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Preface

Welcome to the proceedings of the first Clausthal-Géttingen International Workshop
on Simulation Science, which took place in Gottingen, Germany, during April 27-28,
2017.

Owing to the rapid development of information and communication technology, the
understanding of phenomena in areas such as natural sciences and engineering
increasingly relies on computer simulations. Traditionally, simulation-based analysis
and engineering techniques are a research focus of both TU Clausthal and the
University of Gottingen, which is also reflected in their interdisciplinary joint research
center “Simulation Science Center Clausthal-Gottingen.” In this context, the first
Clausthal-Géttingen International Workshop on Simulation Science brought together
researchers and practitioners in order to report on the latest advances in simulation
science. In particular, the workshop concentrated on (a) simulation and optimization in
networks, (b) simulation of materials, and (c¢) distributed simulations.

The Convention Centre by the Observatory in Gottingen served as the workshop
venue. It is an outbuilding of the Historical Observatory where the famous scholar Carl
Friedrich Gauss used to work and live. The welcome address of the workshop was
given by Prof. Norbert Lossau (Vice-President of the University of Gottingen) and
Prof. Thomas Hanschke (President of the TU Clausthal). Recent results and an outlook
to future developments in simulation science were discussed in three plenary talks
given by Achim Streit (Karlsruhe Institute of Technology), Samuel Forest (MINES
Paristech), and Kai Nagel (TU Berlin). The social program included a guided city tour
through Goéttingen’s historical old town and a workshop dinner that took place in the
basement of the city hall — the “Ratskeller” of Géttingen.

In total out of 40 submitted extended abstracts 39 were accepted for presentation at
the workshop. After the workshop, 16 full-length papers of a subset of submissions
have been accepted in a second review round for the post-proceedings.

We are very grateful to everyone who supported the workshop. In particular, we
would like to thank the Technical Program Committee, the local arrangements
co-chairs, Annette Kadziora and Fabian Sigges, and the finance chair, Alexander
Herzog. The registration process was organized by VDE conference services and we
highly appreciate the co-sponsoring by the Gesellschaft fiir Operations Research e.V.
(GOR) and the Arbeitsgemeinschaft Simulation (ASIM).

After the success of this workshop, we look forward to the second
Clausthal-Géttingen International Workshop on Simulation Science, which will take
place in May 2019 in Clausthal, Germany.

April 2018 Marcus Baum
Gunther Brenner

Jens Grabowski

Thomas Hanschke

Stefan Hartmann

Anita Schobel
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Passenger-Induced Delay Propagation:
Agent-Based Simulation of Passengers
in Rail Networks

Sebastian Albert!, Philipp Kraus?, Jorg P. Miiller?, and Anita Schobel =)

! Georg-August-Universitiat Gottingen, Gottingen, Germany
{albert,schoebel}@math.uni-goettingen.de
2 Technische Universitat Clausthal, Clausthal-Zellerfeld, Germany
{philipp.kraus, joerg.mueller }@tu-clausthal.de

Abstract. Current work on delay management in railway networks
has — to the best of our knowledge — largely ignored the impact of pas-
sengers’ behavior on train delays. This paper describes ongoing work
aiming to explore this topic. We propose a hybrid agent-based architec-
ture combining a macroscopic railway network simulation with a micro-
scopic simulation of passengers in stations based on the LightJason agent
platform. Using an initial instantiation of the architecture, we model a
simple platform changing scenario and explore how departure delays of
trains are influenced by delays of incoming trains, and by numbers and
heterogeneity of passengers. Our results support the hypothesis that pas-
sengers’ behavior in fact has a significant effect on delays of departing
trains, i.e., that passengers’ behavior in stations must not be neglected.
We recommend to include these effects in up-to-date models of delay
management.

1 Introduction

Delays are a fact in most railway systems. Triggered by one or several source
events (a track is closed, a signal fails, a train departs late because a large
group is boarding) they may spread through large parts of the railway network.
Many mechanisms of such a delay propagation are well understood: A train
which departs with some delay also arrives with some (maybe smaller) delay;
but delays can also propagate from one train to another if a punctual train waits
for a delayed feeder train (wait-depart decision), or if a punctual train has to
slow down because its track is occupied by a delayed train ahead of it (pri-
ority decision). It is also known that delays may propagate due to vehicle and
drivers’ schedules. In order to keep the delays small, delay management decisions

Partially supported by Simulation Science Center Clausthal/Gottingen (SWZ),
project ASIMOV.

