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Abstract When discussing shapes of simplices, e.g. in connection with mesh
generation and finite element methods, it is important to have a suitable space
parametrizing the shapes. In particular, degenerations of different types can appear
as boundary components in various ways. For triangles, we will present two natural
parametrizing sets that highlight two different types of degenerations, and then
combine the properties into a new parametrizing space that allows a good basis
for understanding both types of degenerations. The combined space is constructed
by the process of blowing up, which in this simple case is introduction of polar
coordinates. For tetrahedra, there are many different types of degenerations. In this
short paper we will only give one example of what can be achieved by blowing up
a natural model, namely to pull apart the two tetrahedral degenerating types known
as slivers and caps.

1 Introduction

The standard regularity condition, for instance used by Ciarlet [5], says that a
family of simplicial meshes is well suited for finite element methods if for each
simplex in a mesh in the family, the inscribed ball is not too small compared to
the element diameter. An equivalent condition is that all angles are bounded away
from zero, as in Ženíšek or Zlámal [4, 12, 13]. However, it is by now well known
that weaker conditions can give the same rate of convergence. These conditions
include semiregularity and maximal angle conditions, see e.g. work of Brandts,
Hannukainen, Korotov and Křížek [1–3, 7]. Compared to regularity, the advantage
is that certain classes of degenerating mesh elements are allowed. For the purposes
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of this article, we only need to formulate these conditions for triangles (for simplices
in general, angles between adjacent faces of various dimensions are used).

Definition 1 (Minimal and Maximal Angle Conditions) A family of triangular
meshes satisfies the minimal angle condition if there is a constant α0 > 0 such that
each angle of each triangle appearing in the family of meshes is no smaller than α0.

A family of triangular meshes satisfies the maximal angle condition if there is
a constant α0 > 0 such that each angle of each triangle appearing in the family of
meshes is no larger than π − α0.

In order to emphasize the difference between various conditions about degener-
ations, it is important to have a model for simplices that includes representatives
for the degenerations one is interested in. The methods introduced could also be of
interest for e.g. finite volume methods, see for instance [9, 10].

2 The Set of Simplices and Symmetries

In this section the sets that we consider are introduced.

Definition 2 An n-simplex in R
n is given as the convex hull of n + 1 points that

are in general position, i.e. that are not contained in the same affine hyperplane.
A degenerate simplex is given by n + 1 points that are contained in some affine
hyperplane. For emphasis, we will sometimes say that a simplex is non-degenerate.

We are only interested in the shape of a simplex, not its size, position, orientation,
or the ordering of vertices (this can be described using symmetry groups). Therefore
we can change a given simplex as follows, preserving its shape:

– Find two vertices whose distance is equal to the diameter of the simplex.
– Move the simplex so that one of these vertices, say A, is placed in the origin.
– Scale the simplex so that the second vertex, say B, has distance one from A (so

the diameter is one).
– Rotate the simplex so that B is on the positive x-axis, i.e. has coordinates B =

(1, 0, . . . , 0).
– Choose a third vertex C, and rotate so that it is in the xy-plane.
– For each remaining vertex, rotate the simplex so that the new vertex only has

nonzero coordinates in one coordinate more than the previous vertex.

We can then parametrize simplicial shapes by the space of coordinates from the
third vertex onwards. There is still some finite symmetry that can be considered, but
the dimension of the space cannot be further reduced. One can for instance demand
that the last non-zero coordinate for each point should be positive, which can be
achieved by reflection. Note that the dimension is equal to the number of non-zero



Simplicial Shapes 755

coordinates from the third vertex onwards, which is

dim
(
set of shapes of n-simplices

) = 2 + 3 + · · · + n = n(n + 1)

2
− 1.

For triangles, this means that the dimension is reduced from six (two coordinates
for each of three points) to just two.

There are other interesting possibilities for choosing normalizations, which
sometimes allow easier reasoning. For instance in [11], the author chose a parameter
space without rotating simplices (so of higher dimension), which was suited to
compute the probability that a randomly drawn simplex is well-centered. The model
from that paper is badly suited to study degenerations, however.

3 Triangles and Degenerations of Triangles

We will introduce and compare different models for studying shapes of triangles.
In the explicit models in this section, we have removed finite symmetries, so that
there is an actual bijection between our parametrizing sets and the (abstract) set of
triangular shapes.

