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Abstract
Lichens present a symbiotic association between two or more organisms. These
unique organisms produce many chemical compounds, known as secondary metab-
olites or lichen acids. Most of them are localized in the cortex and form specific
crystals on the surface of the fungal hyphae. Approximately 1000 secondary
metabolites were discovered so far and most of them are specific for lichens.
Lichen secondary metabolites showed many pharmaceutical activities, including
antimicrobial, antiproliferative, antioxidant, antiviral, anti-inflammatory, and fur-
ther allelopathic, antiherbivore, photoprotective activities. Lichens are important
source of bioactive compounds, and despite a lot of studies dealing with activity of
lichen secondary metabolites, their production in lichens and their role is still very
enigmatic. In this chapter, we demonstrated all three main pathways of how
secondary compounds originate and chose most characteristic acids with their
proposed biological and ecological activities. This chapter gives a basic overview
of lichens, secondary metabolites, and their properties.

Keywords
Symbiosis · Lichens · Biosynthetic pathways · Secondary metabolites ·
Pharmaceutical activities

1 Introduction

Colonization of land by phototrophic organisms started in Silurian era around 450 mil-
lion years ago [1]. The environment was not friendly for these organisms because they
needed to counter a low content of mineral nutrition, harmful UV-radiation from the
sun, high oscillation of temperature, as well as a lower content of water or even its
absence. All of these abiotic factors played important role in adaptations to the
terrestrial environment. Living forms, which would like to stand in these adaptations,
needed phosphorus to create nucleic acids and ATP (adenosine triphosphate). One
example of how to solve problem with phosphorus uptake was that first colonizing
organisms formed associations with mycorrhizal fungi [2, 3]. It needs to be mentioned
that early organisms were forced to establish a form of mutualism which means the
interaction between at least two different species of the individuals. Mutualism
provided various adaptations for terrestrial plants and played a crucial part for settling
on soil as well as in the evolution of land phototrophs [4].

Lichens (lichen-forming fungi) represent nearly one-fifth of all known fungal
species so far [5]. They are typical examples of mutualistic symbiosis, where both
partners need each other to benefit. The total number of lichens is still not known, but
around 18,500 species were already described around the world [6]. Lichens are the
dominant vegetation of approximately 8% of terrestrial ecosystems [7] and are
typically found in environments subjected to extremes such as temperature, desic-
cation, and nutrient status.
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This symbiotic partnership consists of fungal partner (called also mycobiont) and
one or more photoautotrophic partners (called photobiont or phycobiont) [8]. For
almost 150 years, lichens had been the model organisms of symbiosis on the lands
until the researchers uncovered an unexpected third partner in the lichen cortex –
yeast [9].

Lichens as fossils are scarce. Fossil evidence for the interactions of fungi with
other organisms, including phototrophs, has been found originating from an era
approximately 400 million years ago, in the area of Rhynie chert in Scotland.
However, the discovery of lichen-like fossils preserved in marine phosphorite of
the Doushantuo Formation (approximately 600 million years old) at Weng’an in
southern China indicates that lichenization could have arisen even before the
evolution of vascular plants [10]. In addition, recent molecular data suggest that
lichen symbioses arose repeatedly during the evolution of fungi [11] and had a very
important role in the evolution of Ascomycota [12].

2 Lichen Symbiotic Partners

Based on the most definitions, the lichen is the organism that represents the
symbiotic association between the fungus (mycobiont) and the photosynthetic
partner (photobiont). Photobiont coexistence with the lichen mycobiont brings
many benefits that none of the organisms itself cannot achieve [13]. Although the
dual nature of most lichens is now widely established, it is less commonly known
that some lichens are symbioses involving three or more partners [8]. It has been
suggested that they are mainly bacteria involved in the formation of complete lichen
thalli [14].

2.1 Mycobiont

Most of the fungal partners belong to Ascomycota [15, 16], but we can also find
species belonging to the Basidiomycota and anamorphic fungi. Mycobiont (Fig. 1a)
is the dominant component of the lichen thallus. Separated “biont” cells in most
cases are in direct contact, where fungal hyphae try to penetrate to cells of photo-
biont. There are known some cases where mycobiont is in contact not only with one
type of photobiont but with two or even more. This leads to the creation of specific
structure, cephalodium (e.g., Peltigera aphthosa). Because mycobiont is unable to
produce the organic substances necessary for its growth, hence it must acquire them
from a symbiosis. Heterotrophic mycobiont acquires fixed carbon in symbiosis from
an autotrophic green algae or cyanobacteria. These are photosynthesis products
(ribitol, sorbitol, glucose). In the lichen symbiosis, mycobiont ensures the intake
of water and minerals for lichen thallus. It creates morphology and structures that are
involved in both sexual and nonsexual reproduction. One of the most important roles
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of mycobiont is protection of photobiont from exposure to intense sunlight and
desiccation by production of secondary metabolites. There is a predominant view
that mycobiont has a higher tolerance to various environmental factors [17].

