
Data-Centric Systems and Applications

Graph Data
Management

George Fletcher
Jan Hidders
Josep Lluís Larriba-Pey
Editors

Fundamental Issues and Recent
Developments

Data-Centric Systems and Applications

Series editors
Michael J. Carey
Stefano Ceri

Editorial Board
Anastasia Ailamaki
Shivnat Babu
Philip Bernstein
Johann-Christoph Freytag
Alon Halevy
Jiawei Han
Donald Kossmann
Ioana Manolescu
Gerhard Weikum
Kyu-Young Whang
Jeffrey Xu Yu

More information about this series at http://www.springer.com/series/5258

http://www.springer.com/series/5258

George Fletcher • Jan Hidders •
Josep Lluís Larriba-Pey
Editors

Graph Data Management
Fundamental Issues and Recent
Developments

123

Editors
George Fletcher
Department of Mathematics
and Computer Science
Eindhoven University of Technology
Eindhoven, The Netherlands

Jan Hidders
Department of Computer Science
Vrije Universiteit Brussel
Brussels, Belgium

Josep Lluís Larriba-Pey
Department of Computer Architecture
Universitat Politècnica de Catalunya
Barcelona, Spain

ISSN 2197-9723 ISSN 2197-974X (electronic)
Data-Centric Systems and Applications
ISBN 978-3-319-96192-7 ISBN 978-3-319-96193-4 (eBook)
https://doi.org/10.1007/978-3-319-96193-4

Library of Congress Control Number: 2018956574

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-96193-4

Preface

The area of graph data management has recently seen many exciting and impressive
developments. It addresses one of the great scientific and industrial trends of today:
leveraging complex and dynamic relationships to generate insight and competitive
advantage. It is crucial for such different goals as understanding relationships
between users of social media, customers, elements in a telephone or data center
network, entertainment producers and consumers, or genes and proteins. As part of
the NoSQL movement it provides us with new powerful technologies and means for
storing, processing, and analyzing data. It also is a key technology for supporting
the Semantic Web and Linked Open Data.

As a consequence, there has been an impressive flurry of new systems for
graph storage and graph processing, both in academia and industry, and covering
a wide spectrum of use cases, from enterprise-scale datasets to web-scale datasets.
Moreover, this has been accompanied by exciting new research, developing further
the foundations of efficient graph processing, as well as exploring new application
areas where these can be successfully applied.

The present volume collects and presents an overview of recent advances on
fundamental issues in graph data management to allow researchers and engineers to
benefit from these in their research. The chapters are contributed by leading experts
in the relevant areas, presenting a coherent overview of the state of the art in the
field.

The aim of this book is to give beginning researchers in the area of graph data
management, or in an area that requires graph data management, an overview of the
latest developments in this area, both in applied and in fundamental subdomains.
The main emphasis of the book is on presenting comprehensive overviews, rather
than in-depth treatment of subjects, although technological subjects are not avoided.
Our hope is that beginning researchers will be better positioned to take more
informed decisions about their research direction or, if it is already under way,
to better put their work into context. For researchers not in the domain itself, but
interested in using the results from this domain, we hope this volume will help them

v

vi Preface

to better understand what types of tools, techniques, and technologies are available
and which ones would best suit their needs. The prerequisites for the book are a
basic understanding of data management techniques as they are taught in academic
computer science MSc programs.

The contributions to this volume have their genesis as lecture notes distributed to
students at the 12th EDBT Summer School on “Graph Data Management,” held the
week of August 31, 2015 in Palamos, Spain. The school was organized by the editors
of this book, under the auspices of the EDBT Association, a leading international
nonprofit organization for the promotion and support of research and progress in
the fields of databases and information systems technology and applications. These
notes were already single-blind reviewed by the scientific committee of the summer
school, before distribution to the students. All contributions to the present volume
were further extended based upon experiences at the school and again subject
to further editorial improvement and single-blind peer review by members of the
scientific committee.

We thank the following colleagues for their service on the scientific committee
of the summer school and as reviewers of the contributions to this volume.

• Paolo Atzeni. Università Roma Tre.
• Alex Averbuch. Neo Technology.
• Sourav Bhowmick. Nanyang Technological University.
• Angela Bonifati. Université Claude Bernard Lyon 1 and CNRS.
• Andrea Calì. Birkbeck, University of London.
• Mihai Capotă. Intel Labs.
• Ciro Cattuto. ISI Foundation.
• David Gross-Amblard. Université de Rennes 1.
• Olaf Hartig. Linköpings Universitet.
• Meichun Hsu. Hewlett Packard Labs.
• H.V. Jagadish. University of Michigan.
• Aurélien Lemay. Université Lille 3 and INRIA.
• Ulf Leser. Humboldt-Universität zu Berlin.
• Federica Mandreoli. Università degli Studi di Modena e Reggio Emilia.
• Thomas Neumann. Technische Universität München.
• Paolo Papotti. EURECOM Sophia Antipolis.
• Arnau Prat. Sparsity Technologies.
• Pierre Senellart. École normale supérieure.
• Sławek Staworko. Université Lille 3 and INRIA.
• Letizia Tanca. Politecnico di Milano.
• Alex Thomo. University of Victoria.
• Maurice Van Keulen. Universiteit Twente.
• Stijn Vansummeren. Université libre de Bruxelles.
• Ana Lucia Varbanescu. Universiteit van Amsterdam.
• Jim Webber. Neo Technology.
• Peter Wood. Birkbeck, University of London.

Preface vii

• Yuqing Wu. Pomona College.
• Yinglong Xia. Huawei Research America.

Eindhoven, The Netherlands George Fletcher
Brussels, Belgium Jan Hidders
Barcelona, Spain Josep Lluís Larriba Pey

Contents

1 An Introduction to Graph Data Management . 1
Renzo Angles and Claudio Gutierrez

2 Graph Visualization . 33
Peter Eades and Karsten Klein

3 gLabTrie: A Data Structure for Motif Discovery with Constraints 71
Misael Mongioví, Giovanni Micale, Alfredo Ferro, Rosalba Giugno,
Alfredo Pulvirenti, and Dennis Shasha

4 Applications of Flexible Querying to Graph Data . 97
Alexandra Poulovassilis

5 Parallel Processing of Graphs . 143
Bin Shao and Yatao Li

6 A Survey of Benchmarks for Graph-Processing Systems 163
Angela Bonifati, George Fletcher, Jan Hidders, and Alexandru Iosup

ix

Contributors

Renzo Angles Department of Computer Science, Universidad de Talca,
Curicó, Chile – and – Millennium Institute for Foundational Research on Data,
Santiago, Chile

Angela Bonifati Université Claude Bernard Lyon 1, Villeurbanne, France

Peter Eades University of Sydney, Sydney, NSW, Australia

Alfredo Ferro University of Catania, Catania, Italy

George Fletcher Eindhoven University of Technology, Eindhoven,
the Netherlands

Rosalba Giugno University of Catania, Catania, Italy

Claudio Gutierrez Universidad de Chile, Santiago, Chile – and – Millennium
Institute for Foundational Research on Data, Santiago, Chile

Jan Hidders Vrije Universiteit Brussel, Brussels, Belgium

Alexandru Iosup Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

Delft University of Technology, Delft, the Netherlands

Karsten Klein Monash University, Melbourne, VIC, Australia – and – University
of Konstanz, Konstanz, Germany

Yatao Li Microsoft Research Asia, Beijing, China

Giovanni Micale University of Catania, Catania, Italy

Misael Mongioví University of Catania, Catania, Italy

Alexandra Poulovassilis Birkbeck, University of London, London, UK

Alfredo Pulvirenti University of Catania, Catania, Italy

xi

xii Contributors

Bin Shao Microsoft Research Asia, Beijing, China

Dennis Shasha Courant Institute of Mathematical Science, New York University,
New York, NY, USA

Chapter 1
An Introduction to Graph Data
Management

Renzo Angles and Claudio Gutierrez

Abstract Graph data management concerns the research and development of
powerful technologies for storing, processing and analyzing large volumes of graph
data. This chapter presents an overview about the foundations and systems for graph
data management. Specifically, we present a historical overview of the area, studied
graph database models, characterized essential graph-oriented queries, reviewed
graph query languages, and explore the features of current graph data management
systems (i.e. graph databases and graph-processing frameworks).

1.1 Introduction

Graphs are omnipresent in our lives and have been increasingly used in a variety of
application domains. For instance, the web contains tens of billions of web pages
over which the page rank algorithm is computed, Facebook has billions of users
whose billions of relationships are explored by social media analysis tools, and
Twitter contains hundreds of millions of users whose similar amount of tweets
per day are analyzed to determine trending topics. The data generated by these
applications can be easily represented as graphs characterized for being large, highly
interconnected and unstructured. To meet the challenge of storing and processing
such big graph data, a number of software systems have been developed. In this
chapter, we concentrate on graph data management systems.

