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Abstract In the present paper, a multiobjective optimal control problem governed
by a heat equation with time-dependent convection term and bilateral control
constraints is considered. For computing Pareto optimal points and approximating
the Pareto front, the reference point method is applied. As this method transforms
the multiobjective optimal control problem into a series of scalar optimization
problems, the method of proper orthogonal decomposition (POD) is introduced as
an approach for model-order reduction. New strategies for efficiently updating the
POD basis in the optimization process are proposed and tested numerically.

1 Introduction

Many optimization problems in applications can be formulated using several
objective functions, which are conflicting with each other. This leads to the notion of
multiobjective or multicriterial optimization problems; cf. [4, 9, 12]. One prominent
example is given by an energy efficient heating, ventilation and air-conditioning
(HVAC) operation of a building with conflicting objectives such as minimal energy
consumption and maximal comfort; cf. [6, 8].

In this paper we apply the reference point method [11] in order to transform a
bicriterial optimal control problem into a sequence of scalar-valued optimal control
problems and solve them using well-known optimal control techniques; see [13].
We build on and extend previous results obtained in [2], where a linear convection-
diffusion equation was considered. In addition, we allow the convection term to be
time-dependent here.

By using the a-posteriori error estimate [2, Theorem 9] we develop a new strategy
for updating the POD basis while computing the Pareto front such that the error
stays always below a certain predefined threshold. In our numerical examples we
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compare the strategy with the simple basis extension algorithm in [2, Algorithm 3].
Moreover, we propose a method to choose an efficient initial number of POD basis
functions.

The paper is organized in the following manner: In Sect. 2 we present the state
equation and the bicriterial optimal control problem. The reference point method
and how to apply it to the problem at hand is explained in Sect. 3. Moreover, the POD
method is briefly introduced to gain a speed-up in the solution process. Section 4
contains the numerical experiments and in Sect. 5 we draw a conclusion.

2 Problem Formulation

The State Equation Let Ω ⊂ R
d with d ∈ {2, 3} be a bounded domain

with Lipschitz-continuous boundary Γ . We choose m non-empty, pairwise disjoint
subsets Ω1, . . . ,Ωm of the domain Ω . For a given end time T > 0, we set
Q := (0, T ) × Ω and Σ := (0, T ) × Γ . The state equation is then given by
the following diffusion-convection equation with homogeneousNeumann boundary
conditions:

yt (t, x) − κΔy(t, x) + β(t, x) · ∇y(t, x) =
m∑

i=1
ui(t)χi(x) in Q, (1a)

∂y
∂n

(t, x) = 0 on Σ, (1b)

y(0, x) = y0(x) in Ω. (1c)

In (1a) the constant κ > 0 is the diffusion coefficient and the time-dependent
advection β is supposed to be in L∞(Q;Rd). Furthermore, the function χi is given
by the characteristic function of the set Ωi for all i = 1, . . . ,m. For the control
variable u = (u1, . . . , um) we assume u ∈ U = L2(0, T ;Rm). Finally in (1c),
y0 ∈ H = L2(Ω) is a given initial temperature. To set the framework for the weak
formulation of (1), we define the Hilbert space V = H 1(Ω) equipped with the
standard inner product. The space

Y = W(0, T ) = {
φ ∈ L2(0, T ; V ) | φt ∈ L2(0, T ; V ′)

}

endowed with the canonical inner product is a Hilbert space; see, e.g. [3]. With
similar arguments as in [1, Section 5.1] it is possible to show that for each tuple
(u, y0) ∈ U × H there is a unique weak solution y ∈ Y of (1). Furthermore, the
solution can be written as y = ŷ + Su, where ŷ ∈ Y is the weak solution of (1) for
the pair (0, y0) and the linear operator S : U → Y is given such that Su is the weak
solution of (1) to the pair (u, 0).
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The Bicriterial Optimal Control Problem For a given desired temperature yQ ∈
L2(0, T ; H) we introduce the cost functional

J : Y × U → R
2, J (y, u) =

(
1
2

∥
∥y − yQ

∥
∥2

L2(0,T ;H)
, 1
2 ‖u‖2

L2(0,T ;Rm)

)	
.

