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Preface

Welcome to the proceedings of the first Clausthal–Göttingen International Workshop
on Simulation Science, which took place in Göttingen, Germany, during April 27–28,
2017.

Owing to the rapid development of information and communication technology, the
understanding of phenomena in areas such as natural sciences and engineering
increasingly relies on computer simulations. Traditionally, simulation-based analysis
and engineering techniques are a research focus of both TU Clausthal and the
University of Göttingen, which is also reflected in their interdisciplinary joint research
center “Simulation Science Center Clausthal–Göttingen.” In this context, the first
Clausthal–Göttingen International Workshop on Simulation Science brought together
researchers and practitioners in order to report on the latest advances in simulation
science. In particular, the workshop concentrated on (a) simulation and optimization in
networks, (b) simulation of materials, and (c) distributed simulations.

The Convention Centre by the Observatory in Göttingen served as the workshop
venue. It is an outbuilding of the Historical Observatory where the famous scholar Carl
Friedrich Gauss used to work and live. The welcome address of the workshop was
given by Prof. Norbert Lossau (Vice-President of the University of Göttingen) and
Prof. Thomas Hanschke (President of the TU Clausthal). Recent results and an outlook
to future developments in simulation science were discussed in three plenary talks
given by Achim Streit (Karlsruhe Institute of Technology), Samuel Forest (MINES
Paristech), and Kai Nagel (TU Berlin). The social program included a guided city tour
through Göttingen’s historical old town and a workshop dinner that took place in the
basement of the city hall – the “Ratskeller” of Göttingen.

In total out of 40 submitted extended abstracts 39 were accepted for presentation at
the workshop. After the workshop, 16 full-length papers of a subset of submissions
have been accepted in a second review round for the post-proceedings.

We are very grateful to everyone who supported the workshop. In particular, we
would like to thank the Technical Program Committee, the local arrangements
co-chairs, Annette Kadziora and Fabian Sigges, and the finance chair, Alexander
Herzog. The registration process was organized by VDE conference services and we
highly appreciate the co-sponsoring by the Gesellschaft für Operations Research e.V.
(GOR) and the Arbeitsgemeinschaft Simulation (ASIM).

After the success of this workshop, we look forward to the second
Clausthal-Göttingen International Workshop on Simulation Science, which will take
place in May 2019 in Clausthal, Germany.

April 2018 Marcus Baum
Gunther Brenner
Jens Grabowski

Thomas Hanschke
Stefan Hartmann

Anita Schöbel
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Networks



Passenger-Induced Delay Propagation:
Agent-Based Simulation of Passengers

in Rail Networks

Sebastian Albert1, Philipp Kraus2, Jörg P. Müller2, and Anita Schöbel1(B)

1 Georg-August-Universität Göttingen, Göttingen, Germany
{albert,schoebel}@math.uni-goettingen.de

2 Technische Universität Clausthal, Clausthal-Zellerfeld, Germany
{philipp.kraus,joerg.mueller}@tu-clausthal.de

Abstract. Current work on delay management in railway networks
has – to the best of our knowledge – largely ignored the impact of pas-
sengers’ behavior on train delays. This paper describes ongoing work
aiming to explore this topic. We propose a hybrid agent-based architec-
ture combining a macroscopic railway network simulation with a micro-
scopic simulation of passengers in stations based on the LightJason agent
platform. Using an initial instantiation of the architecture, we model a
simple platform changing scenario and explore how departure delays of
trains are influenced by delays of incoming trains, and by numbers and
heterogeneity of passengers. Our results support the hypothesis that pas-
sengers’ behavior in fact has a significant effect on delays of departing
trains, i.e., that passengers’ behavior in stations must not be neglected.
We recommend to include these effects in up-to-date models of delay
management.

1 Introduction

Delays are a fact in most railway systems. Triggered by one or several source
events (a track is closed, a signal fails, a train departs late because a large
group is boarding) they may spread through large parts of the railway network.
Many mechanisms of such a delay propagation are well understood: A train
which departs with some delay also arrives with some (maybe smaller) delay;
but delays can also propagate from one train to another if a punctual train waits
for a delayed feeder train (wait-depart decision), or if a punctual train has to
slow down because its track is occupied by a delayed train ahead of it (pri-
ority decision). It is also known that delays may propagate due to vehicle and
drivers’ schedules. In order to keep the delays small, delay management decisions

Partially supported by Simulation Science Center Clausthal/Göttingen (SWZ),
project ASIMOV.

c© Springer Nature Switzerland AG 2018
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4 S. Albert et al.

are made at railway traffic control centers. Optimizing these from a passenger-
oriented point of view is an ongoing topic of research, see [9] for a recent survey
on delays in railway systems and delay management.

However, work about delay propagation and delay management ignores the
following two important issues. First, it is mostly neglected that the route a pas-
senger1 would take depends on the actual delays and on the delay management
decisions. In many cases, waiting for the next train of the same service after
missing a connection is inefficient for passengers, because a different combina-
tion of train services may result in earlier arrival at their destinations. Only very
few approaches take this into account [8,22]. Note that the delay of a train may
even result in new opportunities for connections that do not exist in regular,
undisturbed operations.

Another neglected aspect is related to the behavior of passengers at the
stations: What do they do if a transfer is likely to be missed? People running
from one platform to another in a hurry can interfere with others, heavy luggage
may slow down passengers and increase the time they need for changing trains,
and crowds in the station also slow down traffic. Particular patterns of passenger
flow can even cause additional train delays when, for instance, a steady trickle
of people entering a train prevents the doors from closing.

The following scenario illustrates this effect: Suppose a large number of pas-
sengers alight from an incoming train A in a station. There are only a few minutes
for changing to the platform of a connecting train, B. In such a situation, it hap-
pens often enough that one (fast) passenger reaches train B on time, and before
the doors can close, the next passenger arrives, then the passenger after, and
so on. This might lead to a delay of train B, even if B was punctual so far. To
the best of our knowledge, effects as this one have not been considered in delay
management yet.

In this paper we simulate not only trains in railway networks and delays
propagating between them due to priority and wait-depart decisions, but we
also simulate the passengers and which effects their behavior has on delays. This
includes their route choices in the railway network as well as their movements
through the stations. Hence, not only do we study the influence of delays on pas-
sengers but also the influence of passengers on delays. The resulting simulation
model can be used to predict delays more realistically in every specific situation.
This is useful for several reasons. First, being able to predict delays more pre-
cisely helps when informing passengers about the options they have. Second, our
simulation can be used to evaluate particular delay management decisions (e.g.:
train A should wait for train B today) or even more general delay management
strategies and hence help to reduce follow-up delays in railway systems.

Closest to the topic we study is the simulation of crowd congestion at inter-
change stations which has been studied for a station in Toronto in [25]. In [26]
these effects are included in a crowd dynamics and transit network simulation

1 For reasons of simplicity, throughout this paper we will uniformly use the term
passenger to refer to passengers on a train, but also to travelers at a railway station
(including pedestrian through-traffic).
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platform which switches between different simulators. Delay propagation in the
context of railway networks has been studied in [15,16] and simulated in [19]. It
has also been used in delay management, see [9] and references therein. In these
papers, wait-depart decisions to maintain connections for transferring passengers
are considered for delay propagation, but the route choice of passengers and their
behavior in stations is neglected. In [17], Li and Zhu propose a model consider-
ing passenger choice behaviors that take train delays into account. They study
in simulation how this can be factored into a passenger flow distribution calcu-
lation. A discrete event simulation mechanism is used to evaluate their model.
They consider train delays and platform delays as sources for delays. However,
they do not provide a detailed microscopic model of passengers at stations, but
use a mesoscopic probabilistic approach. In [27], Wales and Marinov report the
results of a case study of a real metropolitan rail network, analyzing the impact,
frequency and scope of delays, and attempting to mitigate them. They employ a
mesoscopic discrete event-based railway network simulation, based on empirical
data while detailed modeling of travelers and platform delays are not considered.

There are many papers and tools for a microscopic simulation of physical
train movements along the tracks in a railway network; we refer to [20] for
an overview. However, passengers are neglected in these simulations. The work
presented by Zhang et al. in [29] does describe a rich cellular automata-based
alighting and boarding micro-simulation model for passengers in Beijing metro
stations and the effects of different group sizes on the alighting and boarding
performances. However, they do not study the integrated modeling of railway
station and railway network, and the cellular automata approach makes it diffi-
cult to model more advanced cognitive behavior such as planning.

Thus, to the best of our knowledge, there is no work that aims at studying the
impact of passengers’ behavior on train delays by considering both the railway
networks and railway stations in microscopic models. Therefore, we propose an
agent-based modeling and simulation approach using the LightJason framework
(see Sect. 3 for related work and details), since it provides a flexible, scalable
architecture and can link microscopic and macroscopic elements.

The remainder of this paper is structured as follows. In Sect. 2 we describe the
simulation model combining a macroscopic railway network model with a micro-
scopic model of the passengers at the stations. These two worlds get connected
when passengers board or alight: train doors and platforms serve as interfaces.
Section 3 is devoted to our realization of the agent-based simulation, and Sect. 4
provides first simulation results showing that passengers’ behavior in fact has a
significant effect on delays of the departing trains. The paper is ended with some
conclusions and a plan for further research.

2 Simulation Model

2.1 Overview

Delay management problems have been traditionally modeled from the railway
network perspective using macroscopic networks, and formulated and solved as
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integer programs (IPs). Considering pedestrians in a more realistic fashion both
in the train network and in the stations imposes additional requirements on
modeling. E.g., it is necessary to link a graph-based model for the network with
a grid-based model for the station. Also, while a macroscopic flow simulation
can be applied for the network, microscopic pedestrian flow models are required
to capture realistic fine grained movement patterns in stations according to the
pedestrians’ information states, preferences, and plans. Essentially, our model
needs to support the “network world” and the “station world” as well as pas-
sengers moving across these worlds when entering or leaving trains.

There are different architectural approaches for combining a macroscopic rail-
way network simulation with a microscopic station simulation model. Firstly, a
co-simulation approach could be considered (e.g. [5]), linking two separately run
simulations. Secondly, an existing simulation system could be extended by new
models capturing e.g. the station/pedestrian part, or the network part. Third, a
new simulation framework could be created based on a unified model. For scal-
ability and to reduce the integration and maintenance effort, we chose the third
alternative, aiming at a unifying agent-based model based on the agent-based
platform LightJason (see Sect. 3). An important design choice is that trains, pas-
sengers, and dispatcher(s) are modeled as Belief-Desire-Intention (BDI) agents.
Trains drive, and open or close doors; passengers travel from start to desti-
nation, move through stations and board/alight trains. The dispatcher decides
which trains wait. This enables a uniform view on all active simulation entities
while maintaining different levels of detail.

Section 2.2 describes in more detail how the railway network is modeled. Our
approach for describing railway stations and passenger behavior within railway
stations is presented in Sect. 2.3. Section 2.4 explains how our initial model han-
dles the transition between the railway network and station “worlds”.

2.2 Railway Network Submodel

The macroscopic simulation of trains is based on the so-called event-activity net-
work (EAN) N = (E ,A). The vertices of the network are arrival and departure
events Earr and Edep where both consist of a train and a station. The events are
linked by the following activities:

– A driving activity a ∈ Adrive links a departure event at a station with an
arrival event of the same train at its next station. It represents a train driving
between the two consecutive stations.

– A waiting activity a ∈ Await links the arrival event of a train with its depar-
ture event at the same station and corresponds to the time period in which
a train is waiting in a station to let passengers alight and board.

– A changing activity a ∈ Achange links an arrival event of a train at a station
with the departure event of another train at the same station. It corresponds
to the transfer of passengers from one train to another by foot within a station.

– Finally, a headway activity a ∈ Ahead models the limited capacity of the track
system. This can either be two trains driving on the same track into the same
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direction or two trains driving into opposite directions on a single-way track.
The duration L(i,j) of a headway activity (i, j) means that the departure j
must take place at least L(i,j) minutes after the departure i (if j actually
takes place after i). We refer to [24] for details. Headway activities are used
to prevent that no two trains occupy the same platform at the same time.
Note that not all conflicts on the tracks can be prevented by using headway
constraints in a macroscopic model.

There exist simulations (see [20] for an overview) which are able to route trains
on the track system respecting all signals, speed limits and other safety measures,
including interlocking effects of multiple trains’ routes. However, since the focus
in this simulation is to analyze the influence of the behavior of the passengers
we neglected the details of the physical railway network in this first version and
used the macroscopic event-activity network for simulating the railway world. A
small example of an EAN with three trains is depicted in Fig. 1.

station B K−Town K−Town

K−Town

station A

K−Town K−Town station E

station F

K−Townstation C

drive

wait

drive

drive

wait

wait

drive

drive

drive

arrival

arrival

station G
arrival

departure

departure

departure

departure

departure

arrival

arrival

arrival

departure

drive and wait activities
transfer activities
headway activities

TRAIN 1

TRAIN 2

TRAIN 3

Fig. 1. A small event-activity network consisting of three trains which meet at the
station K-town.

Event-activity networks are suitable for modeling trains, passengers, and
delays: The trains are visible directly; passengers can be routed through an EAN
(where they may not use headway activities) allowing to change between trains
along the changing activities; and delays can be propagated through the network
along driving, waiting, changing and along headway activities if the buffer times
of each of these activities is known.

In our simulation model, every train in the EAN is represented as one sim-
ulation entity, or agent. The train agents technically know their timetable as a
list of stations together with their arrival and departure times. Train agents are
aware of the current time and must not depart before the respective published
departure time. Their arrival at the next station follows after the amount of time
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determined by the distance and their running speed, plus any additional delay
that can be modeled between the two stops. A detailed simulation on the tracks
is currently neglected since our focus is to study passengers at stations. These
are also modeled as agents. In the macroscopic railway network they move along
the network in their trains. In order to reach their destinations, each passenger
agent knows their own itinerary as a list of train rides, each denoting the train
number, the station, and the departure time where they have to board or alight.
Some of them are able to adapt their itineraries when their planned journey is
affected by a delay. These passenger agents represent informed passengers that
use their smart-phones to optimize their journeys. Other passengers will stick
to their itineraries, or follow the guidance given by the staff or an information
board. All passengers can update their itineraries when they miss a transfer.

2.3 Railway Station Submodel

Following a microscopic agent-based approach, this submodel describes the phys-
ical environment of a railway station, the travel demand, and the behavior (flow)
of passengers in the station. Figure 2 shows the simple example scenario used
throughout this paper. It features two opposing entrances and platforms, an info
sign containing information about track plans and departure times for trains,
as well as points of interests such as a restroom or a store. From the central
hall, there is an entrance/exit to/from each platform. The two entrances and
exits of the station hall can be used to simulate different levels of pedestrian
through-traffic and their impact on delays. To model travel demand, we use
origin-destination (O/D) matrices. Based on the O/D information, passengers
are generated with an itinerary and released at the entrances of the initial sta-
tion of their journey. Note that for the scope of this paper, the itinerary is a
given input, and we do not consider rerouting. In the future, we will investigate
the case that passengers first need to obtain it by actually moving near the info
sign, or that they may use mobile devices.

Based on its itinerary and departure information, a passenger decides where
to go (e.g., to catch a train or to leave the station). It then plans a route and
moves towards its destination. While moving, the passenger can decide to oppor-
tunistically interrupt or modify the planned route towards points of interest, e.g.,
to eat something (represented as dynamic internal drive to increase its energy
level) or to get a newspaper (represented by a level of preference or interest).
Furthermore, its trajectory is influenced by the asynchronous movement of other
passengers which can lead to collisions.

We model the flow behavior of passengers using a cellular automaton app-
roach [6] based on a grid representation of the environment. A cell can be empty
or not, and it can be of different types (floor, info sign, Point of Interest (PoI),
...). Based on the cell structure, discrete goal- and event-based action rules fol-
lowing the BDI model are employed to describe the interaction between agents
and the environment.



Passenger-Induced Delay Propagation 9

Fig. 2. Exemplary station environment

To model flexible, realistic movement and routing, we use a hybrid control
architecture to integrate routing and movement control as proposed in [14]:

Routing: The Jump Point SearchPlus (JPS+) routing algorithm calculates
a list of landmarks (filled dots in Fig. 2) from starting to goal position. We
extend JPS+ by preprocessing to define suitable initial landmarks. During
runtime, JPS+ can be executed for any agent individually, to choose land-
marks that reflect individual preferences of the agent.

Movement control: A passenger’s actual movement trajectory (indicated by
the line starting from the entrance in Fig. 2) depends on its planned route,
but also on the current situation including other passengers. To this end, we
use a Social Force Model approach [13], and added a simple reactive collision
detection2.

In the following, we highlight two aspects related to our agent-based sim-
ulation model: The first is our approach to solve the problem of modeling
perception in a scalable fashion. Second, we illustrate the above-mentioned
BDI modeling of passenger behavior.

Dynamic Perception Algorithm. In every simulation step, all passenger
agents in the station need to update their perception, i.e., access the environ-
mental state. This is constrained by limited perception ranges which need to be
taken into account. We address this by enclosing the relevant simulation entity
by a bounding box of configurable size. This also allows a fine-grained defini-
tion of information exchange between objects. For example, the info sign box in
Fig. 2 can detect a passenger within its (the info sign’s) bounding box. Listing 2.1
shows our algorithm, which processes the movement trajectory of a passenger by
the Liang-Barsky line-clipping algorithm [18], which we found to produce good
results for detection and length calculation within the bounding box.
2 see scenario in [2] or https://lightjason.github.io/news/2017-02-video/.

https://lightjason.github.io/news/2017-02-video/
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Listing 2.1. Detection algorithm

1 i n pu t : agent PASSENGER, agent BOX
2 beg in
3 LINE ← l i a n g b a r s k y ( PASSENGER . s t a r t p o s i t i o n . PASSENGER .

endpo s i t i o n , BOX. t o p l e f t , BOX. bo t tomr i gh t )
4 LENGTH ← || LINE ||2
5 i f LENGTH = 0
6 r e t u r n
7 i f not BOX. c o n t a i n s ( PASSENGER )
8 PASSENGER . t r i g g e r ( ” e n t e r ” , BOX )

10 BOX. o b j e c t s . add ( PASSENGER ) ;
11 BOX. t r i g g e r ( ”moving ” , PASSENGER )
12 end

In each simulation step, for each agent in the simulation, the agent cycle is
executed. This means that for each agent, information is updated, goals/events
checked, and plans expanded by, e.g., creating and instantiating the actions for
moving through the station while following the landmarks. In the example of
the info sign, its bounding box will determine lists of passengers that entered,
left, or moved through it within an agent cycle. The agent which belongs to the
bounding box checks if another agent has left the box. Based on this information,
the box state is updated. In particular, passengers who left the bounding box
are informed about this by a leave message, which can trigger new plans in the
passenger agent.

Pedestrian Movement. As mentioned above, the routing algorithm JPS+
calculates landmarks for passengers moving through the station, while basic col-
lision detection/avoidance is factored into the environment. The detailed move-
ment behavior of passengers in the station is expressed through a set of BDI rules,
which are modeled in a rule-based scripting language (see Sect. 3 for details).
Listing 2.2 illustrates basic elements of an exemplary BDI program consisting of
one initial piece of information (= belief) and one plan.

Listing 2.2. Example BDI program fragment for passenger agent

1 t r a i n ( i d ( ” ICE 751” ) , p l a t f o rm (3) ) .

3 +! c a t c h t r a i n
4 : >>( t r a i n ( i d (T) , p l a t f o rm (P) )
5 <−
6 r o u t e / s e t (P) ;
7 ! movement/walk/forward .

In this example, we assume that the agent has the initial information that
its train ICE 751 will depart from platform 3. This information is encoded in
a belief (line 1). Line 3ff shows a plan. Plans are triggered by events, such as
a new belief (‘+’), retracted belief (‘−’), new goal (‘!’) or retracted goal (‘!’),
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(line 3). In the example, the plan is triggered by a goal catchtrain. The applica-
bility of a plan can be further subject to additional context conditions; e.g., in
line 4 it is required that the agent has the information that its train has arrived
on a platform. The conditions are evaluated and variables bound using logical
unification (indicated by the ‘�’ operator). Event and condition together form
the antecedent of the plan rule; its consequent is the plan body, which consists
of calculations, the execution of actions (e.g., the calculation of a route (line 6)),
and the creation of new subgoals (line 7).

Section 3 elaborates on the principles for the execution of agent programs.
A richer code example describing passenger moving behavior is displayed in the
Appendix to this paper.

2.4 Transition Between Submodels

As specified so far, passengers switch between the two submodels of the simu-
lation. Technically, a seamless transition between the two submodels is accom-
plished by modeling passengers as agents with unique identities over their com-
plete life-cycle, and by a common object model (cf. Sect. 3). The interface
through which passengers switch from the railway network to the station is
modeled by the doors of the trains and the platforms.

Every station is made up of a set of uniquely named platforms. Each plat-
form technically maintains a collection of passengers currently standing on or
moving across it, as well as a reference to any train dwelling at that platform.
Each passenger maintains its itinerary as a list of train rides, stations, departure
platforms and times. In order to simulate the effects of passengers alighting and
boarding, every train has a collection of doors. A train can only depart from a
platform at a station when all its doors are closed and locked. Once the departure
time is reached, a command is sent to the doors to close and lock. Only when
all doors are locked will the train start driving. Technically, it will then inform
the platform about its departure. Analogously, when arriving at a station, it
will inform the arrival platform and the passengers inside itself, and unlock the
doors.

Doors also maintain information about their current state, including two
queues of passengers for alighting or boarding, respectively. In a first approxi-
mation, we assume that a door can only be used by one passenger at a time,
and whenever the door is open and free, it will trigger either the next passenger
of the alighting queue, if any, or otherwise the next passenger of the boarding
queue, if any. To simulate the effect of the safety light-barriers installed in many
trains to prevent doors from closing when there are people in it, the door keeps
track how long they have not been used by a passenger. It can only close if it has
not been used by a passenger for a pre-specified amount of time, usually a few
seconds. The process of closing is also simulated, which can be interrupted by
an adamant passenger arriving at the door just then, forcing it to open again.

To conclude, a passenger boarding a train performs the following steps:

1. Upon announcement of a train, compare it to the current itinerary entry
whether it is the one to board.
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2. If the train is to be boarded, queue at one of the train’s doors for entrance.
3. When the door is open and there are no preceding passengers in the queue,

enter the train.
4. After entering (which takes a pre-specified amount of time), release the door.

Unregister from the platform and register with the train.

The steps for alighting from a train are analogous to those for boarding.

3 Agent-Based Simulation with LightJason

In Sect. 2.1, we have argued the case for using agent-based models for microscopic
simulation of railway network and railway station environments. Agent-based
modeling and simulation (ABMS) [3] is a computational paradigm in which the
concepts of agents and multi-agent systems form the metaphor underlying the
simulation model. From the modeling perspective, the concept of a multi-agent
system (MAS) allows a reduction of complexity. Concepts such as reactivity,
proactiveness, and social ability, as generally attributed to agents [28] are helpful
for microscopic behavioral modeling. Agents are active simulation entities, which
are defined by a BDI architecture, allowing a fine-grained modeling of their
knowledge, behavior, and goal-driven planning/decision-making. The essential
domain entities (agents) in our simulation scenario, i.e., passengers, trains, and
the dispatcher, have been described in Sect. 2.

In selecting an appropriate simulation platform, there are a number of choices
and tradeoffs to consider. The “silver bullet” would doubtlessly be a simulation
software that provides rich microscopic domain models (i.e., in our case, rail-
way network and railway station) and support rich agent-based models. Also,
this simulation software should be open-source in contrast to commercial tools
such as MassMotion, SimWalk, or VISSIM/Viswalk), to enable extension and
validation not only of the models but also of the underlying platform. Unfortu-
nately, while there are quite a few platforms out there, to our knowledge none of
them satisfies all of these requirements. MATSim [12] seems to be close; however,
it cannot be used straightforwardly, as it does not support microscopic agent-
based flow simulation but rather mesoscopic queuing models. Thus, efficiently
coupling railway network simulation with traveler simulation either requires the
integration of existing systems, linking, e.g., an existing agent platform with an
existing railway and/or railway station simulation, or a from-scratch implemen-
tation based on an ABMS platform.

Our approach has been to choose a suitable ABMS platform and to develop
the railway network and railway station modules in that platform, using a clean
software architecture that will enable us at a later point in time to replace the
domain simulations components by different (academic or commercial) compo-
nents. Core requirements for a MAS platform to be used are scalability (support
a large number of agents, particularly in the network part), and ease of integra-
tion with/into other systems. When building an agent-based application, it is
necessary to agentify simulation entities, e.g. to turn them into software agents
and thus allowing the simulation runtime system to execute them in a controlled
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fashion. A major obstacle for this to be possible are built-in runtime systems in
conjunction with hard-wired inflexible software architecture. From the perspec-
tive of suitable runtime systems and frameworks, we refer to [1] for a discussion
of the state-of-the-art and requirements. We summarize key requirements for a
MAS simulation framework [2]:

1. Simulate a large set of different, heterogeneous agent types
2. Fine-grained parameterization for modeling individual agent behavior
3. Highly asynchronous execution mechanisms
4. Concurrent execution on high performance/cloud platforms
5. High abstraction of software developing to separate domain-specific behavior

and coding behavior.
6. Modular, exchangeable run-time component and clean software architecture

for ease of integration.

0

10

20

10
00

·

Fig. 3. Bug density analysis for agent-oriented programming frameworks

An analysis of available agent-based modeling/programming frameworks
reveals that these requirements are only partly met. Main limitations relate to
scalability due to proprietary runtime systems [2]. Also, the platforms often do
not support state-of-the-art Object-Oriented methodologies and architectures,
because their documentation and code quality is poor; therefore including them
in an existing code-base is very difficult. As an example, Fig. 3 shows results of
a comparison of the code qualities of popular open-source agent platforms3. It is
3 Evaluation was performed in January 2017 using the tools FindBugs and J-Depend.
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easy to see that almost all platforms bear considerable numbers of errors of high
and medium severity. In particular, none of the platforms provides a modular
runtime system architecture. This among others led us to develop the framework
LightJason [2]. LightJason is inspired by Jason [4]; however, it builds on a com-
pletely new code-base and extends the descriptive language AgentSpeak(L) [21],
which is used to script agent behavior in Jason, to a newly designed language
ASL+4.

ASL+ extends the (Java-based) Object-Oriented paradigm with the BDI
concept and the execution mechanism known from Procedural Reasoning System
(PRS) [11]. Its main features include lambda expressions, multi-plan and -rule
definition, multi-variable assignments, concurrent execution mechanisms, and a
fuzzy inference concept. For a brief glimpse of the ASL+ language, we refer to
the example discussed in Sect. 2.3, Listing 2.2, and to the more complex example
shown in the appendix to this paper. Regarding plan execution semantics, the
following principles have been designed into LightJason:

1. Multiple matching plans are executed in parallel; synchronization can be
enforced through setting context conditions.

2. Multiple subgoals created in a plan body are triggered concurrently; instan-
taneous, sequential execution can be enforced with using the goal prefix !!+
instead of !+ in the body of the plan specification.

3. Multiple actions in a plan body are executed sequentially; this default seman-
tics can be changed to parallel execution through a @Parallel annotation at
the beginning of the plan specification.

The system architecture underlying the LightJason framework is based on a
layered architecture (see Fig. 4) which combines functional, object-oriented, and
logic programming/modeling paradigms. LightJason is open-source (see https://
github.com/LightJason). It supports easy integration with third-party systems
and services by incorporating standard interfaces such as Representational State
Transfer (REST) or GraphQL by means of built-in actions.

Assembler / Machine Code

Functional

Object Oriented

Agent Oriented

A
ge

nt
 V

ie
w

Logical

Mind

Body

Execution

Facts, 
Plans

Actions,
Objects

Agent
(collection of all elements)

AgentSpeak(L++)
(agent language elements, e.g. plans)

Complex Type
(logical language elements, e.g. literal)

Terminal Symbols
(keywords e.g. <-)

Fig. 4. LightJason conceptual architecture

4 ASL+ stands for AgentSpeak(L++).

https://github.com/LightJason
https://github.com/LightJason
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Up-to-date key indicators related to code quality (including the statistics
obtained using FindBugs and J-Depend) can be checked on the github projects
page5. Initial LightJason benchmark results providing evidence for the scalability
of the framework are available in the LightJason documentation6. For more
detailed information, we refer to the LightJason online reference7.

4 Experiments

4.1 Example Scenario

For a first validation of the model described in Sect. 2, we use a small scenario in
which two trains A and B meet at a station. For example, train A is scheduled
to arrive at 10:00 and train B is scheduled to leave at 10:04, i.e., the available
time between the planned arrival of train A and the planned departure of train
B is 4 min. We simulate passengers that want to transfer from train A to train
B. The average time for changing from the platform of train A to the platform
of train B is assumed to be 2 min. The situation is depicted in Fig. 5.

train A

train B

scheduled arrival: 10:00
arrival delay of 0,20,..,200 seconds

scheduled departure: 10:04
departure delay?

how many reach train B on time?
homogeneous or heterogeneous
average time needed: 2 minute
walking from train A to train B
2,4,6,..,100 passengers

Passengers 

Fig. 5. The simulated scenario: passengers transfer from train A to train B in a station.

The model parameters which we use to describe a scenario are the following:
We mainly investigate the arrival delay of train A and the number of passengers
who would like to change from train A to train B in this station. The minimal, the
maximal, and the average transfer time, i.e., the time a passenger needs between
deboarding train A and boarding train B, are used to model the behavior of the
passengers. Increasing the average transfer time has the same effect as increasing
the arrival delay of train A and is hence not further investigated. Heterogeneous
passengers (some with large baggage, some without baggage, elderly people,
children, students) are modeled by a larger span between minimal and maximal

5 http://lightjason.github.io/AgentSpeak/project-reports.html.
6 https://lightjason.github.io/benchmark/.
7 http://lightjason.org.

http://lightjason.github.io/AgentSpeak/project-reports.html
https://lightjason.github.io/benchmark/
http://lightjason.org
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transfer time while homogeneous passengers (e.g. in the morning traffic where
most passengers are traveling only with small briefcases, moving through the
station with roughly the same speed) are modeled by a small span. We can also
change the time, the light-barrier needs before it closes the door. Altogether we
simulated nearly 10,000 different parameter combinations, each of them once.

For simplicity we used only one door for each train that is used for all pas-
sengers, and we assume that all passengers in train A wish to continue their
journeys with train B; i.e., there are no other passengers that alight from train
A in our station and no other passengers that board train B. As we will see,
even this simple situation shows that the passengers’ behavior in the stations
must not be neglected.

4.2 Case 1: Punctual Arrival of Train A

We first consider the case in which train A arrives without delay. In this situation
one would expect that all passengers can transfer and that train B can depart
punctual. This is also what classic delay management models would use. How-
ever, as Fig. 6 shows, this is not the case if many passengers want to transfer: In
our simulation the departure delay is zero if no more than 28 passengers want to
transfer but it increases if 30 or more passengers wish to transfer since they need
some time to board train B one after another. One could argue that this effect
may be neglected, as usually not too many passengers transfer to the same train,
and they distribute among several doors. However, we see from Sect. 4.3, we can
expect significant effects for small numbers of passengers if train A arrives with
some delay, or if passengers are not homogeneous.
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Fig. 6. Departure delay of train B with respect to the number of passengers. If more
than 30 passengers want to transfer, they delay the departing train.
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4.3 Case 2: Delayed Arrival of Train A

We simulate what happens if train A arrives at the station with some delay.
Recall that passengers need on average 2 min to walk from the arrival platform
of train A to the platform on which train B departs, and that the scheduled
time for this transfer is 4 min. The passengers hence have a transfer buffer time
of 2 min. Consequently, it is common to assume that passengers are able to
board train B if the delay of train A is less than 2 min and that in this case all
passengers make the transfer and train B leaves on time. For the case that the
arrival delay of train A is larger than 2 min, the classic models assume that the
transfer cannot be made since train B has already departed before the passengers
from train A arrive at its platform. I.e., in both cases it is assumed that train
B leaves punctual. Simulating these situations shows that all these common
assumptions may be wrong, see Fig. 7 for our results.
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Fig. 7. Departure delay of train B (the lighter the color the more delay) and number of
passengers who are able to board train B (the lighter the color the more passengers).

The figure shows our evaluations for different numbers of passengers, and
different arrival delays of train A, namely for

– n ∈ {2, 4, 6, ..., 98, 100} passengers and
– an arrival delay of train A ∈ {0, 20, 40, ..., 200} (in seconds).

The left part of Fig. 7 is a heat map showing the resulting departure delay
of train B (in seconds). Note that classical models would assume that train
B is always punctual, i.e., this heat map would be completely black. The
right part of the figure shows how many passengers are able to board
train B for each simulated arrival delay and each simulated number of
passengers.

Looking at the left part of Fig. 7 we first see that for an arrival delay of zero,
we have no departure delay (graphed in black) if less than 28 passengers wish to
transfer as we already know from Fig. 6. The departure delay starts increasing if
more passengers transfer. We also see that for an arrival delay of more than 3 min
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(180 s) the departure delay of train B is zero since nobody reaches the platform
of train B before it departs. The following two effects explain the gray-values:

1. As already noted in Fig. 6, not all passengers can board train B at the same
time; if many passengers transfer they delay train B. This explains that the
departure delay of train B increases with the number of passengers who wish
to transfer.

2. Not all passengers walk from train A to train B with the same speed. In
particular, if many passengers wish to transfer, it is likely that there is one
who is fast enough to reach train B before its scheduled departure. While this
passenger boards train B, the next one arrives and boards, too, and so on.
This “trickling effect” makes it likely that most of the passengers can board
even if the arrival delay of train A is larger than the 2 min transfer buffer
time.
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Fig. 8. Number of passengers who manage to board train B compared to number of
passengers who wish to do so.

The number of passengers who make the transfer between train A and train
B is shown in the right part of Fig. 7. If there is no or a small delay only, all
passengers reach B on time and can board. If the delay is larger than 180 s,
nobody is able to make it. In between, it depends if there is a fast passenger
able to reach train B. Then it might be that all passengers can board (again,
due to the “trickling effect”), or that only a group of fast passengers reaches the
train before it closes its doors and departs. The right part of Fig. 7 shows that
the latter gets unlikely if many passengers want to transfer: In our experiments,
if more than 18 passengers wish to transfer, either all of them manage to board
train B or none of them.

Figure 8 shows the interesting case of an arrival delay of 160 s in more detail.
The function depicted maps the number of passengers who wish to transfer to
train B to the number of passengers who really manage to do so. We see that this
is by chance: If there is a fast passenger who reaches train B before it departs, we
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have many cases in which all passengers manage to board train B. For a small
number of passengers who wish to transfer (in our figure for 16 passengers) we
have that not all, but only the faster ones manage to board train B. The specific
shape of the function is random.

4.4 Homogeneous and Heterogeneous Passengers

We finally investigate the effect of homogeneity (see Sect. 4.1) of the group of
transferring passengers.

Figures 9a and b consider homogeneous passenger groups. Here we see an ‘all
or nothing’ effect: Either nobody manages to board train B or the whole group
can. Also concerning the departure delay (Fig. 9a), the outcome is not random
any more. Nobody is able to catch train B if the arrival delay of train A is larger
than 120 s, and the departure delay increases with the number of passengers
who wish to transfer.

Figures 9c and d on the other hand show heterogeneous groups. Here we see
that it is hard to predict what is going to happen, but it is random if there is a

Fig. 9. Departure delay of train B and number of passengers who are able to board,
for heterogeneous and homogeneous passengers. Again, the lighter the color, the more
delay and the more passengers are observed.
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fast passenger in the group of transferring passengers who reaches the platform
of train B on time. The figure shows that this gets more likely if the number
of transferring passengers increases, it is even possible that the whole group
manages to board train B if the arrival delay of train A is 160 s which is way
more than the transfer buffer time of 2 min.

5 Conclusion and Outlook

This paper describes how to integrate macroscopic railway network simulation
with microscopic simulation of passengers’ behavior at railway stations, put in
the context of delay management. The contribution of this paper is twofold.
First, we present a novel conceptual model for describing the ‘two worlds’ of
railway network and station as well as their integration in a simulation. Second,
we report insights gained from preliminary experiments aiming at substantiating
the hypothesis that a detailed microscopic simulation of passengers’ behavior is
needed in the context of delay management applications. The main result drawn
from these experiments is that the behavior of the passengers at a station can
have a significant influence on the departure delay of trains. This effect has not
been taken into account in any delay management models we are aware of. Its
intensity increases as more passengers wish to transfer and as the connecting
times between trains decrease. The latter is in particular the case if the train
from which passengers wish to transfer (train A in our scenario, see Fig. 5) arrives
at the station with some delay. We have also seen that heterogeneity of the
passengers plays an important role in delay creation and propagation and hence
adds to former studies such as [7,19].

These results form the baseline for future research directions: First, we will
increase richness and realism of passenger behavior models in the station (e.g.,
by considering PoIs for routing, or more realistic modeling of passenger types,
luggage, and passenger groups), on the platforms (e.g. by considering realistic
train/door topologies including the width of the door which can be modeled by
the speed of boarding and deboarding, but also the use of elevators, escalators or
ramps to reach a platform), and on the train. The latter includes capacity restric-
tions on trains. More difficult, we also plan to take into account that passengers
may dynamically change their planned itineraries, which is known to be hard to
treat within optimization models (see [23]). Also, more advanced dynamic traffic
demand models, as, e.g., provided by MATSim [12] will be considered. A second
important aspect is the modeling of the information state of passengers and the
impact of informedness on passengers’ behavior (e.g., through interaction with
dynamic traffic signs or smart-phones).

The final goal of this research is to integrate the passengers’ behavior into
delay management (e.g., [9,10]) by evaluating different delay management strate-
gies and hence help the disposition centers in taking good wait-depart decisions
in case of delays.
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Appendix: Traveller Movement Behaviour, Expressed in
AgentSpeak(L++) Code

1 // walk s t r a i g h t forward towards the g o a l p o s i t i o n

2 +!movement/walk/forward <−
3 move/forward ( ) ;

4 ! movement/walk/forward .

6 // i f walking s t r a i g h t f a i l s , then go l e f t

7 −! movement/walk/forward <−
8 ! movement/wa lk/ le f t .

10 // plan f o r turn ing/walk ing l e f t

11 +!movement/wa lk/ le f t <−
12 move/ l e f t ( ) ;

13 ! movement/walk/forward .

15 // i f walk l e f t f a i l s , then go r i gh t

16 −! movement/wa lk/ le f t <−
17 ! movement/walk/r ight .

19 // plan f o r turn ing/walk ing r i gh t

20 +!movement/walk/r ight <−
21 move/r ight ( ) ;

22 ! movement/walk/forward .

24 // i f walking r i gh t f a i l s , then wait a random time

25 −! movement/walk/r ight <−
26 T = math/ s t a t i s t i c / r a ndoms imp l e ( ) ∗ 10 + 1 ;

27 T = g e n e r i c / t y p e / t o i n t ( T ) ;

28 T = math/min ( 5 , T ) ;

29 g e n e r i c / s l e e p (T) .

31 // i f the agent has come to s t a n d s t i l l , t ry to speed up

32 +!movemen t / s t a nd s t i l l <−
33 >>a t t r i b u t e / s p e e d (S ) ;

34 S = g e n e r i c / t y p e / t o i n t (S ) + 1 ;

35 +a t t r i b u t e / s p e e d ( S ) ;

36 ! movement/walk/forward .

38 +! p o s i t i o n / a c h i e v e (P , D) <−
39 r o u t e /n e x t ;

40 ! movement/walk/forward .

42 // on waking up a f t e r s l e ep ing , s e t speed and keep on moving

43 +!wakeup <−
44 +a t t r i b u t e / s p e e d ( 1 ) ;

45 ! movement/walk/forward .
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10. Dollevoet, T., Schmidt, M., Schöbel, A.: Delay management with re-routing of
passengers. In: Clausen, J., Stefano, G.D. (eds.) ATMOS 2009. Dagstuhl Seminar
Proceedings (2009). http://drops.dagstuhl.de/opus/volltexte/2009/2143

11. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Proceedings of
the Sixth National Conference on Artificial Intelligence, AAAI 1987, vol. 2, pp.
677–682. AAAI Press (1987)

12. Grether, D., Nagel, K.: Extensible software design of a multi-agent transport simu-
lation. Procedia Comput. Sci. 19, 380–388 (2013). http://www.sciencedirect.com/
science/article/pii/S1877050913006601

13. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E
51, 4282–4286 (1995)

14. Johora, F.T., Kraus, P., Müller, J.P.: Dynamic path planning and movement
control in pedestrian simulation. In: van Dam, K.H., Thompson, J. (eds.) Pre-
proceedings of 2nd International Workshop on Agent-Based Modelling Of Urban
Systems (ABMUS 2017), Sao Paulo, Brazil, May 2017, accepted for publication.
arXiv:1709.08235

15. Kirchoff, F.: Modelling delay propagation in railway networks. Oper. Res. Proc.
2013, 237–242 (2014)

16. Kirchoff, F.: Verspätungsfortpflanzung in Bahnnetzen, Modellierung und Berech-
nung mit Verteilungsfamilien. Ph.D. thesis, University of Technology Claustal, Ger-
many (2015)

https://doi.org/10.1007/978-3-319-59294-7_6
https://doi.org/10.1007/978-3-319-72153-8_13
https://doi.org/10.1007/978-3-319-72153-8_13
http://drops.dagstuhl.de/opus/volltexte/2009/2143
http://www.sciencedirect.com/science/article/pii/S1877050913006601
http://www.sciencedirect.com/science/article/pii/S1877050913006601
http://arxiv.org/abs/1709.08235
https://arxiv.org/abs/1709.08235


Passenger-Induced Delay Propagation 23

17. Li, W., Zhu, W.: A dynamic simulation model of passenger flow distribution
on schedule-based rail transit networks with train delays. J. Traffic Transp.
Eng. 3(4), 364–373 (2016). http://www.sciencedirect.com/science/article/pii/
S2095756415305833

18. Liang, Y.D., Barsky, B.A.: A new concept and method for line clipping. ACM
Trans. Graph. (TOG) 3(1), 1–22 (1984)

19. Manitz, J., Harbering, J., Schmidt, M., Kneib, T., Schöbel, A.: Source estimation
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Abstract. Autonomous vehicles (=AV) enabling driverless transport may
change the ways of traveling and traffic volumes dramatically. To estimate
potential impacts of AV on traffic in an urban area nine scenarios are examined,
varying the rate of carsharing, ridesharing and the availability of rail services.
The number of required vehicles, vehicle kilometers and the necessary number
of parking spaces quantify each scenario.
The study builds on an existing travel demand model of the Stuttgart Region.

An algorithm extends this model for bundling person trips in ridesharing sys-
tems and by an algorithm for vehicle blocking. The results show that the size of
the car fleet can be reduced considerably. The vehicle kilometers traveled in the
network, can only be reduced in cases where most travelers use ridesharing
instead of carsharing or privately owned cars. However, an increase of the car
kilometers traveled is more likely and may lead to a lower quality of traffic flow.

Keywords: Autonomous vehicle � Automated driving � Self-driving car
Carsharing � Ridesharing � Public transport

1 Motivation

Autonomous vehicles (=AV) enabling driverless transport may change the ways of
traveling and traffic volumes dramatically. Currently it seems impossible to forecast the
point in time, when driverless cars will be ready to service the entire road network on
level 5 according to the SAE standards ([1] p. 17). The probability, however, that this
time will come is high. Therefore, transport planning should address this topic. AV
allow a different kind of transport supply. It is expected that this new type of transport
supply will have the following features:

• Car traffic becomes safer.
• Car traffic becomes more comfortable as in-vehicle time can be used for activities

not related to driving.
• The capacity of the road network increases at least on highways.

A driverless relocation of vehicles enables new mobility services in carsharing and
ridesharing. It also facilitates better intermodal trips when a sharing vehicle operates in
areas with a poor public transport supply to take passengers to the railway station.
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These changes of transport supply will affect travel demand. Improvements in
transport supply can lead to an increase in trip distances and influence the mode choice.
The impact on travel demand and traffic flow can be more or less desirable as there are
competing objectives in transport planning such as a good service quality, the pro-
tection of resources, a city friendly transport and a high level of traffic safety. Several
studies and position papers [2–7] describe the spectrum of possible scenarios with AV
ranging from “driverless nightmare” to “driverless utopia” ([3] p. 9ff) and from “death
of public transport” to “integrated part of public transport”.

This paper presents results from the research project MEGAFON [8], which
examines possible impacts of (shared) AV on traffic in urban regions with the help of
scenarios. The application is done for the Stuttgart Region. The approach of this project
is based on the study “Urban Mobility System Upgrade: How shared self-driving cars
could change city traffic” of the International Transport Forum of the OECD [4]. In this
study, the impacts of AV on urban traffic are presented taking the city of Lisbon as an
example. The study defines eight scenarios in which the trips in motorized traffic are
performed to a different extent with autonomous carsharing or ridesharing systems. The
number of required vehicles, vehicle kilometers and the necessary number of parking
spaces are used to quantify the impacts of each scenario.

2 Assumptions, Modeling and Scenarios

2.1 Data Base

The study builds on demand and supply data from the micro- and macroscopic travel
demand model of the Stuttgart Region provided by the Verband Region Stuttgart
(VRS). The travel demand is taken from the microscopic model mobiTopp [9]. The
Institute for Transport Studies at Karlsruhe Institute of Technology developed the
model [10]. The implementation in mobiTopp (microscopic multi-agent demand
model) combines the supply data of the macroscopic demand model with the micro-
scopic travel demand.

mobiTopp covers the travel demand of 2.7 million inhabitants and distinguishes
five modes: walk, bike, public transport, car-driver and car-passenger. Every trip is
described by origin, destination, mode of transport, day of week, departure and arrival
time. The approx. 1,000 traffic zones of the model serve as origins and destinations.
Each person is represented as an agent. The mobility behavior of the agents is modeled
in the context of their households as observed by the German Mobility Panel [11]. For
each agent an activity schedule for one week is created. It is described by a sequence of
activities with trip purpose and planned starting time. The microscopic demand for a
typical weekday is used as input for the macroscopic travel demand model.

2.2 Considered Modes

The introduction of AV will change the availability of vehicles. The study assumes that
AV will replace buses completely. Bus lines with fixed line routes and schedules will
no longer exist in their present form. AV then cover trip legs formerly served by buses.
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However, rail transport will continue to exist in most scenarios. Rail and AV can be
connected to provide intermodal services. The study distinguishes the following
motorized modes:

• Private AV (AV-NS): Privately owned vehicles only used by members of one
family (NS = NoSharing). These vehicles will not perform empty trips.

• Public AV for individual use (AV-CS): Vehicles used by several travelers con-
secutively as part of a carsharing system. These vehicles can be relocated to serve
the next passenger. The size of these vehicles corresponds to the standard size of a
private car.

• Public AV for collective use (AV-RS): Vehicles used by several travelers simul-
taneously as part of a ridesharing system. The vehicles collect several travelers and
take them to their specific destinations. If required empty vehicles are relocated. The
size of the vehicles can vary. In the following a uniform vehicle size is assumed,
which can carry six persons.

• Public rail services (heavy and light rail): The transport supply and the schedule
correspond to the schedule planned for 2025 in the study area.

• Rail + CS: Combination of rail and carsharing as feeder.
• Rail + RS: Combination of rail and ridesharing as feeder.

2.3 Assumptions

The model calculations are based on the following assumptions:

• The total travel demand does not change with the introduction of AV. This means
that the number of person trips and total distance traveled, i.e. the destination choice
remain unchanged. Mode choice between AV and rail is not influenced by prices.

• The share of non-motorized trips stays the same. The model only considers
motorized travel demand, which currently uses public transport or cars as car-driver
and car-passenger.

• There are no capacity restraints in rail transport. Every person that intends to travel
by rail can do so. The attractiveness of this mode does not suffer from
overcrowding.

• All scenarios are based on the assumption that bus transport is completely replaced.
Trip legs using buses today are covered by AV. AV can transport travelers on a
direct route to their destination or connect them to rail services. Transfers of
intermodal services combining AV and rail use railway stations offering the shortest
travel time. These transfer stations may be different from the stations used in the
current system with buses.

• Access and egress walking time to rail results from the distance between the cen-
troid of the traffic zone to the corresponding railway station. Walking speed is set at
5 km/h. A traffic zone can be connected to one or more railway stations. The ride
time within the rail system includes transfer-waiting times according to the
schedule, if transfers between trains are required. The following waiting times are
distinguished resulting in the waiting times for combination of modes shown in
Table 1.
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– Origin wait time for boarding a rail service at the origin: 4 min
– Transfer times for transfers between AV and rail: 4 min
– Registration time for calling a shared AV: 4 min
– Collection time for collecting and distributing travelers: 4 min

• The speed for car transport corresponds to the typical speed during peak hours in the
current state without AV. Lower or higher speed from more or less car trips or from
changes in capacity are not considered. The study assumes reduced speed limits in
urban areas so that AV can travel safely in mixed traffic:
– Arterial roads 50 km/h (as today)
– Main roads 30 km/h (today 50 km/h)
– Feeder roads 20 km/h (today 30 km/h)

• Trips start and end in traffic zones. Time losses resulting from collecting and
distributing passengers and time requirements for intrazonal relocation of AV are
estimated with a function that considers the size of the traffic zone.

• Mode choice is not modeled with a utility-based decision model, which considers
the characteristics of the competing modes (i.e. in-vehicle time, access and egress
time, number of transfers, prices) and the characteristics of the users (for instance
car availability). Instead, the distribution between the modes AV-CS and AV-RS is
based on predetermined shares defined in the scenarios. The choice between rail and
AV depends only on travel time. Travelers always select the faster alternative.

These assumptions neglect expected impacts of privately owned autonomous vehicles
(AV-NS), which may include additional traffic from empty trips or private vehicles,
comfort-induced trips and in the long term more urban sprawl.

2.4 Scenarios

The scenarios define the availability of rail services (heavy and light rail) and the shares
of the travel demand assigned to the modes private AV (no sharing, AV-NS), AV-
Carsharing (AV-CS) and AV-Ridesharing (AV-RS). Table 2 gives an overview of the
examined scenarios. Scenarios 1 to 6 correspond to scenarios analyzed in the OECD
study ([4] p. 18ff). Scenarios 7 to 9 vary the share of the three car modes. In scenario 9,
the two sharing modes are combined. In every scenario, bus transport is completely
replaced. Scenarios 3 and 4 also assume no rail transport.

Table 1. Waiting time in combination with selection of mode of transport

Combination of modes Waiting times Components

Walk - Rail - Walk 4 min Origin wait time
Walk - Rail - AV 8 min Origin wait time, transfer time
AV - Rail - Walk 8 min Registration time, transfer time
AV - Rail - AV 12 min Registration time, 2x transfer time
AV-directa 8 min Registration time, collection time
aIn order to simplify matters the project assumes that the travel times for AV-
CS and AV-RS are identical. In reality, trips completed by AV-CS will be
somewhat faster than trips by AV-RS as there are no time losses for collecting
other passengers.
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2.5 Modeling Travel Demand

The calculation of the travel demand is done in three steps.
In the first step, the present demand of person trips in motorized traffic (car-driver,

car-passenger, public transport) is assigned to the modes railway, AV without sharing
(AV-NS) and AV with sharing (AV-CS, AV-RS). The distribution of the travel
demand assumes that each traveler chooses the fastest alternative. Because of this rule,
many trips that presently combine bus and railway are covered completely by AV in
the future. This avoids unnecessary detours and waiting times for the traveler. In order
to keep the number of person trips at today’s level, speed limits in urban motorized
traffic are reduced. However, even with a similar number of passenger trips, the total
distance traveled by rail decreases by about 30%. Commuter trains with frequent stops
are mainly affected. Metro and express rail can maintain their current ridership level.
The express trains offer a high travel speed and the metro benefits from the reduced
speed limits in urban areas.

In the second step, the matrix of the person trips with AV-Sharing is transformed
into a matrix of vehicle trips. For carsharing, the occupancy rate is set at 1.3 persons.
This corresponds to the mean occupancy rate in the Stuttgart Region. For ridesharing
the person trips are bundled. For this bundling procedure, a ride-matching algorithm
described in [12, 16] is applied. The algorithm can be integrated in existing travel
demand models. It works likewise with an integer and non-integer demand represen-
tation. The algorithm compares the path sets from the assignment for each origin-
destination pair. The matching process compares a reduced representation of a path.
The sequence of links is transformed to a sequence of zones. The zone representation
works as a buffer along the path. The buffer stands for pick-up and drop-off locations
along the path.

In the third step, the vehicle trips with sharing vehicles are concatenated to vehicle
blocks in such a way that the number of required vehicles is minimal. This results in
additional empty vehicle trips for relocating vehicles. Each vehicle block represents a

Table 2. Scenarios

Scenario Distribution of demand
Rail AV-NS AV-CS AV-RS

1 0% AV-NS, 100% AV-CS, with rail Yes 0% 100% 0%
2 0% AV-NS, 100% AV-RS, with rail Yes 0% 0% 100%
3 0% AV-NS, 100% AV-CS, without rail No 0% 100% 0%
4 0% AV-NS, 100% AV-RS, without rail No 0% 0% 100%
5 50% AV-NS, 50% AV-CS, with rail Yes 50% 50% 0%
6 50% AV-NS, 50% AV-RS, with rail Yes 50% 0% 50%
7 75% AV-NS, 25% AV-CS, with rail Yes 75% 25% 0%
8 75% AV-NS, 25% AV-RS, with rail Yes 75% 0% 25%
9 50% AV-NS, 25% AV-CS, 25% AV-RS, with rail Yes 50% 25% 25%
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required vehicle. The scenarios require the handling of up to 3 million vehicle trips. For
this reason, a simple Nearest Neighbor Algorithm is applied for the vehicle blocking.
The algorithm selects as successor either the vehicle trip requiring the shortest empty
vehicle trip or the shortest waiting time. The conditions for concatenating two vehicle
trips are relaxed in four steps. Two vehicle trips are concatenated, if the following
conditions hold for the predecessor and the successor trip:

• Hard spatial and hard temporal constraints: Vehicle trips are concatenated if the end
of the predecessor and the start of the successor vehicle trip are in the same zone
and the waiting time is <e (e = 60 min). The required relocation trip within the zone
is determined approximately. The relocation time and distance depends on the zone
size with a linear correlation. It is at least 4 min and 100 m.

• Relaxed spatial and hard temporal constraints: Vehicle trips are concatenated if the
end of the predecessor and the start of the successor vehicle trip are in the same
region (urban district, part of an administrative district) and the waiting time is <e
(e = 60 min). This results in short relocation trips.

• Soft spatial and soft temporal constraints: Vehicle trips are concatenated if the end
of the predecessor and the start of the successor vehicle trip are in the same region
(urban district, part of an administrative district). The waiting time e is neglected
(e ¼ 1 minutes). This again results in short relocation trips. Unnecessary long
relocation trips are avoided at the expense of longer waiting times.

• No spatial and temporal constraints: Vehicle trips are concatenated without spatial
or temporal constraints if the successor trip departs after the arrival of the prede-
cessor trip including the time required to relocate the vehicle. If more than one
vehicle trip can be concatenated, the trip with the shortest relocation time is
selected. Minimum waiting times and minimum relocation times within zones are
considered.

The vehicle blocking algorithm provides the number of required vehicles, person
kilometers traveled, person hours spent, AV transport time (service time, relocation
time, waiting time) and AV transport distance (service distance, relocation distance).

3 Results

In order to quantify the results of each scenario the following indicators are calculated
and presented in Table 3:

• Share of trips completed with public transport
• Number of vehicle (base year = 100%)
• Vehicle kilometers per day (base year = 100%)
• Share of time the vehicles are not in operation
• Medium occupancy rate
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3.1 Number of Vehicles

With a level of motorization of approximately 590 vehicles per 1,000 residents, the
households in the Stuttgart Region own about 1.6 million cars (state 2010). On a
normal workday only 1.0 million of these cars are in use. During peak hours, less than
12% of the 1.0 million cars run simultaneously. These cars are used approximately
60 min per day. Considering all 1.6 million cars, the operating time falls to 40 min per
day. In a scenario with 100% ridesharing combined with rail transport, the number of
required vehicles decreases to only 7% of today’s fleet size. On average, the vehicles
are then in use for around 8.6 h. 1.4 h of this time is required for empty vehicle trips
and buffer times.

Table 3. Overview of selected parameters in the scenarios

Scenario Public
transport
share

Number of
vehicles

Vehicle
km

Share of time
vehicles are
not in usea

Medium
occupancy
rate

0 Current State 16% 100.0% 100.0% 96% 1.26

1 0% AV-NoSharing
100% AV-Carsharing
with rail

11% 19.2% 118.5% 70% 1.30

2 0% AV-NoSharing
100% AV-Ridesharing
with rail

11% 7.1% 63.9% 64% 2.43

3 0% AV-NoSharing
100% AV-Carsharing
without rail

0% 24.3% 138.6% 72% 1.30

4 0% AV-NoSharing
100% AV-Ridesharing
without rail

0% 9.2% 80.6% 65% 2.26

5 50% AV-NoSharing
50% AV-Carsharing
with rail

11% 63.7% 115.2% 92% 1.30

6 50% AV-NoSharing
50% AV-Ridesharing
with rail

11% 58.2% 93.5% 93% 1.60

7 75% AV-NoSharing
25% AV-Carsharing
with rail

11% 86.0% 112.9% 94% 1.56

8 75% AV-NoSharing
25% AV-Ridesharing
with rail

11% 83.2% 103.9% 95% 1.69

9 50% AV-NoSharing
25% AV-Carsharing
25% AV-Ridesharing
with rail

11% 61.1% 100.0% 93% 1.50

aReferred to all types of vehicles (NS, CS und RS)
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3.2 Total Number of Vehicle Kilometers

Figure 1 shows the vehicle kilometers for the modes AV-NS and AV-Sharing. For
sharing vehicles, the vehicle kilometers are displayed for loaded and empty trips.
Related to the current state, the vehicle kilometers in the scenarios vary between:

• 64% in scenario 2 (100% ridesharing and railway) and
• 139% in scenario 3 (100% carsharing without railway).

