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Abstract. The neuroscientific study of human navigation has been
constrained by the prerequisite of traditional brain imaging studies
that require participants to remain stationary. Such imaging approaches
neglect a central component that characterizes navigation - the mul-
tisensory experience of self-movement. Navigation by active movement
through space combines multisensory perception with internally gener-
ated self-motion cues. We investigated the spatial microgenesis during
free ambulatory exploration of interactive sparse virtual environments
using motion capture synchronized to high resolution electroencephalo-
graphic (EEG) data as well AS psychometric and self-report measures.
In such environments, map-like allocentric representations must be con-
structed out of transient, egocentric first-person perspective 3-D spa-
tial information. Considering individual differences of spatial learning
ability, we studied if changes in exploration behavior coincide with spa-
tial learning of an environment. To this end, we analyzed the quality
of sketch maps (a description of spatial learning) that were produced
after repeated learning trials for differently complex maze environments.
We observed significant changes in active exploration behavior from the
first to the last exploration of a maze: a decrease in time spent in the
maze predicted an increase in subsequent sketch map quality. Further-
more, individual differences in spatial abilities as well as differences in
the level of experienced immersion had an impact on the quality of spa-
tial learning. Our results demonstrate converging evidence of observable
behavioral changes associated with spatial learning in a framework that
allows the study of cortical dynamics of navigation.
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1 Introduction

Access to some form of mental spatial representation is a prerequisite for suc-
cessful navigation from memory in known environments. Here, we introduce a
new experimental paradigm, the Invisible Maze Task (IMT) for the study of
navigation in which freely-moving participants must compute and use a spatial
representation by relying on interactively triggered sparse visual or other sensory
feedback defining the virtual walls of a maze. The maze as such is invisible, and
stimuli defining the walls are only transiently revealed as the participant reaches
out to “touch” the virtual walls.

Place yourself in the following scenario: waking up in a dark and unknown
hotel room in the middle of the night, you need to visit the toilet. By reaching
and touching the walls you manage to make your way without locating the
light switch. On the way back, you contemplate whether to turn on the light or
whether you had gained sufficient spatial knowledge to safely return to bed by
confirming your internal spatial representation with a few select wall touches.

This example demonstrates our ability to use egocentric (body-centered,
self-to-object relations) sensory information to compute a so-called allocentric
spatial representation of the environment sufficiently detailed and accurate to
guide future action. Egocentric tactile feedback from wall touches combined with
vestibular and proprioceptive information as well as motor efference copies is
used to compute a spatial representation of the room and corridor layout to
allow navigation back to bed. The IMT captures the richness of such navigation,
revealing in a tractable manner the multi-modal aspects involved in real-world
navigation.

Real-world navigation has been difficult to study precisely because it involves
a wide variety of information about location and orientation in space derived
from self-motion cues that include motor efference copies, movement-related
sensory information originating inside the body, and flow signals experienced
in the auditory, visual and somatosensory modalities to successfully build com-
plex spatial representations. The requirement of free movement has generally
precluded the addition of brain measurement modalities. For example, in prior
EEG neuroimaging experimental protocols to investigate the neural basis of
spatial cognition, movement-related information is absent largely for fear of
movement-induced artifacts. Limitations of other established imaging methods
also do not allow participant movement because of physical constraints of the
sensor [15,16,18,30]. As a consequence, neuroscientific studies investigating nat-
ural human behavior during free-roaming dynamic interactions with external
environments are relatively rare. Knowledge about how and where the human
brain processes sensory cues to form spatial representations, and about factors
influencing individual’s performance in spatial cognitive tasks, has been derived
predominantly from stationary experiments [22,29].



Interactive Exploration of Sparse Virtual Environments 295

Beyond greater realism, another argument in favor of an ambulatory
paradigm is that animal studies have provided substantial new insights into the
neural representations of location and direction in physically moving animals
[31,48]. In providing evidence of selectively firing neuronal populations across
several brain regions encoding spatial information about location, i.e. place-,
grid- and boundary vector cells, and heading direction, these studies signifi-
cantly contributed to the understanding of the neural representations of spatial
cognition in settings with higher ecological validity, see [7,8] for a comprehensive
overview. Meanwhile, studies with human participants addressing the connection
of behavioral evidence and characterizing its neural correlates are missing key
components of the natural subjective experience of space.

