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Abstract Recently, we devised an approach to a posteriori error analysis, which
clarifies the role of oscillation and where oscillation is bounded in terms of the cur-
rent approximation error. Basing upon this approach, we derive plain convergence
of adaptive linear finite elements approximating the Poisson problem. The result
covers arbritray H−1-data and characterizes convergent marking strategies.

1 Introduction

Adaptive finite element methods (AFEMs) are well-established and efficient tools
for solving boundary value problems. A common form is the iteration of

SOLVE → ESTIMATE → MARK → REFINE, (1)

i.e. solve for the current finite element solution, estimate its error by means of so-
called a posteriori indicators, and use this information in a marking strategy to make
refinement decisions. The resultant problem-dependent adaptation of the mesh often
significantly improves efficiency, compared to classical uniform refinement. There
are theoretical results corroborating this practical observation; see the surveys [3, 9]
and [5], which even obtains a nonlinear quasi-optimality result with respect to an
augmented energy norm error.

Almost all results about the convergence behavior of AFEMs invoke extra
regularity for the data which does not fit to the proven convergence rate in the light
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of [2, 6]. To exemplify and explain this, let us consider the approximation of the
weak solution of the Poisson problem

−Δu = f in Ω ⊂ R
d, u = 0 on ∂Ω (2)

by a realization of (1) with linear finite elements. Here one usually requires the
regularity f ∈ L2(Ω) beyond H−1(Ω), irrespective of the actual regularity of the
target function u. One reason for requiring f ∈ L2(Ω) lies in a posteriori error
analysis. Aiming at computability, local H−1-norms are replaced with L2-norms
scaled by the local meshsize hT , leading to terms like the classical oscillation
indicator hT minfT ∈R ‖f − fT ‖L2(T ), which needs f ∈ L2(Ω) to be defined.
Note however that such a term is not yet really computable and may cause
serious overestimation; cf. [7]. Another reason lies in many convergence analyses
themselves. They often rely on the fact that the scaling factors of the aforementioned
L2-norms strictly reduce under refinement and, e.g., in the case of oscillation terms,
this strict reduction hinges on extra regularity of f . It is worth mentioning that the
second reason does not apply to the derivations of plain convergence in [8, 10].

In [7] we present a new approach to a posteriori analysis covering arbitrary f ∈
H−1(Ω) and prove in particular

‖∇(u − UT )‖Ω � ET + δT � ‖∇(u − UT )‖Ω,

where UT is the linear finite element solution over the mesh T , the estimator ET is
computable in a similar sense as UT , while the computation of the oscillation δT
requires additional information on f .

Here we prove plain convergence of adaptive linear finite elements for (2) by
combining the a posteriori analysis [7] and the convergence analyses [8, 10]. The
result forgoes extra regularity and so convergence rates are precluded. Section 2
presents the adaptive finite method in detail, along with an account of [7], and Sect. 3
is concernedwith the convergence proof, thereby characterizing convergentmarking
strategies. Section 4 then concludes with a brief discussion of a few convergent
marking strategies.

2 Adaptive Algorithm with Abstract Marking Strategy

In this section we introduce adaptive finite element methods for approximating the
weak solution u ∈ H 1

0 (Ω) of (2) for some fixed but arbitrary load

f ∈ H−1(Ω). (3)

Here H 1
0 (Ω) is the subspace of Sobolev functions in H 1(Ω) with vanishing trace

and H−1(Ω) denotes its topological dual space.
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Bisection and Conforming Linear Finite Elements Let T0 be a suitable simplicial,
face-to-face (conforming) mesh of Ω and denote by T the family of its refinements
using iterative or recursive bisection; cf. the discussion in [9] and the references
therein. In what follows, ‘�’ stands for ‘≤ C’, where the generic constant C may
depend on the shape coefficient of T0. For example, for any simplex arising in T,
we have that its shape coefficient� 1.

Let T ∈ T be a mesh. We denote the set of its vertices by VT and the set of its
faces by FT . The associated space of continuous piecewise affine functions is

V(T ) :=
{
V ∈ C0(Ω̄) | V|T ∈ P1 for all T ∈ T

}
⊂ H 1(Ω).

Its nodal basis {ΦT,z}z∈VT is given by

ΦT,z ∈ V(T ) such that ΦT,z(y) = δzy for all z, y ∈ VT .

