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Abstract. In this paper, we will study a new approach of reconstruction of
three-dimensional scenes from an auto calibration method of camera charac-
terized by variable parameters. Indeed, obtaining the 3D scene is based on the
Euclidean reconstruction of the interest points detected and matched between
pair of images. The relationship between the matches and camera parameters is
used to formulate a nonlinear equation system. This system is transformed into a
nonlinear cost function, which will be minimized to determine the intrinsic and
extrinsic camera parameters and subsequently estimate the projection matrices.
Finally, the coordinates of the 3D points of the scene are obtained by solving a
linear equation system. The results of the experiments show the strengths of this
contribution in terms of precision and convergence.
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1 Introduction

In this work, we will investigate about the three-dimensional reconstruction being a
technique that allows obtaining a 3D representation of an object from a sequence of
images of this object taken by different views. In fact, several 3D reconstruction
techniques use calibration or Auto-calibration methods.

During this work, we will presented a new approach to reconstructing three-
dimensional scenes from a method of autocalibration of cameras characterized by
variable parameters. In general, the determination of the 3D scene is based on the
euclidean reconstruction of the interest points detected and matched by the ORB
descriptor [20]. The intrinsic parameters of the cameras are estimated by the resolution
of a nonlinear equation system (using the nonlinear equations of the Levenberg-
Marquart algorithm [18]), and they are used with the fundamental matrices (estimated
from 8 pairings between the image couples by the RANSAC algorithm [11]) to
determine the extrinsic camera parameters, and finally to estimate the projection matrix
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(expressed according to the intrinsic and extrinsic parameters of the cameras used). The
relationships between camera parameters, projection matrix elements, pairing coordi-
nates, and 3D point coordinates gives a linear equation system and the resolution of this
system permits to obtain a cloud of 3D points.

In this introduction, we have therefore provided the general ideas that will be
investigated in this paper. The rest of this work is organized as follows:

A diagram of different steps of our method is presented in the second part, the
scene and the camera model are presented in the third part, the fourth part treats the
auto calibration of the cameras, the fifth part explains the reconstruction of the 3D
scene, the experiments will be discussed in the sixth paragraph and the conclusion is
presented in the last part.

2 Diagram of Different Steps of Our Method

The Fig. 1. below represents a diagram of different steps of the reconstruction of 3D
scene:

Fig. 1. Diagram of the reconstruction of the 3D scene
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3 Scene and Camera Model

3.1 Presentation of the Scene

We consider two points S1 and S2 of the 3D scene, there is a single point S3, such as
S1S2S3: is an equilateral triangle. Re OXeYeZeð Þ is the euclidean reference associated to
the triangle wich O is its center and b its side.

3.2 Model of the Camera

We are using the pinhole model of the camera Fig. 2. so that we project the points of
the 3D scene in the planes of images, this model is characterized by a matrix Ki Ritið Þ of
size (3 � 4), with:

Ri : the rotation matrix
ti : the translation vector
Ki : The matrix of intrinsic parameters defined by:

Ki ¼
fi si u�i
0 eifi v�i
0 0 1

0@ 1A ð1Þ

with fi : focal length
ei : the scaling factor
si : the skew factor
u0i; v0ið Þ : the coordinates of the principal point.

Fig. 2. Representation of the scene
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4 Camera Autocalibration

The auto Calibration [1–10] is a technique that allows us to estimate the parameters of
the cameras without any prior knowledge on the scene.