Graph Data Management concerns the research and development of powerful
technologies for storing, processing and analyzing large volumes of graph data (Sakr

R. Angles (�)
Department of Computer Science, Universidad de Talca, Curicó, Chile – and – Millennium
Institute for Foundational Research on Data, Santiago, Chile
e-mail: rangles@utalca.cl

C. Gutierrez
Department of Computer Science, Universidad de Chile, Santiago, Chile

Millennium Institute for Foundational Research on Data, Santiago, Chile
e-mail: cgutierr@dcc.uchile.cl

© Springer International Publishing AG, part of Springer Nature 2018
G. Fletcher et al. (eds.), Graph Data Management, Data-Centric Systems
and Applications, https://doi.org/10.1007/978-3-319-96193-4_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96193-4_1&domain=pdf
mailto:rangles@utalca.cl
mailto:cgutierr@dcc.uchile.cl
https://doi.org/10.1007/978-3-319-96193-4_1

2 R. Angles and C. Gutierrez

and Pardede 2011). The research on graph databases has a long development, at
least since the 1980s. But it is only recently that several technological developments
have made it possible to have practical graph database systems. Powerful hardware
to store and process graphs, powerful sensors to record directly the information,
powerful machines that allow to analyze and visualize graphs, among other factors,
have given rise to the current flourishing in the area of graph data management.

We devise two broad and interrelated topics in the area of graph data management
that in our opinion deserve to be treated separately today. One is the area of graph
database models, which comprises general principles that ideally should guide the
design of systems. The second is graph data management systems themselves,
which are systems that deal with graph data storing and querying, sometimes
addressing directly demands of users, thus emphasizing factors such as efficiency,
usability and direct solutions to urgent data management problems.

1.1.1 Graph Database Models

The fundamental abstraction behind a database system is its database model. In
the most general sense, a database model is a conceptual tool used to model
representations of real-world entities and the relationships among them. As is well
known, a database model can be characterized by three basic components, namely,
data structures, query and transformation language, and integrity constraints. In the
context of graph data management, a graph database model is a model where data
structures for the schema and/or instances are modeled as graphs, where the data
manipulation is expressed by graph-oriented operations, and appropriate integrity
constraints can be defined over the graph structure.

1.1.2 Graph Data Management Systems

There are two categories of graph data management systems: graph databases
and graph-processing frameworks. The former are systems specifically designed
for managing graph-like data following the basic principles of database systems,
that is, persistent data storage, physical/logical data independence, data integrity
and consistency. The latter are frameworks for batch processing and analysis of
big graphs putting emphasis on the use of multiple machines to improve the
performance These systems provide two perspectives for storing and querying graph
data, each one with their own goals.

1.1.3 Contents and Organization of This Chapter

This chapter presents an overview of the basic notions, the historical evolution and
the main developments in the area of graph data management. There are three main

1 An Introduction to Graph Data Management 3

topics, distributed by sections. First, an overview of the field and its development,
which we hope can be of help to look for ideas and past experiences. Second, a
review of the main graph database models in order to give a perspective on actual
developments. Third, a similar review of graph database query languages. Finally,
we present current graph data management systems in a comparative manner.

1.2 Overview of the Field

In this section, we present motivations for graph data management and briefly
review the developments thereof. There is an emphasis on models in order to give
a certain abstraction level and unity of concepts that sometimes get lost in the wide
diversity of syntaxes and implementation solutions that exist today. This section
follows closely the survey of graph database models written by Angles and Gutierrez
(2008).

1.2.1 What is a Graph Database Model?

A Graph Database Model is a model in which the data structures for the schema
and/or instances are modeled as a directed, possibly labeled, graph or generaliza-
tions of the graph data structure, where data manipulation is expressed by graph-
oriented operations and type constructors, and appropriate integrity constraints can
be defined over the graph structure (Angles and Gutierrez 2008).

The main characteristic of a graph database model is that the data are conceptu-
ally modeled and presented to the user as a graph, that is, the data structures (data
and/or schema) are represented by graphs, or by data structures generalizing the
notion of graph (e.g., hypergraphs or hypernodes). One of the main features of a
graph structure is the simplicity to model unstructured data. Therefore, in graph
models the separation between schema and data (instances) is less marked than in
the classical relational model.

Regarding data manipulation and querying, it is expressed by graph transfor-
mations, or by operations whose main primitives are based on graph features like
paths, neighborhoods, subgraphs, graph patterns, connectivity, and graph statistics
(diameter, centrality, etc.). Some graph models define a flexible collection of type
constructors and operations, which are used to create and access the graph data
structures. Another approach is to express all queries using a few powerful graph
manipulation primitives. Usually the query language is what gives a database model
its particular flavor. In fact, the differences among graph data structures are usually
minor as compared to differences among graph query languages.

Finally, integrity constraints enforce data consistency. These constraints can
be grouped in schema–instance consistency, identity and referential integrity, and
functional and inclusion dependencies. Examples of these are labels with unique

4 R. Angles and C. Gutierrez

names, typing constraints on nodes, functional dependencies, domain and range of
properties, and so on.

1.2.2 Historical Overview

The ideas of graph databases can be dated at least to the 1990s, where much of
the theory developed. Probably due to the lack of hardware support to manage
big graphs, this line of research declined for a while until a few years ago, when
processing graphs became common and a second wave of research was initiated.

1.2.2.1 The First Wave

In an early approach, facing the failure of contemporary systems to take into account
the semantics of a database, a semantic network to store data about the database
was proposed by Roussopoulos and Mylopoulos (1975). An implicit structure of
graphs for the data itself was presented in the Functional Data Model (Shipman
1981), whose goal was to provide a “conceptually natural” database interface. A
different approach proposed the Logical Data Model (Kuper and Vardi 1984), where
an explicit graph data model intended to generalize the relational, hierarchical and
network models. Later, Kunii (1987) proposed a graph data model for representing
complex structures of knowledge called G-Base.

GOOD (Gyssens et al. 1990) was an influential graph-oriented object model,
intended to be a theoretical basis for a system in which manipulation as well as
representation are transparently graph-based. Among the subsequent developments
based on GOOD are: GMOD (Andries et al. 1992), which proposes a number of
concepts for graph-oriented database user interfaces; Gram (Amann and Scholl
1992), which is an explicit graph data model for hypertext data; PaMaL (Gemis
and Paredaens 1993), which extends GOOD with explicit representation of tuples
and sets; GOAL (Hidders and Paredaens 1993), which introduces the notion of asso-
ciation nodes; G-Log (Paredaens et al. 1995), which proposed a declarative query
language for graphs; and GDM (Hidders 2002), which incorporates representation
of n-ary relationships.

There were proposals that used generalization of graphs with data modeling
purposes. The Hypernode Model (Levene and Poulovassilis 1990) was a model
based on nested graphs on which subsequent work was developed (Poulovassilis
and Levene 1994; Levene and Loizou 1995). The same idea was used for modeling
multiscaled networks (Mainguenaud 1992) and genome data (Graves et al. 1995).
Another generalization of graphs, hypergraphs, gave rise to another family of
models. GROOVY (Levene and Poulovassilis 1991) is an object-oriented data
model based on hypergraphs. This generalization was used in other contexts: query
and visualization in the Hy+ system (Consens and Mendelzon 1993); modeling of

1 An Introduction to Graph Data Management 5

data instances and access to them (Watters and Shepherd 1990); representation of
user state and browsing (Tompa 1989).

There are several other proposals that deal with graph data models. Güting
(1994) proposed GraphDB, intended for modeling and querying graphs in object-
oriented databases and motivated by managing information in transport networks.
Database Graph Views (Gutiérrez et al. 1994) proposed an abstraction mechanism
to define and manipulate graphs stored in either relational, object-oriented or
file systems. The project GRAS (Kiesel et al. 1996) uses attributed graphs for
modeling complex information from software engineering projects. The well-known
OEM (Papakonstantinou et al. 1995) model aims at providing integrated access to
heterogeneous information sources, focusing on information exchange.

Another important line of development has to do with data representation models
and the World Wide Web. Among them are data exchange models like XML (Bray
et al. 1998), metadata representation models like RDF (Klyne and Carroll 2004) and
ontology representation models like OWL (McGuinness and van Harmelen 2004).

1.2.2.2 The Second Wave

We are witnessing the second impulse of development of graph data management,
which is focused, on one hand, in practical systems and on the other, in theoretical
analyses particularly of graph query languages. We will review the former in
Sect. 1.5 concentrating on database systems, and will leave the latter out of this
chapter. With regard to modern graph query languages the interested reader can
read the tutorial of Barceló Baeza (2013) and the survey of Angles et al. (2017).

1.2.3 Comparison with Classical Models

As is well known, there are manifold approaches to model information and
knowledge, depending on application areas and user needs. The first question one
should answer is why choose a graph data model instead of a relational, object-
oriented, semi-structured, or other type of data model. The one-sentence answer
is: Graph models are designed to manage data in areas where the main concern
has to do with the interconnectivity or topology of that data. In these applications,
the atomic data and the relations among the units of data have the same level of
importance.

Among the main advantages that graph data models offer over other types of
models, we can mention the following:

• Graphs have been long recognized as one of the most simple, natural and intuitive
knowledge representation systems. This simplicity overcomes the limitations of
the linear format of classical writing systems.

6 R. Angles and C. Gutierrez

• Graph data structures allow for a natural modeling when data have a graph
structure. Graphs have the advantage of being able to keep all the information
about an entity in a single node and show related information by arcs connected
to it. Graph objects (like paths, neighborhoods) may have first-order citizenship.

• Queries can address directly and explicitly this graph structure. Associated with
graphs are specific graph operations in the query language algebra, such as
finding shortest paths, determining certain subgraphs, and so forth. Explicit
graphs and graph operations allow users to express a query at a high level of
abstraction. In summary, graph models realize for graph data the separation of
concerns between modeling (the logic level) and implementation (physical level).

