James H. Davenport - Manuel Kauers
George Labahn - Josef Urban (Eds.)

Mathematical
Software - ICMS 2018

6th International Conference
South Bend, IN, USA, July 24-27, 2018
Proceedings

LNCS 10931

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology Madras, Chennai, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

10931

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

James H. Davenport - Manuel Kauers
George Labahn - Josef Urban (Eds.)

Mathematical
Software — ICMS 2018

6th International Conference
South Bend, IN, USA, July 24-27, 2018
Proceedings

@ Springer

Editors

James H. Davenport George Labahn
University of Bath University of Waterloo
Bath Waterloo, ON

UK Canada

Manuel Kauers Josef Urban

Johannes Kepler University Czech Technical University in Prague
Linz Prague 6

Austria Czech Republic

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-319-96417-1 ISBN 978-3-319-96418-8 (eBook)

https://doi.org/10.1007/978-3-319-96418-8
Library of Congress Control Number: 2018948224
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-3982-7545

Preface

These are the proceedings of the 6th International Congress on Mathematical Software,
which was held during July 24-27, 2018 at the Department of Applied and Compu-
tational Mathematics and Statistics at the University of Notre Dame.

The ICMS community believes that the appearance of mathematical software is one
of the most important current developments in mathematics, and this phenomenon
should be studied as a coherent whole. We hope this conference can serve as the main
forum for mathematicians, scientists, and programmers who are interested in devel-
opment of mathematical software.

The program of the 2018 meeting consisted of 20 topical sessions, each of which
provided an overview of the challenges, achievements, and progress in a subfield of
mathematical software research, development, and use. The topical sessions made up
the core of the program, consisting of more than 150 contributed talks. Session con-
tributors were given the option to submit their work for publication in these pro-
ceedings, and 59 papers were selected through a peer reviewing process.

The conference also featured three invited talks. Folkmar Bornemann spoke on
“Short of Proof: How Many Digits Are Nonetheless Correct?”; Thomas C. Hales spoke
on “Formal Abstracts in Mathematics”; and William Stein gave a talk about “CoCalc:
Making Open Source Mathematical Software Collaborative and Easily Available on
the Web.” Short abstracts of these talks also appear in these proceedings. We thank the
invited speakers for accepting our invitations to speak at ICMS 2018. We also thank all
the contributors, session organizers, Program Committee members, as well the local
arrangements team and the members of the advisory board for helping to make this
conference a success. Finally, we thank our sponsors, listed on the following pages, for
the financial support of the event.

June 2018 James H. Davenport
Manuel Kauers

George Labahn

Josef Urban

Program Committee

Erika Abraham

Dan Bates

Dani Brake

Bruno Buchberger
Jin-San Cheng
James H. Davenport
Yihe Dong

Matthew England
Jonathan Hauenstein
Patrick Ion

Mikolas Janota
Tudor Jebelean
Christopher Jefferson
Michael Joswig
Delaram Kahrobaei
Masataka Kaneko
Manuel Kauers
Michael Kohlhase
Christoph Koutschan

Temur Kutsia
George Labahn
Robert Lewis
Alexander Maletzky
Stephen Melczer

Chengi Mou
Yasuyuki Nakamura
Markus Pfeiffer
Marco Pollanen
Florian Rabe

Yue Ren

Andrew Reynolds
Vikram Sharma
Vladimir Shpilrain
Wolfram Sperber
Nicolas Thiery

Organization

RWTH Aachen University, Germany

Colorado State University, USA

University of Wisconsin Eau Claire, USA

Johannes Kepler University Linz, Austria

Academia Sinica, Taiwan

University of Bath, UK

Wolfram Research, USA

Coventry University, UK

University of Notre Dame, USA

Mathematical Reviews/AMS

University of Lisbon, Portugal

RISC-Linz, Austria

University of St. Andrews, UK

TU Berlin, Germany

City University of New York, USA

Toho University, Japan

Johannes Kepler University, Austria

FAU Erlangen-Niirnberg, Germany

Johann Radon Institute for Computational and Applied
Mathematics, Austria

Johannes Kepler University Linz, Austria

University of Waterloo, Canada

Vrije Universiteit Amsterdam, The Netherlands

Johannes Kepler University Linz, Austria

University of Waterloo, Canada and ENS Lyon,
University of Lyon, Inria, CNRS, UCBL, France

Beihang University, China and LIP6-UPMC, France

Nagoya University, Japan

University of St. Andrews, UK

Trent University, Canada

FAU Erlangen-Niirnberg, Germany and LRI Paris,
France

MPI MIS Leipzig, Germany

University of Iowa, USA

IMSc, Tamil Nadu, India

City University of New York, USA

FIZ Karlsruhe, Germany

Universite Paris Sud, Paris, France

VI Organization

Josef Urban
Dongming Wang
Wolfgang Windsteiger
Chee Yap

Czech Technical University in Prague, Czech Republic
CNRS, Paris, and Beijhang University, China
Johannes Kepler University Linz, Austria

New York University, USA

Abstracts of Invited Talks

Short of Proof: How Many Digits are
Nonetheless Correct?

Folkmar Bornemann

Technische Universitdt Miinchen
bornemann@tum.de

Ever since my participation in Nick Trefethen’s “SIAM 100-Digit Challenge” I have
been obsessed by asking and (trying to) answering that question. Though most text-
books on numerical analysis address sources and propagation of errors, they shy away
from providing tools to answer my question (short of proof, that is, when tools such as
interval arithmetic and verification are not an option). Most numerical software leaves
it to the discretion of the user to draw the line between the meaningful and the
contingent in the output. What kind of habits developed by experienced users to stay on
the safe side can be used to increase the accountability of numerical software? The
question becomes pertinent when writing software for the elaborate numerical evalu-
ation of a new class of special functions (such as higher-order gap probabilities in
random matrix theory) where users implicitly expect all but the last digit given to be
correct. And the question becomes a necessity when a community of users asks for
tables of numbers instead of the software itself. I will report on the tools that I use in
my software to put me at rest when providing such tables.

Formal Abstracts in Mathematics

Tom Hales

University of Pittsburg
hales@pitt.edu

A formal abstract is a statement of a mathematical theorem (and its accompanying
definitions) that is represented in both a computer and human readable way. The
computer representation of the theorem is required to be fully grounded in the foun-
dations of mathematics, so that the theorem statement can be manipulated according to
the rules of logic and mathematics. This talk will discuss an initiative to express large
bodies of published mathematics as formal abstracts.

CoCalc: Making Open Source Mathematical
Software Collaborative and Easily Available
on the Web

William Stein

University of Washington
wstein@uw.edu

In 2013, I created https://CoCalc.com (then called “SageMathCloud”), as an easy way
for students and instructors to streamline their use of open source mathematics software
such as R, SageMath, Octave, Jupyter notebooks, and LaTeX. Everything in CoCalc
now fully supports realtime synchronized editing, and there is a huge preinstalled
software stack. In this talk, I will explain how you can ensure software you write is
available in CoCalc and use CoCalc in teaching courses. I will also describe the current
architecture of CoCalc, which has undergone many rewrites due to increased usage,
and the introduction of major open source technologies, including Kubernetes and
React.

https://CoCalc.com

Contents

Inferring Safe Maude Programs with ATAME. 1
Maria Alpuente, Demis Ballis, and Julia Sapiiia

Finding a Middle Ground for Computer-Aided Cryptography............ 11
Evan Austin, Scott Batson, Peter Curry, and Bryan Williams

Quadratic Time Algorithm for Inversion of Binary

Permutation Polynomials 19
Lucas Barthelemy, Delaram Kahrobaei, Guénaél Renault,
and Zoran Sunié

Paramotopy: Parameter Homotopies in Parallel 28
Dan Bates, Danielle Brake, and Matt Niemerg

DiscreteZOO: Towards a Fingerprint Database of Discrete Objects 36
Katja Berci¢ and Janos Vidali

A Framework for Unconditionally Secure Public-Key Encryption
(with Possible Decryption Errors) 45
Mariya Bessonov, Dima Grigoriev, and Vladimir Shpilrain

Classifying Cubic Surfaces over Finite Fields Using Orbiter. 55
Anton Betten

How Fast Can We Compute Orbits of Groups?. 62
Anton Betten

A Rainbow Clique Search Algorithm for BLT-Sets. 71
Abdullah Al-Azemi, Anton Betten, and Sajeeb Roy Chowdhury

Numerical Software to Compute Newton Polytopes. 80
Taylor Brysiewicz

On the Interference Problem for Ellipsoids: Experiments and Applications . . . 89
Jorge Caravantes and Laureano Gonzalez-Vega

Efficient Computation of Squarefree Separator Polynomials 98
Michela Ceria, Teo Mora, and Andrea Visconti

libtropicon: A Scalable Library for Computing Intersection
Points of Generic Tropical Hyper-surfaces 105
Tianran Chen

XVI Contents

Plotting Planar Implicit Curves and Its Applications 113
Jin-San Cheng, Junyi Wen, and Wenjian Zhang

Software Products, Software Versions, Archiving of Software,
and sSWMATH. e 123
Hagen Chrapary and Wolfgang Dalitz

Axl, a Geometric Modeler for Semi-algebraic Shapes 128
Emmanouil Christoforou, Angelos Mantzaflaris, Bernard Mourrain,
and Julien Wintz

Efficient and Secure Delegation to a Single Malicious Server:

Exponentiation over Non-abelian Groups 137
Giovanni Di Crescenzo, Delaram Kahrobaei, Matluba Khodjaeva,
and Vladimir Shpilrain

NLP-Based Detection of Mathematics Subject Classification. 147
Yihe Dong

NLP and Large-Scale Information Retrieval on Mathematical Texts. 156
Yihe Dong

Machine Learning for Mathematical Software. 165

Matthew England

A New Style of Mathematical Proof 175
William M. Farmer

Neural Ideals in SageMath 182
Ethan Petersen, Nora Youngs, Ryan Kruse, Dane Miyata,
Rebecca Garcia, and Luis David Garcia Puente

Universal Grobner Basis for Parametric Polynomial Ideals 191
Amir Hashemi, Mahdi Dehghani Darmian, and Marzieh Barkhordar

Certifying Reality of Projections. 200
Jonathan D. Hauenstein, Avinash Kulkarni, Emre C. Sertoz,
and Samantha N. Sherman

3BA: A Border Bases Solver with a SAT Extension 209
Jan Horacek and Martin Kreuzer

The Hidden Subgroup Problem and Post-quantum
Group-Based Cryptography 218
Kelsey Horan and Delaram Kahrobaei

Questions on Orbital Graphs. 227
Paula Hdhndel and Rebecca Waldecker

Contents XVII

Implementation of a Near-Optimal Complex Root Clustering Algorithm 235
Rémi Imbach, Victor Y. Pan, and Chee Yap

Towards a Unified Ordering for Superposition-Based
Automated Reasoning 245
Jan Jakubiv and Cezary Kaliszyk

Numerical Integration in Arbitrary-Precision Ball Arithmetic 255
Fredrik Johansson

New Counts for the Number of Triangulations of Cyclic Polytopes. 264
Michael Joswig and Lars Kastner

Estimating Tropical Principal Components Using Metropolis
Hasting Algorithm. 272
Qiwen Kang and Ruriko Yoshida

Mathematics Classroom Collaborator (MC2): Technology for

Democratizing the Classroom 280
Sohee Kang, Marco Pollanen, Sotirios Damouras,
and Bruce Cater

Software Citation in Theory and Practice 289
Daniel S. Katz and Neil P. Chue Hong

Identification of Errors in Mathematical Symbolism and Notation:

Implications for Software Design 297
Seyeon Kim, Marco Pollanen, Michael G. Reynolds,
and Wesley S. Burr

Image Analysis: Identification of Objects via Polynomial Systems. 305
Robert H. Lewis

Resultants, Implicit Parameterizations, and Intersections of Surfaces 310
Robert H. Lewis

Fitting a Sphere via Grobner Basis 319
Robert Lewis, Béla Palancz, and Joseph Awange

Homotopy Continuation in Macaulay2. 328
Anton Leykin

Solving Polynomial Systems Using Numeric Grobner Bases. 335
Daniel Lichtblau

The Andrews-Curtis Conjecture, Term Rewriting and First-Order Proofs 343
A. Lisitsa

XVIIL Contents

Francy - An Interactive Discrete Mathematics Framework for GAP. 352
Manuel Machado Martins and Markus Pfeiffer

Sparse Multivariate Hensel Lifting: A High-Performance Design
and Implementation. 359
Michael Monagan and Baris Tuncer

TheoryGuru: A Mathematica Package to Apply Quantifier Elimination
Technology to Economics 369
Casey B. Mulligan, James H. Davenport, and Matthew England

Collaborative Use of Mathematical Content Generated
by CindyJS on Tablets. 379
Takeo Noda and Masataka Kaneko

A Novel Dynamic Mathematics System Based on the Internet 389
Yongsheng Rao, Hao Guan, Ruxian Chen, Yu Zuo, and Ying Wang

polyTop: Software for Computing Topology of Smooth Real Surfaces. 397
Danielle A. Brake, Jonathan D. Hauenstein, and Margaret H. Regan

Solving the Likelihood Equations to Compute Euler
Obstruction Functions 405
Jose Israel Rodriguez

INTEGERSEQUENCES: A Package for Computing with k-Regular Sequences 414
Eric Rowland

A User-Friendly Hybrid Sparse Matrix Class in C++. 422
Conrad Sanderson and Ryan Curtin

Intelligent Editor for Authoring Educational Materials in Mathematics

e-Learning SyStemSot t e 431
Shizuka Shirai, Tetsuo Fukui, Kentaro Yoshitomi, Mitsuru Kawazoe,
Takahiro Nakahara, Yasuyuki Nakamura, Katsuya Kato,
and Tetsuya Taniguchi

Bianca Sosnovski

Mathematical Research Data, Software, Models, and the Publication-Based
APProach. 448
Wolfram Sperber

HomotopyContinuation.jl: A Package for Homotopy Continuation in Julia. .. 458
Paul Breiding and Sascha Timme

Polynomial Constraints and Unsat Cores in TARSKI 466
Fernando Vale-Enriquez and Christopher W. Brown

Contents XIX

Private-Key Fully Homomorphic Encryption for Private Classification. 475
Alexander Wood, Vladimir Shpilrain, Kayvan Najarian, Ali Mostashari,
and Delaram Kahrobaei

On p-Symmetric Polynomials and D-Plus 482
Jing Yang and Chee K. Yap

Generation of Abundant Multi-choice or STACK Type Questions
Using CAS for Random Assignments 492
Kentaro Yoshitomi

Intuitive Interface for Solving Linear and Nonlinear System of Equations ... 498
Zhonggang Zeng

Author Index e 507

®

Check for
updates

Inferring Safe Maude Programs
with ATAME

Marfa Alpuente!, Demis Ballis?®™®) | and Julia Sapifia!

1 DSIC-ELP, Universitat Politécnica de Valéncia,
Camino de Vera s/n, 46022 Valencia, Spain
{alpuente, jsapina}@dsic.upv.es
2 DMIF, University of Udine, Via delle Scienze, 206, 33100 Udine, Italy
demis.ballis@uniud.it

Abstract. In this paper, we present ATAME, an assertion-based pro-
gram specialization tool for the multi-paradigm language Maude. The
program specializer ATAME takes as input a set A of system assertions
that model the expected program behavior plus a Maude program R to
be specialized that might violate some of the assertions in .A. The out-
come of the tool is a safe program refinement R’ of R in which every
computation is a good run, i.e., it satisfies the assertions in A. The spe-
cialization technique encoded in ATAME is fully automatic and ensures
that no good run of R is removed from R’, while the number of bad runs
is reduced to zero. We demonstrate the tool capabilities by specializing
an overly general nondeterministic dam controller to fulfill a safety policy
given by a set of system assertions.

Keywords: Program specialization - Program adaptability
Assertions - Maude - Rewriting logic

1 Introduction

Adaptability refers to the ability of a piece of software to satisfy requirements
dedicated to the specific context in which it is used. In concurrent object-oriented
software, adaptability is very fragile as the slightest attempt to modify the foun-
dation of any program component may damage the whole system, ruining the
effectiveness of standard reusing mechanisms.

Maude is a high-level programming language and system that supports func-
tional, concurrent, logic, and object-oriented computations and provides equa-
tional reasoning modulo algebraic axioms such as associativity, commutativity,
and identity. In this paper, we propose an adaptation technique for Maude pro-
grams that integrates system assertions and program specialization.

This work has been partially supported by the EU (FEDER) and the Spanish
MINECO under grants TIN2015-69175-C4-1-R, and by Generalitat Valenciana ref.
PROMETEOII/2015/013.

© Springer International Publishing AG, part of Springer Nature 2018

J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 1-10, 2018.
https://doi.org/10.1007/978-3-319-96418-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96418-8_1&domain=pdf

2 M. Alpuente et al.

In the literature, program specialization is often used to mean partial evalu-
ation [5], which takes a program of n inputs and produces a simpler and usually
faster version where some of the inputs are fixed to particular values. In this
paper, we consider a somehow dual specialization transformation where we take
a program of n outputs, or more generally, a program that explores n execution
traces, and then we produce a more specific version of the original program where
we disregard some of the output traces according to the assertional constraints
being considered.

Our specialization technique works with Maude programs that are equipped
with system assertions, with each assertion consisting of a pair IT | ¢ where
IT (the state template) is a term and ¢ (the state invariant) is a quantifier-
free first-order formula with equality that defines a safety property ¢ which
must be enforced on all the system states that match (modulo equations and
axioms) the state template IT. In our technique, assertions take an active role
since they are directly embedded into the specialized program to safely guide
its execution. Given a set of system assertions A and an overly general Maude
program R = (X, E, R) (i.e., a program that deploys all desired traces but may
disprove some of the assertions), our transformation coerces R into a specialized
program R’ that enforces A. This means that: (i) every execution of R’ is an
execution of R (i.e., no spurious computation states are produced); and (ii) every
assertion in A is satisfied by all computation states in R’. The program R’ is
obtained from R by inserting suitable conditions (abetted by the assertions of
A) in the rules of R and defining them by means of new equations that are
added to F until a suitable adaptation of the original program is automatically
inferred which satisfies all the assertions.

