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Abstract. While collecting data information, this received data, in most
cases, are recorded with multiple number of variables, thus, this large
dimension dataset will be so hard to visualize and then to be analysed
for the purpose to be interpreted properly. The graphical representation
may also not be helpful in case the dataset is too many. In this paper we
will present a broad overview of two famous data reduction techniques
known as the Principal Component Analysis and the Factorial Analy-
sis. These two methods facilitate the interpretation of the data for the
user, in a more meaningful form. Also this work highlights the big key
differences existing between them and then, make easier the choice of
using one of them according to different cases. In the context of ICA,
this dimension reduction of the dataset represents a main first step for
the famous problem known as Blind Source Separation (BSS).
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1 Introduction

Statistical methods are today used in almost all areas of human activity and
are part of the basic knowledge of the researcher, the engineer, the manager,
the economist, etc. They are existing in two types known as: Factorial methods
and Classification methods. In this work, we are interested in studying Facto-
rial methods. This latter are among the descriptive or unsupervised methods of
Datamining which consist in the projection on a space of lower dimension in
order to give a clear viewing of all the links between variables while guarantee-
ing the minimization of loss of the informations. Those Factorial methods are
classified into two groups:

1. Principal Component Analysis or PCA
2. Factor Analysis or FA

By contrast on linear data, there are also other many dimensionality reduc-
tion techniques used for nonlinear dimensionally reduction structure like the Self
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Organizing Maps (SOM) used to visualize corrective actions of failure modes
and effects analysis (FMEA) [1], Kernel PCA which could be used for de-noising
image or either novelty detection and many others applications [2,3]. In the con-
text of Independent Component Analysis (ICA), supposing the assumption of
source independence, is the main factor to apply this method instead of PCA
which assumes that the sources are uncorrelated. ICA is the well known method
often used as a solution of blind source separation (BSS) problem [4,5]. In this
study, the goal of using PCA or FA is to reduce the dimension space to sepa-
rate signals from its mixtures (observations) and then, these techniques will be
applied for linear dataset as a whitening step before the separation process. To
clarify the idea of using PCA or FA: knowing the difference between the data
types is a major step, which means that, if the one have a table of numerical
or ordinary variables, the one should apply the principal component analysis,
but if the table contains the qualitative or nominal variables, the factor analysis
should be used instead. In the following, a detailed study of those two previous
methods is provided.

1.1 Applications of Signal Separation Algorithms in
Telecommunications Systems Based on OFDM

Orthogonal frequency-division multiplexing (OFDM) is a method of encoding
digital data on multiple carrier frequencies. OFDM has developed into a popular
scheme for wideband digital communication, used in applications such as digital
television and audio broadcasting, DSL internet access, wireless networks, power
line networks, and 4G mobile communications.

In statistical wireless signal processing, extraction of unobserved signals from
observed mixtures can be achieved using Blind Source Separation (BSS) algo-
rithms. OFDM can be considered as a good established predominant air interface
communication technique. It is used for encoding digital data on multiple carrier
frequencies.

Due to the high data rate transmission and the ability to against frequency
selective fading, OFDM is usually applied in the current broadband wireless
telecommunication system.

In the mobile communication environment we have to deal with multipath
transmission channels due to the reflections of wavefronts. In order to apply
existing source separation algorithms for mobile communication signals, some
modifications of the classical narrow band data model have to be done. In this
paper a modification of the data model using PCA or FA techniques is presented.
After the classification of the data, the OFDM-technique could be used for such
many telecommunication systems such as:

– Digital audio broadcasting (DAB) (1995).
– Digital video broadcasting (DVB) (1997).
– High-definition television (HDTV) terrestrial broadcasting.
– Wireless LAN and PAN like: IEEE 802.11a and IEEE 802.11g.
– Optical communications.
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– Now, OFDM technique has been adopted as the new European DAB stan-
dard, and HDTV standard.

– OFDM/UWB (802.15.3a) (2004).
– IEEE 802.16 broadband wireless access system (2004).
– IEEE 802.20 mobile broadband wireless access (MBWA).
– 4G mobile communication (2005).

Nowadays, OFDM is representing the key technology for beyond 3G, 4G and
5G communications, promising robust, high capacity, and high speed wireless
broadband multimedia networks. A source separation algorithms named PCA
and FA will be considered in this paper for data transmission through random
multipath channels like mobile communication channels. Simulation results will
show the separation and classification efficiency.

