QE regarding the existence of
an example (the faster QE for calls that have no counterexamples).

Fig. 9. Run times for several examples

In order to explore the limits of the software, we consider queries regard-
ing the concavity of quasiconcave production functions, whose economics and
algebra we discuss in [10]. The three-input version evaluates in less than two
seconds. The four-input version is considerably more complicated, and evaluates
in about eight minutes primarily because of a long search to find a relatively
efficient order for eliminating quantifiers4. The problem can be solved more ele-
gantly with vectors, with a quicker run time as shown in the final row (see
also [9]).

5 Final Thoughts

We have demonstrated how economic reasoning may be automated using QE pro-
cedures and how the TheoryGuru tools greatly reduce the costs to an economist
of accessing that technology. We note that a set of benchmark examples that

4 It is once that order is obtained that the corresponding QE needs only 8.89 s.
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originate from economics and may be tackled with QE is now available at
https://doi.org/10.5281/zenodo.1226892 and described in [10]. Future work will
involve considering how the underlying QE technology could be optimised for
such examples, whose structure is often not well represented in the broader QE
literature.
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Abstract. CindyJS is a system which enables researchers and learners
to interactively handle mathematical models on browsers. Though the
enhancement of mathematical user interfaces is widely anticipated and
promoted so that mathematical models can be handled via familiar web
and mobile devices, it seems that the resulting realities and benefits have
not yet been fully investigated. In particular, for educational use, more
precise knowledge about them will likely help maximize the effect of
using newly developed systems. This research is mainly concerned with
the comparison between individual use and group use of CindyJS content
on tablets. It can be assumed that, in the case of group use, communi-
cation between members would give some influence on the strategy of
their handling of mathematical models. To investigate how members of a
group influence each other’s handling of mathematical models when using
CindyJS, we tracked some characteristic quantities from the recorded
processes of users’ operations. Through statistical analysis (approxima-
tion with finite mixture of beta distributions) of the quantities derived
from the cases of individual use and group use respectively, it can be
shown that the difference between these two cases is visualized and the
above mentioned influence is illustrated.

Keywords: Cinderella · CindyJS · Web and mobile devices
Finite mixture of beta distributions · Influence of users’ communication

1 Introduction

Some previous researches illustrate that interactive operations on mathematical
models can lead human beings to be creatively engaged in mathematical rea-
soning [1,2]. For instance, though almost all of the science-major students are
taught the knowledge about Maclaughlin expansion,

f(x) = f(0) + f ′(0)x +
f ′′(0)

2
x2 +

f ′′′(0)
6

x3 + · · ·

it is not necessarily easy for them to fully and accurately grasp the concept of an
infinitesimal of higher order without interactively moving the graphs of approx-
imating functions. Dynamic geometry software is the most appropriate tools for
c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 379–388, 2018.
https://doi.org/10.1007/978-3-319-96418-8_45
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such purposes since they enable us to generate mathematical objects (like points,
lines, circles, function graphs, and areas) and move them by interactively con-
trolling the variables on a PC screen by clicking on them or dragging them with
a mouse. Using Cinderella (https://cinderella.de) [3] which is one of the most
popular dynamic geometry software systems, we can visualize those graphs and
move them on a graphical user interface (Cinderella screen) as in Fig. 1. Here
the blue curve is the graph of the function y =

√
x + 1 and the red curve is

the graph of the function y = a + bx + cx2 + dx3. The coefficients a, b, c, d are
interactively determined by dragging the red points in the blue segments. Also,
as the red point for each coefficient is dragged along the slider, their values at
each position are displayed on the screen. The shape of the red curve changes
according to the specified values of a, b, c, d. When we click the button “RESET”
on the screen, the graph returns to the initial state in which a = b = c = d = 0.

While the underlying technology of Cinderella is Java, the extension named
CindyJS (https://cindyjs.org) is being developed so that the resulting mathe-
matical content can be exported in the format of plugin-less web technology like
JavaScript, HTML5 and WebGL [4–6]. Using CindyJS, we can generate math-
ematical content which can be used not only on PCs but also on familiar web
and mobile devices. Once Cinderella content is generated, we can easily export
it to CindyJS. In fact, we only need to choose “Export to CondyJS” from the
file menu in the Cinderella screen and the program does the rest. Figure 2 shows
the image of content generated by CindyJS as displayed via Google Chrome.

Fig. 1. Cinderella screen (Color figure
online)

Fig. 2. Exported CindyJS content
(Color figure online)

The content can also be displayed via any ordinary web browser like Safari or
Internet Explorer. The movement on the screen is the same as that of Cinderella
content except that objects are moved by users’ finger strokes instead of their
mouse operations. A more detailed description of the procedure to generate and
use CindyJS content has been given in [7].

From the viewpoint of mathematical user interfaces, not only the mathemat-
ical notions which users can understand but also the procedure in which those
notions are understood through their handling mathematical models is crucial.

https://cinderella.de
https://cindyjs.org
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In the case when a group of users moves CindyJS content on a single tablet,
the way they handle the model is most likely influenced by the communication
between members of the group which cannot occur in the case of individual use.
Therefore, the answers to the following two questions should be the fundamental
knowledge for further developments of mathematical user interfaces.

1. How can the difference in the procedure of users’ operations between group
use and individual use be visualized?

2. How can that difference be analyzed so that the above mentioned influence
can be illustrated?

In this paper, the authors show the methods and results of their attempts
to give some answers to these questions by conducting an experiment with 25
individual and 25 group subjects. In this experiment, the subjects moved the
CindyJS content in Fig. 2 on iPads and their operating procedures were detected
through ethnomethodological study. The relative frequencies of their moving
lower order coefficients during some specific intervals were tracked. These ratios
were used as the characteristic quantities for visualizing the difference between
individual use and group use. The resulting distributions of these quantities
were statistically summarized in terms of the approximation with finite mixture
of beta distributions [8,9].

2 Methods

The authors recruited first grade (19 years old) students from their university as
subjects. Their major is not mathematical science but pharmaceutical science.
Twenty five students were chosen randomly as subjects for individual use. The
remaining 75 students were divided into 25 groups. At the time of the experiment,
three months had passed since the subjects studied this formula in the calculus
classroom. So, it could be assumed that most of them had forgotten the precise
form of the formula. All subjects were asked to use the material in Fig. 2 to find
the values a, b, c, d with which the red curve best fits into the blue curve near the
point (0, 1). No advice was given and they were allowed to touch the “RESET”
button as many times as they liked. Also the physical and verbal behaviors of
the subjects were videotaped as shown in Figs. 3 and 4.

To detect the changes in the subjects’ strategies for searching for an optimal
approximation, the videotaped images taken as they worked were imported into
SportsCode system (https://www.hudl.com/elite/sportscode) and each time
interval in which they moved the four red points respectively was coded chrono-
logically on one time lines. The typical workflow is demonstrated at the following
URL.

https://drive.google.com/file/d/0B200rbx3ihxGSjhjSFJIZFlRUFE/view?usp=sharing

It was anticipated that the subjects would first fix the points corresponding to
a and b so that the graph of y = a + bx is tangent to the graph of y =

√
x + 1

https://www.hudl.com/elite/sportscode
https://drive.google.com/file/d/0B200rbx3ihxGSjhjSFJIZFlRUFE/view?usp=sharing
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Fig. 3. Individual use Fig. 4. Group use

at the point (0, 1) and then move the points corresponding to c and d. Thus
the anticipated result is shown in Fig. 5 in which each time line contains rows
corresponding to a, b, c, d and “RESET” arranged from top to bottom.

Fig. 5. Model result of the coding

When a subject leaves an interval between two successive movements of the same
point, it is very difficult to infer the reasoning process of the subject during that
interval. Therefore the authors regarded such successive movements as a single
movement. Since it is also very difficult to precisely evaluate the length of each
movement, the authors transformed the coded result on a timeline into a string
of characters a, b, c, d. For example, the coded result in Fig. 5 is transformed
into the following string [a b c d c d c d c d]. Moreover, the authors evaluated
the strings derived from the coded time lines of each individuals and groups with
equal weights.

3 Results

Figures 6 and 7 show the resulting coded time lines derived from 25 individual
use and 25 group use respectively. As seen there, the actual results are largely
different from the anticipation shown in Fig. 5. In fact, the subjects moved the
points far more often than anticipated. This can be regarded as the processes
by which they empirically studied the fact that the functions cx2 and dx3 are
infinitesimals of higher order than the function bx near x = 0 [7].

In line with the plan stated in the end of Sect. 2, the authors visualized the
resulting strings as in Fig. 8. Here, the right pointing horizontal axis represents
the progress of the subjects’ operating processes. Red and yellow color corre-
spond to the character a and b respectively. Rows of the upper half part are the
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Fig. 6. Coded time lines derived from individual use

Fig. 7. Coded time lines derived from group use
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Fig. 8. Visualization of strings (Color
figure online)

Fig. 9. Division into 8 stages (Color
figure online)

Table 1. Frequencies at each stages

Individual Group

Low High Low High

Stage1 101.375 86.25 51.125 52.75

Stage2 80.375 107.25 25.625 78.25

Stage3 69.875 117.75 26.5 77.375

Stage4 69.875 117.75 33.75 70.125

Stage5 71.125 116.5 29.625 74.25

Stage6 68.375 119.25 22.375 81.5

Stage7 70.75 116.875 25.25 78.625

Stage8 51.25 136.375 24.25 79.625

Table 2. Names assigned to each
stages

Individual Group

Low High Low High

Stage1 DATA1 DATA9

Stage2 DATA2 DATA10

Stage3 DATA3 DATA11

Stage4 DATA4 DATA12

Stage5 DATA5 DATA13

Stage6 DATA6 DATA14

Stage7 DATA7 DATA15

Stage8 DATA8 DATA16

results of individual use and rows of the lower half part are those of group use.
In Fig. 9, all the processes are divided into 8 equally weighted stages from the
beginning to the end.

Though Fig. 9 shows that the frequency in which the subjects moved lower
order term points a and b decreased at stage 8, the decrease of frequency is not
so apparent at the stages from 3 to 7. Not only that, the frequency increased
at stages 4 and 5 in the case of group users as opposed to our anticipations.
Moreover, remarkable difference in the frequencies at each stage can be observed
between the individual users and the group users. In fact, Table 1 shows the total
numbers of operations in which the subjects moved lower order term points
a, b and higher order term points c, d respectively at each stage. When one
movement belongs to two successive stages, its frequency is allocated to those
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stages proportionally. Applying pairwise Fisher’s exact test to this data with
the assigned numbers as shown in Table 2, we obtain the resulting p-values in
Table 3.

Table 3. Result of pairwise Fisher’s exact test

While the frequency is almost constant throughout the stages from 3 to 7 in
the case of individual users, discrepancy can be observed in the case of group
users as seen in Table 1. In fact, among the elements of the 9th column in Table 3
which are surrounded by a red rectangle, only those corresponding to the stages
4 and 5 are not statistically significant. Also, among the diagonal elements of
the matrix which is surrounded by a yellow rectangle, those corresponding to
the stages 2, 3, 6, 7 are statistically significant. Therefore it can be concluded
that the significant difference between individual use and group use arose mainly
from the difference at these four stages. In particular, the relative frequency of
the movement of points a and b decreased more rapidly in the case of group users
compared to that in the case of individual users. Contrarily, group users moved
these points more frequently again at stages 4 and 5. Together with the fact that
the frequency is always lower in the case of group users compared to the case of
individual users, the results stated above indicate that communications between
users made their search processes far more efficient.

4 Discussions

Though the overall difference in the pattern of users’ operations between indi-
vidual use and group use has been illustrated in Sect. 3, discrepancy in the data
obtained from all samples has not been considered. Since the comparison of this
discrepancy between individual use and group use may lead to tracking some
quantities which illustrate the influence of users’ communications more clearly,
the authors turned their attention to the distribution of the relative frequencies
of users’ moving lower order term points in each stage. Regarding to the fact
that, in Table 1, almost no difference in relative frequency was observed through-
out the stages from 3 to 7 in the case of individual use, the authors counted up
those relative frequencies at the stages from 3 to 7 in the case of individual use
and group use respectively. Figures 10 and 11 are the histograms which show the
distributions of the above accumulated data.
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Fig. 10. Individual use Fig. 11. Group use

As assumed from Fig. 11, the distributions are sparse at many stages and
completely different from normal distribution in the case of group use. Therefore,
we cannot apply traditional analysis of variance to compare the distributions
between individual use and group use. To make this comparison, the authors
summarized these two distributions by approximating them with finite mixture
of beta distributions since it is known that any prior density on (0, 1) can be
arbitrarily approximated by a finite mixture of betas [8]. Generating large-scale
random samples from the specific beta distributions with R, the authors searched
two mixtures of betas so that the generated data would give the histograms which
are similar to Figs. 10 and 11 respectively. In fact, χ2 test of goodness-of-fit using
R tells us that these two distributions are well approximated with the mixtures
shown in Figs. 12 and 13.

As seen in Figs. 12 and 13, there are three and four components in the dis-
tributions corresponding to individual use and group use respectively. However,
identifiability can hardly be expected since there is no estimation of the num-
ber of beta components which can be definitely presumed from the data [9].
Therefore it cannot be claimed that the obtained mixture is unique. Neverthe-
less, the inferred index and weight of each beta component can provide valuable
information about the users’ operations belonging to that “cluster”, since they
may indicate the extent to which users persisted in moving lower order term
points and the rate of incidence at which users’ search processes belongs to that
pattern.

Fig. 12. Individual use Fig. 13. Group use
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Regarding to this point, one of the most remarkable differences between
individual use and group use is the larger variance of data in the latter case.
In fact, there are some stages in which the incidence rate of users’ moving points
corresponding to a and b is high (more than 0.8). Figure 14 shows the gesture of
some subject at the time near to one of those stages. She moved her finger over
the iPad screen tracing the shape of the blue curve.

Fig. 14. The gesture of one female subject (Color figure online)

This behavior indicates that the subjects working in her group moved the
points in order to make the red curve overlap with the blue curve not in the
neighbourhood of x = 0 but on the whole interval [−1, 2]. In fact, when the
authors asked the subjects working in her group, “why did you move points
corresponding to a and b at these middle and final stages of your search process?”
while displaying the recorded video image, they answered as follows.

Though we were aware that the line y = ax+ b coincides with the tangent
line, she began to worry about the difficulty in finding suitable coefficients
c and d so that the shape of the red curve became the same as that of the
blue curve. So we tried to find appropriate values c and d first, then we
adjusted the position of the red curve by moving a and b.

Similar gestures and statements can be found in many cases of this cluster. With-
out her worries being communicated to the other members, the search process of
this group should get closer to the model case as seen in Fig. 5. Even though the
search process of this group is different from the model case, they could under-
stand the concept of infinitesimal of higher order through observing that only
one choice of a and b will lead to the desired approximation. Therefore, it can
be seen that the communication between users gave them more opportunities to
understand the target concept.

5 Concluding Remarks

Based on the observations described at the end of Sect. 4, it can be concluded that
the larger variance of beta components in the case of group use resulted from the
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fluctuation of the users’ thinking pattern caused by the communications between
them. The result of this research strongly indicates that CindyJS can serve one of
the most effective interfaces on which users’ interactive operations can trigger the
above mentioned communications directly connected to mathematical models.
To extract the illustrative signal tracking users’ reasoning processes from their
operating pattern, comparison of that pattern with the discourse between users
has proven to be helpful. In future, the system for automatically recording users’
operating processes would enable us to obtain firm knowledge about the effective
combination of various mathematical activities.
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1 Introduction

The international education community has reached a consensus that the impact
of dynamic geometry on education is positive [1]. Many dynamic geometry sys-
tems (DGSs) are used in mathematics education. The popular DGSs include The
Geometer’s Sketchpad (GSP) [2], Cabri [3], and Cinderella [4]. However, there
are not only geometry, but arithmetic, algebra, analysis, programming, and proof
systems used in mathematics education at elementary and secondary school. In
order to satisfy the demands of mathematics education, our dynamic geometry
system has been developed into a dynamic mathematics system (DMS) by inte-
grating computer algebra and other technology. GeoGebra(GGB) [5] and Super
Sketchpad (SSP) [6] are popular DMSs in elementary and secondary school.

With the development of mobile Internet, various devices and operating
systems are widely used in education. For better integration of the Internet
with mathematics education, we developed a novel dynamic mathematics sys-
tem based on SSP, called NetPad. NetPad combines the Internet with dynamic
geometry, computer algebra, and automated reasoning technology. Therefore it is
not only a dynamic mathematics teaching tool, but also a cloud platform for cre-
ating and sharing educational resources. Since NetPad is developed in HTML5,
it is platform independent. NetPad can be launched directly from internet and
is freely available at www.netpad.net.cn. Figure 1 is its homepage, and Fig. 2 is
its user interface.

Fig. 1. Homepage of NetPad Fig. 2. User interface of NetPad

2 Functions of NetPad

The functions of NetPad are listed below.

www.netpad.net.cn
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2.1 Geometric Drawing

The geometric drawing function of NetPad includes geometric figures, conic
curves and function graphs, geometric transformations, customized coordinate
systems, animation, graphic loci, iterations, variables, built-in functions, and so
on. For example, Fig. 3(a) contains two iterative figures, the square and triangle.
B1 is generated rotating point A by 150◦ around point B. We make a further
iteration from (A;B) to (A1;B1). The iterations of the two iterative figures are
shown in Fig. 3(b) where the iteration depth is 5. This resource can be found via
ID 27858 at www.netpad.net.cn.

Fig. 3. The iteration of the iteration figures

The Intelligent Pen is a drawing tool based on context-aware technology.
With it, users can construct about 20 kinds of dynamic geometric figures with
the mouse alone, without toolbar buttons or menus, allowing the construction of
dynamic geometric figures in an accurate and efficient manner. Further details
are explained in [7]. With the Intelligent Pen, NetPad only needs 8 mouse oper-
ations (clicks or movements) to draw the orthocenter of a triangle (Fig. 4) and

Fig. 4. The orthocenter of a triangle

www.netpad.net.cn
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requires no switching between the graphic window and menu. But it takes 22
mouse operations and 8 window switches in GSP, or 19 mouse operations and 2
window switches in Cinderella.

NetPad can conveniently construct intersection points of almost all linear
geometric figures. The types of intersection points that can be constructed in
NetPad(NPD), GSP, GGB and SSP are shown in Table 1. “Y” means this type of
intersection point can be constructed, “-” means this type of intersection cannot
be constructed.

Table 1. Comparison of intersection points function

S - S S - C S - P S - V C - C C - P C - V P - P P - V V - V V - L L - L

GSP Y Y - Y Y - Y - - Y - -

GGB Y Y - Y Y - Y - - Y - -

SSP Y Y - Y Y - Y - - - - -

NPD Y Y Y Y Y Y Y Y Y Y Y Y

S means Straight Line, C means Circle, P means Polygon, V means Curve, L means
Locus.

2.2 Symbolic Computation

NetPad supports symbolic computation. The feature can assist students in learn-
ing some basic concepts about algebraic operations as well as in carrying out
mathematical calculus and finding the results of computations, as shown in
Fig. 5.

Fig. 5. Symbolic computation Fig. 6. Programming
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2.3 Programming

NetPad provides a simple interpretive language for programming whose syntax is
similar to C. It includes assignment, conditional branching, loops, and definition
of functions. Figure 6 shows the definition of a program for finding the zero of
a function f(x), x in (a, b) using the dichotomy method, where the error of the
zero is less than d.

2.4 Automated Reasoning in Geometry

Automated reasoning in geometry is highly useful in mathematics education [8].
Based on our automated reasoning technologies [9–11], NetPad can solve most
elementary geometric problems. Figure 7 shows the five-circle theorem. A read-
able proof of the theorem is generated and shown in the text box. The reasoning
system generates 2276 pieces of information via the detailed derivation process,
including 30 pieces of information about similar triangles, and 480 pieces of
information about equal angles.

Fig. 7. The automated reasoning of the Five-Circle Theorem.

3 Features of NetPad

3.1 Convenient Platform to Share and Communicate

One notable feature of NetPad is webpage hyperlinks, which can be shared on
various social networks such as Twitter, Facebook, WeChat, Microblog, etc. via
the resource link or a QR code. For example, via its QR code (Fig. 8), a resource
can be viewed in WeChat on a cell phone (Fig. 9). Furthermore, users can
download resources from NetPad and the desktop application at https://www.
netpad.net.cn/en/index.html, then use the resources offline without accessing the
Internet.

https://www.netpad.net.cn/en/index.html
https://www.netpad.net.cn/en/index.html
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Fig. 8. The QR code Fig. 9. NetPad in a cell phone

NetPad is also a community with users and resources. All resources created by
users are stored in NetPad’s resource cloud. Users can also ask for help through
this platform. Through the time of publication of NetPad (March, 2016) to the
time of writing this article, NetPad has acquired more than 100,000 registered
users and 30,000 resources. The resources of Fig. 10 classified by knowledge topics
are a part of the resource cloud.

Fig. 10. Resources classified by knowledge topics

3.2 Seamless Integration with Other Systems

Microsoft SharePoint is a collection of web-based tools and technologies that
help people store, share, and manage digital information. With SharePoint Add-
ins Technology [12], NetPad becomes available in the Microsoft Office Store,
such that NetPad can be embedded into PowerPoint in only two steps. The first
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step is searching for NetPad in the Office Store with the keyword “NetPad”
and adding it into a PowerPoint document, as shown in Fig. 11. Because the
resources are stored in the cloud in the web-archive format, the second step is
searching for a resource in the resource cloud by keyword, author or resource
ID. In Fig. 12, the resource is embedded using the key words “The Properties of
the Linear Equation”, then users can change the variables k and b by dragging
the sliders dynamically in the slide.

Fig. 11. Search for NetPad in the
Office Store

Fig. 12. Insert NetPad into PPT

Because each resource of NetPad has a webpage hyperlink associated with
it, it can be seamlessly integrated into other websites using its ID and NetPad
APIs. For example, the resource “Romantic Mathematics” can be embedded into
any website with the following code, in which 42406 is its ID.

<iframe src=" https :// www.netpad.net.cn/thirdInnerPad.
html#posts /42406" style =" width :800px;height :600px
;"></iframe >

4 Conclusion

NetPad is a novel dynamic mathematics system for teaching and learning math-
ematics in elementary and secondary school. It is a product of Internet Plus
Education and is not only a teaching tool, but also a cloud platform for cre-
ating and sharing resources. The most important characteristics of NetPad are
that it is open, sharing oriented, intelligent, internet-based, and that it features
rich functions. The resources of NetPad can be shared to various social net-
works directly, seamlessly integrated into other websites, PowerPoint and other
software. The functions of NetPad include dynamic geometry drawing, symbolic
computation, programming, automated reasoning in geometry, and so on. Net-
Pad was published in March 2016. Nowadays, there are more than 100,000 users
and 30,000 resources on the NetPad website.
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In future work, we will enrich and optimize the functions of NetPad, improve
its running efficiency and stability, and release a 3D version.

Acknowledgements. We are grateful to Masataka Kaneko for proposing many good
suggestions and Zak Tonks for improving the English.
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Abstract. A common computational problem is to compute topologi-
cal information about a real surface defined by a system of polynomial
equations. Our software, called polyTop, leverages numerical algebraic
geometry computations from Bertini and Bertini real with topologi-
cal computations in javaPlex to compute the Euler characteristic, genus,
Betti numbers, and generators of the fundamental group of a smooth real
surface. Several examples are used to demonstrate this new software.
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1 Introduction

Let X ⊂ R
N be a smooth, closed, and orientable surface defined by the van-

ishing of a system of polynomial equations. Common topological quantities of
interest regarding X include the Euler characteristic, genus, Betti numbers, and
generators of the fundamental group [11,12]. This paper presents an approach
to compute these quantities that combines numerical algebraic geometry with
computational topology, and is implemented in the new software polyTop.1

The input to polyTop is a cell decomposition of X, which is computed from
the polynomial system f as follows. First, Bertini [2,3] is used to compute
a numerical irreducible decomposition of the solution set of f = 0 over the
complex numbers. From this numerical irreducible decomposition, the software
Bertini real [6,7] computes a cell decomposition of the real surface X.

Using the cell decomposition as input, polyTop computes a topologically
equivalent simplicial complex that immediately yields the Euler characteristic,
genus, and Betti numbers. Interfacing with the computational topology software

1 Available at http://dx.doi.org/10.7274/R0PV6HF4.
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javaPlex [15] yields confirmation of the Betti numbers and generators of the
fundamental group.

There are several alternatives to our numerical approach. One could compute
topological data from numerical sampling X, e.g., [4,9,10,13]. Another approach
is to utilize symbolic computations to perform similar computations for a Rie-
mann surface arising from a complex curve [16]. For example, similar topological
computations are implemented in the software package algcurves in Maple.

The remainder is organized as follows. In Sect. 2, a method to move from a cell
decomposition computed by Bertini real to a topologically equivalent simpli-
cial complex is presented. Section 3 explains the use of Matlab and javaPlex in
order to compute the Euler characteristic, genus, Betti numbers, and generators
of the fundamental group. We demonstrate the software with various examples
in Sect. 4 and conclude in Sect. 5.

2 Cell Decomposition and Simplicial Complex

For a smooth, closed, and orientable surface X ⊂ R
N , we compute a simplicial

complex S(X) that is topologically equivalent to X. In our case, the simplicial
complex S(X) is a set composed of 0-, 1-, and 2-simplices, called vertices, edges,
and faces, respectively and visually represented in Fig. 1. The key aspect is that
such a topologically equivalent simplicial complex S(X) for X can be constructed
from a cell decomposition of X computed by Bertini real.

(a) (b) (c)

Fig. 1. A visual representation of (a) a 0-simplex or vertex, (b) a 1-simplex or edge,
and (c) a 2-simplex or face.

Following [1,5], the real surface X can be decomposed into a finite union of
cells that mirror a simplicial complex. Each 2-cell, called a face, of X is a subset
of X that has a generic interior point and a boundary consisting of 1-cells. Each
1-cell, called an edge, of X is a subset of X that has a generic interior point and
a 0-cell (vertex) at each end. Figure 2(a) provides an illustration of a 2-cell.

The software polyTop constructs a topologically equivalent simplicial com-
plex S(X) of X by looping over each cell of the cell decomposition and construct-
ing a corresponding simplicial complex as follows. The vertices of the simplicial
complex consist of the generic interior point of the 2-cell, each generic interior
point of the 1-cells, and the vertices at the end of each 1-cell. The edges of
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the simplicial complex consist of “interior” edges connecting the generic interior
point of the 2-cell with each vertex on the boundary of the 2-cell and “boundary”
edges connecting the generic interior point of each 1-cell with its vertices. The
faces consist of the generic interior point of the 2-cell and two vertices connected
by a “boundary” edge. This construction is illustrated in Fig. 2(b). Naturally
connecting the simplicial complexes along neighboring cells of the decomposi-
tion yields a simplicial complex S(X) that is topologically equivalent to X.

Fig. 2. A visual representation of a 2-cell and corresponding simplicial complex.

Let V , E, and F denote the number of vertices, edges, and faces, respectively,
of the simplicial complex S(X). The Euler characteristic χ of X is computed
from S(X) via

χ = V − E + F. (1)

Suppose that X is connected. Then, the Euler characteristic χ and genus g
are related via

χ = 2 − 2g (2)

and the Betti numbers of X are β0 = β2 = 1 and β1 = 2g. A basis for the
fundamental group π1(X), which consists of 2g loops, is computed by javaPlex
from the simplicial complex S(X).

