
Chapter 4
Applications of Flexible Querying
to Graph Data

Alexandra Poulovassilis

Abstract Graph data models provide flexibility and extensibility, which makes
them well-suited to modelling data that may be irregular, complex, and evolving
in structure and content. However, a consequence of this is that users may not be
familiar with the full structure of the data, which itself may be changing over time,
making it hard for users to formulate queries that precisely match the data graph
and meet their information-seeking requirements. There is a need, therefore, for
flexible querying systems over graph data that can automatically make changes to
the user’s query so as to find additional or different answers, and so help the user to
retrieve information of relevance to them. This chapter describes recent work in this
area, looking at a variety of graph query languages, applications, flexible querying
techniques and implementations.

4.1 Introduction

Due to their fine modelling granularity (in its simplest form, comprising just nodes
and edges, naturally representing entities and relationships), graph data models
provide flexibility and extensibility, which makes them well-suited for modelling
complex, dynamically evolving datasets. Moreover, graph data models are typically
semi-structured: there may not be a schema associated with the data; if there is a
schema, then aspects of it may be missing from parts of the data and, conversely,
parts of the data may not correspond to the schema. This makes graph data models
well-suited to modelling heterogeneous and irregular datasets. Graph data models
place a greater focus on the relationships between entities than other approaches to
data modelling, viewing relationships as important as the entities themselves.

In recent years there has been a resurgence of academic and industry interest in
graph databases, due to the generation of large volumes of data from web-based,
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mobile and pervasive applications centred on the relationships between entities,
for example: the web graph itself; RDF Linked Data1; social and collaboration
networks2 (Martin et al. 2011; Suthers 2015); transportation and communication
networks (Deo 2004); biological networks (Lacroix et al. 2004; Leser and Trissl
2009); workflows and business processes (Vanhatalo et al. 2008); customer rela-
tionship networks (Wu et al. 2009); intelligence networks (Ayers 1997; Chen et al.
2011); and much more!3

As the volume of graph-structured data continues to grow, users may not be aware
of its full details and may need to be assisted by querying systems which do not
require queries to match exactly the data structures being queried, but rather can
automatically make changes to the query so as to help the user find the information
being sought. The OPTIONAL clause of SPARQL (Harris and Seaborne 2013)
has the aim of returning matchings to a query that may fail to match some of the
query’s triple patterns. However, it is possible to “relax” a SPARQL query in ways
other than just ignoring optional triple patterns, for example, making use of the
knowledge encoded in an ontology associated with the data in order to replace an
occurrence of a class in the query by a superclass, or an occurrence of a property by
a superproperty.

This observation motivated the introduction in Hurtado et al. (2008) of a RELAX
clause for querying RDF data, which can be applied to those triple patterns of a
query that the user would like to be matched flexibly. These triple patterns are
successively made more general so that the overall query returns successively more
answers, at increasing ‘costs’ from the exact form of the query. We review this
work on ontology-based query relaxation in this section, starting with an example
application in heterogeneous data integration in Sect. 4.1.1.

Section 4.2 goes beyond conjunctive queries to consider conjunctive regular path
queries over graph data, and approximate answering of such queries. In contrast to
query relaxation, which generally returns additional answers compared to the exact
form of a database query, query approximation returns potentially different answers
to the exact form of a query.

Section 4.3 considers combining both query relaxation and approximate answer-
ing for conjunctive regular path queries over graph data, describing also an
automaton-based implementation. Section 4.4 considers extending SPARQL 1.1
with query relaxation and approximation, describing an implementation based on
query rewriting. Along the way, we consider applications of query relaxation and
query approximation for graph data in areas such as heterogeneous data integration,
ontology querying, educational networks, transport networks and analysis of user–
system interactions. Section 4.5 covers additional topics: possible user interfaces for
supporting users in incrementally constructing and understanding flexible queries

1http://linkeddata.org, http://www.w3.org/standards/semanticweb, accessed at 18/6/2015.
2https://snap.stanford.edu/data, accessed at 18/6/2015.
3See for example http://neo4j.com/use-cases, http://www.objectivity.com/products/infinitegraph,
http://allegrograph.com/allegrograph-at-work, accessed at 18/6/2015.

http://linkeddata.org
http://www.w3.org/standards/semanticweb
https://snap.stanford.edu/data
http://neo4j.com/use-cases
http://www.objectivity.com/products/infinitegraph
http://allegrograph.com/allegrograph-at-work
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and the answers being returned; and possible extensions to the query languages
considered so far with additional flexibility beyond relaxation and approximation,
and with additional expressivity in the form of path variables. Section 4.6 gives an
overview of related work on query languages for graph data and flexible querying
of such data. Section 4.7 gives our concluding remarks and possible directions of
future work.

Flexible Database Query Processing
Before beginning our discussion of flexible query processing for graph data, we first
review the main approaches to flexible query processing for other kinds of data. Due
to the considerable breadth of this area, the references cited here are representative
of the approaches discussed rather than an exhaustive list. Readers are referred to
the proceedings of the bi-annual conference on Flexible Query Answering Systems
(FQAS) for a broad coverage of work in this area.

Query languages for structured data models, such as SQL and OQL, include
WHERE clauses that allow filtering criteria to be applied to the data matched
by their SELECT clauses. Therefore, a natural way to relax queries expressed in
such languages is by dropping a selection criterion, or by ‘widening’ a selection
criterion so as to match a broader range of values (Bosc and Pivert 1992; Heer et al.
2008). Another common approach to query relaxation is to allow fuzzy matching of
selection criteria, accompanied by a scoring function that determines the degree
of matching of the returned query answers (Galindo et al. 1998; Na and Park
2005; Bordogna and Psaila 2008; Bosc et al. 2009). Conversely, queries can be
made more specific by adding user preferences as additional filter conditions, with
possibly fuzzy matching of such conditions (Mishra and Koudas 2009; Eckhardt
et al. 2011). Chu et al. (1996) use type abstraction hierarchies to both generalise
and specialise queries, while Zhou et al. (2007) explore statistically based query
relaxation through ‘malleable’ schemas containing overlapping definitions of data
structures and attributes.

Turning to approximate query answering, approaches include histograms (Ioan-
nidis and Poosala 1999), wavelets (Chakrabarti et al. 2001) and sampling (Babcock
et al. 2003). Sassi et al. (2012) describe a system that enables the user to issue an
SQL aggregation query, see results as they are being produced, and dynamically
control query execution. Fink and Olteanu (2011) study approximation of conjunc-
tive queries on probabilistic databases by specifying lower- and upper-bound queries
that can be computed more efficiently.

In principle, techniques proposed for flexible querying of structured data can also
be applied to graph-structured data. However, such techniques do not focus on the
connections (i.e. edges and paths) inherent in graph-structured data, thus missing
opportunities for further supporting the user through approximation or relaxation of
the path structure that may be present in a graph query.

Semi-structured data models aim to support data that are self-describing and that
need not rigidly conform to a schema (Abiteboul et al. 1997; Buneman et al. 2000;
Fernandez et al. 2000; Bray et al. 2008). Generally, such data can be modelled
as a tree, though cyclic connections between nodes may also be allowed by the
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model (e.g. in XML, through the ID/IDREF constructs). Much work has been
done on relaxing tree-pattern queries over XML data. For example, Amer-Yahia
et al. (2004) undertake query relaxation through removal of conditions from XPath
expressions; Theobald et al. (2005) support relaxation by expanding queries using
vocabulary information drawn from an ontology or thesaurus; Liu et al. (2010) use
available XML schemas to relax queries; and Hill et al. (2010) use ontologies such
as Wordnet to guide XML query relaxation. Buratti and Montesi (2008) discuss
query approximation for XML based on the notion of a cost-based edit distance for
transforming one path into another within an XQuery expression, while Almendros-
Jimenez et al. (2014) propose a fuzzy approach to XPath query evaluation.

Similar approaches to those developed for XML can be adopted for flexible
querying of graph-structured data, and indeed in subsequent sections of this chapter
we discuss ontology-based relaxation of graph queries and also edit distance-based
ranking of approximate answers to graph queries. However, the techniques proposed
for flexibly querying XML generally assume one kind of relationship between
entities (parent-child), whereas in graph-structured data there may be numerous
relationships, potentially giving rise to higher complexity and diversity in the data
and requiring query approximation and relaxation techniques that are able to operate
on the relationships referenced within a user’s query.

4.1.1 Example: Heterogeneous Data Integration

Much work has been done since the early 1990s in developing architectures and
methodologies for integrating biological data (Goble and Stevens 2008). Such
integrations are beneficial for scientists by providing them with easy access to
more data, leading to more extensive and more reliable analyses and, ultimately,
new scientific insights. Traditional data integration methodologies (Batini et al.
1986) require semantic mappings between the different data sources to be initially
determined, so that a global integrated schema or ontology can be created through
which the data in the sources can then be accessed. This approach means that
significant resources for data integration projects must be committed upfront, and
an active area of research is how to reduce this upfront effort (Halevy et al. 2006).
A general approach adopted is to present initially all of the source data in an
unintegrated format, and to provide tools that allow data integrators to incrementally
identify semantic relationships between the different data sources and incrementally
improve the global schema. Such an approach is termed ‘pay-as-you-go’ (Sarma and
et al. 2008), since the integration effort can be committed incrementally as time and
resources allow.

Heterogeneous data integration was identified in Hurtado et al. (2008) as a
potential Use Case for flexible query processing over graph data. To illustrate,
the In Silico Proteome Integrated Data Environment Resource (ISPIDER) project
developed an integrated platform bringing together three independently developed
proteomics data sources, providing an integrated global schema and support for
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distributed queries posed over this (Siepen et al. 2008).4 The development of
the global schema took many months. An alternative approach would have been
to adopt a ‘pay-as-you-go’ integration approach, refining the global ontology
by incrementally identifying common concepts between the data sources and
integrating these using additional superclasses and superproperties.

For example, the initial ontology may include (amongst others) the following
classes arising from three source databases, DB1,DB2,DB3:

• Peptide1, Protein1, Peptide2, Protein2, Peptide3, Protein3

For simplicity here, we assume that common concepts are commonly named, and
we identify the data source relating to a concept by its subscript. Likewise, it may
include (amongst others) the following properties:

• PepSeqi , 1 ≤ i ≤ 3, each with domain Peptidei and range Literal
• Alignsi , 1 ≤ i ≤ 3, each with domain Peptidei and range Proteini

• AccessNoi , 1 ≤ i ≤ 3, each with domain Proteini and range Literal

(In proteomics, proteins consist of several peptides, each peptide comprising a
sequence of amino acids; hence the properties PepSeqi above, in which the
amino acid sequence is represented as a Literal. In proteomics experiments, several
peptides may result from a protein identification process and each peptide aligns
against a set of proteins; hence the properties Alignsi above. Each protein is
characterised by an Accession Number, c.f. the properties AccessNoi above, a
textual description, its predicted mass, the organism in which it is found, etc.)