Vehicle kilometers traveled in the network can only be reduced in scenarios with
ridesharing. Carsharing does not lead to a relief in traffic volumes. The share of empty
kilometers related to the kilometers traveled by all vehicles (including NoSharing) lies
between 1% and 6%. Empty trips are responsible for 4 to 9% of the vehicle kilometers
of sharing vehicles.

3.3 Traffic Volume in the Network

The traffic volume in the scenarios change considerably compared to the current state.
Figure 2 shows the relative changes of traffic volumes for the scenarios S1 to S4. For
the changes, the six classes (� 75, 75–95, 95–105, 105–120, 120–140 and >140) are
distinguished:

• Classes < 95 (green): Traffic volumes are reduced.
• Classes 95 to 105 (grey): Changes in traffic volumes are small.

Fig. 1. Vehicle kilometers by mode and loaded/empty trips
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• Classes > 105 (yellow or red): Traffic volume increases. Based on the assumption
that AV in urban areas can increase the road capacity by about 40% [17], the traffic
flow on streets of the classes > 140 will deteriorate.

This leads to the following findings:

• Shifts from public transport to cars due to the elimination of buses and due to shifts
from commuter rail in the scenario with 100% carsharing (scenario 1) will lead to an
increase of vehicle kilometers. This increase can be compensated on motorways by
the increase of the road capacity. In urban areas, this increase might lead to a lower
level of service.

S 1: 100% AV-Carsharing, with rail: 
+19% vehicle kilometers

S 3: 100% AV-Carsharing, no rail: 
+39% vehicle kilometers

S 2: 100% AV-Ridesharing, with rail:
-36% vehicle kilometers

S 4: 100% AV-Ridesharing, no rail:
-19% vehicle kilometers

Legend rel. changes (%) road class
interstate
federal highway
state road

city of Stuttgart
region of Stuttgart

area

Fig. 2. Relative changes of the car traffic volume when empty trips are added in the scenarios 1
to 4 (current state = 100%) (Color figure online)
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• The scenarios 3 and 4, in which a complete abolition of public transport is assumed,
show in urban areas an increase of traffic volumes that cannot be compensated, not
even with an increased road capacity.

3.4 Vehicle Occupancy

For carsharing vehicles, the occupancy rate is set to 1.3 persons corresponding to the
current occupancy rate of private cars. For ridesharing, the occupancy rate varies
between 1 and 6 persons per vehicle.

Figure 3 displays the daytime dependent occupancy rate for scenario 2 with 100%
ridesharing. The illustration shows the shares of vehicle trips with 1, 2, 3, 4, 5 and 6
passengers. The occupancy rate of a ridesharing vehicle varies during the course of a
vehicle trip similar to a public transport vehicle as passengers are boarding and
alighting. The occupancy shown in the figure is the maximum occupancy of the vehicle
trip. The figure shows that occupancies with 1 and with 6 passengers are the most
common occupancies. Low occupancies occur mainly during off-peak periods and in
rural areas. During peak-hours, a higher number of trips can be bundled. The occu-
pancy increases if the total amount of the ridesharing trips increases. The average
occupancy rate is 2.5, which is approximately twice the current occupancy rate of a car.
The frequent occurrence of a rate of 6 indicates that larger vehicles may be reasonable
on certain routes. It also implies that vehicles must be designed in a way that an
appropriate amount of privacy and short passenger transfer times are guaranteed.

Fig. 3. Occupancy rate for scenario 2 with 100% ridesharing
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Fig. 4. Number of required vehicles for each scenario

S 1: 100% AV-Carsharing, with rail:
-81% parking spaces

S 2: 100% AV-Ridesharing, with rail:
-93% parking spaces

Legend Parked Vehicles
current state 03:00 am
current state 07:00 am
with AV 03:00 am
with AV 07:00 am

Fig. 5. Number of required parking spaces
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3.5 Parking Spaces

Figure 4 shows the reduction of parking spaces for each scenario. The required number
of sparking spaces correlates to the number of vehicles. Most of the trips happen during
the day and define the number of required vehicles in total. During the night, most of
the vehicles are waiting for the next trip to be served. In that period, the vehicles
occupy parking spaces in regions where the next trip starts. The spatial parking situ-
ation is very similar over all scenarios. For instance, the parking situation for scenario 1
(left) and scenario 2 (right) are shown in Fig. 5. The maps illustrate the state with many
parked vehicles during the night (03:00 am) and the state with less parked vehicles
during the morning peak hour (07:00 am).

4 Conclusion

The introduction of AV may change the transport supply substantially, providing new
mobility options for travelers. This will have a major impact on the modal and spatial
pattern of travel demand, which are not considered in the scenarios examined in this
paper.

The scenarios analyzed in the presented MEGAFON study do not describe states,
which are likely to happen. They rather provide estimates to what extend fleets of
shared AV may change traffic volumes assuming a constant total travel demand. The
scenarios set fixed shares for each mode, which in a future state with AV will be
influenced by trip times and trip costs. However, the results for Stuttgart are in the same
range as in other studies for Lisbon, Stockholm, Austin and New York [7, 13–15].

Negative impacts might appear if AV are exclusively used in carsharing mode,
especially in scenarios with a total replacement of public transport. More cars are
required to serve the same demand. This leads to more vehicles on roads, which may
cause longer travel times. The impacts of congestion are not explicitly modeled in this
study although congestion may influence route choice, ridesharing performance and
vehicle blocking. This must be investigated in further research. AV can have positive
impacts if the mode choice is influenced in such a way that a high capacity public
transport supply (rail-bound or bus rapid transit) is maintained or improved and a high
number of travelers choose ridesharing. Such a desirable development requires sup-
porting measures. Without these measures, a decrease of public transport travel demand
must be expected due to the following reasons:

• AV will be more comfortable than today’s cars, as even persons without driving
license will be able to use this mode of transport.

• Trip time will decrease as valet parking eliminates parking search, access and egress
walking times.

• On many roads, AV will increase capacity. As a result, trip times by car decrease
even in cases higher traffic volumes. For a state with 100% AV, Friedrich [17]
estimates a capacity increase of about 40% on urban roads and of about 80% on
freeways.
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• Privately owned cars with AV-capabilities will not be considerably more expensive
than a car of today, but offering the user additional benefits compared to a shared
vehicle.

• Reasonably priced services with AV-CS or AV-RS will offer time advantages for
journeys without fast and direct public transport connections. These time advan-
tages will reduce public transport ridership on journey currently combining bus and
rail, thus leading to fewer person kilometers traveled by rail.

• Transport Network Companies (TNC) of AV-CS and AV-RS could introduce low-
cost services leading to a situation where the public authorities can no longer protect
public transport.

Examining the impacts of new mobility services on future traffic states is a core task of
transport planning. Travel demand models are built for supporting the decision making
process of transport planners and policy makers. The results of the presented study
provide insights into the impact of new mobility services on transport networks. With
the objective of reducing potential negative impacts of AV, the following policy rec-
ommendations can be derived from the findings of this study:

• Reduction of speed limits in cities:
The current speed limit in cities is reduced to 30 km/h. On feeder roads, where AV,
cyclists and pedestrians share the same road space, the speed limit is reduced to
20 km/h. On these roads, cars no longer have priority over other modes of transport.
This measure was already assumed for the presented study.

• Development of specialized ridesharing vehicles:
In order to make ridesharing an attractive alternative for travelers, vehicles should
be designed in a way allowing a high degree of privacy. Additionally, there should
be enough space for transporting shopping items, school bags and suitcases.

• Introduction of Bus Rapid Transit:
Preservation of bus lines along high demand axes by upgrading the line to a Bus
Rapid Transit system.

• Road tolls and parking fees:
To influence the prices of privately operated mobility services, the public authority
can implement road tolls. The toll levels should depend on space and time with
higher prices in inner cities and during peak hours. Additionally, prices could
depend on the occupancy rate of vehicles. Public ridesharing systems or ridesharing
systems meeting certain standards could be excluded from these charges. Parking
fees and parking regulations could be modified in such a way that every parking
place is priced and residential parking is no longer privileged.

• Access restrictions:
In inner city areas where the demand for parking space is very high (station fore-
courts) access restrictions for individually used cars (AV-NS and AV-CS) could be
implemented.

• Unified booking platform:
Development of a uniform platform for public transport services covering bookings
and payment.
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However, the experience of transport planning over the last decades shows that
implementing restrictive measures is a difficult task. Measures like lower speed limits,
road tolls and access restrictions could already be implemented today bringing benefits
to urban transport in general and to public transport in particular.
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Abstract. We investigate the so called Double Row Facility Layout
Problem (DRFLP). Given a set of departments with given lengths and
pairwise transport weights between them, the aim is to assign the depart-
ments to two rows such that the weighted sum of the distances between
them is minimized and such that the departments do not overlap. The
DRFLP is known to be rather challenging. Even with the best approach
known in literature, which is based on an enumeration over all row assign-
ments of the departments and where only the center-to-center distances
are measured, the largest instance solved to optimality contains only
16 departments. In this paper we show how the existing models can be
extended in various directions in order to handle more aspects that are
important in real-world applications such as vertical distances between
the departments and restricting the size of the layout area. We also show
how the structure of real-world instances, which often contain several
departments of the same type, can be exploited in mathematical opti-
mization. This allows us to solve a realistic instance with 21 departments
in reasonable time. Furthermore, we propose a new approach which com-
bines optimization and simulation. Here simulation allows the evaluation
of the optimized solutions with respect to several performance indicators
which play an important role for a smooth production apart from the
weighted transport distances. If problems are detected, this information
is included in the mathematical models by extending these.

Keywords: Facility layout problem · Exact solution · Simulation

1 Introduction

Globalization, the growing dynamics of the markets, the increase in customized
products, decreasing product life cycles and technological innovations are only
some of the challenges manufacturing enterprises have to cope with. As a result,
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manufacturing enterprises are forced to implement a cost efficient production
in order to remain competitive. The layout of the production areas and operat-
ing equipments (assets and departments) is one of the main influencing factors
and provides a basis to uphold the long-term productivity and competitiveness
[19]. In this work we present a combined optimization-simulation approach for
determining a good start solution for the layout of the departments along both
sides of a single path. For this we extend the mathematical optimization app-
roach in [7]. The start solution obtained via mathematical optimization is then
the basis for the following steps of the factory planners on a much finer level
of detail. In order to handle many of the requirements posed on the layout in
real-world production, the existing mathematical optimization models have to
be extended.

From a mathematical point of view, the described factory planning problem
leads to so called facility layout problems, which are widely studied [4]. Sev-
eral methods have been developed in this area ranging from graphical methods,
heuristics, which allow deriving solutions rather fast but without some knowl-
edge of the quality of the solutions, and exact optimization methods. Unfor-
tunately, solving even small instances exactly without additional restrictions on
the path structure is extremely challenging. So deriving an exact solution or even
a good solution with appropriate solution guarantees for small to medium-sized
instances is often rather time-consuming. For this reason, one often concentrates
on special cases where one restricts the structure of the layout and the paths. We
investigate the so called Double Row Facility Layout Problem (DRFLP). Given n
departments with positive lengths �i, i ∈ {1, . . . , n} =: [n], and symmetric pair-
wise transport weights cij , i, j ∈ [n], i < j, between them, the classic DRFLP
asks for an assignment of n departments to two rows (the two sides of a path)
and horizontal positions of the departments such that the weighted sum of the
center-to-center distances, measured in horizontal direction, is minimized. More-
over, two departments in the same row may not overlap. So we look for a vector
p ∈ R

n of positions and a vector r ∈ {1, 2}n of the assignment of the departments
to the two rows such that

min
∑

i,j∈[n]
i<j

cij |pi − pj |

subject to |pi − pj | ≥ �i + �j

2
, i, j ∈ [n], i < j, if ri = rj .

In [9], Chung and Tanchoco present a model for the DRFLP (see also [24]) which
can solve instances with up to 8 departments in about 10 min. Amaral suggests
a mixed–integer program that can solve instances with up to 12 departments in
less than one hour [3]. The current best known approach for solving the DRFLP is
presented in [12], where Fischer et al. solve instances with up to 16 departments
in less than 12 h. Beside the exact methods, there are several heuristic approaches
for solving the DRFLP and extensions of it, see, e. g., [17,25]. Highly related to
the DRFLP is the Single Row Facility Layout Problem (SRFLP), introduced in [22].
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In contrast to the DRFLP, in the SRFLP the departments are arranged in only one
row. With the best known approach, presented in [13,14], Hungerländer and
Rendl are able to solve instances with up to 42 departments to optimality and
they receive very small gaps for instances with up to 110 departments. For an
overview of layout problems in general we refer to [4,11].

Our paper is structured as follows. In Sect. 2, we summarize the current
best approach for the DRFLP [12]. There, one combines a strong model for the
DRFLP with fixed row assignment, i. e., the row assignment of each department
is known in advance, with a branching scheme enumerating over all possible row
assignments.

In Sect. 3, we extend this approach in various directions. We consider depart-
ments as 2-dimensional objects which have a length and a width. In real-world
applications the size of a factory is limited, so in Sect. 3.1 we show how to restrict
the area used for the DRFLP layout. In Sect. 3.2, we allow the consideration of
vertical distances between the departments. Afterwards, in Sect. 3.3 we consider
instances that contain departments of the same type, i. e., these departments
have the same length and the same transport weights to all other departments.
We exploit this structural property of departments of the same type by reducing
the number of relevant row assignments significantly.

Unfortunately, in the classic mathematical DRFLP models only the transport
weights and so the weighted transport loads are taken into account. But there are
several further indicators that are important for guaranteeing a smooth produc-
tion, e. g., the throughput of the factory, the cycle times of the products or the
used storage and buffer capacities. Therefore, we combine in Sect. 4 the mathe-
matical DRFLP model with a simulation of the production that allows determining
various key performance indicators. Thus, we can detect potential problems and
conflicts.

In Sect. 5, we solve a realistic instance with 21 departments in less than 14 h
by exploiting that there are several departments of the same type. We compare
our solutions obtained via mathematical optimization to solutions derived by
applying classic methods used in factory planning. The results obtained via sim-
ulation are then the starting point in Sect. 5.2 for extending the mathematical
models such that the transport distances are considered not only in an aggre-
gated form, but for each single product. We summarize our results and give
suggestions for future work in Sect. 6.

2 Basic Model for the DRFLP

In the classic models for the DRFLP, see, e. g., [3,9,12], the following three assump-
tions are made

1. the total size of the area needed for the arrangement is not limited,
2. vertical distances between the departments are neglected,
3. each department can be assigned to any of the two rows.
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In contrast to the SRFLP, there might occur free spaces between departments in
the same row in optimal DRFLP solutions.

The current best solution approach for the DRFLP is described in [12]. The
main idea is to enumerate over all possible row assignments and solve the DRFLP
with fixed row assignment (FR-DRFLP). In the following, we summarize the model
of [12] for solving the FR-DRFLP. First we add two dummy departments n + 1
and n + 2 representing the left and right border of the layout. The lengths and
transport weights of the dummy departments are set to zero, i. e., �n+1 = �n+2 =
0, ci(n+1) = ci(n+2) = 0 for i ∈ [n] and c(n+1)(n+2) = 0.

In order to consider a fixed row assignment, let R = {1, 2} be the set of rows
and ri ∈ R, i ∈ [n], be an assignment of the departments to the two rows. For
h ∈ R we will write: j ∈ Rh ⇔ rj = h. The dummy departments n + 1 and
n + 2 are assigned to both rows and we define R̃h = Rh ∪ {n + 1, n + 2}. We use
betweenness variables

xikj = xjki =

{
1, k lies between i and j in the same row,

0, otherwise,

for l ∈ R, i, j, k ∈ R̃l, i �= k �= j, i < j. The betweenness variables induce an
order of the departments in each row, because x(n+1)ij is equal to 1 if and only
if department i is left to department j in the same row. We consider the following
integer linear programming model

xijk + xikj + xjik = 1, l ∈ R, i, j, k ∈ R̃l, i < j < k, (1)
x(n+1)i(n+2) = 1, i ∈ [n], (2)
xikj = 0, l ∈ R, i, j ∈ Rl, i < j, k ∈ {n + 1, n + 2}, (3)
x(n+1)ij = xij(n+2), l ∈ R, i, j ∈ Rl, i �= j, (4)

xihj + xihk + xjhk ≤ 2, l ∈ R, i, j, k, h ∈ R̃l, |{i, j, k, h}| = 4, i < j < k, (5)

− xihj + xihk + xjhk ≥ 0, l ∈ R, i, j, k, h ∈ R̃l, |{i, j, k, h}| = 4, (6)

xijk ∈ {0, 1}, l ∈ R, i, j, k ∈ R̃l, |{i, j, k}| = 3, i < k. (7)

If three departments lie in the same row, by (1) exactly one of them lies in the
middle. The constraints (2)–(4) ensure that every department lies between the
dummy departments n + 1 and n + 2, i. e., the dummy departments are the left
and right border of the layout. Inequalities (5)–(6) imply that the departments
satisfy certain transitivity properties. According to [2], (1) and (5)–(7) induce a
correct ordering of the departments in each row.

Next we need to calculate the distance between two distinct departments.
The horizontal position pi of the center of department i, i ∈ [n], is given by
di(n+1) = pi. The value di(n+2) is defined as the distance between the right
border of the layout, i. e., department n + 2, and department i for i ∈ [n]. The
distance between the left and the right border of a layout is given by d(n+1)(n+2).
The distance is calculated according to (see [12])

dji = dij ≥ |pi − pj | = |d(n+1)i − d(n+1)j |,
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for i, j ∈ [n]∪{n+2}, i < j. We set M :=
∑n

i=1 �i and we obtain in the following
a model for the FR-DRFLP, which we call IPFR-DRFLP. This model is given in its
basic form in [12] and we add the inequalities (9) and (10), because we later
want to extend this model.

min
∑

i,j∈[n]
i<j

cijdij

s. t. (1)–(7),

dj(n+1) − di(n+1) ≥ M(x(n+1)ij − 1) +
�i + �j

2
, l ∈ R, i, j ∈ Rl, i �= j, (8)

dj(n+2) − di(n+2) ≥ M(xji(n+2) − 1) +
�i + �j

2
, l ∈ R, i, j ∈ Rl, i �= j, (9)

di(n+1) + di(n+2) = d(n+1)(n+2), i ∈ [n], (10)

di(n+1) ≥ �i

2
, di(n+2) ≥ �i

2
, i ∈ [n], (11)

dik + dkj ≥ dij ,
i, j, k ∈ [n + 2], i < j,
|{i, j, k}| = 3,

(12)

dij ≥ 0, i, j ∈ [n + 2], i < j. (13)

By inequalities (8), (9) and (11) there is a minimal distance of �i+�j
2 between

the centers of the departments i and j if they lie in the same row and with
respect to the dummy departments. Inequalities (12) are triangle inequalities
that also connect departments lying in different rows. We argued above that
the betweenness inequalities (1) and (5)–(7) induce a correct ordering of the
departments in each row. Combining this with (8)–(13) we get the following
theorem:

Theorem 1. The model (1)–(13) is correct for the FR-DRFLP.

This result follows immediately from [12] which we adapted only slightly such
that also the distance between some department i, i ∈ [n], and department n+2
is calculated correctly.

Furthermore, we can add a lower bound on the distance between the centers
of two departments i and j in the same row by summing up the lengths of all
departments between i and j

dij ≥ �i + �j

2
+

∑

k∈Rl\{i,j}
�kxikj , l ∈ R, i, j ∈ R̃l, i < j.

We want to point out that the distance between two departments might be
greater than this bound, because in an optimal solution of the FR-DRFLP there
might occur free space between two neighboring departments.

In order to solve the DRFLP using the model above, we have to test exponen-
tially many row assignments. We can reduce the number of distinguishable row
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assignments by reducing M , the big-M -value in inequalities (8) and (9), which
is also an upper bound on the sum of the lengths of the departments in each
single row. Certainly we can assume that in an optimal solution the sum of the
lengths of the departments in row one is the same as or larger than the sum in
row two. Let the leftmost department i of the considered layout start at position
pn+1 = 0 with its center pi = �i

2 and let the rightmost department j ∈ [n] apart
from n + 2 of this layout finish at t with its center pj = t − �j

2 .

Lemma 1 ([12]). Given a DRFLP instance that satisfies, w. l. o. g., �i ≤ �i+1 for
i ∈ [n−1], there always exists an optimal DRFLP layout on the interval [0, t] with

t ≤
n∑

i=�n+1
3 �+1

�i. (14)

Moreover, this bound is tight.

Due to [12], we can neglect all row assignments where the sum of the lengths
of the departments in one of the rows exceeds t.

Usually, in factory planning the incoming warehouse and the shipping ware-
house of a factory are arranged at the left and at the right border, respectively.
If this is the case, the dummy departments (n + 1, n + 2) can be interpreted
as these warehouses. For an illustration we refer to Fig. 1. Of course, we might
obtain a better overall solution value if we drop the restriction on the position of
both warehouses. In this case they are treated as ordinary departments that have
transport connections to other departments and need a certain space. Later in
Sect. 5 we compare the quality of the solutions with and without this restriction
on the positions.

in
co
m
in
g
w
ar
eh

ou
se

shipping
w
arehouse

Fig. 1. Visualization of an extended DRFLP layout where we fixed the incoming and the
shipping warehouse to the border of the layout. One motivation for this arrangement
is that one hopes to receive rather linear transport flows between the departments.
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3 Extensions of the Basic DRFLP Model

In this section we show how the DRFLP and the FR-DRFLP can be extended
such that further aspects, which are relevant in practice, can be handled in
optimization.

3.1 Restricted Area of the Whole Layout and Blocked Areas

We consider the case that the departments not only have a length but also
a width, i. e., they are given as 2-dimensional objects. Our aim is to place the
departments in a restricted area. In [21], a restricted area is taken into account by
a penalty function. However, we will restrict the area by additional constraints.
In factory planning the layout area is usually defined as follows:

Definition 1. The area of a given layout is defined as the area of the minimum
boundary rectangle containing all departments.

Fig. 2. Minimum boundary rectangle of a layout (marked black) enclosing five 2-
dimensional departments. The area of the layout corresponds to the size of this rect-
angle.

By definition the area of a layout is equal to d(n+1)(n+2) · w, where w is
the width of the layout (in our FR-DRFLP model). An example is illustrated in
Fig. 2. Let wi denote the width of department i ∈ [n]. In the FR-DRFLP the row
assignment is fixed, so we compute the width of the layout by summing up the
width of the department with the largest width in each row plus the width of the
path wpath between the two rows, i. e., w = maxi∈R1wi + maxi∈R2wi + wpath. In
particular, for a fixed row assignment the width of a layout is constant. Thus, we
only need to restrict the distance d(n+1)(n+2) in an appropriate way to restrict
the used area. Assume the area of the layout may be at most F ∈ R≥0. Then the
linear inequality d(n+1)(n+2) ≤ F

w ensures that the area of the layout is bounded
by F .

So, given a row assignment, all departments lie in the interval [0, F
w ]. Thus, we

can neglect all row assignments where the sum of the lengths of the departments
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in the same row exceeds F
w . Moreover, we can improve the big-M -value used in

inequalities (8) and (9) to

M = min

{
F

w
,

n∑

i=1

�i

}
.

Hence, for every row assignment we have to compute a new big-M -value. Note
that the upper bound t, as computed in (14), is not valid anymore.

Apart from a restriction of the used area, there might appear so called blocked
areas in real-world factory planning problems. It is not allowed to place depart-
ments in these areas. This might be due to already existing departments or due
to safety restrictions. Let B1 = {[b1, b1 + g1], . . . , [bu, bu + gu]} be the blocked
areas in row 1 and B2 = {[bu+1, bu+1 + gu+1], . . . , [bv, bv + gv]} be the blocked
areas in row 2 for given bk, gk ≥ 0, k ∈ [v], bk + gk ≤ bk+1, k ∈ [v] \ {u}. For
each blocked area we introduce a new dummy department, which we will call
blocked department, with length equal to the length of the blocked area. We
place the center of the blocked department in the middle of the blocked area.
So we get the blocked departments n + 3, n + 4, . . . , (n + 2 + |B1| + |B2|) with
length �n+2+k = gk for k ∈ [v]. The row assignment of the blocked departments
is fixed, namely R1 = {(n + 3), . . . , (n + 2 + |B1|)} are assigned to row 1 and
R2 = {(n + 2 + |B1| + 1), . . . , (n + 2 + |B1| + |B2|)} to row 2. To ensure that the
blocked department n+2+ k lies exactly on the interval [bk, bk + gk], we set the
distance variable to

d(n+1)(n+2+k) = bk +
gk

2
, k ∈ [v].

Additionally, we extend the inequalities (8) such that they are satisfied for
all departments i, j ∈ Rl ∪ Rl for l ∈ {1, 2}. Apart from this we can fix
the betweenness variables that belong to each three departments with index
at least n + 1. For correctness of the model an update of the big-M -value to
M̃ = max{bu + gu, bv + gv} + t, where t is defined as in (14), is needed, since
it might happen that in an optimal solution the n departments are all arranged
right to the blocked departments (possible if the area of the layout is not addi-
tionally bounded; this is possible by restricting d(n+1)(n+2)). Note that M has
to be further enlarged if the blocked areas have non-zero transport weights to
departments in [n]. This can happen if we extend an existing factory and do not
want to move some of the old departments.

3.2 Vertical and Inter-row Distances

We want to overcome the second assumption of the basic model as stated in
Sect. 2—vertical distances between the departments are neglected—by adding
inter-row distances between departments in distinct rows as well as vertical dis-
tances between departments in the same row. For this, note again that we assume
that the departments are 2-dimensional objects. The center-to-center distance
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between two departments i and j is computed as follows: First we add the dis-
tance between the center of i to the path, then, as in the 1-dimensional case,
we compute the distance |pi − pj | and afterwards we add the distance from the
path to the center of j. Furthermore, if i and j are in distinct rows, we add the
width of the path wpath. An example is illustrated in Fig. 3.

In order to solve this extended DRFLP, we use again our fixed-assignment
model IPFR−DRFLP . For the FR-DRFLP, the inter-row distances and associated
transport weights are constant. The inter-row weights are calculated by

∑

j∈R1
k∈R2

(
wj + wk

2
+ wpath

)
cjk

and for departments in the same row we get

∑

j,k∈R1
j<k

wj + wk

2
cjk +

∑

j,k∈R2
j<k

wj + wk

2
cjk.

All in all, in our setting we only need to add a constant to the objective value of
some FR-DRFLP to include inter-row distances and compare the total objective
values in the enumeration scheme. We want to note again, that the reduction of
M according to (14) is not possible because of this constant.

Fig. 3. Calculation of the vertical and horizontal distances between three departments

Naturally, the third assumption mentioned at the beginning of Sect. 2—each
department can be assigned to any of the two rows—can easily be dropped. If
the row assignment of some departments is fixed in advance, this only helps us
because the number of possible row assignments decreases.

3.3 Departments of the Same Type

In order to compute an optimal DRFLP layout we enumerate over all row assign-
ments of the departments and solve some IPFR-DRFLP in each step. In principle,
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we have to solve the IPFR-DRFLP for all distinguishable row assignments (some
layouts might be neglected due to further considerations). So restricting the
number of distinguishable row assignments is essential. Let n denote the num-
ber of departments. In general, there are 1

2 · 2n distinguishable row assignments
because by assumption we can place every department in row 1 or in row 2 and
we can fix the row assignment of exactly one department. In realistic instances
there appear departments of the same type, see also our test case in Sect. 5.1,
i. e., the departments have the same length and the same transport weight c to
all other departments. We use this additional information to reduce the number
of distinguishable row assignments significantly.

Theorem 2. Let m denote the number of different department types and let ai

be the number of departments of type i ∈ [m]. Then there are at most
⎡

⎢⎢⎢
1
2

∏

i∈[m]

(ai + 1)

⎤

⎥⎥⎥

distinguishable row assignments.

Proof. We will prove this result by induction on m. Let m = 1. We only take
row assignments into account that contain at least as many departments in row
1 as in row 2. By symmetry, these are all distinguishable row assignments. So we
assign a1, . . . , �a1

2 	 departments to row 1 and we obtain a1 − �a1
2 	 + 1 = �a1+1

2 	
distinguishable row assignments. Let us now assume that the result is true for
m and we consider m + 1 department types.

Case 1: am+1 is odd. The idea of the proof is to assign more departments of type
m+1 to row 1 than to row 2. By this method, we take all distinguishable row
assignments into account. For am+1, . . . , �am+1

2 	 departments of type m+1 in
row 1 we obtain

∏m
i=1(ai+1) distinguishable row assignments in each subcase.

Altogether we obtain

(
am+1 −

⌈am+1

2

⌉
+ 1

) m∏

i=1

(ai + 1) =
⌈

am+1 + 1
2

⌉ m∏

i=1

(ai + 1)

=

⌈
1
2

m+1∏

i=1

(ai + 1)

⌉

distinguishable row assignments.
Case 2: am+1 is even. We assume that ai is even for all i ∈ [m], otherwise the

proof is analogous to Case 1. Similar to Case 1 we assign am+1, . . . ,
am+1

2 +1
departments of type m + 1 to row 1 and obtain

am+1

2

m∏

i=1

(ai + 1)
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distinguishable row assignments. It remains to consider the case with am+1
2

departments of type m + 1 in row 1. Then, there are also am+1
2 departments

of type m + 1 in row 2. Now we use our induction hypothesis to create dis-
tinguishable row assignments. Altogether we get

am+1

2

m∏

i=1

(ai + 1) +

⌈
1
2

m∏

i=1

(ai + 1)

⌉
= (am+1 + 1)

1
2

m∏

i=1

(ai + 1) +
1
2

=

⌈
1
2

m+1∏

i=1

(ai + 1)

⌉

distinguishable row assignments. 
�

This formula is also correct if all departments have a different type, because
then ai = 1 for all i ∈ [m] and m = n. We illustrate the advantages of Theorem 2
by a realistic example, see [18] and Sect. 5.

Example 1. We are given n = 21 departments, where two departments appear
four times, three departments twice and seven departments just once. Without
reduction, we have to test 220 = 1048576 row assignments. By Theorem 2 we
obtain at most 1

2 · 5 · 5 · 3 · 3 · 3 · 27 = 43200 distinguishable row assignments.

Apart from reducing the number of row assignments if there are several depart-
ments of the same type, we additionally can strengthen our model. Indeed, we
can break some symmetries of the arrangement by fixing the order of depart-
ments of the same type in the same row. This symmetry breaking is done in such
a way that at least one optimal solution is preserved. Let ai1 departments of the
same type i, i ∈ [m], be in row 1. We denote these departments, w. l. o. g., by
1, . . . , ai1 . Then, we fix the order of these departments by additional constraints,
w. l. o. g., we use an ascending order. Since these departments are of the same
type, they have the same length and we can add

d(n+1)1 ≤ d(n+1)2 + �1 ≤ . . . ≤ d(n+1)(ai1 )
+ (ai1 − 1) · �1

to our model. It follows immediately that we can set the ordering variables to

x(n+1)kl =

{
1, k, l ∈ [ai1 ], k < l,

0, k, l ∈ [ai1 ], k > l.

Similar equations can be added for department n + 2. Furthermore, we fix the
associated betweenness variables

xkuv =

{
1, k, u, v ∈ [ai1 ], k < u < v,

0, k, u, v ∈ [ai1 ], k < v and (u < k or u > v).
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4 Iterative Combination of Optimization and Simulation

Using an extended version of the algorithm of [12] we are now able to solve the
DRFLP. For further details on the software we used as well as on our test envi-
ronment we refer to Sect. 5. As already mentioned in the introduction, in the
mathematical models usually only the transport loads are taken into account.
But for a successful production system, which highly depends on the decisions
made during the factory planning process, several further key performance indi-
cators play a significant role. To determine these we use simulation. If problems
are detected, the optimization model is extended.

To verify the quality of the extended DRFLP model we apply discrete event
simulation, see also [7]. As a software tool we use Tecnomatix Plant Simula-
tion [23]. Starting point is the development of a basic simulation model that
includes different controls and import functions. These controls are necessary
for

– the management of processing sequences and times,
– the implementation of imported processing parameters or production pro-

grams and
– an automated generation of the layout specific simulation model after the

import of the DRFLP solution.

In addition, the controls allow

– the consideration of different distribution strategies for the material flow,
– adding different products,
– adjusting the processing sequences, i. e., in which order the products have to

be processed, and
– adjusting a production program which includes a production schedule and

the number of products.

By running the simulation of the processes on and between the departments or
machines, which are arranged according to some layout, we generate dynamic
and realistic information about the transport processes.

Additionally, we implemented some statistical tools for the evaluation of
the respective layouts. Related to the input data for the DRFLP we analyze
the total product distances [1], specific product distances and the transport
momentum. Furthermore, a first benefit of the simulation is that we can con-
sider additional key performance indicators of the production systems, among
them output, throughput times, inventory, capacities, utilization of resources.
Apart from this a second benefit is the visualization of processes that simplifies
the understanding of complex relations [8].

An analysis of the results including the key performance indicators is then
the basis to see needs for improvement. So, if the current layout has to be
improved, the DRFLP models are customized by extending or adapting the math-
ematical models and the interplay between optimization and simulation contin-
ues as illustrated in Fig. 4. One big advantage of our iterative layout creation
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Fig. 4. Extended and evaluated DRFLP-method: The quality of a layout determined via
mathematical optimization for some layout planning issue is measured using simulation.
If improvements are needed, the mathematical models are extended.

is that afterwards we can nicely compare the found solutions with respect to
several indicators. So, the effect of certain decisions becomes clear.

The simulation might show that the distances between certain departments
are too large for a smooth production. Then, we can restrict these distances in
the model. Furthermore, the simulation gives some information about the size
of the storage and buffer areas needed during production. If more or less space
is needed, the sizes of the departments have to be adapted in the next step.
Additionally, in the mathematical model we always assume that the transport
weights between each pair of departments is known in advance. If there are
several departments of the same type we assume that the intermediate products
are evenly distributed among the departments of the same type. With the help
of simulation we can check whether this is a good distribution strategy by testing
several ones and if necessary we can adapt our model.

Many simulation models are generated in 2D. This kind of department repre-
sentation is quite abstract and impedes the intuitive understanding of the layout
and the production process. Especially for layouts with an increased number of
departments, the transparency of a DRFLP solution with the 2D simulation model
is limited. The integration of 3D models provides a better overview for the plan-
ner as illustrated in Fig. 5. Especially the product flow can be demonstrated
very quickly. Using a 3D simulation model on basis of the optimized layout can
simplify the virtual validation of the planned production area and the detection
of bottlenecks. All in all, simulation allows to control whether it will be possi-
ble to achieve the desired output of the production system afterwards in real
production.
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Fig. 5. Illustration of a 3-dimensional simulation including the workers where the
departments are arranged on both sides of a common path

5 Computational Experiments

In this section, we present our computational results. All experiments were
conducted on an INTEL-Core-I7-4770 (4 × 3400 MHz, 8 MB Cache) with
32 GB RAM in single processor mode using openSUSE Linux 42.1. We used
CPLEX 12.7.0 [15]. As mentioned above all simulations were done with Tecno-
matrix Plant Simulation [23].

5.1 Test Case and Computational Results

For testing our new solutions of the extended DRFLP models in the simulation
we use a well-known application example [18]. It represents a real gearbox pro-
duction and includes 21 departments (with 12 types) and eight different prod-
ucts which are combined in an assembly department to an end product. This
example provides a solid data basis for the layout planning problem and the sim-
ulation model. All necessary information like the transport matrix, processing
sequences, processing times, set up times and production rates are given in [18].
For the convenience of the reader we present them here, where we only specify
the transport amount between the single types. We have m = 12 types with
multiplicities a1 = a2 = a4 = a8 = a10 = a11 = a12 = 1, a5 = a6 = a9 = 2,
a3 = a7 = 4 and so n = 21 departments. The lengths (given in meter) are
�a1 = 4, �a2 = 3.4, �a3 = 4.6, �a4 = 4, �a5 = 4.7, �a6 = 3.3, �a7 = 4.5, �a8 =
2.3, �a9 = 3.8, �a10 = 5.2, �a11 = 4, �a12 = 4 and the transport weights cij = cji

between types i, j are given via
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C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 240 204 0 0 570 0 0 120 0 0 0
240 0 240 0 0 0 0 0 0 0 0 0
204 240 0 60 60 144 0 0 180 0 0 0
0 0 60 0 60 0 0 0 0 0 0 0
0 0 60 60 0 0 0 120 0 0 0 0

570 0 144 0 0 0 570 0 0 0 144 0
0 0 0 0 0 570 0 570 0 0 0 0
0 0 0 0 120 0 570 0 0 0 690 0

120 0 180 0 0 0 0 0 0 60 240 0
0 0 0 0 0 0 0 0 60 0 60 0
0 0 0 0 0 144 0 690 240 60 0 720
0 0 0 0 0 0 0 0 0 0 720 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In optimization, we assume that the transports are equally divided among the
departments of the same type. In simulation also other strategies can be tested,
but we only implemented a division of the transports according to a discrete
uniform distribution. A 3D illustration of some layout for this instance, where
the incoming and the shipping warehouse are arranged at the borders, is given
in Fig. 6.

Fig. 6. 3D illustration of a DRFLP layout with 21 departments [18]. This simulation was
derived using mathematical optimization. The incoming and the shipping warehouse
are arranged at the left and the right border, respectively.

This example has already been taken into account in Example 1. Indeed, it
contains several departments of the same type. In our computational tests we
used Theorem 2 and the additional symmetry breaking constraints for depart-
ments of the same type in the same row. In Fig. 7 we show the development of
the running times of our optimization approach if we enlarge the number of the
departments. The instance of [18] contains departments of 12 different types. In
the tests we start with 12 departments and successively add one department in
each step. So, department type 3 appears twice when we consider 13 depart-
ments and three times when we consider 14 departments and so on. Figure 7
shows that the original instance with all departments could be solved in less
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than 14 h, although it contains 21 departments and so five departments more
than the largest DRFLP instance solved to optimality in the literature before.

In the simulation we tested the following five different solutions:

1. A solution determined according to criteria usually used in factory planning
where apart from the transport weights one had a special look at the linearity
of the flows. The heuristic of Schmigalla [16,20] was applied and afterwards
the solution was improved by hand. Incoming and shipping warehouse were
arranged at the border.

2. A solution determined according to criteria usually used in factory planning
where all departments of a type were interpreted as one big block and then
these blocks were arranged. The number of blocks that had to be arranged
is smaller than the total number of departments. So it was easier to build
this layout by hand. Incoming and shipping warehouse were arranged at the
border.

3. We used our mathematical DRFLP model for deriving a solution but as it is
often done in practice incoming and shipping warehouse were arranged at
the border (see end of Sect. 2). A 3D visualization of this warehouse can be
found in Fig. 6.

4. We used our mathematical DRFLP model for deriving a solution and the
incoming and shipping warehouse were arranged at the border. Addition-
ally, all departments of the same type were interpreted as one big block and
then these 12 blocks were arranged.

5. Solution derived using our mathematical DRFLP model with arbitrary position
of all departments as well as of the incoming and the shipping warehouse (in
our model these are departments, too). This approach was also used for
deriving the results in Fig. 7.

In all five simulations we manufactured 36000 end products and determined
afterwards the average distance of each single product and the total distance
traveled. The results can be found in Table 1. The end product, which is obtained
by combining all eight products in an assembly department, is denoted as prod-
uct 9. The second column in Table 1 shows the number of transports (“Trans”)
needed for each product 1, . . . , 9, and the next ten columns show the distances
for the five simulation variants where the left column (“Single”) for each type
contains the information on the average transport distance of each single prod-
uct and the right column the total distance (“Total”) traveled for all products
of the same type.

The results show that the use of our optimization model allows to improve
the solution significantly in comparison to the solution determined by hand,
especially if we do not restrict the position of the warehouses (Layout 5). Com-
paring Layout 1 and Layout 3, where the two warehouses have been fixed to
the border, the solution obtained by optimization is better than the solution
obtained by applying the heuristic of Schmigalla followed by some improvement
steps by the factory planners. But even the optimized solution with blocks and
fixed border, illustrated in Layout 4, is better than the solutions determined
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Fig. 7. Running times in seconds for variations of some realistic instance from [18]. We
start with 12 different department types and 12 departments and we add departments
successively according to the following order of the number of departments of each of
the 12 types: 1 1 4 1 2 2 4 1 2 1 1 1. The largest instance contains 21 departments.

Table 1. Visualization of the results of the five simulations for our test case. In this
production all eight products are combined to an end product, denoted as product
9, see column “P”. The entry “Total” in the first column refers to the total distance
traveled in each of the five layouts. Note that using our approach from mathematical
optimization with arbitrary department positions reduces the total distances signifi-
cantly in comparison with the other four variants.

P Trans Layout 1 Layout 2 Layout 3 Layout 4 Layout 5

Single Total Single Total Single Total Single Total Single Total

1 480 37.90 18192.0 38.70 18576.0 28.70 13776.00 29.15 13992.00 16.31 7828.8

2 90 37.90 3411.0 38.70 3483.0 28.70 2583.00 29.15 2623.50 16.31 1467.9

3 144 38.50 5544.0 44.85 6458.4 29.32 4222.08 35.91 5171.04 30.75 4428.0

4 60 37.90 2274.0 37.60 2256.0 28.70 1722.00 29.15 1749.00 39.60 2376.0

5 30 65.60 1968.0 71.90 2157.0 69.20 2076.00 70.40 2112.00 66.51 1995.3

6 60 55.96 3357.6 49.03 2941.8 55.66 3339.60 54.18 3250.80 54.27 3256.2

7 30 66.12 1983.6 71.89 2156.7 66.42 1992.60 70.90 2127.00 66.51 1995.3

8 120 37.90 4548.0 37.60 4512.0 28.70 3444.00 29.15 3498.00 39.00 4680.0

9 720 2.00 1440.0 2.00 1440.0 10.80 7776.00 11.20 8064.00 0.00 0.0

Total 42718.2 43980.9 40931.28 42587.34 28027.5

by hand, illustrated in Layout 2. A visualization of all layouts can be found in
Fig. 8, where blocks consisting of departments of the same type are highlighted
with lines in bold type.
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Fig. 8. Visualization of the five layouts tested in the simulations. These five layouts
were constructed by the five variants stated above, i. e., Layout 1 and Layout 2 were
derived according to general approaches used in factory planning and Layout 3, Layout
4 and Layout 5 were derived using the optimization model. The last layout shows an
optimal solution if the position of none of the departments is restricted.

In the simulation the different products that are produced are considered
separate, but in the mathematical models the transport weights are based on
aggregated information for the transports of all products. Studying the results
and indicators provided by the simulation of the five layout variants we realized
that the time needed for the transport processes of different products can vary
significantly. Next we show how to overcome this situation by adapting our
optimization model.

5.2 Manufacturing Different Products

Let us assume that we manufacture an amount of different products. Let P
denote the set of products and hp be the desired number of product p ∈ P .
Every product has its own transport matrix Cp. The ij-th entry of the matrix
Cp denotes the transport weights between department i and j for producing
product p. The transport weight matrix C that we used before is built on the
sum of the transport matrices times the associated desired number of products,
i. e., C =

∑
p∈P hp · Cp. Our aim is now to investigate the influence of single

products to the whole production.

Definition 2. For a product p ∈ P we define the transport distance as
∑

i,j∈[n]
i<j

cp
ijdij ,

where cp
ij is the ij-th entry of the matrix Cp.
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The simulation showed that these transport distances might be rather high in
an optimal layout if the number of products of this type is small in comparison
to the others. But high transport distances can increase the cycle time. So, for
a smooth production we want to bound the transport distances associated to
single products. Therefore, we present two possibilities: At first we can restrict
this by an upper bound on the transport distance.

A second way is to set up a desired distance dp ∈ R+ for the transport
distance for each single product p ∈ P . Of course, the desired transport distance
depends on the amount of products hp for p ∈ P . If this value is exceeded, we
want to penalize this with a quadratic function f̃ which is later approximated
by some piecewise linear function. Let a ≥ dp be the highest possible transport
distance of product p ∈ P . Then we set f̃ : [0, a] → [0, f̃(a)] such that

f̃(x) =

⎧
⎪⎨

⎪⎩

dp − x, x < dp,

0, x = dp,

(x − dp)2, x > dp.

To avoid a non-linear objective function, we approximate f̃ on the interval [dp, a]
with a piecewise linear, continuous, convex function f . Therefore, we use linear
interpolation [6]. Let a product p ∈ P and points h1, . . . , hm be given with m ≥ 1
and hi ≥ dp sorted in ascending order for i ∈ [m]. Then we compute a linear
approximation of f̃ between the points (hi, (hi − dp)2) and (hi+1, (hi+1 − dp)2)
for i = 1, . . . , m − 1. The resulting function f is piecewise linear and can be
written as f(x) = maxi=1,...,m(ai)T x + bi for ai, bi ∈ R and i ∈ [m]. We add the
following term to the objective function of our model (1)–(13)

hp · f

⎛

⎝
∑

i,j∈[n],i<j

cp
ijdij

⎞

⎠ . (15)

This term can be linearized by replacing (15) with

hp · t

in the objective function and adding the constraints

aT
i x + bi ≤ t, i ∈ [m].

We may set up such a penalty function for every product p ∈ P .

6 Conclusion and Future Work

In this paper we presented a new approach that allows combining mathematical
optimization and simulation in facility layout planning. We concentrated on the
Double Row Facility Layout Problem. In contrast to the literature we showed
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how the existing models can be extended in order to cover several aspects impor-
tant in practice. To evaluate the facility layout we used simulation to determine
further key performance indicators. If problems occur, the mathematical models
have to be adapted appropriately. For the first time we were able to solve an
instance with 21 departments to optimality in reasonable time. We compared our
mathematical model with classic methods from factory planning and we could
reduce the total transport distance significantly, especially by using arbitrary
positions for the warehouses.

It remains for future work to include more aspects in the mathematical mod-
els. One important topic is the treatment of asymmetric transport weights in
combination with input and output positions of the departments that might not
lie in the center of the department. Furthermore, due to safety restrictions or
quality requirements certain clearance conditions between departments have to
be satisfied. From the mathematical point of view it is interesting to further
study the polyhedral structure of the associated models as well as to develop
new (mixed-) integer programming models that combine the assignment of the
department to the rows as well as the positioning of the departments in each
row. The hope would be that intelligent branching orders can reduce the overall
running time. Apart from the Double Row Facility Layout Problem it seems
worth to consider more complex path structures in the shape of a T or an X or
along some closed path.

A further important goal is the inclusion of robustness aspects because the
facility layout decision has an impact for several years, but the production pro-
gram, which is the basis for the transport weights, might change. Apart from an
extension of the mathematical models, simulation allows testing different scenar-
ios for future production programs [5] easily. Using simulation, different layout
variants can be evaluated with regard to changing production requirements [10].
So, a flexible and adaptable production layout can be identified.
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Abstract. In this paper, we introduce the MuRO-NIMBUS method for
solving multiobjective optimization problems with uncertain parameters.
The concept of set-based minmax robust Pareto optimality is utilized to
tackle the uncertainty in the problems. We separate the solution process
into two stages: the pre-decision making stage and the decision mak-
ing stage. We consider the decision maker’s preferences in the nominal
case, i.e., with the most typical or undisturbed values of the uncertain
parameters. At the same time, the decision maker is informed about the
objective function values in the worst case to support her/him to make an
informed decision. To help the decision maker to understand the behav-
iors of the solutions, we visually present the objective function values.
As a result, the decision maker can find a preferred balance between
robustness and objective function values under the nominal case.

Keywords: Multiple criteria decision making · Uncertainty
Robustness · Interactive methods · Robust Pareto optimality

1 Introduction

Many real-life optimization problems involve multiple (conflicting) objectives.
Multiobjective optimization methods (see e.g., [11,18]) solve these problems
by optimizing the conflicting objectives simultaneously. For multiobjective opti-
mization problems, there usually is a set of mathematically equally good solu-
tions with different trade-offs among the multiple objectives. These solutions
are called Pareto optimal solutions. In most cases, only one Pareto optimal solu-
tion is chosen as the final solution to implement. This solution is usually found
by utilizing preferences of a decision maker, who is an expert in the problem
domain.

Different types of methods can be identified depending on the role of the
decision maker [11]. In interactive multiobjective optimization methods [3], the
decision maker actively directs the solution process towards a most preferred
solution by iteratively specifying her/his preferences. With an active involve-
ment, which is not possible in other types of methods, the decision maker can
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gradually learn about the problem and its feasible solutions as well as how attain-
able her/his preferred solutions are. In this way, interactive methods can best
support the decision maker to find the most preferred solution.

In addition to multiple objectives, the presence of uncertainty in real-life opti-
mization problems should be considered due to imprecise data, uncertain oper-
ation environments, and uncertain future developments, etc. The uncertainty
can be reflected in parameters or decision variables in problem formulations. In
this paper, we concentrate on problems with uncertain parameters in objective
functions. With different realizations of uncertain parameters, the corresponding
outcomes (i.e., objective function values) are different.

On one hand, without considering the uncertainty, the outcome correspond-
ing to a deterministic Pareto optimal solution can become very bad when the
uncertain parameters realize differently. Many robustness concepts have been
defined for multiobjective optimization problems (see e.g., [9,19]). They guaran-
tee the immunity of solutions to uncertainty by transforming uncertain problems
to deterministic ones with respect to the worst case. On the other hand, the out-
comes in the nominal case are very important for the decision maker, because
the nominal case describes the most typical behavior of uncertain parameters. In
addition, the robustness and quality of solutions, i.e., the outcome in the nomi-
nal case, usually conflict with each other [1]. In other words, objective function
values of a robust Pareto optimal solution are usually not as good as those of a
deterministic Pareto optimal solution in the nominal case.

When considering uncertainty, the decision maker faces the challenge of mak-
ing a decision with respect to different possible outcomes because of different
realizations of uncertain parameters. Considering multiple possible realizations
simultaneously can be too challenging for the decision maker. In addition, it is
desirable for the decision maker to find a preferred balance between robustness
and quality of the solutions. With the help of multiobjective robust optimization,
we can guarantee the robustness of solutions by finding the best solutions with
respect to the worst case but at the same time, the decision maker needs support
to find a most preferred balance between robustness and quality of solutions.

In the literature, most research efforts have been devoted to different defi-
nitions of robust Pareto optimality and only a few solution methods have been
developed (e.g., in [5,10]). In addition, in [2], necessary and sufficient conditions
for scalarizing functions with some special properties are discussed, which can
be used to transform a multiobjective optimization problem to a single-objective
one. In [7,8,14,15], interactive methods have been utilized to find a final solution
for multiobjective optimization problems with uncertainty.

In [7,8], a robust version of the augmented weighted Chebyshev method [17]
was developed for multiobjective linear optimization problems by extending the
concept of the budget of uncertainty [1] to multiobjective optimization problems.
Uncertainty was tackled in a so-called all-in-one approach in [14], where the
decision maker considers all possible realizations of uncertain parameters simul-
taneously. During the solution process, the decision maker chooses the possible
realizations to concentrate on and formulates her/his preferences with respect
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to them. In [15], the decision maker is expected to specify weights to alter the
relative importance of objectives and robustness when they are combined to
formulate a single-objective optimization problem.

In this paper, we develop an interactive method called MuRO-NIMBUS to
better support the decision maker. The MuRO-NIMBUS method integrates the
concept of set-based minmax robustness [5] into the NIMBUS framework, which
to the best of our knowledge, is the first interactive method for supporting a
decision making to find set-based minmax robust Pareto optimal solutions.

The properties of desirable interactive methods were summarized in [16] in
terms of understandability, easiness to use, and features of being supportive.
In order to ensure those properties in MuRO-NIMBUS, we first guarantee the
robustness of solutions by utilizing the set-based minmax robust Pareto opti-
mality to find a set of best possible solutions in the worst case. For this step, we
develop a robust achievement scalarizing function approach, which can also be
used independently. Then we incorporate the preferences of the decision maker
to find a solution corresponding to a most preferred outcome in the nominal
case. At the same time, the decision maker is informed about the worst possi-
ble values. In order to support the decision maker to understand the solution
in terms of its objective function values in the nominal case and the objective
function values in the worst case, we augment the value path visualization (see
e.g., [6]) to visually present different types of information. In this way, we can
support the decision maker to grasp a total balance in the robustness and quality
of solutions during the solution process.

By applying MuRO-NIMBUS, the decision maker is not expected to consider
all possible realizations of the uncertain parameters simultaneously as in [14].
Unlike in [7,8] where solutions once discarded cannot be recovered, the decision
maker can move freely from one robust Pareto optimal solution to another.
Instead of providing preferences as weights which do not have concrete meanings
as in [15], MuRO-NIMBUS allows the decision maker to concretely consider the
objective function values of a more desired solution.

The rest of the paper is organized as follows: in the next section, we introduce
some basic concepts. In Sect. 3, we introduce MuRO-NIMBUS. We simulate the
solution process of a multiobjective ship design problem as a numerical example
in Sect. 4 to demonstrate the application of the new method. Finally, we conclude
the paper in Sect. 5.

2 Basic Concepts

2.1 Deterministic Multiobjective Optimization

A deterministic multiobjective optimization problem is of the form

minimize or maximize {f1(x), ..., fk(x)}
subject to x ∈ X ,

(1)

involving objective functions (objectives) fi : X → R to be simultaneously opti-
mized, where 1 ≤ i ≤ k and k ≥ 2. Objective vectors f(x) = (f1(x), ..., fk(x))T
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consist of objective function values which are the images of decision vectors
x = (x1, x2, ..., xn)T . Decision vectors belong to the nonempty feasible set
X ⊂ R

n and their components are called decision variables. In this paper, we
refer to decision vectors as solutions and objective vectors as outcomes or objec-
tive function values of solutions. For two feasible solutions, we say a solution
dominates the other when the value of at least one of the objectives is better
and others are at least as good as that of the other. For simplicity, we assume
that the objective functions are to be minimized.

Definition 1. A solution x∗ ∈ X is said to be Pareto optimal or efficient if
there does not exist another solution x ∈ X such that fi(x) ≤ fi(x∗) for all
i = 1, ..., k and fj(x) < fj(x∗) for at least one j.

With the help of the nonnegative ordering cone R
k
≥ = {z ∈ R

k|zi ≥ 0 for i =
1, ..., k}, we say that x∗ is Pareto optimal if there does not exist x ∈ X such
that f(x) ∈ f(x∗) − R

k
≥. We refer to the set of Pareto optimal solutions as the

Pareto optimal set.
For (1), the set of Pareto optimal solutions usually contains more than one

element. For the decision maker, it is often useful to know the ranges of the
objective function values in the Pareto optimal set. The ranges are given by
the ideal objective vector z∗ = (z∗

1 , ...., z∗
k)T and the nadir objective vector

znad = (znad1 , ..., znadk )T . The ideal objective vector is formed by individual
optima of each objective function in the feasible set. For computational rea-
sons, we use the utopian objective vector z∗∗, which is strictly better than z∗.
In practice, z∗∗

i is set as z∗
i −a for i = 1, ..., k, where a > 0 is a small scalar. The

nadir objective vector, which represents the worst objective function values, can
be approximated for example by a so-called pay-off table (see [11] for further
details). If the objective function values have different magnitudes, znad and z∗∗

can be used to normalize them for computing purposes.
For calculating Pareto optimal solutions, one approach is to scalarize, i.e., to

formulate a single objective optimization problem such that its optimal solution
is a Pareto optimal solution for (1). In this, a single objective solver which is
appropriate for the characteristics of the problem must be used. The achievement
scalarizing function [20] is one of the widely used scalarizing functions. In this
paper, we consider the achievement scalarizing function of the following form:

minimize maxi [wi(fi(x) − z̄i)] + ρ

k∑

i=1

wi(fi(x) − z̄i)

subject to x ∈ X ,

(2)

where ρ is a small scalar binding the trade-offs, z̄ is a reference point and its
component z̄i is the aspiration level which represents the desired value of the
objective function fi given by the decision maker. The positive weight vector w
sets a direction toward which the reference point is projected onto the Pareto
optimal set.
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As discussed in the literature (e.g., [3,11,20]), the optimal solution of (2) is
a Pareto optimal solution for (1) and any Pareto optimal solution with trade-
offs bounded by ρ can be found by changing z̄. The achievement scalarizing
function has many advantages, for example, the reference point can be feasible
or infeasible and the problem can be convex or nonconvex.

