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Introduction

Osteoporosis is an increasingly prevalent disease with important clinical, eco-
nomic, and social consequences, characterized by reduced bone strength, due to 
altered bone density and quality, which increases the risk of spontaneous and 
traumatic fractures and related disabilities. Since the bone is an active tissue 
that constantly remodels itself in response to several factors, such as mechanical 
stress and hormonal changes, osteoporosis can be regarded as a consequence of 
exaggerated bone resorption and/or reduced bone formation, due to unbalanced 
activity between bone forming cells (osteoblasts) and bone resorbing cells 
(osteoclasts).

Osteoporosis is a chronic multifactorial metabolic disease associated with aging, 
but with several factors that can contribute to skeletal fragility, including genetics, 
nutrition, lack of physical activity, smoking, endocrine alterations, and medications. 
Importantly, osteoporosis is a silent condition, which often manifests itself clini-
cally when bones fracture.

Researches in the last decades clearly indicated strategies for prevention, 
screening, clinical management, and treatment and, thus, novel drugs have been 
developed to manage osteoporosis, decrease fracture risk and consequent com-
plications. However, gender disparities exist in this context, and for too much 
time osteoporosis has been considered a female gender disease, so that our 
knowledge on male osteoporosis is still not complete. Even if in absolute num-
bers osteoporosis is indeed more frequent in females, males could also be affected 
during aging or as consequence of different conditions. Male osteoporosis is a 
neglected condition, under-considered, under-diagnosed, and under-treated. 
Guidelines on screening politics do not agree whether and when men should be 
evaluated, and clinical trials are far less performed in men with respect to women. 
Furthermore, male osteoporosis is more frequent as secondary to other condi-
tions, in contrast to women in which the most common form is primary osteopo-
rosis. Thus, identification of specific causes of male osteoporosis is essential to 
drive the correct treatment and specific diagnostic procedures are essential in the 
management of osteoporosis in men.

Likewise, not only fewer men receive a correct and timely diagnosis of osteo-
porosis with respect to women, but also fewer men receive adequate treatment. 
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Of note, relatively few studies assessed the effect of drugs used for osteoporosis 
in men and very few of them provided data on reduction of fractures.

Hence, male osteoporosis deserves more attention, and it is not correct to directly 
translate to the male what is known for females. This book highlights some of the 
more interesting aspects dealing with gender differences in pathophysiology, clini-
cal aspects, diagnosis, and treatment of male osteoporosis.

Introduction
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Introduction: Gender Differences 
in Osteoporosis: From Research 
to Treatment

Carlo Foresta

Osteoporosis is a systemic bone disease characterized by a slow but progressive 
decrease in bone density that results in micro-architecture deterioration, which pre-
disposes to fractures. Fractures are indeed a major concern for the health of indi-
viduals, with common fragility fracture sites being found in the hip, spine, and 
wrist. In 2010 in Europe, there were 22 million women and 5.5 million men with 
osteoporosis, accounting for 2% of the overall burden of noncommunicable dis-
eases [1]. The mortality associated with major osteoporotic fractures is substantial, 
with 20% mortality from hip fractures within the first year [2, 3].

Too often, clinicians and the general population believe that the decline in bone 
density and its complications solely affect postmenopausal women, which may cre-
ate health disparities. While effectively less common in men than women, over eight 
million men in the United States have low bone mass or osteoporosis [4, 5], and a 
study showed a comparable prevalence of osteoporosis for men aged 70 years or 
older and women aged 65 years [6]. Indeed, osteoporosis and its complications 
affect both genders, but at different ages and rates [7]. Osteoporosis is four times 
more common in women than in men, but some evidence indicates that men tend to 
have more osteoporosis-related complications. The mortality rate associated with 
hip fractures [8, 9], as well as vertebral and other major fractures [10], is higher in 
men than in women. In addition, men are even less likely than women to be evalu-
ated or receive antiresorptive therapy after a hip fracture (4.5 versus 49.5%, respec-
tively) [11–13].

Because of the morbid consequences of osteoporosis, the prevention of this dis-
ease and its associated fractures is considered essential to the maintenance of health, 
quality of life, and independence in the elderly population. Despite increasing evi-
dence suggesting the need for reconsidering gender differences in osteoporosis, this 
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disease is still underestimated in men, and screening programs are typically not 
suited for the male population. Indeed, screening recommendations from health- 
related scientific societies and organizations vary, and few have clear guidelines for 
osteoporosis screening in men (Table 1.1). Although screening guidelines vary by 
organization, most rely on age and the identification of other clinical risk factors to 
identify males at risk for fracture. In the United States, the NOF [14], the Endocrine 
Society [5], and the International Society for Clinical Densitometry [15] guidelines 
are consistent in recommending a DXA scan for men aged 70 years and older and 
in younger men with prior fractures or other risk factors. In particular, the NOF 
guidelines recommend screening in men under the age of 70 years if they had glu-
cocorticoid exposure or a prior fracture. The Endocrine Society recommends 
screening in males younger than 70 years if they have risk factors such as prior 
fracture, low body weight, and smoking, and the International Society for Clinical 
Densitometry guidelines include prior fracture or disease or medication associated 
with bone loss or low BMD. The Osteoporosis Canada recommends BMD screen-
ing for males aged 65 years and older and in younger men with risk factors, includ-
ing prior fracture, use of glucocorticoids or other high-risk medications, high 
alcohol intake, smoking, and diseases associated with rapid bone loss, fracture, or 
osteoporosis [16]. The NOGG 2013 guidelines recommend the assessment of the 
10-year major osteoporotic fracture probability in men aged 50 years and older 
using the UK Fracture Risk Assessment Tool (FRAX), an absolute risk assessment 
tool, with BMD testing suggested based on age and fracture probability using pre-
determined assessment thresholds [17].

Despite these recommendations, few studies showed what can be best 
described as disparities for males regarding the osteoporosis screening. In a 

Table 1.1 Summary of the osteoporosis screening recommendations

Organization
Recommendations
Women Men

National Osteoporosis 
Foundation

All women >65 years and 
postmenopausal women with 
risk factors

All men >70 years or men aged 
50–69 years with risk factors

International Society for 
Clinical Densitometry
Endocrine Society
World Health Organization Women >65 years old No recommendation
American Association of 
Clinical Endocrinologist
United States Preventive 
Services Task Force
American Academy of 
Family Physicians
Canadian Osteoporosis 
Society

Women >65 years Men >65 years

American College of 
Physicians

Assess the risk factors and consider DXA scan for those at risk for 
osteoporosis

UK National Osteoporosis 
Guideline Group

C. Foresta
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study that evaluated 8262 patients who were eligible for osteoporosis screening 
based on the age criteria, 60% of the women and only 18.4% of the men had 
undergone DXA.  Another study evaluated the osteoporosis screening rate for 
310 male patients, aged 70 years or older, in a primary care clinic setting [18]. 
Only 11% of the eligible men, based on age, had undergone a DXA scan, and the 
majority of the screened men were 80–89 years of age, while none of the men 
aged >90 years had undergone a DXA scan. Another retrospective study evaluat-
ing the rate of osteoporosis screening in high-risk patients aged 50 years and 
older reported that only 10% of women and 9% of men had undergone a DXA 
scan for osteoporosis [19]. A similar study evaluated the screening rate among 
363 patients aged 50 years and older who had history of atraumatic hip fracture, 
and only 11% of men and 27% of women had undergone a DXA scan within 5 
years before the fracture [13]. It is still unclear why men tend to be offered less 
screening than women or whether males tend to be less prone to participate in 
health screenings. The older age of onset, the high amount of comorbidities that 
such patients may have, and the physician’s and patient’s lack of awareness in 
part may explain this phenomenon [18]. In summary, clinicians need to improve 
osteoporosis screening among eligible individuals, and in general, men tend to 
be under-screened for osteoporosis compared with women.

Another issue of paramount importance is osteoporosis diagnosis criteria in the 
male population. In facts, in clinical practice DXA remains the best diagnostic tool 
to assess BMD, while peripheral quantitative computed tomography (pQCT) or 
bone ultrasound still have a role only in a research or screening setting [20]. On the 
other hand, X-ray is the simplest diagnostic tool to identify vertebral fractures at 
first-line examination. The criteria for the diagnosis of osteoporosis in men are still 
controversial. In particular, the site of BMD measurement and reference ranges for 
male subjects has not been established [21]. According to the US National 
Osteoposoris Foundation and the Endocrine Society, the recommended site of DXA 
measurement is the hip and spine [5], while the Osteoporosis Canada recommended 
to use the lowest T-score value for the BMD measured at the lumbar spine, total hip, 
or femoral neck [16]. A T-score equal or < −2.5 SD at the femoral neck is consid-
ered as the reference standard in men by the WHO and the UK National Osteoporosis 
Guideline Group [17, 22, 23]. For the diagnosis of osteoporosis in men, the use of 
sex-specific references ranges for BMD appears to be the most appropriate approach 
[5, 24]. However, even using gender-specific femoral T-score at femoral neck, a 
significant number of men with osteopenia or normal BMD suffer from vertebral, 
non-vertebral, and hip fracture [25]. Actually, it should be kept in mind that BMD 
measurement only represents a surrogate marker of fracture risk [26]. In this con-
text, the Fracture Risk Assessment Tool (FRAX) can be useful in predicting fracture 
risk in men. Moreover, it is useful to decide whether to start a treatment [27]. 
Threshold for starting a specific treatment has not been established yet. To date it 
has been suggested that a 10-year risk of hip fracture equal or >3% or a 10-year risk 
of major osteoporotic fracture equal or >20% at FRAX score in men aged 50 or 
older with low bone mass (osteopenia or osteoporosis) at femoral neck, total hip, or 
lumbar spine by DXA can represent a proper criteria to start a treatment for 

1 Introduction: Gender Differences in Osteoporosis: From Research to Treatment
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osteoporosis [28] On the other hand, it should be noticed that in men younger than 
50 years, there is no evidence to suggest treatment thresholds based on FRAX score.

The main goal of treating men with osteoporosis is to eventually decrease their 
risk of osteoporotic fractures; however, most studies in men have addressed only 
surrogate endpoints such as BMD.  First-line approach includes general lifestyle 
measures such as smoking cessation, reduction in alcohol intake, and weight- 
bearing exercise. These suggestions are pretty much the same as the ones adopted 
for women for fracture prevention. Nevertheless, lifestyle changes can have a sig-
nificant impact in the male population given its higher prevalence of smoking habit 
and alcohol abuse compared with women. As regards antiresorptive treatment, it 
relies mostly on data obtained from studies on women. Although, several agents 
have been tested in randomized controlled trials in male subjects with primary or 
secondary osteoporosis, unfortunately they are usually short-term trials, enrolling 
small samples, and in most of them, the primary end point is the change in BMD. In 
general, antiresorptive treatment increase bone density in osteoporotic men, but few 
data about fracture risk are available [29]. In facts, only zoledronate has been 
reported to reduce fracture risk in men with low bone density [30].

Taken altogether, there is limited evidence about the effects of therapies for 
osteoporosis in the male population, and the few studies available cannot be consid-
ered conclusive about the drug effect on fracture risk. Thereby, further studies are 
needed to better understand the pathogenesis of male osteoporosis, define proper 
diagnostic criteria in male sex, and clarify the long-term anti-fracture potential of 
pharmacological agents. This is also important because, in contrast to women, 
osteoporosis in men is more frequently secondary rather than idiopathic, and in such 
cases rationale treatments could be offered (e.g., testosterone treatment in hypogo-
nadal men). Again, no studies addressed this point especially in terms of fracture 
prevention.
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Anatomy and Histology of Male Skeletal 
Tissue: Gender Differences

Maria Grano, Giacomina Brunetti, Graziana Colaianni, 
and Silvia C. Colucci

2.1  Introduction

The skeleton is a rigid and complex structure formed by 206 bones different in 
shapes and sizes. Based on the shape, bones can be divided into four groups: long 
bones, which are longer than wide (i.e., femur, humerus, and tibia); short bones, 
comparable in diameter and length (i.e., the carpal bones of the hand); flat bones, 
thin and plate-like (i.e., the sternum and the skull); and irregular bones having a 
peculiar shape which makes them not included in the previous groups (i.e., verte-
brae). Many are the functions that skeleton provides: protection of internal organs, 
levers for muscles during locomotion and mineral reservoir for phosphate, calcium, 
and carbonate. Although males’ and females’ skeleton deserve the same function, it 
has a sexual dimorphic phenotype, because it is larger and more robust in men com-
pared to women. In the following paragraphs, we will describe the different struc-
ture of male’s and female’s skeleton together with the possible mechanisms 
sustaining the dimorphic phenotype, which are mainly linked to sex hormones.

2.2  General Structure of Bone

Bone tissue is a specialized connective tissue characterized by a mineralized extra-
cellular matrix comprising organic and inorganic components. Bones, covered by 
the outer fibrous membrane the periosteum, are made by an external layer, the 
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cortical bone, and an internal portion, trabecular or spongy bone. Cortical bone, 
which accounts for about 80% of the skeleton, is solid and compact and includes the 
shell of the vertebrae, long bones, and the surfaces of flat bones (e.g., cranium or the 
pelvis). At the microscopic level, cortical bone is organized to form osteons or 
Haversian systems, shaped by cylindrical concentric layers of lamellae surrounding 
a central canal, the osteonal (Haversian) canal, which contains the vascular and 
nerve supply. Trabecular bone, mainly located inside the ends of long bones (the 
epiphysis), vertebrae, and flat bones, is characterized by interconnected plates and 
strands of bone tissue, which describes a network of irregular areas surrounding the 
bone marrow and giving it a spongy appearance [1–3].

The skeleton of mammals grows in three dimensions. The longitudinal growth 
(Z-axis) is mediated by chondrocytes at the epiphyseal growth plates. The apposi-
tional growth (X- and Y-axis), the outward bone expansion, is mediated by osteo-
blasts, the bone-forming cells, at the periosteal surface, simultaneously with bone 
resorption mediated by osteoclasts, the resorbing cells, at the endosteal surface. 
Since bone growth is differently regulated in men and women, it determines sexual 
dimorphism in bone size and strength, which will have a considerable impact on 
fracture risk in elderly [4, 5].

2.3  Male Skeletal Tissue Characteristics in Childhood 
and Adolescence

2.3.1  Differences in Longitudinal Growth and Final Stature

In humans, differences in the skeleton size are well represented by stature, which 
averages around 7% higher in males [6]. This dimorphism appears more evident 
during postnatal growth; in fact at birth, male neonates are only 1% taller than 
females [7]. The key determinant of ultimate height is the later onset of puberty, 
which occurs 2 years later in men, allowing more time for prepubertal growth [8, 9]. 
Also, the highest peak of height growth velocity [10] and the delay of growth plate 
closure [11] are responsible for the higher stature of man compared with women, 
but their effects are considerably smaller than onset of puberty.

2.3.2  Differences in Peak Bone Mass

Bone strength is determined by the acquisition of peak bone mass in adulthood and 
the subsequent bone turnover in the cortical and trabecular compartment. Males 
reach higher peak bone mass that decreases slower during aging compared with 
females [12, 13] (Fig. 2.1).

Moreover, there are also time- and site-specific differences between sexes. In 
men, bone mineral content (BMC) peaked at ages 21–22, with respect to ages 
23–28  in women, and it is greater at the femoral neck, distal radius, and lateral 
spine [14].
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Due to greater periosteal apposition, men have a greater cortical bone diameter 
than women, and this explains why bone in men are more resistant to fracture, given 
that bone strength is expressed as the fourth power to bone diameter independently 
of cortical thickness [4]. In addition, the marrow cavity is wider in men, with out-
ward bone expansion and a mild increase in cortical thickness [15]. Endocortical 
resorption is higher than endosteal apposition in both sexes, but to a lesser extent in 
females, thus explaining the reduced expansion of their marrow cavity [16]. At the 
same time, men display lower cortical bone mineral density (BMD) and higher 
intracortical porosity [4] that coincide with a higher peak incidence of fractures in 
young men versus women, in particular during the rapid bone growth in childhood 
and most frequently at the radius [17]. However, despite reduced cortical BMD and 
higher cortical porosity, the larger cortical bone diameter gives young adult men a 
greater ultimate failure load compared to women [18].

Regarding trabecular bone, men develop greater trabecular bone volume during 
late puberty, particularly at the distal radius and tibia, mainly due to greater trabecu-
lar thickness at the radius and trabecular number at the tibia [19]. However, an 
opposite situation is observed in the axial skeleton, in which men show a lower 
trabecular BMD than women in spite of their wider lumbar spine [20, 21].

2.4  Male Skeletal Tissue Characteristics in Adulthood

After reaching peak bone mass, there is a greater periosteal apposition in men than 
in women, who instead show a greater endosteal resorption [22]. These two oppos-
ing, combined actions determine as net effect the higher cortical thickness observed 
in men. Nevertheless, the gender-specific process of thinning cortical bone is also 
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Fig. 2.1 As illustrated in Fig. 2.1, men and women reach their peak bone mass between the ages 
of 20 and 30. After 45 years of age, there is a gradual decline for men, whereas there is a sharp drop 
of bone mass in women due to the menopause. Therefore, the fracture risk period can begin at 45 
years in women and around 75 years in men
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different depending on the analyzed bone site. At the radius, men aged from 20 to 
90 years show 8% decline in cortical area compared with a 17% decrease in women, 
due to a higher periosteal expansion at the radius in men [21]. At the tibia, men gain 
more bone mass than women until age 60–70 and continue to increase their cortical 
bone area. Conversely, women loose cortical bone area from age 50, due to a higher 
endosteal expansion at the tibia, and after age 70, they have a wider marrow cavity 
than men, due to the increased endocortical resorption that exceeds periosteal 
expansion, although the latter is slightly higher in women than in men [23] (Fig. 2.2).

From the fourth to sixth decades of life, trabecular bone volume fraction can 
decline by up to 40–50% for sexes, although there is an exception during lactation, 
when the skeleton of the mother loses ∼120 g of calcium, in favor of the fetal and 
postnatal bone growth, which corresponds to a reduction of 3–10% in bone mineral 
content in lumbar spine, hip, femur, and distal radius. This rapid bone loss, at the 
rate of 1–3% per month, is also mediated by mammary gland-derived parathyroid 
hormone related-protein (PTHrP) in combination with low estrogen levels to facili-
tate the maternal hyper-resorption and intergenerational calcium transfer [24]. 
However, this bone loss is transient, and after a 6-month period, the mother’s skel-
eton is rapidly restored.

2.5  Skeletal Sexual Dimorphism

2.5.1  Sex Steroid Signaling in Bone

Bone geometry, BMD, and bone turnover in men have been related to numerous 
hormones (e.g., primarily sex steroids, but also GH [25–27], PTH [28], vitamin D 

bone resorbed

bone formed

Absolute amount ofOldYoung

Fig. 2.2 Schematic representation of cortical bone in male and female around the age of peak 
bone mass (20 years old) and old age, showing that differences between sexes become increasingly 
greater with aging. The brown circles represent periosteal expansion, and the double dashed line 
indicates ongoing endosteal bone resorption, in both genders at old age
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[29, 30], and thyroid hormone [31, 32]), cytokines (e.g., RANK/RANKL/OPG) [33, 
34], oxidative stress, as well as classical aging pathways [35].

In general, it has been reported that androgens are essential for skeletal sexual 
dimorphism in development and aging, even if they possibly show key indirect 
actions on bone through aromatization, oxidative stress [36], proinflammatory cyto-
kines [37, 38], and growth factors (e.g., transforming growth factor (TGF)-β, IGF-1) 
[39–41]).

Androgens and estrogens are derived from cholesterol and are synthesized in the 
gonads and the adrenal glands. In men, about 15% of estradiol (E2) is produced 
directly from the testes, whereas the other 85% is the result of androgen peripheral 
aromatization [42]. Interestingly, in old men total E2 levels remain a sufficient level 
to maintain skeletal homeostasis [43–45]. Testosterone, the main circulating andro-
gen, produced by the Leydig cells of the testicles, works unmodified or following 
conversion to the more potent dihydrotestosterone (DHT). Testosterone can also be 
converted to E2 by the aromatase (CYP19A1) enzyme. The serum levels of estro-
gens and androgens are regulated by follicle-stimulating hormone (FSH) and lutein-
izing hormone (LH) through hypothalamic-pituitary feedback. In humans, the 
bioavailability of estrogens or androgens is controlled by the binding to circulating 
sex hormone-binding globulin (SHBG) [46]. Only 1–5% of circulating free-fraction 
DHT, testosterone, and E2 is supposed to be biologically active.

The effects of estrogens and androgens on bone developed following the binding 
to the estrogen receptor (ER) α and β and the androgen receptor (AR), respectively.

Basal sex steroid serum levels are regulated by catabolic enzymes. In the Swedish 
MrOS study, it has been reported that androgen metabolites correlated with male 
BMD, but not testosterone levels [47]. Polymorphisms in the enzymes catechol- O- 
methyl-transferase (COMT, an estrogen-degrading enzyme) and uridine diphos-
phate glucuronosyltransferase 2B7 (which inactivates mainly androgens but also 
some estrogens) have been linked to high sex steroid levels and bone geometry in 
young men [48–51]. Other authors found that only in men the COMT polymor-
phism is related to fracture risk [52]. Although these reports are very interesting, 
further studies are needed to better explore the role of steroid-metabolizing enzymes 
on bone.

2.5.2  Sex Steroid-Regulated Longitudinal Bone Size

In men the late estrogen-mediated closure of epiphyseal growth plate cartilage is 
involved in greater bone length. Testosterone also supports height velocity primarily 
through the aromatization and estrogen-mediated GH secretion. On the other hand, 
in boys non-aromatizable androgens augment growth rate without changing the 
serum levels of GH/IGF-1, perhaps through IGF-1 signaling in the growth plate and 
the AR in chondrocytes [41, 53]. Consistently, in men with inactivating ERα muta-
tions [54] or aromatase deficiency [55–58], pubertal height velocity acceleration 
and subsequent growth plate closure seem to disappear, thus favoring the continu-
ous growth.
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2.5.3  Estrogen Deficiency: The Primary Reason of Bone Loss 
in Older Hypogonadal Men

Low testosterone levels in hypogonadal men determined augmented risk of osteo-
porosis and fractures [59, 60]. Interestingly, in 1998, scientists from the Mayo 
Clinic suggested the key role of estrogen in the pathogenesis of osteoporosis both in 
men and women [61]. In fact, in numerous reports, low E2 levels have been linked 
to bone loss in men [62–64], but not in younger men [65, 66]. Nevertheless, several 
complimentary lines of evidence [67–71] confirm that estrogens are crucial to 
restrain bone turnover in aging men.

In general, it seems that estrogens are more important compared with androgens 
in preserving bone health in aging men. However, low testosterone and high SHBG 
serum levels may represent supplementary disadvantages. Free or bioavailable tes-
tosterone has been linked to the cortical BMD, bone area, as well as to hip, verte-
bral, and non-vertebral fractures in older men [66, 72–74]. In the same way, 
increased risk for hip fractures has been described in men with both reduced E2 and 
testosterone [75]. Furthermore, in mice it has been shown that the best effects of 
testosterone are linked to a functional AR [76]. Consistently, in a male patient with 
simultaneous aromatase deficiency and low testosterone, it has been shown an addi-
tive effect by testosterone and E2 replacement therapy [77].

2.6  Contributions of Androgen and Estrogen Receptors 
on Cortical Versus Trabecular Bone

Even if observational studies in humans are essential to establish the role of sex 
steroids on male bone, the understanding of the respective involvements of AR and 
ERs is linked to the use of knockout (KO) animal models together with studies on 
rare human genetic diseases. Information derived from these studies highlighted the 
great complexity about AR and ER roles in diverse bone compartments.

Both AR and ERα are necessary for a good periosteal bone growth [78, 79]. 
Otherwise, for optimal trabecular bone development, AR is the only responsible 
[78, 79]. In fact, trabecular bone mass decreased in androgen receptor knockout 
(ARKO) and increased in estrogen receptor α knockout (ERαKO) [80, 81], 
whereas in combined AR/ERαKO, it was similar to ARKO alone [78]. 
Additionally, with respect to wild-type female mice, male pubertal ARKO ani-
mals displayed equivalent length, reduced trabecular bone, and similar cortical 
bone indexes, implying that androgens are necessary for bone development but 
not for longitudinal growth [82]. Similar findings were found in humans: Therapy 
with estrogen in young men with aromatase deficiency positively affects cortical 
area and thickness, without affecting trabecular vBMD [56]. Additionally, ERα 
affects trabecular bone formation, ERβ influences female bone health [80, 83, 
84], but male ERβKO mice have normal bones and ERαβKO does not show dif-
ference to ERαKO alone [85].
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2.7  Effects of Sex Hormones on Bone Cells

2.7.1  Androgens Affect Osteoblasts and Osteocytes, 
and Estrogens also Target Osteoclasts

In vitro experiments from ARKO mice have suggested that AR controls mainly 
osteoblasts but indirectly also osteoclastogenesis [86]. Otherwise, experimental evi-
dences suggested that ER signaling directly targets osteoclasts. These aspects are 
detailed below.

2.7.2  Androgen Receptor in the Osteoblast Lineage

AR levels augmented during osteoblast differentiation towards osteocytes [87] with 
a key direct role in all cells of osteoblast lineage, as suggested by the different 
rodent models described below. In detail, using osteocalcin-Cre-driven ARKO, it 
was found that androgens work through the AR in mineralizing osteoblasts to pre-
serve bone by modulating bone resorption and coordinating bone matrix synthesis 
and mineralization [88]. Col2.3-Cre-driven ARKO displayed that mature osteo-
blasts are involved in the maintenance of trabecular bone, but not of periosteal appo-
sition [89, 90]. In this murine model, the lack of effects on periosteal apposition is 
probably because the periosteum contains more pre- and proliferating osteoblasts. 
Indeed, in another murine model with AR, overexpression in immature osteoblasts 
increases periosteal and decreases endosteal bone formation [91]. Additionally, in 
Dmp1-Cre mice lacking AR in osteocytes, it was reported a moderate impairment 
of trabecular bone maintenance [87].

2.7.3  Androgen Receptor and Estrogen Receptor Alpha 
in Osteoclasts

Androgens and estrogens inhibit bone resorption in trabecular and endocortical 
bone by diminishing the number of osteoclasts. This is due to the reduction of osteo-
clast differentiation and life-span. Interestingly, male mice with targeted ERα dele-
tion in mature osteoclasts (by cathepsinK-Cre) show no variation in osteoclast 
number or trabecular bone mass, indicating that direct effects of estrogens on osteo-
clasts play no role in the maintenance of trabecular bone in males [92, 93]. Although 
the expression of AR in human osteoclasts is widely debated, its expression in 
rodent osteoclasts is well established [41, 94, 95], and some authors reported that 
androgens also directly suppress in vitro osteoclastogenesis [41, 94, 96–98]. It has 
been reported that testosterone and DHT in vitro reduce osteoclast differentiation 
and increase FasL-mediated apoptosis [92]. However, mice with osteoclast-specific 
AR deletion display no alterations in osteoclast number or bone mass [93, 99]. 
Conversely, AR signaling has indirect effects on osteoclasts, such as by regulating 
cytokine production in bone marrow stromal cells [37]. This indirect effect is 
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highlighted by different in vivo studies. In detail, mice with target deletion of AR in 
osteoblasts show increased trabecular osteoclast number but no differences in osteo-
blasts [93, 100, 101]. In addition, the expression of RANKL and OPG are not 
changed by AR deletion both in osteoblasts and osteocytes [87], indicating that 
other cytokines are accountable for the anti-resorptive outcomes of androgens on 
trabecular bone. In female mice with AR, target deletion in mesenchymal progeni-
tors or mature osteoblasts determines the reduction of trabecular bone mass, but this 
achievement is less marked than males [93, 100, 101]. On the other hand, transgenic 
mice overexpressing AR display increased trabecular bone volume [90].

2.7.4  Estrogen Receptor Alpha in Osteoblasts

Numerous studies by different murine models have established that ERα affects 
osteoblast and osteocyte activity. It has been shown that osteoblast-specific overex-
pression of aromatase increases bone mass in male mice [102]. Prx1 Cre mice have 
been used to selectively excise ERα from pluripotent mesenchymal progenitors and 
osterix-Cre mice to perform Erα deletion in osteoblast progenitors, respectively. 
These mice mainly showed cortical bone deficits resulting from decreased perios-
teal bone formation, although cortical bone deficits were overcome during adult-
hood in Prx1-Cre ERαKO males [103]. Deletion of ERα using the Col1a1 deleter 
did not affect cortical or trabecular bone. However, this should not be taken as evi-
dence that ERα has no role downstream in osteoblast differentiation. Indeed, 
osteocalcin- Cre ERαKO decreased trabecular bone in males and both trabecular 
and cortical bone in females [100, 101]. Dmp1-Cre ERαKO males also showed 
decreased bone formation and less trabecular bone, but there was no effect on corti-
cal bone, or any effect in females. The authors concluded that the trabecular bone- 
sparing effects of estrogens are mediated by osteocyte ERα in males and probably 
by osteoclast ERα in females [104].

Studies on osteocytes, the cells responsible of mechanotransduction in bone, have 
shown that although both ERαKO [105] and ARKO [106] mice are sensitive to mechan-
ical loading, osteocyte-specific ERαKO and ARKO mice are not sensitive to it, indicat-
ing that sex hormones act indirectly on osteocytes in the loading response [87, 104].

In summary, these studies in male mice suggest that both AR and ERα are 
required for optimal cortical bone expansion via actions in immature osteoblasts 
and trabecular bone maintenance via actions in more differentiated osteoblasts and 
osteocytes.

2.8  Indirect Effects of Androgen Receptor and Estrogen 
Receptors on Bone Via Muscle, Fat, 
and the Nervous System

The interaction of bone with muscle, adipose, and neural systems is increasingly 
studied with very interesting findings.
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2.8.1  Bone-Muscle Interaction

Male ARKO mice showed altered muscle development [107], and additional 
ERαKO further reduces muscle mass [78]. It has been shown that muscle-specific 
ARKO mice did not display impaired bone remodeling, but they showed a small 
decrease of peripheral skeletal muscle mass. This effect may be because only peri-
neal muscles show high AR levels and androgen modulation in mice [108, 109]. 
This is in contrast with the well-established anabolic actions of androgens on 
human muscle.

2.8.2  Bone-Fat Interaction

Clinical data support a positive correlation between bone and fat, primarily in 
females, probably because adipocyte aromatase activity controls circulating E2 lev-
els [110, 111]. Fat mass is mainly controlled by estrogens as AR-ERα double 
knockout mice have similar adiposity with respect to ERαKO alone [78], even if 
androgens also show a lipolytic activity, and male ARKO mice display augmented 
adiposity [112]. Moreover, a link among insulin, glucose, and bone remodeling has 
also been proposed in mice, and the impairment of male bone metabolism is 
observed in the metabolic syndrome and diabetes.

2.8.3  Central Nervous System Control of Bone Mass

Central nervous system affects bone mass. Neuron-specific ERαKO mice display 
augmented bone formation through leptin [113]. In the nervous system of mice, 
conditional inactivation of AR alters the somatotropic axis as demonstrated by 
growth retardation and reduced serum IGF-1, without relative differences in total 
bone mass or body composition [114]. Thus, the skeletal sexual dimorphism result-
ing from sex steroids is dependent on indirect effects via growth hormone, IGF-1, 
and IGF binding proteins in the brain, bone, and liver [39, 40, 115].

2.9  Conclusions

The musculoskeletal system is more vigorous in men, and sex steroid signaling is 
fundamental for this sexual dimorphism. In particular, in young adulthood, andro-
gens support trabecular bone development and thickness, in midlife cortical con-
solidation, and in older men the preservation of cortical thickness and trabecular 
bone volume. Furthermore, albeit in men estrogen deficiency also represents the 
principal mediator of hypogonadal bone loss, high SHBG and low testosterone pos-
sibly represent additional disadvantages. Numerous reports using knockout murine 
models have developed the knowledge about the role of AR and ERα in osteoclasts, 
osteoblasts, and osteocytes to cortical and trabecular bone development and 
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homeostasis. In parallel, they have supported the idea that sex steroids also indi-
rectly affect bone remodeling, i.e., through interaction with the nervous system, 
IGF-1, and altered response to mechanical loading.

At the end of skeletal maturation, men achieve greater peak bone mass and 
greater long bone width and cortical diameter. From the mechanical point of view, 
the increased diameter gives bone a more advantageous spatial distribution, having 
the cortex placed farthest from its neutral axis. Therefore, these higher peak bone 
mass and bone strength, together with the lowest amount of bone loss during life, 
are the reasons why men have a lower incidence of osteoporotic fractures in elderly.
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3.1  Physiology of Bone Mass Acquisition: 
Gender Differences

Bone is a highly dynamic tissue that responds and adapts to changes in systemic 
signals, including hormones, as well as mechanical strains. During the intrauterine 
development and postnatal growth, bones are sculpted to achieve their unique 
shapes and sizes. In parallel, they adapt the spatial distribution of their mineralized 
mass to the prevailing loads, in order to maintain the best mechanical performance 
with as little weight as possible [1]. This is accomplished by the resorption of bone 
from one site and formation in a different one, a process defined as modeling [2]. 
During modeling, the cortical bone envelop enlarges and thickens. This is due to the 
fact that osteoblast-mediated bone apposition at the periosteal envelope exceeds the 
widening of the medullary cavity by endocortical resorption, mediated by the activ-
ity of osteoclasts.

Bone growth accelerates during puberty, in concert with peak height velocity, 
which corresponds with puberty in males and menarche in females. This is followed 
by peak total bone mineral content accrual velocity, which coincides with menarche 
in females and presents a 0.7 year lag in males. The disparity in the timing of bone 
growth and mineralization may justify the increased risk for fractures described in 
growing adolescents. The higher fracture rates and the later male incidence rates 
peak in boys than in girls can be explained by the older puberty age, the lag in the 
peak of total bone mineral content accrual velocity, and the greater length growth 
present in males [3].
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Before puberty in both sexes, bone modeling is characterized by long bone 
length growth. The bone shaft widens due to the periosteal bone apposition and to 
the endocortical resorption that excavates the medullary canal. Since the periosteal 
apposition exceeds the endocortical resorption, the long bone cortex becomes 
thicker. Until puberty there is little difference between the sexes in this process. 
After puberty, estrogens in females inhibit periosteal bone formation, thereby limit-
ing the diameter of the bone, and increase the endocortical surface. In boys, pubertal 
androgen production enhanced both the periosteal apposition and the endocortical 
bone resorption, therefore leading to the development of wider bones with propor-
tionally thicker cortex as compared to girls [3, 4].

This differences in bone size between boys and girls represent the major con-
tributor to the sex differences in bone strength. Indeed, since the bone strength 
scales as the fourth power to bone diameter, independent of cortical thickness, and 
men have larger bone than women, the bone strength is higher in men than in women 
[5]. On the other hand, volumetric bone mineral density (BMD), which is defined as 
the amount of mineral per unit volume of bone, is not different between the two 
sexes for both axial and appendicular skeletons [3, 4]. Young adult men have a 
higher peak of bone mass than women due to an almost 25% greater whole body 
bone mineral content [6], due to the fact that their bones are longer and wider, but 
certainly not denser. In keeping, studies by high-resolution peripheral quantitative 
computed tomography confirmed that the gender differences are minimal or absent 
in prepubertal children and that men have a greater cortical bone diameter due to 
greater periosteal apposition, placing the cortex further away from the neutral axis, 
with a wider medullary cavity [4]. These studies showed that during puberty in both 
sexes, the endocortical resorption is enhanced, and the marrow cavity increases, but 
at a lesser degree in females than in males [4]. Moreover, young adult men appear 
to have slightly but significantly lower cortical volumetric BMD and higher intra-
cortical porosity that, especially during rapid growth, can be associated with the 
peak incidence of fractures in childhood, typically at the radius and more frequently 
in boys [7].

Androgens not only act directly on bone through the androgen receptor (AR) but 
also activate estrogen receptor α (ERα) or β (ERβ) following aromatization into 
estrogens. Both the AR and ERα pathways are crucial for a normal cortical bone 
expansion, while AR signaling solely is the dominant pathway for normal male 
trabecular bone development. Interestingly, some evidences from animal studies 
suggest that in males the estrogen-mediated effects on bone may, at least partially, 
depend on the interaction with the insulin-like growth factor 1 (IGF1) [8].

In addition, sex hormones and their receptors may have an impact on the mechan-
ical sensitivity of the growing skeleton. AR and ERβ signaling may limit the osteo-
genic response to loading in males and females, respectively, while ERα may 
stimulate the response of bone to mechanical stimulation in the female skeleton [9]. 
It is important to underlie that these evidences come from animal studies and their 
relevance for bone health in humans is still to be determined. In general, the current 
evidences suggest that the sexual dimorphism during bone mass acquisition may be 
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not determined simply by the differences in sex steroid secretion between the sexes 
but may also depend on gender differences in growth hormone (GH)-IGF1 and 
mechanical sensitivity to loading.

3.2  Pathophysiology of Bone Mass Loss: Gender Differences

Until recently, it was thought that after the achievement of the bone mass peak, the 
bone mass was maintained until the middle age, due to a substantial balance between 
bone resorption and bone apposition. However, recent studies using quantitative 
computed tomography (QCT) have shown that trabecular BMD loss begins in the 
third decade of life in both sexes, with a lifetime losses of the trabecular bone at 
spine of 55% in women and 45% in men [10, 11]. In women, the main trabecular 
bone loss occurs at the time of menopause (about 20–30%), while the cortical bone 
loss during the same period of life is definitely lower (5–10%) [12]. In women, after 
menopause, the cortical bone loss and the trabecular bone loss rates are lower and 
similar. Since men do not undergo a condition similar to menopause, they do not 
experience the accelerated trabecular bone loss typical of females in the menopausal 
transition. Therefore, during the adult life, men lose less trabecular bone than women.

At variance with trabecular bone, cortical bone is substantially maintained in 
both sexes until middle age, while, thereafter, in both sexes there is a slow lifetime 
decline of bone mass that is slightly higher in women (28%) than in men (18%) due 
to the greater cortical bone loss that occurs in women in the perimenopausal and 
early postmenopausal period [10].

Beside bone mass, a particularly important aspect of the pathophysiology of 
bone resistance is linked to bone geometry. Indeed, during adult life, there is a lim-
ited periosteal apposition and a continued net endocortical resorption. Therefore, 
although endocortical resorption reduces cortical thickness and area, the concurrent 
periosteal apposition (even though of minor entity as compared to endocortical 
resorption) may partially counteract the negative effect of the endocortical resorp-
tion on the cross-sectional area of the cortical bone. Most importantly, this mecha-
nism shifts the thinning cortex farther from the neutral axis, therefore relatively 
increasing the bone strength against both axial compression and bending forces and, 
thereby, mitigating the reduction of bone resistance due to the absolute cortical thin-
ning and porosity that occur with advancing age [13].

The amount of endocortical bone that is resorbed is similar in men and in women, 
but since men have a greater periosteal apposition during aging than women, they 
have less net bone loss [14, 15]. However, the presence of menopause can be con-
sidered the main determining factor for the differences in the entity and in the age- 
related pattern of fracture risk in males and females. Indeed, in women the risk of 
vertebral, forearm, and hip fractures begins to increase importantly in the perimeno-
pausal period, even if the marked increase in hip fracture incidence occurs approxi-
mately at 65 years of age. At variance, in men the increased rates for both vertebral 
and hip fractures are delayed by about 10 years [16].
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3.2.1  Bone Loss in Women

The menopausal-related ovarian failure is characterized by a rapid decline of serum 
estradiol by 80–90% as compared with premenopausal status. This decrease of 
estrogen levels alters the balance between bone formation and bone resorption, 
which is substantially maintained during the adult life before menopause. Indeed, 
after menopause there is an increase of both bone apposition and bone formation, 
with the latter overcoming the former. Indeed, as reflected by the indexes of bone 
turnover, after menopause the bone resorption increases by about 90% and bone 
apposition by about 45% as compared with the premenopausal period of adult life 
[17, 18]. In keeping, the activation frequency of the bone remodeling units increases, 
and therefore, more sites on the bone surface undergo resorption with the osteoclast 
resorption time being increased and the osteoblastic bone formation time being rela-
tively decreased [19].

The increased osteoclast activity seems to be due to the lack of the inhibiting 
effect of the estrogens on bone turnover. Indeed, in the presence of estrogens, the 
receptor activator of nuclear factor-kB (RANK) ligand (RANKL) is inhibited. This 
molecule is normally expressed on the cellular membrane of bone marrow stromal 
cells, T cells, and B cells and promotes osteoclast differentiation, formation, and 
survival after binding to RANK on the membrane surface of osteoclast lineage cells 
[20]. Beside the inhibitory effect on the RANKL secretion, estrogens increase the 
expression of osteoprotegerin (OPG) gene and the OPG secretion by osteoblast. 
Since OPG is a decoy soluble receptor for RANKL, the increased OPG secretion 
inhibits the osteoclast development [21]. At menopause, and in any situation of 
diminished estrogen production, OPG decreases and RANKL increases, thereby 
enhancing osteoclast differentiation, survival, and activity [22].

Another important mechanism by which estrogen regulates bone resorption is 
related to the ability of estrogens to regulate the expression of several cytokines, 
such as monocyte colony-stimulating factor (MCS-F), interleukin (IL)-1 and IL-6, 
tumor necrosis factor α, and prostaglandins [23–27].

In general, the increase in bone resorption may be also due to an indirect 
effect of estrogen deficiency. Indeed, the lack of estrogen is associated with an 
efflux of calcium from the reabsorbed mineral matrix to the blood, with a com-
pensatory decrease of intestinal calcium absorption and of renal reabsorption and 
an overall negative calcium balance [28, 29]. In keeping with the abovemen-
tioned pathophysiological mechanism, several studies have shown that estrogen 
substitutive therapy is able to correct the reduced intestinal calcium absorption 
and renal reabsorption [30].

Recent data have suggested that similarly to what happens with advancing age, 
the loss of estrogens and androgens may increase the reactive oxygen species (ROS) 
in bone cells [31]. This suggests that sex steroid deficiency may exacerbate the 
effect of aging on bone tissue. Studies on mice have shown that the increased ROS 
levels may reduce osteoblastogenesis and increase osteoclastogenesis and that 
RANKL and MCS-F promote the accumulation of ROS in osteoclasts. However, in 
mice preventing the ROS accumulation in osteoclasts can protect against the loss of 
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cortical bone due to estrogen deficiency but cannot preserve bone by the effects of 
old age, while preventing the ROS accumulation in cells of osteoblast lineage can 
protect against the effect on cortical bone of both estrogen deficiency and aging. 
This suggest that the ROS accumulation can be a crucial mechanism of the age-
related bone loss, which is typically characterized by the decrease of bone apposi-
tion rather than the increase of bone resorption. However, at present, we still do not 
know if the effect of estrogens on ROS accumulation is direct or indirect via the 
attenuation of the osteoblastic production of pro-osteoclastogenic cytokines and 
whether these findings in mice have relevance in humans [1].

Estrogens have also a significant effect on osteoblasts and, thereby, on bone 
apposition. Indeed, estrogens promote the differentiation of mesenchymal cells 
toward the osteoblast lineage and the differentiation of osteoblasts from pre- 
osteoblasts and decrease their apoptosis. These effects are thought to be due to an 
increased production of insulin-like growth factor 1 (IGF-1) and transforming 
growth factor-β, directly promoting the Wnt signaling pathway, which is considered 
a main determinant of osteoblast differentiation and activity. On the other hand, 
estrogens may decrease the osteocyte production of sclerostin, which is a potent 
inhibitor of Wnt signaling, thereby further stimulating the Wnt pathway [32, 33].