A data integrator may observe some semantic alignments between the above
classes and properties and may add the following superclasses and superproperties
to the ontology in order to semantically integrate the underlying data extents from
the three databases:

• Superclass Peptide of classes Peptidei , 1 ≤ i ≤ 3
• Superclass Protein of classes Proteini , 1 ≤ i ≤ 3
• SuperpropertyPepSeq of propertiesPepSeqi , 1 ≤ i ≤ 3, with domainPeptide

and range Literal
• Superproperty Aligns of properties Alignsi , 1 ≤ i ≤ 3, with domain Peptide

and range Protein

• Superproperty AccessNo of properties AccessNoi , 1 ≤ i ≤ 3, with domain
Protein and range Literal.

A fragment of this global ontology is shown in Fig. 4.1 (omitting the AccessNoi

and AccessNo properties, and the domain and range information of PepSeq and
Aligns).

4The example presented here is a simplification of one given in Hurtado et al. (2008).



102 A. Poulovassilis

Literal 

Aligns PepSeq 

sc sc
sc sc

sc
sc

sp
sp
sp sp

sp
sp

dom 
dom 

dom dom 
dom dom range range range

range range
range 

range
Literal 

dom 

PepSeq1 Aligns1 PepSeq2 Aligns2 
PepSeq3 Aligns3 

Pep�de1 Pept ide3 Protein2 Protein3 

Pept  ide 
 Protein 

Protein1 

dom 

Pep�de2 

range

Fig. 4.1 Example ontology

Consider now the following query posed over the global ontology by a user who
is only familiar with DB1:

?Y, ?Z <- RELAX(?X,PepSeq1,"ATLITFLCDR"),
RELAX(?X,Aligns1,?Y),
RELAX(?Y,AccessNo1,?Z)

The syntax used here is that of a conjunctive query comprising one or more triple
patterns on its right-hand side (RHS)—see Sect. 4.1.2, and zero or more variables
on its left-hand side (LHS), which must also appear in the RHS. The entire RHS
comprises a graph pattern—see Sect. 4.1.2. Variables are distinguished by an initial
?. In its non-relaxed form, this query will return the identifiers and accession
numbers of proteins identified in DB1 through experiments yielding the peptide
sequence ‘ATLITFLCDR’.

A first level of relaxation of all three triple patterns in the above query results in
the following query:

?Y, ?Z <- RELAX(?X,PepSeq,"ATLITFLCDR"),
RELAX(?X,Aligns,?Y),
RELAX(?Y,AccessNo,?Z)

Evaluation of this query will expand the result set to include similar results also
from DB2 and DB3, without the user needing to have detailed knowledge of their
schemas.

In contrast to conventional data integration approaches, this kind of incremental
integration coupled with flexible querying requires less upfront integration effort,
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Fig. 4.2 RDFS inference
rules

allows a more exploratory approach to query answering, and does not require the
user to have comprehensive knowledge of the entire global schema.

4.1.2 Theoretical Foundations of Query Relaxation

Hurtado et al. (2008) studied query relaxation in the setting of the RDF/S data model
and showed that query relaxation can be naturally formalised using RDFS entail-
ment. The entailment was characterised by the derivation rules given in Fig. 4.2,
grounded in the semantics developed in Gutierrez et al. (2004) and Hayes (2004),
and encompassing a fragment of the overall set of RDFS entailment rules known as
ρDF (Munoz et al. 2007).

In the setting of Hurtado et al. (2008), an ontology K is a directed graph
(NK,EK) where each node in NK represents either a class or a property, so NK =
classNodes (NK)∪propertyNodes(NK); and each edge in EK is labelled with a
symbol from the set {sc, sp, dom, range}. These edge labels encompass a fragment
of the RDFS vocabulary: rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain,
rdfs:range, respectively.

In the accompanying data graph G = (N,E), each node in N represents an
instance or a class and each edge in E a property. The intersection of N and
NK is contained in classNodes(NK). The predicate type, representing the RDF
vocabulary rdf:type, can be used in E to connect an instance of a class to a node
representing that class.

Pairwise disjoint sets U and L of URIs and literals are assumed, respectively.
Also assumed is an infinite set V of variables, disjoint fromU and L. We abbreviate
any union of the sets U , L and V by concatenating their names, e.g. UL = U ∪ L.

Nodes in N are labelled with constants fromUL (blank nodes are not considered
in this work, and in any case their use is discouraged for Linked Data). Edges in E

are labelled either with type or a with symbol drawn from a finite alphabet Σ such
that type /∈ Σ and Σ ∪ {type} ⊂ U .

An RDF triple is a tuple 〈s, p, o〉 ∈ U × U × (U ∪ L), where s is the subject,
p the predicate and o the object of the triple. A triple pattern is a tuple 〈x, p, y〉 ∈
UV ×UV ×UV L. A graph pattern is a set of triple patterns. Given a triple pattern
t (graph pattern P ), vars(t) (vars(P )) is the set of variables occurring in it.

An RDF/S graph I = (NI ,EI ) is the union of an ontology graphK = (NK,EK)

and a data graph G = (N,E), i.e. NI = NK ∪ N and EI = EK ∪ E.
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Fig. 4.3 Additional rules for
computing the extended
reduction of an ontology

An RDF/S graph I1 entails an RDF/S graph I2, denoted I1 |�RDFS I2, if I2 can
be derived by applying the rules in Fig. 4.2 iteratively to I1.

The closure of an RDF/S graph I under these rules is denoted by cl(I ). Given
an RDF/S graph I , query evaluation takes place on the graph given by restricting
cl(I ) to nodes in N ∪ classNodes(NK) and edges with labels in Σ ∪ {type} ∪
propertyNodes(NK). Each such edge is viewed as an RDF triple for the purposes
of query evaluation.

In order to apply relaxation to queries, the subgraphs of the ontology K induced
by edges labelled sc and sp need to be acyclic, so that an unambiguous cost can be
assigned to a relaxed query. Moreover, K must be equal to its extended reduction,
extRed(K), which is computed as follows:

(a) Compute cl(K)

(b) Apply the rules of Fig. 4.3 in reverse until no more rules can be applied
(applying a rule in reverse means deleting a triple deducible by the rule)

(c) Apply rules 1 and 3 of Fig. 4.2 in reverse until no more rules can be applied

Requiring that K = extRed(K) allows direct relaxations to be applied to queries
(see below), which correspond to the ‘smallest’ possible relaxation steps. This in
turn allows an unambiguous cost to be associated with relaxed queries, so that
query answers can be returned to users incrementally in order of increasing cost
(see Hurtado et al. (2008) for a detailed discussion).

Following the terminology of Hurtado et al. (2008), a triple pattern 〈x, p, y〉
directly relaxes to a triple pattern 〈x ′, p′, y ′〉 with respect to an ontology
K = extRed(K), denoted 〈x, p, y〉 ≺ 〈x ′, p′, y ′〉, if vars(〈x, p, y〉) =
vars(〈x ′, p′, y ′〉) and 〈x ′, p′, y ′〉 is derived from 〈x, p, y〉 by applying some rule i,
1 ≤ i ≤ 6, from Fig. 4.2.

A triple pattern 〈x, p, y〉 relaxes to a triple pattern 〈x ′, p′, y ′〉, denoted
〈x, p, y〉 ≤ 〈x ′, p′, y ′〉, if there is a sequence of direct relaxations that derives
〈x ′, p′, y ′〉 from 〈x, p, y〉. The relaxation cost of deriving 〈x ′, p′, y ′〉 from 〈x, p, y〉
is the minimum cost of applying such a sequence of direct relaxations.

An essential aspect of this approach, which distinguishes it from earlier work on
query relaxation, is that the answers to a query are ranked based on how ‘closely’
they satisfy the query. The notion of ranking is based on a structure called the
relaxation graph, in which relaxed versions of the original query are ordered from
less to more general.

To illustrate, Fig. 4.4 shows the relaxation graphs of two triple patterns:

(?X,Aligns1,?Y) and (?X,PepSeq1,"ATLITFLCDR")
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Fig. 4.4 Triple pattern relaxation graphs
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Fig. 4.5 Graph pattern relaxation graph

assuming that K is the ontology of Fig. 4.1. The edges of the relaxation graph are
labelled with the rule number from Fig. 4.2 which has been applied to obtain a
relaxed triple pattern from one directly below it.

Triple pattern relaxation is generalised to graph pattern relaxation using the
notion of the direct product of partial orders. The direct product of n partial orders
α1, α2, . . . αn, denoted α1 ⊗ α2 ⊗ . . . ⊗ αn, is another partial order α such that
(a1, . . . an) α (b1, . . . bn) if and only if ai αi bi for all 1 ≤ i ≤ n.

Consider graph patterns consisting of n triple patterns, t1, . . . , tn. The graph
pattern relaxation relation ≤n is defined as ≤ ⊗ ≤ . . .⊗ ≤ (n times). The direct
graph pattern relaxation relation ≺n is the reflexive and transitive reduction of ≤n.
The relaxation graph of a graph pattern is the directed acyclic graph induced by ≺n.

As an example, consider the graph pattern

(?X,Aligns1,?Y),(?X,PepSeq1,"ATLITFLCDR")

Figure 4.4 shows the relaxation graphs of its two triple patterns and Fig. 4.5 shows
their direct product.
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Fig. 4.6 Algorithm to compute the relaxed answer of a query

Algorithm RelaxEval in Fig. 4.6 (from Hurtado et al. 2008) incrementally
computes the relaxed answer to a query Q and returns the answers in ranked
order, where maxLevel is the maximum number of relaxations desired for the
evaluation of Q; body(Q) denotes the graph pattern in the RHS of Q; and the
set deltaFind(t ′i , I ) consists of the triples 〈s, p, o〉 ∈ I such that t ′i matches
〈s, p, o〉 and no triple pattern directly below t ′i in the relaxation graph of ti matches
〈s, p, o〉. This algorithm assumes that all direct relaxations of triple patterns have
the same cost. We will see later two methods that are able to handle different costs.

Another class of relaxations is also discussed in Hurtado et al. (2008), consisting
of relaxations that can be entailed without an ontology, such as dropping triple
patterns, replacing constants with variables and breaking join dependencies. We
refer the reader to that paper for details of these.

4.2 Beyond Conjunctive Queries: Regular Path Queries

Regular path queries have been proposed by several researchers as a means of
assisting users in querying complex or irregular graph data by finding paths through
the data graph that match a given regular expression over edge labels (Cruz et al.
1987; Mendelzon and Wood 1989, 1995; Fernandez and Suciu 1998).

Consider the same simple data model as introduced above, comprising a directed
graph G = (N,E), where each node in N is labelled with a constant and each
edge in E is labelled with a symbol drawn from a finite alphabet Σ ∪ {type}. Edges
can be traversed both from their source to their target node and in reverse, from
their target to their source node. The inverse of an edge label l, denoted by l−,
is used to specify the reverse traversal of an edge. Let Σ− = {l− | l ∈ Σ}. If
l ∈ Σ ∪ Σ− ∪ {type, type−}, we use l− to mean the inverse of l, that is, if l is a for
some a ∈ Σ ∪ {type}, then l− is a−, while if l is a− for some a ∈ Σ ∪ {type}, then
l− is a.
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A regular path query (RPQ) Q has the form

vars ← (X,R, Y ) (4.1)

whereX and Y are constants or variables,R is a regular expression overΣ ∪{type},
and vars is the subset of {X,Y } that are variables. A regular expression R over
Σ ∪ {type} is defined as follows:

R := ε | a | a− | _ | (R1 · R2) | (R1|R2) | R∗ | R+

where ε is the empty string, a is any symbol in Σ ∪ {type}, ‘_’ denotes the
disjunction of all constants in Σ ∪ {type}, and the operators have their usual
meaning.