2.2 Photobiont

The role of photobionts in the lichen thallus can play nearly 40 genera of algae and
cyanobacteria [18, 19]. The vast majority are eukaryotic photobionts, which belong
to green algae (Chlorophyta) (Fig. 1b). They have a large number of common
cytological features and their pigmentation, such as the presence of chlorophylls
a and b, whose presence is common with higher plants [20, 21]. In only a small
percentage of lichens, the photobionts are represented by prokaryotic cyanobacteria
(Fig. 1c), sometimes called “cyanobionts.” There are also known examples in which
both groups of obligatory photobionts were observed simultaneously in the lichen
thalli. The most frequent photobionts are represented by the genera Trebouxia,
Trentepohlia, and Nostoc. Unlike green algae, cyanobacteria are diazotrophic
because they can fix atmospheric nitrogen. The diversity of these photosynthetic
partners is related to the variety of substrates that individual species are able to
colonize within the genus. Main role of autotrophic photobiont is to synthesize
organic compounds from carbon dioxide. Transfer of metabolites from photobiont
to the mycobiont depends on the type of autotrophic photobiont involved [8].

Fig. 1 (a) Mycobionts cells consisting of hyphae, (b) photobiont cells consisting of green algae, (c)
photobiont cells consisting of cyanobacteria, (d) third symbiotic partner cells consisting of yeasts
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2.3 Third Symbiont “Yeast”

In the study of Spribille et al. [9] is stated that many common lichens consist of a
known ascomycete, the autotrophic photosynthesizing partner, and unexpectedly
specific basidiomycete yeast (Fig. 1d). These yeasts are anchored in the cortex of
lichen thallus and their abundance correlates with previously unexplained variations
of the phenotype.

3 Anatomy and Morphology

Lichen morphology and anatomy is highly adapted to environmental restrictions; the
mycobiont forms the exhabitant and the photobiont is the inhabitant [22]. The lichen
“body” is called thallus. In the cross section (Fig. 2c), the lichen thallus usually
consists of the upper cortex, a photosynthetic layer, the medulla, and the lower
cortex. Some species also developed a central cord which has a support function
(Fig. 2a, b). The thickness of the layers can vary in different species which is a
response to the different environmental conditions.

Symbiosis is a source of dynamic evolution which is reflected by the different
growth forms of thalli [23]. Many different thalli structures are known [24, 25], but
they can be divided into three morphological types: (Fig. 3a) fruticose, (Fig. 3b)
crustose, and (Fig. 3c) foliose. Other types can be included into these main three
types. For example, Cladonia macilenta is lichen with squamulose bases and fruticose
fruiting structures which are called podetia (Fig. 3d). Lepraria species have leprose,
crustose lichen thalli with a powdery or granular surface. Genus Collema, Leptogium,
or Lathagrium are characteristic of their gelatinous foliose thallus (Fig. 3e).

Crustose (Fig. 3a) lichens are tightly attached to the substrate by whole thalli, and
it is very hard to remove them without any damage. These lichens usually grow on
rocks or barks and colonize extreme habitats, including metal rich substrates.
Unfortunately, the physiological studies of these lichens are very poor due to the
complicated removal from substrate and low biomass production for routine analysis
[26]. Extreme examples are endolithic species which penetrate a rock surface and
only fruiting bodies are exposed (Fig. 3f).

Foliose lichens (Fig. 3b) are known as leafy-like. They are partially attached to
the substrate or in one single point. The thallus is usually divided into lobes
(Parmelia sp.) with various degrees of branching, but in some species (Umbilicaria
sp.) the thallus is from one single unbranched lobe or a “multilobe” with limited
branching [8]. According to their biomass and easy collection, they are used in
biochemical and ecophysiological studies [26].

Fruticose lichens (Fig. 3c, d) are known as hair-like or strap-shaped. The lobes are
usually flat or cylindrical. The thallus can grow horizontally or vertically (Cladonia
sp.) or even hanging (Usnea sp.). The branching of lobes may be different within the
systematic groups or even a single genus. Fruticose lichens are growing usually on
tree barks but also on the ground. As with the foliose types, lichenologists prefer for
experiments fruticose growth forms of thalli due to the easy removal from surface.
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4 Lichen Secondary Metabolites

Lichens present pioneer organisms, which can live in extreme habitats. These
symbiotic organisms can deal with very specific conditions of environment because
they produce secondary metabolites, which provide them with a good protection
against various negative physical and biological influences [27]. As Lawrey [28]
described, lichens produce two main groups of metabolites: primary (intracellular)

Fig. 2 (a) SEM photo of lichen Usnea sp. (a) upper cortex, (b) medulla, (c) central cord, (b) light
microscopy (LM) photo of lichen Usnea sp. (a) upper cortex, (b) photosynthetic layer consisting of
green algae cortical metabolites, (c) medulla, (d) central cord, (c) cross section of lichen thallus
(Xanthoria parietina) in LM consisting of (a) upper cortex, (b) photosynthetic layer, (c) medulla,
(d) lower cortex
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and secondary (extracellular). More than 1000 lichen substances are already known.
The isolation, identification, and structures are described in the handbook of Huneck
and Yoshimura [29].

Into the products of primary metabolism, we can include amino acids, amines,
peptides, proteins, polyols, saccharides (mono-, oligo-, poly-) carotenoids, and
vitamins, which are bound in the cell walls and the protoplasts. Most of them are
soluble in water and can be extracted with boiling water [30]. Some of the primary
metabolites are produced by fungal and some of them by photosynthetic partner.
Many of these primary metabolites are not specific only for lichens and can be easily
found in free-living fungi, algae, as well as higher plants [31]. Lichens dispose a
similar amount of free amino acids as do the other plants. Lichen thallus present from
1.6% to 11.4% dry weight of nitrogen compounds [31], 1.5 to 24 mg/g dry weight of
carotenoids, and 3–5% dry weight of polysaccharides [32].

