
Unifying Radio-in-the-Loop Channel
Emulation and Network Protocol

Simulation to Improve Wireless Sensor
Network Evaluation

Sebastian Böhm(B) and Michael Kirsche

Computer Networks and Communication Systems Group,
Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany

{sebastian.boehm,michael.kirsche}@b-tu.de

Abstract. Evaluations of Internet of Things (IoT) and Wireless Sen-
sor Network (WSN) applications demonstrate the significant and still
existing gap between examinations with generic simulation environments
and real-life (e.g., field test) or controlled (e.g., testbed) sensor network
deployments in terms of realistic and accurate results. The separated use
of single examination approaches is often not enough to overcome all eval-
uation challenges. We therefore propose a combination of discrete-event
simulation, radio-channel emulation, and real hardware working together
on different layers of the protocol stack of the system-under-test. Our
combined approach reduces the gap between abstract simulations and
network testbed experiments by providing adjustable radio conditions for
repeatable evaluations of WSN and IoT networks.

1 Introduction

Practical applications of Wireless Sensor Networks (WSNs) require extensive
testing and evaluation strategies that cover all layers of the protocol stack: from
application and protocol data flows to radio channel influences and physical
side-effects. These pre-deployment tests can be performed either via simulation,
through emulation, or with the help of real-life testbeds. While a simulation
of a networked system requires (abstract) models and representations of the
system-under-test, emulations use components from the original system and try
to emulate the usage scenarios. Real-life testbeds, in turn, try to replicate the
exact application conditions prior to a rollout. Each of these network evalu-
ation techniques has specific strengths and weaknesses when applied to WSN
and IoT use cases. We discuss all three techniques in the next paragraphs and
motivate our hybrid approach that combines simulative and emulative methods.
Additional discussions of the evaluation methods are available in [1–4].

WSN and IoT Simulation

Simulation allows one to easily construct layered network protocol architectures,
device topologies, and algorithmic applications. Simulation model parameters
c© Springer Nature Switzerland AG 2018
M. Baum et al. (Eds.): SimScience 2017, CCIS 889, pp. 219–238, 2018.
https://doi.org/10.1007/978-3-319-96271-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96271-9_14&domain=pdf

220 S. Böhm and M. Kirsche

can be customized to examine certain protocol behavior and performance issues.
In the academic world, simulation is the de facto first step for the implementation
of WSN solutions because no hardware is required to test new protocol designs.
Common network simulators like OMNeT++ [5] or NS-3 [6] focus on the Discrete
Event Simulation (DES) paradigm which models a system by its states. System
state changes occur at discrete points in time. Examples of state changing events
can be the start of a packet transmission or the expiration of a timer. A DES
simulator jumps from one event to the next, skipping the time between events.
Pseudo Random Number Generators (PRNGs) are used within the simulation
process to randomize state changes and event occurrence. Simulator implemen-
tations use a Future Event Set (FES) and event routines (handlers) to create
and schedule events. Algorithm 1 (adapted from [7]) shows the described general
operations flow of discrete event scheduling in pseudo-code.

Algorithm 1. Discrete Event Scheduling
Precondition: Initialize simulation model and FES

while (FES not empty) and (simulation not complete) do
fetch first event e from FES
advance simtime with event timestamp t
Function process event(e):

perform model state transition
if (create new event v) or (cancel event w) then

insert v into FES and delete w from FES
end

return

end

The radio channel conditions and the operation environment characteristics
have a strong influence on WSNs. These two aspects are typically simplified or
completely omitted in network protocol simulations. Add-on frameworks that
enable the modeling of wireless environments and channel conditions are dis-
cussed in [8, Sect. 2]. Their implementation, however, is based on mathematical
functions with varying abstraction levels and complexity. Wireless channel mod-
eling is a very complicated process (cp. [9]) with a significant tradeoff between the
realism of simulation models and their performance and scalability [8, Sect. 4].
These drawbacks generally lead to a low confidence in WSN simulation results.

WSN and IoT Testbeds

Application-specific physical testbeds for distributed sensor networks, on the
other hand, are complex to set-up, to manage, and to operate. They are also
cost intensive in comparison to other evaluation approaches. [10] summarizes
and compares existing WSN experimentation testbeds and their characteris-
tics. Regardless of the application scenario, testbed nodes operate in a radio

Unifying Radio-in-the-Loop Channel Emulation 221

environment which is often uncontrollable and may differ from the actual work-
ing environment of the system-under-test. Testbed evaluations enable an accu-
rate representation of a sensor node’s hardware (if available and installed in the
testbed) and software. Monitoring and inspection of run-time characteristics is
possible when firmware extensions and additional hardware are used to provide
a feedback loop. However, such extensions may change the run-time execution
or introduce unforeseen behavior and errors during the evaluation process.

Radio Channel Emulation

Radio Channel Emulation offers a controllable radio environment with constant
Radio Frequency (RF) conditions to evaluate a system-under-test. WSN nodes
are isolated from each other and connected over their radio interfaces to the RF
channel emulator hardware, which emulates signal propagation effects. A com-
mon and important feature of these systems is the ability to control the large-
scale fading between transmitters and receivers. Practical deployments vary from
laboratory test setups with coaxial-based radio links to complex analog or digi-
tal radio channel emulators with support for hundreds of interconnected nodes.
Nevertheless, applications run as static firmware implementations on real-life
WSN hardware and flexible adjustments of applications or protocol parameters
are complicated compared to network simulators.

