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Abstract In this paper we investigate the stability of the space-time discontinuous
Galerkin method for the solution of nonstationary, nonlinear convection-diffusion
problem in time-dependent domains. At first we define the continuous problem
and reformulate it using the Arbitrary Lagrangian-Eulerian (ALE) method, which
replaces the classical partial time derivative by the so called ALE-derivative and an
additional convective term. Then the problem is discretized with the aid of the ALE
space-time discontinuous Galerkin method (ALE-STDGM). The discretization uses
piecewise polynomial functions of degree p ≥ 1 in space and q > 1 in time. Finally
in the last part of the paper we present our results concerning the unconditional
stability of the method. An important step is the generalization of a discrete
characteristic function associated with the approximate solution and the derivation
of its properties, namely its continuity in the ‖·‖L2 -norm and in special ‖·‖DG-norm.

1 Introduction

Problems in time-dependent domains are very important in many areas of science
and technology, for example, fluid-structure interaction problems.

In this paper we deal with the stability analysis of the ALE-STDGM with
arbitrary polynomial degree in space as well as in time, applied to a nonstation-
ary, nonlinear convection-diffusion problem equipped with initial and Dirichlet
boundary condition. The ALE-STDGM analyzed here corresponds to the technique
used in [3] and [4] for the numerical simulation of airfoil vibrations induced by
compressible flow, which means that the ALE mapping is not prescribed globally in
the whole time interval, but separately for each time slab.
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We present here new technique of theoretical analysis in contrast to [1] and [2],
where we proved the unconditional stability of the ALE-STDGM with arbitrary
polynomial degree in space, but only linear approximation in time. The new
technique is based on generalization of the discrete characteristic function in time-
dependent domains.

2 Formulation of the Continuous Problem

We consider an initial-boundary value nonstationary, nonlinear convection-diffusion
problem in a time-dependent bounded domain Ωt, t ∈ (0, T ):

Find a function u = u(x, t) with x ∈ Ωt, t ∈ (0, T ) such that

∂u

∂t
+

d∑

s=1

∂fs(u)

∂xs

− div(β(u)∇u) = g in Ωt, t ∈ (0, T ), (1)

u = uD on ∂Ωt, t ∈ (0, T ), (2)

u(x, 0) = u0(x), x ∈ Ω0. (3)

We assume that fs, β, g, uD, u0 are given functions, |f ′
s | ≤ Lf , s = 1, . . . , d,

and function β is Lipschitz-continuous and bounded: β : R → [β0, β1] where
0 < β0 < β1 < ∞.

Problem (1)–(3) can be reformulated using the Arbitrary Lagrangian-Eulerian
(ALE) method. First we consider a standard ALE formulation prescribed globally
in the whole time interval, used in a number of works (cf., e.g., . . . ). It is based
on a regular one-to-one ALE mapping of the reference domain Ω0 onto the current
configuration Ωt :

At : Ω0 → Ωt, X ∈ Ω0 → x = x(X, t) = At (X) ∈ Ωt, t ∈ [0, T ]. (4)

Usually it is supposed that the ALE mapping is sufficiently regular, e.g., A ∈
W 1,∞(0, T ; W 1,∞(Ωt)). Now we introduce the domain velocity

z̃(X, t) = ∂

∂t
At (X), z(x, t) = z̃(A−1

t (x), t), t ∈ [0, T ], X ∈ Ω0, x ∈ Ωt,

(5)

and define the ALE derivative of a function f = f (x, t) for x ∈ Ωt and t ∈ [0, T ]
using the chain rule as

Df

Dt
= ∂f

∂t
+ z · ∇f, (6)
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which allows us to reformulate problem (1)–(3) in the ALE form:
Find u = u(x, t) with x ∈ Ωt, t ∈ (0, T ) such that

Du

Dt
+

d∑

s=1

∂fs(u)