3.1 Triangular Shapes from Normalized Positions of Vertices

If we follow the recipe from the introduction, the vertices of our modified triangle
will be A = (0, 0), B = (1, 0) and C = (Cx, Cy). The dimension is two, as both
coordinates of C are allowed to vary. Since AB is the diameter of the triangle, C

must be in the intersection of the unit circles centered on A and B, respectively. By
reflection and reordering we can assume that Cy > 0 and that C is closer to A than
to B (so that Cx ≤ 1/2) (Fig. 1).

With these choices, our parametrizing set has three boundary components:

Fig. 1 C is restricted to lie in
the region to the left of the
dotted vertical line, above the
x-axis and inside the circular
segment centered on B

1
2A

×
B
×
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Fig. 2 A degeneration where
both the minimal angle and
the maximal angle conditions
are violated

Cx 1

Fig. 3 The two smallest
angles α and β are bounded
by α = 0, α = β and
β = π − α − β (π

3 , π
3 ), equilateral

isosceles, two largest angles equal

isosceles, two smallest angles equal

α

β

(a) The component Cx = 1/2 parametrizes isosceles triangles where the two
smaller edges have equal length.

(b) The component (Cx − 1)2 + C2
y = 1 parametrizes isosceles triangles where the

two largest edges have equal length.
(c) The component Cy = 0 represents degenerations where A,B and C are

collinear.

Understanding degenerations and their place in the parametrizing space is important
for us, so let us look at a point C = (Cx, 0) representing a degeneration. In Fig. 2
we see a concrete family degenerating to this point. Note that for 0 < Cx ≤ 1/2, the
angles at A and B tend to zero, whereas the angle at C tends to π ; both the maximal
and the minimal angle conditions are violated.

3.2 Triangular Shapes from Angles

The shape of a triangle can also be given by its angles. Since the three angles sum
to π , it is sufficient to consider the two smallest angles α ≤ β, so that the largest
angle γ = π − α − β ≥ β. This space is shown in Fig. 3.

The set parametrizing the angles is again bounded by three components:

(a) The component α = β parametrizes isosceles triangles where the two smallest
angles are equal.

(b) The component β = π − α − β parametrizes isosceles triangles where the two
largest angles are equal.
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Fig. 4 A degenerating family
with fixed middle angle β

violates the minimal but not
the maximal angle condition

BA

C

β

(c) The component α = 0 represents degenerations where two vertices come
together.

The third case is the most interesting for us as α = 0 represents degenerate
triangles. So consider a degenerate triangle represented by (0, β) in Fig. 3. A
concrete family degenerating to this is shown in Fig. 4. Note that the angle at B

tends to zero, but that the maximal angle condition is satisfied.

Remark 3 The main difference between our two models is the degenerations that
are represented by points on the boundary. In Fig. 1, a point (Cx, 0) with 0 < Cx ≤
1/2 represents a degeneration where three different points are collinear, and where
the maximal angle condition is violated. Any degeneration where the maximal angle
condition is satisfied must be represented by the single point (Cx, Cy) = (0, 0).
In Fig. 3, a point (0, β) with 0 < β ≤ π/2 represents a degeneration where two
points come together, and where the maximal angle condition is satisfied. Any
degeneration with three different collinear points must be represented by the single
point (α, β) = (0, 0).

Our goal is to integrate the two good properties of these two models into a single
model. We will achieve this starting from the model in Fig. 3, but changing to polar
coordinates (r, θ) (Fig. 5).

π/2

π/4

isosceles, two smallest angles equal

degeneration with fixed middle angle

isosceles, two largest angles equal
degeneration with
three different
collinear points

Fig. 5 The set described in Theorem 4
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Theorem 4 The set of triangular shapes can be parametrized as a subset of the
(r, θ)-plane with the following properties:

a) It is bounded by the four curves θ = π/2, θ = π/4, r = 0 and r sin θ =
π − r cos θ − r sin θ .

b) The boundary components θ = π/4 and r sin θ = π − r cos θ − r sin θ

parametrize isosceles triangles.
c) The boundary component θ = π/2 parametrizes degeneration limits with fixed

middle angle.
d) The boundary component r = 0 parametrizes degeneration limits with three

different collinear points.