A semipath (Calvanese et al. 2000) p in G = (N,E) from v ∈ N to w ∈ N is
a sequence of the form (v1, l1, v2, l2, v3, . . . , vn, ln, vn+1), where n ≥ 0, v1 = v,

vn+1 = w and for each vi, li , vi+1 either vi
li→ vi+1 ∈ E or vi+1

l−i→ vi ∈ E. A
semipath p conforms to a regular expression R if l1 · · · ln ∈ L(R), the language
denoted by R.

Given an RPQ Q and graph G, let θ be a matching from {X,Y } to nodes of G

that maps each constant to itself and such that there is a semipath from θ(X) to θ(Y )

whose concatenation of edge labels is in L(R). The answer of Q on G is the set of
tuples θ(vars) for all such matchings θ .

A conjunctive regular path query (CRPQ) Q consisting of n conjuncts has the
form

Z1, . . . , Zm ← (X1, R1, Y1), . . . , (Xn,Rn, Yn) (4.2)

in which each Xi and Yi , 1 ≤ i ≤ n, is a variable or constant, each Zi , 1 ≤ i ≤ m,
is a variable appearing in the body of Q, and each Ri , 1 ≤ i ≤ n, is a regular
expression over Σ ∪ {type}.

Given a CRPQ Q and graph G, let θ be a matching from variables and constants
of Q to nodes of G such that (i) each constant is mapped to itself, and (ii) there is a
semipath from θ(Xi) to θ(Yi) that conforms to Ri , for all 1 ≤ i ≤ n. The answer of
Q on G is the set of m-tuples θ(Z1, . . . , Zm) for all such matchings θ .

The answer to a CRPQ Q on a graph G can be computed as follows. First find,
for each 1 ≤ i ≤ n, a binary relation ri over the scheme (Xi, Yi) such that tuple
(v,w) ∈ ri if and only if there is a semipath from node v to node w in G that
conforms to Ri , v = Xi if Xi is a constant, and w = Yi if Yi is a constant. Then
form the natural join of the relations r1, . . . , rn and project over Z1 to Zm.
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Los Angeles 

Fig. 4.7 Part of a transport network

4.2.1 Example: Transport Networks

Consider the graph in Fig. 4.7 showing information about a transport network.
The nodes of the graph are city identifiers and city names. The edges show direct
transport links from one city to another.5

Suppose we want to find the cities from which we can travel to city u5 using
only airplanes as well as to city u6 using only trains or buses. This can be expressed
by the following CRPQ query Q:

?X <- (?X, airplane+, u5),
(?X, (train|bus)+, u6)

When Q is evaluated on G, the bindings for ?X generated by the first conjunct are
u1, u4, while those for the second conjunct are u1, u2, u4. Hence the answer is
u1, u4.

Suppose now that a user who has little knowledge of the structure of the data
wishes to find all cities reachable from Santiago by direct flights and poses the
following query which makes use of the query approximation operator APPROX
that we will discuss in more detail in Sect. 4.2.2:

?X <- APPROX (Santiago,airplane,?X)

The exact form of this query returns no answers because it does not match the struc-
ture of the graph. Inserting name after airplane, to obtain the regular expression
airplane. name (at a cost of c1, say) still returns no answers. Inserting name
before airplane, to obtain the regular expression name.airplane.name (at
an additional cost of c1) again returns no answers. Finally, inverting the first name

5This example is adapted from one in Hurtado et al. (2009b).
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label, to obtain name-.airplane.name (at an additional cost of c2, say) returns
as answers Temuco and Chillan, at an overall cost of 2c1 + c2.

Suppose now a user formulates the following query to find cities reachable from
Santiago by train, directly or indirectly. The user is also potentially interested in
routes combining train and bus, and elects to allow replacement of train by bus
in their query, as well as insertion of train and bus:

?X <- APPROX (Santiago,name-.train+.name,?X)

The exact answers to this query are Talca and Chillan. Replacing
one occurrence of train by bus (at a cost of c3, say), to obtain the
regular expression name-.bus.train*.name, returns Valparaiso at
cost c3. Inserting train after name- (at a cost of c4, say), to obtain
name-.train.bus.train*.name, returns no more answers. Inserting again
train after name- (at a cost of c4), to obtain name-.train.train.bus.
train*.name, returns answers Concep- cion and Los Angeles, at a cost
of c3 + 2c4. Inserting bus before train* (at a cost of c5, say), to obtain
name-.train.train.bus.bus.train*.name returns answer Temuco,
at a cost of c3 + 2c4 + c5.

4.2.2 Approximate Matching of CRPQs

We have seen above examples of circumstances where approximate matching of
regular path queries and ranking of query results in terms of how closely they
match the original query can help the user find relevant information from unfamiliar,
irregular graph data. The work in Hurtado et al. (2009b) discusses how such
approximate answers can be computed for CRPQ queries, based on edit operations
such as insertions, deletions, inversions, substitutions and transpositions of edge
labels being applied to a semipath. A user can specify which of these edit operations
should be applied by the system when answering a particular query, and the cost to
be assigned when applying each operation, more formally presented as follows.

The edit distance from a semipath p to a semipath q is the minimum cost of
any sequence of edit operations which transforms the sequence of edge labels of p

to the sequence of edge labels of q . The edit distance of a semipath p to a regular
expressionR, edist(p,R), is the minimum edit distance from p to any semipath that
conforms to R.

Given a graph G, an RPQ Q of the form (4.1) and a matching θ from variables
and constants of Q to nodes in G such that any constant is mapped to itself, the
tuple θ(vars) has edit distance edist(p,R) to Q if p is a semipath from θ(X) to
θ(Y ) in G having the minimum edit distance to R of any semipath from θ(X) to
θ(Y ). (Note that if p conforms to R, then θ(vars) has edit distance 0 to Q.)

The approximate top-k answer of Q on G is the list of k tuples θ(vars) with
minimum edit distance to Q, ranked in order of increasing edit distance to Q.

Generalising to CRPQs, given a graph G, a CRPQ Q of the form (4.2), and a
matching θ from variables and constants of Q to nodes in G such that any constant
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is mapped to itself, the tuple θ(Z1, . . . , Zm) has edit distance edist(p1, R1) + · · · +
edist(pn,Rn) to Q if each pi is a semipath from θ(Xi) to θ(Yi) in G having the
minimum edit distance to Ri of any semipath from θ(Xi) to θ(Yi). The approximate
top-k answer of Q on G is the list of k distinct tuples θ(Z1, . . . , Zm) with minimum
edit distance to Q, ranked in order of increasing edit distance to Q.

Since the answers for single conjuncts are ordered by non-decreasing edit
distance, pipelined execution of any rank-join operator (see Finger and Polyzotis
2009) can be used to output the answers to a CRPQ Q in order of non-decreasing
edit distance.

There are a fixed number of variables in the head of a CRPQ query, so if its
conjuncts are acyclic then the evaluation of the approximate top-k answer can be
accomplished in polynomial time (see Gottlob et al. 2001; Grahne and Thomo 2001;
Hurtado et al. 2009b).

4.3 Combining Approximation and Relaxation in CRPQs

The ideas from the previous two sections can be combined to allow both relaxation
and approximation of CRPQs, providing their combined flexibility within one query
processing framework. This possibility was first explored in Poulovassilis andWood
(2010).

4.3.1 Example: Educational Networks

The L4All system (de Freitas et al. 2008) was developed to support learners in a
network of Further and Higher Education institutions in the London region. The
system allows users to create and maintain a chronological record of their learning,
work and personal episodes—their ‘timelines’—with the aim of supporting learners
in exploring learning and career opportunities and in planning and reflecting on their
learning. Figures 4.8 and 4.9 illustrate a fragment of the data and metadata relating
to two users’ timelines. The episodes within a timeline have a start and an end date
associated with them (for simplicity these are not shown in the figure). Episodes
are ordered by their start date—as indicated by edges labelled next. There are
several types of episode, e.g. University and Work episodes. Associated with
each type of episode are several properties—the figures show just two of these,
qualif[ication] and job.6

Suppose that Mary is studying for a BA in English and wishes to find out
what possible future career choices there are for her. Timelines may have edges
labelled prereq between episodes, indicating that the timeline’s owner believes

6This example is adapted from one in Poulovassilis and Wood (2010).
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Fig. 4.8 Fragment of data and metadata from Anne’s timeline

that undertaking an earlier episode was necessary in order for them to be able to
proceed to or achieve a later episode. So Mary might pose this CRPQ query, Q1:

(?E2,?P)<-(?E1,type,University),
(?E1,qualif.type,EnglishStudies),
(?E1,prereq+,?E2),
(?E2,type,Work),
(?E2,job.type,?P)

However, this will return no results even though Anne’s timeline in Fig. 4.8 contains
information that would be relevant to Mary. This is because, in practice, users may
or may not create prereq metadata relating to their timelines.

If Mary chooses to allow replacement of the edge label prereq in her query by
the label next (at an edit cost of 1, say), she can submit a variant of Q1:

(?E2,?P)<-(?E1,type,University),
(?E1,qualif.type,EnglishStudies),
APPROX (?E1,prereq+,?E2),
(?E2,type,Work),
(?E2,job.type,?P)
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Fig. 4.9 Fragment of data and metadata from Bob’s timeline

The regular expression prereq+ can be approximated by the regular expression
next.prereq* at edit distance 1 from prereq+, returning the answer

(ep22,AirTravelAssistant)

Marymay judge this not to be relevant and may seek further results, at a further level
of approximation. The regular expression next.prereq* can be approximated
by next.next.prereq*, at edit distance 2 from prereq+, returning the
answers

(ep23,Journalist), (ep24,AssistantEditor)

Mary may judge these as being relevant, and she can then request the system to
return the whole of Anne’s timeline for her to explore further.

The previous example took as input a starting timeline episode and explored
possible future work choices. The next example additionally specifies an end goal
and explores how someone might reach this from a given starting point.

Suppose now Mary knows she wants to become an Assistant Editor and would
like to find out how she might achieve this, given that she’s done an English degree.
Mary might pose this query, Q2:
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(?E2,?P)<-(?E1,type,University),
(?E1,qualif.type,EnglishStudies),
APPROX(?E1,prereq+,?E2),(?E2,job.type,?P)
APPROX(?E2,prereq+,?Goal),(?Goal,type,Work),
(?Goal,job.type,AssistantEditor)

At edit distance 0 and 1 there are no results fromAnne’s timeline. At edit distance
2, the answers

(ep22,AirTravelAssistant), (ep23,Journalist)

are returned, the second of which gives Mary potentially useful information.
Suppose Mary wants to know what other jobs, similar to an Assistant Editor,

might be open to her. There are many categories of jobs classified under Media
Professional but none of these will be matched by her query Q2 above. She
can pose instead query Q3:

(?E2,?P)<-(?E1,type,University),
(?E1,qualif.type,EnglishStudies),
APPROX(?E1,prereq+,?E2),(?E2,job.type,?P)
APPROX(?E2,prereq+,?Goal),(?Goal,type,Work),
RELAX(?Goal,job.type,AssistantEditor) ,

which allows the system to relax Assistant Editor to its parent class
Editor, matching jobs such as Assistant Editor, Associate Editor
etc., as well as in parallel approximating the two instances of prereq+. Query
results will be returned in increasing overall cost.