In order to test for connectivity, we take the transitive closure A+ of the
adjacency matrix A of edges of S(X). Since S(X) has V vertices, then A is
a V × V symmetric matrix where Aij = Aji is 1 if there is an edge in S(X)
between vertex i and vertex j and 0 otherwise. The transitive closure A+ of A
describes which vertices are connected, i.e., A+

ij is 1 if there is a path connecting
vertex i and vertex j and 0 otherwise. The transitive closure can be computed
using Boolean matrix multiplication and addition via the following:

A+ = A + A2 + A3 + · · · + AV . (3)

In particular, X is connected if and only if every entry of A+ is 1. If X is not
connected, A+ can be used to decompose X into connected components.
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3 Software

The software polyTop is written in Matlab to utilize the preexisting Matlab
interfaces of both Bertini real and javaPlex.

Given a polynomial system f , one first uses Bertini to compute a numerical
irreducible decomposition which is then used by Bertini real to compute a
cell decomposition. The data for the cell decomposition is loaded into Matlab
utilizing the command gather br samples from Bertini real which creates a
file called BRinfo#.mat which can be used by all of the other Matlab functions
in the Bertini real interface. For example, one can plot the surface using this
file via the command bertini real plotter within Matlab.

After using the command load javaplex to load the javaPlex library and
separately loading the cell decomposition data in Matlab, polyTop can be
executed. The first task of polyTop is to organize the cell decomposition data to
create a topologically equivalent simplicial complex using the method described
in Sect. 2.

Next, a stream is created in javaPlex that organizes the simplicial complex
data for use in topological computations within javaPlex. Vertices are added
using the command stream.addVertex(i,0). Edges between vertices a and b
are added via the command stream.addElement([a, b]) while faces consisting
of vertices a, b, and c are added via stream.addElement([a, b, c]).

Finally, a call to javaPlex performs homology computations on the simplex
stream. The homology is computed with Z/2Z coefficients.

4 Examples

The following summarizes several computations using polyTop. The input is
computed via a numerical irreducible decomposition using Bertini followed by
a cell decomposition using Bertini real. A topologically equivalent simplicial
complex is then constructed yielding the Euler characteristic, genus, and Betti
numbers. The software javaPlex is then used for confirming the Betti numbers
and generators of the fundamental group. The following timings are based on
using a 2.4 GHz Intel Core i5 processor: the sphere and torus examples ran in
under 0.1 s while the tanglecube and Crixxi examples completed in under 15 s.

4.1 Sphere

The unit sphere X ⊂ R
3, defined by x2 + y2 + z2 = 1, is a simply connected real

surface. That is, the fundamental group of X is trivial, the Euler characteristic
is χ = 2, genus is g = 0, and the Betti numbers are β0 = β2 = 1 with β1 = 0.
A topologically equivalent simplicial complex derived from a cell decomposition
computed by Bertini real is shown in Fig. 3 consisting of V = 6 vertices,
E = 12 edges, and F = 8 faces in agreement with (1).
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Fig. 3. Topologically equivalent simplicial complex for the unit sphere.

4.2 Torus

For an illustrative real surface with a nontrivial fundamental group, we consider
the torus X ⊂ R

3 defined by

(x2 + y2 + z2 + 15/4)2 − 16(x2 + y2) = 0.

Figure. 4(a) shows a topologically equivalent simplicial complex derived from a
cell decomposition computed by Bertini real. In particular, there is a single
hole which is commensurate with the fact that the genus is g = 1, Euler char-
acteristic is χ = 0, and the Betti numbers are β0 = β2 = 1 with β1 = 2. This
simplicial complex consists of V = 32 vertices, E = 96 edges, and F = 64 faces
in agreement with (1).

Interfacing with javaPlex using this simplicial complex yields representatives
for the two generators of the fundamental group. The output is

Dimension : 1
[0.0, infinity) : [1, 14] + [2, 9] + [2, 14] + [1, 9]
[0.0, infinity) : [3, 18] + [3, 17] + [1, 17] + [1, 18]

In this notation, an edge connecting vertices v and w is represented by [v, w]
and a loop is a sum of edges. Hence, this shows that each of the two generating
loops consists of 4 edges which we can equivalently write as

1 → 14 → 2 → 9 → 1 and 3 → 18 → 1 → 17 → 3

and are visually represented in Fig. 4(b).

4.3 Tanglecube

The tanglecube is a degree four surface in R
3 of genus g = 5 defined by

x4 − 5x2 + y4 − 5y2 + z4 − 5z2 + 11.8 = 0.

This surface, shown in Fig. 5(a), was used, for example, in [14] to demonstrate
creating a meshing of the volume inside of the tanglecube surface using approxi-
mately 50,000 vertices and 200,000 tetrahedra. Using a cell decomposition com-
puted by Bertini real, a topologically equivalent simplicial complex of just the
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Fig. 4. (a) Simplicial complex for a torus with (b) visualizing two generating loops of
the fundamental group.

tanglecube surface consists of V = 296 vertices, E = 912 edges, and F = 608
faces. This confirms that the surface has genus g = 5 with Euler characteristic
χ = −8 via (1) and (2).

Passing the simplicial complex to javaPlex confirms that the Betti numbers
are β0 = β2 = 1 with β1 = 10 and computes ten loops that generate the
fundamental group. Figure 5(b) shows two representatives of these ten loops.

Fig. 5. (a) Simplicial complex for the tanglecube with (b) visualizing two representative
loops of the ten generating loops of the fundamental group.

4.4 Crixxi

The Crixxi surface defined by

(
1
25

x2 +
1
25

y2 − 1
)3

+
(

1
25

y2 +
1
25

z2 − 1
)2

= 0

is singular. By perturbing the right-hand side, say by replacing 0 with 1/10, the
real surface becomes smooth and orientable [8, p. 110] as shown in Fig. 6(a). This
visualization suggests that the genus is g = 2 so that the Euler characteristic is
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χ = −2 and Betti numbers are β0 = β2 = 1 with β1 = 4. This is confirmed by (1)
and (2) after computing a topologically equivalent simplicial complex from a cell
decomposition computed by Bertini real having V = 346 vertices, E = 1044
edges, and F = 696 faces.

Passing the simplicial complex to javaPlex yields a confirmation of the Betti
numbers above and computes four loops that generate the fundamental group.
Two of the loops consist of eight edges while the other two loops consist of 32
and 40 edges. A visualization of these four loops is shown in Fig. 6(b).

Fig. 6. (a) Simplicial complex for the perturbed Crixxi surface with (b) visualizing
four generating loops of the fundamental group.

5 Conclusion

Computing topological information about a real surface defined by a system
of polynomial equations is a recurrent problem within computational algebraic
geometry. Using numerical algebraic geometry computations from Bertini and
Bertini real and topological computations in javaPlex, polyTop computes the
Euler characteristic, genus, Betti numbers, and generators of the fundamental
group of a real surface.

Acknowledgments. The authors thank Mikael Vejdemo-Johansson for input regard-
ing javaPlex. All authors acknowledge support from NSF ACI-1440607/1460032. Addi-
tional support for JDH was provided by Sloan Research Fellowship BR2014-110 TR14
and for MHR by Schmitt Leadership Fellowship in Science and Engineering.



404 D. A. Brake et al.

References

1. Bates, D.J., Brake, D.A., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: On
computing a cell decomposition of a real surface containing infinitely many singu-
larities. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 246–252.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2 39

2. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software
for numerical algebraic geometry. bertini.nd.edu

3. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically solving
polynomial systems with Bertini. In: SIAM (2013)

4. Berger, M., Tagliasacchi, A., Seversky, L.M., Alliez, P., Levine, J.A., Sharf, A.,
Silva, C.T.: State of the art in surface reconstruction from point clouds. In: Euro-
graphics 2014 - State of the Art Reports. The Eurographics Association (2014)

5. Besana, G.M., Di Rocco, S., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.:
Cell decomposition of almost smooth real algebraic surfaces. Num. Alg. 63(4),
645–678 (2013)

6. Brake, D.A., Bates, D.J., Hao, W., Hauenstein, J.D., Sommese, A.J., Wampler,
C.W.: Algorithm 976: Bertini real: numerical decomposition of real algebraic curves
and surfaces. ACM Trans. Math. Softw. 44(1), 10 (2017). bertinireal.com

7. Brake, D.A., Bates, D.J., Hao, W., Hauenstein, J.D., Sommese, A.J., Wampler,
C.W.: Bertini real: software for one- and two-dimensional real algebraic sets. In:
Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 175–182. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2 29

8. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice Hall, New
Jersey (1976)

9. Cucker, F., Krick, T., Shub, M.: Computing the homology of real projective sets.
Found. Comput. Math. 15, 281–312 (2015)

10. Dufresne, E., Edwards, P.B., Harrington, H.A., Hauenstein, J.D.: Sampling real
algebraic varieties for topological data analysis. arXiv:1802.07716 (2018)

11. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
12. Munkres, J.R.: Topology. Prentice Hall, New Jersey (2000)
13. Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with

high confidence from random samples. Disc. & Comput. Geom. 389(1–3), 419–441
(2008)

14. Oudot, S., Rineau, L., Yvinec, M.: Meshing volumes bounded by smooth surfaces.
In: Hanks, B.W. (eds.) Proceedings of the 14th International Meshing Roundtable,
Sandia National Laboratories. Springer, Heidelberg, pp. 203–220 (2005). https://
doi.org/10.1007/3-540-29090-7 12

15. Adams, H., Tausz, A., Vejdemo-Johansson, M.: javaPlex: a research software pack-
age for persistent (co)homology. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS,
vol. 8592, pp. 129–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44199-2 23

16. Tretkoff, C.L., Tretkoff, M.D.: Combinatorial group theory, Riemann surfaces and
differential equations. Contemp. Math.: Contrib. Group Theory 33, 467–519 (1984)

https://doi.org/10.1007/978-3-662-44199-2_39
http://bertini.nd.edu
http://bertinireal.com
https://doi.org/10.1007/978-3-662-44199-2_29
http://arxiv.org/abs/1802.07716
https://doi.org/10.1007/3-540-29090-7_12
https://doi.org/10.1007/3-540-29090-7_12
https://doi.org/10.1007/978-3-662-44199-2_23
https://doi.org/10.1007/978-3-662-44199-2_23


Solving the Likelihood Equations
to Compute Euler Obstruction Functions

Jose Israel Rodriguez(B)

Department of Statistics, University of Chicago,
Chicago, IL 60637, USA
JoisRo@uchicago.edu

http://home.uchicago.edu/~joisro

Abstract. Macpherson defined Chern-Schwartz-Macpherson classes by
introducing the (local) Euler obstruction function, which is an integer
valued function on the variety that is constant on each stratum of a Whit-
ney stratification. By understanding the Euler obstruction, one gains
insights about a singular algebraic variety. It was recently shown by
the author and B. Wang, how to compute these functions using maxi-
mum likelihood degrees. This paper discusses a symbolic and a numeri-
cal implementation of algorithms to compute the Euler obstruction at a
point.

Keywords: Euler obstructions · Maximum likelihood degrees

1 Introduction

Studying singularities of algebraic varieties is of great interest in applied and
computational algebraic geometry. For example, in applications the singular
locus is important when finding the closest point to a variety, while in com-
putations it can lead to bottlenecks. One way to understand a singular algebraic
variety is by stratifying it into locally closed sets called Whitney strata. Then,
for each stratum one considers the local information at a point.

To study how the closures of these strata interact with one another, the Euler
obstruction function, defined in [19] by Macpherson, is considered. Informally,
this function gives a measure of the singularity of a stratum. For an equivalent
definition using Euler characteristics of complex links see [4,6]. In [20], it is shown
that the Euler obstruction function at a point is given by an alternating sum of
maximum likelihood degrees, which will be reviewed in the next section. It is in
this framework, where we will develop our algorithms. The first sections of this
paper recall the definition of ML degree, likelihood equations, and removal ML
degrees to provide the statement of Theorem 1 [20], which enables us to compute
the Euler obstruction. The main results are in Sect. 4, where the Macaulay2 [9]
package MaximumLikelihoodObstructionFunction is described. This package
implements the algorithms of [20]. The goal is to provide the research community
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tools to compute interesting examples to drive new areas of study.1 The package
is available at:

https://github.com/JoseMath/MaximumLikelihoodObstructionFunction

2 Maximum Likelihood Degrees

2.1 Maximum Likelihood Degrees of Very Affine Varieties

Consider an irreducible affine variety Z of Cn. The set of points of Z with nonzero
coordinates is denoted by Zo and said to be the underlying very affine variety
of Z. The underlying very affine variety of Z is a subvariety of (C∗)n. Consider
the logarithmic 1-form on (C∗)n given by

�µµµ(z) := μ1 log z1 + μ2 log z2 + · · · + μn log zn,

where μμμ = (μ1, . . . , μn) ∈ C
n. The gradient of this one form is ∇�µµµ(z) :=[

μ1/z1 . . . μn/zn
]
. Let z denote a regular point of Zo. Then, the one form

restricted to Zo is said to have a critical point z if ∇�µµµ(z) is orthogonal to
the tangent space of Zo at z.

Definition 1. The maximum likelihood degree (ML degree) of the very affine
variety Zo, is defined to be the number of critical points of �µµµ(z) on Zo for
general μμμ and is denoted by MLdegree(Zo). The ML degree of an affine variety
Z is defined to be the ML degree of the underlying very affine variety Zo.

The notion of ML degree was first introduced in [5,14]. The name “maximum
likelihood” comes from statistics, where the log likelihood function is the 1-form
�µµµ(z), with μi denoting the number of times event i is observed. For a more
geometric interpretation of Definition 1 see [16], and for a survey of results see
[17]. Moreover, the Gaussian degree [7] is in some cases equivalent to the ML
degree, and the data singular locus for maximum likelihood estimation is studied
in [13]. In addition, the ML degree appears in other contexts, including Gaussian
graphical models [22], variance component models [10], and in missing data [15].

Our convention is that the ML degree of an empty set is zero.

2.2 Likelihood Equations

The critical points of �µµµ(z) are defined by a zero dimensional variety and can be
found by solving a system of polynomial equations. We determine the ML degree
by determining the degree of this zero dimensional variety. Let F ⊂ C[z±

1 , . . . , z±
n ]

denote a set of generators of the ideal of Zo, J denote the ideal of the singular
locus of Zo, and M denote the ideal of the 1 + codim(Zo) minors of

[∇�µµµ(z)
∇F

]
, (2.1)

where ∇F is the matrix of partial derivatives of F . The variety of saturate(M +
F, J) is the set of critical points.
1 The author is thankful for the helpful comments of Botong Wang and Xiping Zhang.

https://github.com/JoseMath/MaximumLikelihoodObstructionFunction
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Definition 2. The likelihood equations of Zo (with respect to �µµµ(z)) are defined
by setting each element of a set of generators of the ideal saturate(M + F, J)
to be zero.

Proposition 1. For generic μμμ, the degree of the variety of the ideal of the like-
lihood equations is the ML degree of Zo.

Often, it is easier to work with the affine variety Z rather than Zo. Let F̂
denote a set of generators of the ideal of Z, Ĵ denote a set of generators of
the ideal of the singular locus of Z, and M̂ denote a set of generators of the
(codim Zo + 1)-minors of

[∇�µµµ(z)
∇F̂

]
diag(

[
z1 . . . zn

]
). (2.2)

Lemma 1. A set of generators of the ideal

saturate(ideal M̂ + ideal F̂ , ideal Ĵ ∗ ideal (z1z2 · · · zn))

set to zero define likelihood equations of Zo.

Remark 1. The definition of the ML degree of a projective variety in [14] agrees
with the definition of the ML degree of a very affine variety when we restrict the
projective variety to the affine chart where the coordinates sum to one.

The likelihood equations are often an overdetermined system of equations.
For numerical computation we prefer for the number of equations to equal the
dimension of the ambient space. Suppose F̂ is a set of c := codim Zo generators
of the ideal of the ideal Z. Let {λ0, . . . , λc} denote a set of indeterminants called
Lagrange multipliers. Let M̂Lag denote the following set of n polynomials

[
λ0 λ1 . . . λc

]
[∇�µµµ(z)

∇F

]
diag(

[
z1 . . . zn

]
). (2.3)

Definition 3. The Lagrange likelihood equations are a system of equations
defined by F̂ = 0 and M̂Lag = 0.

The variety of ideal F̂ + ideal M̂Lag is in the product space C
n × P

c.
Let (C∗)n × (C∗)c be the dense Zariski open set of C

n × P
c defined by λ0 =

1,
∏n

i=1 zi
∏c

j=1 λj �= 0. These Lagrange likelihood equations were studied in [11].

Proposition 2. For generic μμμ, the projection to (C∗)n of (C∗)n × (C∗)c inter-
sected with the variety of the Lagrange likelihood equations is the variety of the
likelihood equations of Zo.
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2.3 Computing Removal ML Degrees and Euler Obstructions

Let Xo denote a very affine variety of (C∗)n, and let p denote a point in (C∗)n.
Let H1, . . . ,Hn denote general hyperplanes containing the point p, and let
H1(x), . . . , Hn(x) denote affine linear polynomials defining these hyperplanes.
We denote the embedding of Xo to (C∗)n+1 via y = H1(x) by Xo \ H1.

Definition 4. For k = 0, let Zo = Xo, otherwise let Zo = (Xo\H1)∩
(∩k

i=2Hi

)
.

The k-th removal ML degree of Xo with respect to the point p is defined to be
the ML degree of Zo and is denoted by rk(Xo,p).

Using removal ML degrees, we can compute the Euler obstruction by the
following theorem.

Theorem 1 ([20]). The signed alternating sum of removal ML degrees with
respect to the point p in Xo of dimension d equals the value of the Euler obstruc-
tion function at a point p, i.e.,

(−1)d EuXo(p) =
d+1∑

k=0

(−1)krk(p,Xo).

With the symbolic implementation, we compute the removal ML degrees by
solving the likelihood equations using Grobner basis. With the numerical imple-
mentation, we will use coefficient parameter homotopies [21, Theorem 7.1.1]. For
fixed k, we choose a generic k×n matrix [γij ]k×n, and let Lb denote the following
family of linear spaces defined by

⎡

⎢
⎣

H1(x)
...

Hk(x)

⎤

⎥
⎦ =

[
γij

]
k×n

⎡

⎢
⎣

x1

...
xn

⎤

⎥
⎦ −

⎡

⎢
⎣

b1
...
bk

⎤

⎥
⎦ . (2.4)

Let Z = X ∩ Lb. For general [γij ]k×n in (2.4), the Lagrange likelihood
equations of Z define a coefficient parameter homotopy with parameters b =
(b1, . . . , bk), Lagrange multipliers λ0, . . . , λc, and primal variables x1, . . . , xn, y
for k > 0.

Theorem 2 (Corollary 4.6 [20]). If γij are general and Z = X ∩ Lb, then
for a parameter homotopy with target parameters ([γij ]k×n[p]), the number of
regular endpoints not in the coordinate hyperplanes equals the k-th removal ML
degree of X with respect to the point p.

In summary, we solve the Lagrange likelihood equations for a general choice
of parameters, thereby determining the removal ML degrees with respect to a
general point. Then, we use a parameter homotopy to determine the removal
ML degrees for any other point p of interest.
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3 Whitney Sombrilla

The illustrative example in this section comes from a Whitney umbrella in C
3

defined by x2
1 − x2

2x3 = 0 that has been translated by (1, 1, 1). We call this
translation the Whitney sombrilla and denote it by X. The defining equation is
f := (x1 − 1)2 − (x2 − 1)2(x3 − 1) = 0. Note that the original Whitney umbrella
and the Whitney sombrilla have different underlying very affine varieties. Indeed,
the underlying very affine variety of the Whitney umbrella is smooth while the
underlying very affine variety of the Whitney sombrilla is not. A Whitney strat-
ification of X is given by the regular points; the singular points with {(1, 1, 1)}
removed; and {(1, 1, 1)}. We denote these strata by S1, S2, S3 respectively. Let S0

denote C
3 \X. Let pi be a point in Si ∩ (C∗)3. The removal ML degrees of these

points and their respective Euler obstructions are below. Note that the defining
equations of X \ H1, (X \ H1) ∩ H2, (X \ H1) ∩ (H2 ∩ H3) are given by {f = 0}
and {H1 = y}, {H1 = y,H2 = 0}, {H1 = y,H2 = 0,H3 = 0} respectively.

k = 0 k = 1 k = 2 k = 3 EuXo(p)

p0 = (3, 2, 1) 3 10 10 3 0

p1 = (3, 3, 2) 3 10 10 2 1

p2 = (1, 1, 2) 3 10 10 1 2

p3 = (1, 1, 1) 3 10 9 1 1

4 Using the Package

The package computes the Euler obstruction function of a very affine variety
Xo ⊂ (C∗)n at the point p. This is done by computing the k-th removal ML
degrees of Xo with respect to the point p for k = 0, 1, . . . ,dim Xo +1. We define
a new type of mutable hash table called the RemovalMLDegree, which is used to
store the results of the computations of the removal ML degrees.

The package takes two approaches to computing removal ML degrees. The
first approach uses symbolic computation like in the foundational paper [14]. The
second approach uses homotopy continuation [1]. In each case, our algorithms
are probabilistic and there exists a open Zariski dense set such that choices
of random values will produce the true answer. How we generate random val-
ues can be changed in the Configuration when loading the package (see help
randomValue), with the default producing random values by random(1,30102).
See the documentation for details about the keys of each new type of hash table.

4.1 Symbolic Computation

Preprocess. We assume the variety Xo is defined by an ideal I, but we store
information about Xo in a new type of mutable hash table: MLDegreeVariety.
To create this mutable hash table we use the method newMLDegreeVariety.
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i1 : loadPackage"MaximumlikelihoodObstructionFunction";
i2 : R=QQ[p1,p2,p3];
i3 : I=ideal((p-1)1^2-(p2-1)^2*(p3-1));
i4 : L=newMLDegreeVariety(I)
o4 = MLDegreeVariety{...4...}

Solving. Let p denote a point in (C∗)n. If the point p is not specified by the user,
then p is set to (1, . . . , 1). For k = 0, 1, . . . ,dim Xo + 1, the package computes
the k-th removal ML degree of Xo with respect to p. To store this information
we introduce a type of mutable hash table called RemovalMLDegree. This hash
table has three important keys MLDegrees, ThePoint, and TheVariety.

The method solveRemovalMLDegree, solves the likelihood equations (Defi-
nition 2) and stores the degree in RemovalMLDegree by appending k=>m to the
list under the key MLDegrees, where k indexes the values of the removal ML
degree m. This is the most difficult step in the computation.

i5 : P={1,1,1};
i6 : M=newRemovalMLDegree(L,P)
o6 = RemovalMLDegree{...3...}
i7 : solveRemovalMLDegree M
o7 = {3, 10, 9, 1}

Extracting Information. Once all of the removal ML degrees of Xo are com-
puted, we can extract the information using the methods removalMLDegree or
mlObstructionFunction. The former return lists where the k-th element of the
list is the k-th removal ML degree of Xo at p. The mlObstructionFunction
returns the alternating sum of computed ML degrees.

i8 : removalMLDegree(M)
o8 = {3, 10, 9, 1}
i9 : mlObstructionFunction M
o9 = 1

4.2 Numeric Computation

In this subsection we compute removal ML degrees using homotopy continuation
with the numerical algebraic geometry software Bertini [3]. We use methods of
the Macaulay2 package Bertini.M2 [2] to manipulate the input files.

Preprocess. Let q denote a general point in (C∗)n. In this step we compute
the k-th removal ML degrees of Xo at q by solving the equations in Theorem 2
for a general choice of parameters. We denote by q the solution to this set of
equations for a general choice of parameters. We assume the variety Xo is given
to us by an ideal I, but we store information in a new type of mutable hash table
called MLDegreeWitnessCollection. To create this mutable hash table we use
the method newMLDegreeWitnessCollection.
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i10 : loadPackage("MaximumlikelihoodObstructionFunction",
Reload=>true, Configuration=>{"RandomCoefficients"=>CC})
o10 = MaximumlikelihoodObstructionFunction
i11 : s = temporaryFileName() | "/";
i12 : mkdir s;
i13 : R=CC[p1,p2,p3];
i14 : I=ideal((p-1)1^2-(p2-1)^2*(p3-1))
i15 : WC=newMLDegreeWitnessCollection(I,d,s)
o15 = MLDegreeWitnessCollection{...10...}

Computing Witness Sets. We solve Lagrange likelihood equations (Defini-
tion 3) to compute the removal ML degrees of Xo with respect to a generic
point using the method newMLDegreeWitnessSet. We store this information in
a directory determined by the key Directory of MLDegreeWitnessCollection.
The most intensive part of the computation is this step were we compute wit-
ness sets. To avoid repeating this step, we save and load the collection of
witness sets using the methods saveWitnessCollectionConfiguration and
getWitnessCollection.

i16 : newMLDegreeWitnessSet(WC)
o16 = {3, 10, 10, 3}
i17 : saveWitnessCollectionConfiguration(WC,s)

Solving. With the method homotopyRemovalMLDegree, we use a parameter
homotopy from Theorem 2 to determine the Euler obstruction at a point.

i18 : P={1,1,1}
i19 : M=newRemovalMLDegree(WC,P)
o19 = RemovalMLDegree{...4...}
i20 : homotopyRemovalMLDegree M
o20 = {3, 10, 9, 1}

Extracting Information. Since we are working with floating point arithmetic,
one must take care when classifying points in the coordinate hyperplanes. The
method reclassifyWitnessPoints allows us to change the tolerances as we like.

5 Motivating Example

Matrices with rank constraints and their ML degrees have been studied in [12,18,
20]. Moreover, their Euler obstructions have also been studied in [8,23]. Consider
X ⊂ C

5 defined by the determinant of a 3×3 symmetric matrix with the bottom
right entry set to one. We let S0 = C

5 \ X, S1 = Xreg, and S2 = Xsing. The
kth column records rk(X,p) and the time to compute the kth witness set in
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Sect. 4.2. The Sym and Num columns record the timing of the solving step in
Sects. 4.1 and 4.2.

X2 k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 EuXo (p) Sym Num

p0 = (1, 2, 3, 5, 7) 0 16 47 49 21 3 0 1620 s 1 s

p1 = (1, 1, 1, 1, 2) 0 16 47 49 21 2 1 1991 s 1 s

p2 = (1, 1, 1, 1, 1) 0 16 47 49 19 1 0 2002 s 1 s

Time-Compute WS 8 s 197 s 321 s 90 s 68 s 9 s
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ing with integer sequences. Its support for k-regular sequences includes
basic closure properties, guessing recurrences, and computing automata.
Recent applications have included establishing the structure of extremal
a/b-power-free words, obtaining a product formula for the generating
function enumerating binomial coefficients by their p-adic valuations, and
proving congruences for combinatorial sequences modulo prime powers.
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1 Introduction

IntegerSequences [9] is a Mathematica package for identifying and comput-
ing with integer sequences from a variety of classes. It has a particular emphasis
on the class of k-regular sequences, which arise widely in combinatorics, number
theory, and theoretical computer science. The following code loads the package,
assuming it is downloaded to one of the directories listed in $Path (the recom-
mended location being the Applications subdirectory of $UserBaseDirectory).

A notebook version of this extended abstract containing executable code is
available from the author’s web site1.

The following set of subsequences is central to the definition of a k-regular
sequence.

Definition 1. Let k ≥ 2 be an integer. The k-kernel of a sequence s(n)n≥0 is
the set

{s(ken + i)n≥0 : e ≥ 0 and 0 ≤ i ≤ ke − 1}.

The k-kernel is the base-k analogue of the set of shifts {s(n + i)n≥0 : i ≥ 0}.
A sequence s(n)n≥0 (such as the Fibonacci sequence) is constant-recursive if
{s(n+ i)n≥0 : i ≥ 0} is contained in a finite-dimensional vector space. We define
k-regular (or k-constant-recursive) sequences analogously.
1 https://wolfr.am/uZ4DJDth.
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Definition 2. Let k ≥ 2 be an integer. A sequence s(n)n≥0 with entries in a
field F is k-regular if its k-kernel is contained in a finite-dimensional F -vector
space.

