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Abstract. This work builds on our earlier two papers where we developed
method to train nonlinear discriminant classifier for 4-feature datasets. In this
paper, the method has been formalized to include any number of features.
A hierarchical nonlinear discriminant classifier builds models using a con-
strained pattern of feature combinations. The model is far more expressive than
naïve Bayes, for example, which does not consider feature combinations at all;
and the model is far more parsimonious and scalable than unconstrained genetic
programming (for example), which does not rule out any feature combinations.
The method can be used for knowledge acquisition and decision-making expert
system as it can retrieve 100% accurate model from the dataset. The method can
also be used for classification of unseen data. The method has been tested on
popular test datasets present in the UCI repository. Two approaches are pre-
sented to apply a learned model to the test set. The first method consists of
application of a single exact hierarchical model on the test set; another method is
the application of a weighted sum of models present in each hierarchy. Results
of this approach on the datasets studied here are found to be very competitive
with the results in recent literature.

Keywords: Hierarchical model � Weighted sum model � Nonlinear model
Supervised learning

1 Introduction

Helping computers to learn classification task is the very important area of machine
learning, which has now dominated the artificial intelligence literature since last several
decades. Supervised Learning has remained subject of research throughout this period.
To evaluate the performance of the supervised learning methodology, the dataset is
divided into training set and the test set. The model is trained on the training set and
then is applied on the test set. Though it is not guaranty that the more accurate model
on the training set produces more accurate results on the test set but retrieving accurate
models from the datasets has always been subject of interest for knowledge acquisition
and decision-making problems [1, 2]. The most popular system in this area is C4.5
inductive decision tree learners [3]. In this paper, we propose a method which is
capable of highly accurate low-complexity models of the training set (i.e. models have
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very few parameters, and achieved 100% accuracy in training on the cases studied
here). High accuracy on a training set provides, of course, generally no information
about generalization quality in machine learning; however, when such accuracy is
regularly obtained with a low complexity model, it becomes of potential interest for
fields such as knowledge acquisition, especially if the model also performs well on test
sets. The method is extension of our preliminary work [4, 5], now rendered more
scalable for datasets with many features. The model can be described as a hierarchical
nonlinear discriminant classifier that exploits a constrained pattern of feature combi-
nations in a fixed tree data structure. The model is far more expressive than, for
example, naïve Bayes [6], which does not consider feature combinations at all; and the
model is far more parsimonious and scalable than unconstrained genetic programming
[7], which does not rule out any feature combinations. The nonlinear discriminant
classifiers have been in the literature now for a considerable time, such as Kernel based
nonlinear discriminant classifiers [8, 9]. However, in this paper hierarchical nonlinear
discriminant classifier model is proposed, which is constructed automatically through
randomized training procedure. The model is stochastic, trained via an evolutionary
algorithm, therefore produces potentially different models in each run. However, it
seems to reliably find 100% accurate models of the training set in the cases we have
studied so far, and present herein. This paper contains some examples of these models
produced on three datasets Iris Flower, Balance Scale and Car Evaluation. These
datasets are popular test cases for classification and knowledge acquisition problems
and are present in the UCI machine learning repository [10]. Later, the method is used
for classification of unseen data on the same datasets. The model is trained on the
training set which is a randomly chosen subset of the original set. The trained model is
then applied to classify the test set, which is a subset of the original set complimentary
to the training set. Therefore, data in the test set is not seen by the model during
training. The paper proposes two methods for application of model on the test set. One
method is to exactly apply same hierarchical model on the test set and another method
is to produce a model that is weighted sum of models present in each hierarchy of the
trained model. The results are competitive with the state of art literature.

The rest of the paper is structured as follows. In Sect. 2, a tree generation model for
the feature set of any size is proposed. Section 3 consists of description of evolutionary
algorithm that trains the tree data structure model. The detailed description of the three
test datasets is given in the Sect. 4. Experimental design of supervised learning for
classification of these datasets and their results are discussed in Sect. 5. Section 6
concludes the findings and speculates on the future work. Finally, an appendix is given
which gives some examples of accurate models trained through an evolutionary
algorithm on the complete test datasets.