© Springer Nature Switzerland AG 2018
M. Baum et al. (Eds.): SimScience 2017, CCIS 889, pp. 323, 2018.
https://doi.org/10.1007/978-3-319-96271-9_1
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are made at railway traffic control centers. Optimizing these from a passenger-
oriented point of view is an ongoing topic of research, see [9] for a recent survey
on delays in railway systems and delay management.

However, work about delay propagation and delay management ignores the
following two important issues. First, it is mostly neglected that the route a pas-
senger! would take depends on the actual delays and on the delay management
decisions. In many cases, waiting for the next train of the same service after
missing a connection is inefficient for passengers, because a different combina-
tion of train services may result in earlier arrival at their destinations. Only very
few approaches take this into account [8,22]. Note that the delay of a train may
even result in new opportunities for connections that do not exist in regular,
undisturbed operations.

Another neglected aspect is related to the behavior of passengers at the
stations: What do they do if a transfer is likely to be missed? People running
from one platform to another in a hurry can interfere with others, heavy luggage
may slow down passengers and increase the time they need for changing trains,
and crowds in the station also slow down traffic. Particular patterns of passenger
flow can even cause additional train delays when, for instance, a steady trickle
of people entering a train prevents the doors from closing.

The following scenario illustrates this effect: Suppose a large number of pas-
sengers alight from an incoming train A in a station. There are only a few minutes
for changing to the platform of a connecting train, B. In such a situation, it hap-
pens often enough that one (fast) passenger reaches train B on time, and before
the doors can close, the next passenger arrives, then the passenger after, and
so on. This might lead to a delay of train B, even if B was punctual so far. To
the best of our knowledge, effects as this one have not been considered in delay
management yet.

In this paper we simulate not only trains in railway networks and delays
propagating between them due to priority and wait-depart decisions, but we
also simulate the passengers and which effects their behavior has on delays. This
includes their route choices in the railway network as well as their movements
through the stations. Hence, not only do we study the influence of delays on pas-
sengers but also the influence of passengers on delays. The resulting simulation
model can be used to predict delays more realistically in every specific situation.
This is useful for several reasons. First, being able to predict delays more pre-
cisely helps when informing passengers about the options they have. Second, our
simulation can be used to evaluate particular delay management decisions (e.g.:
train A should wait for train B today) or even more general delay management
strategies and hence help to reduce follow-up delays in railway systems.

Closest to the topic we study is the simulation of crowd congestion at inter-
change stations which has been studied for a station in Toronto in [25]. In [26]
these effects are included in a crowd dynamics and transit network simulation

! For reasons of simplicity, throughout this paper we will uniformly use the term
passenger to refer to passengers on a train, but also to travelers at a railway station
(including pedestrian through-traffic).
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platform which switches between different simulators. Delay propagation in the
context of railway networks has been studied in [15,16] and simulated in [19]. It
has also been used in delay management, see [9] and references therein. In these
papers, wait-depart decisions to maintain connections for transferring passengers
are considered for delay propagation, but the route choice of passengers and their
behavior in stations is neglected. In [17], Li and Zhu propose a model consider-
ing passenger choice behaviors that take train delays into account. They study
in simulation how this can be factored into a passenger flow distribution calcu-
lation. A discrete event simulation mechanism is used to evaluate their model.
They consider train delays and platform delays as sources for delays. However,
they do not provide a detailed microscopic model of passengers at stations, but
use a mesoscopic probabilistic approach. In [27], Wales and Marinov report the
results of a case study of a real metropolitan rail network, analyzing the impact,
frequency and scope of delays, and attempting to mitigate them. They employ a
mesoscopic discrete event-based railway network simulation, based on empirical
data while detailed modeling of travelers and platform delays are not considered.