• Implementation-wise, graph databases may provide special graph storage struc-
tures, and take advantage of efficient graph algorithms available for implement-
ing specific graph operations over the data.

Next, we will briefly review the most influential data models (relational, seman-
tic, object-oriented, semistructured) and compare them to graph data models.

The relational data model was introduced by Codd (1970) and is based on the
simple notion of relation, which together with its associated algebra and logic, made
the relational model a primary model for database research. In particular, its standard
query and transformation language, SQL, became a paradigmatic language for
querying. It popularized the concept of abstraction levels by introducing a separation
between the physical and logical levels. Gradually, the focus shifted to modeling
data as seen by applications and users (i.e. tables). The differences between graph
data models and the relational data model are manifold. The relational model is
geared toward simple record-type data, where the data structure is known in advance
(airline reservations, accounting, inventories, etc.). The schema is fixed, which
makes it difficult to extend these databases. It is not easy to integrate different
schemas, nor is it automatized. The table-oriented abstraction is not suitable to
naturally explore the underlying graph of relationships among the data, such as
paths, neighborhoods, patterns.

Semantic data models (Peckham and Maryanski 1988) focus on the incorporation
of richer and more expressive semantics into the database, from a user’s viewpoint.
Database designers can represent objects and their relations in a natural and
clear manner (similar to the way users view an application) by using high-level
abstraction concepts such as aggregation, classification and instantiation, sub- and
superclassing, attribute inheritance and hierarchies. A well-known and successful
case is the entity-relationship model (Chen 1976), which has become a basis for
the early stages of database design. Semantic data models are relevant to graph
data model research because the semantic data models reason about the graph-like
structure generated by the relationships between the modeled entities.

Object-oriented (O-O) data models (Kim 1990) are designed to address the
weaknesses of the relational model in data-intensive domains involving complex
data objects and complex object interactions, such as CAD/CAM software, com-
puter graphics and information retrieval. According to the O-O programming
paradigm on which these models are based, they represent data as a collection of

1 An Introduction to Graph Data Management 7

objects that are organized into classes, and have complex values and methods. O-
O data models are related to graph data models in their explicit or implicit use of
graph structures in definitions. Nevertheless, there are important differences with
respect to the approach for deciding how to model the world. O-O data models view
the world as a set of complex objects having certain state (data), where interaction
is via method passing. On the other hand, graph data models view the world as a
network of relations, emphasizing data interconnection, and the properties of these
relations. O-O data models focus on object dynamics, their values and methods.

Semistructured data models (Buneman 1997) were motivated by the increased
existence of semistructured data (also called unstructured data), data exchange, and
data browsing mainly on the web. In semistructured data, the structure is irregular,
implicit and partial; the schema does not restrict the data, it only describes it, a
feature that allows extensible data exchanges; the schema is large and constantly
evolving; the data is self-describing, as it contains schema information. Represen-
tative semistructured models are OEM (Papakonstantinou et al. 1995) and Lorel
(Abiteboul et al. 1997). Many of these ideas can be seen in current semistructured
languages like XML or JSON. Generally, semistructured data are represented using
a tree-like structure. However, cycles between data nodes are possible, which leads
to graph-like structures as in graph data models.

1.3 Graph Database Models

All graph data models have as their formal foundation variations on the basic
mathematical definition of a graph, for example, directed or undirected graphs,
labeled or unlabeled edges and nodes, properties on nodes and edges, hypergraphs
and hypernodes.

The most simple model is a plain labeled graph, that is, a graph with nodes and
edges as everyone knows it. Although highly easy to learn, it has the drawback that
it is difficult to modularize the information it represents. The notions of hypernodes
and hypergraphs address this problem. Hypergraphs, by enhancing the notion of
simple edge, allow the representation of multiple complex relations. On the other
hand, hypernodes modularize the notion of node, by allowing nesting graphs inside
nodes. As drawbacks, both models use complex data structures that make their use
and implementation less intuitive.

Regarding simplicity, one of the most popularized models is the semistructured
model, which uses the most simple version of a graph, namely, a tree, the most
common and intuitive way of organizing our data (e.g., directories). Finally, the
most common models are slightly enhanced versions of the plain graphs. One of
them, the RDF model, gives a light typing to nodes, and considers edges as nodes,
giving uniformity to the information objects in the model. The other, the property
graph model, allows to add properties to edges and nodes.

Next, we will present these models and show a paradigmatic example of each.
We will use the toy genealogy database presented in Fig. 1.1.

8 R. Angles and C. Gutierrez

Fig. 1.1 A relational database of genealogical data. The table PERSON contains information
about people, and the table PARENT contains pairs of people related by the children of relationship

Fig. 1.2 Gram. At the schema level we use generalized names for definition of entities and
relations. At the instance level, we create instance labels (e.g., PERSON_1) to represent entities,
and use the edges (defined in the schema) to express relations between data and entities

1.3.1 The Basics: Labeled Graphs

The most basic data structure for graph database models is a directed graph with
nodes and edges labeled by some vocabulary. A good example is Gram (Amann and
Scholl 1992), a graph data model motivated by hypertext querying.

A schema in Gram is a directed labeled multigraph, where each node is labeled
with a symbol called a type, which has associated a domain of values. In the
same way, each edge has assigned a label representing a relation between types
(see example in Fig. 1.2). A feature of Gram is the use of regular expressions for
explicit definition of paths called walks. An alternating sequence of nodes and edges
represents a walk, which combined with other walks forms other special objects
called hyperwalks.

For querying the model (particularly path-like queries), an algebraic language
based on regular expressions is proposed. For this purpose a hyperwalk algebra
is defined, which presents unary operations (projection, selection, renaming) and
binary operations (join, concatenation, set operations), all closed under the set of
hyperwalks.

1 An Introduction to Graph Data Management 9

1.3.2 Complex Relations: The Hypergraph Model

A hypergraph is a generalization of a graph where the notion of edge is extended
to hyperedge, which relates to an arbitrary set of nodes (Berge 1973). Hypergraphs
allow the definition of complex objects by using undirected hyperedges, functional
dependencies by using directed hyperedges, object-ID and multiple structural
inheritance.

A good representative case is GROOVY (Levene and Poulovassilis 1991), an
object-oriented data model that is formalized using hypergraphs. An example of a
hypergraph schema and instance is presented in Fig. 1.3. The model defines a set
of structures for an object data model: value schemas, objects over value schemas,
value functional dependencies, object schemas, objects over object schemas and
class schemas. The model shows that these structures can be defined in terms of
hypergraphs.

Groovy also includes a hypergraph manipulation language (HML) for querying
and updating hypergraphs. It has two operators for querying hypergraphs by
identifier or by value, and eight operators for manipulation (insertion and deletion)
of hypergraphs and hyperedges.

Fig. 1.3 GROOVY. At the schema level (left), we model an object PERSON as an hypergraph
that relates the attributes NAME, LASTNAME and PARENTS. Note the value functional depen-
dency (VFD) NAME,LASTNAME → PARENTS logically represented by the directed hyperedge
({NAME,LASTNAME} {PARENTS}). This VFD asserts that NAME and LASTNAME uniquely
determine the set of PARENTS

10 R. Angles and C. Gutierrez

1.3.3 Nested Graphs: The Hypernode Model

A hypernode is a directed graph whose nodes can themselves be graphs (or
hypernodes), allowing nesting of graphs. Hypernodes can be used to represent
simple (flat) and complex objects (hierarchical, composite and cyclic) as well
as mappings and records. A key feature is its inherent ability to encapsulate
information.

The hypernode model was introduced by Levene and Poulovassilis (1990). They
defined the model and a declarative logic-based language structured as a sequence
of instructions (hypernode programs), used for querying and updating hypernodes.
Later, Poulovassilis and Levene (1994) included the notion of schema and type
checking, introduced via the idea of types (primitive and complex), that were also
represented by nested graphs (See an example in Fig. 1.4). They also included a
rule-based query language called Hyperlog, which can support both querying and
browsing using logical rules as well as database updates, and is intractable in the
general case. In the third version of the model, Levene and Loizou (1995) discussed
a set of constraints (entity, referential and semantic) over hypernode databases.
Additionally, they proposed another query and update language called HNQL,
which uses compound statements to produce HNQL programs.

Summarizing, the main features of the Hypernode model are: a nested graph
structure that is simple and formal; the ability to model arbitrary complex objects
in a straightforward manner; underlying data structure of an object-oriented data
model; enhancement of the usability of a complex objects database system via a
graph-based user interface.

Fig. 1.4 Hypernode Model. The schema (left) defines a person as a complex object with the
properties name and lastname of type string, and parent of type person (recursively defined). The
instance (on the right) shows the relations in the genealogy among different instances of person

1 An Introduction to Graph Data Management 11

Fig. 1.5 Property graph data model. The main characteristic of this model is the occurrence of
properties in nodes and edges. Each property is represented as a pair property-name = “property-
value”

1.3.4 The Property Graph Model

A property graph is a directed, labeled, attributed multigraph. That is, a graph
where the edges are directed, both nodes and edges are labeled and can have any
number of properties (or attributes), and there can be multiple edges between any
two nodes (Rodriguez and Neubauer 2010). Properties are key/value pairs that
represent metadata for nodes and edges. In practice, each node of a property graph
has an identifier (unique within the graph) and zero or more labels. Node labels
could be associated to node typing in order to provide schema-based restrictions.
Additionally, each (directed) edge has a unique identifier and one or more labels.
Figure 1.5 shows an example of property graph.