Fig. 3 Morphology of lichen thallus: (a) crustose thallus (Lecanora argentata), (b) foliose thallus
(Parmelia sulcata), (c) fruticose thallus (Pseudevernia furfuracea), (d) bipartite thallus (Cladonia
macilenta), (e) gelatinous thallus (Lathagrium sp.), (f) endolithic thallus (Bagliettoa sp.)
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The major group of these organic compounds which are found in lichens are
products of secondary metabolism. The amount of secondary metabolites varies
usually between 0.1% to 10% of dry weight of thallus but sometimes up to 30%
[33–35]. All of the secondary metabolites (Fig. 4) of lichens are of fungal origin
[6]. These lichen substances can be found in crystal form deposited on the surface of
the hyphae of mycobiont. The solubility in water is very poor and mostly organic
solvents can be used for their isolation.

Crystals of secondary metabolites are very stable, once they are formed, which
was confirmed in several studies. Herbarium specimens of the lichens showed no
significant decrease in concentrations of secondary metabolites [36].

Production of secondary metabolites in lichens is influenced by environmental
factors including a light, UV-exposure, elevation, temperature fluctuations, and
seasonality [6]. The age of lichens also plays significant role in production of lichen
compounds and their location in lichen thallus as well.

4.1 Lichen Biosynthetic Pathways

Lichen secondary metabolites are classified by Culberson and Elix [37] according to
their biosynthetic origins and chemical structures [38]. Three chemical pathways are

Fig. 4 (a) Various shape of lichen crystals, (b) secondary metabolites as crystals on hyphae, (c)
crystals of usnic acid after recrystallization (SEM), (d) lichen crystals attached on mycobiont
hyphae (LM)
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known in lichens: acetyl-malonate pathway, shikimate pathway, and mevalonate
pathway.

4.1.1 Acetyl-Malonate Pathway
The formation of the polyketide chain could be envisaged as a series of Claisen
reactions between the starting acetyl CoA and various number of malonyl CoA since
every step ends by decarboxylation reaction. Orsellinic acid, the main intermediate
in the biosynthesis of depsides and depsidones, is formed by intramolecular aldol
reaction of the polyketide containing four keto groups and subsequent enolization
and hydrolysis. Esterification of two orsellinic acid molecules affords lecanoric acid
as member of depsides class. The most known orcinol-type depsidones have an α- or
a β-keto group in the side chain of the first ring. It is well known that this functional
group has a strong effect upon the ester linkage between the two rings since enol
lactones form readily. Oxidative cyclization of depsides to depsidones usually joins
the 2-hydroxyl of ring A and the 5-position of ring B.

C-methylation, Claisen reaction, and subsequent aromatization of the same poly-
ketide leads to methylphloracetophenone. Radical coupling of two radicals derived
from this intermediate affords bis dienone from which usnic acid is formed.

By Claisen reaction, aromatization and subsequent cyclization reactions of the
polyketide containing five keto groups 5,7-dihydroxy-2-methylchromone are
formed as key intermediate for synthesis of chromones and xanthones.

Polyketide containing eight keto groups undergoes several aldol reactions
followed by reactions such as enolization, oxidation, decarboxylation, and selective
methylation to give parietin, member of the anthraquinone group. Classes of lichen
substances, which are derived by acetyl-malonate pathway, are depsides,
depsidones, dibenzofurans, anthraquinones, chromones, and xanthones (Fig. 5).

Depsides
Polyphenolic compounds consisting of two or more monocyclic aromatic units
linked by an ester bond are called depsides. The most common are products of
intermolecular esterification of similar or identical units. Second esterification leads
to tridepsides.

Evernic Acid
Evernic acid showed strong antioxidant, antimicrobial, and anticancer activities
(Fig. 6). Antiherbicidal activity was also reported. Kosanić et al. [39] found varying
antioxidant activity of evernic acid in free radical scavenging, superoxide anion
radical scavenging. Strong antibacterial activity was reported against Gram-positive
bacteria (Staphylococcus aureus, Bacillus subtilis, and Bacillus megaterium)
[28]. Antitumor activity of evernic acid against HeLa cancer cell lines was also
reported [40]. Evernic acid acts also as photosystem II inhibitor [41].

Lecanoric Acid
The antitumor, antioxidant, antibacterial, and antifungal activities of lichen com-
pound lecanoric acid were confirmed (Fig. 7). Bogo et al. [42] tested cytotoxicity of
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Fig. 5 Classes of lichen substances which are derived by acetyl-malonate pathway
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lecanoric acid and its orsellinate derivates against cancer cell lines (HEP-2, MCF-7,
786-0, and murine melanoma cell) and structural modifications increased activity.
Promising antioxidant activity of lecanoric acid in SOR (superoxide radical) was
demonstrated [43]. This compound showed relatively strong antimicrobial effects
against 6 bacteria and 10 fungi containing human, animal, and plant pathogens,
mycotoxin producers, as well as food-spoilage organisms [44, 45]. Lecanoric acid
was also reported as a potent fungitoxic compound, which was tested against fungus
Cladosporium sphaerospermum [46].