2.2 Uncertain Multiobjective Optimization Problems
and Set-Based Minmax Robustness

For multiobjective optimization problems with uncertain parameters, given an
uncertainty set U ⊆ R

m, the uncertain multiobjective optimization problem is
given as a collection of deterministic multiobjective optimization problems:

{
minimize f(x, ξ)
subject to x ∈ X

}

ξ∈U.

(3)

Every problem in the collection is called an instance, which is characterized
by a particular element ξ ∈ U . Depending on different realized values of ξ, a
decision vector can have different corresponding outcomes. As a result, we have
a set of outcomes corresponding to a feasible decision vector. We denote the set
of outcomes (i.e., the objective vectors) of a solution x ∈ X for all ξ ∈ U as
fU (x) = {fU (x, ξ) : ξ ∈ U} as in [5].

As briefly mentioned, among all the possible realizations of uncertain param-
eters, the nominal case ξ̂ describes the most typical behavior of the uncertain
parameters. It usually comes from previous experiences or the expert knowledge
of the decision maker. The worst case describes the situation where the objective
functions attain their worst values within U . For a fixed solution x ∈ X , we need
to solve the following problem to find the worst case:

maximize {f1(x, ξ), ..., fk(x, ξ)}
subject to ξ ∈ U .

(4)

If the components of ξ do not relate to each other, there is a single worst case.
If they are related to each other, there can be multiple worst cases. With the
found worst case, the corresponding outcomes for the solution in question can
be calculated. The worst case does not necessarily realize in practice, but the
information on the outcomes provides the upper bounds of the objective function
values of a solution within U .

Analogously to the definition of Pareto optimality for deterministic problems,
set-based minmax Pareto optimality was defined in [5] by comparing the sets of
all outcomes corresponding to solutions.

Definition 2. A solution x∗ is a set-based minmax robust Pareto optimal solu-
tion for (3), if there does not exist another x ∈ X such that fU (x) ⊆ fU (x∗)−R

k
≥.

In other words, a feasible solution x∗ is a set-based minmax robust Pareto
solution if there does not exist another feasible solution x such that for all
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outcomes f(x, ξ) ∈ fU (x), there exists an outcome f(x∗, ξ) ∈ fU (x∗) with
fi(x, ξ) ≤ fi(x∗, ξ) for all i = 1, · · · , k. We apply this concept in MuRO-
NIMBUS to be introduced. With this concept, the decision maker can under-
stand that for all set-based minmax robust Pareto optimal solutions, there does
not exist a feasible solution with better objective function values in every possible
realization of the uncertain parameters.

By interpreting the supremum of a set as the set itself, the robust counterpart
of (3) which transforms (3) to a deterministic problem to identify robust Pareto
optimal solutions is given in [5] as:

minimize sup
ξ∈U

f(x, ξ)

subject to x ∈ X .
(5)

Set-based minmax robust Pareto optimal solutions are the best possible solutions
in the worst case because they are obtained by minimizing the suprema of the
sets of outcomes. As explained earlier, finding the worst case outcomes for a
fixed solution x ∈ X requires solving a multiobjective optimization problem
with objectives to be maximized as (4). The notation sup in (5) denote the
supreme of the outcome sets which is used to identify the worst case outcomes.
For simplicity, in what follows, we refer to set-based minmax robust Pareto
optimal solutions as robust Pareto optimal solutions.

2.3 Interactive Multiobjective Optimization

As mentioned, in interactive methods, the decision maker directs the solution
process towards a most preferred solution by iteratively specifying her/his prefer-
ences. A typical solution process (e.g., [3]) starts by presenting a Pareto optimal
solution to the decision maker. If the decision maker is satisfied, the final solu-
tion is found. If the decision maker is not satisfied, (s)he is expected to specify
preferences for a more desired solution. Based on the preferences, a new Pareto
optimal solution which satisfies the preferences best is found and presented to
her/him. The solution process continues until the decision maker finds a most
preferred solution.

NIMBUS [11,13] is a family of classification-based interactive methods. In
NIMBUS, the decision maker can classify the objectives to indicate what kind
of objective vector would be more preferred than the current one. The objective
functions can be assigned to up to five different classes including:

I< for those to be improved (i.e., decreased in case of minimizing, increased in
case of maximizing),
I≤ for those to be improved until some desired aspiration level ẑi,
I= for those that are satisfactory at their current level,
I≥ for those that may be impaired till a bound εi, and
I♦ for those that are temporarily allowed to change freely.
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If aspiration levels or bounds are used, the decision maker is expected to pro-
vide them. If the classification is feasible, i.e., the decision maker allows at least
one of the objectives to be impaired to improve some objectives, a scalarizing
problem is solved to find a new Pareto optimal solution reflecting the preferences.
In the so-called synchronous NIMBUS method, up to four different solutions can
be found in each iteration by solving different scalarizing problems. Since we have
to consider robustness and quality of the solutions, we limit the cognitive load
to the consideration of only one solution at a time. We will return later to the
variant of the NIMBUS scalarizing problems we use in MuRO-NIMBUS.

MuRO-NIMBUS inherits the advantage of classifying the objectives. First,
classification can remind the decision maker that it is not possible to improve all
objective function values at the same time but impairment in some objective(s)
must be allowed. Second, the decision maker deals with objective function values
and (s)he does not need to connect different types of information. Instead, (s)he
only needs to know what kind of changes (s)he desires for a new solution.

3 MuRO-NIMBUS

In this section, we introduce MuRO-NIMBUS. To be able to present it, we first
introduce some building blocks that we need for designing the method.

3.1 Building Blocks of MuRO-NIMBUS

As a building block of MuRO-NIMBUS, we first present the robust version of
(2). Based on it, we introduce the robust achievement scalarizing function (ASF)
approach to calculate a set of robust Pareto optimal solutions.

Based on the concept of robust Pareto optimality and the robust counterpart
as introduced in Sect. 2, the robust version of (2) can be formulated as:

minimize sup
ξ∈U

max
i

[wi(fi(x, ξ) − z̄i)] + ρ
k∑

i=1

wi(fi(x, ξ) − z̄i)

subject to x ∈ X for all ξ ∈ U .

(6)

Just like (2), the robust version involves a reference point and a weight vector.
We now prove the sufficient condition of the robust Pareto optimality:

Theorem 1. Given an uncertain multiobjective optimization problem (3), if x∗

is an optimal solution to (6) for some z̄ and w, and maxξ∈U fi(x, ξ) exists for
all x ∈ X and for all i = 1, ..., k, then x∗ is a robust Pareto optimal solution
for (3).

Proof. Assume that x∗ is not a robust Pareto optimal solution for (3). Then
there exists x′ ∈ X such that fU (x′) ⊆ f(x∗) − R

k
≥. Based on Lemma 3.4

in [5], for all ξ ∈ U , there exists η ∈ U such that fi(x′, ξ) ≤ fi(x∗,η) for
i = 1, ..., k and for at least one i the strict inequality holds. Since wi > 0,
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we have max
i

[wi(fi(x′, ξ) − z̄i)] + ρ
k∑

i=1

(fi(x′, ξ) − z̄i) < max
i

[wi(fi(x∗,η) −

z̄i)] + ρ
k∑

i=1

(fi(x∗,η) − z̄i), where for all ξ ∈ U there exists a η ∈ U which

satisfy the inequality. Further, we know that max
ξ∈U

max
i

[wi(fi(x′, ξ) − z̄i)] +

ρ
k∑

i=1

(fi(x′, ξ) − z̄i) < max
η ′∈U

max
i

[wi(fi(x∗,η′) − z̄i)] + ρ
k∑

i=1

(fi(x∗,η′) − z̄i). So

max
ξ′∈U

max
i

[wi(fi(x′, ξ′) − z̄i)] + ρ
k∑

i=1

(fi(x′, ξ′) − z̄i) < max
η ′∈U

max
i

[wi(fi(x∗,η′) −

z̄i)] + ρ
k∑

i=1

(fi(x∗,η′) − z̄i). This contradicts with the assumption that x∗ is the

optimal solution for (6). So x∗ is a robust Pareto optimal solution for (3).

This result agrees with the sufficient condition presented in Theorem 4.4 in [2] for
strongly increasing scalarizing functions, which states that the optimal solution
of a strongly increasing scalarizing function is set-based minmax Pareto opti-
mal to (3). In [2], the detailed proof was omitted. The necessary condition and
the proof for strictly increasing scalarizing function are given in Theorem 4.1 in
[2]. As a strongly increasing scalarizing function, (6) is also a strictly increasing
scalarizing function. For the properties of strongly and strictly increasing scalar-
izing function see [2,20]. Based on (6), we introduce the robust ASF approach
with (3) as the input to calculate a set of robust Pareto optimal solutions Xrpo

as the output:

Step 1. Set Xrpo = ∅ and generate a set of reference points Z.
Step 2. If Z = ∅, stop.
Step 3. Choose a z̄ ∈ Z, and set Z = Z \ {z̄}.
Step 4. Find an optimal solution x∗ to (6) using z̄ as the reference point and
set w accordingly, e.g., wi = 1

z∗∗
i −z̄i

, where z∗∗ is the utopian objective vector.
Set Xrpo = Xrpo ∪ {x∗}.
Step 5. Go to step 2.

In the robust ASF approach, we alter z̄ and set w accordingly for efficiently
gaining a good representative set of robust Pareto optimal solutions Xrpo. When
we evaluate their outcomes in the nominal case ξ̂, some of them can be dom-
inated. We should only present nondominated solutions to the decision maker.
So we refer to the robust Pareto optimal solutions whose corresponding out-
comes are nondominated as nominal nondominated robust Pareto optimal solu-
tions: a robust Pareto optimal solution x∗ is a nominal nondominated robust
Pareto optimal solution if there does not exist another x ∈ Xrpo such that
f(x, ξ̂) ∈ f(x∗, ξ̂) − R

k
≥.
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For finding a nondominated robust Pareto optimal solution based on a NIM-
BUS classification, we solve a variant of the synchronous NIMBUS scalarizing
problem presented in [13]:

minimize max
i∈I<

j∈I≤

[wi(fi(x, ξ̂) − z∗
i ), wj(fj(x, ξ̂) − ẑj)] + ρ

k∑

i=1

wifi(x, ξ̂)

subject to x ∈ Xrpo

fi(x, ξ̂) ≤ fi(xc, ξ̂) for all i ∈ I< ∪ I≤ ∪ I=,

fi(x, ξ̂) ≤ εi for all i ∈ I≥,

(7)

where I<, I=, I≥, I≤, and I♦ represent the corresponding classes of objectives
and xc is the current solution.

Proposition 1. The solution of (7) is a nominal nondominated robust Pareto
optimal solution for problem (3).

Proof. Problem (7) is equivalent to a deterministic problem in the nominal case
with the feasible set Xrpo. The proof that the solution of (7) is Pareto optimal
for deterministic problems was given in [13]. Thus it fulfills the requirements to
be a nominal nondominated robust Pareto optimal solution.

3.2 MuRO-NIMBUS

Based on the building blocks discussed above, we introduce MuRO-NIMBUS
which can support the decision maker to find a most preferred solution for (3).
We first discuss the idea of MuRO-NIMBUS in general. Then we present its
steps followed by a discussion on the technical details of each step.

As mentioned before, e.g., in [1], the robustness and the quality of solutions
usually conflict with each other. If the decision maker is not willing to sacrifice
some quality to gain robustness, we can solve (3) in the nominal case as a
deterministic problem. On the other hand, if the decision maker is willing to
make some sacrifice to gain robustness, (s)he prefers to have a robust Pareto
optimal solution by bearing the fact that its quality may not be as good as a
Pareto optimal solution in the nominal case. MuRO-NIMBUS is developed for
solving (3) when the decision maker is willing to sacrifice some quality to gain
robustness. Because outcomes in the nominal case are very important for the
decision maker and robustness of solutions can be guaranteed by finding best
possible solutions in the worst case, we have three tasks during the solution
process.

First, we need to guarantee the robustness of the solutions. Second, the nom-
inal case has to be considered in terms of corresponding outcomes of solutions
to satisfy the decision maker’s preferences as much as can. Third, to help the
decision maker to make an informed decision, corresponding outcomes in the
worst case should be found. It is not possible to guarantee the robustness and
consider two different kinds of realizations of the uncertain parameters at the
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same time during the solution process. So we separate the consideration into two
stages in MuRO-NIMBUS: pre-decision making and decision making.

In the pre-decision making stage, we first concentrate on robustness, i.e.,
finding a set of robust Pareto optimal solutions. Then we consider the preferences
of the decision maker in the decision making stage. Specifically, we support the
decision maker to direct the solution process towards a most preferred robust
Pareto optimal solution among the ones calculated. As a result, the final solution
selected is robust Pareto optimal and at the same time corresponding to a most
preferred outcome by the decision maker in the nominal case. In addition, the
decision maker is informed of the outcome in the worst case.

We should be aware of the necessity of asking the decision maker whether
(s)he is willing to sacrifice some quality to gain robustness before the solution
process of a problem. Now we can present the overall algorithm of MuRO-
NIMBUS as follows:

1. Pre-decision making
(a) Calculate the set Xrpo with the robust ASF approach. Calculate also the

ideal and nadir objective vectors in the nominal case.
2. Decision making

(a) Classify all the objectives into the class I< of the NIMBUS classification
and solve (7) (by including only the first constraint) to find an initial
nominal nondominated robust Pareto optimal solution xc.

(b) Present the ideal and nadir objective vectors calculated in the nominal
case to the decision maker.

(c) Present the outcomes in the nominal and the worst cases corresponding
to xc to the decision maker. If the decision maker is satisfied, xc is the
final solution. Otherwise, continue.

(d) Ask the decision maker to classify the objectives at the current solution,
i.e., the outcome in the nominal case. Then solve (7) to find a new nominal
nondominated solution and set it as xc and go to step 2(c).

In step 1, the presence of the decision maker is not required. We use the robust
ASF approach which can handle general problems (for example, the weighted-
sum method in [5] assumes the problem to be solved is convex). In addition,
in robust ASF, we apply the idea from [4] to alter the reference points z̄ and
set w accordingly to efficiently obtain the set Xrpo. As for efficiently solving
the scalarized problem and handling the constraints which should be fulfilled
for all the possible realizations of the uncertain parameters, we discretize the
uncertainty set to reformulate (6).

After step 1, we start the stage where the decision maker actively participates
in the solution process. The goal is to find the most preferred solution from the
set Xrpo by considering the corresponding outcomes in the nominal case. As
an inherited advantage, MuRO-NIMBUS only requires the decision maker to
classify the objectives based on the outcome of the current solution.

The decision making stage starts by calculating an initial nominal nondom-
inated robust Pareto optimal solution. Before presenting the initial solution,
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the calculated ideal and nadir objective vectors are presented to the decision
maker to help her/him to have a general idea on the ranges of the values of each
objective function in the nominal case. With this information, when the out-
come corresponding to the initial solution in the nominal case is presented, the
decision maker can have a concrete understanding on its quality. As background
information, the outcome(s) in the worst case is/are also shown to the decision
maker to help her/him to make an informed decision.

As a tool for presenting the solutions to the decision maker, we utilize the
value path visualization (see e.g., [6]). One can also modify some other visu-
alization methods (see e.g., [12]) for this purpose. As said, depending on the
characteristics of the involved uncertainty, there can exist multiple worst cases.
We indicate the information on the outcomes in the worst cases accordingly in
the visualization.

Figure 1 presents the idea of calculating the worst case objective function
values in the visual presentation of a solution. In the figure, we have five different
realizations of the uncertain parameters and the uncertain parameters do not
relate to each other. The outcome in the nominal case is presented as the value
path in the figure in blue. Outcomes with other realizations are presented in
grey. By solving (4), we obtain the individual maxima of each objective in the
uncertainty set as the outcome in the worst case. The corresponding outcome in
the worst case is marked by triangles in the figure. The same idea applies when
the uncertain parameters are related to each other. Instead of single values, we
get ranges of values as the outcomes in the worst cases.

Fig. 1. Outcomes in the worst case (Color figure online)

After having seen the initial solution, the decision maker can classify the
objectives into up to five classes as discussed in Sect. 2 to express her/his
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preferences for a more desired solution. Based on the classification, we solve
the scalarizing problem (7) to find a new nominal nondominated robust Pareto
optimal solution which satisfies the classification best. The new solution is pre-
sented to the decision maker with an updated visualization. The solution process
continues until the decision maker finds the most preferred nominal nondomi-
nated robust Pareto optimal solution.

4 Numerical Example

In this section, we simulate the solution process of the multiobjective ship design
problem [21] to demonstrate the application of MuRO-NIMBUS. The problem
has three objectives: minimizing the transportation cost, minimizing the light
ship mass and maximizing the annual cargo. A detailed presentation of the
problem in the deterministic case is in the Appendix A of [21].

The problem was originally studied as a deterministic problem. In the uncer-
tain version studied in this paper, we consider two parameters which stem from
given intervals: the fuel price and the round trip mileage. The fuel price affects
the transportation cost. The round trip mileage affects both the transporta-
tion cost and the annual cargo. The fuel price can fluctuate for example due
to the change of the energy market situation. The round trip mileage can vary
if the weather conditions change. We treat the values of the two parameters in
the deterministic formulation as their nominal values since they are supposed to
describe the most typical values of the parameters. We implemented the problem
in MATLAB R© and used a build-in solver with MultiStart to find Xrpo.

Before the solution process, we communicated with the decision maker and
she was willing to sacrifice some quality to gain robustness. In step 1 of MuRO-
NIMBUS, we calculated a representative set of 150 robust Pareto optimal solu-
tions with the robust ASF approach and we also calculated the ideal and nadir
objective vectors in the nominal case. Based on our computational experiments,
150 solutions were sufficient for this problem. Then we started the first iteration
of the decision making stage.

Step 2(a). We set the three objectives in I< and solved (7). We found an initial
nominal nondominated Pareto optimal solution from Xrpo.

Step 2(b). We presented the ideal objective vector z∗ = (9.479, 716.3,
0.8534)T and the nadir objective vectors znad = (12.813, 2040.1, 0.372)T in the
nominal case to the decision maker. Their components corresponding to each
objective are also shown in the visual illustration. In the visual presentation, we
used 103 tonne as the unit, i.e., the ideal and nadir values for the light ship mass
was marked as 0.7163 and 2.0401 respectively. To help the decision maker to
quickly read the number, we used a million tonnes as the unit for annual cargo.

Step 2(c). Then we presented the initial outcome to the decision maker as illus-
trated in Fig. 2. In the nominal case, 10.5 pounds/tonne for the transportation
cost, 1090 tonnes light ship mass and the ship can handle 0.58 million tonnes
cargo annually. The outcome in the worst case is marked in the figure. Even
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Fig. 2. Iteration 1 of ship design problem

though one of the considered uncertain parameters affects two objectives, we
had only one worst case because the two objectives are not conflicting with each
other. The decision maker was not satisfied with the solution and wanted to
continue the solution process.

Step 2(d). The decision maker specified her preferences by classifying the objec-
tives and wanted to improve the annual cargo as much as she can while allowing
the light ship mass to be impaired until 1800 tonnes. In the NIMBUS classifica-
tion, this corresponds to: I< = {f3}, I≥ = {f2} with ε2 = 1800 and I♦ = f1.
Based on this classification, we solved (7). As a result, we got a new nominal
nondominated robust Pareto optimal solution.

Iteration 2. We presented the new solution to the decision maker as in Fig. 3.
The transportation cost was 9.51 pounds/tonne, and the light ship mass was 1640
tonnes while the annual cargo was 0.77 million tonnes in the nominal case. The
decision maker observed in the visual presentation that the worst case outcome
of the transportation cost did not degrade as much as in the initial outcome.
Even though she seemed to have a solution whose outcome in the worst case did
not degrade much compared to the outcome in the nominal case, she could not
accept the light ship mass. So she decided to reduce the light ship mass to 1100
tonnes by allowing the transportation cost to increase until 10.9 pounds/tonne
and the annual cargo to reduce until 0.5 million tonnes, i.e., she classified the
objectives as I≤ = {f2} with an aspiration level ẑ2 = 1100 and I≥ = {f1, f3}
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Fig. 3. Iteration 2 of ship design problem

with bounds ε1 = 10.9 and ε3 = 0.5. Based on this classification, problem (7)
was solved to get a new solution.

Iteration 3. We presented the new solution to the decision maker as in
Fig. 4 with 10.59 pounds/tonne for the transportation cost, 1040 tonnes as the
light ship mass and 0.57 million tonnes annual cargo. With this solution, the
decision maker noticed that even though the light ship mass was quite low, the
other two objectives were at the same time approaching her specified bounds. She
also observed that the value of the first objective function has higher degradation
than the previous solution. She understood that she cannot have lower light ship
mass if she is not willing to impair the other two objectives further and decided
to stop. Naturally, if the decision maker is not satisfied, she can continue the
solution process until she finds a most preferred solution.

During the solution process of the uncertain version of the multiobjective
ship design problem, the decision maker was able to consider the outcomes in
the nominal case with guaranteed robustness of solutions. Bearing in mind that
the outcome in the nominal case of her final solution might not be as good
as a deterministic Pareto optimal solution, she could still direct the interactive
solution process towards a most preferred one among the robust Pareto optimal
solutions according to their outcomes in the nominal case. Expressing her pref-
erences by classifying the objectives did not bring her additional cognitive load.
With the visualized information, she observed the outcomes of the solutions in
the worst case in addition to the outcomes in the nominal case. Even though she
could not interfere directly how the outcomes in the worst cases behaved, the
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Fig. 4. Iteration 3 of ship design problem

information was critical for her to make an informed decision. In addition, if the
worst case is realized, the solution the decision maker has would still be valid.

5 Conclusions

In this paper, we introduced MuRO-NIMBUS which is an interactive method
for solving multiobjective optimization problems with uncertain parameters. In
MuRO-NIMBUS, we support the decision maker to find a preferred balance by
interacting in the nominal case but also following what happens in the worst case.
We divided the consideration of the robustness and the outcomes in the nominal
cases into the pre-decision making and the decision making stages. With the two-
stage solution process, the decision maker finds a robust Pareto optimal solution
with a preferred outcome in the nominal case and at the same time, the outcome
in the worst case is also acceptable. In this way, the information provided to and
requested from the decision maker is understandable in MuRO-NIMBUS. The
decision maker can also be easily involved in the interactive solution process
without much additional cognitive load. By providing the information in both
nominal and worst cases, MuRO-NIMBUS supports the decision maker to make
an informed decision. We demonstrated the application of MuRO-NIMBUS with
an example problem.

The development of MuRO-NIMBUS has initiated many avenues for further
research. First, some additional features on the decision making stage can be
developed. We can allow the decision maker to choose whether (s)he would like
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to find a most preferred solution based on the corresponding outcome in the
nominal case (as is done in MuRO-NIMBUS), or in the worst case. This will
allow the decision maker to consider different aspects during the decision making
process. As an essential part to support the decision maker, we can also consider
how to visualize the solutions more effectively. Second, a decision maker might
want to find a robust Pareto optimal solution but with only a limited amount
of sacrifice on the quality. To achieve this, we can study some other robustness
concepts and analyze their properties from the decision making point of view
aiming at finding a good trade-off between robustness and quality.
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tion: Interactive and Evolutionary Approaches. LNCS, vol. 5252. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-88908-3

4. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolution-
ary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5),
773–791 (2016)

5. Ehrgott, M., Ide, J., Schöbel, A.: Minmax robustness for multi-objective optimiza-
tion problems. Eur. J. Oper. Res. 239(1), 17–31 (2014)

6. Geoffrion, A.M., Dyer, J.S., Feinberg, A.: An interactive approach for multi-
criterion optimization, with an application to the operation of an academic depart-
ment. Manage. Sci. 19(4), 357–368 (1972)

7. Hassanzadeh, F., Nemati, H., Sun, M.: Robust optimization for multiobjective
programming problems with imprecise information. Procedia Comput. Sci. 17,
357–364 (2013)

8. Hassanzadeh, F., Nemati, H., Sun, M.: Robust optimization for interactive multiob-
jective programming with imprecise information applied to R&D project portfolio
selection. Eur. J. Oper. Res. 238(1), 41–53 (2014)

9. Ide, J., Schöbel, A.: Robustness for uncertain multi-objective optimization: a sur-
vey and analysis of different concepts. OR Spectr. 38(1), 235–271 (2016)

10. Kuhn, K., Raith, A., Schmidt, M., Schöbel, A.: Bi-objective robust optimisation.
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Abstract. In the last two decades, water consumption in Germany has
been decreasing which causes water tanks and pipes in water distribu-
tion systems to work inefficiently. This paper presents a mathematical
optimization model to optimize water tanks in a water distribution sys-
tem. Due to the hydraulic properties in water distribution systems the
model is a non-convex Mixed Integer Quadratically Constrained Pro-
gram (MIQCP). For problem instances of realistic size, the model can-
not be solved within reasonable time with exact solution methods. We
use different heuristic solution methods to solve the problem, such as
a Simulated Annealing (SA) algorithm, a Shuffled Complex Evolution
(SCE) algorithm as well as a Shuffled Frog-Leaping Algorithm (SFLA).
These methods are combined with a hydraulic simulation to evaluate the
solutions. The results of each method are compared to an exact solution
method and discussed in this paper.

1 Introduction

In recent years, German municipal utilities responsible for the local water sup-
plies are facing an increasing cost pressure. This is caused by several reasons
[12]. One of the main reasons is the decreasing water consumption in Germany
in the last two decades. When building water distribution systems, the planners
forecasted an increasing demand of water in the future and planned the size of
the components accordingly. Due to decreasing water consumption there are now
many components that work inefficiently. For utilities there is great potential to
increase the efficiency and therefore decrease the costs in a water distribution
system. In this paper, the focus is on optimizing water tanks, which means decid-
ing the optimal locations, dimensions and material properties of water tanks. As
the utilities require an accurate solution in reasonable time for this problem, the
challenge is to find a nearly optimal solution in a small amount of time.

Optimizing water tanks is a highly complex task due to their great influ-
ence on the hydraulics in the whole water distribution system. When model-
ing the hydraulics, it is necessary to use non-convex and nonlinear equations,
which make the corresponding optimization models hard to solve. There are a
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few approaches to tackle this problem in the literature. Hallmann and Suhl [9]
present an optimization model which optimizes the planning of water tanks.
The model is solved via a combination of network reduction, piecewise lineariza-
tion and hydraulic simulation. Farmani et al. [8] propose a model which opti-
mizes not only the locations and dimensions of tanks but also pump operation
schedules. To identify the payoff characteristics between total cost and reliability
of a water distribution system, they combine an Elitist Nondominated Sorting
Genetic Algorithm method (NSGAII) with the simulation tool EPANET [14],
that uses an extended time period simulation to compute the hydraulic proper-
ties. Vamvakeridou-Lyroudia [15] uses such a simulation to handle the problem
of optimizing water tanks as well. The simulation is used to determine the inflow
and outflow of water tanks. This information is combined with a Genetic Algo-
rithm (GA) that chooses a new level for each tank. The optimization of size
and location of water tanks is also considered in the work of Kurek and Ostfeld
[11] who present two optimization models that additionally minimize the energy
costs of pumps and optimize the water quality in the system. The two models
differ in the objective function for the water quality. These models are solved via
a combination of a Strength Pareto Evolutionary Algorithm II (SPEA2) and a
simulation. In the work of Zheng et al. [16] an Ant Colony Optimization (ACO)
algorithm is applied to several water distribution design problems. The authors
introduce a novel method to control the convergence of the ACO and show the
efficiency of this method.

Inspired by those ideas, we tackle the optimization model of [9], with a com-
bination of heuristics and hydraulic simulation. In [9] the results indicate that
for larger instances the solution time can be improved. Therefore, in this paper
the optimization problem is treated with heuristics instead of exact optimiza-
tion methods. The paper is organized as follows. Section 2 introduces shortly the
fundamentals of water distribution systems. In Sect. 3 we give a short overview
of the optimization model and then present the application of three different
heuristics, namely a Simulated Annealing algorithm, a Shuffled Complex Evolu-
tion algorithm and a Shuffled Frog-Leaping Algorithm. After introducing these
algorithms, Sect. 4 shows the computational results. The paper closes with a
conclusion in Sect. 5.

2 Overview of Water Distribution Systems

In this section, the basic components and principles of water distribution sys-
tem are described. Water distribution systems are built to transport water from
several sources to different clients. Figure 1 gives an overview of the main com-
ponents in a water distribution system.

The components of the system can be divided into nodes and links whose
different meanings are described as follows. A node can be a reservoir, which is
a natural source of water such as a lake or a river or it may represent a tank,
which can store water and supply water into the system. Nodes can also represent
junctions where some links join together. At junctions water can enter or leave
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Fig. 1. Components in a water distribution system

the system. All nodes have in common that they have a hydraulic head, which
is mainly determined by the elevation of the node. If a node represents a tank,
the hydraulic head is also affected by the water level of the tank. The hydraulic
head of a node is also influenced by the connected links and their properties.
Most links represent pipes through which water flows from one node to another
one. Links can also be valves, which can control the pressure in a pipe or the
amount of water flowing through a pipe. A link may also represent a pump,
which increases the pressure within a link, which is mainly used to transport
water from nodes with a low elevation to nodes with a higher elevation. For
further details of the main components in water distribution systems, we refer
to [13,14] or [10].

3 Solving an Optimization Model for Water Tanks

This section describes shortly the optimization model. The complete version of
the model can be found in [9]. We consider a water distribution system that
can be a completely new or an existing system. The optimization task is to
minimize the costs of all water tanks in the system. Depending on the costs,
the model can decide where to build new tanks, replace or scale up or down
existing tanks. In addition, the dimensions and the material properties of a tank
can be determined. This task is restricted by several constraints. Some of the
constraints control the specific requirements of the tanks and their hydraulic
behavior. There has to be a minimal amount of water in the system to satisfy
the demand of each client at any time and provide the necessary amount of
water for firefighting or any other kind of incident that can occur. Furthermore,
the hydraulics in a water distribution system have to be considered, such as
the volumetric flow through each pipe and the hydraulic head on each node. To
model the hydraulics accurately, we add a nonlinear head loss equation to the
model. This non-convex quadratic equation is introduced for each link to model
the loss of the head within the link. Due to discrete decisions and this equation,
the proposed optimization model becomes a NP-hard non-convex Mixed Integer
Quadratically Constrained Program (MIQCP).
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In [9] exact solution methods to solve the problem are used. When considering
larger instances this may take quite a while. Therefore, we decided to solve the
proposed optimization model with three different heuristic solution methods and
combine them with a hydraulic simulation.

3.1 Simulated Annealing Algorithm

The first algorithm applied to this model is a Simulated Annealing (SA) algo-
rithm. This algorithm imitates the cooling and annealing of metal. When metal
cools, the molecules often align themselves into an energy advantageous struc-
ture. If the cooling process is very fast, the structure may not be optimal. To
achieve a very good structure, a controlled annealing and cooling process can be
used. This process is represented in a Simulated Annealing algorithm. As this
algorithm is known as a very simple, efficient and robust method, it is applied
to the model. More details of this algorithm can for example be read in the
work of Barakat et al. [2], who applied this technique to an optimization model
that determines the optimal structure of a single water tank. In our work the
algorithm is used to find feasible values for the volume of stored water in a
tank and the decision, if a tank should be built or change its size. In Table 1 all
parameters of the SA algorithm are listed. The default values for the starting
parameters were obtained in numerical experiments. Figure 2 shows an overview
of the algorithm.

Table 1. Parameters of the Simulated Annealing algorithm

Parameter Meaning Range Default

s0 Current feasible solution - -

s Solution in the neighborhood of s0 - -

t0 Initial temperature 500–3000 1000

t Current temperature - -

α(t) Function to model cooling process (0.7−0.999) · t 0.98 · t

maxIter Maximal number of iterations
within one temperature cycle

5–30 10

f(s) Objective value of solution s - -

Δ Difference of the objective values
f(s0) and f(s)

- -

exp(−Δ/t) Function to determine the probability of
adopting a solution

- -

tmin Lower bound for temperature as
stopping criterion

- -

The algorithm is initialized with a feasible solution s0 that is provided by a
hydraulic simulation described at the end of this section. We also determine an
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Fig. 2. Overview of the Simulated Annealing algorithm

initial temperature t0, a function α(t) to reduce the temperature within the solu-
tion process as well as a parameter maxIter that defines the maximal number of
iterations within one temperature cycle. In the next step we choose a solution s
in the neighborhood of s0. To find this solution we choose one of the tanks in the
system and vary the parameters of this tank. These are the decisions if the tank
should exist or not, the volume of stored water and the dimensions. After that
we calculate the objective function values f(s0) and f(s) and compare them. If
the objective value of s is better, we choose s as the best solution found so far. If
not, the algorithm can decide to choose this solution nevertheless as the new best
solution. This process is controlled via the function exp(−Δ/t), where Δ is the
difference of the two objective values. If Δ < exp(−Δ/t) holds, the new solution
will replace the old one. This process is used to prevent the algorithm to remain
at a local optimum. Afterwards, we determine a new solution in the neighbor-
hood of the current solution s0. This process is carried out until the maximal
number of iterations within one temperature cycle is reached. After that the
temperature is reduced via the function α(t) and the process is started anew.
This is executed until the stopping criterion is fulfilled. In our implementation
the algorithm stops, when the temperature is less than a predefined level tmin.
The algorithm provides the solution s0, which is the best found approximation
to the optimal solution.

3.2 Shuffled Complex Evolution Algorithm

The second technique is a Shuffled Complex Evolution (SCE) algorithm. The
SCE starts with a set of points constituting a population that is separated into
several equally large complexes. These complexes are allowed to evolve inde-
pendently from each other during reflection, correction and contraction steps.
Within these steps the worst point of a complex is reflected through the con-
structed centroid to find a new and better point. After every complex evolves
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itself, the complexes are shuffled and divided into new complexes again. With
that shuffling, information that was gained within a single complex can be shared
with other complexes. This procedure is performed until some stopping criteria
are achieved. Further details about the general idea of SCE can for example
be found in [2]. The algorithm is based on different concepts, such as cluster-
ing, systematic evolution of a complex of points spanning the space, competitive
evolution and a combination of probabilistic and deterministic approaches, cf.
[6]. The SCE is known to be robust, effective and efficient for a broad class of
problems, even for global optimization problems. Therefore, it is well suited for
the optimization problem presented above.

In our implementation a point is a configuration for all possible tank loca-
tions. Besides the volume of each tank, this configuration defines, whether a tank
should be built, replaced by a new one or change its properties. The parameters
we used for our implementation of the SCE can be found in Table 2. To obtain
default values for the starting parameters numerical experiments were carried
out. An overview of the algorithm can be found in Fig. 3.

Table 2. Parameters of the Shuffled Complex Evolution algorithm

Parameter Meaning Range Default

s Number of points ≥1 -

c Number of complexes ≥1 5

m Number of points in each complex ≥2 7

q Number of points in each sub-complex ≥1 3

α Offspring generated by each sub-complex >1 4

β Evolution steps allowed for each complex shuffling >1 4

tf Probability of removing tanks 0–100 75

imp Required minimal improvement of objective
per iteration

≥0 0.001

maxKimp Maximal number of iterations without
improvement

>0 12

maxK Maximal number of overall iterations ≥0 30

The SCE starts with a feasible initial solution and then generates s = c · m
points. These points are generated by calculating different values for the volume
of the tanks by

Vnew = λ · (maxV − minV ) + minV, λ ∈ [0, 1], (1)

where maxV and minV are the maximal and minimal volume the tank can
contain, respectively. This equation ensures that the volume lies between these
bounds. By a probability of tf , this value is set to 0 to forbid the tank and
remove it from the network.
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Fig. 3. Overview of the Shuffled Complex Evolution algorithm

After a point is created, the algorithm uses a hydraulic simulation described
in Sect. 3.4 and simulates the configuration of the point to check the feasibility.
If it is not feasible, the point is replaced by a new one. This process is carried
out until all points are within the feasible space.

Now, the evolution process of the SCE starts. The SCE sorts the s points
according to their objective function values and divides them into p com-
plexes each with m points. Afterwards, q point of each complex are selected
for a sub-complex according to a trapezoidal probability distribution with the
probability of:

pi =
2(m + 1 − i)
m(m + 1)

, for i = 1, ...,m. (2)

For each sub-complex sc the SCE calculates the centroid for each tank and
carries out the reflection step, where it takes the worst point of the complex and
adjusts each tank configuration by calculating the reflected volume with
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Vnew = 2 · centroidsc − Vold, (3)

where centroidsc is the centroid of sub-complex sc. Now, the algorithm performs
a hydraulic simulation for the new point. If it is not feasible, a mutation step
applies and calculates a new point with new tank volumes by using

Vnew = λ · (maxVsc − minVsc) + maxVsc, λ ∈ [0, 1]. (4)

If this procedure still produces an infeasible solution, the point is deleted and
a correction step takes place. In this step a new point is created and simulated.
The volumes in this step are calculated via

Vnew = −h · λ · Vinit

2
+ Vinit, λ ∈ [0, 1]. (5)

The parameter h is introduced to control the feasibility of the new volume. At
the beginning h has the value of 1 and decreases with each iteration by 0.005.
With that, it can be ensured that the volume decreases step by step and will
finally have the value of the original volume. If still no feasible solution can be
found, the algorithm stops exploring the current complex.

After this process, the SCE compares the function value of the new point
with the old one. If the new value is better, the new point is adopted. Otherwise
a contraction step is performed that calculates new values for each tank with

Vnew =
centroidsc + Vold

2
. (6)

Again, the SCE checks if the calculated solution is feasible and starts a
mutation step and correction step as described before, if the new solution is
infeasible or not good enough. Eventually, the new calculated point replaces the
old one.

The next step of the SCE is to repeat the evolution steps. It returns to the
step of sorting the sub-complexes according to the objective function values and
repeats the evolution steps α times. Afterwards it shuffles the sub-complexes by
creating new ones and starts the evolution process once more. This shuffling is
performed β times.

After that, a whole iteration of the SCE is performed. Now, the algorithm
checks if the results meet the stopping criteria. In this case there are two stopping
criteria. The first uses the parameter imp, which is the required minimal improve-
ment of the objective function value. If the function value does not improve by
this amount after an iteration, there are just maxKimp more iterations until the
algorithm terminates. If the improvement during these maxKimp iterations is
better than imp, this stopping criterion does not longer hold. A second stopping
criterion is the absolute maximum number of overall iterations maxK. When
the algorithm reaches this number of iterations, it will stop in any case.
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3.3 Shuffled Frog-Leaping Algorithm

As a third technique we use a Shuffled Frog-Leaping Algorithm (SFLA). Inspired
by different evolutionary algorithms, which are based on the behavior of animals,
Eusuff et al. [7] developed the SFLA. They use the advantages of group behav-
ior, such as social communication and sharing information. Thus, the SFLA is
based on a global exchange of information, which is carried by a virtual pop-
ulation of frogs. Eusuff et al. [7] make use of biological technical terms, when
they talk about memes as the assigned information each frog contains. They also
explain the difference between genes and memes: Whereas genetic evolution is
mainly needed for a selection because of reproduction, memetic evolution is a
much more faster, flexible and communicative way to spread information among
individuals. Each frog carries its information as a meme, while the information
contained in a whole population can be seen as a memetic vector. During the
algorithm, virtual frogs are leaping through an area, searching for a stone with
the most amount of food, which can be interpreted as searching for the optimal
solution within the feasible space of the optimization problem. In this process,
the frogs are allowed to communicate and making it possible to expand their
knowledge to increase their opportunities for gaining more food. In the algo-
rithm, this idea is implemented by creating an amount of virtual frogs within
the feasible space, ranking them according to their objective function value and
dividing them into so called memeplexes. The memeplexes are comparable to the
complexes in the SCE. The memeplexes develop independently to ensure that
they search in different locations in the feasible space. After a certain number
of evolutionary steps, the frogs are mixed and ranked again to build new meme-
plexes and share their acquired knowledge with new communities in different
regions. The algorithm ends, when one of the stopping criteria is met. Eusuff
et al. [7] describe the general idea of this algorithm in more detail. Like the SCE,
the SFLA is a robust and efficient algorithm, as it examines a broad area of the
solution space. The SFLA has also the advantage that it can escape local optima
and shares information gained in different areas of the solution space. Therefore,
it is applied to the optimization model in this paper.

Similar to the SCE, we start our implementation of the SFLA by defining
some points representing different tank configurations. The parameters that are
used and the default values of the starting parameters can be found in Table 3.
The last four parameters have the same meaning as in the SCE. The assignment
of the default values were obtained in numerical experiments.

The start of the SFLA is similar to the one of the SCE. It begins with
a feasible initial solution and creates s = m · n points and checks them for
feasibility. The volume of each tank of a point is calculated via

Vnew = λ · (maxV − minV ) + minV, λ ∈ [0, 1]. (7)

With a probability of tf , Vnew is set to 0, to close the tank in the model. If a
point is not feasible, it is replaced by a new, randomly generated one. When
every point is feasible, the SFLA separates them into m memeplexes, ordered
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Table 3. Parameters of the Shuffled Frog Leaping Algorithm

Parameter Meaning Range Default

m Number of memeplexes ≥1 5

n Number of frogs per memeplex ≥2 5

q Number of frogs in each sub-complex ≥1 3

maxS Maximal step size ≥0 30

tf Probability of removing tanks 0–100 75

N Number of evolutionary steps per memetic
evolution

≥1 4

imp Required minimal improvement of objective
per iteration

≥0 0.001

maxKimp Maximal number of iterations without
improvement

>0 25

maxK Maximal number of overall iterations ≥0 50

by their objective function value. Now, the SFLA starts the memetic evolution,
which is visualized in Fig. 4.

During the evolution, the memeplexes are sorted in order to their objective
function value. Afterwards, sub-memeplexes are created out of each memeplex,
choosing q points according to the trapezoidal probability distribution with

pi =
2(q + 1 − i)

q(q + 1)
, for i = 1, ..., q. (8)

Now, the SFLA improves every memeplexe’s worst point by letting the point
take a positive reflection-step. It updates the volume with

Vnew = Vold + min{λ · (Vb − Vw),maxS}, λ ∈ [0, 1], (9)

where the value Vb represents the best point’s volume inside the sub-memeplex,
Vw the volume of the worst point of the sub-memeplex and maxS the maxi-
mal step size. The new values are applied, if there are no infeasibilities and the
objective function value is better than the old one. Independent of the feasibil-
ity and objective function value, the SFLA performs a negative reflection step,
calculating the volumes via

Vnew = Vold + min{λ · (Vb − Vw),−maxS}, λ ∈ [0, 1]. (10)

If the negative reflection step produces a better objective function value, this
values replace the values from the positive reflection step. If the original value of
the point is still better than both new values, or if the reflection steps produced
only infeasible solutions, the algorithm starts with contraction steps.

Similar to the reflection steps, the SFLA first performs a positive contraction
step. This is then followed by a negative contraction step. The new volumes are
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calculated by

Vnew = Vold + min{λ · (Vx − Vw),maxS}, λ ∈ [0, 1], (11)

for a positive step and

Vnew = Vold + min{λ · (Vx − Vw),−maxS}, λ ∈ [0, 1], (12)

for a negative, respectively. The value of Vx is the volume of the tank of the best
point, regardless, whether it is within the sub-memeplex or not. With this step it
is possible to profit from information of other regions in the complex. After the
contraction steps, the SFLA checks whether the memetic evolution can produce
a better point. If all steps produce infeasible solutions, or if the steps cannot
find a better solution, the SFLA starts a censor step and replaces the point
with a new random point. The new point is created like the initial points, see
formula (7).

Now, the algorithm picks the next worst point of the sub-memeplex and
repeats the reflection, contraction and censoring steps, until it performed a total
amount of N iterations. After that, one iteration of memetic evolution is per-
formed. Afterwards, the algorithm shuffles the memeplexes, checks the stopping
criteria and starts a new iteration of memetic evolution. Or it terminates and
returns the best point that was found, depending on the stopping criteria.

3.4 Hydraulic Simulation

We use a hydraulic simulation tool to evaluate the solutions of the three algo-
rithms presented above. This simulation tool was developed by our industry part-
ner Rechenzentrum für Versorgungsnetze Wehr GmbH and is based on EPANET
[14]. Like EPANET, the simulation is an extended period simulation and is able
to calculate flows and heads of a water distribution system model during all time
periods. The simulation considers all components that may appear in a water
distribution system such as pipes, pumps, valves, reservoirs and tanks. It is based
on the network structure of the system and divides the components into nodes
and links. Compared to the MIQCP model, the simulation model considers more
details, such as network based rules or water quality properties. However, the
calculated values for the heads and the flows are the same in both models.

In order to calculate the heads and the flows, the mass balance equation and
the head loss equation have to be considered for each node and link, respectively.
There are many different algorithms that can be used to calculate the uprising
system of nonlinear equations. There exist for example the Hardy-Cross method,
the Flow Adjustment algorithm, the Simultaneous Adjustment algorithm and the
method of Todini and Pilati. Details about those methods can be read in [4]. In
our tool the method of Todini and Pilati is implemented. This method is based
on the Newton’s method and the solution time and the convergence rate are
faster than those of the other methods.

After introducing all three heuristics and the hydraulic simulation, we will
show in the next Section the results of the implemented algorithms.
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Fig. 4. Overview of the Shuffled Frog Leaping Algorithm

4 Computational Results

For the computational results we use 23 different network models. These models
have a size of 8 nodes and 10 links up to a size of 932 nodes and 1014 links.
Table 4 shows the properties of the models. The network models are divided into
small networks, indicated with (S ), medium sized networks, indicated with (M )
and large networks, indicated with (L). Networks M06 to M08 and L01 to L04
are realistic networks based on German or Italian cities, while the others are
fictitious. Most networks were provided by our industry partner, while others
are taken from the literature, cf. [5].

Figure 5 shows the average of the computational times of the algorithms. The
tests were performed on an Intel Core i7-3770 processor with 32 GB of RAM and
the time limit was set to 300 min for each algorithm. We used SCIP, cf. [3], to
solve the models in order to compare the solutions to the three algorithms pre-
sented above. All algorithms were started with the same initial feasible solution,
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Table 4. Properties of network models

Name # Nodes # Links # Tanks # Res. Name in literature

S01 8 10 3 1

S02 10 12 1 0

S03 11 12 4 1 Shamir

S04 12 11 8 1

S05 12 11 5 1

S06 14 13 8 0

S07 14 15 7 1

S08 17 16 10 0

S09 18 17 6 1

S10 20 21 15 1

S11 21 20 15 0

M01 27 26 15 1

M02 30 31 10 1 New York

M03 34 38 20 0

M04 42 44 10 1 Hanoi

M05 46 50 15 1

M06 52 73 15 1 Foss Poly 0

M07 56 77 20 0 Foss Iron

M08 86 114 15 3 Pescara

L01 219 250 20 0

L02 300 345 30 2 Modena

L03 916 973 25 1

L04 932 1014 30 2

which is the given network model with predefined parameters for the components
of the network.

It can be seen that the solution time of the SA grows with the size of the
models and is acceptable also for the large models. The results of the SCE
are similar, but solving the smaller network models takes a larger amount of
time than solving medium sized network models. The SFLA shows a different
behavior. Compared to the SA and SCE the SFLA was much faster in finding a
solution for all instances. Taking a look at the results of SCIP it can be observed
that SCIP is faster in solving the very small network models to optimality. For
network model S09 and all following network models, the SFLA was faster in
finding a solution than SCIP. The networks M06 to L04 could not be solved via
SCIP to optimality within 24 h. It seems that the SFLA is superior to the SA,
SCE and even SCIP. But to evaluate the overall performance of the algorithms
we have to consider the quality of the solutions.
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Fig. 5. Comparison of the average computational times of the algorithms

To evaluate the quality of the solutions we divide the network models into
two groups. The first group are models that could be solved to optimality via
SCIP, i.e. network models S01 to M05. The second group are models that could
not be solved to optimality via SCIP, i.e. network models M06 to L04.
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Fig. 6. Comparison of the accuracy of the SA, network models S01 to M05

Figures 6, 7 and 8 show the results of solving network models S01 to M05 with
the SA, SCE and SFLA, respectively. The diagrams show the relative deviation of
the objective values of the three algorithms compared to the optimal objective
values calculated with SCIP. The minimal, maximal and average results are
displayed for each network and each algorithm, which was carried out 50 times
each. It can be seen, that the SA works robust on the optimization model as
the minimal, maximal and average values are close to each other, except for
network model S03 and S05. For most of the networks the accuracy of the SA
is satisfying. However, there are also networks on which the behavior of the SA
is bad. The SCE works also robust, but there are also a few networks where the
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Fig. 8. Comparison of the accuracy of the SFLA, network models S01 to M05

deviation of the average and the minimal value is large. However, in most cases
the results of the SCE are satisfying. The results of the SFLA are similar. The
algorithm seems robust and the results are for most networks satisfactory.

Figure 9 shows the relative deviation of the average objective values of the
three algorithms compared to the optimal objective values calculated with SCIP.
It can be seen that all three algorithms worked quite similar and found in most
cases good solutions. However, there are a few network models for which all
the algorithms performed in a bad way, such as at network S02, S04, S10, S11,
M02, M03 or M04. Comparing the three algorithms it can be seen that for each
algorithm there is a network where the algorithm is superior to the other ones.
In summary, it can be observed that for this group all three algorithms can be
used to find good solutions in a small amount of time.
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Fig. 9. Comparison of the average accuracy of the three algorithms, network models
S01 to M05

In Table 5 the results of network models M06 to L04 are displayed. The
table shows the average of the objective values found by the different algorithms
and highlights the best average solution for each network model. It can be seen
that the SA found in most cases the best average solution value whereas for
four networks SCIP could not find any feasible solution at all after 24 h. The
objective values of the three network models for which SCIP could find a feasible
solution are also far away from the best solution values of the three heuristics.
That shows that it is necessary to use the three heuristic algorithms for larger
network models.

Table 5. Comparison of the accuracy of the algorithms, network models M06 to L04

Net SCIP SA-avg SCE-avg SFLA-avg

M06 10,234,205.9 5,680,080.8 4,850,122.4 7,359,551.7

M07 3,240,196.4 1,132,296.4 7,799,312.4 7,615,791.4

M08 - 1,097,918.0 7,123,101.5 3,395,830.6

L01 - 4,268,256.5 2,124,536.8 2,419,478.2

L02 41,203,988.3 7,982,303.1 16,817,403.7 14,847,193.4

L03 - 1,196,237.6 7,696,012.5 3,844,213.2

L04 - 803,147.5 19,127,777.3 16,538,324.0

In summary, it can be said that the heuristics are needed to solve the problem
as SCIP is not able to solve the models for medium sized or larger instances to
optimality. As the SA is robust, has reasonable solution times and finds satisfying
solutions, the SA can be seen as the best of the three algorithms presented in
this paper.
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5 Conclusion and Future Work

In this work we presented an optimization model to determine optimal locations
and dimensions of water tanks in a water distribution system. As the model is a
non-convex MIQCP and therefore hard to solve, we implemented three different
heuristic solution methods, namely a Simulated Annealing algorithm, a Shuffled
Complex Evolution algorithm and a Shuffled Frog-Leaping Algorithm. All three
algorithms have in common that they use a hydraulic simulation to evaluate the
different solutions within the three algorithms. The computational results show
that all heuristics were able to find good solutions. The comparison with SCIP
shows that it is necessary to use the heuristics as SCIP was not able to find the
optimal solution or even a feasible solution for some of the medium sized or large
networks. The SA and the SCE were the best solution methods regarding the
quality of the objective function values. When considering the amount of time
the algorithms used, it can be seen that the SFLA was the fastest in finding the
solutions. However, we recommend to use the SA as it has reasonable solution
times and satisfying objective values.

In order to improve the performance of the three heuristics we would like
to improve the evolution steps of the SCE and the SFLA in future work. We
found that due to the mutations the solutions were often not in the feasible
solution space. As the SCE and SFLA have several different parameters, the
performance is influenced by the choice of values for these parameters. Even
though, we obtained good parameter settings for the algorithms by numerical
results, we would like to address finding better parameter settings for the three
heuristics in future work. Therefore, we would like to apply a parameter tuner
that is able to find a well suited setting for the parameters by using a genetic
algorithm, cf. [1].
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Abstract. The simulation of dry particle packings and their geomet-
rical properties is of great importance to material sciences. Substantial
acceleration of the simulation can be obtained using parallel hardware
(GPU), but this requires specialized data structures and algorithms. We
present a parallel version of the so-called collective rearrangement algo-
rithm that allows to simulate random close packings of up to several
million spherical particles from an arbitrary particle size distribution.
The empirical time complexity of our implementation is almost linear in
the number of spheres.

1 Introduction

Dry particle mixtures are the basis of materials used in many different fields,
e.g. for concrete, for pills and tablets in the pharmaceutical industry, for casting
moulds in foundries, or powders for 3D printing. Properties of the particles like
shape and size distributions are often crucial for properties of the final material.
Therefore material scientists are highly interested in simulating different aspects
of particle packings before they are tested in the laboratory, see e.g. [12] for an
overview.

Particularly important is the space filling Φ of a close random packing of a
particle mixture, i.e. the ratio of the space occupied by the particles and the
space of a surrounding container needed for the packing of the particles. Particle
mixtures with a high space filling are e.g. used for high performance concrete (see
e.g. [10]), lower space fillings may be desirable to obtain a particular porosity
for filter material.

In this paper we investigate how the space filling Φ(f) of a close random
packing for a given particle size distribution (PSD) f can be determined at least
approximately. Here, the PSD f gives the relative frequency f(r) of particles with
radius r in the mixture for any r > 0. Note that this may easily be transformed
into a PSD that gives the share f(m) with respect to mass m (or volume) as it
is common in material sciences. We restrict ourselves to spherical particles, such
that the mixture is completely determined by its PSD f .
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The run-time of the simulation plays an important role in particular if the
overall aim is to find a mixture (i.e. a PSD f∗) with a high space filling Φ(f∗)
or with a space filling close to a given value. Then the determination of Φ(f) is
just the evaluation step in a more complex optimization problem. If we use some
heuristic search procedure, like genetic algorithms or ant-algorithms to improve
Φ(f), we typically have to evaluate Φ(f) for a large number of randomly produced
PSD f . Therefore it is crucial that the simulation tool for Φ(f) is very fast.

There are some analytical (or semi-analytical) approaches to determine Φ(f),
see e.g. [15], or [7]. However, if we consider a polydisperse mixture with a PSD
f that covers a broad range of particle radii as it is often needed in applications,
then these models seem to be inferior to a computer simulation approach, see
[6] and the discussion therein. Here, simulation means to produce a random
close packing of a sample of particles on a computer where the sample is drawn
according to the given PSD.

Representative samples, e.g. for concrete mixtures, need at least 1015 particles
with radii ranging from 0.01 µm up to 2 mm or more. In [6] a hierarchical
simulation system is introduced that allows to break the PSD into fractions which
can be simulated by smaller samples. The overall space filling of the mixture
is then reconstructed from these partial simulations, including the interaction
between fractions. The bottleneck of this approach is the time needed for a valid
simulation of a single fraction of the PSD.

Our research therefore concentrates on the speed-up of the simulation of a
given sample of spheres. In this paper we report on the implementation of a
packing simulation on the GPU (graphical processing unit) that is nowadays
available as a general purpose processor for standard desktop computers. Due to
the large number of small processors working in parallel, the GPU is able to solve
complex problems in very short time, provided the algorithms are adapted to
the particular structure of the GPU. One important requirement is that all tasks
started in parallel should take approximately the same time as all tasks have to
wait for the slowest one. Also, they should only access data in a contiguous part
of the memory to enable fast loading.

There are different ways to simulate the packing of spheres. If one aims
at simulating a million or more spheres, then more complex approaches that
take into account physical properties of the mixture (see e.g. [2]) are not suited
because of prohibitive run-times. Instead, very simple models of the particles
and their interaction have to be used, the simplest case being spheres with
no other than their geometrical properties. In [1] two basic approaches to a
geometrical simulation of sphere packings are discussed. The first approach adds
the spheres sequentially into a container thus simulating the physical process of
sedimentation. The disadvantage of this approach is that the resulting packing
is not very dense and may even not be mechanically stable [1,11].

The second approach called collective rearrangement (CR) starts with a ran-
dom placement of the sample in a container allowing spheres to overlap. Then a
mutual repulsion of the spheres is simulated that reduces the overlap. The size
of the container is adapted until a valid packing is obtained. This way much
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denser packings can be simulated. There are different variants of this idea [1,5],
the difference concerning the initial size of the container and/or of the particles,
see details below.

In [9] a simulation based on the CR approach of [5] was examined. The most
time consuming step here is to detect overlapping neighbors of a sphere dur-
ing the repulsion step. On the sequentially working standard computer (CPU),
sophisticated data structures had to be used to speed up the process, in partic-
ular a combination of loose octrees and so-called Verlet lists. It turned out that
this structure is not suited for parallel computing as it uses lists with dynamically
changing lengths. We therefore had to develop a completely different approach
for the iterative reduction of the overlaps which is described in detail below.

With this new algorithm, we are now able to simulate a particle packing on
the GPU much faster than on a standard CPU with a quality that is comparable
to the sequential version. E.g., the simulation of 1 million spheres from a typical
PSD that took about 30 h on an up-to-date sequential CPU, now takes less than
1.5 min on the GPU.