Defining the set Uad = {u ∈ U | ua ≤ u ≤ ub in [0, T ]} for given ua, ub ∈ U with
ua ≤ ub in [0, T ], the bicriterial optimal control problem reads

min J (y, u) s.t. (y, u) ∈ {
(ỹ, ũ) ∈ Y × Uad | ỹ = ŷ + Sũ

}
. (2)

Since S is well-defined, we define the reduced cost function Ĵ : U → R
2, Ĵ (u) =

J (ŷ + Su, u) and investigate the reduced formulation of (2) in this paper:

min Ĵ (u) s.t. u ∈ Uad. (3)

Problem (3) involves the minimization of a vector-valued function with two
objectives. This is done by using the concept of Pareto optimality; cf. [4].

Definition 1 The point ū ∈ Uad is called Pareto optimal for (3) if there is no other
control u ∈ Uad \ {ū} with Ĵi(u) ≤ Ĵi(ū), i = 1, 2, and Ĵ (u) �= Ĵ (ū).

3 The Reference Point Method

The theoretical and numerical aim in solving a bicriterial optimization problem is to
get an approximation of the Pareto set and the Pareto front, respectively, which are
given by

Ps = {
u ∈ Uad | u is Pareto optimal

} ⊂ U and Pf = Ĵ (Ps) ⊂ R
2.

The scalarization method, in which the bicriterial function is transformed into
a scalar function and then minimized using well-known techniques from scalar
optimization, is one of the most popular approaches to tackle this problem, see e.g.
[5, 9, 12]. The idea is that by choosing different scalarizations, both the Pareto set
and the Pareto front can be approximated. One particular scalarization method is the
(Euclidean) reference point method, which was previously used in [10, 11]. Given a
reference point z ∈ Pf +R

2≤ = {z + x | z ∈ Pf and x ∈ R
2≤} the distance function

Fz : U → R, Fz(u) = 1
2

(
Ĵ1(u) − z1

)2 + 1
2

(
Ĵ2(u) − z2

)2

measures the Euclidean distance between Ĵ (u) and z for a given u ∈ U . The idea is
that by solving the minimization problem

minFz(u) s.t. u ∈ Uad, (4)
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we get a Pareto optimal point for (3). The following theorem, which is taken from
[1, Theorem 3.35], guarantees this property for the problem at hand.

Theorem 2 Let z ∈ Pf + R
2≤ be a reference point. Then (4) has a unique solution

ū ∈ Uad, which is Pareto optimal for (3).

The algorithmic approach to approximate Pf , which we consider in this paper,
first computes the two boundary points of the Pareto front. These are given by
the minimizers of Ĵ1 and Ĵ2, respectively. In our case we have to regularize the
minimization of Ĵ1 because Ĵ1 is only strictly, but not strongly convex. Therefore,
we minimize Ĵ1 + αĴ2 with a small weight 0 < α � 1. We always choose the
minimizer of Ĵ1 as a starting point. Given a Pareto optimal point the algorithm
generates a new reference point following Pf from top to bottom, and then solves
the respective reference point problem. This procedure is repeated until the end of
Pf is reached. The exact scheme for computing the reference points along with a
more detailed description of the algorithm can be found in [1, Section 3.4] and [2,
Section 6].