Gyrophoric Acid
Gyrophoric acid demonstrated antioxidant, antibacterial, cytotoxic, and antitumor
activities (Fig. 8). This lichen compound is a common metabolite in Umbilicaria
lichen species. Antioxidant activity of lichen members in family Umbilicariaceae
was demonstrated [47]. Antibacterial activity of gyrophoric acid was showed against
some foodborne bacteria and fungi [48]. Gyrophoric acid was highly effective
against cancer cell lines (HL-60, A2780, Jurkat), where cytotoxicity and
pro-apoptosis activity were confirmed [49].

Fig. 7 Lecanoric acid structure (Hypocenomyce scalaris)

Fig. 6 Evernic acid structure (Evernia prunastri)
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Atranorin
Atranorin has strong antioxidant and antitumor properties (Fig. 9). This lichen
compound has one of the largest free radical scavenging activities from lichen
substances tested and the most effective reducing power and superoxide radical
scavenging so far [50]. Another property of atranorin is anticancer activity against
cancer cell lines (A2780 and HT-29) which was demonstrated by Bačkorová et al.
[51]. This depside demonstrated strong pro-apoptic action and inhibition of cancer
cell proliferation. Atranorin is counted also as a potential anticancer agent in
hepatocytes from rat [52]. Antibacterial activities of this metabolite were also tested
[44, 45].

Thamnolic Acid
In the study of Cankılıç et al. [53], thamnolic acid showed potential antibacterial,
antituberculosis, and antifungal activities (Fig. 10). Strong effect of this compound
was determined also against bacteria and yeasts. This compound can be used as
potential antimicrobial agent in food industry and for the purpose of controlling
different diseases.

Fig. 8 Gyrophoric acid structure (Lasallia pustulata)

Fig. 9 Atranorin structure (Hypogymnia tubulosa)

186 M. Goga et al.



Umbilicaric Acid
Umbilicaric acid is a common lichen substance in family Umbilicariaceae (Fig. 11).
Antioxidant and antimicrobial activities of this metabolite were demonstrated.
Umbilicaric acid was tested for potential antioxidant ability and showed the highest
antioxidant activity with 68.14% inhibition among all tested metabolites [47]. Inhib-
itory effect on three Gram-positive bacteria and two yeasts, which are known as
foodborne microorganisms and lead to infections in humans, was observed.

Depsidones
Orcinol-type depsidones have keto-group in the side chain of the first ring. It is well
known that this functional group has a strong effect upon the ester linkage between
the two rings, since enol lactones form readily. Oxidative cyclization of depsides to
depsidones usually joins the 2-hydroxyl of ring A and the 5-position of ring B.

Protocetraric Acid
Antibacterial, antifungal, antioxidant and anticancer potential was found in pro-
tocetraric acid (Fig. 12). Antibacterial activity of protocetraric acid against

Fig. 11 Umbilicaric acid structure (Umbilicaria polyphylla)

Fig. 10 Thamnolic acid structure (Thamnolia vermicularis)

9 Lichen Metabolites: An Overview of Some Secondary Metabolites and Their. . . 187



Salmonella typhi (0.5 μg/mL) and significant antifungal effect against Tripthyton
rubrum (1 μg/1 mL) were reported. Protocetraric acid can be used as potential
antimicrobial drug against human pathogenic microbes [54]. Antitubercular activity
of several lichen substances was also tested. Protocetraric acid (MIC value 125 μg/
mL, 334 μM) showed moderate inhibitory activity [55]. Antiproliferative activity of
protocetraric acid against FemX (human melanoma) and LS174 (human colon
carcinoma) cell lines with IC50 values from 35.67 to 60.18 μg/mL was confirmed.

Fumarprotocetraric Acid
Fumarprotocetraric acid as one of the bioactive compounds of lichen (Fig. 13) was
tested as expectorant and for its antioxidant activities (Fig. 13). Orally administered
compound (25 and 50 mg/kg) showed significantly greater dose-dependent phenol
red activity in the bronchoalveolar lavage and expectorant activity (p ˂ 0.05). Lipid
peroxidation was also reduced by 50% in the lung tissue [56]. The growth inhibition
of bacteria (Bacillus cereus, Bacillus subtilis, Listeria monocytogenes) and yeasts
(Candida albicans, Candida glabrata) was observed after use of fumarprotocetraric
acid (MIC 4.6 μg/mL, 0.33 mM for bacteria, and 18.7 μg/mL and 1.32 mM for
yeasts) [57].

Fig. 12 Protocetraric acid structure (Flavoparmelia caperata)

Fig. 13 Fumarprotocetraric acid structure (Cetraria islandica)
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Physodic Acid
Depsidone physodic acid was tested for anticancer activity (Fig. 14). This compound
activated an apoptic process on A375 cells in the concentration of 6.25–50 μM. It
probably involves the reduction of Hsp70 expression [58]. Another cytotoxic activ-
ity of physodic acid was tested on tumorigenic (MDA-MB-231, MCF-7, and T-47D)
and nontumorigenic (MCF-10A) cell lines. Strong activity was observed against
tumoric cell lines (IC50 = 46–94 μM) and inactivity of compound against non-
tumoric cell line (IC50 > 100 μM). In study of antimicrobial activity, physodic acid
was active against the same bacteria or yeasts and inactive against all of the
filamentous fungi, which were tested [59].