We describe our core data structure used to keep the positions of spheres
in Sect. 2. In Sect. 3 we discuss the initial overlapping placement of the sample
in a container and in Sect. 4 we give more details about the collision detection
and collective rearrangement process. In Sect. 5 some experimental results are
reported along with pictures of the packings and their interior produced by visu-
alization tools developed in our group in close cooperation with the simulation.
The final Sect. 6 contains some concluding remarks and an outlook on future
research.

2 An Adaptive Grid as Main Data Structure

We start with an abstract description of the data structure we use to keep the
spheres and their present location in the container. We assume that we are given
a sample of N spheres which we identify with the numbers {0, . . . , N − 1}. For
i = 0, . . . , N − 1, let ri > 0 be the radius and di = 2ri the diameter of the i-th
sphere. We are using a cubic container with side length L0 into which the spheres
are to be packed, for a generalization see below. We assume that the origin lies
in a corner of the container and that Pi := (xi, yi, zi) is the present position of
the center of the sphere i with respect to this origin.

The data structure for the container and the spheres must allow to identify
all possibly overlapping neighboring spheres, and the number of steps necessary
should be about the same for all spheres in order to run efficiently on the GPU.
We therefore use a recursive grid similar to a loose octree (see [9,14]) for the
sphere locations.

We iteratively divide the initial cubic container with side length L0 into eight
sub-containers of equal size as in an octree. On the l-th level, we then have 8l

sub-cells each with side length Ll := L0/2l where l = 0, 1, . . .. We insert sphere
i with diameter di into level l iff

1
2
Ll ≤ di < Ll, (1)
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thus sphere i is inserted on the first level (starting with the top level 0) where
its size would fit into a cell. Sphere i is inserted into that cell that contains its
present center Pi. Note that we do not require that the sphere fits completely
into one of the cells as it would be the case in a strict octree, in this respect the
structure resembles the loose octree.

The index l∗ of the lowest level needed is determined by the minimal diameter
dmin occurring in the mixture, we must have

L0

2l∗+1
≤ dmin <

L0

2l∗
,

therefore l∗ = �log2
L0

dmin
− 1� resulting in a total number of

C(l∗) := (8l
∗+1 − 1)/7 (2)

cells in the grid. If the memory requirement for these cells is too large, l∗ is set
to a reasonable value and all spheres with di < L0/2l

∗
are added to the lowest

level l∗.
Though logically the grid data structure is defined in a recursive way, we use

a non-recursive implementation suited for the GPU. Its central part is a sphere-
cell-list that gives all spheres belonging to one cell. On the CPU, this could
be accomplished by a linked list, but the necessary dynamic memory allocation
can cause massive performance degradation on parallel hardware. There are
two approaches to handle such a list on the GPU. One is to use a bin with a
predefined size for each cell. In order to make this work, there has to be a strict
upper bound for the number of spheres belonging to one cell. When there is no
overlap between spheres, this bound can be derived from the so-called kissing
number, see [14]. But in our case, spheres can heavily overlap with each other
during the collective rearrangement. Hence, no reasonable upper bound for the
number of spheres in one cell is available, therefore the bin approach cannot be
applied without dynamic memory allocation.

The second approach, which we use here, is to build the hierarchical grid
using sorting as described in [3]. First, we keep the N spheres with all their data
in different arrays of fixed length N . The i-th element of the r-array contains
the radius ri (as a number of type float), the x-, y-, and z-arrays contain in
their i-th elements the present position xi, yi, zi of the i-th sphere center and
the c-array contains in its i-th element the number ci of the grid cell the i-th
sphere is presently located in. So the data object ‘sphere’ is represented by a
cut through all these arrays, see Fig. 1 where the data values of sphere no. 6 are
marked.

To enable fast access to all spheres in one grid cell, we then add a copy of
the radius- and the x−, y−, z−arrays which are sorted according to their cell
numbers, such that all spheres residing in one cell fill a contiguous part in each
array. We call these the sorted -r, sorted -x etc. array. We have to add two arrays
of length equal to the number of cells C(l∗). Element k of the first array gives
the index in the sorted arrays where cell k starts and the second gives the index
of the last sphere in cell k. Finally we need an idx -array of length N that for
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each index of the sorted arrays gives the index of the original unsorted sphere
arrays, see Fig. 1 for an example. The hierarchy of the grid cells is also stored in
a linear fashion, so that the grid cell numbers of one level occupy a contiguous
part in memory.

start

end

number

0 0 1 2 2 2 2 3 3 ...sorted-c

1 2 30 5

1 2 30
cell-

cell- 2

20

1

2

2

3

6

7 ...

... ...

i
r

x
y

12 34 5 4 4 26321

1 2 3 4 5 6 7 80

...

...

... ...

...

... 3

5

10

2

...

...

... ...

...

...

...

...

c 0 2 3 0 2 2 31

z

...

sorted-x

34 4 4 232 21 5 16

4 6 7 8

3

5

10 ...

...

... ...

...

... ...

...

...

...

...

...

...

...

sorted-r

sorted-y

sorted-z

5 1 0 6 4 7 2 8 ...idx 3

N − 1 N − 1

4 ...cell-
C(l∗) − 1

Fig. 1. A grid data structure for the GPU. Sphere i = 6 has radius r6 = 4, its center
is located at P6 = (x6, y6, z6) = (10, 5, 3) in grid cell no. c6 = 2. In the arrays sorted
according to grid cells, cell no. 2 starts with the sphere now residing in the sorted entry
no. 3 and ends with the sphere in entry 6. From the idx-array we see that these are
the spheres no. 6, 4, 7, 2. The sorted c-array is not needed in the implementation.

Note that with this data structure we may implement different types of con-
tainers. If the container has a cubic shape its outer walls will coincide with the
boundaries of the hierarchical grid. For non-cubic containers, the grid size L0

must be chosen such that the container fits into the grid, e.g. L0 could be chosen
such that the grid is a bounding box for the container. If we use hard walls, then
all spheres have to be placed completely inside the container, thus placement in
the grid cells at the outer border of the container has to be treated differently
from the ‘inner’ cells, see below. In the case of periodic walls, each container
wall is identified with the opposite wall, such that a sphere that juts out at
one side occupies the corresponding space at the opposite side of the container,
particular care has to be taken with spheres in the corners of the container, see
Fig. 6 below. A periodic container models a spatial unit of a larger space that
is tiled with identical replications of the container. In this case, spheres in the
border grid cells are treated as in all other cells. Note that we may also use a
combination of hard and periodic walls and rather arbitrary shapes of containers
(e.g. cylindrical). The only restriction to the shape of the container is that there
must be an efficient way to determine whether a sphere intersects the wall of
the container and how the sphere must be moved to reduce the intersection to
0. Note that this may rule out some irregular shapes, e.g. with small niches in
the boundary.
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3 Initial Placement

Initially, the spheres are placed randomly in the container. The subsequent col-
lective rearrangement steps need overlapping spheres in order to obtain a dense
packing in the end. Therefore, the initial container size L0 is chosen so small
that most spheres will overlap at least with one of their neighbors. Though it
might happen that there are isolated spheres without any overlap after the ini-
tial placement, they will be overlapped by other spheres after a few steps of the
collective rearrangement as spheres will be pushed into the empty neighborhood
of an isolated sphere.

Fig. 2. The initial placement of a bidisperse mixture in a container with hard walls,
the detail on the right hand side shows that the spheres are strongly overlapping.

We start with an initial container volume L3
0 equal to the net volume of the

spheres

Vs :=
N∑

i=1

1
6
πd3i . (3)

Technically, we use a container of fixed side length L0 = 1 and scale the radii of
the spheres by a factor δ0 such that

Vs(δ0) :=
N∑

i=1

4
3
π(δ0ri)3 = δ30Vs = L3

0 = 1, (4)

i.e. δ0 := −3
√

Vs.
For a random placement of the spheres, the x-, y- and z- arrays are filled with

independent random numbers distributed uniformly over the interval [0, L0] =
[0, 1]. If we use hard walls, we have to check whether the spheres are within
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the walls of the container, otherwise we have to correct the placement. For a
rectangular container, we restrict the random center for sphere i to [ri, 1 − ri]
in each dimension, then i lies within the walls. Similarly, for non-rectangular
containers like cylinders we have to adapt the uniform distribution to the shape.
The only requirement is, that the container fits into the grid.

4 Collective Rearrangement

The collective rearrangement (CR) is the central part of the algorithm. It imi-
tates a repulsion among the spheres and gradually reduces the total overlap in the
packing, but, as long as the container is too small, some overlap will remain. We
determine the average overlap per sphere after each round of repulsion as a mea-
sure for the quality of the packing. If it has not improved for several rounds, the
placement of the spheres has attained some kind of equilibrium for the present
container and repulsion is stopped. Typically, the remaining overlaps (as well as
the remaining free space) are then spread more evenly over the container than
before. Then the container is slightly enlarged and the CR phase with repeated
rounds of repulsion is started again. CR phase and subsequent container enlarge-
ment are repeated until finally the remaining overlap is negligible. This way, the
packing is always a random dense arrangement and is slowly transformed into a
physically valid one. We shall now describe the technical details of the collective
rearrangement on the GPU.

rj

Pj

ri

oijPi

Fig. 3. The overlap of the active sphere i with sphere j.

During a repulsion step a sphere i is taken as active sphere and the displace-
ment vector O(i) is determined for this sphere, i.e. the vector by which i should
be moved in order to reduce its overlap. Let Dij = ‖Pi − Pj‖ be the distance
of the two sphere centers at Pi and Pj . The spheres i and j overlap whenever
Dij < ri + rj . We define the (raw) overlap vector oij of sphere i with sphere j
as

oij := (Pi − Pj)
[ri + rj

Dij
− 1

]+
, (5)

where [a]+ = max{a, 0}, see Fig. 3. oij is the displacement vector that, if added
to Pi, would reduce the overlap with sphere j to zero. Note that oij = −oji. If the
two spheres do not overlap, we see from (5) that oij = 0. However, this overlap
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is not well defined if the two sphere centers coincide as then the denominator in
(5) is equal to 0. Though theoretically this will only happen with probability 0,
due to the limited numerical precision of our calculations, we have to check the
centers before evaluating (5) and, in case they are identical within the precision
used, add a small random displacement to one of the spheres.

As sphere i will, in general, overlap with more than one neighbor, we add a
weight to this raw overlap vector oij that reflects the relative importance the
overlap with sphere j has for sphere i. More precisely, let Ii denote the set of
spheres j that have a positive overlap ‖oij‖ > 0 with sphere i. Let vij be the
volume of the overlap of the two spheres that is given by (see e.g. [13])

vij = a · (ri + rj − Dij)2(D2
ij + 2Dij(ri + rj) − 3(ri − rj)2)/Dij

if |ri − rj | < Dij < ri + rj , i.e. if there is an overlap but neither of the spheres
is completely contained in the other. Here, a = π/12 is a constant that may be
dropped below. If Dij < |ri − rj |, then vij = a · 16min(ri, rj)3 is the volume of
the smaller sphere. Let

Vi• =
∑

j∈Ii

vij

be the total volume of pairwise overlaps that sphere i has with other spheres.
Note that this need not be the exact total overlap as we do not take into account
the overlap of more than two spheres. Then vij/Vi• reflects the relative impor-
tance the overlap with sphere j has for sphere i. As we want to move both
overlapping spheres away from each other by half of their overlap, we use as
final displacement vector O(i) for sphere i the sum of all weighted overlap vec-
tors divided by 2:

O(i) =
1
2

∑

j∈Ii

vij
Vi•

oij , i = 0, . . . , N − 1. (6)

Technically, all spheres are becoming active spheres in parallel and therefore
also the calculation of the vectors O(i) must be done in parallel. Each sphere i
has its own GPU thread that compares i to all spheres j with larger or equal
radius rj ≥ ri and collects the overlaps.

The thread of sphere i first compares i to spheres j with equal radius and adds
the vector 1

2vijoij to the i-th element of a displacement array O≥, see Fig. 4.
O≥ consists of three arrays of length N that hold the x-, y- and z-components
of the vector. Also, the volume vij of the overlap is added to the i-th component
of a volume array V≥. Sphere i is then compared to spheres k with larger radius
rk > ri. The resulting weighted overlap 1

2vikoik and vik are also added to the
i-th components of O≥ and V≥, respectively.

The displacement 1
2vkioki = − 1

2vikoik should also be given to the larger
partner k of this overlap, but if we try to write this to the k-th components of
O≥ and V≥, this may collide with other threads from spheres m with rm < rk
that also have some overlap with k and are active at the same time. These
operations therefore have to be sequentialized by making them atomic which
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slows down the process as many threads might have to wait. In order not to
degrade the overall efficiency of the repulsion, these write operations do not
access the arrays O≥ and V≥. Instead we use additional arrays O>, V> and
add − 1

2vikoik to the k-th component of O> and vik to V>. Though some of these
write operation may have to wait, the access to O≥ and V≥ is not affected, as
there the i-th component may only be accessed by the thread of sphere i, see
Fig. 4 for an illustration.

After all spheres i have been compared in this way to all other spheres j with
rj ≥ ri, we add component-wise

O≥ = O≥ + O>, and V≥ = V≥ + V>,

then the i-th component of V≥ is equal to Vi•, by which we then divide the i-th
entry of O≥ to obtain O(i) as defined in (6).

kij oij

oik

. . . N − 10 . . . i . . .

O>
k. . . N − 10 . . . i . . .

O≥
k

−1
2vikoik

1
2vikoik1

2vijoij

Fig. 4. Sphere i overlaps sphere j with ri = rj and sphere k with ri < rk. The
(weighted) overlap vikoik of the active sphere i with a larger sphere k is shared equally
between the two spheres i and k. The overlap vijoij with a sphere j of equal size is
only registered for sphere i. Access to array O> is shared by several threads and must
therefore be sequentialized by so-called atomic operations.

Finally, the total displacement vectors O(i) are added to the positions Pi

in the original unsorted vectors (using the idx-arrays introduced above). The
repulsion step is completed by correcting the new positions Pi + O(i) in case
wall restrictions are violated. Then a new repulsion step can start with the new
sphere positions.

Note that we compare each sphere only with spheres of the same or larger
radius as suggested in [14]. This prevents visiting pairs of spheres with different
radii twice. Only those pairs with equal radii will be visited twice, once when i is
the active sphere and once when j is active. This is the reason why in this case
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the overlap 1
2vijoij is written only once to the i−th components of the overlap

array O≥.
We do not need to check spheres for collision that are too far away from the

active sphere i. Therefore we may restrict the search to certain cells of the grid.
We first check the spheres on the grid level l(i) on which i is stored. From the
definition of the grid in (1) we see, that on this level only spheres from cell ci,
in which sphere i resides, and the 3 × 3 × 3 − 1 = 26 cells surrounding ci can
have a positive overlap with i and from these only the ones with radius at least
as large as ri are considered. Then, we only have to check spheres from cells on
the next upper level l(i) − 1 as spheres on levels > l(i) have a radius smaller
than ri. Again, only spheres from the cell on that level that contains ci and its
26 neighbors have to be searched and the same applies to all levels up to the
uppermost level l = 0. Note that there is a slight deviation from this for the cells
on levels 0 and 1 and for cells at the boundary of the container in case we have
hard bounds, as these cells have less than 26 neighbors. The important fact here
is that we move through the tree upwards which results in a very limited number
of cells that have to be searched to detect all overlaps. Using the sorted arrays
introduced above, all spheres in a cell (i.e. their present position and radius) can
be easily accessed in parallel.

As mentioned above, for non-overlapping spheres as they were used in [14],
the so-called kissing number bounds the number of possible collisions of a sphere
with spheres of equal or larger radius. In our case, where spheres may overlap,
there is no strict limit to the number of spheres to be checked. In our experiments
however (see Sect. 5), we typically found 30–40 spheres in each cell. Therefore,
the number of neighbors that actually had to be checked for overlap was less than
this number times the number of neighboring cells, i.e. less than 40 × 27 = 1080
in most cases, as it is desirable for parallel processing.

During the collection of the overlap vectors, we also sum up the pairwise
overlaps ‖oij‖ to determine the average overlap per sphere as a measure for the
quality of the present packing.

The repulsion steps are repeated until the average overlap stops improving,
then a collective rearrangement phase is considered complete and the (relative)
size of the container is enlarged by a scaling of the sphere radii. The present
scaling factor δk, k ≥ 0, (see (4) for δ0) is changed from δk to δk+1 := (1 − α)δk,
i.e. the spheres are shrinked by 100α percent, resulting in new empty space
between the spheres which is then filled during the next repulsion step. α is
depending on the present average overlap and is reduced during the process to
avoid spheres without any overlap.

CR phase and shrinking of spheres are repeated until the remaining average
overlap seems negligible. Then the spheres may be enlarged again to produce new
overlap and the whole process may start from the beginning taking the result
of the preceding stage as a starting placement. This may be repeated several
times resulting in a very dense packing that is in good accordance to laboratory
results with real mixtures, see Sect. 5 below.
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Let us close this section by noting that the sequential version of the rear-
rangement seems physically more correct than the parallel one. In the sequential
procedure, for each single active sphere i the overlap with its neighbors at their
present position is determined and i is then moved to its new position. After
that, the next sphere becomes active and is moved using the possibly updated,
valid position of its neighbors. The parallel rearrangement step, however, takes
into account the position of all neighboring spheres before the joint rearrange-
ment takes place. Therefore, a sphere may move away from a neighbor which
itself moves to another direction due to its overlap with other spheres. This
‘error’ is made up for by sharing the displacement between the pairs of overlap-
ping spheres and by the large number of repetitions we can afford with parallel
computations.

It might though happen that spheres start to oscillate during the iterations.
Such situations have to be handled similarly to constellations where sphere cen-
ters get too close together.

Fig. 5. The final packing of the mixture Bidisperse2 of Fig. 2, the detail on the right
hand side shows that overlaps have vanished during CR.

5 Experimental Results

First we checked the quality of the simulated packings. We compared the sim-
ulated space fillings with laboratory results for 6 different mixtures of glass
spheres, Table 1 shows that except for the mixture Bidisperse1, simulation was
very close to the real values.

Let us look more closely at mixture Bidisperse2, it consists of spheres with
two different radii: 40.36% of the mass of the mixture have radius 0.940 mm and
59.64% have radius 6.003 mm, see [6] for details of the other mixtures. Figure 2
shows an initial placement of a sample of 50,000 spheres of Bidisperse2 in a
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Table 1. Simulated and real space filling of six different mixtures named “Fuller1”,
“Fuller2” etc. Laboratory results are means from seven repetitions, the relative error
is defined as (laboratory - simulation)/laboratory.

Mixture Fuller1 Fuller2 Fuller3 Bidisperse1 Bidisperse2 Tridisperse

Laboratory 0.7158 0.7530 0.7899 0.6950 0.7591 0.6953

Simulation 0.71722 0.7652 0.7901 0.7231 0.7541 0.6955

Rel. error −0.00198 −0.01620 −0.00025 −0.04043 0.00658 −0.00028

Fig. 6. The final packings of samples from a cement mixture with periodic boundaries,
the left hand picture shows a 1 million sample, the right hand side a 10 million sample.

container with hard walls. The overlap, that can be seen in this figure, is reduced
by the parallel CR algorithm until a valid packing is obtained as shown in Fig. 5.

For this mixture, the former sequential version of the CR algorithm resulted
in a space filling of 73.25% (relative error −0.03504 compared with the laboratory
result) after a run-time of 560.16 s on a Intel Core i7-6700 CPU. The run-time
for the parallel version was 26.27 s on a GEFORCE� GTX 1070 GPU with a
relative error of only 0.0065 (see Table 1). So the parallel version in this case is
more than 20 times faster and more precise.

The next example is a cement mixture as it is used in real concrete with radii
ranging from 0.04 µm to 83.89 µm. In this case the simulated space filling of
86.25% is much higher than the real space filling (around 73%), as our simulation
at present does not take into account the agglomeration of small particles that
tend to form ill-shaped agglomerates decreasing the overall space filling of the
mixture. A way to simulate this on the sequential CPU is described in [8].

Nevertheless, we use this mixture to demonstrate the speed-up of the simu-
lation with the GPU for samples of larger size. The left hand picture in Fig. 6
shows the final packing of 1 million spheres drawn from the cement PSD in a
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container with periodic boundaries. The space filling was 86.4178%. The period-
icity of the container walls is clear to see, spheres that jut out from the container
on the rear sides take up space on the opposite front sides. The right hand side
of Fig. 6 shows a packing with 10 million spheres from the same PSD with a
space filling of 85.7916%. The different simulation results for 1 and 10 million
indicate that a sample of 1 million is probably not representative for that highly
polydisperse PSD.

Fig. 7. A visualization of the internal overlaps for the 1 million cement sample. The
left hand picture shows a detail of the lens-shaped overlaps in the initial placement,
the right hand picture shows all remaining overlaps near the end of the CR process.
This picture also reveals that the sample contains a huge sphere in the middle with a
large number of small spheres still having small overlaps with the big one.

The CR process for these samples can be visualized with the tools that are
developed in a companion project to our simulation (‘Virtual Microscope’, see
[4]). Figure 7 shows how the overlaps vanish during the CR process.

The run-time for the simulation of the 1 million sample with the sequential
version of the program took 134 131 s which is more than 37 h. The parallel version
on the GPU yielded the same space filling in 83 s, i.e. the parallel version is 1616
times faster than the sequential version. The run-time of the sequential version
increases rapidly with an increasing number of spheres, whereas for the parallel
version the increase is quite moderate. Figure 8 shows the average run-times for the
first repulsion step for different number of spheres. Though the time complexity
of this step is inherently quadratic (each sphere has to be compared to every other
sphere), our algorithm allows an almost linear complexity on the GPU.

Sample sizes for the GPU are therefore limited not so much by the run-time
of the simulation but by its memory requirements. Simulation (and visualization)
on our GPU GEFORCE� GTX 1070 (8 GB memory) can handle up to 10 million
spheres.
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Fig. 8. The run-times of a repulsion step are almost linear in the number of spheres.

6 Conclusion

The GPU can be used to speed-up simulation of large particle samples con-
siderably. For the collective rearrangement algorithm that generates particu-
larly dense packings, data structures and displacement of the spheres had to be
redesigned in order to make full use of the parallel capacity of the GPU. Though
the parallel version of the collective rearrangement is even less similar to the
physical process of particle packing than the sequential version, the results are
at least as good in much shorter time.

Future research will concentrate on non-spherical particles that are con-
structed from a rigid collection of smaller spheres. The GPU will allow to increase
the number of such particles in a simulation and to obtain more realistic results.

Also we will extend the cooperation with the visualization co-project (see
[4]) to get more insight into internal processes during rearrangement.
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Abstract. A parallel hybrid Monte Carlo/Molecular Dynamics coupled
framework has been developed to overcome the time scale limitation
in simulations of segregation of interstitial atoms in solids. Simulations
were performed using the proposed coupling approach to demonstrate
its potential to model carbon segregation in ferritic steels with a single
dislocation. Many simulations were carried out for different background
carbon concentrations. This paper is a first step towards understanding
the effect of segregation of interstitial atoms in solids and its influence
on dislocation mobility in external fields. To this end, we carried out
MD simulations, where shear forces were applied to mechanically drive
screw dislocation on configurations with segregated carbon atoms. The
results are compared with a reference system containing homogeneously
distributed carbon atoms where the influence of segregated carbon on
dislocation mobility could be observed. Simulation results gave quali-
tative evidence that the local concentration of interstitial solutes like
carbon provides a significant pinning effect for the dislocation.
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1 Introduction

Macroscopic quantities like yield strength in crystalline metallic materials are
governed by mechanisms occurring on atomistic length scales, e.g., solute seg-
regation. Increased yield strength due to retardation of dislocation mobility in
strain aged steel samples is attributed to the hindrance induced by segregated
interstitial solutes like carbon (C) [1], which is an important alloying element
in ferritic steels and which form a so-called Cottrell atmosphere around dislo-
cations. Wilde and co-workers provided the proof of Cottrell atmospheres from
an experimental standpoint using a 3D reconstruction technique [2]. Some of
the earlier theoretical models proposed by Zhao et al. [3] extending the Cottrell
theory towards carbon atmosphere formation in ultra-low carbon steels during
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strain aging. The theoretical model further included fluctuations in carbon con-
centration, saturation at dislocations, and carbon segregation to grain bound-
aries. Later, it was compared with strain ageing experiments and an increase
in carbon segregation to grain boundaries with decreasing grain size could be
observed. In one of their later works [4], two types of carbon atoms were men-
tioned participating in the Cottrell cloud-defect interaction. The first type refers
to atoms located below the dislocation line and which are tied to the dislocation
having lost the ability to freely move, whereas the second type of atoms refers
to atoms approaching the dislocation with the capability to pin it. Waterschoot
et al. [5] performed experimental studies to observe strain ageing in the dual-
phase steel and different classified stages such as Cottrell atmosphere formation,
precipitation of existing solutes and the contribution from the martensite phase.
Berbenni et al. [6] performed static ageing uniaxial strain tension experiments,
and simulated bake hardened and homogeneous strain-hardening curves using
the micromechanical approach for aluminum-killed bake hardened steel samples.
However, the representative volume element (RVE) model used in the simula-
tions consider linear elastic and isotropic assumptions for every single crystal
in the model. Further, the authors included various physical parameters such
as dislocation density, initial carbon content, the volume fraction of clusters in
their micro-mechanical model to predict the macroscopic behaviour of different
pre-strained samples.

To observe the elementary mechanism in great detail, we need atomistic sim-
ulations, while it is tedious to track the contribution of a single Carbon atom or
clusters of carbon in pinning the individual dislocations using experimental stud-
ies. For atomistic modeling, we need more insight into the single crystal before
reaching polycrystals with the higher dimensional defects. Khater et al. [7] per-
formed MD simulations to estimate the local stress exerted on the dislocation
due to the carbon atoms. A single carbon atom is placed at different octahedral
sites and its interaction with the edge dislocation gliding in the {1 1 0} and
{1 1 2} slip planes is calculated. Introducing carbon atoms in the iron matrix
causes tetragonal lattice distortion and certain tetragonal distortion axes which
show a strong modification in the local lattice friction. The computed stresses
are later used to describe the interaction strength on the continuum level. Some
of the earlier works in the past [8–10] developed an MD-MC coupling approach
to overcome the time scale limitation of the rare event physics, i.e., segregation.
Those approaches, however, considered several assumptions such as biased sam-
pling, localised trial move, pre-computation of binding energies or saturation-
limit assumption and therefore they are problem specific. In the present work,
we overcome those limitations to model interstitial solute segregation in sin-
gle crystalline metallic materials. We present an application example of carbon
Cottrell atmosphere formation in ferritic iron with the major emphasis on the
investigation of the influence of Cottrell cloud on dislocation mobility. Also, the
role of carbon local concentration on dislocation pinning is investigated using
MD simulations.
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The modeling of the segregation process by atomistic simulation methods,
e.g., molecular dynamics (MD), in large systems is a particularly challeng-
ing problem. Since the diffusion activation energy for C in Fe is larger than
100 kJ/mol, diffusion at room temperature and below is a rare event compared to
the timescale of a typical MD simulation, which is governed by time steps in the
order of femtoseconds. Therefore a large number of atom oscillations is needed
in a local environment until an energy barrier crossing takes place. Considering
the complexity of a system including its chemical environment and strain field
due to crystal defects these processes cannot be explored with traditional deter-
ministic methods. In principle, the same applies to local Monte Carlo methods,
which might also lead to confinement of solute atoms to a local energy basin for
a large number of trial moves. As a solution, we propose a coupled framework of
MD and Monte Carlo using virtual atoms (V) to model interstitial solute segre-
gation in a crystal with arbitrary defects. Non-local trial moves are performed
which sample configuration space more efficiently and which can overcome local
energy barriers. The approach is valid for interstitial atoms in solids, and it is
demonstrated to work for carbon segregation in ferritic iron including screw dis-
locations. Upon randomly sampling the simulation domain without introducing
any bias, the results for T = 0 K simulations show a high carbon concentration
near the dislocation core, i.e., the formation of a Cottrell atmosphere, which is
observed in experiments [2].

Z [ 0 0 1 ]

X [ 1 0 0 ]

Y [ 0 1 0 ]

virtual atom at an octahedral site

Fe atom

X [ 1 0 0 ]

Y [ 0 1 0 ]

Top view

3D view

Fig. 1. A 3D perspective projection of a bcc unit cell showing ‘Fe’ atom and ‘virtual
atom’ (blue) introduced at all the octahedral site. Also, the XY plane (top view) is
shown further for clarity. (Color figure online)

2 Method

We apply a hybrid formulation of Molecular Dynamics (MD) or Molecular Stat-
ics (MS) for T = 0K and Monte Carlo (MC) simulation protocols. The link
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between MD and MC is achieved using virtual atoms. These correspond tech-
nically to pseudo-atoms located at all octahedral sites in the host crystalline
matrix, i.e., α-Fe. First principles studies show that interstitial solute elements,
e.g., carbon, diffuse to or prefer to stay at octahedral sites, as they are energet-
ically favorable to achieve a minimum energy configuration. The idea of virtual
atoms is illustrated in Fig. 1), where iron atoms (grey) are located at lattice sites,
whereas virtual atoms (blue) and carbon atoms (green) are located at octahe-
dral sites. The sampling of configuration space is performed by interchanging an
interstitial atom with a virtual atom in the system via stochastic selection rules.
Therefore, one has to consider the coupled events in two sub-volumes, Ω1 and
Ω2. In general, this exchange results in a non-equilibrium configuration which,
for 0 K simulations, is relaxed in a subsequent step via molecular statics. After
having relaxed the structure, the new configuration is accepted, if the energy
difference between the two states is negative, i.e.

δE = E{Ω1, 1 → 2} + E{Ω2, 2 → 1} − E{Ω1, 1} − E{Ω2, 2} < 0 (1)

where E{Ω1, 1 → 2} means the energy in sub-volume Ω1 after relaxing to a
new minimum energy state if the center atom in Ω1, e.g., a solute atom, has
been replaced by the center atom of Ω2, e.g., a virtual atom (consequently,
E{Ω2, 2 → 1} is the opposite process in sub-volume Ω2). Ω1 and Ω2 are chosen
randomly for a trial exchange of an atom. In principle, the sub-volumes are
also allowed to overlap and consequently, the energy difference, Eq. 1, has to
be computed for a connected region. This trial exchange can be considered as
a 1-step limiting case of a switching process, which is performed in discrete
steps [11–13]. According to a T = 0K energy minimization, the trial state is
accepted if the energy in the new combined state is lower than in the old state.
Accordingly, the configuration is explored towards the minimum energetic state
of the system, although it is quite probable that the absolute minimum is not
reached and the system is confined to a local minimum. This behavior is quite
tolerable as a physical system will most probably also not reach the absolute
minimum, due to the diffusive process of atoms which will also be captured in
local minima. Therefore the method can reproduce real trends of system behavior
and compute statistically significant density distributions of diffusive atoms.

Since local trial moves of atoms will most probably lead to high rejection
rates due to large energy barriers between neighbored energy basins, the idea
is to propagate the system via non-local moves, which explores configuration
space more efficiently. However, since completely random trial moves of atoms
will most likely result in unfavorable locations and therefore are most likely to
be rejected, the present approach relies on so-called virtual atoms. These are
placeholders, which are located at interstitial positions in the lattice and which
have an asymmetric interaction, i.e., they are influenced by the interaction with
the material atoms, e.g., Fe atoms, but in turn, they do not influence the material
atoms, i.e., there is no force from the virtual atoms to the material. Therefore,
they follow any lattice configuration changes, e.g., deformation, consistently, but
do not affect the configuration by their presence. In this way, when interstitial
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atoms are exchanged with a virtual atom, they are placed in a position, which
is already near to local equilibrium, and the number of relaxation steps after an
atom swap gets minimal.

3 Parallelization

To deduce some direct relationship between the atomic scale mechanisms such
as carbon-segregation, carbon-dislocation pinning, retarded dislocation mobility
which influence macroscopic material behavior (e.g., improved yield strength)
large scale (multi-million atoms) atomistic simulations including defects and
interstitial solutes are required. Large-scale simulations are necessary for this
type of systems to reduce artifacts, originating from finite system size and bound-
ary conditions to a minimum. In fact, every swap trial move of C-V atom pairs
are followed by a relaxation procedure of all atoms in the sub-volumes Ω1, Ω2

for about 103 MS steps. For the present case, the sub-volumes have a radius of
2 nm, corresponding to about 2 × 104 atoms in each Ω1,2. For the Monte Carlo
scheme, O(106) trial moves are to be performed to reach a steady state con-
figuration and therefore, requirements in CPU time for this type of simulation
are rather high. Consequently, parallelization is one efficient way to reduce the
time-to-solution considerably. The main approach for the parallelization men-
tioned in this article refers to the coupling between a local MD and MC (as
highlighted as a blue region) in Fig. 2 which takes a configuration from, e.g., a
global MD simulation, as a starting configuration, performs an MC/MD coupled
minimization of the solute atoms and finishes with a configuration, which might
be used for post-processing or as a new starting configuration for a global MD.

For the parallelization, a manager-worker approach is chosen considering the
performance and the complexity of physics to be simulated. A graphical illustra-
tion is shown in Fig. 3, explaining the overall work-flow of the implementation.
For simplicity, one manager and four worker processors are considered here for
schematic illustration. A work/job-queue (J1–J4) as shown in Fig. 3, is created
by the manager and each item in the queue is related to a processor, associated
with a pair of atoms, i.e., a virtual atom (V ) and an interstitial carbon atom (I)
that are chosen randomly for the corresponding MC step. Each job-ID in the
job-queue maps to the MC step number and the worker processors flag a request-
message to the manager. The manager owns a copy of all the coordinates of the
system and sends appropriate information to the processors (Fig. 3 a: job alloca-
tion), i.e., transfer of information about which atom pair (I, V ) to exchange as
well as transfer of all coordinates {x(ΩI)} and {x(ΩV )} of atoms which belong
to a spherical environment of radius Rc with a total volume ΩI,V (p) = ΩI ∪ ΩV

on a processor p. Energy computations are performed for the constructed spher-
ical sub-domains using local-MD at the worker, i.e., each worker transfers the
coordinates of atoms to an MD routine, which is executed locally on the same
core, which is associated to the worker (no further communication is invoked).
Worker processors post a finish-message asynchronously to the manager pro-
cessor immediately upon completion of the task. Completed job information is
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updated in the job-queue (Fig. 3b: job retrieval) and where it is stored, until it
can be decided if there were any spatial conflicts with other sub-domains, which
were overlapping during the computation, resulting in a possible rejection of
configurations. A new job is assigned to the worker processor instantaneously
after retrieving the earlier finished job. After a certain time, the processors will
run completely asynchronously due to runtime differences on the processors and
differences in work allocation so that the manager is continuously retrieving
information from and sending information to the workers.

           Global
    Molecular dynamics

Global MD code is massively parallel, IMD 

Part to be parallelized

initial configuration

final configuration

Fig. 2. Schematic showing the interface between global MD and MC-local MD coupling
schemes. Modules to be parallelized are highlighted in a blue window. (Color figure
online)

The atom swap together with the molecular statics calculation is performed
on a given processor ‘p’ and the evaluation of the energy difference, Eq. 1, is sent
back to the manager. In case that δE < 0, also the coordinates are sent back
to the manager. Since many processors are working asynchronously in parallel
and independently from each other, false overlap between interaction ranges
can occur, i.e., ΩI,V (pi) ∩ ΩI,V (pj) �= ∅, which risks that the outcome of the
processor which is at a later position in the work queue would depend on the
outcome of the other processor earlier in the queue. Such possible scenario is
illustrated in the schematics (Fig. 3), where MC step number ‘1’ and ‘3’ showing a
spatial overlap, whose spherical domains are executed concurrently on the worker
processor ‘W-3’ and ‘W-2’ respectively. Therefore, the manager has to analyze
any possible overlap between regions, administrated on different processors and
has to decide whether a trial configuration, which has been accepted on the
worker level, has to be rejected on the manager level. The convention which we
follow here is the following: if two processors which have been assigned a job ID
‘i’ and ‘j’, such that (i < j) show an overlap between their sub-volumes, and if on
both processors the trial configurations would have been accepted (i.e., δEi < 0
and δEj < 0), then the configuration corresponding to the larger job-ID (in this
case j) would be discarded. If we denote with a(i) an acceptance and with r(i)
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rejection of the trial configuration on processor i for the case of two processors,
there are four different possible scenarios: (i) {r(i), r(j)}; (ii) {a(i), r(j)};(iii)
{r(i), a(j)};(iv) {a(i), a(j)}. It is only in case (iv) that configuration j has to be
discarded, although having reached a lower energy state locally on the worker
processor.

It is evident that the higher I-concentration or, the larger the processor
count, the more likely false overlap takes place [15]. This situation has been
analyzed experimentally and analytically, and it was found that for homogeneous
distributions of carbon interstitials with a concentration of nC = 0.01wt% in
a system of NFe = 106 iron atoms, the scalability gets up to ≈60 processors.
The realization of larger processor counts will be possible when introducing
hybrid schemes, where the relaxation for each Ω is done on sub-partitions of the
computing system.

4 Application, Results and Discussions

A defect-free ferritic single crystal box is constructed with Fe atoms. Vir-
tual atoms are introduced at all octahedral sites, and the box measures
600 Å × 300 Å × 69.25 Å along X, Y and Z direction respectively. A single screw
dislocation is introduced using an analytical equation, such that the dislocation
core locates at X = 150 Å and Y = 150 Å and the dislocation line runs parallel
to the Z direction. (see Fig. 4). An in-house code is used to randomly introduce
carbon atoms in the system to achieve the required background concentration.
This code chooses random virtual atoms and turns them into C, as long as
the desired concentration is achieved. Such random selection of virtual atom is
necessary to assure that there is no systematic bias included in the initial con-
figurations. And the configuration is relaxed using Molecular Statics (MS) to
achieve a minimum energy configuration. IMD [16], a highly parallel and scal-
able classical MD package is used in this work for all Molecular dynamics (MD)
and MS simulations.

The simulation box is completely periodic along the Z direction, as the dis-
location line is parallel along Z direction and fixed along X and Y direction.
Therefore, boundary walls of thickness 10 Å are constructed along X, Y direc-
tion and the mobility of atoms belonging to these boundary zones are completely
restricted. And the crystal orientation reads X = [−1 2 −1], Y = [−1 0 1] and
Z = [1 1 1]. To demonstrate the applicability of the method, a hybrid MD-
MC scheme has been applied to the above described Fe-C system, consisting of
NFe = 1.07×106, NV = 2.88×106 virtual atoms and different number of carbon
atoms for varied background concentrations namely 0.0025 wt.%., 0.005 wt.%.,
0.01 wt.%., 0.015 wt.%., and 0.02 wt.%. Starting from a homogeneous distribu-
tion of carbon atoms (for example, see Fig. 4), a parallel hybrid MD-MC scheme
is applied to model C segregation process in the presence of crystal defect like a
dislocation. We used an embedded atom method (EAM) [17] to define the atomic
interactions and a recently improvised FeC potential from Becquart group [18]
by Veiga et al. [19] used in this work.
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Fig. 3. Schematic illustrating how manager processor sample the whole computational
domain through sphere constructions of randomly chosen carbon and virtual atom for a
swap type trial move. During each MC step two spheres are constructed and shown with
the corresponding step number. Corresponding jobs are assigned to free workers who
post a message to the Manager during a MPI Probe [14] call. Workers list containing
different job ID’s is shown as an example. (3a) Job allocations from manager to worker
processors. (3b) Job retrievals from worker processors to manager.
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Fig. 4. An example simulation box set up used for modeling C segregation using the
proposed hybrid MD/MC coupling approach linked via virtual atoms. The orthogonal
simulation box spans 60 nm × 30 nm × 6.9 nm along X, Y and Z. A positive screw
dislocation is introduced at the coordinates (X = 15 nm, Y = 15 nm). Carbon atoms
are randomly introduced to achieve some required background concentration and the
distribution is qualitatively homogeneous.

To demonstrate the capability of this scheme, 5 × 105 MC steps are per-
formed on different start configurations with varying background concentration
of C atoms at T = 0.5 K. At each MC step, efficient energy computation is per-
formed in a MD external library, used for fast computation of energies of given
configurations. The MD library was initially made for finite temperature simula-
tions but was applied in the present work for micro-mechanics calculations at the
ground state. To exploit the advantage of fast energy computations in the exter-
nal library, the simulations are performed at T = 0.5 K with negligible thermal
contributions and therefore needing no further adjustments of the algorithms.
A systematic trend in the increase of C concentration is observed near the dis-
location core for various configurations with a different global concentration of
carbon. Atomic weight concentrations of carbon atoms are computed for different
output configurations after 5×105 MC steps using an in-house visualization tool
‘AtomViewer’. C atoms within the radius of 15 Å are considered for calculating
the concentrations. Such concentration profiles of C atoms shown are shown in
Fig. 5 (Left), along with the carbon Cottrell atmospheres Fig. 5 (Right), for sim-
ulation boxes with different background concentration of C atoms in the order
0.02 wt.%, 0.015 wt.%, 0.01 wt.%. and 0.005 wt.%. (Top to Bottom in Fig. 5)
respectively. It is observed that higher C concentration near the dislocation core
with an increase in background C concentration. Configurations achieved after
0.5 Million MC steps are shown for all cases, and the segregated carbon atoms
are forming three-fold symmetry pattern around the screw dislocation core are
well seen in the cases of high concentration (0.02 wt.%, 0.015 wt.% and 0.01
wt.%.). More lattice distortions and strain field are introduced in high concen-
tration cases, due to carbon-carbon interactions segregated near the dislocation
core. Therefore, more carbon atoms find these sites near the dislocation core to
be energetically favorable during the trial move. Hence, non-local trial moves
(i.e., displacing a C atom from far region towards dislocation core) proves to be
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Fig. 5. Carbon segregated configurations achieved after 0.5 Million MC steps using
the hybrid approach for simulation domain with different background concentrations
(Top-Bottom: 0.02 wt.%, 0.015 wt.%, 0.01 wt.%, 0.005 wt.%). In 5(a–d), atomic weight
concentrations (Left) and carbon Cottrell atmospheres (Right) formed near the dislo-
cation core are shown. Atomic concentrations are computed within the sphere radius
of 1.5 nm for these computations and with increase in carbon concentration, Cottrell
cloud exhibit a three-fold symmetry pattern around the screw dislocation with higher
concentration at the core.
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more successful till the segregated C atoms near the core achieve some satura-
tion or more stable clusters. However, for configurations with low global carbon
concentrations, the segregated carbon atoms are not showing a clear three-fold
pattern. Because, in these cases, C atom once finding a stable site near the core
or any other distortion site (partially away) shall not prefer some large non-
local trial move anymore. Also, the lattice distortions caused by carbon-carbon
interactions due to local C concentration is less. Carbon Cottrell atmospheres
showing such three-fold pattern are in qualitative agreement with some earlier
published works [9,10,20].

The earlier obtained configurations with partially segregated C atoms using
a parallel hybrid MD/MC scheme is used for performing some shear simula-
tions. Boundary walls of the simulation domains are reconstructed such that,
the atomic layers spanning Y = 0–1 nm and Y = 29–30 nm are fixed. Virtual
atoms belonging to the fixed zones are eliminated to exploit some computational
performance. Now the configurations are completely relaxed using Molecular
Statics (MS) to minimize the system energy due to segregated carbon atoms.
Shear forces applied to the fixed walls corresponding to the plane containing the
normal direction along [1 0 1].

Shear simulations are performed using IMD [16], using an NVT ensemble
computed at T = 0.5 K to be thermally consistent with the segregation simu-
lations using the parallel MD-MC coupling. Force controlled shear simulations
are performed, where a pre-computed measure of force is applied to the fixed
layer of atoms in the outer x, z-surface layers. Externally applied shear forces on
the fixed walls as rigid motion act as the necessary driving force to dislocation
motion.

The force computation is based on the critical stress (τ = 1.2 GPa) of a
screw dislocation in bcc Fe, from the earlier published works of our group mem-
ber [21,22]. Computation is based on the relation τ = F/A, where F = f×n, f is
the force per atom, n the total number of atoms in the fixed wall and A the cross-
sectional area (X × Z). We applied a maximum stress of 1.08 GPa during the
first 10 ps of the simulation, followed by a second stage with a maximum stress of
1.44 GPa for 40 ps. The shear simulations were performed with a ‘NVT’ ensem-
ble and output files were written for every 1 ps. According to the target shear
stress, the external force is computed to be around f = 0.008629 nN/atom and
applied along +Z and −Z direction on the opposite walls (see Fig. 4). Also, the
‘RIGID’ feature of IMD [16] is used for these boundary atoms, meaning that
they will displace only along Z direction as rigid bodies. Shear simulations are
partitioned into two sub-simulation, where the first sub-simulation runs for T1

= 10 ps during which 0–90% of the estimated force is applied in an incremen-
tal fashion. The second sub-simulation part runs for T2 = 40 ps during which
90–120% of the estimated force is applied in an incremental fashion. Simulation
snapshots for every T = 10 ps are obtained to observe the changes in dislocation
mobility in the configurations with segregated carbon atoms and homogeneous
distribution of C atoms with the different background global concentration. Some
example snapshots (zoomed-in view) for different configurations (0.02 wt.% and
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Segregated - 0.02 wt.%.

t = 0 ps

(a)

Segregated - 0.005 wt.%.

t = 0 ps

(b)

Homogeneous - 0.02 wt.%.

t = 0 ps

(c)

Homogeneous - 0.005 wt.%.

t = 0 ps

(d)

Fig. 6. Initial configurations with segregated (6a, 6b) and homogeneous (6c, 6d) dis-
tribution of carbon atoms used as input for shear simulations for different global con-
centrations of 0.02 wt.% (Left) and 0.005 wt.% (Right) respectively.

Segregated - 0.02 wt.%.

t = 30 ps

(a)

Segregated - 0.005 wt.%.

t = 30 ps

(b)

Homogeneous - 0.02 wt.%.

t = 30 ps

(c)

Homogeneous - 0.005 wt.%.

t = 30 ps

(d)

Fig. 7. Sheared configurations achieved after t = 30 ps for segregated (7a, 7b) and
homogeneous (7c, 7b) distribution of carbon atoms with different global concentrations
of 0.02 wt.% (Left) and 0.005 wt.% (Right) respectively.
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Segregated - 0.02 wt.%.

t = 50 ps

(a)

Segregated - 0.005 wt.%.

t = 50 ps

(b)

Homogeneous - 0.02 wt.%.

t = 50 ps

(c)

Homogeneous - 0.005 wt.%.

t = 50 ps

(d)

Fig. 8. Sheared configurations achieved after t = 50 ps for segregated (8a, 8b) and
homogeneous (8c, 8d) distribution of carbon atoms with different global concentrations
of 0.02 wt.% (Left) and 0.005 wt.% (Right) respectively.

0.005 wt.%.) are shown (refer Fig. 8) at different time steps t = 0 ps (see 6a, b,
c, d), t = 30 ps (see 7a, b, c, d), and t = 50 ps (see 8a, b, c, d) for segregated
and homogeneously distributed C environment.

It is observed that the screw dislocation is almost completely locked inside
the Cottrell atmospheres (segregated C atoms) with a minimum displacement of
1.9 Å inside the configuration with 0.02 wt.%. C (see Figs. 6a and 8a), for the
applied shear force for a period, ttotal=50 ps. In comparison to a configuration
with a homogeneous distribution of C with concentration 0.02 wt.%, the dis-
placement measures to be 15.94 Å. Also the dislocation mobility in configurations
with low C concentrations (0.005 wt.%.) are measured, compared for segregated
and homogeneous distribution of C atoms. Displacements measured after ttotal
= 50 ps read 32.718 Å (segregated) and 73.337 Å (homogeneous) respectively (see
Fig. 8b, d). Further measurements of dislocation displacement, for other configu-
ration with concentrations (0.015 wt.%, 0.010 wt.%, 0.0025 wt.%, and 0.0 wt.%)
showed a trend that the difference in displacement between the segregated and
homogeneous distribution of C slowly decreased for the lowering global C con-
centrations. Hence, it is qualitatively concluded that the local concentration of C
atoms forming the Cottrell atmospheres near the dislocation core proves to effec-
tively contribute to the hindrance in dislocation mobility. Because it is evident
from the configuration with higher global C concentration (0.02 wt.%), where
the influence of local C concentration in the vicinity of dislocation core showed
to be a factor of 10. To make some quantitative estimate, sufficient statistics
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shall be performed for a finite number of start-up configurations with equal
concentrations.

In the work of Veiga et al. [9,10], where an MD and kinetic MC are coupled
to model C Cottrell atmospheres and study its influence on dislocation mobil-
ity. However, there exist several key differences in comparison to this work. The
concept of ‘virtual atoms’ used in this work to link MD and MC is unique to
capture any distortion in the ferritic host environment, to include chemical and
mechanical contributions consistently and to efficiently sample the configura-
tional space. Dimensions of the computational domain are extensively large, and
the number of atoms used in this work is a factor of 10 more (i.e., in Million)
with the aim to simulate a system with complex dislocation networks. A uniform
and unbiased MC sampling approach is used in this work to probe the configu-
rational space, whereas Veiga et al. [10] used a biased sampling approach that
the probability of choosing an octahedral site within 5 nm from the dislocation
line is about 50%. Most importantly, Veiga et al. [10] performed trial moves only
by swapping random octahedral sites. However, virtual atoms used in this work
though introduced at standard octahedral sites initially, have the potential to
rearrange to some off-lattice sites considering the distortions in the environment.
The parallel MD-MC coupling framework applying th concept of virtual atoms,
introduced in this work has a generic character, such that it is possible to extend
the present study to other systems with interstitial solutes, e.g., Mn or H in Fe
or other systems. In principle, the requirement is a suitable interaction potential
plus an extension of the model towards a one-way interaction model between the
virtual atoms and the underlying atomic lattice.

5 Conclusion

It could be shown that the segregation process in the presence of the dislocation
can be simulated very efficiently using the MD-MC coupling approach. Shear
simulation results using MD gave qualitative evidence that the local concen-
tration of interstitial solutes, like carbon, provides a significant pinning effect
for the dislocation. The parallel scalability of the scheme is reduced due to false
overlap when the concentration of C-atoms increases around the dislocation core
during segregation. This efficiency degradation will be compensated by an addi-
tional parallel-replica approach in the near future. For a homogeneous defect
free Fe-C-system with NFe ≈ 106 particles, scalability could be obtained up to
32–64 processors. Work is in progress towards an efficiency control scheme which
decides on-the-fly for a given number of processors upon an extension towards
a replica system method. Further work on the hybrid MS/MC scheme using
virtual atoms and a parallelization using a manager-worker approach is ongoing
and will be published in future.
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Abstract. The microstructure of lithium-ion battery electrodes has a
major influence on the performance and durability of lithium-ion batter-
ies. In this paper, an overview of a general framework for the simulation
of battery electrode microstructures is presented. A multistep approach
is used for the generation of such particle-based materials. First, a ‘host
lattice’ for the coarse structure of the material and the placement of par-
ticles is generated. Then, several application-specific rules, which, e.g.,
influence connectivity are implemented. Finally, the particles are simu-
lated using Gaussian random fields on the sphere. To show the broad
applicability of this approach, three different applications of the general
framework are discussed, which allow to model the microstructure of
anodes of energy and power cells as well as of cathodes of energy cells.
Finally, the validation of such models as well as applications together
with electrochemical transport simulation are presented.

Keywords: Stochastic 3D microstructure modeling
Lithium-ion cell anodes · Lithium-ion cell cathodes
Gaussian random fields on the sphere

1 Introduction

The usage of lithium-ion battery cells is steadily growing in various fields of daily
life. This implies the necessity for further improvement of battery materials. As
laboratory experiments are expensive in time and costs, model-based simulations
of electrochemical processes in battery cells have become an important part of
battery research. Simulations are also necessary for the optimization of charging
strategies and control systems [24].

Electrochemical simulation models go back to the famous work of Newman
and co-workers [21]. However, these models neglect detailed geometry informa-
tion of the cell and its 3D microstructure by using averaged characteristics.
Recently, spatially resolved transport models have been developed to simulate
the charge transport in lithium-ion battery cells [16,17].
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In this work, the focus is on stochastic 3D microstructure models. Such mod-
els can be used as spatial input information for spatially resolved transport mod-
els, where highly resolved image data of 3D microstructures of battery electrodes
are necessary for model calibration. The major advantage of the combination
of stochastic microstructure models with spatially resolved transport models is
that this approach can be used for realistic simulations of local effects. This
includes lithium-plating and further aging mechanisms which are influenced by
local potentials. Furthermore, the computational complexity of this approach can
be minimized for specific applications like cycle-life simulations by reduced basis
methods [8]. An example of a structure generated by such a 3D microstructure
model is shown in Fig. 1.

Fig. 1. Comparison of experimental and simulated anode structures. Experimental
data (left), simulated data (right).

2 Simulation of Lithium-ion Cell Electrodes

2.1 General Approach

Methods of stochastic geometry and spatial statistics have been proven to be a
viable tool for the simulation of 3D microstructures of energy materials like those
used in fuel cells or solar cells [9,10,25]. The general idea of these methods is to
provide microstructure models based on a few parameters that are able to gener-
ate 3D microstructures which are similar in a statistical sense to those observed
in experimental data. This means that averaged characteristics like volume frac-
tions or specific surface areas but also more refined descriptors of microstructures
like tortuosity of transportation paths or the pore size distribution are in good
agreement, see [20,26] for more details.

Furthermore, these models and the corresponding simulation algorithms are
off-grid meaning that they can be used to generate structures on arbitrary
length scales. The computation time it takes to generate a realization of such a
microstructure model is usually very small. Thus, the usual problems of tomo-
graphic imaging related with the generation of a sufficiently large amount of
highly resolved 3D images in sufficiently large regions of interest can be solved
once such a model is developed and fitted to experimental data.
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2.2 Modeling Framework

The microstructures of different types of lithium-ion battery electrodes vary
from each other, however, they share some common structural properties. In
general, electrodes consist of systems of connected particles that can have com-
plex shapes. For the electrode models it is very important to fit fundamental
microstructure characteristics like porosity and specific surface area exactly [23].
Another important characteristic of the electrodes is the high connectivity of par-
ticles. This means that each particle is connected to many neighboring particles.
Thus, the model of individual particle sizes and shapes has to be flexible enough
to meet all these conditions.

A general framework based on a stochastic particle model which possesses
these properties has been developed. It is based on the representation of particles
as linear combinations of spherical harmonics which can then be seen as realiza-
tions of Gaussian random fields (GRFs) on the sphere. Particles with random
sizes and shapes can be simulated using GRFs on the sphere whose parameters
are fitted to the coefficients of the spherical harmonics expansions of particles
extracted from experimental data [7]. The whole framework consists of several
steps, which are described in more detail in the following subsections:

– approximation of particles
– particle model
– host lattice, particle arrangement
– connectivity of particles
– particle placement and boundary conditions
– simulation of individual particles

Approximation of Particles. As our aim is to develop a stochastic model for
irregularly shaped particles of electrode materials, a first step is to find a suit-
able (analytical) representation of the particles observed in tomographic images.
Thus, each particle is approximated by an analytical function using an expansion
in spherical harmonic functions.

The spherical harmonic functions form a basis of the family of square-
integrable functions defined on the unit sphere. This means that every square-
integrable function can be written as an expansion in spherical harmonics. This
is pretty similar to the well-known Fourier series expansion that is frequently
used in signal processing.

In such an expansion the spherical harmonics have a natural ordering by their
degree l and their order m. Regarding our application this means that spherical
harmonic functions with higher order l represent smaller features of the particle
surfaces. This motivates the truncation of the series of spherical harmonic func-
tions at a certain cutoff degree L which leads to a good approximation of the
particles.

On the one hand, this is necessary for numerical calculations and it makes
further modeling easier. But, on the other hand, this is a natural way to smooth
the particles, e.g., to minimize artifacts resulting from measurements, binariza-
tion or (particle) segmentation. This smoothing is similar to the theory used in
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signal processing with Fourier methods. Of course, a good choice of the param-
eter L is crucial and thus has been investigated in detail in [7].

Images showing the experimental microstructure before and after the smooth-
ing of particles by the usage of spherical harmonics are given in Fig. 2. A more
detailed comparison for an individual particle can be found in Fig. 3.

Fig. 2. Comparison of the result of structural segmentation and approximation of par-
ticles by spherical harmonics. Particle system before (a), and after approximation by
spherical harmonics (b). Reprinted from [7] with permission from Elsevier.

Fig. 3. Example of a particle from an energy cell anode. Segmented particle from
tomographic image (a) and approximation of the particle with a truncated series of
spherical harmonics for L = 10 (b). Reprinted from [7] with permission from Elsevier.

Particle Model. As described above, particles in electrode materials are often
complex shaped and no perfect spheres, see Fig. 3(a). Thus, simple approaches
where particle models are based on spheres, like, e.g., in [11] are not sufficiently
precise, especially since the volume fraction as well as the surface area of particles
plays an important role for the functionality of the material, see, e.g., [2,4]. Thus,
an alternative method which allows great flexibility, namely Gaussian random
fields on the sphere, lead to a better accuracy of the model.