As a further extension, suppose another user, Joe, wants to know what jobs
similar to being an Assistant Editor might be open to someone who has studied
English or a similar subject at university. Joe may pose query Q4 which is the same
as Q3 above but with RELAX in front of the second conjunct:

(?E2,?P)<-(?E1,type,University),
RELAX(?E1,qualif.type,EnglishStudies),
APPROX(?E1,prereq+,?E2),(?E2,job.type,?P)
APPROX(?E2,prereq+,?Goal),(?Goal,type,Work),
RELAX(?Goal,job.type,AssistantEditor)

Suppose Joe sets the cost of relaxing a class to its parent class to 2 and replacing
the label prereq by the label next to 1. Then, the answers produced for query
Q4 from the graphs in Figs. 4.8 and 4.9 are shown in the table below. The first
seven columns refer to the answers produced for each of the query conjuncts. For
brevity, we do not show the full answer tuples, only the variable instantiations for
each conjunct. We also show the relaxation distance (cost), rd , for the second and
seventh conjucts, and the edit distance, ed , for the third and fifth conjuncts. In the
table, ‘Air T.A.’ stands for Air Travel Assistant, ‘Assist. Ed.’ for Assistant Editor
and ‘Assoc. Ed.’ for Associate Editor. The final column shows the overall query
answers and their overall distance (d) (which is the sum of the rd and ed values
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from the second, third, fifth and seventh conjuncts). For greater clarity, the tuples
contributing to the first two answers are italicised and those contributing to the third
answer are shown in bold.

?E1 ?E1,rd ?E1,?E2,ed ?E2,?P ?E2,?Goal,ed ?Goal ?Goal,rd ?E2,?P,d

ep21 ep21,0 ep23,ep24,0 ep22,Air T.A. ep23,ep24,0 ep22 e24,0 ep23,Journalist,2

ep31 ep31,4 ep21,ep22,1 ep23,Journalist ep21,ep22,1 ep23 e33,2 ep22,Air T.A.,6

ep22,ep23,1 ep24,Assist.Ed. ep22,ep23,1 ep24 e23,4 ep32,Writer,8
ep31,ep32,1 ep32,Writer ep31,ep32,1 ep32 e32,4

ep32,ep33,1 ep33,Assoc.Ed. ep32,ep33,1 ep33 e22,6

ep21,ep23,2 ep21,ep23,2

ep21,ep24,2 ep21,ep24,2

ep31,ep33,2 ep31,ep33,2

A prototype implementation extending the original L4All system with this
flexible querying functionality is described in Poulovassilis et al. (2012). A GUI
is provided that allows the user to incrementally build up their query through a
forms-based interface, including specifying their preferences for approximation or
relaxation to be applied to each subquery. Drop-down menus are used for selecting
classes, properties and regular expressions. The CRPQ query is automatically, and
incrementally, generated by the system from the user’s interactions and preferences.
Visualisations are available that allow the user to view at a glance the subqueries
they have constructed so far. Query results are displayed one screenful at a time, in
increasing distance from the non-approximated, non-relaxed version of the user’s
query. For each result, an avatar representing the timeline’s owner is displayed, as
well as their name, the last episode in their timeline matching the user’s query, the
‘distance’ at which this result has been retrieved, and a summary of the timeline’s
owner and the contents of their timeline. The aim of this summary information is to
allow the user to decide if this timeline is relevant for their needs and if they wish
to explore it in more detail. These functionalities were evaluated by two Lifelong
Learning expert practitioners who gave positive feedback regarding the flexibility
of the querying supported and the fact that there is a clear causality between a user’s
information requirements, as reflected in the query they have constructed, and the
results returned by the system.

4.3.2 Automaton-Based Implementation Approach

We now discuss an automaton-based approach to evaluating regular path queries
supporting both query approximation and query relaxation. The description is based
on that from Poulovassilis and Wood (2010), with some modifications. We refer
the reader to Poulovassilis and Wood (2010) and Poulovassilis et al. (2016) for full
details.



4 Applications of Flexible Querying to Graph Data 115

4.3.2.1 Computing Approximate Answers

Approximate matching of an RPQ query Q with respect to a graph G is achieved
by applying edit operations to sequences in L(R). Let q be a sequence in L(R) and
l be a label in Σ ∪ Σ− ∪ {type,type−}. We assume support for the following
edit operations, each at some non-negative cost: insertion of l into q , deletion of l

from q , substitution of some label other than l by l in q . The cost of substitution
is assumed to be less than the combined cost of insertion and deletion (otherwise
the substitution operation would be redundant). The inversion operation is achieved
through substitution, since this allows some label a in q to be substituted by a−.
The transposition operation can be achieved by applying a substitution operation to
each of the two labels to be transposed.

Given an RPQ Q with body (X,R, Y ) and a graphG = (N,E), the approximate
answer of Q on G can be computed as follows (the italicised terms are explained in
more detail below):

1. A weighted NFA, MR , recognising L(R) is constructed from R.
2. A query automaton, MQ, is constructed from Q.
3. An approximate automaton, AQ, is constructed from MQ.
4. The product automaton,H , of AQ and G is constructed.
5. One or more shortest path traversals are performed on H in order to find the

approximate answer of Q on G.

Definition 4.1 A weighted non-deterministic finite state automaton (weighted
NFA) MR recognisingL(R) is the same as a normal NFA except that each transition
and each final state has a weight associated with it (all of which are initially zero). It
can be constructed using Thompson’s construction (Aho et al. 1974), which makes
use of ε-transitions.

Formally, MR = (S,Σ ∪ Σ− ∪ {type,type−}, δ, s0, Sf , ξ), where: S is the
set of states; Σ ∪ {type} is the alphabet of edge labels in G; δ ⊆ S × Σ ∪ Σ− ∪
{type,type−} × N × S is the transition relation; s0 ∈ S is the start state; Sf is
the set of final states, initially only consisting of sf ∈ S; and ξ is the final weight
function mapping each state in Sf to a non-negative number (initially, this will be
zero for sf ).

The query automaton MQ for Q is MR with additional annotations on the
initial and final states: if X (resp. Y ) is a constant c, then s0 (sf ) is annotated
with c; otherwise, s0 (sf ) is annotated with the symbol ∗ which matches any
constant.

Definition 4.2 The approximate automaton AQ for Q is constructed by first
constructing an automaton AR from MR . Formally, AR = (S,Σ ∪ Σ− ∪
{type,type−}, δ, s0, Sf , ξ), with S, δ, s0 and Sf initially defined as in Defi-
nition 4.1. AR is then transformed as follows:

• For each transition (s, a, 0, t) ∈ δ (s �= t and a ∈ Σ ∪ Σ− ∪ {type,type−}),
the transition (s, ε, cd , t) is added to δ, where cd is the cost of deletion.
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• All ε-transitions are removed from δ using the method of Droste et al. (2009). The
method first computes the ε-closure, which is the set of pairs of states connected
by a sequence of ε-transitions along with the minimum summed weight for each
such pair. Then for each pair (s, t) with weight w in the ε-closure and each
transition (t, b, 0, u) ∈ δ (b �= ε), a new transition (s, b,w, u) is added to δ.
If t ∈ Sf , then s is added to Sf with ξ [s] = w if ξ [s] was previously undefined,
or with ξ [s] set to the minimum of ξ [s] and w otherwise.

• For each transition (s, a,w, t) ∈ δ and label b ∈ Σ ∪ Σ− ∪ {type,type−}
(b �= a), the transition (s, b,w + cs, t) is added to δ, where cs is the cost of
substitution.

• For each state s ∈ S and label a ∈ Σ ∪ Σ− ∪ {type,type−}, the transition
(s, a, ci , s) is added to δ, where ci is the cost of insertion.

The approximate automaton AQ for Q is formed from AR by annotating the
initial and final states in AR with the annotations from the initial and final states,
respectively, in MQ.

Definition 4.3 Let AQ = (S,Σ ∪ Σ− ∪ {type,type−}, δ, s0, Sf , ξ) be an
approximate automaton and G = (N,E) be a graph. G can be viewed as an
automaton in which each node is both an initial and a final state. The product
automaton (Mendelzon and Wood 1989), H , of AQ and G is the weighted
automaton (T ,Σ ∪ Σ− ∪ {type,type−}, σ, I, F, ξ), where I ⊆ T is a set of
initial states and F ⊆ T is a set of final states. The set of states T is given by
{(s, n) | s ∈ S ∧ n ∈ N}. The set of transitions σ consists of transitions of the
form

• ((s, n), a, c, (s′, n′)) if (s, a, c, s′) ∈ δ and (n, a, n′) ∈ E

• ((s, n), a−, c, (s′, n′)) if (s, a−, c, s′) ∈ δ and (n′, a, n) ∈ E

The set of initial states I is given by {(s0, n) | n ∈ N}. The set of final states F is
given by {(sf , n) | (sf , n) ∈ T ∧ sf ∈ Sf }. ξ is the final weight function mapping
each state s ∈ F to a non-negative number. The annotations on initial and final states
in H are carried over from the corresponding initial and final states in AQ.

Having formed the product automaton H , we can now compute the approximate
answer of Q on G:

(i) Suppose first that X is a constant v. If v /∈ N , then the answer is empty. If
v ∈ N , we perform a shortest path traversal of H starting from the initial
state (s0, v). Whenever we reach a final state (sf , n) in H we output n,
provided n matches the annotation on (sf , n) (recall that if Y is a constant
the annotation on sf will be that constant, and if Y is a variable the annotation
will be the symbol ∗). Node n matches the annotation if the annotation is n

or ∗.
(ii) Now suppose X is a variable. In this case, we again perform a shortest path

traversal of H , outputting nodes as above, but this time starting from state
(s0, v) for every node v ∈ N .



4 Applications of Flexible Querying to Graph Data 117

Two optimisations to this naive traversal to avoid starting at every node
of G are described in Selmer et al. (2015). Firstly, if Y is a constant, then
(X,R, Y ) is transformed to (Y,R−,X), where R− is the reversal of R, thus
reverting to case (i) above. Otherwise (i.e. both X and Y are variables), we
examine the labels on the transitions outgoing from the initial state of AQ,
s0, we retrieve from G the set of edges (v, l, w) matching these labels, and
we perform the shortest path traversal starting from state (s0, v) for each such
node v.

The above evaluation can be accomplished “on-demand” by incrementally con-
structing the edges of the product automaton H as required, rather than computing
the entire graph H , as follows. Three collections are maintained (all initially
empty):

• A set visitedR containing tuples of the form (v, n, s), representing the fact
that node n of G was visited in state s of AQ having started the traversal from
node v.