2 Tree Generation Model

A tree generation model generates a tree that can represent a mathematical model
consisting of full feature set of the dataset regardless of its size. The total number of
nodes in the tree generation model is governed by Eq. 1.
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n ¼ 3 � f � 1 ð1Þ

where

n = number of nodes in the tree
f = number of features in the dataset

The tree essentially consists of three types of nodes.

2.1 Weight Nodes nw

These are the tail nodes of the tree which contain the weight of the features; therefore,
number of weight nodes is equal to number of features. The id numbers of these weight
nodes start from 2 � f and end at 3� f � 1. The value of weight ranges between 0–1.
All the weight nodes are present at the last level of the tree or they are leaf nodes.

2.2 Feature Nodes nf

These are the nodes preceding to weight nodes. The feature nodes contain the actual
feature values and hence are also equal to number of features. The id numbers of these
nodes start from f and end at 2f � 1. All the feature nodes are present at the second last
level of the tree or one level before the leaf nodes.

2.3 Operator Nodes no

The nodes preceding to the feature nodes are operator nodes. These nodes contain the
information about mathematical operator, which is supposed to be applied on the two
expressions represented by two branches emanating from this node. The number of the
operator nodes are one less than the feature nodes i.e., no ¼ nf � 1. The id numbers of
operator nodes start from 1 and end at f − 1. The operator nodes are present at different
hierarchy levels of the tree starting from the first level to the third last level. At the third
last level, the operator nodes follow the following rule.

n3o ¼ INT
f
2

� �
ð2Þ

where

n3o = Number of operator nodes at the third last level

On the levels preceding to 3rd last level, the operator nodes follow following rule.

nmo ¼
INT nm�1

o
2

� �
þ 1; if nm�1

o ; nm�2
x are odd

INT nm�1
o
2

� �
; otherwise

8<
: ð3Þ
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where

nmo = number of operator nodes at mth last level
nx = can be any nodes i.e. feature nodes or operator nodes depending on the level of

tree.

The Eq. 3 says that the number of operator nodes at any level of tree depends on the
number of nodes at two succeeding levels. If the number of nodes at two succeeding
levels are odd then the number of operator nodes will be one more than the number of
nodes in the other case. The operator nodes contain integer value from 1–4, each
representing each of four mathematical operators þ ;�;�;� respectively.

Let us explain above model with the car evaluation dataset which has six features.
The tree in Fig. 1 is representative of this model. The tree in Fig. 1 contains 17 nodes
which follows the Eq. 1. The nodes 12–17 are weight nodes. The nodes 6–11 are
feature nodes and the nodes 1–5 are operator nodes. At the third last level, there are
three operator nodes 3–5, which follow the Eq. 2. At fourth last level (2nd level), there
is only node 2 and at the fifth last level (1st level) again there is only node 1. The nodes
at first and second level follow the Eq. 3. The node at 1st level follows conditional part
of Eq. 3 and node at 2nd level follows otherwise part of Eq. 3.

Now if the weight nodes 12–17 contain weight values w1–w6 respectively, the
feature nodes 6–11 contain values f1–f6 respectively, the operator nodes 4–5 contain the
value +, the operator nodes 1–3 contain the values �;�;� respectively then the
phenotype equivalent 2 of this tree structure is given in Eq. 4.

2 ¼ w1f1 � w2f2
w3f3 þw4f4ð Þ � w5f5 þw6f6ð Þ ð4Þ

It can be seen from the example Eq. 4, that values at weight nodes are multiplied
with corresponding feature nodes and then resultant expressions are subjected to
operators represented in the operator nodes.

171615141312

11109876

543

2

1

Fig. 1. A tree model for six feature set

276 Z. Ursani and D. W. Corne



3 Evolutionary Algorithm (EA)

The evolutionary algorithm trains the tree data structure explained in Sect. 2. The
evolutionary algorithm can be applied on the whole dataset for knowledge acquisition
or it can also be applied on the randomly chosen part of the dataset for training purpose.
The algorithm follows the hierarchical procedure used in our earlier work [5], sum-
marized here as follows.

a. Create two lists i.e. sample list and model hierarchy list 
b. Store the number of samples under examination in the sample list.  
c. Initialize model hierarchy list with level .
d. The EA starts with the random generation of population of solutions. Each solution

consists of tree data structure presented in section 2. 
e. The EA evaluates each solution of the population according to fitness and unfitness

function, discussed in detail later in this section. 
f. The individuals for reproduction of next generation are selected using binary 

tournament selection. 
g. The next generation is produced through reproductive procedures consisting of 

crossover and mutation operators as described in [5]. 
h. If termination condition is false then go to step .
i. Set  and store the trained model in the model hierarchy list  
j. Delete the classified samples from the sample list.  
k. If sample list is still non-empty then go to step .
l. Terminate the program.  

