
Chapter 4
Putnam’s Theorem on the Complexity
of Models

Warren Goldfarb

Abstract A streamlined proof of a theorem of Putnam’s: any satisfiable schema of
predicate calculus has a model in which the predicates are interpreted as Boolean
combinations of recursively enumerable relations. Related open problems are can-
vassed.

A lesser-known but quite interesting contribution of Hilary Putnam to mathematical
logic concerns the complexity of models of schemata of the predicate calculus, that
is, first-order quantificational schemata. To frame his results, let me start by recalling
what might be dubbed the Hilbert–Bernays Theorem, namely, that any satisfiable
schema of quantification theory has a model overN (or a finite subset ofN) in which
the predicate letters are interpreted as �2 relations. (A �2 relation is one that can
be defined as both a �2 relation ∀x∃yQ and a �2 relation ∃x∀yR, where Q and
R are recursive relations.) The proof is sketched in Hilbert and Bernays (1939),
pp. 243–252; it proceeds by arithmetizing Gödel’s completeness proof (1930). The
argument is elaborated rigorously in Kleene (1952), pp. 389–394. Kleene’s proof is
very complex, but a much simpler one is now available (Ebbs and Goldfarb 2018).

In the 1950s, there was attention to the question of whether the Hilbert–Bernays
Theorem could be improved: could one always find number-theoretic interpretations
of lesser complexity than �2? Kreisel (1953) and Mostowski (1953) independently
showed that there were satisfiable schemata of quantification theory that could not
be satisfied over N with recursive relations, that is, had no recursive models. Those
proofs used set-theoretic means, but in Mostowski (1955) gave a more elementary
argument that used only recursion-theoretic concepts.

Putnam’s first result (1957) strengthened this: a restriction to relations that are
either �1 or �1 would also not suffice. (�1 relations are existential quantifications
of recursive relations, usually called “recursively enumerable” or “computably enu-
merable”; �1 relations are the complements of �1 relations, and sometimes called
“co-r.e”. or “co-c.e”.) The argument is simple and elegant. Putnam starts with a
schema that has no recursive model, and constructs from it a schema that cannot
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have a model when its predicate is either �1 or �1. Assuming the predicates of the
given schema that has no recursive models are dyadic P1, . . . , Pn , first introduce new
constants a1, . . . an, b1, . . . bn and a triadic predicate Q, then replace each occurrence
of Pi (x, y) with Q(x, y, ai ), and conjoin the resulting formula with

∀x∀y
(∧

i

Q(x, y, ai ) ↔ ¬Q(x, y, bi )

)

Since a �1 set with �1 complement is recursive, it follows that if Q is interpreted
as either a �1 or �1 relation, then it must in fact be recursive, which would then
yield recursive interpretations of P1, . . . , Pn . So if the given schema has no recursive
models, then the new schema cannot have a model with Q interpreted as either �1

or �1.
Putnam obtained his other, more important, result a few years later; it is published

as (1965). This is a positive theorem: he improved the Hilbert–Bernays Theorem by
showing that a model could always be obtained using relations that were boolean
combinations of�1 relations. The notation he used for this class of relations was�∗

1 .
This yields a sharp characterization in terms of the Kleene arithmetical hierarchy:
one-quantifier forms do not suffice, but boolean combinations of one-quantifier forms
do.

As we shall see, Putnam’s argument, unlike the original Hilbert–Bernays Theo-
rem, applies only to quantification theory without identity, that is, what is called the
“restricted functional calculus” in Hilbert and Ackermann (1928).

Putnam’s argument is quite ingenious.Here I present a streamlined version inmore
modern notation. We are given a satisfiable schema S. In the interest of simplicity
of exposition, Putnam invoked a well-known reduction due originally to Herbrand
(1931), which allows him to assume that S contains only one predicate letter P (the
method is a generalization of the reduction above of several dyadic predicate letters
to one triadic letter). Suppose P is n-adic.

The first lemma needed for Putnam’s proof is comes from the basic model theory
of quantification theory. Suppose M is a model for a schema with universe N, and
suppose ϕ : N → N is onto. DefineN also with universe N so that the interpretation
of each predicate letter is the preimage under ϕ of its interpretation inM. ThenN is
also a model for the schema. This elementary fact is easily shown by induction on
the logical complexity of the schema. In the case we are considering, in which the
schema contains one predicate letter P , the preimage interpretation is this: PN holds
of an n-tuple (i1, . . . in) iff PM holds of (ϕ(i1), . . . ϕ(in)). That ϕ is required only to
be onto and not also one-one is what limits the scope of the lemma to quantification
theory without identity; if “=” were allowed and ϕ were not one-one, the lemma
would fail.