Property graphs are used extensively in computing as they are more expressive1

than the simplified mathematical objects studied in theory. In fact, the property
graph model can express other types of graph models by simply abandoning or
adding particular features or components (Rodriguez and Neubauer 2010).

There is no standard query language for property graphs although some proposals
are available. Blueprints (2018) was one of the first libraries created for the property
graph data model. Blueprints is analogous to JDBC, but for graph databases.
Gremlin (2018) is a functional graph query language that allows to express complex
graph traversals and mutation operations over property graphs. Neo4j (2018)
provides Cypher (2018), a declarative query language for property graphs. The
syntax of Cypher, very similar to SQL via expressions match-where-return, allows
to easily express graph patterns and path queries. PGQL (van Rest et al. 2013), a
graph query language designed by Oracle researchers, is closely aligned to SQL
and supports powerful regular path expressions. G-CORE (Angles et al. 2018) is a
recent proposal that integrates the main and relevant features provided by old and
current graph query languages.

1Note that the expressiveness of a model is defined by ease of use, not by the limits of what can be
modeled.

12 R. Angles and C. Gutierrez

1.3.5 Web Data Graphs: The RDF Model

The Resource Description Framework (RDF) (Klyne and Carroll 2004) is a
recommendation of the W3C designed originally to represent metadata. One of the
main advantages (features) of the RDF model is its ability to interconnect resources
in an extensible way using graph-like structure for data.

One of the main advantages of RDF is its dual nature. In fact, there are two
possible readings of the model. From a knowledge representation perspective,
an atomic RDF expression is triple consisting of a subject (the resource being
described), a predicate (the property) and an object (the property value). Each
triple represents a logical statement of a relationship between the subject and the
object, and one could enhance this basic logic by adding rules and ontologies over
it (e.g., RDFS and OWL) A general RDF expression is a set of such triples called
an RDF Graph (see example in Fig. 1.6), which can be intuitively considered as
a semantic network. From the second perspective, the RDF model is the most
general representation of a graph, where edges are also considered nodes. In this
sense, formally it is not a traditional graph (Hayes and Gutierrez 2004). This allows
self-references, reification (i.e., making statements over statements), and that it is
essentially self-contained. The drawback of all these features is the complexity that
comes with this generalization, particularly for efficient implementation.

Fig. 1.6 RDF data model. Note that schema and instance are mixed together. The edges labeled
type disconnect the instance from the schema. The instance is built by the subgraphs obtained by
instantiating the nodes of the schema, and establishing the corresponding parent edges between
these subgraphs

1 An Introduction to Graph Data Management 13

SPARQL (Prud’hommeaux and Seaborne 2008) is the standard query language
for RDF. It is able to express complex graph patterns by means of a collection
of triple patterns whose solutions can be combined and restricted by using several
operators (i.e., AND, UNION, OPTIONAL and FILTER). The latest version of the
language, SPARQL 1.1 (Harris and Seaborne 2013), includes explicit operators to
express negation of graph patterns, arbitrary length path matching (i.e., reachabil-
ity), aggregate operators (e.g., COUNT), subqueries and query federation.

1.4 Querying Graph Databases

Data manipulation and querying in graph data management is expressed by graph
operations or graph transformations whose main primitives are based on graph
features like neighborhoods, graph patterns and paths. Another approach is to
express all queries using a few powerful graph manipulation primitives enclosed
by a graph query language.

This section contains a brief overview of the research on querying graph
databases. First, we present a broad classification of queries studied in the context of
graph databases, including a description of their characteristics (e.g., complexity and
expressiveness). After that, we present a review of graph query languages, including
short descriptions of some proposals we consider representative of the area.

1.4.1 Classification of Graph Queries

In this section, we present a broad classification of queries that have been largely
studied in graph theory and can be considered essential for graph databases. We
grouped them in adjacency, pattern matching, reachability and analytical queries.

To fix notations, let us represent a graph database as a single-labeled directed
multigraph. Specifically, a tuple G = (N,E,L, δ, λN , λE), where N is a finite set
of nodes, E is a finite set of edges, L is a finite set of labels, δ : E → N2 is the
edge function that associates edges with pairs of nodes, λN : N → L is the node
labeling function, and λE : E → L is the edge labeling function. An edge e =
(n, n′) ∈ E will be represented as a triple (v,w, v′) where v = λN(n), w = λE(e)

and v′ = λN(n′). Nodes and edges will usually be referenced by using their labels.
Additionally, a path ρ in G is a sequence of edges (v0, w0, v1), (v1, w1, v2), . . . ,
(vm−1, wm−1, vm), where v0 and vm are the source and target nodes of the path,
respectively. The label of ρ is the sequence of labels w0, w1, . . . , wm−1.

14 R. Angles and C. Gutierrez

1.4.1.1 Adjacency Queries

The primary notion in this type of queries is node/edge adjacency. Two nodes are
adjacent (or neighbors) when there is an edge between them. Similarly, two edges
are adjacent when they share a common node. Examples of adjacency queries are:
“return the neighbors of a node v” or “check whether nodes v and v′ are adjacent.”
In spite of their simplicity, to compute efficiently adjacency queries could be a
challenge for big sparse graphs (Kowalik 2007).

The basic notion of adjacency can be extended to define more complex neigh-
borhood queries. For instance, the k-neighborhood of a root node v is the set of all
nodes that are reachable from v via a path of k edges, that is, the length of the path
is no more than k (Papadopoulos and Manolopoulos 2005). Similarly, the k-hops
of v returns all the nodes that are at a distance of k edges from v. Note that a k-
neighborhood query can be expressed as a composition of j -hops queries using set
union as 1-hops ∪ · · · ∪ k-hops (Dominguez-Sal et al. 2010a).

Several applications can benefit from adjacency queries, in particular those where
the notion of influence is an important concern. For instance, in information retrieval
adjacency queries are used for web ranking using hubs and authorities (Chang and
Chen 1998). In recommendation systems, they are used to obtain users with similar
interests (Dominguez-Sal et al. 2010a). In social networks, they can be used to
validate the well-known six-degrees-of-separation theory.

1.4.1.2 Pattern Matching Queries

The basic notion of graph pattern matching consists in finding the set of subgraphs of
a database graph that “match” a given graph pattern. A basic graph pattern is usually
defined as a small graph where some nodes and edges can be labeled with variables.
The purpose of the variables is to indicate unknown data and more importantly,
to define the output of the query (i.e., variables will be “filled” with solution
values). For instance, the expression (J ohn, f riend, ?y), (J ohn, f riend, ?z),
(?y, f riend, ?z) represents a graph pattern where ?x and ?y are variables. The
result or interpretation of this graph pattern could be “the pairs of friends of John
who are also friends.”

Graph pattern matching is typically defined in terms of subgraph isomorphism,
that is, to find all subgraphs of a database G that are isomorphic to a graph pattern P .
Hence, pattern matching deals with two problems: the graph isomorphism problem
that has a unknown computational complexity, and the subgraph isomorphism
problem that is an NP-complete problem (Gallagher 2006).

Graph pattern matching is easily identifiable in many application domains. For
instance, graph patterns are fundamental within the pattern recognition field (Conte
et al. 2004). In social network analysis, it is used to identify communities and social
positions (Fan 2012). In protein interaction networks, researchers are interested in
patterns that determine proteins with similar functions (Tian et al. 2007).

1 An Introduction to Graph Data Management 15

There are a number of variations on the basic notion of pattern matching:

• Graph patterns with structural extension or restrictions. A basic graph pattern
has been defined as a simple structure containing nodes, edges and variables;
however, this notion can be extended or restricted depending on the graph data
model. For instance, if the database is a property graph then a graph pattern
should support conditions over such properties.

• Complex graph patterns. In some cases, a collection of basic graph patterns
can be combined via specific operators (e.g., union, optional and difference) to
conform complex graph patterns. The semantics of these graph patterns can be
defined in terms of an algebra of graph patterns.

• Semantic matching. It consists in matching graphs based on specific interpre-
tations (i.e., semantics) given to nodes and edges. Such interpretations can be
defined via semantic rules (e.g., an ontology).

• Inexact matching. In this case the graph pattern matching algorithm returns a
ranked list of the most similar matches (instead of the original exact matching).
These algorithms employ a cost function to measure the similarity of the graphs
and error correction techniques to deal with noisy data.

• Approximate matching. This variation concerns the use of algorithms that find
approximate solutions to the pattern matching problem, that is, they offer
polynomial time complexity but are not guaranteed to find a solution. In case
of exact matching the algorithm will return some solutions, but not all matches.
For inexact matching, a close solution will be returned, but not the closest.

Very related to graph pattern matching is the area of graph mining (Aggarwal
and Wang 2010). This area includes the problems of frequent pattern mining,
clustering and classification. For instance, the goal of frequent pattern mining is
the discovery of common patterns, that is, to find subgraphs that occur frequently
in the entire database graph. The problem of computing frequent subgraphs is
particularly challenging and computationally intensive, as it needs to compute graph
and subgraph isomorphisms. The discovery of patterns can be useful for many
application domains, including finding strongly connected groups in social networks
and finding frequent molecular structures in biological databases.