Stictic Acid
Stictic acid (Fig. 15) showed neuroprotection through the antioxidant activity against
U373MG cell line (5 and 10 μg/mL) by decreasing productivity of ROS induced by
hydrogen peroxide [60]. Antioxidant activity of concentration range 0.012–0.015 mg/
mL was observed according to radical scavenging Co (II) EDTA-induced luminol
plateau chemiluminescence assay [61]. Growth inhibition of cancer cell lines HT-29

Fig. 14 Physodic acid structure (Hypogymnia physodes)

Fig. 15 Stictic acid structure (Lobaria pulmonaria)
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and MCF-7 was tested as potential anticancer activity of stictic acid. Results showed
strong potential of this compound as anticancer agent (IC50 = 29,29 μg/mL). For
comparison was tested normal cell line MRC-5 with IC50 = 2478.40 μg/mL [62].

Dibenzofurans
Dibenzofurans are heterocyclic aromatic organic compounds with two benzene rings
fused to a central furan ring. As secondary metabolites, the phenolic units are derived
by the orsellinic acid-type cyclization. The dibenzofurans appear to form by
carbon–carbon coupling and cyclodehydration of two such acetate–polymalonate-
derived phenolic acid units.

Usnic Acid
One of the most studied secondary metabolite of lichen is usnic acid (Fig. 16). Based
on the wide biological and ecological activities, it is used in cosmetics, deodorants,
toothpastes, and medical creams. It also exhibits antimitotic, anti-inflammatory,
analgesic, antiviral, antiprotozoal activities, as well as preserving properties, anti-
growth, and antiherbivore activity [63]. Usnic acid serves as a repellent against
insect feeding. Larvae of Cleorodes lichenaria were affected by retarded growth,
increased mortality, and enhanced concentrations of usnic acid in the animal tissue
[64]. Usnic acid is an effective UV-absorbing compound, which is also one of the
known roles of secondary metabolites, and protects algal layer from intense light
levels [65]. This compound also decreased the proliferation of human breast cancer
cells and human lung cancer cells without any DNA damage [66]. Strong hepato-
toxic activity was also observed against monogastric murine hepatocytes, with
inhibition of the electron transport chain in the mitochondria and induction of
oxidative stress in cells [67]. Usnic acid plays also important role as an allelopathic
agent in competition between lichens and mosses. Growth inhibition of protonemata
and reduced development of gametophores was observed. Usnic acid has a strong
effect on cell division in protonemata [68]. The level of ploidy in mosses is also
influenced by presence of usnic acid and can be counted as a physiological change
after stress [69].

Fig. 16 Usnic acid structure (Usnea sp.)
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Alectosarmentin
Alectosarmentin is a relatively newly discovered compound identified in lichen
Alectoria sarmentosa (Fig. 17). This compound has antibacterial activity including
microorganisms Staphylococcus aureus and Mycobacterium smegmatis [70].

Chromones
Chromone, parent compound of the chromones group, is derivative of benzopyran
with substituted keto group on the pyran ring. Chromones are probably formed by
internal cyclization of a single, folded polyketide chain and are often identical or
analogous to products of nonlichen-forming fungi or higher plants.

Lepraric Acid
Lepraric acid (Fig. 18) can be used as chemotaxonomic marker in Hypoxylon
aeruginosum, Chlorostroma subcubisporum, and Chlorostroma cyaninum [71].

Xanthones
Xanthones are known in free-living fungi and recent studies indicate that they are
rather common in lichens too. Unlike the fungal xanthones, many lichen xanthones

Fig. 17 Alectosarmentin structure (Alectoria sarmentosa)

Fig. 18 Lepraric acid structure (Lepraria sp.)
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have one or more nuclear chlorine substituents. The fundamental structure of the
known lichen xanthones could be derived directly by linear condensation of seven
acetate and malonate units with one orsellinic acid-type cyclization. The two rings
are joined by a ketonic carbon and by an ether-oxygen arising from
cyclodehydration.

Norlichexanthone
Norlichexanthone (Fig. 19) is lichen compound that fully inhibits p561ck tyrosine
kinase at 200 μg/mL [72] and inhibits the activity of the protein kinases aurora-B,
PIM1, and VEGF-R2, where IC50 values from 0.3 to 12 μM [73].

Thiophanic Acid
Allelopathic effect of thiophanic acid (Fig. 20) on wide number of higher plants was
demonstrated [74]. Fungicidal activity of thiophanic acid and thiophaninic acid was
recorded as well [75].

Anthraquinones
Anthraquinones is a class of phenolic compounds based on the 9,10-anthraquinone
skeleton and is probably formed by internal cyclization of a single polyacetyl chain.

Fig. 19 Norlichexanthone structure (Lecanora symmicta)

Fig. 20 Thiophanic acid structure (Lecidella elaeochroma)
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These substances are typical for members of family Teloschistaceae within genera
Caloplaca, Teloschistes and Xanthoria [76]. Anthraquinones are produced by
lichens, as well as by nonlichenized fungi [77]. Biological activities of various
anthraquinones were confirmed in several studies such as antitumoral, anti-
inflammatory, and bactericide effects [77–79]. They are all pigmented compounds
which also acting as a light filters.