When implementing this algorithm, (4) has to be solved repeatedly for different
reference points z ∈ Pf +R

2≤. Each solve of (4) requires multiple solves of (1) and
an adjoint equation (cf. [13, Section 3.6]) which is often computationally too costly
when using a standard Finite Element (FE) method. Thus, it is reasonable to apply
model-order reduction to reduce the computational effort. We use the well-known
POD method; cf. [7]. In [1, 2] the procedure for our problem at hand is explained.
Here, we just want to introduce some notations: Given a POD basis {ψi}i=1 of rank
, we define the set V  = span {ψ1, . . . , ψ} and the solution operator S : U →
H 1(0, T ; V ) of the POD solution of the u-dependent part of the state equation.
The POD approximation of Ĵ is defined as Ĵ (u) = J (ŷ + Su, u). Then, (4) is
replaced by

minF
z (u) = 1

2

(
Ĵ 
1 (u) − z1

)2 + 1
2

(
Ĵ 
2 (u) − z2

)2 s.t. u ∈ Uad (5)

with Ĵ 
2 (u) = Ĵ2(u). For a given reference point z ∈ Pf +R

2≤ we denote the optimal
solutions to (4) and (5) by ūz and ū

z, respectively.

4 Numerical Results

In our numerical tests we consider the bicriterial optimal control problem presented
in Sect. 2. We haveΩ = (0, 1)2 ⊂ R

2 and choose T = 1. The diffusion parameter is
given by κ = 0.5 and for the convection term in (1a) we use β(t, x) = cbβ̃(t, x) for
all (t, x) ∈ Q, where β̃ is a non-stationary solution of a Navier-Stokes equation and
cb ≥ 0 is a parameter to control the strength of the convection; cf. Fig. 1. We impose
a floor heating of the whole room with m = 4 uniformly distributed heaters in the
domains Ω1 = (0, 0.5)2,Ω2 = (0, 0.5) × (0.5, 1),Ω3 = (0.5, 1) × (0, 0.5) and
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Fig. 1 Time-dependent convection β(t, x) at two time instances. (a) t = 0.01. (b) t = 0.5

J1

-1

0

0

1

2

3

4

5

J2

Pareto front
Reference points

Time

0

0.5

1

1.5

2

2.5

3

C
on

tr
ol

Region 1
Region 2
Region 3
Region 4

-0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

Fig. 2 Test 1: Pareto front (left); optimal control ū1 corresponding to P 1 (right)

Ω4 = (0.5, 1)2. The bilateral control constraints are ua = 0 and ub = 3. Finally,
we choose y0 = 16 and yQ(t, x) = 16 + 2t for all (t, x) ∈ Q. All computations
were carried out on a MacBook Pro 13 (middle 2012) with 2.5GHz Intel Core i5
and 4GB RAM.

Test 1 We solve (3) for cb = 1. Then, Pf is smoothly approximated by 52
Pareto optimal points; cf. Fig. 2. Hereby, Pf ranges from P 1 = (0.0199, 4.1),
which is computed with the weighted-sum method with weight α = 0.02, to
P 52 = (0.6667, 0). Thus, the desired temperature can be achieved quite closely
in the upper part of Pf . The four optimal controls for P 1 can be seen in right plot of
Fig. 2. As in the case of a time-independent convection term all four controls adapt
to the air flow, which goes from the top left corner of the room to the right bottom
corner by using different heating strategies. Furthermore, one can observe a slightly
wavy behaviour of the optimal controls at the beginning. This is due to the temporal
changes in the dynamics of the system caused by a vortex moving over time from
the top left corner to the middle of the room. Another interesting aspect is that in
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the comparison to the time-independent case (by taking average over the time) the
system with time-dependent convection only needs about 10% more computation
time although the latter case adds dynamics to the optimal control problem, which
are more difficult to handle numerically.