Note suppΦT,z = ⋃{T ∈ T : T � z} =: ωT,z. The finite element functions
V̊(T ) := {V ∈ V(T ) | ∀z ∈ VT ∩ ∂Ω V (z) = 0} ⊂ H 1

0 (Ω) are conforming and
the associated Galerkin approximation UT of (2) is characterized by

UT ∈ V̊(T ) such that ∀V ∈ V̊(T )

∫

Ω

∇UT · ∇V dx = 〈f, V 〉, (4)

where 〈·, ·〉 is the duality pairing between H−1(Ω) and H 1
0 (Ω). In order to be able

to compute UT , we suppose that

∀T ∈ T, z ∈ VT ∩ Ω 〈f,ΦT,z〉 is available. (5)

A Posteriori Error Analysis with Error-Dominated Oscillation We outline the
approach to a posteriori error analysis in [7], which prepares the ground for
formulating our convergence theorem. To this end, we fix the mesh T and drop
it as subscript in the following discussion. Further, given a subdomain ω ⊂ Ω , we
choose ‖∇ · ‖ω := ‖∇ · ‖L2(ω) as norm on H 1

0 (ω) and denote by ‖ · ‖−1;ω its dual
norm on H−1(ω).

We then have the global relationship ‖∇(u − U)‖Ω = ‖f + ΔU‖−1;Ω between
error and residual as well as, locally,

∀z ∈ V ‖f + ΔU‖−1;ωz ≤ ‖∇(u − U)‖ωz . (6)

Exploiting Galerkin orthogonality and the fact that {Φz}z∈V provides a partition of
unity, one derives that, for any v ∈ H 1

0 (Ω) and V ∈ V̊(T ),

〈f + ΔU, v〉 = 〈f + ΔU, v − V 〉 �
∑
z∈V

‖f + ΔU‖−1,ωz‖∇v‖ωz ; (7)
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see, e.g., [4, 7]. Applying the Cauchy-Schwarz inequality on the sum and recall-
ing (6), one obtains the error localization

‖∇(u − U)‖2Ω �

∑
z∈V

‖f + ΔU‖2−1;ωz
.

In general, upper bounds for the local residual norms ‖f + ΔU‖−1;ωz , as for the
global one ‖f + Δu‖−1;Ω , cannot be computed by a finite number of operations
from the information in (5). The reason lies in the possibly infinite-dimensional
nature of f ; see [7]. One therefore may isolate this difficulty by inserting a
finite-dimensional approximation of f , e.g., some piecewise constant function f̄ .
Unfortunately, the arising terms ‖f − f̄ ‖−1;ωz , or the larger classical oscillation
terms ‖h(f − f̄ )‖ωz , may overestimate the error by far on a given mesh, see [7],
and even lead to worse convergence rates, see [4].

To overcome these drawbacks, we have developed in [7] a projection operatorP :
H−1(Ω) → D(T ) with the following properties. The evaluation Pf is computable
under (5) and the range

D(T ) := {
� ∈ H−1(Ω) | 〈�, v〉 =

∑
T ∈T

∫

T

cT v dx +
∑
F∈F

∫

F

cF v ds

for all v ∈ H 1
0 (Ω) with cT , cF ∈ R for T ∈ T , F ∈ F

}

containsΔU ∈ H−1(Ω). Moreover,P is locally stable and invariant in that, for any
� ∈ H−1(Ω), z ∈ V , and D ∈ D(T ), we have

‖P�‖−1;ωz � ‖�‖−1;ωz, (8a)

as well as

� = P� in H−1(ωz) whenever � = D in H−1(ωz). (8b)

Consequently, we have P(ΔU) = ΔU and the local splittings

‖f + ΔU‖−1;ωz � ‖Pf + ΔU‖−1;ωz + ‖f − Pf ‖−1;ωz, (9)

where ‖Pf +ΔU‖−1;ωz is quantifiable under (5), but the computation or bounding
of ‖f − Pf ‖−1;ωz requires information beyond. To sum up, we formulate the
following theorem.

Theorem 1 (A Posteriori Bounds) For any mesh T ∈ T, we have

‖∇(u − UT )‖2Ω �
∑

z∈VT

‖PT f + ΔUT ‖2−1;ωT,z
+ ‖f − PT f ‖2−1;ωT,z
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as well as, for any z ∈ VT ,

‖PT f + ΔUT ‖2−1;ωT,z
+ ‖f − PT f ‖2−1;ωT,z

� ‖∇(u − UT )‖2ωT,z
.

Adaptive Algorithm The bounds in Theorem 1 are vertex-wise, while bisection
is applied element-wise. Therefore, we assume that there are element indicators
ET (T ), T ∈ T , such that

‖PT f + ΔUT ‖2−1;ωT,z
�

∑
T ⊂ωT,z

ET (T )2 (10a)

and

ET (T )2 �
∑

z∈T ∩VT

‖PT f + ΔUT ‖2−1;ωT,z
. (10b)

Such local equivalences hold for various indicators resembling the ones from the
standard residual estimator, the hierarchical estimator, or estimators based upon
discrete local problems; cf. [7].

