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Antti Hannukainen, Sergey Korotov, and Michal Křížek

Abstract In this paper the Synge maximum angle condition for planar triangula-
tions is generalized for higher-dimensional simplicial partitions. In addition, optimal
interpolation properties are presented for linear simplicial elements which can
degenerate in certain ways.

1 Introduction

Consider a family F = {Th}h→0 of face-to-face triangulations Th of a bounded
polygonal domain. In 1957, J. Synge proved that linear triangular finite elements
yield the optimal interpolation order in the C-norm provided the maximum angle
condition is satisfied, i.e., there exists a constant γ0 < π such that for any
triangulation Th ∈ F and any triangle T ∈ Th one has (see [27])

γT ≤ γ0, (1)

where γT is the maximum angle of T . In 1975/1976, Babuška and Aziz [3], Barnhill
and Gregory [4], and Jamet [14] independently derived the optimal interpolation
order in the energy norm of finite element approximations under the condition (1).
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M. Křížek (�)
Institute of Mathematics, Czech Academy of Sciences, Prague 1, Czech Republic
e-mail: krizek@math.cas.cz

© Springer Nature Switzerland AG 2019
F. A. Radu et al. (eds.), Numerical Mathematics and Advanced Applications
ENUMATH 2017, Lecture Notes in Computational Science and Engineering 126,
https://doi.org/10.1007/978-3-319-96415-7_72

769

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96415-7_72&domain=pdf
mailto:antti.hannukainen@aalto.fi
mailto:sergey.korotov@hvl.no
mailto:krizek@math.cas.cz
https://doi.org/10.1007/978-3-319-96415-7_72


770 A. Hannukainen et al.

Later the maximum angle condition was investigated in various norms in [1, 2, 15–
18, 22, 24, 25].

In 1992, the condition (1) was generalized by Křížek [19] to tetrahedral elements
as follows:

There exists a constant γ0 < π such that for any face-to-face tetrahedralization
Th ∈ F and any tetrahedron T ∈ Th one has

γD ≤ γ0 and γF ≤ γ0, (2)

where γD is the maximum dihedral angles between faces of T and γF is the
maximum angle in all four triangular faces of T . According to [20], the associated
finite element approximations preserve the optimal interpolation order in the H 1-
norm under the condition (1).

Note that degenerated tetrahedral elements have a lot of real-life technical
applications. For example, in calculation of physical fields in eletrical rotary
machines, see [20]. Flat tetrahedral elements are also used to approximate thin slots,
layers, or gaps. Moreover, they are suitable when the true solution of some problem
changes more rapidly in one direction than in another direction (e.g. in anisotropic
materials) [1].

From Fig. 1 we observe that the condition (2) is satisfied for a needle, splinter,
and wedge tetrahedron. For the other degenerated tetrahedra from Fig. 1, the
interpolation error may diverge in the H 1-norm. On the other hand, the finite
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Fig. 1 Classification of degenerated tetrahedra according to [7, 9]
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element method may converge in the H 1-norm, see [12]. Hence, (2) represents only
a sufficient (and not necessary) condition for the convergence of the finite element
method, see [21–23, 25].

Let us point out that the two conditions in (2) are independent. For instance, for a
sliver (and also cap) tetrahedron the condition γD ≤ γ0 does not hold while γF ≤ γ0
holds. On the other hand, for a spike tetrahedron γD ≤ γ0 holds and γF ≤ γ0 is
violated.

Since there are six dihedral angles of each tetrahedron and twelve angles between
its adjacent edges, a direct generalization of (2) into higher dimensions would be
technically quite complicated. Therefore, in the next section we introduce another
concept which is based on the d-dimensional sine for d > 1. We will survey the
main results from our previous paper [13], see also [5, 6].

2 The Maximum Angle Condition in Higher Dimensions

Recall that a d-simplex S in Rd, d ∈ {1, 2, 3, . . . }, is the convex hull of d+1 vertices
A0, A1, . . . , Ad that do not belong to the same (d −1)-dimensional hyperplane, i.e.,

S = conv{A0, A1, . . . , Ad}.