There are many papers and tools for a microscopic simulation of physical
train movements along the tracks in a railway network; we refer to [20] for
an overview. However, passengers are neglected in these simulations. The work
presented by Zhang et al. in [29] does describe a rich cellular automata-based
alighting and boarding micro-simulation model for passengers in Beijing metro
stations and the effects of different group sizes on the alighting and boarding
performances. However, they do not study the integrated modeling of railway
station and railway network, and the cellular automata approach makes it diffi-
cult to model more advanced cognitive behavior such as planning.

Thus, to the best of our knowledge, there is no work that aims at studying the
impact of passengers’ behavior on train delays by considering both the railway
networks and railway stations in microscopic models. Therefore, we propose an
agent-based modeling and simulation approach using the LightJason framework
(see Sect.3 for related work and details), since it provides a flexible, scalable
architecture and can link microscopic and macroscopic elements.

The remainder of this paper is structured as follows. In Sect. 2 we describe the
simulation model combining a macroscopic railway network model with a micro-
scopic model of the passengers at the stations. These two worlds get connected
when passengers board or alight: train doors and platforms serve as interfaces.
Section 3 is devoted to our realization of the agent-based simulation, and Sect. 4
provides first simulation results showing that passengers’ behavior in fact has a
significant effect on delays of the departing trains. The paper is ended with some
conclusions and a plan for further research.

2 Simulation Model

2.1 Overview

Delay management problems have been traditionally modeled from the railway
network perspective using macroscopic networks, and formulated and solved as
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integer programs (IPs). Considering pedestrians in a more realistic fashion both
in the train network and in the stations imposes additional requirements on
modeling. E.g., it is necessary to link a graph-based model for the network with
a grid-based model for the station. Also, while a macroscopic flow simulation
can be applied for the network, microscopic pedestrian flow models are required
to capture realistic fine grained movement patterns in stations according to the
pedestrians’ information states, preferences, and plans. Essentially, our model
needs to support the “network world” and the “station world” as well as pas-
sengers moving across these worlds when entering or leaving trains.

There are different architectural approaches for combining a macroscopic rail-
way network simulation with a microscopic station simulation model. Firstly, a
co-simulation approach could be considered (e.g. [5]), linking two separately run
simulations. Secondly, an existing simulation system could be extended by new
models capturing e.g. the station/pedestrian part, or the network part. Third, a
new simulation framework could be created based on a unified model. For scal-
ability and to reduce the integration and maintenance effort, we chose the third
alternative, aiming at a unifying agent-based model based on the agent-based
platform LightJason (see Sect. 3). An important design choice is that trains, pas-
sengers, and dispatcher(s) are modeled as Belief-Desire-Intention (BDI) agents.
Trains drive, and open or close doors; passengers travel from start to desti-
nation, move through stations and board/alight trains. The dispatcher decides
which trains wait. This enables a uniform view on all active simulation entities
while maintaining different levels of detail.

Section 2.2 describes in more detail how the railway network is modeled. Our
approach for describing railway stations and passenger behavior within railway
stations is presented in Sect. 2.3. Section 2.4 explains how our initial model han-
dles the transition between the railway network and station “worlds”.

2.2 Railway Network Submodel

The macroscopic simulation of trains is based on the so-called event-activity net-
work (EAN) N = (£, A). The vertices of the network are arrival and departure
events Eqrr and Ege, where both consist of a train and a station. The events are
linked by the following activities:

— A driving activity a € Agrive links a departure event at a station with an
arrival event of the same train at its next station. It represents a train driving
between the two consecutive stations.

— A waiting activity a € Ay qi links the arrival event of a train with its depar-
ture event at the same station and corresponds to the time period in which
a train is waiting in a station to let passengers alight and board.

— A changing activity a € Achange links an arrival event of a train at a station
with the departure event of another train at the same station. It corresponds
to the transfer of passengers from one train to another by foot within a station.

— Finally, a headway activity a € Apeqq models the limited capacity of the track
system. This can either be two trains driving on the same track into the same
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direction or two trains driving into opposite directions on a single-way track.
The duration L; ;) of a headway activity (4,7) means that the departure j
must take place at least L(; jy minutes after the departure i (if j actually
takes place after 7). We refer to [24] for details. Headway activities are used
to prevent that no two trains occupy the same platform at the same time.
Note that not all conflicts on the tracks can be prevented by using headway
constraints in a macroscopic model.