4.1 ORB Descriptor: Oriented FAST and Rotated BRIEF

The detection [12–14] and the matching [15–17] of the interest points are important
steps in the autocalibration and the reconstruction of 3D scenes, in this paper we based
on the ORB descriptor: Oriented FAST and rotated BRIEF [21] (ORB: Binary Robust
Independent Elementary Features) which is a fast robust local feature detector, first
presented by Rublee et al. in 2011 [20], that can be used in computer vision tasks
like object recognition or 3D reconstruction. It is a fusion of the FAST key point
detector and BRIEF descriptor with some modifications [9]. Initially to determine the
key points, it uses FAST. Then a Harris corner measure is applied to find top N points.
FAST does not compute the orientation and is rotation variant. It computes the intensity
weighted centroid of the patch with located corner at center. The direction of the vector
from this corner point to centroid gives the orientation. Moments are computed to
improve the rotation invariance. The descriptor BRIEF poorly performs if there is an
in-plane rotation. In ORB, a rotation matrix is computed using the orientation of patch
and then the BRIEF descriptors are steered according to the orientation.

The ORB descriptor is a bit similar to BRIEF. It doesn’t have an elaborate sampling
pattern as BRISK [26] or FREAK [27]. However, there are two main differences
between ORB and BRIEF:

1. ORB uses an orientation compensation mechanism, making it rotation invariant.
2. ORB learns the optimal sampling pairs, whereas BRIEF uses randomly chosen

sampling pairs.

ORB uses a simple measure of corner orientation – the intensity centroid [28]. First,
the moments of a patch are defined as:

8p, q 2 f0; 1g : mpq ¼
X

x;y xpyq I(x,y) ð2Þ

With:
p, q 2 f0; 1g Binary selector for x and y direction

x,y Circular window
xpyq weighted by coordinate
I x; yð Þ image function
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Image moments help us to calculate some features like center of mass of the object,
area of the object etc.

With these moments we can find the centroid, the “center of mass” of the patch as:

C ¼ m10

m00
;
m01

m00

� �
ð3Þ

and by constructing a vector from the patch center O to the centroid C, we can define
the relative orientation of the patch as:

!
OC

h ¼ atan2 m01;m10ð Þ ð4Þ

ORB discretize the angle to increments of 2p
30 (12°), and construct a lookup table of

precomputed BRIEF patterns. As long as the keypoint orientation h is consistent across
views, the correct set of points will be used to compute its descriptor.

To conclude, ORB is binary descriptor that is similar to BRIEF, with the added
advantages of rotation invariance and learned sampling pairs. You’re probably asking
yourself, how does ORB perform in comparison to BRIEF. Well, in non-geometric
transformation (those that are image capture dependent and do not rely on the view-
point, such as blur, JPEG compression, exposure and illumination) BRIEF actually
outperforms ORB. In affine transformation, BRIEF perform poorly under large rotation
or scale change as it’s not designed to handle such changes. In perspective transfor-
mations, which are the result of view-point change, BRIEF surprisingly slightly out-
performs ORB.

4.2 The Projection Matrix

We consider S1 and S2 two points of the 3D scene and p the plan which contains these
two points.

Re O XeYeZeð Þ is the Euclidian reference which is associated to the triangle of the
center O and side b
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The coordinates of points S1, S2 and S3 Fig. 3 are given as below:

S1 ¼ b
2
;

p
3
2

b; 1
� �T

S2 ¼ b; 0; 1ð ÞT

S3 ¼ 0; 1; 1ð ÞT

We consider the two homography Hi and Hj that can be used to project the plan in
the images i and j, so the projection of the two points can be represented by the
following expressions:

sim �HiSm ð5Þ

sjm �HjSm ð6Þ

With m ¼ 1; 2. sim and sjm represent respectively the points in the images i and j
which are the projections of the two summits S1 and S2 of the 3D scene, and Hn

represents the homography matrix defined by:

Fig. 3. Representation of points S1, S2 and S3 in the two images i and j.
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Hn ¼ KnRn

1 0
0 1
0 0

RT
n tn

0@ 1A; n ¼ i; j ð7Þ

With:
Rn : the rotation matrix
tn : the translation vector
Kn : The matrix of intrinsic parameters.