Emodin
Generally, anthraquinones are potential antiviral agents against HIV virus [80]. Emo-
din (Fig. 21), 7-chloroemodin, and 7-chloro-1-O-methylemodin showed partial
inactivation of the herpes simplex virus type 1. With an increasing substitution of
chlorine in the anthraquinone nucleus, an antiviral activity increases [81]. Derivatives
of emodin revealed anticancer activity against leukemia cells [82].

Parietin
Parietin (Fig. 22) is an orange anthraquinone pigment and it is widespread in lichens,
which are characteristic for sun-exposed habitats. Mainly it is localized in the upper
cortex of lichen genera Xanthoria, Teloschistes, and Caloplaca. According to Hill
and Woolhouse [83], the content of parietin is positively correlated to intensity of

Fig. 21 Emodin structure (Xanthoria elegans)

Fig. 22 Structure of parietin (Xanthoria parietina)
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light in habitat. Since parietin absorbs light, it may help to protect the photosynthetic
apparatus of the photobiont against damage by high light levels [36, 84]. Solhaug
and Gauslaa [85] reported that UV-B radiation may trigger the resynthesis of this
cortical pigment parietin (= physcion) in the lichen Xanthoria parietina. Despite the
long-term study of parietin, we still cannot claim that this secondary metabolite
serves as UV-B or PAR screening pigment [86]. It is possible that parietin also acts as
an antioxidant [87].

4.1.2 Mevalonate Pathway
The terpenoids form a large and structurally diverse family of natural products
derived from C5 isoprene units joined in a head-to-tail fashion. Isoprene is produced
naturally but is not involved in the formation of these compounds, and the biochem-
ically active isoprene units were identified as the diphosphate esters – dimethylallyl
pyrophosphate and isopenthenyl pyrophosphate.

Two molecules of acetyl-coenzyme A combine initially in a Claisen condensation
to give acetoacetyl-CoA, and a third is incorporated via a stereospecific aldol
addition giving the branched-chain ester. The thioester is then reduced to primary
alcohol via hemithioacetal and aldehyde to give mevalonic acid. The six-carbon
mevalonic acid is then transformed into the five-carbon phosphorylated isoprene
units in a series of reactions, beginning with phosphorylation of the primary alcohol
group. Two different ATP-dependent enzymes are involved, resulting in mevalonic
acid diphosphate, and decarboxylation/dehydration then follows to give isopentenyl
pyrophosphate. Combination of two isoprene units head-to-tail forms monoterpenes.
Limonene is formed by cyclization reactions of geranyl pyrophosphate. Diterpenes
consist of four isoprene units. Geranyl PP reacts with first isoprene unit to give
farnesyl PP which reacts with second isoprene to give geranylgeranyl PP. Phytol is
one of the best known diterpenes. Triterpenes are derived from squalene, six
isoprene units containing compound. Steroids are then formed by cyclization of
squalene. Another well-known class of terpenoids – carotenes – are derivatives of
tetraterpene lycopene, which is formed by combination of two geranylgeranyl PP
units. Classes of lichen substances that are derived by mevalonate pathway are
terpenes, steroids, and carotenoids (Fig. 23).

Terpenes
Terpenes are large and diverse class of organic compounds. Terpenes are formed
biosynthetically from units of isopentenyl pyrophosphate, which is the product of
mevalonate pathway.

Limonene
In study of Kahriman et al. [88], the antimicrobial and antifungal activity of the
essential oil obtained by hydrodistillation from Evernia prunastri (L.) Ach. and
Evernia divaricata (L.) has been analyzed. The major substances in the essential oil
of Evernia prunastri and Evernia divaricata were β-pinene (6.3 and 8.0%), α-pinene
(6.6%, 7.2%), limonene (1.6%, 6.3%), α-phellandrene (3.3%, 4.4%), camphene
(3.0%, 3.1%), and p-cymene (1.5%, 1.8%), respectively. The antimicrobial and
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antifungal activities of the essential oil of Evernia prunastri and Evernia divaricata
were tested in vitro against the bacteria E. coli, Y. pseudotuberculosis, S. aureus,
E. faecalis, B. cereus, C. albicans. Evernia divaricata showed antimicrobial activity

Fig. 23 Classes of lichen substances that are derived by mevalonate pathway
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and antifungal activity. Essential oil of Evernia prunastri exhibited only antifungal
activity (Fig. 24).

Phytol
This secondary metabolite of terpenoid origin showed mainly antimycobacterial
activity. Rajab et al. [89] tested (E)-phytol (Fig. 25) as the principal anti-
mycobacterial constituent against Mycobacterium tuberculosis with a minimum
inhibitory concentration (MIC) of 2 μg/ml. Inhibitory value was also observed for
(3R,5,7R,11R)-phytanol, (Z)-phytol, and a commercially available 2: 1 mixture of
(E)- and (Z)-phytol with lower antimycobacterial activity with MIC > 128 μg/ml.

Zeorin
Zeorin (Fig. 26) (6α,22-dihydroxyhopane) is the main triterpene in various species
of lichens [90]. In the study of Kosanić et al. [91] has been tested antibacterial and
antifungal activity of the lichen Lecanora frustulosa and Parmeliopsis hyperopta
and their zeorin constituents and divaricatic acid. Acetone, methanol, and aqueous
extracts of these lichens have been tested in vitro against: Bacillus mycoides,
Bacillus subtilis, Staphylococcus aureus, Enterobacter cloaceae, Escherichia coli,
Klebsiella pneumoniae, Aspergillus flavus, Aspergillus fumigatus, Botrytis cinerea,
Candida albicans, Fusarium oxysporum, Mucor mucedo, Paecilomyces variotii,
Penicillium purpurescens, Penicillium verrucosum, and Trichoderma harzianum.
According to this study, zeorin exhibited stronger antibacterial activity than
divaricatic acid at a concentration of 0.39 mg/ml which inhibited 4 out of 6 tested
bacteria.