1.1 Formation of Spatial Representations Through Action-Oriented
Percepts

A well-established theory of spatial learning in children assumes an ontoge-
netic sequence from egocentric to allocentric (external world-centered, object-
to-object relations) representations of space implying a sequential development
from coarse/simple to complex spatial representations [19,32,37]. In this frame-
work, the first stage of spatial knowledge entails encoding sensory representations
of landmarks. In the second stage, route knowledge develops through repetitive
travel (and/or mental rehearsal of travel) along one or more routes between pre-
viously encountered landmarks. The final stage involves connection of different
routes within a map-like model of the environment. This defines so-called survey
knowledge, a spatial representation allowing planning of new routes, shortcuts,
and detours. It is reasonable to assume an underlying continuum in the microge-
nesis of spatial knowledge as compared to a strictly categorical spatial learning
[3,14]. For instance, presumably allocentric systems evaluating sensory spatial
signals are active in parallel, e.g. place, grid and boundary cells in the rat brain
[31,48] and process inputs continuously.

Taken together, survey knowledge, ultimately conceived in an allocentric ref-
erence frame, develops from egocentric representations of idiothetic spatial sig-
nals driving the buildup of metric representations, i.e. turn angles and distances
[4,5], over repeated travels. Idiothetic signals generated at turns highlight and
specify the association between the place in the environment and the action
taken [4]. Prior findings indicate that bottom-up spatial microgenesis through
active exploration of unknown environments is inherently ego-dependent [9].

1.2 A New Approach: The Invisible Maze Task

To allow investigation of behavior as well as human brain dynamics reflecting spa-
tial learning in freely ambulating humans, we developed a virtual reality paradigm
in which participants learn the spatial layout of mazes by active exploration. In
this Invisible Maze Task (IMT), we task subjects to explore mazes by touching
otherwise invisible walls to receive sensory feedback (visual, auditory or other)
about the location of the wall. At the end of the exploration phase, participants
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have to produce a bird’s eye view map representation that presumably requires
mental transformations of egocentrically experienced spatial signals into allocen-
tric representations. After exploring and building a survey representation of a pre-
viously unknown environment, the resultant spatial model can be tested through
egocentric sampling of spatial information when the same environment is experi-
enced again. This learning and confirming strategy of spatial representations high-
lights the interplay of egocentrically perceived information and the resultant spa-
tial representation [9]. Hence, participants never experience an externalized, i.e.
completely visible, representation of the entire maze structure but have to inte-
grate many samples of spatial information involving significant spatiotemporal
cognitive demands to complete the task.

In the following, we describe the paradigm based on visually sparse, inter-
active virtual exploration and describe behavioral parameters that can be
extracted to investigate spatial learning. Specifically, we investigated whether
self-report as well as psychometric measures in the spatial domain had predic-
tive power explaining the production of allocentric spatial representations over
time [21,40,45]. Understanding cognition as optimizing the outcome of behavior,
we hypothesized changes in body dynamics occurring during formation and con-
solidation of spatial representations. Therefore, the number of wall touches and
overall time spent exploring were tested as predictors of the buildup of spatial
representations. Specifically, we hypothesized that the number of wall touches
and time spent in mazes would be reduced as spatial representations become
more accurate, possibly as a consequence of optimization of the energy costs of
querying the spatial environment.

2 Methods

To test our hypotheses, we captured body motion while participants freely
explored an interactive sparse “Invisible Maze” environment by walking and
probing for virtual wall feedback with their hand. In the current study, wall
touches were presented visually via a virtual reality (VR) headset. Participants
explored four different mazes in three consecutive maze trials each. At the end
of each maze trial, participants were asked to draw a sketch map of the maze
from a bird’s eye view as an index of spatial learning [26,38].