There exist simulations (see [20] for an overview) which are able to route trains
on the track system respecting all signals, speed limits and other safety measures,
including interlocking effects of multiple trains’ routes. However, since the focus
in this simulation is to analyze the influence of the behavior of the passengers
we neglected the details of the physical railway network in this first version and
used the macroscopic event-activity network for simulating the railway world. A
small example of an EAN with three trains is depicted in Fig. 1.

station A d

departure ¢ wan K-Town dnve
TRAIN 1 depanure

de arture de arture

P TRAIN 2 wai P

station C d“VE
departure dnvc

TRAIN 3 Wmt

— drive and wait activities
,,,,,,,, » transfer activities
,,,,,,,,, » headway activities

Fig. 1. A small event-activity network consisting of three trains which meet at the
station K-town.

Event-activity networks are suitable for modeling trains, passengers, and
delays: The trains are visible directly; passengers can be routed through an EAN
(where they may not use headway activities) allowing to change between trains
along the changing activities; and delays can be propagated through the network
along driving, waiting, changing and along headway activities if the buffer times
of each of these activities is known.

In our simulation model, every train in the EAN is represented as one sim-
ulation entity, or agent. The train agents technically know their timetable as a
list of stations together with their arrival and departure times. Train agents are
aware of the current time and must not depart before the respective published
departure time. Their arrival at the next station follows after the amount of time
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determined by the distance and their running speed, plus any additional delay
that can be modeled between the two stops. A detailed simulation on the tracks
is currently neglected since our focus is to study passengers at stations. These
are also modeled as agents. In the macroscopic railway network they move along
the network in their trains. In order to reach their destinations, each passenger
agent knows their own itinerary as a list of train rides, each denoting the train
number, the station, and the departure time where they have to board or alight.
Some of them are able to adapt their itineraries when their planned journey is
affected by a delay. These passenger agents represent informed passengers that
use their smart-phones to optimize their journeys. Other passengers will stick
to their itineraries, or follow the guidance given by the staff or an information
board. All passengers can update their itineraries when they miss a transfer.

2.3 Railway Station Submodel

Following a microscopic agent-based approach, this submodel describes the phys-
ical environment of a railway station, the travel demand, and the behavior (flow)
of passengers in the station. Figure2 shows the simple example scenario used
throughout this paper. It features two opposing entrances and platforms, an info
sign containing information about track plans and departure times for trains,
as well as points of interests such as a restroom or a store. From the central
hall, there is an entrance/exit to/from each platform. The two entrances and
exits of the station hall can be used to simulate different levels of pedestrian
through-traffic and their impact on delays. To model travel demand, we use
origin-destination (O/D) matrices. Based on the O/D information, passengers
are generated with an itinerary and released at the entrances of the initial sta-
tion of their journey. Note that for the scope of this paper, the itinerary is a
given input, and we do not consider rerouting. In the future, we will investigate
the case that passengers first need to obtain it by actually moving near the info
sign, or that they may use mobile devices.

Based on its itinerary and departure information, a passenger decides where
to go (e.g., to catch a train or to leave the station). It then plans a route and
moves towards its destination. While moving, the passenger can decide to oppor-
tunistically interrupt or modify the planned route towards points of interest, e.g.,
to eat something (represented as dynamic internal drive to increase its energy
level) or to get a newspaper (represented by a level of preference or interest).
Furthermore, its trajectory is influenced by the asynchronous movement of other
passengers which can lead to collisions.

We model the flow behavior of passengers using a cellular automaton app-
roach [6] based on a grid representation of the environment. A cell can be empty
or not, and it can be of different types (floor, info sign, Point of Interest (Pol),
...). Based on the cell structure, discrete goal- and event-based action rules fol-
lowing the BDI model are employed to describe the interaction between agents
and the environment.
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Track A § §

Info sign

m Entrance / Exit
—

ce/Exit
—

Fig. 2. Exemplary station environment

To model flexible, realistic movement and routing, we use a hybrid control
architecture to integrate routing and movement control as proposed in [14]:

Routing: The Jump Point SearchPlus (JPS+) routing algorithm calculates
a list of landmarks (filled dots in Fig.2) from starting to goal position. We
extend JPS+ by preprocessing to define suitable initial landmarks. During
runtime, JPS+ can be executed for any agent individually, to choose land-
marks that reflect individual preferences of the agent.