For example, consider the ruler sequence [6, A007814]

0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, . . .

whose nth term s(n) is the exponent of 2 in the prime factorization of n + 1.
The ruler sequence is 2-regular, since the recurrence

s(2n) = 0
s(4n + 1) = −s(n) + s(2n + 1) (1)
s(4n + 3) = −s(n) + 2s(2n + 1)

establishes that the 2-kernel is contained in the Q-vector space generated by
s(n)n≥0 and s(2n + 1)n≥0.

The class of k-regular sequences was introduced by Allouche and Shallit [1],
who established several equivalent characterizations and a number of fundamen-
tal properties. In particular, s(n)n≥0 is k-regular if and only if there exists some
integer r ≥ 0 (the dimension of the associated vector space), r × r matrices
M(0),M(1), . . . ,M(k − 1), a 1 × r vector u, and an r × 1 vector v such that

s(n) = uM(n0)M(n1) · · · M(n�) v

for all n ≥ 0, where n� · · · n1n0 is the standard base-k representation of n [1,
Lemma 4.1]. For example, the ruler sequence can be represented by

u =
[
1 0

]
M(0) =

[
0 0

−1 1

]
M(1) =

[
0 1

−1 2

]
v =

[
0
1

]
.

The matrices M(0) and M(1) encode the recurrence (1). The vector v contains
the 0th term of each generator sequence, namely s(0) = 0 and s(2 · 0 + 1) =
s(1) = 1. The vector u specifies which linear combination of the generators we
are interested in, namely s(n)n≥0 = 1 · s(n)n≥0 + 0 · s(2n + 1)n≥0.

IntegerSequences uses the matrices M(d) and the vectors u, v to represent
a k-regular sequence. The syntax is as follows.

The design of RegularSequence parallels the built-in Mathematica symbol for
representing a holonomic sequence, DifferenceRoot2. Passing an argument to
a RegularSequence object computes a term of the sequence.

2 http://reference.wolfram.com/language/ref/DifferenceRoot.html.

https://oeis.org/A007814
http://reference.wolfram.com/language/ref/DifferenceRoot.html
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Basic closure properties for k-regular sequences established in [1] are imple-
mented in the function RegularSequenceReduce, which attempts to reduce an
expression to a single RegularSequence object. The following writes the Stern–
Brocot and Thue–Morse sequences as 2-regular sequences and then computes
their sum.

2 Guessing a k-Regular Sequence

Given the first N terms of a sequence, one is frequently interested in guessing
a general form for the sequence. A procedure for guessing k-regular sequences
was described by Shallit [14]. The implementation in IntegerSequences works
by maintaining a set B of generators, a set R of relations, and a set of k-kernel
sequences S which have not yet been written as a linear combination of elements
of B. Initialize B = {}, R = {}, and S = {s(n)n≥0}. While S �= {}, remove a
sequence t(n)n≥0 from S and determine, using the known terms, whether it is
a linear combination of elements of B; if it is, add the linear relation to R;
if it is not, add t(n)n≥0 to B as a new generator and add its k subdivisions
t(kn + 0)n≥0, . . . , t(kn + (k − 1))n≥0 to S. When S becomes empty, we have
determined a conjectural basis B such that every element of the k-kernel can
be written as a linear combination of the elements of B. The set of relations R,
along with the initial term of each element of B, uniquely determines a sequence
that agrees with s(n)n≥0 on the known terms.

Since only finitely many terms of s(n)n≥0 are known, it is possible that as
we consider additional sequences from the k-kernel we will exhaust the known
terms. If elements of B which were previously known to be linearly independent
become linearly dependent due to truncating terms, then we do not have enough
terms to confidently guess a recurrence.

This algorithm is implemented in FindRegularSequenceFunction. To our
knowledge, this is the only publicly available guesser for k-regular sequences.
The first argument is the list of terms, and the second argument is k. The
following guesses a 2-regular representation for the number of 1s in the binary
representation of n.

A variant, FindRegularSequenceRecurrence, uses the same algorithm but out-
puts a recurrence rather than a RegularSequence object.
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More generally, FindRegularSequenceFunction supports guessing multidi-
mensional (k1, . . . , kd)-regular sequences s(n1, . . . , nd)n1≥0,...,nd≥0. Let νp(n) be
the p-adic valuation of n, that is, the exponent of the highest power of p dividing
n. The 2-dimensional sequence consisting of the 2-adic valuations of

(
n
m

)
(where

we treat ∞ as a formal symbol) is 2-regular:

We mention several applications where FindRegularSequenceFunction has
been used to guess a sequence or family of sequences.

For a rational number a
b > 1, a word w is an a

b -power if it can be written vex

where e is a non-negative integer, x is a prefix of v, and |w|
|v| = a

b . For example,
011101 is the 3

2 -power (0111)3/2 with v = 0111 and x = 01. The lexicographically
least 3

2 -power-free infinite word on the non-negative integers [6, A269518] is

00110210011200110310011300110210 · · · .

It is difficult a priori to guess whether the sequence of letters in such a word is
k-regular and, if so, to guess the correct value of k. However, through experi-
mentation, FindRegularSequenceFunction revealed that the letters in the lex-
icographically least 3

2 -power-free word form a 6-regular sequence [11].

https://oeis.org/A269518


418 E. Rowland

This discovery led to a large systematic study of the value of k for which the
lexicographically least a

b -power-free word is k-regular, although it is an open
question whether a k always exists [8].

Enumeration questions in combinatorics on words often turn out to have
answers given by k-regular sequences for appropriate values of k. An explana-
tion of this phenomenon in many cases was given by Charlier, Rampersad, and
Shallit [2]. However, k-regular sequences also appear in enumeration questions
not covered by their framework. For example, the �-abelian complexity for many
infinite words appears to be k-regular. The �-abelian complexity of an infinite
word counts factors up to �-abelian equivalence — that is, two factors x and y are
considered the same if |x|v = |y|v for each word v of length ≤ �. The 2-regularity
of the 2-abelian complexities of two well-known words, the Thue–Morse word
and the period-doubling word, were established by proving the 2-regularity of
sequences satisfying a general reflection recurrence [7]. The 2-regular recurrences
for such sequences were guessed by FindRegularSequenceFunction.

The intended use case of FindRegularSequenceFunction is a sequence of
integers. However, the code is sufficiently general to support sequences of poly-
nomials. Again, let νp(n) denote the p-adic valuation of n. Spiegelhofer and Wall-
ner [15] considered the generating function counting binomial coefficients by their
p-adic valuations νp(

(
n
m

)
). For each prime p, FindRegularSequenceFunction is

able to guess a p-regular recurrence for this generating function. For p = 2 we
obtain the following. Note that the matrix entries are now polynomials in the
formal variable x.

The basis chosen by FindRegularSequenceFunction may not be the most
natural basis, since it (a) necessarily consists of k-kernel elements and (b)
depends on the order in which the k-kernel is traversed. By performing a suitable
change of basis for each prime p, the author conjectured the following, which can
be proved by a bijective argument [10].

Theorem 1. Let p be a prime. For each d ∈ {0, 1, . . . , p − 1}, let Mp(d) be the
2 × 2 matrix

Mp(d) =
[
d + 1 p − d − 1
d x (p − d)x

]
.

Let n ≥ 0, and let n� · · · n1n0 be the standard base-p representation of n. Then

n∑

m=0

xνp((n
m)) =

[
1 0

]
Mp(n0)Mp(n1) · · · Mp(n�)

[
1
0

]
.

This theorem generalizes a well-known result of Fine [5] on the number of
binomial coefficients not divisible by p. More generally, the analogous sequence
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of generating functions enumerating multinomial coefficients by their p-adic val-
uations is p-regular [10].

3 Computing Automata for Sequences Modulo pα

A k-regular sequence whose terms take on finitely many distinct values is
called k-automatic. This name derives from the characterization of k-automatic
sequences as sequences whose nth term is the output of an automaton when fed
the base-k digits of n.

Many integer sequences that arise in combinatorics have the property that
reducing each term modulo pα produces a p-automatic sequence. For algebraic
sequences modulo p, this is explained by Christol’s theorem, which states that
a sequence over a finite field of characteristic p is p-automatic if and only if its
generating function is algebraic [3]. Therefore, if

∑
n≥0 s(n)xn ∈ Z�x� is algebraic

(as it is for the Catalan numbers, for example), then
∑

n≥0(s(n) mod p)xn ∈
Fp�x� is algebraic, so (s(n) mod p)n≥0 is p-automatic. In IntegerSequences
this is implemented in AutomaticSequenceReduce. The following computes a 3-
automatic sequence, represented by an automaton, for the nth Catalan number
modulo 3.

The function AutomatonGraph produces the Graph object corresponding to an
automaton.

More generally, if s(n)n≥0 is the diagonal of the power series of a multi-
variate rational expression f

g whose denominator’s constant term g(0, . . . , 0) is
nonzero modulo p, then (s(n) mod pα)n≥0 is p-automatic. An automaton for this
sequence can be computed by embedding the p-kernel into the space of rational
expressions with a certain fixed denominator [12]. The diagonal of a rational
power series is represented in IntegerSequences by DiagonalSequence.
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Computing automata for sequences modulo pα provides routine proofs of
many congruences that were established in the literature by nontrivial case anal-
yses. For example, Eu et al. [4] proved that no Motzkin number is divisible by
8. The following computation proves this in less than a second. The resulting
automaton has 24 states.

Closely related to diagonal sequences are constant-term sequences. Let f
and g be (possibly multivariate) Laurent polynomials, and let s(n) be the con-
stant term of fng. An automaton for (s(n) mod pα)n≥0 can be computed simi-
larly [13]. AutomaticSequenceReduce also implements this algorithm. Constant-
term sequences are represented by ConstantTermSequence, where the first argu-
ment is f and the second argument is g.

In fact that constant-term sequence is the sequence of Motzkin numbers, so we
have established that no Motzkin number is divisible by 25.

For many sequences, including the sequences of Catalan and Motzkin num-
bers, the constant-term representation is preferable to the diagonal representa-
tion since it uses polynomials in a single variable, whereas the diagonal repre-
sentation requires at least two variables.
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Abstract. When implementing functionality which requires sparse
matrices, there are numerous storage formats to choose from, each with
advantages and disadvantages. To achieve good performance, several for-
mats may need to be used in one program, requiring explicit selection
and conversion between the formats. This can be both tedious and error-
prone, especially for non-expert users. Motivated by this issue, we present
a user-friendly sparse matrix class for the C++ language, with a high-
level application programming interface deliberately similar to the widely
used MATLAB language. The class internally uses two main approaches
to achieve efficient execution: (i) a hybrid storage framework, which
automatically and seamlessly switches between three underlying stor-
age formats (compressed sparse column, coordinate list, Red-Black tree)
depending on which format is best suited for specific operations, and (ii)
template-based meta-programming to automatically detect and optimise
execution of common expression patterns. To facilitate relatively quick
conversion of research code into production environments, the class and
its associated functions provide a suite of essential sparse linear alge-
bra functionality (eg., arithmetic operations, submatrix manipulation)
as well as high-level functions for sparse eigendecompositions and lin-
ear equation solvers. The latter are achieved by providing easy-to-use
abstractions of the low-level ARPACK and SuperLU libraries. The source
code is open and provided under the permissive Apache 2.0 license, allow-
ing unencumbered use in commercial products.

Keywords: Numerical linear algebra · Sparse matrix · C++ language

1 Introduction

Modern scientific computing often requires working with data so large it cannot
fully fit in working memory. In many cases, the data can be represented as sparse,
allowing users to work with matrices of extreme size with few nonzero elements.

c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 422–430, 2018.
https://doi.org/10.1007/978-3-319-96418-8_50
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However, converting code from using dense matrices to using sparse matrices is
not always straightforward.

Existing open-source frameworks may provide several separate sparse matrix
classes, each with their own data storage format. For instance, SciPy [10] has
7 sparse matrix classes: bsr matrix, coo matrix, csc matrix, csr matrix,
dia matrix, dok matrix, and lil matrix. Each storage format is best suited
for efficient execution of a specific set of operations (eg., matrix multiplication
vs. incremental matrix construction). Other frameworks may provide only one
sparse matrix class, with severe runtime penalties if it is not used in the right
way. This can be challenging and bewildering for users who simply want to create
and use sparse matrices, and do not have the expertise (or desire) to understand
the advantages and disadvantages of each format. To achieve good performance,
several formats may need to be used in one program, requiring explicit selec-
tion and conversion between the formats. This plurality of sparse matrix classes
complicates the programming task, increases the likelihood of bugs, and adds to
the maintenance burden.

Motivated by the above issues, we present a user-friendly sparse matrix
class for the C++ language, with a high-level application programming inter-
face (function syntax) that is deliberately similar to MATLAB. The sparse
matrix class uses a hybrid storage framework, which automatically and seam-
lessly switches between three data storage formats, depending on which format
is best suited for specific operations: (i) Compressed Sparse Column (CSC),
used for efficient fundamental arithmetic operations such as matrix multiplica-
tion and addition, as well as efficient reading of individual elements; (ii) Co-
Ordinate List (COO), used for facilitating operations involving bulk coordinate
transformations; (iii) Red-Black Tree (RBT), used for both robust and efficient
incremental construction of sparse matrices (i.e., construction via setting individ-
ual elements one-by-one, not necessarily in order). To further promote efficient
execution, the class exploits C++ features such as template meta-programming
to provide a compile-time expression evaluator, which can automatically detect
and optimise common mathematical expression patterns.

The sparse matrix class provides an intuitive interface that is very close to
a typical dense matrix API; this can help with rapid transition of dense-specific
code to sparse-specific code. In addition, we demonstrate that the overhead of
the hybrid format is minimal, and that the format is able to choose the optimal
representation for a variety of sparse linear algebra tasks. This makes the format
and implementation suitable for real-world prototyping and production usage.

Although there are many other sparse matrix implementations in existence,
to our knowledge ours is the first to offer a unified interface with automatic
format switching under the hood. Most toolkits are limited to either a single
format or multiple formats the user must manually convert between. As men-
tioned earlier, SciPy contains no fewer than seven formats, and the comprehen-
sive SPARSKIT package [12] contains 16. In these toolkits the user must man-
ually convert between formats. On the other hand, both MATLAB and GNU
Octave [5] contain sparse matrix implementations, but they supply only the CSC
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format, meaning that users must write their code in special ways to ensure its
efficiency [9].

The source code for the sparse matrix class and its associated functions
is included in recent releases of the cross-platform and open-source Armadillo
library [13], available from http://arma.sourceforge.net. The code is provided
under the permissive Apache 2.0 license [11], allowing unencumbered use in
commercial products.

We continue the paper as follows. In Sect. 2 we overview the functionality
provided by the sparse matrix class and its associated functions. In Sect. 3 we
briefly describe the underlying storage formats used by the class, and the tasks
that each of the formats is best suited for. Section 4 provides an empirical eval-
uation showing the performance of the hybrid storage framework in relation
to the underlying storage formats. The salient points and avenues for further
exploration are summarised in Sect. 5.

2 Functionality

To allow prototyping directly in C++ as well as to facilitate relatively quick con-
version of research code into production environments, the sparse matrix class and
its associated functions provide a user-friendly suite of essential sparse linear alge-
bra functionality, including fundamental operations such as addition, matrix mul-
tiplication and submatrix manipulation. Various sparse eigendecompositions and
linear equation solvers are also provided. C++ language features such as overload-
ing of operators (eg., * and +) [14] are exploited to allow mathematical operations
with matrices to be expressed in a concise and easy-to-read manner. For instance,
given sparse matrices A, B, and C, a mathematical expression such as

D =
1

2
(A + B) · CT

can be written directly in C++ as

sp mat D = 0.5 ∗ (A + B) ∗ C.t();

Low-level details such as memory management are hidden, allowing the user
to concentrate effort on mathematical details. Table 1 lists a subset of the avail-
able functionality for the sparse matrix class, sp mat.

The sparse matrix class uses a delayed evaluation approach, allowing sev-
eral operations to be combined to reduce the amount of computation and/or
temporary objects. In contrast to brute-force evaluations, delayed evaluation
can provide considerable performance improvements as well as reduced mem-
ory usage. The delayed evaluation machinery is accomplished through template
meta-programming [15], where a type-based signature of a set of consecutive
mathematical operations is automatically constructed. The C++ compiler is
then induced to detect common expression subpatterns at compile time, and
selects the corresponding optimised implementations. For example, in the expres-
sion trace(A.t() * B), the explicit transpose and time-consuming matrix multi-
plication are omitted; only the diagonal elements of A.t() * B are accumulated.

http://arma.sourceforge.net
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Sparse eigendecompositions and linear equation solutions are accomplished
through integration with low-level routines in the de facto standard ARPACK [7]
and SuperLU libraries [8]. The resultant high-level functions automatically take
care of the cumbersome and error-prone low-level management required with
these libraries.

3 Underlying Sparse Storage Formats

The three underlying storage formats (CSC, COO, RBT) were chosen so that
the sparse matrix class can achieve overall efficient execution of the following five
main use cases: (i) incremental construction of sparse matrices via quasi-ordered
insertion of elements, where each new element is inserted at a location that is past
all the previous elements according to column-major ordering; (ii) flexible ad-
hoc construction or element-wise modification of sparse matrices via unordered
insertion of elements, where each new element is inserted at a random location;
(iii) operations involving bulk coordinate transformations; (iv) multiplication of
dense vectors with sparse matrices; (v) multiplication of two sparse matrices.

Table 1. Selected functionality of the sparse matrix class, with brief descriptions.
See http://arma.sourceforge.net/docs.html#SpMat for more detailed documentation.
Several optional additional arguments have been omitted for brevity.

Function Description

sp mat X(100,200) Declare sparse matrix with 100 rows and 200 columns

sp cx mat X(100,200) As above, but use complex elements

X(1,2) = 3 Assign value 3 to element at location (1,2) of matrix X

X = 4.56 * A Multiply matrix A by scalar

X = A + B Add matrices A and B

X = A * B Multiply matrices A and B

X = kron(A, B) Kronecker tensor product of matrices A and B

X( span(1,2), span(3,4) ) Provide read/write access to submatrix of X

X.diag(k) Provide read/write access to diagonal k of X

X.print() Print matrix X to terminal

X.save(filename, format) Store matrix X as a file

speye(rows, cols) Generate sparse matrix with values on diagonal set to one

sprandu(rows, cols, density) Generate sparse matrix with random non-zero elements

sum(X, dim) Sum of elements in each column (dim = 0) or row (dim = 1)

min(X, dim); max(X, dim) Obtain extremum value in each col. (dim = 0) or row (dim = 1)

X.t() or trans(X) Return transpose of matrix X

repmat(X, rows, cols) Replicate matrix X in block-like fashion

norm(X, p) Compute p-norm of vector or matrix X

normalise(X, p, dim) Normalise each col. (dim = 0) or row (dim = 1) to unit p-norm

trace(A.t() * B) Compute trace omitting explicit transpose and multiplication

eigs gen(eigval, eigvec, X, k) Compute k largest eigenvalues and eigenvectors of matrix X

svds(U, s, V, X, k) Compute k singular values and singular vectors of matrix X

X = spsolve(A, b) Solve sparse system Ax = b for x

http://arma.sourceforge.net/docs.html#SpMat
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Below we briefly describe each storage format and its limitations. We use N
to indicate the number of non-zero elements of the matrix, while n rows and
n cols indicate the number of rows and columns, respectively.

3.1 Compressed Sparse Column

In the CSC format [12], three arrays are used: (i) the values array, which is a
contiguous array of N floating point numbers holding the non-zero elements,
(ii) the row indices array, which is a contiguous array of N integers holding
the corresponding row indices (i.e., the n-th entry contains the row of the n-
th element), and (iii) the column offsets array, which is a contiguous array of
n cols+1 integers holding offsets to the values array, with each offset indicating
the start of elements belonging to each column. Let us denote the i-th entry in
the column offsets array as c[i], the j-th entry in the row indices array as r[j],
and the n-th entry in the values array as v[n]. All arrays use zero-based indexing,
i.e., the initial position in each array is denoted by 0. Then, v[c[i] ] is the first
element in column i, and r[c[i] ] is the corresponding row of the element. The
number of elements in column i is determined using c[i+1] − c[i], where, by
definition, c[0] is always 0 and c[n cols] is equal to N .

The CSC format is well-suited for sparse linear algebra operations such as
summation and vector-matrix multiplication. It is also suited for operations that
do not change the structure of the matrix, such as element-wise operations on
the nonzero elements. The format also affords relatively efficient random element
access; to locate an element (or determine that it is not stored), a single lookup to
the beginning of the desired column can be performed, followed by a binary
search to find the element.

The main disadvantage of CSC is the effort required to insert a new element.
In the worst-case scenario, memory for three new larger-sized arrays (containing
the values and locations) must first be allocated, the position of the new element
determined within the arrays, data from the old arrays copied to the new arrays,
data for the new element placed in the new arrays, and finally the memory used
by the old arrays deallocated. As the number of elements in the matrix grows,
the entire process becomes slower.

There are opportunities for some optimisation, such as using oversized storage
to reduce memory allocations, where a new element past all the previous elements
can be readily inserted. It is also possible to perform batch insertions with some
speedup by first sorting all the elements to be inserted and then merging with the
existing data arrays. While the above approaches can be effective, they require
the user to explicitly deal with low-level storage details instead of focusing on
high-level functionality.

The CSC format was chosen over the related Compressed Sparse Row (CSR)
format [12] for two main reasons: (i) to ensure compatibility with external
libraries such as the SuperLU solver [8], and (ii) to ensure consistency with
the surrounding infrastructure provided by the Armadillo library, which uses
column-major dense matrix representation for compatibility with LAPACK [1].
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3.2 Coordinate List Representation

The Coordinate List (COO) is a general concept where a list L = (l1, l2, · · · , lN )
of 3-tuples represents the non-zero elements in a matrix. Each 3-tuple contains
the location indices and value of the element, i.e., l = (row, column, value). The
format does not prescribe any ordering of the elements, and a linked list [2]
can be used to represent L. However, in a computational implementation geared
towards linear algebra operations [12], L is often represented as a set of three
arrays: (i) the values array, which is a contiguous array of N floating point
numbers holding the non-zero elements of the matrix, and the (ii) rows and
(iii) columns arrays, which are contiguous arrays of N integers, holding the row
and column indices of the corresponding values.

The array-based representation of COO is related to CSC, with the main dif-
ference that for each element the column indices are explicitly stored. As such,
the COO format contains redundancy and is hence less efficient than CSC for
representing sparse matrices. However, in the COO format the coordinates of
all elements can be directly read and modified in a batch manner, which facil-
itates specialised/niche operations that involve bulk transformation of matrix
coordinates (eg., circular shifts). In the CSC format such operations are more
time-consuming and/or more difficult to implement, as the compressed structure
must be taken into account. The general disadvantages of the array-based rep-
resentation of COO are similar as for the CSC format, in that element insertion
is typically a slow process.

3.3 Red-Black Tree

To address the problems with element insertion at arbitrary locations, we first
represent each element as a 2-tuple, l = (index, value), where index encodes
the location of the element as index = row + column × n rows. This encoding
implicitly assumes column-major ordering of the elements. Secondly, rather than
using a linked list or an array based representation, the list of the tuples is stored
as a Red-Black Tree (RBT), a self-balancing binary search tree [2].

Briefly, an RBT is a collection of nodes, with each node containing the 2-
tuple described above and links to two children nodes. There are two constraints:
(i) each link points to a unique child node and (ii) there are no links to the root
node. The ordering of the nodes and height of the tree is explicitly controlled
so that searching for a specific index (i.e., retrieving an element at a specific
location) has worst-case complexity of O(logN). Insertion and removal of nodes
(i.e., matrix elements), also has the worst-case complexity of O(logN). If a node
to be inserted is known to have the largest index so far (eg., during incremental
matrix construction), the search for where to place the node can be omitted,
thereby speeding up the insertion process close to O(1) complexity.

Traversing the tree in an ordered fashion (from the smallest to largest index)
is equivalent to reading the elements in column-major ordering. This in turn
allows the quick conversion of matrix data stored in RBT format into CSC
format. Each element’s location is simply decoded via row = index mod n rows
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and column = �index/n rows�, with the operations accomplished via direct
integer arithmetic on CPUs.

In our hybrid format, the RBT format is used for incremental construction
of sparse matrices, either in an ordered or unordered fashion, and a subset of
elementwise operations. This in turn enables users to construct sparse matrices
in the same way they might construct dense matrices—for instance, a loop over
elements to be inserted without regard to storage format.

4 Automatically Switching Between Storage Formats

To avoid the problems associated with selection and manual conversion between
formats, our sparse matrix class uses a hybrid storage framework that automat-
ically and seamlessly switches between the data storage formats described in
Sect. 3.

By default, matrix elements are stored in CSC format. When required, data
in CSC format is internally converted to either the RBT or COO format, on
which an operation or set of operations is performed. The matrix is automatically
converted (‘synced’) back to the CSC format the next time an operation requiring
the CSC format is performed.

The actual underlying storage details and conversion operations are com-
pletely hidden from the user, who may not necessarily be knowledgeable about
(or care to learn about) sparse matrix storage formats. This allows for simplified
code, which in turn increases readability and lowers maintenance. In contrast,
other toolkits without automatic format conversion can cause either slow execu-
tion (as a non-optimal storage format might be used), or require many manual
conversions. As an example, Fig. 1 shows a short Python program using the
SciPy toolkit and a corresponding C++ program using the sparse matrix class.
Manually initiated format conversions are required for efficient execution in the
SciPy version; this causes both development time and code size to increase.

To empirically demonstrate the usefulness of the hybrid storage framework
we have performed several experiments: (i) quasi-ordered element insertion, i.e.,
incremental construction, (ii) unordered (random) insertion, and (iii) matrix
multiplication. In all cases the sparse matrices have a size of 10,000× 10,000,
with four settings for the density of non-zero elements: 0.01%, 0.1%, 1%, 10%.

Figure 2(a) shows the time taken for unordered element insertion done
directly using the underlying storage formats (i.e., CSC, COO, RBT, as per
Sect. 3), as well as the hybrid approach which uses RBT followed by conversion
to CSC. The CSC and COO formats use oversized storage as a form of opti-
misation. The RBT format is the quickest, generally by one or two orders of
magnitude, with the conversion from RBT to CSC adding negligible overhead.
The results for quasi-ordered insertion (not shown) follow a similar pattern.

Figure 2(b) shows the time taken to multiply two sparse matrices in either
CSC or RBT format, with the matrix elements already stored in each format.
The COO format was omitted due to its similarity with CSC. The hybrid storage
format automatically uses CSC for matrix multiplication, which is faster than
RBT by about two orders of magnitude.
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Fig. 1. Left panel: a Python program using the SciPy toolkit, requiring explicit con-
versions between sparse format types to achieve efficient execution; if an unsuitable
sparse format is used for a given operation, SciPy will emit TypeError or SparseEffi-
ciencyWarning. Right panel: A corresponding C++ program using the sparse matrix
class, with the format conversions automatically done by the class.

Fig. 2. Time taken to (a) insert elements at random locations into a sparse matrix to
achieve various densities of non-zero elements, and (b) multiply two sparse matrices
with elements at random locations and various densities. In both cases the sparse
matrices have a size of 10,000× 10,000.

5 Conclusion

Motivated by a lack of easy-to-use tools for sparse matrix development, we have
proposed and implemented a sparse matrix class in C++ that internally uses a
hybrid format. The hybrid format automatically converts between good repre-
sentations for specific functionality, allowing the user to write sparse linear alge-
bra without requiring to consider the underlying storage format. Internally, the
hybrid format uses the CSC (compressed sparse column), COO (coordinate list),
and RBT (red-black tree) formats. In addition, template meta-programming is
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used to optimise common expression patterns. We have made our implementa-
tion available as part of the open-source Armadillo C++ library [13].