The advantage of this technique is that more refined versions of a program
can be incrementally built without any programming effort by simply adding new
logical constraints into the given assertion set. Specifically, this makes it possible
to adapt existing Maude programs to predefined safety policies and allows the
inexperienced user to largely forget about Maude syntax and semantics.

This paper is organized as follows. After some technical preliminaries in
Sect. 2, we introduce a running example that we use to illustrate the kind of
specialization that we aim to produce automatically. Section 3 shows how safety
policies can actually be defined as system assertions in our rewriting setting, and
then applied for program specialization. Section 4 shows how software adapta-
tion can be performed efficiently in the ATAME system, which implements our
specialization methodology. Section 5 concludes the paper.

2 Modeling Software Systems in Maude

Nondeterministic as well as concurrent software systems can be formalized
through Maude programs. A Maude program essentially consists of two com-
ponents, E and R, where F is a canonical (membership) equational theory that
models system states as terms of an algebraic data type, and R is a set of rewrite
rules that define transitions between states. Algebraic structures often involve

Inferring Safe Maude Programs with ATAME 3

axioms like associativity (assoc), commutativity (comm), and/or identity (also
known as unity) (id) of function symbols, which cannot be handled by ordinary
term rewriting but instead are handled implicitly by working with congruence
classes of terms. More precisely, the membership equational theory F is decom-
posed into a disjoint union E = AW Az, where the set A consists of (conditional)
equations and membership axioms (i.e., axioms that assert the type or sort of
some terms) that are implicitly oriented from left to right as rewrite rules (and
operationally used as simplification rules), and Az is a set of algebraic axioms
that are implicitly expressed as function attributes and are only used for Az-
matching.

The system evolves by rewriting states using equational rewriting, i.e., rewrit-
ing with the rewrite rules in R modulo the equations and axioms in F [7]. For-
mally, system computations (also called execution traces) correspond to rewrite
sequences tyg —5pg t1 —>g ..., where t — g t’ denotes a transition (modulo F)
from state t to ¢’ via the rewrite rule of R that is uniquely labeled with label
r. The transition space of all computations in R from the initial state ¢y can
be represented as a computation tree whose branches specify all of the system
computations in R that originate from ¢g.

The following Maude program will be used as a running example throughout
the paper.

Ezample 1. Consider a Maude program Rppy that models a simplified, non-
deterministic dam controlling system to monitor and manage the water volume
of a given basin'. In the program code, variable names are fully capitalized.
We assume that the dam is provided with three spillways called s1, s2, and
s3 each of which has 4 possible aperture widths of increasing discharge capacity
close, openl, open2, open3. Each spillway is formally specified by a term [S,0],
where S € {s1,s2,s3} and 0 € {close, openl, open2, open3}. A global spillway
configuration is a multiset [s1,01] [s2,02] [s3,03] that groups together the
three spillways by means of the usual associative and commutative infix, union
operator __ (written in mixfix notation with empty syntax) whose identity is the
constant empty. System states are defined by terms of the form { SC | V | T
| AC } where SC is a global spillway configuration, V is a rational number that
indicates the basin water volume (in m?3), T is a natural number that timestamps
the current configuration, and the Boolean flag AC, called apertureCommand,
enables changes of the spillway aperture widths only when its value is true.
Figure 1 shows the equational specification that formalizes basin water inflow
and outflow. To keep the exposition simple, we assume that the basin water
inflow is constant, while the basin outflow depends on the width of the spillway
apertures and can be computed as the sum of the outflows of each spillway in
the spillway configuration. Note that inflow and outflow values are measured in

! Maude’s syntax is hopefully self-explanatory. Due to space limitations and for the
sake of clarity, we only highlight those details of the system that are relevant to
this work. A complete Maude specification of the dam controller is available at the
ATAME website at http://safe-tools.dsic.upv.es/atame. For more information about
the Maude language, see [4].

http://safe-tools.dsic.upv.es/atame

4 M. Alpuente et al.

eq inflow = 3000 . --- Basin water inflow

eq aperture(close) = 0 . --- Outflow for a closed spillway

eq aperture(openl) = 200 . --- Outflow for aperture width openl
eq aperture(open2) = 400 . --- Outflow for aperture width open2
eq aperture(open3) = 1200 . --- Outflow for aperture width open3

--- Basin water outflow for a given spillway configuration
eq outflow(empty) = O .
eq outflow([S,0] SS) = aperture(0) + outflow(SS)

Fig. 1. Equational definition of basin inflow and outflow.

m3/min and are hard-coded into the dam controller. More realistic scenarios
could be easily defined by sophisticating the basin inflow and outflow functions.
The system dynamics is specified by the eight rewrite rules in Fig. 2, which
implement system state transitions. The openX-Y rewrite rules progressively
increment the aperture width of a given spillway (e.g., the rule open1-2 increases
the aperture of the spillway S from level open1 to level open2). Dually, closeX-Y
rewrite rules progressively decrement the aperture width of a spillway. The rule
nocmd specifies the empty command which basically states that no action is taken
on the spillway configuration by the dam controller at time instant T. The rule
is fired only when the AC flag is enabled, and its application disables the flag to
allow a new basin water volume to be computed in the next time instant. These
eight rules, called aperture command rules, implement instantaneous spillway
modifications that do not change the time instant or the basin water volume.
The temporal evolution of the basin water volume is specified by the condi-
tional rewrite rule volume that computes the volume V’ at time T + deltaT,
given the input volume V at time T. The parameter deltaT is measured in

rl [nocmd] : { SC | V| T | true } => { SC | V| T | false } .
rl [openC-1]

{ [S,close] 8S | V | T | true } => { [S,open1] SS | V | T | false } .
rl [open1-2]

{ [S,open1] SS | V| T | true } => { [S,open2] SS | V | T | false } .
rl [open2-3]

{ [S,open2] 8S | V| T | true } => { [S,open3] SS | V | T | false } .
rl [closel-C]

{ [S,open1] SS | V | T | true } => { [S,close] SS | V | T | false } .
rl [close2-1]

{ [S,open2] SS | V | T | true } => { [S,open1] SS | V | T | false } .
rl [close3-2]

{ [S,open3] 8S | V | T | true } => { [S,open2] SS | V | T | false } .
crl [volume] : { SC | V| T | false } => { SC | V> | (T + deltaT) | true }

if V> := (V + inflow * deltaT) - (outflow(SC) * deltaT)

Fig. 2. (Conditional) rewrite rules for the dam controlling system.

Inferring Safe Maude Programs with ATAME 5

minutes and can be set by the user. The volume computation changes the input
volume V by adding the water inflow and subtracting the corresponding water
outflow over the deltaT interval.

The use of the apertureCommand flag in the rule definitions guarantees a
fair interleaving between the applications of the rule volume and the remaining
aperture command rules. Specifically, this implies that a new basin water volume
is computed after each spillway aperture width modification.

Note that computations in Rpyy may reach potentially hazardous system
states (e.g., an extremely high water volume). This is because Rp does not
implement any spillway management policy that safely restricts the applications
of the aperture command rules.

3 Defining Safety Policies Through Assertions

A safety policy for a Maude program R is defined by means of a set 4 of system
assertions, each assertion being of the form IT | ¢, which R must satisfy. Intu-
itively, system assertions specify those computation states such that, for every
subterm of a state that matches the algebraic structure of the state template IT
with substitution (modulo the axioms) o, the constraints given by the instanti-
ated invariant po are satisfied. Besides the usual Boolean operators and Maude
predefined predicates, the state invariant ¢ may include user-defined predicates
as well as functions that can be specified via suitable equational definitions.

Ezample 2. Let us consider the user-defined function openSpillways(SC) that
returns the number of open spillways in the spillway configuration SC, whose
equational definition is

0 .

if (0 =/= close)

then (1 + openSpillways(SC))
else openSpillways(SC)

fi .

eq openSpillways (empty)
eq openSpillways([S,0] SC)

and the safety policy Apay of Fig.3 for the dam controller of Example 1 that
specifies some safety constraints to prevent basin critical situations.

More specifically, assertion al states that, in every system state, the basin
water volume must be less than 50 million m?3 to avoid dam bursts and poten-
tially disastrous floods. Assertion a2 specifies that, whenever the basin water
volume is greater than 40 million m3, all of the spillways must be open and the
aperture width of at least one spillway must be maximal (level open3). Asser-
tion a3 requires the closure of all the spillways when the basin water volume
is particularly low (10 million m?). Finally, assertion a4 specifies the spillway
handling for an intermediate water volume (10 million m3 <V < 40 million m?);
in this scenario we require that exactly two spillways be constantly open.

6 M. Alpuente et al.

(a1) {sC | VI T]| AC} | (V< 50000000)
(a2) { [s1,01 1 [s2,02] [S3,03]1 | V:Rat | T:TimeStamp | AC:Bool } |
(V:Rat > 40000000) implies (

(01 == open3 and 02 =/= close and 03 =/= close) or
(02 == open3 and 01 =/= close and 03 =/= close) or
(03 == open3 and 01 =/= close and 02 =/= close))

(@3) {sC | vV |T]| AC?} | (V< 10000000) implies
(openSpillways(SC) == 0)

(a4) {sC | v | T]| ACZX | ((V>= 10000000) and (V <= 40000000)) implies
(openSpillways(SC) == 2)

Fig. 3. Safety policy Apa for the dam controller Rpau.

4 Computing Safe Maude Programs with ATAME

Program specialization techniques make it possible to automatically transform
a program into a specialized version, according to an execution context. In our
approach, we use assertions to set the specialization scenario and guide a two-
phase program specialization technique that allows a Maude program R to be
refined into a program R’ w.r.t. a safety policy A as follows.

The first phase translates the safety policy A to be fulfilled into an executable
equational definition Eq(.A) that can be used to detect assertion violations within
system states. Roughly speaking, given a system state ¢, a violation of some
assertion in A is detected in ¢t if ¢ can be simplified into the special constant
fail by using the equational theory E of R extended with Fq(.A).

The second phase transforms the original rewrite rules of R into guarded,
conditional rewrite rules that can only be fired if no system assertion is violated.
Intuitively, this is achieved by transforming each rewrite rule r : (A = p if C) of
R into a refined version ' : (A = p if CAcheck(p)=/=fail) of r that contains
the extra constraint check(p)=/=fail that holds when (the instances of) the
right-hand side p cannot by simplified to fail by using the extended equational

theory E'U Eq(A). This ensures that any state transition ¢; LEqu(A) to, that
yields the system state t5 by means of the application of the rule 7/, is enabled
only if ¢y is a safe state, that is, a state that does not violate any assertion.

Computations in the resulting program R’ are both reproducible in R and
guaranteed to meet A. In other words, for each computation C in R’, (i) C is
also a computation in R, and (ii) there is no system state ¢ in C that violates
one or more system assertions of A.

The proposed specialization technique has been efficiently implemented in
a Maude tool called ATAME (Assertion-based Theory Amendment in MaudE)
that has been implemented in Maude itself by using Maude’s meta-level capabil-
ities. ATAME integrates a RESTful Web service that is written in Java, and an
intuitive Web user interface that is based on AJAX technology and is written in
HTML5 and Javascript. The implementation contains about 600 lines of Maude

Inferring Safe Maude Programs with ATAME 7

source code, 600 lines of C+-+ code, 750 lines of Java code, and 700 lines of
HTML5 and JavaScript code.

As an additional feature, ATAME provides the interconnection with the
ANIMA Maude stepper [1], which integrates program animation capabilities
into the ATAME system. Indeed, we can execute the computed specialization by
incrementally building and exploring the computation tree of R’ w.r.t. a given
input initial state. The tool ATAME is publicly available together with a number
of examples at http://safe-tools.dsic.upv.es/atame.

In order to demonstrate the tool capabilities, in the following we show the
specialization of the dam controller Rppy w.r.t. the safety policy Apay that can
be achieved by ATAME.

FIXED PROGRAM RESULT (INCLUDES PRELUDE IMPORTS)

Ceq fail AUXL:Spillways -ren = (fail).spillways if AUX1:Spillways =/= empty-ren . S

ceq {SC:Spillways | V:Rat | T:TimeStamp | AC:Bool}-ren = (fail).State
if not ori(V:Rat < 50000000) .

ceq {SC:Spillways | V:Rat | T:TimeStamp | AC:Bool}-ren = (fail).State
if not ori(V:Rat < 10060000 implies openSpillways-ren(SC:Spillways) == 0) .

ceq {SC:Spillways | V:Rat | T:TimeStamp | AC:Bool}-ren = (fail).State
if not ori(V:Rat <= 46000000 and V:Rat >= 10000000 implies openSpillways-ren(SC:Spillways) == 2) .

ceq {[S1:SpillwayId,01:Aperture]-ren [S2:SpillwayId,02:Aperture]-ren [S3:SpillwayId,03:Aperture]-ren -ren -ren | V:Rat | T:TimeSt:
if not ori(V:Rat > 40000000 implies
Ol:Aperture =/= close-ren and 02:Aperture =/= close-ren and O3:Aperture == open3-ren or
Ol:Aperture =/= close-ren and 03:Aperture =/= close-ren and 02:Aperture == open3-ren or
02:Aperture =/= close-ren and O3:Aperture =/= close-ren and Ol:Aperture == open3-ren) .

crl {sC:Spillways | V:Rat | T:TimeStamp | false} => {SC:Spillways | V':Rat | deltaT + T:TimeStamp | true}
if V':Rat := (ViRat + deltaT * inflow) - deltaT * outflow(SC:Spillways)
/\ check({SC:Spillways | V':Rat | deltal + T:TimeStamp | true}) =/= (fail).State [label volume] .

crl {SC:Spillways | V:Rat | T:TimeStamp | true} => {SC:Spillways | V:Rat | T:TimeStamp | false}
if check({SC:Spillways | V:Rat | T:TimeStamp | false}) =/= (fail).State [label nocmd] .

crl {SC:Spillways [S:SpillwayId,close] | V:Rat | T:TimeStamp | true} => {SC:Spillways [S:SpillwayId,openl] | V:Rat | T:TimeStamp
if check({SC:Spillways [S:SpillwayId,openl] | V:Rat | T:TimeStamp | false}) =/= (fail).State [label openC-1] .

crl {SC:Spillways [S:SpillwayId,openl] | V:Rat | T:TimeStamp | true} => {SC:Spillways [S:SpillwayId,close] | V:Rat | T:TimeStamp
if check({SC:Spillways [S:SpillwayId,close] | V:Rat | T:TimeStamp | false}) =/= (fail).State [label closel-C] .

crl {SC:Spillways [S:SpillwayId,openl] | V:Rat | T:TimeStamp | true} => {SC:Spillways [S:SpillwayId,open2] | V:Rat | T:TimeStamp
if check({SC:Spillways [S:SpillwayId,open2] | V:Rat | T:TimeStamp | false}) =/= (fail).State [label openl-2] .

crl {SC:Spillways [S:SpillwayId,open2] | V:Rat | T:TimeStamp | true} => {SC:Spillways [S:SpillwayId,openi] | V:Rat | T:TimeStamp
if check({SC:Spillways [S:SpillwayId,openi] | V:Rat | T:TimeStamp | false}) =/= (fail).State [label close2-1] .

crl {SC:Spillways [S:SpillwayId,open2] | V:Rat | T:TimeStamp | true} => {SC:Spillways [S:SpillwayId,open3] | V:Rat | T:TimeStamp
if check({SC:Spillways [S:SpillwayId,open3] | V:Rat | T:TimeStamp | false}) =/= (fail).State [label open2-3] .

crl {SC:Spillways [S:SpillwayId,open3] | V:Rat | T:TimeStamp | true} => {SC:Spillways [S:SpillwayId,open2] | V:Rat | T:TimeStamp

if check({SC:Spillways [S:SpillwayId,open2] | V:Rat | T:TimeStamp | false}) =/= (fail).State [label close3-2] .
endm

»
n AN

Fig. 4. A fragment of the safe specialization for Rpa computed by ATAME.

Ezample 3. By feeding the ATAME system with the Maude program for the
dam controller Rppy of Example 1 and the safety policy Apy of Example 2, a
program specialization Ry, for Rpay is automatically computed. Figure 4 shows
a fragment of such a specialization that includes Eq(Apay) (i.e., the equations for
detecting assertion violations) and the constrained, conditional versions of the

http://safe-tools.dsic.upv.es/atame

M. Alpuente et al.

8

“Widay 0§ yuewigely 991} uorpeindwod y G *Srq

{ona3 | @ {ona3 | @ {ona3 | 0 {ona3 | o
i@s@.\mmmq,?__mn?mimm:mnc.wiﬁm:mna;m:m,asﬁwmmq_::wgwi:cmn_u&&:__mna;m:m,amammm?_?:mnc.mi?:m%ﬁiﬁzmnn.i:m_s@swwmm.l:cmn_uhm&?__mnadiﬂmcmau;m:

aunton ;t@ Y aunton ;t@ = aunton ”Tu@ S aunton Tu@ vZg

{ostes | s {astes | s {astey | s {ostes | s
7 | @008.66v | [Tuado‘es] [guado‘zs] [guado‘ts]})|z | eeessesy | [Tuadoes] [tuado‘zs] [guado‘Ts]}||z | eeesse6y | [zuado‘es] [zuadozs] [guado‘rs]}||z | eeesse6y | [Tuado‘es] [zuado‘zs] [guado‘rs]}
T 1o 8 = Teeson o TS T rudo 1o & TS pusou 1> T TS
& &

|
{enu3 | 5
N,@gmrmaq_:E%,mi?_;%Jw:?m%i:

QuUNToA :TJD @ s

{as1e4 | 0 {astes | @ {ostes | o
7 | @eeeL66v | [zuado‘es] [tuado‘zs] [guado‘ts]} ||z | eeeesssy | [Tuado‘es] [zuado‘zs] [guado‘rs]} ||z | eeeesesy | [Tuado‘es] [tuadozs] [guadoTs]}

Z-tuado :TJ> nm Bg

5 TR § =

|
0000L66v | [Tusdo‘es] [tuado‘zs] [guado‘Ts]}

@ Ts

{ena | o
2|

Inferring Safe Maude Programs with ATAME 9

original rewrite rules. Note that all the operators in the equations of Fq(Apam)
are renamed by adding the textual suffix -ren. This guarantees that assertion
checking is orthogonal to system computations, that is, there is no interference
between the assertion checking mechanism and the applications of the rewrite
rules that make the system evolve only through safe states that meet Apyy. A
fragment of the computation tree that is deployed by the Maude stepper ANIMA
for the initial state s={[s1,open3] [s2,openl] [s3,openi] | 49970000 |
20 | true} in Rf,y is shown in Fig. 5. Note that all of the states in the consid-
ered tree fragment fulfill the system assertions formalized in Apyy.