Gaussian random fields on the sphere are a model to describe the surface
of randomly shaped objects. The idea is to generate a random radius function
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(in spherical coordinates) that assigns a radius value to each point (or angle)
on the sphere. Of course, these values are not totally independent but have a
spatial correlation. The exact spatial correlation can be controlled by the so-
called angular power spectrum (APS) which is related to the Fourier spectrum
in the 1D analogy. Thus, for a given material the APS has to be calculated
for particles from experimental data and can then be used to generate random
particles. An example of the APS for random particles from an energy cell is
shown in Fig. 4.
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Fig. 4. Example of an angular power spectrum. Reprinted from [6] with permission
from Elsevier.

It turns out that this approach works well and that the simulated particles
are in good accordance with the particles from the experimental samples, even
for very differently shaped particles. Formally, this can be seen by comparing
shape characteristics like volume, surface area or sphericity for two large sets
of simulated particles and particles from experimental data, see [6,7] for more
details.

Host Lattice, Particle Arrangement. As electrode materials can have high vol-
ume fractions of active materials (up to 73%, see e.g., [7]) one major challenge
is to create a dense packing of irregularly shaped particles. There exist several
approaches to generate dense particle structures directly from a set of particles,
e.g., by using packing algorithms like the force-biased algorithm [19]. However,
a huge drawback is that this approach is very time-consuming and for large
observation windows it takes up to days on modern hardware. Furthermore,
dense packing algorithms are usually applied to packings of spheres. In a situa-
tion where particles are not spherical or even not convex they often cannot be
applied or at least are way more complex.
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Moreover, the particles (that will be generated later with the model described
above) have high connectivity. Thus, an indirect approach for the placement of
particles is used. First, a ‘host lattice’ is generated consisting of single polytopes
where particles will be placed inside in the next step.

Fig. 5. 2D intersection of a Laguerre tesselation. Reprinted from [6] with permission
from Elsevier.

A Laguerre tessellation is used as ‘host lattice’, which is a division of the space
into disjoint convex polytopes. In more detail, a random tessellation [18] is used
as this gives great flexibility but can also be generated efficiently as Laguerre
diagram of a random marked point pattern, see Fig. 5. The generation of a ‘host
lattice’ for particle placement has to be adopted for different materials. This
means that the random point pattern for the generation of the Laguerre tessel-
lation has to be fitted to each case, and in some applications not all polytopes
are used as particle hosts but some are left empty.

Connectivity of the Particles. As emphasized before, the high connectivity of
particles is very important for electrode materials. Thus, this property has to be
incorporated in the model. This is done by using a random graph which contains
the corresponding information, the so-called connectivity graph. The nodes of
this graph correspond to the polytopes of the tessellation and an edge in the
graph indicates that the particles, that will be placed in two polytopes later on,
have to be in contact with each other.

Two polytopes are said to be neighboring if they share a common facet.
Thus, facets of the tessellation can be seen as edges of the connectivity graph.
An example of such a graph is shown in Fig. 6.

One important side condition is, as stated above, that there are no particles or
clusters of particles that have no connection to the rest of the system. This means
that for each particle there has to be a path of connections to every other particle



134 J. Feinauer et al.

Fig. 6. Example of a connectivity graph (blue) and the underlying tessellation (black).
Reprinted from [6] with permission from Elsevier. (Color figure online)

in the bulk. This can be achieved by a special construction algorithm of the
graph as follows. After the generation of the tessellation, first the graph of full
connectivity is generated. This means the polytopes in the observation window
are taken as vertices and for the edges, every facet is turned into an edge that
connects the two polytopes that share this facet. Thus, in this graph each node
is connected to all its neighbors. Depending on the application a weighting of
the edges can be applied.

Then, the minimum spanning tree (MST) of the graph of full connectivity is
calculated. The MST is the minimal subgraph which fulfills the condition that
there exists a path from every node to every other node in the graph [13].

The MST forms the basis for the connectivity graph. This final connectivity
graph is then generated by adding edges between neighboring nodes based on a
Bernoulli experiment, where the edge-putting probability is given by variations
of the following different model types:

– The probability is fixed and independent of the polytope/particle.
– The probability is given as a function of characteristics (like the surface area)

of the common facet.
– The probability depends on the angle of the connection of the centroids of

the two neighboring polytopes.
– The probability depends on the distance between the centroids of the two

polytopes.

The latter option is especially necessary if the electrode microstructure is
anisotropic. More details can be found in [28].

Particle Placement and Boundary Conditions. Given the model for the particle
shapes based on the GRFs on the sphere, particles are placed inside polytopes
of the tessellation.
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(a) (b)

Fig. 7. (a) 2D schema of the boundary conditions. Particle (red) and surrounding poly-
tope (black). The boundary conditions are that the particle touches the facet at specific
points (blue). These conditions are also generated for the neighboring particles, thus it
is ensured that both particles touch each other. (b) Boundary conditions on the facet
(red dots). Both neighboring particles have to touch several points on their common
facet and thus are connected. Reprinted from [6] with permission from Elsevier. (Color
figure online)

Furthermore, the following two rules are used for the particle placement:

– A particle’s shape should roughly follow the shape of the polytope.
– A particle has to touch its neighbors according to the edges of the connectivity

graph.

Generally, the particles should have shapes that are characteristic for the
material. This is ensured by using realizations of the particle model explained
above. As the particles are placed inside the Laguerre polytopes, their barycen-
ters are used as origins of spherical coordinate systems. The particles are then
represented as an expansion in spherical harmonic functions whose coefficients
are generated from the GRF model described above.

Simulation of Individual Particles. The last step for the generation of a simulated
microstructure is the generation of particles. On the one hand, they need to be
generated from the (stochastic) model described above and on the other hand
they need to fulfill the boundary conditions explained previously.

This is indeed possible due to the special nature of the particle model. To be
more precise, because the particle model is based on an expansion in spherical
harmonics, the rules stated above translate into linear boundary conditions.
As the coefficients are then sampled from a GRF model, the problem can be
translated to drawing coefficients from a multivariate Gaussian distribution with
boundary conditions. To make the simulation more efficient the distribution
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is transformed to a distribution whose realizations always fulfill the boundary
conditions. Further details are given in [6].

3 Simulation of Particulate Materials

Using the method for modeling and simulation of individual particles described
above, it is possible to build models for different kinds of electrode materials.
Electrodes in so-called energy cells like the ones used in electric vehicles have
high particle densities and relatively small porosities.

The simulated 3D microstructures are then used for spatially resolved trans-
port simulations [14] where the focus is put on the electrochemical validation
of the simulated microstructures. Moreover, in [8], the electrochemical simu-
lations performed on simulated 3D microstructures are combined with model
order reduction methods to accelerate the whole procedure which enables the
simulation of multiple cycles, e.g., for virtual aging tests.

In lithium-ion cells designed for power applications like the ones used in
plugin hybrid vehicles, the volume fraction of active material is lower but the
specific surface area is higher to allow for higher charge and discharge currents.
For a detailed comparison for different electrode and cell types see [5, Table 2].
Such 3D microstructures have been simulated with an extended version of the
modeling approach described above for energy cells, where a refined tessellation
model is used and some polytopes are left empty when placing the particles [28].

The counterpart of the anode in a lithium-ion battery cell is the positive elec-
trode, also called cathode. The considered cathodes of plugin hybrid energy cells
exhibit low volume fractions of active material, a different particle connectivity
and especially nearly spherical particle shapes. By adaptions and enhancements
of the above two modeling approaches for anodes, it is possible to use the general
framework also for simulation of 3D cathode microstructures.

In the following the different applications of the general framework described
above and the adaptions are discussed in more detail.

3.1 Anode of an Energy Cell

The main difficulty for the simulation of anodes that are optimized for a large
energy density is the high volume fraction of active material. In our case the
volume fraction of active material is about 73%. Therefore, one of the main
challenges is to generate realistic structures with such a high volume fraction
but still realistic particles and the high connectivity present in the material.
Common approaches for the generation of dense packings like, e.g., force-biased
algorithms usually require simple particle shapes like balls [1].

Host Lattice, Particle Arrangement. The generation of the host lattice is based
on a point pattern generated by a so-called random sequential adsorption process
(RSA) [3,27]. This leads to point patterns that have some ‘regularity’. This
means that, with a high probability, there will be no isolated points as well as
no clustering of points. The ‘host lattice’ is then obtained by calculating the
Laguerre diagram of the realization of the RSA process.
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Connectivity of the Particles. Based on the minimum spanning tree of the graph
of full connectivity, edges are added with a probability proportional to the area
of the facet between two neighboring polytopes. Figure 7 shows the boundary
conditions that are applied to the particles in detail.

Simulation of Individual Particles. The particles are simulated using the GRF
model described above with an angular power spectrum that has been fitted to
the particles extracted from tomographic images. The angular power spectrum
is shown in Fig. 4. A comparison of the experimental structure and the result of
model-based simulation is shown in Fig. 1.

3.2 Anode of a Power Cell

The microstructure of power cell anodes strongly differs from the one in energy
cell anodes. While both consist of a completely connected system of particles (the
so-called active material), the volume fraction of the active material is much lower
for power cell anodes. This improves transport properties in the pore phase. Thus,
the stochastic microstructure model for energy cell anodes has to be adapted to
capture this property. Besides some smaller modifications, which include a depen-
dence of the connectivity graph on the spatial orientation of pairs of particles to
each other in order to include the anisotropy that was observed in tomographic
image data, the main difference is the inclusion of empty polytopes in the host lat-
tice, where no particles are created in. This allows to account for the low volume
fraction of the active material, while preserving realistic shapes of particles.

Host Lattice, Particle Arrangement. The generation of the host lattice is again
based on a system of spheres, which is simulated using a modification of the
so-called force-biased algorithm [1]. Based on an initial configuration of spheres,
an iterative rearrangement is performed until the overlap of spheres falls below a
certain threshold. This procedure results in a system of spheres which resembles
the properties of the particle system observed in tomographic image data, repre-
sented as spheres with volume-equivalent radii. Based on this, the corresponding
Laguerre tessellation can be computed, which results in a space-filling system of
polytopes.

Connectivity of the Particles. Given the Laguerre tessellation, a graph indi-
cating connectivity between particles is created. To account for the anisotropic
shape of particles observed in tomographic image data, the graph is created such
that particles are rather connected in horizontal direction than in vertical direc-
tion. This means that, besides the size of the Laguerre facet between two points
and the distance of those points, the angle with respect to horizontal direction
between those points is computed. Starting with a minimum spanning tree to
ensure complete connectivity, edges are added based on those three character-
istics with a probability such that the mean coordination number of the graph
extracted from tomographic image data is matched.
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Modification of Host Lattice to Include Empty Polytopes. Particles need to fulfill
the connectivity conditions induced by the graph on the one hand, but on the
other hand they have to preserve the desired size. This is important to match
the volume fraction of active material in the electrode. Therefore, the polytopes
where particles are placed in are made smaller by including empty polytopes into
the space-filling system. These empty polytopes are found by adding points to
the generators of the Laguerre tessellation at the center of those facets where no
connectivity is induced by the graph. Moreover, it is ensured that the resulting
empty polytopes do not remove facets of the tessellation where two particles are
supposed to be connected.

Simulation of Individual Particles. Finally, the particles are modeled using
spherical harmonics in the polytopes that have been made smaller in the pre-
ceding step. Because of the smaller polytopes, most particles can fulfill their
connectivity conditions and required size together with a reasonable shape. In
case this is problematic, a more flexible way of setting the boundary conditions
to account for the connectivity is used. For details, we refer to [28]. A comparison
of a model output to tomographic image data can be found in Fig. 8.

Fig. 8. Comparison of cutout of tomographic image data for a power cell anode (a)
and corresponding model realization (b).

3.3 Cathode of an Energy Cell

After having applied the general framework to model and simulate the 3D
microstructure of two kinds of anodes, namely the ones in lithium-ion energy
and power cells, a third application of the framework concerns modeling and
simulation of cathode microstructures (pristine as well as cyclically aged struc-
tures). Cathode microstructures also exhibit distinct structural characteristics
which made some adaptations necessary. There are three main structural differ-
ences observed in cathodes.

Host Lattice, Particle Arrangement. First, there are locally occurring large pores,
especially in the case of the pristine cathode. Therefore, when arranging the
placement of particles in a similar way as done for power cell anodes, a random
marked point pattern is simulated which explicitly generates large polytopes in
the host lattice into which no particles are placed later on. These large and
empty polytopes mimic large pores in the simulated microstructure.
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Connectivity of Particles. Further, cathodes for lithium-ion batteries exhibit
another particle connectivity than anodes. That means, the particle system form-
ing the cathode microstructure is not necessarily fully connected anymore as
observed in the anode cases. This characteristic feature is captured by omitting
the previously used tool of a minimum spanning tree when creating the con-
nectivity graph. Instead, the probability that a pair of particles is connected
depends on just two criteria which are determined from the host lattice, see [15]
for details. The result is a suitable particle connectivity graph.

Particle Placement, Boundary Conditions and Simulation of Individual Par-
ticles. The third and most obvious microstructural difference are the nearly
spherical-shaped particles in the cathodes, see Fig. 9. To achieve simulated par-
ticles of such shapes, we proceed in three steps:

– The polytopes in the host lattice into which particles will be placed are
shrunken to nearly spherical shapes by adding further polytopes which remain
empty.

– The number of boundary (contact) conditions per particle is reduced, i.e.,
now there is only one boundary condition (point) per facet, compare Fig. 7,
which guarantees connectivity as claimed by the graph.

– The parameter L at which the series of spherical harmonic functions is trun-
cated is no longer fixed for each particle but dynamically chosen depending on
the number of connected neighboring particles. This number is also called the
coordination number of a particle and it is known for each particle from the
connectivity graph. At the end, a higher number of connected neighboring par-
ticles means a larger L and, vice versa, a smaller coordination number means a
smaller L.

Fig. 9. Tomographic grayscale image - 2D slice of a cutout - showing the microstructure
of a pristine cathode.
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All three steps lead to less restricted and less degenerated particles and allow
them to have nearly spherical shapes as desired.

To give a short overview, the basic ideas of the application of the general
framework to cathodes of an energy cell are summarized and illustrated by 2D
sketches in Fig. 10.

(a) (b) (c)

(d) (e) (f)

Fig. 10. Overview of the basic cathode modeling ideas. (a) Two random marked point
patterns are realized, where the blue dots and circles induce particles and the red ones
induce large pores; (b) A connectivity graph (dashed gray lines) based on the ran-
dom marked point patterns and the corresponding Laguerre tessellation (black lines)
is simulated, where the red shaded polytope indicates an (empty) pore polytope (i.e.,
no particle is placed into); (c) Additional marked points (further red dots and circles)
are determined that induce further pore polytopes; (d) Final arrangement of particle
polytopes (i.e., a particle is placed into) and pore polytopes (red shaded) is computed,
where the initial connectivity is still retained; (e) Particles fulfilling boundary condi-
tions (black dots) are created in the corresponding polytopes using spherical harmonics;
(f) Only the particles are kept and morphological smoothing operations lead to the final
particle system. (Color figure online)

3.4 Applications of Simulated Structures

The main fields of application for microstructure models of energy materials is
the design of new structures with better functionality due to structural improve-
ments. This is done with a method which we call virtual materials testing.
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The idea is to generate virtual structures from the models where the parameters
are varied in a certain range around the values determined for real materials.
This gives us microstructures that are realistic in the sense that they can be
manufactured with known production processes on the one hand. On the other
hand, these microstructures differ from the known ones and can possibly have
more preferable properties. A similar procedure is used in [12,26] to investigate
the relation between microstructure and charge transport properties.

As the models introduced above reconstruct microstructures of lithium-ion
cell electrodes, the functionality or performance of the material has to be deter-
mined by spatially resolved electrochemical simulations. The theoretical back-
ground is described in [16,17].

For anodes of energy cells the microstructure model has been validated using
the electrochemical simulation model [14] where it has been shown that there
is a good agreement of the functional performance of virtual and experimental
microstructures, see Fig. 11.
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Fig. 11. (a) The distribution of the electrolyte concentration for the electrode pore
space and the separator (inset). The density is normed to unity area. The small peak
at the initial concentration indicates unconnected pore volume. (b) Spatial distribution
of electrolyte concentration for two cut-outs: real (left) and virtual (right). Both have
the same color scale (shown below). Larger particles can be seen in both structures.
Also both cut-outs show electrolyte pores, which are less connected to the main pore
space: (virtual) orange part close to the blue and (real) dark red at the upper corner.
Reprinted from [14] with permission from Elsevier. (Color figure online)

Furthermore, a workflow was developed to automatize the whole process and
also to speed up the simulation of many cycles which is necessary for studies on
the aging of the cells. This workflow is described in detail in [8].
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4 Summary, Related Work and Outlook

A general framework for the simulation of battery electrode microstructures is
presented. The framework consists of multiple steps that can be adopted for
a wide range of electrode materials. Three microstructure models for different
electrodes of lithium-ion cells based on this framework are considered. Finally,
a validation of the model using spatially resolved electrochemical simulations is
mentioned and further applications of such microstructure models are discussed.

Currently, the modeling tools are extended to incorporate cracked particles.
In [22], an application of machine learning for the detection of broken particles
in tomographic images for negative electrode materials of lithium-ion batteries
has been proposed. In [29], an approach for structural segmentation of defec-
tive particles has been developed, which also accounts for cracks and holes in
particles. The automated detection of cracked particles combined with the para-
metric representation of individual particles described above enables statistical
investigations of the relationship between the morphology of particles and their
cracking behavior.

Furthermore, investigations of the influence of different degrees of compres-
sion or multi-layered constructions of positive electrode materials on the prop-
erties of lithium-ion batteries, e.g., on their ion transport behavior, are possible
using the tools described in the present paper.

References

1. Bezrukov, A., Bargie, M., Stoyan, D.: Statistical analysis of simulated random
packings of spheres. Particle Particle Syst. Charact. 19(2), 111–118 (2002)

2. Chen, C.F., Mukherjee, P.P.: Probing the morphological influence on solid elec-
trolyte interphase and impedance response in intercalation electrodes. Phys. Chem.
Chem. Phys. 17(15), 9812–9827 (2015)

3. Chiu, S.N., Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its
Applications, 3rd edn. Wiley, Chichester (2013)

4. Cho, S., Chen, C.F., Mukherjee, P.P.: Influence of microstructure on impedance
response in intercalation electrodes. J. Electrochem. Soc. 162(7), A1202–A1214
(2015)

5. Dunn, J.B., Gaines, L., Barnes, M., Wang, M., Sullivan, J.: Material and energy
flows in the materials production, assembly, and end-of-life stages of the automo-
tive lithium-ion battery life cycle. Technical report, Argonne National Laboratory
(ANL) (2012)

6. Feinauer, J., Brereton, T., Spettl, A., Weber, M., Manke, I., Schmidt, V.: Stochastic
3D modeling of the microstructure of lithium-ion battery anodes via Gaussian
random fields on the sphere. Comput. Mater. Sci. 109, 137–146 (2015)

7. Feinauer, J., Spettl, A., Manke, I., Strege, S., Kwade, A., Pott, A., Schmidt, V.:
Structural characterization of particle systems using spherical harmonics. Mater.
Charact. 106, 123–133 (2015)

8. Feinauer, J., Hein, S., Rave, S., Schmidt, S., Westhoff, D., Zausch, J., Iliev, O., Latz,
A., Ohlberger, M., Schmidt, V.: MULTIBAT: unified workflow for fast electrochem-
ical 3D simulations of lithium-ion cells combining virtual stochastic microstruc-
tures, electrochemical degradation models and model order reduction. J. Comput.
Sci. (2018, in print)



3D Microstructure Modeling and Simulation of Materials 143

9. Gaiselmann, G., Neumann, M., Holzer, L., Hocker, T., Prestat, M., Schmidt, V.:
Stochastic 3D modeling of LSC cathodes based on structural segmentation of FIB-
SEM images. Comput. Mater. Sci. 67, 48–62 (2013)

10. Gaiselmann, G., Thiedmann, R., Manke, I., Lehnert, W., Schmidt, V.: Stochastic
3D modeling of fiber-based materials. Comput. Mater. Sci. 59, 75–86 (2012)

11. Gaiselmann, G., Neumann, M., Holzer, L., Hocker, T., Prestat, M.R., Schmidt,
V.: Stochastic 3D modeling of La0.6Sr0.4CoO3−δ cathodes based on structural seg-
mentation of FIB-SEM images. Comput. Mater. Sci. 67, 48–62 (2013)

12. Gaiselmann, G., Neumann, M., Schmidt, V., Pecho, O., Hocker, T., Holzer, L.:
Quantitative relationships between microstructure and effective transport proper-
ties based on virtual materials testing. AIChE J. 60(6), 1983–1999 (2014)

13. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem.
Ann. Hist. Comput. 7(1), 43–57 (1985)

14. Hein, S., Feinauer, J., Westhoff, D., Manke, I., Schmidt, V., Latz, A.: Stochastic
microstructure modeling and electrochemical simulation of lithium-ion cell anodes
in 3D. J. Power Sour. 336, 161–171 (2016)

15. Kuchler, K., Westhoff, D., Feinauer, J., Mitsch, T., Manke, I., Schmidt, V.: Stochas-
tic model of the 3D microstructure of Li-ion battery cathodes under various cyclical
aging secenarios. Model. Simul. Mater. Sci. Eng. 26, 035005 (2018)

16. Latz, A., Zausch, J.: Thermodynamic consistent transport theory of Li-ion batter-
ies. J. Power Sour. 196, 3296–3302 (2011)

17. Latz, A., Zausch, J.: Thermodynamic derivation of a Butler-Volmer model for
intercalation in Li-ion batteries. Electrochimica Acta 110, 358–362 (2013)

18. Lautensack, C., Zuyev, S.: Random Laguerre tessellations. Adv. Appl. Probab.
40(3), 630–650 (2008)
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Abstract. Based on virtual materials testing, which combines image
analysis, stochastic microstructure modeling and numerical simulations,
quantitative relationships between microstructure characteristics and
effective conductivity can be derived. The idea of virtual materials testing
is to generate a large variety of stochastically simulated microstructures
in short time. These virtual, but realistic microstructures are used as
input for numerical transport simulations. Finally, a large data basis is
available to study microstructure-property relationships quantitatively
by classical regression analysis and tools from statistical learning. The
microstructure-property relationships obtained for effective conductivity
can also be applied to Fickian diffusion. For validation, we discuss an
example of Fickian diffusion in porous silica monoliths on the basis of
3D image data.

1 Introduction

The functionality of many materials, like, e.g., solar cells [1], batteries [2], fuel
cells [3] or silica monoliths used for catalysis [4], is strongly influenced by their
microstructure. Thus an optimal design of the microstructure regarding effec-
tive macroscopic properties of these materials would lead to an improvement of
their functionality. This kind of microstructure optimization, in turn, requires an
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understanding of the quantitative relationships between microstructure charac-
teristics and effective macroscopic properties, which are – so far – only available
for some special types of simple microstructures [5] like, e.g., the coated spheres
model introduced in [6].

A direct approach to investigate relationships between microstructure and
effective macroscopic properties is based on tomographic 3D imaging of
microstructures. Among other methods, X-ray tomography [7], FIB-SEM tomog-
raphy [8] and STEM tomography [9] provide highly resolved information about
microstructures on different length scales. On the one hand, 3D image data
can be analyzed by tools from spatial statistics [10] and mathematical morphol-
ogy [11], which allows the computation of well-defined microstructure charac-
teristics. On the other hand, 3D image data can be used as an input informa-
tion for the numerical simulation of effective macroscopic properties, like, e.g.,
effective diffusivity in silica monoliths [12]. This combination of image analy-
sis and numerical simulation enables a direct investigation of the relationship
between well-defined microstructure characteristics and effective macroscopic
properties [12–16]. However, this approach is limited as it is not possible to
investigate a sufficiently large data set of different microstructures due to the
high costs of 3D imaging.

Thus an alternative approach – called virtual materials testing – was sug-
gested where image analysis and numerical simulations are combined with
stochastic 3D microstructure modeling [17]. By the aid of stochastic modeling
virtual, but realistic, microstructures can be generated in short time. So a large
data set of virtual microstructures with a wide range of microstructure char-
acteristics is generated in order to study the quantitative relationship between
microstructure characteristics and effective macroscopic properties efficiently. In
the present paper, we give an overview of the results having been obtained for
the microstructure influence on electric conductivity by virtual materials testing
[17–19]. Furthermore, we show how the results can be used to predict effective
diffusivity in silica monoliths.

Before we give a detailed description on how to simulate the considered
stochastic 3D microstructure model in Sect. 3, the microstructure characteristics
which are related to effective conductivity are described in Sect. 2. The results
of virtual materials testing with respect to electric conductivity are reviewed
in Sect. 4. It is shown in Sect. 5 that the results can be used to predict effective
diffusivity in silica monoliths the morphology of which has been analyzed in [20].
Conclusions are given in Sect. 6.

2 Microstructure Characteristics and M -factor

To investigate the microstructure influence on effective conductivity σeff we
consider the microstructure characteristics volume fraction ε, mean geometric
tortuosity τgeom, mean geodesic tortuosity τgeod and constrictivity β. These
microstructure characteristics are computed based on voxelized 3D images
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representing (virtual or real) microstructures. Moreover, using ε, τgeom, τgeod, β
the M -factor

M = σeff/σ0 (1)

is predicted, where σ0 denotes the intrinsic conductivity of the considered
material.

2.1 M-factor

As described in [18], we consider conductive transport processes within porous
materials with one conducting phase, the intrinsic conductivity of which is σ0.

Let J denote the current density, σ the space-dependent conductivity func-
tion, U the electric potential and t the time. Then, electric charge transport is
described by Ohm’s law

J = −σ
∂U

∂x
(2)

and
∂U

∂t
= σ

∂2U

∂x2
. (3)

Assuming constant boundary conditions, such systems converge to an equilib-
rium which is described by the Laplace equation

ΔU = 0. (4)

By averaging over J and U as described in [5] we obtain the effective con-
ductivity σeff and thus the M -factor of the microstructure. For the numerical
simulation of M the software NM-SESES [21] has been used in [17], while Geo-
Dict [22] has been used in [18,19].

2.2 Tortuosity

Both characteristics, τgeom and τgeod describe the length of paths through the
conducting phase relative to the thickness of the material. Note that – in con-
trast to concepts of effective tortuosity – the characteristics τgeom and τgeod

depend only on the geometry of the microstructure. An overview on the avail-
able concepts of tortuosity in the literature is given in [23]. To determine τgeod,
we compute for each voxel of the conducting phase located at the start layer,
i.e. the plane where the conduction process starts, the shortest path through
the conducting phase to the goal layer in terms of geodesic distance [24]. Such a
shortest path is visualized in Fig. 1(left). Mean geodesic tortuosity τgeod is defined
as the average of these path lengths divided by the thickness of the material.
Mean geometric tortuosity τgeom is also defined as an average of shortest path
lengths, where shortest paths are computed on a skeleton of the conducting
phase, see Fig. 1(right). The skeleton of a microstructure is a network of medial
axes through the conducting phase [24]. In [17] and [18] the software Avizo [25]
has been used to extract the skeleton from 3D image data.
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Fig. 1. Visualization of two different kinds of shortest path corresponding to
τgeom(center, right) and τgeod(left) in 2D. The conducting phase is represented in white,
while sphericle obstacles are represented in grey. The shortest paths from the start layer
to the goal layer are visualized in blue. The skeleton on which the paths for τgeom are
computed is represented by a grey network (right). Reprinted from [18], Fig. 3, with
permission of J. Wiley & Sons. (Color figure online)

2.3 Constrictivity

Constrictivity β quantifies bottleneck effects. It has been defined for a single tube
with periodic constrictions in [26] by β = (rmin/rmax)2, where rmin and rmax are
the radius of the minimum and maximum cross-section of the tube, respectively.
This concept of constrictivity has been generalized defining rmin, rmax and thus
β for complex microstructures [27]. As described in [19], rmax is defined as the
50% quantile of the continuous pore size distribution, while rmin is defined as the
50% quantile of the MIP pore size distribution, which is based on a geometrical
simulation of mercury intrusion porosimetry, introduced in [28]. Constrictivity
takes values between 0 and 1, where values close to 0 indicate strong bottleneck
effects while values close to 1 indicate that there are no bottlenecks at all.

3 Stochastic 3D Microstructure Model

In [17], a parametric stochastic 3D microstructure model has been developed,
which has been used to simulate virtual microstructures with many different
constellations for the microstructure characteristics ε, τgeom (or τgeod) and β.
We recall the definition of the model introduced in [17] and give a detailed
description on how to simulate model realizations.

3.1 Model Definition

Using tools of stochastic geometry and graph theory, we define a random set
Ξ representing the conducting phase of a microstructure. At first a random
geometric graph G = (V,E) is modeled consisting of a set of vertices V and a
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set of edges E, which are connections between the vertices. In a second step the
edges of the graph are randomly dilated to get a full-dimensional conducting
phase.

The set of vertices V is modeled by a homogeneous Poisson point process with
some intensity λ > 0, see e.g. [29]. This means that the vertices are distributed
completely at random in the three-dimensional space and the expected number
of points per unit volume is given by λ. Edges between pairs of vertices are
put according to the rule of a generalized relative neighborhood graph (RNG)
introduced in [17]. For a parameter α ∈ R, two vertices v1, v2 ∈ V are connected
by an edge if there is no other vertex v3 ∈ V \ {v1, v2} such that

dα(v1, v2) > max{dα(v1, v3), dα(v2, v3)}, (5)

where

dα(v1, v2) = d(v1, v2)max
{

0.01,

(
1 − 2ϕ(v1, v2)

π

)}α

. (6)

Here d(v1, v2) denotes the Euclidean distance from v1 to v2, and ϕ(v1, v2) denotes
the acute angle between the line segments v2 − v1 and (0, 0, 1). By the aid of
the model parameter α, it is possible to control the directional distribution of
edges in the graph G and thus one can control τgeom and τgeod in the virtual
microstructure. Note that for α = 0 we are in the situation of the classical
RNG [30], i.e., there is no preferred orientation of the edges. For α > 0 we obtain
more edges oriented in direction (0, 0, 1) than for α < 0, see Fig. 2.

Fig. 2. Generalized RNG, where the set of vertices is given by a realization of a homo-
geneous Poisson point process. The parameter α is chosen as α = −5 (left, vertically
oriented edges), α = 0 (center, no preferred orientation of edges), and α = 5 (right,
horizontally oriented edges). Direction (0, 0, 1) is the direction from front to back.
Reprinted from [17], Fig. 5, with permission of J. Wiley & Sons.

In order to result in a full-dimensional conducting phase each edge of G is
dilated by a sphere with random radius. The dilation radii are independently and
identically distributed (i.i.d) following a Gamma-distribution with mean value
g1 > 0 and variance g2 > 0. The Gamma-distribution is shifted by 1 to ensure
that each edge is at least dilated by a ball of radius 1. Formally, we result in a
conducting phase
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Fig. 3. Three realizations of the final conducting phase, where λ, α and g1 are constant.
Only the parameter g2 is varied, that is g2 = 1 (left), g2 = 4 (center), and g2 = 7 (right).
Reprinted from [17], Fig. 6, with permission of J. Wiley & Sons.

Ξ =
⋃
e∈E

e ⊕ B(o,Re), (7)

where ⊕ denotes the Minkowski addition of sets, Re denotes the random dilation
radius corresponding to the edge e ∈ E, and B(o, r) denotes the (closed) ball
centered at the origin o ∈ R

3 with radius r > 0. While the volume fraction of Ξ
can be controlled by the intensity λ > 0 and g1, constrictivity can be controlled
by g2. The larger the variance of the dilation radii is, the more bottlenecks are
created in the conductive phase, see Fig. 3.

3.2 Simulation of Model Realizations

Having defined the stochastic 3D microstructure model, the simulation of model
realizations is described. In the following we assume algorithms for the simulation
of uniformly distributed, Poisson distributed and Gamma distributed random
variables to be known. For simulation of random variables the reader is referred
to [31]. To simulate a realization of Ξ in a cuboid W = [0, w]3 for given model
parameters λ, α, g1, g2, we simulate the generalized RNG G at first. The graph
G is simulated based on a realization of vertices in a larger observation window
W+ = [−δ, w + δ]3 for some δ > 0 in order to avoid edge effects. Note that this
approach approximates a realization of Ξ since in general, we can not guarantee
that vertices located outside of W+ do not influence the conductive phase in
W , i.e., the random set Ξ ∩ W . Nevertheless, the approximation error becomes
neglectable in practice for sufficiently large W+.

To simulate G we begin with the simulation of the set of vertices V =
{v1, . . . , vN} in W+, where N is the random number of vertices in W+. That
means that a homogeneous Poisson process has to be simulated in W+.

Algorithm 1 (Simulation of vertices [29]). Let λ > 0 be the intensity of the
homogeneous Poisson point process. Then, the set of vertices is simulated in W+

by the following two step approach
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1. Simulate a realization n of the random number N of vertices in W+, which
is Poisson distributed with parameter λ(w + 2δ)3.

2. For each i ∈ {1, . . . , n}, simulate the position of the i-th vertex vi, which is
uniformly distributed in W+. That is, vi is a three-dimensional vector each
entry of which is uniformly distributed in the interval [−δ, w + δ].

For a given set of vertices V , the edges are put and their random dilation
radii are simulated to obtain the full-dimensional conductive phase.

Algorithm 2 (Simulation of the full-dimensional conductive phase).
Consider the set of vertices V = {v1, . . . , vn} simulated by Algorithm 1.

1. Check for all 1 ≤ i < j ≤ n whether vi and vj are connected by an edge in G
according to Inequality (5).

2. Simulate the dilation radii for the edges, i.e., simulate a collection of i.i.d.
Gamma distributed random variables with mean g1 and variance g2 resulting
in a realization {re : e ∈ E} of the random radii {Re : e ∈ E}.

3. The set
W ∩

⋃
e∈E

e ⊕ B(o, re) (8)

is an approximation of a realization of Ξ ∩ W .

4 Prediction of Effective Conductivity

A number of 43 virtual microstructures is generated with different constella-
tions for the microstructure characteristics ε, τgeom/τgeod and β. These virtual
microstructures are used as an input for numerical simulations of the M -factor.
As a result the prediction formulas

M̂ = min
{

1,max
{

0, 2.03
ε1.57 β0.72

τ2
geom

}}
, (9)

and

M̂ =
ε1.15 β0.37

τ4.39
geod

. (10)

for the M -factor have been obtained by regression analysis in [17,18], respec-
tively. The mean absolute percentage error (MAPE) is 16% when using Eq. (9)
and 18% when using Eq. (10). A visualization of the goodness of fit is given in
Fig. 4.

On the one hand, a prefactor of 2.03 is necessary in Eq. (9) to obtain an ade-
quate prediction of M by ε, β and τgeom. On the other hand 2.03 ε1.57 β0.72τ−2

geom

is in general not within the interval [0, 1] and has thus to be artificially restricted
to [0, 1]. Moreover, τgeom depends on the specific choice of the skeletonization
algorithm and skeletonization might be problematic for microstructures with a
large volume fraction of the conductive phase. Even if the MAPE of Eq. (9) is
smaller than the one of Eq. (10), the conclusion of [18] is to prefer τgeod rather
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Fig. 4. Predicted M -factor ̂M over numerically simulated M -factor M for the 43 vir-
tual microstructures from [17,18]. Equation (9) (left) and Eq. (10) (right) are used to
predict M .

than τgeom as microstructure characteristic describing the length of transport
paths, in particular for the prediction of the M -factor.

An extension of this simulation study has been performed in [19], where
8119 virtual microstructures have been generated and the microstructure char-
acteristics ε, β, τgeod as well as the M -factor have been computed for each of
them. Aside from the model presented in Sect. 3, the stochastic microstructure
model from [32] has been used to generate virtual microstructures, where the
conducting phase is a union of spherical particles or its complement. Consider-
ing different types of stochastic microstructure models, we want to ensure that
the virtual testing approach is influenced by the specific kind of generating vir-
tual microstructures as little as possible. It has been shown that the prediction
of the M -factor can be further improved using methods from statistical learn-
ing [33], i.e. neural networks (9% MAPE) and random forests (8% MAPE), see
Fig. 5. The MAPE of Eq. (10) reduces to 13% when all 8119 virtual structures
are taken into account because then, the extreme microstructures play a less
important role [17,18]. Furthermore, the extension of the simulation study has
shown that Eq. (10) slightly underestimates the M -factors close to 1. Validation
with experimental image data representing microstructures in SOFC anodes and

Fig. 5. Predicted M -factor ̂M over numerically simulated M -factor M for the 8119
virtual microstructures from [19]. Classical regression analysis, i.e., Eq. (10) (left),
as well as a trained neural network (center) and random forest (right) are used to
predict M . Reprinted from [19], Fig. 6, with permission of J. Wiley & Sons.
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microstructures in membranes of pH-sensors has been performed in [19], which
shows that the prediction formulas are not only valid for model-based virtual
microstructure.

5 Application to Fickian Diffusion in Silica Monoliths

For porous microstructures, there is a one-to-one relationship between effective
conductivity and effective diffusivity of Fickian diffusion. We consider 3D image
data of two different porous silica monoliths, in which Fickian diffusion takes
place, as a further validation of the prediction formulas obtained by virtual
materials testing. Since the diffusion takes place in the pores, the microstructure
characteristics ε, τgeod and β are computed for the pores in this section.

Fig. 6. Cutout of cross-sections (15 μm × 15 μm) depicting the macropores (black) of
the two silica monolith samples S1 (left) and S2 (right).

5.1 Description of the Material

The considered silica monoliths, manufactured by Merck, are used for high-
performance liquid chromotography (HLPC) and catalysis. They consist of a
single piece of silica with an interconnected pore phase, which contains macro-
pores and mesopores [34]. Diffusion in the macropores is investigated based on
tomographic image data of two samples, denoted by S1 and S2 with a resolution
of 30 nm and sizes of 60 × 60 × 24.19μm3 and 60 × 60 × 24.57μm3, respectively.
The mean size of the macropores is 1.36μm in sample S1 and 0.82μm in sample
S2. The image data depicting the macropores, see Fig. 6, is obtained via confocal
laser scanning microscopy, see [12].
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5.2 Effective Diffusivity

The diffusion process over time of a particle concentration u with intrinsic dif-
fusivity D0 in the pore phase can be analogously described to the conduction
process, i.e. by the diffusion equation

∂u

∂t
= DeffΔu, (11)

where Deff denotes the effective diffusivity of the pore space. Due to the analogy
between effective diffusivity and effective conductivity, the following relationship

M = ε
Deff

D0
(12)

holds. A random-walk particle-tracking algorithm [12] is applied in order to
simulate Deff for the previously described cubic cut-outs. This method simulates
a large number K of independent random walks ri(t) = (ri,x(t), ri,y(t), ri,z(t))
over time in the pore phase, where ri(t) is the position of the i-th random-walk
at time t > 0. Then, the normalized effective diffusion coefficient Deff/D0 is
defined by

Deff

D0
= lim

t→∞
1

2KD0

∂

∂t

K∑
i=1

⎛
⎝ri,z(t) − ri,z(0) − 1

K

K∑
j=1

(rj,z(t) − rj,z(0))

⎞
⎠

2

. (13)

Note that ri,z(t) − ri,z(0) is the displacement of the i-th random-walk in z-
direction at time t. It is important to note that we consider only displacements
in z-direction since mean geodesic tortuosity τgeod and the constrictivity β are
computed in z-direction. The accuracy of the random-walk particle tracking
algorithm used for the simulation of Deff has been demonstrated in [35–37].

5.3 Results

For each of the two microstructures, we consider 64 (slightly overlapping) cubic
cutouts with sizes of 15 × 15 × 15μm3. The microstructure characteristics
ε, τgeod, β and Deff are computed for each of these cutouts, which allows to
validate the predictions for M = εDeff/D0 derived by virtual materials testing.
While the MAPE is 6% when using Eq. (10), it can be reduced using the pre-
dictions obtained by neural networks (2%) and random forests (2%). The neural
network and random forest, which are trained in [19], are used for the prediction
of M = εDeff/D0. The goodness-of-fit is visualized in Fig. 7. One can observe
that M = εDeff/D0 is slightly underestimated by Eq. (10). However, the devi-
ations are not larger than the ones from the virtual microstructures considered
in [19].



On Microstructure-Property Relationships 155

Fig. 7. The values of M = εDeff/D0 computed by the random-walk particle-tracking
algorithm are predicted using Eq. (10) (top), the neural network (center), and the ran-
dom forest (bottom) from [19]. The values corresponding to the 8119 virtual microstruc-
tures (blue), to the cutouts from sample S1 (cyan), and to the cutouts from sample
S2 (green) are represented in different colors. The right column shows a zoom to the
square [0.33, 0.53]2. (Color figure online)

6 Conclusions

Virtual materials testing is a powerful tool to establish quantitative relationships
between microstructure characteristics and functional properties. An overview of
results obtained by virtual materials testing to predict effective conductivity by
volume fraction ε, mean geodesic tortuosity τgeod and constrictivity β is given.
The presented quantitative relationships enable the identification of improved
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microstructures with respect to effective conductivity. Due to the mathematical
analogy, the obtained results can be transferred from conduction processes to
Fickian diffusion in order to predict the effective diffusivity in porous microstruc-
tures. This is exemplarily demonstrated based on 3D image data of two different
microstructures from silica monoliths. The method of virtual materials testing
itself is not restricted to conduction processes or Fickian diffusion in two-phase
materials. It can also be used to investigate relationships between microstructure
characteristics and further functional properties, like e.g. effective permeability
or mechanical stress-strain curves.
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Abstract. We aim to simulate software processes in order to predict the
structural evolution of software graphs and assure higher software quality.
To make our simulation and therefore the results more accurate, we need
to model real world practices. In this paper, we consider the specific
problem of including software refactorings in our simulation. We describe
these refactorings as graph transformations and apply parameters we
collected from open source projects.

1 Introduction

In previous work (see Honsel et al. 2016; 2015) we presented agent-based sim-
ulation models for software processes in order to monitor the quality of the
software under simulation. The aim is to assure the quality of software projects.
Project managers can configure different parameters, for example, the number
of developers involved and can compare the quality of different simulation runs.

In these models, developers act on software entities. Thus, it is their behavior
which makes the software evolve over time. One identified challenge is to improve
the structure of the simulated software graph. In order to do so, we require a
more detailed description of which files are selected for a commit and how these
files change. A common approach to describe well defined code structure changes
are software refactorings. Therefore, we propose a general model for refactorings
which can be easily integrated in our agent-based model developed earlier.

This work is based on well known theoretical foundations of software refac-
torings (see Fowler 2009) and graph transformations (see Ehrig et al. 1999). The
idea to use graph transformations for the description of refactorings is based on
the work of Mens et al. (2005), where the authors proved that refactorings can be
formalized with graph transformations. Unfortunately, their proposed model is
too detailed for simulation purposes. We therefore define a suitable abstraction
of it.

This paper is structured as follows. Before we describe our approach in detail
in Sect. 4 we present some related work in Sect. 2 as well as the theoretical
c© Springer Nature Switzerland AG 2018
M. Baum et al. (Eds.): SimScience 2017, CCIS 889, pp. 161–175, 2018.
https://doi.org/10.1007/978-3-319-96271-9_10
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background in Sect. 3. We present our experiments and results in Sect. 5. Finally,
we conclude with a discussion of our results and a short outlook in Sect. 6.

2 Related Work

There are only few approaches in the field of monitoring software quality with
simulation methods. An agent-based simulation model for software processes
was presented by Smith and Ramil (2006). The authors can reproduce different
aspects of software evolution, e.g. the number of complex entities, the number of
touches, and distinct patterns for system growth. In our tests, almost all of them
need different parameter sets to get realistic results. The model we proposed
in Honsel et al. (2016), has the following differences to the one presented by
Smith et al.: First, our model is not grid-based and agents do not perform a
random walk. In our work, all instantiated agents live in one environment and
relationships are represented as graphs. Second, our simulation model requires
only parameters for effort and size to simulate projects that have similar growth
trends. The approach discussed in this paper extends our previous simulation
model.

Another interesting study is presented by Spasic and Onggo (2012). The work
is aimed to support project managers in their planning by simulating possible
future software processes. It is not an entirely new approach to use simulation
in this context, but for a long time it was dominated by discrete event simula-
tion and system dynamics (because agent based simulation is a relatively new
technique). The authors use data from a software department in an industrial
context to estimate the simulation parameters. This work differs from other stud-
ies in that a maturity model is given (the capability maturity model integration,
CMMI1). During the creation of the agent-based model, the number of existing
software components and the number of available developers is considered based
on the design and the development phase. Then, the developers are assigned to
certain (multiple) components. The components switch between different states.
Finally, the model is validated by comparing the empirical project duration of
different projects with the simulated results.

3 Background

In this section, we briefly introduce the required theory of software refactorings
and graph transformations as well as the main idea of software developers’ goals
and plans and how one can simulate them. We will start with a short intro-
duction of our previous work, in particular the agent-based model for simulating
software evolution. In this paper, we will extend this model with three prominent
refactoring types.

1 http://cmmiinstitute.com/.

http://cmmiinstitute.com/
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3.1 Agent-Based Simulation Model of Software Processes

The model that is to be extended is shown in Fig. 1. We are using agent-based
modeling and simulation because software evolution results from the work of
developers, who we can model in greater detail.

Environment

fileCount : Integer

Developer

numberOfCommits : Integer
numberOfFixes : Integer

Bug

dateOfCreation : Real

computeLifespan() : Real

Category

Maintainer CoreDeveloper MajorDeveloper MinorDeveloper

SoftwareEntity

owner : Developer

computeLabelValue() : Real

MajorBug NormalBug MinorBug

createFiles()
updateFiles()
deleteFiles()
bugFix()

dateOfClosing : Real

numberOfChanges : Integer
numberOfAuthors : Integer
couplingDegree : Integer

1* 1 *

*

*

1

*

1

*

0..1

works on

*

Fig. 1. Agent-based simulation model for software evolution (Honsel et al. 2016).

The main entity of our model is the developer who works on software entities.
This work, performed as commits, makes the software evolve over time. Commits
can be separated into the following three actions: create, delete, update. Applying
a commit changes the state of several software entities simultaneously and can
fix a bug with a certain probability.

Developers are divided into four different types which differ in the effort they
spend on the project. Thus, each developer type has its own commit behavior.
Bugs are divided into three different types according to their severity.

Required dependencies between entities are modeled as graphs. The most
important one is the ChangeCouplingGraph: this graph represents dependencies
between software entities that are changed together several times. This means
that the structure of this graph depends on the developers’ commit behavior. In
particular, the process of selecting files for a commit influences the structure of
the change coupling graph. This process is partly based on random decisions. To
reduce the randomness in selecting files for a particular commit, we extend our
model with refactorings. This allows us to model structural changes according
to rules for certain refactoring types.

Since the change coupling graph serves as input for our assessment tool,
improvements to this graph are expected to result in more accurate quality
assessments of the overall software under simulation.

This entire model including the introduced dependency graphs, the mining
process to get the required parameters to run the simulation model, and the
automated assessment using conditional random fields are described in detail
in (Honsel et al. 2016; 2014; 2015).



164 D. Honsel et al.

3.2 Refactoring

The following definition of a refactoring as well as the description of the selected
refactorings corresponds to Martin Fowlers definition2.

Refactoring means a restructuring of software without changing its behav-
ior. The aim is to make the software more readable to developers and/or to
increase the maintainability.

Fowler 2009 presents a catalog with more than 70 different refactoring types.
The mining process described in Sect. 4.2 revealed that the most frequently
occurring refactoring types, that change the structure of the software graph,
are Move Method, Extract Method and Inline Method. Therefore, we started
with models for those three types, which are described below.

Move Method will be applied if a method calls more methods or features of
another class than from its own. It moves the method to the class with the
most calls.

Extract Method will be applied to large methods or if code fragments can be
grouped together. It creates a new method that is called from the old one and
moves code from the old method to the new one. In other words, the original
method has been split.

Inline Method is the opposite of Extract Method. The code of the inlined
method is moved to the calling method and afterwards the inlined method
will be removed.

How our simulation model is extended by refactoring types using graph trans-
formations is described in Sect. 4.1.

3.3 Graph Transformations

Structural changes to a software graph caused by applying refactorings are mod-
eled using graph transformations as presented in (Mens et al. 2005). The follow-
ing definition of graph transformations is based on (Kreowski et al. 2006).

Graph Transformations are used to transform a given graph G according to
predefined rules. A rule has a left-hand side L and a right-hand side R, both
are graphs. To apply a rule one has to execute three steps, which finally lead
to the derived graph H. Firstly, one has to find a matching of L in G. Secondly,
all vertices and edges that are matched by L \ R are deleted from G. Finally,
the graph H is created by pasting a copy of R \ L to the result.

To restrict the allowed software graphs one can use a type graph. It is similar
to a UML class diagram and expresses which nodes can be linked with a certain
edge type.

How we use graph transformations to extend our model of software evolution
and how the concrete type graph is defined is presented in Sect. 4.1.
2 https://refactoring.com.

https://refactoring.com
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3.4 Developer Goals and Plans

As we have described more detailed in (Ahlbrecht et al. 2017), we are using the
prominent BDI (Weiss 2013) approach to model refactorings. This means that
developers formulate goals based on their beliefs and build plans to reach them.
In the scenario for this paper we only consider the developer’s goal improve
maintainability, which results in applying a certain refactoring. Beliefs are the
current state of the software under simulation, represented as software and graph
metrics. The decision process of a developer is depicted in Fig. 2.

developer

Belief

Goals

Actions

has

selects

performs

project size (number of files): 1100

complexity (LOC / class): 155 

number of developers: 11

ok

ok

can be improved

add feature

fix bug

improve maintainability
...

extract method

move method

pull up method
...

class A

method A

class A

method A method B

Fig. 2. Example for developer’s goals and plans (Ahlbrecht et al. 2017). The developer
works on a method that is hard to maintain because it has too many lines of code.
To improve maintainability, the developer applies the refactoring Extract Method. This
means that parts of the origin method are moved to a newly created method which is
called from the origin method.

Such an approach has additional requirements for the simulation platform.
In particular we want to take advantage of BDI while still scripting other parts
in a classical programming language. Furthermore it is desirable to parallelize
the simulation of multiple developers in large projects. We use a new simulation
platform based on Python and Apache Spark that we presented in (Ahlbrecht
et al. 2016).

Our BDI agents are programmed in AgentSpeak (Rao 1996). The beliefs
of an agent are represented as logical terms like calls("Config", "get",
"HashMap", "get"). Plans consist of a header and instructions which may
remove and add beliefs with - and + operators. Unification on the plan headers
is used to find suitable plans for the current situation. An example for a specific
plan is presented in Sect. 4.3.
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To create a plan for each considered refactoring we require detailed informa-
tion about the state of the software before it is applied and state changes caused
by the refactoring. This includes metric changes as well as structural graph
changes. This information is gathered through mining software repositories as
described in Sect. 4.2.

4 Approach

In this section, we present the model used to simulate refactorings based on graph
transformations. Furthermore, we describe the mining approach to extract the
required information from open source repositories. With this information we can
describe developers’ actions, in particular the structural changes to the software
graph, and we can parametrize the model. Finally, we present the concrete BDI
model and how we simulate it with our developed simulation platform.

4.1 General Refactoring Model

The graph representing the simulated software can be found in Definition 1.
It is transformed by commits of the developers according to formulated trans-
formation rules. Due to the simplicity of this graph one can easily extend it.
For the modeling of inheritance, for example, one can add a further edge label
representing links between classes that belong to an inheritance hierarchy.

Definition 1. Let Σ = {C,M} be a set of node labels and Δ = {mm,mc} be
a set of edge labels. The node types represent software entities: classes (C) and
methods (M). Edges represent relationships between nodes: method memberships
(mm) and method calls (mc). A graph over Σ and Δ is a System G = (V,E, l),
where V is a set of nodes, l : V → Σ is a function that assigns a label to each
node, and E ⊆ V × Δ × V is the set of edges.

The type graph depicted in Fig. 3 restricts the edge creation. For instance,
member method edges can only occur between a class and a method as well as
method calls link two methods.

C M
mcmm

Fig. 3. Type Graph

We formulated transformation rules for the three most frequently occurring
refactoring types. The results of the mining process for these types can be found
in Sect. 5.1. The transformation rules are depicted in Fig. 4. One can see the left
hand side of the rule which has to be replaced by the right hand side.

Since Extract Method is actually the opposite of Inline Method both are
depicted in Fig. 4a.
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Class A

Method A

mm

Class A

Method A

mm

mc

Method B

mm

extract

inline

(a) Extract/Inline Method.

Class A

Method A

mm

Class B

Outgoing
Invoca ons

Class A

Method A

mm

Class B

(b) Move Method.

Fig. 4. Graph transformation rules for the selected refactorings. The left-hand side of
the rule will be replaced by the right-hand side in the software graph. The dotted edge
represents outgoing invocations, which means method calls to one or more methods of
the other class.

To find a match for the rule’s left-hand side, not only the structure of the
software graph is taken into account, but also appropriate software metrics.
These are, for example, the size measured in lines of code (LOC) for Extract
Method (Fig. 4a) and the coupling measured in number of outgoing invocations
(NOI) for Move Method (Fig. 4b). Furthermore, we assume that NOI of the origin
class of a method will be reduced when a Move Method is applied.

4.2 Collecting Required Parameters (Mining)

To apply the model described above to a software graph, we require detailed
information about the state of the software before a refactoring is applied and
how the state changes when a certain refactoring was applied. The state is rep-
resented by software metrics for size, complexity, and coupling. This section
describes the entire process of gathering these metrics from open source reposi-
tories as depicted in Fig. 5.

Since we are interested in the behavior of single refactorings, we analyze
transitions between two consecutive code revisions in a Git repository. For this
purpose, we iterate over the version history of the software repository and search
for refactorings in each transition. When a refactoring is found, the metrics of
this transition will be computed.

We are using Ref-Finder (Prete et al. 2010) for the identification of refac-
torings between two commits. This tool implements 63 refactorings of Fowler’s
catalog (Fowler 2009) and is based on logic programming.

To verify the results of Ref-Finder, we apply the recently published tool RefD-
iff (Silva and Valente 2017). RefDiff is able to detect 13 prominent refactoring
types of Fowler’s catalog (Fowler 2009) and uses heuristics based on static code
analysis as well as code similarity metrics to identify refactorings between two
code versions.
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Git So ware Repository

Refactorings_I.csv Metrics.csv

Refactoring Database

Refactorings_II.csv

Pre-Processing

RefFinder SourceMeterRefDiff

Fig. 5. The framework used to find refactorings in software repositories.

Both tools for finding refactorings between two commits are executed in
parallel. As presented in Sect. 5.1, the results of RefDiff are more accurate for
certain refactoring types.

If a transition between two commits contains at least one refactoring we are
using SourceMeter3, a tool for static source code analysis, to retrieve the required
source code metrics for classes and methods of both commits.

All these tools store their results in text files. Unfortunately, naming conven-
tions of class or method names are not unique. To facilitate the analysis of the
generated output of the three tools we have written a preprocessing application.
This application analyses refactorings found between two commits based on the
output of Ref-Finder and RefDiff, searches the appropriate metrics in the output
of SourceMeter, computes metric changes, and enriches this dataset with infor-
mation of the Git repository. One dataset for each found refactoring is stored
in a MySQL database. The results presented in Sect. 5.1 are based on queries
against this database.

3 https://www.sourcemeter.com/.

https://www.sourcemeter.com/
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4.3 Simulating Refactorings

The simulation is initialized with a snapshot of the code base representing one
revision in the source code repository. This includes the graph from Sect. 4.1 rep-
resented as logical terms. Additionally, methods are annotated with the source
code metrics for size LOC and for complexity CC (McCabe’s Cyclomatic Com-
plexity).

class (Class). Logical term stating that there is a class Class. This refers
to classes which are defined in the code base under simulation, excluding the
standard library and other dependencies.

method (Class, Method, LOC, CC). There is a method Method that belongs
to Class, defined in the current codebase.

calls (A, Caller, B, Callee). The method Caller from class A calls
method Callee from class B.

Then in each step a refactoring is randomly selected from the applicable
plans. Plans are weighted using the frequency of the corresponding refactoring
as mined from the source repository.

+!move method ( Class , Method , NewClass )
: method ( Class , Method , LOC, CC) &

Class \== NewClass
<−

−method ( Class , Method , LOC, CC) ;
+method (NewClass , Method , LOC, CC) ;
whi l e ( c a l l s ( Class , Method , Ca l l e eClas s , CalleeMethod ) ) {

−c a l l s ( Class , Method , Ca l l e eClas s , CalleeMethod ) ;
+c a l l s (NewClass , Method , Ca l l e eClas s , CalleeMethod ) ;

}
whi le ( c a l l s ( Ca l l e rC la s s , CallerMethod , Class , Method ) ) {

−c a l l s ( Ca l l e rC la s s , CallerMethod , Class , Method ) ;
+c a l l s ( Ca l l e rC la s s , CallerMethod , NewClass , Method ) ;

} .

Fig. 6. Example: Definition of the Move Method refactoring in AgentSpeak

Figure 6 shows how the terms from the snapshot are used in the defini-
tion of the +!move method (Class, Method, NewClass) plan. The plan header
requires that the moved method is present in the current code base and that
Class and NewClass are not the same.

+!extract method(Class,Method) and+!inline method(Class,Method)
are defined similarly: Extract Method requires that the origin method has more
than one line of code and complexity greater than 1, Inline Method requires only
that the method is defined in the current code base.
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5 Results

In this section, we present our results. First, we summarize the outputs of mining
open source repositories and analyze the consequences for our proposed model
of refactorings. Second, we present results of simulating refactorings on our plat-
form.