• A priority queue queueR containing tuples of the form (v, n, s, d, f ), ordered
by non-decreasing values of d , where d is the edit distance associated with
visiting node n in state s having started from node v, and f is a flag denoting
whether the tuple is ‘final’ or ‘non-final’.

• A list answersR containing tuples of the form (v, n, d), where d is the smallest
edit distance of this answer tuple to Q, ordered by non-decreasing values of d .
This list is used to avoid returning an answer (v, n, d ′) if there is already an
answer (v, n, d) with d ≤ d ′.

The evaluation of Q begins by adding to queueR the initial tuple or tuples
(v, v, s0, 0, f ) as detailed in (i) and (ii) above.

Procedure getNext is then called to return the next query answer, in order
of non-decreasing edit distance from Q. getNext repeatedly dequeues the first
tuple of queueR , (v, n, s, d, f ), adding (v, n, s) to visitedR if the tuple is
not a final one, until queueR is empty. If (v, n, s, d, f ) is a final tuple and the
answer (v, n, d ′) has not been generated before for some d ′, the triple (v, n, d)

is returned after being added to answersR . If (v, n, s, d, f ) is not final tuple,

we enqueue (v,m, s′, d + d ′, f )) for each transition
d ′→ (s′,m) returned by

Succ(s, n) such that (v,m, s′) �∈ visitedR . Here, the Succ function returns

all transitions
d ′→ (s′,m) such that there is an edge from (s, n) to (s′,m) in

H with cost d ′. Within Succ, the function nextStates(AQ, s, a) returns the
set of states in AQ that can be reached from state s on reading input a, along
with the cost of reaching each. If s is a final state, its annotation matches n, and
the answer (v, n, d ′) has not been generated before for some d ′, then we add
the final weight function for s to d , mark the tuple as final, and enqueue the
tuple.
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Procedure getNext(X,R, Y )
Input: query conjunct (X,R, Y )

Output: triple (v, n, d), where v and n are instantiations of X and Y

(1) while nonempty(queueR) do
(2) (v, n, s, d, f ) ← dequeue(queueR)

(3) if f �= ‘final’ then
(4) add (v, n, s) to visitedR

(5) foreach
d ′→ (s′,m) ∈ Succ(s, n) s.t. (v,m, s′) �∈ visitedR do

(6) enqueue(queueR, (v,m, s′, d + d ′, f ))

(7) if s is a final state and its annotation matches n and
� ∃d ′.(v, n, d ′) ∈ answersR then

(8) enqueue(queueR, (v, n, s, d + ξ [s],‘final’))
(9) else
(10) if � ∃d ′.(v, n, d ′) ∈ answersR then
(11) append (v, n, d) to answersR

(12) return (v, n, d)

(13) return null

Function Succ(s, n)
Input: state s of AQ and node n of G

Output: set of transitions which are successors of (s, n) in H

(1) W ← ∅
(2) for (n, a,m) ∈ G and (p, d) ∈ nextStates(AQ, s, a) do

(3) add the transition
d→ (p,m) to W

(4) return W

4.3.2.2 Computing Relaxed Answers

We now describe how the relaxed answer of an RPQ query Q with body (X,R, Y )

can be computed, starting from the weighted NFA MR that recognisesL(R). Below
we denote by ci the cost of applying rule i, i ∈ {2, 4, 5, 6}, from Fig. 4.2 (since
queries and data graphs cannot contain edges labelled sc and sp, rules 1 and 3 are
inapplicable to them, although of course they are used in computing the closure of
the RDF/S graph).

Given a weighted automatonMR = (S,Σ ∪{type}, δ, s0, Sf , ξ) fromwhich all
ε-transitions have been removed, and an ontology K such that K = extRed(K),
an automaton MK

R = (S′,Σ ∪ {type}, τ, S0, S′
f , ξ ′) is constructed as described

below. The set of states S′ includes the states in S as well as any new states defined
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below. S0 and S′
f are sets of initial and final states, respectively, with S0 including

the initial state s0 of MR , S′
f including the final states Sf of MR , and both possibly

including additional states as defined below. We obtain the relaxed automaton of Q

with respect to K , MK
Q , by annotating each state in S0 and S′

f either with a constant
or with ∗ depending on whether X and Y in Q are constants or variables. ξ ′ is the
final weight function mapping states in S′

f to a non-negative number. The transition
relation τ includes the transitions in δ as well as any transitions added to τ by the
rules defined below. The rules below are repeatedly applied until no further changes
to τ and S′ can be inferred. The process terminates because of the assumption that
the subgraphs of K induced by edges labelled sc and sp are acyclic.

• (rule 2(i)) For each transition (s, a, d, t) ∈ τ and triple (a, sp, b) ∈ K , add the
transition (s, b, d + c2, t) to τ .

• (rule 2(ii)) For each transition (s, a−, d, t) ∈ τ and triple (a, sp, b) ∈ K , add the
transition (s, b−, d + c2, t) to τ .

• (rule 4(i)) For each transition (s,type, d, t) ∈ τ such that t ∈ S′
f , t is annotated

with c, and (c, sc, c′) ∈ K , add to S′ a new final state t ′ annotated with c′ (unless
there is already such a final state); add a copy of all of t’s outgoing transitions to
t ′; and add the transition (s,type, d + c4, t

′) to τ .
• (rule 4(ii)) For each transition transition (s,type−, d, t) ∈ τ such that s ∈ S0, s

is annotated with c, and (c, sc, c′) ∈ K , add to S′ a new initial state s′ annotated
with c′ (unless there is already such an initial state); add a copy of all of s’s
incoming transitions to s′; and add the transition (s′,type−, d + c4, t) to τ .

• (rule 5(i)) For each transition (s, a, d, t) ∈ τ such that t ∈ S′
f and (a, dom, c) ∈

K , add to S′ a new final state t ′ annotated with c (unless there is already such a
final state); add a copy of all of t’s outgoing transitions to t ′; and add the transition
(s,type, d + c5, t

′) to τ .
• (rule 5(ii)) For each transition (s, a−, d, t) ∈ τ such that s ∈ S0 and

(a, dom, c) ∈ K , add to S′ a new initial state s′ annotated with c (unless there is
already such an initial state); add a copy of all of s’s incoming transitions to s′;
and add the transition (s′,type−, d + c5, t) to τ .

• (rule 6(i)) For each transition (s, a, d, t) ∈ τ such that s ∈ S0 and (a, range, c) ∈
K , add to S′ a new initial state s′ annotated with c (unless there is already such
an initial state); add a copy of all of s’s incoming transitions to s′; and add the
transition (s′,type−, d + c6, t) to τ .

• (rule 6(ii)) For each transition (s, a−, d, t) ∈ τ such that t ∈ S′
f and

(a, range, c) ∈ K , add to S′ a new final state t ′ annotated with c (unless there is
already such a final state); add a copy of all of t’s outgoing transitions to t ′; and
add the transition (s,type, d + c6, t

′) to τ .

Having constructed the relaxed automaton MK
Q , its product automaton with the

closure of the graph G is then constructed, and the computation proceeds similarly
to cases (i) and (ii) for computing approximate answers above, except that in (i) if
X is a class c then the shortest path traversal starts from all initial states (s0, c

′) such
that c′ is a superclass of c. The evaluation can again be accomplished ‘on-demand’
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Fig. 4.10 Omega system architecture

by incrementally constructing the edges of the product automaton. The same data
structures and algorithms as for computing approximate answers can be used, the
only difference being that the Succ function now uses the automaton MK

Q .

4.3.3 System Architecture and Performance

A prototype implementation of combined approximation and relaxation for CRPQs,
called Omega, is described in Selmer et al. (2015) and Selmer (2016). Sparksee7

is used as the data store. The development was undertaken using the Microsoft
.NET framework. The system comprises four components (see Fig. 4.10): (1) the
console layer, to which queries are submitted and which displays the incrementally
computed query results; (2) the system layer in which query plans are constructed,

7http://www.sparsity-technologies.com, accessed at 18/6/2015.

http://www.sparsity-technologies.com
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optimised and executed; (3) the Sparksee API, which provides an interface for
invoking data access methods to the data store; and (4) the data store itself.

Query evaluation commences when Query submitter invokes Query manager,
passing it a CRPQ query that is to be evaluated. Query manager invokes Query
Tree builder to construct the query tree, comprising inner nodes representing
join operators and leaf nodes representing individual query conjuncts. Query Tree
builder calls Conjunct builder to construct each leaf node of the query tree. Query
manager next passes the query tree to Query Tree initialiser, which traverses the
query tree in a top-down manner, beginning at the root. Whenever Query Tree
initialiser encounters a leaf node in the query tree, it invokes Conjunct initialiser
on that conjunct. This in turn invokes NFA builder to construct the automaton
corresponding to the conjunct’s regular expression. If the conjunct is approximated
or relaxed, then NFA manager is invoked to produce an approximate or relaxed
automaton, with the relevant edit or relaxation operators applied. For construction of
a relaxed automaton, NFA manager interacts with Ontology manager, which stores
the extended reduction of the ontology. Query manager then invokes Query Tree
evaluator. This first invokes the Query optimiser to transform the query tree into its
final form for execution (see below for a discussion of optimisation). Query Tree
evaluator then traverses the optimised query tree, starting from the leftmost leaf
node, and proceeding upwards. If the current query tree node is a leaf, the ranked
answers for the query conjunct are computed by invoking Conjunct evaluator. This
module constructs the weighted product automaton, H , of the conjunct’s automaton
with the (closure of) the data graph G. The construction of H is incremental, with
Conjunct evaluator invoking Sparksee manager to retrieve only those nodes and
edges of G that are required in order to compute the next batch of k results (for some
predefined value of k, default 100). If the current query tree node is a join, Query
Tree evaluator works in conjunction with Join manager to perform a ranked join of
the answers returned thus far by its two children nodes. The join algorithm used is
that described in Hurtado et al. (2009b), itself adapted from Ilyas et al. (2004). Once
the root of the query tree has been reached, the processing terminates and the list of
answers now holds the next k results, ranked by increasing distance.Query manager
passes this list to Result manager, which displays the results in ranked order.

For constructing the automata, use is made of several data structures provided by
the C5 Generic Collection library,8 all of which have an amortised time complexity
of O(1) for look-ups and updates:

• HashSet: a set of items (of some type T) implemented as a hash table with
linear chaining

• HashedLinkedList: A linked list of items (of some type T) with an
additional hash table to optimise item lookups within the list

• HashDictionary: A hash table of typed (key,value) pairs

8http://www.itu.dk/research/c5, accessed at 18/6/2015.

http://www.itu.dk/research/c5
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The HashDictionary data structure is used to implement the automata,
where the key is an integer representing a ‘from’ state s, and the value is a
HashedLinkedList of tuples representing the transitions outgoing from s. The
priority queue queueR is also implemented by a HashDictionary. The key is
an integer–boolean variable (where the integer portion represents a distance and the
boolean portion represents the final or non-final tuples at that distance). The value
associated with each key, implemented using a HashedLinkedList, comprises
tuples of the form (v, n, s, d, f ), ordered by increasing values of d , where d is the
distance associated with visiting node n in state s having started from node v, and f

is a flag denoting whether the tuple is ‘final’ or ‘non-final’. Distinguishing between
these two kinds of tuples in the priority queue allows the removal of ‘final’ tuples to
be prioritised, so that answers may be returned earlier.