2 Methods

2.1 Principal Component Analysis

Definition. The PCA (Hotelling [6]) is a part of the multidimensional descrip-
tive techniques which consists in passing from a table of complex and large data
containing all the information of a certain phenomenon studied, to visual repre-
sentations (graphs) and optimal as much as possible of the data. This passage
aims to reduce this number of data while projecting these cloud points on a
principal or factorial axis, a plane or a hyperplane without using any particular
hypothesis or model, which allowed the user to interpret these results [7]. This
reduction of the number of variables will allow to form a linear combination that
each one of it is related to a principal component [8,9]. It operates through a
mathematical process that transforms a number of variables that are likely to
be correlated to a number of uncorrelated variables called Principal Component,
because of their character to absorb as much information as possible or variance
in the starting variables. So Principal Component Analysis is really a good name
because it does what it says; the PCA finds the Principal Component Analysis
of the data.

Problematic 1. The measurement table is presented as follows: the columns
contain variables of type numerical values, and the rows represent the observa-
tions (individuals) on which these variables are observed, in the form of a matrix
of type (p, q).

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 x12 · · · x1j x1q

x21 x22 · · · x2j x2q

...
xi1 xi2 · · · xij xiq

...
xp1 xp2 · · · xpj xpq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

X1

X2

...
Xq

Xp

⎞
⎟⎟⎟⎟⎟⎠

(1)
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As one can observe, this matrix is a linear combination of the rows and
columns of the initial table as follows:

Y1 = e11X1 + e12X2 + · · · + e1pXp

Y2 = e21X1 + e22X2 + · · · + e2pXp

...
Yp = ep1X1 + ep2X2 + · · · + eppXp

(2)

These new components are linear combinations of variables and must be uncor-
related.

About the coefficients eij they are collected into the vector:

ei =

⎛
⎜⎜⎜⎝

ei1
ei2
...

eip

⎞
⎟⎟⎟⎠ (3)

• Goals of applying PCA:
– The most important thing is to reduce the dimensions of the data set.
– Have an idea about the structure of the data set and also point out the

similarities or oppositions of behaviour between individuals.
– Graph the point cloud in the plane or space, respecting:

∗ The distances between individuals.
∗ The structure of correlations between variables.

• Variance-Covariance matrix

A variance-covariance matrix is a square and symmetric matrix that contains
the variance and covariance associated with several variables. The diagonal ele-
ments of the matrix contain the variances of the variables, while the off-diagonal
elements contain the covariance between all possible pairs of variables.

This matrix is used to evaluate the variance between different variables, that
covariance measures the linear link that may exist between a couple of statistical
variables or a couple of quantitative random variables, so that one can calculate
the covariance of each couple of variables and then indicate them in a symmetric
matrix:

cov(x, y) =
1
n

(
n∑

i=1

(xi − x̄)(yi − ȳ)) (4)

2.2 Factor Analysis

Definition. In general, the Factorial Analysis is also a data reduction tool,
the term factor analysis was first introduced by (Thurstone [10]) and used for
modulate the data set and to detect the relationships between qualitative and
nominal variables to classify them [11] and determine the covariance of variables
reconstructed with less latent variables called factors independent one another,
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to well describe an observed phenomenon involved in many fields such as intel-
ligence, science, psychology, health, ecology, sociology and others. It is similar
to Principal Component Analysis in the term of reducing the data. In Factor
Analysis there is two types of variables: the latent variables (factors) and the
observed variables. Note that The PCA is a particular type of FA.

More especially, there are many types of Factorial Analysis, the famous one
is called Factorial Analysis of correspondence.

The Factorial Analysis of Correspondence (Benzekri [12]) is used for the pro-
cessing of information contained in a so-called contingency (dependency) table of
qualitative, quantitative and positive variables of different kinds, and it is used
mainly for nominal variables. This table can thus be represented by a cloud of
points with probabilities [13]. This correspondence analysis is descriptive when
there are two way tables or multi tables having correspondence between rows and
columns. The final result produced is similar to the Factorial Analysis method
exploring the categories of variables contained in the specific table.

• So what is “correspondence”?

When the variables are quantitative, a correlation study have to be done (PCA).
However, when there are qualitative or nominal variables, the one must make a
study of the correspondences (FCA).