The class has already been successfully used in open-source projects such as
MLPACK, a C++ library for machine learning and pattern recognition [3]. It
is used there to allow machine learning algorithms to be run on either sparse
or dense datasets. Furthermore, bindings are provided to the R environment via
RcppArmadillo [6].

Future avenues for exploration include integrating more specialised matrix
formats in order to automatically speed up specific operations. For example, the
Skyline formats [4] are useful for Cholesky factorisation and related operations.
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Abstract. E-learning systems for mathematics, such as STACK, Maple
T.A., and MATH ON WEB that are able to assess answers using math-
ematical expressions, have been used for mathematics education at uni-
versities. The means for inputting mathematical expressions using cur-
rent interfaces in these mathematics e-Learning systems are cumbersome
not only for students entering their answers, but also for teachers author-
ing educational materials. In most editing software, teachers need to enter
mathematical expressions according to LaTeX-style or computer algebra
system-style.This exerts a heavy toll on teacherswhohave never used these
systems. For general use of these systems, it is important to improve the
means for entering mathematical expressions. In this study, we developed
an intelligent editor for authoring educational materials in mathematics e-
Learning systems by implementing a mathematical input interface, named
MathTOUCH. This interface allows users to enter the desired mathemati-
cal expressions through predictive conversion that converts obscure linear
strings presented in a colloquial-style into suitable formats. The results of
our previous investigation show that MathTOUCH allows higher level of
performance than the standard interfaces. Therefore, the proposed editor
is expected to overcome the problem of inputting mathematical expres-
sions in e-learning systems for mathematics education.
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1 Introduction

In recent years, e-learning systems have gained popularity of use in higher-
education institutions in accordance with the development of information and
communications technologies. These systems offer multiple features such as pro-
viding teaching materials, message boards for discussion, and online testing.
In particular, online testing is an important feature for self-directed study and
measurement of students’ abilities.

In online mathematics testing, several systems such as STACK [1], Maple
T.A. [2] and MATH ON WEB [3] are used at several universities in JAPAN.
These systems enable students to enter a mathematical expression directly
as their answer. However, the current standard input interfaces for these sys-
tems are cumbersome for novice learners to enter their answer. To improve
this issue, Fukui and Shirai have proposed a new mathematical input interface,
named MathTOUCH [4–6]. This interface facilitates predictive conversion from
a colloquial-style mathematical text to suitable two-dimensional mathematical
expressions.

Meanwhile, we have proposed mathematics e-learning questions specification
(MeLQS) for sharing questions among different systems [7]. We are also devel-
oping the system for authoring questions according to MeLQS. However, the
input procedure for mathematical expressions is also troublesome for teachers
authoring educational materials.

This study aims to address this shortcoming by introducing MathTOUCH, an
intelligent-type mathematical input interface, as mentioned above. We present an
intelligent editor for authoring educational materials in mathematics e-learning
systems by implementing MathTOUCH.

2 MathTOUCH: Math Input Interface

2.1 Overview of MathTOUCH

Educational materials for mathematics e-learning systems are authored by an
HTML editor that allows users to embed media or an equation into their editing
text. Currently, there are two ways to enter mathematical expressions, namely
text-based interfaces and structure-based interfaces.

Text-based interfaces such as LATEX use only characters. These interfaces
represent mathematical expressions with inline text. To represent relationships
between mathematical elements, users need to input characters according to a
command syntax explicitly. It is hard to use for novices [8] because these inline
text notations for mathematical expressions are not as intuitive as desired.

Conversely, structure-based interfaces allow users to enter mathematical
expressions using individual symbols and mathematical structures graphically
from menu palettes. It is quite friendly for novices but they need to have previous
understanding of the structures of the mathematical expressions. For instance, if
users want to input the expression x2+3

2 , they need to choose the fraction symbol
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first, thereafter they insert x2 +3 and 2. This procedure is different from writing
procedures on paper, so this type of interface also causes usability problems [9].

To address these issues, we propose an intelligent-type mathematical input
interface, named MathTOUCH. This interface allows users to enter the
desired mathematical expressions from obscure colloquial-style strings [4,5]. For
instance, in the case of the expression x2+3

2 , the users first input the linear
string “x2 + 3/2”. The rules of colloquial-style linear string set the key letters
(or words) linearly corresponding to the symbols for the elements of a mathe-
matical expression in the order they are read or spoken [6]. It is unnecessary to
enter signs that are not displayed, such as the power sign and the parentheses
as a delimiter for the numerator. Thereafter, a list of candidates is displayed
as system prediction proposals as in Fig. 1. After that, they simply choose the
desired expression from the list. Finished mathematical expressions are output
in formats such as LaTeX, MathML, PNG, JPEG, EPS, Maxima, Maple, and
Mathematica.

MathTOUCH enables users to input almost any mathematical expression
dealt with in the general categories of mathematics from junior high school level
to university level without having to learn a complex language such as LATEX.
Some examples for linear strings for MathTOUCH and LATEX-form are shown in
Table 1. For example, the linear string for cos2 θ is denoted by “cos2t.” However,
the linear string of the expressions cos 2θ, cos2 t and cos 2t are also denoted by
“cos2t.” Hence, there are some ambiguities in our linear string rules.

To address this shortcoming on such obscure rules, we have proposed a pre-
dictive algorithm to convert an linear string into the most suitable mathematical
expressions using machine learning through a data set consisting of 4000 formu-
lae [6].

Our prior research shows that MathTOUCH allows approximately 1.2–1.6
times faster task times than the standard interfaces. It shows higher satisfaction
with regards to math input usability than the standard interfaces [5].

The results of our evaluation show that the prediction accuracy for the top
ten ranking of our method is 85.2% [6].

2.2 Entering Mathematical Expressions

We explain the mathematical input process of MathTOUCH by using the case
of the equation y = x2 sinx which is illustrated in Fig. 2. First, users input a
colloquial-style linear string for the desired mathematical expression. Then, a list
of prediction proposals is displayed in a two-dimensional mathematical notation
by using our proposed predictive algorithm through a machine learning. In this
case, the linear string is “y = x2sinx” and the user then hits the top of prediction
proposals in the list. After all the elements are interactively chosen, the desired
expression is formed. Finally, the complete mathematical expression is outputted
in the desired format.

MathTOUCH was developed using JavaScript and can be integrated into the
other systems.
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Fig. 1. MathTOUCH: math input interface.

Table 1. Examples of colloquial-style linear strings.

Mathematical expression MathTOUCH LATEX-form

x2 + 3x + 2 x2 + 3x + 2 x^{2} + 3x + 2
2
5

2/5 \frac{2}{5}√
3 root3 \sqrt {3}

cos2 θ cos2t \cos^{2}\theta
log10 x log10x \log {10}x
n∑

k=1

ak sumk = 1nak \sum {k=1}^{n}a {k}
∫ b

a
f(x)dx intabf(x)dx \int {a}^{b}f\left(x\right)dx

3 Proposed Intelligent Editor

We have developed an editor for authoring educational materials in mathematics
e-learning systems that enables users to embed any mathematical expression
into the text using MathTOUCH. In this section, we describe a specification

Fig. 2. Mathematical input process on MathTOUCH.
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of a proposed intelligent editor and how to edit educational materials including
mathematical expressions using our editor.

3.1 System Specification

This editor was created in JavaScript (HTML5) to make it compatible with other
e-assessment systems.

Figure 3 represents our proposed intelligent editor window and their editing
functions in the menu palettes. This editor has functions like other common
HTML editors such as the ability to change font size, font color, and inserting
images. All functions are available from buttons arranged at the top of the
editor window. Users are able to insert any mathematical expression by calling
MathTOUCH from the insert equation button (Fig. 3, No. 23). The documents
inside of the entry area in Fig. 3 are an example of a calculus question for an
e-assessment system.

Fig. 3. Proposed intelligent editor.

3.2 Interaction Design

In this section, we explain the editing process of this editor. Figure 4 represents
an example of authoring a question as in Fig. 3. First, the teacher inputs the
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quiz or question statement in the editing area. The MathTOUCH editor (the
intelligent-type mathematical input interface), is available whenever it is called
from the pop-up window using the insert equation button in the functional icon
pallet (Fig. 4). In this case, in Fig. 4, the teacher inputted the text statement
for a calculus question in the first line and called MathTOUCH from the insert
equation button. After formatting the desired mathematical expression by Math-
TOUCH as mentioned in Sect. 2, the two-dimensional mathematical expression
is embedded into the editing text at the cursor point in the second line of the
entry area.

Therefore, it is easy to imagine how the questions are displayed on the e-
learning system. Moreover, the embedded mathematical expressions on this edi-
tor are amendable by calling the MathTOUCH window again.

Fig. 4. Example of authoring a mathematical question on our proposed editor.

4 Conclusion and Future Work

In this paper, we proposed an intelligent editor for authoring educational mate-
rials in mathematics e-learning systems by implementing MathTOUCH. Math-
TOUCH is an intelligent-type mathematical input interface that enables users to
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insert desired mathematical expressions into the text editor in a two-dimensional
mathematical notation using predictive conversion from colloquial-style strings
through a machine learning algorithm. The proposed intelligent editor enables
teachers to embed their desired equations and/or formulae into any point of a
mathematical materials. Especially, they are able to imagine how the authored
materials consisting of mathematical expressions are displayed on e-learning sys-
tems and to amend all the embedded mathematical expressions. Therefore, the
workload of authoring educational materials for teachers would be reduced.

The most important avenues for future research are evaluating the editor and
implementing it in MeLQS systems that are created with Moodle.
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Abstract. In 1994, Tillich and Zémor proposed a scheme for a family
of hash functions. In the scheme, they used products of 2×2 matrices in
special linear group over a field. Since then, other hash functions based on
the Tillich and Zémor’s design have been proposed. These cryptographic
hash functions are called Cayley hash functions because of the correspon-
dence between their constructions and Cayley graphs of (semi)groups.
Most instances of Cayley hash functions have been proved insecure, but
the algorithms used to break Cayley hash functions target specific vulner-
abilities of each underlying (semi)group used. However, these algorithms
don’t seem to invalidate the generic scheme. An overview is presented of
some of the latest proposals for Cayley hash functions and related open
problems.

Keywords: Cryptography · Hash functions · Cayley hash functions

1 Introduction

With the increasing use of technology in communications, financial transactions
and many other internet applications, cryptography is essential to the security
of many online protocols. Most of the cryptosystems in use today are based on
finite Abelian groups. Some of these cryptographic systems will be completely
vulnerable to attacks once large quantum computers are made possible. Post-
quantum cryptography is cryptography under the assumption that the attacker
has a large quantum computer, and its objective is to provide cryptosystems
that remain secure in such scenario [5].

Hash functions are an important tool for cryptography. They are fundamental
blocks in the construction of several cryptographic primitives such as digital
signature, encryption and key derivation systems. According to Bernstein [4],
there are three classes of cryptographic systems that appear to be difficult to
break even with a large quantum computer. One of these systems is the hash-
based public-key signatures, which requires the use of a standard cryptographic
hash function.

Provably secure hash functions are hash functions whose security are based
on the difficulty of solving a known “hard” problem. Also in recent years, non-
Abelian (semi)groups that are typically studied in combinatorial group theory
c© Springer International Publishing AG, part of Springer Nature 2018
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and linear group theory have been considered with increasing interest in public
key cryptography [1,3,16,18]. It seems reasonable to research replacements and
enhancements of protocols that are based on finite Abelian groups.

Examples of provable-secure hash functions are the Cayley hash functions
that are based on the Cayley graphs of (semi)groups. Cayley hash functions are
designed so that their security would follow from the alleged hardness of a math-
ematical problem related to the Cayley graph of the underlying (semi)group [11].

The first cryptographic hash function using finite groups was proposed by
Bosset in 1977 [6]. It was described as a signature scheme and uses multiplications
of matrices in the group GL2(Fp) where p is prime. It was broken by Camion
in 1984 with a probabilistic factorization algorithm that uses a certain type of
chain of subgroups with “small” subgroup indices to search for a text whose hash
value is in a subgroup of the chain [9].

In 1991, Zémor introduced a hash function whose values correspond to prod-
ucts in SL2(Fp) where p is prime [27]. It was broken by Tillich and Zémor, who
then also provided the group SL2(F2n) as replacement to increase the security
of the scheme [25,26].

The Tillich-Zémor hash function sustained attacks until 2009 when Grassl
et al. [14] established a connection between the Tillich-Zémor function and maxi-
mal length chains in the Euclidean algorithm for polynomials over the field with
two elements. Petit and Quisquater [22,23] suggested that security might be
recovered by introducing new generators. The factorization, representation and
balance problems in non-Abelian groups still are potentially hard problems for
general parameters of Cayley hash functions. Other proposals for Cayley hash
functions have been developed since then.

The goal of this paper is to describe some of the developments in Cayley
hash functions and it is not intended to be a comprehensive description of the
subject. It will provide an overview of some of the latest Cayley hash proposals
and relevant open problems. For more details about these proposals and related
results, we refer the reader to the references herein.

The remainder of the paper is organized as follows. In Sect. 2, we recall the
properties of a cryptographic hash function. In Sect. 3, we present the Cayley
hash function design and define the balance, representation and factorization
problems. In Sect. 4, we briefly describe certain Cayley hash proposals and review
some aspects related to their security, and we conclude the paper in Sect. 5.

2 Preliminaries

Hash functions are efficient compression functions that take a variable-length
input and convert it to a fixed-length output.

Definition 1. Let h : X∗ −→ Xn be a hash function. The alphabet X usually
used is {0, 1}. h is a cryptographic hash function if satisfy at least one of the
following properties.
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– Preimage resistance: Given a hash value y for which a corresponding input
is not known, it is computationally infeasible (or “hard”) to find any input x
such that y = h(x).

– Second-preimage resistance: Given an input x1 it is computationally infeasible
to find another input x2 where x1 �= x2 such that h(x1) = h(x2).

– Collision resistance: It is computationally infeasible to find any two inputs x1

and x2 where x1 �= x2 such that h(x1) = h(x2).

Our interest is in cryptographic hash functions whose constructions are based
on directed Cayley graphs of (semi)groups.

3 Cayley Hash Functions

Cayley hash functions are families of cryptographic hash functions constructed
from Cayley graphs. The initial idea of Cayley hash functions was to use groups
whose Cayley graph are expander graphs to design hash functions that are
collision-resistant.

Definition 2. Let G be a finite (semi)group with a set of generators S that has
the same size as the text alphabet A. Choose a function: π : A → S such that
defines an one-to-one correspondence between A and S. The hash value of the
text x1x2 . . . xk is the (semi)group element π(x1)π(x2) . . . π(xk).

One of the advantages of this design is that the computation of the hash value
can be easily parallelized due to the concatenation property π(xy) = π(x)π(y)
for any texts x and y from A. Unlike the SHA family of hash functions that hash
blocks of input, this type of function hashes each bit individually.

Cayley hash functions have their security properties strongly related to math-
ematical problems.

Definition 3. Let G be a (semi)group and S = {s1, . . . sk} ⊂ G be a generating
set of G. Let L be of polylogarithmic (small) in the size of G.

– Balance problem: Find an efficient algorithm that returns two words m1 . . . ml

and m′
1 . . . m′

l′ with l, l′ < L, mi,m
′
i ∈ {1, . . . , k} that yield equal products in

G, that is,
l∏

i=1

smi
=

l′∏

i=1

sm′
i

– Representation problem: Find and efficient algorithm that returns a word

m1 . . . ml with l < L, mi ∈ {1, . . . , k} such that
l∏

i=1

smi
= 1.

– Factorization problem: Find an efficient algorithm that given any element g ∈
G returns a word m1 . . . ml with l < L, mi ∈ {1, . . . , k} such that

l∏

i=1

smi
= g.

A Cayley hash function is collision resistant if and only if the balance problem
is hard in the underlying (semi)group. If the representation problem is hard in
the (semi)group, the associated Cayley hash is second-preimage resistant and,
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it is preimage resistant if and only if the corresponding factorization problem is
hard in (semi)group [19,23].

Other requirements considered by Tillich and Zémor in [25,27] in the con-
struction of Cayley hash functions are that the Cayley graph of G with generator
set S has large girth and small diameter. This is closely related to the Babai’s
conjecture.

Conjecture 1 (Conjecture 1.7 in [2]). If G is a non-Abelian finite simple group
of order N , then diam(G) < (log N)c for some absolute constant c.

The factorization problem in non-Abelian groups can also be seen as an
constructive proof of Babai’s conjecture and a constructive proof of Babai’s
conjecture would make all Cayley hash functions insecure [23].

In addition to the Tillich-Zémor hash function, we will provide a brief descrip-
tion of some of the latest developments in Cayley hashes.

4 Instances of Cayley Hash Functions

4.1 Tillich-Zémor Hash Function

The generators of this hash function are A =
(

α 1
1 0

)

and B =
(

α α + 1
1 1

)

with α as the root of an irreducible polynomial p(x) of degree n in the ring
of polynomials F2[x], where F2 is the field with two elements. A and B are
generators of the Cayley graph for the group SL2(F2n) with F2n ≈ F2[x]/(p(x))
where (p(x)) is the ideal generated by an irreducible polynomial p(x).

To find collisions for the Tillich-Zémor hash functions one needs to find two
distinct sequences of matrix generators such that the corresponding products
coincide in the group SL2(F2n). The Tillich-Zémor hash function sustained early
attacks. However, Grassl et al. [14] introduced an algorithm that finds collisions
for this hash function. They discovered a pattern in the structure of hash values
of palindromic messages (messages such that their representation in bit strings
are the same backward as forward). The attack showed that the Tillich-Zémor
hash function was not collision resistant.

Consequently, Petit and Quisquater [22] presented efficient algorithms that
show that the Tillich-Zémor function is not preimage nor second-preimage resis-
tant. Their two algorithms provide preimages of lengths O(n2) and O(n3). They
also describe the following open problem.

Problem 1 (Petit and Quisquater, 2011 ). Since the size of SL2(F2n) is about
23n, it seems reasonable to conjecture that preimages of size 3n exist for any
matrix. However, even if this conjecture is true, it is not clear that there exists
an efficient algorithm computing preimages of this length.

Other instances of Cayley hashes based on Ramanujan expander graphs have
been proposed after Tillich-Zémor functions. They are the LPS hash function
and the Morgenstern hash function. The latter is a generalization of the former
hash function. For information about these Cayley hash functions and their
cryptanalyses, consult [20,21].
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4.2 Bromberg-Shpilrain-Vdovina Hash Function (BSV)

In the paper [8], Bromberg et al. proposed specific cases of the following matrices

as generators for the BSV Cayley hash function: A(x) =
(

1 x
0 1

)

and B(y) =
(

1 0
y 1

)

considered over Fp with p prime and xy ≥ 4. Their choice is based on

the fact that these matrices generate a free monoid over Z and that there cannot
be any short relations over Fp.

It is known that the Cayley graphs of groups generated by the pairs
(A(2), B(2)) and (A(3), B(3)) over Fp are expander graphs. Bromberg et al.
provide explicit lower bounds for the directed girth of the corresponding Cayley
graphs. The semigroup generated by A(2) and B(2) over Fp has a Cayley graph
with girth at least logb2 p where b2 =

√
3 +

√
8 ≈ 2.4, and the Cayley graph gen-

erated by A(3) and B(3) has girth at least logb3 p where b3 =
√

11+
√
117

2 ≈ 3.3.
They also mention that the girth of expander graphs are not necessarily large

in general and give explicit examples of that in the literature. In addition, they
proved the following result.

Theorem 1 (Bromberg, Shpilrain and Vdovina, 2017). There is an
efficient heuristic algorithm that finds particular relations of the form
w(A(2), B(2)) = 1, where w is a group word of length O(log p), and the matrices
A(2) and B(2) are considered over Fp.

The algorithm combines Sanov’s result (1947) about the form of all invert-
ible matrices in the subgroup of SL2(Z) generated by A(2) and B(2) and the
“lifting attack” by Tillich and Zémor [25] used to break the Zémor hash function
[27]. Despite their algorithm, the security of the BSV Cayley hash function is
not affected since only positive powers of A(2) and B(2) are used in hashing,
and the group relations produced by the algorithm involve, with high probabil-
ity, negative and positive powers. To the best of our knowledge, the BSV hash
remains unbroken.

The following are related open problems listed in [7].

Problem 2 (Bromberg, Shpilrain and Vdovina, 2015 ). Find an analog of Sanov’s
form for the subgroup of SL2(Z) generated by A(3) and B(3).

Problem 3 (Bromberg, Shpilrain and Vdovina, 2015 ). Determine which words
in the matrices A(1) and B(2) will have the fastest growth of their entries.

Problem 4 (Bromberg, Shpilrain and Vdovina, 2015 ). Find an efficient algorithm
that finds relations of the form w(A(3), B(3)) = 1, where w is a group word of
bounded length when the matrices are considered over Fp.

In a paper by Han et al. [15], the authors answer the question in Problem 3
about the size of the entries of matrices in the monoid generated by the matrices
of type A(x) and B(y) for x, y ≥ 1, generalizing the results in [8].
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Regarding Problems 2 and 4, Chorna, Geller and Shpilrain [12] provide results
about the form of the matrices in SL2(Z) generated by A(k) and B(k) for k ∈ Z

and an algorithm that decides whether or not a given matrix M = (mij) in
SL2(Z) is in the subgroup of SL2(Z) generated by A(k) and B(k) for k ∈ Z, k ≥ 2
(and if it does, finds a presentation of the matrix as a group word in A(k) and
B(k)) in time O(n log n), where n =

∑ |mij |.

4.3 Shpilrain-Sosnovski Hash Function

In the paper [24], Shpilrain and Sosnovski presented a Cayley hash function that
uses linear functions in one variable over Fp with composition operation.

The semigroup generated by f(x) = ax + b and g(x) = cx + d under compo-

sition is isomorphic to the semigroup generated by A =
(

a b
0 1

)

and B =
(

c d
0 1

)

under matrix multiplication. Using results about the freeness of upper triangu-
lar matrices by Cassaigne et al. [10], they showed that the semigroup of linear
functions over Z is free if the generators of the semigroup do not commute and
a, c ≥ 2.

The functions f0(x) = 2x + 1 mod p and f1(x) = 3x + 1 mod p with p > 3
are considered the generators of the proposed hash function. The hash value
is obtained by first computing product h(b1b2 · · · bk) = fb1fb2 · · · fbk (mod p)
where bi ∈ {0, 1} for 1 ≤ i ≤ k. The corresponding product linear function is
of the form �(x) = rx + s where s, r ∈ Zp, and the hash value is defined as
H(b1b2 · · · bk) = (r + s, s).

The corresponding hash functions are very efficient. A bit string of length n
can be hashed by performing at most 2n multiplications and about 2n additions
in Fp.

Proposition 1 (Spilrain and Sosnovski, 2016). Let the “0” be hashed to
f0(x) = 2x + 1 and the “1” bit be hashed to f1(x) = 3x + 1. If two bit strings U
and V hash to the same value, then the length of either U or V is at least log3 p.

An advantage of this hash function is that the output bit strings have length
2 log p, while the Tillich-Zémor hash function outputs bit strings of length 4 log p.
With respect to the security of the hash function, the authors recommend that
p ≈ 2512 or larger to prevent generic attacks. With this recommended value
of parameter p there will be no collisions unless the length of at least one of
the colliding strings is at least 323. If input text is short (323 bits or less), use
padding to extend its length to 512 bits. Subgroup attacks and attacks using
elements of small orders can be prevented by choosing p such that p = 2q + 1
where q is a “large” prime.

Shpilrain and Sosnovski, also noted the following problem.

Problem 5 (Shpilrain and Sosnovski, 2016 ). Is there a way of efficiently deter-
mining lifting functions of the form L(x) = Rx + S over Z where R = r + k1p
and S = s + k2p for some k1, k2 ∈ Z to find a preimage?
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Cryptanalysis of the Shpilrain-Sosnovski Cayley Hash
Though a version of the lifting attack is not known to exist for the Shpilrain-

Sosnovski Cayley hash function, Monico [17] developed an attack that shows
that the hash function is not second-preimage resistant for inputs larger than
about 1.9 MB for parameter p ≈ 2256. Actually, in Monico’s method the original
bit string is not even required and it suffices to have only a bound on its length.

In Monico’s attack, a hash value (x, y) in Fp of a bit string of known length L
is given and inverted to (r, s) = (x− y, y). Since r = 2a3b where a is the number
of zeros in the original bit string and b is the number of ones (or vice-versa), then
L = a + b. The values of a and b can be recovered with O(L log L) operations
over Fp by precomputing L powers of 2, sorting them out and then computing
and testing r, 3−1r, 3−2r, . . . until one of the values in the sequence matches one
of the precomputed powers of 2.

Let n = min{a, b}, Y =
(

r s
0 1

)

and U =
(

r u
0 1

)

, where U is a suitable

matrix whose factorization in generators A =
(

2 1
0 1

)

and B =
(

3 1
0 1

)

is known

and determined by the values of a and b found in the first step.
The attack’s goal is to transform U into Y by replacing several of leading AB

factors of U with BA. To do so, one must find x ∈ {0, 1}n such that
n−1∑

j=0

xj6j ≡ t

(mod p) where t = s − u (mod p) (for more details, see [17]).
To provide a probabilistic algorithm to find such x, Monico reduced the prob-

lem to a dense instance of the Random Modular Subset Sum Problem (RMSSP),
which was considered by Lyubashevsky (2005). Heuristically, his algorithm is
expected to succeed as long as the original bit string had at least n zeros and
n ones for some n ≥ 2

√
2 log2 p. According to Monico, the algorithm’s expected

running time is O(n2 log n) with an implied constant small enough to keep the
attack practical for p ≈ 2256.

In the paper [17], the following open problems are listed.

Problem 6 (Monico, 2018 ). If n is small compared to log2 p, there need not exist
a solution. Prove that a solution x exists when is n sufficient large.

Problem 7 (Monico, 2018 ). Is there a modification which would avoid Monaco’s
attack while still retaining the algebraic advantage?

We add the following to the list.

Problem 8. If we increase the prime parameter p of the hash function without
affecting too much efficiency, is Monico’s algorithm still practical?

4.4 Ghaffari-Mostaghim Linear Hash Function Variation

A modification of the Shpilrain-Sosnovski hash function is proposed by Ghaffari
and Mostaghim [13].
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As discussed in [24], preimages can be easily computed for short messages in
the Shpilrain-Sosnovski hash and one option to avoid this is to use padding.

In this modification, a similar idea introduced in [19] is suggested. The func-
tions f0(x) = 2x+1 mod p and f1(x) = 3x+1 mod p, where p > 3 is a prime,
are also considered as generators in this hash variation. Let H(m1m2 · · · ml) =
fm1fm2 · · · fml

(mod p) for m = m1m2 · · · ml ∈ {0, 1}∗.
To make the factorization problem harder, the following is suggested. Let S

the group generated by f0 and f1 over Zp, t > 1 an integer and g ∈ S\{e, f0, f1},
where e is the identity element of S. Define Ĥ : {0, 1}∗ → S by

Ĥ(m) =
l∏

i=1

Ci

where

Ci =

{
fmi

if t � i

fmi
g if t | i

.

Now define Ĥ2(m) = Ĥ(m)Ĥ((Ĥ(m) ⊕ crand)), where crand is a constant bit
string whose bits look like random.

Ghaffari and Mostaghim, showed that Ĥ is at least as secure as H, and
consequently so is Ĥ2. Because Proposition 1, choosing t < log3 p would make
Ĥ safer than H since a collision for H cannot be directly used to find a collision
for Ĥ.