∂xs

− z · ∇u − div(β(u)∇u) = g in Ωt, t ∈ (0, T ), (7)

u = uD on ∂Ωt , t ∈ (0, T ), (8)

u(x, 0) = u0(x), x ∈ Ω0. (9)

Moreover we assume the following properties of the domain velocity: There
exists a constant cz > 0 such that

|z(x, t)|, |divz(x, t)| ≤ cz for x ∈ Ωt, t ∈ (0, T ). (10)

3 ALE–Space Time Discretization

We consider a time partition 0 = t0 < t1 < · · · < tM = T and set τm = tm −
tm−1, Im = (tm−1, tm) for m = 1, . . . ,M . The space-time discontinuous Galerkin
method (STDGM) has an advantage that on every time interval Im = [tm−1, tm]
it is possible to consider a different space partition. Here we also use this property
of the STDGM in the ALE framework: we consider an ALE mapping separately
on each time interval [tm−1, tm) for m = 1, . . . ,M . The resulting ALE mapping
in [0, T ] may be discontinuous at time instants tm, which means that A(tm−) 
=
A(tm+) in general. Such situation appears in the numerical solution of fluid-
structure interaction problems, when both the ALE mapping and the approximate
flow solution are constructed successively on time intervals Im by the STDGM
(see [6]).

3.1 ALE Mappings and Triangulations

For every m = 1, . . . ,M we consider a standard conforming triangulation T̂h,tm−1

in Ωtm−1 , where h ∈ (0, h), h > 0 and introduce a one-to-one ALE mapping

Am−1
h,t : Ωtm−1

onto−→ Ωt for t ∈ [tm−1, tm), h ∈ (0, h). (11)

We assume that Am−1
h,t is in space a piecewise affine mapping, continuous in space

variable X ∈ Ωtm−1 as well as in time t ∈ [tm−1, tm) and Am−1
h,tm−1

= Id (identical
mapping). For every t ∈ [tm−1, tm) we define the conforming triangulation

Th,t =
{
K = Am−1

h,t (K̂); K̂ ∈ T̂h,tm−1

}
in Ωt. (12)
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At t = tm we define the one-sided limit Am−1
h,tm−, and introduce the corresponding

triangulation. As we see, for every t ∈ [0, T ] we have a family {Th,t }h∈(0,h) of
triangulations of the domain Ωt .

3.2 Discrete Function Spaces

Let p ≥ 1 be an integer and Pp(K̂) the space of all polynomials on K̂ of degree
≤ p. Then for every m = 1, . . . ,M we consider the space

S
p,m−1
h =

{
ϕ ∈ L2(Ωtm−1); ϕ|

K̂
∈ Pp(K̂) ∀ K̂ ∈ T̂h,tm−1

}
. (13)

Further, for q ≥ 1 by Pq(Im; S
p,m−1
h ) we denote the space of mappings of the

time interval Im into the space S
p,m−1
h which are polynomials of degree ≤ q in time.

We set

S
p,q
h,τ =

{
ϕ; ϕ(t) ◦ Am−1

h,t |Im ∈ Pq(Im; S
p,m−1
h ), m = 1, . . . ,M

}
. (14)

This means that if ϕ ∈ S
p,q
h,τ , then

ϕ
(
Am−1

h,t (X), t
)

=
q∑

i=0

ϑi(X) ti , ϑi ∈ S
p,m−1
h , X ∈ Ωtm−1, t ∈ Im. (15)

3.3 Some Notation and Important Concepts

Over a triangulation Th,t , for each positive integer k, we define the broken Sobolev
space Hk(Ωt,Th,t ) = {v; v|K ∈ Hk(K) ∀K ∈ Th,t }.

By Fh,t we denote the system of all faces of all elements K ∈ Th,t . It consists of
the set of all inner faces F I

h,t and the set of all boundary faces FB
h,t . Each Γ ∈ Fh,t

will be associated with a unit normal vector nΓ . By K
(L)
Γ and K

(R)
Γ ∈ Th,t we

denote the elements adjacent to the face Γ ∈ F I
h,t . Moreover, for Γ ∈ FB

h,t the

element adjacent to this face will be denoted by K
(L)
Γ . We shall use the convention,

that nΓ is the outer normal to ∂K
(L)
Γ .