Movement control: A passenger’s actual movement trajectory (indicated by
the line starting from the entrance in Fig.2) depends on its planned route,
but also on the current situation including other passengers. To this end, we
use a Social Force Model approach [13], and added a simple reactive collision
detection?.

In the following, we highlight two aspects related to our agent-based sim-
ulation model: The first is our approach to solve the problem of modeling
perception in a scalable fashion. Second, we illustrate the above-mentioned
BDI modeling of passenger behavior.

Dynamic Perception Algorithm. In every simulation step, all passenger
agents in the station need to update their perception, i.e., access the environ-
mental state. This is constrained by limited perception ranges which need to be
taken into account. We address this by enclosing the relevant simulation entity
by a bounding box of configurable size. This also allows a fine-grained defini-
tion of information exchange between objects. For example, the info sign box in
Fig. 2 can detect a passenger within its (the info sign’s) bounding box. Listing 2.1
shows our algorithm, which processes the movement trajectory of a passenger by
the Liang-Barsky line-clipping algorithm [18], which we found to produce good
results for detection and length calculation within the bounding box.

2 see scenario in [2] or https://lightjason.github.io/news/2017-02-video/.
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Listing 2.1. Detection algorithm
1 : agent PASSENGER, agent BOX

3 LINE «— liangbarsky ( PASSENGER. startposition. PASSENGER.
endposition , BOX. topleft , BOX. bottomright )

] LENGTH — || LINE |

5 LENGTH = 0

6

7 BOX. contains ( PASSENGER )

8 PASSENGER. trigger( "enter”, BOX )
10 BOX. objects.add( PASSENGER );

11 BOX. trigger ( "moving", PASSENGER )

12

In each simulation step, for each agent in the simulation, the agent cycle is
executed. This means that for each agent, information is updated, goals/events
checked, and plans expanded by, e.g., creating and instantiating the actions for
moving through the station while following the landmarks. In the example of
the info sign, its bounding box will determine lists of passengers that entered,
left, or moved through it within an agent cycle. The agent which belongs to the
bounding box checks if another agent has left the box. Based on this information,
the box state is updated. In particular, passengers who left the bounding box
are informed about this by a leave message, which can trigger new plans in the
passenger agent.

Pedestrian Movement. As mentioned above, the routing algorithm JPS+
calculates landmarks for passengers moving through the station, while basic col-
lision detection/avoidance is factored into the environment. The detailed move-
ment behavior of passengers in the station is expressed through a set of BDI rules,
which are modeled in a rule-based scripting language (see Sect.3 for details).
Listing 2.2 illustrates basic elements of an exemplary BDI program consisting of
one initial piece of information (= belief) and one plan.

Listing 2.2. Example BDI program fragment for passenger agent

1 (id("ICE 751"), platform(3)).
3 +lcatchtrain

4 >>( ( id(T), platform(P) )
5 <

6 route/set(P);

7 Imovement/walk/forward .

In this example, we assume that the agent has the initial information that
its train ICE 751 will depart from platform 3. This information is encoded in
a belief (line 1). Line 3ff shows a plan. Plans are triggered by events, such as
a new belief (‘+’), retracted belief (‘—’), new goal (‘!") or retracted goal (‘"),
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(line 3). In the example, the plan is triggered by a goal catchtrain. The applica-
bility of a plan can be further subject to additional context conditions; e.g., in
line 4 it is required that the agent has the information that its train has arrived
on a platform. The conditions are evaluated and variables bound using logical
unification (indicated by the >’ operator). Event and condition together form
the antecedent of the plan rule; its consequent is the plan body, which consists
of calculations, the execution of actions (e.g., the calculation of a route (line 6)),
and the creation of new subgoals (line 7).