Test 2 Now we use an adaptive POD basis extension algorithm, which was
introduced in [2, Algorithm 3], in order to investigate the influence of the time-
dependent convection term on the number of needed POD basis functions. As a
measure for the error between u

z and ū
z induced by the POD approximation we

use the a-posteriori error estimate [2, Theorem 9] and set the upper bound of the
acceptable error to μ = 4 · 10−4, as well as the initial number of POD basis
functions to init = 5. Choosing the minimizer of Ĵ1 as starting point we observe
that 24 POD basis functions are needed to compute the whole Pareto front in the
desired approximation quality. Thereby, all 19 basis extensions are conducted on
P 2. For comparison, in [2] was shown that for a very similar problem with a time-
independent convection term only 15 POD basis functions are sufficient to achieve
the same quality. This is due to the fact that a time-dependency of a convection adds
more complex dynamics to the system which are hard to capture by using only one
fixed POD basis. To tackle this problemwe propose a POD basis improving strategy.
Algorithm 1 shows the routine for computing the n-th Pareto optimal point. In this
paper we investigate two strategies for determining  after each basis update. In
the first case, we set  = min. In the second case, we choose  by observing the
convergence rates in the control space; cf. [7, Theorem 1.49]. Namely, by choosing
 ∈ [min, max] such that

max∑

i=+1
λi‖ψi − P

Hψi‖2H 1(Ω)
< ε (6)

for an ε < μ holds, where P
H denotes the H -orthogonal projection onto V ,

{ψi}i∈N is a POD basis and {λi}i∈N are the corresponding eigenvalues. The results

Algorithm 1 POD basis update algorithm
Require: threshold μ > 0, 0 < min < max ;
1: Set check = 0;
2: while check = 0 do
3: Solve (5) with reference point z(n);
4: Compute the a-posteriori error estimate μapost for the controls;
5: if μapost < μ then
6: Set check = 1;
7: else
8: if  < max − 1 then
9: Set  =  + 2;
10: else
11: Solve (4) for ūz with reference point z(n) and starting point ū

z ;
12: Compute new POD basis by using ūz;
13: Choose  ∈ [min, max ] and set check = 1.
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Fig. 3 Number of used POD basis functions in Algorithm 1 using ε = 0.5 · 10−2μ. (a)  = 10
fixed. (b) 6 ≤  ≤ 22 adaptive

Table 1 Test 2: Results for ε = 0.5 · 10−2μ

CPU time #Basis extensions #Basis updates

Full system 240.25 – –

Basis extension with init = 5 51.07 19 –

Algorithm 1 with fixed  = 10 49.53 11 1

Algorithm 1 with adaptive  ∈ [6, 22] 44.82 2 1

Algorithm 1 with adaptive  ∈ [6, 20] 59.51 0 6

for ε = 5 · 10−3μ and max = 22 are presented in Fig. 3 and Table 1. The value
of min is set to 10 and to 6 by the first and second strategy, respectively. Using the
second strategy Algorithm 1 yields the best results with respect to the CPU time.
Thus, (6) estimates quite well how many POD basis functions would have been
necessary in order to compute the current Pareto point. As a result only 2 basis
extensions on the points P 2 and P 3 are needed. Using the first strategy, 11 basis
extensions are necessary as 10 POD basis function are not enough even after a basis
update. Hence, a lot of avoidable basis extensions are done. In both cases one basis
update is conducted. However, the performance of the Algorithm 1 depends strongly
on the choice of max . Decreasing max to 20 increases the CPU time by 33% as 6
basis updates are needed in this case. Furthermore, ε has to be chosen appropriately
to avoid unnecessary basis extensions in the second case.

Test 3 Now we increase the strength of the convection term cb to 2 and run the
basis extension algorithmwith the same settings. Surprisingly, in the basis extension
algorithm [2, Algorithm 3] only 25 POD basis functions are needed to compute
the whole Pareto front, although there are significant changes in the behaviour of
the controls. However, as expected, increasing the strength of the convection term
increases heavily the number of basis updates in Algorithm 1 for the same values of
max and thus the computation time.
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5 Conclusion

In the present paper we show how including a time-dependent advection term into
the state equation influences the results of the bicriterial optimal control problem (2).
As expected the time-dependence adds dynamics to the system which cannot be
captured that easily by a single POD basis. Therefore, by introducing a new POD
update strategy we are able to save about 15% of the CPU time in comparison to the
basis extension algorithm in [2, Algorithm 3].
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