Procedure 1: Hierarchical application of evolutionary algorithm

It can be seen from the above procedure, that the algorithm continues to train
models iteratively until all samples are classified. Finally, all the models can be put in a
hierarchical way to represent decision model of the whole dataset or the training set
under examination. The interesting thing about these models is that every single model
correctly classifies some of the samples but it doesn’t misclassify any of the samples.
This is accomplished through combination of fitness and unfitness function (step e).
The primary objective is to maximize fitness function and secondary objective is to
minimize unfitness function. The fitness function is equal to number of classified
samples. Unfitness function is the value of partition wall that is incorporated into the
model to prevent model from misclassifying the samples. The model is probabilistic. It
measures probability of sample to be member of each class. These probabilities are
computed with the help of the probabilistic model based on the distance of phenotype
value 2 (example Eq. 4) of sample i from the phenotype mean of class j. Figure 2
along with Eq. 5 illustrates this probabilistic principle of membership.

p j
i ¼

d
l

ð5Þ
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where

p j
i = probability that sample i is member of class j

d = Distance of phenotype value for sample i from estimated maximum/minimum of
class j

l = Distance of estimated mean of phenotype value of all samples of class j in the
training set from estimated minimum/maximum of the values of members of class j.

It is clear from the Fig. 2 and Eq. 5, that the sample will have greater probability of
class membership when it is closer to the mean position of the class. Its probability of
class membership decreases when it goes farther and becomes negative when it goes
farther than the estimated minimum/maximum of the class phenotype value. We know
that in standard probability theory probability ranges between (0–1), however,
according to Eq. 5, its value can go much below zero and we keep it as it is because it
is useful in our class membership function later discussed in Eq. 9. The estimated mean
of phenotype value of class j is calculated from the training set as follows.

� jmean ¼
Pi¼tj

i¼1 2i

tj þD
ð6Þ

where

2i = Phenotype value for sample i according to evaluation of model described in
Sect. 2 (for example, Eq. 4)
tj = Number of samples in the training set of class j
D = Predictive parameter for larger sample = 1.0

The estimated maximum and minimum of phenotype value of class j are modelled
as follows.

� jmax
min

¼ � jmean � 3:0 � � jsd ð7Þ

Fig. 2. A principle of probabilistic membership
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where

� jmean = estimated mean of set of phenotype values of member samples of class j in
the training set
� jmax
min

= estimated maximum/minimum of set of phenotype values of member

samples of class j in the training set
� jsd = estimated standard deviation of set of phenotype values of member samples of
class j in the training set

The estimated standard deviation of phenotype value of class j is modelled as
follows.

� jsd ¼
Pi¼tj

i¼1 � ji � � jmean
� �2
tj � D

ð8Þ

The task of classifying the sample i is achieved through class membership function
as given below.

;i ¼ k iff Pk
i [ 8j6¼k

j¼1;nc P j
i þr� � ð9Þ

where

;i = class of sample i
r = Safety partition to avoid misclassification during training (unfitness function)
nc = Total number of classes in the dataset

It is clear from the Eq. 9, that the sample is classified into the class with which it
has highest probability of class membership among all the classes. However, it remains
unclassified if highest probability of class membership is not greater enough than the
second highest probability of class membership to overcome the obstacle of unfitness
function r. Following are the steps of evaluation procedure of chromosome.

a. The evaluation starts by setting unfitness function/safety partition .
b. Set sample number  = 0 
c. Increment 
d. Apply model in relation 9 to classify the sample 
e. If the model misclassifies a sample  to a wrong class , then 

 go to step b. 
f. Terminate the procedure 

Procedure 2: Evaluation procedure of chromosome

It is clear from the step e that the value of unfitness function is raised to minimum
threshold level to avoid misclassification. Due to this raised value of safety partition
none of the probability values of any class membership satisfy the condition placed in
model (relation 9). Therefore, the sample i remains unclassified. Since the model has
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now been modified, therefore procedure of evaluation starts again from first sample
with the new value of unfitness function. The procedure continues until all samples of
training dataset are examined under same value of unfitness function and none of the
samples are misclassified. Now the chromosome fitness value is composite of its fitness
and unfitness function. The fitness function is number of classified samples and value
of r is unfitness function.