If v ∈ H 1(Ωt ,Th,t ) and Γ ∈ Fh,t , then v
(L)
Γ and v

(R)
Γ will denote the traces of v

on Γ from the side of elements K
(L)
Γ and K

(R)
Γ , respectively. We set hK = diam K

for K ∈ Th,t , h(Γ ) = diam Γ for Γ ∈ Fh,t and 〈v〉Γ = 1
2

(
v

(L)
Γ + v

(R)
Γ

)
, [v]Γ =

v
(L)
Γ − v

(R)
Γ , for Γ ∈ F I

h,t .
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3.4 Discretization

Let t ∈ (0, T ) be an arbitrary but fixed time instant. For u, ϕ ∈ H 2(Ωt ,Th,t ), θ ∈ IR

and cW > 0 we introduce the following forms

ah(u, ϕ, t) :=
∑

K∈Th,t

∫

K

β(u)∇u · ∇ϕ dx

−
∑

Γ ∈F I
h,t

∫

Γ

(〈
β(u)∇u

〉 · nΓ [ϕ] + θ
〈
β(u)∇ϕ

〉 · nΓ [u]
)

dS

−
∑

Γ ∈FB
h,t

∫

Γ

(
β(u)∇u · nΓ ϕ + θβ(u)∇ϕ · nΓ u − θβ(u)∇ϕ · nΓ uD

)
dS,

Jh(u, ϕ, t) := cW

∑

Γ ∈F I
h,t

h(Γ )−1
∫

Γ

[u] [ϕ] dS + cW

∑

Γ ∈FB
h,t

h(Γ )−1
∫

Γ

u ϕ dS,

Ah(u, ϕ, t) = ah(u, ϕ, t) + β0 Jh(u, ϕ, t),

bh(u, ϕ, t) := −
∑

K∈Th,t

∫

K

d∑

s=1

fs(u)
∂ϕ

∂xs

dx

+
∑

Γ ∈F I
h,t

∫

Γ

H(u
(L)
Γ , u

(R)
Γ , nΓ ) [ϕ] dS +

∑

Γ ∈FB
h,t

∫

Γ

H(u
(L)
Γ , u

(L)
Γ , nΓ ) ϕ dS,

dh(u, ϕ, t) := −
∑

K∈Th,t

∫

K

d∑

s=1

zs
∂u

∂xs

ϕ dx = −
∑

K∈Th,t

∫

K

(z · ∇u)ϕ dx,

lh(ϕ, t) :=
∑

K∈Th,t

∫

K

gϕ dx + β0 cW

∑

Γ ∈FB
h,t

h(Γ )−1
∫

Γ

uD ϕ dS.

Let us note that in integrals over faces we omit the subscript Γ . We consider
θ = 1, θ = 0 and θ = −1 and get the symmetric (SIPG), incomplete (IIPG)
and nonsymmetric (NIPG) variants of the approximation of the diffusion terms,
respectively. In bh(u, ϕ, t), H is a numerical flux which is Lipschitz-continuous,
consistent and conservative.

For a function ϕ defined in
⋃M

m=1 Im we denote

ϕ±
m = ϕ(tm±) = lim

t→tm± ϕ(t) and {ϕ}m = ϕ(tm+) − ϕ(tm−). (16)

Now we define an ALE-STDG approximate solution of our problem.
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Definition 1 A function U is an approximate solution of problem (7)–(9), if U ∈
S

p,q
h,τ and

∫

Im

((
DtU, ϕ

)
Ωt

+ Ah(U, ϕ, t) + bh(U, ϕ, t) + dh(U, ϕ, t)
)

dt (17)