1.4.1.3 Reachability Queries (Connectivity)

One of the most characteristic problems in graph databases is to compute reachabil-
ity of information. In general terms, the problem of reachability tests whether two
given nodes are connected by a path. Reachability queries have been addressed in
traditional database models, in particular for querying relational and semistructured
databases (Agrawal and Jagadish 1987; Abiteboul and Vianu 1999). Yannakakis
(1990) surveyed a set of path problems relevant to the database area, including com-
puting transitive closures, recursive queries and the complexity of path searching.

In the context of graph databases, reachability queries are usually modeled as
path or traversal problems characterized by allowing restrictions over nodes and

16 R. Angles and C. Gutierrez

edges. Cruz et al. (1987) introduced the notion of Regular Path Query (RPQ) as a
way of expressing reachability queries. The basic structure of a regular path query
is an expression (?x, τ, ?y), where ?x and ?y are variables, and τ is a regular
expression. The goal of this RPQ is to find all pairs of nodes (?x, ?y) connected
by a path such that the concatenation of the labels along the path satisfies τ . Note
that variables ?x and ?y can be replaced by node labels (i.e., data values) in order
to define specific source and target nodes, respectively. For instance, the path query
(J ohn, f riend+, ?z) returns the people ?z that can be reached from “John” by
following “friend” edges.

The complex nature of path problems is such that their computations often
require a search over a sizable data space. The complexity of regular path queries
was initially studied by Mendelzon and Wood (1995) in terms of computing simple
paths (i.e., paths with no repeated nodes). Specifically, the problem of finding all
pairs of nodes connected by a simple path satisfying a given regular expression was
shown to be NP-complete in the size of the graph. Due to the high computational
complexity of RPQs under simple path semantics, researchers proposed a semantics
based on arbitrary paths. This semantics leads to tractable combined complexity for
RPQs and tractable data complexity for a family of expressive languages. See the
work of Barceló Baeza (2013) for a complete review about these issues.

Reachability queries are present in multiple application domains: in semistruc-
tured data they are used to query XML documents using XPath (Abiteboul and
Vianu 1999); in social networks they allow to discover people with common inter-
ests (Fan 2012); and in biological networks they allow to find specific biochemical
pathways between distant nodes (Tian et al. 2007). Additionally, reachability queries
are the basis for other real-life graph queries. Maybe the most important is the
shortest-path distance (also called the geodesic distance). For instance, in a road
network it is fundamental to calculate the minimum distance between two locations
(Zhu et al. 2013).

1.4.1.4 Analytical Queries

The queries of this type do not consult the graph structure; instead they are oriented
to measure quantitatively and usually in aggregate form topological features of the
database graph. Analytical queries can be supported via special operators that allow
to summarize the query results, or by ad hoc functions hiding complex algorithms.

Summarization queries can be expressed in a query language by using the so-
called aggregate operators (e.g., average, count, maximum, etc.). These operators
can be used to calculate the order of the graph (i.e., the number of nodes),
the degree of a node (i.e., the number of neighbors of the node), the mini-
mum/maximum/average degree in the graph, the length of a path (i.e., the number
of edges in the path), the distance between nodes (i.e., the length of a shortest path
between the nodes), among other “simple” analytical queries.

1 An Introduction to Graph Data Management 17

Complex analytical queries are related to important algorithms for graph analysis
and mining (see the work of Aggarwal and Wang (2010) for an extensive review).
Examples of such graph algorithms are:

• Characteristic path length. It is the average shortest path length in a network. It
measures the average degree of separation between the nodes.

• Connected components. It is an algorithm for extracting groups of nodes that can
reach each other via graph edges.

• Community detection. This algorithm deals with the discovery of groups whose
constituent nodes form more relationships within the group than with nodes
outside the group.

• Clustering coefficient. The clustering coefficient of a node is the probability that
the neighbors of the node are also connected to each other. The average clustering
coefficient of the whole graph is the average of the clustering coefficients of all
individual nodes.

• PageRank This algorithm, created in the context of web searching, models the
behavior of an idealized random web surfer. The PageRank score of a web
page represents the probability that the random web surfer chooses to view the
web page. This algorithm can be an effective method to measure the relative
importance of nodes in a data graph.

Complex analytical queries are the speciality of graph-processing frameworks
due to their facilities for implementing and running complex algorithms over large
graphs. More details about these type of queries can be found in articles about graph-
processing frameworks (Guo et al. 2014; Zhao et al. 2014).

1.4.2 A Short Review of Graph Query Languages

In the literature of graph data management there is substantial work on graph
query languages (GQLs). A review of GQLs proposed during the first wave
of graph databases was presented by Angles and Gutierrez (2008). Based on
this, Wood (2012) studied several GQLs focusing on their expressive power and
computational complexity. A review and comparison of practical query languages
provided by graph databases (available at the time) was presented by Angles
(2012). Barceló Baeza (2013) studied the problem of querying graph databases,
in particular the expressiveness and complexity of several navigational query
languages. Recently, Angles et al. (2017) presented a survey of the foundational
features underlying modern graph query languages.

Due to space constraint, we will not present a complete review of graph query
languages. Instead, we describe some of the languages we consider relevant and
useful to show the developments in the area. Moreover, we restrict our review to
“pure” GQLs, that is, those languages specifically designed to work with graph
data models. Figure 1.7 presents this subset of languages in chronological order.

18 R. Angles and C. Gutierrez

Fig. 1.7 Evolution of graph query languages: G (Cruz et al. 1987), G+ (Cruz et al. 1989),
Graphlog (Consens and Mendelzon 1990), GRE (Wood 1990), THQL (Watters and Shepherd
1990), HPQL (Levene and Poulovassilis 1990), HML (Levene and Poulovassilis 1991), Gram
(Amann and Scholl 1992), Hyperlog (Poulovassilis and Levene 1994), HNQL (Levene and Loizou
1995), HQL (Theodoratos 2002), PRPQ (Liu and Stoller 2006), SPARQL (Prud’hommeaux and
Seaborne 2008), GraphQL (He and Singh 2008), Gremlin (Rodriguez 2015), Cypher (2018),
SPARQL 1.1 (Harris and Seaborne 2013), PGQL (van Rest et al. 2013), PDQL (Angles et al.
2013) and G-CORE (Angles et al. 2018)

Fig. 1.8 Example of a graphical graph query expressed in the G query language

Depending on their inherent data model, the query languages can be grouped in:
languages for edge-labeled graphs (G, G+, Graphlog, GRE, Gram and PDQL),
languages for hypergraphs (HML, THQL and HQL), languages for nested graphs
(HPQL, Hyperlog and HNQL), languages for property graphs (PRPQ, GraphQL,
Gremlin, Cypher, PGQL and G-CORE), and RDF query languages (SPARQL and
SPARQL 1.1). Next, we present a brief description of some of them.

Cruz et al. (1987) proposed G, a query language that introduced the notion of
graphical query as a set of query graphs. A query graph (pattern) is a labeled,
directed multigraph in which the node labels may be either variables or constants,
and the edge labels can be regular expressions combining variables and constants.
The result of a graphical query Q with respect to a graph database G is the union of
all query graphs of Q which match subgraphs of G.

Figure 1.8 presents an example of a graphical query containing two query graphs,
Q1 and Q2. This query finds the first and last cities visited in all round-trips from
Toronto (“Tor”), in which the first and last flights are with Air Canada (“AC”) and
all other flights (if any) are with the same airline. Note that the last condition is

1 An Introduction to Graph Data Management 19

expressed by the edge labeled with regular expression w+. Thanks to the inclusion
of regular expressions, G is able to express recursive queries more general than
transitive closure. However, the evaluation of queries in G is of high computational
complexity due to its semantics based on simple paths.

G evolved into a more powerful language called G+ (Cruz et al. 1989). The notion
of graphical query proposed by G is extended in G+ to define a summary graph that
represents how to restructure the answer obtained by the query graphs. Additionally,
G+ allows to express aggregate functions over paths and sets of paths (i.e., it allows
to compute the size of the shortest path).

GraphLog (Consens and Mendelzon 1989) is a query language that extends G+
by adding negation and unifying the concept of a query graph. A query is now
a single graph pattern containing one distinguished edge that corresponds to the
restructured edge of the summary graph in G+. The effect of a GraphLog query is
to find all instances of the pattern that occur in the database graph and for each one
of them define a virtual link represented by the distinguished edge. Consens and
Mendelzon (1990) have shown that the expressive power of GraphLog is equivalent
to three well-known query classes: stratified linear Datalog programs, queries
computable in nondeterministic logarithmic space, and queries expressible with
a transitive closure operator plus first-order logic. Based on this, the GraphLog’s
authors argued that the language is able to express “real life” recursive queries.

Gram (Amann and Scholl 1992) is a query language based on walks2 and
hyperwalks. Assuming that T is the union of node and edge types in the database
graph, a walk expression is a regular expression over T without alternation
(union), whose language contains only alternating sequences of node and edge
types. A hyperwalk is a set of walk expressions connected by at least one node
type. Assuming a database graph containing travel agency data, the expression
JOURNEY first (STOP next)* + STOP in CITY is a hyperwalk containing two
walk expressions connected by the node type STOP. Hence, the above hyperwalk
describes the walks going from a node (of type) JOURNEY to one of its nodes
(of type) STOP in a CITY. The set of walks in the database satisfying a hyperwalk
expression r is called the instance of r and is denoted by I (r). Based on these
notions, Gram defines a hyperwalk algebra with operations closed under the set of
hyperwalks (e.g., projection, selection, join and set operations). For example, the
algebra expression

πJOURNEY (σMunich(CIT Y)I(JOURNEY first(STOP next)* STOP in CITY)))

computes all journeys that traverse Munich.
Although less popular, there are also languages for manipulating and querying

hypergraphs and hypernodes (nested graphs). For instance, GROOVY (Levene
and Poulovassilis 1991) introduced a Hypergraph Manipulation Language (HML)
for querying and updating labeled hypergraphs, which defines basic operators for

2In graph theory, a walk is an alternating sequence of nodes and connecting edges, which begins
and ends with a node, and where any node and any edge can be visited any number of times.