Let

Fi = conv{A0, . . . , Ai−1, Ai+1, . . . , Ad }

be the facet of S opposite to the vertex Ai for i ∈ {0, . . . , d}.
In 1978, Eriksson has introduced a generalization of the sine function to an

arbitrary d-dimensional spatial angle, see [10, p. 74].

Definition 1 Let Âi be the angle at the vertex Ai of the simplex S. Then d-sine of
the angle Âi for d > 1 is given by

sind (Âi |A0A1 . . . Ad) = dd−1 (meas dS)d−1

(d − 1)! �d
j=0,j �=imeas d−1Fj

. (3)

Remark 2 Let us show that d-sine is really a generalization of the classical sine
function. Set d = 2 and consider an arbitrary triangle A0A1A2. Denote by Â0 its
angle at the vertex A0. Then, obviously,

meas 2(A0A1A2) = 1

2
|A0A1||A0A2| sin Â0. (4)
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Comparing this relation with (3), we find that

sin Â0 = sin2(Â0, A0A1A2). (5)

Definition 3 A family F = {Th}h→0 of partitions of a polytope into d-simplices is
said to satisfy the generalized minimum angle condition if there exists C > 0 such
that for any Th ∈ F and any S = conv{A0, . . . , Ad } ∈ Th one has

∀ i ∈ {0, 1, . . . , d} sind (Âi |A0A1 . . . Ad) ≥ C > 0. (6)

This condition is investigated in the paper [6]. It generalizes the well-known
Zlámal minimum angle condition for triangles (see [8, 28, 29]), which is stronger
than (1).

Definition 4 A family F = {Th}h→0 of partitions of a polytope into d-simplices is
said to satisfy the generalized maximum angle condition if there exists C > 0 such
that for any Th ∈ F and any S = conv{A0, . . . , Ad} ∈ Th one can always choose
d edges of S, which, when considered as vectors, constitute a (higher-dimensional)
angle whose d-sine is bounded from below by the constant C.

Remark 5 From (4) and (5) we observe that the condition stated in Definition 4 for
d = 2 is equivalent to the maximum angle condition (1).

Remark 6 Let us show that in case of tetrahedra the validity of the maximum
angle condition (2) implies the desired property in Definition 4, i.e. it is really a
generalization. So, let (2) be valid for a given tetrahedron T . Then one can always
find, see the proof of Theorem 7 in [19, pp. 517–518], three unit vectors t1, t2, and
t3 parallel to three edges of T , so that the volume of the parallelepiped P(t1, t2, t3)

generated by t1, t2, t3 is bounded from below by some constant c > 0. Now we use
formula (3) to estimate the 3-dimensional sine of the angle formed by the vectors t1,
t2, t3 as follows

sin3(t1, t2, t3) = 32 (meas 3S(t1, t2, t3))
2

2! �3
j=0,j �=imeas 2Fj

≥ 32 ( 1
6 meas 3P(t1, t2, t3))

2

2!( 1
2 )3

≥ c2,

(7)

where S(t1, t2, t3) is the tetrahedron made by t1, t2, t3 originating at 0, and the area
of each of the three faces Fj involved is bounded from above by 1/2 due to the fact
that t1, t2, t3 are unit vectors. The constant c can be, in fact, estimated from below
by

m := min
(

sin
π − γ0

2
, sin γ0

)
,

see [19, p. 518].

Now we present the main interpolation theorem of this paper using the standard
Sobolev space notation.



Maximum Angle Condition 773

Theorem 7 Let F be a family of partitions of a polytope into d-simplices satisfying
the generalized maximum angle condition. Then there exists a constant C > 0 such
that for any Th ∈ F and any S ∈ Th we have

‖v − πSv‖1,∞ ≤ ChS |v|2,∞ ∀v ∈ C2(S), (8)

where πS is the standard Lagrange linear interpolant and hS = diam S.

For the proof see [13].