Some data have shown that the levels of follicle-stimulating-hormone (FSH), 
which typically increases after menopause, were associated with the changes in 
bone turnover markers and of hip BMD more strictly than estradiol levels [34]. This 
finding was supported by data on a mouse model of osteoporosis, and it suggested 
that FSH may exert a direct effect on bone cells. However, more recent data on 
postmenopausal women were not able to confirm an important role of FSH levels in 
postmenopausal-related bone loss [35].

Finally, even though previous data showed that the testosterone concentrations 
were not associated with the postmenopausal bone loss, more recent evidences sug-
gested that in postmenopausal women the estrogens derived from the aromatization 
of adrenal androgens are likely to be important for bone health. Indeed, women 
treated with aromatase inhibitor for breast cancer experience an increase of both 
bone loss and a relatively BMD-independent risk of vertebral fracture, the latter 
probably due to a deterioration of bone microarchitecture [18, 36].

3.2.2  Bone Loss in Men

During adulthood and in particular with aging, men lose about 50% less bone than 
women and have approximately 30% less fragility fractures. As abovementioned, 
also in men the trabecular bone loss begins in the third decade of life shortly after 
the achievement of the bone mass peak, therefore independent of gonadal sex ste-
roid levels, which at that time are within the normal range. At variance with women 
at the menopausal age, during adulthood men do not experience a rapid reduction of 
sex steroid levels, while they have a progressive increase of sex hormone binding 
globulin (SHBG) levels double during life-span. The aging-related SHBG reduces 
the levels of bioavailable testosterone (composed by free and albumin- associated 
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testosterone) by about 66% during the life-span, and therefore, most importantly for 
bone health in males, the aromatization-derived estrogen levels decrease by about 
50% with aging [37]. Indeed, several studies demonstrated that even in men the 
estrogen levels, rather than the testosterone ones, are crucial for bone health. For 
example, in men with estrogen or testosterone or both sex steroid deficiency, the 
replacement therapy with estrogen but not with testosterone is able to correct the 
increased bone resorption due to hypogonadism. In addition, in men estrogen 
replacement can even correct the reduced bone apposition, which is typical in males 
with both estrogen and testosterone deficiency [38]. In keeping with bone turnover 
data, several studies have shown that BMD in men correlates more closely with 
bioavailable estradiol levels than with testosterone levels and that in men trabecular 
and cortical bone begins to decrease when estradiol levels fell below 15  pg/mL 
[39, 40].

However, even though also in men estrogens seem to play a major role on 
skeletal health, and estradiol concentrations are more predictive of the age-
related bone loss in men, testosterone levels may anyway have an importance. 
Indeed, men with both low estradiol and low testosterone levels seem to be at 
greater risk for hip fracture as compared to men with low estradiol levels and 
normal testosterone levels or to men with low testosterone levels and normal 
estradiol levels [40]. In keeping, some data have suggested that similarly to what 
happens during puberty, even during aging, testosterone can be important for the 
periosteal cortical bone apposition [15].

3.3  Conclusions

Collectively, data on the physiology of bone mass acquisition show that in men 
androgens are solely responsible for trabecular bone growth and stimulate perios-
teal apposition, but estrogens are crucial for cortical bone development. In women 
estrogens are critical for trabecular bone growth, but inhibit periosteal apposition. 
The skeletal dimorphism appears at puberty and may be determined by an indepen-
dent and time-specific effects of sex steroids and GH/IGF-1 levels. Finally, the 
interaction of sex steroids and their receptors with the adaptive response of bone to 
mechanical stimulation may potentially play a role.

During adulthood, in both sexes the trabecular bone loss begins in the third 
decade of life, while cortical bone is substantially maintained until middle age. 
However, in women the main trabecular bone loss occurs at the time of menopause, 
while the cortical bone loss during the same period of life is definitely lower. After 
menopause in women the cortical bone loss and the trabecular bone loss rates are 
lower and similar. Men do not experience the accelerated bone loss typical of 
females in the menopausal transition.

The mechanisms underlying the bone loss in women at menopause are mainly 
related to an increased osteoclast activity due to the lack of the inhibiting effect of 
the estrogens on bone turnover. The reduction of estrogen levels leads to an increase 
of pro-osteoclastogenic cytokines, such as RANKL, MCS-F, IL1, and IL6, and to an 
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increase of ROS accumulation. After menopause, this latter mechanism may impair 
osteoblast activity, and thereby, it may be crucial for the age-related bone loss, 
which is typically characterized by the decrease of bone apposition rather than the 
increase of bone resorption. The effect of the lack of estrogens in diminishing the 
osteoblast differentiation by influencing the Wnt signaling pathway may be a fur-
ther mechanism explaining the bone loss in women after the menopausal period.

Even in men estrogens (derived from the androgen aromatization) play a major 
role in maintaining the bone health during adulthood. In men the age-related bone 
loss seems to be related to the increase of SHBG levels and to the consequent 
decrease of bioavailable testosterone that reduces the estrogen levels. However, a 
direct effect of testosterone on periosteal bone maintenance can be hypothesized.

Finally, in both sexes the mechanisms underlying the pathophysiology of bone 
loss include even non-sex steroid changes. For example, the decrease of the fre-
quency and amplitude of GH secretion may negatively influence osteoblast differ-
entiation and activity. Due to the reduction of GH levels, the IGF1 concentrations 
decrease with age. Contemporary, the inhibitory IGF1 binding protein 2 levels 
increase and seem to be negatively associated with BMD in aged adults [41, 42].

Other mechanisms, independent of sex steroid or other hormonal changes, are 
likely to be involved in the pathophysiology of bone mass loss and may be related 
to increased cellular senescence intrinsic within cells of osteoblast and osteoclast 
lineage [43].
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4.1  Introduction

Osteoporosis is an important and growing health problem worldwide. Although it 
has been long considered a disease impacting women, epidemiological studies have 
shown over the years that the classic age-related increase in fractures seen in women 
is also evident in men [1].

The World Health Organization (WHO) defines osteoporosis as “a systemic skel-
etal disease, characterized by low mass and micro architectural deterioration of 
bone tissue, leading to enhanced bone fragility and a consequent increase in fracture 
risk” [2]. Patients with osteoporosis are usually clinically silent until they experi-
ence a fracture. Fragility fractures occur mainly in the spine and hip, and they result 
in a significant increase in morbidity and mortality and an exponentially grow of the 
socioeconomic costs [3]. Due to this, the goal of any osteoporosis therapy is the 
early diagnosis and the prevention of its complications.

Approximately one in two women and one in four men over 50 years of age will 
have an osteoporosis-related fracture in her/his lifetime, and, for men in particular, 
this number tends to increase with increasing age [4, 5]. Men, in fact, suffer osteo-
porotic fractures about 10  years later in life than women, but life expectancy is 
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increasing faster in men, having about twice the 1-year fatality rate after hip frac-
ture, compared to women [6].

Nevertheless, male osteoporosis remains an underdiagnosed and undertreated 
condition.

Over the past decades, several diagnostic imaging techniques have been devel-
oped to characterize pathological changes of osteoporosis, to assess bone weaken-
ing and fracture risk to an early stage, and to help monitor disease progression and 
response to therapy. In addition to dual-energy X-ray absorptiometry (DEXA), 
which remains the reference method for the diagnosis of osteoporosis, 3D tech-
niques such as quantitative computer tomography (qCT) are increasingly used to 
provide information about the structural and qualitative features of bone. There was 
also a growing interest about the possibility of using quantitative ultrasonography 
(QUS) as a noninvasive and quite inexpensive diagnostic technique for the investi-
gation of bone disease.

4.2  Conventional Radiography

Despite the advent of highly accurate quantitative techniques, conventional radiog-
raphy remains the first-line investigation for the initial evaluation of osteoporosis. It 
is a cheap and widely available technique for assessing the quality of bone and for 
identifying deformities and fractures. But conventional radiography provides a sub-
jective quantification of bone density and microstructural changes only when 
approximately 30% of bone mass is lost, with a consequent poor sensitivity [7, 8].

Radiographs can be helpful in evaluating the secondary causes of osteoporosis: 
Up to 50% of the men with osteoporosis have secondary causes of osteoporosis [9], 
such as glucocorticoid medications, hypogonadism, alcohol abuse, smoking, hyper-
parathyroidism, thyrotoxicosis, and gastrointestinal disease.

The main radiographic findings of osteoporosis are as follows:

• Altered Trabecular Pattern
Cancellous bone responds to metabolic changes faster than cortical bone. The 

trabecular pattern is well represented in the axial skeleton and the extremities of 
long bones [10]. The bone resorption first involves the secondary trabeculae, 
with a relative accentuation of the primary one (the weight-bearing trabeculae), 
due to a compensatory mechanism or to callus from microfractures. In the 
advanced stage, even the primary trabeculae are lost, resulting in the translucent 
appearance of bone on radiographs [11, 12].

• Cortical Thinning
The microstructural changes seen in cortical bone are due to osseous resorp-

tion in the three sites of the cortex (endosteal, intracortical, and periosteal) [13]. 
Each of these layers responds differently to metabolic stimuli and differs accord-
ing to the etiology. In senile osteoporosis the endosteal envelope is primarily 
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affected by bone remodeling, resulting in a widening (scalloping) of the marrow 
canal and thinning of the cortex.

• Increased Radiolucency
Compared to a normal bone, in the osteoporotic bone, there is a reduced 

absorption of the X-rays due to the decreased mineralization. This causes an 
increased radiolucency of the bone, which is evident on radiographs when there 
is a loss of bone density of approximately 20–40%.

This findings are mainly evident in the axial skeleton and at the end of the 
long and tubular bones (hand, proximal femur, and calcaneus). Spinal radiogra-
phy typically displays an “empty box” or “picture framing,” which is a vertebral 
body with a thin but well-demarcated cortical outline, a verticalization of the 
trabeculae, and an overall increased radiolucency. (Fig. 4.1a, b) The X-ray of the 
hip of a man with osteoporosis, similarly, shows an enlarged and indistinct 
Ward’s triangle, the area bounded by the weight-bearing trabeculae. (Fig. 4.2) 
Conventional radiography is, furthermore, the basic modality to detect and diag-
nose insufficiency fracture. However, the false negative rate may be very high on 
routine radiographs, in the range of 29–45% [13–15].

Fig. 4.1 Lateral X-ray of the 
lumbosacral spine in a 48-year-old 
man showing the main radiographic 
findings of osteoporosis
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4.3  Dual-Energy X-ray Absorptiometry

Dual-energy X-ray absorptiometry (DEXA) is currently the standardized method 
for the diagnosis of osteoporosis according to WHO threshold values (Table 4.1) 
and for the fracture risk assessment.

It consists a low radiation dose (1–6 μSv) rapid scan and provides accurate quan-
titative measurement of bone mineral density (BMD: g/cm2), expressed as standard 
deviation (DS) from the mean of either sex-matched peak bone mass (T-score) or 
age-matched BMD (Z-score) [16–18] (Fig. 4.3a–c).

Most frequently DEXA is applied to the lumbar spine (from L1 to L4) and the 
proximal femur (total hip, femoral neck, trochanter, and Ward’s area) but also to 
other peripheral skeletal sites such as the distal third of the radius and the calcaneus 
or to the whole body.

DEXA BMD measurements are predictive of fracture: It is shown that decreas-
ing the value of BMD increases the risk of low-trauma fractures. But, BMD is the 
most important but not the only factor recognized as increasing the fracture risk. 
Many clinical factors contribute to the occurrence of fragility fracture in non- 
osteoporotic patients [19].

Fig. 4.2 Proximal femur radiograph 
of an old man patient with 
osteoporosis
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Table 4.1 WHO criteria for clinical diagnosis of osteoporosis

Diagnosis BMD T-score
Normal bone mass T-score ≥ −1
Low bone mass (osteopenia) −1 > T-score > −2.5
Osteoporosis T-score ≤ −2.5
Severe or established osteoporosis T-score ≤ −2.5 with existing fracture

Fig. 4.3 DEXA scan of a 56-year-old male patient showing pathological values (osteoporosis). In 
the study of the lumbar spine (a), the regions of interest (ROIs) are placed on the L1–L4 vertebral 
bodies; in the left hip study (b), the ROI must be placed at the femoral neck, avoiding superimposi-
tion of the ischiopubic ramus and the greater trochanter; in the forearm (c), the area of analysis is 
set at the distal radius, with the line of reference at the ulnar styloid process
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According to this, the WHO recently developed the use of a fracture risk algo-
rithm (FRAX) in the DEXA interpretation. This algorithm considers several clinical 
risk factors (age, gender, ethnic origin and geographic region, smoking, alcohol 
intake, previous low-trauma fracture, parental hip fracture, oral glucocorticoid ther-
apy, rheumatoid arthritis, and secondary causes of osteoporosis), with or without 
femoral neck BMD. The result is the patient’s 10-year probability of fracture at one 
of the major osteoporotic sites. The use of FRAX in clinical practice has re- 
modulated the therapeutic approach in particular for patients with suspected osteo-
porosis but not yet pathological BMD values [20].

The use of femoral neck BMD in the fracture risk algorithm is because the femo-
ral BDM is the best predictor of hip fractures, which are the osteoporotic fractures 
associated with the worst impact on survival in men [6]. Furthermore age-related 
degenerative changes of the spine, spinal deformity, and abdominal aortic calcifica-
tions [21] may create artifacts and limit the use of lumbar spine BMD.

Currently, the advantages of using DEXA are more than the accurate measuring 
BMD in central and peripheral sites. Software has been developed to evaluate some 
geometric parameters related to bone strength, such as the hip structure analysis 
(HSA) and the trabecular bone score (TBS).
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TBS, in particular, is a software that allows DEXA densitometer to process the 
pixel gray-level variations in DEXA images. This technique is applied to lumbar 
vertebral bodies and provides indirect information on trabecular microarchitecture 
[22]. TBS is strongly correlated with the number of trabeculae, with their connectiv-
ity and, negatively, with the space between trabeculae. Due to this, high TBS value 
indicates a dense and strong bone architecture, while a low TBS reflects weak, frac-
ture-prone microarchitecture [23, 24].

Several studies have shown that TBS is a predictor of fracture risk independent 
of BMD and partly independent of FRAX.  Using TBS in association with both 
BMD and FRAX, therefore, is a very important tool in the diagnosis of osteoporosis 
and especially in fracture risk assessment.

Moreover, there is a TBS progressive decrease with advancing age (which is 
more marked in women than in men) [25] and a progressive increase after osteopo-
rosis treatments. The possibility of using the TBS to evaluate the response to treat-
ment is currently being evaluated, such as the probable TBS role in the assessment 
of fracture risk in some causes of secondary osteoporosis (e.g., diabetes, hyperpara-
thyroidism, and glucocorticoid-induced osteoporosis) [24].

4.4  Vertebral Morphometry

Vertebral body fracture is the most frequent type of low-trauma or atraumatic frac-
tures and, moreover, an independent and significant predictor of increased risk for 
further fractures [26].

The incidence of vertebral compression fracture have recently shown a trend to 
rise. It usually occurs earlier compared with hip and wrist factures [27] and in most 
cases is clinically asymptomatic and may be unrecognized to a conventional lateral 
radiograph of the thoracolumbar spine [28]. Traditionally, vertebral fractures are 
identified on conventional radiographs of the thoracolumbar spine in lateral projec-
tion with a semiquantitative visual assessment, without a direct measurement. A 
mild (grade 1) fracture corresponds to a reduction in the anterior, middle, and/or 
posterior height of approximately 20–25%, a moderate fracture (grade 2) to an 
approximately 25–40% reduction in height, and a severe one (grade 3) with an 
approximately 40% or greater reduction in any height [29, 30].

Vertebral morphometry is a quantitative method to identify osteoporotic ver-
tebral fractures based on the direct measurement of vertebral heights. It is 
mainly performed on images of lateral spine (T4–L4) obtained from DEXA 
scans and represents the most accurate solution currently used in clinical prac-
tice [31, 32] for the assessment of fracture status, also thanks to its lower radia-
tion exposure. (Fig. 4.4).
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4.5  Quantitative Ultrasound

In the last years, there has been a growing interest among clinicians worldwide on 
quantitative ultrasound (QUS). It is a noninvasive, low-cost, and radiation-free tech-
nique for the investigation of bone disease [33–35]. QUS, in fact, through the analy-
sis of interactions between ultrasound and bone, provides indirect information about 
not only bone density but even bone quality.

It is performed with two piezoelectric probes, one that emits impulses in the 
frequency range between 200 kHz and 1.5 MHz (due to the high attenuation values 
in bone) and the other one that receives them once they have passed through the 
bone of study. QUS in usually applied to peripheral skeletal sites, in particular to the 
calcaneus, the distal metaphysis of the phalanx [36, 37], the radius, and the tibia.

This method provides two main parameters:
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• Attenuation of Broadband Ultrasound (BUA: dB/MHz)
The attenuation of ultrasound waves is the result of diffraction, scattering, and 

absorption in the bone and soft tissue. BUA represents the slope of the attenua-
tion curve, which is higher in healthy bone and decreases as the bone mass 
decreases, as happens in osteoporotic bones.

• Speed of Sound (SoS: m/s)
The transit time velocity is affected by the density and the elasticity of bone.
The BUA and SoS are useful indicators of bone microstructure and mineral 

density. Furthermore, from these two parameters, it is possible to obtain more 
complex index—stiffness index (SI), quantitative ultrasound index (QUI), and 
amplitude- dependent speed of sound (AD-SoS)—that provide complementary 
information on bone structural integrity and help to estimate the probability of 
future fragility fractures [38].
Several studies have documented the ability of QUS to give information on bone 

structure and to predict osteoporotic fracture risk. Moreover, the versatility of the 
method makes it a useful tool in children and all the other cases where it is prefer-
able to avoid the use of ionizing radiation.

But, at the moment, QUS cannot be used yet as stand-alone tool for the diagnosis 
of osteoporosis or for assessing treatment response because it’s an operator- 
employee and scarcely reproducible method which provides just an indirect mea-
surement of bone density.

4.6  Quantitative Computed Tomography (qCT)

DXA is a two-dimensional measurement and cannot distinguish between cortical 
and trabecular bone. Compared to the DXA, the advantage of quantitative computed 
tomography (qCT) is the measurement of true volumetric BMD and the selective 
evaluation of trabecular tissue, providing pertinent information on bone strength.

QCT techniques are used to measure BMD at the lumbar spine and proximal 
femur (axial qCT) or at the distal radius and tibia (peripheral qCT) [39, 40]. Axial 
qCT is performed with a standard CT scanner and a phantom, which acts as bone 
mineral reference standard to calibrate each scan. The regions of interest (ROIs) are 
positioned in the trabecular portion of the vertebral body, and the obtained vertebral 
densities are averaged and compared to those of a gender- and race-specific normal 
population [41, 42]. The results are usually expressed in absolute values and as 
Z-scores and T-scores.

QCT has shown a great ability to predict fracture risk and a good sensitivity in 
the treatment follow-up, [17, 35], but as it delivers high dose of radiation and also 
several other bone marrow changes may affect the measurements, its application in 
clinical use has been narrowed.

To obviate axial qCT limitations, it is increasingly used a volumetric QCT 
(vQCT), which provides separate assessment of cortical and trabecular bone at 
appendicular sites [40]. The evolution of post-processing software allowed further 
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analysis on bone geometrical and torsional stability, which correlates to bone 
strength and consequent susceptibility to fracture [43, 44].

High-resolution quantitative computed tomography (HR-QCT) has been imple-
mented on metabolic bone disease patients for a detailed assessment of bone micro-
architecture [45, 46]. With an 80–100 μm resolution, HR-QCT is performed at the 
radius, tibia, and metacarpal bones and measures, in addition to the parameters clas-
sically measured by qCT, bone volume fraction as well as cortical and trabecular 
parameters including thickness, separation, and number of trabeculae [47]. 
Nevertheless, high costs and the expertise level required to handle these techniques 
have limited their application to few research centers.

4.7  Magnetic Resonance Imaging (MRI)

Besides qCT, high-resolution MRI has also proved to be an accurate method to 
obtain micro-architectural data of trabecular bone, particularly in the peripheral 
appendicular skeleton (distal radius and calcaneus). MRI also has the capacity to 
study spinal bone marrow, which is tightly connected with bone strength and 
turnover.

MRI of bone marrow has a variable appearance because of the distribution of 
cellular and fatty marrow: with advancing age, the vertebral bone marrow becomes 
increasingly replaced with fatty marrow, in earliest adulthood in men compared to 
women [48, 49].

Several studies have shown that to a reduction of bone mineral density corre-
sponds, on MR images, an increase of vertebral marrow fat content with a decreased 
vertebral marrow perfusion.

MRI is helpful in the diagnosis of vertebral fractures in elderly patients, in par-
ticular when conventional radiography, CT, or bone scintigraphy are inadequate for 
identifying the cause of compression fractures. Distinguishing between benign and 
malignant fractures is a frequent challenge with growing importance in clinical rou-
tine. Both entities tend to occur in elder patients, especially in the thoracic and 
lumbar spine, and may coexist.

The routine spine evaluation on MRI typically includes T1-weighted, 
T2-weighted, and short τ inversion recovery (STIR) T2-w images [50] (Fig. 4.5).

In osteoporotic patients, the loss in the trabecular osseous network is usually 
replaced by fat cells; also bone marrow is infiltrated by a variable amount of edema. 
In malignant vertebral fractures, the bone marrow is usually replaced by tumor cells 
[51–54].

Common findings suggestive of osteoporotic vertebral fractures are nonhomoge-
neous vertebral bone marrow edema and the presence of spared areas of normal 
bone marrow, especially in the pedicles and posterior elements. In advanced stages 
of osteoporosis, there are generally multiple vertebral collapses. T2-weighted 
sequences may feature a vertebral “fluid sign,” [55] which is rarely found in malig-
nant fractures. After about 4–6 months, the signal of osteoporotic fractures normal-
izes to a signal similar to unfractured vertebral bodies.
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In doubtful cases, other functional sequences may be added to the standard MRI 
protocol to better differentiate osteoporotic vertebral fractures from other causes. 
Diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps 
evaluate the free mobility rate (Brownian motion) of water molecules—and thus 
protons—in the extracellular compartment: An increase of interstitial space due to 
bone marrow edema, as the initial states of osteoporotic fractures, results in an 
increased motion rate of water molecules [56, 57]. Chemical shift imaging may also 
play a role in distinguish benign from malignant vertebral fracture, whereas the use 
of intravenous administration of paramagnetic contrast medium is discussed 
[58, 59].
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SHBG Sex hormone-binding globulin
UV Ultraviolet

5.1  Introduction

Osteoporosis is the most common form of metabolic bone disease, characterized by 
reduced bone mass and qualitative impairments in bone properties, associated with 
a reduction in bone strength, an increased risk of fragility fractures, and high mor-
bidity and mortality rates, especially in men [1]. Rapid increases in the number of 
elderly people, with concomitant use of certain drugs (i.e., glucocorticoids), have 
markedly raised the number of men suffering from osteoporosis. Hence, during the 
last years the importance of osteoporosis in men has been reconsidered, although it 
still remains often unrecognized and untreated [2]. In fact, osteoporosis represents a 
silent disease until fragility fractures occur, resulting in relevant secondary health 
problems and even death [3].

Thus, an appropriate understanding of the most common risk factors and causes 
of bone loss and skeletal impairment is essential for an early diagnosis and a correct 
management of male osteoporosis in clinical settings. Herein we will briefly 
describe the main pathophysiological mechanisms responsible for bone loss and 
increased fracture risk in men throughout the life.

5.2  Pathophysiology of Male Osteoporosis

Osteoporosis has long been considered as a women’s disease, with less clinical 
relevance among men. In fact, the male sex itself represents one of the strongest 
protective factors against bone loss and osteoporosis fractures. This significant 
advantage in bone strength observed in men mainly depends on higher cortical bone 
expansion during pubertal peak bone mass acquisition [4]. Of note, there is a 10-year 
difference in age before men show signs of an age-related bone loss [5]. During 
aging men show less bone loss than women, since they undergo higher periosteal 
bone accretion to compensate the endosteal bone loss [6]. Moreover, elderly men 
have more stable plasma levels of sex steroids compared to women and do not expe-
rience an accelerated phase of bone loss as observed with menopause in women, 
when a rapid decrease in estrogen levels occurs; this results in a better maintenance 
of skeletal integrity in aging men [7]. Nonetheless, during the last decades, it has 
been widely recognized that also male osteoporosis represents a significant public 
health and economic burden [8, 9]. First of all, rapid increases in the number of 
elderly people have considerably raised the incidence of osteoporosis among men. 
Furthermore, even if osteoporosis still remains four times more common in women 
[10], evidence supports that men tend to exhibit more osteoporosis-related compli-
cations, along with higher mortality after fragility fractures [11, 12]. Several life-
style habits and/or pathological conditions specifically increase the risk for bone 
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loss and osteoporosis in men, thus resulting in substantial increases in morbidity 
and mortality rates, mainly as a consequence of hip and vertebral fractures [13].

The risk factors for osteoporosis and/or bone fragility fractures in men can be 
distinguished in two main groups, (a) non-modifiable risk factors and (b) modifiable 
risk factors, defined as those that can be treated or modified by an adequate inter-
vention. The former group includes age, genotype, race, previous fragility fractures, 
and familial history of hip/vertebral fracture, whereas the latter encompasses low 
bone mineral density (BMD), low muscle mass, alcoholism, smoking, low body 
mass index (BMI < 20 kg/m2), low physical activity, reduced calcium intake and/or 
malabsorption, vitamin D deficiency, excessive sodium intake, the presence of 
osteoporosis-associated diseases, and the use of bone-resorbing drugs (i.e., gluco-
corticoids) [14]. Indeed, male osteoporosis is a heterogeneous condition, including 
a large variety of etiologies. Table 5.1 lists the major causes of osteoporosis in men, 
separating these into primary causes (age-related and idiopathic osteoporosis) and 
secondary causes (those related to specific diseases or drugs). Even if it is useful to 
consider the possible causes individually for didactic purposes, in most patients 
more causes often coexist.

5.3  Age-Related Osteoporosis

Significant bone loss gradually occurs with aging in men, representing a crucial 
feature of osteoporosis which could be sufficient to cause fragility fractures, regard-
less of the presence of other causes of skeletal impairment. It has been established 
that aging men lose BMD at a rate of 1% per year [15]. Nevertheless, specific causes 

Table 5.1 Primary and secondary causes of male osteoporosis

Primary osteoporosis
Age-related osteoporosis
Idiopathic osteoporosis
Secondary osteoporosis
Drugs: Corticosteroids, anticonvulsants, thyroid hormone, heparin, chemotherapeutics, 
thiazolidinediones
Endocrine diseases: Hypogonadism (Klinefelter syndrome, Kallmann syndrome, 
hypopituitarism, androgen deprivation therapy, hemochromatosis), hyperthyroidism, 
hyperparathyroidism, hypercortisolism, hyperprolactinemia, acromegaly, GH deficiency, 
diabetes mellitus (type 1 and type 2)
Gastrointestinal diseases: Celiac disease, gastrectomy/gastric bypass, chronic liver diseases, 
primary biliary cirrhosis, chronic inflammatory bowel disease, pancreatic insufficiency
Systemic illnesses: Rheumatoid arthritis, lupus erythematosus, ankylosing spondyloarthritis, 
myelo- and lymphoproliferative diseases, multiple myeloma, systemic mastocytosis
Conditions associated with immobilization: Parkinson’s disease, paraplegia, poliomyelitis, 
cerebral palsy, muscular dystrophies
Kidney diseases: Idiopathic renal hypercalciuria, renal tubular acidosis, chronic kidney disease
Other diseases: Chronic obstructive pulmonary disease, anorexia nervosa, AIDS/HIV, 
amyloidosis, sarcoidosis, depression
Miscellaneous and lifestyle choices: Sedentary lifestyle, alcoholism, smoking, caffeine
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of senile bone loss in men are still partially unknown. However, the observation of 
increased markers of bone remodeling raised the hypothesis that the acceleration in 
bone turnover contributes to the age-related bone loss [16]. In fact, QCT (quantita-
tive computed tomography) analysis demonstrated that a substantial cortical bone 
loss in men begins mainly after the age of 75. Moreover, in older men higher rates 
of cortical and trabecular bone loss have been associated with lower levels of bio-
logically active sex steroids and higher levels of bone turnover markers [17]. Indeed, 
several hormonal changes occur with aging. Aging in men is associated with rele-
vant changes in the hypothalamic-pituitary-gonadal axis, resulting in reduced serum 
levels of testosterone and estradiol (including their free fractions), with a concomi-
tant rise (over twofold) in SHBG (sex hormone-binding globulin) concentrations 
[18–20]. SHBG binds to testosterone and further decreases free or bioavailable tes-
tosterone [21, 22]. Overall, both androgens and estrogens, as well as SHBG, are 
crucial for skeletal maintenance in males, probably playing an independent and 
coordinated role [7, 23]. The exact role of androgens on male bone is still partially 
unclear, but a compelling body of evidence suggests that these hormones could play 
a direct role in bone metabolism and maintenance. Of note, observational studies 
demonstrated that patients with androgen insensitivity syndrome, where there is a 
partial or total lack of androgen receptor signaling [24], exhibit reduced BMD 
regardless of estrogen replacement [25, 26]. Nevertheless, testosterone also contrib-
utes to indirect effects on the bone through its aromatase-mediated conversion to 
estrogen [7], as demonstrated by osteopenia or osteoporosis observed among males 
with aromatase deficiency [27, 28] or undergoing selective blockade of aromatase 
activity [29].

Reduction in testosterone levels has been suggested to be responsible for the 
decline in muscle strength and bone mass observed in the aging male [30]. Low free 
testosterone levels are associated with frailty, sarcopenia, and increased falls in 
elderly men [31–33]. However, low bioavailable estradiol levels and high SHBG 
levels were also associated with lower BMD and faster hip BMD loss in a cohort of 
almost 6000 men at least 65 years old. The combination of low bioavailable estra-
diol, low bioavailable testosterone, and high SHBG has been related to faster rates 
of BMD loss [34]. Furthermore, specific polymorphisms of aromatase (CYP19), 
which promotes the conversion of androgens to estrogens in the testis and in periph-
eral tissues, have also been described as a potential cause of low estradiol serum 
levels and increased rates of bone loss in elderly men, irrespective of serum andro-
gen or SHBG levels. Interestingly, the association between aromatase polymor-
phisms and serum estradiol levels was attenuated in the subgroup of overweight 
men (BMI  >  25  kg/m2), suggesting that adipose tissue contributes to circulating 
estrogen levels and mitigates the impact of genetic variations in CYP19 through 
increased activity of the enzyme at peripheral level [35].

Nonetheless, there are a number of other hormonal factors potentially involved 
in skeletal impairment of elderly men. For instance, aging is characterized by 
decreases in the amplitude and frequency of growth hormone (GH) secretion [36], 
with low liver production of insulin-like growth factor-1 (IGF-1). IGF-1 is a key 
determinant of bone mass whose concentrations are positively associated with 
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BMD and inversely related to the fracture risk in older men [37, 38]; indeed, serum 
IGF-1 levels markedly decline with age [39]. Furthermore, serum levels of insulin- 
like growth factor binding protein-2 (IGFBP-2), which is considered as an inhibi-
tory binding protein, increase significantly with age and are predictive of lower 
BMD and increased markers of bone resorption [40]. Given that IGF-1 has been 
shown to inhibit SHBG production by hepatocytes in vitro [41] and serum SHBG 
concentrations are inversely correlated with IGF-1 levels in men [42], age-related 
changes in the GH/IGF system may contribute to impaired bone formation even 
through modulation of sex steroids activity.

In addition to these mechanisms, many other processes could promote age- 
related bone loss, such as reduced physical activity and nutritional/hormonal fac-
tors. Mechanical forces, lean body mass, and muscle strength exert major effects on 
bone mass in men, as demonstrated by the higher BMD observed at both regional 
and systemic level in physically active men [43, 44]. In light of the obvious age- 
related decline in physical activity and muscle mass/strength [45], senile bone loss 
as well as increased risk of falls and fractures in men may be linked, at least in part, 
to decreased mechanical forces on skeletal tissues. According to this, Frost sug-
gested that the loss of muscle mass/strength occurring with aging is likely to be the 
main cause of age-related osteoporosis in both sexes [46].

A crucial role in age-related bone loss is also played by various nutritional fac-
tors, such as inadequate calcium intake and poor vitamin D status. In fact, an ade-
quate dietary calcium intake has been positively related to higher lumbar spine and 
femoral neck BMD in elderly men, potentially resulting in a reduction in the risk of 
osteoporosis during late decades of life [47]. The average level of dietary calcium 
essential for the maintenance of mineral homeostasis in young men is quite low 
(400–600 mg/day), even though there are data suggesting a higher requirement in 
older men [48], thus explaining the frequent alterations in calcium handling 
observed in these individuals [49]. In addition, reduced levels of 25(OH)D 
(25-hydroxyvitamin D < 75 nmol/L) are often observed among elderly for different 
reasons, such as inadequate exposure to ultraviolet (UV) radiation (especially in 
countries with higher latitudes), poor vitamin D dietary intake, chronic kidney dis-
ease, etc. [50]. Hypovitaminosis D further contributes to age-related bone loss and 
fall/fracture risk through various mechanisms, including impairment in calcium/
phosphate homeostasis, increase in serum PTH levels (secondary hyperparathyroid-
ism), and reduced muscle mass/strength [51, 52]. Indeed, lower 25(OH)D levels 
have been associated with lower BMD values, bone loss (particularly evident with 
25-hydroxyvitamin D levels below 50 nmol/L), and higher fracture risk [53, 54].

Finally, it has also been hypothesized that increase in oxidative stress could rep-
resent an important mechanism underlying the age-related bone loss. The levels of 
reactive oxygen species (ROS) increase in the bone with age [55]. In turn, ROS are 
able to promote osteoblast apoptosis and osteoclast differentiation, leading to 
reduced bone formation and increased bone resorption [56]. Sex steroid deficiency 
may also accelerate the detrimental effects of aging on the bone by reducing anti-
oxidant defenses [57]. Accordingly, antioxidants have been shown to prevent bone 
loss caused by gonadectomy in mice [57, 58].
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5.4  Idiopathic Osteoporosis

Idiopathic osteoporosis in men is defined as the onset of osteoporosis and fragility 
fractures occurring before the age of 60 years, when the aforementioned age-related 
bone changes are not usually observed. However, a remarkable heterogeneity of 
causes may explain the pathogenesis of the disease. Some cases could represent 
defects in peak bone mass acquisition due to environmental or genetic factors [59]. 
Although several genes have been suggested to explain the genetic component of 
idiopathic osteoporosis (i.e., IGF-1, LRP5, CYP19) [60–62], future studies are 
needed to better understand the association between genetic factors and idiopathic 
osteoporosis in men. Up to 10% of men suffering from idiopathic osteoporosis dis-
plays hypercalciuria with or without increased bone resorption [63]. Moreover, 
reduced intestinal calcium absorption has been reported with lowered levels of 
1,25(OH)2D (1,25-dihydroxyvitamin D) [64].

Men with idiopathic osteoporosis may have an osteoblast dysfunction that leads 
to decreased osteocalcin production and increased production of factors stimulating 
osteoclast activation, such as macrophage colony-stimulating factor (M-CSF). This 
results in a catabolic cellular balance responsible for negative bone turnover [65]. 
Even if the specific causes of such cellular dysfunction needs further evaluation, 
different explanations can be proposed. For example, these patients could have 
lower serum IGF-1 concentrations despite a normal GH secretory capacity [66, 67], 
which may reduce bone formation. The reduction in IGF-1 levels appears to be 
related to a simple sequence repeat in the IGF-1 gene, which is present at an 
increased frequency among these men [60]. As observed during aging, reduced 
IGF-1 levels in such patients could simultaneously contribute to impaired bone for-
mation and increase in SHBG levels, the latter responsible for a decreased avail-
ability of sex steroids [62, 68].

Abnormalities in cortisol rhythm have also been considered as a potential cause 
of bone loss in idiopathic osteoporosis [69]. Furthermore, low circulating total 
estradiol levels have been observed despite normal testosterone levels, consistent 
with possible aromatase defective activity in at least a subset of these patients [70, 
71]. Accordingly, low estrogen levels have been related to deficits in bone formation 
and bone mass [72].

In conclusion, strong similarities are evident between the hormonal abnormali-
ties frequently observed in younger men affected by idiopathic osteoporosis and 
those underlying the age-related bone loss, thus warranting further investigations in 
this field [13].

5.5  Secondary Osteoporosis

A large number of factors can induce osteoporosis, including several diseases and 
drugs (see Table 5.1). Secondary causes account for almost 40% of cases of male 
osteoporosis [49]. The three main causes of secondary osteoporosis in men are rep-
resented by glucocorticoid excess (especially during long-term glucocorticoid 
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therapy), hypogonadism, and alcohol abuse [13]. Since the removal of the specific 
cause could be curative in such cases, primary osteoporosis should always be distin-
guished from secondary forms. Herein we will only focus on the most typical and 
frequent forms of secondary osteoporosis in men, even though the other secondary 
causes listed in Table 5.1 should always be considered and excluded in the appropri-
ate clinical setting.

5.5.1  Glucocorticoid-Induced Osteoporosis

Chronic exposure to glucocorticoids, either due to exogenous use or increased 
endogenous production (Cushing’s syndrome), is the most common cause of sec-
ondary osteoporosis in men [13]. Notably, men are more likely to have inflamma-
tory bowel disease as well as chronic obstructive pulmonary disease and organ 
transplantations as reasons for use of oral glucocorticoids [73].

The pathophysiology of glucocorticoid-induced osteoporosis is complex and 
not still completely understood. It is well-known that glucocorticoids directly pro-
mote osteoclast-mediated bone resorption and reduce bone formation by inducing 
osteoblast and osteocyte apoptosis as well as by inhibiting osteoblast proliferation 
and differentiation. However, the detrimental actions of excessive levels of gluco-
corticoids on the skeleton may be also mediated by their indirect effects on bone 
metabolism, including reduction in muscle mass and strength, and secondary 
hyperparathyroidism due to impaired intestinal calcium absorption and/or 
increased renal calcium excretion [74, 75]. In addition, exogenous glucocorti-
coids strongly reduce testosterone levels in men by different potential mecha-
nisms not still fully defined, but which may include inhibition of gonadotropin 
secretion and direct antagonism of testicular steroidogenesis [74, 76, 77]. As 
such, glucocorticoid- induced hypogonadism could significantly contribute to 
bone loss in men undergoing long-term glucocorticoid therapy and should be 
early recognized by the clinicians as an important cause of glucocorticoid-medi-
ated osteoporosis.

Glucocorticoid-induced bone loss is an early event under long-term glucocorti-
coid therapy, more evident during the first 6–12 months of treatment. Following this 
period, there is a reduction in osteoclast-mediated bone resorption although inhibi-
tion of bone formation is maintained, with a slower but constant bone loss that also 
affects the cortical bone. The incidence of fractures is mainly related to dose and 
duration of glucocorticoid therapy: in fact, fragility fractures occur in 30–50% of 
patients during the first 5 years of therapy, especially at sites with predominant tra-
becular bone (spine, rib, and proximal femur). Moreover, fracture risk is increased 
in the presence of other risk factors (i.e., advanced age, history of previous frac-
tures), is much higher as compared to that expected based on BMD values, and 
rapidly decreases after treatment discontinuation [74, 78]. This suggests that an 
appropriate prevention of glucocorticoid-mediated bone loss should be started as 
early as possible, irrespective of BMD values, in order to avoid the onset of irrevers-
ible alterations of bone microarchitecture.
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5.5.2  Male Hypogonadism

Sex steroids are major regulators of bone metabolism and both estrogens and andro-
gens are crucial for the maintenance of male bone health, through their action on 
osteoblast lineage cells. Furthermore, androgens exert additional beneficial effects 
on extraskeletal parameters, such as muscle mass and strength as well as propensity 
to fall [7]. Hence, hypogonadism in men represents a prominent cause of bone loss 
and secondary osteoporosis throughout life [13, 79–81].

Bone mass accumulation in adolescence is strictly related to gonadal maturation 
during puberty [82]. In fact, disorders of puberty can impair pubertal bone expan-
sion, leading to failure to acquire peak bone mass and affecting bone health during 
adulthood [83]. In particular, men who experienced an abnormal puberty (i.e., 
Klinefelter and Kallmann syndromes) show decreased bone mass [84]. Moreover, 
sex steroids are essential for the maintenance of bone mass in adulthood. Therefore, 
the onset of acquired hypogonadism in mature men is associated with low BMD and 
osteoporosis [79]. Reduced bone mass and fragility fractures are observed in many 
forms of hypogonadism, such as anorexia, hyperprolactinemia, and hemochromato-
sis [85, 86]. In addition, reduction in gonadal function secondary to other conditions 
(i.e., renal insufficiency, glucocorticoid excess) is suspected to contribute to the 
development of bone loss [74, 87].

Finally, an increasing number of cases of hypogonadism have been described 
among men undergoing androgen deprivation therapy (ADT) based on GnRH ago-
nists and/or antiandrogens for prostate cancer [88]. ADT leads to an accelerated 
bone loss, along with a rapid increase in fracture risk [89]. As a result, BMD is more 
frequently low in these patients, and the onset of osteoporosis at an accelerated rate 
can easily occur [90]. Bisphosphonates and monoclonal antibody denosumab repre-
sent the first-line drugs for the management of bone health in such condition. These 
drugs should be started at initiation of ADT and reasonably continued throughout 
the duration of the treatment [14]. Interestingly, biannual administration of deno-
sumab has led to an increase in BMD at the lumbar spine, along with a reduced 
incidence of new vertebral fractures among men receiving ADT for non-metastatic 
prostate cancer [91]. A further potential benefit deriving from the use of denosumab 
in men with non-metastatic prostate cancer consists in the prevention of metastatic 
bone disease. In fact, it is well-known that prostate malignant cells have a peculiar 
affinity for the bone, and the bone marrow may act as a reservoir for cancer cells; in 
particular, the hematopoietic stem cell (HSC) niche represents the site for dormant 
malignant cells that result in relapse many years after the diagnosis [92]. Tumor 
cells are able to produce a large variety of cytokines and growth factors that can 
increase the production of receptor activator of nuclear factor kappa B ligand 
(RANKL) by osteoblast lineage cells. This will cause activation of osteoclasts and 
impairment of the complex balance between new bone formation and bone resorp-
tion, resulting in a vicious cycle characterized by multiple interactions between 
cancer cells, osteoclasts, osteoblasts, and bone microenvironment that may enhance 
tumor growth and promote local and systemic invasion [93]. Moreover, monthly 
high-dose denosumab administration has recently been shown to significantly 
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increase bone metastasis-free survival and delay time to symptomatic first bone 
metastases in men with non-metastatic castration-resistant prostate cancer at high 
risk of bone metastasis [94].

5.5.3  Alcohol Abuse, Celiac Disease, and Other Conditions 
Associated with Male Osteoporosis

Alcohol abuse is a major cause of secondary osteoporosis in men [13], representing 
a significant determinant of bone loss, as demonstrated in longitudinal studies [95]. 
The detrimental skeletal consequences of chronic alcohol abuse seem to be multi-
factorial. In addition to the well-known alcohol-related gonadal and nutritional 
changes (i.e., poor calcium and vitamin D status, reduced serum free testosterone 
concentrations), which negatively affect bone health [96–98], in vivo and in vitro 
studies indicate that alcohol can exert a direct effect on the bone by suppressing 
osteoblast activity and bone formation [99, 100].