Readers are referred to Selmer et al. (2015) and Selmer (2016) for further
details of the implementation and physical optimisations of the Omega system.
Those works also report on a performance study of regular path queries with
approximation and relaxation on several datasets sourced from the L4All system
and from the SIMPLETAX and CORE portions of YAGO (Kasneci et al. 2009).
The L4All data graphs used in the performance study were of size up to 220.8MB
for the closure of the data graph while the size of the closure of the YAGO data
graph was 1.76GB. Most of the APPROX and RELAX queries executed quickly
on all datasets. However, some of the APPROX queries on YAGO either failed
to terminate or did not complete within a reasonable amount of time. This was
mainly due to a large number of intermediate results being generated, due to the
Succ function returning a large number of transitions which are then converted
into tuples in GetNext and added to queueR. Some optimisations are explored in
Selmer et al. (2015) and Selmer (2016) for such queries, enabling several—but not
all—of the APPROX queries to execute faster. Future work includes making use of
disk-resident data structures for queueR to guarantee the termination of APPROX
queries with large intermediate results, and using knowledge of the graph structure
(e.g. to prioritise the evaluation of rarer paths within the graph) to reduce the amount
of unnecessary processing. Another promising direction is to identify labels that are
rare in the graph and to split the processing of a regular expression into smaller
fragments whose first or last label is a rare label, as described in Koschmieder and
Leser (2012) (but not for approximated/relaxed queries).

4.4 SPARQLAR : Extending SPARQL with Approximation
and Relaxation

Relaxation of triple patterns and approximate matching of regular RPQs can be
applied to the more pragmatic setting of the SPARQL 1.1 query language (Harris
and Seaborne 2013). SPARQL is the predominant language for querying RDF data
and, in the latest extension to SPARQL 1.1, it supports RPQs over the RDF graph
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(known as ‘property path queries’). However, it does not support notions of query
approximation and relaxation, other than the OPTIONAL operator. Users querying
complex RDF datasets may lack full knowledge of the structure of the data, its
irregularities, and the URIs used within it. The schemas and URIs used can also
evolve over time. This may make it difficult for users to formulate queries that
precisely express their information retrieval requirements. Calì et al. (2014) and
Frosini et al. (2017) investigate extensions to various fragments of SPARQL 1.1 to
allow query approximation and relaxation. These works show that the introduction
of the query approximation and query relaxation operators does not increase the
complexity class of the language fragments studied, and complexity bounds for
several fragments are derived. The extended language is called SPARQLAR .

4.4.1 Example: Flexible Querying of RDF/S Knowledge Bases

Example 4.1 Suppose the user wishes to find the geographic coordinates of the
‘Battle of Waterloo’ event by posing the following query on the YAGO knowledge
base,9 which is derived from multiple sources such as Wikipedia, WordNet and
GeoNames:

PREFIX yago:<http://yago-knowledge.org/resource/>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT * WHERE {

<http://yago-knowledge.org/resource/Battle_of_Waterloo>
yago:happenedIn/(yago:hasLongitude|yago:hasLatitude)
?x }

This query uses the property paths extension of SPARQL 1.1, including its
concatenation (/) and disjunction (|) operators. The above query does not return
any answers since YAGO does not store the geographic coordinates of Waterloo.

The user may therefore choose to approximate the triple pattern in their query:

SELECT * WHERE {
APPROX(<http://yago-knowledge.org/resource/Battle_of_Waterloo>
yago:happenedIn/(yago:hasLongitude|yago:hasLatitude)
?x ) }

YAGO does store directly the coordinates of the ‘Battle of Waterloo’ event. So
the system can apply an edit operation that deletes happenedIn from the property
path, and the resulting query

SELECT * WHERE {
<http://yago-knowledge.org/resource/Battle_of_Waterloo>
(yago:hasLongitude|yago:hasLatitude)
?x }

9http://www.mpi-inf.mpg.de/yago-naga/yago/.

http://www.mpi-inf.mpg.de/yago-naga/yago/
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returns the desired answers, showing both high precision and high recall:

"4.4"^^<degrees>
"50.68333333333333"^^<degrees>

Example 4.2 Consider the following portion K = (NK,EK) of the YAGO
ontology, where NK is

{hasFamilyName, hasGivenName, label, actedIn,Actor}

and EK is

{(hasFamilyName, sp, label), (hasGivenName, sp, label),

(actedIn, domain, actor)}

Suppose the user is looking for the family names of all actors who played in the film
‘Tea with Mussolini’ and poses this query:

SELECT * WHERE {
?x yago:actedIn <http://yago-knowledge.org/resource/

Tea_with_Mussolini> .
?x yago:hasFamilyName ?z }

The above query returns only four answers, since some actors have only a single
name (e.g. Cher), while others have their full name recorded using the label
property.

The user may choose to relax the second triple pattern in their query in an attempt
to retrieve more answers:

SELECT * WHERE {
?x yago:actedIn <http://yago-knowledge.org/resource/

Tea_with_Mussolini> .
RELAX ( ?x yago:hasFamilyName ?z ) }

The system can now replace hasFamilyName by label, and the resulting
query returns the given names of actors in that film recorded through the property
hasGivenName (hence returning Cher), as well as actors’ full names recorded
through the property label: a total of 255 results.

Example 4.3 Suppose a user wishes to find events that took place in Berkshire in
1643 and poses the following query on YAGO (in the query, we use ‘Event’ for
simplicity but the actual URI is <wordnet_event_100029378>):

SELECT * WHERE {
?x rdf:type Event .
?x yago:on "1643-##-##" .
?x yago:in "Berkshire" }

This query returns no results because there are no property edges named on or in
in YAGO.
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The user may choose to approximate the second and third triple patterns of their
query:

SELECT * WHERE {
?x rdf:type Event .
APPROX ( ?x yago:on "1643-##-##" ) .
APPROX ( ?x yago:in "Berkshire" ) }

The system can now substitute on by happenedOnDate (which does appear in
YAGO) and in by happenedIn, giving the following query:

SELECT * WHERE {
?x rdf:type Event .
?x yago:happenedOnDate "1643-##-##" .
?x yago:happenedIn "Berkshire" }

This still returns no answers, since happenedIn does not connect event instances
directly to literals such as "Berkshire".

The user can choose to relax now the third triple pattern of the above query:

SELECT * WHERE {
?x rdf:type Event .
?x yago:happenedOnDate "1643-##-##" .
RELAX ( ?x yago:happenedIn "Berkshire" )}

The system can replace the triple ?x yago:happenedIn "Berkshire" by
the triple ?x rdf:type Event, using knowledge encoded in YAGO that the
domain of happenedIn is Event, giving the following query, which returns all
events recorded as occurring in 1643:

SELECT * WHERE {
?x rdf:type Event .
?x yago:happenedOnDate "1643-##-##" .
?x rdf:type Event }

Several answers are returned by this query, including the ‘Siege of Reading’ that
happened in 1643 in Berkshire, but also several events that did not happen in
Berkshire:

<http://yago-knowledge.org/resource/Battle_of_Olney_Bridge>
<http://yago-knowledge.org/resource/Battle_of_Heptonstall>
<http://yago-knowledge.org/resource/Siege_of_Reading>
<http://yago-knowledge.org/resource/Torstenson_War>
<http://yago-knowledge.org/resource/Battle_of_Alton>
<http://yago-knowledge.org/resource/Second_Battle_of_Middlewich>
<http://yago-knowledge.org/resource/Kieft’s_War>

So the query exhibits better recall than the original query, but possibly low
precision.

The user can instead choose to approximate the third triple pattern:

SELECT * WHERE {
?x rdf:type Event .
?x yago:happenedOnDate "1643-##-##" .
APPROX ( ?x yago:happenedIn "Berkshire" )}
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The system can now insert the property label that connects URIs to their labels,
giving the following query:

SELECT * WHERE {
?x rdf:type Event .
?x yago:happenedOnDate "1643-##-##" .
?x yago:happenedIn/label "Berkshire" }

This query now returns the only event recorded as occurring in 1643 in Berkshire,
i.e. the ‘Siege of Reading’. It exhibits both better recall than the original query and
also high precision.

4.4.2 Query Rewriting-Based Implementation Approach

For specifying the semantics of SPARQLAR queries, we extend the notion of
SPARQL query evaluation from returning a set of (exact) mappings to returning
a set of mapping/cost pairs of the form 〈μ, c〉, where μ is a mapping and c is a non-
negative number that indicates the cost of the answers arising from this mapping.
Following on from the definitions of sets V , U and L, triples and triple patterns in
Sect. 4.1, we have the following definitions (c.f. Pérez et al. 2006):

Definition 4.4 (Mapping) A mapping μ from ULV to UL is a partial function
μ : ULV → UL such that μ(x) = x for all x ∈ UL, i.e. μ maps URIs and literals
to themselves. The set var(μ) is the subset of V on whichμ is defined. Given a triple
pattern 〈x, z, y〉 and a mapping μ such that var(〈x, z, y〉) ⊆ var(μ), μ(〈x, z, y〉)
is the triple obtained by replacing the variables in 〈x, z, y〉 by their image according
to μ.

Definition 4.5 (Compatibility and Union of Mappings) Two mappings μ1 and
μ2 are compatible if ∀x ∈ var(μ1) ∩ var(μ2), μ1(x) = μ2(x). The union of
two mappings μ = μ1 ∪ μ2 can be computed only if μ1 and μ2 are compatible.
The resulting μ is a mapping such that var(μ) = var(μ1) ∪ var(μ2) and: for
each x in var(μ1) ∩ var(μ2), μ(x) = μ1(x) = μ2(x); for each x in var(μ1)

but not in var(μ2), μ(x) = μ1(x); and for each x in var(μ2) but not in var(μ1),
μ(x) = μ2(x).

The union of two sets of SPARQLAR query evaluation results, M1 ∪ M2,
comprises the following set of mapping/cost pairs:

{〈μ, c〉 | 〈μ, c1〉 ∈ M1 or 〈μ, c2〉 ∈ M2, with c = c1 if �c2.〈μ, c2〉 ∈ M2, c = c2 if

�c1.〈μ, c1〉 ∈ M1, and c = min(c1, c2) otherwise}.

In Calì et al. (2014) and Frosini et al. (2017) a query rewriting approach
is adopted for SPARQLAR query evaluation, in which a SPARQLAR query Q

is rewritten to a set of SPARQL 1.1 queries for evaluation. We summarise this
approach here, refering the reader to those papers for further details.
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To keep track of which triple patterns in Q need to be relaxed or approximated,
such triple patterns are labelled with A for approximation and R for relaxation.
The query rewriting algorithm starts by generating a query Q0 which returns the
exact answer of Q, i.e. ignoring any APPROX and RELAX operators. For each
triple pattern 〈xi, Ri, yi〉 in Q0 labelled with A or R, and each URI p that appears
in Ri , a set of new queries is constructed by applying all possible one-step edit
operations or relaxation operations to p (these are the ‘first-generation’ queries). To
each such query Q1 is assigned the cost of applying the edit or relaxation operation
that derived it. A new set of queries is constructed by applying a second step of
approximation or relaxation to each query Q1 (the ‘second-generation’ queries),
accumulating summatively the cost of the two edit or relaxation operations applied
to obtain each query and assigning this cost to the query. The process continues for a
bounded number of generations, accumulating summatively the cost of the sequence
of edit or relaxation operations applied to obtain each query in the ith generation.
The rewriting process terminates once the cost of all the queries generated in a
generation has exceeded a maximum value m.