+({U}m−1, ϕ
+
m−1)Ωtm−1

=
∫

Im

lh(ϕ, t) dt ∀ϕ ∈ S
p,q
h,τ , m = 1, . . . ,M,

U−
0 ∈ S

p,0
h , (U−

0 − u0, vh) = 0 ∀vh ∈ S
p,0
h . (18)

4 Analysis of the Stability

In the space H 1(Ωt ,Th,t ) we define the norm ‖ · ‖DG,t by the relation ‖ϕ‖2
DG,t =∑

K∈Th,t
|ϕ|2

H 1(K)
+ Jh(ϕ, ϕ, t). Moreover, over ∂Ωt we define the norm of the

Dirichlet boundary condition by ‖uD‖2
DGB,t = cW

∑
Γ ∈FB

h,t
h(Γ )−1

∫
Γ |uD|2 dS.

If we use ϕ := U as a test function in (17), we get the basic identity

∫

Im

(
(DtU,U)Ωt

+ Ah(U,U, t) + bh(U,U, t) + dh(U,U, t)
)

dt (19)

+({U}m−1, U
+
m−1)Ωtm−1

=
∫

Im

lh(U, t) dt .

4.1 Important Estimates

Here we estimate forms from (19) individually. The proofs can be carried out
similarly as in [1]. For a sufficiently large constant cW we obtain the coercivity
of the diffusion and penalty terms.

Lemma 2 Let

cW ≥ β2
1

β2
0

cM(cI + 1) for θ = −1 (NIPG),

cW ≥ β2
1

β2
0

cM(cI + 1) for θ = 0 (IIPG),

cW ≥ 16β2
1

β2
0

cM(cI + 1) for θ = 1 (SIPG),
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where constants cM and cI are from the multiplicative trace inequality and the
inverse inequality, respectively. Then

∫

Im

Ah(U,U, t) dt ≥ β0

2

∫

Im

‖U‖2
DG,t dt − β0

2

∫

Im

‖uD‖2
DGB,t dt . (20)

Further, we estimate the convection terms and the right-hand side term:

Lemma 3 For each k1, k2, k3 > 0 there exist constants cb, cd > 0 such that we
have

∫

Im

|bh(U,U, t)|dt ≤ β0

2k1

∫

Im

‖U‖2
DG,tdt + cb

∫

Im

‖U‖2
Ωt

dt . (21)

∫

Im

|dh(U,U, t)| dt ≤ β0

2k2

∫

Im

‖U‖2
DG,t dt + cd

2β0

∫

Im

‖U‖2
Ωt

dt . (22)

∫

Im

|lh(U, t)| dt ≤ 1

2

∫

Im

(
‖g‖2

Ωt
+ ‖U‖2

Ωt

)
dt (23)

+β0k3

2

∫

Im

‖uD‖2
DGB,t dt + β0

2k3

∫

Im

‖U‖2
DG,t dt .

Finally we need to estimate the term with the ALE derivative. The proof is based on
the Reynolds transport theorem and on (10).

Lemma 4 It holds that

∫

Im

(DtU,U)Ωt dt ≥ 1

2

(
‖U−

m ‖2
Ωtm

− ‖U+
m−1‖2

Ωtm−1
− cz

∫

Im

‖U‖2
Ωt

dt

)
, (24)

(
{U}m−1, U

+
m−1

)

Ωtm−1

(25)

= 1

2

(
‖U+

m−1‖2
Ωtm−1

+ ‖{U}m−1‖2
Ωtm−1

− ‖U−
m−1‖2

Ωtm−1

)
,

Theorem 5 There exists a constant CT > 0 such that

‖U−
m ‖2

Ωtm
− ‖U−

m−1‖2
Ωtm−1

+ ‖{U}m−1‖2
Ωtm−1

+ β0

2

∫

Im

‖U‖2
DG,tdt (26)

≤ CT

(∫

Im

‖g‖2
Ωt

dt +
∫

Im

‖uD‖2
DGB,tdt +

∫

Im

‖U‖2
Ωt

dt

)
.