The evaluation of WSN designs still offers many unsolved research challenges
(cp. [3] for example), as the separated use of single approaches is often not enough
to overcome all evaluation challenges (e.g., realistic cross-layer communication
evaluation). To mitigate most of the flaws of the evaluation methods discussed
in the previous three paragraphs we propose a combination of simulation, radio-
channel emulation, and real hardware working together on different layers of the
protocol stack of the system-under-test. The remainder of the paper describes
the methodology of our hybrid approach in Sect. 2, gives a short overview of our
background and related work in Sect. 3, presents a case study of our Hardware-in-
the-Loop-based network emulation in Sect. 4, and discusses evaluation methods
in Sect. 5 before we conclude the paper in Sect. 6.

2 Methodology

Hardware-in-the-Loop (HIL) evaluation concepts are well established for automo-
tive, aerospace, and robotic application domains. In these areas, HIL approaches
are used to verify existing hardware module implementations by triggering the
hardware inputs via simulated events and observing the generated outputs
and reactions of the hardware-under-test. In case of WSNs and wireless net-
worked embedded systems, HIL concepts (e.g., [11,12]) for the evaluation of
WSN applications and protocols are rarely implemented (cp. [13]). Depending
on the development stage and the actual part of the system that is tested and
fed with simulated data, name variations like model- or software-in-the-loop are
widely-used. Our approach of combining radio channel emulation with a HIL
concept for WSN testing is subsequently called Radio-in-the-Loop (RIL).

222 S. Böhm and M. Kirsche

Figure 1 depicts a protocol stack of a sensor node and the three collaboration
levels (numbered 1© to 3©). Time-discrete event simulations (level 1© in Fig. 1) of
the upper layers of the protocol stack (e.g., application, transport, and network
layer) simplify the construction of different architectures and application models
by using simulators like OMNeT++ and accompanied frameworks like INET1.

Using real hardware (level 2© in Fig. 1) to accurately represent parts of the
Medium Access Control (MAC) sublayer and the complete Physical (PHY) layer
mitigates a major drawback of typical WSN simulations. MAC and especially
PHY simulation models are often abstracted, even though simulation frame-
works might provide accurate models for upper layer protocols. WSN-specific
simulators like Cooja [14] can provide more accurate representations of real WSN
hardware due to real-life code execution, but their PHY and wireless propagation
models are abstracted just like the ones from generic simulators like OMNeT++.
Even more problematic is the restriction of WSN-specific simulators like Cooja to
specific operating systems (i.e., Contiki [15] for Cooja). We combine real WSN
hardware with upper layer network simulations over a Hardware-in-the-Loop
approach to enable an accurate representation of the lower layers combined with
the protocol and model variety of OMNeT++/INET.

We use RF channel emulation (level 3© in Fig. 1) to bypass the discussed
drawbacks of WSN testbeds. By emulating the wireless channel in a control-
lable environment, we can provide adjustable PHY conditions comparable to
simulation environments, while refraining from using abstracted wireless prop-
agation and PHY models. Section 4 describes all three collaboration levels in
detail. This Radio-in-the-Loop concept leverages on the strengths of the individ-
ual approaches to enable accurate and likewise flexible tests of WSNs.

Fig. 1. Combining protocol simulation, real hardware, and RF channel emulation

1 INET framework website: https://inet.omnetpp.org/.

https://inet.omnetpp.org/

Unifying Radio-in-the-Loop Channel Emulation 223

The following three example scenarios benefit from using our RIL approach:

(i) The radio channel emulation (level 3© in Fig. 1) enables the definition of
exceptional network topologies and various channel conditions that are dif-
ficult to reproduce within real world tests, while we can observe the behavior
of the upper layer protocols on the simulated level.

(ii) With respect to the first scenario, cross-layer communication approaches
and protocols that also involve radio medium access and physical data trans-
missions can benefit from accurate parameters and measurements of the
transceiver chip hardware (level 2© in Fig. 1) to get dependable evaluation
results within a simulation-driven test setup.

(iii) Nevertheless, a small-scale setup of nodes in a controlled channel emulation
environment can be extended easily with additional purely virtual nodes
from collaboration level 1© in Fig. 1 to increase the network traffic and
simulate communication data stimuli for real wireless transmissions.

3 Related Work and Background Information

The majority of current simulation approaches [16] abstract heavily from real
target hardware. Specialized simulators as discussed in [8,17] allow only a partial
modeling of wireless environments and channel conditions. The underlying mod-
els are always based on abstracted mathematical functions with varying com-
plexity. COOJA [14] provides an operation-system-specific simulation engine to
enable software-based emulation of WSNs with a focus on simulating the code
execution on the target hardware. COOJA supports three different models for
wireless transmissions with varying parametrization: Unit Disk Graph Medium
(UDGM), Direct Graph Radio Medium (DGRM), and Multi-path Ray-tracer
Medium (MRM). Other simulation and emulation concepts for signal propaga-
tion or PHY layer support are surveyed, for example, in [8] and [16].

Coupling OMNeT++ with hardware is also considered in [18]. The authors
describe a new HIL interface and changes in the OMNeT++ event scheduler
to support a real-time exchange of messages over external hardware interfaces.
[18] differs from our approach in terms of the underlying idea of joining radio
channel emulation with simulation and in regard of the application scenario (i.e.,
home automation). The report describes an OMNeT++ gateway that basically
forwards messages from one real-life device to another one via OMNeT++ without
considering a radio channel emulation. Tests and evaluation of real-life hardware
via simulated stimuli are also not yet considered in [18].