Gastrointestinal diseases represent another extremely common cause of second-
ary osteoporosis. In particular, celiac disease is the paradigm of malabsorption syn-
drome, which frequently leads to important extraintestinal clinical manifestations, 
including impairment in bone mineralization, osteoporosis, and increased fracture 
risk. Notably, fracture risk appears to be higher in symptomatic cases and in male 
patients [101]. The pathogenesis of bone damage in celiac disease is likely to be 
multifactorial, involving both local and systemic mechanisms. First, atrophy of 
intestinal mucosal is responsible for altered calcium absorption; as a consequence, 
to avoid hypocalcemia, PTH levels increase substantially, thus leading to a high 
osteoclast-mediated bone resorption which in turn impairs bone microarchitecture, 
especially at trabecular sites. Interestingly, hypersecretion of pro-inflammatory 
cytokines (i.e., tumor necrosis factor-alpha, interleukin-1, interleukin-6) signifi-
cantly contributes to increased osteoclast activation [102]. Last, there are evidences 
for a direct role of IgA-type circulating autoantibodies in the pathogenesis of celiac 
disease-associated bone complications (osteopenia, osteoporosis). Specifically, 
these antibodies recognize bone tissue transglutaminase, which seems to be a cru-
cial enzyme even in bone mineralization processes [103].

Finally, a variety of other pathological conditions or drugs have been associated 
with bone loss and osteoporosis in men, such as liver and kidney disease, anticon-
vulsant use, hyperthyroidism, immobilization, etc. (see Table 5.1) [14]. However, 
there is poor evidence to conclude that the skeletal abnormalities caused by such 
conditions affect men any differently (qualitatively or quantitatively) than women.

5.6  Conclusions

Osteoporosis in men is not a rare condition, representing a remarkable clinical issue 
and a public health burden, especially with the growing aging of the population. 
Although male osteoporosis is a heterogeneous clinical entity, declining sex 
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steroids levels (both testosterone and estradiol) appear to play a pivotal role in pro-
moting age-related bone loss. Furthermore, other hormonal and nutritional changes 
occurring with aging (i.e., increases in serum SHBG and PTH levels, decreased 
IGF-1 levels, reduced calcium intake, vitamin D deficiency) may also have an addi-
tional role in the pathogenesis of the disease. Several secondary causes of osteopo-
rosis also significantly contribute to bone loss and fragility fractures in men, with 
the most frequent represented by long-term glucocorticoid therapy, hypogonadism, 
and alcohol abuse. Of note, a growing reason for concern is the increasing number 
of cases of osteoporosis observed among men undergoing androgen deprivation 
therapy for prostate cancer.

Therefore, given the silent nature of osteoporosis, often undiagnosed until a frac-
ture occurs, awareness regarding the disease and its different etiologies is critical to 
prevent morbidity and mortality and to maintain quality of men’s lives.
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6.1  Introduction

The pivotal role exerted by estrogens on several physiological functions in men is a 
relatively new issue since traditionally the physiological effects of circulating sex 
steroids in the male had been all ascribed to androgens, particularly testosterone 
[1–3]. At the end of the 1990s, the description of the first cases of men with congeni-
tal estrogen deficiency—i.e., estrogen resistance [4] and aromatase deficiency [5, 
6]—pointed out the importance of estrogens for the male skeleton and other physi-
ological aspects. These rare diseases, in fact, demonstrated that a condition of severe 
estrogen deficiency is constantly associated with the lack of skeletal maturation and 
both severe bone loss and osteopenia/osteoporosis in adult men [7, 8]. Starting from 
this evidence, several other actions of estrogens in men have been progressively 
disclosed and better characterized leading to fix the concept that estrogens play an 
important role on some male physiological processes [9–11] even though their con-
centrations are much more lower than in women [12]. In men estrogens derive from 
androgens after their aromatization through the activity of the CYP19A1 enzyme, 
named aromatase, which is expressed in many tissues in men and catalyzes the bio-
chemical reaction of aromatization of the A ring of androgens [2, 13, 14] (Fig. 6.1). 
Estrogens in men exert their action through the binding to the estrogen receptor 
(ER). Nuclear ER-alpha and ER-beta and the transmembrane G protein-coupled 
receptor GPR30 (GPER30) are expressed in human male tissue. The nuclear recep-
tors account for genomic effects of estrogens, while the GPR30 transmembrane 
receptor accounts for non-genomic, rapid effects of estrogens [2, 13, 14].
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6.2  Mechanisms of Estrogen Actions on Bone

In men aromatase is expressed in fibroblasts as well as in other cells within the 
bone (i.e., osteoblasts and osteoclasts) [13, 15]; furthermore, other tissues such 
as the adipose tissue and the bone marrow, which are located near the bone tis-
sue, express aromatase and are able to locally produce estrogens [14]. 
Circulating estrogens as well as locally produced estrogens exert their effect on 
bone through the binding to the ERs in bone cells. ERs are widely expressed in 
bone cells [16]. In particular ER-alpha and ER-beta are both expressed in 
osteoblasts, osteoclasts, and osteocytes [16]; furthermore evidence suggests 
that also the GPR30 is expressed in the bone [17, 18]. Apart from direct effects 
of estrogens on bone mediated by ERs (direct effects), estrogens are also able 
to modulate the activity of other hormones involved in bone physiology (indi-
rect effects); thus they act on bone through a dual way by modulating bone cells 
and a complex hormonal network, including other hormones and substances 
able to induce changes within the bone tissue.

6.2.1  Direct Action of Estrogen on Bone

The direct action of estrogens on bone is mainly due to the activation of the 
biochemical pathway led by ER-alpha [17–21]. In particular, the ligand between 
estrogens and the ERs leads to various biological effects depending on the dif-
ferent bone cell line [16]. Estrogens are able to support and promote osteocyte 
vitality, and estrogen deficiency leads to apoptosis of osteocytes [22]. 
Furthermore, estrogens positively modulate the bone response to mechanical 
strain through their binding to the ER-alpha, thus supporting a complex interac-
tion among osteocytes and mechanical loading and bone. This complex interac-
tion involves the receptor activator of nuclear factor kappa-B (RANK) and its 
ligand (RANKL) [23], a pathway on which estrogens act by facilitating the 
anabolic bone response to mechanical load [24].

The binding of estrogens to ERs leads to the activation of different pathways also 
in osteoclasts resulting in (i) the induction of apoptosis [25, 26] and (ii) the negative 
modulation of the signaling of the receptor activator of nuclear factor kappa-B 
(RANK) ligand (RANKL) and the consequent inhibition of osteoclast differentia-
tion [16, 27, 28]. Overall estrogen action on osteoclasts results in the decrease of 
bone resorption mainly due to the decrease of the number of osteoclasts recruited 
and of the modulation of cytokines toward an anti-osteoclastic activity [29]. Vice 
versa, estrogens act on osteoblasts by promoting/maintaining bone formation. 
Accordingly, estrogens lead to an anti-apoptotic effect on osteoblasts [30] and pro-
mote osteoblast adhesion and differentiation [31].

In summary, estrogens act on bone remodeling by promoting bone formation and 
inhibiting bone resorption, while estrogen deficiency leads to an imbalance of bone 
remodeling in favor of a net prevalence of bone loss in men [29].
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6.2.2  Indirect Actions of Estrogens on Bone: 
The Endocrine Network

6.2.2.1  Estrogens and GH/IGF-1 Axis
Sex steroids stimulate the pituitary leading to an increase of growth hormone (GH) 
secretion [32, 33]. The increase of gonadal steroids at puberty in boys is able to 
modify also the secretory pattern of GH. At puberty, in fact, the rise in serum testos-
terone results in a positive enhancement on the secretion of GH [33–35]. As a con-
sequence, the increased GH secretion leads to very high levels of circulating insulin 
growth factor-1 (IGF-1) [34–36] when the amount of serum IGF-1 in the serum is 
similar to that of acromegalic patients [37]. It is now textbook knowledge that the 
rise of GH secretion is mainly due to a direct effect of estrogens rather than testos-
terone in males [32, 38, 39] and that serum estrogens account for the impressive 
increase of IGF-1 at the time of puberty in boys [37, 39]. Besides, the crosstalk 
between gonadal steroids and GH/IGF-1 axis at puberty is more complex and seems 
to be bidirectional in boys, with GH exerting also a positive modulation of repro-
ductive functions [37].

The concomitant increase of testosterone, estradiol, GH, and IGF-1 at puberty 
represents a peculiar condition in terms of hormonal milieu for bone anabolism. 
Accordingly, all these hormones concur to the achievement of optimal peak of bone 
mass during puberty [17, 21]. Sex steroids and GH/IGF-1 contribute to the progres-
sion of bone maturation and to the massive increase of bone mineralization in boys 
at puberty [35]. Among gonadal steroids, estrogens together with GH and IGF-1 
play a major role on bone by acting in a synergic way, all promoting both bone 
mineralization and maturation [8, 19, 37, 40–42].

In men with congenital estrogen deficiency, the lack of circulating estrogens leads 
to a condition of GH deficiency [43, 44], and both estrogen and GH deficiency result in 
the lack of pubertal spurt and in suboptimal peak of bone mass [7, 8, 19, 40, 45, 46].

6.2.2.2  Estrogens and Calcium Metabolism
Estrogens may increase calcium absorption in the gut not only in women but also in 
boys and men [47]. Both testosterone and estradiol seem also to reduce bone sensi-
tivity to parathyroid hormone (PTH), thus protecting the bone from the PTH-related 
bone resorption [48].

6.3  Pathophysiology of Estrogen Deficiency on Human 
Male Bone

6.3.1  Congenital Estrogen Deficiency as a Cause 
of Osteoporosis in Men

Severe estrogen deficiency due to congenital aromatase deficiency and/or mutations 
of the gene encoding for the ER-alpha directly cause bone loss and finally lead to 
osteopenia or osteoporosis in these patients [45]. An osteoporotic lumbar fracture 
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has been described in a young man with aromatase deficiency, thus suggesting that 
these patients have an increased risk of fractures [49]. The mechanism through 
which severe estrogen deficiency leads to the reduction of bone mineral density 
(BMD) is dual. Firstly, in these patients, estrogen deficiency occurs early during the 
first pubertal stages due to the inability of the aromatase enzyme to convert andro-
gens into estrogens [40]. Early estrogen deficiency blocks bone maturation includ-
ing bone mass accrual with the consequent failure in achieving the peak of bone 
mass [7, 8, 19, 40, 42]. Thus, the adult skeleton enters adult life with a lower than 
normal bone mass, and this gap cannot be filled due to the persistence of estrogen 
deficiency during adulthood [5, 6]. Secondly, estrogen deficiency interferes with the 
well-known role of estrogen on the maintenance of bone mass in adulthood [42, 46]. 
BMD increases in a dose-dependent fashion in adult men with aromatase deficiency 
when they are treated with increasing doses of exogenous estradiol [45, 46], further 
confirming that estrogen deficiency is the cause of bone loss in these patients.

All the abovementioned consequences of estrogen deficiency on BMD have been 
demonstrated both in rare models of estrogen deficiency and in study population 
(see below for details) [42, 50].

6.3.2  Estrogens and the Achievement of Peak Bone Mass

Peak bone mass is reached soon after the final phases of pubertal development and 
takes place on average around the age of 20–22 years in men [51]. The main factors 
involved in the determination of peak bone mass are nutrients, health status, vitamin 
D, physical exercise, and the rise of sex steroids at puberty [51, 52]. Sex steroids are 
known to be extremely important for bone mass accrual at puberty since longtime 
[53], but only recently the main role of estrogens in both sexes has been clarified [7, 
8, 19, 42]. Since the end of the 1990s, the current endocrinological knowledge was 
based on the assumption that estrogens led to bone accrual in females [54, 55] while 
androgens in males [56]. The observation that men with congenital estrogen defi-
ciency fail in the achievement of peak bone mass [4–6, 40] provided evidence of a 
major role of estrogens in this physiological process also in men [7, 8, 19, 57]. 
Outside the context of these rare diseases of complete congenital estrogen defi-
ciency, the role of estrogens on the achievement of peak of bone mass has been 
unequivocally demonstrated in normal pubertal boys [58]. As a matter of course, it 
is well-known that abnormal peak of bone mass is a strong risk factor for the devel-
opment of osteoporosis later in life [59]. The finding of a direct correlation between 
serum estradiol and BMD in boys [60–62] together with the association of some 
polymorphisms of ER-alpha with increased peak bone mass [63] strengthened the 
evidence of a direct major role of estradiol on the achievement of peak bone mass 
[17, 52]. Even in longitudinal studies, the annual percent change in BMD is directly 
correlated to serum total and bioavailable estradiol but not with serum testosterone 
in young men aged 22–39 years [64]. In particular, estrogens promote bone accrual 
at the level of cortical bone, but have no effect on the endosteal circumference, the 
latter being mainly under the control of androgens [17, 40, 61].
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Data coming from male patients with congenital hypogonadotropic hypogonad-
ism (CHH) show that testosterone replacement treatment (TRT) fails in normalizing 
BMD that remains in the osteopenic/osteoporotic range suggesting that failure in 
obtaining optimal peak of bone mass at puberty avoids restoration of normal BMD 
after TRT in CHH [65]. Furthermore, female patients with complete androgen 
insensitivity have a peak of bone mass and bone size that is only slightly reduced 
compared to control men, showing values that are in between compared to those of 
male and female subjects [66]. These data suggest that the peak of bone mass is 
under the main control of estrogens in boys and that androgens are also required for 
optimal peak of bone mass and that both androgens and estrogens are required at the 
right time during puberty, remaining partially ineffective if administered in 
adulthood.

6.3.3  Estrogens and Bone Mass Maintenance

Once the peak bone mass has been achieved, the bone mass remains the same for 
several years in men and starts to slowly decline in concomitance with advancing 
age after the years of 50, the highest rate of bone loss being registered after the age 
of 70 [17, 50, 51]. The decline in serum testosterone progressively increases with 
aging, and serum estradiol declines in parallel [12]. Changes in sex steroids lead to 
an unbalance between rates of bone formation and bone formation negatively affect-
ing bone maintenance. Accordingly, the hormonal control of BMD maintenance in 
adult to older men is mainly under the guide of estrogens and to a lesser extent of 
androgens [17, 42]. Lesson from rare cases of men with aromatase deficiency indi-
cates that the lowering of the dose of exogenous estradiol constantly results in a 
decrease of both serum estradiol and BMD in adult men [46]. Both cross-sectional 
[67–70] and longitudinal studies have demonstrated that serum estradiol is directly 
related to BMD in men and that its decline is responsible for bone loss in older men 
[17, 42, 50]. In particular, cross-sectional studies performed on large cohort of aging 
men have investigated the relationships among sex steroids (both testosterone and 
estradiol) and BMD [12]. The results of these studies are almost all in line with the 
finding of a direct correlation between serum estradiol and BMD [12, 71], such as 
in studies like the European Male Aging Study (EMAS) [72] and the Rancho 
Bernardo Study (RBS) [73, 74] or the Osteoporotic Fractures in Men Study (MrOS) 
in which BMD was positively and significantly correlated with bioavailable serum 
estradiol [75]. Besides, free serum estradiol was directly related to BMD measured 
at different sites in the MrOS and RBS [73, 75] and to calcaneus BMD in the EMAS 
[72]. The methodological approach of most of these studies is of great relevance 
since serum estradiol was measured by the gold standard liquid chromatography- 
tandem mass spectrometry (LC-MS/MS) as in the case of the MrOS [76] and the 
EMAS [77, 78]. Finally, a direct role of serum estradiol on fracture risk has been 
demonstrated in men by the outcomes of the MrOS [71].

All these studies have confirmed pioneer studies which pointed out on the rela-
tionships between estradiol and bone in men and that were performed in parallel 
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with the first descriptions of men with congenital aromatase deficiency [7, 19, 42]. 
In these studies, preliminary data on the role of estrogens on bone in men were 
provided. Serum E2 especially the bioavailable fraction resulted directly related to 
BMD in men by both cross-sectional [73, 79] and longitudinal [64, 80] studies. 
Several studies investigated the impact of the genotype of ER and of the gene encod-
ing for the aromatase enzyme on BMD. Overall these studies demonstrated that 
polymorphisms of the ER-alpha gene are associated with bone loss in men [69, 81]. 
Similarly, other studies investigated the role of polymorphisms of the gene encoding 
for the aromatase enzyme on male bone demonstrating an association between 
some polymorphisms and bone loss [82, 83].

The most important limit of the studies performed at the end of the 1990s is that 
serum E2 was assayed with immunometric assays in clinical studies and that genetic 
studies were performed by means of traditional gene sequencing. These method-
ological flaws have been now overcome by the use of LC-MS/MS and next- 
generation sequencing, and the results of all these seminal studies have been largely 
replicated by using LC-MS/MS for the measurement of sex steroids (see above the 
results of large cohort studies for details) and next-generation sequencing for the 
genetic studies (see below for genome-wide association studies).

6.4  Estrogen Deficiency and Osteoporosis in Men

Estrogen deficiency in vivo is constantly associated with bone loss, which is the 
result of increased bone resorption and decreased bone formation. In men estrogen 
deficiency may occur as a consequence of congenital diseases resulting in a reduced 
production of estrogens (Fig. 6.2) or due to iatrogenic treatments blocking estrogen 
synthesis; in all these cases, serum testosterone is unaffected or may be slightly 
increased (Table 6.1). Furthermore, a condition of relative estrogen deficiency may 
develop in men with hypogonadism (Table 6.1) as a consequence of reduced levels 
of testosterone (the precursor of estradiol) depending on the efficiency (expression 
and activity) of the aromatase enzyme; in all these cases, relative estrogen defi-
ciency is constantly associated with testosterone deficiency (Table  6.1). The 
decrease of serum estradiol as well as the severity of estrogen deficiency in men is 
related to several factors including hypogonadism, obesity, and individual genetic 
differences influencing the expression and activity of the aromatase enzyme 
(Fig. 6.2) [82–86]. In male hypogonadism the reduction of serum testosterone leads 
to a concomitant decrease of serum estradiol due to the reduction of androgen pre-
cursor to be aromatized (Fig. 6.1). Accordingly, Finkelstein et al. demonstrated by 
an elegant study design that the reduction of testosterone below 200 ng/dL is con-
stantly associated with a corresponding decrease of serum estradiol below 10 pg/
mL and with a significant change of bone turnover markers and a decrease of BMD 
[10]. Thus, relative estrogen deficiency in hypogonadal men is responsible to a great 
extent for bone loss, testosterone deficiency having a minor but contributing role to 
further decrease of bone mineral density [42]. The degree of relative estrogen defi-
ciency depends on several factors. The amount of adipose tissue may 
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Fig. 6.2 Individual factors involved in the determination of the amount of circulating estro-
gens in men

Table 6.1 Cause of estrogen deficiency in men

Disease
Grade of 
ED Type of estrogen deficiency

Acquired male hypogonadism in 
childhood

Mild to 
severe

Relative estrogen deficiencya

Acquired male hypogonadism in 
adulthood

Mild to 
severe

Relative estrogen deficiencya

Adult-onset male hypogonadism Mild Relative estrogen deficiencya

Congenital male hypogonadism
    Isolated hypogonadotropic 
hypogonadism
    17 alpha-hydroxylase 
deficiency
    17,20-lyase deficiency
    P450 oxydoreductase 
deficiency

Mild to 
severe

Relative estrogen deficiencya

Congenital male estrogen 
deficiency
    Aromatase deficiency
    Estrogen resistance

Severe Estrogen deficiency in the presence of normal 
(or high) serum testosterone

Iatrogenic male hypogonadism
    Androgen deprivation therapy
    Orchiectomy

Severe Relative estrogen deficiencya

Iatrogenic male estrogen 
deficiency
    Aromatase inhibitors

Mild to 
severe

Estrogen deficiency in the presence of normal 
(or high) serum testosterone

aDepending on the degree of hypogonadism (very low, low, or low to normal serum testosterone 
levels) and on the aromatase activity in terms of conversion rate of serum testosterone into estradiol
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counterbalance the reduction of estradiol in serum, thanks to the increase of aroma-
tase activity, which at the end ensures a high rate of androgen transformation into 
estrogens even in the presence of low serum testosterone notwithstanding hypogo-
nadism (Fig. 6.2); this results in bone mass preservation and in prevention of bone 
loss [84]. Recently, several genetic variants of the aromatase enzyme resulted to be 
directly related to the amount of circulating estradiol (Fig. 6.2) and to BMD in a 
genome-wide association study including a large number of men (n 11,097) through 
Mendelian randomization analysis [87]. This study demonstrated that every geneti-
cally determined 1 pg/mL of estradiol results in a BMD increase of 0.048 standard 
deviation at lumbar spine [87]. The same group of research established that serum 
estradiol, but not testosterone, has a causal effect on bone fractures by studying 
175,583 men using a Mendelian randomization approach [88].

In men estrogens lead to bone loss especially when they are very low in serum, a 
mechanism similar to that operating in women at the time of menopause [12]. Even 
though serum estradiol declines more slowly in aging men compared to women and 
does not reach very low values as in postmenopausal women [12], the amount of 
serum estradiol in men with hypogonadism or in older men may reach low levels 
below 20 pg/mL [89]. Evidence support a threshold for serum estradiol below which 
the loss of BMD becomes significant leading to an increased risk of osteoporosis 
and osteoporotic fractures. By using different methodological approaches, several 
studies pointed out a threshold which is comprised between 15 and 20 pg/mL below 
which BMD is severely impaired in men [10, 29, 42, 64, 89–95].

6.5  Unresolved Issues

At present, several cases of severe aromatase deficiency have been described in men 
[45, 49], but no data are available in men on the phenotype of partial aromatase 
deficiency, a clinical condition that has been already described in women [45, 96]. 
Theoretically, men with partial aromatase deficiency should present with a mild 
phenotype including detectable but lower than normal serum estradiol and osteope-
nia or osteoporosis [45, 86] (Fig. 6.2).

With the exception of rare cases of men with aromatase deficiency [45, 46], there 
are no data coming from interventional studies using estrogens in men with osteo-
porosis and concomitant relative estrogen deficiency. Furthermore, evidence about 
a possible role of selective estrogen receptor modulators (SERMs) in men needs to 
be investigated. At present, few data suggest that raloxifene have no effect on BMD 
in men [97].

6.6  Clinical Implications

Data coming from research setting have provided evidence about the major role 
estrogens play on the pathophysiology of bone in men. However, all these data have 
little impact in the clinical setting due to the fact that the measurement of serum 
estradiol by commercially available kits in clinical laboratories is inaccurate [86].
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At present, the approach to male patients with osteopenia or osteoporosis is 
mainly based on the measurement of serum testosterone in order to rule in/rule out 
male hypogonadism. This empirical approach allows identifying all patients with 
low serum testosterone who may benefit from testosterone replacement treatment 
aiming to restore normal serum testosterone and normal serum estradiol. This 
approach, however, does not consider the possibility of tailoring the treatment using 
serum estradiol as a possible therapeutic target of testosterone replacement treat-
ment thanks to the monitoring of serum estradiol changes from baseline. In clinical 
practice we know that there are many conditions for which the amount of serum 
testosterone and estradiol is not predictable. Accordingly, hypogonadal men having 
similar values of serum testosterone may differ in terms of serum estradiol depend-
ing on several factors (e.g., aromatase activity, aromatase expression, the percentage 
amount of tissues able to convert testosterone into estradiol) [50, 85, 89] (Fig. 6.3). 
On the other hand, men with normal serum testosterone may be estrogen-deficient 
if aromatization and the conversion rate of testosterone are downgraded [86]. 
Theoretically, the measurement of serum estradiol is needed to establish if a condi-
tion of relative estrogen deficiency (that is based on the finding of serum estradiol 
below the lowest limit of the normal range) is present [42, 86] (Fig. 6.3), but this 
diagnosis in men remains still challenging since the value of serum estradiol mea-
sured by means of commercially available immunometric kits is not accurate [3]. At 
present the measurement of serum estradiol is indicated to confirm the diagnosis in 
case of severe, congenital estrogen deficiency (i.e., aromatase deficiency and estro-
gen resistance) [45] (Table 6.1). Conversely, the measurement of serum estradiol is 
not recommended in the diagnostic work-up of men with osteoporosis [98, 99] and 

Hypogonadal man with documented
serum testosterone lower than normal or men with osteoporosis

Immunometric methods
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Available LC-MS/MS in the
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Measurement of serum E2
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Low serum E2 RULE IN
ESTROGEN
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TARGET OF TRT

Normal serum E2
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Do not
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Fig. 6.3 Usefulness of the determination of serum estradiol in the work-up of male osteoporosis
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of men with hypogonadism [98, 100, 101] as well as in the routine, clinical assess-
ment of the male patient [86]. In the clinical setting, the measurement of estrogens 
is performed in clinical laboratories that usually use immunometric assays for the 
determination of circulating estrogens [86]. The immunometric assays provide 
measurements that are not accurate and are not reproducible when the amount of 
estrogens is low as it is in the normal male range [102, 103]. The immunometric 
assays are overall not reliable since they are less accurate and less reproducible than 
LC-MS/MS, which represents the gold standard method for the measurement of 
serum estrogens [102, 103]. Accordingly, the use of LC-MS/MS allows measuring 
serum estrogens with a high degree of accuracy even when they are very low as it 
happens in men [104, 105]. Thus, in real life, serum estradiol is not routinely 
assessed in men [86]. In the presence of accurate methods for the measurement of 
serum estradiol, however, the determination of circulating estrogens may be of help 
for the diagnosis of relative estrogen deficiency and for establishing if testosterone 
treatment is able to restore also normal serum estradiol [86] (Fig. 6.3). Accordingly, 
the dosage of testosterone needed to restore normal serum estradiol in hypogonadal 
men under TRT may vary individually due to several factors, and the normalization 
of serum testosterone not necessarily implies the achievement of normal values of 
serum estradiol (Fig. 6.2). Recently, Aguirre et al. pointed out the importance of 
targeting TRT considering also serum estradiol measured by LC-MS/MS as a target 
in men with hypogonadism since the response to TRT in terms of conversion to 
estradiol may change according to patient’s genetic profile of aromatase, as we had 
previously hypothesized [50]. At present, a serum estradiol above 25 pg/mL may be 
considered protective for bone loss in men [29, 42, 86], and the more serum estra-
diol is higher within the normal range for men, the more bone mass maintenance is 
ensured [84]. Furthermore, the increasing number of laboratories that use the 
LC-MS/MS also for clinical purposes together with the advancement in the knowl-
edge of normative values in the healthy men obtained by LC-MS/MS [104, 106] is 
changing the approach to the measurement of sex steroids in clinical laboratories. 
Since LC-MS/MS is cost-effective and time-consuming especially in clinical labo-
ratories that manage a great number of sex steroid measurements per day, LC-MS/
MS will probably replace immunometric assays in the near future [106]. At present, 
the measurement of serum estradiol must be included in the clinical work-up of the 
man with osteoporosis, especially when also hypogonadism is documented in all 
clinical setting where the measurement of gonadal steroids is obtained by means of 
LC-MS/MS (Fig. 6.3). The availability of accurate measurement of serum estradiol 
is of help for ruling in/ruling out the diagnosis of relative estrogen deficiency, for 
stratifying the risk of osteoporosis, and for monitoring the effects of TRT on serum 
estradiol, bearing in mind that a serum estradiol above 25 pg/mL exerts a protective 
role on bone [42, 50, 84–86] (Fig. 6.3).

In summary, the assessment of serum estradiol is recommended in clinical set-
tings that are able to provide this measurement through LC-MS/MS; the goals of 
serum estradiol measurements are the diagnosis of the presence of relative estrogen 
deficiency other than low testosterone and the use of serum estradiol as a reliable 
target of testosterone replacement treatment (Fig. 6.3).
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6.7  Conclusions

Estrogens are key hormones in the pathophysiology of bone in men. Estrogen defi-
ciency is a clinical condition leading to bone loss and the development of osteopo-
rosis, but is rarely considered in clinical practice as a consequence of imprecise 
methods for the measurement of serum estradiol within the normal male range. The 
advent of mass spectrometry for research investigation and its increasing use in the 
clinic will probably allow the endocrinologist to better define and treat all clinical 
conditions of estrogen deficiency in men in the next future.
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Vitamin D and Male Osteoporosis

Andrea Di Nisio and Carlo Foresta

7.1  Introduction

Vitamin D is a lipophilic hormone playing a key role in bone metabolism and cal-
cium homeostasis [1], mainly acting by binding the vitamin D receptor (VDR), 
whose distribution involves almost all human tissues and cells. Interestingly, recent 
data have also demonstrated potential modulation of extraskeletal effects such as 
immune system, cardiovascular diseases, insulin resistance, type 2 diabetes and 
cancer [2], conditions commonly linked with obesity. Vitamin D derives from two 
sources: the most important is exposure to sunlight, accounting for approximately 
80% of circulating vitamin D. During exposure to solar ultraviolet B (UVB) radia-
tion (wavelength, 290 to 315 nm), 7-dehydrocholesterol in the skin is converted to 
pre-vitamin D3, which is immediately converted to vitamin D3 in a heat-dependent 
process [3]. Whereas vitamin D2 is manufactured through the ultraviolet irradiation 
of ergosterol from yeast, vitamin D3 is synthetized through the ultraviolet irradia-
tion of 7-dehydrocholesterol from lanolin. Both are used in vitamin D supplements. 
Vitamin D can also be acquired from the diet [2]. Few foods naturally contain (i.e. 
oily fish) vitamin D [4]. Vitamin D2 and vitamin D3 from dietary sources are incor-
porated into chylomicrons and transported by the lymphatic system into the venous 
circulation. Vitamin D in the circulation is bound to the vitamin D-binding protein, 
which transports it to the liver, where vitamin D is converted by vitamin D-25- 
hydroxylase to 25-hydroxyvitamin D [25(OH)D], the major circulating form of 
vitamin D used by clinicians to determine vitamin D status [2] (Table 7.1). This 
form of vitamin D is biologically inactive and must be converted in the kidneys by 
25-hydroxyvitamin D-1α-hydroxylase (CYP27B1) to the biologically active 
form—1,25-dihydroxyvitamin D [1,25(OH)D] [3]. The renal production of 
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1,25-dihydroxyvitamin D is tightly regulated by plasma parathyroid hormone levels 
and serum calcium and phosphorus levels. The efficiency of the absorption of renal 
calcium and of intestinal calcium and phosphorus is increased in the presence of 
1,25(OH)D [5]. In a negative feedback, the expression of 25-hydroxyvitamin D-24- 
hydroxylase (CYP24) is increased by 1,25(OH)D, which is excreted in the bile. 
1,25(OH)D also enhances intestinal calcium absorption in the small intestine by 
interacting with the vitamin D receptor—retinoic acid x-receptor complex 
(VDR-RXR).

Nowadays, vitamin D biological effects are divided in skeletal and extraskeletal, 
the latter not tied to its role in the calcium and phosphorus metabolism [6]. It is 
well-known that vitamin D plays a pivotal role for normal bone development both 
in utero and in childhood, leading to optimal skeletal health in adults [3, 7]. Vitamin 
D fulfils its skeletal function acting directly on three target organs: the intestine, 
stimulating dietary calcium and phosphorus absorption in a parathormone (PTH) 
independent manner; the kidneys, where calcitriol with PTH increases the renal 
distal tubule reabsorption of calcium; and the bone, where both calcitriol and PTH 
stimulate osteoblasts to mobilize skeletal calcium stores [6, 7].

1,25(OH)D exerts its biological function on the bone by binding its receptor in 
osteoblasts, causing an increase in the expression of the receptor activator of nuclear 
factor-κB ligand (RANKL); RANK, the receptor for RANKL on preosteoclasts, 
binds RANKL, which induces preosteoclasts to become mature osteoclasts [8]. 
Mature osteoclasts remove calcium and phosphorus from the bone, maintaining cal-
cium and phosphorus levels in the blood [8]. Adequate calcium (Ca2+) and phospho-
rus (HPO4

2−) levels promote the mineralization of the skeleton. Severe vitamin D 
deficiency causes two clinical syndromes: rickets in children and osteomalacia in 
adults [2].

The absorption of dietary calcium and phosphorus is reduced by 90% and 40%, 
respectively, when vitamin D is missing [9]. The interaction of 1,25(OH)D with 
VDR increases the efficiency of intestinal calcium absorption to 30–40% and phos-
phorus absorption to approximately 80% [9, 10]. In one study, serum levels of 
25(OH)D were directly related to bone mineral density in white, black, and 
Mexican-American men and women, with a maximum density achieved when the 
25-hydroxyvitamin D level reached 40 ng/mL or more [11]. When the level was 
30 ng/mL or less, there was a significant decrease in intestinal calcium absorption 
[10] that was associated with increased parathyroid hormone. The deposition of 
calcium in the skeleton is also altered during foetal development if low levels of 
calcium and vitamin D are present in utero [12]. If vitamin D deficiency persists, the 
parathyroid glands are maximally stimulated, leading to secondary 

Table 7.1 Vitamin D optimal 
serum levels (ng/mL)

Institute of Medicine Endocrine Society
Deficiency 0–30 0–20
Insufficiency 31–39 21–29
Sufficiency 40–80 30–100
Toxicity >150 –

A. Di Nisio and C. Foresta
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hyperparathyroidism [2]. In particular, a study showed that 93% of subjects 
10–65 years of age admitted to a hospital emergency department with muscle aches 
and bone pain, who had a wide variety of diagnoses, including fibromyalgia, chronic 
fatigue syndrome, and depression, were deficient in vitamin D [13], suggesting that 
vitamin D actions are not only limited to bone metabolism.

7.2  Vitamin D and Male Hypogonadism

Until a few years ago, the only connection between the testis and bone was the well- 
known action of testosterone on skeletal growth and bone mass accrual and, conse-
quently, the role of hypogonadism in causing low bone mass and osteoporosis [14]. 
Testosterone replacement therapy alone in men with hypogonadism and osteoporo-
sis is not sufficient to completely restore BMD, which suggests that alternative 
therapeutic approaches should be evaluated, such as the use of vitamin D 
supplements.

Population studies show an association between the levels of testosterone and 
25-hydroxyvitamin D in men and highlight that men with primary and secondary 
hypogonadism, as well as those with compensated (subclinical) hypogonadism, are 
frequently deficient in vitamin D [15–17]. It has been demonstrated that the male 
reproductive tract expresses most of the enzymes involved in vitamin D metabo-
lism. In particular, the testis is featured by the highest expression of CYP2R1, a 
member of cytochrome P450 family [18], considered to be a key enzyme of vitamin 
D activation through its 25-hydroxylase activity [19]. The physiological importance 
of CYP2R1 expression in the testis has been highlighted in the past few years in 
studies that suggested a pathophysiological link between testicular damage, reduced 
levels of 25-hydroxyvitamin D, and reduced bone mass [14]. Although definitive 
data are not available, there is an increasing evidence suggesting that an impairment 
of testicular function leads to low levels of 25-hydroxyvitamin D and consequently 
to an increased risk of osteopenia and osteoporosis [14]. Low vitamin D is frequent 
in this condition and seems to be more important than testosterone in inducing low 
bone mineral density (BMD) and osteoporosis. Supplementation with vitamin D 
restores BMD after 2 years of treatment, whereas testosterone alone seems to be 
ineffective. These data highlight that low 25-hydroxyvitamin D levels seem to have 
a more critical role than low T levels in inducing low BMD in KS subjects. 
Furthermore, vitamin D supplementation seems to be more effective than T replace-
ment therapy alone in increasing BMD.

7.3  Vitamin D Supplementation

Vitamin D and calcium supplementation are often recommended for women, espe-
cially postmenopausal women, to prevent fractures, although actual use is uncer-
tain. In order to prevent osteoporosis-related fractures, vitamin D 700–800 IU/day 
should be complemented with calcium, using a dose of 1000–1200  mg/day of 
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elemental calcium [20, 21]. Based on 2011–2012 data from the National Health and 
Nutrition Examination Survey, an estimated 27% of men and 35% of women older 
than 20 years take a vitamin D supplement, and 26% of men and 33% of women 
take a calcium supplement. The exact dosage of supplementation is not known [22]. 
Research is needed to determine whether daily supplementation with doses greater 
than 400 IU of vitamin D and greater than 1000 mg of calcium reduces fracture 
incidence in postmenopausal women and in older men. Prospective studies should 
assess the potential benefits of vitamin D and calcium supplementation in premeno-
pausal women on fracture incidence later in life. Studies need to be adequately 
powered and should evaluate consistent fracture outcomes. Studies are also needed 
to evaluate the effects of vitamin supplementation on diverse populations. In a 
recent meta-analysis, vitamin D, with or without calcium, had no statistically sig-
nificant effect on all-cause mortality or incident cardiovascular disease compared 
with placebo [22].

The Institute of Medicine (now the National Academy of Medicine) (2011) and 
the World Health Organization (2004) [24] recommend standards for adequate daily 
intake of calcium and vitamin D as a part of overall health. Neither organization has 
recommendations specific to fracture prevention. The Institute of Medicine notes 
the challenge of determining dietary reference intakes given the complex interrela-
tionship between calcium and vitamin D, the inconsistency of studies examining 
bone health outcomes, and the need to limit sun exposure to minimize skin cancer 
risk. The National Osteoporosis Foundation supports the Institute of Medicine’s 
recommendations regarding calcium consumption and recommends that adults 
50 years or older consume 800–1000 IU of vitamin D daily [25]. The Endocrine 
Society recommends that adults 65 years or older consume 800 IU of vitamin D 
daily for the prevention of falls and fractures [26] (Table  7.2). The American 
Geriatric Society recommends that adults 65 years or older take daily vitamin D 
supplementation of at least 1000 IU as well as calcium to reduce the risk for frac-
tures and falls [27].

In a recent paper published on JAMA, the US Preventive Services Task Force 
(USPSTF) concludes that the current evidence is insufficient to assess the balance 
of the benefits and harms of vitamin D and calcium supplementation, alone or com-
bined, for the primary prevention of fractures in community-dwelling, asymptom-
atic men and premenopausal women [22]. However, these recommendations do not 
apply to persons with a history of osteoporotic fractures, increased risk for falls, or 
a diagnosis of osteoporosis or vitamin D deficiency.

Table 7.2 Recommended vitamin D daily intake

Recommended vitamin D intake (IU/day)
Institute of Medicine Endocrine Society

Age RDA Upper limit RDA Upper limit
0–12 months – 1000–1500 400–1000 2000
1–18 years 600 2500–4000 600–1000 4000
19–70 years 600 4000 1500–2000 10,000
>70 years 800 4000 1500–2000 10,000
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In a recent meta-analysis of randomized clinical trials, the use of supplements 
that included calcium, vitamin D, or both compared with placebo or no treatment 
was not associated with a lower risk of fractures among community-dwelling older 
adults [28]. These findings did not support the routine use of these supplements in 
community-dwelling older people. A meta-analysis by Tang et al. [29] reported that 
calcium supplementation was significantly associated with the prevention of 
osteoporosis- related fractures. Prior analyses also reported favourable associations 
of high dose (≥800 IU daily) vitamin D supplementation and fracture incidence [30, 
31]. Bischoff-Ferrari and colleagues [31] found that supplementation with 800 IU 
or more of vitamin D per day was associated with lower rates of hip fracture and 
nonvertebral fractures in adults 65  years or older. However, although the meta- 
analysis by Zaho and colleagues [28] reports no evidence of a protective role of 
vitamin D supplements on facture risk in non-hospitalized adults aged >50 years, it 
should be noted that this analysis has focused on healthy subjects. Consequently, the 
results of this study cannot be applied to people either already affected by osteopo-
rosis or other pathologies of bone metabolism or to those already in therapy with 
bone-protective drugs. For these subjects, an adequate calcium intake and optimal 
vitamin D levels are crucial, in order to sustain the efficacy of anti-osteoporotic 
drugs. Moreover, some of the studies considered are low quality and show consis-
tent differences in terms of dosage, formulation, and mode of administration of 
vitamin D supplements, and the concomitant use of calcium in association with 
vitamin D is inconsistent across studies. Despite these limits, Zhao and colleagues 
suggested that supplementation with vitamin D and calcium is not necessary in the 
general population, in which prevention campaigns should be pursued in order to 
sustain an adequate intake of calcium and vitamin D by the means of a correct nutri-
tion and sun exposure. However, these preventive strategies are not always suffi-
cient to achieve normal vitamin D levels in risk populations, in which cases 
pharmacological supplementation is necessary.

Finally, more in-depth analyses are required to study the impact of vitamin D 
deficiency on bone health during infancy [32]. Indeed, epidemiological studies from 
Europe [33–37], the Middle East [38], North America [39], and Oceania [40, 41] 
suggest that low vitamin D in children should be a health concern worldwide. In 
2011, the Institute of Medicine defined that the adequate nutritional vitamin D 
intake in newborns (0–12 months) should be 400 IU and the daily dose in children 
(1–18 years) should be 600 IU [23].
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Testicular Function and Skeletal 
Alterations

Alberto Ferlin

8.1  Introduction

Testicular function is essential for bone metabolism during the entire life of a man. Sex 
hormones, and in particular testosterone produced by the Leydig cells of the testis, are 
fundamental during development and puberty for skeletal growth and bone mass accrual 
and during adulthood to maintain bone metabolism. Indeed, the role of hypogonadism 
in causing low bone mass and osteoporosis is well-known, low testosterone levels being 
among the most frequent causes of secondary male osteoporosis [1, 2]. In fact, clinical 
guidelines [3–5] suggest that the diagnosis of male hypogonadism in general and in men 
with osteoporosis in particular can be made biochemically by the determination of tes-
tosterone levels. Nevertheless, testosterone replacement therapy alone does not com-
pletely restore bone mass in men with hypogonadism and osteoporosis [4, 5].

Basic and clinical researches in the past few years now provide new information 
on the crosstalk between the testis and bone, highlighting in particular different 
functions of the Leydig cells of the testis, other than steroidogenesis and testoster-
one production, able to maintain the bone health.

First, Leydig cells produce insulin-like 3 (INSL3), which has a role in osteo-
blast function [6–8]. INSL3 is a peptide hormone produced under the long-term 
regulatory effects of luteinizing hormone (LH), and it is increasingly used as a 
marker of Leydig cell function, as an alternative to testosterone [9–16]. Reduced 
plasma levels of INSL3 are observed in many conditions characterized by dis-
turbed Leydig cell function, such as infertility, obesity, and Klinefelter syn-
drome, as well as in aging [9–16]. Second, Leydig cells express the CYP2R1 
gene [17, 18], which encodes the major enzyme involved in 25-hydroxylation of 
vitamin D.  Testosterone and 25-hydroxyvitamin D levels are associated, and 

A. Ferlin (*) 
Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
e-mail: alberto.ferlin@unibs.it

8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96376-1_8&domain=pdf
https://doi.org/10.1007/978-3-319-96376-1_8#DOI
mailto:alberto.ferlin@unibs.it


94

hypogonadal men (primary, secondary, and subclinical hypogonadism) have fre-
quently vitamin D deficiency [18–21].