Problem 9. Can a variation of Monico’s algorithm produce a preimage for the
Ghaffari-Mostaghim hash function?

For an input bit string of length l, the computation of Ĥ requires �l/t mul-
tiplications more than the original Cayley hash function proposed by Shpilrain
and Sosnovski, thus not affecting too much the performance of the hash.

5 Conclusion

Switching to cryptosystems that remain secure against attacks by quantum com-
puters is needed and hash-based cryptography is one of the classes of crypto-
graphic systems that are considered resistant to quantum attacks, if large quan-
tum computers are built.

As non-Abelian (semi)groups are involved in the design of Cayley hash func-
tions, this category of cryptographic hash functions may be resistant to quantum
attacks. It seems reasonable to research improvements and new designs for Cay-
ley hash functions with the goal of sustaining quantum attacks. With this in
mind, we provided an overview of instances of Cayley hash functions and some
relevant open problems.
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Abstract. Scientific publications are still the most important medium
for publishing mathematical research results. They serve as a container
for different types of mathematical research data, especially mathemati-
cal models, theories, theorems, conjectures, proofs, algorithms, etc. They
also link to mathematical software and simulations which has became
more and more important for mathematics and applications. Therefore
it seems to be natural to use publications for a more sophisticated anal-
ysis of mathematical research data, especially software. Mathematical
publications are well-structured and use a more or less standard termi-
nology for content, e.g., theorems, proofs, etc, and the formal structure.
Nevertheless, publications could be used as a starting point to develop
information services for mathematical research data. In the talk, the
publication-based approach for mathematical software and a possible
extension to mathematical models are discussed.

Keywords: Mathematical research data · Software
Mathematical models · Information services · Heuristics

1 Introduction: Mathematical Knowledge, Mathematical
Research Data, and Publishing Formats

Mathematical research data is a not exactly defined term. The subject of mathe-
matical knowledge management is mathematical research data. The OMDoc [1]
approach distinguishes between different levels

– the object level (atomic or formulae level) (In some sense there is an analogy
to atoms and elementary particles. Formulae are complex structures com-
pounded by elementary mathematical objects, operations, relations. More-
over, the object level covers also other mathematics-relevant objects, e.g.,
diagrams or graphs.)

– the statement level (axioms, definitions, mathematical models, theorems, con-
jectures, examples, ...),

– the theory level (top or global level, e.g., proofs).
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Remark: The most elements on the different levels defined above are used in
the same way by the mathematical community. But some terms are more diffi-
cult, especially the term “mathematical model”. Mathematical modeling arises
in applications (mathematical modeling is used to describe and steer the whole
spectrum of real-world problems) and also in mathematics. Mathematical mod-
els differ in the level of abstraction, modeling of real world problems bases on
laws and entities. In a next step, these models are often transformed to abstract
mathematical entities. In other words, the communities and terminologies used
by them have an influence on the presentation of the model. Moreover, differ-
ent real-world problems can be transformed to the same abstract mathematical
model. Last but not least, the complexity of mathematical models is increasing,
e.g., instead of a single equation there is a system of equations, which allows to
consider also different influencing factors. Thus, the presentation of mathemati-
cal models in books and articles is very heterogeneous.

Mathematical knowledge can be published in several formats. The first pub-
lishing format in modern mathematics was books. A famous example is “Euclids
elements”. Later journal articles, allowing to publish a new research result in
short time, became the dominant publishing format. The development of com-
putational mathematics was the birth of new mathematical object classes and
publication formats, especially software, visualizations, and simulations. It is
useful to distinguish between mathematical research data and publishing for-
mats.

Mathematical publication formats transport mathematical knowledge and
serve as containers for mathematical research data.

Mathematical books, articles, preprints, etc., in the following called “math-
ematical documents”, are written in natural mathematical language: text in
natural language, often English, plus mathematical expressions. Mathematical
documents are written for the human reader. They have a more or less standard-
ized formal structure (abstract, introduction, sections, subsections, references)
and metadata. A standardized semantic markup of mathematical research data
in mathematical documents would be an important step in improving knowledge-
based analysis of mathematical documents and citation of research data. Seman-
tic mathematical markup languages like OMDoc [1] and MathML [2] provide
semantic tagging.

Mathematical software and simulations are different from mathematical doc-
uments. Mathematical software, more precisely the software code, is written
in a special language, the programming language. Programming languages are
formalized languages specifying a set of instructions which can be executed by
a machine. There is a great variety of mathematical programming languages,
universal programming languages or those which are specialized in a certain
class of problems. Software bases on algorithms which describe unambiguous
specifications to solve a problem. Algorithms are translated into software by
using a programming language. Typically, software code is not part of publica-
tions (sometimes publications contain pseudo-code of a software). But there is
an increasing number of mathematical documents which describe mathematical
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software or cite it. Mathematical research data and software are integrated and
closely linked with mathematical publications. Mathematical software has dra-
matically pushed forward the use of mathematical methods especially in applica-
tions. Furthermore, it has changed the way mathematical knowledge is applied.
Mathematical knowledge and tools can be experimentally used, simulated with
the help of software.

In the following, we discuss how publications can be used to improve access to
and the information about mathematical research data, especially mathematical
software and models.

2 The Publication-Based Approach for Mathematical
Software

Until the end of the 20th century mathematical publications were the most
important resource for mathematical knowledge. Its importance has led to the
development of a powerful information infrastructure for the mathematical lit-
erature. It covers services which provide the access to publications and tools for
mathematical knowledge management: libraries, bibliographic reviewing media,
especially zbMATH [3] and MathSciNet [4], encyclopedias, the Mathematical
Subject Classification (MSC) [5], etc.

As said above, mathematical software is becoming more and more important
not only in mathematical research but there is no counterpart to zbMATH and
MathSciNet for mathematical software for some reasons

– The missing tradition of software information
The first reviewing journal in mathematics, the “Jahrbuch über die
Fortschritte der Mathematik” [6] was founded by mathematicians in the mid
of the 19th century. For more than 100 years the reviewing journals have devel-
oped in the course of time methods for content analysis (especially reviewing
and classification) and the presentation of mathematical literature in com-
pact form. The switching to digital formats has led to some extensions, e.g.,
by adding citations, author disambiguation, and author profiles. The current
mathematics reviewing databases zbMATH and MathSciNet have an institu-
tional basis and permanent editorial staff. Software information is relatively
new and the capabilities for software information services are limited.

– The dynamic character of software
Typically, a software name stands for a series of versions. Of course, also
mathematical documents undergo a development process, but only the final
version is published. For software, the situation is different. Often, different
development stages of a software are published and are in use. The reasons
for versioning of software are different, performance, adaption to changed
hard- and software environments or programming languages, licenses, etc.
A resulting problem is the persistence of software information. Archiving of
software is non-trivial and requires a specific technical and organizational
infrastructure.



Mathematical Research Data, Software, Models, and the Publication 451

– Usability of software
Unlike mathematical knowledge in mathematical publications, the use of the
mathematical software is dependent on its form, whether it is a service or
can be used via an API or by integrating, adapting, or further developing the
source code. Mathematical software can be used also as a blackbox, e.g., in
cloud computing.

– Software information has different features
The core of software is code but software is more than software code. But
software information also includes documentations, installation guides, tuto-
rials, license and usability information, information about hard- and software
dependencies, programming languages, etc.

– Software development as collaborative work
Software development is a complex task and cannot be reduced to translate
an algorithm into a programming language. Also an intuitive user interface,
or tools for visualization are necessary. Often software development is widely
distributed, also the developers may have different roles.

We can postulate that software information and an information infrastructure
for software is a more complex challenge for developing a powerful informa-
tion infrastructure than for documents. The discussion on a software citation
standard should illustrate this. Software citations are done in different ways.
A common praxis for software citations is to refer to a publication instead of
a software due to the advantage of persistence and human-addressed informa-
tion. Other citations are references to websites or documentations. Last but not
least, a big number of references cite software only by name. Summarizing, today
software citations refer to different objects and documents and are incomplete.
Especially the citations often contain no information about the version which
was used. The increasing role of software has led to intensified discussions on
how to cite a software, see the Software Citation Principles [7] of the FORCE11
working group. The principles require among others persistent identifiers for
software. These identifiers should point to so-called landing pages which provide
at least persistent meta-information about a software. The CodeMeta initiative
[8] has developed a metadata scheme for software. This scheme contains a series
of URLs which refer to different objects, e.g., the source code (of the actual
version and the archive), the documentation, license information, etc.

The swMATH project, see [9,10], uses the information about mathematical
publications to develop an information service for mathematical software. This
results in two essential advantages. Mainly machine-based methods can be used
to realize the approach and the obtained information also covers data about the
use cases of software. In detail:

– zbMATH as starting point: The reviewing database zbMATH ia used as
starting point.

– Identification of software: The identification of software citations starts
with heuristic methods which search for special term/phrase combinations
in connection with a pattern search and is completed by manual support by
zbMATH editorial office.
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– Standard and user publications: The publications citing a software are
divided in standard and user publications. Standard publications are such
ones which are focused on the description of the software. User publications
are focused on research results which were achieved by software. User publi-
cations and benchmarks often cite different software and compare the results
which have been achieved by different software.

– Analysis of the information from the publication-based approach:
The classification corresponding the MSC, a mandatory feature of the
zbMATH data, provides valuable context information which characterize both
the mathematical subjects and the algorithms behind the software as well as
the application areas.

– Aggregation and ranking of publication-based information: The
zbMATH data can be used to aggregate, summarize and rank the informa-
tion given in all zbMATH entries citing a software: profiles for mathematical
subjects and applications, for the acceptance of a software, and for listing
similar software. On average, each software is cited more than 10 times in
zbMATH but the number of citations varies strongly. Broadly accepted soft-
ware packages have thousands of citations, small software packages only a
few. This allows statements about the acceptance and the dissemination of
a software. The documents of zbMATH are peer-reviewed which is also an
indirect quality measure for all tools which were used within the publication.

But the publication-based approach has also some limitations

– Completeness: There are several reasons which influence the completeness
of software information in swMATH. The zbMATH data of mathematical doc-
uments contain possibly a lower set of software citations than the full texts.
zbMATH is the most comprehensive bibliographic database in mathematics.
But this does not mean, that all documents which are application-focused but
use mathematical methods, are listed in the database zbMATH. This is par-
ticularly true for mathematical software. Physicists, biologists, and chemists
also have specialized journals for scientific software for their subjects which
are out of the scope of zbMATH. For more completeness we additionally
analyze further sources, especially arXiv [12], journals with focus on math-
ematical software as TOMS [11], and software repositories as CRAN [13].
Moreover there is a time delay between publication of the document and its
inclusion in the database zbMATH.

– Type vagueness: The distinction between software and software-related
objects as algorithms, programming languages and environments, or bench-
marks is sometimes difficult. Moreover, software is provided in different forms,
e.g., as service, package, or library. There is used a very primitive scheme
for typing of the swMATH entries, see the “Browse software by type” in
swMATH.

The publication-based approach basing on the zbMATH data seems to be
an efficient way to identify software and extract information about software
and to build a portal for mathematical software. It has also led to a nearly
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comprehensive portal of mathematical software and software-relevant research
data. The swMATH portal is a search engine for software and provides separate
Web pages for each software (product) containing a persistent identifier which
can be used for citation. The swMATH pages combine the information about
software from publications (indirect information), namely:

– name of the software product
– description
– keyword cloud
– list of publications citing a software
– list of related (similar) software products
– a MSC profile of the software product and a ranked lists of mathematical

subjects and application areas
– a timeline of the number of publications citing a software

with Web information (direct information), especially from the website of a soft-
ware, repositories, and developer platforms as github, or specialized archives for
software code, especially Software Heritage [14]. For more details for extracting
Web information see [15]. The publication-based approach extends the informa-
tion about software especially by information about its use and dissemination.
This information is helpful for searching suitable software to solve a problem.
Such metadata are not contained in the CodeMeta metadata set, see [8], which
addresses especially the direct information about software. A citation standard
for software would be very helpful for a secure and precise machine-based identi-
fication of software, a standardized metadata scheme would improve the descrip-
tion and the search facilities.

3 Mathematical Models

3.1 Mathematical Models as Research Data

Is the publication-based approach also applicable to other mathematical research
data? It is evident that the publications have the potential to detect detailed
information about research data. In principle the problems are the same as for
software: at first identification of research data in publications and at second
analysis of information about mathematical research data. But its realization is
challenging. Research data in mathematical documents appear in diverse forms:
as explicitly defined objects or as citations. Up to now, the use of semantic
markup of mathematical research data is low. This would require that the math-
ematical documents are offered in a semantic markup language und not only as
textual terms in PDF files. But typographic characteristics as bold fonts etc. in
combination with controlled vocabulary as proof, theorem, conjecture, etc. can
be used for identification. Citations of mathematical research data which are
defined as hyperlinks can be easily detected. The publication-based approach for
other mathematical research data is confronted with a further challenge: Math-
ematical research data are explicitly described in full texts not in the zbMATH



454 W. Sperber

data. But the increasing number of Open Access journals and repositories like
arXiv [12] opens up the possibility to extend the publication-based approach also
to full texts. Each class of mathematical research data requires the development
of its own concepts.

In the following, we will discuss the possibilities of a publication-based app-
roach for mathematical models. Mathematical models are mathematical objects,
this means they are described by a definition in mathematical language. But this
covers a broad spectrum for the presentation of a mathematical model. Math-
ematical models are heterogeneous in content and form. The presentations are
influenced by different factors,

– User communities and their scientific background: Different user com-
munities prefer different terminologies and notations for presentations. Dif-
ferent real-world problems can lead to the same mathematical models.

– Research aims and the degree of abstractions: The research topics influ-
ence the selected presentation of mathematical models, e.g., for the numerical
solution of a model specification, generalization, approximation. For instance,
the numerical solution of a model can require the approximation of the orig-
inal model, qualitative properties as stability or regularity are valid only for
subclasses of the original model, etc. The degree of abstraction ranges from
applications-related formulation by domain-specific laws and quantities con-
taining dimensioned variables to abstract mathematical formulations, e.g.,
general equations, operators, or algebraic structures.

The missing infrastructure for mathematical models hampers the communi-
cation between different communities and leads to duplication and reinventing
the wheel. Mathematical models are an important and independent class of
mathematical research data. Especially the mathematical modeling of the whole
spectrum of real-world problems has increased the importance of mathematical
modeling. An indicator for this is the growing number of documents with the
subject mathematical modeling. Therefore a concept for a uniform presentation,
structuring, and semantification of mathematical models should be developed,
containing

– A compact and in some sense unified presentation of the investi-
gated mathematical model(s): Mathematical models are structured and
often complex mathematical objects having inputs and outputs, parameters
which are combined by operations and relations. For more transparency,
mathematical models should be formalized in a unified way. A possible app-
roach for a standardized formalization are the Model Path Diagrams [16].

– Relations to other models: This requires a specification (formalization)
of the different relations between mathematical models, e.g., transformations,
specializations, generalizations, approximations, etc.

3.2 The Publication-Based Approach for Mathematical Models

The first major problem is the (automatic) identification of mathematical mod-
els. Up to now, a special markup for mathematical models is missing and there-
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fore the identification of model information in documents is challenging for the
following reasons. Typically, the presentation of mathematical models in docu-
ments is given by mathematical expressions (formulae, diagrams, ...) which are
embedded in text. Often complex mathematical models are not presented in a
self-contained form. The components of a model can be positioned at different
places of the document. The descriptions of a lot of mathematical models are
incomplete and ambiguous. Names are used for citations but different names are
used for the same model a lot of times. Also if the name is a named entity, a
unique resolution is difficult because the names often describe classes of mathe-
matical models and not a unique model. Mathematical documents contain more
than one model which will be derived from the basic model by transformation,
specification, generalization, approximation etc.

If we compare the situation between mathematical models and software we
detect some analogies but also essential differences.

Software Models

Software is given by a name
(names can be used as identifier)
(software code versus definition)

Models are given by a definition or
names
(but only prominent models have a
name)

References:

links to information about software
products, e.g., documentations, web-
sites
strong growth

References:

links to publications

low growth

“Standard publications” for software:

(Publication describing a software)

“Standard publications” for models:

(Publication with focus on modeling
or with sections about models)

The table shows that the features for software and models are only par-
tially the same. For this reason the methods for software cannot be used with-
out changes. As said above only named mathematical models appear in the
zbMATH data. The zbMATH data are important to detect documents which
contain significant information about mathematical models, especially in the
title, keywords, review/abstract, and the MSC codes.

The most promising method to identify mathematical models is to search
for explicit definitions of models which are given in fulltexts. Especially TEX-
encoded documents as in [12] are the preferred object, because such files use a
standardized markup for the document structure and mathematical expressions.

– Phrase-based analysis: Characteristic word phrases (containing the term
“model”) in zbMATH could also be used for model search. But phrase-based
identification of mathematical models is for models less important than for
software. Not all models are characterized by such a phrase, models are also
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termed as objects or defined only by mathematical expressions. This has to
be investigated in detail by a statistical analysis.

– Document structure: We assume that the structural analysis of documents
is more important than a phrase-based one. The document structure is very
informative for the identification of mathematical models. All mathemati-
cal documents contain at least the problem which contains the mathemat-
ical object (model) which is investigated, the mathematical treatment, and
results.
Typically, research documents which originate from real-world problems start
with the description of the background and the mathematical model. Often
the mathematical model is described in a section of its own. It seems to be
possible to identify these sections in documents by heuristic means. But this
is only a first step, these sections can contain both too much (e.g., similar
models) or too less information (e.g., missing notations which are described
in another section). So, we have to develop further methods to extract a
complete and compact form of the investigated mathematical model. A first
attempt could be to extract all mathematical expressions in the relevant sec-
tions of a document which can be extended by a formulae analysis.
Documents with the focus on mathematical modeling are particularly relevant
for scientists working on the interface between real-world problems and math-
ematics. In these publications mathematical models are research results. This
suggests that models used up to now are listed in the introduction and the
new mathematical model is highlighted as the main result of the publication.

All features for the identification of mathematical models should be combined
and tested in a planned project. A result could be a database of mathemati-
cal models which contains the original information given in the documents plus
some metadata, e.g., keywords, classification codes, links to similar models, and
a list of documents citing a model. The database also allows to cite a model. In a
next step, the original model presentations could be enhanced by formalized pre-
sentations that facilitate understanding of the models for the human reader and
express semantic and structural information in a machine-readable way which is
significant for increasing the reusability mathematical models.

4 Summary and Outlook

Mathematical documents are containers for mathematical research data. The
publication-based approach includes concepts to analyze the mathematical con-
tent by automatic means and extract specific information about mathematical
research data. In the article, the publication-based approach for two types of
mathematical research data is discussed, for mathematical software which was
the starting point for the swMATH project and its potential use for mathemati-
cal models. The publication-based approach can be used to create new services,
e.g., specialized databases for mathematical research data and for linking mathe-
matical research data with each other. The publication-based approach opens the
opportunity to extend the document-based information services by specialized
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services of mathematical research data and to enrich the search. But it has been
shown that the transfer of the concept to other classes of research data is non-
trivial and requires a rethinking by authors and publishers: open access to full
texts in markup formats and not only in PDF. Currently, the existing services,
especially arXiv, can be used to develop, evaluate and demonstrate concepts and
prototypes for a sophisticated management of mathematical research data.
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Abstract. We present the Julia package HomotopyContinuation.jl,
which provides an algorithmic framework for solving polynomial systems
by numerical homotopy continuation. We introduce the basic capabilities
of the package and demonstrate the software on an illustrative example.
We motivate our choice of Julia and how its features allow us to improve
upon existing software packages with respect to usability, modularity and
performance. Furthermore, we compare the performance of Homotopy-
Continuation.jl to the existing packages Bertini and PHCpack.
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1 Introduction

Numerical algebraic geometry is concerned with the study of algebraic varieties
by using numerical methods. The main computational building block therein is
homotopy continuation which is a technique to approximate zero-dimensional
solution sets of polynomial systems F : Cn → C

n. The idea is that one first
forms another polynomial system G related to F in a prescribed way, which
has known or easily computable solutions. Then the systems G and F can be
connected by setting up a homotopy H : Cn × [0, 1] → C

n. An example for this
would be the linear homotopy H(x, t) = (1 − t)F + tG. For a properly formed
homotopy, there are continuous solution paths leading from the solutions of G
to those of F which may be followed using predictor-corrector methods. Singular
solutions of F cause numerical difficulties, so singular endgames [18] are typically
employed.

There are several software packages publicly available to make computations
with homotopy continuation such as Bertini [3] and PHCpack [15]. We add the
new and actively developed package HomotopyContinuation.jl1 to that list. The
1 www.JuliaHomotopyContinuation.org.
c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 458–465, 2018.
https://doi.org/10.1007/978-3-319-96418-8_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96418-8_54&domain=pdf
www.JuliaHomotopyContinuation.org
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package is programmed in Julia [4], which has recently gained much popularity
in the numerical mathematics community. HomotopyContinuation.jl offers new
and innovative features as well as a flexible design, which allows the user to
adapt the code to the structure of their specific polynomial systems with little
effort.

2 Functionality

HomotopyContinuation.jl aims at having an intuitive user interface. Assume we
are interested in the solution set of the polynomial system

F :=
[

x2 + y2 − 1
3x − 2y

]
(1)

which is the intersection of a quadric with a line. The code to solve this system
is as follows:

using HomotopyContinuation # load package

@polyvar x y # we define variables x and y
solve([xˆ2+yˆ2-1, 3x-2y]) # define F and solve the system

In the background the software first constructs the total degree start system

G :=
[
x2 − 1
y − 1

]
(2)

and then defines the homotopy H(x, t) := (1 − t)F + γtG where γ ∈ C is
choosen randomly. The two solutions (−1, 1) and (1, 1) of G are tracked towards
the solutions of F . By default, we use the classical Runge-Kutta predictor and
Newton’s method for correction. Internally all computations are executed in the
complex projective plane P

2 on a (local) affine coordinate patch. In general,
envoking the solve() command on any square system of polynomials will let
HomotopyContinuation.jl generate a total degree starting system like (2).

HomotopyContinuation.jl also features a predictor-corrector scheme for
overdetermined systems of polynomials F : CN → C

n with N < n. However,
in the overdetermined case there is no way to automatically generate a suit-
able starting system, but the user has to provide it. Furthermore, the input
to HomotopyContinuation.jl is not limited to explicitly defined polynomial sys-
tems. Custom-defined homotopies are allowed. An example for a custom-defined
homotopy for a family of overdetermined systems is given in Sect. 3.1.

In order to deal with singular solutions, an endgame strategy which combines
the power series [8,18] and Cauchy endgame [18] is implemented. The solution
can be computed in serial-processing as well as in parallel on a single machine
by multiple threads.
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3 Technical Contribution

Existing software packages are, as most scientific software, written in a fast,
statically compiled language like C or C++. They then have to rely on files
as input and output format, which can be cumbersome to write and parse, or
they build a wrapper in a dynamic language like Python to allow the user to
interact with the core software. While such a wrapper is preferable to a file based
user interface it also has disadvantages. It puts an additional development and
maintenance burden on the software authors and ultimately limits the flexibility
of possible user input.

By contrast, HomotopyContinuation.jl is completely written in Julia, a high-
level, dynamic programming language. There is no separation between the com-
putational core and a wrapper with which the user interacts, everything is pure
Julia. Julia programs are organized around multiple dispatch, which allows built-
in and user-defined functions to be overloaded for different combinations of argu-
ment types. With its modular design HomotopyContinuation.jl exploits Julia’s
architecture. It is easy for users to extend and modify the capabilities of the
package and to adapt the program to specific applications. An illustration of
this is given in the following section, where we explain how to use the modular
design for creating a homotopy that computes singular points on symmetroids.

Julia’s LLVM-based just-in-time (JIT) compiler combined with the lan-
guage’s design allows to approach and often match the performance of C. For
specific applications one can even surpass the performance of conventional C
programs by making use of Julia’s metaprogramming capabilities and its JIT
compiler. One of these specific applications, which is of particular interest in the
context of homotopy continuation, is the evaluation of polynomials. Let f be
a polynomial with support A ⊂ N

n. Generating optimal source code to evalu-
ate polynomials with support A moves work from runtime to compile time, a
tradeoff well worth if the same polynomials are evaluated very often, as it is
the case during homotopy continuation. Horner’s method for polynomials over
the reals or a Goertzel-like method for complex polynomials [10, Sect. 4.6.2] may
be employed to reduce the number of operations. Processor instructions like
fused multiply-add (FMA) improve the performance and numerical accuracy.
An experimental implementation of this idea by the second author is available
under https://github.com/JuliaAlgebra/StaticPolynomials.jl. It also possible to
use this optionally with HomotopyContinuation.jl.

3.1 Implementing Custom Homotopies – An Example

Above, we emphasized the modular design of HomotopyContinuation.jl and
claimed that it is useful for creating homotopies for specific problems. A generic
homotopy like the straight-line homotopy built from the total degree starting sys-
tem (2) is not suited for highly structured problems. In fact, treating structured
problems with structured homotopies may be decisive in making a computation
feasible. The following example illustrates this.

https://github.com/JuliaAlgebra/StaticPolynomials.jl
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Let A = (A0, A1, A2, A3) ∈ Sym(Rn×n)×4 be a 4-tuple of real symmetric
matrices. The associated symmetroid SA is the hypersurface in complex projec-
tive 3-space P

3 given by the polynomial

fA(x0, x1, x2, x3) := det(x0A0 + x1A1 + x2A2 + x3A3).

Already studied by Cayley [6], symmetroids are objects of interest at the intersec-
tion between algebraic geometry and optimization. Let us explain the connection
to the latter. For a point x = (x0, . . . , x3) ∈ P

3
R

with x0 �= 0 let us write zi = xi

x0

for affine coordinates. The set of real points x = (x0, . . . , x3) ∈ P
3
R

such that
A0 + z1A1 + z2A2 + z3A3 is positive semi-definite is called a spectrahedron [16]
and we denote it by ΣA. Spectrahedra are feasible sets in semi-definite pro-
gramming, which is a generalization of linear programming [1,12]. For instance,
problems as finding the smallest eigenvalue of a symmetric matrix or optimizing
a polynomial function on the sphere can be formulated as a semidefinite pro-
gramme. Because a linear function on a spectrahedron attains its maximum in
a real singular point of the boundary with a positive probability, the number of
singularities on the boundary of ΣA matters. The boundary of ΣA is ΣA ∩ SA.

If A1, A2, A3, A4 are generic, the singular locus of the symmetroid SA con-
sists of

(
n+1
3

)
isolated points. It is known how to construct a tuple B =

(B0, B1, B2, B3) together with all of the associated
(
n+1
3

)
singular points on SB.

Moreover, the construction is such that the
(
n+1
3

)
singular points of SB are all

real; see, e.g., [13, Theorem 1.1]. By contrast, a tuple B = (B0, B1, B2, B3) with
ΣB ∩ SB = SB, i.e., a tuple B for which all the associated singular points are at
the same time points on the spectrahedron is only known for n = 4. This is due
to work by Degtyarev and Itenberg [7]. In [14] Sturmfels poses the question:

How many of the
(
n+1
3

)
singular points of SA can lie on the boundary

of ΣA?

By using homotopy continuation we can compute all the
(
n+1
3

)
singular points

on a symmetroid SA, from which we can check how many of them actually
lie on the boundary of the spectrahedron. This way we advance in answering
Sturmfels’ question. We are currently working on a full featured implementation
of the symmetroid-homotopy and will publish it in the near future. For the rest
of this subsection let us explain the idea and sketch how an implementation of
a symmetroid-homotopy in HomotopyContinuation.jl could look like.