Section 3 elaborates on the principles for the execution of agent programs.
A richer code example describing passenger moving behavior is displayed in the
Appendix to this paper.

2.4 Transition Between Submodels

As specified so far, passengers switch between the two submodels of the simu-
lation. Technically, a seamless transition between the two submodels is accom-
plished by modeling passengers as agents with unique identities over their com-
plete life-cycle, and by a common object model (cf. Sect.3). The interface
through which passengers switch from the railway network to the station is
modeled by the doors of the trains and the platforms.

Every station is made up of a set of uniquely named platforms. Each plat-
form technically maintains a collection of passengers currently standing on or
moving across it, as well as a reference to any train dwelling at that platform.
Each passenger maintains its itinerary as a list of train rides, stations, departure
platforms and times. In order to simulate the effects of passengers alighting and
boarding, every train has a collection of doors. A train can only depart from a
platform at a station when all its doors are closed and locked. Once the departure
time is reached, a command is sent to the doors to close and lock. Only when
all doors are locked will the train start driving. Technically, it will then inform
the platform about its departure. Analogously, when arriving at a station, it
will inform the arrival platform and the passengers inside itself, and unlock the
doors.

Doors also maintain information about their current state, including two
queues of passengers for alighting or boarding, respectively. In a first approxi-
mation, we assume that a door can only be used by one passenger at a time,
and whenever the door is open and free, it will trigger either the next passenger
of the alighting queue, if any, or otherwise the next passenger of the boarding
queue, if any. To simulate the effect of the safety light-barriers installed in many
trains to prevent doors from closing when there are people in it, the door keeps
track how long they have not been used by a passenger. It can only close if it has
not been used by a passenger for a pre-specified amount of time, usually a few
seconds. The process of closing is also simulated, which can be interrupted by
an adamant passenger arriving at the door just then, forcing it to open again.

To conclude, a passenger boarding a train performs the following steps:

1. Upon announcement of a train, compare it to the current itinerary entry
whether it is the one to board.
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2. If the train is to be boarded, queue at one of the train’s doors for entrance.

3. When the door is open and there are no preceding passengers in the queue,
enter the train.

4. After entering (which takes a pre-specified amount of time), release the door.
Unregister from the platform and register with the train.

The steps for alighting from a train are analogous to those for boarding.

3 Agent-Based Simulation with LightJason

In Sect. 2.1, we have argued the case for using agent-based models for microscopic
simulation of railway network and railway station environments. Agent-based
modeling and simulation (ABMS) [3] is a computational paradigm in which the
concepts of agents and multi-agent systems form the metaphor underlying the
simulation model. From the modeling perspective, the concept of a multi-agent
system (MAS) allows a reduction of complexity. Concepts such as reactivity,
proactiveness, and social ability, as generally attributed to agents [28] are helpful
for microscopic behavioral modeling. Agents are active simulation entities, which
are defined by a BDI architecture, allowing a fine-grained modeling of their
knowledge, behavior, and goal-driven planning/decision-making. The essential
domain entities (agents) in our simulation scenario, i.e., passengers, trains, and
the dispatcher, have been described in Sect. 2.

In selecting an appropriate simulation platform, there are a number of choices
and tradeoffs to consider. The “silver bullet” would doubtlessly be a simulation
software that provides rich microscopic domain models (i.e., in our case, rail-
way network and railway station) and support rich agent-based models. Also,
this simulation software should be open-source in contrast to commercial tools
such as MassMotion, SimWalk, or VISSIM/Viswalk), to enable extension and
validation not only of the models but also of the underlying platform. Unfortu-
nately, while there are quite a few platforms out there, to our knowledge none of
them satisfies all of these requirements. MATSim [12] seems to be close; however,
it cannot be used straightforwardly, as it does not support microscopic agent-
based flow simulation but rather mesoscopic queuing models. Thus, efficiently
coupling railway network simulation with traveler simulation either requires the
integration of existing systems, linking, e.g., an existing agent platform with an
existing railway and/or railway station simulation, or a from-scratch implemen-
tation based on an ABMS platform.