In order to achieve a similar grouping for the oscillation, we introduce, for any
T ∈ T , its minimal ring ω(T ) := ⋂{ωT ′(T ) : T ′ ∈ T,T ′ � T }, where ωT (T ) :=
∪{T ′ ∈ T : T ′ ∩ T �= ∅}. Then

δ(T ) := ‖f − PT f ‖−1;ω(T ) (11)

does not depend on the surrounding mesh, and we can derive the inequalities

‖f − PT f ‖2−1;ωT,z
�

∑
T ⊂ωT,z

δ(T )2, δ(T )2 �
∑

z∈T ∩VT

‖f − PT f ‖2−1;ωT,z
.

(12)

Algorithm (AFEM) Starting from T0 and k = 0, compute (Vk)k , (Uk)k , (Tk)k
iteratively as follows, where step 3 will be specified further below.

1. Set Vk := V̊(Tk) and let Uk ∈ Vk be the solution of (4) with T = Tk .
2. Compute the indicators of estimator and oscillation in (10) and (11), respectively,

and write Ek as an abbreviation for ETk
.

3. Choose a subset Mk ⊂ Tk with the help of the values of the indicators
{Ek(T )}T ∈Tk

and {δ(T )}T ∈Tk
.

4. Let Tk+1 be the smallest refinement of Tk in T such thatMk ∩ Tk+1 = ∅.
5. Increment k and go to step 1.
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3 Convergence and Marking Strategy

The above adaptive method generalizes global uniform refinement, which is the
special case corresponding toMk = Tk for all k. The new key feature is that certain
elements may not be refined anymore. In other words: it may happen that

T ∗ := {T | ∃m ∈ N0 ∀k ≥ m T ∈ Tk} �= ∅ and so V∞ :=
⋃
k

Vk �= H 1
0 (Ω).

It is then the task of step 3, the marking strategy, to preclude u ∈ H 1
0 (Ω) \ V∞,

which is equivalent to non-convergence.
Let us first derive a necessary condition for the marking strategy. If

limk→∞ ‖∇(u − Uk)‖Ω = 0, then, for any element T ∈ T ∗, the local lower bounds
in (10), (11), and Theorem 1 imply limk→∞ Ek(T ) + δ(T ) = 0 for the associated
indicators. Hence it is necessary for convergence that the marking strategy ensures

∀T ∈ T ∗ δ(T ) = 0 and lim
k→∞ Ek(T ) = 0, (13)

which specifies [8, (5.1)]. It turns out that this condition is also sufficient for
convergence, as it complements the following property of our refinement procedure.
Let hk denote the meshsize function of Tk given by hk |T = |T |1/d for all T ∈ Tk

and let χk the characteristic function of
⋃{T ∈ Tk : T �∈ Tk+1}. Then [9, Lemma 9]

shows

lim
k→∞ ‖hkχk‖L∞(Ω) = 0, (14)

which generalizes maxΩ hk → 0 for non-adaptive, uniform refinement.

Theorem 2 (Adaptive Convergence) Let f ∈ H−1(Ω) be arbitrary and assume
that the indicators of the estimator satisfy (10). Then the approximate solutions
(Uk)k of the AFEM converge to the exact solution u if and only if the marking
strategy ensures (13).

Proof We adopt the proof of [9, Theorem 8], which essentially follows [10]. Using
the Lax-Milgram theorem, let U∞ ∈ V∞ be such that

∫

Ω

∇U∞ · ∇V dx = 〈f, V 〉 for all V ∈ V∞.

Thanks to [9, Lemma 7], we have

lim
k→∞ ‖∇(U∞ − Uk)‖Ω = 0 (15)
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and it remains to show that U∞ = u or, as an alternative, that its residual vanishes:

0 = 〈R∞, v〉 := 〈f, v〉 −
∫

Ω

∇U∞ · ∇v dx for all v ∈ H 1
0 (Ω). (16)

Here we can take the test functions only from C∞
0 (Ω), because C∞

0 (Ω) is a dense
subset of H 1

0 (Ω). Consequently, the convergence (15) shows that (16) follows from

∀ϕ ∈ C∞
0 (Ω) lim

k→∞〈Rk, ϕ〉 = 0, (17)

where Rk := f + ΔUk ∈ H−1(Ω) is the residual of Uk.
In order to verify this, let ϕ ∈ C∞

0 (Ω) and k, � ∈ N0 with k ≥ � and introduce
the set T ∗

� := T� ∩ T ∗. The inclusion V� ⊂ Vk, the abstract error bound (7), the
local equivalences (9), as well as the upper bounds in (10) and (11) imply

〈Rk, ϕ〉 = 〈Rk, ϕ − I�ϕ〉 � S�,k + S∗
�,k, (18)

where I� denotes Lagrange interpolation onto V� and we expect that

S�,k :=
∑

T ∈Tk\T ∗
�

(
Ek(T ) + δ(T )