To study the singularities of SA we are interested in the zeros of the system

FA(x0, x1, x2, x3) :=
(

fA,
∂fA
∂x0

,
∂fA
∂x1

,
∂fA
∂x2

,
∂fA
∂x3

)
. (3)

A homotopy from a symmetroid SB to a symmetroid SA is then defined as

HA,B(x, t) := F(1−t)A+tB(x). (4)

Note that the number of monomials in HA,B(x, t) in (x0, x1, x2, x3, t) for the
generic choice of symmetric matrices is (n+1)

(
n+3

n

)
+4(n+1)

(
n+2
n−1

)
. For n = 20
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this number is 166551. The size of the polynomials prevents us from working
with explicit expressions in the monomial basis. Already evaluating FA and its
Jacobian by considering the representation of fA in the monomial basis becomes
prohibitively expensive. On the other hand, the number of solutions of the sys-
tem (3) is

(
21
3

)
= 1330, which is reasonably small.

Nevertheless, homotopy continuation algorithms never require to have the
polynomial written down explicitly. What is needed for tracking the solution
paths of a homotopy H(x, t) is a function to evaluate H(x, t) for all x and t

and functions for evaluating the derivatives ∂H(x,t)
∂x and ∂H(x,t)

∂t . Using matrix
calculus and linear algebra, we find that the evaluation of HA,B and its Jacobian
matrix at x are given by the first and second order derivatives of fA at x.
Denoting A(x) := x0A0 + x1A1 + x2A2 + x3A3 and Pi(x) := A(x)−1Ai they can
be written in the following compact form:

∂fA
∂xi

(x) = det(A(x))tr(Pi(x))

∂2fA
∂xi∂xj

(x) = det(A(x))tr(Pi(x))tr(Pj(x)) − det(A(x))tr(Pi(x)Pj(x))

where we used the fact that ∂A(x)−1

∂xi
= −A(x)−1AiA(x)−1. The derivative of

H(x, t) with respect to t is obtained by a similar computation. Hence, the evalu-
ation of FA and its partial derivative can be done efficiently, because evaluating
determinants can be done efficiently.

We use the aforementioned construction from [13, Theorem 1.1] for building
a start system FB. The Runge-Kutta predictor scheme and the overdetermined
Newton corrector are employed for tracking the solutions from FB to FA.

Implementing this homotopy in existing software packages is very onerous
and slow since the predefined interfaces can only handle the polynomial repre-
sentation of HA,B. By contrast, in HomotopyContinuation.jl the homotopy can
be implemented in an efficient way. Since everything is defined in Julia, we have a
full-fledged programming language at our hand to evaluate HA,B. An illustrative
example of the subset of the code necessary to handle HA,B in HomotopyCon-
tinuation.jl is depicted in Fig. 1.

4 Comparison

We compare HomotopyContinuation.jl against the established software packages
Bertini and PHCpack. For this we pick a range of real-world polynomial systems
of different type, presented in Table 12, and solve each polynomial system 10
times.

In particular, we take the perspective of a non-expert user and solve every
system without any modification to the default parameters of the respective soft-
ware packages. The only excemption is that for Bertini we distinguish between

2 The authors discovered the examples in the excellent database of Jan Verschelde
available at http://homepages.math.uic.edu/~jan/.

http://homepages.math.uic.edu/~jan/
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Fig. 1. Subset of the code necessary to track solutions of the homotopy HA,B. In addi-
tion it is necessary to define a function dt!, which evaluates ∂

∂t
H(x, t). Furthermore,

it is possible to define a function evaluate_and_jacobian! that evaluates H(x, t) and
computes its Jacobian simultaneously. This is in particular useful here due to the
shared structure of the derivatives. Although this code is able to solve the problem,
it is written in an illustrative style. In a full featured implementation we would define
an additional cache object to precallocate structures to avoid unnecessary temporary
allocations.
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Table 1. Overview of the polynomial systems choosen for the comparison. In the
characteristics n is the number of unknowns, D is the Bézout number of the system and
MV is the mixed volume. The system were taken from the database by Jan Verschelde.

Polynomial systems Characteristics # Roots
Name Description Ref n D MV C R

cyclic7 The cyclic 7-roots problems [5] 7 5, 024 924 924 56

ipp2 The 6R inverse position problem [17] 11 1, 024 288 16 0

heart The heart-dipole problem [11] 8 576 121 4 2

katsura11 A problem of magnetism in physics [9] 12 2, 048 2, 048 2, 048 326

Table 2. The results obtained for the systems in Table 1 using serial processing.

# Solutions # Failed paths Runtime

Systems Package Correct Avg. Avg. Med. Avg.

cyclic7 Bertini 8/10 923.3 1196.5 1300 48.93 s
Bertini (adaptive precision) 10/10 924.0 0 0 1028.21 s
PHCpack 0/10 918.4 5.6 5.5 6.48 s
HomotopyContinuation.jl 10/10 924.0 0 0 8.38 s

heart Bertini 10/10 4.0 66.0 73.5 4.88 s
Bertini (adaptive precision) 10/10 4.0 0 0 30.63 s
PHCpack 10/10 4.0 16.5 16 1.33 s
HomotopyContinuation.jl 10/10 4.0 0 0 1.39 s

ipp2 Bertini 10/10 16.0 0.5 0 10.03 s
Bertini (adaptive precision) 10/10 16.0 0 0 13.15 s
PHCpack 10/10 16.0 272 272 6.67 s
HomotopyContinuation.jl 10/10 16.0 0 0 3.07 s

katsura11 Bertini 8/10 2047.7 0.2 0 28.97 s
Bertini (adaptive precision) 10/10 2048.0 0 0 28.88 s
PHCpack 0/10 2043.7 2.3 2.0 179.13 s
HomotopyContinuation.jl 10/10 2048.0 0 0 9.30 s

a version which uses adaptive precision [2] and one which uses standard 64 bit
floating point arithmetic since HomotopyContinuation.jl as well as PHCpack
also only compute by default with standard 64 bit floating point arithmetic.

We compare the packages with respect to outside observation. This is the
number of times the correct number of solutions, the average number of solu-
tions found, the average and median number of reported path failures (since
these introduce uncertainity about the correctness of the result) and the average
runtime. The results of the comparison are presented in Table 2. They were run
on a MacBook Pro with a 2 GHz Intel i5-6360U CPU. We used MacOS 10.13.4
and Julia 0.6.2, Bertini v1.5.1 and PHCpack v2.4.52 and HomotopyContinua-
tion.jl v0.2.0-alpha.2.
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Abstract. This paper gives a brief overview of Tarski, a system for
computing with Tarski formulas, which are boolean combinations of
non-linear polynomial constraints over the reals. It gives an overview
of Tarski’s basic functionality, then goes into more detail on facilities
Tarski provides for checking the satisfiability of conjunctions of con-
straints that are able to produce “unsat cores” for unsatisfiable inputs.
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1 Introduction

Tarski is a system for computing with Tarski formulas/semi-algebraic sets1. The
purpose of this paper is the give a broad overview of Tarski and its functionality,
followed by a more detailed description of tools it provides for computing “Unsat
Cores” of conjunctions of polynomial constraints. This functionality is useful
on its own, but particularly relevant in the context of Satisfiability Modulo
Theory (SMT) solving, which requires theory solvers to provide unsat cores as
“explanations” for sets of constraints that are not mutually satisfiable in the
theory.

1.1 Related Work

Exact computations involving real, non-linear polynomial constraints is an area
with a long history. Tarski’s celebrated result from the 1930’s [20] showed that
the theory admits quantifier elimination by providing an algorithm to do it. This
algorithm has a running time that is not even primitive recursive, so it was the
beginning rather than the end of research in algorithms and programs to solve
the quantifier elimination problem. Today, there are, for example, general quan-
tifier elimination algorithms implemented in Mathematica, in Maple directly

1 Tarski is available at https://www.usna.edu/Users/cs/wcbrown/tarski/. It is open
source, distributed under an ISC-style license.

This is a U.S. government work and its text is not subject to copyright protection
in the United States; however, its text may be subject to foreign copyright protection 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 466–474, 2018.
https://doi.org/10.1007/978-3-319-96418-8_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96418-8_55&domain=pdf
https://www.usna.edu/Users/cs/wcbrown/tarski/
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and through the Regular Chains and SyNRAC projects, in Reduce through the
Redlog library, and as a stand-alone application in Qepcad b. Quantifier
elimination is a general, and computationally very difficult problem [5,10,21].
Research and software implementations for many other, usually more specific,
problems involving exact computations with non-linear polynomial constraints
has been a part of research in computation for as long as there have been
computers. For example, for the problem of solving systems of equations there
are packages like RAGlib and the Regular Chains library [8]; for sum-of-squares
decomposition to prove positivity there is SOSTOOLS [18]; and for SAT-solving
for real non-linear polynomial constraints there are systems like SMT-RAT
[9], Z3 [15] and Yices [12]. This is just a small sample of the many problems
researchers have considered and the many software packages they have produced.

The primary long-term focus of the Tarski system is to compute well with
formulas that are either automatically generated or come from users without the
background to phrase problems to fit algorithmic tools well. It aims to provide
tools for quantifier elimination, formula simplification, and satisfiability solving.

1.2 Background

The typical object we compute with in Tarski is a Tarski formula, a
first-order formula over the real numbers with relational operators as predicates
and multiplication, addition and subtraction as functions. These may or may
not have free variables. For example

∃y[x2+y2 < 1∧x+y > 0] , xyz < 1∧[x2−2yz+y−2z−1 = 0∨x+2y+z > 2]

are Tarski formulas. For Tarski formula F (x1, . . . , xn), where x1, . . . , xn are the
free variables, we naturally have an associated geometric object in R

n defined
as {(α1, . . . , αn) ∈ R

n |F (α1, . . . , αn)}. A subset of Rn that can be defined this
way is called a semi-algebraic set.

Some basic computational problems for Tarski formulas include:

– satisfiability, are there assignments of real values to variables for which the
formula evaluates to true;

– quantifier elimination, give an equivalent quantifier-free formula in the
unquantified variables; and

– simplification, given a quantifier-free formula, provide an equivalent formula
that is, in some sense, simpler.

These are the problems we are primarily interested in solving with Tarski, and
as stated previously, we would like, to the greatest extent possible, for Tarski
to be robust with respect to problem formulation.

For simplification and satisfiability solving for conjunctions of constraints,
Tarski also is able to produce “Unsat Cores” or “Explanations”. An “Unsat
Core” for an unsatisfiable conjunction of constraints is a subset of the original
constraints that is unsatisfiable. For a human user, unsat cores are useful for
understanding why a given input in unsatisfiable. In the context of automated
SMT solving, a theory solver needs to be able to produce unsat cores in order
to fit the general SMT framework [17].
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1.3 Organization

The remainder of this paper is organized as follows. First we describe input,
output and the general nature of interactions with Tarski. We then describe
Tarski’s facilities for calling Qepcad b to perform quantifier elimination or
formula simplification. This and some related functionality take steps to deal
with problem formulation issues to which Qepcad b is very sensitive. Tarski
also includes commands for constructing and querying Non-uniform Cylindrical
Algebraic Decompositions (NuCADs), which are described. Finally, we describe
recently developed functionality that provides unsat cores for unsatisfiable
conjunctions of constraints.

2 Input, Output and General Interaction

Tarski is an interpreter whose syntax is a (limited) variant of Scheme. The
primary addition to Scheme syntax are built-in types algebraic and Tarski
formula. Literals of these types are defined inside [ ]’s using a syntax simi-
lar to Qepcad b’s syntax for polynomials and formulas.

$ tarski

> (def F [ x^2 + y^2 < 1 /\ x + y > 0 ])

:void

> (def G [ex y[ $F ]])

:void

> G

ex y[y^2 + x^2 - 1 < 0 /\ y + x > 0]:tar

Tarski is also able to read formulas written in the SMT-LIB version 2
format [1].

> (smtlib-load "Lyapunov1a-chunk-0015.smt2")

[17200 skoZ - 493 skoY - 2540 skoX <= 0 /\ -1(7200 skoZ^2 - 413 skoY skoZ

- 2130 skoX skoZ + 14100 skoY^2 + 10500 skoX skoY + 26100 skoX^2 - 1000)

> 0 /\ [-1(17200 skoZ - 493 skoY - 2540 skoX) > 0 \/ 17200 skoZ

- 493 skoY - 2540 skoX > 0] /\ [skoX /= 0 \/ skoY /= 0 \/ skoZ /= 0]]:tar

Tarski is also able to output formulas in SMB-LIB format. Additionally, it
can output formulas in the syntax of a number of other systems, e.g.

> (syntax ’mathematica G)

"Exists[{y} , y^2 + x^2 - 1 < 0 && y + x > 0]":str

> (syntax ’synrac G)

"Ex([y] , And(y^2 + x^2 - 1 < 0, y + x > 0))":str

3 Tarski as a Front-End to Qepcad b

Qepcad b is a well-known system for quantifier elimination and formula simpli-
fication based on Cylindrical Algebraic Decomposition (CAD) [2]. There many
options for how problems are phrased or input into the system, and these can
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hugely impact performance. Some of these are system-specific, but many are
common to any CAD implementation. In general, problem phrasing for CAD-
based methods is very important (see for example [11,13,14]). Tarski can either
be used to call Qepcad b, making these decisions for the user, or can sug-
gest problem formulation to the user. Tarski chooses a variable order, declares
equational constraints, makes use of Qepcad b-specific features like special
quantifiers, and assumptions.

> (def F [ex x,y [ a > 0 /\ b > 0 /\ b^2 (x - c)^2 + a^2 y^2 - a^2 b^2

= 0 /\ x^2 + y^2 > 1]])

:void

> (suggest-qepcad F)

"[]

(b,a,c,x,y)

3

(E x)(E y)[a^2 y^2 + b^2 x^2 - 2 b^2 c x + b^2 c^2 - a^2 b^2 = 0 /\

y^2 + x^2 - 1 > 0].

assume [a > 0 /\ b > 0]

prop-eqn-const

go

eqn-const-poly a^2 y^2 + b^2 x^2 - 2 b^2 c x + b^2 c^2 - a^2 b^2.

go

go

sol T

quit

":str

> (qepcad-qe F)

[a > 0 /\ b > 0 /\ [c + a - 1 > 0 \/ c - a + 1 < 0 \/ [-1(b^2 - a) < 0

/\ b^2 c^2 + b^4 - a^2 b^2 - b^2 + a^2 > 0]]]:tar

Tarski also offers facilities for breaking up problems prior to calling Qepcad
b or simplifying formulas prior to calling Qepcad b.

4 Non-uniform Cylindrical Algebraic Decomposition

Cylindrical Algebraic Decomposition (CAD) is a data-structure that provides an
explicit representation of the semi-algebraic set defined by a Tarski formula. It is
a computational tool used by a number of systems, including Qepcad b, Math-
ematica and Redlog, to solve problems involving Tarski formulas. Non-uniform
Cylindrical Algebraic Decomposition (NuCAD) relaxes some of the requirements
of CAD, which allows semi-algebraic sets to be represented with smaller data
structures. “Open” NuCAD construction is implemented in Tarski and the
OpenNuCAD data type supports a number of operations. Note: an “Open”
NuCAD is not a true decomposition of real space, but rather a collection of
disjoint open cells whose closures cover all of real space.
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> (def D (make-NuCADConjunction [ x > 0 /\ y > 0 /\ x + y > 2/3 /\ x^2

+ y^2 < 1 ]))

:void

> (msg D ’get-var-order)

( y:sym x:sym )

> (msg D ’print-t-cells)

"Cell C1U2U2L1U TRUE (27/32 1/4) [ x > _root_1 x /\ x < _root_2 y^2 +

x^2 - 1 /\ y > _root_1 3 y - 2 /\ y < _root_1 y - 1 ]

Cell C1U2U2LX TRUE (1/2 3/8) [ x > _root_1 3 y + 3 x - 2 /\ x <

_root_2 y^2 + x^2 - 1 /\ y > _root_1 y /\ y < _root_1 3 y - 2 ]

":str

> (msg D ’plot-leaves "-2 2 -2 2 600 600" "C" "tmp.svg")

:void

Development of algorithms for NuCAD and implementations of those
algorithms in Tarski is ongoing work. One piece of functionality based on
NuCAD that is quite useful is SAT solving for conjunctions of strict inequalities.
“Open” NuCAD (and CAD, for that matter) suffices for SAT-solving when for-
mulas contain only strict inequalities, i.e. <,>, �=, and no logical negation [16,19].
Tarski’s SAT-NuCADConjunction command constructs an Open NuCAD for an
input conjunction, terminating early as soon as it finds a satisfying point. In the
following example, SAT-NuCADConjunction quickly finds a satisfying point for a
problem that a number of other systems find challenging:

> (def F20 [ 72 x - 99 y - 18 z x + 71 w - 59 > 0 /\ -68 x + 43 y +

68 z + 80 w^2 - 19 > 0 /\ -48 x - 47 y - 76 z^2 - 92 w - 95 > 0 /\ 17

x y + 78 y - 8 z - 70 w + 20 > 0 /\ -83 x - 20 y + 72 z x + 80 w + 25

> 0 /\ -9 x - 64 y^2 + 99 z + 39 w + 93 > 0 ] )

:void

> (head (SAT-NuCADConjunction F20))

( ( y:sym z:sym w:sym x:sym ) ( -41/16:num 25353/16384:num 3:num

-37825/4096:num ) )

5 Unsat Cores

In general, the SMT paradigm (see for example [17]) requires theory solvers to
produce “explanations” for unsatisfiable inputs. More specifically, theory solvers
are presented with a set of theory constraints, and the theory solver is sup-
posed to determine whether these constraints are simultaneously satisfiable and,
if so, to produce a satisfying assignment and, if not, to produce a (hopefully
small) subset of the constraints that is unsatisfiable. The subset of constraints
that is unsatisfiable, the unsat core, serves as the explanation. Tarski includes
implementations of algorithms that adapt the “fast simplification” algorithms of
[3,4,6] to produce fast partial-solvers — theory solvers that can deduce “false”
or “unknown”, but never “true”. These algorithms are always fast, and produce
unsat cores for unsatisfiable instances.
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5.1 bbsat

“BlackBox” simplification abstracts a formula by treating each factor as a sep-
arate variable. So a formula like [(x − y)(xz − 1)2(y2 + z) > 0 ∧ (x − y)z < 0]
is abstracted to [ab2c > 0 ∧ ad < 0]. We can actually decide satisfiability in this
abstraction quite quickly [3], moreover we can deduce new facts about the signs
of the variables and products of the variables. The bbsat command determines
satisfiability in the BlackBox abstraction, and returns unsat cores for unsatisfi-
able input.

(def F [ (x + 2) (x y - z)^2 (y - x) > 0 /\ (x + 2) z^2 < 0 /\ y^2 z

(z + x) > 0 /\ (y - x) > 0 ])

:void

> (bbsat F)

( UNSAT:sym [(x + 2)(y - x)(z - x y)^2 > 0 /\ (x + 2)(z)^2 < 0 /\ y -

x > 0]:tar )

5.2 wbsat

“WhiteBox” simplification has a slightly more complex description, but it essen-
tially allows for deductions on the signs of factors appearing in the formula
based on known sign information on the individual variables and other factors.
Once again when deductions lead to “unsat”, Tarski is able to produce unsat
cores.

> (wbsat [ y x^2 + 1 < 0 /\ x + y < 0 /\ x > 0 /\ x - y < 0 /\ y > 0 ])

( UNSAT:sym [y - x > 0 /\ y > 0 /\ y + x < 0 /\ x > 0 /\ x^2 y + 1 < 0

]:tar )

The kinds of deductions allowed in WhiteBox are described in [6]. The aug-
mentation of WhiteBox (and BlackBox) simplification algorithm to produce
unsat cores is a new contribution due to the first author.

5.3 bbwb

BlackBox and WhiteBox methods can be combined to produce a more powerful
fast partial-solver. The Tarski command bbwb does this, alternating between
BlackBox deductions and WhiteBox deductions, each potentially allowing the
other to deduce still more facts. If unsat is deduced, bbwb traces back through
the deductions to find a subset of the initial constraints that suffices to deduce
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unsat. In the following example, both BlackBox and WhiteBox deductions are
used to deduce a contradiction:

> (def G [q0 < 0 /\ q1 > 0 /\ 2 B q2 + A eps^2 B + 2 q3 eps B - 2 x2 B

+ A^2 eps^2 + 2 A q3 eps + q3^2 < 0 /\ (2 B q2 + A eps^2 B + 2 q3 eps

B - 2 x2 B + A^2 eps^2 + 2 A q3 eps + q3^2)(B) < 0 /\ B > 0 /\ (B)(2 B

q2 - 2 x2 B + q3^2) < 0 /\ (B)(v1^2 - 2 x2 B + 2 x1 B) < 0 /\ (B)(2 B

q2 + 2 q1 q3 B + q1^2 A B - 2 x2 B + q3^2 + 2 q1 A q3 + q1^2 A^2) >= 0

/\ 2 B q2 - 2 x2 B + q3^2 < 0 /\ q2 - x2 < 0 /\ q3 >= 0 /\ x2 - x1 > 0

/\ v1 >= 0 /\ eps > 0 /\ A > 0 /\ 2 B q2 + 2 q1 q3 B + q1^2 A B - 2 x2

B + q3^2 + 2 q1 A q3 + q1^2 A^2 >= 0 /\ v1^2 - 2 x2 B + 2 x1 B - eps >

0])

:void

> (bbwb G)

( UNSAT:sym [v1^2 - 2 x2 B + 2 x1 B - eps > 0 /\ eps > 0 /\ B > 0 /\

(B)(v1^2 - 2 x2 B + 2 x1 B) < 0]:tar )

This result is deduced in two steps. First, v2
1 − 2x2B + 2x1B < 0 is deduced

from B > 0 and (B)(v2
1−2x2B+2x1B) < 0. This is a BlackBox deduction. Then

a contradiction is derived from v2
1 −2x2B +2x1B < 0, v2

1 −2x2B +2x1B − ε > 0
and ε > 0. This is a WhiteBox deduction. Of course, an interesting feature of
this example is that there are many constraints in the input conjunction, but
the unsat core is quite small.

5.4 Unsat Cores in Qepcad b

Recent versions of Qepcad b (version 1.72 and above) have also included facil-
ities for computing unsat cores for fully existentially quantified conjunctions of
constraints. This functionality is accessible through Tarski.

> (def G [x > 0 /\ y > 0 /\ x + y < -1 /\ x^2 + y^2 < 1 /\ x + y > 5/2])

:void

> (qepcad-sat G)

[x > 0 /\ y^2 + x^2 - 1 < 0 /\ 2 y + 2 x - 5 > 0]:tar

Since Qepcad b is a complete theory solver, we are able to do quick-checks
for satisfiability using bbwb and then, for input that cannot be quickly determined
to be unsat, fall back to Qepcad b. In both cases, when the input is found to
be unsatisfiable, Tarski provides unsat cores.
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Abstract. Fully homomophic encryption enables private computation
over sensitive data, such as medical data, via potentially quantum-safe
primitives. In this extended abstract we provide an overview of an imple-
mentation of a private-key fully homomorphic encryption scheme in a
protocol for private Naive Bayes classification. This protocol allows a
data owner to privately classify her data point without direct access to
the learned model. We implement this protocol by performing privacy-
preserving classification of breast cancer data as benign or malignant.

Keywords: Fully homomorphic encryption · Data privacy
Machine learning

1 Introduction

Fully-homomorphic encryption (FHE) encompasses potentially quantum-safe
primitives which allows for computation of arbitrary functions over encrypted
data. The majority of current FHE research is public-key. In contrast, private
key cryptosystems require prior knowledge of the encryption/decryption key(s).
While this is considered a disadvantage when the goal is purely communication,
these cryptosytems are in fact excellent for applications involving sensitive data
[20].

A number of papers have approached the problem of private computation
over medical data. Some of these applications focus specifically on genomic com-
putation, including edit distance [10], string matching [3,28], genomic tests such
c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 475–481, 2018.
https://doi.org/10.1007/978-3-319-96418-8_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96418-8_56&domain=pdf


476 A. Wood et al.

as ancestry and paternity [9], and other genomic tests [22,23]. Other research
focuses on the task of private classification, including neural networks [17,27],
decision trees [5], and Fisher’s linear discriminant classifier [19]. All of these
applications take place in the public-key setting.

In this extended abstract we propose a fully homomorphic private-key proto-
col for private Naive Bayes classification, a private argmax protocol, and a new
fully homomorphic method of encoding floating point values. We test the pro-
tocol on publicly available breast cancer data [24] using the GKS FHE scheme
[20] to achieve private classification in under one second.

2 Fully Homomorphic Encryption

A scheme is called additively or multiplicatively homomorphic, respectively, if
�x+y� = �x�⊕�y� and �x·y� = �x�⊗�y� for operations ⊕ and ⊗ in the ciphertext
space and �α� denotes the encryption of a value α. Because a boolean circuit
can describe arbitrary computation, a scheme is called fully homomorphic if it
is both additively and multiplicatively homomorphic [26].

The first FHE scheme was a lattice-based public-key encryption scheme
introduced by Gentry which was theoretically revolutionary but impractical
implementation-wise [12]. Improvements on this method led quickly to the sec-
ond generation of fully homomorphic encryption schemes [6,7,11] including the
BGV scheme [6–8] and YASHE [4]. More recent improvements have built upon
this foundation to yield even faster schemes [2,13–16,21]. These schemes are
all lattice-based, which is broadly considered a potentially quantum-resistant
primitive.

More recently, interest has grown in private-key fully homomoprhic encryp-
tion. The GKS scheme [20] is a ring- and group-based private-key FHE scheme.
It avoids some of the computational overhead required for fully homomorphic
public key encryption and joins other schemes as a potentially quantum-resistant
primitive. The GKS scheme is secure against a ciphertext-only attack.

3 Privacy-Preserving Classification

The main utility of fully homomorphic encryption lies in privacy-preserving clas-
sification, where a user classifies her datapoint using a data owner’s learned
model and neither party learns information about the other party’s data [5]. A
major application of PPC lies in the medical field. With PPC, a patient could use
her medical data to perform medical analyses without worrying about revealing
any of her personal information.

Leveled homomorphic encryption schemes (LHE), a variant on fully homo-
morphic encryption which allows for computation up to a predefined depth, such
as YASHE have been used in an application of neural networks to encrypted
data called CryptoNets [17]. ML Confidential [19] uses LHE to run classification
using Linear Means and Fisher’s Linear Discriminant classifiers. The authors
in [5] construct protocols for privacy-preserving classification via hyperplane
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detection, Naive Bayes, and decision trees using two additively homomorphic
encryption schemes, Quadratic Reciprocity (QR) [18] and Paillier [25], and one
leveled homomorphic encryption scheme, HELib [21].

4 Proposed Method for Fully Homomorphic Private
Classification with Naive Bayes

We use private-key fully homomorphic encryption in order to provide private
classification using a learned Naive Bayes model. Our method follows from the
method of Bost et al. [5] but varies in several important ways. Bost et al. re-
encode ciphertexts between two additively homomorphic, public-key encryption
schemes. Our implementation uses one fully homomorphic, private-key encryp-
tion scheme.

Assume that a Data Owner, D, wishes to classify her vector X which contains
q features based off of a learned model w owned by a Classification Model Owner,
C. The group G contains r distinct classes, G1, . . . , Gr. During this protocol C
should learn no unnecessary information about the input provided by D, and D
should learn nothing but the predicted class index of X.

C prepares tables P represented as a column vector of degree r where Pi =
Pr(G = Gi), the prior probability on class Gi, and T , an r×q matrix where entry
Tij represents Pr(X = Xj |G = Gi). Private classification proceeds as follows:
1: C prepares the tables P and T and sends �P � and �T � to D.
2: For each class Gi for i from 1 to r, D computes

�Pi� ·
p∏

j=1

�Tij� =

�

�Pi ·
p∏

j=1

Tij

�

� = �Pr(Gi|X)�.