Now the primary objective is to maximize fitness function i.e., maximize number of
classified samples and the secondary objective is to minimize unfitness function i.e.
value of r. Therefore, while comparing fitness of chromosomes, a chromosome with
higher number of classified samples is considered better regardless of value of its
unfitness function. The value of unfitness function is only considered when the two
chromosomes have equal score in number of classified samples. The flowchart of
whole procedure is depicted in Fig. 3.

i = i + 1

Tree
Generation

Population
Generation

Fitness
Evaluation

Tournament
Selection

Reproduction

Set Partition

Termination
Condition

If (B) null setYes

No

Yes

i = 0

Test Set

Training
Set

Set Partition

Solved
Set (A)

Model i

Unsolved
Set (B)

End

Start

No

Fig. 3. Flowchart of hierarchical model evolution
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The flowchart starts from the process of tree generation, which is described in
Sect. 2. Understandably the tree is generated after reading the dataset. The dataset is
then partitioned into training set and test set through the procedure of set partition,
which is entirely random procedure but it ascertains the proportional representation of
each class in the training set. The variable i is initialized with zero. This variable
represents a model or hierarchy number, which will be incremented later with the
generation of model. The evolutionary algorithm starts with generation of random
population followed by typical cycle of evolutionary iteration consisting of fitness
evaluation, selection and reproduction until termination condition is achieved. After the
termination the training set is further partitioned into the solved set and unsolved set.
The solved set consists of classified samples of the training set by the trained model
while the unsolved set consists of samples which the model failed to classify. Now if
this unsolved set is not a null set, then it is considered as a training set for the next
phase of application of evolutionary algorithm, which is again starts from generation of
random population of solutions. This iterative procedure continues until unsolved set
becomes null set.

4 Description of Datasets

This paper considers three datasets which are taken from UCI repository [10] to ana-
lyze the performance of the method proposed. Following is the description of those
datasets.

4.1 Iris Flower

This is a botanical dataset. The dataset contains 150 samples of 3 species of iris flower
called Setosa, Virginica and Versicolour. The dataset has 50 samples of each class,
with details of four features i.e., sepal width, sepal length, petal width and petal length.
The dataset was created by Anderson in 1935 [11] and later was popularized by Sir
Fisher in 1936 [12]. The dataset is most popular in pattern recognition and classifi-
cation domain.

4.2 Balance Scale

This is a psychological dataset. This dataset was created by Siegler in 1976 [13] to
model psychological experimental results. The dataset contains 625 examples of per-
sons with attributes left weight, right weight, left distance and right distance. This data
is helpful in determining whether person is balanced, right tipped or left tipped. The
dataset contains 288 examples for each right and left tipped people while only 49
examples for the balanced people. This is a very popular test case in the classification
domain.
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4.3 Car Evaluation

This is a decision-making dataset. The dataset has six attributes namely buying price,
maintenance cost, number of doors, maximum number of accommodable persons, size
of lug-boot and level of safety measures. The dataset has total of 1728 samples. The
dataset has four classes unacceptable, acceptable, good and very good. The unac-
ceptable class has 1210 samples. The acceptable class has 384 samples. The good class
has 69 samples and very good class has 65 samples.

Table 1 summarizes feature list of these datasets. Column 1 contains name of the
dataset, column 2 provides number of features in the dataset and columns 3–8 provide
name of the feature corresponding to label used in the column head. These labels are
later used to represent classifier models of the dataset in Table 5 in the Appendix.
Table 2 summarizes the class list of the dataset. Again column 1 contains name of the
dataset, column 2 informs about number of classes in the dataset and columns 3–6 give
name of the class corresponding to label used in the column head. These labels are later
used in Table 6 in Appendix to give statistical data about generated models.