The ingenuity in the proof lies in a second lemma. Putnam started by showing
that an n-adic number-theoretic relation R is�2 iff there is an (n + 1)-adic recursive
function f such that R(i1, . . . , in) holds iff the limit of f (i1, . . . , in, y) as y goes
to infinity is 1, and does not hold if that limit is 0. He called such a function a
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“trial and error function”, although that name has not stuck. Nowadays, this result is
considered a standard one in recursion theory. In fact it was already known before
Putnam’s paper, as it follows quickly from Shoenfield (1959). But in fact this result
is not necessary for his theorem, because the simplified proof of the Hilbert–Bernays
Theoremmentioned above establishes first that the predicate letters of any satisfiable
quantificational schema can be interpreted as limits of trial-and-error functions, and
only subsequently infers from this that they are �2. Thus one can simply start with
those functions and avoid the detour through �2 (see Ebbs and Goldfarb 2018).

Now if f is an (n + 1)-adic trial-and-error function, then for all i1, . . . in there is
some k such that f (i1, . . . , in, y) changes its value at most k times as y increases.
Putnam’s innovation was to reverse the quantifiers, that is, to consider recursive
functions f with the property that there exists a k such that f (i1, . . . , in, y) changes
its value at most k times, no matter what i1, . . . in are. Putnam called these “k-trial”
functions, and the n-adic relations they define in their limit, “k-trial predicates”.
Several years later, k-trial functions also found application in the theory of tilings of
the plane; see Hanf (1974).

Putnam then noted that, for any k, k-trial relations are boolean combinations of
r.e. relations. The boolean complexity of the relation is straightforwardly dependent
on k. For example, suppose g(i, j, y) is a 2-trial function. The relation R(i, j) that it
defines in the limit can be specified thus: there are two numbers y at which g(i, j, y)
changes value, and at the greater of them the value is 1; or there aren’t two numbers
y such that g(i, j, y) changes value at y but there is one number y at which g(i, j, y)
changes value, and then its value is 1, or there is no number y at which g(i, j, y)
changes value, and g(i, j, 0) is 1. Each of these clauses can be expressed as either
an r.e. relation or a co-re. relation.

Now let M be a model for S for which PM is defined as the limit of a trial-and-
error function f . Given the above, it suffices to find an onto mapping ϕ such that the
ϕ-preimage of PM can be defined as the limit of a k-trial function for some k.

For any i1, . . . , in , an (i1, . . . , in)-modulus is any number b such that f (i1, . . . ,
in, b) = f (i1, . . . , in, y) for all y ≥ b. Since f (i1, . . . , in, y) has a limit as y goes
to infinity, there always exists an (i1, . . . , in)-modulus. For any i , an i-modulus is a
number b that is an i1, . . . , in-modulus for all i1, . . . , in ≤ i . Thus for every i there
exists an i-modulus.

Let 〈i, j〉 be a standard primitive recursive one-one onto pairing function. Let ϕ

be the one-place function such that, for all i and b, ϕ(〈i, b〉) = i if b is an i-modulus,
and = 0 if not. It follows that ϕ is onto.

Now let h(i, b, y) = i if for all z, b ≤ z ≤ y and all i1, . . . , in ≤ i ,

f (i1, . . . , in, b) = f (i1, . . . , in, z)

otherwise let h(i, b, y) = 0. Note that if h(i, b, y) = 0 then h(i, b, y′) = 0 for all
y′ ≥ y. Thus for i �= 0, h(i, b, y) can change its value for increasing y at most only
once: from i to 0.Moreover, for i �= 0, h(i, b, y) = i for every y iff b is an i-modulus.
(For i = 0, h(i, b, y) is always 0.) Hence
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ϕ(〈i, b〉) = lim
y→∞ h(i, b, y)

Wenowdefine an (n + 1)-place function g, whichwe show to be an-trial function and
to define, in its limit, the ϕ-preimage of PM. Let b0 be any 0-modulus, that is, any
number such that, for all y ≥ b0, f (0, . . . , 0, b0) = f (0, . . . , 0, y). Let i1, . . . , in
and b1, . . . , bn be any integers. Then let

g(〈i1, b1〉, . . . , 〈in, bn〉, y) = f ((h(i1, b1, y), . . . , h(in, bn, y), bp)

where p = 0 if h(im, bm, y) = 0 for each m, 1 ≤ m ≤ n; and p is such that i p is the
largest among i1, . . . , in for which h(i p, bp, y) �= 0 otherwise.