The overall query evaluation algorithm is defined below, where QRA denotes
the Query Rewriting Algorithm and it is assumed that the output set, M , of
mapping/cost pairs is maintained in order of increasing cost, e.g. as a priority queue.
Ordinary SPARQL query evaluation—denoted SPARQLeval in the algorithm—
is applied to each query generated by QRA, in ranked order of the query costs.
SPARQLeval takes as input a SPARQL query Q′ and a graph G and returns a set
of (exact) mappings. The mappings are then assigned the cost of the query Q′. If a
mapping is generated more than once, only the one with the lowest cost is retained in
M (by the semantics of the union operator,∪, applied to sets of mapping/cost pairs).

Algorithm 7: SPARQLAR flexible query evaluation
input : Query Q; maximum cost m; Graph G; Ontology K .
output: List of mapping/cost pairs, M , sorted by cost.
M := ∅;
foreach 〈Q′, cost〉 ∈ QRA(Q,m,K) do

foreach μ ∈ SPARQLeval(Q′,G) do
M := M ∪ {〈μ, cost〉}

returnM;

A formal study of the correctness and termination of the Query Rewriting
Algorithm can be found in Frosini et al. (2017) where the Rewriting Algorithm
itself is also specified in detail.

4.4.3 System Architecture and Performance

A prototype implementation of SPARQLAR is described in Frosini et al. (2017).
The implementation is in Java and Jena is used for the SPARQL query execution.
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Fig. 4.11 SPARQLAR system architecture

Figure 4.11 illustrates the system architecture, consisting of three layers: the GUI
layer, the System layer, and the Data layer.

The GUI layer supports user interaction with the system, allowing queries to be
submitted, costs of the edit and relaxation operators to be set, datasets and ontologies
to be selected, and query answers to be incrementally displayed to the user.

The System layer is responsible for the processing of the SPARQLAR queries.
It comprises three components: the Utilities, containing classes providing the
core logic of the system; the Domain Classes, providing classes relating to the
construction of SPARQLAR queries; and the Query Evaluator in which query
rewriting, optimisation and evaluation are undertaken.

The Data layer connects the system to the selected RDF dataset and ontology
using the JENA API. Jena library methods are used to execute SPARQL queries
over the RDF dataset and to load the ontology into memory. The RDF datasets are
stored as a TDB database10 and the RDF schema can be stored in multiple RDF
formats (e.g. Turtle, N-Triple, RDF/XML).

When a user query is submitted to the GUI, this invokes a method of the
SPARQLAR Parser to parse the query string and construct an object of the class
SPARQLAR Query. The GUI also invokes the Data/Ontology Loader which creates

10https://jena.apache.org/documentation/tdb/.

https://jena.apache.org/documentation/tdb/
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an object of the class Data/Ontology Wrapper, and the Approx/Relax Constructor
which creates objects of the classes Approx and Relax.

Once these objects have been initialised, they are passed to the Query Evaluator
by invoking the Rewriting Algorithm. This generates the set of SPARQL queries to
be executed over the RDF dataset. The set of queries are passed to the Evaluator,
which interacts with the Optimiser and the Cache to improve query performance.
Specifically, the answers of parts of queries are computed and stored in the Cache,
and these answers are retrieved from the Cache when the Evaluator needs these
results. A SPARQLAR query is first split into two parts: the triple patterns which
do not have APPROX or RELAX applied to them (the exact part) and those which
have (the A/R part). The exact part is first evaluated and the results are cached.
The query rewriting algorithm is then applied to the A/R part. Each triple pattern
generated is evaluated individually, as also are all possible pairs of triple patterns,
and the answers for each evaluation are cached. To avoid memory overflow, an upper
limit is placed on the size of the cache. Finally, the overall results of a SPARQL
query are obtained by joining subquery results already cached with those obtained
by evaluating the rest of the query.

The Evaluator uses the Jena Wrapper to invoke Jena library methods for
executing SPARQL queries over the RDF dataset. The Jena Wrapper also gathers
the query answers and passes them to the Answer Wrapper. Finally, the answers are
displayed by the Answers Window, in ranked order.

A performance study using data generated from the Lehigh University Bench-
mark (LUBM)11 is described in Calì et al. (2014). Three datasets were generated,
the largest of which contained 673,416 triples (65MB). A larger-scale performance
study on the YAGO dataset is described in Frosini et al. (2017). YAGO contains over
120 million triples which were downloaded and stored in a Jena TDB database. The
size of the TDB database was 9.70GB, and the nodes of the YAGO graph were
stored in a 1.1GB file.

The overall results show that the evaluation of SPARQLAR queries through a
query rewriting approach is promising (see Calì et al. 2014; Frosini et al. 2017
for details). The difference between the execution time of the exact form and
the APPROXed/RELAXed forms of the queries is acceptable for queries with
fewer than five conjuncts. For most of the other queries that were trialled, the
simple caching technique described above also brings down the run times of their
APPROXed/RELAXed forms to more reasonable levels. For more complex queries
(e.g. involving combinations of Kleene closure and the wildcard symbol, “_”, within
a property path), more sophisticated optimisation techniques are needed.

Our ongoing work involves investigating optimisations to the query rewriting
algorithm, since this can generate a large number of queries. In particular, we
are studying the query containment problem for SPARQLAR and how query costs
impact on this. For example, for a query Q = Q1 AND Q2 it is possible to
decrease the number of queries generated by the rewriting algorithm if we know

11http://swat.cse.lehigh.edu/projects/lubm/.

http://swat.cse.lehigh.edu/projects/lubm/
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thatQ1 ⊆ Q2, in which case we can evaluateQ1 rather than Q. Other optimisations
under investigation include using statistics about path frequencies in the data graph
to reorder the evaluation of triple patterns so as to evaluate first those returning
fewer results; and using summaries of the data graph to avoid evaluating subqueries
that we know, after evaluation on the graph summary, cannot return any answers.
Also planned is a detailed comparison of this query rewriting approach to query
approximation and relaxation with the ‘native’ implementation of Omega described
in the previous section.

4.5 Further Topics

4.5.1 User Interaction

In Sect. 4.3.1 we briefly discussed an application-specific prototype that provides a
forms-based GUI for incrementally generating CRPQ queries, parts of which can
optionally be approximated or relaxed, and for displaying ranked query results to
the user. A detailed discussion of that prototype can be found in Poulovassilis et al.
(2012). An area of future work identified in that paper was how such systems might
provide explanations to the user of how the overall ‘distance’ of each query result
has been derived, based on the application of a sequence of edit and relaxation
operations each of some cost specified by the user.

One possible visualisation for such explanations, in a more generic setting, is
the Query Graph illustrated in Figs. 4.12 and 4.13, which is based on an ‘inverted’
version of the relaxation graph for graph patterns discussed in Sect. 4.1. To illustrate,
consider Example 4.3 from Sect. 4.1 which is enacted in successive screenshots
in the two figures, moving from left-to-right and top-to-bottom. The user begins
(Screen 1) by constructing their initial query, which is shown both in the main pane
and in the Query Graph panel below. The user then presses the RUN button to run
the query. However, no answers are returned (Screen 2). The user elects to edit
the second triple pattern, by clicking on that pattern and then on the ‘Conj[unct]’
button, selecting ‘substitution’ from a drop-down list of edit operations displayed
by the system, and then happenedOnDate from a list of properties suggested
by the system (e.g. properties that are known to have domain Event). Screen 3
shows the new query and its distance from the original one, the updated Query
Graph and—in the top-left—the edit operations applied so far. The user presses
RUN but again no answers are returned. The user elects to edit now the third triple
pattern, again selecting ‘substitution’ from a drop-down list of edit operations, and
now happenedIn from the list of properties suggested by the system. Screen 4
shows the new query and the updated Query Graph. The user presses RUN but
again no answers are returned. At this point, the user seeks help by clicking on
the “?’ button and system suggests three alternatives: (i) relaxation of the second
triple pattern to ?x rdf:type Event, (ii) relaxation of the third triple pattern
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Fig. 4.12 User interaction and visualisation

to ?x rdf:type Event, (iii) insertion of a literal-valued property to follow
happenedIn. Suppose the user chooses option (ii). Screen 5 shows the new
query and the updated Query Graph (scrolling down now in the expanded Query
Graph pane). The user presses RUN and Screen 6 illustrates the results returned (all
events taking place in 1643, at any location). The user decides these results are too
diverse to be useful and backtracks to Query 3, where the system provides again
alternatives (i)–(iii). Suppose the user now chooses option (iii). The system offers a
list of literal-valued properties (those with domain Place, or a superclass, on the
basis of knowledge that this is the range of happenedIn), and the user selects the
property label. Screen 7 shows the new query and the updated Query Graph. The
user presses RUN and Screen 8 shows the result returned, which is the one event
recorded as occurring in Berkshire in 1643.

Allowing the user to visualise how queries are incrementally generated, what
distance is associated with each query, and what results are returned, if any, can
help the user decide whether the answers being returned are useful and to try out
different edit/relaxation operations. Detailed design, implementation and evaluation
of such interactive flexible querying facilities and visualisations for end-users are an
area requiring further work.
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Fig. 4.13 User interaction and visualisation

4.5.2 More Query Flexibility

There are several directions in which the approaches discussed in the previous
sections can be extended. One area of ongoing work is to merge the APPROX
and RELAX operators into one integrated FLEX operator that simultaneously
applies edit and relaxation operations to a regular path query. This would allow
greater ease of querying for users, in that they would not need to be aware of the
ontology structure and to identify which conjuncts of their query may be amenable
to relaxation and which to approximation. Another ongoing direction is to extend
our languages with lexical and semantic similarity measures, in order to allow
approximate matching of literals and resources.

To illustrate, suppose a History of Science researcher wishes to find scientists
born in London. She is also interested in scientists living in or near London.
However, she doesn’t know howYAGO records that a person is a scientist, and poses
the following query that makes use of the hasGloss property linking resources
to textual descriptions, seeking to find the word ‘scientist’ or similar within such
descriptions:

SELECT * WHERE {
FLEX (?p yago:wasBornIn London) .
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?p rdf:type ?c . ?c yago:hasGloss ?descr .
FILTER sim (?descr, "scientist") > 0.7}

The system can find matches for ‘scientist’ within values of thehasGloss property
(e.g. as in the descriptions ‘person with advanced knowledge of one or more
sciences’, ‘an expert in the science of economics’), allowing relevant answers
to be returned. Use of the FLEX operator also allows the system to substitute
wasBornIn by livesIn, giving additional answers of relevance.