)‖∇(ϕ − I�ϕ)‖ωk(T )

gets small because of decreasing meshsize, whereas

S∗
�,k :=

∑
T ∈T ∗

�

(
Ek(T ) + δ(T )

)‖∇(ϕ − I�ϕ)‖ωk(T )

gets small thanks to condition (13) on the marking strategy. Here ωk(T ) = ωTk
(T )

is the ring around T in Tk .
We first deal with S�,k . The lower bounds in (10), (11), and Theorem 1 entail that

∑
T ∈Tk\T ∗

�

(
Ek(T ) + δ(T )

)2 � ‖∇(Uk − U∞)‖2Ω + ‖∇(U∞ − u)‖2Ω � 1 (19)

is uniformly bounded thanks to (15). Furthermore, standard error bounds for
Lagrange interpolation on T� yield

∑
T ∈Tk\T ∗

�

‖∇(ϕ − I�ϕ)‖2ωk(T ) �
∑

T ∈T�\T ∗
�

‖∇(ϕ − I�ϕ)‖2ω�(T )

� ‖h�χ�‖2L∞(Ω)‖D2ϕ‖2L∞(Ω)|Ω |.
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Hence the Cauchy-Schwarz inequality on the sum S�,k and (14) imply

S�,k → 0 as � → ∞ uniformly in k. (20)

For S∗
�,k , condition (13) leads to

∑
T ∈T ∗

�

(
Ek(T ) + δ(T )

)2 =
∑

T ∈T ∗
�

Ek(T )2 → 0 as k → ∞

and, since
∑

T ∈T ∗
�

‖∇(ϕ − I�ϕ)‖2
L2(ωk(T ))

is uniformly bounded, the Cauchy-
Schwarz inequality provides

S∗
�,k → 0 as k → ∞ for any fixed �. (21)

To conclude, let ε > 0 be arbitrary. We exploit (20) and (21) by first choosing �

so that S�,k ≤ ε/2 and next k ≥ � so that S∗
�,k ≤ ε/2. Inserting this into (18) yields

the desired convergence (17) and finishes the proof. ��

4 Convergent Marking Strategies

In this concluding section, we discuss how to ensure condition (13) on the marking
strategy, which is necessary and sufficient for the convergence of the AFEM.

To this end, the following observation about a vanishing limit is helpful. If
(Tk)k∈N0 is a sequence of elements satisfying Tk ∈ Tk \ Tk+1, k ∈ N0, then

Ek(Tk) + δ(Tk) � ‖∇(u − Uk)‖ωk(Tk)

≤ ‖∇(U∞ − Uk)‖ωk(Tk) + ‖∇(u − U∞)‖ωk(Tk) → 0
(22)

as k → ∞. In fact, the first term on the right-hand side vanishes thanks to (15)
and the second term vanishes in view of ωk(Tk) � |Tk| � ‖hkχk‖d

L∞(Ω) and
property (14).

Condition (13) is thus satisfied if we have

max
T ′∈Tk

(
δ(T ′) + Ek(T

′)
) ≤ max

T ′∈Tk\Tk+1

(
δ(T ′) + Ek(T

′)
)
,

which, thanks to Mk ⊂ Tk \ Tk+1, can be achieved by requiring that at least one
element with maximal combined indicators is marked:

Mk ∩
{

T ∈ Tk | δ(T ) + Ek(T ) ≥ max
T ′∈Tk

(
δ(T ′) + Ek(T

′)
)} �= ∅. (23)
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This property is verified by most of the common marking strategies applied to the
combined indicators δ(T ) + Ek(T ), T ∈ Tk . Important examples are maximum-,
Dörfler-, and equal distribution strategy; cf. [8].

As an alternative to combined marking, one may mark the two indicators
separately. Similarly as before, requiring (23) for the single indicator Ek(T ) instead
of the combined indicator Ek(T ) + δ(T ) then implies

∀T ∈ T ∗ lim
k→∞ Ek(T ) = 0.

To ensure also δ(T ) = 0 for all T ∈ T ∗, one may employ again the respective
counterpart of (23) or a different approach, which, as fast tree approximation [1],
capitalizes on the locality and history of the oscillation indicator. The following
simple consequence of Theorem 2, which is also of interest by its own, is useful in
this context.

Remark 3 (ModifiedOscillation) For any simplex T inT, let δ̃(T ) be a modification
or approximation of δ(T ) such that δ̃(T ) = 0 �⇒ δ(T ) = 0. Then the AFEM,
where each δ(T ) is replaced by δ̃(T ), converges if and only if limk→∞ Ek(T ) = 0
and δ̃(T ) = 0 for all T ∈ T ∗.
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