3.1 Network Protocol Simulation with OMNeT++

OMNeT++ is a popular open source DES simulator that is frequently used for
communication network research. OMNeT++’s concept of exchanging messages
via gates between modules (reusable building blocks) facilitates the development
and simulation of complex scenarios. The INET add-on framework provides a
multitude of simulation models for upper layer protocols.

224 S. Böhm and M. Kirsche

In [19], we introduced a new simulation model for the popular IoT and WSN
communication standard IEEE 802.15.4 [20]. The OMNeT++ model was created
to simulate the complex behavior of the 802.15.4 MAC and PHY layers in a
detailed fashion. We modeled the two layers with their connecting interfaces
and the used service primitives according to the IEEE standard specifications
and general modeling guidelines for 802.15.4 [21]. The structure of the OMNeT++
simulation model is depicted in Fig. 2.

Fig. 2. Block diagram of the OMNeT++IEEE 802.15.4 model

The model itself consists of several layers and individual model components
that are combined into a so-called IEEE802154Host. The NIC includes the parts
of the IEEE standard that are most relevant for the communication. Listing 1.1
shows that the Protocol Data Unit (PDU) packet definitions include all types
and fields that are specified in the IEEE 802.15.4 standard [20].
packet mpdu
{

unsigned short fcs; // 16-Bit Frame Check Sequence
Ash ash; // Auxiliary Security Header
// ... MAC frame payload is encapsulated ...
MACAddressExt src; // 0, 16 or 64-Bit Source Address
unsigned short srcPANid; // 0 or 16- Bits for Source PAN ID
MACAddressExt dest; // 0, 16 or 64-Bit Destination Address
unsigned short destPANid; // 0 or 16- Bits for Destination PAN ID
unsigned char sqnr =0; // 8-Bit Sequence number
unsigned short fcf=0; // 16-Bit Frame Control Field

}

Listing 1.1. MPDU packet definition - excerpt from MPDU.msg

Unifying Radio-in-the-Loop Channel Emulation 225

3.2 RF Channel Emulation with the RoSeNet Testbed

In addition to OMNeT++, we work with RoSeNet2, a network emulation plat-
form for low-power wireless technologies that focuses on hardware-based channel
emulation via a controllable coaxial cable radio environment (level 3© in Fig. 1).
The modular system incorporates interconnected emulation panels that manage
multiple sensor nodes on designated slots. By adjusting the signal attenuation
values among nodes and panels in this shielded RF environment, it is possible to
emulate distances or geographical positions and topologies of networked nodes.
At designated signal supply points, interference signals can also be injected into
the signal path. The overall architecture enables the emulation of large-scale
networks with up to 1000 wireless sensor nodes (Fig. 3).

Fig. 3. RoSeNet emulation and test platform (taken from RoSeNet web page)

For our first HIL coupling experiments [22], we developed interfaces to trans-
mit generated MAC layer frames via real sensor node hardware to achieve control
over the communication flow in the network. In order to generate traffic for an
initial test of the HIL system we simply inject generated protocol data frames.
We added message handlers for the emulation control server application that
are responsible to start the packet transmission to the hardware. The Man-
agement Controller on the addressed hardware panel forwards this packet to
the designated slot of the transmitter node. A detailed description of the frame
transmission and reception at node level is given in Sect. 4.3.

4 An OMNeT++ and RoSeNet RIL Architecture

Our current prototype includes extensions for OMNeT++/INET and the IEEE
802.15.4 simulation model (cp. Sect. 3.1), the hardware interfaces on the RoSeNet
emulation testbed, and a Forwarder implementation that acts as bridge between
the two domains. Figure 4 illustrates the basic Radio-in-the-Loop setup and the
abstracted message exchange among the collaborating entities.

2 RoSeNet radio channel emulation platform: https://www.dresden-elektronik.de/
ingenieurtechnik/development/research/rosenet/.

https://www.dresden-elektronik.de/ingenieurtechnik/development/research/rosenet/
https://www.dresden-elektronik.de/ingenieurtechnik/development/research/rosenet/

226 S. Böhm and M. Kirsche

For data exchange, we use the Packet Capture (PCAP) file format, the de
facto standard capture format for network packet traffic. With the PCAP Next
Generation (PCAPNG)3 extension, we can exchange additional information for
data packets, for example the interface identifier for multiple external devices.

Fig. 4. Simplified message flow between OMNeT++ and testbed hardware

4.1 RIL Simulator Interfaces

We extended the IEEE 802.15.4 simulation model with a new module, called
IEEE802154ExtHost, that enables the RIL operation. In the current implemen-
tation, an external host sends simulated MAC frames to an external interface
instead of the PHY model. Figure 5 shows that the IEEE802154ExtInterface
operates with a IEEE802154Serializer and a PCAPScheduler to convert
between raw PCAP data bytes and OMNeT++MAC frame objects.