Steroids
Steroids are products of the mevalonate pathway and are highly often present in
lichens. Steroids are derived from cyclization of the triterpene squalene.

It has been reported that sterol compounds can play an important role in the
medicine. They possess different types of pharmacological activities like anti-

Fig. 24 Limonene structure (Evernia prunastri)
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inflammatory, antiulcerogenic, antibacterial, antifungal, and antirheumatic
activities [90].

Brassicasterol
Brassicasterol (Fig. 27) known in higher plant is also found in the various lichens
[90]. In acetone extract of the lichen Stereocaulon azoreum were identified several
substances by column chromatography. In addition to the main compounds, three
sterols such as brassicasterol, ergosterol peroxide, and cerevisterol were
obtained [92].

Ergosterol
It has been demonstrated in previous studies that sterols may play a role in the
membrane permeability in the lichen thallus. The content of ergosterol (Fig. 28)
(Ergosta-5,7,22-trien-3β-ol) in the lichens, which is the major sterol of the fungal
plasma membrane, responds rapidly to the presence of xenobiotics in the environ-
ment, including the presence of heavy metals. Ergosterol can be considered as
marker of the fungal metabolic activity [93].

Fig. 25 Phytol structure (Anaptychia ciliaris)

Fig. 26 Zeorin structure (Protoparmeliopsis muralis)
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Lichesterol
Lichesterol (Fig. 29) or Ergosta-5,8,22-trien-3β-ol has been isolated and character-
ized in lichens Usnea longissima, Lobaria pulmonaria, Lobaria scrobiculata [94],
and Ramalina africana [95].

Carotenoids
These linear molecules with multiple conjugated double bonds are found in all
photosynthetic organisms. They are products of primary (intracellular) metabolism
such as proteins, amino acids, polysaccharides, and vitamins. Carotenoids are
products of both symbionts – fungi and algae.

In lichens with green algae photobionts following carotenoids are usually present
β-carotene, lutein, violaxanthin, antheraxanthin, zeaxanthin, and neoxanthin [96,
97]. In lichens with cyanobacterial photobionts occur mainly β -carotene, zeaxan-
thin, canthaxanthin, and echinenone.

b-Carotene
β-Carotene (Fig. 30) is a pigment frequently found in lichen thalli, which has been
analyzed using different methods. Czeczuga et al. [98] investigated in ten lichen

Fig. 28 Ergosterol structure (Physcia stellaris)

Fig. 27 Brassicasterol (Xanthoria parietina)
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species carotenoids by column and thin-layer chromatography. Lichen encrustations
fromDiploschistes scruposus showed characteristic vibrational spectra using Raman
spectroscopy [99]. Nowadays it is a frequent practice to measure total carotenoids
spectrophotometrically and using high-performance liquid chromatography (HPLC)
techniques which facilitated the separation and identification of plastid pigments.

Lutein
Lutein (Fig. 31) mainly occurs in higher plants but was also found in lichens and
algae growing near to shaded habitats, because at sunny sites it is replaced by lutein
epoxide. The growth of lichens in poorly lit places is possible due to the mechanism
called chromatic adaptation by an increasing of photosynthetically active
pigments [100].

Zeaxanthin
The presence of this carotenoid (Fig. 32) together with violaxanthin in plants is
influenced by intensity of light in xanthophyll cycle. In case that insolation is
intensive, the accumulation of zeaxanthin occurs. When light intensity decreases,

Fig. 29 Lichesterol structure (Xanthoria parietina)

Fig. 30 β-Carotene structure (Physconia distorta)
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the zeaxanthin is converted through antheraxanthin into violaxanthin and vice versa
[101]. It may be considered that this cycle occurs in the photobionts of lichens.

4.1.3 Shikimate Pathway
The shikimate pathway provides a route to aromatic compounds, particularly the
aromatic amino acids and their derivatives. The pathway is employed by microor-
ganisms and plants but not by animals. A central intermediate in the pathway is
shikimic acid. The shikimate pathway begins with a coupling of phosphoenolpyr-
uvate (from glycolysis) and D-erythrose 4-phosphate (from the pentose phosphate
cycle) by aldol-type reaction. Then by elimination of phosphate and another aldol-
type reaction, a cyclic product 3-dehydroquinic acid is formed. Next step involves
dehydration and reduction of carbonyl function.