2.1 Subjects

Thirty-two healthy participants (aged 21–47 years, 14 men) took part in the
experiment. All participants gave written informed consent to participation.
Three participants were excluded from data analysis due to incomplete data
caused by technical issues in two cases and difficulties in complying with the
task requirements in one case.
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2.2 Equipment

Data collection was performed at the Berlin Mobile Brain/Body Imaging
Labs (BeMoBIL), a 10m × 15m research facility equipped with wireless high-
density EEG synchronized to motion capture and virtual reality. Participants
interactively explored virtual mazes walking around the lab space wearing a

Fig. 1. (A) Participant displayed from a bird’s eye view located at the starting point
of an “I”-maze. The star marks the starting position but was not visible during the
experiment. Participants were instructed to explore the maze and return to the start
after full exploration of the maze. (B) Four mazes were used in the study including
an “I”, “L”, “Z”, and “U” shaped maze clockwise from lower left to lower right. Each
maze was explored three times before the next maze was learned. (C) Exemplary visual
feedback in first-person view in binocular “VR optics” of subject in A (above) touching
the wall to the right. (D) Top: after returning to the starting location, participants drew
a top-down view of the explored maze. The participant wears high-density wireless
EEG, head-mounted virtual reality goggles and LEDs for motion capture attached to
the hands, goggles, and torso. Bottom: screenshot of drawn sketch map. As a visual
guidance during drawing, a small red dot was rendered at the position of the tracked
hand. This figure is licensed CC-BY and available on Figshare [12]. (Color figure online)
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head-mounted display (HMD). Visual stimulation was presented via an Oculus
VR (Facebook Inc., Menlo Park, California, USA) Rift DK2 HMD (100◦ nominal
field of view horizontally and vertically, 960 × 1080 pixels per eye, 75 Hz frame
rate). Head position and orientation were updated by fusing data from the head-
set’s internal inertial sensors and using a six-LED rigid body mounted to the
headset and tracked via PhaseSpace (PhaseSpace Inc., San Leandro, California,
USA) Impulse X2 system. To update the head position, motion capture data
was sampled at 240 Hz and smoothed by averaging across one frame update of
the HMD, approximately 13.3 ms. To correct orientation drifts originating from
unstable inertial data, we continuously calculated an offset between the stable
orientation of the motion capture rigid body and the unstable magnetometer
data. A difference exceeding 3◦ in the Euler yaw direction triggered a correction
in all three Euler dimensions by 1◦ per second until the difference approached 0◦.
Four further rigid bodies consisting of four LEDs each were attached to the lower
arm, upper arm and both feet. To update the position of the right hand in VR,
positional data from a PhaseSpace glove with 8 LEDs was smoothed by averaging
across one frame update. Visual stimuli were generated on a MSI (MSI Co. Ltd,
Zhonghe, Taiwan) Gaming Laptop (MSI GT72-6QD81FD, Intel i7-6700, Nvidia
GTX 970M) using Worldviz (Santa Barbara, California, USA) Vizard Software
worn in a backpack. Participants were further equipped with a microphone and
headphones for audio communication and masking of auditory orientation cues.
For EEG data collection, a 160 channel wireless BrainProducts MOVE System
(Brain Products GmbH, Gilching, Germany) was administered with 128 chan-
nels applied on the head and 32 channels on the neck. Due to space limitations
the results of the EEG analysis will be reported elsewhere.

2.3 Sparse Virtual Environments

Four different environments consisting of invisible virtual walls, 90◦ turns and a
starting point were defined. All paths were composed of ten 1 × 1m2 spatially
arranged to different layouts (I, L, Z, U; see Fig. 1B). Participants were instructed
to explore the space by walking and reaching in order to probe the walls to either
side of the paths (see Fig. 1A). Upon collision of the hand with an invisible wall,
a white disc was displayed 30 cm behind the collision point along the invisible
wall (see Fig. 1C). The disc grew in size as participants further approached the
disc and reached its maximum size (30 cm diameter) when the participant’s hand
was touching the disc, i.e. 30 cm deep into the wall collider. After two seconds
the disk faded out. Another second later the disc reappeared colored red. The
visual feedback was reset after participants retreated their hand back out of the
wall. Participants were instructed to repeatedly touch the walls and not leave
their hand in the wall to avoid the disc turning red. If participants collided with
a wall head first, a red sphere was displayed as a warning instructing participants
to step back until the warning dissappears. The sphere grew bigger the further
participants moved into a wall.
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2.4 Psychometric and Self-report Measures