Fig. 5. IEEE 802.15.4 external interface in OMNeT++/INET

PCAPScheduler is derived from OMNeT++’s cRealTimeScheduler class. In
OMNeT++, the event scheduler is one of the most important components, as
it controls the event processing and manipulates the Future Event Set (cp.
Sect. 1). The scheduler class provides a function, called setInterfaceModule(),
which enables the connection of external interfaces (i.e., a Transmission Control
Protocol (TCP) socket in our case) to the simulation. The scheduler function
3 PCAPNG capture file format: https://github.com/pcapng/pcapng.

https://github.com/pcapng/pcapng

Unifying Radio-in-the-Loop Channel Emulation 227

getNextEvent() is synchronized to the real-time clock and checks periodically
if an event occurred at the socket. With respect to the PCAPNG file format, the
scheduler implements various functions for writing and especially reading the
specified blocks from the socket stream in the separate PCAPNGReader module.
For the handling of PCAPNG, we only implemented the three basic block types
that are relevant to our use case. These are:

handleSHB(): Section Header Block (SHB) (init PCAP handling)
handleIDB(): Interface Description Block (IDB) (set hardware interface)
handleEPB(): Enhanced Packet Block (EPB) (process MAC packet)

The IEEE802154ExtInterface cooperates with the IEEE802154Serializer
module to convert between simulation and real-life packet formats. The external
interface is also responsible for handling all incoming and outgoing packet data
traffic for the scheduler. A function named handleMessage() deals with events
that can be either Radio-in-the-Loop messages or regular simulation events.
Incoming external 802.15.4 MAC frames are deserialized from the serializer and
directly send to the corresponding simulation node module.

The mapping between simulation nodes and PCAPNG data is performed
with the help of an interface table that stores the simulation module identifier
for the corresponding hardware identifier.

4.2 PACP Forwarder

A transparent forwarder application interchanges data in the PCAPNG format
between the simulator and the target emulation system. The implementation
uses threads and acts as a dispatcher and aggregator of PCAPNG data streams.
On the hardware side, assigned destinations can be single sensor node platforms,
individual transceiver chips, or whole testbed control systems. While PCAPNG
is able to handle multiple hardware interfaces and link layer protocols, the for-
warder application can aggregate data from different end-devices to constitute
a single socket data stream for further scheduling in the OMNeT++ simulation.
Figure 6 depicts the main PCAPNG block types and the packet processing.

Fig. 6. PCAP forwarder architecture

228 S. Böhm and M. Kirsche

For our purposes, we use the PCAPNG block types SHB, IDB, and EPB. The
Section Header Block (SHB) and one Interface Description Block (IDB) for every
used hardware node are exchanged at the beginning of the scenario execution.
The Enhanced Packet Blocks (EPBs) represent the MAC data frames.

4.3 Node Simulation/Emulation Firmware

Contiki OS [15] is used to enable the reception of PCAP protocol frames via
a Universal Asynchronous serial Receiver and Transmitter (UART) interface
to create the respective MAC events and to transmit real radio frames among
sensor nodes on the introduced RoSeNet emulation platform. We currently use
nodes with ATmega128RFA1 radios4, but the Transceiver (TRX) firmware can
also be implemented for an arbitrary node platform and other WSN operating
systems. Algorithm 2 illustrates the transceiver process with the corresponding
transmit and receive functions in pseudo-code, derived from our current Contiki-
based implementation. The required promiscuous mode in Algorithm 2 enables a
Network Interface Controller (NIC) to pass all received network traffic captured
from the medium to the system’s Central Processing Unit (CPU).

Algorithm 2. Nodes Transceiver Process
Precondition: Initialize radio driver in promiscuous mode

Function receiver callback() � called by radio driver

record timestamp and create PCAP frame
send out PCAP frame via serial interface

return

while (true) do
wait until PCAP serial interface event occur
copy MAC frame into the packetbuf
Function sender callback()

send out frame via radio interface
return

end

Our implementation is actually using a fixed transmission channel with a
permanently activated RF transceiver. The Carrier Sense Multiple Access Colli-
sion Avoidance (CSMA-CA) protocol is used to control and regulate the channel
access. A pcap line input process state machine creates PCAP events from frames
received over the UART interface. A sender callback function immediately trans-
mits the frame onto the wireless channel. At the moment, we are able to transmit

4 ATmega128RFA1: http://www.microchip.com/wwwproducts/en/ATmega128RFA1.

http://www.microchip.com/wwwproducts/en/ATmega128RFA1

Unifying Radio-in-the-Loop Channel Emulation 229

frames in both directions between OMNeT++/INET and common RS232 UART
interfaces of typical IEEE 802.15.4 transceiver chips (e.g., ATmega128RFA1)
and sensor nodes on the introduced RoSeNet emulation system.

4.4 Radio Emulation

The setup of the emulation scenario and the necessary parameters follow the typ-
ical OMNeT++ guidelines for the creation of simulation scenarios. We create .ned
and .ini files for OMNeT++ that include the definition of the network topology
as well as necessary parameters and simulation options. By using RoSeNet’s
radio emulation architecture, we are able to emulate a long term fading of
signal transmissions. With reference to the Free Space Path Loss (FSPL) (cp.
[9, Sect. 2]), we can arrange testbed nodes in virtual geographic positions. We
take two-dimensional coordinates of the modeled scenario and the RF parameters
of the sensor node hardware to determine the signal fading between individual
wireless sensor nodes. We compute the signal loss between nodes (FSPL) with
a simplified uniform spread of energy in free space given by the path loss model
in Eq. 1, adapted from [9, Sect. 2.5].

FSPL(dB) = −20 log10

(
4πd

λ

)
(1)

λ − transmission channel center frequency wavelength
d − the distance between sender and receiver

One important constraint is that RoSeNet has both fixed (i.e., integrated into
the platform, non-adjustable) and variable signal attenuators (i.e., adjustable by
the user) in its coxial environment. The quintessence and problem at the same
time is to allocate nodes and set all involved attenuators to their according values
to achieve the desired radio topology. For our RIL scenarios, we therefore need
to create radio topologies that are representable in the two domains.

