
GPU Optimization of Large-Scale
Eigenvalue Solver

Pavel Kůs, Hermann Lederer, and Andreas Marek

Abstract We present a GPU implementation of a large-scale eigenvalue solver
as a part of the ELPA library. We describe the methodology of utilizing the
GPU accelerators within an already well optimized MPI-based code. We present
numerical results using two different HPC systems equipped with modern GPU
accelerators and show the performance benefits of the GPU version.

1 Introduction

Solving large eigenvalue systems is, apart from being a classical problem of
linear algebra with a broad range of applications, a substantial part of many
important problems in materials science, computational chemistry, and namely
electronic structure theory, where a key task is the solution of Schrödinger-like
eigenproblems [1]. Since the solution of the eigenproblem scales as O(n3), where
n is the size of the matrix, it can easily dominate the whole compute-time for large-
scale calculations.

The ELPA library [1–3] is a well established eigensolver library used by many
computational chemistry and materials science codes. It provides an efficient imple-
mentation in distributed memory with good scaling properties for many thousands
of CPU cores as well as optimizations targeting various particular architectures. It
also contains specific algorithmic advantages for problems where only a certain part
of eigenvalues and eigenvectors are sought.

Since the role of accelerated HPC systems with a high peak performance is
of growing importance, their efficient usage should be ensured. For this reason,
substantial efforts are taken to adapt HPC applications to GPU computing. In this
contribution we describe our ongoing effort of improving the performance of the

P. Kůs (�) · H. Lederer · A. Marek
Max Planck Computing and Data Facility, Garching bei München, Germany
e-mail: pavel.kus@mpcdf.mpg.de; hermann.lederer@mpcdf.mpg.de;
andreas.marek@mpcdf.mpg.de

© Springer Nature Switzerland AG 2019
F. A. Radu et al. (eds.), Numerical Mathematics and Advanced Applications
ENUMATH 2017, Lecture Notes in Computational Science and Engineering 126,
https://doi.org/10.1007/978-3-319-96415-7_9

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96415-7_9&domain=pdf
mailto:pavel.kus@mpcdf.mpg.de
mailto:hermann.lederer@mpcdf.mpg.de
mailto:andreas.marek@mpcdf.mpg.de
https://doi.org/10.1007/978-3-319-96415-7_9


124 P. Kůs et al.

ELPA library on supercomputers with GPU-equipped nodes. We show multiple
ways howGPU support can be employedwithin an already highly optimized parallel
MPI-based code and we discuss their advantages and drawbacks. We comment
on both algorithmic and technical aspects of the problem and show performance
comparisons.

2 Eigenvalue Solver

We look for the solution of (possibly generalized) eigenvalue problem

AV = BV Λ.

The steps of finding solution to this problem are well known and conceptually
simple, see, e.g, [4]. First, if we are to compute a generalized eigenvalue problem,
we start by computing the Cholesky decomposition B = LLT and by transforming
the problem to a standard one, Ã = Ṽ Λ with

Ã = L−1A(L−1)T , Ṽ = LT V.

The next step is the reduction of the matrix to a tridiagonal form

T = QÃQT ,

whereQ = Qn · · ·Q2Q1 andQT = QT
1 QT

2 · · ·QT
n are the successive Householder

matrices reducing one column of Ã at a time. The Householder matrices

Qi = I − βiviv
T
i

are never constructed explicitly, but are always represented only by the Householder
vector vi . In each step, a new Householder vector is computed and stored in place of
an eliminated column of A, reducing the memory requirements. The diagonal and
sub-diagonal of the resulting matrix are stored separately. Applying transformations
on A from both sides complicates blocking and usage of efficient BLAS level 3
kernels. This restriction is alleviated in the two-stage algorithm, which will be
briefly described later.

The next step is the solution of the tridiagonal eigenvalue problem

T V̂ = V̂ Λ

and the final step is the back transformation of the k required eigenvectors

Ṽ = QT V̂ .



GPU Optimization of Large-Scale Eigenvalue Solver 125

If the original problem was of the generalized form, we have to transform the
eigenvectors once more using Ṽ = LT V .