In practice, the runtime cost of checking the assertions must be weighed
against the saving gained from embedding them into the code and thus omitting
the need for executing programs within a monitored runtime environment. The
manual inclusion of safety policies as a piece of code is generally problematic,
since such conditions may not be easily coded by non-specialists. Moreover, as
shown in [2], the monitored runtime verification of external constraints generally
incurs more cost than running the specialized program that is automatically
inferred by our approach. In the case of the running example of this paper,
as expected the specialized program Rp,y is slightly slower than the original
program Rpay. Nevertheless, running Rj,y is 68% faster than running Rpy within
a runtime environment that supports dynamic assertion-checking. As for the time
necessary for computing the program specializations, it is almost negligible (a
few milliseconds). For a detailed empirical evaluation, we refer to [2].

5 Concluding Remarks

The technique described in this paper presents similarities with automated pro-
gram correction and related problems such as code fixing and repair techniques.
The discussion of these similarities is outside the scope of this paper; a detailed
comparison can be found in [2]. Loosely related to this work is also the concept
of program specialization of terminating programs based on output constraints
(i.e., program post-conditions) [6]. This methodology translates the constraints
into a characterization function for the program’s input that is used to guide
a partial evaluation process. In contrast, we deal with non-terminating concur-
rent programs and the specialization that we achieve cannot be produced by
any (conventional or unconventional) partial evaluation techniques for Maude
[3]. To our knowledge, the assertion-based functionality for molding programs
supported by ATAME is beyond the capabilities of all existing Maude tools.

References

1. Alpuente, M., Ballis, D., Frechina, F., Sapina, J.: Exploring conditional rewriting
logic computations. J. Symbolic Comput. 69, 3-39 (2015)

2. Alpuente, M., Ballis, D., Sapifia, J.: Static correction of maude programs with
assertions. Technical report, Universitat Politécnica de Valencia (2018). http://hdl.
handle.net/10251,/100268

http://hdl.handle.net/10251/100268
http://hdl.handle.net/10251/100268

10 M. Alpuente et al.

3. Alpuente, M., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: Partial evaluation of
order-sorted equational programs modulo axioms. In: Hermenegildo, M.V., Lopez-
Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 3-20. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63139-4_1

4. Clavel, M., Duran, F., Eker, S., Escobar, S., Lincoln, P., Marti-Oliet, N., Meseguer,
J., Talcott, C.: Maude Manual (Version 2.7.1). Technical report, SRI International
(2016). http://maude.cs.uiuc.edu/maude2-manual/

5. Danvy, O., Gliick, R., Thiemann, P. (eds.): Proceedings of the International Semi-
nar on Partial Evaluation (Dagstuhl 1996). LNCS, vol. 1110. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61580-6

6. Khoo, S.C., Shi, K.: Program adaptation via output-constraint specialization.
Higher Order Symbolic Comput. 17(1), 93-128 (2004)

7. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73-155 (1992)

https://doi.org/10.1007/978-3-319-63139-4_1
http://maude.cs.uiuc.edu/maude2-manual/
https://doi.org/10.1007/3-540-61580-6

®

Check for
updates

Finding a Middle Ground
for Computer-Aided Cryptography

Evan Austin®, Scott Batson, Peter Curry, and Bryan Williams

SPAWAR Systems Center Atlantic,
P.O. Box 190022, North Charleston, SC 29419, USA
{evan.austin,scott.batson,peter.j.curry,bryan.l.williams1}@navy.mil

Abstract. Motivated by the ever-increasing difficulty of proofs of secu-
rity and correctness, cryptographers have drawn inspiration from the
more general software and hardware verification communities and inte-
grated formal methods tools and techniques into their workflows. Though
this practice of computer-aided cryptography is still comparatively
young, it has spawned a number of automated cryptographic analysis
tools. These tools can be categorized in one of two ways: tools focused
on theoretical, or “provable,” aspects of security; and tools focused on
verifying more practical implementation details. This paper discusses our
motivation for, and early work towards, finding an approachable middle
ground of the current cryptographic tool spectrum.

1 Introduction

The looming threat of a quantum computing breakthrough has shifted
researchers’ focus away from cryptographic schemes founded on simple alge-
braic properties towards those based on more complex abstractions. In addition
to not being as well studied as traditional cryptographic primitives, the under-
lying “hardness” assumptions of these new abstractions greatly challenge any
formal verification of their associated security and correctness properties. This
has exacerbated an already significant issue in that “[cryptographers] generate
more proofs than [they] carefully verify” [10] due to the commonly shared opinion
that “many proofs in cryptography have become essentially unverifiable” [3].
This problem is not unique to cryptography; complexity is the enemy of any
verification effort. Drawing inspiration from the more general software and hard-
ware verification communities, cryptographic researchers have begun employing
a variety of formal methods tools and techniques in their work, giving birth
to the comparatively new practice of computer-aided cryptography. The auto-
mated subset of cryptographic analysis tools, or AutoCrypto tools for short,
typically fall into two schools of thought. First, there are proof assistants like
EasyCrypt [1], which are specialized to reason about the theoretical security of
abstract cryptographic schemes in the game-based style of Shoup [12] and the
previously cited Bellare and Rogaway. The second mindset is more concerned

This is a U.S. government work and its text is not subject to copyright protection

in the United States; however, its text may be subject to foreign copyright protection 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 11-18, 2018.
https://doi.org/10.1007/978-3-319-96418-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96418-8_2&domain=pdf

12 E. Austin et al.

with establishing the practical security and functional correctness of specific
instantiations of a cryptographic scheme. The Cryptol language [9] perhaps best
exemplifies this approach.

Regardless of where on the spectrum AutoCrypto tools lie, there is what we
perceive to be a shared flaw among them in that their specification languages
are logically and, to a lesser degree semantically, distant from the mathematical
notations typically used to describe cryptographic algorithms. In our experience,
this has challenged the adoption of these tools by otherwise knowledgeable users
well beyond the usual growing pains that come with learning to apply formal
methods. Furthermore, we found it extremely difficult to experiment with, or
otherwise refine, a specification in environments where provable correctness was
a point of constant emphasis. This pushed us to first develop cryptographic pro-
totypes in an informal environment before attempting any notion of verification,
leading to duplicated and wasted effort.

Our hope is that by documenting our trials and tribulations we can further
motivate the need for more approachable formal methods tools. With that in
mind, the content that follows is one part experience report and one part work
in progress. Section 2 provides relevant background information and introduces
a simple cryptographic scheme to be used as a motivating example. Section 3
compares and contrasts the two AutoCrypto tools cited above, EasyCrypt and
Cryptol, and discusses our initial impressions of working with them. Finally,
Sect. 4 discusses our ongoing work to develop an approachable methodology for
the rapid prototyping of cryptographic systems that we envision sitting some-
where between these two tools — the titular “middle ground” that is being sought.

2 Background

Public-key encryption schemes are so named because secure communication
between two parties can be conducted by having the receiving party openly
share their encryption key with any sending party. Provided that the associated
decryption key remains private, ciphertext messages can be publicly transmitted
with a reasonable belief that adversaries can intercept them, but not recover the
original plaintext message. This property is referred to as one-wayness. A stricter
interpretation of privacy of communication would require that an adversary not
be able to recover any part of a plaintext from its associated ciphertext. This
property, semantic security, implies the indistinguishabilty of any two ciphertexts
produced by the same cryptographic scheme. Proving that a scheme possesses
these, and possibly other, security properties requires reasoning about the com-
putational assumptions of the underlying algorithms.

The hardness assumption mentioned in the introduction is tied to the notion
of a trap-door function; a mathematical problem that is computationally difficult
to solve in general, but can be easily solved given additional knowledge. As an
example, we take the discrete logarithm problem: Given a cyclic group G of order
q that is generated by element g, such that G = {¢°, g%, ...,g(q_l)}, and some
g° € G, where z € Z,, compute the value of z. Depending on the structure of
the group G, the difficulty of this problem ranges from trivial to intractable.

Finding a Middle Ground for Computer-Aided Cryptography 13

keyGen(): enc(pubKey, message):
privKey < Zq T <=2y
pubKey := g°""" % mod p shared := g" modp
return(pubKey, privKey) cipher := (pubKey" mod p) * message

return(shared, cipher)

dec(privKey, shared, cipher):

dp'riery

return(cipher * (share mod p) ™" mod p)

Fig. 1. The ElGamal Cryptosystem for [,

For the purposes of public-key encryption, we can reduce the discrete log-
arithm problem to a computationally equivalent problem: Given ¢g* € G and
g¥ € G, again with z,y € Z,, compute the value g*¥ € G. This problem is
the basis of the Diffie-Hellman key exchange protocol, with G typically being
defined as a subset of some large prime field for prime p such that ¢ divides
(p — 1) [7]. If two parties individually select = and y values and transmit
the corresponding group values ¢g” modp and ¢g¥ modp then they can estab-
lish a shared secret ¢*¥ modp, as each can compute one side of the equation
(g¥ mod p)* modp = (g* mod p)¥ modp. All variants of the ElGamal cryptosys-
tem, regardless of the underlying group, use this shared secret to directly com-
pute the ciphertext for a given plaintext [8]. For ease of reference, we provide an
algorithmic definition of ElGamal over the prime field IF,, in Fig. 1.

3 EasyCrypt and Cryptol

EasyCrypt is an interactive theorem prover whose design was inspired by the
increasingly popular game-based reasoning style of cryptographic security proofs.
Rather than providing the capability to reason exclusively about cryptographic
systems, EasyCrypt has extended this approach to allow users to construct
adversarial models for reasoning about the relations between more general pro-
cedures. In order to achieve this generality, EasyCrypt pairs an expression lan-
guage reminiscent of a polymorphic lambda calculus with a stateful procedure
language that includes primitives for probabilistic interactions with memory.
Additionally, EasyCrypt has a robust module language that promotes a high
level of specification and proof reuse.

EasyCrypt’s proof logic combines a higher-order logic that can be used to
reason about expressions with deterministic, probabilistic, and relational vari-
ants of a Hoare-style logic capable of reasoning about procedures. The proof
language itself is derived from earlier work on the CertiCrypt library [2], such
that EasyCrypt proofs look very similar to those of the Coq proof system. Rea-
soning can be conducted in either a forward or backward manner with large
proofs utilizing tactics to proceed in a subgoal-directed fashion, as is the style in

14 E. Austin et al.

most modern interactive proof systems. EasyCrypt also takes advantage of SMT
solvers to quickly reduce or eliminate arithmetic and other simple expressions.

proc kg(): group * t = {
var sk;
sk = $dt;
return (g ~ sk, sk);

}

proc enc(pk:group, m:group): group * group = {
var y;
y = $dt;
return (g ~ y, pk"y * m);

}

proc dec(sk:t, c:group * group): group option = {
var gy, gm;
(gy, gm) = c;
return Some (gm * gy~ (-sk));

¥

Fig. 2. The ElGamal cryptosystem in EasyCrypt

To continue with our motivating example, an EasyCrypt definition of the
ElGamal cryptosystem is provided in Fig. 2. This definition matches quite closely
with the specification from Fig. 1, with the exception that details of the modular
arithmetic have been abstracted away. Note that no information is given about
the construction of variable values in this specification beyond asserting that
they are elements of a cyclic group, or its related base type, as indicated by the
types group and t respectively. In theory, this abstract grouwp type is intended to
represent all cyclic groups, regardless of their underlying structure.

In practice, however, the definition of cyclic groups and their prerequisite
operations in EasyCrypt are heavily axiomatized and tailored to the prime field
F,. When we attempted to utilize EasyCrypt to reason about cryptographic
schemes based on groups of different structures, e.g. the elliptic curve variant
of the ElGamal system [11], we found its standard theories to be incompatible
with other models of computation. The root cause of this incompatibility was
not immediately obvious. Frequently we had constructed what we thought to be
a correct proof only to have some invocation of the smt tactic greet us with the
less than helpful error message “cannot prove goal (strict).”

This frustration aside, we were more concerned that EasyCrypt operated
at an abstraction level that might prevent us from verifying, or possibly even
ascribing, certain classes of cryptographic properties. For example, we previously
noted that the computational difficulties of the discrete logarithm and related
Diffie-Hellman problems are directly dependent on the structure of the cyclic
group on which the problem is defined. For the specific subset of cyclic groups
based on prime fields that we have discussed so far, this makes the selection of the
parameters p and ¢ absolutely critical. However, in EasyCrypt these parameters
are largely ignored, with the exception of abstractly introducing the order of

Finding a Middle Ground for Computer-Aided Cryptography 15

a prime field in a prelude theory to reason about the probability of sampling
random elements.

Sitting on the other end of the abstraction spectrum for AutoCrypto tools is
Cryptol. Cryptol’s driving goal is to bridge the gap between mathematical spec-
ifications of cryptographic algorithms and their actual implementations. To this
end, Cryptol represents an executable environment in which cryptographers can
develop and refine a specification, verify its correctness, and then ultimately use
it to generate code for an implementation that provably corresponds. In order to
facilitate this generation, Cryptol requires complete, unambiguous specification
of an algorithm, including statically inferable, concrete representations for all
data values.

The majority of these constraints and implementation details can be conve-
niently encoded at the type level. Given that Cryptol is both implemented in
and heavily inspired by the Haskell programming language, it should be of no
surprise that its type system is in the style of Hindley-Milner. More specifically,
Cryptol extends simple parametric polymorphism with support for fixed-size
types, type-level arithmetic, and basic type predicates.

When considering how to implement an ElGamal system in Cryptol, one
must move away from the general towards the specific. For the specific instance
of ElGamal over the finite field I, where the random exponents are selected from
the subgroup Z,, one source recommends a 1024-bit prime for p and a 160-bit
prime for ¢ [4]. Thus, assuming that messages are elements of the primary group,
we might end up with type signatures for algorithms of the scheme that look like
the ones shown below. Of course, it should be noted that these signatures do not
include any considerations about how to model random number generation or
potential decryption failures; they account only for the bit widths of the inputs
and outputs of the functions.

type pubKey = 1024

type privKey = 160

type plaintext = pubKey
type ciphertext = 2*plaintext

kg :: ([pubKeyl, [privKeyl)
enc :: [pubKey] -> [plaintext] -> [ciphertext]
dec :: [privKey] -> [ciphertext] -> [plaintext]

Similar to what you would expect to find in related systems with more robust
refinement types, Cryptol utilizes SMT solvers to assist with type inference and
reduction. For informal verification of specifications, Cryptol provides a capa-
bility for automated, random testing in the style of QuickCheck [5]. And, much
like EasyCrypt, the same SMT solvers that drive Cryptol’s type system can be
used to formally prove the correctness of specifications.

We found the executable environment of Cryptol quite pleasant to work in,
however, for us it had the opposite problem of EasyCrypt. We are not concerned
with practical implementations of cryptographic systems at this point in time,
such that it was frequently a burden to have to work with systems at a such
a high level of specificity. As an example, the modular arithmetic employed

16 E. Austin et al.

by ElGamal is significantly easier to implement and reason about for arbitrary
length integers compared to their fixed-size, bitstring equivalents.

4 The Middle Ground

To reiterate our concerns, we were of the opinion that the specification languages
of EasyCrypt and Cryptol were too abstract and too specific, respectively, for
our needs. Ultimately, what we desire is an environment for experimenting with
novel cryptographic schemes where we can specify constructs using a syntax
that more closely matches the mathematical notations we are familiar with. We
envision this new environment as being an informal precursor to formal reasoning
tools, such that we want to easily translate whatever specifications we develop to
EasyCrypt or Cryptol for further verification. Eventually we would like this new
system to exist as a standalone domain-specific language (DSL) that is purpose-
built to be highly approachable; however, for now we are content working within
the confines of Haskell.

class (CryptoScheme a, CyclicGroup (ValueSpace a),

ValueSpace a ~ Message a) => ElGamal a where
genVal :: a -> ValueSpace a
pVal :: a -> Integer
qVal :: a -> Integer

type PubKey a = ValueSpace a

encrypt :: ElGamal r => PubKey r -> Message r
-> CryptoM r (PubKey r, Message r)
encrypt pub m =
do y <- randInt pVal
g <- asks genVal
return (g .~

y, pub .7 y .* m)

Fig. 3. The ElGamal system in Haskell

Continuing with the motivating example of ElGamal, a subset of our Haskell
implementation is shown in Fig. 3. We began this implementation by abstracting
out commonly used structures to type classes, as is the standard approach in
Haskell. Type classes support a notion of inheritance, such that our definition of
the E1cama1 class extends both the cryptoscheme class, where the valuespace and Message
type families are defined, and the cyciiceroup class, where the modular arithmetic
operators are defined.

We structured computation within our implementation using our cryptom
monad which is a simple stacking of the reader and 10 monads. This allows us to
implicitly pass around a parameter set while providing access to effectful meth-
ods such as random number generation and exception handling. The resultant
pairing of type classes and the monadic implementation style can be seen in the
definition for our encrypt function. Our goal was to be able to write a definition
that matched closely with what we have already seen in the algorithmic and

Finding a Middle Ground for Computer-Aided Cryptography 17

EasyCrypt specifications from Figs.1 and 2, something that we feel we have
achieved.