Problematic 2. The notation of the Factorial Analysis model is like the regres-
sion model and each data-subject is a linear function of the unobserved factors
f1, f2, . . . , fm which determine the variation of the data set. In general, the
matrix notation of the FA model is like:

X = μ + Lf + ε (5)

We have the data X with the expression in Eq. (1), μ is the Xi variables mean
vector denoted:

μ =

⎛
⎜⎜⎜⎝

μ1

μ2

...
Xp

⎞
⎟⎟⎟⎠ (6)

f represents the factors collected in the vector of common factors:

f =

⎛
⎜⎜⎜⎝

f1
f2
...

fm

⎞
⎟⎟⎟⎠ (7)
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With m ≺≺ p And the matrix of factor loadings is represented like:

L =

⎛
⎜⎜⎜⎝

l11 l12 · · · l1m
l21 l22 · · · l2m
...

lp1 xp2 · · · xpm

⎞
⎟⎟⎟⎠ (8)

And finally the measurement error:

ε =

⎛
⎜⎝

ε1
...
εp

⎞
⎟⎠ (9)

To know more about the model assumptions for the mean, variance and corre-
lation, see [14] (Table 1).

Now let’s consider the example of a collect information table applied for the
Factorial Analysis of Correspondence. The following table contains variables of
two sets I and J (the entries):

Table 1. Contingency table

Set J (the parameters) 1 ... j ... m

Set I (the individuals)

1 x11 ... x1j ... x1m

i xi1 ... xij ... xim

n xn1 ... xnj ... xnm

∗ Example:
The technique of the FCA is mainly used for large data tables all expressed in
the same unit. For the qualitative case, the preceding table is presented in the
form of a table of the ones and the zeros (depending on whether or not the
individual i has the parameter j).

And we have: pij = xij∑n
i=1

∑m
j=1 xij

which replace xij in the previous table.

• Goals of Factorial Analysis:
– First, we use Factorial Analysis in the purpose of measuring the unob-

served (latent) and error-free variables.
– Reduce the number of variables.
– Determine and prioritize all the dependencies between the rows and the

columns of the table on one hand, and on the other hand, it serves to
appear some abstract synthetic non correlated variables (reduction of
dimensionality). For this purpose, the projection of transformed cloud
must be on a space of smaller dimension.
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We have the observations which are classified in the contingency table in the
boxes following two sets presented in rows and columns. In contrast to PCA,
the representative cloud of individuals can not be visualized using a Cartesian
coordinate system since the population in this case is defined by nominal criteria.
On the other hand, the analysis of the correspondences will make it possible to
visualize links between the variables on one or two factorial planes using the
metric.

3 PCA and FA Differences

– The Factorial Analysis offers the uniqueness (unlike the PCA) of providing
a space of representation common to variables and individuals. In addition,
the FA can process nominal data, which is not possible for the PCA.

– In Principal Components Analysis we assume that all variability in an item
should be used in the analysis, while in Factor Analysis we only use the
variability in an item that it has in common with the other items.

– The Factorial Analysis studies the link between two qualitative and quanti-
tative variables, However, The PCA analyses only the quantitative variables.

– A double PCA on lines and columns leads to obtain the Factorial Correspon-
dence Analysis.

– In the PCA, the used distance for the computation is the Euclidian method
but for the FCA it is the Khi-deux test [15].

– As the number of variables used to study such a phenomenon is huge, applica-
tion result of PCA and FA become more and more similar. This observation
has been proved by many researchers in this field, thus (Snook and Gor-
such [16]) have found out that variable table with at least 40 variables result
in minor differences.

Fig. 1. Simple comparison of PCA and FA

The following figure shows the principal distinguish between PCA and FA
in a very easier and shortest way: Noticing that, the arrows point the measured
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variables to the principal component and it is the inverse for the FA. The vari-
ability in the measured variables in the Principal Component Analysis lead to
the variance for the Principal Component, by contrast, in the Factorial Analysis
the latent factors are the mean raison of variance and correlation between the
measured variables (Marcoulides and Hershberger [17]) (Fig. 1).

4 Results and Interpretations

4.1 Analyzing General Data

In this section, we will show some result of statistical analyses and the projec-
tion data obtained by the two techniques studied in this paper; the Principal
Component Analysis and the Factorial Analysis presented in the type of Facto-
rial Correspondence Analysis (FCA). First we begin with example 1 where the
dataset have been collected in a table presenting a series of completely fictitious
data concerning the stays of several patients in a hospital center. We are looking
to analyze these data by using PCA.