A reciprocal effect from the skeletal system to the testis has also been demon-
strated. In fact, osteocalcin, a major product of osteoblasts and a marker of bone 
formation, is released from the bone matrix during the resorption phase and has a 
role in steroidogenesis and testosterone production by binding to the G-protein- 
coupled receptor GPRC6A on Leydig cells [22, 23]. Osteocalcin-deficient mice and 
Gprc6a-deficient mice have reduced testis size and fertility and markedly decreased 
testosterone levels [22, 24]. The discovery of the endocrine effects of osteocalcin 
has important consequences in the andrological setting [25]. Indeed, not only a 
positive association between serum levels of testosterone and osteocalcin exists 
[26], but also GPRC6A has been identified as the putative membrane-associated 
receptor for androgens [27], revealing a complex testis to bone crosstalk unconceiv-
able until a few years ago (Fig. 8.1).
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Fig. 8.1 The crosstalk between the testis and bone. The Leydig cell, under the effect of LH, acts 
on bone metabolism by producing testosterone (T) and INSL3 and expressing the CYP2R1 enzyme 
that hydroxylates cholecalciferol to 25-hydroxyvitamin D. T, directly or after conversion to DHT 
and estradiol (E2), acts on bone cells through the androgen receptor (AR) and estrogen receptor 
(ER), respectively, whereas INSL3 acts through its receptor RXFP2. 1,25-dihydroxyvitamin D 
regulates calcium homeostasis and bone metabolism by acting on the kidney, intestine, and osteo-
blasts. The osteoblast protein, osteocalcin, promotes testosterone production in the Leydig cell by 
activating steroidogenesis enzymes and stimulates CYP2R1
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8.2  Testosterone, Hypogonadism, and Bone

As discussed in other chapters of this book, bone mass and metabolism are regu-
lated by sex steroid hormones. Both testosterone and estrogens are necessary for 
bone growth and for the maintenance of skeletal integrity [1, 28], by genomic and 
genomic effects of their respective receptors [28–32].

The increase in the production of sex steroids at the start of puberty is clearly 
linked to an increase of bone mineral acquisition during this period and contributes 
to the establishment of sex differences in bone growth. From mid-puberty onward, 
boys develop a larger periosteal perimeter than girls, while girls have more endocor-
tical apposition [30]. Moreover, men gain more bone mass during growth and lose 
less of it during aging than women [32]. The traditional hypothesis is that in males, 
androgens stimulate periosteal bone formation, whereas estrogens in females inhibit 
periosteal bone formation [32]. Androgens, through the AR pathway, are particu-
larly effective stimulators of trabecular bone, where they preserve or increase tra-
becular numbers via suppression of trabecular reabsorption, which reduces 
trabecular spaces and, therefore, increases trabecular number [33]. The role of tes-
tosterone is, therefore, fundamental in bone maturation at the end of puberty for 
bones to reach their peak mass and during adult life to maintain it.

Although studies performed in elderly men found that bone mineral density 
(BMD) is more tightly correlated to estradiol levels than to testosterone levels [34–
37], testosterone undoubtedly has a role in maintaining bone integrity, and male 
hypogonadism is a well-characterized risk factor for osteoporosis [2]. The preva-
lence of hypogonadism among men with osteoporosis is not clearly known but is 
present in 20% of men with vertebral fractures and 50% of men with hip fractures 
[38]. Furthermore, men with hypogonadism have a significantly lower BMD than 
age-matched men without hypogonadism [39]. Furthermore, testosterone exerts its 
beneficial effect on skeletal growth and homeostasis by increasing mechanical load-
ing [31]. In fact, testosterone increases muscle mass and strength, which are funda-
mental for bone health.

8.3  Leydig Cell Function and Bone Health 
Beyond Testosterone

Other than testosterone production, the Leydig cells influence bone metabolism by 
at least two other functions: the production of INSL3 and the expression of CYP2R1, 
which leads to low levels of 25-hydroxyvitamin D.  Interestingly, INSL3 and 
25-hydroxyvitamin D levels are lower than normal not only in cases of overt hypo-
gonadism but also in cases of subclinical hypogonadism (normal testosterone, high 
LH) [19, 40], a condition that is also associated with the risk of low BMD.

INSL3 is a testis-specific hormone secreted by Leydig cells with a role in testicu-
lar descent [41, 42] and other less clear roles adulthood. The molecular mechanisms 
by which INSL3 acts on human osteoblasts to have an anabolic effect have been 
clarified [7, 8]. The activation of the G-protein-coupled receptor RXFP2 by INSL3 
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induces an increase in levels of cAMP, activation of the MAP kinase cascade, 
expression of key osteoblast genes involved in osteoblast differentiation, matrix 
deposition and osteoclastogenesis, and finally stimulation of mineralization.

A possible role for INSL3 in bone metabolism was first suggested 10 years ago 
[6]. Subsequent researches, clearly defined that INSL3, in addition to testosterone, 
represent a further male-specific factor that regulates bone metabolism in men and 
mice [8]. Osteoblasts and osteocytes [43] are the main INSL3-responsive cell. 
Mutations in RXFP2 are associated with reduced BMD [6, 44] and reduced INSL3 
levels are observed in cases of male hypogonadism. Interestingly, levels of INSL3, 
similar to levels of testosterone, increase during puberty, and therefore, pubertal 
changes and sex-specific differences in bone development might be attributed to 
both hormones [14].

It is well-known that vitamin D is a fundamental regulator of bone mineraliza-
tion and calcium homeostasis [45]. In order to be biologically active, vitamin D 
must be converted to its active form, 1,25-dihydroxyvitamin D3, by two sequential 
hydroxylation steps catalyzed by 25-hydroxylase and 1α-hydroxylase, respectively. 
Different P450 vitamin D 25-hydroxylases exist, the one encoded by CYP2R1 being 
considered the most important. In fact, inactivating mutations in CYP2R1 result in 
selective 25-hydroxyvitamin D deficiency, defective calcium homeostasis, and rick-
ets [46–49], and genome-wide association studies showed that common variants at 
the CYP2R1 locus are associated with variations in circulating levels of 
25- hydroxyvitamin D3 [50]. Interestingly, the expression of CYP2R1 is highest in 
the testis [18, 47, 51, 52].

In the last few years, it has been demonstrated the pathophysiological role of 
testicular CYP2R1. In very summary, a link between testiculopathy, reduced levels 
of 25-hydroxyvitamin D3, and alteration of the bone status has been shown [17, 53, 
54]. In particular, it has been estimated that the testis accounts for ~60% of 
25-hydroxylation and it is now well accepted that testiculopathy of any cause could 
have a role in the pathogenesis of vitamin D insufficiency, through impaired 
25-hydroxylase activity [53, 55].

The expression of CYP2R1 has been detected in Leydig and spermatogenic 
cells, and mRNA expression of CYP2R1 is reduced in the testes that have a com-
plete absence of germ cell (Sertoli cell-only, SCO) histology [18, 56, 57]. In gen-
eral, about half of the patients with SCO and severe hypospermatogenesis have 
insufficient levels of 25-hydroxyvitamin D (<50 nmol/L) and osteopenia or osteo-
porosis. Importantly, vitamin D levels are lower than normal not only in cases of 
overt hypogonadism but also in cases of subclinical hypogonadism, suggesting that 
low 25-hydroxyvitamin D levels might be regarded as a novel and sensitive marker 
of testicular function. On the other hand, patients with testiculopathy seem to repre-
sent a group of men at risk of low BMD, despite conserved bone-sparing effects of 
androgens and estrogens [5, 17, 53].

Interestingly, CYP2R1, similar to other cytochrome P450 enzymes [58], is stim-
ulated in the Leydig cell by LH and human chorionic gonadotropin (hCG). In fact, 
the expression of CYP2R1 is increased in a dose-dependent manner by hCG in a 
Leydig cell line (MA-10), and 25-hydroxyvitamin D levels increase in patients with 
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hypogonadotropic hypogonadism after treatment with hCG [54]. A further com-
plete loop between the testis and bone derived furthermore from the demonstration 
that also osteocalcin stimulates CYP2R1 [59].

Indeed, from a clinical point of view, it is important to note that several studies 
have demonstrated a relationship between plasma levels of testosterone and 
25-hydroxyvitamin D [19–21]. Notably, primary and secondary hypogonadism, as 
well as compensated hypogonadism, seem to be associated with suboptimal and 
deficient vitamin D levels with similar high prevalence, about 30% and 50%, respec-
tively [19]. Studies also suggested a role for vitamin D in stimulating testosterone 
production [60], further complicating the complex interplay between testis function 
and calcium-phosphorus metabolism.

8.4  INSL3 and 25-Hydroxyvitamin D as Biomarkers 
of Leydig Function

Evidence is accumulating to suggest that in male hypogonadism, bone metabolism 
might be altered by a combination of low testosterone and low levels of INSL3 and 
25-hydroxyvitamin D. However, INSL3 production and 25-hydroxylation of vita-
min D are more susceptible than steroidogenesis to Leydig cell impairment. 
Therefore, also forms of subclinical hypogonadism (normal testosterone and ele-
vated LH) might be associated with reduced levels of INSL3 and 25- hydroxyvitamin 
D. In other words, when testosterone is normal but LH levels are higher than nor-
mal, INSL3 and 25-hydroxyvitamin D might be used as early markers of the func-
tional state of the Leydig cell [8, 40, 55].

International guidelines on male hypogonadism suggest determination of testos-
terone levels, in association with specific signs and symptoms, as the main param-
eter for the diagnosis and treatment choice of men with hypogonadism. In most 
cases, reduced testosterone levels will be sufficient to biochemically diagnose hypo-
gonadism in general and in men with osteoporosis. However, patients with mild 
testicular dysfunction are also at risk of bone alteration, owing to low INSL3 pro-
duction and CYP2R1 expression. These men have normal testosterone levels, so 
they would be missed if only testosterone levels are assessed. In this light, in addi-
tion to patients with overt hypogonadism, “new” categories of individuals, affected 
by mild Leydig cell impairment (e.g., those with infertility, obesity, testicular can-
cer, cryptorchidism, or aging) should be considered at risk of bone alterations.

8.5  Conclusion

The crosstalk between the testis and bone is much more complicated than just one 
directional mediated by testosterone. Leydig cell function has been demonstrated to 
be fundamental for bone health at least in other two ways, INSL3 production, which 
has a role on osteoblast and osteocyte function, and 25-hydroxylation of vitamin D 
by the CYP2R1 enzyme.
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Implications also for treatment are derived from these novel physiologic axes. 
Testosterone replacement therapy in men with hypogonadism and osteoporosis is 
not sufficient to completely restore BMD, suggesting that alternative therapeutic 
approaches should be evaluated in future studies, such as the use of vitamin D sup-
plements. Similarly, the best therapeutic strategy of osteopenia and osteoporosis in 
men with subclinical hypogonadism is unknown. Testosterone therapy, by suppress-
ing LH, does not maintain the full actions of the Leydig cells, further reducing 
INSL3 and 25-hydroxyvitamin D levels. Therefore, at least patients with hypogo-
nadotropic hypogonadism and normogonadotropic hypogonadism should benefit 
from the stimulation of the Leydig cell function by hCG, thus allowing to maintain 
testosterone, INSL3, and 25-hydroxyvitamin D levels. Studies dealing with these 
aspects are welcome.
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Osteoporosis in Klinefelter Syndrome

Riccardo Selice

Patients with Klinefelter syndrome (KS) have a high risk of developing osteoporosis 
and osteopenia and an increased risk of fractures [1, 2]. KS is associated with 
decreased bone mass in 25–48% of cases [3] and with osteoporosis in 6–15% [4] 
and is due to both reduced bone formation and higher bone resorption [5]. The 
annual decrease in bone mass rate in KS has been calculated in 1.18 ± 0.53% at the 
lumbar level and 1.03 ± 0.43% at the femoral neck level [6].

It is generally accepted that a bone density T-score at or below 2.5 standard 
deviations (SD) below normal peak values for young adults defines osteoporosis, 
whereas a T-score between −1 and −2.5 SD defines osteopenia (Table 9.1). For 
younger men both T-score and Z-score could be used for the diagnosis of low BMD, 
with a Z-score < 2 SD below the gender- and age-specific population mean identify-
ing osteoporosis.

Young KS subjects have normal bone density in childhood and at the beginning 
of pubertal development [2]. During the later stages of puberty KS subjects develop 
a progressive testicular failure leading to primary hypogonadism. Such a deficiency 
in testosterone production during puberty represents the most important risk factor 
for reduced bone mass and osteoporosis in KS, although there are other possible 
hormonal modulators of bone metabolism (Table 9.2).

Decreased bone mass in KS has usually been attributed to hypogonadism, and 
supporting this hypothesis testosterone plasma levels has been shown to positively 
correlate with BMD in these subjects [6–9]. Similarly to that observed in hypogo-
nadal non-KS patients, bone histology of KS subjects demonstrated loss of cancel-
lous tissue, profound depression of osteoblast activity, decreased osteoid seam 
width, and slowing of the apposition rate [10]. These findings have not been docu-
mented in KS subjects with normal testosterone levels who have a normal cortical 
bone mass [7].
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However, several studies showed that testosterone replacement in KS men with 
low testosterone levels and low BMD does not reverse the decreased bone mass [11, 
12]. This was more evident when testosterone replacement therapy was started after 
puberty, also after many years of therapy [4]. On the contrary, other studies showed 
that androgen replacement therapy starting in young age (i.e., before 20 years) can 
lead to normal BMD [8]. Of particular interest is the finding of reduced bone mass 
also in KS subjects with normal testosterone levels [9] and of similar prevalence of 
low BMD in KS men with low and normal T levels [12], suggesting that bone loss 
in KS might be, at least in part, independent from the presence of hypogonadism.

On this basis other possible mechanisms contributing to osteoporosis in KS must 
be considered.

Even if estradiol levels are generally normal or high in this syndrome, low estro-
gen levels have been related to decreased bone mass in these patients in some stud-
ies [13, 14], and estradiol levels are inversely related to the rate of bone loss [6]. 
However, these data have not been replicated, and conclusions on this possible 
pathogenic mechanism cannot be made.

Another possible mechanism involved in the development of bone loss in KS 
might be related to the unfavorable fat/muscle ratio caused by increased fat mass 
and reduced muscle mass [1, 15]. However, it is not clear whether such an altered 
ratio is caused exclusively by the low testosterone levels or by other mechanisms 
related to the genetic defect. In fact, studies suggested that the unfavorable fat/
muscle ratio is already present in young adolescents, whereas bone mass defects 
appear in late puberty or later [2].

Recent research suggested other possible pathogenic mechanisms of reduced 
BMD in KS, related in particular to the AR function, to insulin-like factor 3 (INSL3) 
and 25-hydroxyvitamin D levels.

Table 9.1 Diagnostic criteria for osteoporosis in men

Age Criteria
<50 The diagnosis should be made on the basis of both T-score and 

Z-score. Some authors recommend to using only the Z-score (low 
BMD when Z-score < −2 SD, osteopenia if Z-score < −1 SD)

50–64 T-score ≤ 2.5 SD at both spine and hip plus risk factors for fracture
≥65 T-score ≤ 2.5 SD
Any age + secondary 
causes of low BMD

T-score ≤ 1 SD

Table 9.2 Possible mechanisms 
contributing to osteoporosis in KS

Low testosterone levels
Low vitamin D levels
Low AR expression
Non-random X chromosome inactivation and AR 
CAG length
Low INSL3 levels
Unfavorable fat/muscle ratio
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The first exon of the AR gene encodes for the transactivation domain of the AR 
protein. It contains the highly polymorphic CAG repeat, the length of which is 
inversely correlated with androgen sensitivity [16]. Although the length of CAG 
repeat has been associated with different disorders (male hypogonadism, cryptor-
chidism, prostate cancer, testicular cancer), conflicting data have been published on 
the relation between it and bone metabolism. The CAG polymorphism of the AR 
has been reported to be negatively and independently associated with BMD, in par-
ticular in young men [17, 18]. On the contrary, another study found on the contrary 
a positive relation, explained with the negative feedback of CAG-related AR sensi-
tivity on testosterone concentrations and thus on higher estrogen levels, with a 
global positive effect on BMD [19].

A certain degree of androgen resistance has previously been reported in KS [3, 
20], with a decreased activity of bone 5-α-reductase [21] and a lower peripheral AR 
expression on lymphocytes [22], testis [23], and smooth muscle cells [24]. However, 
the AR expression in the bone has never been studied in KS.

Another important aspect of AR is that the AR gene is located on the X chromo-
some (and therefore present in double copy in KS) and there is evidence of non- 
random X inactivation in men with more than one X chromosome [25]. In KS the 
CAG polymorphism length depends on the inactivation rate of the two X chromo-
somes by methylation. Therefore, the effective CAG repeat value in heterozygous 
KS men for the CAG polymorphism of the AR gene is calculated after the analysis 
of the methylation rate in the two X chromosomes in order to obtain a X-weighted 
biallelic mean, not an arithmetic mean [26]. In this way, a relation with different 
clinical outcome and response to testosterone therapy was found, with a statistically 
significant negative correlation between bone density evaluated by phalangeal ultra-
sound and the X-weighted biallelic mean of CAG repeats [26], as previously shown 
in normal men [17]. Moreover, a higher inactivation rate of shorter alleles has been 
described, thus determining a less functional AR [26].

This was the first important finding, suggesting that reduced testosterone levels 
are not the only cause of decreased bone mass in KS subjects and that additional 
factors related to the androgenic status might contribute to the altered bone metabo-
lism in subjects with KS. A non-random X inactivation and lower androgen func-
tion could therefore be, at least in part, responsible for or contribute to decreased 
bone mass in KS, particularly evident in those patients with normal testosterone 
concentration. Thus, this mechanism could explain not only the high prevalence of 
decreased BMD in eugonadal KS patients but also the frequent ineffectiveness of 
testosterone replacement therapy in improving BMD in KS.

Another important aspect related to testicular failure and bone metabolism in KS 
is the circulating levels of INSL3. INSL3 is a protein hormone produced almost 
exclusively by pre- and post-natal Leydig cells of the testis [27–29]. The major 
known endocrine role of INSL3 is related to the regulation of testicular descent dur-
ing fetal development by acting on gubernaculum via its specific receptor RXFP2 
(relaxin family peptide 2) [30, 31]. In addition to the prenatal role for INSL3, fur-
ther possible endocrine and paracrine actions in adult males have recently gained 
particular attention [27, 32, 33]. These studies showed that INSL3 is produced 
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constitutively but in a differentiation-dependent manner by the Leydig cells under 
the long-term Leydig cell differentiation effect of LH. On this basis INSL3 has been 
proposed as a specific marker of Leydig cell differentiation status [27, 29, 32].

The dynamic of circulating levels of INSL3 is very similar to that of testosterone. 
After birth, INSL3 increases at about 3 months of age under the increased levels of 
LH (minipuberty) [34]. Soon after, INSL3 declines to undetectable levels and 
remains low during infancy [34] and then progressively increases throughout 
puberty [35]. Finally, INSL3 levels in adulthood decline steadily throughout life, 
and at 75–80 years INSL3 concentrations are reduced by about 40% with respect to 
levels found at 35–40 years [36]. Reduced plasma concentrations of INSL3 are seen 
in situations of undifferentiated or altered Leydig cell status or reduced Leydig cell 
number, such as in anorchid men and men with hypogonadism, infertility, or obesity 
[27, 32, 36].

Although the exact role of post-natal INSL3 is not fully understood, the general 
hypothesis is that reduced INSL3 activity (caused by altered testicular function, 
INSL3 or RXFP2 gene mutations) could cause or contribute to some symptoms and 
signs of hypogonadism, such as reduced BMD. RXFP2 is expressed in many tissues 
besides the gubernaculum, including the kidney, skeletal muscle, thyroid, pituitary 
gland, brain, and bone marrow [27, 37, 38], and paracrine roles for INSL3 have 
been suggested in the testis, ovary [39], thyroid [40], and mammary gland [41]. 
Most importantly, it has been shown that human and mouse osteoblasts express the 
INSL3 receptor and that young adult men carrying the T222P mutation of the 
RXFP2 gene and with normal testosterone levels are at significant risk of reduced 
bone mass and osteoporosis [42]. Consistent with the human phenotype, bone his-
tomorphometric and μCT analyses at the lumbar and femoral sites of Rxfp2−/− mice 
showed decreased bone volume, alterations at the trabecular bone, reduced mineral-
izing surface, bone formation, and osteoclast surface [42]. These data suggested a 
functional osteoblast impairment causing a negative balance between bone forma-
tion and bone resorption in mice knockout for Rxfp2 and in humans with mutations 
in RXFP2.

Only one study examined INSL3 levels during puberty in boys with KS, showing 
a normal increase in serum INSL3 at initial stages of puberty and then a leveling off 
[43]. Few studies examined INSL3 in adult men with KS, reporting that adult KS 
with reduced testosterone levels had also very low levels of INSL3 [27]. These pre-
liminary data suggested that INSL3 could be a valuable marker of Leydig cell func-
tion in KS. Taken together these findings, although preliminary, would suggest that 
the low INSL3 levels observed from mid-puberty onward in KS could have a role in 
the reduced bone density and osteoporosis in these subjects.

Vitamin D levels might be another possible modulator of bone metabolism in 
KS. Vitamin D is a key regulatory factor of bone mineralization and calcium homeo-
stasis in both men and women [44]. In order to be biologically active, vitamin D 
must be converted to its active form, 1,25-dihydroxyvitamin D3, by two sequential 
hydroxylation steps catalyzed by 25-hydroxylase and 1α-hydroxylase. In the pres-
ence of inadequate vitamin D status, calcium absorption is lower than optimal, and 
there is a compensatory increase in PTH levels (secondary hyperparathyroidism), 
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with a subsequent stimulation of bone reabsorption and accelerated bone loss. The 
high bone turnover associated with elevated PTH levels is characterized by a lower 
degree of mineralization [45].

It has been demonstrated that the male reproductive tract expresses most of the 
enzymes involved in vitamin D metabolism. In particular, the testis is featured by 
the highest expression of CYP2R1, a member of cytochrome P450 family [46], 
considered to be a key enzyme of vitamin D activation through its 25-hydroxylase 
activity [47].

The physiological importance of CYP2R1 expression in the testis has been high-
lighted in the past few years in studies that suggested a pathophysiological link 
between testicular damage, reduced levels of 25-hydroxyvitamin D, and reduced 
bone mass [48]. Impairment of testicular function leads to low levels of 
25- hydroxyvitamin D and consequently to an increased risk of osteopenia and 
osteoporosis [48].

Few recent reports determined 25-hydroxyvitamin D levels in KS [12, 49, 50], 
demonstrating that KS subjects have 25-hydroxyvitamin D levels lower than healthy 
controls, with mean levels of 50–55 nmol/L.

It has been hypothesized that low 25-hydroxyvitamin D levels in KS subjects 
seem to be related to the severe testicular hypotrophy and Leydig cell impairment, 
which are characteristic signs of these subjects. A recent study has demonstrated 
that lumbar and femoral BMD in KS were positively associated with 
25- hydroxyvitamin D and patients with 25-hydroxyvitamin D deficiency had lum-
bar and femoral BMD significantly reduced with respect to KS subject with 
25-hydroxyvitamin D ≥50  nmol/L.  These findings are supported by the signifi-
cantly higher percentage of patients with osteopenia or osteoporosis among men 
with 25-hydroxyvitamin D deficiency with respect to KS patients with vitamin D 
≥50 nmol/L [12].

Decreased bone mass in men with KS is of course multifactorial. Reduced tes-
tosterone levels play undoubtedly an important role, but genetically determined 
reduced androgen action on the bone by a non-random X chromosome inactivation 
and different CAG length polymorphism of the AR gene as well as low INSL3 and 
25-hydroxyvitamin D levels might cooperate and modulate the effect of testoster-
one. The combined effect of all these factors at the end of puberty and during young 
adulthood could therefore represent the pathogenic mechanisms leading to the pre-
cocious decrease in bone mass in KS patients.
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10.1  Diet

Historically, an adequate diet, with a correct intake of vitamin D and balanced 
intake of proteins, carbohydrates, and fats, may be useful to achieve optimal peak 
bone mass even at a young age. Studies have also gone beyond single nutrient asso-
ciations and linked foods, food groups, and dietary patterns with bone health. It is 
important to synthesize this body of work to determine which dietary approaches 
can be maximized for optimal bone health and osteoporosis prevention.

Fruits and vegetables provide a multitude of micronutrients such as vitamin K, 
folate, magnesium, potassium as well as antioxidants such as vitamin C and carot-
enoids. Higher fruit and vegetable intakes have been associated with higher BMD 
and less BMD loss over time [1]. A more recent study in middle-aged and older men 
linked fruit and vegetable intake less than the recommended 5 servings/day with 
higher risk of hip fracture [2].

An amount of evidence suggests the role of selected nutrients in male bone 
health. Antioxidants such as vitamin C suppress osteoclast activity through 
their antioxidant action and promote bone formation by mean of osteoblastic 
cells [3]. Nowadays, a complex association involves interaction of nutritional 
factors such as vitamin C, vitamin E, and calcium intake [4] and 
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non-nutritional factors such as smoking [5]. Among male smokers, higher 
dietary vitamin C intake was associated with less femoral neck BMD loss [6]. 
While in male non-smokers, total vitamin C intake was positively associated 
with femoral neck BMD and a lower hip fracture risk [7].

Several studies show a protective role of carotenoids for BMD and fracture risk 
in older adults with most consistent results for lycopene intake. In men, intakes of 
total carotenoids, β-carotene, lycopene, and lutein+ zeaxanthin were protective 
against trochanter [8] and hip bone loss [9]. Evidence-based medicine suggests a 
controversial role of vitamin K, and there are weak evidence supporting low vitamin 
K status as a risk factor for poor bone health [10]. Several studies suggest folate may 
not be important for bone health, while low vitamin B12 status may be a modest risk 
factor for fracture. Supplementation with vitamin B12 and folic acid has shown 
mixed results [11, 12]. Thus, little evidence supports folate or vitamin B12 supple-
mentation to prevent fracture. In addition to protein, certain seafoods (>3 serving 
per week) are higher in polyunsaturated fatty acids (PUFA) and specifically the n-3 
fatty acid (FA) family, which have been positively linked with bone health due to 
their anti-inflammatory properties [13]. The association between PUFA and risk of 
hip fracture remains uncertain. In the Framingham Original Cohort, dietary alpha- 
linolenic acid (ALA; n-3 FA) was protective against hip fracture over 11 years of 
follow-up [14]. In men, those in the highest quartiles of arachidonic acid intakes 
(n-6 FA) had an 80% lower risk of hip fracture than those in the lowest quartile of 
intake. Well-designed clinical trials are needed to elucidate whether bone health can 
be improved by greater fish intake and test whether certain individual PUFA are 
driving these effects. Nowadays, it is well recognized that olives, olive oil, or olive 
polyphenols have the potential to be developed as bone protective agents. This is 
supported by evidence derived from preclinical studies using animal models and a 
limited number of human studies. The bone protective effects of olive and its prod-
ucts are attributed to their ability to increase bone formation and inhibit bone reab-
sorption, by suppressing oxidative stress and inflammation. However, the exact 
pathways are still elusive and await future validation [15]. Other nutritional factors, 
such as inadequate protein intake, may also play a role in accelerating age-related 
bone loss in men [16]. Protein intake has been implicated in previous studies as 
being both detrimental and beneficial to bone health [17]. Recent studies suggest 
that the influence of protein on bone health may differ according to calcium intake. 
Greater protein intake benefits BMD and protects against risk of fracture among 
adults with adequate calcium intake. Thus, calcium intake modifies the association 
of dietary protein with bone measures [18]. The presence of calcium mineral as a 
major constituent of bone clearly suggests the importance of adequate calcium and 
vitamin D status for skeletal health. Dietary calcium intake and endogenous vitamin 
D synthesis are sufficient for most individuals in many populations. However, there 
are evidence that supplemental approaches [19–21], particularly targeted to indi-
viduals with inadequate calcium and vitamin D status, may benefit bone mass and 
reduce fracture risk [22]. The average daily intake of calcium in the general popula-
tion is insufficient, especially in the elderly. This dietary deficiency may contribute 
to a negative calcium balance and induce secondary hyperparathyroidism, with 
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detrimental consequences. The recommended dietary allowance of calcium varies 
depending on age and specific conditions [23]. It is recommended, whenever pos-
sible, to increase calcium intake through diet. The dose of calcium supplements 
should be selected based on the dietary deficiency. Therefore, it is recommended to 
achieve an adequate calcium intake through diet, limiting the use of calcium supple-
ments to situations where this is not feasible and only until the daily allowance has 
been achieved [24]. Additionally, most of medications for osteoporosis treatment, 
such as bisphosphonates, are licensed in the context of calcium and vitamin D reple-
tion [25]. Thus, the knowledge of dairy foods can be a good tool for physician. 
Dairy foods are an essential resource of bone-building nutrients; numerous studies 
have examined whether dairy food intake (mainly milk) confers protection against 
osteoporosis. Daily milk and milk+ yogurt intake may lower risk for hip fracture in 
older adults through mechanisms that are partially, but not entirely, attributable to 
effects on BMD [26]. Lately, preliminary data show a positive correlation between 
bone health status and adherence to Mediterranean diet (MD), suggesting that a 
high adherence to MD promotes bone health [27].

10.2  Alcohol Abuse

Alcoholism is a disease characterized by a dependency on alcohol. Since alcohol 
affects almost every organ in the body, chronic heavy drinking is associated with 
many serious health problems, including pancreatitis, liver disease, heart disease, 
cancer, and osteoporosis. Alcohol negatively influences bone health for several rea-
sons. Past findings agree with in vitro studies that demonstrate diminished osteo-
blast numbers and osteoblast function in humans, suggesting a direct effect of 
alcohol on osteoblast by mean of a reduction of biosynthesis of osteocalcin [28]. 
Microscopic studies of bone tissue from rats demonstrated decreased trabecular 
bone volume, decreased numbers of osteoblasts, and decreased rate of bone forma-
tion. These experimental evidence suggests impaired bone formation and mineral-
ization, along with other characteristics indicative of osteoporosis [29]. These 
effects on the bone may be exerted indirectly through the many cell types such as 
hormones and growth factors that regulate bone metabolism. Men with alcoholism 
have a reduction of biosynthesis of several hormones such as testosterone and IGF-1 
and cortisol; these hormonal changes have a negative impact on osteoblastogenesis 
[30]. Excessive alcohol interferes with the balance of calcium. Calcium balance is 
further disrupted by the alcohol’s ability to interfere with the production of vitamin 
D essential for calcium absorption [31], with a secondary normal-elevated levels of 
parathyroid hormone (PTH) [32].

Clinical studies investigating alcohol intake and bone health suggest a 
“J”-shaped curve, where moderate ingestion of alcohol may offer maximum pro-
tection; however, intakes beyond this level show negative effects on the skeleton 
[33]. Chronic heavy alcohol consumption is associated with decreased BMD 
[34–36] and increased fracture risk [37–39], but there have been notable discrep-
ancies. In contrast moderate drinkers (for men ≥3  day per week with a 
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consumption ≤28  g/day ethanol) appear to have neutral or beneficial effects. 
Differences may be related to dose, pattern, and duration of drinking and skeletal 
site(s) evaluated. For example, Pumarino and colleagues evaluated the skeleton 
in male continuous and intermittent heavy drinkers [40]. Osteopenia was noted 
in the femur neck but not in the spine, suggesting site specificity, and the type of 
alcohol abuse was found to be less important than duration. However, a recent 
study evaluated the relationship between current alcohol consumption and the 
bone in the distal radius and tibia in aged men and women using high resolution 
computed tomography [41]. In contrast to the above analyzed studies, moderate 
to heavy alcohol consumption was associated with minimal changes in bone 
geometry, density, and microarchitecture. Inexplicably, light drinking was asso-
ciated with generally negative effects on indices of bone quality in males but not 
females. It should be noted, alcoholics differed among studies in age and dura-
tion of alcohol abuse and ranged from healthy to having cirrhosis, pancreatitis, 
diabetes, and other conditions that may influence bone metabolism.

10.3  Physical Activity

The mechanisms by which the skeleton responds to activity remain incompletely 
understood. Overwhelming evidence indicates that bone mass increases in response to 
the cyclic administration of mechanical loads [42]. Not only the bone density is higher 
in physically active people, but exercise also reduces the rate of age-related bone loss 
[43]. Osteocytes and osteoblasts sense mechanical strain, and exercise stimulates 
osteocyte activity and survival [44]. Weight-bearing impact-loading activities, such as 
jumping, appear to be particularly osteogenic [45], yet only a limited number of 
impact-loading studies have been trialed in men. A recent review of trials examined 
the effect of exercise on the BMD in middle-aged and older men without osteoporosis. 
Two different programs involving resistance training alone or in combination with 
impact-loading exercise appeared to be most beneficial for skeletal health [46]. Thus, 
a single modality of impact-loading exercise is effective for improving BMD in older 
men, but the optimal individual impact-loading exercise prescription is unclear. 
Lately, a recent trial in postmenopausal women with osteoporosis shows that high-
intensity resistance and impact training (HiRIT) can enhance indices of bone strength 
and functional performance [47]. However, there are no conclusive data in males with 
bone loss. Nowadays, HiRIT is not traditionally recommended for individuals with 
osteoporosis because of a perceived high risk of fracture.

Recent international guidelines recommend maintaining a minimum level of 
physical activity because of its useful role in the prevention of osteoporosis. The 
impact of physical activity depends on frequency, duration, intensity, and subjects’ 
age at the beginning of the training. Individualized physical activity, to improve 
muscle strength, balance, and walking, has been shown to reduce the risk of both 
falls and fall-related traumas. It has been demonstrated that, fall risk self-assessment 
tests, and recommendations on the prevention of falls, have also a positive effect on 
bone health and quality of life [48].
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10.4  Conclusion

Non-pharmacological interventions (individualized physical activity and balanced 
diet with also an adequate calcium and vitamin D intake) and correction of modifi-
able risk factors (alcohol abuse, environmental risk factors for falls) are recom-
mended to prevent osteoporosis risk for all subjects and may be useful to achieve 
optimal peak bone mass even at a young age.

References

 1. Prynne CJ, Mishra GD, O’Connell MA et al (2006) Fruit and vegetable intakes and bone min-
eral status: a cross sectional study in 5 age and sex cohorts. Am J Clin Nutr 83:1420–1428

 2. Byberg L, Bellavia A, Orsini N et al (2015) Fruit and vegetable intake and risk of hip fracture: 
A cohort study of Swedish men and women. J Bone Miner Res 30:976–984

 3. Gabbay KH, Bohren KM, Morello R et al (2010) Ascorbate synthesis pathway: dual role of 
ascorbate in bone homeostasis. J Biol Chem 285:19510–19520

 4. Hall SL, Greendale GA (1998) The relation of dietary vitamin C intake to bone mineral den-
sity: results from the PEPI study. Calcif Tissue Int 63:183–189

 5. Zhang J, Munger RG, West NA et al (2006) Antioxidant intake and risk of osteoporotic hip 
fracture in Utah: an effect modified by smoking status. Am J Epidemiol 163:9–17

 6. Sahni S, Hannan MT, Gagnon D et al (2008) High vitamin C intake is associated with lower 
4-year bone loss in elderly men. J Nutr 138:1931–1938

 7. Sahni S, Hannan MT, Gagnon D et al (2009) Protective effect of total and supplemental vitamin 
C intake on the risk of hip fracture a 17-year follow-up from the Framingham Osteoporosis 
Study. Osteoporos Int 20:1853–1861

 8. Sahni S, Hannan MT, Blumberg J et al (2009) Inverse association of carotenoid intakes with 
4-y change in bone mineral density in elderly men and women: the Framingham Osteoporosis 
Study. Am J Clin Nutr 89:416–424

 9. Sahni S, Hannan MT, Blumberg J et al (2009) Protective effect of total carotenoid and lyco-
pene intake on the risk of hip fracture: a 17-year follow-up from the Framingham Osteoporosis 
Study. J Bone Miner Res 24:1086–1094

 10. Shah K, Gleason L, Villareal DT (2014) Vitamin K and bone health in older adults. J Nutr 
Gerontol Geriatr 33:10–22

 11. van Wijngaarden JP, Swart KM, Enneman AW et  al (2014) Effect of daily vitamin B-12 
and folic acid supplementation on fracture incidence in elderly individuals with an elevated 
plasma homocysteine concentration: B-PROOF, a randomized controlled trial. Am J Clin Nutr 
100:1578–1586

 12. Sawka AM, Ray JG, Yi Q et al (2007) Randomized clinical trial of homocysteine level lower-
ing therapy and fractures. Arch Intern Med 167:2136–2139

 13. Mangano KM, Sahni S, Kerstetter JE et al (2013) Polyunsaturated fatty acids and their relation 
with bone and muscle health in adults. Curr Osteoporos Rep 11:203–212

 14. Farina EK, Kiel DP, Roubenoff R et  al (2011) Dietary intakes of arachidonic acid and 
alpha-linolenic acid are associated with reduced risk of hip fracture in older adults. J Nutr 
141:1146–1153

 15. Chin K-Y, Ima-Nirwana S (2016) Olives and bone: a green osteoporosis prevention option. Int 
J Environ Res Publ Health 13(8):pii: E755. https://doi.org/10.3390/ijerph13080755

 16. Nguyen TV, Center JR, Eisman JA (2000) Osteoporosis in elderly men and women: effects of 
dietary calcium, physical activity, and body mass index. J Bone Miner Res 15:322–333

 17. Heaney RP, Layman DK (2008) Amount and type of protein influences bone health. Am J Clin 
Nutr 87:1567S–1570S

10 Lifestyle and Osteoporosis Risk in Men (Physical Activity, Diet, Alcohol Abuse)

https://doi.org/10.3390/ijerph13080755


114

 18. Sahni S, Cupples LA, McLean RR et al (2010) Protective effect of high protein and calcium 
intake on the risk of hip fracture in the Framingham offspring cohort. J Bone Miner Res 
25:2770–2776

 19. Rozenberg S, Body JJ, Bruyere O et al (2016) Effects of dairy products consumption on health: 
benefits and beliefs—a commentary from the Belgian Bone Club and the European Society for 
Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases. 
Calcif Tissue Int 98:1–17

 20. Bruyere O, Cavalier E, Souberbielle JC, Bischoff-Ferrari HA, Beaudart C, Buckinx F, 
Reginster JY, Rizzoli R et al (2014) Effects of vitamin D in the elderly population: current 
status and perspectives. Arch Publ Health 72(1):32. https://doi.org/10.1186/2049-3258-72-32

 21. Rizzoli R, Boonen S, Brandi ML et al (2013) Vitamin D supplementation in elderly or post-
menopausal women: a 2013 update of the 2008 recommendations from the European Society 
for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Curr Med 
Res Opin 29:305–313

 22. Ethgen O, Hiligsmann M, Burlet N et al (2016) Cost-effectiveness of personalized supple-
mentation with vitamin D-rich dairy products in the prevention of osteoporotic fractures. 
Osteoporos Int 27:301–308

 23. Cosman F, de Beur SJ, LeBoff MS et al (2014) Clinician’s guide to prevention and treatment 
of osteoporosis. Osteoporos Int 25:2359–2381

 24. Nuti R, Brandi ML, Checchia G, et al (2019). Guidelines for the management of osteoporosis 
and for fragility fractures. Intern Emerg Med 14(1):85–102

 25. Curtis EM, Moon RJ, Dennison EM et al (2016) Recent advances in the pathogenesis and treat-
ment of osteoporosis. Clin Med (London, England) 16(4):360–364. https://doi.org/10.7861/
clinmedicine.16-4-360

 26. Sahni S, Tucker KL, Kiel DP et  al (2013) Milk and yogurt consumption are linked with 
higher bone mineral density but not with hip fracture: the Framingham Offspring Study. Arch 
Osteoporos 8:119. https://doi.org/10.1007/s11657-013-0119-2

 27. Savanelli MC, Barrea L, Macchia PE et  al (2017) Preliminary results demonstrating the 
impact of Mediterranean diet on bone health. J Transl Med 5(1):81. https://doi.org/10.1186/
s12967-017-1184-x

 28. Peng TC, Lian JB, Hirsch PF et al (1991) Lower serum osteocalcin in ethanol-fed rats. J Bone 
Miner Res 6:107–115

 29. Sampson HW, Herbert VA, Booe HL et al (1998) The effect of alcohol consumption on adult 
and aged bone: Composition, morphology and hormone levels of a rat animal model. Alcohol 
Clin Exp Res 22:1746–1753

 30. Rachdaoui N, Sarkar DK (2017) Pathophysiology of the effects of alcohol abuse on the endo-
crine system. Alcohol Res 38(2):255–276

 31. KrawittI EL (1975) Effect of ethanol ingestion on duodenal calcium transport. J Lab Clin Med 
85:665–671

 32. Laitinen K, Tahtela R, Luomanmaki K et al (1994) Mechanisms of hypocalcemia and markers 
of bone turnover in alcohol-intoxicated drinkers. Bone Miner 24:171–179

 33. Sahni S, Kiel DP (2015) Smoking, alcohol, and bone health. In: Holick MF, Nieves JW (eds) 
Nutrition and bone health, vol 30, 2nd edn. Springer, New York, pp 489–504

 34. Diamond T, Stiel D, Lunzer M et al (1998a) Ethanol reduces bone formation and may cause 
osteoporosis. Am J Med 86:282–288

 35. Hyeon JH, Gwak JS, Hong SW et  al (2016) Relationship between bone mineral density 
and alcohol consumption in Korean men: the Fourth Korea National Health and Nutrition 
Examination Survey (KNHANES), 2008–2009. Asia Pract J Clin Nutr 25(2):308–315. https://
doi.org/10.6133/apjcn.2016.25.2.17

 36. Malik P, Gasser RW, Kemmler G et al (2009) Low bone mineral density and impaired bone 
metabolism in young alcoholic patients without liver cirrhosis: a cross-sectional study. Alcohol 
Clin Exp Res 33:375–381

 37. Gonzalez-Reimers E, Alvisa-Negrin J, Santolaria-Fernandez F et  al (2011) Vitamin D and 
nutritional status are related to bone fractures in alcoholics. Alcohol Alcohol 46:148–155

A. Ilacqua et al.

https://doi.org/10.1186/2049-3258-72-32
https://doi.org/10.7861/clinmedicine.16-4-360
https://doi.org/10.7861/clinmedicine.16-4-360
https://doi.org/10.1007/s11657-013-0119-2
https://doi.org/10.1186/s12967-017-1184-x
https://doi.org/10.1186/s12967-017-1184-x
https://doi.org/10.6133/apjcn.2016.25.2.17
https://doi.org/10.6133/apjcn.2016.25.2.17


115

 38. Hoidrup S, Gronbaek M, Gottschau A et al (1999) Alcohol intake, beverage preference, and 
risk of hip fracture in men and women. Copenhagen Centre for Prospective Population Studies. 
Am J Epidemiol 149:993–1001

 39. Santori C, Ceccanti M, Diacinti D et al (2008) Skeletal turnover, bone mineral density, and 
fractures in male chronic abusers of alcohol. J Endocrinol Invest 31:321–326

 40. Pumarino H, Gonzalez P, Oviedo S et al (1996) Assessment of bone status in intermittent and 
continuous alcoholics, without evidence of liver damage. Rev Med Chil 124:423–430

 41. Paccou J, Edwards MH, Ward K et al (2015) Relationships between bone geometry, volumetric 
bone mineral density and bone microarchitecture of the distal radius and tibia with alcohol 
consumption. Bone 78:122–129

 42. Tromp AM, Bravenboer N, Tanck E et al (2006) Additional weight bearing during exercise 
and estrogen in the rat: The effect on bone mass, turnover, and structure. Calcif Tissue Int 
79:404–415

 43. Szulc P, Beck TJ, Marchand F et al (2005) Low skeletal muscle mass is associated with poor 
structural parameters of bone and impaired balance in elderly men, the MINOS study. J Bone 
Miner Res 20:721–729

 44. Santos L, Elliott-Sale KJ, Sale C (2017) Exercise and bone health across the lifespan. 
Biogerontology 18:931–946

 45. Martyn-St James M, Carroll S (2010) Effects of different impact exercise modalities on bone 
mineral density in premenopausal women: a meta-analysis. J Bone Miner Metab 28:251–267

 46. Bolam KA, van Uffelen JG, Taaffe DR (2013) The effect of physical exercise on bone density 
in middle-aged and older men: a systematic review. Osteoporos Int 24:2749–2762

 47. Watson SL, Weeks BK, Weis LJ et  al (2018) High-intensity resistance and impact train-
ing improves bone mineral density and physical function in postmenopausal women with 
osteopenia and osteoporosis: The LIFTMOR randomized controlled trial. J Bone Miner Res 
33(2):211–220. https://doi.org/10.1002/jbmr.3284

 48. Weaver CM, Gordon CM, Janz KF et al (2016) The National Osteoporosis Foundation’s posi-
tion statement on peak bone mass development and lifestyle factors: a systematic review and 
implementation recommendations. Osteoporos Int 27:1281–1386

10 Lifestyle and Osteoporosis Risk in Men (Physical Activity, Diet, Alcohol Abuse)

https://doi.org/10.1002/jbmr.3284


117© Springer Nature Switzerland AG 2020
A. Ferlin, S. Migliaccio (eds.), Male Osteoporosis, Trends in Andrology  
and Sexual Medicine, https://doi.org/10.1007/978-3-319-96376-1_11

Drug-Induced Male Osteoporosis

Valentina Camozzi

Osteoporotic fractures are the main cause of morbidity and mortality among elderly 
men. The risk of having at least one fragility fracture in a 50-year-old male is around 
13%, compared with 40% of women. X-ray studies suggest that up to a third of men 
over 65 years old have at least one vertebral fracture [1].