5.1 Mined Simulation Parameters and Patterns

To gain more knowledge about when software refactorings are applied and how
they change the state of the software we analyzed the following three open source
projects: JUnit4—a unit testing framework for Java, MapDB5—an embedded
database engine for Java, and the GameController6 used for several RoboCup
competitions. For the analysis of these projects the mining framework described
in Sect. 4.2 is used.

The whole result set to parameterize the model described in Sect. 4.3 is
depicted in the table in Appendix A. The values represent average metric changes
for each analyzed refactoring type.

Due to the surprisingly high amount of Move Method refactorings found by
Ref-Finder, we compare the results of Ref-Finder for this refactoring type with
the results of RefDiff. This resulted in significantly less Move Method refactorings
found by RefDiff. Thus, our results correspond with the outcome of the authors
of RefDiff, who found in (Silva and Valente 2017) that Ref-Finder has a high
number of false positives for some analyzed projects, in particular for the Move
Method refactoring.

Another notable result concerns the target classes of the refactoring Move
Method. As presented in Table 1, only a small amount of methods are moved to
already existing classes. This means that in many cases where the refactoring is
applied, methods are moved to newly created classes.

Table 1. The amount of applied refactorings of the type Move Method where the
method is moved to an already existing class.

Project Tool

Ref-Finder RefDiff

JUnit 5,6% 22,5%

MapDB 34,9 % 28,0%

GameController 9,6% 0,0%

4 https://github.com/junit-team/junit4.
5 https://github.com/jankotek/mapdb.
6 https://github.com/bhuman/GameController.

https://github.com/junit-team/junit4
https://github.com/jankotek/mapdb
https://github.com/bhuman/GameController
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Fig. 7. Alternative rule for refactoring Move Method.

Considering this knowledge made us extend the model for Move Method
presented in Sect. 4.1 as depicted in Fig. 7. The method is moved to a newly
created class and the outgoing invocations move as well to the new class. This
allows us to apply both versions of this type with a certain probability.

Using the results presented above to parameterize the model gives us the
ability to run the simulation. The outcome of the simulation is presented in the
next section.

5.2 Simulation

Figure 8 shows the simulation results for the three projects. JUnit, Game-
Controller and MapDB have similar method sizes in terms of LOC, but vastly
different average method complexities to start with.

JUnit and GameController were simulated for 365 steps. The general trend
is that complexity is traded for size. Note however, that LOC changes on a
much smaller scale. For example extracting a method will add new lines for
the function signature, closing brace and call into the new method, but can
dramatically reduce complexity.

In the simulation of MapDB no further sensible refactorings were found before
the predetermined step count, so the simulation ends effectively at step 265.
This shows that other commit types, not based purely on refactorings, should
be included in the simulation.
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Fig. 8. Average method complexity and size in simulation of software evolution.
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6 Conclusion and Outlook

In this paper, we presented an approach to model refactorings based on graph
transformations: single rules are applied to initial graphs (snapshots of soft-
ware repositories). The simulation results reflect a tradeoff between complexity
and size.

For integrating this model completely in our simulation model for software
processes we need more information about how other commit types like adding
a feature or fixing a bug behave in detail. With this knowledge we are able to
create transformation rules for other commit types which are required to simulate
the entire process of software evolution. Furthermore, we plan to analyze and
integrate more refactoring types which influence the structure of the software
graph. These are, for example, PullUpMethod and ExtractSuperclass. We expect
that agent based modelling on our new scalable simulation platform will help
efficiently simulate detailed developer behavior (Ahllbrecht et al. 2017), even in
large projects with many developers.

For future data mining tasks we plan to use the existing mining framework
SMARTShark (Trautsch et al. 2016), it mines data from software reposito-
ries automatically and provides users with the ability to analyze the data with
Apache Spark. Thus, we need to extend SMARTShark with a plug-in for finding
refactorings in revisions of source code repositories based on the mining approach
described in this paper.

Future simulation models should be able to answer more questions of project
managers, for example, how different refactoring plans influence the quality of
software projects.

Acknowledgment. The authors thank the SWZ Clausthal-Göttingen that partially
funded our work (both the former projects “Simulation-based Quality Assurance for
Software Systems” and “DeSim”, and the recent project “Agent-based simulation
models in support of monitoring the quality of software projects”). https://www.
simzentrum.de/en/.

A Mining Results

We analyzed the following metrics: size measured in lines of code (LOC), coupling
measured in number of outgoing invocations (NOI), and complexity measured
in McCabes cyclomatic complexity (McCC for methods) or weighted methods
per class (WMC for classes). The results are presented in the following table.

https://www.simzentrum.de/en/
https://www.simzentrum.de/en/
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Abstract. Many simulations require large amounts of computing power
to be executed. Traditionally, the computing power is provided by large
high performance computing clusters that are solely built for this pur-
pose. However, modern data centers do not only provide access to these
high performance computing systems, but also offer other types of com-
puting resources e.g., cloud systems, grid systems, or access to specialized
computing resources, such as clusters equipped with accelerator hard-
ware. Hence, the researcher is confronted with the choice of picking a
suitable computing resource type for his simulation and acquiring the
knowledge on how to access and manage his simulation on the resource
type of choice. This is a time consuming and cumbersome process and
could greatly benefit from supportive tooling. In this paper, we intro-
duce a framework that allows to describe the simulation application in
a resource-independent manner. It furthermore helps to select a suitable
resource type according to the requirements of the simulation applica-
tion and to automatically provision the required computing resources.
We demonstrate the feasibility of the approach by providing a case study
from the area of fluid mechanics.

1 Introduction

Scientific simulations are often computation intensive and time consuming and
can highly profit from choosing a suitable computing resource type and scale.
However, choosing the right computing resource and an appropriate scale is not
a trivial task, especially in modern computing centers that offer access to a het-
erogeneous infrastructure including cloud services, high performance computing
clusters and clusters with specialized accelerators (e.g., GPU cards). All of these
different resource types have their own technical peculiarities and require the user
of the simulation application (the simulation scientist), to invest time to learn
c© Springer Nature Switzerland AG 2018
M. Baum et al. (Eds.): SimScience 2017, CCIS 889, pp. 176–192, 2018.
https://doi.org/10.1007/978-3-319-96271-9_11
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when and how to use them. It might even be necessary to switch the resource
type and scale during the lifetime of a simulation, e.g., when transitioning from
testing simulation code to running parameter studies, or when the problem size
increases and suddenly requires more computing resources. To overcome this bur-
den, we develop a transparent integration mechanism for heterogeneous comput-
ing resources. The goal is to semi-automatically deploy and execute simulation
applications on the most suitable resource type. To achieve this goal, we model
the simulation application structure and behaviour in a resource-agnostic way
and provide model transformators that automatically transform the abstract
simulation application model into resource-specific models. In this paper, we
introduce a conceptual framework that implements the concept of model-driven
provisioning of computing resources for simulation application and provide a
case study on the application of the framework by modeling and deploying a
simulation from fluid mechanics.

The specific problems addressed in this work are:

P1 Developing and/or using a simulation application and making that applica-
tion run on various resource types are in principle orthogonal tasks. However
both of these tasks are handled by the simulation scientist in practice.

P2 The technical details which need to be learned in order to deploy the same
application on heterogeneous infrastructures burden the simulation scientist
with a significant investment of time that would be better spent on the
application or its use case itself.

P3 Even once several resource types have been shown to be compatible with a
certain application, choosing the optimal compute resource for a given job
in terms of hardware equipment and available software packages remains
highly non-straightforward.

The remainder of this paper is structured as follows: In Sect. 2, we introduce the
simulation application that serves as a use case in scope of this work. After that,
we discuss the conceptual framework, we propose to homogenize the utilization
of the heterogenous infrastructure in Sect. 3, followed by a short introduction
to the modeling language Topology and Orchestration Specification for Cloud
Applications (TOSCA), which we use as a basis for building the models in scope
of the framework in Sect. 4. In Sect. 5, we discuss the modeling of the use case
application with help of the framework, followed by a discussion of our findings
and the limitations of the approach in Sect. 6. Finally, we provide an overview of
related work in Sect. 7 and draw our conclusions and give an outlook on future
work in Sect. 8.

2 Use Case

As an exemplary use case, the simulation of the flow in porous media with the
Lattice-Boltzmann method (LBM) was chosen. LBM originates from Boltzmann’s
kinetic molecular dynamics and may be understood as a discretization in space
and time of the velocity-discrete Boltzmann equation. Its main advantages are
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the inherent parallelism which leads to great performance on many architectures
and easy handling of complex geometries.

Particle filled beds are of great technical importance e.g., in catalysator pack-
ings. Thus, the knowledge of the pressure drops in such packings is crucial. Con-
fining walls can have a significant influence on the pressure drop and therefore
the pressure drop as a function of the sphere diameter to wall distance ratio
is systematically studied. A high number of packings is created using an algo-
rithm and a scale-resolving simulation of the flow in the packing with LBM is
performed (Fig. 1). In previous work, measured and simulated pressure drops in
slit-type milli-channels with different packings were compared. Very good agree-
ment between measured and simulated pressure drops was achieved [8].

This use case can be seen as a typical parameter study which are common in
engineering. The same program is plurally started with different parameters (in
this case sphere diameter to wall distance ratio). The computational cost of a
single program run is relatively low and the high effort is mainly caused by the
multiple execution. The demands on the infrastructure are therefore different
from a single large simulation like an aerodynamic simulation with a great num-
ber of mesh cells and more complex domain boundaries, where the simulation
is distributed over many nodes which must be synchronized after every time
step and thus has higher demands on the network connection. A more involved
simulation may therefore necessitate the switch to a different infrastructure.

To shield the simulator from the manual adaptation of the provided resources
to the different simulation types, we build an infrastructure that helps to provi-
sion resources of the correct type and scale transparently.

Fig. 1. Exemplary packings of spheres between two plates with a sphere diameter to
wall distance ratio of 4, 6 and 10.

3 Model-Driven Resource Provisioning

In our work, we use a formal model of the simulation application topology and its
behaviour to automatically provision suitable computing resources. The overall
workflow that is implemented by our infrastructure is depicted in Fig. 2. To
distinguish the models used on the different layers we orientate on the notations
introduced with the Model Driven Architecture (MDA) [15], developed by the
Object Management Group (OMG).
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Fig. 2. Workflow for model-driven resource provisioning for simulation applications.

A Platform Independent Model (PIM) encodes the structure and behaviour
of the simulation application in a target resource independent way and is stored
in a model repository. The simulator is then able to select (Step 1) and adapt
(Step 2) the existing models from the repository. The selected and instantiated
model is then passed to a Distribution Controller (Step 3) that evaluates the
parameters of the model and selects the suitable target infrastructure accordingly
(Step 4) and finally transforms the selected model into a Platform Specific Model
(PSM) that matches the requirements of the targeted infrastructure (Step 5).
In the next step, the resource provisioning and the automated deployment of
the simulation application on the targeted resource is triggered (Step 6). After
that, the simulator is given access to the provided resource via a Command Line
Interface (CLI) and can execute his simulations accordingly (Step 7). When all
simulation runs are done, the simulator can collect the output data and triggers
the cleanup and termination of the provided infrastructure (Step 8).

Different resource-specific formats for defining the simulation application for
the different target infrastructures exist. We adopt the Topology and Orches-
tration Specification for Cloud Applications (TOSCA) [12] which is currently
developed by a large technical consortium and allows to define the topology and
the behaviour of cloud applications in a provider-agnostic way.

To build a format for describing the PIM, we extend TOSCA to not only
be able to capture cloud-specific information, but also the information that is
necessary to deploy the application on the other targeted resources, like classical
HPC or HPC+GPU setups. We first concentrate on utilizing the IBM Load
Sharing Facility (LSF) [9], i.e. generating jobscripts ready for submission. For a
given simulation application, this entails taking into account parameters that are
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fixed upon deployment, for instance the infrastructure model for the compute
cluster, as well as parameters that may vary between execution steps like differing
mesh resolutions or choices of which data to operate on.

The model-driven approach is also employed to describe the infrastructure
on which the simulation application will be deployed and executed. Keeping the
application and infrastructure models up to date regarding evolving software
versions, for example of the Load Scheduler, is as important as making them
available to the simulation scientist in the first place. We therefore intend the
repository to be maintained independently for the application and infrastructure
models. This way, a PIM of the Load Scheduler is combined with information
about a specific cluster setup by its administrator to yield a PSM for the users.
The result is combined with the PIM for the simulation application, which can
in turn be maintained by its developers. Our approach exemplifies a separation
of concerns of the knowledge about the specific compute cluster and about the
simulation application from the technical details regarding the transformation of
their respective models in the Distribution Controller. Consequently, each type
of model can be developed by the group of people best equipped to do so, which
is a core tenet of MDA.

In summary, the MDA approach addresses the previously stated problems in
the following ways:

S1 Separation of concerns is an integral part of MDA - in the case at hand
this approach translates to models concerning the simulation application
and those describing the various resource types being designed by the appli-
cation developers/users and compute resource administrators respectively,
each contributing their domain-specific knowledge, instead of both sides
being handled by the simulation scientist as outlined in (P1).

S2 If a convention for describing the interface between applications and resource
types is defined and adhered to by the designers of both types of models,
the time-investment for making a new resource type eligible for automatic
deployment has to be made only once instead of once per application, thereby
addressing (P2).

S3 Given the model for a specific intended application run and several resource
models, programmatically determining the resulting valid combinations can
lead to a more well-informed manual decision by the simulation scientist (cf.
(P3)) and ideally to an automated resource choice.

4 Application Modeling with TOSCA

The Topology and Orchestration Specification for Cloud Applications (TOSCA)
is a standard which is currently developed by the Organization for the Advance-
ment of Structured Information Standards (OASIS). Its goal is to standardize
a template format to describe cloud applications in a portable and reusable
manner, such that they can be deployed to TOSCA-compliant clouds of dif-
ferent cloud providers. While the targeted resource type for TOSCA are cloud
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environments, the defined modeling concepts are not resource type specific and
we utilize the concepts defined by TOSCA to model simulation applications in
a resource type independent way. According to the specification [12], TOSCA
is “a language to describe service components and their relationships using a
service topology, and it provides for describing the management procedures that
create or modify services using orchestration processes.” Therefore, it is able to
describe both the service structure as well as the processes that can be executed
on this structure.

Fig. 3. A simplified subset of the TOSCA metamodel.

A simplified subset of the TOSCA metamodel is depicted in Fig. 3. A
ServiceTemplate captures the structure and also the life cycle operations of
the application. For the sake of brevity, we omit the modeling elements that are
used to define the life cycle operations, because they are not relevant for the
current status of our work. As part of ServiceTemplates, TopologyTemplates
can be defined. TopologyTemplates contain EntityTemplates, which can be
NodeTemplates that define e.g., the virtual machines or application compo-
nents, RelationshipTemplates that encode the relationships between the Node-
Templates, e.g., that a certain application component is deployed on a certain
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virtual machine, or GroupTemplates1 that allow to group a number of Node-
Templates, which e.g., should be scaled together. Additionally, TOSCA defines
the EntityTemplates Capability, Requirement and ArtifactTemplate.
Capabilities are used to define that a NodeTemplate has a certain ability,
e.g., providing a container for running applications, and Requirements are
used to define that a certain NodeTemplate requires a certain Capability of
another NodeTemplate. The aforementioned RelationshipTemplates are used
to connect the Requirement of one NodeTemplate with a matching Capability
of another NodeTemplate. The ArtifactTemplate is used to model all kinds
of artifacts, such as source code, or binaries. All EntityTemplates can have
Properties, e.g., an IP address for a virtual machine, and a certain type that
references a corresponding EntityType. The EntityType defines the allowed
Properties through PropertyDefintions, and the allowed Capabilities and
Requirements through Capability- and RequirementDefinitions respec-
tively. Besides this abstract metamodel, the TOSCA [12] specification defines
normative types that should be supported by each TOSCA conformant cloud
orchestrator. These normative types include e.g., base types for cloud services
and virtual machines. More details on the model elements can be found in the
TOSCA specifications [12,13].

5 Evaluation

In the following, we demonstrate how the defined framework can be used to
model our use case application from fluid mechanics and provision resources on
two different target platforms, namely an High Performance Computing (HPC)
system and an Infrastructure as a Service (IaaS) cloud. Therefore, we present and
discuss the models in the provisioning process for the different target resources.
To foster comprehensibility, we slightly modified the models and omit some tech-
nical details.

5.1 Utilized Tooling

The Eclipse Modeling Framework (EMF) defines a common standard for struc-
tured data models, which conform to metamodels specified in the Ecore for-
mat [19]. We automatically converted the XML Schema Definition (XSD)-based
TOSCA specification to such a metamodel using the EMF tools, and parsed the
normative type definitions specified in YAML Aint Markup Language (YAML)
manually. Once the complete TOSCA metamodel was available in the Ecore
format, we were able to edit the application and resource models, verify them
against the constraints imposed by the respective metamodel, and persist them
using the XML Metadata Interchange (XMI) format.
1 At the time of this writing, two versions of the TOSCA standard exist, a formalized

version [12] in XML and a simplified rendering in YAML [13]. GroupTemplates and
GroupTypes are currently part of the TOSCA YAML rendering, but not part of the
TOSCA XML specification.
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With the help of the domain-specific languages provided by the Eclipse
Epsilon project [20], Model-to-Model (M2M) and Model-to-Text (M2T) transfor-
mations can be performed using various modeling techniques, in particular EMF.
For example, we implemented M2M transformations with the Epsilon Transfor-
mation Language (ETL) in order to obtain the PSM for a concrete setup from
the PIM of the respective resource type, modeling an IaaS cloud standard or
an HPC batch system. Using the resulting model, the application PIM is trans-
formed to the PSM for deployment in a similar fashion. M2T transformations,
on the other hand, are realized using the Epsilon Generation Language (EGL),
a template-based format that is suitable for amend generic IaaS deployment
scripts or HPC jobscripts with the data of the deployment model.

While the metamodels, models and transformations can be implemented and
debugged in the Eclipse workbench for development purposes, in order to enable
the user to focus on application deployment, we implement a command-line
interface which handles model transformations and template rendering as a stan-
dalone application.

5.2 Model of the Fluid Mechanics Application

In Fig. 4 the application model for Adaptive Mesh Renement in Objectoriented
C++ (AMROC) [4], the fluid solver framework our simulation use case is based
on, is depicted. The software uses the parallelization standard Message Passing
Interface (MPI).

Type definitions: The central node type AMROCNType is equipped with three
requirement definitions: MPIClusterRDef models the fact that an MPI cluster
is necessary to run the software and allows specifying the necessary number
of nodes and the required MPI version via the properties of the correspond-
ing capability type MPIClusterCType, the requirement definition PackageRDef
defines the requirement for a specific mpi implementation given by the respec-
tive capability type PackageCType, and finally HostRDef addresses the hardware
requirements imposed on the involved compute nodes, namely the amount of
memory and CPU cores, which constitute the properties of its respective capa-
bility type HostCType. In addition, an artifact type AnsibleRoleAType enables
the application model to provide scripts for the configuration management tool
Ansible2.

Templates: The requirements of a concrete simulation application based on
AMROC are modeled by a corresponding node template AMROCNTemplate to
which instances of the requirement definitions are assigned, providing values for
the properties specified by MPIClusterCType, PackageCType, and HostCType.
Finally, AMROCCode references the provided configuration management script.

2 https://www.ansible.com/.

https://www.ansible.com/
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Fig. 4. Platform independent model of the fluid mechanics application.

5.3 Model of Batch Target System

Our model of an HPC cluster using the Load Sharing Facility (LSF) as the batch
system is shown in Fig. 5. Again, the graphical representation is separated for
type and template definitions: While the types section is specific only to the
batch system, the templates represent parts of the Scientific Compute Cluster
configuration as it is hosted at the Gesellschaft für wissenschaftliche Datenver-
arbeitung mbH Göttingen (GWDG).

Type definitions (LSF cluster): The group type HPCClusterGType serves as a
root element providing the capability PackageCDef, which exposes preinstalled
software packages, usually made available in the form of environment mod-
ules. These are specified using the properties of the corresponding capability
type PackageCType. The compute nodes in an LSF cluster, which are modeled
by HPCNodeNType, are organized in a tree-like structure of host groups mod-
eled by group elements HPCNodeGType. A capability definition HostCDef of type
HostCType (cf. Fig. 4) is used to define each node’s hardware specifications.

For the available job submission queues of type HPCQueueGType further
capabilities are generated dynamically: IncludedHostCDef, which is of the
same capability type used for individual hosts, allows the Distribution Con-
troller to match the application model’s requirements for HostCType against
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Fig. 5. Provisioning and deployment model for the HPC target resource type.

the configured queues directly. MPIClusterCDef marks the queue as suitable for
submitting MPI jobs (cf. Fig. 4 for the definition of MPIClusterCType).

The relationship type SubmitsToQueueRType is used for choosing one of the
queues during deployment of the application. Finally, the queue references one
or more host groups as members.

Templates (GWDG Scientific Compute Cluster): The central group type
HPCClusterGType is instantiated as the group template GWDGScientific
ComputeCluster. The capability type PackageCType is used to specify the avail-
able MPI library version by its instance mpipackage.
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Two representative examples, the mpi and gpu queues are given as group
instances of HPCQueueGType, along with representatively chosen host groups as
members of type HPCNodeGType. Their members are in turn models of the avail-
able compute nodes, specified by a node template of type HPCNodeNType each.

The hardware capabilities of these nodes, namely the number of cores,
amount of installed memory and type of eventually installed GPU accelerator
are described by capability assignments of type HostCType.

AMROC deployment on the batch system: As an example, the model elements
relevant for deploying the AMROC application and submitting a job to the mpi
queue are shown as well: An instance AMROCNTemplate of AMROCNType provides
concrete values for its associated requirements, which are matched to the globally
defined mpipackage as well as the queue-specific capabilities includedhost and
mpi via the respectively suitable relationship.

5.4 Model of IaaS Cloud Target System

Figure 6 depicts the model for the IaaS cloud system. One fundamental difference
to the batch system is that compute nodes can be created and configured on
demand according to simulation application requirements, including the (virtual)
hardware, the installed software and the operating system on the compute nodes.

Type definitions (Cloud orchestration): The type definitions depicted in the
upper part of the figure orientate on the TOSCA types that are defined and uti-
lized by the TOSCA-compliant cloud orchestrator Cloudify3 for modeling cloud
resources of an OpenStack4 cloud. The group type MPIClusterGType serves as
a root element providing the capability PackageCDef, which exposes software
packages for which installation scripts are available and which can therefore be
installed on demand. The node type ServerNType abstracts the notion of a Vir-
tual Machine (VM) that can be started in the IaaS cloud. Its properties flavor
and image encode the hardware configuration and the operating system respec-
tively. The node type VolumeNType models an external block-storage device that
can be attached to a running VM and the node type FloatingIPNType allows to
define a publicly reachable IP address for a VM. Finally, ApplicationNType is a
node type used to model an application that should be installed on the deployed
virtual machine, in the case of the prototypical implementation via Ansible roles
referenced by its property roles. The group type ScalingGroupGType allows to
group templates of the type ServerNType and ApplicationNType to be scaled
together. Moreover, it is used to define the virtual hardware configuration of
the contained VMs via its capability definition OfferedHostConfig of type
HostCType. The fact that the group is configured as an MPI cluster is cap-
tured by defining the capability MPIClusterCDef (cf. Fig. 4 for the definitions
of both capability types). This capability is also the target of the relationship
DeployedOnScalingGroup used for application deployment.
3 http://cloudify.co.
4 http://www.openstack.org.

http://cloudify.co
http://www.openstack.org
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Fig. 6. Provisioning and deployment for the IaaS target resource type.

Three additional relationship types ConnectedToRType, ContainedInRType
and DependsOnRType are defined that have the following semantics: Connected
ToRType expresses a connection between two entity types, ContainedInRType
expresses the fact that an entitiy type is part of another entity type and the rela-
tionship type DependsOnRType expresses a general dependency between two entity
types.

Templates (MPI cluster infrastructure): The group type MPIClusterGType is
instantiated as the node template customizedMPICluster, whose PackageCType
instance mpipackage specifies the MPI version that can be installed.

The node template gatewayhost models a VM that is reachable from out-
side the cloud via an assigned IP-address, modeled by the node template
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floatingip, while the node template gateway models its software configuration.
The gatewayhost is connected to an Network File System (NFS)-storage vol-
ume, modeled by the node template nfsstorage that is shared among the MPI-
enabled worker nodes. The MPI worker nodes are modeled by the node template
mpihost and its assigned software configurations mpiworker. The node tem-
plates mpihost and mpiworker are members of a group template scalinggroup:
According to the number of compute nodes that are required by the simulation
application (cf. Fig. 4)), the property instances is used to replicate the node
templates given by the property members and all relationships connecting them.
In this way, we are able to scale the number of compute nodes according to the
resource demand of the application. The capabilities mpiconfig and hostconfig
assignet to scalinggroup provide concrete values for the available MPI version
and the virtual hardware specifications respectively.

AMROC deployment in the cloud: As in the aforementioned case of the
batch system, the deployment model adds the instance AMROCNTemplate of
AMROCNType providing concrete values for the associated hardware and MPI
requirements which are connected to the infrastructure model’s capabilities by
relationships.

6 Discussion

Our approach applies the MDA solution strategies to the problems outlined
above as follows:

(P1,S1) We were able to construct the application model for AMROC in a
resource-independent way, while on the other hand the models describing
an IaaS cloud and an HPC cluster using LSF are focused on the logic of
the respective resource types only. These examples indicate that modeling
anything but the application itself can in principle be removed from the scope
of the simulation scientist.

(P2,S2) Exposing both the requirements of the simulation application and the
capabilities of both resource types considered here by referring to a common
set of capability types makes application and resource models respectively
interchangeable.

(P3,S3) The existence of a particular Capability within a given resource model
as well as the concrete values of its properties enable an automatic choice of
a suitable compute resource.

6.1 Limitations

Currently, we focus on the provisioning and deployment of the resources for the
simulation application, and especially do not consider the following points:

• We assume the compiled simulation to be able to run on all eligible resource
types. However, incorporating the build process as part of the model trans-
formation would enable the same application to be automatically deployed to
all hardware architectures it compiled for.
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• Platform-dependent code modifications are currently out of scope, therefore
only the simulation code as whole is part of the application model. Exam-
ples would be the configuration of load-balancing schemes in a parallelization
workload, moving parts of a calculation to an accelerator depending on its
availability or even generating the simulation code from a model of the under-
lying algorithm (cf. [14]).

• In the present work, the automated choice of a compute resource is based
solely on the data found in a corresponding resource model. Including the
results from monitoring previous jobs, in particular in the form of job chains
composed of comparable workloads such as parameter studies, would enable
us to adjust the parameters of subsequent deployments more precisely.

• The scope of our architecture is currently restricted to handling a single appli-
cation run. In practice, a combination of multiple jobs, such as the cleaning
of input data, choosing the next simulation step based on the data of the pre-
vious one and reduction of the results, compose the entire workflow that is
ultimately of interest. A model of this high-level view of the simulation needs
to include the results of the present work as a combinable unit. Vukojevic-
Haupt et al. [22] describe an approach for the provisioning of a cloud-based
middleware intended to particularly handle simulation workflows.

• We do not consider data management tasks associated with the application
run at this point, such as copying data back and forth between the simulation
scientist’s system and the compute resource or persisting and sharing the
results using independent research data management infrastructures.

7 Related Work

Different projects address specifically the use of models or Domain-Specific Lan-
guages (DSLs) to target the execution of scientific software in a cloud environ-
ment, e.g., Bunch et al. [3] define a DSL for the management of HPC appli-
cations in the cloud, and Qashsa et al. [16] utilize TOSCA to model scientific
workflows for the cloud. Furthermore research has been conducted to provide
scientific applications as services in a cloud environment, e.g., Vukojevic-Haupt
et al. [21] define a middleware to deploy scientific applications as services, and
Limmer et al. [10] utilize the cloud-standard Open Cloud Computing Interface
(OCCI) [11] to steer simulation applications in the cloud. Similar to the prob-
lem of heterogeneous resource types, is the problem of vendor-specific Applica-
tion Programming Interfaces (APIs) and the service heterogeneity of different
cloud providers, because this makes it infeasible to switch between the offerings.
Ardagna et al. [1] propose the use of MDA to model cloud applications in a cloud-
provider independent fashion, and Quinton et al. [17] provide a platform to select
and configure a specific cloud-offering based on models. Further approaches aim-
ing to provide provider-agnostic frameworks for cloud-based applications [5,7]
and to improve cloud interoperability by combining existing applications using
TOSCA [18] exist, but none of the aforementioned solutions discuss the prob-
lem of addressing different types of target resources outside the realm of cloud
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providers. The OCCIware project [23] showed that also the cloud standard OCCI
can be used to model and manage all kinds of resources, but the standard does
not provide the functionality to define requirements and capabilities as needed
for our architecture, and the automated mapping to a specific infrastructure
type is not addressed.

Flissi et al. [6] developed a model-driven method to deploy distributed sys-
tems on Grids. In contrast to our work, they do not consider the automated
mapping to a specific resource and also do not face the problem with dynam-
ically adaptable resource target types, such as cloud systems. Ober et al. [14]
discuss the use of model-driven engineering techniques for the development of
HPC applications and Arkin et al. [2] provide a model-driven method to map
algorithms to a certain parallel computing platforms, such as MPI or OpenMP. In
contrast to our work, both works directly consider the developed code, whereby
we focus on the provisioning of the computing resources.

8 Conclusions and Outlook

We develop an architecture which provides a transparent resource provisioning
mechanism for simulation applications for heterogeneous computing infrastruc-
tures, which are today’s reality and in many data centers. The goal is to shield
the simulation scientist from complicated infrastructure internals. In this paper,
we presented the initial architecture, which orientates on the MDA and demon-
strated its feasibility with the help of a LBM simulation from fluid mechanics.

Future work includes the adaptation of the strict resource requirements mod-
eled on a per-host basis in our approach to a more flexible format that allows the
Distribution Controller to split, for example, the same total amount of CPU cores
and memory in different ways according to the available hardware. Another pos-
sible extension of the architecture consists of logging and analyzing the achieved
application performance in order to improve the choices made in following iter-
ations of deploying the same application.

Acknowledgements. We thank the Simulationswissenschaftliches Zentrum
Clausthal-Göttingen (SWZ) for financial support.
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Abstract. Today’s companies in high-tech industries develop products
of high complexity which consist of complicated subsystems with many
heterogeneous components integrated together. As the system complex-
ity increases, it becomes increasingly more challenging to manage the
tedious development process. The Capability Maturity Model Integration
(CMMI) was proposed as a general framework for process management
and improvement which judges the maturity of a process. Simulations
have long been regarded as complex and integrated systems. Simula-
tion system engineering manages the total simulation system’s life-cycle
process. The adaptation of the CMMI for simulation life-cycle processes
is envisioned as a domain specific solution for simulation process man-
agement and improvement. This article investigates the opportunities
of extending the CMMI engineering process area with emphasis in sim-
ulation system engineering, having its roots from IEEE Recommended
Practice for Distributed Simulation Engineering and Execution Process
(DSEEP).

Keywords: Distributed Simulation Engineering and Execution
Process (DSEEP) · Capability Maturity Model Integration (CMMI)
Simulation process improvement

1 Introduction

The Capability Maturity Model Integration (CMMI) is a framework which pro-
vides essential practices for process improvement [1]. The CMMI Maturity Levels
and Capability Levels describe how much the product development process in
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one organization is mature and capable. The CMMI currently supports three
areas of interest; namely development, services and acquisition. The CMMI for
development includes four categories: process management, project management,
engineering and support. Each category contains a number of process areas, and
each process area consists of number of specific goals (SG). Furthermore, each
specific goal has several specific practices (SP).

Organizations intend to utilize the CMMI for managing and improving
their processes. The CMMI assessments, also referred to as appraisals, provide
feedback to the organization about their compliance and measure of effective-
ness in particular process areas. Goldenson and Gibson indicate that compa-
nies which make use of CMMI process management and improvement achieve
lower costs, a better schedule, high quality products and eventual high customer
satisfaction [2].

The simulation life cycle process has long been an area of interest. Balci pub-
lished his modeling and simulation life cycle process in 1990 [3]. Later, IEEE Std
1516.3-2003, IEEE Recommended Practice for High Level Architecture (HLA)
Federation Development and Execution Process (FEDEP) was developed for
federation development using High Level Architecture (HLA) for distributed
simulation [4]. FEDEP is generalized by Simulation Interoperability Standards
Organization (SISO), which leads to the IEEE Std 1730-2010 IEEE Recom-
mended Practice for Distributed Simulation Engineering and Execution Process
(DSEEP). The DSEEP is introduced as an engineering process for all types of
distributed simulation development and execution [5].

Simulation and systems engineering has long been in a synergistic relation-
ship [6]. Systems engineering cannot be considered without its relationship with
simulation. The contribution of systems engineering to simulation on the other
hand empowers simulation, especially for large and complex simulation systems
which lead to simulation systems engineering. The harmonization of the sys-
tem and simulation life-cycle processes is currently an active research topic [7].
Accordingly, investigating the applicability of a process improvement standard
that has its roots in the systems engineering community in the simulation domain
is legitimate.

In 2002, Richey proposed the utilization of CMMI in modeling and the sim-
ulation community [8]. While he argued that conforming such an international
standard will result in cost-effective, easy and cohesive simulation engineering,
he also remarked that it will be beneficial to have discipline-specific amplifica-
tions for incorporating the industry standards and best practices for building
modeling and simulation products.

There have been various other efforts that target adapting the CMMI for par-
ticular domains. Withalm et al. proposed the CMMI adaptation to support skill
assessment and development in tourism [9]. Chen and colleagues proposed the
teaching capability maturity model for higher education [10]. In [11], Williams
proposed the application of the CMM in the medical domain. Neuhaser dis-
cussed adapting a maturity model for online course design in [12]. Bofinger
et al. extended the CMMI for safety-related systems [13].
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After Richey’s proposal [8] about CMMI in modeling and simulation,
Fujimoto et al. [14] also recently supported the necessity of CMMI for modeling
and simulation. This article investigates the feasibility of tailoring the CMMI
engineering process areas for simulation system engineering. The effort aims at
adapting the CMMI engineering process areas for simulation life-cycle processes
in order to optimize its full potential in the simulation domain to reach a higher
level of process coverage for simulation system engineering.

The paper first introduces the assessment of the DSEEP against the CMMI
Engineering process areas. Then, in Sect. 3, we propose an extension to the
CMMI to cover the DSEEP requirements and objectives. Later, Sect. 4 describes
the method that was used to evaluate the proposed CMMI extension. Lastly, we
conclude the paper with a discussion of the crucial points of this study as well
as future work.

2 Assessment of CMMI Against DSEEP

The CMMI Engineering process areas are: requirements development (RD), tech-
nical solution (TS), product integration (PI), verification (VER), and validation
(VAL). As presented in Table 1, each of these process areas has their specific
goals and specific practices. As an example, selecting product component solu-
tions, developing the design and implementing the product design are the spe-
cific goals of the TS process area and specific practices of SG1 in this process
area are: SP 1.1 - Develop Alternative Solutions and Selection Criteria, and
SP 1.2 - Select Product Component Solutions.

The DSEEP is a framework for simulation system engineering processes
which consists of seven steps, with each step having its own set of activities. Each
activity has inputs, outputs and recommended tasks [5]. As listed in Table 2, the
seven steps of the DSEEP are: defining simulation environment objectives, per-
forming conceptual analysis, designing the simulation environment, integrate and
testing the simulation environment, executing the simulation, analyzing data,
and evaluating results. As an example, the activities for Develop the Simula-
tion Environment are developing the simulation data exchange model, establish-
ing the simulation environment agreements, implementing member application
designs, and implementing the simulation environment infrastructure. One of the
recommended tasks for the Develop the Simulation Environment step is iden-
tifying reliable data sources for simulation environment databases and member
application(s).

It is important to first analyze the coverage of the CMMI in simulation sys-
tem engineering processes. The analysis comprises the comparison of the CMMI
Engineering Process Areas and the seven steps of the DSEEP. We sought all
the activities and their recommended tasks of the DSEEP within corresponding
CMMI Engineering specific goals. We have seen that the general CMMI frame-
work fails to cover some of the domain-specific simulation engineering process
requirements. In order to exemplify the shortcoming of the CMMI against the
DSEEP, the DSEEP Step 4 - Develop Simulation Environment will be further



196 S. Mahmoodi et al.

T
a
b
le

1
.
C
M
M
I
en

g
in
ee
ri
n
g
p
ro
ce
ss

a
re
a
s,

sp
ec
ifi
c
g
o
a
ls
,
a
n
d
sp

ec
ifi
c
p
ra
ct
ic
es
.

R
D

T
S

V
E
R

P
I

V
A
L

S
G

1
-

D
e
v
e
lo
p

C
u
st
o
m
e
r

R
e
q
u
ir
e
m
e
n
ts

•
S
P

1
.1
-
E
li
c
it

N
e
e
d
s

•
S
P

1
.2
-
D
e
v
e
lo
p

th
e

C
u
st
o
m
e
r
R
e
q
u
ir
e
m
e
n
ts

S
G

1
-
S
e
le
c
t
P
ro

d
u
c
t
C
o
m
-

p
o
n
e
n
t
S
o
lu
ti
o
n
s

•
S
P

1
.1
-
D
e
v
e
lo
p

A
lt
e
rn

a
-

ti
v
e
S
o
lu
ti
o
n
s
a
n
d
S
e
le
c
ti
o
n

C
ri
te
ri
a

•
S
P

1
.2
-
S
e
le
c
t
P
ro

d
u
c
t

C
o
m
p
o
n
e
n
t
S
o
lu
ti
o
n
s

S
G

1
-
P
re
p
a
re

fo
r
V
e
ri
fi
c
a
-

ti
o
n

•
S
P

1
.1
-
S
e
le
c
t
W

o
rk

P
ro

d
-

u
c
ts

fo
r
V
e
ri
fi
c
a
ti
o
n

•
S
P

1
.2
-
E
st
a
b
li
sh

th
e
V
e
r-

ifi
c
a
ti
o
n

E
n
v
ir
o
n
m
e
n
t

•
S
P

1
.3
-
E
st
a
b
li
sh

V
e
ri
fi
c
a
ti
o
n

P
ro

c
e
d
u
re
s

a
n
d

C
ri
te
ri
a

S
G

1
-
P
re
p
a
re

fo
r
P
ro

d
u
c
t
In

te
-

g
ra

ti
o
n

•
S
P

1
.1
-

D
e
te
rm

in
e

In
te
g
ra

-

ti
o
n

S
e
q
u
e
n
c
e

•S
P

1
.2
-
E
st
a
b
li
sh

th
e
P
ro

d
u
c
t

In
te
g
ra

ti
o
n

E
n
v
ir
o
n
m
e
n
t

•
S
P

1
.3
-
E
st
a
b
li
sh

P
ro

d
u
c
t

In
te
g
ra

ti
o
n

P
ro

c
e
d
u
re
s
a
n
d

C
ri
te
ri
a

S
G

1
-
P
re
p
a
re

fo
r

V
a
li
d
a
-

ti
o
n

•
S
P

1
.1
-

S
e
le
c
t

P
ro

d
u
c
ts

fo
r
V
a
li
d
a
ti
o
n

•
S
P

1
.2
-
E
st
a
b
li
sh

th
e
V
a
l-

id
a
ti
o
n

E
n
v
ir
o
n
m
e
n
t

•
S
P

1
.3
-
E
st
a
b
li
sh

V
a
li
d
a
ti
o
n

P
ro

c
e
d
u
re
s
a
n
d

C
ri
te
ri
a

S
G

2
-

D
e
v
e
lo
p

P
ro

d
u
c
t

R
e
q
u
ir
e
m
e
n
ts

•
S
P

2
.1
-
E
st
a
b
li
sh

P
ro

d
-

u
c
t

a
n
d

P
ro

d
u
c
t

C
o
m
p
o
-

n
e
n
t
R
e
q
u
ir
e
m
e
n
ts

•
S
P

2
.2
-
A
ll
o
c
a
te

P
ro

d
u
c
t

C
o
m
p
o
n
e
n
t
R
e
q
u
ir
e
m
e
n
ts

•
S
P

2
.3
-
Id

e
n
ti
fy

In
te
rf
a
c
e

R
e
q
u
ir
e
m
e
n
ts

S
G

2
-
D
e
v
e
lo
p

th
e
D
e
si
g
n

•
S
P

2
.1
-
D
e
si
g
n

th
e
P
ro

d
-

u
c
t
o
r
P
ro

d
u
c
t
C
o
m
p
o
n
e
n
t

•
S
P

2
.2
-
E
st
a
b
li
sh

a
T
e
ch

-

n
ic
a
l
D
a
ta

P
a
ck

a
g
e

•
S
P

2
.3
-
D
e
si
g
n

In
te
rf
a
c
e
s

U
si
n
g
C
ri
te
ri
a

•
S
P

2
.4
-
P
e
rf
o
rm

M
a
k
e
,

B
u
y
,
o
r
R
e
u
se

A
n
a
ly
se
s

S
G

2
-

P
e
rf
o
rm

P
e
e
r

R
e
v
ie
w
s

•
S
P

2
.1
-
P
re
p
a
re

fo
r
P
e
e
r

R
e
v
ie
w
s

•
S
P

2
.2
-

C
o
n
d
u
c
t

P
e
e
r

R
e
v
ie
w
s

•
S
P

2
.3
-
A
n
a
ly
z
e
P
e
e
r

R
e
v
ie
w

D
a
ta

S
G

2
-

E
n
su

re
In

te
rf
a
c
e

C
o
m
-

p
a
ti
b
il
it
y

•
S
P

2
.1
-

R
e
v
ie
w

In
te
rf
a
c
e

D
e
sc
ri
p
ti
o
n
s
fo
r
C
o
m
p
le
te
n
e
ss

•
S
P

2
.2
-
M

a
n
a
g
e
In

te
rf
a
c
e
s

S
G

2
-
V
a
li
d
a
te

P
ro

d
u
c
t
o
r

P
ro

d
u
c
t
C
o
m
p
o
n
e
n
ts

•
S
P

2
.1
-
P
e
rf
o
rm

V
a
li
d
a
-

ti
o
n

•
S
P

2
.2
-
A
n
a
ly
z
e

V
a
li
d
a
ti
o
n

R
e
su

lt
s

S
G

3
-
A
n
a
ly
z
e
a
n
d
V
a
li
d
a
te

R
e
q
u
ir
e
m
e
n
ts

•
S
P

3
.1
-
E
st
a
b
li
sh

O
p
e
r-

a
ti
o
n
a
l
C
o
n
c
e
p
ts

a
n
d

S
c
e
-

n
a
ri
o
s

•S
P

3
.2
-
E
st
a
b
li
sh

a
D
e
fi
n
i-

ti
o
n

o
f
R
e
q
u
ir
e
d

F
u
n
c
ti
o
n
-

a
li
ty

•
S
P

3
.3
-
A
n
a
ly
z
e
R
e
q
u
ir
e
-

m
e
n
ts

•
S
P

3
.4
-
A
n
a
ly
z
e
R
e
q
u
ir
e
-

m
e
n
ts

to
A
ch

ie
v
e
B
a
la
n
c
e

•
S
P

3
.5
-
V
a
li
d
a
te

R
e
q
u
ir
e
m
e
n
ts

S
G

3
-
Im

p
le
m
e
n
t
th

e
P
ro

d
-

u
c
t
D
e
si
g
n

•
S
P

3
.1
-

Im
p
le
m
e
n
t

th
e

D
e
si
g
n

•
S
P

3
.2
-
D
e
v
e
lo
p

P
ro

d
u
c
t

S
u
p
p
o
rt

D
o
c
u
m
e
n
ta

ti
o
n

S
G

3
-
V
e
ri
fy

S
e
le
c
te
d

W
o
rk

P
ro

d
u
c
ts

•
S
P

3
.1
-
P
e
rf
o
rm

V
e
ri
fi
c
a
-

ti
o
n

•
S
P

3
.2
-
A
n
a
ly
z
e

V
e
ri
fi
c
a
ti
o
n

R
e
su

lt
s

S
G

3
-
A
ss
e
m
b
le

P
ro

d
u
c
t
C
o
m
-

p
o
n
e
n
ts

a
n
d

D
e
li
v
e
r
th

e
P
ro

d
-

u
c
t

•
S
P

3
.1
-
C
o
n
fi
rm

R
e
a
d
in
e
ss

o
f

P
ro

d
u
c
t
C
o
m
p
o
n
e
n
ts

fo
r
In

te
-

g
ra

ti
o
n

•
S
P

3
.2
-

A
ss
e
m
b
le

P
ro

d
u
c
t

C
o
m
p
o
n
e
n
ts

•
S
P

3
.3
-
E
v
a
lu
a
te

A
ss
e
m
b
le
d

P
ro

d
u
c
t
C
o
m
p
o
n
e
n
ts

•
S
P

3
.4
-
P
a
ck

a
g
e
a
n
d

D
e
li
v
e
r

th
e
P
ro

d
u
c
t
o
r
P
ro

d
u
c
t

C
o
m
p
o
n
e
n
t



Extending the CMMI for Simulation Systems Engineering 197

T
a
b
le

2
.
D
S
E
E
P

se
v
en

st
ep

s
a
n
d
a
ct
iv
it
ie
s
-
a
d
a
p
te
d
fr
o
m

[5
].

S
te

p
1
-D

e
fi
n
e

si
m
u
la
ti
o
n

e
n
v
ir
o
n
m

e
n
t

o
b
je
c
ti
v
e
s

2
-P

e
rf
o
rm

c
o
n
c
e
p
tu

a
l

a
n
a
ly
si
s

3
-D

e
si
g
n

si
m
u
la
ti
o
n

e
n
v
ir
o
n
m

e
n
t

4
-D

e
v
e
lo
p

si
m
u
la
ti
o
n

e
n
v
ir
o
n
m

e
n
t

5
-I
n
te

g
ra

te
a
n
d

te
st

si
m
u
la
ti
o
n

e
n
v
ir
o
n
m

e
n
t

6
-E

x
e
c
u
te

si
m
u
la
ti
o
n

7
-A

n
a
ly
z
e
d
a
ta

a
n
d

e
v
a
lu

a
te

re
su

lt
s

A
c
ti
v
it
ie
s

1
.
Id

e
n
ti
fy

u
se

r/

sp
o
n
so

r
n
e
e
d
s

2
.
D
e
v
e
lo
p

o
b
je
c
ti
v
e
s

3
.
C
o
n
d
u
c
t

in
it
ia
l
p
la
n
n
in

g

1
.
D
e
v
e
lo
p

sc
e
n
a
ri
o

2
.
D
e
v
e
lo
p

c
o
n
c
e
p
tu

a
l

m
o
d
e
l

3
.
D
e
v
e
lo
p

si
m
u
la
ti
o
n

e
n
v
ir
o
n
m

e
n
t

re
q
u
ir
e
m

e
n
ts

1
.
S
e
le
c
t
m

e
m
b
e
r

a
p
p
li
c
a
ti
o
n
s

2
.

D
e
si
g
n

si
m
u
la
ti
o
n

e
n
v
ir
o
n
m

e
n
t

3
.
P
re

p
a
re

d
e
ta

il
e
d

p
la
n

1
.
D
e
v
e
lo
p

si
m
u
la
ti
o
n

d
a
ta

e
x
c
h
a
n
g
e
m

o
d
e
l

2
.

E
st
a
b
li
sh

si
m
u
-

la
ti
o
n

e
n
v
ir
o
n
m

e
n
t

a
g
re

e
m

e
n
ts

3
.
Im

p
le
m

e
n
t

m
e
m
b
e
r

a
p
p
li
c
a
ti
o
n

d
e
si
g
n
s

4
.
Im

p
le
m

e
n
t

si
m
u
la
ti
o
n

e
n
v
ir
o
n
m

e
n
t

in
fr
a
st
ru

c
tu

re

1
.
P
la
n

e
x
e
c
u
ti
o
n

2
.
In

te
g
ra

te
si
m
u
la
ti
o
n

e
n
v
ir
o
n
m

e
n
t

3
.
T
e
st

si
m
u
la
ti
o
n

e
n
v
ir
o
n
m

e
n
t

1
.
E
x
e
c
u
te

si
m
u
la
-

ti
o
n

2
.

P
re

p
a
re

si
m
u
-

la
ti
o
n
e
n
v
ir
o
n
m

e
n
t

o
u
tp

u
ts

1
.
A
n
a
ly
z
e
d
a
ta

2
.
E
v
a
lu

a
te

a
n
d

fe
e
d
b
a
c
k

re
su

lt
s



198 S. Mahmoodi et al.

Table 3. Activities and recommended tasks for DSEEP Step 4- Develop Simulation
Environment.

DSEEP Step 4- Develop

Simulation Environment

Recommended Tasks

Activity 1- Develop

Simulation Data

Exchange Model

(a) Select an approach for Simulation Data Exchange

Model (SDEM) development

(b) Determine appropriate SDEMs

(c) Looking for relevant SDEM elements in dictionaries

(d) Develop and document the SDEM

(e) Verify that the SDEM supports the conceptual

model

Activity 2- Establish

Simulation Environment

Agreement

(a) Decide the behavior of all objects

(b) Identify member applications software modifications

were not previously identified

(c) Decide common databases and algorithms

(d) Identify reliable data sources for simulation environ-

ment databases and member application

(e) Decide managing the time in the simulation envi-

ronment

(f) Create synchronization points for initialization of

simulation environment and procedures

(g) Decide save and restore strategy for the simulation

environment

(h) Decide data distribution across the simulation envi-

ronment

(i) Convert scenario description to an executable sce-

nario

(j) Establish security procedures according to security

agreements

Activity 3- Implement

Member Application

Designs

(a) Implement member application modifications

(b) Implement interfaces modifications or extensions of

all member applications

(c) Develop a required new interface for member appli-

cations

(d) Implement design of required new member applica-

tions

(e) Implement supporting databases

Activity 4- Implement

Simulation Environment

Infrastructure

(a) Confirm availability of basic facility services like

electric power, air conditioning, etc.

(b) Confirm availability of required integration/test

hardware or software

(c) Perform required functions for system administra-

tions for example create user accounts

(d) Install and configure required hardware

(e) Install and configure required software

(f) Test infrastructure

(g) Confirm infrastructure adherence to the security

plan
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discussed. The DSEEP [5] defines the main activities and recommended tasks
for this step, as depicted in Table 3.

Activity 1 - Develop Simulation Data Exchange Model corresponds to the
interface design practices that are specific to simulation engineering. It is neces-
sary to specify how member applications interact with each other. The simulation
data exchange model must be created in such a way that it is in agreement to be
able to consistently describe runtime interactions among member applications.
The interfaces are captured in SDEM and the execution and data exchange pol-
icy is then documented in the simulation environment agreements. According to
Activity 2 - Establish Simulation Environment Agreement, operating agreements
should be addressed as well. The CMMI does not cover these two activities. How-
ever, Activity 1 should be added in CMMI, TS process area, SG 2 - Develop the
Design, SP 2.3 - Design Interfaces Using Criteria. Therefore, CMMI SP 2.3 -
Design Interfaces Using Criteria needs to be altered for Activity 1 - Develop
Simulation Data Exchange Model. Activity 2 needs to be added in CMMI, RD
process area, SG 2 - Develop Product Requirements, SP 2.1 - Establish Product
and Product Component Requirements. Figures 1 and 2 depict the adaptation
requirements of the CMMI for these two activities.

Fig. 1. The DSEEP activity 1 added to the CMMI SP2.3

CMMI, TS process area, SG 3 - Implement the Product Design, SP 3.1
- Implement the Design is responsible for designing the product. Activity 3 -
Implement Member Application Designs corresponds to software coding, while
Activity 4 - Implement Simulation Environment Infrastructure corresponds to
construction of the facilities. As illustrated in Fig. 3, CMMI SP 3.1 can be
extended with Activity 3 by adding the recommended tasks 3.b, 3.c, 3.d, and
3.e. There are corresponding clauses in the CMMI for all parts of the Activity
4 - Implement Simulation Environment Infrastructure, with exception to the
recommended tasks (c) and (e) which can be added in CMMI, TS process area,
SG 3 - Implement the Product Design, SP 3.1 - Implement the Design. Figure 4
depicts the CMMI adaptation requirements for this activity. It is important to
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Fig. 2. The DSEEP activity 2 added to the CMMI SP2.1

Fig. 3. Adaptation requirements for CMMI SP3.1

also mention that in the TS process area, SG 3, SP 3.1, Sub practice 2 and 4
are:
Sub Practice 2 - Adhere to applicable standards and criteria.
Sub Practice 4 - Perform unit testing of the product component as appropriate.

3 Extending the CMMI for Simulation Systems
Engineering

The result of the assessment leads us to extend the CMMI for simulation sys-
tems engineering. All DSEEP activities not covered by the CMMI Engineer-
ing process areas are added into the specified segments of the standard CMMI
which results in a tailored CMMI for simulation. Thereby, the CMMI is extended
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Fig. 4. Adaptation requirements for CMMI SP3.1

for more comprehensive coverage of the simulation engineering process require-
ments. Tables 4 and 5 present the extensions for the example case discussed
in the previous assessment section. They present the standard CMMI Techni-
cal Solution and Requirements Development process areas on the left side, and
their extension(s) on the right side. As demonstrated in Table 4, extensions to
the Technical Solution process area are in SP 2.3 - Design Interfaces Using Cri-
teria and in SP 3.1 - Implement the Design. In Table 5, the extensions to the
Requirements Development process area are only in SP 2.1 - Establish Product
and Product Component Requirements.

4 Evaluation of Proposed Extension

For the evaluation process, a questionnaire is first prepared based on the tailored
CMMI. This questionnaire is derived from rephrasing the Specific Goals, the
Specific practices, and DSEEP activities not covered by CMMI into questions.
Thereby, it reveals the advantages of a specialized, tailored CMMI in contrast
to the standard CMMI model. In this questionnaire, as shown in Fig. 5, the
questions of DSEEP activities that are not covered by CMMI are featured in
boldface font.

The questionnaire that is used for the assessment consists of 146 questions,
50 of which are based on DSEEP activities not covered by the standard CMMI.
The questions specific to the DSEEP enabled us to enrich our assessment and
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Table 4. Extensions to the CMMI Technical Solution area for DSEEP Develop Simu-
lation Environment step.

CMMI- Technical Solution process area
(default)

CMMI- Technical Solution process area
(enhancement)

SG 1- Select Product Component Solu-
tions
• SP 1.1- Develop Alternative Solutions
and Selection Criteria
• SP 1.2- Select Product Component
Solutions

SG 1- Select Product Component Solu-
tions
• SP 1.1- Develop Alternative Solutions
and Selection Criteria
• SP 1.2- Select Product Component
Solutions

SG 2- Develop the Design
• SP 2.1- Design the Product or Product
Component
• SP 2.2- Establish a Technical Data Pack-
age
• SP 2.3- Design Interfaces Using Criteria
• SP 2.4- Perform Make, Buy, or Reuse
Analyses

SG 2- Develop the Design
• SP 2.1- Design the Product or Product
Component
• SP 2.2- Establish a Technical Data Pack-
age
• SP 2.3- Design Interfaces Using Criteria
– Select an approach for SDEM develop-
ment
– Determine appropriate SDEMs
– Looking for relevant SDEM elements in
dictionaries
– Develop and document SDEM
– Verify that the SDEM supports the con-
ceptual model
• SP 2.4- Perform Make, Buy, or Reuse
Analyses

SG 3- Implement the Product Design
• SP 3.1- Implement the Design
• SP 3.2- Develop Product Support
Documentation

SG 3- Implement the Product Design
• SP 3.1- Implement the Design
– Implement interfaces modifications or
extensions of all member applications
– Develop a required new interface for
member applications
– Implement design of required new mem-
ber applications
– Implement supporting databases
– Install and configure required software
– Perform required functions for system
administrations for example create user
accounts
• SP 3.2- Develop Product Support
Documentation

provide better insight for the improvement of the simulation systems engineering
processes. For this reason, the tailored CMMI provides superior process coverage
and guidance for a coherent and a complete set of processes.
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Table 5. Extensions to the CMMI Requirements Development area for DSEEP
Develop Simulation Environment step.