Hardware Allocation on the Emulation Testbed

A RIL testbed architecture with coaxial-based radio links can be represented
as an undirected communication graph G. With RoSeNet, we have a plain tree
structure (cp. Fig. 7) in which the root is the central anchor node connected to
chains. One chain has several modular entities called panels, which include the
actual sensor nodes (the tree leaves), as it was introduced in Sect. 3.2.

230 S. Böhm and M. Kirsche

Fig. 7. RoSeNet’s emulation architecture as an undirected communication tree GAT

We modeled the graph-based abstraction and several RF dependencies of the
target emulation hardware for our allocation scheme. An overview of a number
of important variables of the model definition is given below.

N : a set of WSN hardware node types {′RCB128RFA1′, . . .}
H: a set of emulator RF node types {′anchor′,′ splitter′,′ input′}
A: a set of static attenuation values {1, 3, 11, 21, 31} ⊆ N

Iλ: a set of graph G invariants
ε: deviation of attenuation values {ε ∈ R+ | ε < 1}
ae: attenuation value of a graph G edge e ∈ E(GS), ae ∈ N

G: an undirected communication graph G = (V,E)
a set of nodes from G V = {v | v ∈ N}
a set of weighted edges from G E ⊆ {(i, j, a) | i, j ∈ V ; a ∈ N}

GA: an undirected allocation graph GA = G = (V,E)
a set of nodes from GA V = {v | v ∈ {N ∪ H}}

GAT
: an undirected allocation tree GAT

⊆ GA = G = (V,E)
a set of nodes from GAT

V = {v | vr = anchor, vl ∈ N}
GH : an emulation hardware graph GS = GAT

GS : a scenario graph GS = G = (V,E)

We designed a multiple stage allocation process to be able to automatically
find attenuation values of the RF signal path on testbed platforms like RoSeNet.
We use graph analysis and Mixed Integer Linear Programming (MILP) based
on graph representations for the scenario and the hardware platform for this.
The abstracted allocation procedure is given in Algorithm3.

Unifying Radio-in-the-Loop Channel Emulation 231

Algorithm 3. Node Hardware Allocation
Precondition: |scenario nodes| ≤ |hardware nodes|
Postcondition: GA ⊆ GH with tolerance to ae

generate GS and GH

Iλ = analyze scenario GS � Iλ not finally specified

while (true) do
GA = allocate nodes from GH with GS and Iλ

Function calculate attenuation(GA, GS)
� create the Linear Program and add constraints

make LP from |V (GS)| and |V (GA)|
add LP scenario constraints from GS

� allow deviation from fixed values

for ε ∈ Setε do
add LP hardware constraints from GH with ε
solve LP
if attenuation found then

allocate graph GA

return

end

end

return

end

The allocation process includes multiple steps, starting with the generation of
the scenario graph GS and the emulation hardware graph GH from the currently
available hardware installation. In the second step, several parameters (graph
invariants Iλ) of the scenario graph are calculated and processed by an initial
node allocator, which makes a first decision regarding the panel-node placement
GA. This step of the process is only statically implemented for now. In the
third step, we transfer our graph representation with the allocated nodes and
all additional constraints (coming from the hardware and the RF dependencies)
into a Linear Program (LP) which can then be solved using MILP. If a solution
is calculable then we are done, otherwise we have to adjust our parameters (e.g.,
the deviation of the fixed attenuation parameters ε) or we need to move back
to step two to calculate a new panel-node placement GA. If no solution can be
calculated at all (e.g., due to hardware constraints), we have to change the initial
radio topology or inform the user of the unsupported scenario.

5 Evaluation

The preceding sections gave an overview of our methodology and introduced the
different submodules of our hybrid RIL approach. As the implementation and
testing of the OMNeT++ and RoSeNet RIL architecture are still ongoing work,
we will discuss evaluation approaches for submodules and different aspects of our

232 S. Böhm and M. Kirsche

approach and their feasibility to verify the usefulness of the OMNeT++/RoSeNet
coupling for combined channel emulation and protocol simulation. Furthermore
we present first results and fundamental steps of our submodule evaluation. A
performance evaluation of the RIL simulator interfaces is discussed in Sect. 5.1.
The PCAP Forwarder component is functionally evaluated to assure its correct
behavior in Sect. 5.2. Section 5.3 shortly discusses a rudimentary performance
evaluation of the emulation firmware prototype while Sect. 5.4 rounds off the
evaluation part with an analysis of the hardware allocation and the MILP solver.

5.1 RIL Simulator Interfaces

An important aspect of real time simulations is the performance of the simu-
lation implementation. When designing a simulation model, its implementation
is usually less efficient when compared to the implementation of the real sys-
tem. On the other hand, simulations typically run on high performance hosts.
This difference is especially significant for WSN and IoT simulations of resource-
constrained devices. Since we interconnect simulations and real hardware in our
RIL approach, we have to ensure that the simulator maintains real-time capa-
bilities for accessing the radio transceiver hardware.

Exemplary research like [23] already demonstrated sufficient throughput mea-
surements of similar external interfaces for OMNeT++ in the past (as a result
of their examples they fully utilize a link of 10 Mbit/s). When compared to the
maximum throughput of IEEE 802.15.4 radio transceiver hardware (with a max-
imum over-the-air data rate of 250 kbit/s for the popular 2.45 GHz frequency
band), we consider large scale test setups with dozens of sensor nodes to discover
the limitations of our approach, for example in terms of the maximum number
of RIL nodes. These results can finally be compared to the maximum theoretical
throughput on a link.