The expressions (5) and (6) can be written as :

sim �HiBS'm ð8Þ

sjm �HjBS'm ð9Þ

With : B ¼
b b

2 0

0
p
3
2 b 0

0 0 1

0B@
1CA

S'm ¼
a
b
1

0@ 1A
For:

m ¼ 1\ ¼ [ a ¼ 0 and b ¼ 1
m ¼ 2\ ¼ [ a ¼ 1 and b ¼ 0

�
We put:

Pn �HnB ; n ¼ i; j ð10Þ

With Pi and Pj are the projections matrix of the two points S
0
1 and S

0
2 in the images i

and j Figs. 3 and 6.
From the Eq. (10) we have:

Pj �HijPi ð11Þ

With:

Hij �HjH�1
i ð12Þ

Hij is the homography between the images i and j.
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The Eqs. (8), (9) and (10) give:

sim � PiS
0
m ð13Þ

sjm � PjS
0
m ð14Þ

And from the Eqs. (11) and (14) we have :

sjm �HijPiS
0
m ð15Þ

The Eq. (15) gives:

e
0
jsjm � e

0
jHijPiS

0
m ð16Þ

This later gives:

e
0
jsjm � FijPiS

0
m ð17Þ

With Fij is the fundamental matrix between the images i and j.

e
0
j ¼

0 �ej3 ej2
ej3 0 �ej1
�ej2 ej1 0

0@ 1A
ej1ej2ej3
� �T

are the coordinates of the epipole of the right image, this epipole can be
estimated by the fundamental matrix.

The expression (18) gives:

si1 � PiS
0
1 ð18Þ

si2 � PiS
0
2 ð19Þ

So from the two last relationships, we gets four equations with eight unknowns that
are the elements of Pi

The expression (17) gives:

e
0
jsj1 � FijPiS

0
1 ð20Þ

e
0
jsj2 � FijPiS

0
2 ð21Þ

From the two last relationships, we get four other equations with eight unknowns
which are the parameters of Pi. So we can estimate the parameters of Pi, because we
have a total of eight unknown equations that are the elements of Pi.
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The Eq. (11) gives:

e
0
jPj � e

0
jHijPi ð22Þ

That gives:

e
0
jPj � FijPi ð23Þ

The previous expression gives eight unknown equations that are the elements of Pj.
So we can estimate the parameters of Pj from these eight equations with eight

unknown.

4.3 Autocalibration Equations

In this part, we will determine the relationship between the images of the absolute conic
ðxi and xj), and a relationship between the two points S1; S2ð Þ of the 3D scene and
their projections si1; si2ð Þ and sj1; sj2

� �
in the planes of the left and right images

respectively, the different relationships are established from some techniques of pro-
jective geometry. A nonlinear cost function will be defined from the determination of
these relationships. The formulated cost function will be minimized by the
Levenberg-Marquardt algorithm [18] to estimate xi and xj and finally the intrinsic
parameters of the cameras used [24].

The Eq. (11) gives:

kimsim ¼ PiS
0
m ð24Þ

With: Pi ¼
P11 P12 P13
P21 P22 P23
P31 P32 P33

0@ 1A

sim ¼
xim
yim
1

0@ 1A
PTi xiPi � B0TB0 B0TRT

i ti
tTi RiB0 tTi ti

� �
ð25Þ

With:

B0 ¼
b b

2

0
p
3
2 b

0 0

0B@
1CA ð26Þ

Ki is an upper-triangular matrix normalized as det Ki ¼ 1
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xi ¼ KiKT
i

� ��1
is the image of the absolute conic.

The same for Pj:

PTj xjPj �
B0TB0 B0TRT

j tj
tTj RjB0 tTj tj

 !
ð27Þ

We can deduce that the first rows and columns of the matrix PTi xiPi and PTj xjPj are
the same.

We put Xi and Xj the two matrix corresponding respectively to the first two rows
and columns of the two previous matrices.