Proof We will start from the model in Fig. 3, and then introduce polar coordinates
(r, θ). The line α = β is then changed to the line θ = π/4 and the line α = 0 to
the line θ = π/2. Since the line β = π − α − β does not pass through the origin,
it is changed into a more complicated curve with equation r sin θ = π − r cos θ −
r sin θ . Finally, the point (0, 0) is transformed into the whole line segment (0, θ) for
θ ∈ [π/4, π/2]. Since polar coordinates and cartesian coordinates are in bijection
outside the locus r = 0, we get parts a), b) and c) in the theorem. To see that part d)
also holds, we will need to understand what a family degenerating to a point (0, θ)

looks like. If we think of this as the limit limr→0(r, θ), we see that it is represented
by a family where the ratio of the two smallest angles is constant. By the law of
sines, we then see that this is the same information as is contained in a degeneration
to the x-axis in the model represented in Fig. 1.

Remark 5 We could have started from the model in Fig. 1 and introduced polar
coordinates to achieve a similar result.

3.3 Mappings Between Models

Starting from representing triangular shapes by the two smallest angles (α, β), we
can find the coordinates of the third vertex C (A = (0, 0) and B = (1, 0) are the
two first) by a simple computation, giving a map

φ : (α, β) �→
(

tan α

tan α + tan β
,

tan α tan β

tan α + tan β

)
.

In Fig. 3, the domain of definition of φ is the complement of the origin, and the
image of φ in Fig. 1 is the complement of the x-axis. However, if we precompose φ

with the polar coordinates map (r, θ) �→ (r cos θ, r sin θ), we get a map

φ̃ : (r, θ) �→
(

tan(r cos θ)
tan(r cos θ)+tan(r sin θ)

,
tan(r cos θ) tan(r sin θ)

tan(r cos θ)+tan(r sin θ)

)
.



Simplicial Shapes 759

The map φ̃ as defined has domain of definition {(r, θ)| r > 0}, but can be
continuously extended to r = 0 by

(0, θ) �→
(

1

1 + tan θ
, 0

)
.

With this extension, we see that our good model in Theorem 4 maps surjectively
to both our previously defined models. Furthermore, it maps bijectively onto the
open subsets corresponding to non-degenerate simplices, as well as to the boundary
components that represent degenerations that are adequately handled by each of the
two models.

4 Tetrahedra

Due to limitations of space, only a short comment about tetrahedral shapes is
included. Degenerations of tetrahedra come in several flavours, see e.g. Edelsbrun-
ner [6]. Different types of degenerations form a partially ordered set, as some can
be thought of as further degenerations of others. The simplest example is that the
intersection of the two families of degenerations known as caps and slivers represent
the degenerations known as spades, see Fig. 6.

In a tetrahedral model similar to the one shown for triangles in Fig. 1, caps and
slivers would be represented by four-dimensional boundary components of a five-
dimensional set representing tetrahedral shapes. Their intersection, representing
spades, would be three-dimensional. If this intersection is blown up, we would
get a model where spades are also represented as a four-dimensional boundary
component, whereas the components representing caps and slivers would be pulled
apart and intersect in a lower dimensional set. The process of blowing up replaces a
lower-dimensional subset with a higher dimensional one, see e.g. the lecture notes
of Melrose [8] for a good introduction to these ideas. The simplest case is blowing
up the origin of a plane, which basically introduces polar coordinates.

In [6], caps and slivers are handled in separate ways. Therefore it is sensible to
have a model where these two types of degenerations are kept apart.

◦ ◦

◦

◦

cap
◦ ◦

◦

◦

spade
◦ ◦

◦
◦

sliver

Fig. 6 Spades as common degenerations of caps and slivers
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There are several types of degenerations of tetrahedra, grouped into flat (four
points that almost span only a plane) and skinny (four points that almost span only a
line) tetrahedra. Some of these have acceptable behaviour for finite element meshes,
whereas others do not [7]. As for triangular shapes, different models for tetrahedra
can highlight different degeneration types. If we wish to have the opportunity to
study different types together, blowing up can be a useful tool. However, because
of the greater variety of tetrahedral degenerations, the limitations of available space
in the present article excludes a detailed analysis in this case. Hopefully, this can be
addressed in a publication in the near future.
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