As a fundamental evaluation step, we modified simulation modules to gen-
erate all frame types specified in the IEEE 802.15.4 standard [20, Sect. 7.2] and
send them via our interface implementation. A test data receiver connects to the
OMNeT++ socket at the local host and writes all received traffic into a single
PCAP trace file. We use Wireshark5, the de facto standard network protocol
analyzer, to verify the correctness of the frame transmission.

5.2 PCAP Forwarder

Our forwarder application acts as a transparent bridge between the simulation
and the emulation domain. We thus have to ensure the fast reception, process-
ing, and transmission of frames. Depending of the exact scenario, the forwarder
application can be evaluated by performance measurements when aggregating,
splitting, and filtering PCAP data streams. For running corresponding perfor-
mance measurements we need to define these concrete scenarios and generate
suitable PCAP traces or schedule test runs together with a simulation run. We

5 Wireshark network protocol analyzer: https://www.wireshark.org/.

https://www.wireshark.org/

Unifying Radio-in-the-Loop Channel Emulation 233

consider precise time-stamping of processed PCAP frames with the help of high
resolution clock timers to record the arrival and departure time for each frame.

We started by stress testing the application and measuring the overall data
throughput by passing PCAP trace files from a sender socket via our forwarder
to a receiver socket and vise versa (the receiver socket acts as a TCP repeater).
Figure 8 shows the corresponding test setup (the dashed arrows show virtual
connections; other connections represent the real data flow). We did not observe
any dropped frames; all packets sent by the PCAP traffic generator were received
by it after they passed through the PCAP forwarder and were returned by the
TCP repeater. The test proves the correct functionality of the PCAP forwarder.

Fig. 8. Setup of the PCAP Forwarder application test

Looking at a data transfer of maximum sized IEEE 802.15.4 data frames (10k
data frames with 127 bytes each – overall data amount of 1.52 MB), we measured
an exemplary throughput of 91.5 Mbit/s from the sender (TCP traffic genera-
tion) to the PCAP Forwarder and 91.4 Mbit/s from the sender to the receiver
module (TCP traffic repetition) on an Ubuntu Linux (64 bit) virtual machine
with 7 vCPUs (Intel Xeon X3470 Quad Core @ 2.93 GHz). While traffic at the
localhost gets processed by a loopback adapter in the kernel we cannot evalu-
ate the precise throughput readings, but our first measurements show a 0.11%
performance decrease caused by the forwarder. We assume that our packet han-
dling routines, currently without considering aggregating, splitting, and filtering
frames, do not have a significant influence on the overall data throughput.

5.3 Node Simulation/Emulation Firmware

For our emulation firmware prototype, we started with measurements of the
maximum over-the-air transmission rates for different frame lengths for the cur-
rently used hardware platform RCB128RFA16. We used the Texas Instruments

6 RCB128RFA1 Radio Controller Board: http://www.dresden-elektronik.de/
funktechnik/products/reference-designs/atmel-radio-controller-boards/radio-
controller-boards/.

http://www.dresden-elektronik.de/funktechnik/products/reference-designs/atmel-radio-controller-boards/radio-controller-boards/
http://www.dresden-elektronik.de/funktechnik/products/reference-designs/atmel-radio-controller-boards/radio-controller-boards/
http://www.dresden-elektronik.de/funktechnik/products/reference-designs/atmel-radio-controller-boards/radio-controller-boards/

234 S. Böhm and M. Kirsche

(TI) CC25317 transceiver module with TI’s own SmartRF Packet Sniffer8 soft-
ware. We calculated the theoretical maximum transmission rate for frame trans-
missions between the serial and the RF interface, based on the used PHY spec-
ification and the microcontroller specs of our test hardware. Figure 9 depicts
the results of the frame processing compared to the theoretical limitations.
We achieve an overall throughput (independent of the frame size) of approx-
imately >90% of the theoretical maximum packet rate at the serial interface.
This performance decrease should primarily be caused by the PCAP-handling
at the customized serial input driver and the frame type classification as well as
the buffering of air-frames at the radio interface.

0 20 40 60 80 100 120

50

100

150

Packet size (byte)

P
ac
ke
t
ra
te

(p
ac
ke
ts
/s
)

theoretical
measurement

Fig. 9. Throughput of the PCAP firmware implementation

5.4 Hardware Allocation

The allocation process can be evaluated by measuring the algorithm run time in
dependance of the scenario parameters (especially the number of nodes and the
considered network topology). First of all, comprehensive and allocatable test
scenarios need to be designed again. For the current panel hardware architecture
the corresponding MILP model incorporates 378 constraints modeled by a total
of 756 variables. Initial measurements of the allocation algorithm show a dis-
proportionate increase in the iterations and calculation time with the number of
scenario constraints to get optimal solutions from the MILP solver (see Fig. 10 –
optimal). For the first steps of the allocation procedure we are not interested in
optimal solutions but only in whether a model is feasible or not. To find a feasible
solution for small scale test setups the solver in our simplified test cases needs
less than 1000 iterations (see Fig. 10 – feasible). While running on an Ubuntu
Linux (64 bit) virtual machine with 7 vCPUs (Intel Xeon X3470 Quad Core @
2.93 GHz), the solver is able to calculate a solution whether a model is feasible
or not in less than 0.5 s.