20 R. Angles and C. Gutierrez

manipulation (addition and deletion) and querying of hypergraphs and hyperedges.
On the other side, Levene and Poulovassilis (1990) defined a logic-based query and
update language for hypernodes where a query is expressed as a hypernode program
consisting of a set of hypernode rules.

GraphQL (He and Singh 2008) is a graph query language for property graphs,
which is based on the use of formal grammars for composing and manipulating
graph structures. A graph grammar is a finite set of graph motifs where a graph
motif can be either a simple graph or composed of other graph motifs by means of
concatenation, disjunction and repetition. For instance, consider the following graph
grammar containing three graph motifs:

graph G1 { node v1, v2; edge e1(v1,v2); }
graph G2 { node v2, v3; edge e2(v2,v3); }
graph G3 { graph G1 as X; graph G2 as Y; edge e3(X.v2, Y.v2) }.

The graph motifs G1 and G2 are simple, whereas G3 is a complex graph motif that
concatenates the graph motifs G1 and G2 via the edge e3 and the common node v2.
The language of a graph grammar is the set of all the graphs derivable from graph
motifs of that grammar. The query language is based on graph patterns consisting of
a graph motif plus a predicate on attributes of the motif. A predicate is a combination
of boolean or arithmetic comparison expressions. For instance, the expression

graph P { node v1, v2; edge e1(v1,v2) }
where v1.name=“A” and v2.year > 2000;

describes a graph pattern where two nodes v1, v2 must be connected by an edge e1,
and the nodes must satisfy the conditions following the where clause.

Note that most of the languages described above are more theoretical than
practical. Cypher (2018) is a declarative language for querying property graphs
implemented by the Neo4j graph database. The most basic query in Cypher consists
of an expression containing clauses START, MATCH and RETURN. For example,
assuming a friendship graph, the following query returns the name of the friends of
the persons named “John”:

START x=node:person(name="John")
MATCH (x)-[:friend]->(y)
RETURN y.name

The START clause specifies one or more starting points (nodes or edges) in the
database graph. The MATCH clause contains the graph pattern of the query. The
RETURN clause specifies which nodes, edges and properties in the matched data
will be returned by the query.

Cypher is able to express some types of reachability queries via path expressions.
For instance, the expression p = (a)-[:knows*]->(b) computes the paths from
node (a) to node (b), following only knows outgoing edges, and maintains
the solution in the path variable p. Additionally, there exist built-in functions to
calculate specific operations on nodes, edges, attributes and paths. For instance,
complementing the above path expression, the function shortestPath(p) returns
the shortest path between nodes (a) and (b).

1 An Introduction to Graph Data Management 21

SPARQL (Prud’hommeaux and Seaborne 2008) is the standard query language
for the RDF data model. A typical query in SPARQL follows the traditional
SELECT-FROM-WHERE structure where the FROM clause indicates the data
sources, the WHERE clause contains a graph pattern, and the SELECT clause
defines the output of the query (e.g., resulting variables). The simplest graph pattern,
called a triple pattern, is an expression of the form subject-predicate-object where
identifiers (i.e., URIs), values (RDF Literals) or variables (e.g., ?X) can be used to
represent a node-edge-node pattern. A complex graph pattern is a collection of triple
patterns whose solutions can be combined and restricted by using operators like
AND, UNION, OPTIONAL and FILTER. For instance, the following query returns
the names of persons described in the given data source (i.e., an RDF graph):

SELECT ?N
FROM <http://example.org/data.rdf>
WHERE { ?X rdf:type voc:Person . ?X voc:name ?N }

The latest version of the language, SPARQL 1.1 (Harris and Seaborne 2013),
includes novel features like negation of graph patterns, arbitrary length path
matching (i.e., reachability), aggregate operators (e.g., COUNT), subqueries and
query federation.

Although a GQL is normally related to a graph database model, this relation is
not exclusive. For instance, several object-oriented data models defined graph-based
languages to manipulate the objects in the database (e.g., GraphDB and G-Log), or
to represent database transformations (e.g., GOOD and GUL). A similar situation
occurred for semistructured data models when graph-oriented operations were used
to navigate the tree-based data (e.g., Lorel and UnQL). Additionally, several graph-
based query languages have been designed for specific applications domains, in
particular those related to complex networks, for instance social networks (Ronen
and Shmueli 2009), biological networks (Brijder et al. 2013), bibliographical
networks (Dries et al. 2009), the web (Dries et al. 2009) and the Semantic Web
(Harris and Seaborne 2013).

1.5 Graph Data Management Systems

The systems for graph data management can be classified into two main cate-
gories: graph databases and graph-processing frameworks. Although the problems
addressed for both groups are similar, they provide two different approaches for
storing and querying graph data, with their own advantages and disadvantages.

Graph databases aim at persistent management of graph data, allowing to
transactionally store and access graph data on a persistent medium. In this sense,
these provide efficient single-node solutions with limited scalability. On the other
hand, graph-processing frameworks aim to provide batch processing and analysis
of large graphs often in a distributed environment with multiple machines. These
solutions usually process the graph in memory, but different parts of the graph are
managed by distinct, distributed nodes.

22 R. Angles and C. Gutierrez

Closely related to graph databases are the systems for managing RDF data.
These systems, called RDF Triple Stores or RDF database systems, are specifically
designed to store collections of RDF triples, to support the standard SPARQL query
language, and possibly to allow some kind of inference via semantic rules. Although
Triple Stores are based on the RDF graph data model, they are specialized databases
with their own characteristics. Therefore, we will study them separately.

Next we present a review of current systems in the above categories, including a
short description of each of them.

1.5.1 Graph Database Systems

A graph database system (GDBS)—or just graph database—is a system specifically
designed for managing graph-like data following the basic principles of database
systems, that is, persistent data storage, physical/logical data independence, data
integrity and consistency. The research on graph databases has a long history,
at least since the 1980s. Although the first of these were primarily theoretical
proposals (with emphasis on graph database models), it is only recently that several
technological developments (e.g., powerful hardware to store and process graphs)
have made it possible to have practical systems.

The current “market” of graph databases includes systems providing most
of the major components in database management systems, including: storage
engine (with innate support for graph structures), database languages (for data
definition, manipulation and querying), indexes and query optimizer, transactions
and concurrency controllers, and external interfaces (user interface or API) for
system management.

Considering their internal implementation, we classify graph databases in two
types: native and nonnative graph databases. Native graph databases (see Table 1.1)
implement ad hoc data structures and indexes for storing and querying graphs.
Nonnative graph databases (see Table 1.2) make use of other database systems to
store graph data and implement query interfaces to execute graph queries over the
back-end system. Some of these systems are described below.

Table 1.1 List of native
graph database systems

System URL

Amazon Neptune https://aws.amazon.com/neptune/

AllegroGraph http://www.franz.com/agraph/allegrograph/

GraphBase https://graphbase.ai/

GraphChi https://github.com/GraphChi

HyperGraphDB http://www.hypergraphdb.org/

InfiniteGraph http://www.objectivity.com/products/infinitegraph/

InfoGrid http://infogrid.org/

Neo4j http://neo4j.com/

Sparksee/DEX http://www.sparsity-technologies.com/

TigerGraph https://www.tigergraph.com/

https://aws.amazon.com/neptune/
http://www.franz.com/agraph/allegrograph/
https://graphbase.ai/
https://github.com/GraphChi
http://www.hypergraphdb.org/
http://www.objectivity.com/products/infinitegraph/
http://infogrid.org/
http://neo4j.com/
http://www.sparsity-technologies.com/
https://www.tigergraph.com/

1 An Introduction to Graph Data Management 23

Table 1.2 List of nonnative graph database systems

System URL

ArangoDB http://www.arangodb.org

FlockDB https://github.com/twitter/flockdb/

JanusGraph http://janusgraph.org/

Microsoft Cosmos DB https://docs.microsoft.com/en-us/azure/cosmos-db

OQGraph https://mariadb.com/kb/en/mariadb/oqgraph-storage-engine/

Oracle spatial and graph http://www.oracle.com/technetwork/database/options/spatialandgraph/

OrientDB http://orientdb.com

Titan http://thinkaurelius.github.io/titan/

VelocityGraph https://velocitydb.com/VelocityGraph.aspx

AllegroGraph is one of the precursors in the current generation of graph
databases. It combines efficient memory utilization and disk-based storage. Some
of the most interesting features of AllegroGraph is its support for Lisp and Prolog
interfaces for querying the database. Although it was born as a graph database, its
current development is oriented to meet the Semantic Web standards. Additionally,
AllegroGraph provides special features for GeoTemporal Reasoning and Social
Network Analysis.

Neo4j is a native graph database that supports transactional applications and
graph analytics. Neo4j is based on a network-oriented model where relations are
first-class objects. It is fully written in Java and implements an object-oriented
API, a native disk-based storage manager for graphs, and a framework for graph
traversals. Cypher is the declarative graph query language provided by Neo4j.