Proof From (19), by virtue of (24), (20), (21), (22), (25) and (23), after some
manipulation and choosing k1 = k2 = k3 = 6, we get (26) with CT =
max{1, 7β0, cz + 1 + cd/β0 + 2cb}. �
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4.2 Discrete Characteristic Function

In our further considerations, the concept of a discrete characteristic function will
play an important role. Here it is generalized to time-dependent domains.

For m = 1, . . . ,M we use the following notation: U = U(x, t), x ∈ Ωt, t ∈ Im,
will denote the approximate solution in Ωt , and Ũ = Ũ(X, t) = U(At (X), t), X ∈
Ωtm−1, t ∈ Im, denotes the approximate solution transformed to the reference
domain Ωtm−1 .

Definition 6 The discrete characteristic function to Ũ at a point s ∈ Im is defined
as Ũs = Ũs(X, t) ∈ Pq(Im; S

p,m−1
h ) such that

∫

Im

(Ũs , ϕ)Ωtm−1
dt =

∫ s

tm−1

(Ũ , ϕ)Ωtm−1
dt ∀ϕ ∈ Pq−1(Im; S

p,m−1
h ), (27)

Ũs (X, t+m−1) = Ũ (X, t+m−1), X ∈ Ωtm−1 . (28)

Further, we introduce the discrete characteristic function Us = Us (x, t), x ∈ Ωt, t ∈
Im to U ∈ S

p,q
h,τ at a point s ∈ Im:

Us(x, t) = Ũs (A−1
t (x), t), x ∈ Ωt, t ∈ Im. (29)

Hence, in view of (14), Us ∈ S
p,q
h,τ and for X ∈ Ωtm−1 we have

Us(X, tm−1+) = U(X, tm−1+). (30)

In what follows, we prove that the discrete characteristic function mapping U →
Us is continuous with respect of the norms ‖ · ‖L2(Ωt )

and ‖ · ‖DG,t .

Theorem 7 There exist constants c
(1)
CH , c

(2)
CH > 0, such that

∫

Im

‖Us‖2
Ωt

dt ≤ c
(1)
CH

∫

Im

‖U‖2
Ωt

dt (31)

∫

Im

‖Us‖2
DG,t dt ≤ c

(2)
CH

∫

Im

‖U‖2
DG,t dt (32)

for all s ∈ Im, m = 1, . . . ,M and h ∈ (0, h).

Proof The proof is very long and technical. It is based on three steps. At first, the
discrete characteristic function Us is transformed to the reference domain, i.e. Ũs =
Us ◦ At . In the second step we apply continuity properties from [5] of the discrete
characteristic function in the reference (fixed) domain. Finally in the last step we
transfer it back to the current configuration. �
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Using the definition and properties (31)–(32) of the discrete characteristic
function, we can prove the following theorem. The proof is very long and technical.

Theorem 8 There exist constants C,C∗ > 0 such that

∫

Im

‖U‖2
Ωt

dt ≤ C τm

(
‖U−

m−1‖2
Ωtm−1

+
∫

Im

(‖g‖2
Ωt

+ ‖uD‖2
DGB,t

)
dt

)
(33)

provided 0 < τm < C∗.

Finally we arrive to our main result concerning the unconditional stability of the
method.

Theorem 9 Let 0 < τm ≤ C∗ for m = 1, . . . ,M . Then there exists a constant
CS > 0 such that

‖U−
m ‖2

Ωtm
+

m∑

j=1

‖{Uj−1}‖2
Ωtj−1

+ β0

2

m∑

j=1

∫

Ij

‖U‖2
DG,t dt

≤ CS

⎛

⎝‖U−
0 ‖2

Ωt0
+

m∑

j=1

∫

Ij

Rt dt

⎞

⎠ , m = 1, . . . ,M, h ∈ (0, h),

where Rt = (CT + C τj ) (‖g‖2
Ωt

+ ‖uD‖2
DGB,t ) for t ∈ Ij .

Proof The proof is based on (26), (33) and the use of the discrete Gronwall
inequality. �
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