Our approach has been to choose a suitable ABMS platform and to develop
the railway network and railway station modules in that platform, using a clean
software architecture that will enable us at a later point in time to replace the
domain simulations components by different (academic or commercial) compo-
nents. Core requirements for a MAS platform to be used are scalability (support
a large number of agents, particularly in the network part), and ease of integra-
tion with/into other systems. When building an agent-based application, it is
necessary to agentify simulation entities, e.g. to turn them into software agents
and thus allowing the simulation runtime system to execute them in a controlled
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fashion. A major obstacle for this to be possible are built-in runtime systems in
conjunction with hard-wired inflexible software architecture. From the perspec-
tive of suitable runtime systems and frameworks, we refer to [1] for a discussion
of the state-of-the-art and requirements. We summarize key requirements for a
MAS simulation framework [2]:

Simulate a large set of different, heterogeneous agent types

Fine-grained parameterization for modeling individual agent behavior
Highly asynchronous execution mechanisms

Concurrent execution on high performance/cloud platforms

High abstraction of software developing to separate domain-specific behavior
and coding behavior.

6. Modular, exchangeable run-time component and clean software architecture
for ease of integration.
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Fig. 3. Bug density analysis for agent-oriented programming frameworks

An analysis of available agent-based modeling/programming frameworks
reveals that these requirements are only partly met. Main limitations relate to
scalability due to proprietary runtime systems [2]. Also, the platforms often do
not support state-of-the-art Object-Oriented methodologies and architectures,
because their documentation and code quality is poor; therefore including them
in an existing code-base is very difficult. As an example, Fig. 3 shows results of
a comparison of the code qualities of popular open-source agent platforms®. It is

3 Evaluation was performed in January 2017 using the tools FindBugs and J-Depend.



14 S. Albert et al.

easy to see that almost all platforms bear considerable numbers of errors of high
and medium severity. In particular, none of the platforms provides a modular
runtime system architecture. This among others led us to develop the framework
LightJason [2]. LightJason is inspired by Jason [4]; however, it builds on a com-
pletely new code-base and extends the descriptive language AgentSpeak(L) [21],
which is used to script agent behavior in Jason, to a newly designed language
ASL+4.

ASL+ extends the (Java-based) Object-Oriented paradigm with the BDI
concept and the execution mechanism known from Procedural Reasoning System
(PRS) [11]. Its main features include lambda expressions, multi-plan and -rule
definition, multi-variable assignments, concurrent execution mechanisms, and a
fuzzy inference concept. For a brief glimpse of the ASL+ language, we refer to
the example discussed in Sect. 2.3, Listing 2.2, and to the more complex example
shown in the appendix to this paper. Regarding plan execution semantics, the
following principles have been designed into LightJason:

1. Multiple matching plans are executed in parallel; synchronization can be
enforced through setting context conditions.

2. Multiple subgoals created in a plan body are triggered concurrently; instan-
taneous, sequential execution can be enforced with using the goal prefix !!+
instead of !+ in the body of the plan specification.

3. Multiple actions in a plan body are executed sequentially; this default seman-
tics can be changed to parallel execution through a @Parallel annotation at
the beginning of the plan specification.

The system architecture underlying the LightJason framework is based on a
layered architecture (see Fig. 4) which combines functional, object-oriented, and
logic programming/modeling paradigms. LightJason is open-source (see https://
github.com/LightJason). It supports easy integration with third-party systems
and services by incorporating standard interfaces such as Representational State
Transfer (REST) or GraphQL by means of built-in actions.
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(collection of all elements) Agent Oriented ini

AgentSpeak(L++) i =
(agent language elements, e.g. plans) Logical | { Plans g
Complex Type - - < Body | +=
(logical language elements, e.g. literal) Object Oriented | | 1" Actions, 5
- " 1 Objects| 2
Terminal Symbols Functional i <

1]

Assembler / Machine Code |<Executioﬂ

(keywords e.g. <-)

Fig. 4. LightJason conceptual architecture

4 ASL+ stands for AgentSpeak(L++).
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Up-to-date key indicators related to code quality (including the statistics
obtained using FindBugs and J-Depend) can be checked on the github projects
page®. Initial LightJason benchmark results providing evidence for the scalability
of the framework are available in the LightJason documentation®. For more

detailed information, we refer to the Light.Jason online reference”’.