Sparksee (formerly DEX) is a native graph database for persistent storage of
property graphs. Its implementation is based on bitmaps and other secondary struc-
tures, and provides libraries (APIs) in several languages for implementing graph
queries. Sparksee is being used in social, bibliographical and biological networks
analysis, media analysis, fraud detection and business intelligence applications of
indoor positioning systems.

HyperGraphDB is a system that implements the hypergraph data model (i.e.,
edges are extended to connect more than two nodes). This model allows a natural
representation in higher-order relations, and is particularly useful for modeling data
of areas like knowledge representation, artificial intelligence and bio-informatics.
Hypergraph stores the graph information in the form of key/value pairs that are
stored on BerkeleyDB.

InfiniteGraph is a database oriented to support large-scale graphs in a dis-
tributed environment. It aims the efficient traversal of relations across massive
and distributed data stores. Its focus of attention is to extend business, social and
government intelligence with graph analysis.

There are several papers comparing the features (Dominguez-Sal et al. 2010b;
Angles 2012; McColl et al. 2013) and performance (Vicknair et al. 2010; Ciglan
et al. 2012; Jouili and Vansteenberghe 2013) of graph databases. Additionally,

http://www.arangodb.org
https://github.com/twitter/flockdb/
http://janusgraph.org/
https://docs.microsoft.com/en-us/azure/cosmos-db
https://mariadb.com/kb/en/mariadb/oqgraph-storage-engine/
http://www.oracle.com/technetwork/database/options/spatialandgraph/
http://orientdb.com
http://thinkaurelius.github.io/titan/
https://velocitydb.com/VelocityGraph.aspx

24 R. Angles and C. Gutierrez

industrial benchmarking results for graph databases are provided by the Linked Data
Benchmark Council through the Social Network Benchmark (Erling et al. 2015).

1.5.2 Graph-Processing Frameworks

In addition to graph databases, a number of graph-processing frameworks have been
proposed to address the needs of processing complex and large-scale graph datasets.
These frameworks are characterized by in-memory batch processing and the use
of distributed and parallel-processing strategies. Note that distributed systems with
more computing and memory resources are able to process large-scale graphs, but
they can be less efficient than single-node platforms when specific graph queries are
executed.

On the one hand, generic data processing systems such as Hadoop, YARN,
Stratosphere and Pegasus have been adapted for graph processing due to their
facilities for batch data processing. Most of these systems are based on the
MapReduce programming model and implemented on top of the Hadoop platform,
the open-source version of MapReduce. By exploiting data-parallelism, these
systems are highly scalable and support a range of fault-tolerance strategies. Though
these systems improve the performance of iterative queries, users still need to
“think of” their analytical graph queries as MapReduce jobs. It is important to
note that implementing graph algorithms in these data-parallel abstractions can be
challenging (Xin et al. 2013). Additionally, these systems cannot take advantage of
the characteristics of graph-structured data and often result in complex job chains
and excessive data movement when implementing iterative graph algorithms (Zhao
et al. 2014).

On the other hand, graph-specific platforms (see Table 1.3) provide different
programming interfaces for expressing graph analytic algorithms. These platforms,
also called offline graph analytic systems, perform an iterative, batch processing
over the entire graph dataset until the computation satisfies a fixed-point or stopping
criterion. Therefore, these systems are particularly designed for computing graph

Table 1.3 List of graph-processing frameworks

System URL

Apache Giraph http://giraph.apache.org

BLADYG https://members.loria.fr/saridhi/files/software/bladyg/

GPS http://infolab.stanford.edu/gps/

GraphLab https://turi.com/

GraphX https://spark.apache.org/graphx/

Ligra http://jshun.github.io/ligra/docs/introduction.html

Microsoft GraphEngine https://www.graphengine.io/

PowerGraph https://github.com/jegonzal/PowerGraph

http://giraph.apache.org
https://members.loria.fr/saridhi/files/software/bladyg/
http://infolab.stanford.edu/gps/
https://turi.com/
https://spark.apache.org/graphx/
http://jshun.github.io/ligra/docs/introduction.html
https://www.graphengine.io/
https://github.com/jegonzal/PowerGraph

1 An Introduction to Graph Data Management 25

algorithms that require iterative, batch processing, for example, PageRank, recursive
relational queries, clustering, social network analysis, machine learning and data
mining algorithms (Khan and Elnikety 2014). Next, we briefly describe some of
these systems.

Pregel (Malewicz et al. 2010) is an API designed by Google for writing algo-
rithms that process graph data. Pregel is a node-centric programming abstraction
that adapts the Bulk Synchronous Parallel (BSP) model, which was developed to
address the problem of parallelizing jobs across multiple workers for scalability.
The fundamental computing paradigm of Pregel, called “think like a node,” defines
that graph computations are specified in terms of what each node has to compute;
edges are communication channels for transmitting computation results from one
node to another, and do not participate in the computation. To avoid communication
overheads, Pregel preserves data locality by ensuring computation is performed on
locally stored data.

Apache Giraph is an open-source implementation of Google Pregel. Giraph runs
workers as map-only jobs on Hadoop and uses HDFS for data input and output.
Giraph also uses Apache ZooKeeper for coordination, checkpointing and failure
recovery schemes. Giraph has incorporated several optimizations, has a rapidly
growing user base, and has been scaled by Facebook to graphs with a trillion edges.
Giraph is executed in-memory, which can speed-up job execution, but, for large
amounts of messages or big datasets, can also lead to crashes due to lack of memory.

GraphLab (Low et al. 2012) is an open-source, graph-specific distributed com-
putation platform implemented in C++. GraphLab uses the GAS decomposition
(Gather, Apply, Scatter), which looks similar to, but is fundamentally different
from, the BSP model. In the GAS model, a node accumulates information about
its neighborhood in the Gather phase, applies the accumulated value in the Apply
phase, and updates its adjacent nodes and edges and activates its neighboring nodes
in the Scatter phase. Another key difference is that GraphLab partitions graphs using
vertex cuts rather than edge cuts. Consequently, each edge is assigned to a unique
machine, while nodes are replicated in the caches of remote machines. Besides
graph processing, it also supports various machine learning algorithms.

Apache GraphX is an API for graphs and graph-parallel computation imple-
mented on top of Apache Spark (a general platform for big data processing). GraphX
unifies ETL, exploratory analysis, and iterative graph computation within a single
system. GraphX extends Spark with graphs based on Sparks Resilient Distributed
Datasets (RDDs). It allows to view the same data as both graphs and collections,
transform and join graphs with RDDs efficiently, and write custom iterative graph
algorithms.

There is an increasing body of work comparing graph-processing frameworks.
For instance, the first evaluation study of modern big data frameworks, including
Map-Reduce, Stratosphere, Hama, Giraph and Graphlab was presented by Elser
and Montresor (2013). Guo et al. (2014) presented a benchmarking suite for graph-
processing platforms. The suite was used to evaluate the performance of Hadoop,
YARN, Stratosphere, Giraph, GraphLab and Neo4j. Zhao et al. (2014) presented
a comparison study on parallel-processing systems, including Giraph, GPS and

26 R. Angles and C. Gutierrez

GraphLab. Han et al. (2014) presented a comparison considering optimizations
and several metrics done among Giraph, GPS, Mizan and GraphLab. LDBC
Graphalytics (Iosup et al. 2016) is an industrial-grade benchmark for large-scale
graph analysis on parallel and distributed platforms.

1.5.3 RDF Database Systems

An RDF database (also called Triple Store) is a specialized graph database for
managing RDF data. RDF defines a data model based on expressions of the form
subject-predicate-object (SPO) called RDF triples. Therefore, an RDF dataset is
composed of a large collection of RDF triples that implicitly form a graph. SPARQL
is the standard query language for RDF databases. It is a declarative language
that allows to express several types of graph patterns. Its most recent version
(SPARQL 1.1) supports advanced features like property paths, aggregate functions
and subqueries. Table 1.4 presents a list of RDF database systems. These systems
can be classified in three types: native RDF stores, relational-based RDF stores and
graph-based RDF stores.

A native RDF store is designed and optimized for the storage and retrieval of
RDF triples. The main challenge in this type of system is to all six permutation
indexes on the RDF data in order to provide efficient query processing for all
possible access patterns (Yuan et al. 2013; Atre et al. 2010). Examples of RDF
stores are Jena, RDF-3X (Yuan et al. 2013), 4store (Harris et al. 2009), TripleBit
(Yuan et al. 2013), HexaStore (Weiss et al. 2008), GraphDB and BrightstarDB.