Xm ¼ x1m x3m
x3m x2m

� �
, with m ¼ i; j:

So we conclude the 3 following equations:

x1i ¼ x2i
x1j ¼ x2j

x1ix3j ¼ x1jx3i

8<: ð28Þ

Each image pair gives a system of 3 equations with 8 unknown (4 unknown for xi

and 4 unknown for xj), so to solve the equation system (28), we need at least 4 images.
The equation system (28) is nonlinear, so to solve this system of equations we

minimize the following nonlinear cost function:

minxk

Xn

j¼iþ 1

Xn�1

i¼1
a2ij þ b2ij þ c2ij

� �
ð29Þ

With: /ij ¼ q1i � q2i; bij ¼ q1j � q2j; cij ¼ q1iq3j � q1jq3i, and : n is the number of
images.

The Eq. (29) will be minimized by the Levenberg–Marquardt algorithm [18], this
algorithm requires an initialization step. So the camera parameters are initialized as
follows:

Pixels are squares, so: ei ¼ ej ¼ 1, si ¼ sj ¼ 0,
The principal point is in the centre of the image so: x0i ¼ y0i ¼ x0j ¼ y0j ¼ 256

(because the images used are of sizes 512 � 512), and the focal distances fi and fj are
obtained by the resolution of the equation system (29).
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4.4 General Algorithm

1. Detecting and matching of interest points respectively by ORB algorithm.

2. Determination of the Fundamental matrix by Ransac algorithm using eight 
matches.

3. Calculation of the projection matrices used by the projection of two points.

4. Formulation of the non-linear cost function

5. Minimization of non-linear cost function by the Levenberg-Marquardt algo-
rithm.

5.1. Initialization: we suppose that the principal point is in the center of the 
image, the pixels are squared, and we calculate the focal length. 

5.2. Optimization of the non-linear cost function.

5 Reconstruction of the 3D Scene

This part is dedicated to the 3D reconstruction to determine a cloud of 3D points from
the matching between the pairs of images [19, 22, 23, 25]. In theory, getting the
position of 3D points from their projections in the images is trivial. The matching 2D
point pair must be the projections of the 3D points in the images.

This reconstruction is possible when the geometric relationship between the cam-
eras is known and when the projection of the same point is measured in the images.

The reconstruction of a few points of the 3D scene requires the estimation of the
projection matrix of this scene in different images.

We have: P0 and P1 two projection matrices of the 3D scene, respectively in the
plane of the images, such as:

s0m � P0Sm ð30Þ

sim � PiSm

We have P�K R tð Þ
So,

P0 �K0 I3Oð Þ ð31Þ

P1 �K1 R1t1ð Þ

The essential matrix [29] is the specialization of the fundamental matrix to the case
of normalized image coordinates. Historically, the essential matrix was introduced (by
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Longuet-Higgins) before the fundamental matrix, and the fundamental matrix may be
thought of as the generalization of the essential matrix in which the (inessential)
assumption of calibrated cameras is removed. The essential matrix has fewer degrees of
freedom, and additional properties, compared to the fundamental matrix.

The defining equation for the essential matrix is:

bXT
1 EbX0 ¼ 0

With bX ¼ K�1X.
In terms of the normalized image coordinates for corresponding points X0 $ X1

Substituting for bX0 and bX1 gives XT
1 K

T
1 EK

�1X0 ¼ 0. Comparing this with the
relation XT

1 F12X0 ¼ 0 for the fundamental matrix, it follows that the relationship
between the fundamental and essential matrices is

E12 ¼ KT
1F12K0 ð32Þ

With: F12 represent the fundamental matrix between the first and second images, It
is estimated from 8 matches between this couple of images.