3 Examples

Example 1 Denoting by A0, A1, A2, A3 the vertices of spindle, spear, spike, spade,
cap, or sliver tetrahedron from Fig. 1 in an arbitrary way, we find by (3) that

sin3(Â0, A0A1A2A3) → 0

as the discretization parameter tends to zero. The same is true for the splinter
tetrahedron. However, by Definition 4 we may choose three edges which constitute
a spatial angle whose 3-sine is bounded from below by a fixed constant C > 0.
Choosing the two short edges of the splinter tetrahedron and one long edge, we find
that the generalized maximum angle condition holds.

Example 2 We show that if sin3 of two trihedral angles (cf. [11]) are the same
numbers, then the magnitude of these solid angles in steradians need not be the
same. Let A0A1A2A3 be the regular tetrahedron whose edges have length 1. Then
the altitude of its faces is

√
3/2 and the spatial altitude is

√
6/3. Consequently,

from (3) for the trihedral angle Â0 we get

sin3(Â0, A0 . . . A3) = 32( 1
3

√
3

4

√
6

3 )2

2!(
√

3
4 )3

= 4
√

3

9
.

Consider now the tetrahedron with vertices B0 = (0, 0, 0), B1 = (1, 0, 0), B2 =
(
√

33
9 , 4

√
3

9 , 0), and B3 = (0, 0, 1). Then by (3) we also find that

sin3(B̂0, B0 . . . B3) = 32( 1
3 meas2B0B1B2)

2

2! 1
4 meas2B0B1B2

= 4
√

3

9
.

Now by the Girard Theorem for the spherical excess we have (see [26, p. 83])

B̂0 = π

2
+ π

2
+ arcsin

4
√

3

9
− π = 0.8785 . . . steradians,
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whereas

Â0 = 3 arccos
1

3
− π = 0.5512 . . . steradians,

where all dihedral angles α of A0A1A2A3 are ≈ 70.52◦, since cos α = 1
3 .

Example 3 The sliver element from Fig. 1 can be narrowed as follows. For h → 0
consider the tetrahedron with vertices

(0, 0, 0), (h2, 0, 0), (0, h, 0), (h2, h, h3).

Example 4 A higher-dimensional example can be constructed in the following
way. Consider positive numbers r1, r2, . . . , rd and a simplex with vertices
A0, A1, . . . , Ad . We fix some number k so that 0 ≤ k ≤ d . The first k + 1 vertices
of the simplex are defined as follows. Let A0 = (0, 0, . . . , 0, . . . , 0). Further, let

A1 = (r1, 0, . . . , 0, . . . , 0), A2 = (0, r2, . . . , 0, . . . , 0), . . . ,

Ak = (0, . . . , 0, rk, 0, . . . , 0).

The remaining vertices are:

Ak+1 = (0, . . . , 0, rk+1, 0, 0, . . . , 0), Ak+2 = (0, . . . , 0, rk+1, rk+2, 0, . . . , 0),

Ak+3 = (0, . . . , 0, rk+1, rk+2, rk+3, 0, . . . , 0), . . . ,

Ad = (0, . . . , 0, rk+1, rk+2, rk+3, . . . , rd ).

Therefore, for k = 0, we get the path-simplex, and for k = d the hypercube-corner
simplex. Allowing some of the rk’s to approach zero with different rates, in general,
we get various degenerated simplices still satisfying the generalized maximum angle
conditions.

Acknowledgements The authors are indebted to Prof. Jan Brandts, Prof. Takuya Tsuchiya, and
Prof. Jon Eivind Vatne for valuable suggestions. The third author was supported by RVO 67985840
of the Czech Republic and Grant no. 18-09628S of the Grant Agency of the Czech Republic.

References

1. T. Apel, Anisotropic Finite Elements: Local Estimates and Applications. Advances in Applied
Mathematics (B.G. Teubner, Stuttgart, 1999)

2. T. Apel, M. Dobrowolski, Anisotropic interpolation with applications to the finite element
method. Computing 47, 277–293 (1992)



Maximum Angle Condition 775

3. I. Babuška, A.K. Aziz, On the angle condition in the finite element method. SIAM J. Numer.
Anal. 13, 214–226 (1976)

4. R.E. Barnhill, J.A. Gregory, Sard kernel theorems on triangular domains with applications to
finite element error bounds. Numer. Math. 25, 215–229 (1976)
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