Similarity measures could also be applied by the system to distinguish between
different alternatives when an edge label in a regular path query is being substituted
by a different label. Having knowledge of the semantic similarly of properties—
for example, exploiting dictionaries such as Wordnet—would allow the system to
assign a finer-grained cost to edge label substitutions, thereby allowing finer ranking
of the top-k answers and increasing their precision.

Similarly, it would be possible to assign a finer ranking to the application of
relaxation operations where a specific property is replaced by superproperty, or a
specific class by a superclass.

4.5.3 More Query Expressivity

Another direction of work is to extend the expressivity of the query languages
beyond conjunctive regular path queries. In this direction, Hurtado et al. (2009a)
investigated approximatematching of extended regular path (ERP) queries in which
the regular expressionR in a query conjunct (X,R, Y ) can be associated with a path
variable P—using the syntax (X,R : P, Y )—and these path variables can appear
also in the query head, thereby allowing graph paths to be returned to the user as part
of the query answer. It was shown that top-k approximate answers can be returned
in polynomial time in the size of the graph and the query. Thus, for example,
revisiting the transport network example in Sect. 4.2.1, the following query finds
cities reachable from Santiago by train, directly or indirectly, or by combinations of
other modes of transport, returning also the routes:

?P, ?X <- APPROX (u1, train+.name:?P ,?X)

The answers returned are:
([train,u2,name],Talca),
([train,u2,train,u4,name],Chillan)
at distance 0;
([bus,u3,name],Valparaiso),
([airplane,u7,name],Temuco),
([airplane,u4,name],Chillan)
at distance c3;
([airplane,u4,airplane,u5,name],Concepcion),
([airplane,u4,bus,u5,name],Concepcion),
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([airplane,u4,bus,u6,name],Los Angeles)
at distance c3 + c4; and so forth.

Another application of this kind of flexible querying, where it is useful to
return paths in the query results, is described in Poulovassilis et al. (2015), which
discusses the analysis of user–system interaction data as arising from exploratory
learning environments. The interaction data is stored in Neo4j. Interaction events,
and their types, are represented by nodes. Events are linked to their event-type
by edges labelled OCCURRENCE_OF while successive events are linked to each
other by edges labeled NEXT. Poulovassilis et al. (2015) give examples of how
approximate matching of ERP queries over such data can allow pedagogical
experts to investigate how students are undertaking exploratory learning tasks,
and how feedback messages generated by the system are affecting students’
behaviours, with the aim of designing improved support for students. For example,
the following query (expressed in Neo4j’s Cypher language12) finds pairs of
events x, y such that x is an intervention (i.e. a message) generated by the
system and y is the user’s next action; the path between x and is returned,
through the variable p, as are the event-type of x and y, through the variables v
and w.

MATCH (x:Event)-[:OCCURRENCE_OF]->
(v:EventType {event_cat:"intervention"}),

p = (x:Event)-[:NEXT]->(y:Event),
(y:Event)-[:OCCURRENCE_OF]->(w:EventType)

RETURN v.event_type as start_node_type,
extract(n IN nodes(p) | n.id_fltask) as path_node_ids,
w.event_type as end_node_type

Results returned include:

start_node_type path_node_ids end_node_type
highMessage ["344509","344510"] ClickButton
highMessage ["344519","344520"] ClickButton
highMessage ["344522","344523"] ClickButton
highMessage ["344714","344715"] ClickButton
highMessage ["344760","344761"] ClickButton

If query approximation were supported in Cypher, then applying APPROX to
the subquery (x:Event)-[:NEXT]->(y:Event) above, and enabling just
insertion of edge labels, would generate the subquery(x:Event)-[:NEXT*2]->

12http://neo4j.com, accessed at 18/6/2015.

http://neo4j.com
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(y:Event). Evaluation of the new query would return answers such as the
following, all at distance 1 from the original query:

start_node_type path_node_ids end_node_type
highMessage ["344509","344510","346027"] ClickButton
highMessage ["344519","344520","344521"] PlatformEvent
highMessage ["344522","344523","344712"] ClickButton
highMessage ["344714","344715","344716"] ClickButton
highMessage ["344760","344761","344762"] PlatformEvent

Following this, the subquery (x:Event)-[:NEXT*2]->(y:Event) could be
automatically approximated again to (x:Event)-[:NEXT*3]->(y:Event).
Evaluation of the new query would return answers such as the following, now at edit
distance 2 from the original query:

start_node_type path_node_ids end_node_type
highMessage ["344509","344510","346027","346028"] FractionGenerated
highMessage ["344519","344520","344521","344522"] highMessage
highMessage ["344522","344523","344712","344713"] FractionGenerated
highMessage ["344714","344715","344716","344717"] FractionChange
highMessage ["344760","344761","344762","344763"] highMessage

By this point, the pedagogical expert is able to see that some high-level interruption
messages (‘highMessage’) are leading students towards productive behaviours, such
as generating a fraction—lines 1 and 3, or changing a fraction—line 4 (the specific
learning environment to which this data relates aims to teach young learners about
fractions). However, other messages are just resulting in more messages being
generated by the system (lines 2 and 5), which may lead experts to explore the data
further (e.g. to retrieve the messages associated with events 344519 and 344760)
and possibly reconsider this part of the system’s design.

4.6 Related Work

A general overview of graph databases from the perspectives of graph character-
istics, graph data management, applications and benchmarking can be found in
Larriba-Pey et al. (2014). The work described in this chapter has considered only the
simple graph data model introduced in Sect. 4.1, and a broader survey of graph data
models can be found in Angles and Gutierrez (2008). Likewise, a survey of graph
query languages can be found in Wood (2012), and we focus here on languages that
support RPQs and on flexible query processing for graph-structured data.

Using regular expressions to specify path queries on graph-structured data has
been studied for nearly 30 years, being introduced in the languages G, G+ and
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Graphlog (Cruz et al. 1987; Consens and Mendelzon 1989; Mendelzon and Wood
1989, 1995) and taken up in several languages for other semi-structured data models
(Abiteboul et al. 1997; Fernandez et al. 2000; Buneman et al. 2000). More recently,
CRPQs are supported in NAGA (Kasneci et al. 2009), SPARQLeR (Kochut and
Janik 2007), PSPARQL (Alkhateeb et al. 2009), G-SPARQL (Sakr et al. 2012) and
SPARQL 1.1 (Harris and Seaborne 2013). Cypher, the declarative query language
supported by the Neo4j graph DBMS, also supports a restricted form of regular path
queries. The nSPARQL language (Pérez et al. 2008) extends SPARQL with nested
regular expressions and shows that these enable query answers that encompass the
semantics of the RDFS vocabulary by direct graph traversal, without materialising
the closure of the graph. In addition to the automaton-based approach described
in Sect. 4.3, other approaches proposed for evaluating (exact) CRPQs include
translation into Datalog or recursive SQL (Consens and Mendelzon 1993; Wood
2012; Dey et al. 2013), search-based processing (Fan et al. 2011; Koschmieder and
Leser 2012) and reachability indexing (Gubichev et al. 2013).

Recent work in the WAVEGUIDES project is investigating cost-based optimi-
sation for SPARQL 1.1, focusing in the first instance on query optimisation for
property paths (Yakovets et al. 2015), and this has potential application in the
optimisation of approximated/relaxed CRPQs as well.

Early work on flexible querying for semi-structured data was undertaken by
Kanza and Sagiv (2001), who considered matchings returning paths whose set of
edge labels contain those appearing in the query; such semantics can be captured
by transposition and insertion edit operations on edge labels. More generally,
Grahne and Thomo (2001, 2006) explored approximate matching of single-conjunct
regular path queries, using a weighted regular transducer to perform transformations
to RPQs for approximately matching semi-structured data. This approach was
extended in Hurtado et al. (2009b) to CRPQs. In other work, Grahne et al. (2007)
introduced preferential RPQs where users can specify the relative importance of
symbols appearing in the query by annotating them with weights.

The work in Barcelo et al. (2010, 2012) extends CRPQs to allow comparisons
between path variables within the bodies of queries, as well as allowing path
variables to appear in query heads, calling this extension extended conjunctive
regular path queries (ECRPQs) (but not considering flexible querying). The work
in Libkin and Vrgoc (2012) extends CRPQs to include manipulation also of the
data values associated with nodes along a path. Other extensions to CRPQs are
discussed in Wood (2012), for example with aggregation functions such as count ,
sum, max, min to allow finding properties of graphs that are useful for network
analysis (e.g. in/out-degree of nodes, length of shortest paths between nodes, graph
diameter). Extending these more expressive graph query languages with flexible
querying capabilities is an open area. Also open is extending graph query languages
for more complex graph models (e.g. property graphs, hyperedges, hypernodes—
see Angles and Gutierrez 2008) with flexible queries.

There have been several proposals for flexibly querying Semantic Web data
using similarity measures to retrieve additional relevant answers. For example,
in iSPARQL (Kiefer et al. 2007) similarity measures are applied to resources; in
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Hogan et al. (2012) similarity functions are applied to constants such as strings and
numeric values; and in De Virgilio et al. (2013) a structural similarity approach is
proposed that exploits the graph structure of the data. In other work, ontology-driven
similarity measures are developed, using an RDFS ontology to retrieve additional
answers and assign a score to them (Huang et al. 2008; Huang and Liu 2010; Reddy
and Kumar 2010).

In Mandreoli et al. (2009) knowledge of the semantic relationships between
graph nodes is used for approximate query matching, and Cedeno and Candan
(2011) describe a framework for cost-aware querying of weighted RDF data through
predicates that express flexible paths between nodes. Elbassuoni et al. (2009,
2011) propose extending SPARQL with keyword search capabilities, together
with IR-style ranking of query answers. In Yang et al. (2014), a set of trans-
formation functions are used to map attributes of nodes and edges appearing
in a graph query to matches in the data graph, and a ranking model for query
answers is learnt using automatically generated training instances and the query
log.

Dolog et al. (2006, 2009) consider relaxing queries on RDF data based on user
preferences; user preferences mined from the query log are also used for query
relaxation in Meng et al. (2008); and flexible querying using preferences expressed
as fuzzy sets is investigated in Buche et al. (2009).

Approximate graph matching has also been much studied (Zhang et al. 2010;
Zhu et al. 2011; Zou et al. 2011; Fan et al. 2013; Ma et al. 2014), including adding
regular expressions as edge constraints on the graph patterns to be matched (Fan
et al. 2011) and ontology-based subgraph querying (Wu et al. 2013). This work
has synergies with the flexible querying processing approaches discussed in this
chapter, since the algorithms proposed could potentially be leveraged for improved
query performance of approximated/relaxed CRPQs: this is currently an open area
of research.

4.7 Concluding Remarks

We have given an overview of motivations, applications and implementation
techniques for extending graph query languages with relaxation and approximation.
Along the way we have highlighted directions of ongoing work, relating to provid-
ing additional flexibility through similarity matching, designing further logical and
physical optimisations, and conducting more extensive performance studies. On the
theory front, future work involves investigating the query containment problem for
SPARQLAR and the complexity implications of extending more expressive query
languages with relaxation and approximation features. On the usability front, further
work is required on designing user interfaces that allow users to control and visualise
how flexible queries are incrementally generated and evaluated, so as to be able
to decide whether the answers being returned are useful and to try out alternative
relaxations or approximations.
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