Much like the developers of Cryptol, we believe there is value in perform-
ing informal testing before undertaking a formal verification effort. As such,
we have elected to follow their lead and test our cryptographic schemes using
QuickCheck. As an example, the functional correctness property for our ElIGamal
implementation is shown below. Interestingly enough, given that we are working
with monadic definitions, our correctness property appears visibly closer to an
EasyCrypt procedure definition than a Cryptol property:

prop_elgamal :: (Eq (Message r), ElGamal r)
=> Message r -> CryptoM r Bool
prop_elgamal m =
do (pk, sk) <- generateKeys
c <- encrypt pk m
m’ <- decrypt sk c
return (m == m’)

Unlike EasyCrypt, however, we can easily instantiate and test this property
for a variety of cyclic group structures without requiring any modifications to the
scheme’s definitions. In order to simplify testing, we require that users specify
how to generate a random message for a given parameter set as part of providing
an instantiation for the cryptoscheme class. Provided we select appropriate param-
eter values, the prop_eilgamal property presents an accurate test of correctness.
Shown below is an instance where a test failed because we tried to construct a
finite field with a non-prime value for the modulus p:

*Crypto.ElGamal> checkCryptoProp prop_elgamal badParams
*xx Failed! Assertion failed (after 1 test):
PrimeField {prime = 10, val = 2}

5 Future and Related Work

We are in the process of implementing a large number of cryptosystems in the
same style as what was shown in Sect.4. Our long-term goal is to use this
collection of cryptographic implementations to influence the design of a DSL for
the rapid prototyping of novel cryptographic systems. We are pursuing the DSL
approach because the vast majority of our research team (everyone except the
first author, in fact) are mathematicians, each with varying levels of comfort
with programming languages and formal methods.

Our hope is that, by tailoring the syntax and semantics of this DSL to fit
their academic strengths, we will end up with a computer-aided cryptographic
tool that they find to be more approachable and usable. Additionally, if this DSL
is embedded within Haskell, then the construction of parsers, interpreters, and
other tools to analyze the cryptographic constructs we write is greatly simplified.
The problem of moving to EasyCrypt or Cryptol, therefore, is reduced to figuring
out a translation semantics.

Our ultimate goal is not unlike that of Crockett and Peikert with their Ao A
project [6]. Their software framework, however, is targeting a very specific sub-
set of lattice-based cryptography, whereas we hope to provide a more general

18

E. Austin et al.

solution. We are both working with Haskell, though, so we are optimistic that
we should be able to interoperate with their library should we get to the point
of investigating that class of problems.

References

10.

11.
12.

. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.-Y.:

EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-
2013. LNCS, vol. 8604, pp. 146-166. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10082-1_6

. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based

cryptographic proofs. SIGPLAN Not. 44(1), 90-101 (2009)

Bellare, M., Rogaway, P.: Code-Based Game-Playing Proofs and the Security of
Triple Encryption. Cryptology ePrint Archive, Report 2004/331 (2004)
Chevallier-Mames, B., Paillier, P., Pointcheval, D.: Encoding-free E1Gamal encryp-
tion without random oracles. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 91-104. Springer, Heidelberg (2006). https://doi.
org/10.1007/11745853_7

Claessen, K., Hughes, J.: QuickCheck: a Lightweight Tool for Random Testing
of Haskell Programs. In: Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming, ICFP 2000, pp. 268-279. ACM, New York
(2000)

Crockett, E., Peikert, C.: Ao A: functional lattice cryptography. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2016, pp. 993-1005. ACM, New York (2016). http://doi.acm.org/10.1145/
2976749.2978402

Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644-654 (1976)

Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469-472 (1985)

Erkok, L., Matthews, J.: High assurance programming in cryptol. In: Proceed-
ings of the 5th Annual Workshop on Cyber Security and Information Intelligence
Research: Cyber Security and Information Intelligence Challenges and Strategies,
CSIIRW 2009, pp. 60:1-60:2. ACM, New York (2009)

Halevi, S.: A plausible approach to computer-aided cryptographic proofs. Cryptol-
ogy ePrint Archive, Report 2005/181 (2005)

Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203-209 (1987)
Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004)

https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/11745853_7
https://doi.org/10.1007/11745853_7
http://doi.acm.org/10.1145/2976749.2978402
http://doi.acm.org/10.1145/2976749.2978402

®

Check for
updates

Quadratic Time Algorithm for Inversion
of Binary Permutation Polynomials

Lucas Barthelemy', Delaram KaI}robaei2 , Guénaél Renault®*
and Zoran Suni¢®(®d

1 Quarkslab, Paris, France
lbarthelemy@quarkslab.com
2 Graduate Center, CUNY, New York, NY, USA

dkahrobaei@gc.cuny.edu

3 Agence Nationale de la Sécurité des Systémes d’Information,

51 boulevard de La Tour-Maubourg, 75700 Paris 07 SP, France

guenael .renault@ssi.gouv.fr
4 Sorbonne Université, UPMC, LIP6,
4 place Jussieu, 75252 Paris Cedex 5, France
5 Department of Mathematics, Hofstra University, Hempstead, NY 11549, USA

zoran.sunic@hofstra.edu

Abstract. In this paper, we propose a new version of the Lagrange
interpolation applied to binary permutation polynomials and, more gen-
erally, permutation polynomials over prime power modular rings. We
discuss its application to obfuscation and reverse engineering.

Keywords: Permutation polynomial - Lagrange interpolation
Obfuscation

1 Motivation and Introduction

Permutation polynomials in the context of Galois’ fields are very well studied in
particular for their applications in cryptography. The study of binary polynomi-
als (polynomials with coefficients in an integer ring modulo a power of 2) is less
extensive, but it has been shown recently that they are important for computer
security. As discussed in [1] and in [2], a straightforward application of binary
permutation polynomials is obfuscation. Here we define obfuscation as a way to
write computer programs that prevents reverse engineering of applications while
minimizing the overhead in memory/computation cost.

In comparison with finite field permutation polynomials, the binary polyno-
mials allow fast computation of bijective functions, since they can be directly
implemented with low level arithmetic operations on computers. Moreover their

The second-named author was partially supported by a PSC-CUNY grant from
the CUNY Research Foundation and by the ONR (Office of Naval Research) grant
N000141512164.

© Springer International Publishing AG, part of Springer Nature 2018

J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 19-27, 2018.
https://doi.org/10.1007/978-3-319-96418-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96418-8_3&domain=pdf
http://orcid.org/0000-0001-5467-7832
http://orcid.org/0000-0002-7050-9975
http://orcid.org/0000-0001-7861-158X

20 L. Barthelemy et al.

use adds diversity to obfuscation techniques. The last point is of primary concern
for obfuscation. Indeed, obfuscation usually does not rely on one overwhelming
method, but on an aggregation of several layers of different techniques that aim
to prevent automated attacks. For example, in [2] new classes of polynomials
were considered and proved to be resistant to the attacks defined in [3].

In this application context, the study of permutation polynomials is purely
algorithmic and a central operation is the computation of the inverse of such a
polynomial.

Newton’s method for inverting binary permutation polynomials is an effective
algorithm, but we present in this paper a new technique based on Lagrange
interpolation with two important properties:

— In a designer point of view, it is very important to measure the strength of any
obfuscation technique based on binary permutation polynomials. The interpo-
lation algorithm analyzed in this paper is proven to have a fixed complexity.
This provides a more precise framework when measuring attack complexi-
ties with regard to computational overhead of using a binary permutation
polynomial.

— From the reverse engineering point of view, this algorithm enables inversion
techniques in a black-box context (i.e. when an encoding function is given
as an evaluation function only). This is of importance when considering the
reliance of encodings based on binary permutation polynomials since this
algorithm can retrieve the explicit function through interpolation.

In addition, our version of Lagrange interpolation allows a better understand-
ing on how to use binary permutation polynomials. This should prove useful for
future work on the subject.

2 Interpolation of the Inverse Polynomial over Zs»

2.1 Reduction of Integer Polynomials

Integer multiples of Newton polynomials may be used to reduce any integer poly-
nomial to a polynomial of relatively small degree (no greater than n+log, n) that
induces the same function on Zsn. The approach follows Mullen and Stevens [4]
and has recently been used in [2] in the context of inversion of polynomials by
using Largange interpolation and also Newton’s method.

For i > 0, let t; be the largest integer ¢ such that 2¢ divides ¢!, and let d,, be
the largest integer ¢ such that n —t; > 0. Note that d, is always odd and not
greater than n 4 logy n. Define

i1 dn
Py(z) =2""" H(x —j)fori=0,1,...,d,, and Py 41(z) = H(:E — 7).
=0 =0

Each polynomial Pz(x), fort=0,1,...,d,+1, is an integer multiple of the New-
ton polynomial H;;g(x— Jj) of degree i, and only the last one, Py, 11(z), is monic.

Inversion of Binary Permutation Polynomials 21

The ideal I of Z[x] generated by Py(x),. .., Pi,+1(z) consists precisely of all inte-
ger polynomials that induce the zero function on Zgn. Define the set of reduced
polynomials R,, as the set of all integer polynomials by + b1z + ... + by, x%"
of degree at most d,,, such that, for i =0,...,d,,

0<b; <2nh,

For every integer polynomial P(z) there exists a unique reduced polynomial
Pg(x) such that P(z) and Pr(z) induce the same function on Zsn. The reduction
is performed as follows. First, P(z) is replaced by its reminder modulo the monic
polynomial P, 41(x), and this yields a polynomial R(z) of degree at most d,,.
If R(x) is reduced we are done. Otherwise, let ¢ be the largest degree such that
the i-coefficient of R(z) is not in the range from 0 to 2"~ % — 1 and let ¢; be the
value of this coefficient. Then there exists a nonzero ¢ such that ¢; = 2" tig+r,
where 0 < r < 2"7% —1. Thus, the i-coefficient of the polynomial R(z)— ¢P;(z)
is equal to 7, which is in the correct range. Continuing in the same fashion we
may push all coeflicients, one by one, in the order from highest to lowest degree,
into the correct range and obtain a reduced polynomial.

2.2 Precise Description of the Inversion Problem

If the degree of the original integer polynomial P(z) is high and/or if its coeffi-

cients are large integers, the reduction procedure may take a long time. We are

not interested in this issue, our quadratic algorithm assumes that P(x) is given

either in reduced form or as a black box that can calculate the sequence of values

P(0), P(1),...,P(dy) in Zon in O(n?) time. Note that if we are given a reduced

polynomial P(z), then we can calculate P(0), P(1),..., P(d,) in O(n?) time.
We formulate precisely the input and output for our problem.

Let P(x) be an integer polynomial that induces a permutation on Zan.

Input: the sequence of values P(0),..., P(dy) in Zan.

Output: the sequence of coefficients bg,b1,...,bq, of the unique reduced
polynomial Q(z) that induces the inverse permutation to P(z) on Zan.

We know with certainty that a polynomial solution exists, since P(x) induces
a permutation on a finite set, which implies that some iteration of P(x), which
is also a polynomial with integer coeflicients, induces the inverse permutation.

Our quadratic “time” complexity actually refers to the number of multipli-
cations and/or additions and/or inversions of units in Zs» necessary to calculate
the sequence of coefficients of Q(x). The numbers involved in these calculations
have O(n) digits, but each addition/multiplication/inversion is counted as being
performed in unit time.

We state our main result.

Theorem 1. Let P(x) € Z[z] be a polynomial that induces a permutation on
Zon, given by its sequence of values P(0),...,P(d,) in Zon. There exists an
algorithm of time complexity O(n?) that determines the sequence of coefficients
bo, b1, ... ,bq, of the unique reduced polynomial Q(x) that induces the inverse
permutation to P(x) on Zan.

22 L. Barthelemy et al.

2.3 Binary Permutation Polynomials

There is a simple characterization of binary permutation polynomials in terms
of the coeflicients of the polynomial. Namely, a polynomial P(x) = ag + -+ +
amx™ € Zlx] induces a permutation on Zs. if and only if (i) ay is odd, (ii) the
sum as + a5 + az ... is even, and (iii) the sum ag + a4 + ag + ... is even.

The criterion is stated and proved in this form by Rivest [5], but he points
out that it also follows easily from the following more general criterion: P(z)
induces a permutation on Z,n, where p is a prime and n > 2, if and only if (i)
P(z) induces a permutation on Z, and (ii) P'(a) # 0 (mod p) for a € Z. The
last criterion is stated in the work of Mullen and Stevens [4], who consider it a
direct corollary of Theorem 123. in the book by Hardy and Wright [6].

The following corollary is crucial for our purposes.

Corollary 1. The polynomial P(x) = ag+ -+ apmaz™ € Zlz] induces a permu-
tation on Zon if and only if, for all a,b € R, with a # b, the Newton quotient
kap = w is an odd integer.

Proof. Indeed, kqp = a1A1 + agA2 + -+ - + ap Ay, where A; = 1 and, for ¢ =
2,3,....,m, A; =a"" 1 +a""2b+---+ab "2+ 1L If both a and b are even then,
modulo 2, kq p = ay, if they have different parity then ko, = a1 +a2 + -+ am,
and if they are both odd, k., = a1 + a3 + a5 + ... and the conclusion follows.

2.4 Solving the Associated Linear System

Fix n, and to simplify notation, set d = d,,.
For i =0,...,d, set z; = P(i) and y; = Q(x;) = i. We need to solve, over

Zon , the linear system of equations
Vizo, 21, ..., 24)(bo, b1, ba)" = (yo,y1s-- - ya)"

Y

where V' = V{zo,z1,...,24] = [Vij](a+1)x(a+1) 18 the (d + 1) x (d 4 1) Vander-
monde matrix in which v; ; = 2.

We will use the following two results by Orug¢ and Phillips.

Theorem 2 (Orug-Phillips 2000 [7]). Let zg,x1,...,Z,m be distinct. An
explicit LDU decomposition of the Vandermonde matriz V. = V]zg, x1,. .., Tm]
s given by V. = LDU, where D is the diagonal matriz

Diag(1, 1 —x0, (x2—21)(x2—20),. -+, (Tm—Tm—-1)@Tm —Tm—2) .. (Tm—20)),

L is the lower triangular matriz L = [¢; ;] given by

j-1
i — Tj_1—
b= (R R 0<ji<i<m
0. T — 1 ’
t=0 " goi=t

and U is the upper triangular matriz U = [u; ;] given by

ui,j:Tj_i(l‘o,...,xi) OS’LSJSm,

Inversion of Binary Permutation Polynomials 23

with the understanding that empty products are equal to 1 (thus all diagonal

entries in both L and U are equal to 1), and 7.(xq, ..., x;) is the complete sym-
metric function evaluated at xq,...,x;, that is,
Tr(Toy ooy x) = Z x0Tt L.

Aot+Ar+- A=

Ezxample 1. For m = 4, we have

1 0 0 0 0
1 1 0 0 0
L=]12=2% 1 0 0
Tr1—Xo
54— (xg—z1)(z3—20)
1 ifjxcg (w;fm)(w;fwg) 1 0
1

za—xg (Ta—z1)(xa—x0) (va—w2)(®a—2x1)(Ta—20) 1
z1—x0 (r2—=1)(x2—20) (Z3—72)(T3—21)(T3—T0) ~]

1xg :z:% x% z%

01 zo+x 23 +xox1 + 23 o3 + 2dr + 2023 + 23
U=100 1 xo+ 1+ 22 x%—i—xoxl—&—x%—&—xomg—i—xlm—&—x%
00 0 1 To+ 21 + 22 + X3

00 0 0 1

The entries of U can be obtained recursively, by ug ; = acg, u;; = 1, and
Ui j = Uj—1,5—1 + Ui, j—1 * T, for1 <i< 7 (1)

Theorem 3 (Orug-Phillips 2000 [7]). Let xg,1,...,%y, be distinct. The
matriz L from the explicit LDU decomposition of the Vandermonde matriz
V =Vi[zg,21,...,2m] given in Theorem 2 decomposes as the product

L=1WL® . rm
of subdiagonal (m + 1) x (m 4 1) matrices L*) = [Egkj)] with 1s on the diagonal

and the subdiagonal entries given, for 7 =0,...,m — 1, by
0, 0<j<m-—Ek,
pR))i (m—k)—1
Ity H Lit1 7 Ayt m—k<j<m

)
=0 1T T

Ezxample 2. For m = 4, the following table provides the subdiagonal entries:

| (1) (2) (3) (4)
3\b+15 b1 i) lith,
of O 0 0 1
1| 0 0 1 LX)
xr1—Xo
Ta—x (x3—x2)(z3—21)
3l 1 zazzs (za—z3)(Ta—22) (Ta—z3)(Ta—T2)(Ta—21)
z3—x2 (v3—z2)(xzz—z1) (z3—z2)(xz—z1)(x3—20)

24 L. Barthelemy et al.

The subdiagonal entries can be calculated recursively as follows. For fixed j
andk:mf],wehaveﬁgﬁ_)lj =1,and for k >m —j+1,

g(k) _g(k 1) Tj+1 — Tm—k+1
1 1,5 :
J+1.j J+Lj Tj— Tk

(2)

Going back to our situation, we see that the entries of U and D are inte-
gers and, as such, are well defined over Zyn. The entries of L and L®*) are not
necessarily integers, but they are still well defined over Zon.

Proposition 1. Let P(z) € Z[z] induce a permutation on Zon.

(a) Fach entry of L is has odd denominator in its simplest form.
(b) Each entry of L®) fork =1,...,d has odd numerator and odd denominator
in its simplest form.

Proof. (a) By Corollary 1, we have, for 0 < j <14 <d,
- - ,

0 Jl—[Ti—Tja-t _]1—[Plyi) = P(yj—1-1) _ T Wi — vim1—e)kij—1-¢

7 rj—xj1—t o Py;) = P(yj—1—¢) 5 (U5 — Yi—1-o)kj -1

t=0

N j—1
71—[Z—j+1+t)ki,j717t: ? Jl—[kzglt
(1+t)k]

7,j—1—t

where each £, . is an odd integer.
(b) Let d —k < j <dandset s=j— (d—k)— 1. By Corollary 1, we have,

0 ﬁ Tjp1 — _H yj+1 Ply;—t) :ﬁ i1 =Yi—e) ki1t
A 0%~ x] 1t P(y P(yj—1-t) =0 (Y5 —Yj—1-t)kjj—1-
S

fH A+ k-1 kj+1,j—t
)
1+t Ga—1-t g Fig-1-t

where each k. . is an odd integer.

We are ready to prove the main result.

Proof (Proof of Theorem1). Recall that, in our situation, m = d = d, < n+
log, n and we are solving the system LDUb = y. The recursive formulas (1)
and (2) show that the entries of U and the subdiagonal entries in all L)
k =1,...,d, can be calculated in O(n?) steps. The diagonal entries of D can
also be calculated recursively in O(n?) steps. The inverse of L) is obtained by
simply changing the sign in all subdiagonal entries. Therefore, we can calculate
y =L l'y = L tpm-n=t .L(l)_ly in O(n?) steps.