The risk of hip fracture in men is 5–6% compared to 16–18% in women, but the 
mortality resulting from fragility fractures is significantly higher in men than in 
women [2–4].

While the menopause is the main cause of bone loss in women, in more than 50% 
of men the bone loss is linked with secondary cases, including hypovitaminosis D, 
increased excretion of calcium with urine, and drugs.

Although it has been known for more than 30 years that the same drug can have 
different effects in the two sexes, there are very few studies that separately consider 
males and females in establishing drug-induced bone damage. Generally, in many 
population studies, in which some thousands of patients of both sexes have been 
examined, the multivariate statistical analysis did not show substantial differences 
between the two sexes, with very few exceptions.

The medications that have been shown to induce bone damage as well as an 
increased risk of fractures are essentially glucocorticoids, proton pump inhibitors, 
antiepileptics, androgen deprivation therapy, anticoagulants, some antidiabetics, 
selective reuptake of serotonin inhibitors, calcineurin inhibitors, and diuretics. Their 
actions are summarized in Table 11.1.
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Table 11.1 Mechanism of action and effect on bone metabolism, bone mineral density (BMD), 
and risk of fractures of principal drugs potentially harmful to bone

Medication Mechanism of action Effect BMD Fracture risk
Glucocorticoids Stimulate osteoclast 

activity
Increase osteocyte 
apoptosis
Decrease osteoblast 
recruitment and activity
Decrease intestinal Ca 
absorption
Increase urinary Ca 
excretion
Suppress GH secretion

Increased bone 
resorption
Decreased bone 
formation
Delayed repair of 
micro-fractures

↓ ↑↑↑

Protein pump 
inhibitors

Decrease intestinal Ca 
absorption

Increased PTH 
secretion Increased 
bone resorption

↓ = ↑

Antiepileptic drugs Accelerate vitamin D 
catabolism
Accelerate sex hormone 
catabolism
Inhibit osteoblast 
proliferation

Decreased intestinal 
Ca absorption
Hypogonadism
Reduced bone 
formation

↓ ↑↑

Androgenic 
deprivation therapy

Inhibit testosterone and 
estradiol secretion
Enhance RANKL 
production
Decrease OPG production

Increased bone 
resorption
Decreased bone 
formation

↓↓↓ ↑↑↑

Thiazolidinediones Antagonize PPAR ƴ 
expression in bone 
marrow stromal cells 
reducing osteoblast 
differentiation
Promote osteoclast 
differentiation

Decreased bone 
formation
Increased bone 
resorption

↓ ↑

Anticoagulants Inhibit osteoblast 
differentiation
Enhance RANKL 
production
Decrease OPG production

Decreased bone 
formation
Increased bone 
resorption

↓↓ ↑

Calcineurin 
Inhibitors

Unknown Increased bone 
resorption

↓ = ↑

Selective serotonin 
reuptake inhibitors

Unknown Uncertain effect on 
bone remodeling 
processes

= ↑↑ Independent 
of BMD and 
higher for 
non-vertebral 
fractures

Diuretics Increase urinary Ca 
excretion Hyponatremia

Increased PTH 
secretion Increased 
bone resorption 
Increased 
propension to fall

↓ = ↑
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11.1  Glucocorticoids (GC)

GC are currently used to treat a wide variety of diseases, including autoimmune, 
inflammatory, and dermatological diseases, respiratory disorders, malignancies, and 
solid organ transplants.

Approximately 30–50% of patients receiving GC, even at relatively low doses of 
about 3–10 mg/day of prednisone, have fractures [5–7].

GC have direct and indirect effects on the bone. In the initial phase of therapy, 
GC act directly on osteoclasts. The stimulation of osteoclasts by GC determines a 
prolonged survival of these cells, allowing an enhanced prolonged bone resorption 
which occurs mainly in the regions where the trabecular bone is prevalent, such as 
the spine. GC also induce apoptosis of the osteocytes, contributing to the delayed 
healing of micro-fractures and increasing the risk of major fracture [8, 9]. Finally, 
GC reduce the recruitment of osteoblast precursors, leading to a reduction of osteo-
blastic differentiation and activity, with consequent impairment of bone formation. 
Generally, atraumatic fractures occur in patients receiving GC at a higher bone den-
sity than that observed in postmenopausal osteoporosis.

GC also indirectly affect bone loss: such actions include decreased intestinal 
calcium absorption, suppression of growth hormone, alteration of sex hormones, 
and increased calciuria [7, 10].

The daily dose of GC predicts the fracture more than the cumulative dose. While 
doses higher than 7.5 mg/day of prednisone have a fivefold higher risk of hip and 
column fractures, even lower doses, for example, 2.5 mg/day, appear to significantly 
increase the risk of vertebral fracture [11].

The administration of 10  mg/day for more than 3 months leads to a 17-fold 
increase in vertebral fractures and to a sevenfold increase in hip fractures with 
respect to normal population.

At the suspension of GC treatment, the risk of atraumatic fractures gradually 
decreases, reaching basal levels within 2–3 years [12, 13].

11.2  Proton Pump Inhibitors (PPI)

PPI were introduced at the end of the 1980s for the treatment of gastroesophageal 
diseases.

Several large observational studies suggest that PPI use is associated with a mod-
est increase in the risk of fragility fractures [14–16].

The mechanism by which PPI increase the risk of fracture is not known. By sup-
pressing acid secretion, PPIs could reduce intestinal calcium absorption, leading to 
a reduction in serum calcium, increased parathormone secretion, and increased 
bone resorption [17].

The existence of an association between BMD and the use of PPI is doubtful, 
suggesting that the increased risk of fracture is probably due to qualitative rather 
than quantitative changes in the bone [18, 19].
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Many, but not all, studies on the prolonged use of PPI over a year have shown 
a 20–62% increased risk of hip fractures and a 40–60% increased risk of verte-
bral fractures. This effect seems to be related to the duration of their administra-
tion: in fact, the short-term use of PPI is not associated with any increase in the 
risk of fracture, while the use of these drugs over 1 year increases the fracture 
risk to about 50% and use over more than 7 years increases the fracture risk to 
about 400% [20–22].

A recent meta-analysis found that hip fractures were associated with both high- 
and low-dose PPI, but the cumulative dose seems to be more important than the 
daily dose in increasing the risk of fracture of both the spine and hip [23].

The risk of fracture is rapidly decreasing at the suspension of PPI therapy 
[21, 24].

Numerous studies suggest that patients taking bisphosphonates who also take 
PPI have an increased risk of fracture than those who take bisphosphonates alone 
[25, 26]. In a population-based Korean study on elderly patients, the OR for hip 
fracture related to PPI use was 34% higher than the normal population (OR 1.34; 
1.24–1.44) and increased to 1.7 (95% CI: 1.31–2.23) in patients taking both bisphos-
phonates and PPIs. In this study the males were more numerous than the females 
(65% vs. 35%); however the multivariate analysis did not reveal any difference 
between the two sexes [27]. Higher cumulative doses of PPI (>30  mg) given in 
combination with bisphosphonates resulted in a higher risk of hip fracture. In 
another cohort study, based on a Spanish population of over 5 million people, it was 
found that the use of PPI associated with bisphosphonates significantly increased 
the risk of fracture by 22% (OR 1.22; CI 95% 1.02–1.46) with respect to population 
taking bisphosphonates alone [28].

Based on these data, the use of H2 antagonists rather than PPI should be consid-
ered in patients who are already taking a bisphosphonate. In fact, even if there is no 
unanimous agreement, H2 antagonists seem to have lower or no impact on fracture 
risk [29]. If PPI is necessary, then to shorten therapy as much as possible should be 
considered.

11.3  Antiepileptic Drugs (AED)

AED are used for treatment of epilepsy, migraine, psychiatric disorders, and chronic 
and neuropathic pain.

In epilepsy, AED are associated with a reduction in bone density in men over 65 
years old; however some reports indicate an osteopenizing effect of phenytoin even 
in younger patients [30, 31].

In comparison with the general population, epileptic patients have themselves a 
risk of fracture 2–6 times greater than normal population [32].

In a population-based Danish study, the use of AED was associated with a sig-
nificant increase in the risk of spine and hip fractures, as well as other fractures [33].

Not all AED appear to have the same impact on fractures: in a recent meta- 
analysis, a high risk of fracture was evidenced in patients taking phenobarbital, 
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phenytoin, and topiramate, while valproic acid, gabapentin, lamotrigine, and carba-
mazepine did not increase the risk of fracture [34, 35].

In other studies, gabapentin was associated with increased bone loss and 
increased risk of fracture [32].

Koo et  al. have found that levetiracetam is not associated with an increase in 
biochemical markers of bone turnover or bone loss after 1 year of therapy, suggest-
ing that the new AED drugs are probably more protective for the skeleton than the 
old ones [36].

The causes of bone loss and increased fracture risk in patients taking AED are 
not yet fully elucidated. A number of evidence indicate that bone loss is associated 
with accelerated catabolism of vitamin D and its active metabolites, due to increased 
activity of the cytochrome p450 system. This would result in hypovitaminosis D, 
reduced intestinal absorption of calcium, and secondary hyperparathyroidism which 
would ultimately determine decreased BMD and increased risk of fracture [35, 37].

Several antiepileptic drugs, including phenytoin, carbamazepine, and valproic 
acid appear to have a direct effect on bone cells, which would lead to an increase in 
bone turnover [34, 35, 38]. Interaction with vitamin K has also been proposed as a 
possible mechanism for osteoporosis: vitamin K is an important cofactor in the 
synthesis of osteocalcin, a marker of bone formation [39].

Furthermore, AED appear to increase the metabolism of sex steroids, resulting in 
decreasing both testosterone and estradiol levels [37, 39].

Animal studies suggest that phenytoin has a direct inhibitory effect on osteoblast 
proliferation and decreases osteocalcin production, leading to reduced bone 
formation.

Finally, other mechanisms of action could indirectly influence bone metabolism, 
including increased leptin, increased homocysteine,   and reduced IGF1 [40–42].

11.4  Androgenic Deprivation Therapy (ADT)

The importance of sex steroids, especially estrogen, for the maintenance of bone mass 
in adult and elderly men has now been established by numerous transversal and pro-
spective studies showing a strong association between serum total estradiol levels and 
bone loss. ADT reduces serum testosterone levels in patients with prostate cancer to 
less than 5% and serum estradiol to less than 20% of the normal levels [43–49].

From a molecular point of view, the key mechanism of ADT in reducing bone 
mass is represented by the activation of RANKL and by the inhibition of OPG, with 
a consequent increase in bone resorption and bone loss [50].

In the first months of therapy, the decrease of BMD is approximately 2–5% per 
year, while the increase of vertebral and hip fractures is approximately 20–50% 
after 5 years of treatment.

ADT determines a rate of bone loss in elderly people of about 4–4.6% per year, 
significantly higher than that observed in normal aging men and in postmenopausal 
women. The rate of bone loss is approximatively twice than that observed in women 
with breast cancer treated with aromatase inhibitors [51, 52].
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The prevalence of osteoporosis or osteopenia in patients with prostate cancer 
varies from 4 to 38%. The addition of ADT rapidly worsens pre-existing osteoporosis.

Associated with the rapid reduction of BMD, there is also an increased risk of 
fracture: in the various epidemiological studies, the increased risk of vertebral frac-
ture is 23–39% higher than that of the normal population. Patients who received 
combination therapy with ADT and antiandrogens have a higher risk of fracture 
than those who received monotherapy [51, 53–55].

Mortality after fragility fractures is 38% higher in men with prostate cancer 
and fracture than in those with prostate cancer without fracture (OR 1.38; CI: 
1.34–1.43) [54, 56].

11.5  The Thiazolidinediones (TZD)

TZD are widely used for the treatment of type 2 diabetes mellitus. These drugs 
antagonize the activated proliferator peroxisome receptor γ (PPAR γ) expressed in 
bone marrow stromal cells, osteoblasts, and osteoclasts, which plays an essential 
role in the differentiation of precursor cells to osteoblasts. TZD also act on bone 
remodeling by increasing bone marrow adiposity, decreasing the aromatase activity, 
and promoting osteoclast differentiation, thus also inducing an increase in bone 
resorption [57].

In humans, TZD decrease BMD at the lumbar spine and hip and increase the risk 
of fracture. Rosiglitazone and pioglitazone are associated with a significant increase 
in the fracture risk (OR 1.45, CI 95% 1.18–1.79). Some studies indicate a gender 
difference in the osteopenizing action of TZD: Loke et  al. showed a significant 
increase in the risk of fractures in women (OR 2.23, 95% CI 1.65–3.01, p < 0.001), 
but not in men (OR 1.00, 95% CI 0.73–1.39, p = 0.98) [58].

Other studies have confirmed the finding, showing a fracture increase of 20–50% 
in women, but not in men [59, 60]. In contrast, Douglas et al., in an observational 
study of the UK population, found that TZD significantly increased the risk of non- 
vertebral fractures regardless of age and gender [61].

11.6  Anticoagulants

Heparin has been used for the prevention and treatment of venous thromboembo-
lism for over 50 years. Its prolonged use causes reduction of BMD and increase of 
fractures. The main effect of unfractionated heparin is the inhibition of osteoblast 
differentiation and activity, resulting in reduced bone formation. In addition, bone 
resorption is also increased, favoring osteoclast differentiation by reducing OPG 
and increasing RANKL [62].

Heparin-induced bone loss is dose-dependent and reversible with its discontinu-
ation [63, 64].

Some studies, taking into account a limited population, suggest that low molecu-
lar weight heparin (LMWH) is associated with a lower incidence and prevalence of 
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fragility fractures than unfractionated heparin [65, 66]. However, a large prospec-
tive study in pregnant patients found no differences between unfractionated heparin 
and LMWH [67].

The most recent heparins, including fondaparinux, do not appear to have any 
effect on osteoblast differentiation or function in vitro and are expected to be neutral 
in bone metabolism [68, 69].

The various studies on the effect of warfarin on bone density and on the inci-
dence of fractures did not lead to univocal results. Many small cross-sectional stud-
ies and retrospective studies indicate that warfarin is associated with reduction of 
BMD and increased vertebral and costal fractures [70–72]. However, other studies 
do not seem to have any significant effect on BMD or fracture [73–75].

11.7  Calcineurin Inhibitors

Calcineurin inhibitors, including cyclosporin (CsA) and tacrolimus (FK506), have 
been widely used as immunosuppressants to prevent transplant rejection or to treat 
autoimmune diseases. Both are associated with bone loss and increased fracture 
risk, although the exact mechanisms are still unknown. In vitro, calcineurin inhibi-
tors inhibit osteoclastogenesis and osteoclast activity by reducing the nuclear factor 
of acute T cells, cytoplasmic 1 (NFATc1) [76, 77].

In animal models and in humans, these drugs cause both duration- and dose- 
dependent bone loss, mainly due to an increased bone resorption [78–83].

Bone damage caused by calcineurin inhibitors in men is difficult to assess due to 
the simultaneous damaging effect of confounding factors, such as underlying dis-
ease and the use of post-transplant glucocorticoids. However, when CsA or FK506 
is administered as monotherapy or with low doses of glucocorticoids (<10  mg 
daily), there is not significant reductions in BMD [84, 85]. The use of CsA or 
FK506 in autoimmune diseases at doses below 5 mg/kg/day does not appear to be 
associated with significant bone loss [86].

11.8  Selective Serotonin Reuptake Inhibitors (SSRI)

SSRI, including fluoxetine, sertraline, paroxetine, fluvoxamine, and citalopram, as 
well as duloxetine (norepinephrine reuptake inhibitor), are widely used in the treat-
ment of depression, anxiety, premenstrual syndrome, peripheral neuropathy, fibro-
myalgia, and chronic musculoskeletal pain.

In several population-based studies, there was a close association between depres-
sion and low bone density in young and old men, with an increased relative risk of 
developing osteoporosis threefold higher than that of the normal population [87–91].

Because the presence of osteoporosis is common in depressed individuals, it is 
difficult to establish the role of SSRI in the development of the disease. Several 
studies have shown that SSRI are associated with bone loss and increased risk of 
fracture [92–95].
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Recent meta-analyses confirm this association with an increased risk of fracture 
of about 1.5–2 times compared to normal population [96–98]. The increased frac-
ture risk is expected to be higher within 1 month after initiation for tricyclics, and 
after 8 months for SSRI, and diminishes in few years following discontinuation [96].

Fracture risk is higher for femoral and non-vertebral fractures than for vertebral 
ones [98]: the adjusted probability ratio for hip fracture was 2.4 (95% CI: 2.0–2.7) 
for exposure to SSRI, 2.2 (95%CI: 1.8–2.8) for exposure to secondary amine tricy-
clic antidepressant, and 1.5 (95% CI: 1.3–1.7) for exposure to tertiary amine tricy-
clic antidepressant [93, 95].

Depending on the dose used, the increased risk of fracture may appear early, 
within 6 weeks of starting therapy, or after prolonged use at lower doses, after 3–5 
years of treatment [95, 97, 99], with a prevalence which is about twice that of the 
normal population, and tends to disappear after about 1 year from the discontinua-
tion of therapy.

The daily use of SSRI is also associated, in a dose-dependent manner, with 
higher probability of fall (OR 2.2; 95% CI: 1.4–3.5) and with lower bone mineral 
density at the hip and spine [100, 101].

Surprisingly, SSRI-associated fractures seem to be independent of BMD, indi-
cating a possible effect on the qualitative, rather than quantitative, characteristics of 
skeletal tissue [96].

11.9  Diuretics

Different classes of diuretics can lead to different effects on calcium metabolism. 
Loop diuretics inhibit the Na-K-2Cl transporter and increase renal calcium excre-
tion. They are often used in the treatment of hypercalcemia, congestive heart dis-
ease, and chronic renal failure.

Carbonic anhydrase inhibitors decrease bicarbonate absorption, so the resultant 
metabolic acidosis can increase renal calcium excretion. These drugs are now used 
for the treatment of glaucoma and can promote nephrocalcinosis and 
nephrolithiasis.

The increased urinary calcium excretion would lead to hyperparathyroidism and, 
ultimately, to increased bone resorption, enhanced bone loss, and higher risk of 
fracture.

In contrast, thiazide diuretics block the thiazide-sensitive Na-Cl transporter in 
the distal convoluted tubule and decrease calcium excretion. They are often used in 
the treatment of nephrolithiasis and are associated with a reduction in the risk of 
fracture [102–105]. Medications used to treat heart failure, including spironolac-
tone and thiazide, may protect against osteoporosis. In contrast, loop diuretics may 
worsen osteoporosis [106, 107]. Arampatzis et al., in a large observational study, 
found that elderly patients with fragility fractures had a significant higher consump-
tion of loop diuretics, spironolactone, and amiloride, but not thiazide, than those 
without fractures [108].
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The action on the renal handling of calcium does not seem to be the unique 
explanation of the influence of diuretics on osteoporosis and risk of fracture. 
Some evidences attribute the increased risk of fracture to hyponatremia, which is 
easily found during the prolonged use of various types of diuretics. Severe hypo-
natremia may cause dizziness and increase the propensity to falls and has been 
associated with increased bone loss and incidence of fracture, independently of 
BMD [109–112].
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12.1  Introduction

In an increasingly obese and aging population, metabolic chronic diseases, low bone 
mass, and osteoporotic fractures are major public health concerns. In fact, during the 
last decades, obesity and osteoporosis have become important global health problems 
with an increasing prevalence worldwide [1–4]. Furthermore, the belief that obesity is 
protective against osteoporosis has come into question as demonstrated by recent epi-
demiologic and clinical studies, which show that high level of fat mass might be a risk 
factor for osteoporosis and fragility fractures, both in men and women [5–8]. In par-
ticular, we have demonstrated that TF negatively correlates with BMD independently 
from vitamin D levels, reduced IGF-1, and increased inflammatory markers [7].

Several potential mechanisms have been proposed to explain the complex rela-
tionship between adipose tissue and bone, and understanding how obesity deter-
mines low bone mass and modulates fracture risk is important to identify and treat 
people in order to prevent fractures. Most available evidences indicate that a signifi-
cant number of fractures occur in obese men. Body mass index (BMI) is positively 
associated with bone mineral density (BMD), and the mechanisms of this associa-
tion in  vivo might include increased loading and higher aromatase activity [9]. 
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Indeed, fat tissue is one of the major sources of aromatase, an enzyme also expressed 
in the gonads, which from androgen precursors synthesizes estrogens, steroid hor-
mones which play a pivotal role in the maintenance of skeletal homeostasis and 
protecting against osteoporosis by reducing bone resorption and stimulating bone 
formation [9]. However, some fat depots, as visceral fat, might have negative effects 
on the bone by producing cytokines, molecules able to modulate bone metabolism 
as pro-resorptive factors [10–12]. Adipose tissue, in fact, secretes various inflamma-
tory cytokines, including interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), 
resistin, leptin, and adiponectin, which affect human energy and metabolic homeo-
stasis but are also involved in bone metabolism [13–16]. Moreover, high intramus-
cular fat content is associated with poorer muscle function, attenuating loading 
effects and increasing the risk of falls [9]. A recent study has demonstrated that in 
older men, the condition of sarcopenic obesity is associated with increased fall rates 
compared with non-sarcopenic obese subjects [10].

On the other hand, since the demonstration that bone cells express several spe-
cific hormone receptors [14–17], and since recent observations have shown that 
osteocalcin (OCN) and osteopontin (OPN), bone-derived factors, affect body weight 
control and glucose homeostasis [18–20], the bone has come to be considered an 
endocrine target organ and an endocrine organ itself [21]. These considerations sug-
gest a possible role of bone as a player of a potential feedback mechanism between 
the skeleton and the other endocrine organs [21]. Thus, the cross talk between fat 
and bone likely constitutes a homoeostatic feedback system in which adipokines 
and bone-derived molecules represent the link of an active bone-adipose axis.

Moreover, adipocytes and osteoblasts originate from a common progenitor, a 
pluripotent mesenchymal stem cell (MSC) [22], which has an equal propensity for 
differentiation into adipocytes or osteoblasts (or other lines) upon the influence of 
several cell-derived transcription factors. This process is complex, suggesting sig-
nificant plasticity and multifaceted mechanism(s) of regulation within different cell 
lineages, among which are adipocytes and osteoblasts [23, 24].

Finally, obesity is associated with gonadal dysfunction: in women, obesity is 
associated with androgen excess disorders, mostly the polycystic ovary syndrome, 
whereas androgen deficiency is frequently present in obese men [25].

12.2  Fat, Bone, and Fat Bone Marrow Interplay

Obesity has always been recognized as a risk factor for cardiovascular and meta-
bolic chronic diseases [2]. Nevertheless, it has been considered a protective factor 
for bone loss and osteoporosis, which is defined as a bone metabolic disease, char-
acterized by a decrease in bone strength leading to an increased risk of developing 
spontaneous and traumatic fractures. Even though body fat and lean mass have been 
positively correlated with BMD, since obesity apparently exerts protection against 
bone loss, during the last decades, numerous evidences have described an opposite 
event, suggesting an inverse relationship between obesity and osteoporosis and 
showing that an increased abdominal fat tissue might be considered a risk factor for 
osteoporosis and fragility fractures [5, 7, 8] (Fig. 12.1).
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The mechanisms whereby increased central adiposity leads to metabolic altera-
tions, cardiovascular morbidity, and bone loss have been largely based on the dem-
onstration that adipose tissue secretes a number of cytokines and bioactive 
compounds, named adipokines.

The adipokines, which include a variety of pro-inflammatory peptides, are 
involved in many physiological or pathological processes, and their dysregulation is 
a strong determinant of the low-grade inflammatory state of obesity, which pro-
motes a cascade of metabolic alterations leading to cardiovascular complications, 
insulin resistance (or diabetes mellitus), and bone loss [11, 13].

Leptin, the first identified adipose tissue-derived factor, is an anorexigenic hor-
mone secreted by adipocytes in proportion to body fat content, and its levels are typi-
cally elevated in obesity, which is considered a leptin-resistant state [26]. Interestingly, 
in obese subjects hyperleptinemia has been widely recognized as an independent car-
diovascular risk factor associated with hyperinsulinemia and insulin resistance [27], 
whereas its effect on the bone appears composite, since both negative and positive 
actions have been reported on BMD, both in men and women [28, 29]. Leptin-
deficient ob/ob mice and leptin receptor-deficient db/db mice are extremely obese, 
with increased vertebral trabecular bone volume due to increased bone formation 
[30], while intra-cerebroventricular infusion of leptin in both ob/ob and wild-type 
mice has shown to decrease vertebral trabecular bone mass [30]. In vivo studies indi-
cate that the effect of leptin might depend on its site and mode of action [31], and it 
has been proposed that peripheral administration of leptin could increase bone mass 

Obesity

Hypogonadism

Bone Mass

?

Leptin

Osteocalcin
Adiponectin

Resistin

TNF-α

IL-6

Fig. 12.1 Interplay between bone, fat, and gonads

12 Obesity and Male Osteoporosis: Protective Factor?



134

by inhibiting bone resorption and increasing bone formation, while inhibiting bone 
formation through a central nervous system effect [28]. In vitro studies also indicate 
that leptin can act directly on bone marrow-derived mesenchymal stem cells (BMSCs) 
to enhance their differentiation into osteoblasts and to inhibit their differentiation into 
adipocytes [32]. Finally, leptin inhibits the expression of neuropeptide Y (NPY), a 
hypothalamus-derived peptide, essential for the regulation of food consumption, 
energy homeostasis, and bone remodeling [33]. Specific NPY-knockout mice display 
a significant decrease in body weight, a significant increase in food intake, and two-
fold increase in trabecular bone volume compared with wild-type animals [34].

Adiponectin exerts a protective role on cardiovascular system and glucose 
metabolism, and in contrast with leptin, its serum levels are reduced in obese and 
diabetic subjects and increase after weight loss [35]. Indeed, low levels of adiponec-
tin are a common feature of obesity and correlate with insulin resistance [36]. 
Moreover, adiponectin levels are inversely related to the circulating levels of 
C-reactive protein (CRP), TNF-α and IL-6, powerful inhibitors of adiponectin 
expression, and secretion in cultured human adipose cells [37]. Interestingly, human 
osteoblasts express adiponectin and its receptors, and in vivo and in vitro studies 
show that adiponectin increases bone mass by suppressing osteoclastogenesis and 
activating osteoblastogenesis [38], likely indicating that a rise in adiponectin, upon 
fat reduction, could beneficially affect BMD.

Resistin is produced by macrophages and visceral adipocytes. Resistin is ele-
vated in obesity and regulates insulin sensitivity in skeletal muscle and liver, and it 
is positively associated with insulin resistance and glucose tolerance in both human 
and animal models [39]. Resistin might also play a role in bone remodeling, increas-
ing osteoblast proliferation, cytokine release, and osteoclast differentiation [40] 
(Table 12.1).

Table 12.1 Adipokines and bone remodeling

Leptin –  Inhibition of bone resorption and increasing bone formation, while inhibiting 
bone formation through a central nervous system effect, through peripheral 
administration [28]

–  Direct action on marrow-derived mesenchymal stem cells (BMSCs) to enhance 
their differentiation into osteoblasts and to inhibit their differentiation into 
adipocytes [32]

–  Inhibition of the expression of neuropeptide Y (NPY), a hypothalamus- derived 
peptide, essential for the regulation of food consumption, energy homeostasis, 
and bone remodeling [32]

Adiponectin –  Increase in bone mass by suppressing osteoclastogenesis and activating 
osteoblastogenesis [38]

Resistin –  Might play a role in bone remodeling, increasing osteoblast proliferation, 
cytokine release, and osteoclast differentiation [40]

TNF-α –  Effect on bone remodeling, with a potent effect on osteoclastogenesis, not only 
promoting RANKL production but synergizing with RANKL to amplify 
osteoclastogenesis and to intensify osteoclastic resorption by directly 
modulating RANKL-induced signal transduction pathways [47]

IL-6 –  Stimulation of osteoclastogenesis and bone resorption
–  Stimulation of the increase of mesenchymal progenitor differentiation toward 

the osteoblastic lineage [50]
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TNF-α is a pro-inflammatory cytokine which plays important regulatory effects 
on lipid metabolism, adipocyte function, insulin signaling, and bone remodeling 
[41]. Its expression correlates with percent body fat, insulin resistance, and osteo-
clast activity in humans [42, 43]. Osteoclasts are cells tasked with resorbing bone 
and the identification of three different molecules: the receptor activator of NF-kB 
ligand (RANKL), an osteoclastogenic cytokine, its receptor (RANK), and its inhibi-
tor osteoprotegerin (OPG) built the bases of the modern bone biology [44]. RANKL 
is the key osteoclastogenic cytokine effector, inducing osteoclast formation and pro-
moting osteoclast resorptive activity [45]. TNF-α promotes RANKL production by 
BMSCs and mature osteoblasts, reduces OPG production, and upregulates the 
receptor RANK on osteoclast precursors, increasing their sensitivity to prevailing 
RANKL concentrations [46]. Additionally, TNF-α turns out to have another prop-
erty that is relatively unique among the inflammatory cytokines; it has potent effects 
on osteoclastogenesis as it not only promotes RANKL production but synergizes 
with RANKL to amplify osteoclastogenesis and to intensify osteoclastic resorption 
by directly modulating RANKL-induced signal transduction pathways [47].

IL-6 is a cytokine which has a wide range of actions; it is secreted by several cell 
types, including fibroblast, endothelial cells, and adipocytes; and its plasma levels 
are significantly upregulated in human obesity and insulin resistance [48]. As TNF-α 
also IL-6 is a well-recognized stimulator of osteoclastogenesis and bone resorption. 
Several data show that IL-6 mRNA is expressed in preosteoblasts and osteoblasts 
[49] and that it stimulates osteoblast proliferation and differentiation by controlling 
the production of local factor [50, 51].

Mature bone cells secrete factors that modulate insulin sensitivity and glucose 
metabolism, such as OCN, by which the skeleton could function as an endocrine 
organ itself [50,  52]. OCN is an osteoblast-specific protein and a major non-collag-
enous protein in the extracellular matrix. Karsenty and colleagues demonstrated 
that uncarboxylated OCN, acting as a pro-hormone, can increase β-cell prolifera-
tion, insulin secretion, insulin sensitivity, and adiponectin expression [53]. Thus, 
osteoblasts might be able to regulate glucose metabolism by modulating the bioac-
tivity of OCN.  In addition, more recent studies showed that OCN bioactivity is 
modulated by enhanced sympathetic tone driven by leptin, which has been shown to 
suppress insulin secretion by β-cells [54], and three recent studies have demon-
strated an inverse correlation between serum OCN and plasma glucose levels, sup-
porting a role for this pathway in humans [55]. Thus, a novel picture has emerged 
linking glucose metabolism, adipose stores, and skeletal activity.

OPN is an active player in many physiological and pathological processes, 
including biomineralization, tissue remodeling, and inflammation. Modulation of 
immune cell response by OPN has been associated with various inflammatory dis-
eases and might play a pivotal role in the development of adipose tissue inflamma-
tion, insulin resistance, and diabetes [56]. OPN expression is drastically upregulated 
by 40- and 80-fold in adipose tissue from diet-induced and genetically obese mice, 
respectively [57], and it has been demonstrated that OPN expression in adipose tis-
sue and circulating OPN levels were substantially elevated in obese, diabetic, and 
insulin-resistant patients compared with lean subjects and conversely that dietary 
weight loss significantly decreased OPN concentrations [58, 59].
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Emerging evidence points to a critical role for the skeleton in several homeo-
static processes including energy balance and adipose metabolism, and the con-
nection between fuel utilization and skeletal remodeling seems to begin in the 
bone marrow with lineage allocation of MSCs into adipocytes or osteoblasts. 
Adipocytes and osteoblasts, in fact, originate from a common progenitor, a plu-
ripotent mesenchymal stem cell [60], which has an equal propensity for differen-
tiation into adipocytes or osteoblasts or other lines, such as chondrocytes, 
fibroblast, and endothelial cells, under the influence of several cell-derived tran-
scription factors. This process is complex, suggesting significant plasticity and 
multifaceted mechanism(s) of regulation within different cell lineages, among 
which are adipocytes and osteoblasts [22, 61].

Transdifferentiation is the switching of differentiated cells that sometimes occurs 
during disease [62], and it interests partially differentiated cells (e.g., pre- osteoblasts) 
that switch to another lineage (e.g., adipocytes) [63]. Fat bone marrow is indicative 
of aging, and it is frequently observed in the presence of osteoporosis [64]. One 
possible cause of bone marrow fat deposition is the aberrant commitment of 
BMMSCs into adipocytes because of their inability to differentiate into other cell 
lineages, such as osteoblasts. There exists an inverse relationship between bone 
marrow fat production and bone formation during osteoporosis; in fact an inhibited 
adipogenesis in subjects with a high bone mass has been observed [65]. Recently, a 
correlation between the osteo-adipogenic transdifferentiation of bone marrow cells 
and numerous bone metabolism diseases has been established. Human BMMSC- 
derived osteoblasts, adipocytes, and chondrocytes had the potential to transdifferen-
tiate to each lineage, and these findings provided new insights on the pathogenesis 
of skeletal diseases such as osteoporosis in both sexes [66].

Estrogens can regulate several molecular signals within bone metabolism and 
play a pivotal role in the development of bone marrow fat [67–69]. Recent studies 
have shown that estrogens suppress osteo-adipogenic transdifferentiation via canon-
ical Wnt signaling, which regulates bone development, adipogenic differentiation, 
and gene expression in the whole process of bone metabolism [65, 70]. Specifically, 
canonical Wnt/beta-catenin signaling is highly expressed in mesenchymal precursor 
cells and pluripotent cells, especially toward the osteoblast lineage, while inhibiting 
adipogenic differentiation [71]. Canonical Wnt signaling stabilizes and promotes 
cellular and nuclear beta-catenin levels, which inhibit adipogenesis [72], and the 
suppression of Wnt signaling is crucial for PPAR gamma induction and preadipo-
cyte differentiation [73].

PPARγ plays a central role in initiating adipogenesis, and mutations of the 
PPARγ gene are associated with an altered balance between bone and fat formation 
in the bone marrow [61]. PPARγ insufficiency led to increased osteoblastogenesis 
in vitro and higher trabecular bone volume in vivo, confirming the key role of mes-
enchymal stem cell lineage allocation in the skeleton [60]. Interestingly, aged mice 
exhibit fat infiltration into the bone marrow, and enhanced expression of PPARγ-2, 
along with reduced mRNA expression of bone differentiation factors [73], and mice 
with premature aging (the SAM-P/6 model) show nearly identical patterns of adipo-
cyte infiltration, with impaired osteoblastogenesis [74], indicating that aging, or 
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events that accelerate aging, results in significant bone marrow adiposity and in 
defect in osteoblastogenesis in mice [75].

Estrogens and androgens can both modulate several molecular signals within 
bone metabolism and play a role in the development of bone marrow fat. Moreover, 
BMMSCs express androgen receptor (AR), and a recent study shows that andro-
gens, independently of their aromatization, are able to prevent rosiglitazone-induced 
adipogenesis in human mesenchymal stem cells [76].

12.3  Obesity, Androgen Deficiency, and Bone Metabolism

Estrogens and androgens modulate bone remodeling by regulating the activity of 
the abovementioned molecules, thus protecting against bone loss by regulating the 
activity of genes responsible for osteoclastogenesis and mesenchymal cell replica-
tion, exerting pro-apoptotic effects on osteoclasts and anti-apoptotic effects on 
osteoblasts and osteocytes. Conversely, hypogonadism leads to increased bone 
resorption, both in men and women [77].

Testosterone deficiency syndrome is becoming recognized as an increasingly 
frequent problem in the aging male population [78], and low serum testosterone is 
more common in men with type 2 diabetes mellitus, metabolic syndrome, cardio-
vascular disease, and obesity than in the general population [79–81]. Interestingly, 
it is known that obesity in men is associated with low testosterone and reduced sex 
hormone-binding globulin (SHBG) levels. An increased BMI is associated with a 
low measured, or calculated, free and bioavailable testosterone. Specific pathoge-
netic mechanisms involved in this phenomenon are complex and not completely 
understood, but evidence indicates that testosterone deficiency induces increased 
adiposity, while increased adiposity induces hypogonadism [82].

The prevalence of secondary hypogonadism in adult male subjects affected by 
type 2 diabetes has been estimated to be 29% (range 25–40%), with a higher preva-
lence of 50% when obesity and type 2 diabetes coexist. Indeed, several studies 
indicate that men who are obese at baseline and at follow-up, either if fat tissue 
excess is measured by BMI or by central obesity prevalence (waist/hip ratio or waist 
circumference), exhibit a greater decline of total and free testosterone compared to 
men who were never classified as obese [83], mainly due to higher amounts of vis-
ceral fat [84]. Visceral adiposity is associated with elevated concentrations of insu-
lin, C-peptide, and glucose intolerance, which are negatively correlated to total and 
free testosterone levels [85, 86]. The link between obesity and (decreased) SHBG is 
mainly explained by the effects of obesity-induced insulin resistance, resulting in 
higher insulin levels that subsequently suppress hepatic production of SHBG that 
would then result in reduced delivery of testosterone to the peripheral tissues and 
increased availability of free testosterone as a substrate for aromatase to convert into 
estradiol [87, 88].

Male obesity is associated with increased aromatase activity within adipocytes 
[89], and estradiol in turn exerts a negative feedback effect on LH secretion from the 
pituitary [90]. This may worsen obesity and promote increased fat mass that 
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represents a vicious circle perpetuating the hypogonadal state, thus resulting in a 
reduction in muscle mass and an increase in the volume of visceral fat [91]. Another 
mechanism that mediates obesity-related effects on the male hypothalamic- 
pituitary- testicular axis is mediated by increased plasma leptin levels that exert a 
direct negative action on LH-/hCG-stimulated testicular androgen production and 
decrease Leydig cell responsiveness to gonadotropin stimulation [92]. Finally, 
inflammatory mediators, such as C-reactive protein, have been demonstrated to con-
tribute to the suppression of the hypothalamic-pituitary-testicular axis function and 
to the development of male secondary hypogonadism [93].

Emerging data suggest that bone mass, energy metabolism, and reproductive 
function might be coordinately regulated. The main mediator of this axis is under-
carboxylated osteocalcin (uOCN), a bone-derived hormone, which has recognized 
effects as the improvement of insulin secretion from the pancreas; the amelioration 
of systemic insulin sensitivity, in particular in skeletal muscle; and the stimulation 
of the global endocrine activity of the Leydig cell, including vitamin D 
25- hydroxylation and testosterone production [94]. A rising interest toward the non- 
classical effects of 25-hydroxycholecalciferol 25(OH)D (vitamin D) exists, based 
on the presence of its receptors in tissues other than the bone, gut, and kidneys [95]. 
Several studies have suggested the involvement of vitamin D in the pathogenesis of 
CVD, cancer, and metabolic syndrome [96–98]. The association of low vitamin D 
levels and metabolic syndrome is more pronounced in overweight and obese than in 
normal-weight individuals [99]. A recent study confirmed the lowest vitamin D con-
centrations and the highest prevalence of vitamin D deficiency in type 2 diabetes 
patients with hypogonadism, particularly in those with secondary hypogonadism 
[100]. Several mechanisms have been proposed to explain the role of vitamin D in 
the pathogenesis of insulin resistance, and adiponectin has been proposed as a major 
player with its strong association with impaired glucose tolerance, independent 
from adiposity [101]. Adiponectin and glucose homeostasis are both correlated to 
OCN levels, an osteoblast hormone linked to vitamin D metabolism, as mentioned 
above [94, 102]. Interestingly, animal studies suggest that bone might be a positive 
regulator of male fertility and that this action might be mediated through OCN, via 
binding to a specific receptor present on Leydig cells that favors testosterone bio-
synthesis. OCN-deficient mice show a decrease in testicular, epididymal, and semi-
nal vesicle weights and sperm count, and Leydig cell maturation appears to be 
halted in the absence of OCN [103]. Androgens favor periosteal bone formation in 
men and maintain trabecular bone mass and integrity by inhibiting IL-6 production 
[104]. Also, androgens stimulate the proliferation of osteoblast progenitors and the 
differentiation of mature osteoblasts by decreasing osteoclast formation and bone 
resorption, via increased production of OPG by osteoblasts [77]. The net result of 
these functions leads to an accrual in bone formation [105]. Finally, our group has 
recently demonstrated an association between visceral fat mass, altered insulin sen-
sitivity, OCN, and testosterone levels in aging obese male subjects that are signifi-
cantly correlated with skeletal health [106]. In this view, OCN might be considered 
a new important marker of metabolic and gonadic function in obese men, other than 
the well-established function as a marker of bone remodeling.
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12.4  Conclusions

Body fat and bone interplay through several adipokines and bone-derived mole-
cules, such as OCN, which modulate bone remodeling, adipogenesis, body weight 
control, and glucose homeostasis. Thus, the existence of a cross talk between fat and 
bone tissue suggests a homoeostatic feedback system in which adipokines and 
bone-derived molecules form part of an active bone-adipose axis.

In conditions such as aging, hypogonadism, obesity, or metabolic alterations, an 
osteo-adipogenic transdifferentiation and an aberrant commitment of BMMSCs 
into adipocytes might occur. In particular, since BMMSCs express androgen recep-
tor, androgens can modulate several molecular signals within bone metabolism and 
might play a role in the development of bone marrow fat, which might explain sev-
eral mechanisms linking obesity to an increase of male skeletal alterations as com-
pared to subjects with normal body weight.

Finally, obesity is associated with gonadal dysfunction, leading to androgen defi-
ciency. Since androgens promote bone formation, and bone tissue might be a posi-
tive regulator of male fertility, through OCN, and since an association between 
visceral fat mass, insulin sensitivity, OCN, and testosterone levels in obese men has 
been observed, OCN might be considered a new important marker of metabolic and 
gonadic functions in adult obese men, other than the well-established function as a 
marker of bone remodeling.
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HIV and Osteoporosis

Fabio Vescini, Teresa Porcelli, and Franco Grimaldi

13.1  Introduction

The advent of highly active antiretroviral therapy (HAART) has significantly 
improved the survival of people living with human immunodeficiency virus (HIV) 
infection [1].

Together with increased survival, several serious co-morbidities have appeared, 
which may compromise both the duration and the quality of life of these patients. 
The main concern of infectious disease specialists is, at present, the prevention of 
heart disease, diabetes, hyperlipidemia, chronic renal insufficiency, malignancies, 
cognitive disorders, and osteoporosis [2].