Note first that g is an n-trial function. For as noted above, h(i, b, y) can change its
value at most once, from nonzero to zero. Hence the arguments of f on the righthand
side of the definition of g can change their values at most n times.

Moreover, g defines, in the limit, just the ϕ-preimage of PM. That is, as
y goes to infinity the limit of g(〈i1, b1〉, . . . 〈i1, b1〉, y) is the same as that of
f (ϕ(〈i1, b1〉), . . . , ϕ〈i1, b1〉), y). For let y be any number large enough that, for all
y′ ≥ y, h(im, bm, y′) = ϕ(〈im, bm〉) for each m ≤ n. Then, for all y′ ≥ y,
g(〈i1, b1〉, . . . 〈in, bn〉, y′) = f (ϕ(〈i1, b1〉), . . . , ϕ(〈in, bn〉), bp), where p = 0 if all
the ϕ(〈im, bm〉) are 0, and otherwise p is such that i p is the largest among i1, . . . , in
such that ϕ〈i p, bp〉) �= 0. In either case bp is an i-modulus for some i such that
ϕ(〈im, bm〉) ≤ i for each m, so that f (ϕ(〈i1, b1〉), . . . , ϕ(〈in, bn〉), bp) =
f (ϕ(〈i1, b1〉), . . . , ϕ(〈in, bn〉), y′) for all y′ ≥ bp; hence the two limits are identi-
cal. This completes the proof.

Since g is an n-trial function, and the boolean complexity of the defined predicate
depends only on n, we see that the boolean complexity of the �∗

1 relations depends
only on the number of argument places of the predicate letter and not on anything
further about the logical structure of the schema S.

As mentioned above, this proof applies only to quantification theory without
identity. Strictly speaking, the theorem is false for quantification theory with identity,
since there are schemata which have only finite models, and hence no model over all
of N. If we restrict attention to those schemata that do have infinite models, then it
is an open question as to whether the result holds.

Putnam’s theorem is not widely known, I think, for two reasons. First, due to the
growth ofmodel theory, by the late 1960s logicians who studied quantification theory
began taking quantification theory with identity as a more basic object of study than
the “restricted functional calculus”. (To see the shift, one need only compare the
introduction of quantification theory in Kleene (1952) or Church (1956) with that in
Enderton (1972).) Second, advances in recursion theory caused more emphasis to be
put on Turing degree rather than position in the arithmetical hierarchy as a measure
of complexity. Here the crucial result was the Low Basis Theorem of Jockusch and
Soare (1972). This theorem states that any recursive infinite binary tree has an infinite
path whose jump is Turing equivalent to K . By applying the same arithmetization
of Gödel’s completeness proof as Hilbert and Bernays had done, this yields – for
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quantification theory with identity – the same Turing degree for the interpretations
of predicate letters in models over N. This characterization lies athwart Putnam’s
characterization, since there are low sets that are �2 but not �∗

1 .
Nonetheless, I believe, there are open problems stemming from his result that

are worth investigating. First, as mentioned above, there is the question of whether
Putnam’s result can be extended to quantification theory with identity. His technique
certainly cannot be, and I am doubtful that the result holds there. It should, however,
be settled one way or the other. Second, because the function ϕ used in the proof is
ordinarily not recursive, one cannot extract from the LowBasis Theorem information
about the Turing degree of the interpretation. Hence, the question remains: if we
restrict ourselves to �∗

1 interpretations, are there schemata which require relations
that are Turing equivalent to K ? Finally, in the model constructed for the Hilbert–
Bernays Theorem, even though the predicates are not interpreted recursively, there
are recursive Skolem functions (this is built in to Gödel’s completeness proof). This
is not preserved by ϕ-preimages, but then the question remains as to whether one
can obtain recursive Skolem functions in �∗

1 models, and if not, how great their
computational complexity might have to be.1
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