After arrival to the lab, participants were given a number of questionnaires and
self-report measures to complete, in order to characterize individual experience
with virtual reality, individual differences in spatial abilities and preferred navi-
gational styles:

Perspective Taking and Spatial Orientation Test, PTSOT: Participants
viewed an array of objects on a sheet of paper and by taking the perspective of
one of the objects judged the angle between two other objects in the array and
sketch it in [27]. We recorded the absolute deviation from the correct angle
to investigate the impact of perspective taking ability on the transformation
of egocentric visual information into allocentric survey representations.

Santa Barbara Sense of Direction Scale (Freiburg Version), FSBSOD:
This questionnaire is a measure of self-ascribed navigational ability consisting
of 15 items [20]. We took the average of all correctly recoded items as the
final measure. General navigational ability was of interest as a covariate in
subsequent analysis.

Igroup’s Immersion and Presence Questionnaire, IPQ: The IPQ mea-
sures the sense of presence experienced in a virtual environment (VE). We
processed the results according to [36]. We were interested in whether immer-
sion and presence had a positive influence on performance measures.

Gaming Experience: We asked participants to indicate how long they have
been playing video games and further asked them to rate their gaming skills.
A composite measure taking the sum of the two standardized scores was
calculated as the final measure. As with the IPQ scale, we addressed whether
general gaming experience positively affected measures of IMT performance.

Reference Frame Proclivity Test, RFP: This online available tool deter-
mines the proclivity of participants to preferentially use either an egocen-
tric or an allocentric reference frame during a virtual path integration task
[13,17]. For further correlation analysis, allocentric reference frame proclivity
was coded as “1”, egocentric as “0” and a tendency to switch reference frames
as “2”.

Simulator Sickness Questionnaire, SSQ: The SSQ measures simulator sick-
ness on three factors: nausea, oculomotor and disorientation [24]. We adminis-
tered SSQ twice, before and after the experiment and used the average value
of each sub-scale as the resulting measure to test for significant effects of
simulator sickness.

2.5 Procedure

The complete experiment, including EEG preparation took approximately 4
hours. Participants first completed the questionnaires and self-report mea-
sures. Subsequently, the EEG electrodes were prepped. Next, participants were
instructed to explore a path until the end, i.e. reaching a dead end, and sub-
sequently find their way back to the starting position. After exploration of at
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least three 1× 1m2 participants were free to return to the starting location. All
participants explored the four mazes in the same order starting with the “I”
maze and then increasing in number of turns in later mazes (I, L, Z, U).

Participants were informed that touching a wall with the right hand to either
side of their body would temporarily illuminate a small part of the wall. Further,
the participants were briefed that they will explore the same path three times
in a row and that there will be four different paths to explore over the entire
experiment. For all twelve trials, participants were oriented in the direction of
the corridor by the experimenter after a short disorientation phase where partic-
ipants were led walking in circles. A gamified feedback was displayed reporting
back the performance in the current maze trial. The feedback measure was based
on the progress made in the current path and provided information whether the
end of a path was reached and how many wall collisions of the hands and the
head were registered.

Drawing Task. After each exploration trial, participants were asked to draw
a map of the environment from a top-down perspective whilst still being in VR.
The experimenter entered the lab space at the end of each trial and handed
the participant a computer mouse used to control the drawing functionality in
VR. Participants were instructed to start drawing by clicking once with the
left mouse button. A red sphere appeared in the VR goggles at the tracked
position of the right hand holding the mouse. Holding down the left mouse
button, participants were able to draw a red line by moving their hand in space
(see Fig. 1D). Finally, participants were instructed to take a camera screenshot
of their drawing by pressing down the mouse wheel once and holding their final
drawing in view. Participants were allowed to erase their drawing and restart at
any time by pressing the right mouse button.

2.6 Data Processing and Statistical Analysis

Motion Capture Measures. For quantification of changes in exploration
behaviors we extracted the following measures for the time window between
the start of each maze exploration and the return to the initial square: (1) the
total number of wall touches, (2) the total duration of the exploration, and (3)
the average velocity of participants in the maze. As participants were allowed
to freely explore each maze, a change in duration could either be explained by
a change in walking speed or a change in distance covered. Here, we decided to
analyse the changes in walking speed.