A high prevalence of osteopenia and osteoporosis has been reported in people living 
with HIV (PLWHIV) [3–7]. Osteoporosis is a systemic skeletal disease characterized by 
decreased bone mass and microarchitectural deterioration of bone tissue; these conditions 
cause increased bone fragility, which in turn increases the risk of fracture.

Several studies have found a higher incidence of fragility fractures in PLWHIV 
than in the general population. For PLWHIV the odds ratio for fracture may rise up 
to 2.17 (95% CI 1.29–3.66). It is interesting to note that a large part of the studied 
patients were young males (age range 36–56 years) [8]. Due to the very low risk of 
fracture shown by young age-matched healthy subjects, PLWHIV appear to be a 
high-risk population. The incidence of osteoporotic fractures is significantly higher 
in HIV-infected patients, both males and females, compared to serum-negative con-
trols; it is estimated that the prevalence of subclinical vertebral fractures is approxi-
mately 25% [9]. It is well known that PLWHIV are facing a premature aging, and, 
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as a matter of fact, fracture onset occurs earlier in these patients than the general 
population [10, 11].

Aging is one of the most important determinants of bone loss in humans; thus the 
increased survival of PLWHIV in the HAART era, together with the premature 
aging, may represent a risk factor for osteoporosis. Nevertheless aging cannot 
explain the whole burden of this co-morbidity as there are clear demonstrations that 
both the HIV virus and the HAART play an important role in the pathogenesis of 
this particular bone disease [7].

Furthermore, other risk factors for osteoporosis, such as low body weight, drug 
abuse, smoking, and alcohol consumption [9] together with an increased rate of 
vitamin D deficiency, are frequently present in PLWHIV [12].

Considering only males, hypogonadism should be regarded as an additional risk 
factor for osteoporosis and fractures, as it may be present in almost 25% of HIV- 
infected men [13, 14]. Testosterone has a clear direct effect on bone health as it 
stimulates osteoblasts to form new bone and helps osteocytes to prevent bone loss 
[15]. Low testosterone levels, therefore, contribute to reduce bone mineral density 
(BMD) in HIV-infected men. However, recent data have shown that the lack of 
estradiol, rather than testosterone, is responsible for bone loss in these patients; 
estradiol plasma levels lower than 27 pg/mL were clearly associated with reduced 
BMD, thus representing a threshold beneath which bone loss may occur [16]. 
Testosterone replacement therapy should be always offered to hypogonadal men 
with HIV as it may slow down the declining BMD [13]. Finally, some authors have 
also reported that in men living with HIV the response to the anti-osteoporotic drug 
risedronate may be blunted by hypogonadism [17].

The etiology of osteoporosis in PLWHIV is multifactorial [18, 19]. HIV-infected 
bones constantly show an imbalance of bone remodeling, with both increased bone 
resorption and inhibited bone formation (Fig.  13.1). The virus, as well as the 
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HAART, plays a key role in enhancing osteoclastogenesis and in reducing osteo-
blast differentiation [7].

13.2  Pathogenic Mechanisms of Bone Damage

13.2.1  The Virus

Mesenchymal bone marrow stem cells are able to differentiate into osteoblasts. 
Several studies have demonstrated that these cells can be infected by HIV and may 
even constitute a reservoir for virus replication. The viral proteins switch mesenchy-
mal stem cell differentiation toward the production of adipocytes, via an overex-
pression of PPARγ, at the expense of osteoblasts, whose formation is slowed down 
by a reduced expression of the transcription factor RUNX-2 [7]. In vitro studies 
have shown that viral proteins may induce the apoptosis of cultured osteoblast and 
reduce their activity. In fact, infected cells show a decreased ability in calcifying the 
bone matrix, a reduced production of alkaline phosphatase, and a low expression of 
RUNX-2 [7]. Finally, in vivo histomorphometric studies have confirmed a reduction 
both in the number and activity of osteoblasts, which are associated with low plasma 
osteocalcin levels [7].

The HIV can also increase bone resorption by stimulating osteoclast differentia-
tion. Both the increased production of RANKL/M-CSF and the reduced synthesis 
of osteoprotegerin boost monocyte/macrophage cells toward mature osteoclasts. 
These cytokine alterations maintain an accelerated osteoclastogenesis that ulti-
mately increases the number of osteoclasts involved in bone resorption. Finally the 
excess of RANKL and M-CSF may also upregulate HIV replication, thus enhancing 
viral infection [7].

In conclusion, HIV causes an imbalance of cellular activity at the bone level, 
both by decreasing osteoblast bone formation and by increasing osteoclast- mediated 
bone resorption.

13.2.2  The HAART

The antiretroviral drugs play an important role in reducing bone mass in 
PLWHIV. Traditionally the HAART has been made up by a combination of three 
different drugs: two nucleoside reverse transcriptase inhibitors (NRTI), the so- 
called backbone, and a protease inhibitor (PI) or, alternatively, a non-nucleoside 
reverse transcriptase inhibitor (NNRTI). Other classes of drugs have been recently 
discovered (i.e., integrase inhibitors and entry inhibitors), which have much lower 
bone toxicity than the former drugs. Despite these improvements, the HAART is 
still eminently based on the use of NRTIs, NNRTIs, and PIs, at least as a first line of 
treatment [7, 9].

A fundamental meta-analysis has shown that the odds ratio of osteoporosis in 
PI-treated patients was 1.6 times greater than that of not-on-PI patients [20]. The PIs 
accelerate the osteoclastogenesis process by reducing the degradation of 
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RANKL. The mechanism, involving interferon-γ, is extremely complex, and not all 
the PIs show the same power in activating osteoclasts. Nonetheless the result is an 
increased osteoclast-mediated bone resorption. In addition, the PIs are able to 
inhibit the cytochromes P450 and, among these, the hepatic 25-hydroxylase and the 
renal 1-alpha-hydroxylase. The result of these actions leads to a significant reduc-
tion of circulating active vitamin D and an increase of inactive forms, in particular 
24,25-(OH)2-cholecalciferol [7]. Given the high prevalence of hypovitaminosis D 
in HIV-infected patients, the use of PIs may increase the risk of osteomalacia in 
PLWHIV [12]. The NRTIs exert a marked inhibition on the mitochondrial DNA 
polymerase-γ. As this enzyme is crucial in the replication of mitochondrial DNA 
(mtDNA), NRTIs may induce mitochondrial dysfunction, with a reduced energy 
production and an increased conversion of pyruvate into lactic acid. Hyperlactatemia 
(15–20% of patients) and the more rare lactic acidosis (0.4% of patients) have been 
clearly correlated with a progressive bone demineralization, as the alkaline salts of 
bones are used as buffers of endogenous acidity [7] (Fig. 13.2). Tenofovir (TDF), a 
nucleotide reverse transcriptase inhibitor, commonly placed in the NRTI class, 
which is the world’s most prescribed drug, deserves a special mention. TDF is 
highly effective in controlling HIV infection, and it shows very low mitochondrial 
toxicity. Several studies have correlated TDF use with a reduction of bone mineral 
density (BMD) that cannot be attributed to the inhibition of mitochondrial DNA 
polymerase-γ. TDF exerts its negative action on bone via two different mechanisms. 
In fact it causes renal glomerular toxicity, characterized by a progressive glomerular 
filtration rate reduction and a consequent increase of parathyroid hormone (PTH) 
that, in turn, may enhance bone turnover and bone demineralization. Nevertheless 
the most negative effect of TDF is exerted on the renal proximal tubule. The 
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progressive accumulation of the drug inside the tubular cells may reach a concentra-
tion level that determines mitochondrial toxicity and therefore a deregulation of 
cellular activity. The result is a severe reduction of the proximal tubular reabsorp-
tion of ions that may even cause, in some rare cases, the onset of Fanconi syndrome. 
More frequently, however, TDF impairs the metabolism of phosphate, resulting 
both in a severe depletion of plasma phosphate and in an increased urinary phos-
phate excretion [7]. The severe hypophosphatemia, together with the vitamin D 
deficiency, dramatically reduces the degree of bone mineralization, causing there-
fore a real osteomalacia [7, 9]. Recently, a new molecule has been released, called 
tenofovir alafenamide (TAF), which has lower renal toxicity than TDF. TAF serum 
half-life, in fact, is higher than that of TDF, and it allows the administration of lower 
doses of the drug that consequently exert a reduced renal toxicity. Randomized dou-
ble-blind studies have shown that the bone mass reduction induced by TAF is sig-
nificantly lower than that caused by TDF [21].

13.3  Diagnosis and Therapy

The diagnosis of osteoporosis in PLWHIV is mainly based on the measurement of 
bone mineral density and on the evaluation of risk factors for fracture. A recent 
consensus has proposed an algorithm that may easily drive the actions of physicians 
in the process of diagnosis and treatment [9]. The authors have proposed four steps: 
the screening, the assessment, the management, and the monitoring. Infectious dis-
ease (ID) physicians should investigate the presence of risk factors for fracture 
(RFF) as well as they should take into consideration patients’ age. As a matter of 
fact, PLWHIV younger than 40 and without RFF should not undergo any further 
screening. Older patients, particularly if they have important RFF (i.e., a previous 
history of fragility fracture, glucocorticoid treatment for >3 months, or a high risk 
for falls), should be evaluated both with FRAX algorithm and with dual-energy 
X-ray absorptiometry (DXA). After this assessment, patients have to be managed 
by lifestyle advices (i.e., adequate daily intake of calcium, giving up smoking and 
drinking, regular physical exercise) and by the administration of vitamin D. In order 
to reach the suggested target for plasma 25-(OH)-vitamin D (above 30 ng/mL), high 
doses of cholecalciferol are required in PLWHIV as vitamin D metabolism may be 
altered both by the virus and the HAART. Moreover vitamin D deficiency must be 
corrected before starting any anti-osteoporosis therapy. Before beginning any treat-
ment, secondary forms of osteoporosis must be excluded by means of adequate 
blood and urine tests. The proper management of HIV relies on the synergistic 
action between an endocrinologist (or another bone specialist) and an ID physician, 
with the latter doing all those HAART changes that are necessary to reduce bone 
toxicity, without any return of viral replication. Among the drugs that can be used 
by the bone specialist, alendronate and zoledronate are the most studied in this par-
ticular form of osteoporosis [9]. Even risedronate has been used with good results 
in a subgroup of HIV-infected hypogonadal males [17]. All the published studies, 
however, had BMD as primary endpoint, since the number of patients enrolled did 
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not provide an adequate sample size to evaluate the effects on fractures. A weekly 
dose of oral alendronate, associated with calcium and vitamin D, has been effective 
in increasing BMD in treated patients [9]. As far as it is well known that PLWHIV 
usually have a reduced adherence to therapies, a treatment with weekly tablets is a 
therapy at high risk of being abandoned. The same problem has been described in 
the seronegative population with osteoporosis [22]. Zoledronate resulted as effec-
tive as alendronate in increasing BMD in PLWHIV. As far as zoledronate is given 
intravenously once a year, it may guarantee a higher adherence to therapy than oral 
bisphosphonates. Moreover recent studies have shown that the administration of 
zoledronate every 2 years ensures an increase in BMD that is substantially equal to 
that obtained with a yearly schedule [23]. In case of very severe osteoporosis, the 
use of teriparatide may be taken into account, even though the available literature 
data on its safety are scarce. Safety and effectiveness of denosumab were never 
tested in HIV-positive population with osteoporosis [9].

13.4  Conclusions

The advent of HAART has dramatically increased the lifetime expectancy of 
PLWHIV, but it has also raised the burden of co-morbidities associated with the 
disease. Osteoporosis is very frequent in PLWHIV, and due to the aging of this 
population, it is reasonable to expect an increase of osteoporotic fractures in the 
next future. Since the integrated management of osteoporosis is a crucial aspect of 
the future treatment of HIV infection, the cooperation of ID physicians and bone 
specialists will be essential for ensuring to PLWHIV both a good virus control and 
a low risk of fracture.
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14.1  Introduction

The incidence of both osteoporosis and cardiovascular disease (CVD) is rising due 
to the aging of the population. These two diseases were long viewed as independent 
chronic pathologies. However, for over than 30 years, attention has considered the 
potential for people with low bone mineral density (BMD) being at increased risk 
of developing CVD, and vice versa, the individuals with CVD have a higher risk of 
experiencing bone loss and thus greater predisposition to risk of fracture. A number 
of potential reasons might explain the possible link between poor bone health 
and CVD.

Given that CVD is a leading cause of premature mortality, understanding whether 
low BMD is a potential CVD risk factor is of high importance. Since CVD events 
could accelerate the transition of people with bone disease to greater disability and 
mortality, it may be important to consider cardiovascular health in people with 
osteoporosis and fractures.
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14.2  Relationship Between Bone Mineral Density, Fractures, 
and Cardiovascular Disease

The relationship between bone mineral density, fractures, and cardiovascular dis-
ease was evaluated in a large number of studies which had either retrospective 
cross-sectional and prospective longitudinal design.

14.2.1  Retrospective Studies

Several retrospective studies showed a correlation between vessel wall alteration 
and low BMD.

Increased coronary calcium burden was found in postmenopausal women with 
osteopenia and osteoporosis in comparison to those with normal BMD [1, 2]. In 
another cross-sectional study, BMD correlated negatively with intimal medial thick-
ness (IMT) [1, 3]. Similarly, carotid IMT or plaque thickness and BMD were mea-
sured in 155 patients within 7 days after an acute ischemic stroke [1, 4]. Osteoporosis 
(T-score <−2.5) was significantly and independently associated with IMT/plaque 
thickness in females but not in males. A retrospective study in 209 patient looked for 
an association between osteoporosis (BMD T-score <−2.5) and coronary angiogra-
phy findings. The risk of coronary artery stenosis >50% was higher in the group 
with osteoporosis. BMD was more strongly associated with coronary artery disease 
than were the conventional cardiovascular risk factors (smoking, hypertension, dia-
betes, and family history) [1, 5].

Other retrospective studies showed an excess risk of CVD in patients with 
osteoporosis.

Studies, evaluating volumetric BMD and bone microarchitecture at the distal 
radius and distal tibia of 350 patients, have found that cortical volumetric BMD at 
the distal radius was significantly lower and cortical porosity significantly higher 
in the group with ischemic heart disease. When men were analyzed separately, 
only distal radius cortical volumetric BMD was significantly lower in the group 
with ischemic heart disease. In females, none of the differences were statistically 
significant [1, 6]. In a cross-sectional study [1, 7], in both males and females, the 
presence of silent brain infarction correlated significantly with osteopenia and 
osteoporosis. A retrospective review of data from 101 postmenopausal women liv-
ing in a nursing home showed that a history of myocardial infarction, stroke, or 
peripheral arterial disease was found in 51% of women with osteopenia or osteo-
porosis compared to only 38% of those with normal BMD values [1, 8]. Similarly, 
in another retrospective study of postmenopausal women, the prevalence of cardio-
vascular disease was 69% in the group with osteoporosis (hip T-score <−2.5) and 
only 22% in the group with normal BMD [1, 9]. A cross-sectional study of 5050 
males and females found a significant association between a history of myocardial 
infarction and low BMD after adjustment for risk factors [1, 10]. An examination 
of data from a nationwide Korean database showed that the 10-year risk of coro-
nary artery disease (Framingham risk score) was significantly associated with 
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BMD. In males, after adjustments for covariates, the Framingham risk score was 
significantly associated with BMD at the femoral neck or lumbar spine. No signifi-
cant associations were found in females [1, 11].

14.2.2  Prospective Studies

Recent systematic review and meta-analysis by Veronese et  al. [12] collected 28 
prospective studies (1,107,885 participants followed for average 5 years) which 
evaluated the relationship between osteoporosis and CVD. The primary outcome of 
the review was the risk of any type of CVD according to BMD status or the presence 
of fractures. The authors found out that patients with lower BMD, especially at 
lower limbs, had modestly increased risk of CVD (coronary heart disease, cerebro-
vascular conditions, and death due to CVD reasons). Each 1-SD decrease of BMD 
corresponded to an increased risk of CVD at follow-up at 16%. As regards fractures, 
the presence of vertebral and hip fractures at baseline was associated with an 
increased risk of CVD, in particular cerebrovascular conditions and death due to 
CVD reasons, but not coronary heart disease.

In conclusion, both retrospective and prospective studies confirmed the recipro-
cal association between osteoporosis and/or fractures and CVD.

14.3  Pathophysiological Links Between Osteoporosis 
and Cardiovascular Disease

The exact pathogenic mechanism that may explain the association between altered 
bone metabolism and atherosclerosis as the main underlined cause of CVD is not 
fully understood. This phenomenon cannot be explained by the presence of one 
specific factor but by the influence of multiple factors and common pathways shared 
between osteoporosis and atherosclerosis (see Fig. 14.1).

Vascular calcification is highly associated with CVD and mortality. In blood ves-
sels, intimal calcification is associated with atherosclerosis, whereas medial calcifica-
tion is a non-occlusive process which leads to increased vascular stiffness and reduced 
vascular compliance. For many decades, vascular calcification has been noted as a 
consequence of aging. Studies now confirm that it is a rather actively regulated pro-
cess which shares many features with bone development and metabolism [13].

Vascular calcification is an active process that starts from the phenomenon of 
transformation of vascular smooth muscle cells into osteoblast-like cells. Osteoblast- 
like cells express several factors involved in the osteogenesis, such as bone morpho-
genetic proteins (BMP), alkaline phosphatase (ALP), osteopontin, Gla protein of 
matrix, osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B 
ligand (RANKL) which promote the production of hydroxyapatite and bone forma-
tion in vessels [14].

The BMP is a powerful growth factor of osteoblast differentiation and also seems 
to be an important mediator of vascular calcification. In the atheromatous plaques, 
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endothelial cells, foam cells, and smooth muscle cells exhibit greater BMP2 and 
BMP4. In vitro studies have demonstrated that this process is upregulated by oxida-
tive stress, oxidized LDL, and tumor necrosis factor alpha (TNFα) [14–16]. In the 
same manner, oxidative stress and inflammation induce an increase of ALP and 
osteopontin in smooth muscle cells which further participate in mineralization 
[14–16].

A growing evidence suggests that the triad of OPG/RANKL/RANK, key pro-
teins involved in bone metabolism, may be important in vascular calcification. In 
general, OPG produced by osteoblasts binds to RANKL, preventing in this way the 
connection of RANKL to its receptor RANK causing inhibition of osteoclastogen-
esis. In normal conditions, OPG is expressed not only by osteoblasts but also in 
several tissues, including vessels (endothelial and vascular smooth muscle cells). 
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Fig. 14.1 Pathophysiological links between osteoporosis and cardiovascular disease Osteoporosis 
and cardiovascular disease share common pathways which are triggered by the same pathological 
factors such as estrogen deficiency and inflammatory and oxidative stress. Estrogen decline pro-
duction causes secretion of pro-inflammatory cytokines such as IL-6, IL-1, and TNF-α. 
Inflammatory and oxidative states, increased with age and under certain conditions, promote vas-
cular smooth muscle cell differentiation into osteoblasts leading to the progression of vascular 
calcification and, at the same time, induce osteoclast and inhibit osteoblast differentiation in bone. 
Additionally, RANKL released by infiltrating T cells and endothelial cells in the arteries affected 
by atheromatous plaques stimulates vascular calcification by transformation of vascular smooth 
muscle cells into osteoblast-like cells and, at the same time, induces osteoclastogenesis in bone. 
Finally, the progression of vascular calcification reduces blood supply to bone, further impairing 
bone metabolism
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OPG is released under basal conditions by endothelial cells upon stimulation with 
inflammatory cytokines (interleukin-1, IL-1, and TNFα) [17]. OPG seems to be 
protective against vascular calcification since OPG knockout mice developed spon-
taneous arterial calcification [13, 18]. While OPG is expressed in normal arteries, 
RANKL, being normally produced by osteoblasts and T cells, is undetected in non- 
diseased human vessels. However, RANKL may be released by infiltrating T cells 
and endothelial cells in the arteries affected by atheromatous plaques [17]. RANKL 
stimulates vascular calcification by transformation of vascular smooth muscle cells 
into osteoblast-like cells and by increasing production of BMP through the alterna-
tive NF-κB pathway [13, 19].

The phenomenon of transformation of vascular smooth muscle cells into 
osteoblast- like cells represents the crucial step in vascular calcification and is 
induced by numerous factors such as BMP, RANKL, oxidative stress, inflamma-
tion, and estrogen deficiency. These triggers participate not only in vascular calcifi-
cation but also in bone loss.

Estrogen deficiency is a major risk factor for osteoporosis and CVD. After meno-
pause, estrogen levels decrease dramatically, resulting in the formation of osteo-
clasts and bone turnover increase with subsequent rapid bone loss. In addition, the 
decline in estrogen production causes secretion of pro-inflammatory cytokines such 
as IL-6, IL-1, and TNF-α [14, 20, 21]. Inflammatory state influences vascular calci-
fication/atherosclerosis and bone metabolism by increasing bone resorption through 
an induction of osteoclastogenesis [14]. Moreover, oxidative stress and production 
of oxidized LDL, increased with age and under certain conditions, promote vascular 
smooth muscle cell differentiation into osteoblasts, at the same time inducing osteo-
clast and inhibiting osteoblast differentiation in bone [1, 14].

Finally, another factor that links osteoporosis and CVD is vascular-related 
intraosseous ischemia. The progression of vascular calcification and atherosclerosis 
may predispose to a reduced blood flow into bone. Since oxygen consumption is 
coupled with bone formation, a reduced blood supply may impair bone metabolism, 
resulting in bone loss and osteoporosis. Such, in case of asymmetrical peripheral 
arterial disease, the hip bone mineral content in the affected limb is lower than that 
of the contralateral limb [1, 14].

14.4  Osteoprotegerin as a Biomarker 
of Cardiovascular Disease

In recent years, new approaches are being used to search for novel biomarkers for 
CVD. A biomarker is a characteristic that objectively measures and is evaluated as 
an indication of normal biological processes, pathological processes, or pharmaco-
logical responses to a therapeutic intervention. Measurements of biomarkers are 
frequently used in cardio-metabolic medicine and are recognized for the value they 
add to the diagnosis and prognosis of various diseases [17, 22].
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Serum OPG has been proposed as a biomarker of vascular risk and prognosis in 
a variety of CVD. However, the results in this field are inconsistent.

OPG is highly expressed in various tissues such as the heart, lung, kidney, liver, 
bone marrow and immune system (dendritic cells), osteoblasts, and vascular cells 
(endothelial and vascular smooth muscle cells). As it is well known, OPG exerts a 
protective role in bone inhibiting osteoclastogenesis via binding the RANKL which 
prevents the coupling of RANKL with its receptor RANK on pre-osteoclasts 
[17, 23].

The role of OPG in vascular system is much more complicated. OPG is released 
under normal conditions by endothelial cells. OPG plays a significant role in the 
physiology of endothelial and vascular smooth muscle cells enhancing its survival, 
proliferation, and migration. OPG acts as antiapoptotic factor for endothelial cells. 
Sustained release of OPG from vascular cells has been demonstrated in response to 
inflammatory cytokines, thus suggesting that OPG might have a new function as a 
potential biomarker of early endothelial dysfunction [17]. Additionally, OPG seems 
to be protective against vascular calcification since OPG knockout mice developed 
spontaneous arterial calcification [13, 18]. OPG neutralizes the effect of RANKL on 
the induction of activity of vascular smooth muscle cells by inhibiting its binding in 
vessels, thus preventing excessive vascular calcification [17].

On the other hand, controversially, there is evidence that OPG might exert pro- 
atherogenic effect, participating in the pathogenesis of atherosclerosis and CVD by 
amplifying the adverse effects of inflammation. Additionally, in experimental stud-
ies on animals, human OPG induced signs of fibrosis and upregulated the arterial 
expression of transforming growth factor-β1 (TGF-β1), thus supporting the patho-
genic role of OPG in the initiation of atherosclerotic lesions [17, 24].

While the experimental studies on animals showed a “dual” role of OPG in the 
vascular system (protection from vascular calcification and initiation of atheroscle-
rotic process), clinical studies have demonstrated consistent data that higher serum 
OPG levels are associated with poorer cardiovascular outcomes in the context of 
coronary disease, abdominal aortic aneurysms, and cardiovascular mortality. In a 
10-year follow-up survey, serum OPG levels were an independent risk factor for the 
progression of atherosclerosis as well as the incidence of and mortality from CVD 
[17, 25]. Additionally, OPG has been identified as an independent predictor of heart 
failure development [17, 26], and it correlates with severity of peripheral artery 
disease [17, 27].

Taken together these data, the physiological and pathological roles of OPG in the 
vascular system are rather complex. Released from endothelial cells, it might be a 
biomarker of early endothelial dysfunction, participating further at initial steps of 
inflammation-induced atherosclerotic lesions. With progression of arterial calcifica-
tion, OPG may exert a protective role. Thus, higher serum OPG is a sign of progres-
sion of vascular injury and a sign of compensatory mechanism against vascular 
calcification. Therefore, OPG could be a new promising marker of risk predic-
tion of CVD.
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14.5  Conclusion

Huge clinical evidence consistently shows a link between osteoporosis and CVD: 
patients with osteoporosis are at higher risk of ischemic heart disease and stroke, 
and vice versa, patients with ischemic heart disease or peripheral arterial disease are 
at higher risk of osteoporosis and fragility fractures. The possibility of a reciprocal 
cross talk might open the possibility to develop new strategies for multiple-purpose 
preventive and therapeutic interventions targeted at reducing both bone loss and 
atherosclerosis progression. In this holistic view, it is conceivable that patients with 
osteoporosis would take advantage from the evaluation of cardiovascular risk, 
whereas patients with CVD would benefit from the assessment of bone health.

Many pathophysiological hypotheses have been suggested to explain this link. 
The process of vascular calcification (the main underlying cause of CVD) and bone 
loss share the same biological regulators (OPG/RANKL/RANK system) which are 
triggered by the same factors (estrogen loss, inflammation, and oxidative stress), 
promoting both the development of calcified vascular plaque and increased bone 
turnover. If the current hypothesis is confirmed, then assays of these factors might 
help to predict both CVD and osteoporosis. Finally, although the role of OPG in 
vascular system is still controversial, however, it could be a promising biomarker of 
progression and prognosis of CVD.
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Osteoporosis: May Doping Cause It?
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15.1  Introduction

Doping is a broadly spread phenomenon, and a social problem, concerning sport at 
both recreational and competitive levels, and is defined as the use of a substance, 
or a technique, to illegally improve athletic performance [1]. Depending on the 
mechanism of action, doping agents may exert direct or indirect ergogenic effects, 
including enhanced strength, enhanced energy production and better recovery, and/
or anabolic actions, including increased protein synthesis, particularly in muscles, 
and/or stimulating actions, including increased attention and loss of fear. The wide 
spectrum of effects exerted by doping agents provides a competitive advantage 
during sport activity; therefore, their use has been prohibited prior to or during 
competitions. A “Prohibited List” comprising doping substances and methods 
banned prior to or during competitions is published yearly by a dedicated interna-
tional agency, the World Anti-Doping Agency (WADA). WADA “Prohibited List” 
includes substances and methods fulfilling at least two of the following criteria: 
enhancement of sports performance, and/or threat for the health of the athlete, and/
or violation of the spirit of sports [2]. WADA “Prohibited List” includes, at present, 
anabolic androgenic agents (AAS), hormone and metabolic modulators, peptide 
hormones and growth factors, β2-adrenergic receptor agonists, and glucocorti-
coids, all of which represent the most widely used performance-enhancing sub-
stances, as well as additional less used drugs. Considering the relatively high 
prevalence of doping agents’ usage among athletes, and besides any consideration 
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in regard to the unethical and anti-sportive aspects of doping, the potentially asso-
ciated undesired side effects and doping-related health risks are undoubtedly worth 
of investigation. Chronic exposure to high doses of performance-enhancing sub-
stances, which often exert pleiotropic actions on multiple anatomical/functional 
targets, raises the risk of potential long-term complications; osteoporosis might 
represent one of most serious and long-lasting complication associated with dop-
ing, nevertheless, few and sparse studies addressing this topic have been performed 
so far. The current  chapter describes the relationship between selected doping 
agents and general bone health impairment, with particular reference to the risk of 
developing osteoporosis, and to the early occurring and the long-term conse-
quences of doping on bone metabolism; in particular, the chapter focuses on the 
effects of AAS, aromatase inhibitors (AIs), growth hormone (GH), β2-adrenergic 
receptor agonists and glucocorticoids, which belong to the classes of most com-
monly used doping agents.

15.2  Anabolic Androgenic Steroids

AAS are used to improve competitive sport performance, as well as for recreational 
purposes, to achieve desirable body image and to increase muscle mass and strength 
[3]. In particular, AAS have been hypothesized to exert several effects that may 
enhance performance, such as antagonism of the catabolic effect of glucocorticoids, 
direct stimulation of protein synthesis, increased red blood cell production, and cen-
tral nervous system effects, which increase motivation and decrease fatigue [4]. 
Among AAS, gonadal steroids, including both androgens and estrogens, are known 
to exert positive effects on bone mineral density (BMD), at physiological concentra-
tions; moreover, androgen receptors (AR) and estrogen receptors are expressed 
in osteoblasts, osteoclasts, and osteocytes, as well as mononuclear and endothelial 
cells in the bone marrow [5]. A general overview of the effects of gonadal steroids on 
osteoblast and osteoclast activity is depicted in Fig. 15.1. The effect of androgens, 
mainly testosterone, on bone homeostasis is directly mediated by activation of AR 
and, indirectly, by the estrogens, converted from testosterone by aromatase enzyme, 
which stimulate bone formation and inhibit bone resorption [6, 7]. Androgens 
directly control periosteal bone formation, which contributes to the greater width of 
cortex in men, stimulate bone formation activity of osteoblasts, and inhibit bone 
resorption activity of osteoclasts [8]. Estrogens exert a bone anti-resorptive action 
mainly by attenuating osteoclasts differentiation, activity and survival [8]. The 
molecular mechanisms mediating the anabolic effects of androgens and estrogens on 
bone comprise the suppression of receptor activator of nuclear factor kappa B ligand 
(RANK-L) expression by osteoblasts, resulting in an inhibition of RANKL- RANK 
pathway, which ultimately reduces bone resorption by osteoclasts and induces osteo-
clasts apoptosis [9]. Furthermore, an increased production of anti- resorptive cyto-
kines, mainly represented by osteoprotegerin [10], is also mediated by estrogens, but 
not by androgens, which, conversely, seem to suppress osteoprotegerin production, 
therefore probably explaining the greater anti-resorptive effects of estrogens, as 
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compared to androgens [9]. Lastly, a decreased osteoblastic production of several 
resorptive cytokines, which include colony-stimulating factor- 1, interleukin-1 (IL-1), 
and tumor necrosis factor-alpha (TNF-α), is also induced by estrogens [8, 10]. 
Consistently with the anabolic effects of testosterone on bone in men, hypogonad-
ism, characterized by testosterone deficiency, represents one of the most important 
endocrinological disorders associated to a significant risk for osteoporosis together 
with impairment of muscle mass and strength, and testosterone replacement therapy 
increases bone mass as well as muscle mass and strength, in hypogonadal men [8]. 
Athletes using AAS display increased bone mass, in paticular bone mineral content 
(BMC) and BMD, and extremely low fracture rate, compared to athletes not using 
AAS [5]; by contrast, after AAS withdrawal, athletes may develop osteoporosis and 
experience a higher hip or vertebral fracture rate, promoted by both quick loss of the 
muscle mass gained during doping [5] and hypogonadotropic hypogonadism sec-
ondary to the suppression of hypothalamus-pituitary-testis axis consequent to the 
abuse of AAS [11].

In particular, this specific form of male hypogonadism has been demonstrated to 
be reversed by short-term administration of clomiphene citrate or human chorionic 
gonadotropin, with a different recovery time on the basis of AAS abuse duration, 
although some evidences also reported a partially irreversible damage along the 
hypothalamus-pituitary-testis axis, targeting, by means of unclear molecular mech-
anisms, the hypothalamic and/or pituitary and/or Leydig cell function [11, 12].

15.3  Aromatase Inhibitors

AIs are a class of compounds which inhibit the aromatase enzyme, responsible for 
the peripheral conversion of androgens to estrogens [13]. AIs are used by male ath-
letes as a corrective treatment for gynecomastia occurring after administration of 
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Fig. 15.1 General overview of the effects of gonadal steroids on bone metabolism
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androgens and to restore endogenous testicular activity following a doping cycle, 
based on induction of LH increase driven by blockade of estrogen synthesis [14]. 
Although there seem to be no studies available, specifically focusing on the effects 
of AIs on bone metabolism in athletes, information on their effect on male ath-
letes might be extrapolated from evidences in male adolescents affected by early 
puberty and constitutional delay of puberty, in elderly men with late-onset hypo-
gonadism and in women suffering from breast cancer. In male adolescents affected 
by early puberty and constitutional delay of puberty, AIs delay epiphyseal matura-
tion and increase the predicted adult height [5]; therefore, AI abuse during adoles-
cence may stimulate bone formation and muscle strength, through increased 
circulating levels of testosterone, whereas AI abuse during adulthood, after 
the epiphyseal maturation completion, may only increase muscle strength [5]. AIs 
use in elderly men for late-onset hypogonadism might represent a further useful 
model to better understand the potential adverse effects on bone of AIs used as 
performance-enhancing drugs, although contrasting evidences are available. 
Indeed, some studies have demonstrated a significant decrease of BMD together 
with a reduction of estrogen levels, whereas different studies did not report bone 
impairment in elderly men treated with AIs, probably due to the moderate decrease 
in estrogen levels, associated with a contemporaneous increase in androgen levels 
[15–17]. These contrasting evidences might be explained by the complex balance 
existing between estrogens and androgens in the regulation of bone metabolism: 
indeed, estrogens have been demonstrated to be the main sex hormones involved 
into development and maintainance of male skeleton homeostasis, but androgens 
also play an important role in promoting periosteal apposition and increasing bone 
size in men [18]. Although no clear evidences are available concerning the risk 
of osteoporosis in men treated with AIs, interestingly, more consistent evidences 
exist in women; in particular, early studies showed that women with breast cancer 
treated with AIs had increased bone resorption, decreased BMD at the femoral 
neck and lumbar spine, and increased risk of fractures [19, 20]. Moreover, the 
ATAC (Anastrozole, Tamoxifen, Alone or in Combination) trial, the largest ran-
domized trial comparing anastrozole and tamoxifen therapy, demonstrated that 
the annual incidence of fractures was higher in women receiving anastrozole, 
compared to those treated with tamoxifen, throughout 5 years of treatment [21]; 
nevertheless, during follow-up and discontinuation of therapy, fracture incidence 
decreased in the anastrozole treatment arm, by reaching similar rates as compared 
to tamoxifen [21], suggesting that the effect of AIs on bone, and the AI-related 
predisposition to fractures could be reversible.

15.4  Growth Hormone

GH is used by athletes as a doping agent due to its lipolytic activity, as well as for the 
positive effects on protein synthesis and muscle growth, although the realistic associa-
tion between these biological effects and an improvement in sport performance has 
not been clearly demonstrated so far [2, 5]. Several studies are available concerning 
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the effects of GH on bone homeostasis; in particular, acromegalic patients, which are 
characterized by excessive circulating GH levels, represent a suitable model of GH 
abuse. Indeed, acromegalic patients suffer from osteoporosis, together with  bone 
overgrowth, and damage to joints, which ranges from arthralgia to osteoarthritis, 
induced not only by bone overgrowth but also by soft tissue swelling [22–24]. More 
specifically, it has been demonstrated that acromegalic  patients  have a significant 
impairment of bone health and a consequent high risk of vertebral fractures, occuring 
in up to 60% of patients with a 3–8 fold higher prevalence than in general population 
and a slight predominance in men [25–27]. The possible mechanism underlying bone 
impairment induced by GH excess is represented by the alteration of the trabecular 
microstructure, occurring irrespective of unchanged or increased trabecular density, 
which, in turn, may affect the micro- mechanical properties of bone trabeculae [28]. 
Moreover, the evidence of a direct action of GH/IGF-1 axis on bone turnover is con-
firmed by the fact that bone formation markers, specifically procollagen type III 
N-terminal propeptide and osteocalcin, have been demonstrated to be significantly 
higher in healthy volunteers treated with GH, compared with those treated with pla-
cebo, and are efficiently measured in blood samples during doping tests for GH abuse 
in athletes [29, 30].

Lastly, the existence of a direct effect of GH on bone metabolism is further con-
firmed by the impact of GH replacement therapy in patients with GH deficiency 
(GHD) [31]. In particular, a recent metanalysis on a hge number of patients with 
GHD demonstrated an increase of BMD in lumbar spine and femoral neck, in stud-
ies with replacement of more than 1 year [32]. Consistently, in a 15-year prospective 
study of GH replacement therapy in patients with adult-onset GHD, GH treatment 
gradually increased total body BMC during the study period [33]. These evidences 
overall suggest that, in GHD patients, replacement with GH is able to progressively 
improve bone mass and bone status. In conclusion, the aforementioned pathological 
models well demonstrate the dual role of GH on bone status: restoration of normal 
GH levels might contribute to improve bone mass in GHD patients, whereas an 
excess of GH levels, typical of acromegalic patients and GH-abusing atheletes, 
might promote detrimental effects including bone overgrowth, osteoporosis and 
damage to joints. 

15.5  β2-Adrenergic Receptor Agonists

β2-adrenergic receptor agonists are used by athletes for the anabolic effects on skel-
etal muscle [34], as well as for additional actions, which may collectively enhance 
performance, including bronchodilation, anti-inflammatory actions, together with 
the increased functional capacity and strength of skeletal muscle [35]. Little evi-
dence exists, in humans, concerning the effects of β2-adrenergic receptor agonists 
on bone metabolism even if it has not specifically focus on doping use of these 
substances in athletes [5]. Despite some authors speculated that the increase of 
muscle mass caused by β2-adrenergic receptor agonists would be accompanied by 
an anabolic effect on bone, due to the mechanostat system regulating bone mass 

15 Osteoporosis: May Doping Cause It?



168

[36], data from the literature highlighted that the use of β2-adrenergic receptor ago-
nists might be a risk factor for osteoporosis [37]. Indeed, β2-adrenergic receptors are 
expressed in osteoblasts and osteoclasts [38], and β2-adrenergic receptor agonists 
use has been suggested to decrease osteoblastic activity and bone formation [39] 
and increase osteoclastic activity and  bone resorption [40]. In particular, animal 
studies highlighted that rats treated with clenbuterol and salbutamol had increased 
plasma levels of C-terminal collagen cross-links, a bone resorption marker [41]. 
Moreover, different in vivo studies in female rats demonstrated that 2 mg/kg/day 
clenbuterol administered for 4 weeks inhibited longitudinal bone growth at femoral 
metaphysis and decreased BMC in growing rats [42], whereas treatment for 6 weeks 
reduced BMD  as well as femoral and lumbar spine  trabecular microarchitecture 
[43]. The observed microarchitectural changes induced by clenbuterol treatment 
resembled those observed in postmenopausal osteoporosis [44]. Human studies 
reported an increased risk for hip fractures in subjects affected by respiratory 
pathologies using β2-adrenergic receptor agonists [37]; conversely, subjects using 
β-adrenergic receptor antagonists, compounds employed as treatment for cardiovas-
cular diseases, had a reduced risk for hip and spine fractures [45], therefore suggest-
ing that β2-adrenergic receptors activation, rather than inhibition,  might be 
associated to an increased risk of bone impairment, also in athletes which eventually 
abuse of β2-adrenergic receptor agonists as performance-enhancing drugs.

15.6  Glucocorticoids

Glucocorticoids are used by athletes mainly for their metabolic effects, which include 
stimulation of gluconeogenesis and mobilization of amino acids and fatty acids, but 
also to alleviate pain and reduce tiredness [46]. No specific studies strictly focusing 
on glucocorticoid doping impact on bone status seem to be available in literature 
nevertheless, glucocorticoid- induced osteoporosis is the first cause of secondary 
osteoporosis, and vertebral fractures are typical of glucocorticoid-induced osteopo-
rosis, although the risk of non-vertebral fractures, including hip fractures, is also 
increased [47]. Different studies highlighted that bone impairment is associated with 
the use of glucocorticoid as anti-inflammatory and immunosuppressive therapies [5]. 
More significantly, Cushing’s syndrome (CS), which is characterized by chronic 
endogenous hypercortisolism, provides relevant insights into the effects of glucocor-
ticoid excess on bone metabolism and general bone health; indeed, BMD is reduced, 
in patients with CS, and osteopenia, osteoporosis, and skeletal fractures have been 
reported in up to 78%, 57%, and 76% of patients, respectively [48, 49], and increased 
frequency of osteoporosis has been reported also in subclinical CS [50]. Relative 
gender differences have been reported in bone impairment; in particular, male 
patients have a higher prevalence of osteoporosis and vertebral fractures, compared 
to female patients [51, 52], whereas amenorrhoeic and eumenorrhoeic women dis-
play similar BMD and prevalence of fractures [53, 54], suggesting that in the pres-
ence of hypercortisolism, testosterone deficiency might exacerbate the impairment 
of bone status and that glucocorticoid excess overcomes estrogenic bone protection 
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[49]. Moreover, a progressive improvement of BMD has been reported by prospec-
tive studies in patients followed up for at least 1 year after remission from hypercor-
tisolism [55–57], with a greater increase in BMD after remission in male than female 
patients [58], highlighting that bone damage might be potentially reversed with con-
trol of glucocorticoid excess [49, 59]. Glucocorticoid-induced osteoporosis is char-
acterized by increased bone turnover, with decreased bone formation and increased 
bone resorption [47]. A general overview on the effects of glucocorticoid excess on 
bone metablism is depicted in Fig. 15.2. Glucocorticoids push the differentiation of 
pluripotent precursor cells toward adipocytes, rather than osteoblasts, which deter-
mines a reduction in the number of osteoblasts, by upregulating peroxisome prolifer-
ator-activated receptor gamma receptor 2 (PPARγ2) [60] and by affecting the 
Wnt/β-catenin signalling pathway [61, 62]. In particular, glucocorticoids increase 
sclerostin expression, which results in the inhibition of Wnt signalling, leading to 
reduced differentiation of osteoblast precursors to mature osteoblasts and increased 
osteoblast and osteocyte apoptosis [47]. Moreover, glucocorticoids increase the pro-
duction of macrophage colony stimulating factor (M-CSF) and RANKL and decrease 
the production of osteoprotegerin by osteoblasts and osteocytes, resulting in an 
increased number and enhanced activity of osteoclasts [63, 64]. In conclusion, on the 
basis of these molecular evidences, and on the basis of side effects of glucocorticoids 
as anti-inflammatory and immunosuppressive therapy and of CS-related bone comor-
bidities, it can be speculated that also athletes abusing glucocorticoids as perfor-
mance-enhancing drugs might experience a long- term bone impairment and might 
have a significantly increased risk of osteoporosis.