5 Experimental Design and Analysis

The experiments are performed on the datasets described in Sect. 4. The objective of
experiments is two-fold. First objective is to retrieve 100% accurate models from
complete datasets. The results of these experiments are included in the Appendix. The
second objective is to develop models on the randomly generated training sets and then
verify those models on the test set. On the test set trained models are applied in two
different ways. First method is to apply models in hierarchical way as stored in model

Table 1. Feature description for each dataset

Dataset Number of
features

f1 f2 f3 f4 f5 f6

(1) (2) (3) (4) (5) (6) (7) (8)

Balance
scale

4 Left
weight

Left distance Right
weight

Right
distance

- -

Iris flower 4 Sepal
length

Sepal width Petal
length

Petal
width

- -

Car
evaluation

6 Buying
cost

Maintenance
cost

Number
of doors

Number
of seats

Size of
lug-boot

Level of
safety

Table 2. Class description for each dataset

Dataset Number of classes c1 c2 c3 c4
(1) (2) (3) (4) (5) (6)

Balance scale 3 Balanced Left tipped Right tipped
Iris flower 3 Setosa Virginica Versicolour
Car evaluation 4 Unacceptable Acceptable Good Very good
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hierarchy list described in procedure 1. Following is the stepwise method for hierar-
chical application of models.

a. Create a sample list 
b. Store the samples to be tested in the sample list.  
c. Set pointer in the model hierarchy list with level .
d. Apply the pointed model on the sample list for classification (step explained further

in appendix in procedure 4) 
e. Delete the classified samples from the sample list.  
f. If sample list is non-empty then increment the pointer in the model hierarchy list 

 and go to step .
g. Terminate the program.  

Procedure 3: Evaluation Procedure of the test set 

The second method is weighted sum method, i.e., weighted sum of all models
present in the model hierarchy list is produced and applied on the test dataset. The
weights to the models are assigned based on the fitness i.e. number of classified
samples by the model. The experiments are performed on randomly generated training
sets of three different sizes equivalent to around 50%, 80% and 90% of the original size
of the dataset. The training sets are generated in a way that samples of each class are
chosen proportionally for proper representation of each class in the training set.
30 simulations are run on each dataset. However, each simulation has different ran-
domly generated training set. The results of experiments are summarized in Table 3.

Table 3. Classification results on the datasets.

Dataset Classification
method

Size of
training set

Best
results

Average
results

% age of
accurate results

(1) (2) (3) (4) (5) (6)

Iris flower Weighted
sum

50% 98.67% 94.31% 0.00%
80% 100.00% 95.44% 23.33%
90% 100.00% 96.44% 60.00%

Hierarchical 50% 98.67% 93.51% 0.00%
80% 100.00% 94.22% 6.67%
90% 100.00% 94.44% 36.67%

Balance scale Weighted
sum

50% 100.00% 97.44% 3.33%
80% 100.00% 98.53% 43.33%
90% 100.00% 96.13% 40.00%

Hierarchical 50% 100.00% 99.05% 23.33%
80% 100.00% 99.76% 80.00%
90% 100.00% 99.41% 73.33%

Car evaluation Weighted
sum

50% 85.19% 78.96% 0.00%
80% 88.12% 79.78% 0.00%
90% 86.05% 80.78% 0.00%

Hierarchical 50% 95.14% 93.29% 0.00%
80% 97.68% 94.88% 0.00%
90% 98.84% 95.81% 0.00%
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In Table 3, column-1 contains name of the dataset, column 2 provides name of the
classification method, column 3 gives size of the training set in terms of percentage to
original size, columns 4–5 informs about best and average result of 30 simulations
respectively. The results are in terms of percentage of correctly classified samples.
Finally, column 6 provides percentage of accurate results i.e., the percentage of number
of simulations out of 30 simulations where 100% accurate results are obtained.

It can be seen from the Table 3, that better results are obtained with weighted sum
method on the iris flower dataset while on the balance scale and car evaluation datasets
better results are obtained with hierarchical method of classification. It can also be
noticed that best results are obtained on training set of 80% size on balance scale and
car evaluation dataset, while for iris flower dataset best results are obtained at the
training set of 90% size. The hierarchical method has been most successful on the
balance scale dataset with up to 99.76% average results on test set with the training set
of 80% size, whereas accurate results on test set have been obtained on 80% of
simulations.