SketchMapMeasure of Spatial Ability. Two independent raters judged each
sketch map drawing of each maze trial per maze and subject. A total number of
29 × 12 sketch maps were rated. The raters were presented with the question:
“Imagine that you can take the present sketch map with you into the virtual
environment and use it as a navigational aid. How useful would the map be for
you?” To give their rating between 0 (= no help at all) and 6 (= very helpful)
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they were given the correct shape of the maze to be rated side by side with the
drawing to rate [2]. To test inter-rater reliability, we computed Cohen’s Kappa
with squared weights to emphasize larger rating differences using R (R Develop-
ment Core Team), Version 3.4.3, and package irr [6,11].

Trial Rejection. Prior to the final statistical analysis, the data were cleaned.
First, trials were rejected when more than ten wall collisions with the head
were recorded. This resulted in the rejection of six out of a total of 348 trials.
Second, four individual trials were rejected due to procedural problems during
data collection. In one case, the battery of the LED driver of the motion capture
system died, whereas in the remaining case a LED cable became loose and the
trial had to be aborted. We deemed all trials incomplete where the path was
not fully explored. With this criterion, 26 trials were rejected. Overall, 312 trials
remained, amounting to 89.7 % of the total number of trials. Lastly, we checked
the duration of each touch and confirmed that approximately 85% of all touches
lasted less than one second.

Linear Mixed Effects Model. To investigate changes in exploration behavior,
we performed linear mixed effects analyses of the relationship between (1) maze
trials and (2) maze configurations and each dependent measure “number of wall
touches”, “duration” as well as “movement velocity” using R package lme4 [33].
As fixed effects we entered “maze trial” with three repetitions for each maze and
“maze” with four levels (different mazes) as well as their interaction. As random
effects we considered intercepts for participants as well as by-maze trial random
slopes for the effect of each dependent variable “number of wall touches”, “dura-
tion” as well as “movement velocity”. Subsequently, to examine changes in the
sketch map drawings, we fit identical linear mixed effects models to the depen-
dent measure sketch map usefulness. Ultimately, to make inferences about the
relationship between the three measures of body dynamics on sketch map use-
fulness, we fit linear mixed effects models to the dependent variable “sketch map
usefulness”. As fixed effects we entered the body movement measures “number of
wall touches”, “duration” as well as “movement velocity”. As random effects we
considered intercepts for participants as well as by-maze trial random slopes for
the effect of each sketch map usefulness. We assumed an underlying continuum
in the sketch map ratings “usefulness” and hence conceived the variable as inter-
val scaled. For all analyses, we obtained P-values by calculating likelihood-ratio
tests of the full model with the effect in question against the model without it
[44]. Post-hoc, we tested non-parametric pairwise differences using uncorrected
Wilcoxon signed-rank tests [42]. We considered significant results with α < 0.05.
For report generation and data visualization purposes we used R packages knitR,
ggplot2, ggpubr, cowplot and corrplot [23,39,41,43,47].

Correlation of Psychometric and Self-report Measures. We preprocessed
all questionnaire and self-rating data to construct a full correlation matrix includ-
ing dummy coding of binary variables. We added gender as an additional binary
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factor of interest with female participants coded “0”. For better understand-
ing, scores of perspective taking (PTSOT) were recoded, so that large numbers
indicated better performance. Finally, we created a correlation matrix with the
average ratings of the two sketch map raters together with the motion capture
measures and the subjective data.

3 Results

First, we investigated if our experimental manipulation changed the exploration
behavior of participants. Therefore, we tested if body movement measures were
explained by repeated maze trials or changes in the maze configurations.

Fig. 2. Box-Whisker plots with individual observations of each participant averaged
across maze configurations for each repeated maze trial 1 to 3. (A) Duration in seconds
elapsed between the start and end of each exploration phase, (B) Number of wall
touches during the exploration phase and (C) Movement Velocity in meters per second.
P-values of pairwise comparisons are calculated by non-parametric Wilcoxon signed-
rank tests.