We then solve the system DUb = y’ by backward substitution in O(n?)
steps. Note that the i-entry of D has the form 2% f;, where f; is odd. Because of
our constraints on the coefficients of reduced polynomials, we are seeking only for
solutions for b; in the range 0 < b; < 2"~ %, and a solution exists and is unique

Inversion of Binary Permutation Polynomials 25

in this range. More precisely, once b;11,...,bq are substituted in, we need to
solve for b; from an equation of the form 2% f;b; = g; (mod 2"), for some odd f;
and some g; € Zy». We already know that a solution exists, so it must be that
gi = 2tig) for some g, € Zan. After canceling the term 2% we solve for b; from
fibi = g} (mod 2"~*) by inverting f;, and thus produce the unique solution in
the range 0 < b; < 27—t

2.5 Another Solution

If we are not interested in producing the coefficients of the inverse polynomial
Q(x), but rather just in calculating the values of Q(x) at various points, a slightly
different algorithm exists and we outline it here.

Let U,, be the ring of units of the ring Zs». Without loss of generality we
may assume that P(x) separately permutes U,,, the odds, and its complement,
the evens (if it does not, we may replace P(z) by P(z) + 1).

The ideal I’ of integer polynomials that induce the zero function on U, is
described in [8]. It is generated by P;(z) = 2n~ it H;;E(w - (25 + 1)), for
i =0,1,...,d,, and Py 11(z) = H?/;O(sc — (2j + 1)), where d}, is the largest
integer ¢ such that n—i—t; > 0. Every integer polynomial that permutes U,, has
a unique representative modulo I’, which is a polynomial of degree at most d,
with the i-coefficient in the range from 0 to 2" =% — 1. The maximum degree
d!, is approximately half of d,,. We may calculate, by using the same approach as
above (the Vandermonde matrix will have dimension (d, +1) x (d}, + 1) and the
interpolation is preformed for z; = P(2i + 1), ¢ = 0,...,d},) the coeflicients of
the unique reduced polynomial Q(z) modulo I’ that inverts the values of P(x)
on U, (and not necessarily on its complement).

By a similar approach, the coefficients of another polynomial, Q(z), of degree
at most d], that inverts the values of P(x) on the complement of I, may be
calculated. The two polynomials Q(x) and Q(z) may then be used to calculate
the values of Q(x) (use the former for odd z and the latter for even). Since the

degrees of Q(x) and 5(:0) are, in general, smaller than the degree of Q(x), this
approach may be faster if we need to calculate many values of Q(z).

3 Interpolation of the Inverse Polynomial over Zy»

Fix a prime p and n > 1.

We claim that the same inversion technique works equally well for permuta-
tion polynomials over the ring Zn.

The ideal of integer polynomials that induce the zero function on Z,» is
generated by the polynomials

i—1 dp,n

Py(x) = p"te H(a: —j) fori=0,1,...,dpn, and Py, 11(x) = H(z —7)-
Jj=0 7=0

26 L. Barthelemy et al.

where, for i > 0, ¢,; is the largest integer ¢ such that p divides ¢!, and dp.n
is the the largest integer ¢ such that n —¢,; > 0. Each integer polynomial is
equivalent, as a function over Z,~, to a unique reduced polynomial, that is,
polynomial by + byx + -+ + bdp,nxdpv" of degree at most d, ., such that, for
i=0,...,dpn, we have 0 < b; < p"~'ri (see [4, Theorem 2.1]).

We prove an analog of Corollary 1.

Proposition 2. The polynomial P(x) = ag + -+ + ama™ € Z[z] induces a
permutation on Zpn if and only of, for all a,b € Z, with a # b, the Newton

P(a) — P(b)
a—b

quotient kg p = is an integer that is not divisible by p.

Proof. Recall that P(z) induces a permutation on Z,» if and only if it induces
a permutation on Z, and P’(a) # 0 (mod p), for all a.

We work modulo p. Let a # b and, moreover, a — b # 0. Since P(a) — P(b) =
(a —b)kqep and a — b # 0, we have P(a) — P(b) = 0 if and only if k, 5 = 0. Thus,
P(z) induces a permutation on Z, if and only if kq, # 0, for all @ # b. Let a # b,
but @ = b. Then, for i > 2, we have 4; = ¢’ 1 +a""2b+---+ab 2 4+b"1 =jag* !
and kqp = a1 + 2aza + - + mapa™ ! = P'(a). Thus, P'(a) # 0, for all a, if
and only if k, p # 0, for all a # b with a = b.

The rest of the proof is exactly the same as in the binary case, except,
of course, that the analog of Proposition 1 should state that, in their simplest
form, all denominators of the entries in L are integers not divisible by p, and all
numerators and denominators of the entries in L"), k =1,..., dp.n, are integers
not divisible by p. Thus, L and L®*) are well defined over L.

Thus we may state a more general version of our main result.

Theorem 4. Let p be a prime and P(x) € Zlx] a polynomial that induces a
permutation on Zyn, given by its sequence of values P(a), P(a+1), ..., P(a+dp.,)
in Zypn for some a € Zyn (not necessarily 0). There exists an algorithm of time
complezity O(n?) that determines the coefficients b, by, ..., ba, . of the unique
reduced polynomial Q(x) that induces the inverse permutation to P(x) on Zyn.

References

1. Zhou, Y., Main, A., Gu, Y.X., Johnson, H.: Information hiding in software with
mixed boolean-arithmetic transforms. In: Kim, S., Yung, M., Lee, H-W. (eds.)
WISA 2007. LNCS, vol. 4867, pp. 61-75. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-77535-5_5

2. Barthelemy, L., Eyrolles, N., Renault, G., Roblin, R.: Binary permutation polyno-
mial inversion and application to obfuscation techniques. In: Proceedings of the 2nd
International Workshop on Software Protection, Vienna, Austria. ACM, October
2016

3. Biondi, F., Josse, S., Legay, A., Sirvent, T.: Effectiveness of synthesis in concolic
deobfuscation. Comput. Secur. 70, 500-515 (2017)

4. Mullen, G., Stevens, H.: Polynomial functions (mod m). Acta Math. Hungar. 44(3—
4), 237-241 (1984)

https://doi.org/10.1007/978-3-540-77535-5_5
https://doi.org/10.1007/978-3-540-77535-5_5

Inversion of Binary Permutation Polynomials 27

. Rivest, R.L.: Permutation polynomials modulo 2¥. Finite Fields Appl. 7(2), 287-292
(2001)

. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 4th edn.
Clarendon Press, Oxford (1960)

. Orug, H., Phillips, G.M.: Explicit factorization of the Vandermonde matrix. Linear
Algebra Appl. 315(1-3), 113-123 (2000)

. Markovski, S., Sunié, Z., Gligoroski, D.: Polynomial functions on the units of Zan.
Quasigr. Relat. Syst. 18(1), 59-82 (2010)

l‘)

Check for
updates

Paramotopy: Parameter Homotopies
in Parallel

Dan Bates' ™) Danielle Brake?, and Matt Niemerg?

1 Colorado State University, Fort Collins, USA
bates@math.colostate.edu
2 University of Wisconsin - Eau Claire, Eau Claire, USA
brakeda@uwec.edu
3 Knoxville, USA
research@matthewniemerg.com
http://www.math.colostate.edu/~bates, http://danibrake.org,
http://www.matthewniemerg.com

Abstract. Numerical algebraic geometry provides tools for approximat-
ing solutions of polynomial systems. One such tool is the parameter
homotopy, which can be an extremely efficient method to solve numer-
ous polynomial systems that differ only in coefficients, not monomials.
This technique is frequently used for solving a parameterized family of
polynomial systems at multiple parameter values. This article describes
Paramotopy, a parallel, optimized implementation of this technique, mak-
ing use of the Bertini software package. The novel features of this imple-
mentation include allowing for the simultaneous solutions of arbitrary
polynomial systems in a parameterized family on an automatically gen-
erated or manually provided mesh in the parameter space of coefficients,
front ends and back ends that are easily specialized to particular classes
of problems, and adaptive techniques for solving polynomial systems near
singular points in the parameter space.

1 Introduction

The methods of numerical algebraic geometry provide a means for approximating
the solutions of a system of polynomials F' : CV — C", i.e., those points z € C
such that F(z) = 0. There are many variations on these methods, but the key
point is that polynomial systems of moderate size can be solved efficiently via
homotopy continuation-based methods. In the case of a parameterized family of
polynomial systems F : CN x P — CV, where the coefficients are polynomial in
the parameters p € P C CM, a particularly efficient technique comes into play:
the parameter homotopy [1]*.

The process of using a standard homotopy to solve a system F' begins with the
construction of a polynomial system G that is easily solved. Once the system

! In fact, this technique applies when the coefficients are holomorphic functions of the
parameters [1], but we restrict to the case of polynomials for simplicity.
© Springer International Publishing AG, part of Springer Nature 2018

J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 28-35, 2018.
https://doi.org/10.1007/978-3-319-96418-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96418-8_4&domain=pdf

Paramotopy 29

G is solved, the solutions of G are tracked numerically by predictor-corrector
methods as the polynomials of G are transformed into those of F. Thanks to
the underlying geometry, discussed for example in [2] or [3], we are guaranteed
to find a superset V of the set V of isolated solutions of F. The set V is easily
trimmed down to V in a post-processing step [4].

Parameter homotopies are particularly powerful as the number of solutions
to be followed is exactly equal to the number of isolated solutions of F(z,p) for
almost all values of p € P (under the common assumption that P has positive
volume in its ambient Euclidean space). Furthermore, the solution of a single G
will work for almost all values of p € P, so only one round of precomputation is
needed regardless of the number of polynomial systems to be solved.

Parameter homotopies are not new and have been used in several areas of
application [5-8] and implemented in at least two software packages for solving
polynomial systems: Bertini [9] and PHCpack [10]. These implementations allow
the user to run a single parameter homotopy from one parameter value pg with
known solutions to the desired parameter value, p;, with the solutions at pg
provided by the user. The software package that is the focus of this article
differs from these other two implementations in the following ways:

1. Paramotopy accepts as input the general form of the parameterized family
F(z,p) (p given as indeterminates), chooses a random py € P, and solves
F(z,po) via a Bertini run?;

2. Paramotopy builds a mesh in the parameter space given simple instructions

from the user (or uses a user-provided set of parameter values) and performs

parameter homotopy runs from pg to each other p in the mesh;

Paramotopy carries out all of these runs in parallel, as available?;

4. Paramotopy includes adaptive schemes to automatically attempt to find the
solutions of F'(z, p) from starting points other than py if ill-conditioning causes
path failure in the initial attempt; and

5. Paramotopy is designed to simplify the creation of front ends and back ends
specialized for particular applications.

©w

The full version of this article [11] includes more background and examples.

2 Homotopies

2.1 Homotopy Continuation

Given a polynomial system F' : CV — C¥ to be solved, standard homotopy
continuation consists of three basic steps:

1. Choose a start system G : CV — CV similar in some way to F(z) that is
“easy” to solve;

2 Bertini provides this functionality as well.
3 Bertini and PHCpack both have parallel versions, but not for multiple parameter
homotopy runs.

30 D. Bates et al.

2. Find the solutions of G(z) and form the new homotopy function H : C¥ xC —
CN given by H(z,t) = F(2)- (1 —t) + G(2) - t - y, where v € C is randomly
chosen; and

3. Using predictor-corrector methods (and various other numerical routines [2,
12-14]), track the solutions of G at t = 1 to those of F at t = 0.

There are many variations on this general theme, but we focus here on the
basic ideas, leaving details and alternatives to the references. A discussion of the
choice of an adequate start system G goes beyond the scope of this paper. It is
enough to know that there are several such options [2,3,15,16].

Once G(z) is solved and H (z,t) is formed, the solutions of H(z,t) for varying
values of t may be visualized as curves. Indeed, as t varies continuously, the
solutions of H(z,t) will vary continuously, so each solution sweeps out a curve
or path (also sometimes called a solution curve or solution path) as t moves from
1 to 0. A schematic of four such paths is given in Fig. 1. Predictor-corrector
methods are used to follow the solutions of G to those of F' along these paths.
See [11] for more background.

Target

< Start
system Fz) <

system ()

oo i
L}

paths diverge

[y

)
i

WY

1 .,
[N
Lo

‘‘‘‘‘‘‘

convergent

= /paths ’ s
e, . -
~ N
.,

-

cr RSN cn
complex time
t=0 _ t=1
end < start

Fig. 1. A schematic depiction of a homotopy from system F' to system G. There are
four solutions of G(z) at t = 1. Two solution paths diverge as ¢ — 0, while the other
two lead to solutions of F' at ¢t = 0.

2.2 Parameter Homotopies

Suppose we wish to solve a parameterized polynomial system F(z, p) in variables
z and parameters p at a (possibly very large) number of points in parameter
space, i.e., we want to find z such that F(z,p’) = 0 for varying values p = p'.
If we know all isolated, finite, complex solutions at some generic point p =
po in a convezr* parameter space P, the underlying theory allows us to make

4 Handling non-convex parameter spaces is significantly more difficult and is described
later.

Paramotopy 31

use of a parameter or coefficient-parameter homotopy [1]. The usefulness of this
software becomes readily apparent from the following proposition, proved in
somewhat different language in [2]. The proposition guarantees that we can
find the isolated, finite, complex solutions of F(z,p’) simply by following paths
through the parameter space, P C CM, from the solutions of F(z,py).

Proposition 1. The number of finite, isolated solutions of F(z,p) is the same
for all p € P except for a measure zero, algebraic subset B of P.

This proposition gives us a probability one guarantee that a randomly chosen
path through parameter space will avoid B. Assuming further that P is convex, a
straight line segment through parameter space from a randomly chosen py € P to
a prespecified target p; € P will, with probability one, not pass through the set
B. This immediately implies a (known) technique for solving many polynomial
systems from the same parameterized family with parameter space P. First,
find all finite, isolated, complex solutions for some randomly chosen py € P.
We refer to this as Step 1. Second, for each parameter value of interest, p; € P,
simply follow the finite, isolated, complex solutions through the simple homotopy
H(z,t) = F(z,po)-t+ F(z,p;)- (1 —t). We refer to this as Step 2. Notice that the
randomly chosen ~ from standard homotopies can be neglected in this homotopy
since pg is chosen randomly. We describe in Sect. 3.2 how we monitor these Step
2 runs in case paths fail and also how we handle such failures.

For the cost of a single Step 1 solve at some random point py in the param-
eter space, we may rapidly solve many other polynomial systems in the same
parameterized family. Indeed, there are a minimal number of paths to follow in
each Step 2 run and there is no pre-computation cost beyond the initial solve.

3 Implementation

Paramotopy is a C++ implementation of parameter homotopies, relying heavily
on Bertini [9]. In this section, we provide many details about this software.

3.1 Main Algorithm

We first present the main parameter homotopy algorithm that is implemented in
Paramotopy. Note in particular the input value K and the while loop at the end,
both included to help manage path failures during the Step 2 runs. Also, note
that this algorithm assumes that P = CM, for some M. The use of Paramotopy
for other parameter spaces is described in Sect. 3.3.

Remark 1. To find all solutions for all p € L, we must have that all solutions of
F(z,po) are nonsingular as we can only follow paths starting from nonsingular
solutions during the parameter homotopies after the first run. Deflation [17,18]
could be used to regularize singularities in Step 1 before beginning Step 2, but
this is not currently implemented.

32 D. Bates et al.

Input : F(z;p), a set of polynomial equations, variables z € CV, and
parameters p € L C P = CM; ¢ = | L | parameter values at which
the solutions of F'(z;p) are desired; bound K on the number of times
to try to find solutions for any given p € L, in the case of path
failures.

Output: List of solutions of F(z;p) =0 for each p € L.

Choose random pg € P;
Solve F'(z;po) = 0 with any standard homotopy. (Step 1);
Store all nonsingular finite solutions in set S;
Set F := @. (Beginning of Step 2.);
for i=1 to ¢ do
Construct parameter homotopy from F(z;po) to F(z;p:);
Track all | S| paths starting from points in S;
Set F := F U {i} if any path fails;
Set k := 0. (Beginning of path failure mitigation.);
while |F| >0 and k < K do
Set F' = @;
Choose random p’ € P;
Solve F(z;p’) = 0 with a parameter homotopy from po;
for m=1 to |F| do
Solve F(z; pr[m)) = 0 with a parameter homotopy from p’ to DF[m];
Set F':= F' U{m} if any path fails;
Set F := F' and increment k;

© 00 N O TR W

[o =
O LA W N = O

fuy
~

Algorithm 1: Paramotopy.

3.2 Handling Path Failures During Step 2

If a path fails during a Step 2 run for some parameter value p € L, Paramotopy
will automatically attempt to find the solutions at p by tracking from a differ-
ent randomly chosen parameter value p’ # pg € P. It will repeat this process
K times, with K specified by the user. This is the content of the while loop at
the end of the Main Algorithm.

The idea behind this is that paths often fail for one of two reasons, either the
path seems to be diverging or the Jacobian matrix becomes so ill-conditioned
that either the steplength drops below the minimum allowed or the precision
needed rises above the maximum allowed. For parameter homotopies, a path
failure of the first type is possible for either of two reasons: either the path
really is diverging or the norm of the solution is above a particular threshold.
In the former case, it can happen that the nature of the solution set at target
value p differs from that at a generic point in the parameter space, e.g., there
could be fewer finite solutions at p. Such path failures are captured and reported
by Paramotopy, but there is simply no hope for “fixing” them as this result is
a natural consequence of the geometry of the solution set, i.e., p is inherently
different from other points in parameter space, so Paramotopy takes the correct
action in reporting it. In the latter case, it can happen that the scaling of the
problem results in solutions that are large in some norm, e.g., |z|oo > 10° as is

Paramotopy 33

the default in the current version of Bertini. If this is suspected, the user could
rescale the system or adjust the threshold MaxNorm and run the problem again.

For the second type of path failure, the ill-conditioning is caused by the
presence of a singularity b € B near or on the path between pg and p. By choosing
new starting point p’ “adequately far” from po, it should be feasible to avoid the
ill-conditioned zone around b unless b is near the target value p. In this last case,
it is unlikely that choosing different starting points p’ will have any value, which
is why we have capped the number of new starting points allowed at K.