4 Experiments

4.1 Example Scenario

For a first validation of the model described in Sect. 2, we use a small scenario in
which two trains A and B meet at a station. For example, train A is scheduled
to arrive at 10:00 and train B is scheduled to leave at 10:04, i.e., the available
time between the planned arrival of train A and the planned departure of train
B is 4 min. We simulate passengers that want to transfer from train A to train
B. The average time for changing from the platform of train A to the platform
of train B is assumed to be 2min. The situation is depicted in Fig. 5.

. scheduled arrival: 10:00
train A arrival delay of 0,20...,200 seconds

2,4,6,..,100 passengers
Passengers walking from train A to train B
average time needed: 2 minute
homogeneous or heterogeneous
how many reach train B on time?

scheduled departure: 10:04 train B
departure delay?

Fig. 5. The simulated scenario: passengers transfer from train A to train B in a station.

The model parameters which we use to describe a scenario are the following:
We mainly investigate the arrival delay of train A and the number of passengers
who would like to change from train A to train B in this station. The minimal, the
maximal, and the average transfer time, i.e., the time a passenger needs between
deboarding train A and boarding train B, are used to model the behavior of the
passengers. Increasing the average transfer time has the same effect as increasing
the arrival delay of train A and is hence not further investigated. Heterogeneous
passengers (some with large baggage, some without baggage, elderly people,
children, students) are modeled by a larger span between minimal and maximal

® http://lightjason.github.io/ AgentSpeak /project-reports.html.
5 https://lightjason.github.io/benchmark/.
" http://lightjason.org.
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transfer time while homogeneous passengers (e.g. in the morning traffic where
most passengers are traveling only with small briefcases, moving through the
station with roughly the same speed) are modeled by a small span. We can also
change the time, the light-barrier needs before it closes the door. Altogether we
simulated nearly 10,000 different parameter combinations, each of them once.

For simplicity we used only one door for each train that is used for all pas-
sengers, and we assume that all passengers in train A wish to continue their
journeys with train B; i.e., there are no other passengers that alight from train
A in our station and no other passengers that board train B. As we will see,
even this simple situation shows that the passengers’ behavior in the stations
must not be neglected.

4.2 Case 1: Punctual Arrival of Train A

We first consider the case in which train A arrives without delay. In this situation
one would expect that all passengers can transfer and that train B can depart
punctual. This is also what classic delay management models would use. How-
ever, as Fig. 6 shows, this is not the case if many passengers want to transfer: In
our simulation the departure delay is zero if no more than 28 passengers want to
transfer but it increases if 30 or more passengers wish to transfer since they need
some time to board train B one after another. One could argue that this effect
may be neglected, as usually not too many passengers transfer to the same train,
and they distribute among several doors. However, we see from Sect. 4.3, we can
expect significant effects for small numbers of passengers if train A arrives with
some delay, or if passengers are not homogeneous.

Departure delay [s] of train B
400 T T T T T T T T T
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0 ! " " " " " "
0 10 20 30 40 50 60 70 8 90 100

no. of passengers who wish to transfer

Fig. 6. Departure delay of train B with respect to the number of passengers. If more
than 30 passengers want to transfer, they delay the departing train.
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4.3 Case 2: Delayed Arrival of Train A

We simulate what happens if train A arrives at the station with some delay.
Recall that passengers need on average 2 min to walk from the arrival platform
of train A to the platform on which train B departs, and that the scheduled
time for this transfer is 4 min. The passengers hence have a transfer buffer time
of 2min. Consequently, it is common to assume that passengers are able to
board train B if the delay of train A is less than 2min and that in this case all
passengers make the transfer and train B leaves on time. For the case that the
arrival delay of train A is larger than 2 min, the classic models assume that the
transfer cannot be made since train B has already departed before the passengers
from train A arrive at its platform. L.e., in both cases it is assumed that train
B leaves punctual. Simulating these situations shows that all these common
assumptions may be wrong, see Fig. 7 for our results.
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Fig. 7. Departure delay of train B (the lighter the color the more delay) and number of
passenger