Duration. The repeated measures factor maze trial affected the duration
between start and end of each maze exploration (χ2(2) = 15.521, p < 0.001)
lowering it by about 31.7 s ± 8.1 (standard errors) from the first to the second
maze trial and 39.9 s ± 9.4 (standard errors) from the first to the third maze
trial. Subsequent non-parametric pairwise comparisons revealed clear reduc-
tions in exploration times for the comparison of the first and second maze
trial (p = 0.09), the first and third maze trial (p = 0.05), with a diminished
reduction between the second and third maze trial (p = 0.47) (see Fig. 2A).
Different maze configurations also affected the duration of maze exploration
(χ2(3) = 11.109, p < 0.05). Initial exposure as well as increasingly complex
maze configurations were associated with increasing exploration times (see
Fig. 3A). The interaction of both factors revealed an effect of maze trials on
exploration duration (χ2(6) = 12.333, p = 0.05).



Interactive Exploration of Sparse Virtual Environments 303

Number of Wall Touches. The number of wall touches was significantly
affected by repeated measurements across maze trials (χ2(2) = 21.37, p <
0.001) with a reduction in the number of wall touches by 15 touches ± 3.8
(standard errors) from the first to the second maze trial and 22 touches
± 4.1 (standard errors) from the first to the third maze trial. Neither the
factor maze (χ2(3) = 3.94, p = 0.27) nor the interaction of both factors
(χ2(6) = 4.32, p = 0.63) revealed an impact on the number of wall touches.
Non-parametric pairwise comparisons between maze trial were not significant
for the comparison of first and second maze trial or between second and third
maze trial However, between the first and third maze trial (p < 0.05) the
number of touches decreased significantly (see Fig. 2B).

Movement Velocity. Participants’ movement speed was significantly increased
across maze trials (χ2(2) = 29.495, p < 0.001) with an increase by 0.01 m/s ±
0.003 (standard errors) from the first to the second maze trial and 0.03 m/s
± 0.004 (standard errors) from the first to the third maze trial. Participants’
movement speed was also affected by maze (χ2(3) = 22.513, p < 0.001) with
a significant decrease after exploration of the “I” maze. We registered no
interaction effect. Post-hoc multiple comparisons were significant for all com-
parisons between the three maze trials (1–2: p < 0.01, 2–3: p < 0.01, 1–3:
p < 0.001) and between mazes “I” and “L” (p < 0.05), “I” and “Z” (p < 0.05)
and “I” and “U” (p < 0.01), and did not show the same attenuation effect
in later maze trials seen for maze duration. As an index of the consistency of
this finding, all but one participant (28 of 29) moved faster in the third maze
trial as compared to the first (see Fig. 2C).

Fig. 3. Box-Whisker plots with individual observations of each participant averaged
across maze trials exploring each maze configuration “I”, “L”, “U” and “Z”. (A) Dura-
tion in seconds elapsed between the start and end of each exploration phase, (B) Num-
ber of wall touches during the exploration phase and (C) Movement Velocity in meters
per second.

3.1 Sketch Map Ratings and Changes in Body Movement Behavior

Cohen’s κ was calculated with squared weights of rating differences to determine
if there was agreement between two raters judgments on the usefulness of a
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given sketch map to navigate a virtual environment. A total of 312 maps were
rated. There was very high agreement between the two raters’ judgements, κ =
0.835, p < 0.001. Next, to test for a general effect of the experiment exposure on
the sketch map ratings a Wilcoxon signed rank test was run with the mean sketch
map rating after the first trial run against the null hypothesis of a mean equal to
zero. A deviation from 0 for the ratings of the first sketch maps would indicate
that participants successfully built a mental representation of the invisible maze
they explored for the first time. We observed a true location of the mean (= 3.2)
different from 0 (p < 0.001) indicating successful spatial learning after the first
trial. Investigating changes in the sketch map ratings over the repeated maze trial
(χ2(2) = 3.8123, p = 0.15) and maze configurations (χ2(3) = 3.2171, p = 0.36)
as well as their interaction (χ2(6) = 4.3286, p = 0.63) revealed no significant
impact, however we did observe higher average sketch map ratings for 19 of 29
subjects after the third trial run as compared to the first (Fig. 4).
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Fig. 4. Correlation matrix among psychometric- and self-report measures. Each cell is
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(Color figure online)