For now, the new point p’ is chosen randomly in the unit hypercube. Future
work will detect where in parameter space the failures have occurred and bound
p’ away from this region. Since it cannot easily be determined which paths from p’
to p correspond to the failed paths from pg to p, there is no choice but to follow
all paths from p’ to p. To find all solutions at p’, we simply use a parameter
homotopy to move the solutions at py to those at p’. Of course, if there are path
failures, we must choose yet another p’ and try again.

3.3 Handling Parameter Spaces Other Than CM

As described near the end of Sect. 2.2, Paramotopy may be used to handle param-
eter spaces other than the simplest parameter space, CM for some M. However,
some changes are needed in the algorithm.

If P ¢ CM is a proper, convex subset of CM, Algorithm 1 needs only one
change: py must be somehow chosen within P. To accommodate this, Paramo-
topy allows the user to specify pg.

If P is a proper, non-convex set, more work is required. The Step 1 run would
be the responsibility of the user, as in the previous paragraph, and it would be
up to the user to string together subsequent Paramotopy runs to stay within P.

3.4 Parallelization and Data Management

One of the features of Paramotopy that sets it apart from Bertini is the use of
parallel computing for multiple parameter homotopies. Bertini includes parallel
capabilities for a single homotopy run, but not for a sequence of runs. Paralleliza-
tion was achieved using the head-worker paradigm, implemented with MPI. A
single process controls the distribution of parameter points to the workers, which
constitute the remainder of the processes. Workers are responsible for writing
the necessary files for Bertini and for writing their own data to disk.

Bertini creates structures in memory by parsing an input file. As input
is interpreted, several other files are created. These contain the straight line
program, coefficient values, variable names, etc. Since the monomial structure
of the polynomials in each Step 2 run is the same, almost all of these files are
identical from one run to the next, so almost all this parsing is unnecessary. The
only file that needs to be changed between runs is the file containing parameter
values.

To prevent proliferation in the number of files needed to contain the data
from the Paramotopy run, the Bertini output data is read back into memory,

34 D. Bates et al.

and dumped into a collective data file. The collective data files have a maximum
buffer size, and once the buffer size is reached, the data in the buffer is written
to the file, and the process repeats by storing the Bertini output data in memory
until the buffer is full once more.

Repeated writing and reading is taxing on hard drives and clogs a LAN if
the workers are using network drives. To free workers from having to physically
write temporary files to electronic media storage, an option is provided to the
user to exploit a shared memory location (or ramdisk), should it be available.

3.5 Front Ends and Back Ends

Real-world problems may involve many parameters. This could be problematic
when one wants to discretize a parameter space into a uniform sample as the
number of parameter points of interest can easily reach into the astronomical.
Hence, Paramotopy contains support for both linear uniform meshes of param-
eters as well as user-defined sets of parameter values stored in a text file. A
generic Matlab interface for gathering, saving, and plotting data from an arbi-
trary Paramotopy run is provided on the Paramotopy website. See [11] for further
details.

4 Conclusions

Paramotopy can be used to solve parameterized polynomial systems efficiently
for large numbers of parameter values. This extends the reach of numerical alge-
braic geometry in a new direction, particularly one that might be useful for math-
ematicians, scientists, and engineers who would like to rapidly test a hypothesis
or would like to find regions of a parameter space over which the polynomial
system has the same number of solutions. While Bertini and PHCpack have
some parameter homotopy capabilities, Paramotopy has been optimized for the
scenario of using many-processor computers to solve at many parameter values
of interest.

Acknowledgements. The authors appreciate the useful comments from several
anonymous referees and Andrew Sommese as these have greatly contributed to the
quality of this paper. The first author would also like to recognize the hospitality of
Institut Mittag-Leffler and the Mathematical Biosciences Institute, as well as partial
support from the NSF via award DMS-1719658.

References

1. Sommese, A., Morgan, A.: Coefficient-parameter polynomial continuation. Appl.
Math. Comp. 29, 123-160 (1989)

2. Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials
Arising in Engineering and Science. World Scientific Publishing, Singapore (2005)

10.

11.

12.

13.

14.

15.

16.

17.

18.

Paramotopy 35

Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerical Solution
of Polynomial Systems Using the Software Package Bertini. STAM, Philadelphia
(2013)

Bates, D., Hauenstein, J., Peterson, C., Sommese, A.: A numerical local dimension
test for points on the solution set of a system of polynomial equations. STAM J.
Numer. Anal. 47(5), 3608-3623 (2009)

Brake, D.A., Bates, D.J., Putkaradze, V., Maciejewski, A.A.: Tllustration of numer-
ical algebraic methods for workspace estimation of cooperating robots after joint
failure. In: 15th TASTED International Conference on Robotics and Applications,
pp. 461-468 (2010)

He, Y.H., Mehta, D., Niemerg, M., Rummel, M., Valeanu, A.: Exploring the poten-
tial energy landscape over a large parameter-space. J. High Energy Phys. 2013(7),
1-29 (2013)

Newell, A.J.: Transition to superparamagnetism in chains of magnetosome crystals.
Geochem. Geophys. Geosy. 10(11), Q11Z08 (2009)

Rostalski, P., Fotiou, I.A., Bates, D.J., Beccuti, A.G., Morari, M.: Numerical alge-
braic geometry for optimal control applications. SIAM J Optimiz. 21(2), 417-437
(2011)

Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.: Bertini: software for
numerical algebraic geometry (2006)

Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial
systems by homotopy continuation. ACM Trans. Math. Softw. (TOMS) 25(2),
251-276 (1999)

Bates, D., Brake, D., Niemerg, M.: Paramotopy: parameter homotopies in parallel.
arXiv.org/abs/1804.04183 (2018)

Bates, D., Hauenstein, J., Sommese, A., Wampler, C.: Adaptive multiprecision
path tracking. STAM J. Numer. Anal. 46(2), 722-746 (2008)

Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Stepsize control for
path tracking. Contemp. Math. 496, 21-31 (2009)

Bates, D.J., Hauenstein, J.D., Sommese, A.J.: Efficient path tracking methods.
Numer. Algorithms 58(4), 451-459 (2011)

Wampler, C.W.: Bezout number calculations for multi-homogeneous polynomial
systems. Appl. Math. Comput. 51(2), 143-157 (1992)

Li, T.Y.: Numerical solution of polynomial systems by homotopy continuation
methods. Handb. Numer. Anal. 11, 209-304 (2003)

Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for isolated
singularities of polynomial systems. Theoret. Comput. Sci. 359, 111-122 (2006)
Hauenstein, J., Wampler, C.: Isosingular sets and deflation. Found. Comput. Math.
13, 371-403 (2013)

http://arxiv.org/abs/org/abs/1804.04183

l‘)

Check for
updates

DiscreteZOO: Towards a Fingerprint
Database of Discrete Objects

Katja Bercic! ™) and Janos Vidali?

! UNAM, Morelia, Mexico
katja@matmor.unam.mx
2 University of Ljubljana, Ljubljana, Slovenia
janos.vidali@fmf.uni-1j.si
http://katja.not.si, http://jaanos.github.io

Abstract. There have been various efforts to collect certain mathemat-
ical results into searchable databases. In this paper, we present Discrete-
Z0O0: a repository and a fingerprint database for discrete mathematical
objects. At the moment, it hosts collections of vertex-transitive graphs
and maniplexes, which are a common generalisation of maps and abstract
polytopes. The project encompasses a tool for handling and maintain-
ing collections of objects, as well as a website and SageMath package
for interacting with the database. The project aims to become a general
platform to make collections of mathematical objects easier to publish
and access.

Keywords: Fingerprint database - Vertex-transitive graphs
Maniplexes - SageMath package - Website

1 Introduction

Collections of mathematical results of various kinds are becoming more and more
common, which is not at all surprising given the technological advances and their
usefulness. Billey and Tenner [6] described an important concept in this context,
that of a fingerprint database,

a searchable, collaborative database of citable mathematical results
indexed by small, language-independent, and canonical data.

The more of these properties a database of mathematical results satisfies, the
more useful it is. Moreover, fingerprint databases also have the potential to
be more than just an efficient way to look things up: they can help uncover
connections between fields, provide a tool for mathematical experimentation. As
such databases make it easier to uncover prior work, they can improve refereeing.

Perhaps the most famous example of a database of mathematical results is the
On-Line Encyclopedia of Integer Sequences (OEIS) [16]. The OEIS is a search-
able and collaborative database of integer sequences, which serve as fingerprints
© Springer International Publishing AG, part of Springer Nature 2018

J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 36-44, 2018.
https://doi.org/10.1007/978-3-319-96418-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96418-8_5&domain=pdf

DiscreteZOO 37

for their associated entries. The sequences are citable via their unique identifier
(such as A000055) and the indexing is based on small, language-independent,
and canonical data: the first few elements of a sequence. The usefulness of OEIS
stems in part from the fact that the fingerprint is simple to search for.

Collections of mathematical objects such as the Foster census [7,9,10] of cubic
symmetric graphs are also natural candidates for searchable databases. These
collections are already commonly used to look up references and properties of
mathematical objects or to browse for patterns and counterexamples. They are
even more useful when they observe at least some of the fingerprint database
principles, and most importantly, when they are computer searchable.

We have started collecting various partially overlapping censuses of vertex-
transitive graphs [9,17,18] into a database with the intent to make the collections
of graphs searchable. We soon realised that we need not restrict ourselves to
graphs: we could store any discrete mathematical object, as long as there is an
efficient way to compute a fingerprint of said object. Thus, we have started the
DiscreteZOO project with the aim for it to become a repository and fingerprint
database for discrete mathematical objects.

Our fingerprint database is somewhat different from the idea of Billey and
Tenner. They require indexing mathematical statements by canonical data. We
also are interested in storing mathematical results and objects without a canon-
ical fingerprint. For these we use small and language-independent data which
are not necessarily canonical, but provide an intuitive way to search for objects.
The simplest example of such a “semantic fingerprint” that applies to nearly
all object types is size. Other examples for graphs include valency, degree of
symmetry, etc.

Any collection of mathematical results or objects beyond a certain size thresh-
old presents the author with a choice on how to make it available to the research
community. While a short collection can be simply included in a table in a paper,
this approach does not work with larger collections. There are two related diffi-
culties a researcher could face when publishing such a collection, and Discrete-
ZOO [2] aims to address both.

1. A searchable database is often out of the scope of a typical researcher’s work.
2. Most mathematical objects do not have a canonical fingerprint.

While every database of mathematical results necessarily has its own pecu-
liarities, they have enough in common for a reusable infrastructure to make
sense. This infrastructure can then provide common features to all databases
while being flexible enough to accommodate any database-specific features.

DiscreteZOO offers a service both to the authors of collections and the math-
ematical community in general. For the authors, it is a platform for publishing
a collection as a searchable database. For researchers, it provides interfaces for
interacting with the databases.

38 K. Berc¢i¢ and J. Vidali

2 Project Description

At the centre of DiscreteZOO is the core database and the connections to its
derived databases. In addition to the objects and their properties, the DiscreteZOO
core database keeps track of additions and changes as well as records of references
for each object and object property. There are two main user interfaces: the web-
site and the SageMath package. Each of the interfaces uses a simplified database
optimised for its needs. In addition to the core and package databases, a user can
download a subset of the core database for offline use with the SageMath package.
This local database can store any properties that she computes. From here, she can
submit the changes she makes to the core database.

A typical DiscreteZOO database entry describes a single discrete object and
several of its properties, including description, identifiers in other databases,
and related objects. We intend to maintain a core set of features for each object
type supported by DiscreteZOO. For example, all objects included should have
a citable unique identifier and have a shareable encoding consisting of printable
characters. Such an encoding makes it possible to transfer an object between
software tools. Precomputed properties are properties stored in the database
for the purpose of searching and can be thought of as semantic fingerprints
mentioned earlier.

Every object has a GUID (globally unique identifier), a citable unique iden-
tifier, and any number of human-readable aliases and descriptions. Furthermore,
precomputed properties are stored with every object. For example, the object
representing the Petersen graph is marked as a graph, and has all the precom-
puted properties relevant to graphs. Additionally, this object is also marked as
being a vertex-transitive graph and a cubic vertex-transitive graph, and each of
these types carries its own additional properties.

A canonical form or labelling [1] of a graph G is a labeled graph Canon(G) ~
G with the additional property that for every other graph H ~ G, H has the
same canonical labelling Canon(H) = Canon(G). DiscreteZOO uses software
such as Nauty [14] and Bliss [11] to obtain canonical labellings of graphs, which
are used to find a given graph or maniplex in the database.

2.1 GUIDs and Citable Unique Identifiers

In the OEIS [16], the sequence for the number of trees with n unlabeled nodes
is identified by A000055. One can obtain more information about an integer
sequence by typing the unique identifier after the domain in the URL, like so:
https://oeis.org/A000055. Databases like The Database of Permutation Pattern
Avoidance [20] and FindStat [19] use similar citable unique identifiers.

Each object in the DiscreteZOO repository has a unique identifier: the hexa-
decimal representation of the SHA-256 hash of some canonical string representa-
tion of the object. The use of a cryptographic hash function is a strong guarantee
that no two objects will ever be found to have the same identifier. The reason
for choosing such a hash-based identifier instead of a sequential one (as with
other databases) is the desire for decentralisation. For instance, a researcher may

https://oeis.org/A000055

DiscreteZOO 39

encounter an object that is not yet in the database; another researcher may then
reproduce her work and easily verify that they have obtained the same object by
comparing the identifier. Once the object is in the database, the identifier may
then be used to quickly access the object and its properties.

The resulting 64-character strings are infeasibly long for reproduction in a
text intended to be read by humans. We chose a standard abbreviation tech-
nique. In the Git versioning system [8], objects are identified by 40-character
hashes, but are usually referred to by simply taking the first 7 characters. In
DiscreteZOOQO, the citable unique identifier is obtained by taking the first 12 hex-
adecimal digits of the hash and using further characters when necessary to avoid
conflicts. The DiscreteZOO citable identifier is described in more detail in the
project documentation [4]. For readability, the characters are split into groups
of 4 characters and the letter Z is prepended:

123456789abcdef... — Z1234-5678-9abc. (1)

2.2 Collaborative Aspects

The databases have a journaling system that keeps track of the tables, rows, and
columns changed, as well as of who introduced the changes. The data reposi-
tory [3] is intended solely for the ease of adding information to the database and
exporting the database into usable forms. It is composed of the following three
parts.

— Contributions: user contributions to the database to be merged into the
main database.

— Datasets: specifications of datasets to be exported from the database for
local use.

— Objects: specifications of database objects.

To submit a contribution, an author can make a pull request to the data
repository. The request is then checked. If accepted, the contribution is merged
into the database, the database downloads are updated, and other users can
choose to update their local databases. A dataset is simply a collection of objects
in the database, identified by one of their identifiers, together with the specifi-
cation of the types of objects it describes. Datasets may also be nested — i.e., a
parent dataset will contain all objects in the child dataset (but will not neces-
sarily describe the same object types).

3 User Interfaces

Both the website and the SageMath package make it possible for users to search for
objects and filter object sets. The SageMath package supports adding new objects
and properties into the local database. If a researcher wants to submit some of
them to the core database, the package helps with preparing the changes file.

40 K. Berc¢i¢ and J. Vidali

In preparing the DiscreteZOO interfaces, we took advantage of the design
process as described in, for example, [12,15] from the beginning. The project
stemmed from the observation that at least some researchers wished for a tool to
work with collections of mathematical objects. We are constructing the interface
to support the features that are simplest to implement and that have the greatest
usability and we hope to improve the platform as researchers start to use it.

3.1 Website

The DiscreteZOO website is dedicated to simple searches, downloads and dis-
playing encyclopaedic information. For example, it is possible to download graph
search results in the sparse6 [13] format. For a search of symmetric objects, it
is possible to export the corresponding list of automorphism groups for certain
computer algebra systems like GAP, Magma and SageMath. The website also
provides a list of references (online resources, authors, papers) relevant to the
search result. These references can be conveniently downloaded in BibTeX for-
mat. The website also supports various other downloads, including code snippets
for datasets.

On the first page, a visitor is presented with the search box. Each result in
the search results display has options to copy data to the clipboard (such as a
link to the description page, references, formats for computer algebra systems,
etc.). In the following list, we describe the functionality of the search box shown
in Fig. 1.

1. The user selects the type of objects (graphs, maniplexes, etc.).

2. Corresponding contextual filters are shown in the adjacent area.

3. The number of matches found in the database is displayed in real time to give
instant feedback on the search.

4. The user can modify the search results display by choosing the properties
that get shown.

5. To optimise responsiveness, results are not displayed until the user presses
the “display results” button.

6. Search result downloads are supported for various formats and do not require
displaying the search results first.

result type selection contextual filters

3matches:

4 5 6
o) display results &

Fig. 1. Search box

The contextual filters area shown in Fig.2 contains all properties stored in
the database for the chosen object type and supports the functionality in list
below. Numeric properties can be filtered with simple equations.

DiscreteZOO 41

1. When there are many filtering options, the interface shows a filter search.

The filter list shows all filters available for the chosen type of objects.

3. On mouse over (or tap), the filter line shows further information. The defini-
tion of the filter is available as a tooltip on the question mark icon and the
arrow activates the filter.

4. The right hand side of the contextual filters area displays currently active
filters.

5. On mouse over, the filter line shows action options for an active filter: edit
and remove.

6. Filter edit mode.

N

1 4
Q)
is not Cayley
2 5 girth > 3 S x
degree
order <= 100
diameter
6 order
girth
& > 50 v
3 is Cayley >

order

Fig. 2. Sample contextual filters for graphs

Example 1. Alice wants to find more information about her favourite abstract
polytope. She does not remember its name, so she uses its properties to find it
in the database. She filters for self-dual and self-Petrial abstract polytopes with
the Schlafli symbol {12,12} and is then able to access the description page of
the polytope.

Example 2. Bob wants to test a subgroup condition for automorphism groups
of certain maps. Since maps are exactly maniplexes of rank 3, he chooses these as
his object type, along with any other filters necessary to get the ones he wants.
Bob has GAP code that tests his subgroup condition. He downloads GAP code
with a list of the automorphism groups of the maps that he is interested in from
DiscreteZOO. Bob then runs his code against the list from GAP.