The two stage algorithm, featured in ELPA 2, differs from the previous descrip-
tion in performing the conversion to the tridiagonal matrix in two steps. In the
first step, the matrix is reduced to a banded matrix. This allows usage of highly
optimized BLAS level 3 functions. In the second step, the matrix is further reduced
to the tridiagonal form. The two stage tridiagonalization is almost always faster,
however, the price to pay is the need to also transform each eigenvector (found by
the tridiagonal solver) twice, in order to find the eigenvector of the original system.
This makes ELPA 2 an obvious choice when only a small part of the eigenvectors
are sought. When, on the other hand, most or all of the eigenvectors are needed, the
best choice might depend on other parameters (such as the matrix size, particular
hardware, etc) as well. In the rest of this contribution, however, we use only results
of the ELPA 1 algorithm.

3 The ELPA Library

Although the basic algorithm is conceptually quite simple, a highly optimized,
distributed and scalable implementation using MPI is very challenging. The ELPA
library [3] uses a block-cyclic distribution of the matrix, which is well documented
and allows codes using the Scalapack library [5] to easily switch to ELPA in order
to gain a performance benefit.

ELPA employs very efficient communication patterns in processor rows and
columns, benefiting from the block-cyclic distribution of the matrix. Local opera-
tions are done by calls to BLAS (or cuBLAS) for parts of local matrices and vectors.
Apart from the MPI communication routines the code also contains an OpenMP and
a GPU implementation. The complexity is further increased by having both real and
complex compute paths as well as single and double precision variants in one code.
Moreover, different optimizations are needed for different architectures and thus the
code has to be sometimes split on the algorithmic level as well.

4 GPU Computing

Using general purpose graphical processing units (GP-GPU) to accelerate codes
in the HPC field is a well established topic. The reason is obvious—the peak-
performance of such devices is huge (for example, Nvidia Tesla P100 “Pascal” with
a peak-performance of 5.7 TFlop/s is much more powerful than a typical Intel Xeon
processor based node with 2 CPUs). It is thus very tempting to use GPUs in HPC
calculations. There exist many ongoing projects within the field of linear algebra
which try to bring the GPU performance to the users, such as [6] or [7], just to name
a few.



126 P. Kůs et al.

There are, however, obstacles caused by a specific computing model of those
devices and it is very challenging to reach anything near the theoretical peak-
performance of the GPUs. As they were conceived as graphical accelerators, even
though they are much more general-purpose nowadays, the performance is still
optimal for doing the same operation on large amount of data and it is usually
impossible to run the whole HPC calculation on GPUs. The usual approach is
to use GPUs as accelerators, when the application runs on CPUs and offloads
computationally very intensive (but usually small in terms of code length) parts
(called kernels) to the GPU.

There are thus several aspects that have to be taken care of: first, data has to be
moved from the CPU memory to the GPU memory (and back). These memories are
physically separated and if the memory transfers are not done with care, they can
easily degrade the performance of the application. Second, a programming model
has to be selected. There are several options. CUDA C offers the best performance,
but the code has to be hand-tuned to a specific architecture and is not portable.
Furthermore, it works only for Nvidia GPUs. More generic approaches, such as
OpenACC have advantages in higher portability and code maintainability (the code
can be ported step by step by adding OpenACC directives). The performance,
however, is quite often far from optimal. The last option, which is the easiest from
the point of view of code development and maintenance is to use GPU kernels from
a library, which has been already optimized by the hardware vendor.

We use the latter approach. Our CPU optimization of ELPA works with a dis-
tributed matrix, it handles data communications among individual nodes by explicit
calls to the MPI library and uses highly optimized BLAS kernels for operations on
pieces of the locally stored matrix and vectors. Our GPU implementation is a natural
extension of this approach, since we explicitly initiate the data transfers between the
main memory and the device memory and then perform local calculations on pieces
of the locally stored part of the matrix using calls to the highly optimized cuBLAS
library[7]. By this approach, we do not carry the burden of optimizing our code
for future GPU architectures, assuming, that such optimization will be done by the
hardware vendor.

5 GPU Implementation of ELPA 1

The main focus of the ELPA library is on efficient large-scale calculations, which
should remain true for the GPU version as well. We thus still use the MPI-based
implementation with a block-cyclic distribution of the matrices. Locally, each MPI
task communicates with the GPU to transfer data to and from its memory and
to launch the compute kernels on the device. All the memory transfers are done
explicitly to avoid unnecessary data movements. We mostly rely on the cuBLAS
library, only in ELPA 2 we utilize one kernel, which has been hand-written in
CUDA C.