CMMI- Requirements Development
process area (default)

CMMI- Requirements Development
process area (enhancement)

SG 1- Develop Customer Requirements
• SP 1.1- Elicit Needs
• SP 1.2- Develop the Customer
Requirements

SG 1- Develop Customer Requirements
• SP 1.1- Elicit Needs
• SP 1.2- Develop the Customer
Requirements

SG 2- Develop Product Requirements
• SP 2.1- Establish Product and Product
Component Requirements
• SP 2.2- Allocate Product Component
Requirements
• SP 2.3- Identify Interface Requirements

SG 2- Develop Product Requirements
• SP 2.1- Establish Product and Product
Component Requirements
– Decide the behavior of all objects
– Identify member applications software
modifications were not previously identi-
fied
– Decide common databases and algo-
rithms
– Diagnose reliable data sources for simu-
lation environment databases and member
application
– Decide managing the time in the simu-
lation environment
– Create synchronization points for ini-
tialization of simulation environment and
procedures
– Decide save and restore strategy for the
simulation environment
– Decide data distribution across the sim-
ulation environment
– Convert scenario description to an exe-
cutable scenario
– Establish security procedures according
to security agreements
• SP 2.2- Allocate Product Component
Requirements
• SP 2.3- Identify Interface Requirements

SG 3- Analyze and Validate Requirements
• SP 3.1- Establish Operational Concepts
and Scenarios
• SP 3.2- Establish a Definition of
Required Functionality
• SP 3.3- Analyze Requirements
• SP 3.4- Analyze Requirements to
Achieve Balance
• SP 3.5- Validate Requirements

SG 3- Analyze and Validate Requirements
• SP 3.1- Establish Operational Concepts
and Scenarios
• SP 3.2- Establish a Definition of
Required Functionality
• SP 3.3- Analyze Requirements
• SP 3.4- Analyze Requirements to
Achieve Balance
• SP 3.5- Validate Requirements
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Fig. 5. Part of questionnaire made from Tailored CMMI for simulation systems engi-
neering

The questionnaire is further utilized to conduct an assessment of simulation
engineering processes that are practiced for the development, employment and
maintenance of the Air Vehicle Simulator (AVES) in German Aerospace Cen-
ter (DLR). AVES, with its two interchangeable cockpits; one for rotorcraft and
the other for airplanes; is one of the largest research flight simulator facilities
in Europe [15]. Both simulation cockpits are equipped with replicas of the real
cockpit devices. Controls are simulated using reconfigurable active control load-
ing systems. The real cockpit environment is supported by large operator cabins
to control the simulation, observe the simulator experiments or software devel-
opment, integration and testing. Both cockpits can be operated on motion and
fixed-base platforms according to the particular need(s). Parallel to its physi-
cal architecture, AVES possesses two simulations environments; one for rotor-
craft and the other for airplanes. Each environment has more than 40 member



Extending the CMMI for Simulation Systems Engineering 205

Fig. 6. Tailored CMMI assessment in DLR for each process area (Color figure online)

applications [16]. The number of researchers actively developing, maintaining
and conducting experiments in AVES can go up to a couple of dozen.

A contextualized questionnaire is featured in Fig. 6 in order to demonstrate
an excerpt from the results of this process assessment. Figure 6 displays this
further with a pie-chart for each process area. They illustrate what percentage
of the practiced processes are in accordance with the tailored CMMI. The green-
colored portion of the charts represents the percentage of the practiced processes
that are in full accordance with the tailored CMMI. The orange-colored portion
of the charts indicates the areas where further process improvement possibilities
exist in order to fulfill compliance.

5 Conclusion

It is evident that as simulation systems become larger and more complex, pro-
cess improvement is becoming crucial for simulation industry to achieve success.
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In this study, we investigated the applicability of the industry standard Capa-
bility Maturity Model Integration (CMMI) that provides a well-applied general
process improvement framework to simulation systems engineering. We then con-
ducted an assessment of the CMMI Engineering process area against the IEEE
recommended practices for Distributed Simulation Engineering and Execution
Process (DSEEP). Its results indicated that the standard CMMI Engineering
process areas are not able to fully cover the recommended simulation engineering
process in DSEEP. Accordingly, we identified the gaps and proposed extensions
to the CMMI Engineering process areas. Thereafter we evaluated the proposed
extensions by conducting a process assessment based on the tailored CMMI. The
proposed extensions enriched the assessment by providing superior coverage.

Future work includes the dissemination of the proposed extension in the
simulation community through the Simulation Interoperability Standards Orga-
nization’s DSEEP Product Support Group as well as collecting feedbacks and
contributions. This study may be used as a baseline for preparing a guideline for
using the CMMI as a simulation process improvement framework in the simula-
tion industry.
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Abstract. Holistic simulation aids the engineering of cyber physical systems.
However, its complexity makes it expensive regarding computation time and
modeling effort. We introduce multi-level-simulation (Our Multi-Level-
Simulation approach was already published in [1]. The description of our
approach in this paper is based on this publication and updates it. This description
is the context to the results on learning State mappings within Multi-Level-
Simulations presented in this paper.) as a methodology to handle this complexity.
In this methodology, the required holistic perspective is reached on a coarse level,
which is linked with multiple detailed models of small sections of the system. In
order to co-simulate the levels, mappings between their states are required. This
paper gives an insight into the current state of progress of using well known
machine learning techniques for regression to generate these mappings using
small sets of labeled training data.

Keywords: Co-simulation � Multi-level-simulation � Machine learning
Regression

1 Introduction

Cyber physical systems (CPS) are large scale sets of hardware and software compo-
nents interacting in numerous ways to realize some common behavior. Examples of
such systems are automated production facilities or networks of autonomous vehicles.

Applying simulation to CPS provides numerous chances. Aside from the possible
reduction of prototyping effort, the system can be improved and its costs can be
lowered. Real-time simulations can be employed at runtime to infer from a few
measurement points to numerous virtual sensors located in between these physical
sensors. This allows to reduce the amount and quality of sensory equipment used,
which in turn leads to efficient designs. The cost of the system can also be lowered by
allowing deviation in the physical part of the CPS. If these deviations (i.e. the bending
of a robot arm due to the mass it is lifting) is well known through simulation, it can be
compensated using the software part of the system. This compensation in turn can be
evaluated in simulation.

In order to seize the opportunity laying in simulation for CPS it must be both:
Holistic enough to capture the dependencies between its components, but only as
complex as feasible, regarding modelling effort and computation times.
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Figure 1 describes this trade-off in more detail. In the figure, simulation scenes are
depicted as dots and arranged according to their complexity and holism (x- and y-axis).
Without considering resources available, a simulation of the whole system is modeled,
using the most detailed technique available, which provides the potentially most
accurate results. Under restricted resources and for larger systems, such a simulation is
infeasible.

Instead, the hole system can only be simulated using a coarse simulation (A). If
more detail is needed to answer specific questions, only a smaller portion of the system
can be considered, ultimately leading to a very small part of the system using the most
detailed technic (B). Such a zoom-in could be done with any part of the system, i.e. (C).
But, since these scenes are simulated independently, interdependencies between them
are lost. To acquire a more holistic view, these scenes can be connected directly using a
methodology or by building interfaces between these scenes and employing co-
simulation. Both approaches are difficult, expensive and often only valid for particular
instances of these scenes.

Therefore we propose a simulation methodology that is efficient regarding com-
plexity called multi-level-simulation. We simulate the CPS on multiple levels of
abstraction simultaneously. On a coarse level, a holistic perspective of the system is
reached. This level is focusing on the interactions between the elements of the system.
It uses a simplified modeling technique and is less complex, resulting in a fast simu-
lation. On a detailed level, only some relevant sections of the system are chosen to be
simulated using a more complex technique. These level allows precise predictions
required for specific simulation goals, but results in a slow simulation. Note that these
sections are not tied to the modularity of the components, but to the purpose of the
simulation. They may include several components or only fragments of them.

Fig. 1. Trade-off between complexity and holism in simulation.
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In order to run a co-simulation between the levels, the state of these detailed
sections and the state of the corresponding sections on the coarse level have to be
synchronized. Because the coarse level uses a simplified modelling technique, the
states must be converted using the mappings Up and Down. UpðxÞ ¼ y maps the
detailed level state x to a coarse level state y. Note that a set of detailed level states A is
mapped to the same y on the coarse level (UpðxÞ ¼ y; 8x 2 A). Up is not injective and
thusly not reversible. Down yð Þ ¼ x maps a coarse level state y to the detailed level state
x. DownðyÞ has to choose a single s among all states in A that would be mapped to x by
Up. We aim to use machine learning techniques for regression to provide this
mappings.

2 Related Research

In this section we will describe research related to our work. The co-simulation of
heterogeneous systems is the aim of a variety of tools and frameworks. A selection of
these works is presented. The idea to simulate systems on different levels of abstraction
can be found in several approaches. Some focus on certain application domains while
others aim to provide a general framework. We will discuss both directions. Cloud
infrastructures in general and the deployment of simulation into this infrastructure are
an active research field. We will provide a brief overview and discuss known
approaches in this field.

A variety of works focus on the co-simulation of different simulations tools.
Examples of this are the High Level Architecture (HLA) specification for simulation
interoperability [2] the Functional Mockup Interface standard for model exchange and
co-simulation [3] and the Mosaik Simulation API [4]. Another approach is to integrate
different simulation semantics into a single tool. The Ptolemy project is an example for
this approach [5]. All these works aim towards a holistic simulation of the system under
investigation. The simulation of different abstraction levels is only addressed in terms
of tool integration. The task to provide proper interfaces to connect simulation on
different levels has to be done by the modeller.

Much effort is put into approaches that provide such concepts for specific domains
such as material flows [6, 7], traffic [8] or agent based behavior simulation. They center
on the dynamic switching of abstraction levels of model parts at runtime. To do so,
explicit mappings between the states of different levels are provided. These mappings
are tightly bound to the domain and the simulations they connect and are not designed
to be generalizable.

Some research is conducted investigating more general concepts for the problem.
The approach of Dynamic Component Substitution describes a co-simulation as a set of
connected software components [9]. They communicate through given interfaces.
Switching a part of the simulation to a more detailed version corresponds to substi-
tuting one such component with another. Both components are required to have exactly
the same interfaces. This is a critical limitation. If the components are situated on
different levels of abstraction, it is plausible to expect the same for their interfaces.
Multi Resolution Entities [10] define a mapping that is used to synchronize the sim-
ulation state on different levels. These mappings are defined as invertible to use them in
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both directions. This requirement is only met, if no information is lost mapping a
detailed state to a more coarse state, which does not apply in general, as we will
describe in Sect. 3. The concept of Multi Resolution Modelling Space introduces
adapters between the interfaces and several mappings between the states of simulation
on different levels [11]. However, the problem of information loss is not addressed in
this approach.

Our approach of Multi-Level-Simulation is different from these approaches. We do
not force the engineer to tailor the coarse level simulations into components connected
by interfaces. We consider this approach as too inflexible. The coarse level can be
modeled with no dependency on the detailed level. In fact, even cutting arbitrary parts
out of existing coarse level simulations to be linked to a detailed level is possible. The
detailed simulations are linked into a single simulation on the coarse level using a state
synchronization mechanism.

This mechanism is the key towards multi-level-simulation. It requires mappings
between the states of the different levels. Among the variety of works described in this
section, two main solutions to provide this mappings can be distinguished. One group
of the approaches provides specific instances of such mappings for a given combination
of modeling techniques [6–8]. The other group is more general, but require an engineer
to code the mappings [9–11]. This approaches are not optimal, because the mappings
need to be defined per project and are hard to define explicitly.

Our approach aims to uses machine learning techniques for regression to generate
Up and Down. The engineer only has to provide labeled training sets.

3 Multi-Level-Simulation

To describe our approach of Multi-Level-Simulation in more detail, we consider the
example of a lift. Figure 2 shows the structure of this example.

(A) On the coarse level it consists of a simulation modelling the structure of the lift
and a lift program. The structure consists of a shaft in which a cabin can move. The
cabin is rigged to a cable. The weight of the cabin (w) is altered when it stops at one of
the exits. A motor manipulates the length of the cable (l). The program simulation is
connected to the structure and handles the speed and direction of the motor. In this
setup all parts of the structure are modelled as rigid bodies. The program has no sensor
for l and positions the cabin only indirectly using the last position of the cabin and a
timer. On this level, realistic scenarios of use are modelled. An example of this would
be a whole day cycle of an office building. Most persons want to go up in the morning
and down in the evening. The simulation on this level is fast.

(B) During the development of the lift and its program the engineers want to
investigate, if the stretching of the cable caused by the weight of the cabin and the
aging of the cable will lead to a wrong positioning of the cabin. To do this, a detailed
but computationally intensive simulation of the cable is activated. This simulation is
stateful to reflect the aging of the cable. Only the parts of the cable that are stretched in
a particular time step age. If the misplacement is a problem, the engineer has to
implement an extension to deal with the phenomena in the program.
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(C) After this, the dynamics of the cabin are investigated closely. A computation-
ally intensive simulation of the motor is activated. This simulation models the accel-
eration of the motor and allows to precisely determine the travel times of the lift. The
simulation is stateful to model the heating of the motor which influences acceleration.
Because the stretching of the cable is considered irrelevant for this question, the cable
simulation and the corresponding program extension are deactivated. Because the
program on the coarse level does not account for the acceleration when calculating the
timers, a corresponding extension must be implemented and linked to the program.

Note that the program finally deployed needs to include both program extensions.
In both cases, parts of the lift are simulated on two levels at the same time. This

leads to the challenge of maintaining the consistence between the states of both levels.
If for example in (A) l is increased by 0.1 m, all elements of the cable in (B) must be
placed 0.1 m lower. If in (B) the cable is stretched by 10%, displacing the lowest point
from −3 m to −3.3 m, l must be set from 3 m to 3.3 m in (A).

Figure 3 shows a schematic overview of the example. Each simulation consists of
two parts. The state of a simulation is defined as a valuation of a fixed set of attributes.
The behaviour of a simulation is defined as a mapping which has this state as input and
produces a new state as output. Considering the lift simulation in the example, this state
y ¼ w; lð Þ is mapped by a to a succeeding state y0. This corresponds to a step in the
simulation. Note that this representation of simulations is used in many approaches for
co-simulation like Ptolemy [5] or the FMI standard [3] for model exchange. For all
simulations the time Dt elapsing in one step is the same. The coarse simulation of the
lift is linked to a number of detailed simulations. Note that in the lift example only one
of these simulations is connected in a particular simulation run.

Fig. 2. Structure of the lift example.
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Because the simulation models (i.e. the cable) are different, the attributes valuated
in a state x and y are different. The states need to be converted between the simulations.
This is done using the state mappings Up and Down. Up maps the detailed level state to
the coarse level state. Up xð Þ ¼ y. It is typically not reversible, because information is
lost. Referring to the lift example, there are a number of different positions and age
levels of the cable elements that map to the same l. Down maps the coarse level state to
the detailed level. In the example, Down restores the position of the cable elements
using only l. To do so, Down has to choose among a possible infinite set of states that
are mapped to l by Up. To account for this problem, we propose Down as a mapping of
the coarse state and the last state of the detailed state. Figure 4 gives an overview of the
execution of the example. In general, changes on different levels occur concurrently,
regarding simulation time.

Let us consider the lift simulation starts with the initial state y and the cable
simulation with the initial state x. The states are chosen so that Up xð Þ ¼ y. The coarse
level state y is an abstraction of the detailed state x. Now both simulations step using
the behaviour functions a and b. The cable simulation ages a number of cable elements,
stretching the cable by 0.1 m leading to the state x0. In the same time step, the lift
simulation unwinds the cable by 0.2 m according to the initial speed of the motor,
leading to the state y0. Converting y0 to a state of the cable simulation using Down
results in an intermediate state x̂0. This state is in conflict to x0 which was calculated
using the behaviour b of the cable simulation. Simply overwriting x0 using x̂0 would
annihilate the unwinding of the cable. To avoid this, an integrator function I must be
employed to merge the two states. The resulting state contains both changes. Using Up
on this state leads to an integrated state of the lift simulation that contains again both
changes. This state finally becomes the new state of the lift.

Fig. 3. The problem of state synchronisation.
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4 Learning State Mappings

In the current state of our work we focus on the mapping Up. The state of each
simulation can be formalized as a n-dimensional vector of real values. This vector
captures the valuation of each variable of the simulation and is updated by the beha-
viour of the simulation as described in Sect. 3.

In practice this vector will only be a subset of the variables of the actual state of the
simulation, because not all variables are affected by the state synchronization. A simple
example of this can be found in the lift example. When the detailed simulation of the
cable is active and its state is synchronized with the coarse simulation of the lift, Up
will only map to variables of the lift representing the cable, like l and not i.e. the
variable containing the number of passengers in the lift. The selection of this subset has
to be done by the engineer. In other words, the engineer explicitly links coarse to
detailed level states, that are reasonable to be synchronized.

We assume that each of the outputs of Up can be predicted independently. To
handle m-dimensional output, m independent regression problems have to be solved.
Thus, we will consider Up : Rn ! R as a many-to-one mapping. There exist several
well known algorithms for regression to solve this problem.

As described above, an engineer is supposed to provide a training set. This set
contains k observations X ¼ x1; x2; . . .xkf g; xi 2 R

n of detailed level states and their
corresponding coarse level states Y where Y ¼ y1; y2; . . .; ykf g; yi 2 R and xi corre-
sponds to yi for i ¼ 1::k.

We focused this paper on representatives of three large classes of this algorithms.
Namely these three classes are linear base function models, sparse kernel machines and

Fig. 4. Execution of the lift example.
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neuronal networks (following the definitions given in [12]). Linear base function
models describe the output as a linear combination of a fixed set of nonlinear base
functions. The weights associated to these base functions are the parameters of the
model. The models are fitted using approaches to minimise the sum of squared errors or
to maximise the log-likelihood on the training set. Examples of this group are linear
and polynomial regression. Sparse kernel machines fit a plane between data points that
maximizes the margin between the plane and the points. The kernel trick is used to
embed the data in high dimensional space to become linearly separable by the plane.
They are named sparse because the output only depends on a subset of the learned
training data. Support vector machines and Relevance vector machines are examples of
this class. Neuronal networks model the generative function behind the observations as
the set of connected artificial neurons organized in layers. The training of the network
is again based on the minimization of the squared error but uses the so call back-
propagation algorithm to efficiently calculate the gradient of the weights in deeper
layers.

We used the following setup to investigate the performance of three well known
algorithms for regression out of these classes.

Four different data sets were defined. The LIFT data set was derived from the lift
example described in Sect. 3. An implementation of the cable was used to generate 151
9-dimensional x values. The hand coded Up mapping of the example was utilized to
generate the corresponding y values. Three additional data sets were generated using
150 random generated, normally distributed 9-dimensional real values x 2 0; 1½ �9 � R

9

and the basic aggregation functions SUM, MEAN and MEDIAN to generate the
corresponding y values.

The training data was sampled from each of these sets using three distinct methods.
A set of 8 random drawn values (R8). A set of 20 random drawn values (R20). A set of
8 values selected manually, simulating the engineer providing 8 “useful” examples
(S8). The rest of the data sets was used as test sets.

Three algorithms were used to generate predictors for y. A polynomial regression
minimizing the squared error (POLY). A e-support-vector-regression (SVR) using a
radial kernel function. A multilayer feedforward network trained by the RProp algo-
rithm (MLP). This setup results in 4(data sets) x 3(sampling methods) x 3(algo-
rithms) = 36 training runs.

Figure 5 depicts the results of six of these runs. The horizontal axis of each diagram
rates the labelled value of y while the vertical axis rates the prediction by the algorithm.

The Table 1 summarizes the mean squared error of the predictors for all three
sampling methods. Because the training sets S8 and R8 had 8 data points with 9
Dimensions, the Polynomial regression does not find a solution if the dimension of the
data is higher than the number of data points and simply predicts a constant output.
This result was cleaned form the table.

In all runs the results on the S8 sample worked better than on the R8 sample for all
algorithms. Over all setups neither SVR nor MLP were dominant. POLY using R20
setup was better than SVR and MLP with the SUM and MEAN data set, but worse with
MEDIAN data set.
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Fig. 5. Performance of SVR on the SUM data set using the three different sampling methods.
The horizontal axis rates the y value labelled to that point in the test set while the vertical axis
rates prediction by algorithm.

Table 1. Report of the mean squared error of all runs.

Mean squared
error

MLP SVR POLY

LIFT R20 0,0015 0,2667 0,03120
S8 0,0025 0,1818 –

R8 0,0032 0,6385 –

SUM R20 0,0082 0,2338 5,25E−09
S8 0,0219 0,5235 –

R8 0,0410 0,7604 –

(continued)
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5 Conclusion and Future Work

The presented results provide a first insight into the performance of machine learning
algorithms for multi-level-simulation. Further investigations are needed to provide
actual evidence for our findings. It fits the intuition, that manually selected samples
perform better than randomly drawn ones. Assisting the engineer in this task could lead
to even better results. The good performance of POLY with the SUM and MEAN data
set is in line with our expectations since both functions can easily be expressed as a
polynomial. Although the overall performance of SVR and MPL was within our
expectations, we aim to improve the predictions by providing additional guidance for
the algorithms using constraints provided by the engineer. Examples of these con-
straints would be boundaries for the target values or structural knowledge about the
states.

Another important next direction is to find a suitable learning approach for the
Down function. This is significantly harder, because the maximum likelihood or
minimum error approach will provide only a single deterministic x for a given y which
is a very poor model for Down. Actually a indeterministic Down function is needed.
The distribution of the output of such a Down function needs to be in line with the
distribution of the observations.

Acknowledgments. We thank the Simulationswissenschaftliches Zentrum Clausthal-Göttingen
(SWZ) for financial support.
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Abstract. Evaluations of Internet of Things (IoT) and Wireless Sen-
sor Network (WSN) applications demonstrate the significant and still
existing gap between examinations with generic simulation environments
and real-life (e.g., field test) or controlled (e.g., testbed) sensor network
deployments in terms of realistic and accurate results. The separated use
of single examination approaches is often not enough to overcome all eval-
uation challenges. We therefore propose a combination of discrete-event
simulation, radio-channel emulation, and real hardware working together
on different layers of the protocol stack of the system-under-test. Our
combined approach reduces the gap between abstract simulations and
network testbed experiments by providing adjustable radio conditions for
repeatable evaluations of WSN and IoT networks.

1 Introduction

Practical applications of Wireless Sensor Networks (WSNs) require extensive
testing and evaluation strategies that cover all layers of the protocol stack: from
application and protocol data flows to radio channel influences and physical
side-effects. These pre-deployment tests can be performed either via simulation,
through emulation, or with the help of real-life testbeds. While a simulation
of a networked system requires (abstract) models and representations of the
system-under-test, emulations use components from the original system and try
to emulate the usage scenarios. Real-life testbeds, in turn, try to replicate the
exact application conditions prior to a rollout. Each of these network evalu-
ation techniques has specific strengths and weaknesses when applied to WSN
and IoT use cases. We discuss all three techniques in the next paragraphs and
motivate our hybrid approach that combines simulative and emulative methods.
Additional discussions of the evaluation methods are available in [1–4].

WSN and IoT Simulation

Simulation allows one to easily construct layered network protocol architectures,
device topologies, and algorithmic applications. Simulation model parameters
c© Springer Nature Switzerland AG 2018
M. Baum et al. (Eds.): SimScience 2017, CCIS 889, pp. 219–238, 2018.
https://doi.org/10.1007/978-3-319-96271-9_14
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can be customized to examine certain protocol behavior and performance issues.
In the academic world, simulation is the de facto first step for the implementation
of WSN solutions because no hardware is required to test new protocol designs.
Common network simulators like OMNeT++ [5] or NS-3 [6] focus on the Discrete
Event Simulation (DES) paradigm which models a system by its states. System
state changes occur at discrete points in time. Examples of state changing events
can be the start of a packet transmission or the expiration of a timer. A DES
simulator jumps from one event to the next, skipping the time between events.
Pseudo Random Number Generators (PRNGs) are used within the simulation
process to randomize state changes and event occurrence. Simulator implemen-
tations use a Future Event Set (FES) and event routines (handlers) to create
and schedule events. Algorithm 1 (adapted from [7]) shows the described general
operations flow of discrete event scheduling in pseudo-code.

Algorithm 1. Discrete Event Scheduling
Precondition: Initialize simulation model and FES

while (FES not empty) and (simulation not complete) do
fetch first event e from FES
advance simtime with event timestamp t
Function process event(e):

perform model state transition
if (create new event v) or (cancel event w) then

insert v into FES and delete w from FES
end

return

end

The radio channel conditions and the operation environment characteristics
have a strong influence on WSNs. These two aspects are typically simplified or
completely omitted in network protocol simulations. Add-on frameworks that
enable the modeling of wireless environments and channel conditions are dis-
cussed in [8, Sect. 2]. Their implementation, however, is based on mathematical
functions with varying abstraction levels and complexity. Wireless channel mod-
eling is a very complicated process (cp. [9]) with a significant tradeoff between the
realism of simulation models and their performance and scalability [8, Sect. 4].
These drawbacks generally lead to a low confidence in WSN simulation results.

WSN and IoT Testbeds

Application-specific physical testbeds for distributed sensor networks, on the
other hand, are complex to set-up, to manage, and to operate. They are also
cost intensive in comparison to other evaluation approaches. [10] summarizes
and compares existing WSN experimentation testbeds and their characteris-
tics. Regardless of the application scenario, testbed nodes operate in a radio
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environment which is often uncontrollable and may differ from the actual work-
ing environment of the system-under-test. Testbed evaluations enable an accu-
rate representation of a sensor node’s hardware (if available and installed in the
testbed) and software. Monitoring and inspection of run-time characteristics is
possible when firmware extensions and additional hardware are used to provide
a feedback loop. However, such extensions may change the run-time execution
or introduce unforeseen behavior and errors during the evaluation process.

Radio Channel Emulation

Radio Channel Emulation offers a controllable radio environment with constant
Radio Frequency (RF) conditions to evaluate a system-under-test. WSN nodes
are isolated from each other and connected over their radio interfaces to the RF
channel emulator hardware, which emulates signal propagation effects. A com-
mon and important feature of these systems is the ability to control the large-
scale fading between transmitters and receivers. Practical deployments vary from
laboratory test setups with coaxial-based radio links to complex analog or digi-
tal radio channel emulators with support for hundreds of interconnected nodes.
Nevertheless, applications run as static firmware implementations on real-life
WSN hardware and flexible adjustments of applications or protocol parameters
are complicated compared to network simulators.

The evaluation of WSN designs still offers many unsolved research challenges
(cp. [3] for example), as the separated use of single approaches is often not enough
to overcome all evaluation challenges (e.g., realistic cross-layer communication
evaluation). To mitigate most of the flaws of the evaluation methods discussed
in the previous three paragraphs we propose a combination of simulation, radio-
channel emulation, and real hardware working together on different layers of the
protocol stack of the system-under-test. The remainder of the paper describes
the methodology of our hybrid approach in Sect. 2, gives a short overview of our
background and related work in Sect. 3, presents a case study of our Hardware-in-
the-Loop-based network emulation in Sect. 4, and discusses evaluation methods
in Sect. 5 before we conclude the paper in Sect. 6.

2 Methodology

Hardware-in-the-Loop (HIL) evaluation concepts are well established for automo-
tive, aerospace, and robotic application domains. In these areas, HIL approaches
are used to verify existing hardware module implementations by triggering the
hardware inputs via simulated events and observing the generated outputs
and reactions of the hardware-under-test. In case of WSNs and wireless net-
worked embedded systems, HIL concepts (e.g., [11,12]) for the evaluation of
WSN applications and protocols are rarely implemented (cp. [13]). Depending
on the development stage and the actual part of the system that is tested and
fed with simulated data, name variations like model- or software-in-the-loop are
widely-used. Our approach of combining radio channel emulation with a HIL
concept for WSN testing is subsequently called Radio-in-the-Loop (RIL).
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Figure 1 depicts a protocol stack of a sensor node and the three collaboration
levels (numbered 1© to 3©). Time-discrete event simulations (level 1© in Fig. 1) of
the upper layers of the protocol stack (e.g., application, transport, and network
layer) simplify the construction of different architectures and application models
by using simulators like OMNeT++ and accompanied frameworks like INET1.

Using real hardware (level 2© in Fig. 1) to accurately represent parts of the
Medium Access Control (MAC) sublayer and the complete Physical (PHY) layer
mitigates a major drawback of typical WSN simulations. MAC and especially
PHY simulation models are often abstracted, even though simulation frame-
works might provide accurate models for upper layer protocols. WSN-specific
simulators like Cooja [14] can provide more accurate representations of real WSN
hardware due to real-life code execution, but their PHY and wireless propagation
models are abstracted just like the ones from generic simulators like OMNeT++.
Even more problematic is the restriction of WSN-specific simulators like Cooja to
specific operating systems (i.e., Contiki [15] for Cooja). We combine real WSN
hardware with upper layer network simulations over a Hardware-in-the-Loop
approach to enable an accurate representation of the lower layers combined with
the protocol and model variety of OMNeT++/INET.

We use RF channel emulation (level 3© in Fig. 1) to bypass the discussed
drawbacks of WSN testbeds. By emulating the wireless channel in a control-
lable environment, we can provide adjustable PHY conditions comparable to
simulation environments, while refraining from using abstracted wireless prop-
agation and PHY models. Section 4 describes all three collaboration levels in
detail. This Radio-in-the-Loop concept leverages on the strengths of the individ-
ual approaches to enable accurate and likewise flexible tests of WSNs.

Fig. 1. Combining protocol simulation, real hardware, and RF channel emulation

1 INET framework website: https://inet.omnetpp.org/.

https://inet.omnetpp.org/
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The following three example scenarios benefit from using our RIL approach:

(i) The radio channel emulation (level 3© in Fig. 1) enables the definition of
exceptional network topologies and various channel conditions that are dif-
ficult to reproduce within real world tests, while we can observe the behavior
of the upper layer protocols on the simulated level.

(ii) With respect to the first scenario, cross-layer communication approaches
and protocols that also involve radio medium access and physical data trans-
missions can benefit from accurate parameters and measurements of the
transceiver chip hardware (level 2© in Fig. 1) to get dependable evaluation
results within a simulation-driven test setup.

(iii) Nevertheless, a small-scale setup of nodes in a controlled channel emulation
environment can be extended easily with additional purely virtual nodes
from collaboration level 1© in Fig. 1 to increase the network traffic and
simulate communication data stimuli for real wireless transmissions.

3 Related Work and Background Information

The majority of current simulation approaches [16] abstract heavily from real
target hardware. Specialized simulators as discussed in [8,17] allow only a partial
modeling of wireless environments and channel conditions. The underlying mod-
els are always based on abstracted mathematical functions with varying com-
plexity. COOJA [14] provides an operation-system-specific simulation engine to
enable software-based emulation of WSNs with a focus on simulating the code
execution on the target hardware. COOJA supports three different models for
wireless transmissions with varying parametrization: Unit Disk Graph Medium
(UDGM), Direct Graph Radio Medium (DGRM), and Multi-path Ray-tracer
Medium (MRM). Other simulation and emulation concepts for signal propaga-
tion or PHY layer support are surveyed, for example, in [8] and [16].

Coupling OMNeT++ with hardware is also considered in [18]. The authors
describe a new HIL interface and changes in the OMNeT++ event scheduler
to support a real-time exchange of messages over external hardware interfaces.
[18] differs from our approach in terms of the underlying idea of joining radio
channel emulation with simulation and in regard of the application scenario (i.e.,
home automation). The report describes an OMNeT++ gateway that basically
forwards messages from one real-life device to another one via OMNeT++ without
considering a radio channel emulation. Tests and evaluation of real-life hardware
via simulated stimuli are also not yet considered in [18].

3.1 Network Protocol Simulation with OMNeT++

OMNeT++ is a popular open source DES simulator that is frequently used for
communication network research. OMNeT++’s concept of exchanging messages
via gates between modules (reusable building blocks) facilitates the development
and simulation of complex scenarios. The INET add-on framework provides a
multitude of simulation models for upper layer protocols.
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In [19], we introduced a new simulation model for the popular IoT and WSN
communication standard IEEE 802.15.4 [20]. The OMNeT++ model was created
to simulate the complex behavior of the 802.15.4 MAC and PHY layers in a
detailed fashion. We modeled the two layers with their connecting interfaces
and the used service primitives according to the IEEE standard specifications
and general modeling guidelines for 802.15.4 [21]. The structure of the OMNeT++
simulation model is depicted in Fig. 2.

Fig. 2. Block diagram of the OMNeT++IEEE 802.15.4 model

The model itself consists of several layers and individual model components
that are combined into a so-called IEEE802154Host. The NIC includes the parts
of the IEEE standard that are most relevant for the communication. Listing 1.1
shows that the Protocol Data Unit (PDU) packet definitions include all types
and fields that are specified in the IEEE 802.15.4 standard [20].
packet mpdu
{

unsigned short fcs; // 16-Bit Frame Check Sequence
Ash ash; // Auxiliary Security Header
// ... MAC frame payload is encapsulated ...
MACAddressExt src; // 0, 16 or 64-Bit Source Address
unsigned short srcPANid; // 0 or 16- Bits for Source PAN ID
MACAddressExt dest; // 0, 16 or 64-Bit Destination Address
unsigned short destPANid; // 0 or 16- Bits for Destination PAN ID
unsigned char sqnr =0; // 8-Bit Sequence number
unsigned short fcf=0; // 16-Bit Frame Control Field

}

Listing 1.1. MPDU packet definition - excerpt from MPDU.msg
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3.2 RF Channel Emulation with the RoSeNet Testbed

In addition to OMNeT++, we work with RoSeNet2, a network emulation plat-
form for low-power wireless technologies that focuses on hardware-based channel
emulation via a controllable coaxial cable radio environment (level 3© in Fig. 1).
The modular system incorporates interconnected emulation panels that manage
multiple sensor nodes on designated slots. By adjusting the signal attenuation
values among nodes and panels in this shielded RF environment, it is possible to
emulate distances or geographical positions and topologies of networked nodes.
At designated signal supply points, interference signals can also be injected into
the signal path. The overall architecture enables the emulation of large-scale
networks with up to 1000 wireless sensor nodes (Fig. 3).

Fig. 3. RoSeNet emulation and test platform (taken from RoSeNet web page)

For our first HIL coupling experiments [22], we developed interfaces to trans-
mit generated MAC layer frames via real sensor node hardware to achieve control
over the communication flow in the network. In order to generate traffic for an
initial test of the HIL system we simply inject generated protocol data frames.
We added message handlers for the emulation control server application that
are responsible to start the packet transmission to the hardware. The Man-
agement Controller on the addressed hardware panel forwards this packet to
the designated slot of the transmitter node. A detailed description of the frame
transmission and reception at node level is given in Sect. 4.3.

4 An OMNeT++ and RoSeNet RIL Architecture

Our current prototype includes extensions for OMNeT++/INET and the IEEE
802.15.4 simulation model (cp. Sect. 3.1), the hardware interfaces on the RoSeNet
emulation testbed, and a Forwarder implementation that acts as bridge between
the two domains. Figure 4 illustrates the basic Radio-in-the-Loop setup and the
abstracted message exchange among the collaborating entities.

2 RoSeNet radio channel emulation platform: https://www.dresden-elektronik.de/
ingenieurtechnik/development/research/rosenet/.

https://www.dresden-elektronik.de/ingenieurtechnik/development/research/rosenet/
https://www.dresden-elektronik.de/ingenieurtechnik/development/research/rosenet/
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For data exchange, we use the Packet Capture (PCAP) file format, the de
facto standard capture format for network packet traffic. With the PCAP Next
Generation (PCAPNG)3 extension, we can exchange additional information for
data packets, for example the interface identifier for multiple external devices.

Fig. 4. Simplified message flow between OMNeT++ and testbed hardware

4.1 RIL Simulator Interfaces

We extended the IEEE 802.15.4 simulation model with a new module, called
IEEE802154ExtHost, that enables the RIL operation. In the current implemen-
tation, an external host sends simulated MAC frames to an external interface
instead of the PHY model. Figure 5 shows that the IEEE802154ExtInterface
operates with a IEEE802154Serializer and a PCAPScheduler to convert
between raw PCAP data bytes and OMNeT++MAC frame objects.

Fig. 5. IEEE 802.15.4 external interface in OMNeT++/INET

PCAPScheduler is derived from OMNeT++’s cRealTimeScheduler class. In
OMNeT++, the event scheduler is one of the most important components, as
it controls the event processing and manipulates the Future Event Set (cp.
Sect. 1). The scheduler class provides a function, called setInterfaceModule(),
which enables the connection of external interfaces (i.e., a Transmission Control
Protocol (TCP) socket in our case) to the simulation. The scheduler function
3 PCAPNG capture file format: https://github.com/pcapng/pcapng.

https://github.com/pcapng/pcapng


Unifying Radio-in-the-Loop Channel Emulation 227

getNextEvent() is synchronized to the real-time clock and checks periodically
if an event occurred at the socket. With respect to the PCAPNG file format, the
scheduler implements various functions for writing and especially reading the
specified blocks from the socket stream in the separate PCAPNGReader module.
For the handling of PCAPNG, we only implemented the three basic block types
that are relevant to our use case. These are:

handleSHB(): Section Header Block (SHB) (init PCAP handling)
handleIDB(): Interface Description Block (IDB) (set hardware interface)
handleEPB(): Enhanced Packet Block (EPB) (process MAC packet)

The IEEE802154ExtInterface cooperates with the IEEE802154Serializer
module to convert between simulation and real-life packet formats. The external
interface is also responsible for handling all incoming and outgoing packet data
traffic for the scheduler. A function named handleMessage() deals with events
that can be either Radio-in-the-Loop messages or regular simulation events.
Incoming external 802.15.4 MAC frames are deserialized from the serializer and
directly send to the corresponding simulation node module.

The mapping between simulation nodes and PCAPNG data is performed
with the help of an interface table that stores the simulation module identifier
for the corresponding hardware identifier.

4.2 PACP Forwarder

A transparent forwarder application interchanges data in the PCAPNG format
between the simulator and the target emulation system. The implementation
uses threads and acts as a dispatcher and aggregator of PCAPNG data streams.
On the hardware side, assigned destinations can be single sensor node platforms,
individual transceiver chips, or whole testbed control systems. While PCAPNG
is able to handle multiple hardware interfaces and link layer protocols, the for-
warder application can aggregate data from different end-devices to constitute
a single socket data stream for further scheduling in the OMNeT++ simulation.
Figure 6 depicts the main PCAPNG block types and the packet processing.

Fig. 6. PCAP forwarder architecture
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For our purposes, we use the PCAPNG block types SHB, IDB, and EPB. The
Section Header Block (SHB) and one Interface Description Block (IDB) for every
used hardware node are exchanged at the beginning of the scenario execution.
The Enhanced Packet Blocks (EPBs) represent the MAC data frames.

4.3 Node Simulation/Emulation Firmware

Contiki OS [15] is used to enable the reception of PCAP protocol frames via
a Universal Asynchronous serial Receiver and Transmitter (UART) interface
to create the respective MAC events and to transmit real radio frames among
sensor nodes on the introduced RoSeNet emulation platform. We currently use
nodes with ATmega128RFA1 radios4, but the Transceiver (TRX) firmware can
also be implemented for an arbitrary node platform and other WSN operating
systems. Algorithm 2 illustrates the transceiver process with the corresponding
transmit and receive functions in pseudo-code, derived from our current Contiki-
based implementation. The required promiscuous mode in Algorithm 2 enables a
Network Interface Controller (NIC) to pass all received network traffic captured
from the medium to the system’s Central Processing Unit (CPU).

Algorithm 2. Nodes Transceiver Process
Precondition: Initialize radio driver in promiscuous mode

Function receiver callback() � called by radio driver

record timestamp and create PCAP frame
send out PCAP frame via serial interface

return

while (true) do
wait until PCAP serial interface event occur
copy MAC frame into the packetbuf
Function sender callback()

send out frame via radio interface
return

end

Our implementation is actually using a fixed transmission channel with a
permanently activated RF transceiver. The Carrier Sense Multiple Access Colli-
sion Avoidance (CSMA-CA) protocol is used to control and regulate the channel
access. A pcap line input process state machine creates PCAP events from frames
received over the UART interface. A sender callback function immediately trans-
mits the frame onto the wireless channel. At the moment, we are able to transmit

4 ATmega128RFA1: http://www.microchip.com/wwwproducts/en/ATmega128RFA1.

http://www.microchip.com/wwwproducts/en/ATmega128RFA1
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frames in both directions between OMNeT++/INET and common RS232 UART
interfaces of typical IEEE 802.15.4 transceiver chips (e.g., ATmega128RFA1)
and sensor nodes on the introduced RoSeNet emulation system.

4.4 Radio Emulation

The setup of the emulation scenario and the necessary parameters follow the typ-
ical OMNeT++ guidelines for the creation of simulation scenarios. We create .ned
and .ini files for OMNeT++ that include the definition of the network topology
as well as necessary parameters and simulation options. By using RoSeNet’s
radio emulation architecture, we are able to emulate a long term fading of
signal transmissions. With reference to the Free Space Path Loss (FSPL) (cp.
[9, Sect. 2]), we can arrange testbed nodes in virtual geographic positions. We
take two-dimensional coordinates of the modeled scenario and the RF parameters
of the sensor node hardware to determine the signal fading between individual
wireless sensor nodes. We compute the signal loss between nodes (FSPL) with
a simplified uniform spread of energy in free space given by the path loss model
in Eq. 1, adapted from [9, Sect. 2.5].

FSPL(dB) = −20 log10

(
4πd

λ

)
(1)

λ − transmission channel center frequency wavelength
d − the distance between sender and receiver

One important constraint is that RoSeNet has both fixed (i.e., integrated into
the platform, non-adjustable) and variable signal attenuators (i.e., adjustable by
the user) in its coxial environment. The quintessence and problem at the same
time is to allocate nodes and set all involved attenuators to their according values
to achieve the desired radio topology. For our RIL scenarios, we therefore need
to create radio topologies that are representable in the two domains.

Hardware Allocation on the Emulation Testbed

A RIL testbed architecture with coaxial-based radio links can be represented
as an undirected communication graph G. With RoSeNet, we have a plain tree
structure (cp. Fig. 7) in which the root is the central anchor node connected to
chains. One chain has several modular entities called panels, which include the
actual sensor nodes (the tree leaves), as it was introduced in Sect. 3.2.
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Fig. 7. RoSeNet’s emulation architecture as an undirected communication tree GAT

We modeled the graph-based abstraction and several RF dependencies of the
target emulation hardware for our allocation scheme. An overview of a number
of important variables of the model definition is given below.

N : a set of WSN hardware node types {′RCB128RFA1′, . . .}
H: a set of emulator RF node types {′anchor′,′ splitter′,′ input′}
A: a set of static attenuation values {1, 3, 11, 21, 31} ⊆ N

Iλ: a set of graph G invariants
ε: deviation of attenuation values {ε ∈ R+ | ε < 1}
ae: attenuation value of a graph G edge e ∈ E(GS), ae ∈ N

G: an undirected communication graph G = (V,E)
a set of nodes from G V = {v | v ∈ N}
a set of weighted edges from G E ⊆ {(i, j, a) | i, j ∈ V ; a ∈ N}

GA: an undirected allocation graph GA = G = (V,E)
a set of nodes from GA V = {v | v ∈ {N ∪ H}}

GAT
: an undirected allocation tree GAT

⊆ GA = G = (V,E)
a set of nodes from GAT

V = {v | vr = anchor, vl ∈ N}
GH : an emulation hardware graph GS = GAT

GS : a scenario graph GS = G = (V,E)

We designed a multiple stage allocation process to be able to automatically
find attenuation values of the RF signal path on testbed platforms like RoSeNet.
We use graph analysis and Mixed Integer Linear Programming (MILP) based
on graph representations for the scenario and the hardware platform for this.
The abstracted allocation procedure is given in Algorithm3.
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Algorithm 3. Node Hardware Allocation
Precondition: |scenario nodes| ≤ |hardware nodes|
Postcondition: GA ⊆ GH with tolerance to ae

generate GS and GH

Iλ = analyze scenario GS � Iλ not finally specified

while (true) do
GA = allocate nodes from GH with GS and Iλ

Function calculate attenuation(GA, GS)
� create the Linear Program and add constraints

make LP from |V (GS)| and |V (GA)|
add LP scenario constraints from GS

� allow deviation from fixed values

for ε ∈ Setε do
add LP hardware constraints from GH with ε
solve LP
if attenuation found then

allocate graph GA

return

end

end

return

end

The allocation process includes multiple steps, starting with the generation of
the scenario graph GS and the emulation hardware graph GH from the currently
available hardware installation. In the second step, several parameters (graph
invariants Iλ) of the scenario graph are calculated and processed by an initial
node allocator, which makes a first decision regarding the panel-node placement
GA. This step of the process is only statically implemented for now. In the
third step, we transfer our graph representation with the allocated nodes and
all additional constraints (coming from the hardware and the RF dependencies)
into a Linear Program (LP) which can then be solved using MILP. If a solution
is calculable then we are done, otherwise we have to adjust our parameters (e.g.,
the deviation of the fixed attenuation parameters ε) or we need to move back
to step two to calculate a new panel-node placement GA. If no solution can be
calculated at all (e.g., due to hardware constraints), we have to change the initial
radio topology or inform the user of the unsupported scenario.

5 Evaluation

The preceding sections gave an overview of our methodology and introduced the
different submodules of our hybrid RIL approach. As the implementation and
testing of the OMNeT++ and RoSeNet RIL architecture are still ongoing work,
we will discuss evaluation approaches for submodules and different aspects of our
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approach and their feasibility to verify the usefulness of the OMNeT++/RoSeNet
coupling for combined channel emulation and protocol simulation. Furthermore
we present first results and fundamental steps of our submodule evaluation. A
performance evaluation of the RIL simulator interfaces is discussed in Sect. 5.1.
The PCAP Forwarder component is functionally evaluated to assure its correct
behavior in Sect. 5.2. Section 5.3 shortly discusses a rudimentary performance
evaluation of the emulation firmware prototype while Sect. 5.4 rounds off the
evaluation part with an analysis of the hardware allocation and the MILP solver.

5.1 RIL Simulator Interfaces

An important aspect of real time simulations is the performance of the simu-
lation implementation. When designing a simulation model, its implementation
is usually less efficient when compared to the implementation of the real sys-
tem. On the other hand, simulations typically run on high performance hosts.
This difference is especially significant for WSN and IoT simulations of resource-
constrained devices. Since we interconnect simulations and real hardware in our
RIL approach, we have to ensure that the simulator maintains real-time capa-
bilities for accessing the radio transceiver hardware.

Exemplary research like [23] already demonstrated sufficient throughput mea-
surements of similar external interfaces for OMNeT++ in the past (as a result
of their examples they fully utilize a link of 10 Mbit/s). When compared to the
maximum throughput of IEEE 802.15.4 radio transceiver hardware (with a max-
imum over-the-air data rate of 250 kbit/s for the popular 2.45 GHz frequency
band), we consider large scale test setups with dozens of sensor nodes to discover
the limitations of our approach, for example in terms of the maximum number
of RIL nodes. These results can finally be compared to the maximum theoretical
throughput on a link.

As a fundamental evaluation step, we modified simulation modules to gen-
erate all frame types specified in the IEEE 802.15.4 standard [20, Sect. 7.2] and
send them via our interface implementation. A test data receiver connects to the
OMNeT++ socket at the local host and writes all received traffic into a single
PCAP trace file. We use Wireshark5, the de facto standard network protocol
analyzer, to verify the correctness of the frame transmission.

5.2 PCAP Forwarder

Our forwarder application acts as a transparent bridge between the simulation
and the emulation domain. We thus have to ensure the fast reception, process-
ing, and transmission of frames. Depending of the exact scenario, the forwarder
application can be evaluated by performance measurements when aggregating,
splitting, and filtering PCAP data streams. For running corresponding perfor-
mance measurements we need to define these concrete scenarios and generate
suitable PCAP traces or schedule test runs together with a simulation run. We

5 Wireshark network protocol analyzer: https://www.wireshark.org/.

https://www.wireshark.org/
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consider precise time-stamping of processed PCAP frames with the help of high
resolution clock timers to record the arrival and departure time for each frame.

We started by stress testing the application and measuring the overall data
throughput by passing PCAP trace files from a sender socket via our forwarder
to a receiver socket and vise versa (the receiver socket acts as a TCP repeater).
Figure 8 shows the corresponding test setup (the dashed arrows show virtual
connections; other connections represent the real data flow). We did not observe
any dropped frames; all packets sent by the PCAP traffic generator were received
by it after they passed through the PCAP forwarder and were returned by the
TCP repeater. The test proves the correct functionality of the PCAP forwarder.

Fig. 8. Setup of the PCAP Forwarder application test

Looking at a data transfer of maximum sized IEEE 802.15.4 data frames (10k
data frames with 127 bytes each – overall data amount of 1.52 MB), we measured
an exemplary throughput of 91.5 Mbit/s from the sender (TCP traffic genera-
tion) to the PCAP Forwarder and 91.4 Mbit/s from the sender to the receiver
module (TCP traffic repetition) on an Ubuntu Linux (64 bit) virtual machine
with 7 vCPUs (Intel Xeon X3470 Quad Core @ 2.93 GHz). While traffic at the
localhost gets processed by a loopback adapter in the kernel we cannot evalu-
ate the precise throughput readings, but our first measurements show a 0.11%
performance decrease caused by the forwarder. We assume that our packet han-
dling routines, currently without considering aggregating, splitting, and filtering
frames, do not have a significant influence on the overall data throughput.

5.3 Node Simulation/Emulation Firmware

For our emulation firmware prototype, we started with measurements of the
maximum over-the-air transmission rates for different frame lengths for the cur-
rently used hardware platform RCB128RFA16. We used the Texas Instruments

6 RCB128RFA1 Radio Controller Board: http://www.dresden-elektronik.de/
funktechnik/products/reference-designs/atmel-radio-controller-boards/radio-
controller-boards/.

http://www.dresden-elektronik.de/funktechnik/products/reference-designs/atmel-radio-controller-boards/radio-controller-boards/
http://www.dresden-elektronik.de/funktechnik/products/reference-designs/atmel-radio-controller-boards/radio-controller-boards/
http://www.dresden-elektronik.de/funktechnik/products/reference-designs/atmel-radio-controller-boards/radio-controller-boards/
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(TI) CC25317 transceiver module with TI’s own SmartRF Packet Sniffer8 soft-
ware. We calculated the theoretical maximum transmission rate for frame trans-
missions between the serial and the RF interface, based on the used PHY spec-
ification and the microcontroller specs of our test hardware. Figure 9 depicts
the results of the frame processing compared to the theoretical limitations.
We achieve an overall throughput (independent of the frame size) of approx-
imately >90% of the theoretical maximum packet rate at the serial interface.
This performance decrease should primarily be caused by the PCAP-handling
at the customized serial input driver and the frame type classification as well as
the buffering of air-frames at the radio interface.
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Fig. 9. Throughput of the PCAP firmware implementation

5.4 Hardware Allocation

The allocation process can be evaluated by measuring the algorithm run time in
dependance of the scenario parameters (especially the number of nodes and the
considered network topology). First of all, comprehensive and allocatable test
scenarios need to be designed again. For the current panel hardware architecture
the corresponding MILP model incorporates 378 constraints modeled by a total
of 756 variables. Initial measurements of the allocation algorithm show a dis-
proportionate increase in the iterations and calculation time with the number of
scenario constraints to get optimal solutions from the MILP solver (see Fig. 10 –
optimal). For the first steps of the allocation procedure we are not interested in
optimal solutions but only in whether a model is feasible or not. To find a feasible
solution for small scale test setups the solver in our simplified test cases needs
less than 1000 iterations (see Fig. 10 – feasible). While running on an Ubuntu
Linux (64 bit) virtual machine with 7 vCPUs (Intel Xeon X3470 Quad Core @
2.93 GHz), the solver is able to calculate a solution whether a model is feasible
or not in less than 0.5 s.

7 Texas Instruments (TI) CC2531: http://www.ti.com/product/CC2531.
8 SmartRF Protocol Packet Sniffer http://www.ti.com/tool/PACKET-SNIFFER.

http://www.ti.com/product/CC2531
http://www.ti.com/tool/PACKET-SNIFFER


Unifying Radio-in-the-Loop Channel Emulation 235

378 380 382 384 386 388 390
102

103

104

105

number of overall constraints

nu
m
be

r
of

it
er
at
io
ns optimal

feasible

Fig. 10. Number of iterations for solving the allocation model

An overall evaluation of the system depends, in particular, on well defined
emulation scenarios besides the interaction between all components. Fur-
thermore, evaluation systems should always be additionally evaluated in an
application-specific manner to determine which application types and which spe-
cific device topologies are meaningful to evaluate in general.

6 Summary and Outlook

WSN usage is spreading into all kinds of application domains over the last years.
Applications and protocol stacks get more complex and thus more difficult to
test and to evaluate. There is a growing demand in the simulation community
to include hardware and RF environment-related details into network protocol
simulation to facilitate the validation of simulative investigations and increase
the realism of the abstracted representations of wireless channel characteristics.

In this work, we presented an approach to extend pure WSN protocol simu-
lation through a Radio-in-the-Loop concept. We apply radio channel emulation
with real sensor node hardware on the PHY layer to constitute a more precise
behavior of WSN use cases. We focus on OMNeT++ and RoSeNet in our proto-
typical implementations and tests. However, the proposed ideas are not limited
to a specific emulation system, hardware type, or network simulation environ-
ment. The support for wireless channel emulation using real hardware within
network simulations will help to improve examinations of the interactions of
protocol data flow and, for example, node energy consumption in reproducible
radio conditions. Ultimately, the objective of our approach is to introduce a new
tool chain for performance evaluation and cross-layer optimization in WSNs.
This requires further evaluations and improvements which we discuss next.

In addition to pure MAC frame transmissions, the 802.15.4 simulation model
needs to control the RF parameters of hardware-based radio transmissions, for
example: the data rate, the modulation, the transmission power, the frequency,
and the transmission channel. We use a TRX firmware (cp. Sect. 4.3) that sets
these RF parameters inside the source code at compile-time for initial testing. To
increase the overall model accuracy we plan to adjust the TRX firmware to enable
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the processing of IEEE 802.15.4 PHY data and service primitives which are
already implemented in our simulation model. A more modular attempt could be
to exchange those parameters in optional extension headers of the PCAPNG file
format or in so-called Radiotap9 headers (like they exist for IEEE 802.11 WLAN)
and implement setter and getter methods for these parameters at the target
hardware. This would allow the simulation to execute all procedures and features
defined in the IEEE 802.15.4 standard and provide valid RF measurements for
the simulated MAC layer.

Since most of the commercially available IEEE 802.15.4 transceivers only
implement a subset of the complete PHY specification in practice, we also
consider the use of flexible and reconfigurable Software Defined Radio (SDR)
modules as RIL gateways instead of standard-conform but functionally limited
transceivers. This approach could also help to avoid the data rate bottleneck of
the UART interface of the transceiver modules. This architectural change opens
up interesting possibilities for rapid prototyping of cross-layer communication
approaches for future transceiver chip design.

Emulation of node mobility is another practical use case for test setups. In
order to model mobility or node movement patterns (e.g., a receiver node moves
out of the reception range of the transmitter node) within the RIL channel
emulation, we have to vary hardware attenuation values during the emulation
run-time. There are still open questions regarding the limits of the given RoSeNet
system architecture for the emulation of mobility due to the complexity and the
radio topology dependency of the hardware allocation process as it was discussed
in Sect. 4.4.
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Abstract. In the field of software evolution, simulating the software
development process is an important tool to understand the reasons
why some projects fail, yet others prosper. For each simulation how-
ever, there is a need to have an assessment of the simulation results. We
use Conditional Random Fields, specifically a variant form based on the
Ising model from theoretical physics, to assess software graph quality.
Our CRF-based assessment model works on so called Software Graphs,
where each node of that graph represents a software entity of the software
project. The edges are determined by immediate dependencies between
the pieces of software underlying the involved nodes.

Because there is a lack of reference training data for our kind of evalua-
tion, we engineered a special training paradigm that we call the Parsimo-
nious Homogeneity Training. This training is not dependent on reference
data. Instead of that it is designed to produce the following two effects.
First, homogenizing the assessment of highly interconnected regions of
the software graph, Second, leaving the assessment of these regions in
relative independence from one another.

The results presented demonstrate, that our assessment approach
works.

Keywords: Simulating software graphs · Conditional random fields
Parsimonious homogeneity training

1 Introduction

In our previous work we devised and implemented agent-based models that sim-
ulate the evolution of software projects [4,5]. The aim is to monitor the software
quality by assessing it at every stage. In this paper we propose a method to assess
the quality of simulated software projects, which can also be used to assess the
current state of a real software project and predict its likely progression in the
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future. The model that we created was based on the following two modelling
goals:

– M1 : Abstraction: The results should be comprehensible on a high level
such that a project manager can easily understand them. This is not given
by a simple listing of quality metrics for each file in a program.

– M2 : Dependencies: The Assessment is based on the local quality of
files/classes, but it should also account for dependencies between files. A
bug in a key class many other classes depend upon is much worse than a bug
in singular disconnected class.

Our method operates on a software graph at a point in time of an evolving
software project. The software graph results either from a software project sim-
ulation or it is mined from a software project repository, as the case may be.
The nodes of our software graphs represent software entities like classes or files.
The edges represent logical dependencies between software entities. We account
for dependencies between software entities that actually impact the functioning
of these entities itself. Many standard approaches, that just use file metrics to
assess software quality cannot account for these kind of dependencies.

In our model, each node has a local quality label out of {acceptable, prob-
lematic} assigned to it, which reflects the quality of the code of this class/file.
In our simulation the local label is determined solely by the number of bugs of
the underlying piece of software. Our method then provides a high level quality
assessment, where another final quality label again out of {acceptable, problem-
atic} is assigned to every node. The final quality label of a node depends on the
final quality labels of those nodes adjacent to it as well as on its own local quality
label. This leads to a homogenization of the final quality labels compared with
the local quality labels. Entire regions of the software graph can be identified
as either acceptable or problematic instead of doing so for individual software
entities.