3.2 SageMath Interface

The objects in the database can also be accessed using the SageMath interface [5].
SageMath is an open source computer algebra system based on the Python
programming language, and it already provides many structures for representing
various mathematical objects. The DiscreteZOO SageMath interface defines its
own structures that inherit and override SageMath’s structures, thus allowing
a user to utilise the full potential of SageMath while adding the functionality
of accessing precomputed properties in the database, as well as storing newly
computed properties back to the database for later reuse.

42 K. Berc¢i¢ and J. Vidali

After installing the interface and the database, the user can either import
the entire discretezoo package, or load submodules as needed. In the fol-
lowing examples, we will use the submodules for the census of connected
cubic vertex-transitive graphs by Potocnik et al. [17] (also known as the
CVT census). We only need to import the class CVTIGraph and the object info
from the discretezoo.entities.cvt submodule as well as the objects from the
discretezoo.entities.cvt.fields submodule. The first submodule is intended for
cubic vertex-transitive graphs, while the latter contains the objects representing
the precomputed properties that a user can use in search queries.

The CVTGraph class extends the ZooGraph class representing general graphs in
the database, and the latter in turn extends SageMath’s Graph class. It is possible
to construct a CVTGraph instance by specifying the order and index as given in the
CVT census. For example, it is possible to compare the Petersen graph obtained
in such a way to SageMath’s builtin version using the is_isomorphic method.

sage: G = CVTGraph(10, 3)
sage: G.is_isomorphic(graphs.PetersenGraph())
True

Note that the object G already contains the precomputed properties from the
database. It is possible to use the usual SageMath methods to access them.

sage: G.girth(Q)

5

sage: G.is_cayley(Q)
False

A graph may also be constructed manually — if the obtained graph is in the
database, it will be recognized and its precomputed properties will be loaded.

sage: CVTGraph([[(u, i) for u in GF(7) for i in (-1, 1)],
lambda (u, i), (v, j): i != j and uxi + vxj in (1, 2, 4)1)
Heawood graph: cubic vertex—transitive graph

on 14 vertices, number 1

The info object is used to make queries to the database. The user may restrict
the queries by specifying conditions using those field objects, which share names
with the methods used to access the corresponding properties.

The simplest type of query is a counting query — how many objects satisfy
the given conditions. The user may also request that the counts be broken down
by the values of one or more properties.

sage: info.count(diameter == 5) # CVT graphs with diameter 5
37
sage: info.count(diameter == 5, groupby = girth) # break down by girth

{3: 1, 4: 7, 5: 2, 6: 18, 7: 3, 8: 3, 9: 3}

Alternatively, the user may want to list graphs satisfying the specified prop-
erties. The info.all method returns a generator yielding the requested graphs.
It is thus possible to use the usual Python methods to either generate the graphs
one by one or to obtain all of them.

DiscreteZOO 43

sage: gen = info.all(girth == 5, orderby = order) # order by the
sage: next(gen) # number of vertices
Petersen graph: cubic vertex—transitive graph
on 10 vertices, number 3

sage: next(gen)
Dodecahedron: cubic vertex—transitive graph on 20 vertices, number 6
sage: list(info.all(is_partial_cube, ~is_prism))

[Desargues graph: cubic vertex—transitive graph

on 20 vertices, number 7,
Truncated Octahedron: cubic vertex—transitive graph
on 24 vertices, number 11,
Truncated Cuboctahedron: cubic vertex—transitive graph
on 48 vertices, number 29,
Truncated Icosidodecahedron: cubic vertex—transitive graph
on 120 vertices, number 60]

sage: for G in info.all(is_connected, ~is_hamiltonian): print(G)
Truncated Petersen graph

Truncated Coxeter graph

Petersen graph

Coxeter graph

Sometimes, we are only interested in a single graph with given properties —
this can be achieved using the info.one method.

sage: info.one(girth >= 7, diameter == 4, orderby = order)
Generalized Petersen graph (13, 5): cubic vertex—transitive graph
on 26 vertices, number 5

4 Future Work

DiscreteZOO started out as a database for symmetric graphs. We introduced
some large improvements with the new version and added maniplexes, which
are a common generalisation of maps and abstract polytopes. We are currently
working to add finite automata and plan to add other kinds of objects as the
project grows. We are also working to implement more search features, including
providing information on the completeness of search results. For example, we
want to be able to say up to which order the search results show all graphs
satisfying the search conditions.

DiscreteZOO will be used in a planned classification of maniplexes of small
ranks with a small number of orbits. We hope that it will be helpful with other
classification attempts as well. We would be delighted if authors of any of the
existing databases were interested in using DiscreteZOO, in which case we would
implement any missing features.

44 K. Berc¢i¢ and J. Vidali

Our main priority is for DiscreteZOO to be useful to the mathematical com-
munity, which is why we are planning to develop more features or change existing
ones as the need arises. We are confident that the project will be a valuable tool
for many mathematicians in near future.

References

1. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of the Fif-
teenth Annual ACM Symposium on Theory of Computing. pp. 171-183. STOC
1983. ACM, New York (1983). http://doi.acm.org/10.1145/800061.808746

2. Ber¢i¢, K., Vidali, J.: DiscreteZOO. http://discretezoo.xyz/

3. Berci¢, K., Vidali, J.: DiscreteZOO data repository. https://github.com/
DiscreteZOO/DiscreteZOO-data

4. Beré¢ic, K., Vidali, J.: DiscreteZOO documentation. https://github.com/
DiscreteZOO /DiscreteZOO-docs

5. Beréi¢, K., Vidali, J.: DiscreteZOO SageMath interface repository. https://github.
com/DiscreteZOO /DiscreteZOO-sage

6. Billey, S.C., Tenner, B.E.: Fingerprint databases for theorems. Not. Am. Math.
Soc. 60(8), 1034-1039 (2013). https://doi.org/10.1090,/n0ti1029

7. Bouwer, L. (ed.): The Foster census. R. M. Foster’s census of connected symmet-
ric trivalent graphs. Co-editors: Chernoff, W.W., Monson, B., Star, Z.: With a
foreword by H. S. M. Coxeter and a biographical preface by S. Schuster. Charles
Babbage Research Centre, Winnipeg (1988)

8. Chacon, S., Straub, B.: Pro Git (2014). https://git-scm.com/

9. Conder, M., Dobcsanyi, P., McKay, B., Royle, G.: The Extended Foster Census.
http://www.cs.uwa.edu.au/gordon/remote/foster

10. Foster, R.M.: Geometrical circuits of electrical networks. Trans. Am. Inst. Electr.
Eng. 51(2), 309-317 (1932). https://doi.org/10.1109/T-AIEE.1932.5056068

11. Junttila, T., Kaski, P.: Bliss: A Tool for Computing Automorphism Groups and
Canonical Labelings of Graphs. http://www.tcs.hut.fi/Software/bliss/

12. Kholmatova, A.: Design Systems. Smashing Media AG (2017)

13. McKay, B.: Description of graph6, sparse6 and digraph6 encodings. http://users.
cecs.anu.edu.au/~bdm/data/formats.txt

14. McKay, B.D., Piperno, A.: Practical graph isomorphism II. J. Symbolic Comput.
60, 94-112 (2014)

15. Norman, D.: The Design of Everyday Things. Revised and Expanded edn. Basic
Books (2013)

16. OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences (2018).
http://oeis.org

17. Potocnik, P., Spiga, P., Verret, G.: Cubic vertex-transitive graphs on up to 1280
vertices. J. Symbolic Comput. 50, 465-477 (2013). https://doi.org/10.1016/j.jsc.
2012.09.002

18. Royle, G.: Transitive graphs. http://staffhome.ecm.uwa.edu.au/~00013890/
remote/trans/index.html

19. Rubey, M., Stump, C., et al.: FindStat - The combinatorial statistics database
(2017). http://www.FindStat.org

20. Tenner, B.E.: Database of permutation pattern avoidance. http://math.depaul.
edu/bridget /patterns.html

http://doi.acm.org/10.1145/800061.808746
http://discretezoo.xyz/
https://github.com/DiscreteZOO/DiscreteZOO-data
https://github.com/DiscreteZOO/DiscreteZOO-data
https://github.com/DiscreteZOO/DiscreteZOO-docs
https://github.com/DiscreteZOO/DiscreteZOO-docs
https://github.com/DiscreteZOO/DiscreteZOO-sage
https://github.com/DiscreteZOO/DiscreteZOO-sage
https://doi.org/10.1090/noti1029
https://git-scm.com/
http://www.cs.uwa.edu.au/gordon/remote/foster
https://doi.org/10.1109/T-AIEE.1932.5056068
http://www.tcs.hut.fi/Software/bliss/
http://users.cecs.anu.edu.au/~bdm/data/formats.txt
http://users.cecs.anu.edu.au/~bdm/data/formats.txt
http://oeis.org
https://doi.org/10.1016/j.jsc.2012.09.002
https://doi.org/10.1016/j.jsc.2012.09.002
http://staffhome.ecm.uwa.edu.au/~00013890/remote/trans/index.html
http://staffhome.ecm.uwa.edu.au/~00013890/remote/trans/index.html
http://www.FindStat.org
http://math.depaul.edu/bridget/patterns.html
http://math.depaul.edu/bridget/patterns.html

®

Check for
updates

A Framework for Unconditionally Secure
Public-Key Encryption (with Possible
Decryption Errors)

Mariya Bessonov', Dima Grigoriev?, and Vladimir Shpilrain®®)
! New York City College of Technology, Brooklyn, USA
mbessonov@citytech.cuny.edu
2 Université de Lille, Lille, France
dmitry.grigoryev@math.univ-1illel.fr
3 The City College of New York, New York, USA
shpil@groups.sci.ccny.cuny.edu

Abstract. We offer a public-key encryption protocol where decryption
of a single bit by a legitimate party is correct with probability p that is
greater than 1/2 but less than 1. At the same time, a computationally
unbounded (passive) adversary correctly recovers the transmitted bit
with probability exactly 1/2.

1 Preface

It is well known (and easy to show) that unconditionally secure (i.e., secure
without any computational assumptions) public-key encryption is impossible if
the legitimate receiver decrypts correctly with probability exactly 1. The ques-
tion is: what if this probability is less than 1?7 More precisely, what if the sender
transmits a single encrypted bit and the legitimate receiver decrypts it correctly
with probability P greater than 1/2 but less than 17

One can say “since the legitimate receiver has the same information about the
secret bit as the eavesdropper does, he cannot have any advantage over a com-
putationally unbounded eavesdropper, so the latter will decrypt correctly with
probability at least P”. This is, indeed, correct. Note however that if decryption
is not necessarily accurate (i.e., if decryption errors are possible), then the legit-
imate sender has an advantage over the eavesdropper since the sender, unlike
the eavesdropper, knows ezactly what the transmitted secret bit is. Therefore,
if instead of making the receiver guess the transmitted bit we make the sender
guess the receiver’s decryption key, we may get some advantage. Thus, what we
do in our scheme is:

Research of Mariya Bessonov was partially supported by the NSF grant DMS-
1515800. Research of Vladimir Shpilrain was partially supported by the ONR (Office
of Naval Research) grant N000141512164. Research of Dima Grigoriev was partially
supported by the RSF grant 16-11-10075.

© Springer International Publishing AG, part of Springer Nature 2018

J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 45-54, 2018.
https://doi.org/10.1007/978-3-319-96418-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96418-8_6&domain=pdf

46 M. Bessonov et al.

We make the adversary compete with the sender, not with the receiver, in
contrast with the existing encryption schemes.

Competing with the sender is dramatically different from competing with the
receiver because the adversary and the sender have different goals:

The goal of the sender is to guess the receiver’s decryption key to have
him decrypt her secret bit correctly, whereas the goal of the adversary is
to guess the sender’s secret bit correctly.

Thus, the adversary and the sender may have different probability spaces
for making their guess and therefore it is not surprising that their probabilities
of success may be different. Note that the adversary’s guess of the receiver’s
decryption key is at least as good as that of the sender (for information-theoretical
reasons), but again — the goal of the adversary is to guess the sender’s bit, not
the receiver’s decryption key.

We will show that it is, in fact, not too hard to arrange for the sender to
have a higher probability of success (in her guessing) compared to that of the
adversary, see Proposition 2 in our Sect.4.2. What is nontrivial is to have the
adversary’s probability of success in such a scenario to be equal to exactly 1/2,
which is what we claim in our scheme.

Finally, we note that in [4], the authors offered a simple public key encryption
scheme where a computationally unbounded adversary cannot recover a secret
bit with probability higher than 0.75 if she uses an encryption emulation attack.
At the same time, the legitimate party recovers a secret bit with probability very
close to 1. However, in that scheme the receiver’s private key can be uniquely
recovered from the public key, and therefore the private key is not secure against
a computationally unbounded adversary. This is not the case with the scheme
in the present paper; in fact, given a public key, any private key from the set of
all possible private keys can be associated to it with nonzero probability.

2 Introduction

We consider a scenario where one party, Alice, wants to transmit a secret bit to
another party, Bob, in the presence of a computationally unbounded (passive)
adversary, Eve. We allow the legitimate parties, Alice and Bob, to fail with some
controlled probability.

The way it works is roughly as follows. Bob applies a randomized (public)
function F' to his private decryption key b and obtains the result B = F(b)
that he makes public. Based on B, Alice tries to guess b. The probability to
guess b is the same for Alice and Eve since they both have the same information
about b in that case. However, what Eve really wants is not to recover b, but
to recover Alice’s bit, which means she needs to recover not the actual b, but
rather what Alice thinks b is. (Think about a scenario where a customer Alice
wants to transmit her credit card number to an Internet retailer Bob. Then
what Eve really wants is Alice’s credit card number, not Bob’s decryption key.)

A Framework for Unconditionally Secure Public-Key Encryption 47

Therefore, probability spaces for Alice and Eve are different in general, and by
(privately) manipulating her probability space Alice can get advantage over Eve
as far as their probabilities of success are concerned. Once again, success for Alice
(the sender) is to guess b while success for Eve is to guess the bit Alice wants to
transmit to Bob. Note that success for Alice is the same as success for Bob in
the sense that Bob decrypts Alice’s bit correctly if and only if Alice is successful
in our terminology.

Computing exact probabilities of success for Alice and Eve theoretically can
be tedious in general; we denote these probabilities by P4 and Pg, respectively.
We use the following trick to make computation of Pg easy. Alice will select,
with equal probability, between two mutually exclusive strategies for guessing b,
thus making Pp equal to exactly 3.

Computing P4 precisely remains a difficult theoretical task. However, in
Sect. 4 we give an “existence-type” argument showing that there exists a choice
of parameters that makes P4 strictly greater than %, see Proposition 1. Experi-
mentally, the best we could do for P4 is about 0.55, see our Sect.6. It remains
an interesting theoretical question what the maximum possible value of P4 (as
a function of n, the interval length) in our protocol in Sect. 3 is.

Finally, we mention that it is not immediately clear whether our protocol in
Sect. 3 has any practical significance; we discuss this in Sect. 5.

3 Basic Protocol

The protocol below is for transmitting a single secret bit from Alice to Bob.

There are (private or public) functions f(n) and g(n) and a public function
h(n) in the protocol below that have to be selected to maximize P4, Alice’s
probability of guessing Bob’s decryption key b. Parameters are discussed in our
Sect. 6.

1. Bob selects, uniformly at random on integers from the interval [0,n — 1], a
starting point b of his random walk. This b will be his private decryption key.
Bob then does a simple symmetric random walk with h(n) steps. Let B be
the end point of Bob’s random walk. If B > n — 1, then Bob starts over.
Otherwise, he publishes B. Bob publishes B.

2. Step 2 is repeated by Alice m times, for a sufficiently large m.

Alice selects, uniformly at random on integers from the interval [B,n — 1],
a starting point a of her random walk. She then selects, with probability %,
between f(n) steps and g(n) steps. Alice then does a random walk starting
at the point a with the number of steps selected. Denote by A the end point
of Alice’s random walk. After she does her random walk, Alice moves the end
point A either % left or % right, with probability % She then moves the point
a % in the same direction. (This is needed to avoid situations where a = b or
A=DB)

3. Alice arranges all her m random walks at Step 2 in two groups: in one group
there are walks satisfying the condition A < B, while in the other group there

48 M. Bessonov et al.

are walks satisfying the condition B < A. Then she selects between the two
groups, with probability 1.

4. Alice then splits all walks in the group selected at Step 3 in two groups
again: in one group there are walks with f(n) steps, in the other group there
are walks with g(n) steps. Then she selects between the two groups, with
probability % If the selected group turns out to be empty, Alice starts over
from Step 2. If the selected group is not empty, then from this group, Alice
selects one random walk uniformly at random. Let ag be the starting point
of that selected random walk.

5. If the random walk selected by Alice at Step 4 has f(n) steps and satisfies
A < B, she chooses the interval {x < ag}. If it has g(n) steps and satisfies
A < B, she chooses the interval {z > ag}. If it has f(n) steps and satisfies
A > B, she chooses the interval {x > ao}. If it has g(n) steps and satisfies
A > B, she chooses the interval {z < ag}.

6. Alice assumes that Bob’s decryption key b is in the interval she selected at
Step 5 of the protocol and encrypts her bit accordingly, i.e., by labeling the
selected interval with her secret bit ¢ and the other interval with the bit 1—c.
She then sends the point ag and the above interval labeling to Bob.

7. Bob recovers the bit corresponding to the label of the interval where his b is.

Remark 1. At Step 2 of the above protocol Alice selects a starting point a uni-
formly at random on integers from the interval [B,n — 1]. We note that, in fact,
the distribution of @ on [B,n — 1] does not have to be uniform. It can be closer
to geometric, say (with points closer to B more likely to be selected). This will
not affect security, but can increase the probability of correct decryption by
legitimate party.

Below we summarize public as well as private information relevant to this
protocol.

Private information consists of:

Alice’s choices between the options at Steps 2, 3, 4.

Alice’s private key: point A (the end point of Alice’s random walk).
Bob’s private key: point b (the starting point of Bob’s random walk).
Functions f(n) and g(n) can be private but they do not have to be.

Public information consists of:

Public parameters: interval [0,n — 1]; the number h(n) of steps in Bob’s random
walk; the number m of Alice’s random walks at Step 2.

Transmitted information: point ag (the starting point of Alice’s selected random
walk) and labeling of the interval {z > ag} by a bit.

Bob’s public key: point B (the end point of Bob’s random walk).