3: D computes i = argmax
1≤i≤r

�Pr(Gi|X)� using a private argmax protocol.

The privacy of the learned model is derived from the FHE scheme used during
the protocol. The Data Owner’s privacy depends on the argmax protocol in step
3. Let F denote a family of monotone, continuous, additively homomorphic
functions that commute with encryption. Our protocol for computing private
argmax is as follows:
1: Set I = {1, 2, . . . , r}.
2: while |I| > 1 do
3: D computes a random permutation π on I and randomly chooses f ← F
4: D computes v = f(�pπ(1)�) − f(�pπ(2)�) = �f(pπ(1) − pπ(2))�
5: D sends v to C.
6: C decrypts v and recovers f(pπ(1) − pπ(2)). If this value is negative, C

sends the bit b = 0 to D, otherwise send b = 1.
7: If b = 0, remove π(1) from I. Otherwise remove π(2).
8: end while
9: D returns I.
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During this protocol, C collects r values representing the result of a monotone
function applied to the difference between random pairs of the posterior prob-
abilities. The application of an unknown monotone function to this difference
prevents C from learning partial information from the decrypted value.

5 Implementation

5.1 Fully Homomorphic Encoding

We must encode values in a way which preserves the fully homomorphic prop-
erties of the scheme. In the GKS scheme, elements are encoded in the ring

Sn = 〈x1, x2, . . . , xn|p · 1 = 0, x2
i = xi,

and xixj = xjxi for all i, j〉.

The plaintext ring P and a public ciphertext ring C are rings of the above form,
where P ⊂ C. Elements have coefficients which lie in the field Zp. The authors
of [20] provide a straightforward method of implementing a fully homomorphic
encoding of integer values by mapping the element 1 of Zp to any idempotent
element of P . In order to encode floating point values, the most straightforward
approach is to scale the floating point values to integer values with a fixed
precision. Decoding requires the user to keep track of the number of times the
protocol performs multiplication.

5.2 Experiments

To test the above protocols, we implemented a Naive Bayes algorithm to create
a learned model and encrypted this learned model using the GKS Encryption
Scheme [20]. The size of the ciphertext ring in the experiments was 28 = 256.
The family of functions used during private argmax is given by

F = {f : R → R : f(m) = km}

for sufficiently small k ∈ Z to avoid overflow over the 198-bit prime modulus p.
Our protocols were implemented in C++ using GNU Multiple Precision Library
(GMP) [1] and run on a MacBook Pro using El Capitan, a 2.3 GHz Intel Core
i7, and with 16 GB memory.

Additive smoothing was performed on the prior probability tables before
encryption. Specifically, each probability was increased by 0.1. Any value which
was greater than or equal to 1 after smoothing was reset to 0.9, truncated at 20
digits.

Data from the UCI Machine Learning Repository was used to test the perfor-
mance of the protocols [24]. Specifically, we looked at the Breast Cancer Wiscon-
sin (Original) Data Set which contains 683 complete data points each containing
an ID along with 9 attributes and a binary classification. The data gives measure-
ments taken from fine-needle aspirate (FNA) biopsies of benign and malignant
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Table 1. Unencrypted versus encrypted experimental results

Time (s) Accuracy Sensitivity Specificity

Unencrypted 0.00001 0.96003 0.93389 0.97410

Encrypted 0.52506 0.96003 0.93389 0.97410

breast tumors. Each of the nine attributes was measured by a clinician on a scale
of 1 to 10 at the time it was collected. Previous research found that while each
measurement holds clinical significance in diagnosing a breast tumor as benign
or as malignant, a single attribute is not enough to distinguish between the two
cases [29]. In the statistical analysis provided, a positive classification denotes a
malignant classification and a negative classification denotes a benign classifica-
tion. We used 10 by 10-fold cross validation to evaluate the performance of the
algorithm.

The time data in the Table 1 represents the number of seconds it takes to
classify a single data point. The time increase between encrypted and unen-
crypted classification is quite steep. However, this is to be expected and occurs
to varying degrees in all fully homomorphic implementations. Classification of a
single data point occurs in less than one second, a practical amount of time for
clinical applications.
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Abstract. We study functions of the roots of a univariate polynomial
of degree n ≥ 1 in which the roots have a given multiplicity structure
µ, denoted by a partition of n. For this purpose, we introduce a the-
ory of µ-symmetric polynomials which generalizes the classic theory of
symmetric polynomials. We designed three algorithms for checking if a
given root function is µ-symmetric: one based on Gröbner bases, another
based on preprocessing and reduction, and the third based on solving
linear equations. Experiments show that the latter two algorithms are
significantly faster. We were originally motivated by a conjecture about
the µ-symmetry of a certain root function D+(µ) called D-plus. This
conjecture is proved to be true. But prior to the proof, we studied the
conjecture experimentally using our algorithms.

1 Introduction

Suppose P (x) ∈ Z[x] is a polynomial with m distinct complex roots r1, . . . , rm

where ri has multiplicity μi. Write µ = (μ1, . . . , μm) where we may assume
μ1 ≥ μ2 ≥ · · · ≥ μm. Thus n =

∑m
i=1 μi is the degree of P (x). Consider the

following function of the roots

D+(P (x)) :=
∏

1≤i<j≤m

(ri − rj)μi+μj .

Call this the D-plus root function. This root function1 was introduced by Becker
et al. [2] in their complexity analysis of a root clustering algorithm. The original
motivation of this paper was to try to prove that D+(P (x)) is a rational function
in the coefficients of P (x).
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for Nationalities (2015MDQD018).
Chee’s work is supported by Guangxi University for Nationalities and by NSF Grant
# CCF-1564132.

1 In [2], the D-plus function was called a generalized discriminant.
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We may write “D+(µ)” instead of D+(P (x)) since the expression in terms
of roots r = (r1, . . . , rm) depends only on the multiplicity structure µ. For
example, if µ = (2, 1) then D+(µ) = (r1 − r2)3 and this turns out to be [a3

1 −
(9/2)a0a1a2 + (27/2)a2

0a3]/a3
0 where P (x) =

∑3
i=0 a3−ix

i. More generally, for
any function F (r) = F (r1, . . . , rm), we ask whether evaluating F at the m
distinct roots of a polynomial P (x) with multiplicity structure µ is rational
in the coefficients of P (x). In case P (x) has only simple roots, the Fundamental
Theorem of Symmetric Functions tells us the complete answer: F (r) is rational
iff F (r) is a symmetric polynomial. We extend this theorem to the case of non-
simple roots: if the roots of P (x) have multiplicity structure µ, then we define
what it means for F (r) to be µ-symmetric. As expected, this characterizes when
F (r) is rational in the coefficients of P (x). It is non-trivial to check if any given
root function F (in particular F = D+(µ)) is µ-symmetric. We will design three
algorithms for this task. Although we feel that µ-symmetry is a natural concept,
to our knowledge, this has not been systematically studied before.

Overview of Paper. In Sect. 2, we define µ-symmetric polynomials and
show some preliminary properties of such polynomials. Then three algorithms for
checking µ-symmetry are given in Sects. 3–5. Section 6 proves the µ-symmetry of
D+(µ). In Sect. 7, we show experimental results from our Maple implementation
of the three algorithms. We conclude in Sect. 8.

The full version of this paper includes 3 appendices: A: Maple source code, B:
Description of benchmark polynomials, and C: All the proofs. This full version
may be downloaded from http://cs.nyu.edu/exact/papers/.

2 µ-Symmetric Polynomials

Throughout, assume K is a field of characteristic 0. For our purposes, K = Q

will do. We fix three sequences of variables x = (x1, . . . , xn), z = (z1, . . . , zn)
and r = (r1, . . . , rm) where n ≥ m ≥ 1.

Let µ = (μ1, . . . , μm) be a partition of n where μ1 ≥ μ2 ≥ · · · ≥ μm ≥ 1. We
may denote this relation by µ � n. We call µ an m-partition if it has exactly
m parts. A specialization σ is any function of the form σ : {x1, . . . , xn} →
{r1, . . . , rm}. We say σ is of type µ if |σ−1(ri)| = μi for i = 1, . . . , m. We say σ
is canonical if σ(xi) = rj and σ(xi+1) = rk implies j ≤ k. Clearly the canonical
specialization of type µ is unique, and we may denote it by σµ .

Consider the polynomial rings K[x] and K[r]. Any specialization

σ : {x1, . . . , xr} → {r1, . . . , rm}

can be extended naturally into a K-homomorphism σ : K[x] → K[r] where P =
P (x) ∈ K[x] is mapped to σ(P ) = P (σ(x1), . . . , σ(xn)). When σ is understood,
we may write “P” for the homomorphic image σ(P ).

We denote the i-th elementary symmetric functions (i = 1, . . . , n) in
K[x] by ei = ei(x). E.g., e1 :=

∑n
i=1 xi, e2 :=

∑
1≤i<j≤n xixj , . . ., en :=

∏n
i=1 xi.

Also define e0 := 1. Typically, we write ei for σµ(ei) when µ is understood.

http://cs.nyu.edu/exact/papers/
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The key definition is the following: a polynomial F ∈ K[r] is said to be
µ-symmetric if there is a symmetric polynomial F̂ ∈ K[x] such that σµ(F̂ ) =
F where n =

∑m
i=1 μi. We call F̂ the µ-lift (or simply “lift”) of F . If F̊ ∈ K[z]

satisfies F̊ (e1, . . . , en) = F̂ (x) then we call F̊ the µ-kernel of F .

Remarks. 1. Note that the µ-lift of F is defined if and only if F is µ-symmetric.
2. We view the zi’s as symbolic representation of ei(x)’s.
3. Although F̂ and F̊ are mathematically equivalent, the kernel concept lends

itself to direct evaluation based on coefficients of P (x).

The Fundamental Theorem on Symmetric Functions implies the following:

Lemma 1. If f(r) ∈ K[r] is µ-symmetric, then for any P (x) =
∑n

i=1 cix
i ∈

K[x] of degree n, if P has m distinct roots ρ1, . . . , ρm with multiplicity µ =
(μ1, . . . , μm), F (ρ1, . . . , ρm) ∈ K.

We want to study the lift F̂ ∈ K[x] of a µ-symmetric polynomial F ∈
K[r] of total degree δ. If we write F as the sum of its homogeneous parts,
F = F1 + · · · + Fδ, then F̂ = F̂1 + · · · + F̂δ. Hence, we may restrict F to be
homogeneous.

Next consider a polynomial G(z) ∈ K[z]. Suppose there is a weight function

ω : {z1, . . . , zn} → N = {1, 2, . . .}
then for any term t =

∏n
i=1 zei

i , its ω-degree is
∑n

i=1 eiω(zi). Normally, ω(zi) =
1 for all i; but in this paper, we are also interested in the weight function where
ω(zi) = i. For short, we simply call this ω-degree of t its weighted degree. E.g.,
the weighted degree of z21z3 is 5. The weighted degree of a polynomial G(z) is just
the maximum weighted degree of terms in its support. A polynomial G(z) is said
to be weight homogeneous if all of its terms have the same weighted degree.
Note that the kernel F̊ of F is not unique: for any kernel F̊ , we can decompose it
as F̊ = F̊0+F̊1 where F̊0 is the weight homogeneous part of F̊ of weighted degree
δ, and F̊1 := F̊ − F̊0. Then F̊ (e1, . . . , en) = F implies that F̊0(e1, . . . , en) = F
and F̊1(e1, . . . , en) = 0. We can always omit F̊1 from the kernel of F . We shall
call any polynomial G(z) ∈ K[z] a µ-constraint if G(e1, . . . , en) = 0. Thus, F̊1

is a µ-constraint. We may check that the set of µ-constraints forms an ideal in
K[z] which we call the µ-ideal.

3 Computing Kernels via Gröbner Bases

In this section, we consider a Gröbner basis algorithm to compute the µ-kernel
of a given polynomial F ∈ K[r], or detect that it is not µ-symmetric. For this
purpose, define the following ideal:

Iµ := 〈v1, . . . , vn〉 (1)

where vi := zi − ei (i = 1, . . . , n). Note that I is an ideal in K[z, r]. Moreover,
we define Gµ to be the Gröbner basis of Iµ relative to the term ordering where
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zi ≺ rj for all i and j. The following is a generalization of Proposition 4 in [3,
Chap. 7, Sect. 1].

Theorem 1. Let R ∈ K[r, z] be the normal form of F ∈ K[r] relative to Gµ ⊆
K[r, z]. Then F is µ-symmetric iff R ∈ K[z]. Moreover, if R ∈ K[z] then R is
the µ-kernel of F .

Theorem 1 leads to the algorithm of Fig. 1.

Fig. 1. Kernel Algorithm based on Gröbner Bases

4 Checking µ-Symmetry via Preprocessing and Reduction

In the previous section, we show how to compute µ-kernels using Gröbner bases.
This algorithm is quite slow especially when µ �= (1, 1, . . . , 1); this may be seen
from the timings in Table 1 below. In this and the next section, we will design two
alternative methods based on an analysis of the following two K-vector spaces:

– Kδ
sym[x]: the set of symmetric homogeneous polynomials of degree δ in K[x]

– Kδ
µ [r]: the set of µ-symmetric polynomials of degree δ in K[r].

The first method is based on preprocessing and reduction: we first compute
a basis for Kδ

µ [r], and then use the basis to reduce F (r). The second method
directly computes the µ-kernel of F (r) by solving linear equations.

First consider Kδ
sym[x]. By a weak partition of δ, we mean

α = (α(1), α(2), . . . , α(δ))

where α(1) ≥ α(2) ≥ · · · ≥ α(δ) ≥ 0 and α =
∑

α(i) = δ. Note that α(i) can be
0 in weak partitions. If α is a weak partition of δ with no part α(i) larger than n,
we will write α � (δ, n). Let eα :=

∏δ
i=1 eα(i). E.g., if δ = 4, n = 2, α = (2, 1, 1, 0)

then eα = e2e
2
1e0 = e2e

2
1.

Let T (x) denote the set of terms of x, and T δ(x) denote those terms of degree
δ. A typical element of T δ(x) is

∏n
i=1 xei

i where e1+· · ·+en = δ. We totally order
the terms in T δ(x) using the lexicographic ordering in which x1 ≺ x2 ≺ · · · ≺ xn.
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Given any F ∈ K(x), its support is Supp(F ) ⊆ T (x) such that F can be
uniquely written as

F =
∑

p∈Supp(F )

c(p)p (2)

where c : Supp(F ) → K \ {0} denote the coefficients of F . Let the leading
term Lt(F ) be equal to the p ∈ Supp(F ) which is the largest under the lexico-
graphic ordering. For instance, Supp(e1) = {x1, . . . , xn} and Lt(e1) = xn. Also
Supp(e1e2) = {xixjxk : 1 ≤ i �= j ≤ n, 1 ≤ k ≤ n} and Lt(e1e2) = x2

nxn−1. The
coefficient of Lt(F ) in F is the leading coefficient of F , denoted by Lc(F ).
Call Lm(F ) := Lc(F )Lt(F ) the leading monomial of F . This is well-known:

Proposition 2. The set Bδ
n := {eα : α � (δ, n)} is a K-basis for Kδ

sym[x].

Next consider the set Kδ
µ [r] comprising the µ-symmetric functions of degree

δ. The map σµ : Kδ
sym[x] → Kδ

µ [r] is an onto K-homomorphism. Thus Kδ
µ [r] is

a vector space which is generated by the set σµ(Bδ
n) :=

{
σµ(G) : G ∈ Bδ

n

}
. It

follows that there is a maximal independent set Bδ

n ⊆ σµ(Bδ
n) that is a basis for

Kδ
µ [r]. The set Bδ

n may be a proper subset of σµ(Bδ
n).

Now we generate the basis of the vector space Kδ
µ [r] with which one could

easily check whether a given polynomial is in this vector space or not. For this
purpose, we introduce a reduction procedure and its applications. A set B ⊆ K[r]
is linearly independent if any non-trivial K-linear combination over B is non-
zero; otherwise, B is linearly dependent. We say B is canonical if B is linearly
independent and ordered as B = (B1, . . . , B�) with Lt(Bi) ≺ Lt(Bj) for all i < j.

Given a polynomial F ∈ K[r], we say it is reduced relative to B=(B1, . . . ,B�)
if Lt(Bi) /∈ Supp(F ) for each i = 1, . . . , �. We can reduce F relative to B by
subtracting from F a linear combination of elements in B as shown in Fig. 2.

The termination of the reduce algorithm is guaranteed by the following:

Lemma 3. The number of loops in the algorithm reduce(F,B) is bounded by

#Supp(F ) +
�∑

i=1

#Supp(Bi) − 1. Moreover, this bound is tight in the worst case.

It is easy to see that reduce(F,B) = 0 iff B∪{F} is linearly dependent. This
gives rise to the canonize algorithm in Fig. 3 for constructing a canonical set
from any set B ⊆ K[r]. Clearly canonize(B) terminates in |B| loops. Finally, we
use reduce and canonize algorithms to construct the isMuSymmetric algorithm
for checking the µ-symmetry of a polynomial.

Lemma 4. The algorithm isMuSymmetric halts. Moreover, it outputs “Yes” iff
F is µ-symmetric.
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Fig. 2. The reduce algorithm.

Fig. 3. The canonize and isMuSymmetric algorithms.

5 Computing Kernels via Solving Linear Systems

We now outline a method to compute the kernel of F (r) by solving a linear
system of equations.

Recall that F ∈ K[r] is µ-symmetric iff there is a F̊ ∈ K[z] such that
F̊ (e1, . . . , en) = F. We propose to first write F̊ (z) as an indeterminate polyno-
mial G(k; z) ∈ K[k][z] which has homogeneous weighted degree δ with indetermi-
nate coefficients k. Each term of weighted degree δ has the form zα :=

∏δ
i=1 zα(i)

where α = (α(1), . . . , α(δ)) is a weak partition of δ with parts at most n, i.e.,
α � (δ, n). Let the set of all such partitions be denoted Iδ

n := {α : α � (δ, n)}
Then G(k; z) can be written as G(k; z) :=

∑
α∈Iδ

n
kαzα where each kα is an
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Fig. 4. Kernel Algorithm via Linear System Solving

indeterminate. Here, k := (kα : α ∈ Iδ
n). Next, we plug in ei’s for the zi’s to get

H(k; r) := G(k; e1, . . . , en) which we view as a polynomial in K[k][r]. We then
set up the equation

H(k; r) = F (r) (3)

to solve for the values of k. Note that total degree of G in k is 1, i.e.,
deg(G,k) = 1. Therefore, deg(H,k) = 1. Thus (3) amounts to solving a lin-
ear system of equations in k. The above procedure can be summarized as the
E-kern algorithm in Fig. 4.

6 The µ-Symmetry of D+(µ)

The conjecture that motivated this paper is that the root function D+(µ) =∏
1≤i<j≤m(ri − rj)μi+μj is µ-symmetric. This conjecture is proved in following

theorem:

Theorem 2. D+(µ) is µ-symmetric, with kernel D̊+(µ) = 1
cH where

– c = c(µ) = (−1)mn+
n(n−1)

2 +
∑m

i=1 iμi · (n − m)!
∏m

i=1 μμi

i

– H := ∂n−mD
∂cn−m

n

∣
∣
ci=(−1)izic0

/

cm+n−2
0 .

– Here, D = D(P ) is the discriminant of P (x) =
∑n

i=0 cn−ix
i with multiplicity

structure µ.

This theorem further tells us that the kernel polynomial of D+(µ) is, up to
a constant, determined by the number m of distinct roots. In other words, if
µ = (μ1, . . . , μm) and µ′ = (μ′

1, . . . , μ
′
m′) with m = m′, then there exists a

constant a such that D̊+(µ) = aD̊+(µ′).
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Since the lift/kernel of D+ is non-unique, it may be possible to rewrite it
in simpler forms, especially when µ has some special structure. The rest of this
section gives two such theorems. First, we introduce a µ-symmetric function
Δ that is useful in deriving simple expressions for D+. Δ is closely related
to the notion of subdiscriminants [1, Sect. 4.1]. To define them, we need some
notations: let [n] := {1, . . . , n}, and

(
[n]
k

)
denote the set of k-subsets of [n]. For

k = 0, . . . , n − 2, we may define the function

Sn
k = Sn

k (x) :=
∑

I∈( [n]
n−k)

∏

i�=j∈I

(
xi − xj

)2

(4)

called the kth subdiscriminant in n variables. We may also define Sn
n−1 := 1.

When k = 0, we have Sn
0 =

∏
i�=j∈[n]

(
xi − xj

)2

. If the xi’s are roots of a
polynomial P (x) of degree n, then Sn

0 is the standard discriminant of P (x).
Clearly Sn

k is a symmetric polynomial in x.

Lemma 5. Define Δ :=
∏

1≤i<j≤m(ri − rj)2.

(a) Δ is µ-symmetric with lift given by Δ̂ = 1∏m
i=1 μi

· Sn
n−m where Sn

n−m is the
(n − m)-th subdiscriminant.

(b) When m = 2, we have an explicit formula for the lift of Δ: with n = μ1+μ2,

Δ̂ =
(n − 1)e2

1 − 2ne2

μ1μ2
.

The following results provide explicit formulas for the lift D̂+ or kernel D̊+

in two special cases of µ. First, consider the case where µ = (a, a, . . . , a).

Theorem 3. If all μi’s are equal to a, then D+(µ) is µ-symmetric with lift
given by F̂n(x) =

(
1

am · Sn
n−m

)a where Sn
n−m is given by Lemma 5(a).

Another special case of µ is when m = 2:

Theorem 4. For all µ = (μ1, μ2), D+(µ) has a µ-kernel F̊n where µ � n:

– n is even: F̊n =
(

(n−1)z2
1−2nz2

μ1μ2

)n/2

– n is odd: F̊n =
(

(n−1)z2
1−2nz2

μ1μ2

)n−3
2

(
k1z

3
1 + k2z1z2 + k3z3

)

where (k1, k2, k3) =
(

−(n−1)(n−2)
d , 3n(n−2)

d , −3n2

d

)
and d = μ1μ2(μ1 − μ2).

7 Software and Experiments

Table 1 shows timings of our algorithms (G-kern, E-kern and isMuSymmetric) for
checking the existence of the µ-kernel of F ∈ K[r], or reporting “No” otherwise.
They are implemented in Maple (see code in Appendix A in full version). These
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experiments use Maple 2017 on a Windows laptop with an Intel(R) Core(TM)
i7-7660U CPU (2.50 GHz, 8 GB RAM). We use a test suite of 12 polynomials
of degrees ranging from 6–20 (see Appendix B in full version), with correspond-
ing µ with n =

∑m
i=1 μi ranging from 4–6. These polynomials are either D+

polynomials or subdiscriminants, or their variants to create non-µ-symmetric
polynomials.

Table 1 shows that E-kern is significantly faster than G-kern on all but in
this case, µ = (1, . . . , 1), i.e., the ideal Iµ = 〈v1, . . . , vn〉 is symmetric in r.
Possibly, the Gröbner basis algorithm in Maple is highly optimized for such ide-
als. One may also see that isMuSymmetric is also a very efficient method for
checking the μ-symmetry of a polynomial. In particular, the preprocessing pro-
cedure canonize is independent on F , so one can compute the canonical set
first and store it in a database. The actual time to reduce a given F using a
canonical set is relatively small. The speedup of G-kern/isMuSymmetric may
be partly attributed to the fact that G-kern outputs more information than
isMuSymmetric. In the full paper, we will extend isMuSymmetric into an algo-
rithm to actually compute the kernel.

Table 1. Timing for computing µ-kernel of F of degree δ. Here n =
∑m

i=1 μi, canonize
is a preprocessing step in isMuSymmetric and total= the sum of canonize time and
reduce time.

F δ µ n Y/N G-kern

Time

(sec)

E-kern

Time

(sec)

Speedup

(G-kern/E-

kern

isMuSymmetric speedup (G-kern

/isMuSymmetric)

canonize

(sec)

reduce

(sec)

Total

(sec)

F1 12 [1, 1, 1, 1] 4 Y 0.453 0.235 1.9 0.094 0.000 0.094 4.8

F2 8 [2, 1, 1] 4 Y 0.328 0.015 21.9 0.016 0.015 0.031 10.6

F3 20 [1, 1, 1, 1, 1] 5 Y 34.141 187.703 0.2 3.766 0.031 3.797 9.0

F4 15 [2, 1, 1, 1] 5 Y >600.000 1.875 >320.0 0.391 0.015 0.406 >1477.8

F4x 6 [2, 1, 1, 1] 5 N >600.000 0.015 >40000.0 0.000 0.016 0.016 >37500.0

F5 6 [2, 2, 1] 5 Y 68.031 0.032 2126.0 0.000 0.000 0.000 Inf

F5x 6 [2, 2, 1] 5 N 0.078 0.000 Inf 0.000 0.016 0.016 4.9

F6 10 [2, 2, 1] 5 Y 0.438 0.078 5.6 0.031 0.000 0.031 14.1

F6x 10 [2, 2, 1] 5 N 0.406 0.047 8.6 0.031 0.016 0.047 8.6

F7 18 [3, 1, 1, 1] 6 Y >600.000 9.000 >66.7 3.390 0.063 3.453 >173.8

F8 12 [3, 2, 1] 6 Y >600.000 0.360 >1666.7 0.187 0.000 0.187 >3208.6

F9 6 [2, 2, 2] 6 Y 8.734 0.000 Inf 0.000 0.000 0.000 Inf

8 Conclusion

We introduced the concept of µ-symmetric polynomial as a generalization of the
classical symmetric polynomial. We further designed some efficient algorithms
to compute µ-kernel of such polynomials. The notion of a “µ-kernel” could be
generalized by considering other bases for the symmetric polynomials. In this
paper, we used the elementary symmetric functions as basis. This was a natural
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choice for showing rationality of root functions. But all our algorithms could be
extended to other bases, for instance, the power basis.

This paper proved that the root function D+(µ) is µ-symmetric. This implies
that we can now obtain explicit constants on the bit complexity of the root
clustering algorithm in [2] when applied to polynomials with integer or algebraic
coefficients. We plan to explore this application in future work.
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Abstract. In the past four years, the author has developed more than
120 video lectures for a linear algebra course, each of which is of about
10min duration, and has tried to conduct flipped class. The author set
tasks for the students using Moodle (LMS) questions, which are mainly of
STACK type, in order to check if they have really studied the video mate-
rials and how deeply they understand them. According to the question-
naire result, in the case that the questions have too many input fields or
require some CAS-formatted texts, the students may have some difficulty
to answer the questions, especially with mobile phones. Multiple choice
type or true-false questions are very simple to answer with such devices.
In the latter half of the last academic year, the author developed CAS
programs to automatically generate multiples of 100 mutually different
matrices for some problems. For example, one of the programs generates
the question data to select diagonalizable matrices from 10 matrices of
degree 3. In order to prove that the students actually solved the ques-
tions by themselves, they were instructed to submit papers describing
the process of the solution. We are planning to develop more generating
programs to cover the entire course, including non-computational tasks.

Keywords: Flipped class · LMS · STACK · Linear algebra

1 Introduction

Recently, the flipped class or flipped learning has become a major blended learn-
ing strategy, which is usually conducted with video lectures for the preparation
activities of students. Linear algebra courses are quite important in college math-
ematics. However, in Japan, there have been only a few examples of flipped
learning/class trials for linear algebra courses. In the second semester of the
2014 academic year, the author developed video lectures on some topics for the
students to review after class. In addition, in the second semester of the follow-
ing two years, the author was in charge of a class of non-engineering students.
More than half of the students in the class were not good at mathematics. The
course in the 2nd semester includes some abstract topics related to abstract vec-
tor spaces, direct sums, linear maps, and the concept of matrix representation.
c© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 492–497, 2018.
https://doi.org/10.1007/978-3-319-96418-8_58
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Thus, some effective active learning strategies were required. Meanwhile, taking
note of the usability of smartphones, the author found it necessary to have a
“smartphone-friendly” learning strategy.