Note that this data is chosen for the pedagogic purpose of study and not for
comprehensive or limited analyses.

In the first example we present the results of PCA technique. Our original
first table contains 10 (ordinary and nominal) variables presented below:

Table 2. Descriptive statistics

Variables Mean Standard deviation n n missing

ID 10.60 6.08 20 0

Age 46.58 16.96 20 1

Disability test 2.05 1.28 20 0

Hospitalized 2.75 2.90 20 0

Hour of entry 11:28 6:42 20 0

Cholesterol level 1.56 0.50 20 1

The Table 2 shows the descriptive statistics of each variable, here, we have
replaced all the missing variables by their means.

In this example, the study of the data has been done for 20 samples, and
thus, the purpose of analysing the structure of this data is to perform a mean-
ingful interpretation of the results after applying the PCA technique. The matrix
presented in Table 3 regroups the set of the variation that exists between the vari-
ables i.e., for example, there is a strong correlation that is equal to 0.22 between
the variable age and the variable hospitalized, which could be interpreted in the
way of that the aged people are more hospitalized than the young people. This
correlation determines all the variables that will decompose the main compo-
nents, all the variables that are correlated will be grouped into factors.
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Table 3. Correlation matrix

Correlation ID Age Disability
test

Hospitalized Entry Level of
cholesterol

ID 1 0.05 0.24 −0.08 0.2 −0.43

Age 0.05 1.0 −0.23 0.22 −0.4 −0.17

Disability test 0.24 −0.23 1 0.05 0.19 0.21

Hospitalized −0.08 0.22 0.05 1 0.09 −0.07

Hour of entry 0.2 −0.40 0.19 0.09 1 0.27

Cholesterol level −0.43 −0.17 0.21 −0.07 0.27 1

The total variance explained in Table 4 gives us an idea of the degree of
information presented by each component or factor, so that 10 variables have
been replaced by 6 components, but the first component represents only itself,
29% of the total information of the set of all variables, then the second represents
23% of the total information and that the third one itself represents 18%, so then
if we regroup the three components that will give us 71% of the set of variables
so, as a result, we are no longer able to work on the set of all variables.

Fig. 2. The eigen value graph

The Table 4 presents the correlation values between variables and the Prin-
cipal Component grouped in the Component matrix after rotation.

The graph of the Fig. 2 shows us the eigenvalues of each calculated compo-
nent. As one can observe the tree first component choosen by PCA have the high
values from the six total component computed. These tree components have the
high variance PC1, PC2 and PC3 calculated from the Table 4 with the eigen
values 29.26, 23.72 and 18.41 respectively.
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Table 4. Total variance

Initial eigenvalues sum of squares of factors selected for rotation

PC Total % of variance % commulated Total % of variance % commulated

1 1.8 29.26 29.26 1.7 27.80 27.806

2 1.4 23.72 52.98 1.5 24.30 52.105

3 1.1 18.41 71.39 1.2 19.3 71.39

4 0.8 14.05 85.44

5 0.6 10.7 96.05

6 0.2 3.95 100

The rotation type used in this case is Varimax with Kaiser normalization.
After 5 iterations the rotation matrix converged, and we obtained this com-

ponent matrix shown in the Table 5 presenting the tree axes that influence on
each variable, so that the Hour of entry, the disability test and the cholesterol
level are having the high correlation with the first axe, the ID has a correlation
of 0.875 with the second axe and finally the variables age and hospitalized have
the high correlation with the third axe (0.520 and 0.936) respectively.

Table 5. The component matrix after rotation

Variables PC1 PC2 PC3

Hour of entry 0.793 −0.065 0.008

Disability test 0.689 0.100 0.077

Age −0.581 0.187 0.520

ID 0.316 0.875 −0.042

Cholesterol level 0.338 −0.800 −0.056

Hospitalized 0.117 −0.050 0.936

Now one can plot the projection points of two first components according
to ID variables. Here in the Fig. 3, each small circle represents the projection of
the data following the two dimentions represented by the first two components
having the highest eigen values (variance) of the data.

Now we present the result of the second example analyzed with FCA. This
example offers data on the composition of products sold in fast food outlets
in the United States. Here, we have 117 types of hamburger products with 16
variables. So, the set of all types of hamburgers sold constitutes the population
we seek to study by FCA.