GPU Optimization of Large-Scale Eigenvalue Solver 127

Nowadays, in a typical compute node, the number of CPU cores (several dozens)
is much bigger then the number of GPU devices within the node. Thus in a typical
setup, multiple MPI tasks have to use the same GPU. In such a setting, to be
able to use the GPU efficiently, the Nvidia Multi-process Service [8] has to be
used. This daemon has to be started before the run of the application. Its role is
to dispatch the requests from individual MPI tasks to the GPU device and to use its
streams efficiently. Without the MPS the performance of the application deteriorates
significantly.

In general, we tried to keep a single code path for both the CPU and the GPU
version of ELPA, with the difference, that instead of calling BLAS operations on
parts of the matrices, we call corresponding cuBLAS operations. Obviously, care
has to be taken to synchronize the data in GPU memory with the main memory,
while keeping the data transfers low. Sometimes, however, more substantial changes
in the algorithm have to be done in order to obtain the best performance. The CPU
version of ELPA has been highly optimized by keeping the cache reuse in mind. For
this reason, many of the algorithms use explicit blocking and try to reuse pieces of
the matrices, which are in cache, for multiple operations. This is often not favorable
for a GPU, since it cannot benefit from caching, but, rather, it benefits from large
amounts of data being processes in one run. Some of the blocking strategies thus
had to be changed and the algorithm had to be altered to better suite the GPU.

6 Numerical Results

The success of the ELPA library is caused by a combination of its good node-level
performance and its efficient MPI-based communication patterns among multiple
nodes within the HPC system. The development of the GPU version, which is
described in this contribution, is in principle a node-level optimization, since we do
not alter the MPI communication patterns, but only speed-up the local computations
by offloading compute intensive kernels to the GPU accelerator. For this reason, we
only present performance comparisons using one node, although it can also run on
a large HPC system.

We have tested the GPU implementation on two different systems representing
two different architectures: the first one is a standard Intel-based system with two
Intel Xeon Ivy Bridge processors with 20 cores in total, equipped with two Nvidia
Tesla K40m GPUs. The second machine has two IBM Power8 processors and four
powerful Nvidia Pascal P100 GPUs. Referred to as the “Minsky” system, it also
features the newNVlink interconnect, which should speed-up data transfers between
the main and GPU memory. On the Intel system we used the Intel 16 compilers,
MKL 2017 (containing the BLAS functions) and CUDA 8 (containing the cuBLAS
implementation). On the Minsky machine we used the GNU compilers version 5.3,
the ESSL library version 5.5 (containing the BLAS functions) and CUDA 9. We
always run our GPU code with the Nvidia Multi process service enabled.



128 P. Kůs et al.

Fig. 1 Total solution times in seconds for CPU only and CPU + GPU versions of ELPA 1. Results
from two different architectures are shown for comparison. The problem with the largest matrix is
not always computed due to memory limitations

Figure 1 shows the comparison of the total run-time for problems with different
matrix sizes. Plotted are the results for both mentioned machines and for both the
CPU and the GPU versions of ELPA 1. Comparing the two CPU versions we can
see, that the Power8 machine is generally faster, mostly due to higher frequency
(4GHz compared to 2.8GHz of the Intel machine). For both machines when the
matrix is small, the CPU only implementation is significantly faster, since there is
not enoughworkload to saturate the GPUs. From certain threshold on (matrix size of
around 5000), however, this behavior changes and the GPU version becomes much
faster. In Table 1 we can see timings for a matrix of dimension 32768. We can also
compare the achieved speed-ups (bold font) by going from the CPU version to the
GPU version on Intel + K40m system (3.6×) and on the Minsky system (5.9× or
9.2×, using 2 or 4 GPUs, respectively).

As it has been described previously, the ELPA 1 algorithm consists of three
individual steps, whose performance dependencies are different. In Fig. 2 we show

Table 1 Comparison of solution times for matrix of size 32768 × 32768

2 CPUs only 2 CPUs + 2 GPUs 2 CPUs + 4 GPUs

Time (s) Time (s) Speedup Time (s) Speedup

Intel + K40m 1423 396 3.6× – –

Power8 + P100 798 136 5.9× 86.9 9.2×
Speed up is with respect to CPU only version



GPU Optimization of Large-Scale Eigenvalue Solver 129

Fig. 2 Detailed comparison of individual parts of the ELPA 1 algorithm on the Minsky node (see
in text) using CPU only and CPU and all 4 GPUs

the run times of the individual steps. We selected only two setups for this detailed
study, the best performing CPU and GPU variants, i.e., theMinsky CPU andMinsky
CPU + 4 GPUs versions.