3.1 Informal Explanation

We think it will be helpful to the reader if we give an informal explanation of
what is actually going on in the above protocol. The core of the whole thing is

A Framework for Unconditionally Secure Public-Key Encryption 49

the following non-obvious fact: if Alice and Bob do independent random walks
starting at two random points, a and b, respectively, then the conditional proba-
bility P(b < a | A < B < a) is higher when the number of steps in Alice’s random
walk is larger (with the number of steps in Bob’s random walk fixed). Refer to
our Appendix to see how to explain and theoretically quantify this statement.

Now suppose that the number f(n) of steps is large while g(n) is small.
Then, to increase her probability of success P4, Alice could have just done f(n)
steps and guess that b < a, conditioned on A < B < a. This guess would be
correct with high probability. However, what Alice tries to do in our protocol
is confuse Eve and make sure that Eve is unable to guess Alice’s transmitted
bit with probability greater than % This is why Alice deliberately decreases
her probability of success by selecting, in case she does g(n) steps, the interval
{z > a} where the point b belongs with probability less than %, in the hope that
her total probability of success will still be greater than % This is indeed the
case under appropriate choice of parameters, see our Sect. 6.

At the same time, the conditional probability P(b<a | B< A<aor B <
a <A =Pb<a|B< Aand B < a) “almost” does not depend on the
number of steps in Alice’s walk, so here Alice can have her probability of success
only slightly above % Nevertheless, we need to include the walks satisfying this
condition in Alice’s probability space to make it “symmetric” since otherwise, if
we just use the walks satisfying A < B < a, Eve might get some idea about the
number of steps in Alice’s walk. Specifically, if the points B and a are far apart,
then the condition A < B < a makes it appear likely that the number of steps in
Alice’s walk was rather large than small. Symmetrizing Alice’s probability space
by adding walks with B < A eliminates this problem, but there is a price to pay
for that: the difference P4 — % gets cut in half.

Finally, we note that the fact that P(b < a | B < A and B < a) “almost”
does not depend on the number of steps in Alice’s walk is in sharp contrast with
the fact that P(b < a | B < A) does strongly depend on the number of steps,
see [1].

4 Probabilities of Success

Recall that success for Alice (the sender) in our scenario is, given two intervals
{z > a} and {z < a}, to guess the interval where Bob’s private number b is. On
the other hand, success for Eve (the passive adversary) is to guess the bit Alice
wants to transmit to Bob, i.e., to “guess Alice’s guess” of the interval where
b is. We denote by P4 and Pg the probabilities of success for Alice and Eve,
respectively.

4.1 Alice’s Probability P4 to Guess the Interval Where b Is

Proposition 1. There exists a choice of parameters that makes Py strictly

1
greater than 5.

50 M. Bessonov et al.

Proof. Recall that, while executing the protocol in Sect. 3 (cf. Steps 3, 4), Alice
selects between two mutually exclusive options (selecting the interval {z < a}
or {z > a}) with probability % Denote her probability of success if she uses the
option 1 by p, and her probability of success if she uses the option 2 by g. Then
Py = 3(p + q). If it happens so that p + ¢ < 1, then (1 —p) + (1 —¢) > 1.
This means that if Alice switches the interval assignments between the options,
then P4 = 2((1—p) + (1 —g)) > 3. This shows that there is a choice of interval
assignments that gives P4 > 5, unless p + ¢ = 1 for any choice of parameters.
The latter however is impossible because by varying the number of steps in a
random walk for one of the two possible options, one varies the probability of
guessing in this option only, see our Sect. 3.1 and Appendix.

4.2 Eve’s Probability P to Guess Alice’s Bit
The following follows directly from the protocol description.
Proposition 2. P = %

Proof. As follows from the protocol description (Steps 3, 4, 5), Alice selects, with
equal probability %, between 4 possibilities. Two of these possibilities result in
selecting the interval {x > ag}, while the other two result in selecting the interval
{z < ap}. Thus, any third party cannot guess Alice’s selection with probability
greater than %

4.3 If Pgp = 1, How Is It Possible That P4 > 17

Note that, given Alice’s probability space { B < a}, the point B always belongs to
the interval {z < a}. This implies, in particular, that if Eve selects the interval
{z < ap} where the point B is, she will guess Alice’s bit with probability %
because for any given point a, Alice selects between the intervals {z < a} or
{z > a} with probability .

One might ask here: why is then P4 > %? Since the point b is either left or
right of a and Alice selects between left and right with probability %, then should
not P4 be equal to %, too? An informal explanation is: the probability spaces for
Eve and Alice are different. Eve only sees one point ag, whereas Alice selects this
ag from a pool with different points a. The point b may be left of some of these
points a but right of the others, so there is no contradiction between P4 > %
and PE = %

The same kind of reasoning applies if Eve tries to emulate Bob: her proba-
bility space will include a fized point B, which is not the case for Bob.

We note in passing that selecting the interval {x < ag} where the point B
is will let Eve guess, with significant probability (still less than 1), the interval
where the point b is. However, we remind the reader that success for Eve is not
to guess b but to guess Alice’s bit.

A Framework for Unconditionally Secure Public-Key Encryption 51

5 How to Use This in Real Life

Given that, according to experimental results, the probability of successfully
transmitting a single bit from Alice to Bob is as low as 0.55 (see our Sect.6.1), a
natural question now is: how can our scheme be used in real life? It is possible to
transform an encryption scheme susceptible to decryption errors into one that
is immune to these errors by using techniques from [2] or [3]. This, however, can
increase Eve’s probability of success as well.

We mention that the most straightforward way to boost the probability of
success is to run the protocol from our Sect.3 k times (every time with fresh
randomness), every time transmitting the same bit c. If, say, k& = 1000, then
the probability that there will be less than 501 occurrences of ¢ out of 1000
is 3000 (¥)(0.55)7(0.45)F % a2 0.000846. (This was computed using the normal
approximation of the binomial distribution.) This means that if Bob goes with
the bit that has more occurrences out of k£ than the other bit does, he will recover
Alice’s bit correctly with probability at least 0.99915 if £ = 1000.

However, different runs of the protocol are not independent in this case since
Alice is transmitting the same bit every time. Therefore, we cannot claim that
Eve’s probability of success will stay at % In other words, statistical attacks
on multiple runs of the protocol for transmitting the same bit may be possible.
These statistical attacks would be based on the fact that for some points B
(specifically, those that are farther from Alice’s points a) Alice’s success rate
will be higher than with others. To counter these attacks, Bob will have to be
more proactive with his public key, e.g. make the correspondence between his
points B and b such that sometimes points closer to a make Alice more successful
and sometimes not. This could mean, in particular, fluctuating parameters of his
random walk, e.g. using random walks in random environment. This suggestion,
of course, is very informal; more precise proposals should be based on more
serious probability theory, so we leave this for a future work. Here we offer an
example of how Alice’s probability of success can be somewhat amplified if we
use two independent runs of the protocol. Note that Eve’s probability of success,
too, is amplified in this case.

Example 1. Instead of transmitting a bit, Alice can use the protocol in Sect.3
to transmit an integer. Thus, in a single run of the protocol she transmits labels
my1 and mqo of two subintervals, where, say, mqo is the integer Alice wants Bob
to receive.

In the second run of the protocol, Alice transmits labels mo; and mos, and
let oo be the integer Alice wants Bob to receive.

Thus, Bob receives my with probability (approximately) 0.55 and may also
with probability (approximately) 0.55. Therefore, Bob receives at least one of
these two numbers with probability 1 — (1 — 0.55)% ~ 0.8. To capitalize on that,
Alice now sends a polynomial P(x,y)+ M to Bob, where P(z,y) is a polynomial
such that P(mqa,ma1) = P(mi2, maa) = P(mi1,me2) = 0, and M is a secret
number. Bob plugs in for x one of the two numbers he received from Alice,

52 M. Bessonov et al.

for y the other number and recovers the secret number M with probability
approximately 0.8.
Eve recovers the secret number M here with probability % =0.75.

6 Parameters and Computer Experiment Results

Suggested parameter values for the protocol in Sect. 3 are: n = 256, h(n) = 2000,
g(n) = 2000, f(n) = 100,000.

6.1 Computer Simulation Results

With f(n) = 100,000 steps for Alice, success rate in a single run of the protocol
was 76%. With g(n) = 2000 steps for Alice, success rate in a single run of the
protocol was 34%. Thus, P4 = %(0.76 +0.34) = 0.55 for a single run.

7 Conclusions

— We offered a public-key encryption scheme where decryption of a single bit
by a legitimate party is correct with probability p that is strictly greater than
1/2. With suggested parameters, p = 0.55.

— In this scheme, even a computationally unbounded (passive) adversary cannot
recover the transmitted bit correctly with probability greater than 1/2.

Appendix

How P(b < a|A < B < a) Depends on the Number of Steps

Let a > 0 and n® be the number of steps in Alice’s walk and suppose initially
that this number is odd (to avoid parity issues, although the conclusion that
P(b < alA < B < a) depends on « still holds when the number of steps is
even). Let n® be the fixed number of steps in Bob’s walk with 0 < 8 < 2. Then
P(b < alA < B < a) depends on « as follows:

— When « is very small, P(b < a|A < B < a) is very close to 1/2.
— As « increases, P(b < a|]A < B < a) tends to P(b < a|B < a), which tends
to1lasn — oo.

Suppose that n® = 1. Then P(b < a|A < B < a) is the probability that b < a,
given that Alice’s one step was to the left and Bob’s final location happens to
be between A and a, for which there is only one possibility B = a — 0.5 and
A =a — 1. In this case,

1
P(b<a|A<B<a):P(b<B):5_0(71—5/2)’

A Framework for Unconditionally Secure Public-Key Encryption 53

or, if we remove the possibility that B = b, by shifting Bob’s end point by adding
or subtracting 0.5 with equal probability, then

P(b<a|A<B<a):P(b<B)m>%
The probability is not exactly equal to 1/2 due to the restriction that 0 < b <
n—1and B < n — 1. However, as n —, the probability that b is close to 1 or
n goes to zero. As « increases, given that B < a, B is more likely to be farther
from a, and when B is farther from and to the left of a, b is more likely to be less
than a. This is because the number of steps in Bob’s walk remains fixed, and
Bob is (almost) equally likely have started to be to the left or to the right of B.
If b < B, certainly b < a. If B > b, the fact that A — a can be larger, increases
the probability that B < b < a. “Almost” because of the restriction on b and B
mentioned above.

Now, as « increases, the condition A < B < a implies that A will be far-
ther from a. Eventually, for o large enough, A will be outside of the interval
{0,1,...,n — 1} with probability close to 1. The probability of A being in the
interval will be exponentially small in a. If A is outside of this interval, then
P < alA < B <a) =P < a|lB < a, Alice’s walk ends to the left of her
starting point) = P(b < a|B < a).

Lemma 1. P(b<a|B <a)— 1 asn — oo.
To see that this is true, consider
Pb<alB<a)=Pb<B<alB<a)+P(B<b<a|B<a) (1)

The first term, P(b < B < a|B <a) = P(b< B) — 1/2 asn — oo. If B is
distance O(n?/?*¢) for small € > 0, P(b < B) goes to 1/2 as n — oo, as it is
just the probability that the endpoint of the walk is to the right of the starting
point. If B is close to 0, the probability is under 1/2 since Bob’s starting point
b is restricted to {0,1,...,n — 1}. As n — oo, the probability that B is close to
0 goes to zero. If B is close to n — 1, P(b < B) is actually close to 1, but the
probability that B is close to n — 1 also goes to zero.

The second term, P(B < b < a|B < a) >+ 1/2 as well. Here, we consider
two possibilities:

- P(B<b<alB<a,a—B>nf?) 2>, 1/2 since the probability of the
displacement being greater than O(nﬁ/ %) is exponentially small.
~ P(B<b<alB<a,a— B < n??%€) is not close to 1, however,

P(a—B<nﬁ/2+€) 270

From this,

P(B<b<a|B<a) "=>5 P(B<b<a|lB<a,a—B>n?) 2%, 1/2,

54 M. Bessonov et al.

Why P(b < a|B < A< aor B<a< A) does not depend greatly
on the number of steps

Consider the two events in the condition separately and note that they are
disjoint.

— If B < a < A, then the probability that b < a does not depend on Alice’s
walk, and thus on «, at all, since the condition is that Alice ended to the right
of her starting point a (the probability of which is the same as Alice ending
to the left of a) and B is always to the left of a in our setup. Note also that
in the sample space consisting of the events {B < a < A} U{B < A < a},
the event {B < a < A} has probability greater than 1/2 since Alice is more
likely to end to the right of A with no other restriction than to the left of a
but to the right of B.

— If B < A < a, the probability that b < a does depend on the number of steps
in both walks, however, if 5 < « are fixed, the probability will approach 1
as n — oo. Thus, the dependence on « is weak, so long as 8 < a. We have
here that under this condition, Alice ended her walk to the left of where she
started, and Bob ended to the left of Alice’s endpoint. If Alice performed a
greater number of steps than Bob, to not have b < a, Bob’s displacement
would have to be greater than Alice’s.

References

1. Bessonov, M., Grigoriev, D., Shpilrain, V.: Probabilistic solution of Yao’s million-
aires’ problem, preprint. https://eprint.iacr.org/2017/1129

2. Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryp-
tion errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 342-360. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3_21

3. Holenstein, T., Renner, R.: One-way secret-key agreement and applications to cir-
cuit polarization and immunization of public-key encryption. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 478-493. Springer, Heidelberg (2005). https://
doi.org/10.1007/11535218_29

4. Osin, D., Shpilrain, V.: Public key encryption and encryption emulation attacks. In:
Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS,
vol. 5010, pp. 252-260. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-79709-8_26

https://eprint.iacr.org/2017/1129
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/11535218_29
https://doi.org/10.1007/11535218_29
https://doi.org/10.1007/978-3-540-79709-8_26
https://doi.org/10.1007/978-3-540-79709-8_26

®

Check for
updates

Classifying Cubic Surfaces over Finite
Fields Using Orbiter

Anton Betten®)

Colorado State University, Fort Collins, USA
betten@math.colostate.edu
http://www.math.colostate.edu/~betten/

Abstract. We present two algorithms to classify cubic surfaces over a
finite fields. An implementation in the programming system Orbiter will
be described.

Keywords: Cubic surface - Clebsch - Algebra - Geometry
Classification -+ Finite field

1 Introduction

The classification of cubic surfaces is a long-standing problem, whose roots trace
back to the 19th century, with groundbreaking work done by Cayley, Salmon,
Clebsch, Schlaefli and many more. It is well known that a smooth cubic surface
has 27 lines. In Fig. 1, the Clebsch surface with its 27 lines is shown.

The (affine) equation of the surface shown is

0= —323 4+ 7oy + 72’2 + 122 + Toy? — 22yz — lday + To2?
—1dzz 43z — 33 + TPz + 2 + Tyz? — Mdyz+ 3y — 328 + 22+ 32— 1

where x,y, 2z are the coordinates of affine 3-space. The canonical (projective)
equation of the Clebsch surface is

a:g—i—x:f—l—xg—&—xg—(x0+x1—|—a:2+x3)3:0.

The somewhat complicated affine equation was chosen to give a pleasant picture
and to make sure that all 27 lines are real and hence visible.

What makes cubic surfaces very interesting is the existence of a special kind
of mapping which takes the points of a surface to points of a plane. Because
of [6] we call them Clebsch maps. This map proceeds in an almost one-to-one
way. These kinds of maps arise naturally, and they can be described algebraically
and geometrically. Objects which admit such a map are called rational. In the
algebraic description, there are polynomial equations which describe the maps
in both ways. In the geometric description, one argues that an arbitrary point
in PG(3, ¢) determines a unique line which intersects two given skew lines. This
line intersects the surface in three points, and a given plane in one (cf. Fig. 2).

© Springer International Publishing AG, part of Springer Nature 2018
J. H. Davenport et al. (Eds.): ICMS 2018, LNCS 10931, pp. 55-61, 2018.
https://doi.org/10.1007/978-3-319-96418-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96418-8_7&domain=pdf

56 A. Betten

Fig. 1. The Clebsch surface with 27 lines

Fig. 2. The Clebsch map

Classifying Cubic Surfaces 57

There is an exceptional locus where the map is either undefined or many-to-
one. On a cubic surface with 27 lines, six lines are mapped to points each. In the
plane, the reverse map is undefined on these six points. The isomorphism type of
the surface is determined by the position of the six points in the plane which are
associated to the exceptional locus of the map. Figure3 is a picture of a cubic
(the Clebsch cubic), a planar circle and its image under the Clebsch map, which
is a certain curve lying on the surface. It is the same view as in Fig. 2, just with
the lines removed.

Fig. 3. The Clebsch map illustrated

2 Underlying Theory

The theory of cubic surfaces is very rich. For an account of the geometry over
finite fields, see [8]. Some notions which are relevant for this work are the fol-
lowing:

A double six is a set of twelve lines a; i = 1,...,6 and b; i = 1,...,6 such
that the six a; are pairwise skew, the six b; are pairwise skew and a; intersects
b; if and only if 7 # 6. Often, a double six is denoted in the array

ai az az a4 as ag
by by b3 by bs be

Once the double sixes in PG(3,q) are classified, the cubic surfaces in PG(3, ¢q)
are classified. In order to classify the double sixes in PG(3, ¢), the algorithm first

58 A. Betten

classifies the ways in which 5 pairwise skew lines with a common transversal can
be chosen. We can think of these configurations as the beginning of a double six,

such as
ai az as a4 as -

- bg
Some additional testing is needed if a double six can be completed from the set
of 5 lines ay,...,as with the common transversal bg. The five lines have to be

sufficiently general. Specifically, any three of the a; determine a hyperboloid and
the other two a; lines must be bisecants to it (cf. Fig.4). In light of Schlaefli’s
theorem [11], the four lines need to have exactly two transversals. In the picture
on the left, the second transversal is not unique, which means that the four lines
cannot be embedded into a double six. On the right, the second transversal is
unique and this is what is needed.

Fig. 4. The condition on 4 lines

3 Functionality

Orbiter is an open source library of C++ classes for algebraic computations. It
offers functionality for finite groups such as permutation groups or matrix groups
over finite fields. It has geometry over finite fields, such as points lines, planes and
general linear subspaces of projective space. Besides that, Orbiter offers a suite
of algorithms to compute orbits. The main tool is a bosed based classificatio