7 Texas Instruments (TI) CC2531: http://www.ti.com/product/CC2531.
8 SmartRF Protocol Packet Sniffer http://www.ti.com/tool/PACKET-SNIFFER.

http://www.ti.com/product/CC2531
http://www.ti.com/tool/PACKET-SNIFFER

Unifying Radio-in-the-Loop Channel Emulation 235

378 380 382 384 386 388 390
102

103

104

105

number of overall constraints

nu
m
be

r
of

it
er
at
io
ns optimal

feasible

Fig. 10. Number of iterations for solving the allocation model

An overall evaluation of the system depends, in particular, on well defined
emulation scenarios besides the interaction between all components. Fur-
thermore, evaluation systems should always be additionally evaluated in an
application-specific manner to determine which application types and which spe-
cific device topologies are meaningful to evaluate in general.

6 Summary and Outlook

WSN usage is spreading into all kinds of application domains over the last years.
Applications and protocol stacks get more complex and thus more difficult to
test and to evaluate. There is a growing demand in the simulation community
to include hardware and RF environment-related details into network protocol
simulation to facilitate the validation of simulative investigations and increase
the realism of the abstracted representations of wireless channel characteristics.

In this work, we presented an approach to extend pure WSN protocol simu-
lation through a Radio-in-the-Loop concept. We apply radio channel emulation
with real sensor node hardware on the PHY layer to constitute a more precise
behavior of WSN use cases. We focus on OMNeT++ and RoSeNet in our proto-
typical implementations and tests. However, the proposed ideas are not limited
to a specific emulation system, hardware type, or network simulation environ-
ment. The support for wireless channel emulation using real hardware within
network simulations will help to improve examinations of the interactions of
protocol data flow and, for example, node energy consumption in reproducible
radio conditions. Ultimately, the objective of our approach is to introduce a new
tool chain for performance evaluation and cross-layer optimization in WSNs.
This requires further evaluations and improvements which we discuss next.

In addition to pure MAC frame transmissions, the 802.15.4 simulation model
needs to control the RF parameters of hardware-based radio transmissions, for
example: the data rate, the modulation, the transmission power, the frequency,
and the transmission channel. We use a TRX firmware (cp. Sect. 4.3) that sets
these RF parameters inside the source code at compile-time for initial testing. To
increase the overall model accuracy we plan to adjust the TRX firmware to enable

236 S. Böhm and M. Kirsche

the processing of IEEE 802.15.4 PHY data and service primitives which are
already implemented in our simulation model. A more modular attempt could be
to exchange those parameters in optional extension headers of the PCAPNG file
format or in so-called Radiotap9 headers (like they exist for IEEE 802.11 WLAN)
and implement setter and getter methods for these parameters at the target
hardware. This would allow the simulation to execute all procedures and features
defined in the IEEE 802.15.4 standard and provide valid RF measurements for
the simulated MAC layer.

Since most of the commercially available IEEE 802.15.4 transceivers only
implement a subset of the complete PHY specification in practice, we also
consider the use of flexible and reconfigurable Software Defined Radio (SDR)
modules as RIL gateways instead of standard-conform but functionally limited
transceivers. This approach could also help to avoid the data rate bottleneck of
the UART interface of the transceiver modules. This architectural change opens
up interesting possibilities for rapid prototyping of cross-layer communication
approaches for future transceiver chip design.

Emulation of node mobility is another practical use case for test setups. In
order to model mobility or node movement patterns (e.g., a receiver node moves
out of the reception range of the transmitter node) within the RIL channel
emulation, we have to vary hardware attenuation values during the emulation
run-time. There are still open questions regarding the limits of the given RoSeNet
system architecture for the emulation of mobility due to the complexity and the
radio topology dependency of the hardware allocation process as it was discussed
in Sect. 4.4.

Acknowledgement. Parts of this work were funded by the German Federal Ministry
for Economic Affairs and Energy (BMWi) through the Central Innovation Programme
(ZIM initiative) under Contract No. ZF4119201ED5.

References

1. Imran, M., Said, A., Hasbullah, H.: A survey of simulators, emulators and testbeds
for wireless sensor networks. In: International Symposium in Information Technol-
ogy (ITSim). IEEE (2010). https://doi.org/10.1109/ITSIM.2010.5561571

2. Kropff, M., Krop, T., Hollick, M., Mogre, P.S., Steinmetz, R.: A survey on real
world and emulation testbeds for mobile ad hoc networks. In: Proceedings of the
2nd International Conference on Testbeds and Research Infrastructures for the
Development of Networks and Communities (TRIDENTCOM), 6-pp. IEEE (2006).
https://doi.org/10.1109/tridnt.2006.1649182

3. Göktürk, E.: Emulating ad hoc networks: differences from simulations and emu-
lation specific problems. In: Tugcu, T., Gelenbe, E., Caglayan, M.U. (eds.) New
Trends in Computer Networks. Advances in Computer Science and Engineering:
Reports, vol. 1. Imperial College Press, October 2005

4. Wehrle, K., Güneş, M., Gross, J.: Modeling and Tools for Network Simulation, 1st
edn. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12331-3

9 Radiotap project website: https://www.radiotap.org/.

https://doi.org/10.1109/ITSIM.2010.5561571
https://doi.org/10.1109/tridnt.2006.1649182
https://doi.org/10.1007/978-3-642-12331-3
https://www.radiotap.org/

Unifying Radio-in-the-Loop Channel Emulation 237

5. Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment.
In: Proceedings of the 1st International Conference on Simulation Tools and Tech-
niques for Communications, Networks and Systems (SIMUTools), ICST, article
no. 60 (2008)

6. Riley, G.F., Henderson, T.R.: The NS-3 network simulator. [4] Chapter 2, pp.
15–34. https://doi.org/10.1007/978-3-642-12331-3