In all cases, the (one-stage) ELPA 1 compute-time is dominated by the tridiag-
onalization step. This step contains large BLAS level 2 operations (matrix-vector
multiplications), which can not be very efficiently implemented in neither BLAS
(CPU) nor cuBLAS (GPU) libraries. Still, since most of the work done in both the
tridiagonal solver and the back substitution is hidden in BLAS level 3 operations,
which are particularly efficient on GPU, we can see, that the speedup of those
functions is higher than the speed-up of the tridiagonalization step and thus the GPU
version is even more limited by the BLAS level 2 dominated tridiagonalization.

The solution times for large matrices are listed in detail in Table 2. The first two
cases are intended for a comparison between the two tested architectures, since the
same matrix size is used, and only 2 GPUs are utilized for the Minsky system. The
last case shows the largest possible (due to memory limitations) computed matrix
with the full Minsky node (using all 4 GPUs). It is worth noticing, that for the
back substitution step we get almost 30× speed-up. This is caused by the efficient
implementation using BLAS level 3 operations only. Indeed, even the total speed-up
of almost 12× is very good.



130 P. Kůs et al.

Table 2 Performance of individual stages of the ELPA 1 algorithm

Machine 2xIntel+2xK40m 2xPower8+2xP100 2xPower8+4xP100
Mat. size 32768 32768 65536

CPU CPU+GPU CPU CPU+GPU CPU CPU+GPU

t (s) t (s) s-up t (s) t (s) s-up t (s) t (s) s-up

Total 1424 396 3.6× 798 136 5.9× 6139 514 11.9×
Tridiag. 1108 333 3.3× 555 113 4.9× 4263 422 10.1×
Solve 117 24.1 4.9× 88.9 12.9 6.9× 678 49.2 13.8×3

Back s. 198 36.9 5.4× 154 10.3 15× 1198 42.1 28.5×
Speed up is with respect to CPU only version

7 Conclusions

We have presented a GPU implementation of the ELPA library. We have described
the methods used to utilize the potential of GPU accelerators to speed-up large-scale
eigenvalue and eigenvector computation, while preserving the ELPA scalability
by keeping the block-cyclic distribution of matrices and efficient MPI-based
communication patterns. With this GPU implementation, codes using ELPA can
significantly reduce their time to solution.

We show, that the achieved speed-up depends on the matrix size and the
hardware, but can reach up to 12× on the Minsky system for a large matrix. From
the presented results the performance relationships for different hardware can be
derived. We also show that the current bottleneck of the ELPA 1 algorithm lies in
the tridiagonalization step, because of the necessary matrix-vector multiplications,
which can not be implemented very efficiently on neither CPU nor GPU. However,
since the other two steps, namely the solution of the tridiagonal system and the
back substitution can be computed very efficiently on the GPU, this bottleneck is
(relatively) even more severe in the GPU version.

Acknowledgements Part of this work is co-funded by BMBF grant 01IH15001 of the German
Government.

References

1. T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Johanni, L. Krmer, B. Lang, H. Lederer,
P.R. Willems, Parallel solution of partial symmetric eigenvalue problems from electronic
structure calculations. Parallel Comput. 37, 783–794 (2011)

2. A.Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler, A. Heinecke, H.-J. Bungartz,
H. Lederer, The ELPA library - scalable parallel eigenvalue solutions for electronic structure
theory and computational science. J. Phys. Condens. Matter 26, 213201 (2014)

3. ELPA Library, http://elpa.mpcdf.mpg.de
4. G.H. Golub, C.F.V. Loan, Matrix Computations (John Hopkins University Press, Baltimore,

2013)

http://elpa.mpcdf.mpg.de


GPU Optimization of Large-Scale Eigenvalue Solver 131

5. ScaLAPACK - Scalable Linear Algebra PACKage, http://netlib.org/scalapack
6. Matrix Algebra on GPU and Multicore Architectures, http://icl.utk.edu/magma
7. CuBLAS Library, https://developer.nvidia.com/cublas
8. Multi-Process Service, https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_

Overview.pdf

http://netlib.org/scalapack
http://icl.utk.edu/magma
https://developer.nvidia.com/cublas
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

	GPU Optimization of Large-Scale Eigenvalue Solver
	1 Introduction
	2 Eigenvalue Solver
	3 The ELPA Library
	4 GPU Computing
	5 GPU Implementation of ELPA 1
	6 Numerical Results
	7 Conclusions
	References