2 Video Lectures and Questions

The author developed more than 50 short video lectures for the preparation,
all of which have a duration of about 5–10 min. In the last academic year, the
author tried to conduct flipped learning/classes for the linear algebra course of
the engineering school of our university (Fig. 1).

The video lectures were uploaded to YouTube site and/or were exported to
local files. The local files were uploaded to the LMS of our university, which
is based on Moodle [1]. The slides used in the video lectures were authored
with LaTeX and Beamer class using the Tikz library. More animation effects
were added using the authoring tool Camtasia Studio [2]. Since last autumn, it
is possible to record screenshots with voice on iOS devices i.e. iPad. With this
function, it seems that the video lectures have become more visible and effective,
especially in the case of videos used to explain examples.

Small exam

Comment on the exam

Paper-based works
with minimum instructions

Review with Online Task

Redo the small exam online
(failed exam case)

Prepare with Online Tasks
and Video Lectures

Class After Class

Fig. 1. Learning flow

Since 2005, the web-based
learning and testing system MATH
ON WEB [5], which use Mathe-
matica and webMathematica, has
been used in our university. The
site has more than 1000 ques-
tions, and is therefore quite use-
ful. However, the system has not
been linked to our Moodle based
LMS, so it is not easy to mon-
itor and analyze the learning
activities of the students. Hence,
the author converted the ques-
tion data of MATH ON WEB to
STACK [3] data, and developed
more new STACK questions.

Even if video materials are
prepared abundantly and each
video lecture is short enough for
the students to view easily, there
are not many cases where stu-
dents actively use them. What
matters is whether they under-
stand the content, rather than just see it. To evaluate the preparation of the
students, the author first used the STACK type questions mentioned above along
with a few additional multiple-choice type questions and/or true/false type ques-
tions. Problems with these question types have gradually become clear, as seen
from the comments in the last academic year’s questionnaire.
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3 Question Examples and Problems

Fig. 2. Sample of a quiz: elemen-
tary column transformations (3 ×
3/C1+ = C2*a/Gen)

The question shown in Fig. 2 is a STACK
type question to check whether or not
the students understand the elementary
transformations. To use the random selec-
tion feature of Moodle, about fifty varia-
tions were prepared (Fig. 3).

CAS-based systems, for example,
STACK, Maple T.A. [4], or MATH ON
WEB, are useful for checking students’
answers algebraically by using an algo-
rithm. Especially, they are useful for
quizzes that have infinite correct answers,
for example, questions such as:

• “Find a basis of the null space of...”
• “Find a basis of the image of the linear

map defined by following matrices:...”
• “Find the linear dependencies of the

vectors if not linearly independent.”

...
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Fig. 3. More than 40 patterns of ele-
mentary column/row transformations
(mathbank)

On the other hand, these systems have
some problems:

1. Authoring problem: it is hard to
author question data because of
heavy javascript operation or compli-
cated programming such as Potential
Response Tree (PRT).

2. Parameter problem: it is important but
subtly difficult to control the appro-
priateness of question data, which
depends on random parameters, espe-
cially in generating matrices.

3. User interface problem: only recently
have there been good interfaces for the
students to enter the CAS formula in
the input forms, such as MathTOUCH
[6] and FlickMath [7]. However, there are still difficulties in doing this as
described in the following paragraph.

If the questions require the students to enter a 4 by 4 matrix, they should
put 16 values into the input fields. This is somewhat annoying for them, espe-
cially in the case of putting them on smartphone. In the questionnaire, they had
actually commented that it is troublesome to do them. In addition, there were
the following cases: some students come up with complaints that they were told
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that their answers were not correct. The answers were actually correct, but they
were put in double-byte characters. Even if there is difficulty in providing the
correct answer, it is meaningless if it is too laborious to enter the answer.

True/false questions are some of the most simple questions. Here is a sample
small online test consisting of such questions:

• A square matrix has an inverse matrix if it has non-zero entry.
• A square matrix has an inverse matrix if all of the entries are not zero.
• For a square matrix A, if there exists a square matrix B such that AB =
BA = En, then A has another matrix B′, which has the same property.

• If AB has the inverse matrix, then both A and B have inverse matrices and
(AB)−1 = B−1A−1.

• If A has an inverse matrix A−1, then the transpose of A also has an inverse
matrix and (tA)−1 = t(A−1).

Such quizzes are easy in terms of inputting the answer, but are not necessarily
suggestive. Students remember the answer and after some trials they would
answer the questions correctly. This is somewhat different from what we aim
to achieve. More random elements are required so that the students cannot
answer correctly without having a deep understanding. For example, “Select

all the invertible matrices from
(

2 3
0 0

)
,
(

1 1
1 1

)
,
(

0 0
0 0

)
,
(

1 1
0 1

)
,...”. Appropriate

feedback will result in better understanding for the students.
It seems that some kind of suggestive but easy-to-input tasks are necessary.
In the Moodle case, the quizzes are of multiple choice type, or STACK [3] type

with a minimum input form (if required) to check the correctness algebraically
by using an algorithm.

Finally, authoring the Moodle question data also has the following problems
in general:

• When there are multiple analogous questions and some corrections are
required, it is hard to edit them on Moodle or edit the exported XML codes
directly.

• All the questions cannot be viewed at once, therefore, one cannot tell which
of the questions have already been fixed. If the number of questions are in
the hundreds, this is almost impossible. Systematic procedures using CAS to
check the appropriateness or the validy of question data may be required.

Considering the above problems, we thought that it is reasonable to generate
appropriate and large amounts of question data automatically by using a CAS.

4 Question Data Generator

For the reasons described in the preceding section, it is reasonable and natural
to generate large amounts of question data using a CAS such as Maxima [8],
Mathematica [9], or Maple [10]. In general, a CAS has the facility to handle
matrices, strings, and lists which are required to construct XML question data.
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Fortunately, Osaka Prefecture University, to which the author is affiliated,
has a site license. This is the reason for using Mathematica to generate question
data. As a matter of course, the ideas of the questions are important, and not
which CAS one uses.

1. TransMatToMaxima is a procedure to Transform matrix
Mathematica format to Maxima format.

2. ChkMatrix check the entries in the viewpoint of size of each
entries and count of zero entries.

3. GenerateFindEigen generates from given Jordan standard
form matrices satisfying some condistions using ChkMatrix.

4. GenerateFindEigen generates from given Jordan standard
form matrices satisfying some condistions using ChkMatrix.

5. LD3 and LJ3 are lists of diagonalizable and non-
diagonalizable matrices which have originally length of
more than 5000 and 3000 per each and using DeleteDu-
plicates function, each has length of about 1600 and 1200.

6. Finally MakeXML generates from template XML exported
from moodle. Output XML consists of 100,200, or 300 ques-
tions and can be imported by moodle.

Fig. 4. Excerpt of flow of generating of “Find diagonalizable
matrix” question data

An excerpt of
the flow of “Find
eigen and diagonal-
izability” question
data is shown in
Fig. 4. This gener-
ates 100, 200, or 300
question data, each
having 10 matrices,
from 2 to 8 matri-
ces of which are
diagonalizable. The
actual program and
sample data includ-
ing the cases of
degree 4 and 5 are
available from the
author’s website [11].

Actually, the author used these questions as a task for the students and some
of them responded that “it was a great learning opportunity”.

5 Future Works

As for generating the XML question data of various computational tasks auto-
matically, it requires time and labor; however, it is not so difficult for users
familiar with CAS. Nagasaka developed a Mathematica program that generates
question data in Moodle XML format [12]. The author is planning a joint work
with Nagasaka with the support of JSPS KAKENHI (cf. Acknowledgements).

In the near future, a complete set of XML data for generic linear algebra
courses will be generated, and its effectiveness in flipped learning will be verified.
Learning analytics or LA is expected.

Here are some issues remaining in this project.
One of them is that the student will be kept waiting until all the listed

formulae (e.g. matrices) are displayed, because MathJax rendering is slightly
slow. In this regard, some measures are required. We expect Moodle’s official
support for KaTeX or something similar.

Another one of the problems is that this method is not friendly for CAS begin-
ners. Authoring tools for the automatic generators of question data that have a
user-friendly interface for CAS beginners should be developed based on our CAS
scripts. Since the data needs to be customized according to the requirements of
any lecturer or the course of any school, the specifications of the generators are
important. This could be integrated with the MeLQS [13] project.
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Abstract. An innovative approach is proposed in designing intuitive
interfaces for solving systems of linear and nonlinear equations over
Cartesian products of general vector spaces. The interfaces enable
scientific computing practitioners and learners to enter equations in
WYSIWYG manner, lets the software generate vector representations of
equations/variables internally and outputs the solutions in the desired
forms automatically. Such interfaces save more time than algorithmic
improvement for one-time users and students.

Keywords: Interface · System of equations

1 Introduction

Solving linear and nonlinear systems of equations is one of the fundamental tasks
in scientific computing. Existing software packages, however, require systems to
be in matrix-vector form Ax = b, or represented using multivariate functions
in the form of ⎧

⎪⎨

⎪⎩

f1(x1, . . . , xn) = 0
...

...
...

fm(x1, . . . , xn) = 0
. (1)

Variables are allowed only as arrays of real/complex numbers. More common in
practical computation and classroom teaching, linear equations are formulated
in the form of

L(x1, . . . , xn) = (b1, . . . , bm)

where L is a linear transformation, and nonlinear equations are given as

f(x1, . . . , xn) = (0, . . . , 0)

where f is a differentiable mapping between certain spaces. Furthermore, the
variables x1, . . . ,xn can be arrays of numbers, vectors, matrices, polynomials,
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functions of certain forms, etc. It is a tedious, time-consuming and error-prone
process to transform the equations into the function representations before being
solved by existing software and, after obtaining results, to make backward repre-
sentations. Such back-and-forth representation processes are particularly daunt-
ing for beginners and students. We propose an innovative approach in designing
intuitive interfaces for solving equations over Cartesian products of general vec-
tor spaces in our Matlab toolbox NAClab1 for numerical algebraic computation
[3]. The interfaces enable computing practitioners and learners to enter equa-
tions in WYSIWYG manner, let the software generate vector representations
of equations/variables internally and output the solutions in the desired forms
automatically. Such interfaces save more time than algorithmic improvement for
one-time users and students.

2 Interface for Solving Linear Systems of Equations

In practical scientific computing, a general system of linear equations is in the
form of

L(x1, . . . ,xn) = (b1, . . . , bm) (2)

where

L : X1 × · · · × Xn −→ Y1 × · · · × Ym

is a linear transformation between Cartesian products of general vector spaces
such as Cn of n-dimensional vectors, Pn of univariate or multivariate polyno-
mials of degree up to n, Cm×n of m × n matrices, etc. Furthermore, the linear
transformation L may be under-determined, overdetermined or rank-deficient.
There are two drawbacks in current software for numerical solutions of linear
system of equations:

– Systems can only be solved in the matrix-vector form Ax = b to which the
general linear system (2) must be transformed by users.

– Rank-deficient linear systems may not be solvable accurately from empirical
data.

Our Matlab toolbox NAClab is developed with an attempt to fill these two
gaps. The interface module LinearSolve for solving general linear systems
requires users to provide the following input items:

– The Matlab function or Matlab anonymous function for carrying out the eval-
uation of the linear transformation L.

– The domain X1 × · · · × Xn in the form of a typical vector (x1, . . . , xn) with
all the relevant components as a Matlab cell array.

– The parameters of the linear transformation as a cell array.
– The right-hand side vector (b1, . . . , bm).
– The error tolerance ε.
1 http://www.homepages.neiu.edu/∼zzeng.

http://www.homepages.neiu.edu/~zzeng
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We illustrate the interface LinearSolve in the following example.

Example 1. Suppose, with the data error bound 10−4, the polynomials

f̃(x) = 5.99999 − 9x + 3x3 − 4x4 + 6x5 − 2x7

g̃(x) = −2 + 5x − 3x2 − x3 + x4 + 2x5 − 3.00002x6 + x8

are empirical data of a polynomial pair f and g with a greatest common divisor

u = gcd (f, g) ≈ 2 − 2.99999x + 1.00001x3.

given approximately. It is known that the greatest common divisor is in the
range of the linear transformation

L : P5 × P4 −→ P12

(p, q) �−→ p f + q g
(3)

and the kernel

Kernel (L) = span
{(

f

u
,

g

u

)}

where the notation Pn denotes the vector space of polynomials with degrees
up to n. The question: Can we use the empirical data of f , g and u to solve the
linear equation

pf̃ + qg̃ = ũ

for (p, q) ∈ P5 × P4 approximately with an accuracy comparable to the data accu-
racy? There appear to be no available software for finding numerical solution of
such a rank-deficient linear system, and all software systems require users to go
through a tedious process of transforming the equation into a matrix-vector form.

NAClab provides a comprehensive linear equation solver LinearSolve for
such problems directly. Instead of constructing the representation matrix for the
linear transformation, write a simple Matlab anonymous function implementing
the linear transformation (3) with parameters f and g as it is:

>> L = @(p,q,f,g) ... % Matlab anonymous function for the linear transformation

PolynomialPlus(PolynomialTimes(p,f),PolynomialTimes(q,g)); % L : (p,q) |--> p*f+q*g

Here the syntax rules require the input items to start with variables p
and q followed by parameters f and g. The modules PolynomialPlus and
PolynomialTimes are interface functionalities in NAClab to perform poly-
nomial additions and polynomial multiplications with polynomials entered as
character strings in WYSIWYG style:

>> f = ’5.99999 - 9*x + 3*x^3 - 4*x^4 + 6*x^5 - 2*x^7’; % data for polyn. f

>> g = ’-2 + 5*x - 3*x^2 - x^3 + x^4 + 2*x^5 - 3.00002*x^6 + x^8’; % data for polyn. g

>> u = ’2-2.99999*x+1.00001*x^3’; % data for polyn. u
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Define the domain of the linear transformation by providing two polynomials in
P5 and P4 with all the relevant monomials, along with the parameter:

>> domain = {’1+x+x^2+x^3+x^4+x^5’,’1+x+x^2+x^3+x^4’}; % domain of variable (p,q) of L

>> parameter = {f,g}; % parameter cell array of the linear transf. L

>> error = 1e-4; % error tolerance

Call the NAClab interface LinearSolve with input items consist of the linear
transformation array {L, domain, parameter}, the right-hand side u, and error
tolerance 10−4:

>> [Z,K,lcond,res] = % solve L(p,q) = u, in the ’domain’ with ’parameter’ within ’error’

LinearSolve({L,domain,parameter}, u, error);

The cell array Z contains the numerical minimum-norm solution in P5 × P4 in
WYSIWYG style
>> Z % display the numerical minumum-norm solution

Z =

’0.31521363813893 + 0.032589573209552*x + 0.02170375447856*x^2 + 0.054260211908843*x^3

+ 0.13564951660988*x^4 + 0.02390813281878*x^5’ ’-0.05435802677693 + 0.04340953379911*x

+ 0.10852114641191*x^2 + 0.27129848252721*x^3 + 0.047816465413613*x^4’

The cell array K contains the 1-dimensional numerical Kernel in P5 × P4 in
WYSIWYG style

>> K{:} % display the basis for numerical kernel

ans =

’0.24999938925534 - 0.25000118965734*x - 0.25000215206104*x^5’ ’0.74999762022995

- 0.500002204088944*x^4’

The numerical solution can be verified using the linear transformation func-
tion L.

>> p = Z{1}; q = Z{2}; % extract p and q

>> h = L(p,q,f,g); % evaluate h = L(p,q) with parameter f and g

>> PolynomialClear(h,1e-5) % clear numerical tiny coefficients below 1e-5

ans =

1.99999473025102 - 2.9999948313716*x + 1.00000604534541*x^3

The output lcond and res show the condition number for the linear equation is
healthy at 52.1 and the residual is below the error tolerance at about 5.27×10−6.

The user can study the linear equation further by investigating the repre-
sentation matrix of the linear equation by calling LinearTransformMatrix in
NAClab using the above defined input items

>> A = LinearTransformMatrix(L,domain,parameter); % representation matrix of L
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obtaining the 13 × 11 matrix with respect to natural bases for the domain and
codomain

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

5.99999 0 0 0 0 0 −2.0 0 0 0 0
−9.0 5.99999 0 0 0 0 5.0 −2.0 0 0 0

0 −9.0 5.99999 0 0 0 −3.0 5.0 −2.0 0 0
3.0 0 −9.0 5.99999 0 0 −1.0 −3.0 5.0 −2.0 0

−4.0 3.0 0 −9.0 5.99999 0 1.0 −1.0 −3.0 5.0 −2.0
6.0 −4.0 3.0 0 −9.0 5.99999 2.0 1.0 −1.0 −3.0 5.0

0 6.0 −4.0 3.0 0 −9.0 −3.00002 2.0 1.0 −1.0 −3.0
−2.0 0 6.0 −4.0 3.0 0 0 −3.00002 2.0 1.0 −1.0

0 −2.0 0 6.0 −4.0 3.0 1.0 0 −3.00002 2.0 1.0
0 0 −2.0 0 6.0 −4.0 0 1.0 0 −3.00002 2.0
0 0 0 −2.0 0 6.0 0 0 1.0 0 −3.00002
0 0 0 0 −2.0 0 0 0 0 1.0 0
0 0 0 0 0 −2.0 0 0 0 0 1.0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This is the matrix representation of the linear system the user would have to
construct without using the interface LinearSolve. ��

In fact, the module LinearTransformMatrix is the most crucial component
of the interface LinearSolve that automates the process of solving linear systems
and frees users from the tedious representation process.

Notice that there is a profound difference in LinearSolve compared to cur-
rently standard linear system solving implementations: The representing matrix
shown above is considered numerically rank-deficient by virtue of a singular
value 0.000003318035559 that is below the error tolerance. A number of magni-
tude below error tolerance can be considered a zero.

Standard linear system solvers treat the matrix as full-ranked but the condi-
tion number 6.6× 106 suggests a questionable solution due to an error tolerance
10−4. Numerical kernel is not returned in standard implementations.

3 Interface for Solving Nonlinear System of Equations

Similar to linear cases, a general system of nonlinear equations in scientific com-
puting is usually in the form of

f(x1, . . . ,xn) = (0, . . . , 0)

where f : X1 × · · · × Xn −→ Y1 × · · · × Ym is a differentiable mapping between
Cartesian products of vector spaces where f may be square (i.e. m = n) or
overdetermined (m > n). The most commonly used method for solving such a
nonlinear system is Newton’s iteration or, in overdetermined case, the Gauss-
Newton iteration. For beginners and those who needs to solve such a nonlinear
system only once or twice, the most daunting and time consuming part of com-
putation is to transform the system into its multivariate function form (1) and
to construct the corresponding Jacobian matrix. Our interface GaussNewton in
NAClab is an attempt to simplify the representation into a few WYSIWYG
steps. We shall use the following example to illustrate the process.

Example 2. A defective eigenvalue λ∗ of a matrix A ∈ Cn×n can be calculated
accurately by solving the equation

g(λ, X) = (O,O)
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where, knowing the multiplicity support is m × k, the holomorphic mapping g
is given as

g : C × Cn×k −→ Cn×k × Cm×k

(λ,X) �−→ (
AX − λX − X S, CH X − T

)
.

with constant parameters A, S, C and T . Detailed theoretical and computational
issues on such equations can be found in [4]. For the purpose of illustration, we
use the following parameters:

n = 9, m = 3, k = 2,

A =

⎡

⎢
⎢
⎢
⎣

3 3 3 3 −2 2 1 −1 −1
1 4 4 3 0 2 0 −1 0
0 0 2 0 −2 0 0 0 −1

−2 −3 −4 −2 6 −2 −2 1 3
0 0 0 0 5 0 0 0 3
2 4 4 5 −3 5 3 −3 −1
1 0 1 1 −2 0 3 0 −1
1 6 7 7 2 6 1 −4 2
0 0 0 0 −6 0 0 0 −4

⎤

⎥
⎥
⎥
⎦

,

S =

⎡

⎢
⎣

0 1

. . .
. . .

. . . 1
0

⎤

⎥
⎦, T =

⎡

⎣

1 0 · · · 0
0 0 · · · 0

.

.

.

.

.

.
. . .

.

.

.
0 0 · · · 0

⎤

⎦,

and C is a 9 × 3 random matrix. The exact eigenvalues is λ∗ = 2. Using a
standard numerical eigenvalue solver, one can only obtain a few accurate digits
of the eigenvalue, say λ0 = 1.9999 due to the defectiveness of the eigenvalue.

On top of the time-consuming task of transforming the system of equa-
tions g(λ,X) = (O,O) into multivariate function form, the main difficulties
for a one-time user include formulating the Jacobian matrix. As a key aspect of
our interface, it is much more convenient to consider the Jacobian of the map-
ping g at any (λ0,X0) as a linear transformation that is also known as Fréchet
derivative

J(λ0,X0) : C × Cn×k −→ Cn×k × Cm×k

(λ,X) �−→ (−λX0 + (A − λ0I)X − X S, CH X
)
.

with the same domain/codomain of the mapping g and additional parameters
λ0, X0. The main innovation of our interface development is to enable users to
enter both the mapping g and the Jacobian J(λ0,X0) into Matlab as either
function m-files or in-line anonymous functions exactly as they are:

>> g = @(lambda, X, A, S, C, T) ... % Matlab anonymous function for the mapping g

{A*X - lambda*X - X*S, C’*X - T}; % g : (lambda,X) |--> (A*X-lambda*X-X*S, C’*X-T)

>> J = @(lambda, X, lambda0, X0, A, S, C, T) ... % Matlab anonymous function for Jacobian

{-lambda*X0 + A*X - lambda0*X - X*S, C’*X};

The syntax rules stipulate that the input items start with the common vari-
ables lambda, X followed by the common parameters A, S, C, T, and the addi-
tional parameters lambda0, X0 for J are in between. The transformation of the
system into the multivariate function form (1) is not needed either by the user
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or in the internal implementation since what is required is the evaluation of the
mapping. The construction of the Jacobian matrix is carried out internally by
the interface LinearSolve described in the previous section.

After using LinearSolve to solve the overdetermined linear system of equa-
tions

g(λ0,X) = (O,O) for X ∈ Cn×k

for its least squares solution X0, we can apply the Gauss-Newton iteration from
the initial iterate (λ0,X0) and solve the nonlinear equation g(λ,X) = (O,O)
by the NAClab interface GaussNewton with a few intuitive statements:

>> S = [0 1; 0 0]; T = [1 0; 0 0; 0 0]; C = rand(9,3); % enter parameters S, T, C

>> domain = {1, ones(9,2)} % domain of (lambda,X) for mappings g and J

>> parameters = {A, S, C, T}; % common parameters for both g and J

>> z0 = {1.9999,X0} % initial iterate

>> [z,res,fcond] = ... % call GaussNewton with input items

GaussNewton({g,domain,parameters},J,z0,2,5e-10); % and display the 1st component

Step 1: residual = 2.89e-03

1.989243561668298

Step 2: residual = 6.89e-04

2.000311883756314

Step 3: residual = 6.13e-08

2.000000057498796

Step 4: residual = 4.94e-15

1.999999999999999

...

The result includes an accurate approximation of the eigenvalue λ∗ = 2.
As shown in the example, the users do not need to transform the system into

multivariate form, nor do they need to construct the representation matrix of the
Jacobian. Instead, the system is entered into Matlab directly as it is defined and
the Jacobian is conveniently entered as a linear transformation in WYSIWYG
style.

4 Underlying Theory and Technical Contribution

The underlying theory of the interface is quite simple in basic linear algebra.
Let V and W be general vector spaces, possibly Cartesian products of vector
spaces over a number field, say C. Vectors in V and W can be represented as
column vectors in Cn and Cm respectively via isomorphisms that can be denoted
by φ : V → Cn and ψ : W → Cm respectively. A linear transformation
L : V → W can thus be represented as a matrix T in Cm×n that makes the
following diagram commute:

V L−−−−→ W
φ

⏐
⏐
�

�
⏐
⏐ψ−1

Cn T−−−−→ Cm
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Namely, we have the identity

L(v) ≡ ψ−1
(
T φ(v)

)
.

Let {v1, . . . vn} and {w1, . . . wm} be some kind of standard bases for V and
W respectively. Then the representation matrix can be constructed column-by-
column according to

T =
[
ψ(L(v1)), . . . , ψ(L(vn))

]

where the j-th column is ψ(L(vj)) ∈ Cm for j = 1, 2, . . . , n.
At the current stage of development, we assume the domain V and the

codomain W are Cartesian products of matrix spaces and polynomial spaces.
A standard basis {v1, . . . , vn} for the domain V can be extracted automatically
from a typical vector as input item for the domain, so can a standard basis
{w1, . . . , wm} for the codomain W. The aforementioned isomorphisms φ and ψ
can be implemented in a straightforward process due to the simplicity of the
standard bases for the spaces of matrices and polynomials.

The theoretical foundation for the numerical solution of rank-deficient linear
systems of equations is related to the subject of numerical rank-revealing [1,2]
and beyond the scope of this abstract.

For the nonlinear system of equations f(x1, . . . ,xn) = (0, . . . , 0) where
f : X1 × · · · × Xn → Y1 × · · · × Ym is a differentiable mapping between
Cartesian products of general vector spaces, the Gauss-Newton iteration

(x(k+1)
1 , . . . ,x(k+1)

n ) = (x(k)
1 , . . . ,x(k)

n ) − J(x(k)
1 , . . . ,x(k)

n )† f(x(k)
1 , . . . ,x(k)

n )
k = 0, 1, . . .

where

J(x(k)
1 , . . . ,x(k)

n ) : X1 × · · · × Xn −→ Y1 × · · · × Ym

is the Jacobian (linear transformation) of f at (x(k)
1 , . . . ,x(k)

n ) and (·)† denote the
pseudo-inverse. At every step of the Gauss-Newton iteration, the linear system
of equations

J(x(k)
1 , . . . ,x(k)

n ) (Δx1, . . . ,Δxn) = − f(x(k)
1 , . . . ,x(k)

n ) (4)
for (Δx1, . . . ,Δxn) ∈ X1 × · · · × Xn

is to be solved for its least squares solution so that

x(k+1)
j = x(k)

j + Δxj for j = 1, 2, . . . , n.

As a result, an interface for solving the system f(x1, . . . ,xn) = (0, . . . , 0) of
general nonlinear systems of equations can be built on top of the interface for
solving general linear systems so that the system (4) can be solved at every
step of the Gauss-Newton iteration. The key is to treat the Jacobian J at
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every point (x(k)
1 , . . . ,x(k)

n ) as a linear transformation with the same pair of
domain/codomain as the mapping f and can be implemented as Matlab function
in WYSIWYG style. Most importantly, the Jacobian as a linear transformation
can be derived from elementary differentiation rules. In contrast, the Jacobian
as a matrix is tedious to construct.

The interfaces LinearSolve and GaussNewton in NAClab are particularly
useful for research in numerical algebraic computation and classroom teaching,
in which we often need to experiment with various formulations of computa-
tional models and each system of equations needs to be solved mostly only
once or twice. In such settings, the efficiency and complexity of the underlying
algorithm are secondary since the sizes of testing problems are usually small.
Substantial portion of time and effort are spent on setting up the systems into
a format acceptable to the existing software, particularly in representing the
system into matrix-vector form or multivariate function form. For students and
beginners, such time-consuming and error-prone processes are daunting and may
even be intimidating. The equation-solving interfaces make it possible for our
graduate students to conduct computing projects involving sophisticated alge-
braic equations.
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