Table 4, has also been prepared to compare results with other methods. In Table 4,
column 1 gives reference of the method, column 2 provides name of the dataset,
column 3 informs about number of simulations/cross validation, size of training set in
terms of percentage to original dataset is given in column 4. Columns 5–6 give average
and best results respectively of all the simulations in terms of percentage of correctly
classified samples.

Table 4. Classification results in the literature

Ref. Dataset Sim/X-validation Size of Tr. set Average results Best results
(1) (2) (3) (4) (5) (6)

[12] Iris - 80% - 100%
Balance 50% - 88.14%

[13] Iris 10 90% 94.67% -
Balance 90% 78.88% -

[14] Iris 10-fold X-validation 90% 94.0% 94.0%
Balance 90% 89.1% 89.1%

[15] Iris 15x10-fold X-validation 90% 95.65% -
Balance 90% 85.28% -
Car 90% 98.48% -

[16] Iris 10-fold X-validation 90% 87.22% -
Balance 90% 71.27% -
Car 90% 70.12% -

[17] Iris 10-fold X-validation 90% 95.4% -
Balance 90% 97.15% -

[18] Iris - 100% - 98%
Balance 100% - 84%

[19] Car 10x10-fold X-validation 90% 93.3% -
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It can be seen by comparing results in Tables 3 and 4 that proposed method has
produced average of 96.44% correct results on the test set of iris flower dataset with the
90% of the training set, which is better than all the methods presented in Table 2. On
the balance scale dataset, the proposed method has produced staggering average of
99.76% accurate results on test set with 80% training set, which is again best results
among all the contemporary methods. On the car evaluation dataset, the proposed
method has produced average of 95.81% correct results against 98.48% average of
random forest method [15]. However, random forest method [15] has used 15x10-fold
X-validation, whereas proposed method hasn’t made any use of x-validation.

6 Conclusion and Future Work

In this paper, a hierarchical nonlinear discriminant classifier is presented. The method
proposed automatically produces a tree data-structure according to number of features
that can represent nonlinear discriminant classifier based on only four basic mathe-
matical operators þ ;�;�;�. The method can retrieve 100% accurate model from the
iris flower, balance scale and car evaluation datasets. The example retrieved models are
given in appendix. Thus, the model can be useful in knowledge acquisition and
decision-making expert systems. Those retrieved models are the array of models placed
hierarchically in the model hierarchy list. They can be applied hierarchically to the
dataset for the classification purpose. Further, the method is used for classification of
the previously unseen data by the model. To achieve this the model was trained on the
randomly chosen training set. To classify the test set two models were used i.e. hier-
archical application of models present in the model hierarchy list and weighted sum
model of all the models present in the model hierarchy list. Weighted sum model
produced better results on the iris flower dataset while hierarchical application of
models produced better results on the balance scale and car evaluation dataset. Also,
the method produced competitive average results when compared with the state of art.
Encouraged by these results, now the authors are determined to expand this method to
make it applicable to more datasets. Furthermore, detailed analysis is needed to
establish why on some datasets weighted sum application of model on the test set
performs better than the actual hierarchical application.

Acknowledgments. The authors are grateful for financial support from Innovate UK and Route
Monkey Ltd via KTP Partnership number 9839.

Appendix

This appendix contains 100% accurate models that have been retrieved from the iris
flower and balanced scale datasets by the proposed computational model when trained
on the whole list of samples contained in the datasets. Car evaluation models are not
given because of space limitations. Since the method is randomized therefore each run
produces different model however, each model when tested back on the datasets
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produced 100% accurate classification. The models are presented in favour of
researchers to help them extract knowledge of the datasets so that they could use this
knowledge to build expert systems or develop their own knowledge acquisition and
decision-making tools. Table 5 contains these hierarchical models. One model from
each dataset is given. For iris flower dataset the model has two hierarchies, while for
the balance scale dataset the model has only one hierarchy. Only one model is pre-
sented from each dataset because of limited space but there can be many accurate
hierarchical models for one dataset, a new model with each run. The beauty of the
method is not only in generating many accurate models but also in generating them
automatically with only four basic mathematical operators without any mathematical
analysis and without any help of analytical tools.