We think that such a high level assessment is more useful for project mon-
itoring than just information about single software entities. Also note, that we
use the same labels {acceptable, problematic} for the local label as well as the
final label of a node. The local label of a node represents the quality of that
specific piece of code, whereas the final label of a node represents its functioning
and maintainability in the program including other files that influence the one
in focus. If, for example, a class depends on another error-prone class, the work
of that class is also flawed.

To this end, we address our assessment problem as a node classification prob-
lem for software graphs using the probabilistic data model class of conditional
random fields (CRFs). For our purposes the Ising model [3] as described in Sect. 2
is particularly appropriate.

CRFs are commonly used in bioinformatics to predict protein-protein inter-
action sites [1,11]. Other fields where CRFs were applied successfully are shallow
parsing [7], image labeling [8], gesture recognition [12] as well as entity recog-
nition [9]. The common ground for these application fields is the fact, that the
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labeling of the neighbourhood of a node is a strong indicator of its own label.
The same is true for software graphs: The function of a bug-free class that resorts
to a problematic class is disturbed.

To our best knowledge, we are the first who apply CRFs in the context of
software system quality assurance. We use a heuristic described in Dong et al.
[2] to approximate a classification of maximum posterior probability.

It would probably be more precise to take a larger label set than
{problematic, acceptable} into account, because there is often a big difference
between a slightly bugged file and a very bugged file. However, we think that
it is reasonable to master this simpler model first before going on to anything
fancier.

In this paper we will present a new training paradigm that allows us to deter-
mine the parameters for our Ising model. A standard machine learning approach
using supervised learning techniques is not tractable in this case, since there
does not exist reference data for software projects, where all software entities
are labelled problematic/acceptable in terms of their functioning. Note that this
is not only dependent on the software entity itself, but might also be influenced
by other software entities that it relies upon. Instead we focus on a training that
will take the local quality and dependencies as a basis and provide the user with
a reasonable degree of generalization through homogenization.

It is crucial that the software graphs are of the following kind. The set of
nodes is always decomposed into highly interconnected so-called communities
representing logical parts of the software project. The number of edges between
communities, however, is much smaller. Now we can describe the two goals of
our training:

– Θ1 : Homogenization of regions (communities) in the software graph.
– Θ2 : Independence of regions from one another.

Reverting to the modeling goals M1 and M2, the training goals are designed to
meet M1: abstraction. The homogenization of regions Θ1 will enable a higher
level assessment, since entire communities can be assessed as either acceptable or
problematic. This enables an assessment on the level of communities of the soft-
ware graph. The force driving the homogenization is exerted through the edges
in the CRF model. The second goal Θ2 is needed because we do not want to end
up in a complete homogenisation of the entire graph. The homogenization force
has to be weak enough such that sparsely connected parts of the software (dif-
ferent communities) do not impact each other too much. Our method therefore
provides the transition from an entity-based assessment to a community-based
assessment. We call this approach the Parsimonious Community Heterogeneity
Training, which will be closely described in Sect. 2.

The paper is structured as follows. In Sect. 2 we describe in detail how we
model software-graph-based quality assessment of software projects using condi-
tional random fields. To this end, Subsect. 2.1 is dedicated to the Ising Model [3]
applied to software graphs, whereas Subsect. 2.2 is about the objective function
of our Parsimonious Community Homogeneity (PCT) Training, which in turn we
need to set the parameters of the Ising model. In Subsect. 2.3 the MAP labeling
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computation for our prediction is explained. In Sect. 3 we present the full PCH
training procedure. Moreover, we display some graphics of our results. Finally,
in Sect. 4 the method used, the results obtained and future work planned are
discussed.

2 Evaluating Software Projects by Means of CRFs

The software project is modelled by a software graph G = (V,E). Each node
v ∈ V represents a software entity (e.g. class or file) of the project under study.
Two nodes are connected by an edge e ∈ E if and only if they have been changed
in a small changeset together at least twice. That is, our software graphs are
change coupling graphs as described in [4]. We assume that joint appearance in
small changesets is a good indicator for dependencies between software entities.

Each node (software entity) has a local quality label that is either acceptable
represented by +1 or problematic represented by −1. These labels are assigned by
the simulation process and are dependent on the occurrence and severity of bugs
and bug fixing on software entities. Once a certain threshold of weighted bugs on
an entity is reached, its local label is set to problematic (see [4]), otherwise it is
acceptable. Our method then uses these local quality labels, which are formally
given by a function

x : V → {+1,−1},

and the information about the entity dependencies from the software graph to
produce a new final classification for each entity denoted by acceptable (+1)
and problematic (−1) as well. The final labeling is again a mapping

y : V → {+1,−1}.

The set of nodes V of all software graphs occurring in this paper consists
of highly connected parts which we denote as communities. In our model these
communities represent logical parts of the software project (e.g. the database
connection or the user management). Homogenization of the final entity classifi-
cations in communities is our strategy to achieve a high level assessment of the
quality of the software graph, where this homogenization is subject to the con-
straint that the dependencies between communities shall be as small as possible.

To this end, we use a graphical probabilistic model similar to the Ising Model
from theoretical physics (see [3]). The Ising model is used in ferro magnetics. We
chose it because this model has the potential to homogenize the classifications
of connected regions in the graph, which helps us reach our modelling goal M1.

The variant form of the Ising model used in this paper is described in
Subsect. 2.1. It assigns a probability p (y |x ) to every final labeling y given
the local labeling x. It is fully determined by two parameters. Setting these
two parameters, however, has a particular intrinsic difficulty, since there does
not exist labelled training data for supervised learning. Our solution of that
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problem is given in Subsect. 2.2. To compute a final classification given a local
one, we invoke the Maximum A Posteriori (MAP) paradigm:

y∗ ← argmax
y∈{+1,−1}V

p (y |x ) .

Details can be found in Subsect. 2.3.

2.1 The Ising Model

Let G = (V,E) be a software graph, and let x : V → {−1,+1} be an entity-wise
quality labeling. We study the following Conditional Random Field (CRF):

p (y |x ) :=
1

Z(x)
exp

⎛
⎝∑

v∈V

h · yvxv +
∑

{v,v′}∈E

J · yvyv′

⎞
⎠ , (1)

where

Z(x) :=
∑

y∈{+1,−1}V

p (y |x ) .

The set of all mappings from V to {+1,−1} is denoted by {+1,−1}V .
According to Eq. 1, our CRF has the two parameters correlation and confor-

mity that determine the final classification.

– Conformity h > 0 rewards conformance of yv with xv. That way it puts
pressure to classify an entity in the final classification equal to its local quality
label,

– Correlation J > 0 smoothes the final quality labeling compared to the local
one; It determines the pressure that is exerted through edges to classify neigh-
bouring entities with the same final label.

These two parameters are working in opposite directions and setting them differ-
ently will result in fundamentally different final labelings. We want to set these
two parameters in a way such that the two training goals Θ1 and Θ2, described
in the introduction, will be achieved. This is done by our PCH training, which
is necessary because of the fact that there is no labelled training data.

2.2 Parsimonious Community Homogeneity (PCH) Training

We solved the problem of not having labelled training data by developing and
implementing a training paradigm which we refer to as PCH training. This train-
ing determines the Ising parameters of our model considering the training goals
mentioned earlier. Knowing that our software graphs consist of communities of
nodes, the two goals of the training can be described as follows:

– Θ1 : Homogenization of communities in the software graph. The final
labelling of all nodes of a community shall be mostly the same.
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– Θ2 : Independence of communities from one another. The final labellings
of the nodes in one community shall have little impact on the final labelling
of nodes in another community.

Once we have broadly homogeneous classifications of communities, a comprehen-
sible visualisation of the state of the software can be reached. At that point an
entire community can be reduced to the information that it is mainly acceptable
or mainly problematic and thus the complexity of the assessment decreases dra-
matically. The second goal is the counterpart to the first, since we would end up
in complete homogenisation of the graph if we only had Θ1 as a goal. The parsi-
monious homogeneity reflects our intuition that we want to homogenise parts of
the graph for clarity, yet not homogenize the classification of the entire graph,
as in that case we would lose too much information. We assume that problems
in some part of the software (e.g. the data visualisation) does only have a small
impact on other parts of the software (e.g. the database connection).

For the creation of the graphs we use the stochastic block model, so we have
control of the number of communities and the level of connection between those
communities. We base the total size and number of communities in the graph
on real software projects described in [5] and model small software projects in
the case of this paper, to master the presumably easier case first.

Let G = (V,E) be a software graph, and let x : V → {−1,+1} be an
entity-wise local quality labelling. Let G = (V,E) be the graph obtained by
removing all inter-community edges from the edge set E of G. We call such a
graph a community-disconnected graph. Finally, let p (y |x ) be the conditional
distribution defined by Eq. 1 when taking graph G instead of graph G.

We have a natural mapping from nodes to communities by the generative
nature of the stochastic block model. Let

y∗ ← argmax
y∈{+1,−1}V

p (y |x ) .

be the MAP final classification, and let

y∗ ← argmax
y∈{+1,−1}V

p (y |x ) .

the MAP final classification for G. The target function t of our training is defined
as the sum of two values:

t
(
G,G

)
:= hc + ic,

where

hc :=
|∑v∈V y∗(v)|

|V | ,

is the average community homogeneity and

ic := 1 −
∑

v∈V |y∗(v) − y∗(v)|
2 · |V | ,

is the average community independence.
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The average community homogeneity is the ratio of the prevalent classifica-
tion in a community and is 1 in the case of total homogenization, whereas ic is
defined as the ratio of unchanged classifications between y∗ and y∗. The average
community independence reaches its maximum when the MAP final classifica-
tion y∗ is exactly the same as the MAP final classification y∗ on the community-
disconnected graph, which means that the influence of the final labelling of one
community on the final labelling of another community is negligible and does not
change the MAP final classification and we thus call it community-independence.

2.3 MAP Prediction

The basis of the generation of the MAP final labeling y given the local labeling
x, on the basis of Eq. 1 is the computation of a node score for every node, and the
computation of an edge score for every edge of the software graph G = (V,E).
Since the local labeling x is fixed, the normalization factor Z(x) does not matter
in determining the MAP prediction. Thus we work with the term Z(x) p (y |x )
(note that Z(x) gets cancelled out here). Furthermore, instead of maximizing
the term Z(x) p (y |x ), it suffices to work with its logarithm, which is

∑
v∈V

h · yvxv +
∑

{v,v′}∈E

J · yvyv′ ,

since that gives us the same order of final labeling when ordered by their scores.
We use the logarithm here, because otherwise the resulting scores will be too
huge in some graphs and cannot be stored any more in the standard types
of the programming languages. Then for every node v ∈ V and every edge
e = (v, v′) ∈ E, the node score of v equals h if x(v) and y(v) are equal, and −h
otherwise. The edge score for each e is equal to J , if y(v) and y(v′) are equal,
and −J otherwise.

With this initialisation we use the Viterbi algorithm [10], a dynamic program-
ming scheme to find the maximum labeling for the graph. The MAP prediction
for CRFs over general graphs, however, is NP-hard. In our case this means that
the Viterbi algorithm is exponential. To compute an approximate solution, we
applied a Viterbi-based heuristics we devised in 2014 [2].

3 Experiments and Results

3.1 Training Philosophy

As noted before, the assessment of software entities into acceptable and prob-
lematic is a subjective one and thus no reference data for a supervised learning
approach exists. We overcome this issue by leaving the definition of acceptable
and problematic to the user and focus on the two goals defined in Sect. 2. The
first use-case for this training will be the assessment on software graphs pro-
duced by the simulation process of our group. In this process the local quality
label depends on the number and severity of bugs in a specific software entity.
The parameter set, that is being produced in this training, will be judged on its
capability to achieve the two goals of the PCH training.
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3.2 Data Creation

We used a 10×10 -grid with values ranging from 0 to 1 in 0.1 steps, where the first
dimension represents the conformity value and the second dimension represents
the correlation value. For each of these parameter combinations we created 100
random graphs following the stochastic block model for random graphs [6]. This
model seemed to be the simplest generative random graph model that created a
structure based on communities. The following parameters were used:

– |V | (number of nodes) = 100
– |C| (number of categories) = 4
– pintra : (edge probability in the same community) = 0.15
– pinter : (edge probability between different communities) = 0.01

These parameters were used to approximate the structure of small real software
graphs regarding size, number of communities and connectivity degree. The anal-
ysis of real software graphs for reference is described in [4,5]. For each graph, the
local quality labels (acceptable or problematic) were assigned using the method
described in Algorithm 1:

Algorithm 1. Local Quality Label Generation
Let G = (V, E) be a graph and C be the set of communities in that graph.
for all communities γ ∈ C do

Draw a random number p.
for all nodes n ∈ γ do

Draw a random number pn.
if pn ≤ p then

Assign label +1 to n.
else

Assign label −1 to n.
end if

end for
end for

The random number p, that is drawn for each community, can be seen as a
quality estimator for the entire community. This method ensures that we create
a broad spectrum of communities regarding their average local quality. This
reflects our intuition, that the source code quality can vary significantly among
parts of project, depending on who wrote that code, what were the circumstances
under which it was written and how complex is its functionality.

In the next step we computed the average homogeneity hc and the average
community independence ic as described in the PCH Sect. 2.2. Finally, we chose
the set of parameters that had the maximum sum of hc and ic as the output
of our training. With this procedure, the training resulted in a conformity value
h = 0.5 and a correlation value J = 0.4 that achieved an average community
homogeneity hc = 0.8666 and an average community independence ic = 0.9323.
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3.3 Evaluation of the Training Results

We used the obtained parameters to create classifications on a new set of software
graphs created by the stochastic block model. This software graph set consisted
of 100 graphs with 3–7 communities assigned randomly and 20–30 nodes per
community. This evaluation phase was done to have a visual feedback of the
results of our training on several kinds of graphs created by the stochastic block
model. Two examples are presented in Fig. 1. The homogenisation process can be
observed and the communities or parts of them get a clearer identity as either
overall problematic or overall acceptable. Please note, that a simple threshold
for the number of problematic files in a community would not lead to the same
results, since that would not account for the dependencies between the files.

Fig. 1. Example of classifications of software graphs, where each node represents a
software entity and each edge represents a dependency between two entities. The colour
light green represents the label acceptable, the colour dark red represents the label
problematic. The two graphs on the left side are coloured according to their local
quality label. On the right side, the same two graphs are coloured according to their final
classification using the parameters from our PCH training and the inference heuristic
described in Dong et al. [2] to find the MAP labelling. (Color figure online)
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4 Discussion

With the parameters achieved in Sect. 3, our method provides on average a
broadly homogeneous classification inside communities. This is a helpful tool
in judging the overall quality state of the software, since e.g. a manager, who
wants to assess the state of some software project, does not need to know about
the quality of every individual file. Broadly homogeneous communities provide
a solid basis for such an assessment, because trends become obvious on a larger
scale.

Why was the development of a new training paradigm (PCH) necessary?
It was not possible to use a standard approach from machine learning, since
there was no reference data for software graph quality. This implies that we
could not use standard evaluation methods for parameter sets of our model,
i.e. evaluation on the reference data. so we developed a new target function that
would result in classifications that are easier to comprehend for human observers
(community homogeneity), but not overly simplistic by homogenising the entire
graph to acceptable or problematic (community independence). An advantage
of this approach is in our opinion that the fine tuning (at what point will a
community switch from a broadly acceptable to a broadly problematic state?) is
determined by the definition of the local quality labels and therefore up to the
user and her specific problem.

So far, the reference basis about the structure of software graphs is based on
experience and a small sample of real software projects. Further work is needed
to determine whether all software graphs can be satisfyingly modelled using a
stochastic block model.

Another point for improvement might be the use of more than two local
quality labels (acceptable/problematic) for each software entity. There might be
a big difference for overall software quality if some entity is “a bit problematic”
or “very problematic”. Our approach would generally be expendable to account
for more local quality labels, but for now we decided to test the most simple
modelling case first.

Some software metrics are related to code quality and in some projects it can
be obvious that a project is failed, but in a general case it is very difficult to
quantify the software quality state specifically. Our approach here is to rely on
general guidelines (empower local quality trends to achieve higher homogeneity)
and leave some tuning to the user (definition of the local quality labels).

In future research we plan to use these training results for the assessment of
simulated software graphs created by Honsel et al. [4] where, so far, parameters
have been manually set by the researchers.

Our second future plan is to reiterate the entire training process, but this
time - instead of using artificial graphs created by the stochastic block model, we
will use software graphs that were created by our simulation. In that case, the
labelling will still vary, but the graph structure will be the same for all training
graphs.
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Abstract. Data is often mined using clustering algorithms such as Den-
sity-Based Spatial Clustering of Applications with Noise (DBSCAN).
However, clustering is computationally expensive and thus for big data,
parallel processing is required. The two prevalent paradigms for parallel
processing are High-Performance Computing (HPC) based on Message
Passing Interface (MPI) or Open Multi-Processing (OpenMP) and the
newer big data frameworks such as Apache Spark or Hadoop. This paper
surveys for these two different paradigms publicly available implemen-
tations that aim at parallelizing DBSCAN and compares their perfor-
mance. As a result, it is found that the big data implementations are
not yet mature and in particular for skewed data, the implementation’s
decomposition of the input data into parallel tasks has a huge influence
on the performance in terms of run-time due to load imbalance.

1 Introduction

Computationally intensive problems, such as simulations, require parallel pro-
cessing. Some problems are embarrassingly parallel (such as the many but rather
small problems [1] resulting from the Large Hadron Collider (LHC) experiments)
– most computational problems in simulation are, however, tightly coupled (such
as, e.g., finite element modelling which may even involve model coupling [2]).
The standard approach in this case is High-Performance Computing (HPC).

Highly praised contenders for huge parallel processing problems are big data
processing frameworks such as Apache Hadoop or Apache Spark. Hence, they
might be considered an alternative to HPC for distributed simulations. We have
already shown [3] that for a typical embarrassingly parallel LHC simulation, an
Apache Hadoop-based distributed processing approach is almost on par with the
standard distributed processing approach used at LHC.

In this paper, we want to use a more tightly coupled parallel processing
problem to investigate whether HPC or big data platforms are better suited

c© Springer Nature Switzerland AG 2018
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for computationally intensive problems that involve some tight coupling: clus-
tering using the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [4] clustering algorithm.

DBSCAN is computationally expensive and thus for clustering big data, par-
allel processing is required. However, the DBSCAN algorithm has been defined as
a serial, non-parallel algorithm. Hence, several parallel variants of DBSCAN have
been suggested. The main contribution of this paper is to investigate the run-
time performance and scalability of different publicly available parallel DBSCAN
implementations running either on HPC platforms or on big data platforms such
as the MapReduce-based Apache Hadoop or the Resilient Distributed Dataset
(RDD)-based Apache Spark.

The Bible’s book of Samuel and Chap. 2 of the Qur’an contain the story
of the giant warrior Goliath (Jalut in Arabic): HPC clusters can be considered
as such old giants. The graphical logo of the first popular big data platform,
Apache Hadoop [5], is an elephant. The question whether HPC or big data is
better can therefore be compared to a fight between Goliath and an elephant. –
But beware: later, we encounter even ogres!

The outline of this paper is as follows: subsequent to this introduction, we
provide foundations on DBSCAN, HPC and big data. Afterwards, in Sect. 3,
we describe as related work other comparison of algorithms running on HPC
and big data platforms as well as a comparison of non-parallel implementations
of DBSCAN. In Sect. 4, we survey existing DBSCAN implementations. Those
implementations that were publicly available are evaluated with respect to their
run-time in Sect. 5. We conclude with a summary and an outlook in Sect. 6.
This full paper is based on an extended abstract [6] and a technical report [7].
An annex with command line details can be found in a EUDAT B2SHARE
persistent electronic record [8].

2 Foundations

2.1 DBSCAN

The spatial clustering algorithm Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) [4] has the nice properties that the number of
clusters needs not to be known in advance, but is rather automatically deter-
mined; that it is almost independent from the shape of the clusters; and that it
can deal with and filter out noise. Basically, the underlying idea is that for each
data point, the neighbourhood within a given eps radius has to contain at least
minpts points to form a cluster, otherwise it is considered as noise.

In the simplest implementation, finding all points which are in the eps neigh-
bourhood of the currently considered point, requires to check all remaining n−1
points of the input data: doing this for each of the n input points leads to a com-
plexity of O(n2). Using spatially sorted data structures for the eps neighbour-
hood search, such as R-trees [9], R*-trees [10], or kd-trees [11], reduces the overall
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complexity to O(n log n) if eps is reasonably small1. The standard algorithms to
populate such spatially sorted data structures cannot run in parallel and require
in particular to have the entire input data available in non-distributed memory.

Even if the problem of having a distributed, parallel-processing variant of
populating and using a spatially sorted data structure (in order to bring the
overall complexity down to O(n log n)) is solved, there are further obstacles in
parallelizing DBSCAN in a way that it scales optimally.

The actual clustering can be easily parallelized by partitioning the data spa-
tially: typically, all points that belong to the same partition or cell (=a rectangle
in case of 2 dimensional data, a cube in case of 3D data, or a hypercube for n ≥ 3
dimensions) can be processed by one thread independently from other threads
that process the remaining partitions of points. Only at the border of each rectan-
gle/cube/hypercube, points from direct neighbour rectangles/cubes/hypercubes
need to be considered up to a distance of eps. For this, the standard approach
of ghost or halo regions [12] can be applied, meaning that these points from a
neighbour partition need to be accessible as well by the current thread (in case
of distributed memory, this requires to copy them into the memory of the respec-
tive thread). In a final step, those clusters determined locally in each partition
which form a bigger cluster spanning multiple partitions need to be merged.

To achieve a maximum speed-up, not only an efficient spatially sorted data
structure and low communication overhead (e.g. for halo regions or finally merg-
ing locally obtained clusters), but also the size of the partitions is crucial: the
input domain needs to be decomposed so that each thread or processor core get
an equal share of the work. The simple approach of dividing the input domain
into spatially equally sized chunks (for example as many chunks as processor
cores are available) yields imbalanced workloads for the different cores if the
input data is skewed: some partitions may then be almost empty, others very
crowded. For heavily skewed data, the spatial size of each partition needs to
be rather adjusted, for example in a way that each partition contains an equal
number of points or the same number of comparisons are performed in each
partition. If ghost/halo regions are used, then also the number of points in these
regions need to be considered, because they also need to be compared by a thread
processing that partition.

As shown, parallelizing DBSCAN in a scalable way beyond a trivial number of
parallel threads (or processing nodes respectively) or problem size is a challenge.
For example, PDBSCAN [13] is a parallelized DBSCAN, however it involves a
central master node to aggregate intermediate results which can be a bottleneck
with respect to scalability. In particular, when processing “big data” (i.e. n is
huge), the implementation with the standard complexity of O(n2) will be too
slow and rather O(n log n) algorithms are needed.

1 If the eps neighbourhood contains, e.g., all data points, the complexity of DBSCAN
grows obviously again to O(n2) despite these tree-based approaches.
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2.2 HPC

High-Performance Computing (HPC) is tailored to CPU-bound problems.
Hence, special and rather expensive hardware is used, e.g. compute nodes con-
taining fast CPUs including many cores and large amounts of RAM, very fast
interconnects (e.g. InfiniBand) for communication between nodes, and a cen-
tralised Storage-Area Network (SAN) with high bandwidth due to a huge Redun-
dant Array of Independent Disks (RAID) and fast attachment of them to the
nodes.

To make use of the multiple cores per CPU, typically shared-memory multi-
threading based on Open Multi-Processing (OpenMP) [14] is applied. To make
use of the many nodes connected via the interconnects, an implementation of
the Message Passing Interface (MPI) [15] is used. The underlying programming
model (in particular of MPI) is rather low-level: the domain decomposition of
the input data, all parallel processing, the synchronisation and communication
needed for tight coupling has to be explicitly programmed. Typically rather low-
level, but fast programming languages such as C, C++ and Fortran are used in
the HPC domain. In addition to message passing, MPI supports parallel I/O to
read different file sections from the SAN in parallel into the different nodes. To
this aim, parallel file systems such as Lustre [16] or the General Parallel File
System (GPFS) [17] provide a high aggregated storage bandwidth. Typically,
binary file formats such as netCDF or the Hierarchical Data Format (HDF) [18]
are used for storing input and output data in a structured way. They come with
access libraries that are tailored to MPI parallel I/O.

While the low-level approach allows fast and tightly coupled implementa-
tions, their implementation takes considerable time. Furthermore, no fault tol-
erance is included: a single failure on one of the many cores will cause the whole
HPC job to fail which then needs to be restarted from the beginning if no check-
pointing has been implemented. However, due to the server-grade hardware,
hardware failures are considered to occur seldom (but still, they occur).

2.3 Big Data

The big data paradigm is tailored to process huge amounts of data, however
the actual computations to be performed on this data are often not that com-
putationally intensive. Hence, cheap commodity hardware is sufficient for most
applications. Being rather I/O-bound than CPU-bound, the focus is on High-
Throughput Computing (HTC). To achieve high-throughput, locality of data
storage is exploited by using distributed file systems storing locally on each node
a part of the data. The big data approach aims at doing computations on those
nodes where the data is locally available. By this means, slow network commu-
nication can be minimised. (Which is crucial, because rather slow Ethernet is
used in comparison to the fast interconnects in HPC.)

An example distributed file system is the Hadoop Distributed File System
(HDFS), introduced with one of the first open-source big data frameworks,
Apache Hadoop [5] which is based on the MapReduce paradigm [19]. As it is
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intended for huge amounts of data, the typical block size is 64 MB or 128 MB.
Hadoop has the disadvantage that only the MapReduce paradigm is supported
which restricts the possible class of parallel algorithms and in particular may
lead to unnecessarily storing intermediate data on disk instead of allowing to
keep it in fast RAM. This weakness is overcome by Apache Spark [20] which is
based on Resilient Distributed Datasets (RDDs) [21] which are able to store a
whole data set in RAM distributed in partitions over the nodes of a cluster. A
new RDD can be obtained by applying transformations in parallel on all input
RDD partitions. To achieve fault tolerance, an RDD can be reconstructed by
re-playing transformations on those input RDDs partitions that survived a fail-
ure. The initial RDD is obtained by reads from HDFS. While RDDs are kept
in RAM, required data may not be available locally in the RDD partition of
a node. In this case, it is necessary to re-distribute data between nodes. Such
shuffle operations are expensive, because slow network transfers are needed for
them. Typically, textual file formats, such as Comma-Separated Values (CSV)
are used that can be easily split to form the partitions on the different nodes.

High-level, but (in comparison to C/C++ or Fortran) slower languages such
as Java or the even more high-level Scala or Python are used in big data frame-
works. Scala has over Python the advantage that it is compiled into Java byte-
code and is thus natively executed by the Java Virtual Machine (JVM) running
the Hadoop and Spark frameworks. While the code to be executed is written
as a serial code, the big data frameworks take behind the scenes care that each
node applies in parallel the same code to the different partitions of the data.

Because commodity hardware is used which is more error prone than HPC
server-grade hardware, big data approaches need to anticipate failures as the
norm and have thus built-in fault tolerance, such as redundant data storage or
restarting failed jobs.

2.4 Convergence of HPC and Big Data

Convergence of HPC and big data approaches is taking place in both directions:
typically either in form of High-Performance Data Analysis (HPDA), meaning
that HPC is used in domains that used to be the realm of big data platforms,
or big data platforms are used in the realm of HPC. Alternatively, a mixture is
possible: big data platforms are deployed on HPC clusters, however, sacrificing
data locality-aware scheduling [22]. In this paper, we investigate how mature
this convergence is by comparing DBSCAN clustering implementations for HPC
and for big data platforms.

3 Related Work

HPC and big data data implementations for the same algorithms have been
studied before. Jha et al. [22] compare these two parallel processing paradigms
in general and introduce “Big Data Ogres” which refer to different computing
problem areas with clustering being one of them. In particular, they evaluate
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and compare the performance of k-means clustering [23] implementations for
MPI-based HPC, for MapReduce-based big data platforms such as Hadoop and
HARP (which introduces MPI-like operations into Hadoop), and for the RDD-
based Spark big data platform. In their evaluation, the considered HPC MPI
k-means implementation outperforms the other more big data-related imple-
mentation with the implementation based on HARP being second fastest and
the implementation for Spark ranking third.

A further performance comparison of a big data implementation and a tradi-
tional parallel implementation has been done by us [3] with respect to a typical
embarrassingly parallel High Energy Physics analysis: as traditional embarrass-
ingly parallel execution platform, the Parallel ROOT Facility (PROOF) [24] has
been compared to using Apache Hadoop for this analysis: while the Hadoop-
based implementation is slightly slower, it offers fault tolerance.

The influence of data storage locality as exploited by Spark and other big
data platforms compared to centralized HPC SAN storage has been investigated
by Wang et al. [25]. They use data intensive Grep search and compute intensive
logistic regression as case study and come to the conclusion that even with a
fast 47 GB/s bandwith centralized Lustre SAN, data locality matters for Grep
and thus accesses to local SSDs are faster. However, for the logistic regression,
locality of I/O does not matter.

Kriegel et al. [26] stresses the scientific value of benchmarking and evaluates
in particular the run-time of serial, non-parallel implementations of DBSCAN.
Concerning different programming languages, they show that a C++ implemen-
tation is one order of magnitude faster than a comparable Java implementation.
They also observed a four orders of magnitude speed difference between different
serial implementations of DBSCAN.

4 Survey of Parallel DBSCAN Implementations

This section contains a survey of the considered DBSCAN implementations. To
be able to compare their run-time performance on the same hardware and using
the same input, only open-source implementations have been considered.

For comparison, we also used also ELKI 0.7.1 [27], an Environment for
DeveLoping KDD-Applications supported by Index-Structures. ELKI is an opti-
mised serial open-source DBSCAN implementation in Java which employs R*-
trees to achieve O(n log n) performance. By default, ELKI reads space- or
comma-separated values and it supports arbitrary dimensions of the input data.

4.1 HPC DBSCAN Implementations

A couple of DBSCAN implementations for HPC platforms exist (as, for example,
listed by Patwaryat et al. [28] or Götz et al. [29]). To our knowledge, only for
two of them, the source is available: PDSDBSCAN and HPDBSCAN. Thus, we
restrict in the following to these two. Both support arbitrary data dimensions.
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PDSDBSCAN by Patwary et al. [28] (C++ source code available on request
from the PDSDBSCAN first author [30]) makes use of parallelization either based
on shared memory using OpenMP or based on distributed memory using MPI.
For their OpenMP variant, the the input data needs to fit into the available
RAM; for the MPI variant, a pre-processing step is required to partition the
input data onto the distributed memory. Details of this pre-processing step are
not documented as the authors do not consider this step as part of their algorithm
and thus, it is neither parallelized nor taken into account when they measure
their running times. Input data is read via the netCDF I/O library.

HPDBSCAN by Götz et al. [29] (C++ source code available from repos-
itory [31]) makes use of parallelization based on shared memory and/or dis-
tributed memory: besides a pure OpenMP and pure MPI mode, also a hybrid
mode is supported. This is practically relevant, because an HPC cluster is a com-
bination of both memory types (each node has RAM shared by multiple cores
of the same node, but RAM is not shared between the many distributed nodes)
and thus, a hybrid mode is most promising to achieve high performance. For
the domain decomposition and to obtain a spatially sorted data structure with
O(log n) access complexity, the arbitrary ordered input data is first indexed in
a parallel way and then re-distributed so that each parallel processor has points
in the local memory which belong to the same spatial partition. It is the only
implementation that sizes the partitions using a cost function that is based on
the number of comparisons (=number of pairs for which the distance function
needs to be calculated) to be made for the resulting partition size: this obviously
also includes points in adjacent ghost/halo regions. The command line version
of the implementation reads the input data via the HDF I/O library.

4.2 Spark DBSCAN Implementations

Even though our search for Apache Spark big data implementations of
DBSCAN2 was restricted to JVM-based Java or Scala3 candidates, we found
several parallel open-source4 implementations of DBSCAN: Spark DBSCAN,

2 Remarkably, the machine learning library MLlib which is a part of Apache Spark
does not contain DBSCAN implementations.

3 Note that also purely serial Scala implementations of DBSCAN are available, for
example GSBSCAN from the Nak machine learning library [32]. However, these
obviously make not use of Apache Spark parallel processing. But still, they can
be used from within Apache Spark code to call these implementations in parallel,
however each does then cluster unrelated data sets [33].

4 There is another promising DBSCAN implementation for Spark by Han et al. [34]:
A kd-tree is used to obtain O(n logn) complexity. Concerning the partitioning, the
authors state “We did not partition data points based on the neighborhood rela-
tionship in our work and that might cause workload to be unbalanced. So, in the
future, we will consider partitioning the input data points before they are assigned
to executors.” [34]. However, it was not possible to benchmark it as is not available
as open-source.
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RDD-DBSCAN, Spark DBSCAN, and DBSCAN On Spark. They are described
in the following.

Spark DBSCAN by Litouka (source code via repository [35]) is declared as
experimental and being not well optimised. For the domain decomposition, the
data set is considered initially as a large box full of points. This box is then
along its longest dimension split into two parts containing approximately the
same number of points. Each of these boxes is then split again recursively until
the number of points in a box becomes less than or equal to a threshold, or a
maximum number of levels is reached, or the shortest side of a box becomes
smaller than 2 eps [35]. Each such a box becomes a record of an RDD which
can be processed in parallel, thus yielding a time complexity of O(m2) for that
parallel processing step with m being the number of points per box [36].

RDD-DBSCAN by Cordova and Moh [37] (source code via repository [38])
is loosely based on MR-DBSCAN [39]. Just as the above Spark DBSCAN by
Litouka, the data space is split into boxes that contain roughly the same amount
of data points until the number of points in a box becomes less than a threshold
or the shortest side of a box becomes smaller than 2 eps. R-trees are used to
achieve an overall O(n log n) complexity [37].

Spark DBSCAN (source code via repository [40]) is a very simple implemen-
tation (just 98 lines of Scala code) and was not considered any further, because
of its complexity being O(n2) [36].

DBSCAN On Spark by Raad (source code via repository [41]) uses for domain
decomposition a fixed grid independent from how many points are contained in
each resulting grid cell. Furthermore, to reduce the complexity, no Euclidian
distance function is used (which would be a circle with 2 eps diameter), but
the square box grid cells (with 2 eps edge length) themselves are rather used
to decide concerning neighbourhood (see function findNeighbors in [41]). So,
while it is called “DBSCAN On Spark” it implements only an approximation of
the DBSCAN algorithm and does in fact return wrong clustering results.

Common Features and Limitations of the Spark Implementations. All
the considered implementations of DBSCAN for big data platforms assume the
data to be in CSV or space-separated format.

All the Apache Spark DBSCAN implementations (except for the closed-
source DBSCAN by Han et al. [34]) work only on 2D data: On the one hand, the
partitioning schemes used for decomposition are based on rectangles instead of
higher-dimensional hyper-cubes. On the other hand, for calculating the distance
between points, most implementations use a hard-coded 2D-only implementation
of calculating the Euclidian distance5.

5 Note that spheric distances of longitude/latitude points should in general not be
calculated using Euclidian distance in the plane. However, as long as these points
are sufficiently close together, clustering based on the simpler and faster to calculate
Euclidian distance is considered as appropriate.
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Most Spark-based implementations aim at load balancing by having an
approximately equal number of data points in each partition and a partition
may not get smaller than 2 eps.

4.3 MapReduce DBSCAN Implementations

For further comparison, it would have been interesting to evaluate in addition
also MapReduce-based DBSCAN implementations for the Apache Hadoop plat-
form; candidates found to be worthwhile (because they claim to be able to deal
with skewed data) were MR-DBSCAN [39,42] by He et al. and DBSCAN-MR [43]
by Dai and Lin. However, none of these implementations were available as open-
source and e-mail requests to the respective first authors to provide their imple-
mentations either as source code or as binary were not answered. Hence, it is
impossible to validate the performance claims made by these authors.

5 Evaluation of Parallel DBSCAN Implementations

Typically, comparisons between HPC and big data implementations are difficult
as the implementations run on different cluster hardware (HPC hardware versus
commodity hardware) or cannot exploit underlying assumptions (such as missing
local data storage when deploying big data frameworks at run-time on HPC
clusters using a SAN).

5.1 Hardware and Software Configuration

In this paper, the same hardware is used for HPC and Spark runs: the clus-
ter JUDGE at Jülich Supercomputing Centre. JUDGE was formerly used for
HPC and has been turned into a big data cluster. It consists of IBM System x
iDataPlex dx360 M3 compute nodes each comprising two Intel Xeon X5650
(Westmere) 6-core processors running at 2.66 GHz. For the big data evaluation,
we were able to use 39 executor nodes, each having 12 cores or 24 virtual cores
with hyper-threading enabled (=936 virtual cores) and 42 GB of usable RAM
per node and local hard disk.

In the HPC configuration, a network-attached GPFS storage system, the
JUelich STorage cluster JUST, was used to access data (measured peak per-
formance of 160 GB/s), and the CPU nodes were connected via an Infiniband
interconnect. The big data configuration relies on local storage provided on each
node by a Western Digital WD2502ABYS-23B7A hard disk (with peak perfor-
mance of 222.9 MB/s per disk, corresponding to 8.7 GB/s total bandwidth if all
39 nodes read their local disk in parallel). 200 GB on each disk were dedicated
to HDFS using a replication factor of 2 and 128 MB HDFS block size. The CPU
nodes were connected via Ethernet network connections.

The software setup in the HPC configuration was SUSE Linux SLES 11
with kernel version 2.6.32.59-0.7. The MPI distribution was MPICH2 in version
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1.2.1p1. For accessing HDF5 files, the HDF group’s reference implementation
version 1.8.14 was used. The compiler was gcc 4.9.2 using optimisation level O3.

The big data software configuration was deployed using the Cloudera CDH
5.8.0 distribution providing Apache Spark version 1.6.0 and Apache Hadoop
(including HDFS and YARN which was used as resource manager) version 2.6.0
running on a 64-Bit Java 1.7.0 67 VM. The operating system was CentOS Linux
release 7.2.1511.

5.2 Input Data

Instead of using artificial data, a real data set containing skewed data was used
for evaluating the DBSCAN implementations: geo-tagged tweets from a rect-
angle around the United Kingdom and Ireland (including a corner of France)
in the first week of June 2014. The data was obtained by Junjun Yin from
the National Center for Supercomputing Application (NCSA) using the Twitter
streaming API. This data set contains 3 704 351 longitude/latitude points and
is available at the scientific data storage and sharing platform B2SHARE [44].
There, the data is contained in file twitterSmall.h5.h5. A bigger Twitter data
set twitter.h5.h5 from the same B2SHARE location covers whole of June 2014
containing of 16 602 137 data points, some of them are bogus artefacts though
(Twitter spam) – still we used it to check whether implementations are able to
cope with bigger data sets; a 3D point cloud data set for the city of Bremen is
also provided there, however it was not usable for benchmarking the surveyed
DBSCAN implementations for Spark which typically support only 2D data.

The original file of the small Twitter data set is in HDF5 format and 57 MB
in size. To be readable by ELKI and the Spark DBSCAN implementations, it
has been converted using the h5dump tool (available from the HDF group) into
a 67 MB CSV version and into an 88 MB Space-Separated Values (SSV) version
that contains in the first column an increasing integer number as point identifier
(expected by some of the evaluated DBSCAN implementations). The size of
these two data sets is summarised in Table 1.

Table 1. Size of the used Twitter data sets

Data points HDF5 size CSV size SSV with Ids

Twitter Small 3 704 351 57 MB 67 MB 88 MB

Twitter Big 16 602 137 254 MB 289 MB 390 MB

For all runs, eps = 0.01 and minpts = 40 were used as parameters of
DBSCAN. The detailed command line parameters can be found in EUDAT [8].

5.3 DBSCAN Implementation Versions

The dates of the used DBSCAN implementation source code versions and their
repository are provided in Table 2. The source code was used unmodified except
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Table 2. Used open source repository versions

Implementation Repository Version date

HPDBSCAN bitbucket.org/markus.goetz/hpdbscan 2015-09-10

Spark DBSCAN github.com/alitouka/spark dbscan 22 Feb 2015

RDD DBSCAN github.com/irvingc/dbscan-on-spark 14 Jun 2016

DBSCAN on Spark github.com/mraad/dbscan-spark 30 Jan 2016

for one change: by default, Spark makes each HDFS block of the input file a
separate partition of the input RDD. With the above file sizes of the small
Twitter data set being lower than the used HDFS block size of 128 MB, the
initial RDD would contain just a single partition located on the node storing the
corresponding HDFS block. In this case, no parallelism would be used to process
the initial RDD. Therefore, if the Spark DBSCAN implementations did not
anyway allow to specify the number of partitions to be used, the implementations
were changed so that it is possible to specify the number of partitions to be used
for the initial file read. While this means that non-local reads will occur, the
overhead of these non-local reads is negligible in particular since it leads to a
better degree of parallel processing.

5.4 Measurements

Comparing C++ implementations (PDSDBSCAN and HPDBSCAN) to
JVM-based DBSCAN implementations for Spark is somewhat compar-
ing apples and oranges. Hence, we used as a further comparison a
Java implementation, the pure serial ELKI (see Sect. 4) with -db.index
"tree.metrical.covertree.SimplifiedCoverTree$Factory" spatial index-
ing option running just on one of the cluster cores. The times were measured
using the POSIX command time.

As usual in Spark, the Spark DBSCAN implementations create the output in
parallel resulting in one file per parallel RDD output partition. If a single output
file is intended, it can be merged afterwards, however this time is not included
in the measurement. The reported times were taken from the “Elapsed” line of
the application’s entry in the Spark web user interface for the completed run.

For the number of experiments that we did, we could not afford to re-run all
of them multiple times to obtain averages or medians. However, for one scenario
(RDD-DBSCAN, 233 executors, each using 4 cores with 912 initial partitions
running on the small Twitter data set), we repeated execution four times. The
observed run-times are shown in Table 3. For these 9–10 min jobs, deviations of

Table 3. Deviation of RDD-DBSCAN run-times for the same configuration

Run 1. 2. 3. 4.

Time (s) 653 546 553 560

http://bitbucket.org/markus.goetz/hpdbscan
http://github.com/alitouka/spark_dbscan
http://github.com/irvingc/dbscan-on-spark
http://github.com/mraad/dbscan-spark
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up to almost 2 min occurred. The fact that the first run was slower than the
subsequent runs might be attributed to caching of the input file. In all of our
experiments, we had exclusive use of the assigned cores.

Preparatory Measurements. In addition to the DBSCAN parameters eps
and minpts, the parallel Spark-based implementations are influenced by a couple
of parallelism parameters which were determined first as described below.

Spark uses the concepts of executors with a certain number of threads per
executor process. A couple of sample measurements using a number of threads
per executor ranging from 3 to 22 have been performed and the results rang-
ing from 626 s to 775 s are within the above deviations, hence the influence of
threads per executor is not considered significant. (Most of the following mea-
surements have been made with 8 threads per executor – details can be found
in EUDAT [8].)

Parallelism in Spark is influenced by the number of partitions into which
an RDD is divided. Therefore, measurements with varying initial partition sizes
have been made (in subsequent RDD transformations, the number of partitions
may however change depending on the DBSCAN implementations). Measure-
ment for RDD-DBSCAN running on the small Twitter data set on the 932 core
cluster (not all cores were assigned to executors to leave cores available for cluster
management) have been made for a number of initial number of input partitions
ranging from 28 to 912. The observed run-times were between 622 s and 736 s
which are all within the above deviation range. Hence, these experiments do not
give observable evidence of an optimal number of input partitions. However, in
the remainder, it is assumed that making use of the available cores already from
the beginning is optimal and hence 912 was used as the initial number of input
partitions.

After the input data has been read, the DBSCAN implementations aim at
distributing the read data points based on spatial locality : as described in
Sect. 4.2, most Spark DBSCAN implementations aim at recursively decomposing
the input domain into spatial rectangles that contain approximately an equal
number of data points and they stop doing so as soon as a rectangle contains
only a certain number of points; however, a rectangle becomes never smaller than
2 eps edge length. Assuming that the subsequent clustering steps are also based
on 912 partitions, the 3 704 351 points of the small Twitter data set divided by
912 partitions yield 4061 points per partition as a decomposition into an equal
number of points. However, due to the fact a rectangle becomes never smaller
than 2 eps edge length, some rectangles of that size still contain more points (e.g.
in the dense-populated London area, some of these 2 eps rectangle contain up to
25 000 data points) and thus, the domain decomposition algorithm terminates
with some rectangles containing a rather high number of points.

Experiments have been made with different numbers of points used as thresh-
old for the domain decomposition by the Spark-based implementations. As shown
in Table 4, a threshold of a minimum of 25 000 data points per rectangle promises
fastest execution. This number is also the lowest number that avoids the domain
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Table 4. Influence of number of points used in domain decomposition

No. of points threshold 4 061 9 000 20 000 25 000 50 000

Times (s) 1 157 823 867 675 846

decomposition to terminate splitting rectangles because of reaching the 2 eps
edge length limit: a näıve explanation would be that all rectangles contain an
approximately equal number of points thus leading to load balancing. However,
later findings (Sect. 5.5) show a significant load imbalance.

Run-Time Measurements on Small Data Set. After the above parameters
have been determined, a comparison of the run-times of the different implemen-
tations was made when clustering the small Twitter data set while increasing
the number of cores and keeping the problem size fixed (“strong scaling”).

Table 5 shows results using a lower number of cores in parallel. The C++
implementation HPDBSCAN (running in MPI only mode) performs best in all
cases and scales well: even with just one core, only 114 s are needed to cluster
the small Twitter data set. Second in terms of run-time is C++ PDSDBSCAN
(MPI variant), however, the scalability beyond 8 cores is already limited.

Even though the Java ELKI is optimised for serial execution, it is much slower
than the parallel C++ implementations using a single core only. All implementa-
tions for Spark are much slower when using a single core only. (Spark DBSCAN
was not measured using a low number of cores, because already with a high
number of cores it was very slow.) When running on many cores, the Spark-
based implementations beat the serial ELKI but are still by one (DBSCAN on
Spark) or two (RDD-DBSCAN) orders of magnitude slower than HPDBSCAN
and do not scale as well. While DBSCAN on Spark is faster than RDD-DBSCAN,
it does only implement a simple approximation of DBSCAN and thus delivers
completely different (=wrong) clusters than correct DBSCAN implementations.

Table 6 shows results using a higher number of cores. (No measurements of
any of the two DBSCAN HPC implementations on the small Twitter data set
have been made, as we can already see from Table 5 that using a higher number

Table 5. Run-time (in seconds) on small Twitter data set vs. number of cores

Number of cores 1 2 4 8 16 32

HPDBSCAN MPI 114 59 30 16 8 6

PDSDBSCAN MPI 288 162 106 90 85 88

ELKI 997 – – – – –

RDD-DBSCAN 7311 3 521 1 994 1 219 889 832

DBSCAN on Sparka 1 105 574 330 174 150 147
aDoes only implement an approximation of the DBSCAN
algorithm.



264 H. Neukirchen

Table 6. Run-time (in seconds) on small Twitter data set vs. number of cores

Number of cores 58 116 232 464 928

Spark DBSCAN – – – – 2 406

RDD-DBSCAN 622 707 663 624 675

DBSCAN on Sparka 169 167 173 183 208
aDoes only implement an approximation of the
DBSCAN algorithm.

of cores does not give any gains on this small data set – measurements with
many cores for HPDBSCAN running on the bigger Twitter data set are pre-
sented later). For Spark DBSCAN, an initial experiment has been made using
928 cores, but as it was rather slow, so no further experiments have been made
for this implementation. For RDD-DBSCAN, no real speed-up can be observed
when scaling the number of cores (run-times are more or less independent from
the number of used cores and constant when taking into account the measure-
ment deviations to be expected). The same applies to the DBSCAN on Spark
implementation.

As pointed out in Sect. 4.3, it would have been interesting to compare the
running time of MapReduce-based implementations using the same data set and
hardware. Han et al. [34] who tried as well without success to get the implemen-
tations of MR-DBSCAN and DBSCAN-MR, developed for comparison reasons
their own MapReduce-based implementation and observed a 9 to 16 times slower
performance of their MapReduce-based DBSCAN implementation in comparison
to their implementation for Spark.

Run-Time Measurements on Big Data Set. While the previous measure-
ments were made using the smaller Twitter data set, also the bigger one con-
taining 16 602 137 points was used in experiments in order to investigate some
sort of “weak scaling”. While HPDBSCAN can easily handle it, the Spark imple-
mentations have problems with this 289 MB CSV file.

When running any of the Spark DBSCAN implementations while making use
of all available cores of our cluster, we experienced out-of-memory exceptions6.
Even though each node in our cluster has 42 GB RAM, this memory is shared
by 24 virtual cores of that node. Hence, the number of cores used on each node
had to be restricted using the --executor-cores parameter, thus reducing the
parallelism, but leaving each thread more RAM (which was adjusted using the
--executor-memory parameter).

The results for the big Twitter data set are provided in Table 7. HPDB-
SCAN (in the hybrid version using OpenMP within each node and MPI between
nodes) scales well. Spark DBSCAN failed throwing the exception java.lang.

6 Despite these exceptions, we did only encounter once during all measurements a
re-submissions of a failed Spark tasks – in this case, we did re-run the job to obtain
a measurement comparable to the other, non failing, executions.
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Table 7. Run-time (in seconds) on big Twitter data set vs. number of cores

Number of cores 1 384 768 928

HPBDBSCAN hybrid 2 079 10 8 –

ELKI 15 362 – – –

Spark DBSCAN – – – Exception

RDD-DBSCAN – – – 5 335

DBSCAN on Sparka – – – 1 491
aDoes only implement an approximation the DBSCAN
algorithm.

Exception: Box for point Point at (51.382, -2.3846); id = 6618196;
box = 706; cluster = -2; neighbors = 0 was not found. DBSCAN on
Spark did not crash, but returned completely wrong clusters (it anyway does not
cluster according to the original DBSCAN idea). RDD-DBSCAN took almost
one and a half hour. Due to the long run-times of the DBSCAN implementa-
tions for Spark already with the maximum number of cores, we did not perform
measurements with a lower number of cores.

5.5 Discussion of Results

Big data approaches aim at avoiding “expensive” network transfer of initial input
data by moving computation where the data is available on local storage. In con-
trast, in HPC systems, the initial input data is not available locally, but via an
external SAN storage system. Due to the fact that big data approaches aim
at minimising network transfers, the fact that the Infiniband interconnection of
CPU nodes used in the HPC configuration is faster than the Ethernet-based big
data configuration, should not matter that much. In addition, because DBSCAN
is not that I/O bound, but rather CPU bound, the I/O speed and file formats do
not matter as much as the used programming languages and clever implementa-
tions in particular with respect to the quality of the domain decomposition for
an effective load balancing of parallel execution.

HPDBSCAN outperforms all other considered implementations. Even the
optimised serial ELKI is slower than a serial run of HPDBSCAN. This can
attributed to C++ code being faster than Java and to the fact that HPDBSCAN
uses the fast binary HDF5 file format, whereas all other implementations have to
read and parse a textual input file (and respectively create and write a textual
output file). Having a closer look at the scalability reveals furthermore that
HPDBSCAN scales (“strong scaling”) for the small data set very well up to 16
cores, but some saturation becomes visible with 32 cores (Table 5): Amdahl’s
law [45] suggests that sequential parts and overheads start then to dominate.

For the given skewed data set, scalability of RDD-DBSCAN is only given
for a low number of cores (the run-time difference between 16 and 32 cores is
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within to be expected measurement deviations), but not beyond7. An analysis
of the run-time behaviour reveals that in the middle of execution, only one long
running task of RDD-DBSCAN is being executed by Spark: while one core is busy
with this task, all other cores are idle and the subsequent RDD transformations
cannot yet be started as they rely on the long running task. This means, the load
is due to bad domain decomposition not well balanced and explains why RDD-
DBSCAN does not scale beyond 58 cores: adding more cores just means adding
more idle cores (while one core executes the long running task, the remaining
57 cores are enough to handle the workload of all the other parallel tasks). In
fact, the serial ELKI using just one core is faster than RDD-DBSCAN using
up to 8 cores and even beyond, RDD-DBSCAN is not that much faster and
which does not really justify using a high number of cores. DBSCAN on Spark
delivers completely wrong clusters, hence it has to be considered useless and it
is pointless that it is faster than RDD-DBSCAN.

The comparison between HPDBSCAN and the Spark-based implementa-
tions shows that HPDBSCAN does a much better load balancing: the Spark-
based implementations typically try to balance the number of points per parti-
tion before enlarging the partitions by eps on each side to add the ghost/halo
regions which adds further extra points (which can be a significant amount in
dense areas). Also, partitions cannot get smaller than 2 eps. In contrast, HPDB-
SCAN balances the number of comparisons to be performed (i.e. calculating the
Euclidean distance) and takes to this aim also comparisons of points inside the
partition with points in the ghost/halo regions of that partition into account.
Furthermore, partitions can get smaller than 2 eps which is also important to
balance heavily skewed data. As a result, HPDBSCAN is able to balance the
computational costs much better in particular for skewed data.

While the HPC implementations are much faster than the big data imple-
mentations, it is at least in favour of the big data implementations that HPC
implementations require much more lines of code (=more development efforts)
than the more abstract Scala implementations for Spark. Also, the big data
platforms provide fault tolerance which is not given on HPC platforms.

6 Summary and Outlook

We surveyed existing parallel implementations of the spatial clustering algorithm
DBSCAN for High-Performance Computing (HPC) platforms and big data plat-
forms, namely Apache Hadoop and Apache Spark. For those implementations
that were available as open-source, we evaluated and compared their perfor-
mance in terms of run-time. The result is devastating: none of the evaluated
implementations for Apache Spark is anywhere near to the HPC implementa-
tions. In particular on bigger (but still rather small) data sets, most of them fail
completely and do not even deliver correct results.

7 Remarkably, the authors of RDD-DBSCAN [37] performed scalability studies only
up to 10 cores.
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As typical HPC hardware is much more expensive than commodity hard-
ware used in most big data applications, one might be tempted to say that it is
obvious that the HPC DBSCAN implementations are faster than all the evalu-
ated Spark DBSCAN implementations. Therefore, in this case study, the same
hardware was used for both platforms: HPC hardware. – But using commodity
hardware instead would not change the result: while the HPC implementations
of DBSCAN would then not benefit from the fast HPC I/O, a closer analy-
sis reveals that typical big data considerations such as locality of data are not
relevant in this case study, but rather proper parallelization such as decompo-
sition into load balanced parallel tasks matters. The Spark implementations of
DBSCAN suffer from a unsuitable decomposition of the input data. Hence, the
used skewed input data leads to tasks with extremely imbalanced load on the
different parallel cores.

It can be speculated that in HPC, parallelization needs to manually imple-
mented and thus gets more attention in contrast to the high-level big data
approaches where the developer gets not in touch with parallelization. Another
reason to prefer HPC for compute-intensive tasks is that already based on the
used programming languages, run-time performance of the JVM-based Spark
platform can be expected to be one order of magnitude slower than C/C++.
While RDDs support a bigger class of non-embarrassingly parallel problems
than MapReduce, Spark still does not support as tight coupling as OpenMP
and MPI used in HPC which might however be required for, e.g., simulations.

To conclude our story of Goliath and the elephant: if you do not even get the
parallelization and load balancing right, it does matter whether you are Goliath
or an elephant. Or – looking at it the other way around – if you want to take for
your big data a fast DBSCAN algorithm off-the-shelf, you are currently better
off if you take HPDBSCAN [29].

However, it has to be said that in general, the big data platforms such as
Apache Spark offer resilience (such as re-starting crashed sub-tasks) and a higher
level of abstraction (reducing time spent implementing an algorithm) in com-
parison to the low-level HPC approach.

As future work, it would be interesting to investigate the performance of
the different implementations on other data sets – e.g. for non-skewed data,
the load imbalance can be expected to disappear (but still, the C/C++ HPC
implementations can be expected to be faster than the Java big data implemen-
tation). Furthermore, it is worthwhile to transfer the parallelization concepts of
HPDBSCAN to a Spark implementation, in particular the domain decomposi-
tion below rectangles/hypercubes smaller than 2 eps and the load balancing cost
function of considering the number of comparisons of a partition including com-
parisons to points in the ghost/halo regions of that partition (in contrast to the
Spark-based implementations considering only the number of points in a parti-
tion without taking ghost/halo regions into account). This would give the end
user faster DBSCAN clustering on big data platforms. (Having more or less the
same parallelization ideas implemented on both platforms would also allow bet-
ter assessment of the influence of C/C++ versus Java/Scala and of MPI versus
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the RDD approach of Spark.) Also, the scientific binary HDF5 data file format
can currently not be processed by Hadoop or Spark in a way that data storage
locality is exploited. Hence, the binary file had to be converted to a text-based
input file format and one might argue that this I/O issue slowed down the Spark
implementations. But in fact, the load imbalance of the CPU load contributes
much more to the run-time than any I/O. As soon as the algorithms become
better load balanced, less CPU bound and instead more I/O bound, data locality
matters. A simple approach to be able to exploit the harder to predict locality
of binary formats is to create some sort of “street map” in an initial and easily
to parallelize run and use later-on the data locality information contained in
this “street map” to send jobs to those nodes where the data is locally stored.
We have successfully demonstrated this approach [3] for processing with Apache
Hadoop the binary file formats used in the LHC experiments; the same approach
should also be applicable to HDF5 files.
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