7. OMNeT++ Manual: Function called for each event (2017). https://omnetpp.org/
doc/omnetpp/manual/#sec:simple-modules:handlemessage:overview

8. Stehlik, M.: Comparison of simulators for wireless sensor networks. M.Sc. thesis,
Faculty of Informatics, Masaryk University (2011)

9. Goldsmith, A.: Wireless Communications. Cambridge University Press, Cambridge
(2005)

10. Dwivedi, A.K., Vyas, O.P.: An exploratory study of experimental tools for wireless
sensor networks. Wirel. Sens. Netw. 3(7), 215–240 (2011)

11. Duan, S., Wan, Y., Meng, P., Wang, Q.: Hardware-in-the-loop and parallel simu-
lation architecture for WSN. TELKOMNIKA 11(1), 103–114 (2013)

12. Mozumdar, M.M.R., Lavagno, L., Vanzago, L., Sangiovanni-Vincentelli, A.L.:
HILAC: a framework for hardware in the loop simulation and multi-platform auto-
matic code generation of WSN applications. In: International Symposium on Indus-
trial Embedded Systems (SIES), pp. 88–97. IEEE (2010)

13. Papadopoulos, G.Z., Kritsis, K., Gallais, A., Chatzimisios, P., Noel, T.: Perfor-
mance evaluation methods in ad hoc and wireless sensor networks: a literature
study. IEEE Commun. Mag. 54(1), 122–128 (2016)

14. Österlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: Cross-level sensor
network simulation with COOJA. In: Proceedings of the 31st IEEE Conference on
Local Computer Networks (LCN), pp. 641–648. IEEE Computer Society (2006).
https://doi.org/10.1109/LCN.2006.322172

15. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operat-
ing system for tiny networked sensors. In: Proceedings of the 29th Annual IEEE
Conference on Local Computer Networks (LCN), pp. 455–462. IEEE Computer
Society (2004). https://doi.org/10.1109/LCN.2004.38

16. Sundani, H., Li, H., Devabhaktuni, V.K., Alam, M., Bhattacharya, P.: Wireless
sensor network simulators a survey and comparisons. Int. J. Comput. Netw. (IJCN)
2(5), 249–265 (2011)

17. Du, W., Mieyeville, F., Navarro, D., O’Connor, I., Carrel, L.: Modeling and simula-
tion of networked low-power embedded systems: a taxonomy. EURASIP J. Wirel.
Commun. Netw. 2014(1), 1–12 (2014)

18. Wehner, P., Göhringer, D.: Internet of Things simulation using OMNeT++ and
hardware in the loop. In: Keramidas, G., Voros, N., Hübner, M. (eds.) Components
and Services for IoT Platforms, pp. 77–87. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-42304-3 4

19. Kirsche, M., Schnurbusch, M.: A new IEEE 802.15.4 simulation model for
OMNeT++/INET. In: Proceedings of the 1st International OMNeT++ Commu-
nity Summit (OMNeT 2014), September 2014

20. IEEE Standards Association: Part 15.4: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Net-
works (WPANs). IEEE Standards Document - Revision of IEEE Std. 802.15.4TM-
2006. IEEE, September 2006. https://doi.org/10.1109/IEEESTD.2006.232110

21. Kirsche, M.: Selected System Models - IEEE 802.15.4. [4] Chapter 12.3, pp. 276–
303. https://doi.org/10.1007/978-3-642-12331-3

https://doi.org/10.1007/978-3-642-12331-3
https://omnetpp.org/doc/omnetpp/manual/#sec:simple-modules:handlemessage:overview
https://omnetpp.org/doc/omnetpp/manual/#sec:simple-modules:handlemessage:overview
https://doi.org/10.1109/LCN.2006.322172
https://doi.org/10.1109/LCN.2004.38
https://doi.org/10.1007/978-3-319-42304-3_4
https://doi.org/10.1007/978-3-319-42304-3_4
https://doi.org/10.1109/IEEESTD.2006.232110
https://doi.org/10.1007/978-3-642-12331-3

238 S. Böhm and M. Kirsche

22. Böhm, S., Kirsche, M.: Looking into hardware-in-the-loop coupling of OMNeT++
and RoSeNet. In: Proceedings of the 2nd International OMNeT++ Community
Summit (OMNeT 2015), September 2015

23. Tüxen, M., Rüngeler, I., Rathgeb, E.P.: Interface connecting the INET simulation
framework with the real world. In: Proceedings of the 1st International Conference
on Simulation Tools and Techniques (SIMUTools 2008), ICST, Brussels, Belgium,
Belgium, pp. 40:1–40:6. ICST (2008). https://doi.org/10.1145/1416222.1416267

https://doi.org/10.1145/1416222.1416267

	Unifying Radio-in-the-Loop Channel Emulation and Network Protocol Simulation to Improve Wireless Sensor Network Evaluation
	1 Introduction
	2 Methodology
	3 Related Work and Background Information
	3.1 Network Protocol Simulation with OMNeT++
	3.2 RF Channel Emulation with the RoSeNet Testbed

	4 An OMNeT++ and RoSeNetRIL Architecture
	4.1 RIL Simulator Interfaces
	4.2 PACP Forwarder
	4.3 Node Simulation/Emulation Firmware
	4.4 Radio Emulation

	5 Evaluation
	5.1 RIL Simulator Interfaces
	5.2 PCAP Forwarder
	5.3 Node Simulation/Emulation Firmware
	5.4 Hardware Allocation

	6 Summary and Outlook
	References