In Table 5, column 1 gives name of the dataset, number of hierarchies in the model
is given in column 2, column 3 provides level of model hierarchy, actual trained model
in each hierarchy is in column 4, the fitness of model in each hierarchy in terms of
number of classified samples is stated in column 5 and finally column 6 shares value of
model unfitness or partition wall. Table 1 can be referred to see what feature of dataset
corresponding symbols in the model represent.

Since the models presented in Table 5 are trained on the complete datasets there-
fore they are based on actual statistical parameters rather than estimated parameters.
Therefore, for the development of these models the predictive parameter value in Eq. 6
is taken as D ¼ 0. Equation 7 is also replaced to compute actual minimums and
maximums for each class member list. There is no need of standard deviation as it was
used in Eq. 7 to estimate minimum and maximum value of the model. Procedure-3
should be followed to classify the datasets. The step d of procedure-3 i.e., application
of relevant model can be broken down as follows in procedure 4.

a. Compute model value for each sample by putting its feature values into the model
under consideration. 

b. Compute actual mean, minimum and maximum for each class. 
c. Compute probability for membership of each sample to each class according to

equation 5. 
d. Start classification of samples by using relation 9. 

Procedure 4: Procedure of application of model 

Table 5. Accurate models of classification datasets

DS NH HL Model description MF MUF
(1) (2) (3) (4) (5) (6)

Balance scale 1 1 0:7813f4
0:2571f2

� 0:9791f1
0:3225f3

625 0.00

Iris flower 2 1 0:9102f1 � 0:0964f4 þ 0:7035f2 þ 0:0815f3 138 0.3439
2 0:5598f3

0:0802f4
þ 0:4826f2 þ 0:3099f1

12 0.00
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Model Solutions
To give complete sense of the method to readers solutions of above models are pre-
sented in Table 6 against one sample from each dataset. In Table 6, column 1 refers to
the name of the dataset, level of hierarchy is given in column 2. Column 3 gives class
label. For the corresponding class labels Table 2 can be referred. Columns 4–6 provide
values of statistical parameters of the corresponding model for each class i.e., mini-
mum, maximum and mean respectively. The feature dimensions of chosen samples are
given in column 7. The computed probability of class membership is provided in
column 8 and finally column 9 contains the resultant class assigned.

In column 8, with the help of Eq. 5, statistical parameters of models in columns 4–6
are used to estimate class membership probabilities of samples whose dimensions are
given in column 7. It can be seen from Table 6 that both the samples, one from each
dataset are classified correctly. Please note that sample classification is based on
relation 9. Class membership probabilities in column 8 should be used in conjunction
with relation 9 to classify the sample. Balance scale model has only one hierarchy
therefore it is classified in that hierarchy. The sample of iris flower could not be
classified by the model in the first hierarchy. This is because unfitness value in the
column-6 of Table 5 prevented it from classifying, as difference in probabilities of class
membership was not great enough to surpass unfitness value. It should be noted that if
unfitness value would not be there then method would have misclassified the sample as
c3 instead of c2, as probability of class membership with c3 has largest value in first
hierarchy model. Since the sample remained unclassified in first hierarchy therefore it
was tested again in the model in second hierarchy. This model classified it correctly.
This is the beauty of hierarchical model that it stops any misclassifications through
unfitness value and the sample is given a chance to be classified in the next hierarchy.
All the models in the last hierarchy have unfitness value 0.0000. This is done to make
sure no sample remains unclassified.

Table 6. Statistical parameters of models for each class of the dataset

Dataset Hierarchy
level

Class Minimum Maximum Mean Test
sample
dimensions

Probability of
class
membership

Class
assigned

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Balance
scale

1 c1 0.0007 0.0181 0.0044 1, 1, 1, 1 0.7927 c1
c2 −14.5709 0.0000 −3.8166 −0.0009
c3 0.1527 14.5898 3.8266 −0.0406

Iris
flower

1 c1 6.9513 15.1915 10.4918 17, 45, 25,
49

−6.5829 Unclassified
c2 44.4055 64.1775 53.3945 0.0046

c3 28.2416 47.2345 39.0089 0.3339
2 c1 0.0000 0.0000 0.0000 �1 c2

c2 30.5460 32.3623 31.8337 0.0000

c3 32.5227 34.1201 33.0470 −5.7053
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