Phosphoenolpyruvate combines with shikimic acid 3-phosphate to an intermedi-
ate in which 1,2-elimination of phosphoric acid in side-chain and then
1,4-elimination of phosphoric acid leads to chorismic acid. The reaction trans-
forming chorismic acid to prephenic acid is Claisen rearrangement which transfer
the side-chain so that it becomes directly bonded to the carbocycle. Next reaction

Fig. 31 Lutein structure (Ramalina farinacea)

Fig. 32 Zeaxanthin structure (Pleurosticta acetabulum)
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steps leading to the C6-C3 building block (phenylpyruvic acid, L-phenylalanine)
include decarboxylation, aromatization, and dehydroxylation. Generally two of the
C6-C3 building blocks combine to form terphenylquinones and reaction pathway
continues to pulvinic acid derivatives. Classes of lichen substances which are
derived by shikimate pathway are therphenylquinones and pulvinic acid derivates
(Fig. 33)

Terphenylquinones
Phenylquinones are well-documented examples of lichen secondary products
derived by the shikimic acid pathway and are widespread especially among fungi.
Terphenylquinones are formed by condensation of two (probably activated)
phenylpyruvic acid derivatives. Only two terphenylquinones, polyporic acid and
thelephoric acid, are known.

Fig. 33 Classes of lichen substances which are derived by shikimate pathway
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Polyporic Acid
Polyporic acid (Fig. 34) extracted from fungus Hapalopilus rutilans decreased
activity of DHOdehase enzyme in rats by 20–30% due to its inhibitory effect.
DHOdehase enzyme catalyzes reaction of pyrimidine de novo synthesis at the
inner mitochondrial membrane. Activity of the human enzyme was not affected
[102]. Another study conducted on rats showed strong inhibitory effect of polyporic
acid; the rats exhibited reduced locomotor activity, hepatorenal failure, and meta-
bolic acidosis [103]. Burton and Cain [104] showed antileukemic activity of poly-
poric acid isolated from lichen Sticta coronata on mice.

Thelephoric Acid
Thelephoric acid (Fig. 35) from fungus Polyozellus multiplex exhibited inhibitory
effect against prolyl endopeptidase, in which increased level is involved in the
development of Alzheimer’s type senile dementia [105]. Antioxidative properties
were investigated by Chung et al. [106] where results were conclusive for superoxide
anion radical, hydroxyl radical, and DPPH radical. Rao et al. [107] found
theleophoric acid in lichen Lobaria insidiosa from Western Himalayas. This acid
is also found in Thelephora spp. and Hydnum spp.

Pulvinic Acid Derivatives
Pulvinic acid derivatives are lichen secondary products which are derived by the
shikimic acid pathway. Pulvinic acid derivatives are not present in all lichen species
that contain blue-green algae. Nitrogen fixing algae present in some lichens are no
necessary in species, where pulvinic acid pigments were observed.

Fig. 34 Polyporic acid
structure

Fig. 35 Thelephoric acid
structure
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Vulpinic Acid
Vulpinic acid (Fig. 36) isolated from Letharia vulpina induced uncoupling by
acting on the inner mitochondrial membrane in mice liver in vitro [108]. Extract
from Vulpicida pinastri (containing vulpinic acid, pinastric acid, usnic acid) acts
as a UV-A and UV-B blocker agent due to its superoxide anion scavenging
activity [109, 110]. Application of vulpinic acid strongly influenced growth of
lichen photobiont Trebouxia irregularis [111]. When used on larvae of the
polyphagous insect herbivore Spodoptera littoralis, vulpinic acid showed strong
mortality and growth retardation in concentration lower than naturally occurring
in lichens [112]. Antiproliferative effect of vulpinic acid was tested on HepG2
and NS20Y cancer cell lines, exhibited strong antiangiogenic potential, and
showed no toxic effects on noncancerous cells [113].

Pulvinic Acid
Pulvinic acid (Fig. 37) derivate pulvinamide exhibited antioxidant properties
[114]. Another set of derivates – atromentic acid, variegatic acid, and xerocomic
acid – showed nonspecific inhibitory effects on four cytochrome P450 (CYP) – 1A2,
2C9, 2D6, and 3A4 – probably by reduction of ferryl heme to ferric heme [115].

Fig. 36 Vulpinic acid structure (Vulpicida pinastri)

Fig. 37 Pulvinic acid structure (Candelariella vitellina)
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5 Conclusion

Lichens are very typical symbiotic organisms, which can be found everywhere
around the world and dominantly present in 8% of earth’s land surface. Due to the
fact that they belong to the slowest growing organisms, they are very important and
interesting because of their secondary metabolites. One of the first descriptions of
uses is from time of early Chinese and Egyptian civilizations.

Since the sixteenth century, lichens have been used in the perfume and cosmetic
industries. They are attractive also for their typical color hence used as dyes. Lichen
secondary compounds are studied for more than one hundred years for their pharma-
ceutical, biological, and ecological potential, which was described in many studies.

Based on the pathways how lichen secondary metabolites are produced, the
acetate-polymalonate pathway is unique for lichens. Most of bioactive compounds
are synthetized by this pathway, and their biological properties are very promising
and still the aim of study around the world. In this chapter, we showed all three
pathways, which can serve for better understanding of synthesis of lichen com-
pounds. Main groups that belong to the pathways are also described as well as their
typical secondary compounds with their pharmaceutical, biological, and ecological
uses. It is evident that secondary compounds of lichens have wide area where they
can be applied.

Approximately 1000 secondary metabolites of lichens were discovered and
described. Most of them are solely present in lichens. Their antiproliferative, anti-
bacterial, antiviral, allelopathic, antiherbivore, UV-protective, antioxidant, anti-
inflammatory, analgesic, antipyretic potential is evident. Lichens are still source of
many bioactive compounds, which application is still in process of research.
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