E12 is decompose into singular value in the following equation:

E12 ¼ kL1U 1 1 0ð ÞLT
2 ð33Þ

With
k is a non-zero scalar,
And U 1 1 0ð Þ is written in the following form:

U 1 1 0ð Þ ¼ N1NT
2 ¼ �N1NT

2 ð34Þ

N1 ¼
0 1 0
�1 0 0
0 0 0

0@ 1A; N2 ¼
0 �1 0
1 0 0
0 0 1

0@ 1A ð35Þ

From (33) and (34), we have:

E12 ¼ kL1N1NT
2L

T
2 ¼ �kL1N1NT

2L
T
2 ð36Þ

L1 is orthonormal, so the matrix E12 can be written as the following form:

E12 �L1N1LT
1 �L1N2LT

2

� �� � L1N1LT
1 �L1NT

2L2
� � ð37Þ

On the other hand, E12 is expressed as follows:

E12 � t1½ �^R1 ð38Þ
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t1½ �^¼
0 �t13 t12
t13 0 �t11
�t12 t11 0

24 35 ð39Þ

And t11t12t13ð ÞT are the coordinates of the translation vector t1.
From the two latest expressions, we can conclude the vector t1 that admits an

unique solution:

t1½ �^ �L1N1LT
1 ð40Þ

And the rotation matrix R1 admits 4 solutions

R1 � � L1N2LT
2 or R1 � � L1NT

2L
T
2 ð41Þ

But the determinant of the rotation matrix must be equal to 1, which allows fixing a
sign for the two matrices:

�L1N2LT
2 and � L1NT

2L
T
2

So the number of solutions for R1 becomes 2.
We use the two solutions to reconstruct the 3D scene, and finally we choose the

solution that gives the best Euclidean reconstruction.
From the Eq. (30), we obtain the following linear system of equations:

M X Y Zð ÞT¼ N ð42Þ

M : Matrix of size 4 x 3
N : Vector of size 4

These two matrices are expressed in function of the elements of the projection
matrices and the coordinates of the matches.

X Y Zð ÞT: The vector of the coordinates of the searched 3D point.
The coordinates of the 3D points (the solution of the Eq. (42)) are obtained by the

following expression:

detMTM 6¼ 0 so MTM is no singular

X Y Zð ÞT¼ MTM
� ��1

MTN ð43Þ
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6 Experimentations

In this part, we have taken two images of an unknown three-dimensional scene by a
CCD camera characterized by variable intrinsic parameters Fig. 4. In the first step, we
applied the ORB descriptor to determine the interest points Fig. 5. And the matching
between the two selected images Fig. 6. Subsequently and after implementation the
algorithms of Ransac and Levenberg-Marquardt while relying on the Python pro-
gramming language, we got the result of the 3D reconstruction below Fig. 7:

Fig. 4. Two images of unknown 3D scene

Fig. 5. The interest points in the two images (blue color) (Color figure online)
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The detection of interest points, Fig. 5. And the mapping Fig. 6 are carried out by
the descriptor ORB [20]. The determination of the relationship between the matches
and the camera parameters permit to formulate a system of non-linear equations. This
system is introduced in a non-linear cost function. The minimization of this function by
Levenberg-Marquardt algorithm [18] allows finding an optimal solution of the camera
parameters. These parameters are used with the matches to obtain an initial point cloud
Fig. 7.

We have a lot of values to estimate, every parameters have a minimum value.
The intrinsic camera parameters (focal lengths, coordinates of the principal points,

scale factors, skew factors) and the rotation matrices.
This population is chosen in a way that each parameter belongs to a specific interval

Table 1.

Fig. 6. The matches between the two images

Fig. 7. The reconstructed 3D scene
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The usefulness of our contribution is to obtain a 3D scene reconstructed just from 2
images taken from an uncalibrated camera and with variable intrinsic parameters. The
next steps will be the 3D modeling in order to finalize our work and find a robust
results and a very well a 3D scene reconstructed based on a triangulation construction
and a texture mapping.

7 Conclusion

In this work we have treated a new approach of the reconstruction of three-dimensional
scenes from a method of autocalibration of cameras characterized by variable intrinsic
parameters. The interest points are detected and matched by the ORB descriptor, and
it’s used later with the projection matrix (expressed according to camera settings) of the
scene in the planar images to determine coordinate of the point cloud, so that we can
reconstruct the scene.
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