To test the predictive power of body movement measures on the useful-
ness of the sketch maps, a null model was compared to three models each with
one additional predictor. We subsequently added “duration”, “number of wall
touches”, as well as “movement velocity” as predictors. The duration between
start and end of each maze exploration affected the sketch map ratings (χ2(1) =
17.160, p < 0.001) as did the number of wall touches (χ2(1) = 3.852, p < 0.05)
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with a decrease in duration and number of wall touches predicting an increase
in sketch map ratings. We observed no impact of the head velocity on the sketch
map ratings (χ2(1) = 0.7221, p = 0.4).

To examine the spatial exploration behavior and sketch map usefulness and
their relation with subjective measures, a correlation matrix among all measured
variables was calculated.

3.2 Correlation with Psychometric- and Self-report Measures

For the sketch map usefulness, we observed significant positive correlations with
perspective taking skills (r = 0.39, p < 0.05) as well as experienced realism inside
the VE (r = 0.41, p < 0.05). We observed a highly significant correlation between
gender and gaming experience (r = 0.65, p < 0.001) with male participants
scoring higher on gaming experience. Furthermore, male participants reported a
higher general sense of presence (r = 0.42, p < 0.05) after the VE exposure with
all presence sub-scales being correlated. Finally, we found a strong correlation
between the duration of maze exploration and the number of wall touches (r =
0.5, p < 0.01) revealing more explorative touches the longer a maze was explored.

4 Discussion

We introduced a new paradigm, the Invisible Maze Task, to investigate real-
istic spatial learning as reflected through the computation and use of spatial
representations derived from transient, discrete visual feedback in sparse (vir-
tual) environments. We observed significant changes in body movement behav-
ior across repeated explorations of the same environment. Participants moved
faster, for a shorter period of time and with less touches of the surrounding walls
supporting the assumption that each transient wall touch event may carry infor-
mation used for formation and updating of some form of spatial representation.
We hypothesize that the sparse environments were learnt in an efficient way that
allows optimization of energy costs of repeated future explorations. Therefore,
we argue, that the environment was incorporated in a useful way to guide future
behavior.

To quantify the quality of sketch maps we chose the subjective rating measure
“map usefulness” because it has been proven useful for within-subject investi-
gation [2]. Although we observed a high variability between participants, 27
out of 29 participants clearly demonstrated spatial learning as reflected in the
usefulness of their sketch maps after the initial exposure to the environment.
Subsequent changes in the usefulness ratings were only minimal with a slight,
albeit non-significant, increase with repeated exposures to the environment. In
other words, we found that participants either drew a useful map after the first
encounter with an environment and then maintained a level of usefulness in their
sketch maps, or they never drew a meaningful map at all. In line with previous
findings [1,21], we noticed a substantial increase in sketch map quality over time
in very few participants. The fact that some participants were able to draw a near
perfect representation of the explored environment without ever witnessing full
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vista space may be interpreted against a linear, sequential development of spatial
knowledge that should have been observable through incremental improvements
of the drawn sketch maps usefulness [37].

To investigate a potential connection between spatial exploration behavior
and sketch map quality we fitted linear mixed effects models of the spatial explo-
ration parameters number of touches, times in a maze, and movement velocity to
the sketch map ratings. The biggest impact on sketch map usefulness originated
from the time spent exploring a maze with a decrease in duration predicting an
increase in sketch map quality. In addition, a decrease in wall touches predicted
higher sketch map quality. We conclude, that brief exploration phases are suffi-
cient for most of the participants to form and maintain a spatial representation
through discrete and localized samples of an otherwise invisible environment.
Wall touches during repeated exposure to the same environment then serve as a
probing mechanism for the correctness of the internal representations, just like
finding your way back to bed in the middle of the night by confirming the loca-
tion of walls and doors. This change in behavior reflects a more efficient means
to navigate conserving energy when moving through a known environment. By
administering several established measures of navigational abilities we investi-
gated the impact of individual differences in spatial abilities and preferences
on spatial learning in the invisible maze task. Contrary to previous findings we
observed no impact of gaming experience on scores of the SOD, PTSOT and
the spatial sketch mapping task [34]. However, most findings on the interplay
between immersion, spatial presence, involvement and spatial abilities stem from
experiments with 2-D displays. The recent surge of affordable head-mounted
VR technologies will shed light on how accurate these new technologies map a
three-dimensional reality. In the current study, we observed covariations between
the feeling of presence experienced during exploration and the usefulness of the
resulting sketch maps. One possible explanation for this correlation is that par-
ticipants with a higher immersion score were able to better hold a realistic rep-
resentation of the environment in memory and were subsequently better able to
draw it.