RANK-L
RANK

Osteoprotegerin

Glucocorticoids

M-CSF

OsteoblastPluripotent precursorAdipocyte

PPARγ2

Wnt/β-catenin

Sclerostin

Osteocyte

Osteoclast precursor Osteoclast

Fig. 15.2 General overview on the effects of glucocorticoids on bone metabolism
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15.7  Conclusions

Osteoporosis is a frequent adverse effect of drugs, which are also used as doping 
agents, suggesting that osteoporosis is likely to represent a side effect of doping. 
Although few and incomplete studies exist, specifically performed in athletes, con-
cerning doping agent effects on bone status, the most commonly used doping sub-
stances have been proven to negatively influence bone status. It might be speculated 
that doping occurring during pubertal and post pubertal age, a timeframe coinciding 
with achieving peak bone mass, might be of relevance to the development of osteopo-
rosis later in life; nevertheless, further investigation should be performed to address 
this hypothesis, and to determine the eventual reversibility of negative effects, and the 
global long- term consequences on bone health might also add strength or disprove 
this hypothesis. Moreover, specific studies performed in athletes, and, in particular, 
comparative studies in elderly athletes with and without past history of doping, would 
be required to address remaining questions concerning the entity and mechanisms of 
doping-related bone impairment.
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Androgen Therapy
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16.1  Indications to Testosterone Treatment (TT) 
of Male Osteoporosis

Increased bone loss and resorption rates are evident in the adult androgen deficiency 
syndrome (or Late Onset Hypogonadism, LOH), as a morbid condition associated 
to other comorbidities [1] such as metabolic syndrome, obesity [2], and type 2 dia-
betes mellitus [3, 4]. In addition, many andrological disorders, i.e., Kallmann syn-
drome, Klinefelter syndrome, hypophyseal or hypothalamic tumors, and androgenic 
deprivation for prostate cancer, are often associated with bone mineral density 
(BMD) reduction and increased risk of fracture.

In males, the evaluation of BMD by X-ray densitometry (DEXA) is the method 
of choice for defining the risk of fracture, and it is indicated, according to the 
Essential Levels of Care, at any age in the presence of major risk factors (e.g. unbal-
anced diet, low level of physical activity, hypovitaminosis D, fragility fracture, pro-
longed corticosteroid therapy) or in the presence of three or more of the following 
minor risk factors for men over the age of 65:

 1. Familiar history of severe osteoporosis
 2. Body mass index <19 kg/m2

 3. Inadequate calcium intake (<1200 mg/day)
 4. Smoke >20 cigarettes/day
 5. Alcohol abuse (>60 g/day)

Currently, densitometry criteria for the diagnosis of male osteoporosis are not 
based on evidence levels compared to female, and T-score <−2.5 DS is used as a 
diagnostic cut-off with respect to the young adult male subject [5, 6]. An additional 
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diagnostic tool chart (FRAX) can be used by clinicians to assess real-life fracture 
risk. Actually, bone turnover markers are not considered useful during follow-up 
because of their high costs [6]. Actually, the Endocrine Society Guidelines recom-
mend to begin periodic osteoporosis risk assessment (by DEXA) in men at increased 
risk of osteoporosis, in men with late-onset hypogonadism (LOH), or under andro-
gen deprivation therapy for prostate cancer [5] but to avoid testosterone treatment 
(TT) for osteoporosis in men who have normal T levels or who are at high risk of 
bone fracture, regardless of T levels.

Thus, measurements of serum testosterone levels are useful to identify men who 
have androgen deficiency and who may be candidates for TT other than specific 
anti-osteoporotic treatments. For example, in the European Male Aging Study only 
sexual symptoms (poor morning erections, decreased libido, and erectile dysfunc-
tion) showed an association with total testosterone levels below 320  ng/dL 
(11  nmol/L) and free testosterone levels below 64  pg/mL (220  pmol/L), after 
adjusted for age [1]. Testosterone alone is important to maintain lean mass and 
muscle size and strength, while estradiol is necessary to prevent increases in fat 
mass and vasomotor symptoms; both testosterone and estradiol are required to 
maintain appropriate sexual function and BMD [7, 8].

Several studies have tried to find a threshold value of testosterone as a bone 
health marker. In the Osteoporotic Fractures in Men study, the odds of having osteo-
porosis at the hip tripled, as did the odds of experiencing rapid hip bone loss in men 
with baseline testosterone levels below 200 ng/dL (6.9 nmol/L) vs. men with testos-
terone levels above 200  ng/dL (6.9  nmol/L) [9]. Additionally, in the Dubbo 
Osteoporosis Epidemiology Study, the risk of low-trauma fracture was higher in 
men with baseline testosterone levels in the lowest quartile [median level of 227 ng/
dL (7.9 nmol/L) [10]. Thus, men whose serum testosterone level is 200–300 ng/dL 
(6.9 –10.4 nmol/L) or below appear to be at higher risk for bone loss and fracture 
and are more likely to have a favorable response to TT. Other studies have shown 
that BMD in the aging male population is positively associated with endogenous 
androgen levels [11]. Indeed, testosterone levels in young men have been shown to 
correlate with bone size, strongly suggesting a role in the achievement of peak bone 
mass and protection from future osteoporosis [12]. In particular, several studies 
have documented that testosterone plays a crucial role in the maintenance of male 
bone health mainly through its aromatization to estradiol (E2), while dihydrotestos-
terone seems to be not essential for the beneficial effects of testosterone on BMD 
[13]. Two recent studies have reported an association between serum-free or bio-
available testosterone levels and the risk of bone fractures suggesting a possible 
direct role of testosterone in increasing bone health [14, 15].

16.2  Evidence-Based Medicine for Testosterone Therapy

Before starting TT, an accurate evaluation of absolute contraindications is manda-
tory (Table  16.1), and regular follow-up is needed in patients receiving TRT, as 
potentially androgen-dependent adverse events may occur suddenly (Table 16.2) [5].

A. Aversa and A. Ilacqua



179

It is now clear that normalization of testosterone levels increases BMD in men 
with hypogonadism due to GnRH deficiency and a prolonged TT normalize BMD 
in these men [16]. Normalization of testosterone increases BMD in men with 
acquired hypogonadism due to prolactin-secreting adenomas [17], other pituitary- 
hypothalamic disorders, or primary testicular disorders [18]. Also, TT can increase 
BMD in elderly men whose baseline testosterone levels were 200–300  ng/dL 
(6.9–10.4 nmol/L) but not in men with higher baseline levels [19]. In men with 
acquired hypogonadism, TT reduces bone turnover markers, suggesting that the 
testosterone-induced increase in BMD is due to anti-resorptive effects possibly 
mediated through the conversion of estradiol [20]. Because of the decline of sex 
steroids in aging men, it has been suggested that this may be paralleled by a decrease 
in BMD that occurs in aging men. The effects of testosterone on BMD of hypogo-
nadal men with disorders of the hypothalamic-pituitary-gonadal axis are time- 
dependent and appear to be related to baseline levels and to cut-off below 200 ng/
dL (6.9 nmol/L), while TT fails to increase BMD in men whose testosterone levels 
are within the reference range. Three placebo-controlled trials have examined the 
effect of testosterone administration on BMD in older men with low baseline testos-
terone levels. In men aged 60 or older with baseline testosterone levels below 
320 ng/dL, 12 months of testosterone increased spine and total hip BMD, but there 
was no significant change at the femoral neck, and prevented a decline in femoral 
neck BMD [21].

Table 16.1 Absolute 
contraindications against 
testosterone treatment

Diagnostic suspect or diagnosis of prostatic carcinoma
PSA level > 4 ng/mL (or > 3 ng/mL Afro-Americans)
Breast cancer
Severe obstructive apnea
Male infertility
Hematocrit (Hct) >52% or/and high risk of venous 
thromboembolism
Severe lower urinary tract symptoms associated with benign 
prostate hyperplasia

Table 16.2 Monitoring of patients receiving testosterone treatment (TT)

The clinical-biochemical response to TT should be assessed after 3, 6, and 12 months and 
thereafter annually (according to different method of administration of TT)
In men with abnormal mineral density, DEXA measurements should be repeated 12–24 months 
after the beginning of TT and thereafter annually
Hematocrit: At 3, 6 and 12 months and thereafter annualy. Testosterone dosage should be 
decreased or therapy discontinued if hematocrit increases above level of 52%
Prostate exploration by digital rectal examination and plasmatic PSA levels should be assessed 
before commencing TT. PSA evaluation at 3, 6, and 12 months and thereafter annually is 
recommended
Monitoring of potential cardiovascular side effects and the risk of venous thromboembolism is 
indicated in men receiving TT
Men with cardiovascular comorbidity should be assessed by a cardiologist before TT is 
initiated, and there should be close cardiovascular monitoring during TT

16 Androgen Therapy



180

In middle-aged men, Isidori et al. meta-analyzed different parameters related to 
TT and bone parameters, reporting a reduction of bone resorption markers as well 
as with an increase at the lumbar spine by +3.7% (CI: 1.0–6.4%) compared to pla-
cebo, but not at the femoral neck, and a consistent reduction in bone resorption 
markers (pooled effect size = −0.6 SMD, CI: −1.0 to −0.2) [22]. Another meta- 
analysis of 8 trials involving 365 patients reported similar results [23]. Conversely, 
insufficient data have been published so far to calculate the effect of TT on the risk 
of bone fractures [24]. Interventional studies showed that long-acting testosterone 
preparation in young adults with hypogonadism of adult age (testosterone <320 ng/
dL) increases femoral and vertebral BMD after 3 [25] and 10 years of continuous 
therapy, respectively [26]. These preparations were also able to ameliorate meta-
bolic syndrome components, male obesity secondary hypogonadism, and cardio-
vascular risk [27] without prostate adverse events [28]. These data allow speculating 
that T may exert a specific action on osteoblast likely through a direct activation of 
androgen receptor (AR) [29, 30]. In addition, the response to therapy would also 
depend on the length of the CAG receptor triplet for AR androgen [31]. This 
improvement shows a timetable effect of TT on the bone starting after 12 months 
with a progressive increase of 5% per year until 36  months [32]. An increasing 
number of studies have demonstrated that TT in healthy hypogonadal men increases 
areal vertebral bone density, volumetric vertebral and femoral BMD, and bone 
strength, although no data on fracture prevention is available [33].

16.3  Conclusions

Aging affects the remodelling balance in a sex-specific manner and in men , it is 
associated with decreased bone formation and turnover. The influence of hor-
mones on bone metabolism is not limited to sex steroid hormones, but there are 
several hormones (such as FSH, IGF-1, TSH, PTH and other) which are able to 
affect it [34]. Thus, an exhaustive hormonal assessment, after a proper medical 
history collection, should be completed for men during bone loss evaluation. 
After 65 years of age, the presence of sexual symptoms may be a sign of possible 
androgen deficiency, and therefore the evaluation of testosterone levels associated 
with a BMD may be helpful in order to detect treatable LOH associated with 
osteoporosis. The clinicians can offer TT on an individualized basis after explicit 
discussion of the potential risks and benefits [5]. Lifestyle changes (adequate level 
of physical activity, healthy diet, etc.) and other available interventions (such as 
vitamin D supplementation and adequate calcium intake) are recommended prior 
to TT is commenced. Furthermore, it is mandatory to perform the evaluation of 
the overall cardiovascular risk and prostate health before starting TT and during 
it. In agreement with guidelines, we recommend combination therapy with anti-
absorbent agents (bisphosphonates or teriparatide or denosumab) in men who 
require (symptomatic hypogonadal men) TT and which have a high risk of frac-
ture repeating BMD tests of the lumbar spine, femoral neck, and hip after 
1–2 years of T therapy [5].
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17.1  Introduction

Osteoporosis is an asymptomatic bone metabolic disease, characterized by a 
decrease of bone mass and deterioration of the micro-architecture of the skeleton, 
which leads to an increased fracture risk [1]. It is a multifactorial disease potentially 
caused by genetic mutations, endocrine disorders, and lifestyle alterations. 
Hormones, such as estrogen, calcitonin, parathyroid hormone (PTH), and vitamin 
D, modulate bone remodeling, thus maintaining bone homeostasis [2]. Osteoporosis 
in men is a relatively common problem [3], although less frequent than in women, 
with a prevalence of 17% versus 34%, respectively, but it is underestimated, under-
diagnosed, and undertreated. In the last decade, studies of male osteoporosis have 
increased the awareness of the problem and have improved our understanding of the 
pathogenesis of osteoporosis and fragility fractures in men. Approximately 25–30% 
of all hip fractures occur in men [4], and indeed many men suffer vertebral deformi-
ties [5]. Hip and vertebral fractures are associated with significant mortality and 
disability. By 2050, the worldwide incidence of hip fracture is expected to rise by 
240% in women and 310% in men compared to 1990 involving approximately 1.66 
million in 1990 to 6.26 million in 2050 [6].
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17.2  Etiology

It is well known that male osteoporosis has a multifactorial etiology and osteoporo-
sis in men is often secondary. The causes of osteoporosis in men include an excess 
of glucocorticoids, hypogonadism and a variety of other systemic conditions, gas-
trointestinal diseases, vitamin D deficiency, medications (such as anticonvulsant), 
and lifestyle factors, such as smoking, alcohol consumption, and physical inactivity, 
but often there is no obvious causes (Table 17.1). Osteoporotic fragility fractures are 
the leading cause of morbidity and mortality among aging men [7, 8], and 30% of 
all hip fractures occur in men, which often result in mortality.

In men, bone loss proceeds slowly, starting at middle age. As in women, hypo-
gonadism is a well-documented risk factor for developing osteoporosis in men and 
in older decades, testosterone levels are negatively correlated with the risk of frac-
tures, and it seems that this age-related testosterone deficiency should not be con-
sidered as one of the many causes of secondary osteoporosis, rather one of the 
major and most important mechanisms of senile osteoporosis. Indeed, androgens 
play a pivotal role in bone tissue homeostasis: they directly stimulate the prolifera-
tion, differentiation, and function of osteoblasts; inhibit osteoclast recruitment; and 
influence interactions between osteoclasts and osteoblasts. They stimulate growth 
hormone secretion (GH), increase the sensitivity of bone cells to IGF-1, and stimu-
late the production of bone matrix [9]. Androgen receptors are present in both 
osteoblasts and osteoclasts [10]; however, several data suggest that estrogens play 
a significant role in the pathogenesis of osteoporosis in men as demonstrated in 
women [11, 12]. In fact, a positive correlation between serum estradiol concentra-
tions and bone mineral density in men has also been described. Severe osteoporosis 
has been reported in men with deletion of estrogen receptor gene and aromatase-
deficient males. Acute hypogonadism induced by ablation treatment for prostate 

Table 17.1 Causes of primary and secondary osteoporosis and bone loss in men

Primary osteoporosis (~35%)
Age-related osteoporosis
Idiopathic osteoporosis
Secondary osteoporosis (~65%)
Alcoholism
Glucocorticoid excess (exogenous, endogenous)
Hypogonadism (idiopathic, androgen deprivation therapy for prostate cancer)
Chronic obstructive pulmonary disease
Gastrointestinal disorders (malabsorption syndromes, celiac sprue, primary biliary cirrhosis, 
inflammatory bowel disease, bariatric surgery, postgastrectomy)
 Hypercalciuria
Hyperthyroidism
Hyperparathyroidism
Medication-related osteoporosis (anticonvulsants, chemotherapeutics, thyroid hormone)
 Neuromuscular disorders
Post-transplant osteoporosis
Systemic illnesses (mastocytosis, thalassemia-induced osteoporosis, monoclonal gammopathy, 
other malignancies, human immunodeficiency virus (HIV) infection, rheumatoid arthritis)
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cancer (surgical or pharmacological castration, antiandrogen therapy) is associated 
with an extremely high risk of fragility fractures. Other well-recognized causes of 
bone loss in men are cigarette smoking and alcohol abuse, as well as corticosteroid 
treatment.

In contrast to the rapid decrease in estrogen levels in postmenopausal women, 
the decrease of testosterone secretion in aging men is much more extended in time. 
Consequently, men rarely experience rapid acceleration of bone loss. As a conse-
quence, the exponential increase in frequency of osteoporotic fractures with age is 
approximately 5–7 years delayed in men, compared to women [13–15].

17.3  Treatment

Treatment of osteoporosis in men at increased risk of fragility fractures was first 
included in the latest revision of the European guidelines on the evaluation of 
medicinal products in the treatment of osteoporosis [16]. Pharmacological agents 
are classified into two groups, antiresorptive and anabolic agents. The main mecha-
nism of action of antiresorptive agents, such as calcitonin, bisphosphonates, estro-
gen, selective estrogen-receptor modulators, and denosumab, is the reduction of 
bone resorption through the inhibition of the activity of osteoclasts, while anabolic 
drugs act by stimulating bone formation (Table 17.2).

Pharmacological approach of osteoporosis should be recommended to all men 
with a diagnosed osteoporotic fracture and men with a high 10-year absolute frac-
ture risk (FRAX). Treatments for osteoporosis in men are less defined than in 
women, mainly due to the fact that there are fewer randomized clinical trials 
(RCTs) performed in male populations, relatively smaller sample sizes, and lack 
of long- term extension studies. Available clinical data on drugs used to treat 
osteoporosis support their efficacy in men with primary osteoporosis as well as in 
women [17].

Only a minority of men are screened and treated for osteoporosis and fracture 
prevention, even after first fracture. Bisphosphonates are generally recommended as 
first-line pharmacotherapy in men. Future drugs for osteoporosis in men might 
include more selective antiresorptive compounds which do not markedly inhibit 
bone formation as well as newer osteoanabolic agents that appear to more selec-
tively stimulate bone formation. Drugs now approved for the treatment of osteopo-
rosis in men include the antiresorptive bisphosphonates alendronate, residronate 
and zoledronic acid, the antiresorptive monoclonal antibody denosumab, and the 
bone-forming agent teriparatide.

Table 17.2 Drugs for treat-
ment of male osteoporosis

Testosterone
Bisphosphonates (alendronate, risedronate, zoledronic 
acid)
Teriparatide
Denosumab
Strontium ranelate
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Treatment effects in men are analogous to what is observed in the treatment of 
postmenopausal osteoporotic women. Bisphosphonates are the treatment of choice 
in idiopathic osteoporosis. Denosumab is also approved for treatment in men receiv-
ing androgen deprivation therapy for non-metastatic prostate cancer; further, 
bisphosphonates and teriparatide are also available to clinicians for the treatment of 
glucocorticoid-induced osteoporosis in men. Testosterone treatment may be indi-
cated in men with documented symptomatic hypogonadism, but, to date, osteoporo-
sis is neither a sufficient nor a specific indication for testosterone treatment. 
Testosterone treatment increases BMD in hypogonadal men and is most effective in 
those whose epiphyses have not closed completely. New compounds with well- 
advanced clinical development include romosozumab, a monoclonal antibody 
against sclerostin.

The aim of the treatment in osteoporosis is to prevent all-life fractures in those 
who have not yet suffered and to reduce the risk of fractures in patients with 
advanced osteoporosis. Comprehensive fracture prevention should address all men 
over the age of 65 years and should be aware of the risks, modifications of lifestyle, 
and nutrition, and, as far as possible, the elimination of risk factors for fracture and 
prevention of falls.

17.4  Bisphosphonates

Bisphosphonates inhibit osteoclastic bone resorption and are the most widely used 
drugs in male osteoporosis. Studies of male osteoporosis include the evaluation of 
alendronate, risedronate, and zoledronic acid. These agents are indicated to increase 
bone mass in men with osteoporosis.

17.5  Alendronate

Alendronate is a potent bisphosphonate that inhibits osteoclast-mediated bone 
resorption [18] which has high affinity to bone with long-term effects. In postmeno-
pausal women with osteoporosis and in patients with glucocorticoid-induced osteo-
porosis, alendronate significantly increases bone mineral density; it also reduces the 
incidence of major osteoporotic fractures, including those of the spine and hip, in 
postmenopausal women [19].

Oral alendronate has been tested against placebo or alfacalcidol in two RCTs 
undertaken in men with primary or hypogonadism-associated osteoporosis. In a 
2-year double-blind study, Orwoll et  al. investigated the efficacy of alendronate 
(10 mg/day) or placebo in 241 men with osteoporosis aged 31–87 years. The study 
included men with femoral neck BMD at least 2 SD and lumbar spine BMD at least 
1 SD below the male reference, or with femoral neck BMD at least 1 SD below male 
reference and at least one vertebral deformity or a history of an osteoporotic fracture 
[20]. Alendronate-treated men showed a similar increase in BMD as previously 
reported in postmenopausal women [21], and the changes in BMD with alendronate 
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were not affected by circulating levels of sex steroids (testosterone and estradiol). 
Therefore, treatment and anti-fracture efficacy of bisphosphonate may potentially 
be similar in both hypogonadal men and eugonadal men. Moreover Ringe et  al. 
evaluated the efficacy of oral alendronate 10 mg versus alfacalcidol 1 μg daily in a 
3-year open-label RCT of 134 men. Alendronate-treated patients experienced a sig-
nificantly lower incidence of new vertebral fracture compared to placebo-treated 
subjects (OR = 0.36, 95% CI: 0.14–0.94), and a non-significant lower incidence of 
new nonvertebral fracture with alendronate was also reported [22]. The benefits of 
alendronate therapy in men with osteoporosis were very similar to those in post-
menopausal women.

17.6  Risedronate

A similar 2-year BMD endpoint study was performed with risedronate 35 mg once 
a week in 284 men with osteoporosis aged 36–84 years and effectively increased 
bone mineral density in comparison with placebo, but no significant effect on the 
risk of fractures was found [23].

The study reported a significant increase from baseline to endpoint in lumbar 
spine BMD and significant increases in hip BMD compared with placebo. This 
study also showed that the positive effects on bone density and on NTX, a marker 
of bone resorption, were not affected by circulating testosterone. The positive 
effects of risedronate in men with osteoporosis were confirmed in an open-label, 
prospective, match-control trial [24]. The aim of this study was to assess the 
effect of treatment with risedronate 5 mg daily relative to control in men with 
primary or secondary osteoporosis over 2 years. Risedronate significantly 
reduced the risk of vertebral and nonvertebral fractures, improved BMD, 
decreased height loss, and reduced back pain in men with osteoporosis, and effi-
cacy was sustained over 2 years since a consistent 60–61% risk reduction in 
vertebral fractures was observed at 1 and 2 years, respectively, demonstrating 
that daily risedronate is an effective therapy for men with primary or secondary 
osteoporosis (Table 17.1).

17.7  Zoledronic Acid

Zoledronic acid is a bisphosphonate, administered intravenously, that at a dose of 
5 mg once a year, has anti-fracture efficacy in postmenopausal women with osteo-
porosis and positive effects on bone mineral density in men. Three RCTs investi-
gated the beneficial effects of intravenous zoledronic acid 5 mg once yearly versus 
placebo or alendronate. Zoledronic acid has significantly improved bone mineral 
density and reduced bone turnover markers, with changes from baseline similar to 
those reported for other bisphosphonates in men with osteoporosis and were consis-
tent with those seen in postmenopausal women with osteoporosis receiving 
bisphosphonates.
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More recently, a 2-year fracture endpoint study in male osteoporosis investigated 
once-yearly intravenous zoledronic acid treatment in a randomized, multicenter, 
double-blind, placebo-controlled. The primary efficacy endpoint was the reduction 
in vertebral fracture risk at the 2-year endpoint of the trial. In further detail, 1199 
men with osteoporosis were randomized to an annual infusion of either zoledronic 
acid (5 mg) or placebo and supplemented with calcium (1–1.5 g) and vitamin D 
(800–1200 mg) daily. The treatment with zoledronic acid resulted in a significant 
reduction in the risk of new vertebral fractures, by 67% (RR: 0.33; 95% CI: 
0.16–0.70) [25]. Similar results were observed for moderate-to-severe and worsen-
ing morphometric vertebral fractures, while no significant difference was observed 
between groups in the incidence of new clinical fractures. Zoledronic acid also sig-
nificantly increased the BMD at the lumbar spine, total hip, and femoral neck over 
24 months, as compared to placebo. Total testosterone level did not affect the anti-
fracture efficacy of zoledronic acid or its beneficial effects on the BMD. Further, a 
2-year head-to-head RCT comparing once-yearly zoledronic acid with once- weekly 
alendronate in men with primary or hypogonadism-associated osteoporosis demon-
strated the non-inferiority of zoledronic acid compared to alendronate in improving 
the BMD at the lumbar spine, femoral neck, and total hip [26]. The 302 patients 
were randomized to receive either once-yearly ZOL 5 mg IV or weekly oral ALN 
70 mg for 24 months. Changes in BMD and bone marker levels were assessed. ZOL 
increased BMD at the lumbar spine, total hip, femoral neck, and trochanter and was 
not inferior to ALN at 24 months (Table 17.2).

In summary, findings from RCTs with alendronate, risedronate, and zoledronic 
acid demonstrated their efficacy in reducing the risk of new vertebral fractures in 
men with primary and hypogonadism-associated osteoporosis. Evidence for a sig-
nificant effect on non-vertebral fractures is still insufficient, mainly due to the small 
numbers of patients included in clinical trials. Oral and intravenous bisphospho-
nates were also shown to significantly reduce markers of bone turnover and to 
increase the BMD compared to baseline and to placebo. Bisphosphonates were well 
tolerated, producing only expected and self-limiting specific adverse effects includ-
ing upper gastrointestinal toxicity associated with oral use and symptoms related to 
an acute-phase reaction after the first exposure to intravenous zoledronic acid.

17.8  Teriparatide

Teriparatide is a parathyroid hormone analogue (PTH1-34) that has an identical 
sequence to the 34 N-terminal amino acids (the biologically active region) of the 
84-amino acid human parathyroid hormone. It is indicated as treatment in men with 
primary or hypogonadal osteoporosis at high risk for fracture and in the treatment 
of osteoporosis associated with sustained systemic glucocorticoid therapy in men at 
high risk of fracture. Teriparatide treatment for the management of primary osteo-
porosis in men has been evaluated in two well-designed RCTs as monotherapy or 
combination therapy [27–29]. In a placebo-controlled, double-blind trial, 437 men 
with primary osteoporosis (hip or spine T-score <−2.0 SD) were randomized into 
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three groups and either received teriparatide 20 μg, teriparatide 40 μg, or placebo 
injection daily, respectively. The patients were supplemented with calcium 
(1000 mg/day) and vitamin D (400–1200 IU) [30]. During the study, indices of bone 
formation increased early upon therapy with teriparatide, followed by increase of 
markers of osteoclastic activity, while markers of bone turnover were stable or 
declined slightly in the placebo group. Daily treatment with teriparatide at both 
doses increased, in a dose-dependent manner; lumbar spine and femoral neck BMD 
and changes were significantly greater in the teriparatide groups compared to the 
placebo group, beginning after 3 months. The BMD response to treatment was inde-
pendent of baseline free testosterone, age, body mass index, baseline lumbar spine 
BMD, smoking, and alcohol intake. Thus, teriparatide is effective in the manage-
ment of osteoporosis in men as well as in women. Indeed, teriparatide was well 
tolerated, producing only expected and rare self-limiting specific adverse effects, 
including transient post-dose increase of serum calcium and 24-h urinary calcium 
excretion, nausea, and headache. The overall safety and tolerability of teriparatide 
in men and women have also been highlighted by over a decade of experience that 
has not revealed relevant safety issues [31].

Teriparatide (1–34 rhPTH) has been registered for the treatment of “severe” 
osteoporosis in men with fragility fractures, multiple risk factors, or ineffective 
prior therapy. The use of teriparatide was evaluated also in combination with other 
therapies. In particular, 83 men with low BMD were randomized to receive 10 mg/
day alendronate or 40 μg/day teriparatide subcutaneously or both. Alendronate was 
administered for 30 months, and teriparatide was started after 6 months. Lumbar 
spine and femoral neck BMD increased significantly more in men on teriparatide 
monotherapy compared with the other groups. A second study showed that alendro-
nate impaired the action of teriparatide to increase bone turnover in men [32, 33]. 
Teriparatide appears to be an effective therapy in men with osteoporosis, yet main-
tenance of its effects after treatment cessation is not fully understood and may 
require subsequent initiation of anti-resorptive treatment.

17.9  Strontium Ranelate

Strontium ranelate is an antiresorptive agent approved in Italy for the treatment of 
severe osteoporosis in postmenopausal women at high risk of vertebral and/or hip 
fractures and in men at high risk of fracture when other pharmacological treatments 
are not indicated. Mechanisms of action of this molecule are not fully understood, 
even though preclinical studies suggested that it might have a dual action by inhibit-
ing bone resorption and stimulating bone formation [34, 35].

A 2-year, controlled, double-blind study has been performed in osteoporotic 
men. The objective was to analyze men with a similar risk profile as the postmeno-
pausal women previously included in the pivotal phase 3 trial. In a preliminary 
communication of the results at 1 year, the authors reported that the same dosage of 
strontium ranelate, with calcium and vitamin D supplementation, resulted in similar 
significant BMD gain at the spine and hip in osteoporotic men compared with 
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osteoporotic postmenopausal women [36]. RCTs have investigated the effects of 
oral strontium ranelate 2 g daily compared to placebo or alendronate (70 mg weekly) 
in men with established primary osteoporosis [37]. Studies revealed efficacy of this 
molecule [38, 39] since new radiographic vertebral fractures occurred in 5.8% of 
men receiving strontium ranelate and 7.8% of men receiving placebo. However, the 
safety analyses revealed an imbalance in the occurrence of coronary artery disorders 
(angina pectoris and coronary artery disease) in the strontium ranelate group as 
compared to placebo group, with a significant higher incidence of adverse events in 
the strontium ranelate group (strontium ranelate 8.7% versus placebo 4.6%). Thus, 
these safety effects strongly limited the use of this drug in subjects with cardiovas-
cular risk.

17.10  Denosumab

Denosumab is a human monoclonal antibody which, antagonizing the binding of 
RANKL to RANK, reduces osteoclast differentiation and activation, increase 
apoptosis, and, thus, inhibit bone resorption. The anti-fracture efficacy of deno-
sumab has been clearly established in RCTs performed in postmenopausal 
women and men receiving androgen deprivation therapy for non-metastatic pros-
tate cancer. The “Fracture Reduction Evaluation of Denosumab in Osteoporosis 
Every 6 Months” (FREEDOM) trial showed the efficacy of denosumab on frac-
ture-risk reduction at different skeletal sites among osteoporotic women [40]. 
The efficacy and safety of denosumab in men with low BMD (primary or hypo-
gonadism-associated) have been consequently investigated in a 2-year RCT per-
formed in 242 patients (ADAMO study). Denosumab increased lumbar spine 
BMD by 5.7% after 12 months compared with an increase of 0.9% in the placebo 
group (P < 0.0001). Denosumab treatment also significantly increased the BMD 
at the total hip and femoral neck compared to placebo. Treatment with deno-
sumab produced a significant (versus baseline and placebo) decrease of 
serum CTX.

Moreover, in patients at high fracture risk, its beneficial effects were shown in 
older men under androgen deprivation therapy for prostate cancer. A double-blind, 
randomized, multicenter study investigated the efficacy of denosumab (60 mg subcu-
taneously every 6 months) vs placebo in men receiving androgen deprivation therapy 
for non-metastatic prostate cancer (734 patients in each group). After 24 months, 
lumbar spine BMD increased by 5.6% in the denosumab group as compared to a loss 
of 1.0% in the placebo group (p  <  0.001). The amount of bone mineral density 
obtained is comparable to the increased observed in postmenopausal women [41]. 
Denosumab was well tolerated in subjects affected by osteoporosis, and no account 
of jaw osteonecrosis, arterial fibrillation, and symptomatic hypocalcaemia was 
reported. The most common adverse reported effects were musculoskeletal pain, 
hypercholesterolemia, and cystitis as previously described in women [42].
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Thus, all these studies demonstrated the efficacy of anti-osteoporotic treatments 
in men revealing the need to further increase their use to prevent fragility fracture in 
men affected by osteoporosis.
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Femur Fragility Fracture in Men 
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18.1  Introduction

A fragility fracture is a low-energy fracture that occurs when a patient falls from 
standing height or less [1, 2]. Fragility fractures represent an epidemic problem 
worldwide, the most common and serious fragility fractures occur in the hip, and 
the majority of these patients have osteoporosis. It is known as osteoporosis is a 
systemic skeletal disease characterized by low bone mass, microarchitectural dete-
rioration, and strength impairment, which increase the risk of fragility fractures, 
leading to high morbidity and reducing patient’ s quality of life [3]. Gender and age 
influence the risk of fragility fracture [4]. Osteoporosis is four times more common 
in women than in men, but some evidence indicates that men tend to have more 
osteoporosis-related complications. Osteoporosis in men is an important health 
issue. Men account for approximately 20% of all cases of osteoporosis and contrib-
ute substantially to the fracture burden. The number of persons with hip fragility 
fracture has increased during the last decades worldwide. The total number of inci-
dent fragility fractures is estimated to be 9 million annually worldwide, of which 1.6 
million were at the hip [1]. In Europe, the number of fragility hip fractures was 
estimated to be as high as 900,000. In Italy, osteoporosis potentially affects 
5,000,000 people, of which 80% are women of postmenopausal age. In particular, 
one out of three women and one out of eight men in the over 50s population are 
estimated to be affected by osteoporosis [5]. In Italy, about 160,000 hospital admis-
sions for fragility fractures are recorded per year, of which nearly 100,000 involve 
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the femur fragility fracture. Every year we register in Italy approximately 21,496 
femur fragility fractures [6]. With aging, the incidence of fragility fracture increases 
in both sexes; the peak number of hip fractures occurs at 75–79 years of age for both 
sexes. However, the hip fracture risk increases in women after 40 years, but only 
after 65 years in men and one-third of these fractures occur in males. Compared 
with women, after a hip fracture, men have higher rates of 1-year mortality (31–38% 
for men versus 12–28% for women), persist 10 years post fracture [7], and are twice 
as likely to be institutionalized [8]. Secondary fractures occur rapidly after the first 
fracture. The risk of subsequent fractures seems to be higher just after a fracture, 
especially in the first year. Many studies have shown that after a femoral fragility 
fracture there is a 30% risk of having a new controlateral fracture of femur in the 
same year and 10% within 5 years [9]. There are factors associated with an increased 
risk of osteoporosis-related fractures. These include general factors that relate to 
aging and sex steroid deficiency, as well as specific risk factors such as the use of 
glucocorticoids therapy for some chronic disease and androgen deprivation therapy 
(ADT) for prostate cancer, reduced bone quality, and disruption of microarchitec-
tural integrity. Fragility fractures result when weakened bone is overloaded, often 
by falls or certain daily chores.

Bone loss in men, similar to women, is related to aging. Changes in bone struc-
ture and geometry induced by aging contribute to decreased bone strength and 
increased fragility fracture risk in the elderly population [4]. However, differences 
in skeletal size, mechanical loading, and muscle mass may also play a role in the 
patterns of bone loss between genders [10]. In fact, when peak bone mass is 
achieved, bone density in men is one-fourth to one-third greater than in women, and 
male bones reach a larger diameter and cortical thickness than female bones. 
Additionally, the pattern of bone loss is different between genders. Bone mass rap-
idly decreases in women at menopause, around 50 years old, in contrast with men 
of the same age [11]. Nevertheless, bone loss takes place in both trabecular and 
cortical compartments with increased cortical porosity with age [12]. Hip fragility 
fractures are primarily caused by falls, and the prospect of falling becomes much 
more prevalent with aging [13]. In addition to aging, characteristics common to 
patients who fell and fractured their femur included an impairment, stroke or medi-
cations that decrease mental alertness, nonuse of eyeglasses that were prescribed, 
and inappropriate footwear. Most of hip fractures occur equally inside or outside the 
home, but above all older people fall at home [14].

Beyond age and sex, several other factors increase the risk of fragility fractures 
such as body mass index (BMI), personal history of fragility fracture, parental his-
tory of hip fracture, smoking, glucocorticoid use, rheumatoid arthritis (or other 
chronic autoimmune inflammatory diseases), secondary causes of osteoporosis 
(type 1 diabetes, low vitamin D levels, hyperthyroidism, hyperparathyroidism, 
hypogonadism, chronic malnutrition, malabsorption, eating disorders, chronic liver 
disease, chronic kidney disease, HIV infection, or treatments with medications that 
can cause any of the abovementioned issues), or daily alcohol intake >3 units [15]. 
Hip fragility fractures can be divided into femoral neck, intertrochanteric and sub-
trocantheric fractures. All of them should be treated surgically. The type of surgery 
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needed to manage a hip fracture is determined by the fracture type and the individ-
ual needs of the patient. Surgery typically involves fixation with 2–3 cannulated 
screws (most typically, 3), with the patient with a fracture stable. If the fracture is 
unstable, the basic choices are reduction and internal fixation, hemiarthroplasty, or 
total hip arthroplasty. Guidelines recommend surgery within 48 h of hospitalization, 
arguing that early surgery better functional results, reduced mortality, hospital stay, 
and postoperative complications [16, 17].

In the face of considerable advances in surgical techniques, which now enable 
the treatment and functional recovery of femur fragility fractures, postsurgical man-
agement of these patients is often inadequate for preventing new fracturing events. 
All fractured subjects should be immediately considered at high risk for further 
fractures and must be included in a monitoring and treatment program. However, 
although fragility fracture is one of the major risk factors for further fractures, only 
a minority of these patients are currently initiated to an appropriate diagnostic and 
therapeutic route after acute surgical treatment of the hip fracture.

Men with hip fragility fracture should have additional laboratory testing to assess 
for these osteoporosis secondary causes. Serum calcium, estimated GFR, 25-hydroxy 
vitamin D, intact PTH, TSH, and testosterone levels should be a part of the osteopo-
rosis assessment.

The orthopedist is the specialist who can and must assume the burden of manag-
ing the femur fragility fracture in elderly and osteoporotic subjects, curing it acutely, 
respecting the correct importance of surgical timing, taking into account the poor 
quality of the bone, using all the dedicated synthetic media, following the repair and 
healing process, promoting early mobilization to improve functional recovery, 
administering vitamin D, and setting up a drug therapy aimed at reducing the risk of 
refracture.

Finding men with known fracture risks, such as those on androgen deprivation 
therapy, or on oral glucocorticoid therapy should lead to evaluation, treatment, and 
fewer fractures. Secondary prevention is important as well. If a man has survived 
one fracture, he is at high risk for another. It is not too late to evaluate and treat.

18.2  Classification and Pathophysiology of Femur Fragility 
Fracture in Men

Fragility fractures are some of the most severe complications associated with pri-
mary and secondary osteoporosis in male. Primary osteoporosis includes hypogo-
nadal osteoporosis and senile osteoporosis. Secondary osteoporosis is associated 
with long-term drug treatments (e.g., corticosteroids). Primary male osteoporosis 
includes age-related osteoporosis and idiopathic male osteoporosis. Age-related 
osteoporosis in men, like in women, is more likely to occur as age increases and is 
typically seen in males older than 70 years. Instead, idiopathic male osteoporosis is 
generally defined as one or more fractures and a low BMD in men before the age of 
65–70 years old [18]. There are multiple theories as to the etiology of idiopathic 
male osteoporosis, such as genetic factors or a familial history [19]. Several 
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epidemiological and clinical observations have shown that osteoporosis in men has 
an important genetic component, as well as in women. Genetic causes of primary 
osteoporosis in men may involve genes for IGF-I or estrogen metabolism. Multiple 
genes have shown effects on bone development, strength, density, etc. Van 
Pottelbergh et al. showed that men whose fathers had osteoporosis tended to also 
have reduced bone size and reduced volumetric BMD [20]. It has been generally 
accepted that sex hormones play an important role in primary osteoporosis. Men do 
not have a dramatic loss of androgens with aging, unlike what happens with loss of 
estrogen at the menopause in women, but most reports have shown that serum tes-
tosterone levels decline with aging. Traditionally, bioavailable or free testosterone 
deficiency was a stronger predictor of rapid hip bone loss [21]. However, several 
studies indicate that levels of bioavailable estradiol rather than testosterone are 
strongly correlated with the fracture risk [22], while estradiol deficiency or higher 
sex hormone binding globulin (SHBG) related to greater hip bone loss but also for 
fracture. These results suggest that estradiol, but not testosterone, may be the major 
sex hormone with an impact on fragility fracture risk in older men [23]. Men with 
low testosterone levels had worse of muscle strength and balance with a greater risk 
of falls resulting in increased risk of fragility fracture [24]. In fact, large most fragil-
ity fractures occur in men older than 70 years, with the incidence rising with fur-
ther aging.

Male osteoporosis that can be linked to or explained by causes other than aging 
is generally classified as secondary male osteoporosis. Secondary osteoporosis is 
more common in men than in women [25] and is the reason that patients need a 
thorough evaluation consisting of medical history, physical examination, and labo-
ratory testing. Chronic diseases that have been associated with secondary osteopo-
rosis include diseases such as chronic obstructive pulmonary disease (COPD), 
cardiovascular disease, rheumatoid arthritis, osteoarthritis, general frailty, diabetes 
mellitus, hypercalciuria, hyperparathyroidism, hyperthyroidism, inflammatory 
bowel disease, bariatric surgery and mobility disorders such as Parkinson’s disease, 
multiple sclerosis, cerebrovascular accidents, and spinal cord injury. Other causes 
of secondary osteoporosis in men include age, weight or body mass index, current 
smoking, alcohol abuse, previous fracture, parental history of fracture and recent 
fall history, and low serum levels of 25-hydroxyvitamin D.

It is important to pay attention to men undergoing glucocorticoid therapy for 
some chronic disease and androgen deprivation therapy (ADT) for prostate cancer. 
Glucocorticoid therapy is especially important because increased fracture risk can 
be demonstrated as early as 3 months after starting oral glucocorticoid therapy [26]. 
In the ADT fracture risk is elevated (as high as 20% fracture risk in 5 years) because 
of their very low serum levels of both testosterone and estradiol.

The severity of the bone loss and dramatically increased fracture risk are under-
appreciated, and only a minority of men are evaluated and/or treated for glucocorti-
coide- and ADT-induced osteoporosis. In addition to glucocorticoide therapy and 
ADT, the following drugs may be associated with increased fracture risk: proton 
pump inhibitors, antidepressants, dopamine antagonists, thiazolidinediones, 
 immunosuppressives (e.g., cyclosporine), enzyme-inducing antiseizure medications 
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(e.g., phenytoin), opiate analgesics, and some cancer chemotherapy (e.g., 
cyclophosphamide).

Although the incidence of hip fracture is known to increase with age, knowledge 
about risk factors for hip fracture among very old people is limited. Recently, 
Wiklund et al. studied risk factors for hip fracture for very old people and has docu-
mented how the following seven factors were associated with increased risk of inci-
dent hip fracture: walking indoors with help from ≤1 person, Parkinson’s disease, 
currently smoking, delirium in the previous month, underweight, and age. They 
concluded like these factors could have important clinical implications in identify-
ing persons at high risk of hip fracture, as well as in the development of effective 
preventive strategies [27].

Osteoporosis is a multidisciplinary pathology that can be treated by several spe-
cialists, but becomes an orthopedic problem when it is the cause of femur fragility 
fracture. It is necessary for the orthopedic specialist to have a correct approach to 
men with fractured femur to ascertain and quantify the presence of underlying 
osteoporotic disease as well as to establish the appropriate pharmacological therapy 
aimed at reducing the risk of further fractures. Management of hip fragility fracture 
in men should also take into account possible comorbidities associated with con-
comitant therapy whose presence could alter the quality of bone tissue resulting in 
increased susceptibility to fractures but also modify healing processes and predis-
posing any complications of fracture, or lead to more complicated patient manage-
ment during and post-hospitalization. Once the presence of osteoporosis with hip 
fragility fracture has been established with imaging techniques, laboratory tests can 
be a valuable help for further in-depth research. It is a mistake to undertake osteo-
porosis therapy without having investigated etiology. Laboratory examinations are 
indispensable in the diagnostic test and should be performed in all patients with 
proximal femoral fracture. The laboratory allows you to discriminate between prim-
itive forms and secondary forms of osteoporosis, diagnosis differential with other 
pathologies that may result in a clinical picture similar to osteoporosis.