At the beginning, we can show the relation between the calories and proteins
in the following graph.

That type of analyses is called bivariate analysis.
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Fig. 3. Projection of two first component according to ID variable

Fig. 4. Graph of relation between two variables (cholesterol and proteins)

This graph presented in Fig. 4 shows a positive linear relationship between
the two variables: The more cholesterol in a hamburger, the more protein there
is. The correlation coefficient of Pearson is 0.966, which shows a strong but not
perfect relationship. Now we will weigh the observations of 117 types of marks
of hamburgers by the numerical identifier ID and then project the data on two
dimensions.

The Fig. 5 shows the statistical link between the three variables: marks of
hamburgers, the fast food offering this hamburger and the total calories recorded
into 4 categories presented in Table 6.

As we can observe from Table 6, the Marge active is the fast food chain
that proposed more hamburgers with high total of calories (>820), Burger King
comes after with 1036 fast food chain, Jack in the box with 739, McDonalds with
no hamburger which exceed 820 calories and finally Wendy’s is the last fast food
chain ranking with 281 hamburgers. We notice also, that Marge active is the
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Fig. 5. Graph of projection points in two dimensions

Table 6. Correspondance table

Total number of calories recoded into 4 categories

Chain of fast food offering this
hamburger

≤400 401–620 621–820 >820 Active margin

Wendy’s 97 105 73 281 556

McDonald’s 10 235 80 0 325

Jack in the Box 86 90 291 739 1206

Burger King 68 269 319 1036 1692

Marge active 261 699 763 2056 3779

only fast food chain which proposed high number of hamburgers with less total
of calories (<40). This table shows the importance correspondence between the
fast food chain and the number of total calories.

4.2 Analyzing Audio Data

In the telecommunication systems as OFDM technique, audio data is widely
used to analyse the recordings of different types of signals and since those audio
signals belongs to some audio classes, such as speech, noise and music, it can
be useful for several applications, like audiovisual indexing, retrieval system and
automatic classification of multimedia contents. In our case, we suppose that we
have only speech signals represented in three mixtures of two male speakers. The
condition of the experiment is mentioned below:

The recording of those four male speakers is represented in a stereo WAV
audio file where all the microphone elements are spaced in a linear arrangement.
The spacing of each stereo microphone pair is about 2.15 cm. The reverberation
time is about 150 ms [18].
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The channels are synchronized within each file, but no two channels in dif-
ferent files are synchronized to each other.

The source sets do not share the same time offsets, sampling frequency mis-
matches and the direction of the sources. The sampling frequency mismatches
are smaller than 100 ppm (=0.01%). In this section, we will present the result of
the PCA technique in order to classify audio data to prepare it for separation
method to use it after for mobile applications using OFDM technique.

The result of the experiment is shown in the Fig. 6 below:

Fig. 6. Principal component analysis of audio data

This figure demontrates that the PCA reduces the number of dataset on 6
components according to 6 different colors representing all the original data. In
this experiment, we choosed 50 samples of each column of the mixtures among
64000 samples for every mixture alone, which is of course a huge number that
will complicates the operation of the computation and need much more memory
in the computer, so in order to simplify this operation we reduced this number

Fig. 7. Final data
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of samples just to compute quickly and see the perspicuous results. The final
data is seen in the Fig. 7.

The covarience matrix is:

CovMat =
(

6.572699270125735e − 07 1.396525492870834e − 09
1.396525492870834e − 09 4.054649297556355e − 09

)
(10)

5 Conclusion

To sum up, we have demonstrate that the techniques of PCA and FA are both
tools of reduction and Processing data, in which PCA aims to group together a
large number of variables in a limited number of components in order to facili-
tate the analysis of the data and to detect the set of relations of independence
between the various variables in the major objective of obtaining the most rel-
evant summary of the initial data. Otherwise, FA method, is also a dimension
reduction technique used especially for measuring the impact of un-observed
variables called factors on a large number of observed variables. Those data are
defined by qualitative variables and notably of the nominal variables.

Finally, we conclude that the choice of the method of analysis depends fun-
damentally on the type of the data, and consequently, the principal component
analysis (PCA) is used to process the quantitative variables meanwhile, the anal-
ysis factorial correspondence is used for qualitative and nominal variables. This
differences will be so helpful to decide which method is most appropriate for a
given variables. Choosing improperly might lead to have a bad interpretation
results or incorrect understanding of the data.
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