Two widely used metrics of spatial abilities are the psychometric perspec-
tive taking and orientation test and the sense-of-direction scale [20,27]. PTSOT
scores were significantly correlated with sketch map usefulness ratings. We
instructed subjects to draw a top-down map moving their hand in the air imagin-
ing they were drawing on a chalkboard. Therefore, perspective taking processes,
i.e. changing the viewpoint, were engaged during drawing of an accurate sketch
map. A high correlation between perspective taking ability and sense-of-direction
provides the ground for future group-based analysis approaches of good and bad
spatial learners. Interestingly, we observed no substantial correlation of sense-of-
direction with any other measure of interest. Finally, we investigated the impact
of individual reference frame proclivities [13,17] on the performance in the invis-
ible maze task. In an online test, participants were classified into three groups
reflecting a preference for egocentric reference frames, a preference for allocentric
reference, or the flexible switch between reference frames. We did not find any
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significant correlation of the preferred reference frame with spatial learning in
the IMT. It is reasonable to assume that reference frame proclivities as mea-
sured in a passive visual flow paradigm without vestibular feedback do not play
any role in a more natural active exploration setting such as the IMT. It is well
established that vestibular information is used to update egocentric representa-
tions of position and orientation [25,35]. The absence of any impact of reference
frame proclivities as measures with the RFPT again indicates that traditional
desktop-based measures of spatial abilities might not reflect behavior in natural
three-dimensional environments accurately.

4.1 Limitations

In the current study, we used sketch maps as a dependent measure for the qual-
ity of internal spatial representations. We used a qualitative assessment instead
of quantifiable data, e.g. segment lengths and angular accuracy between seg-
ments. This approach is prone to subjective tendencies but was countered in
the present study by measuring the agreement between two raters. Still, other
sketch map measures might provide a deeper insight into the variables that affect
the accuracy of mental spatial representations derived from exploration of the
environment. Sketch maps are always subject to individual’s capabilities to draw
and their belief in their skill as well as the interpretation of the rater [10]. Fur-
thermore, participants were required to carry a substantial amount of equipment
to render our virtual environment. Therefore, participants were restricted, to a
certain degree, in their ability to move as they would naturally move without
the equipment. We may use more explicit tests of spatial knowledge in future
environments, such as asking how many turns it would take to get from one
point to another or asking for a bearing to a distant point such as the entrance.

4.2 Summary and Future Directions

We introduce the Invisible Maze Task to study spatial learning behavior during
ambulatory exploration of sparse environments that provide only transient feed-
back, therefore breaking down spatial explorative inputs into discrete moments
in time. Our paradigm provides the basis for investigations of “atoms of spa-
tial thought” that ultimately allow computation of spatial representations of an
environment that has never been seen as a whole. This approach, which we have
behaviorally validated here, will enable investigation of the tight link of physical
behavior and cognitive processes during spatial learning. Furthermore, the mul-
timodal nature of the IMT may serve (a) as a testing framework to disentangle
modality-specific and modality-independent processes of spatial navigation and
(b) to investigate differential spatiotemporal parameters of cross-modal synthe-
ses supporting the build up of spatial representations [28,46].

In the future, we plan to use event-related EEG neuroimaging to test existing
models of spatial cognition and to gain a deeper understanding of the relationship
of cognition, active spatial exploration behavior, and brain dynamics [3]. The
results from this initial study offer a new perspective on the interplay between
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body dynamics and common assessments of spatial orientation skills during the
formation of spatial representations.
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