The fundamental goal of pharmacological therapy for fragility fractures is to 
increase skeletal resistance and consequently decrease the risk of further fractures. 
After each event of fracturing by low energy trauma, the risk of subsequent fractures 
is increased by 2–4 times, especially within 1 year of the previous one, regardless of 
the presence of other risk factors. Various drugs are currently available which, with 
different action mechanisms, have been shown to be effective in determining not 
only an increase in bone mass but also a qualitative improvement in skeletal tissue. 
For the different characteristics of the studies performed, comparisons between the 
various drugs are not easy, and therefore one cannot currently determine with cer-
tainty in terms of efficacy the priority of a drug compared to another. It is important 
to remember how these drugs have always been active in association with calcium 
and vitamin D. The therapeutic choice for osteoporosis should therefore be person-
alized based on the patient’s metabolic profile and fracture risk, as well as evaluated 
on the basis of antifractorial efficacy, safety, cost, and different ways of administer-
ing the various therapies. In any case, osteoporosis therapy is the best benefit if 
taken regularly, for an adequate period of time, generally for years, and especially 
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when the risk of fragility fracture is particularly high, i.e., in the presence of nega-
tive predictors such as previous fracture, low bone mass, advanced age, and other 
conditions unfavorable to the bone.

18.3  Fragility Fracture and Falls in Men

Falls and fragility fractures become much more prevalent with advancing age [13]. 
The most serious fragility fractures occur in the hip; in fact an estimated 95% of hip 
fractures are due to falls [28]. However, only 1% of falls in older adults result in a hip 
fracture, suggesting that the likelihood of hip fracture depends on the circumstance 
and biomechanics of falling such as orientation of the fall; characteristics of the faller 
such as height, reaction time, muscle mass, and amount of soft tissue padding over the 
hip; energy of the fall; and characteristics of the impact surface [29]. Hip fractures 
occur equally inside or outside the home, but above all older people fall at home, 
maybe because they spend most of their time there and, feeling more confident, are 
more careless. Falls are a critical factor in the etiology of fracture in men. The risk of 
falling is often multifactorial, increases with age due to physiological age-related 
changes with reduced physical function, or more properly pathological factors, or due 
to the environment. One-third of generally healthy individuals aged 65 or above and a 
half of those aged 80 or above will fall at least once a year. Patients with falls have 
more problems in walking than those without a history of falls. Rubenstein et al. in 
extensive longitudinal study showed that 10% of the people over 65 need assistance in 
walking across a room, 20% need help in climbing stairs, and 40% are unable to walk 
more than 500 m [30]. An important explanation for the increased risk of falling with 
older age is muscle weakness. This is caused not only by decreased muscle mass but 
also by reduced muscle strength and power, as a consequence of loss of muscle fibers, 
fatty degeneration and fibrotic changes, and a decreased number of functioning motor 
units [31]. It has been documented that distal muscle weakness of lower limb, in 48% 
of non-institutionalized patients and in 80% of patients in nursing homes, leads to 
significant postural instability and that the proximal muscle weakness reduces the 
compensatory movement of the arms [32]. Although the reduction of muscle strength 
is part of the physiological aging process, much of this reduction is probably attribut-
able to the presence of comorbidity and to physical inactivity. Older and frail persons 
and those who have had a stroke or are taking medications that decrease mental alert-
ness are particularly predisposed toward falls. In a large observational longitudinal 
osteoporotic fractures in men study (MrOS), Cawthon et al. identified numerous risk 
factors for falls and hip or nonvertebral fractures. MrOS showed the relation between 
BMI and fracture risk. After accounting for BMD, men with higher BMI are at a 
higher risk of hip fracture. Falls were higher in men who slept 5 h or less than for those 
who slept 7–8 h. Also, hypoxia during sleep was associated with a 40% increased risk 
of recurrent falls and a 30–40% increased risk of nonvertebral fractures. Low mea-
sured activity levels were associated with a higher risk of nonvertebral fracture. Poor 
physical performance, in particular inability to rise from a chair, is a strong risk factor 
for falls and hip fractures. Yet, MrOS evaluated the relation between numerous 
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medical conditions and medications with falls and fractures. Nonbenzodiazepine sed-
ative hypnotics used in the treatment of sleep disturbances or anxiety-related disorders 
were associated with increased risk of falls, and benzodiazepines were related to 
increased falls by increased disability, depressive symptoms, and poorer physical per-
formance. Yet, MrOS showed that abdominal aortic calcification (AAC), assessed on 
lateral spine radiographs, was associated with increased risk of hip fracture. Older 
men with Parkinson’s disease have a threefold higher risk of multiple falls and higher 
bone loss and fracture. Chronic obstructive pulmonary disease (COPD) was associ-
ated with an increased risk of nonspine. MrOS showed that diabetics have an increased 
risk of nonvertebral fractures. Men with moderate to severe lower urinary tract symp-
toms had a greater risk of falls. In MrOS, the association of testosterone level to the 
risk of falling persisted regardless of physical performance. Also, low vitamin D lev-
els are associated with higher rates of fracture risk, suggesting potential use of serum 
25(OH)D in identifying men at high risk of hip fracture. It is important to note how 
low vitamin D with low bioavailable estradiol and high SHBG were associated with 
greater bone loss and higher fracture risk, suggesting that men with this combination 
may be at particular risk of fragility fracture. Higher parathyroid hormone (PTH) can 
contribute to the relationship between 25(OH)D and bone loss or hip fracture. Only 
TSH, but not FT4 or categories of thyroid function, was associated with hip fracture 
risk [33].

Environmental barriers are responsible for 30–50% of the falls; the external envi-
ronment contains many risks, but above all older people fall at home. At home, 
barriers are represented by thresholds, stairs, carpets, slippery surfaces, inadequate 
lighting, or, on the contrary, excessive or dazzling illumination, which are possible 
causes, too [34].

18.4  Surgical Risks in Femoral Fragility Fracture Treatment

The treatment of hip fractures due to osteoporosis tends to move toward surgery, 
with the use of implants which, through recomposition of the fragments or their 
prosthetic substitution, allow early mobilization of the patient. The type of surgery 
needed to manage a hip fracture is determined by the fracture type (femoral neck, 
intertrochanteric, and subtrochanteric) and the individual needs of the patient. 
Femoral neck fractures may be classified as stable or unstable, depending on the 
fracture pattern, displacement, and angulation. Garden classified the femoral neck 
fractures in four types, according to the displacement, relating it to a possible vas-
cular damage and, ultimately, to the healing of the fracture and to the survival of 
the femoral head (Fig. 18.1). The appropriate surgical treatment is usually fixation 
in situ with percutaneous, partially threaded, cannulated screws, for Garden type 1 
and 2 fractures, approximately 20% of the cases, and hip joint replacement (hemi-
arthroplasty or arthroplasty) for Garden type 3 and 4 fractures [35]. The choice of 
the operative treatment is based on the displaced femoral neck fractures. However, 
the debate as to whether the femoral head should be retained or replaced continues. 
In their meta-analysis, published in 1996, Rogmark and Johnell [36] showed that, 
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regardless of the type of internal fixation, the failure rate was 21–57%, and reop-
eration was required in 14–53% of all their cases. In contrast, the reoperation rate 
after arthroplasty was 7%, confirming analogous results of any previous meta-anal-
ysis. Moreover, in a recent prospective randomized study, Frihagen et  al. [37] 
reported that, among people over 60 years old, arthroplasty was associated with 
better functional outcome, higher health-related quality of life, and more indepen-
dence compared with internal fixation. These fractures are rare among young indi-
viduals, and there is consensus that any such cases should be treated with closed 
reduction and internal fixation in an attempt to preserve the femoral head. It has 
been shown that young adults achieve higher rates of fracture union, and it is 
believed to be due to the healing potential and good bone quality of the upper 
femur in this age group [38]. Fractures of proximal femur are divided in intracap-
sular and extracapsular. This second category comprises almost 50% of hip 

Grade I Grade II Grade III Grade IV

Non-Displaced Displaced

Fig. 18.1 The Garden classification consists of four subtypes: Garden grade I is an incomplete 
femoral neck fracture, with valgus impaction; Garden grade II is a complete but non-displaced 
fracture; Garden grade III fracture is a complete and partially displaced fracture with alignment of 
the femoral neck relative to the neck in varus deformity; and Garden grade IV is a complete frac-
ture with complete displacement [Garden RS. Low-angle fixation in fractures of the femoral neck. 
J Bone Joint Surg (Br) 1961;43:647—63; Van Embden D, Rhemrev SJ, Genelin F, Meylaerts SA, 
Roukema GR. Orthop Traumatol Surg Res. 2012 Jun;98(4):405–8. Epub 2012 May 3]
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fractures and includes the intertrochanteric and the subtrochanteric (up to 5  cm 
below the lesser trochanter) ones (Fig. 18.2). The first type comprehends undis-
placed, displaced, and displaced unstable (with reverse obliquity or displacement 
of the lesser trochanter) kind of fracture. This kind of fracture presents less risk of 

A1 .1 .2 .3

A2 .1 .2 .3

A3 .1 .2 .3

Fig. 18.2 AO classification groups (31A1, 31A2, 31A3) for extracapsular fractures. These three 
groups be may be termed as stable trochanteric, unstable trochanteric, and trans-trochanteric 
[Humayon Pervez, Martyn J. Parker, Glyn A. Pryor, Lennel Lutchman, Nishan Chirodian Injury, 
Int. J. Care Injured 33 (2002) 713–715]
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femoral head necrosis but more risk of blood loss and is complicated by higher 
low-term mortality. When surgical treatment is needed (it is almost the rule for 
femoral fractures), successful internal fixation may be challenging, because they 
occur in osteopenic bone that has thin trabeculae and decreased capacity to support 
internal fixation devices. The main matter of debate is how to obtain the stability 
and consequently a rapid mobilization of the patients, particularly in cases of 
unstable intertrochanteric fracture, as, for example, when fragmented corticale 
bone. Sliding hip screw and plate systems have provided satisfactory results in the 
treatment of intertrochanteric fractures over the past decades [39]. Nonetheless, 
they have been associated with a failure plate of up to 23%. Intramedullary sliding 
hip screw devices were introduced in the late 1980s (Gamma nail, Howmedica) 
[40]. The main advantage was good stability with minimal surgical exposure. 
Historically, the first generation of intramedullary hip screws were developed in 
order to improve clinical results and minimize complications [41]. At the same 
time, a variety of trials have been published, comparing new and older designs of 
intramedullary implants with sliding hip screws.

About the intracapsular fractures, impacted and non-dislocated femoral neck 
fractures with good interfragmentary contact of the fragment can be treated suc-
cessfully with a dynamic osteosynthesis, as three cancellous bone screws. As to 
extracapsular fractures, throchanteric plate and intramedullary nails are commonly 
used. The use of plate is indicated in stable and unstable fractures with the integrity 
of the sidewall, to allow the correct placement. The advantages of the plate are a 
less invasive surgery with reduced blood loss, rotational stability through two 
cephalic screws, the low risks of collapse and subsequent deformity. Besides, a 
trochanteric plate prevents medialization of the femoral shaft and comminution of 
the neck-head fragment, as well as its varus angulation. Possible disadvantages of 
the plate are screw cutout or head penetrations. Intramedullary nails are preferred 
by many surgeons for patients with intertrochanteric fractures, subtrochanteric 
extensions, and isolated subtrochanteric fractures [42]. The nail permits a reduc-
tion of the bending moment in the plant, a limited periosteal lesion, and a rotational 
stability with large- sized locked cephalic, divergent, or helical screws. The nail 
does not respect the neutralization principle of tensile force on the lateral part of 
the proximal femur, causing pain in older patients during mobilization. The nail 
leads to displacement into varus and not uncommonly retroversion of the head-
neck fragment.

Despite substantial evidence that a prior fracture results in an increased risk of 
subsequent fracture, less than 30% of postmenopausal women and less than 10% 
of men with prior fracture are treated [43]. Although some of this deficiency in 
clinical care is due to the overall lack of awareness of osteoporosis by the public 
and primary caregivers, the relative importance of prior fracture in relation to 
subsequent fracture risk does not appear to be fully appreciated, particularly in 
men. The proximal femur fractures are life-threatening due to the long period of 
bed immobilization and the high risk of complications. For these fractures open 
reduction and internal fixation in the first days from trauma is a life-saving action. 
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A stable reduction is the basis for success of the surgical procedure. Closed reduc-
tion must be preferred, but, if anatomical reduction is not achieved, a gentle open 
reduction must be performed avoiding excessive periosteal splitting by indirect 
maneuvers (Schanz screws as joystick, Kirschner wires for temporary fixation and 
trans-articular too) [44]. Nonanatomical reduction must be avoided because it 
eventually exposes to the risk of secondary displacement. A demanding closed 
reduction that employs excessive traction may cause vascular impairment. If gen-
tle maneuvers are not effective, open reduction must be preferred [45]. For the 
surgeon the technical problems are obtaining and maintaining a proper reduction 
and stabilization of unstable fractures in a mechanically low-resistant bone with 
the tendency to a slow healing process. The peri- and postoperative complication 
rates in the older group of patients are higher than in the younger population. A 
proper reduction can be more important than the type of hardware used to treat the 
fracture [46]. A nonaccurate reduction can increase the failure rate of the opera-
tion threefold and can delay the healing time of the fracture [47]. The surgical 
experience is very important to minimize the rate of complications [48]. The 
choice of the hardware is very important too. The osteoporotic bone, having lower 
mechanical properties, presents more complex fracture patterns and reduced 
resistance to the holding power of the thread of the screws of the hardware. Many 
studies have shown that a low BMD is related to a lower holding power of the 
screws on the bone [49]. The force needed for the pullout of the implant is so ever 
inferior with the possibility of microfractures and bone resorption at the bone-
hardware interface and secondary failure of the construct [50]. In the osteoporotic 
bone, the most common failure pattern of internal fixation is bone failure rather 
than implant failure. They are related to poor bone quality, because of the weaken-
ing of the bone structure, and are the result of low-energy injuries and often 
involve the metaphyseal segments of the bone. The fracture of the upper extremity 
of the femur is one of the most typical fractures of the elderly patients. They may 
be intracapsular (femoral neck fractures) or extracapsular (intertrochanteric and 
subtrochanteric fractures). Each kind of fracture can be treated in several ways: 
the intracapsular fracture can be treated with screws, unipolar or bipolar hemiar-
throplasty, or even with total arthroplasty. The extracapsular fractures instead can 
be treated with sliding hip screw, intramedullary nail, femoral neck screws, heli-
cal blade, or primary arthroplasty. What must be remembered is that osteoporotic 
bone has distinct morphologic characteristics that influence its biomechanical 
properties and therefore the choices and techniques for internal fixation. Therefore 
only a complete understanding of the biology of the osteoporotic bone will lead to 
a good quality of the treatment of the fragility fractures [51]. The early postopera-
tive mobilization is also of capital importance in preventing skin and soft tissue 
complications. The patient also needs to be carefully assessed from internal medi-
cine specialist before and after the operation in order to assess the previous pathol-
ogy and the eventual new ones. The rehabilitation protocol is often difficult to be 
carried out by the older patients that are depressed or unable to act or understand 
the medical orders.
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18.5  Discussion and Conclusion

Traditionally, osteoporosis was considered a disease that affects only women. 
However, a little over two decades ago, osteoporosis came to be recognized as a 
disease that is also prevalent in elderly men and with bleak survival outcomes fol-
lowing fracture. Despite their growing importance, however, there is little informa-
tion on the outcomes of hip fractures in men. Several studies have noted higher 
mortality following hip fracture among men than women, but there are few data on 
the influence of comorbid diseases, treatment strategy, or complications on the 
short-term death rate in men. There is almost no information concerning functional 
outcomes in these patients [52].

Most studies have concentrated almost exclusively on osteoporotic fractures in 
women. With increasing longevity in males, osteoporosis will become of increas-
ing importance in both males and females. There are few published long-term data 
on absolute risk of subsequent fracture following initial low-trauma fracture in 
women and fewer in men. For men, an initial fracture conferred a higher relative 
refracture risk (2.8- to 4.3-fold) that yielded a similar absolute refracture risk to 
that of women of the same age with an initial fracture. Thus, the reduced risk of 
initial fracture associated with male sex was lost once a single low-trauma fracture 
occurred. In multivariate analyses, femoral neck bone mineral density, age, and 
smoking were predictors of subsequent fracture in women, and femoral neck bone 
mineral density, physical activity, and calcium intake were predictors in men [53]. 
Fragility fractures are a challenging problem both for patients and orthopedic sur-
geons. The elderly is disabled and may present a reactivation of a previous illness 
or new medical problems related to the fracture, the surgical treatment, or the 
period of immobilization. This is particularly true for the patients affected by a 
vertebral or a proximal femur fracture. The orthopedic surgeon is sometimes the 
first doctor that diagnoses osteoporosis in the ER department after the fracture and 
is supposed to follow up the patient. His role, therefore, is not only the treatment 
of the present condition but also the prevention of future fractures. This can be 
done by studying the patient clinically, with the education to lifestyle modifica-
tions, prescribing a proper medical therapy, or referring the patient to the metabolic 
disease specialist. Patients affected by hip fracture have got eightfold more possi-
bility to fracture the contralateral hip with respect to the general population, but, 
today, less than 50% receive an adequate treatment for osteoporosis [49, 54]. The 
orthopedic surgeon needs to have a personalized therapeutic algorithm to use in 
primary and secondary fracture prevention. In general, a moderate physical activity 
and a diet rich in calcium, proteins, and vitamin D are strongly suggested. The 
prevention of domestic accidental falls is of paramount importance. The older 
patients living in nursing houses should wear hip protectors that have been shown 
to be very useful for hip fracture prevention [55].

Fragility fractures should be managed in the context of a multidisciplinary clini-
cal system, guaranteeing adequate preoperative assessment and preparation of 
patients including adequate pain relief, appropriate fluid management, and surgery 
within 48 h of injury. Operative treatment is the treatment of choice for the majority 
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of the displaced femoral neck fractures. However, the debate as to whether the fem-
oral head should be retained or replaced continues. The concept that the most of the 
efforts must be reserved to the acknowledgment of the biologic properties of the 
bone is a new conception that surgeons must consider, and so the surgical technique 
has to follow and to respect these advancements. In conclusion, we have demon-
strated a similar increased of absolute risk of subsequent fracture in both women 
and men following virtually all low-trauma fractures except ankle fractures in 
women and rib fractures in men. For both sexes, absolute subsequent fracture risk 
was equal to or greater than the risk of an initial fracture for a woman in a 10-year- 
older age bracket or for a man 20 years older. The increased risk persisted for up to 
10 years depending on age and sex, with about 50% of surviving men and women 
having another fracture. The critical clinical relevance of these findings is that inci-
dent low-trauma fracture is a signal for increased risk of all types of subsequent 
osteoporotic fracture, particularly in the next 5–10 years. Thus, virtually all low- 
trauma fractures indicate the clinical need for fracture preventive therapy, and given 
the early peak of refracture, such preventive treatment should not be delayed. The 
lack of consideration of osteoporosis and treatment initiatives by the medical pro-
fession and the public, particularly in relation to men, should be the focus of educa-
tion initiatives. The treatment of fragility femoral fractures has now reached very 
important findings allowing not only to achieve rapid healing with few failures but 
also an early rehabilitation therapy, a good quality of life, a longer survival, and bet-
ter maintenance of the conditions of self-sufficiency. The choice of the osteosynthe-
sis must be based on specific indications, experience of the surgeon, and 
patient’s needs.
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19.1  Introduction

Osteoporosis is a common disease in postmenopausal women, but it also represents 
a major issue for men with a growing burden for public health system. In 2000, 
about 39% of new fragility fractures occurred in men, with a female-to-male ratio 
of 1.6 for vertebral fractures, 2.3 for hip fractures, 3.0 for humerus fractures, and 4.0 
for forearm fractures [1].

Moreover, hip and vertebral fractures are the most painful and disabling fracture 
types, resulting in important clinical scenarios, ranging from chronic pain and loss 
of mobility and functional independence to an increased risk of institutionalization 
and death [2]. In Europe, all fragility fractures account for more deaths and morbid-
ity than any cancer type, except for lung cancer [2].

It should be emphasized that both disability and mortality as consequences of hip 
fractures are significantly higher in men than those reported in women. Among male 
patients with hip fractures, about 80% will not return to functional independence, 
and 50% needs to be managed in an institutionalized setting, meanwhile about 25% 
remains in nursing home or other assisted care [3]. These unfavorable rates are 
probably due to higher comorbidity burden in men compared to women at the time 
of fracture, adversely influencing functional recovery, even though they are gener-
ally younger [4]. On the other hand, some studies did not report any difference 
according to gender in terms of disability, because this latter is underestimated, as a 
consequence of higher rate of mortality in men [5, 6]. At 1 year after hip fracture, 
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mortality rate is 37% in men compared to 25% in women [7–9], whereas at 2 years, 
this rate reaches 42% in men and 33% in women, showing a slight reduction of dif-
ference in mortality rate according to gender.

Furthermore, spine is another typical site of fragility fractures that might induce 
back pain, disability, and poor health-related quality of life (HRQoL). Interestingly, 
it was reported that clinical vertebral fractures have a higher age-adjusted relative 
risk (RR) of dying than hip fractures (8.64 vs. 6.68) (Table 19.1) [10].

Considering these epidemiological issues, preventive strategies and rehabilita-
tion are cornerstones of the management of osteoporotic patients, particularly in 
men with fragility fractures.

19.2  Physical Activity as Strategy of Primary Prevention 
in Male Osteoporosis

The best comprehensive approach to the prevention of fragility fractures includes 
nutrition, physical activity, and behavioral interventions for subjects at higher risk.

The first step is to identify risk factors for osteoporosis and fragility fractures, 
such as poor sun exposure, smoking habits, high alcohol intake, other nutritional 
alterations, diseases or drugs influencing bone health, and history of falls that lead 
to a higher risk of fracture regardless of bone mineral density (BMD).

In order to prevent fragility fractures, an adequate assessment of risk of falls is 
mandatory, taking into account personal and environmental risk factors.

Personal risk factors of falls include low muscle strength, impaired balance, and 
poor physical function that should be evaluated by specific tests with an adequate 
accuracy [11].

The hand grip strength (HGS) test, performed using a Jamar dynamometer 
(Sammons Preston Rolyan, Bolingbrook, IL), considered the maximum value (in 
kilograms) of three consecutive measurements of the dominant upper limb strength 
(with an interval of 1  min after each measurement) [12, 13]. HGS is positively 
related to lower extremity muscle strength and negatively related to incident dis-
ability [14].

Similarly, men unable to properly perform the HGS have about four times 
increased risk of hip fracture [15].

Table 19.1 Gender 
differences in terms of 
incidence of fragility 
fractures and mortality rates 
after hip fractures worldwide

Male Female
Hip fractures  (n) 490,000 1,137,000
Vertebral fractures  (n) 554,000 862,000
Forearm fractures  (n) 332,000 1,328,000
Humerus fractures (n) 178,000 528,000
Mortality at 1 year 
after hip fracture (%)

37% 25%

Mortality at 2 year 
after hip fracture (%)

42% 33%
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In order to evaluate muscle strength, coordination, agility, and balance, one of 
the most used assessment tools is the five times sit to stand (FTSTS) that investi-
gates the ability of patients to stand up from a chair five times, without using arms. 
In particular, it was suggested that men unable to complete this exercise were about 
eight times more likely to experience hip fracture than those able to finish the test in 
less than 9 s, and approximately three times compared to men completing the test in 
more than 12.6 s [15, 16].

Unipedal stance time (UST) is a viable assessment tool for fall risk identifica-
tion, consisting of standing on 1 foot up to 45 s. The test has to be performed for 
three times, and the best result is recorded and assessed according to the cutoffs 
proposed by Springer et  al. [17]. Patients that fail to perform this test have an 
increased RR of 11.6 of falling compared to patients able to complete the test [18].

An objective way to assess the physical performance is the short physical perfor-
mance battery (SPPB), a widespread used assessment tool with an excellent reli-
ability [19], representing a predictor of the loss of mobility in elderly; in fact, 
subjects with low SPPB score have an increased risk of disability and hospitaliza-
tion [20, 21]. SPPB has three subitems: standing balance, usual gait speed, and sit- 
to- stand test. The sum of the whole test ranges from 0 (worst score) to 12 (best 
score) [22]. Moreover, SPPB score allows to identify four categories, according to 
the risk of poor functional status: patients with SPPB score ranging from 0 to 3 are 
at very high risk of poor physical performance; those with 4 to 6 and from 7 to 9 are 
at high and intermediate risk, respectively, whereas those with a SPPB score from 
10 to 12 are at low risk of poor functioning.

Moreover, bone-specific physical activity questionnaire (BPAQ) is a quick and 
simple self-administered tool that might be used to assess lifetime physical activity 
with age-specific effects of mechanical loading on the skeleton in male population. 
This questionnaire records the type, frequency, and years of physical activity 
involvement (see Table 19.2 for further details) [23].

Environmental risk factors for falls are often not well evaluated, but should be 
taken into account because more than 70% of falls occurred at home. It must be 
avoided the use of low or soft chairs, carpets, slippery surfaces, raised thresholds, 
inadequate lighting, and unsuitable shoes, and attention must be paid to wires and 
other obstacles as well as stair climbing (especially the first and last step) [11, 24].

Hip fracture could also be prevented wearing hip protectors, soft tissue pads able 
to reduce the energy resulting from the impact of a fall, even if its effectiveness 
seems to be limited to elderly institutionalized patients [25].

Several guidelines recommended physical activity for improving both physical 
performance and BMD. It is well known that bone mass is strictly related to skeletal 
muscle mass and strength. As a result, strengthening and balance exercises demon-
strated to improve not only muscle performance and to reduce the rate of falls but to 
improve also bone strength [26]. Physical activity has presumably direct effects 
upon bone turnover increasing bone formation via mechanical stimuli, improving or 
maintaining hip and vertebral BMD.  Increased mechanical loading results in a 
reduction of sclerostin secreted by the osteocytes. This glycoprotein through the 
canaliculi reaches the osteoblastic-lining cells, where it binds to specific 
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co-receptors (LRP-5 and LRP-6), thus inhibiting the Wnt-β catenin signaling, with 
consequent reduction of osteoblasts commitment, differentiation and function, and 
therefore bone formation [27]. In men the correlation between hypersclerostinemia 
and loss of bone mass due to prolonged immobilization supports the hypothesis that 
sclerostin could be a link between the reduced mechanical load and disuse osteopo-
rosis [28]. On the other side, even minimal increase in levels of physical activity 
reduces serum levels of sclerostin, confirming this glycoprotein effectively links 
mechanical loading and bone turnover [29].

Two types of physical exercise are generally recommended to improve or main-
tain hip and vertebral BMD: weight-bearing exercises and strength training. The 
first includes walking, stair climbing, playing sports such as tennis and volleyball, 
and brisk walking or jogging [30], whereas the second includes activities like lifting 
weights, push-ups, and squats [31].

Giangregorio et al. recommended a moderate intensity aerobic physical activity 
(≥30 min, ≥5 days per week) or at least 20–60 min of high-intensity aerobic physi-
cal activity ≥3 times per week in osteoporotic patients without vertebral fracture, 
pain, or hyperkyphosis. Moreover, authors also recommended balance exercises and 
resistance/strength training for preventing falls with a frequency ≥2  days per 
week [32].

Recently, tai chi was proposed as a viable and effective alternative approach in 
enhancing balance control in elderly people. This intervention originated in China 

Table 19.2 Functional and fall screening assessment tools

Outcome 
measures Equipment

Time to 
administer 
(min) Outcomes Cutoffs

HGS (Andrews 
et al. 1996) [13]

Handheld 
dynamometer

5 Muscle strength According to age 
and gender

FTSTS 
(Bohannon et al. 
2006) [15]

Standard chair 
(43–45 cm height)
Stopwatch

<5 Lower limb 
muscle strength
Lower limb 
muscle power
Balance

60–69 years: 
11.4 s
70–79 years: 
12.6 s
80–89 years: 
14.8 s

UST (Springer 
et al. 2007) [17]

Stopwatch 2 Balance According to age 
and gender

SPPB (Guralnik 
et al. 1994) [22]

Standard chair 
(43–45 cm height)
Stopwatchr

10 Lower limb 
functioning
Balance
Physical 
performance

Low performance: 
0–3
Moderate 
performance: 4–6
High 
performance: 7–9
Very high 
performance: 
10–12

BPAQ (Weeks 
et al. 2008) [23]

Questionnaire 10 Physical activity According to age 
and gender

HGS hand grip strength test, FTSTS Five times sit to stand, UST unipedal stance test, SPPB short 
physical performance battery, BPAQ bone-specific physical activity questionnaire
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as a form of martial art and widely used also in Western countries to promote mental 
and physical health. This mind-body therapy can be practiced in different styles, 
particularly Yang and Wu styles for strengthening muscles and improving balance, 
respectively. Tai chi demonstrated to be an appropriate training for the prevention of 
falls among aged people, through low-impact weight-bearing exercises and con-
trolled movements, such as semi-squat positions and controlled transfer of weight 
in coronal, sagittal, and transverse planes of movement [33, 34].

In terms of evidence-based medicine, a Cochrane review supported the beneficial 
role of group and home-based exercise programs, essentially based on balance and 
strength training exercises, as well as tai chi, in falls prevention (−29%), particu-
larly in people who are not at high risk of falling [26].

Vertebral fragility fractures are generally spontaneous or result from low-impact 
daily life activities. However, also for patients at high risk, safe axial strength train-
ing (back extension resistive exercises from the prone position with reduction of 
kyphotic posturing) is strongly recommended for the prevention of compression 
fractures (see Table 19.3 for further details) [35].

Table 19.3 Primary prevention of osteoporotic fractures

Type of exercise Objectives Schedule Setting
Aerobic exercises – Endurance

– Physical fitness
–  Muscle- tendon 

elasticity
–  Balance and gait 

control

30 min/die, 5 days per week with:
– Brisk walking
– Jogging

Outdoor

Upper and lower 
limb exercises

–  Muscle 
strengthening

–  Recovery of range 
of motion

–  Recovery of 
independence

Three sets of ten repetitions, 3 days per 
week, with:
– Biceps curl
– Squat
– Wall push-up
– Chair squat

Indoor/
outdoor

Core stabilization –  Muscle 
strengthening

–  Back muscle 
elasticity

–  Spinal column 
stability

– Balance control
– Posture control

Three sets of five repetitions, holding 
the position for 3 s, 7 days per week, 
with:
– Dorsal extension
– Single-leg extensions, prone
– Raised pelvis
– Quadrupedal reach and roll

Indoor/
outdoor

Balance exercises – Balance control
– Posture control
–  Muscle 

strengthening
–  Muscle core 

stability

Three repetitions, 7 days per week, 
holding 10 s these positions:
– Semi-tandem
– Tandem
– Single-leg stance
Three sets of five repetitions of standing 
hip extension, holding the position for 
3 s, 7 days per week
Three sets of six repetitions (three for 
each side) of lateral walk, 7 days per 
week

Indoor/
outdoor
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19.3  Physical Activity as Strategy of Secondary Prevention 
in Male Osteoporosis

Secondary prevention strategy includes all interventions aimed to reduce the 
risk of new fracture in patients who have already experienced a fragility fracture.

The reduction of this risk can be achieved increasing the bone strength with both 
pharmacological and non-pharmacological approaches. If drug therapy demon-
strated to improve not only BMD but also bone quality, on the other hand, it was 
shown that bone strength can be significantly improved by physical activity. Indeed, 
regular physical exercise is recognized as a cornerstone of intervention programs 
also in the management of patients with fragility fractures, because its beneficial 
effects on several fracture risk factors, such as risk of falling. Moreover, physiatric 
approach to manage men with prevalent osteoporotic fractures should include a 
patient education and training with the purpose of improving balance, muscle 
strength, and mobility. This approach contrasts with the common belief that indi-
viduals with previous fracture must reduce their physical activity in order to decrease 
the risk of falls or new fracture. Although a restriction of heavy activities that result 
in high risk of fractures is advisable, it is widely known that a marked reduction of 
physical activity can accelerate bone loss. So, it should be paid the same attention 
to the prescription of adequate physical activity programs as it is done with drug 
therapy as preventive strategy of incident fractures.

Specifically, to prevent new vertebral fractures, osteoporotic men have to avoid 
to lift up heavy objects, twisting or flexing their spine, or to perform abrupt move-
ments [32]. Physical exercise programs for patients with previous vertebral fracture 
should include strengthening training for trunk and lower extremity with the aim to 
improve spine stability and functioning [36]. Strengthening exercises for back 
extensor muscles associated with pelvic tilt exercises demonstrated to reduce the 
lumbar lordosis and thoracic hyperkyphosis [35] and to improve lower extremity 
physical function in osteoporotic older men [37]. However, this intervention is sup-
ported by inconclusive evidence, particularly in male population, about its efficacy 
on pain relief, physical function improvement, and better quality of life [38].

Taking into account that the improvement of gait and balance are the most impor-
tant factors for reducing risk of falls in particular after hip fracture, specific physical 
exercise training for motor control, endurance, and balance should be prescribed to 
improve gait efficiency and activities of daily living (ADL) (see Table 19.4 for fur-
ther details) [39].

19.4  Principles of Rehabilitation in Male Patients 
with Fragility Fractures

19.4.1  Rehabilitation in Male Patients with Hip Fractures

Hip fracture represents the most disabling fracture in men affected by osteoporosis. 
According to Magaziner et al. [3] after 1 year from hip fracture, 20% of men lose 
their ability to put on pants without assistance; the 50% needs assistance to walk 
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around a room, 50% to rise from a chair, 55% to walk a block, 66% to use the toilet, 
and over 90% to climb stairs.

Rehabilitation after hip fracture must be intensive and multidisciplinary in order 
to regain as much as possible the pre-injury functional status. Commonly, hip frac-
tures should be early surgically treated to avoid prolonged bed rest and immobiliza-
tion, thus reducing clinical complications, disability, and death.

The choice of the rehabilitative approach might be influenced by several factors: 
patient’s clinical condition (i.e., comorbidity, mental status), type of fracture (intra- 
capsular or extra-capsular), and type of surgical approach (mini-invasive, lateral or 
medial, and use of total hip arthroplasty, hemiarthroplasty, or open reduction inter-
nal fixation).

Commonly, weight bearing is gradually allowed, ranging from a partial weight 
bearing to total weight bearing as tolerated, taking into account to avoid negative 
effects on the surgical fixation (both in cases of arthroplasty and osteosynthesis). If 
it is possible, partial weight bearing can be allowed immediately after the surgical 
intervention.

In hospital care settings, rehabilitation includes exercises designed to recover 
range of motion (ROM), muscle strength, and independence (i.e., walking, stairs 
climbing), usually with two sessions per day.

Table 19.4 Secondary prevention of osteoporotic fractures

Type of exercise Objectives Schedule Setting
Aerobic exercises – Endurance

– Physical fitness
–  Muscle- tendon 

elasticity
–  Balance and gait 

control

30 min/die, 5 days per week with:
– Brisk walking
– Jogging

Outdoor

Upper and lower 
limb exercises

–  Muscle 
strengthening

–  Recovery of range 
of motion

–  Recovery of 
independence

Three sets of eight repetitions, 3 days 
per week, with:
– Biceps curl
– Squat
– Wall push-up
– Chair squat

Indoor/
outdoor

Core stabilization –  Muscle 
strengthening

–  Back muscle 
elasticity

–  Spinal column 
stability

– Balance control
– Posture control

Three sets of three repetitions, 
holding the position for 3 s, 7 days 
per week, with:
– Dorsal extension
– Single-leg extensions, prone
– Raised pelvis
– Quadrupedal reach and roll

Indoor/
outdoor

Balance exercises – Balance control
– Posture control
–  Muscle 

strengthening
–  Muscle core 

stability

Three repetitions, 7 days per week, 
holding 3 s these positions:
– Semi-tandem
– Tandem
– Single-leg stance

Indoor/
outdoor
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Subsequently, a home-based rehabilitation program should be performed five 
times per week for 3–6 months until the best functional recovery is obtained.

A systematic review and meta-analysis claimed that an extended (over 6 months) 
exercise program after hip fracture improves patients’ physical function, as showed 
by significant effect sizes (ESs) in knee extension strength for the affected (ES: 
0.47; p < 0.001) and non-affected side (ES: 0.45; p = 0.002), balance measurements 
(ES: 0.32; p  <  0.001), physical performance-based tests (ES: 0.53; p  <  0.001), 
Timed Up and Go Test (ES: 0.83; p  =  0.003), and fast gait speed (ES: 0.42; 
p = 0.008) [40].

19.4.2  Rehabilitation in Male Patients with Vertebral Fractures

Vertebral fractures are a clinical and public burden associated with back pain, dis-
ability, and impairment in HRQoL. These fractures are often underdiagnosed: in 
particular, less than 15% of incident radiographic new vertebral fractures are clini-
cally diagnosed in men [41], whereas this percentage reaches up 25% in women [42].

The age-standardized incidence of new morphometric fractures is 5.7/1000 per 
year in men and 10.7/1000 per year in women [43].

A clinical vertebral fracture is characterized by pain and functional limitation, 
commonly treated with immobilization in spinal bracing and analgesic therapy. 
Rehabilitation begins during spinal bracing and continues also after its removal, 
improving back extensor muscles strength and performing core stability exercises.

After vertebral fragility fracture, surgery, such as vertebroplasty, kyphoplasty, 
and rarely spinal stabilization with or without fusion, could be suggested according 
to age, general clinical condition, type of fracture and spinal stability, involvement 
of the spinal cord, bone quality, and time from the fracture [44].

A prompt rehabilitative approach should start after surgery with breathing exer-
cises and back extensors strengthening exercises. This muscle strengthening is 
obtained by a progressive load with short lever arms [45].

A long-term goal in the rehabilitation plan is enhancing physical functioning by 
improving spine mobility, muscle strength, balance during postural changes, and 
gait pattern.

Moreover, rehabilitation must include a home-based program consisting in dedi-
cated physical exercises, associated to educational interventions targeted to avoid 
twisting or flexion of the spine, quick and repetitive movements, and sitting or 
standing for a long-term period [32].

19.4.3  Rehabilitation in Male Patients with Other Fractures

Fragility fractures affecting other skeletal sites, such as the humerus, forearm, pel-
vis, rib, tibia, fibula, clavicle, scapula, and sternum, are common disabling issues in 
men, with a resulting increased healthcare cost [2, 46, 47].
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There is a high incidence of non-hip and non-vertebral (NHNV) fragility frac-
tures in older European men, representing over the 70% of incident osteoporotic 
fractures [2].

In Italian male population, after the hip and spine, the most common site of fra-
gility fracture is the humerus, followed by the distal forearm and ankle [46].

Most fractures of the proximal humerus are minimally displaced or nondis-
placed, preferentially managed by a conservative treatment with casts or upper 
extremity orthotics, allowing passive motion exercises for the fingers, hand, and 
wrist. ROM exercises have to be performed at 2 weeks after injury, and orthosis 
should be removed within 4 weeks. In the case of unstable and nondisplaced frac-
tures, an immobilization period should last not less than 4 weeks, and ROM exer-
cises should start only after clinical bone healing. The rehabilitative approach 
should follow general principles of shoulder rehabilitation, including exercises for 
mobility, muscle performance, and upper limb functioning, with the ultimate goal to 
regain independence for basic ADLs.

Unstable and displaced fractures require a surgical treatment, as closed reduction 
with or without percutaneous pinning or open reduction and internal fixation. In 
male osteoporotic patients, displaced proximal humeral fractures are commonly 
treated with arthroplasty.

After surgery, a rigorous rehabilitation program should be performed in order to 
reduce pain and recover the upper limb functioning [48]. In very old men or in 
patients with severe comorbidities, a conservative treatment is the most appropriate 
choice, despite fracture displacement.

Distal forearm fractures represent about 10% of fractures in men and are com-
monly due to low-energy trauma resulting from a simple fall from standing height 
or less [47]; these fractures range from stable and nondisplaced to comminuted 
injuries.

Considering the differences in terms of pathoanatomy, therapeutic approaches 
for these fractures range from splinting or casting, or percutaneous pinning, to open 
reduction and internal fixation, or external fixation.

After cast removal, or in the case of stable fractures surgically treated, a rehabili-
tation plan, consisting of flexibility exercises, muscle strengthening exercises, and 
occupational therapy, should be early performed [49].

Ankle fractures, rare in men, are probably the most challenging fractures to 
manage. In the case of stable fractures, cast immobilization for 4 weeks could be 
performed; on the other hand, in cases of dislocated fractures or joint instability, 
a surgical approach is necessary. Rehabilitation should start after cast removal or 
surgical treatment in order to reduce pain and improve ankle mobility. Passive 
motion exercises are suggested in the first stages for recovering the ROM, espe-
cially for the ankle dorsiflexion. Weight-bearing exercises and gait training have 
to be included, as soon as possible and tolerated, in the specific rehabilitative 
program. Finally, particular attention should be paid to exercises to regain bal-
ance and proprioceptive function.
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19.5  Conclusions

Male osteoporosis is a major issue and a growing burden for public health system 
that should be adequately diagnosed and managed. Physical exercise is both feasi-
ble and effective preventive strategy to reduce the incidence of fractures and reha-
bilitation strategy is required to obtain a better functional outcome after conservative 
or surgical management of men with fragility fractures.

In both clinical scenarios, exercise type, frequency, and duration should be mod-
ulated taking into account general health conditions, age, cognitive and emotional 
issues, and motivation, in order to provide an adequate patient-oriented 
rehabilitation.
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Alberto Ferlin and Silvia Migliaccio

Osteoporosis is a chronic skeletal metabolic disorder that has reached epidemic 
numbers all over the industrialized countries. Epidemiological reports confirm the 
propensity to a significant increase of individuals affected by osteoporosis and fra-
gility fractures in the future years, due to the increase of life expectancy, with 
important socioeconomic and health issue consequences. Age, both in male and 
female population, increases the risk of developing osteoporosis, which affect mil-
lions of women, but lately, also men. Interestingly, osteoporosis has always been 
considered a female disease, but it has become clear, during the last decades, that 
osteoporosis affects men as well. Unfortunately, osteoporosis is underestimated, 
underdiagnosed, and undertreated in men especially in later decades of life, with 
dramatic consequences including increased mortality after fragility femur fractures. 
Indeed, femur fractures in old men is often linked to a worst outcome as compared 
to women. Thus, since several factors, such as genetic, environmental, nutritional, 
hormonal, play an important role in determining this disorder, attention must be 
given to the fact that these factors might affect male skeleton differently from the 
female skeleton. Thus, this health issue must be approached by researchers, politi-
cians, mass-media, and the public in order to approach in a correct manner this 
skeletal alteration in the male as well as in the female population. In fact, osteopo-
rosis is the most common chronic disorder in the industrialized societies affecting 
elderly subjects, with important effects on individual quality of life as well as on 
health economics (medical expenses, lost income as a result of disability, and com-
plications of fragility fractures). Therefore, this skeletal disorder must be consid-
ered in the male individuals as well in order to produce preventive appropriate 
strategies.
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Most reports agree that among other factors, lack of physical activity, as well as 
non-equilibrated nutrition and drugs play a role in the development of bone loss, 
altered skeletal homeostasis and, thus, skeletal fragility in male osteoporosis, thus 
an interdisciplinary approach must be recommended and planned.

In this book, the authors’ contributions focus on the large spectrum of the multi-
disciplinary, and interdisciplinary, approach to male osteoporosis, ranging from 
physiological characteristics to epidemiology, to clinical characteristics and phar-
macological approaches.

The experts of the different disciplines, who have been involved in this editorial 
project, have made a strong effort to produce manuscripts with robust evidence- 
based biological and medicine contents, stressing the importance of a translational 
approach with a viewpoint from multiple disciplines in order to properly approach 
men affected by osteoporosis.

The book will be useful to physicians, scientists, postgraduate students, and stu-
dents of various disciplines dealing with male osteoporosis.
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