There are several approaches for managing RDF data with a relational database.
A triple table refers to the approach of storing RDF data in a three-column table
with each row representing an SPO statement (Neumann and Weikum 2010). A
second approach is to store RDF data in a property table (Abadi et al. 2007; Chong
et al. 2005) with subject as the first column and the list of distinct predicates as the

Table 1.4 List of RDF database systems

System URL

Blazegraph https://www.blazegraph.com/

BrightstarDB http://brightstardb.com

GraphDB https://ontotext.com/products/graphdb/

gstore http://www.icst.pku.edu.cn/intro/leizou/projects/gStore.htm

Jena https://jena.apache.org/

RDF-3X https://code.google.com/archive/p/rdf3x/

Stardog http://stardog.com

TripleBit http://grid.hust.edu.cn/triplebit/

Virtuoso http://virtuoso.openlinksw.com/

3store http://sourceforge.net/projects/threestore/

https://www.blazegraph.com/
http://brightstardb.com
https://ontotext.com/products/graphdb/
http://www.icst.pku.edu.cn/intro/leizou/projects/gStore.htm
https://jena.apache.org/
https://code.google.com/archive/p/rdf3x/
http://stardog.com
http://grid.hust.edu.cn/triplebit/
http://virtuoso.openlinksw.com/
http://sourceforge.net/projects/threestore/

1 An Introduction to Graph Data Management 27

remaining columns. RDF data can also be stored by using multiple two-column
tables, one for each unique predicate. The first column is for subject, whereas
the other column is for object. This method, called column store with vertical
partitioning (Abadi et al. 2007), can be implemented over row-oriented or column-
oriented database systems. A third mechanism, called entity-oriented, treats the
columns of a relation as flexible storage locations that are not preassigned to any
predicate, but predicates are assigned to them dynamically, during insertion. The
assignment ensures that a predicate is always assigned to the same column or more
generally the same set of columns (Bornea et al. 2013). Some examples of relational-
based RDF stores are Virtuoso and 3store.

A graph-based approach focuses on storing RDF data as a graph (Zou et al. 2014;
Zeng et al. 2013; Morari et al. 2014). In this case, the RDF triples must be modeled
as classical graph nodes and edges, and the SPARQL queries must be transformed
into graph queries. Among the systems of this type we can mention gstore, Stardog,
TripleBit and Blazegraph.

There are several works comparing RDF databases (see, for example Schmidt
et al. 2008; Stegmaier et al. 2009; Faye et al. 2012; Cudré-Mauroux et al. 2013). The
Semantic Publishing Benchmark is a proposal of standard benchmark for evaluating
RDF database systems (Kotsev et al. 2016).

1.6 Conclusions

Graph data management is currently an ongoing and fast-developing area with
manifold application domains and increasing industrial interest. Today, there is a
broad landscape of systems and models for graph database management and deep
theoretical research on data models, query languages and algorithms that address
the challenges of the area. Slowly and increasingly, academia and industry are
reaching consensus on several of its features, such as data models, data formats,
query languages and benchmarks. All this is the consequence of having growing
amounts of datasets for which graphs are their natural model. In this regard, we are
living exciting times for graph data management.

Many challenges remain, though. Among the most important are the standardiza-
tion of data formats and query languages; the integration of graph systems with other
models, particularly the relational one; the deepening of the understanding of the
most novel features that graphs bring to the world of data, like paths, connectivity
and such; and the presentation and visualization of graph data. In this regard,
the creation of initiatives like The Linked Data Benchmark Council (http://www.
ldbcouncil.org/), Open Cypher (https://www.opencypher.org/), Linked Open Data
(http://linkeddata.org/) and several company developments (e.g., Amazon Neptune,
Microsoft Azure Cosmos DB, Oracle Spatial and Graph) are relevant to support and
spur the development of graph data management.

http://www.ldbcouncil.org/
http://www.ldbcouncil.org/
https://www.opencypher.org/
http://linkeddata.org/

28 R. Angles and C. Gutierrez

Acknowledgements R. Angles and C. Gutierrez were supported by the Millennium Nucleus
Center for Semantic Web Research under grant NC120004.

References

Abadi DJ, Marcus A, Madden SR, Hollenbach K (2007) Scalable semantic web data management
using vertical partitioning. In: Proceedings of the international conference on very large data
bases (VLDB), pp 411–422

Abiteboul S, Vianu V (1999) Regular path queries with constraints. J Comput Syst Sci 58:428–452
Abiteboul S, Quass D, McHugh J, Widom J, Wiener JL (1997) The Lorel query language for

semistructured data. Int J Digit Libr 1(1):68–88
Aggarwal CC, Wang H (eds) (2010) Managing and mining graph data. Advances in database

systems. Springer Science – Business Media, Berlin
Agrawal R, Jagadish HV (1987) Direct algorithms for computing the transitive closure of database

relations. In: Proceedings of the international conference on very large data bases (VLDB).
Morgan Kaufmann, Los Altos, pp 255–266

Amann B, Scholl M (1992) Gram: a graph data model and query language. In: Proceedings of the
European conference on hypertext technology (ECHT). ACM, New York, pp 201–211

Andries M, Gemis M, Paredaens J, Thyssens I, den Bussche JV (1992) Concepts for graph-oriented
object manipulation. In: Proceedings of international conference on extending database
technology (EDBT). Lecture notes in computer science, vol 580. Springer, Berlin, pp 21–38

Angles R (2012) A comparison of current graph database models. In: 4th international workshop
on graph data management: techniques and applications (GDM). ICDE workshop

Angles R, Gutierrez C (2008) Survey of graph database models. ACM Comput Surv 40(1):1–39
Angles R, Barceló P, Ríos G (2013) A practical query language for graph dbs. In: Proceedings of

the Alberto Mendelzon international workshop on foundations of data management (AMW)
Angles R, Arenas M, Barceló P, Hogan A, Reutter J, Vrgoĉ D (2017) Foundations of modern query

languages for graph databases. ACM Comput Surv 50(5):68
Angles R, Arenas M, Barceló P, Boncz P, Fletcher G, Gutierrez C, Lindaaker T, Paradies M,

Plantikow S, Sequeda J, van Rest O, Voigt H (2018) G-core: a core for future graph query
languages. In: Proceedings of the international conference on management of data (SIGMOD)

Atre M, Chaoji V, Zaki MJ, Hendler JA (2010) Matrix “bit” loaded: a scalable lightweight join
query processor for RDF data. In: Proceedings of the international conference on World Wide
Web. ACM, New York, pp 41–50

Barceló Baeza P (2013) Querying graph databases. In: Proceedings of the symposium on principles
of database systems (PODS). Invited tutorial. ACM, New York, pp 175–188

Berge C (1973) Graphs and hypergraphs. North-Holland, Amsterdam
Blueprints (2018) https://github.com/tinkerpop/blueprints/wiki
Bornea MA, Dolby J, Kementsietsidis A, Srinivas K, Dantressangle P, Udrea O, Bhattacharjee

B (2013) Building an efficient RDF store over a relational database. In: Proceedings of the
international conference on management of data (SIGMOD). ACM, New York, pp 121–132

Bray T, Paoli J, Sperberg-McQueen CM (1998) Extensible Markup Language (XML) 1.0, W3C
Recommendation. http://www.w3.org/TR/1998/REC-177-19980210

Brijder R, Gillis JJM, Van den Bussche J (2013) The DNA query language DNAQL. In:
Proceedings of the international conference on database theory (ICDT). ACM, New York,
pp 1–9

Buneman P (1997) Semistructured data. In: Proceedings of the symposium on principles of
database systems (PODS). ACM, New York, pp 117–121

Chang CS, Chen ALP (1998) Supporting conceptual and neighborhood queries on the World Wide
Web. IEEE Trans Syst Man Cybern 28(2):300–308

https://github.com/tinkerpop/blueprints/wiki
http://www.w3.org/TR/1998/REC-177-19980210

1 An Introduction to Graph Data Management 29

Chen PPS (1976) The entity-relationship model - toward a unified view of data. ACM Trans
Database Syst 1(1):9–36

Chong EI, Das S, Eadon G, Srinivasan J (2005) An efficient SQL-based RDF querying scheme.
In: Proceedings of the international conference on very large data bases. VLDB Endowment,
pp 1216–1227

Ciglan M, Averbuch A, Hluchy L (2012) Benchmarking traversal operations over graph databases.
In: Proceedings of the international conference on data engineering workshops. IEEE Computer
Society, New York, pp 186–189

Codd EF (1970) A relational model of data for large shared data banks. Commun ACM 13(6):377–
387

Consens MP, Mendelzon AO (1989) Expressing structural hypertext queries in graphlog. In:
Proceedings of the conference on hypertext. ACM, New York, pp 269–292

Consens MP, Mendelzon AO (1990) GraphLog: a visual formalism for real life recursion. In:
Proceedings of the symposium on principles of database systems (PODS). ACM, New York,
pp 404–416

Consens M, Mendelzon A (1993) Hy+: a hygraph-based query and visualization system. SIGMOD
Record 22(2):511–516

Conte D, Foggia P, Sansone C, Vento M (2004) Thirty years of graph matching in pattern
recognition. Int J Pattern Recognit Artif Intell 18(3):265–298

Cruz IF, Mendelzon AO, Wood PT (1987) A graphical query language supporting recursion. In:
Proceedings of the international conference on management of data (SIGMOD). ACM, New
York, pp 323–330

Cruz IF, Mendelzon AO, Wood PT (1989) G+: recursive queries without recursion. In: Proceedings
of the international conference on expert database systems (EDS). Addison-Wesley, Reading,
pp 645–666

Cudré-Mauroux P, Enchev I, Fundatureanu S, Groth P, Haque A, Harth A, Keppmann F, Miranker
D, Sequeda J, Wylot M (2013) NoSQL databases for RDF: an empirical evaluation. In:
Proceedings of the international semantic web conference (ISWC). Lecture notes in computer
science, vol 8219. Springer, Berlin, pp 310–325

Cypher (2018) http://neo4j.com/developer/cypher-query-language/
Dominguez-Sal D, Martinez-Bazan N, Muntes-Mulero V, Baleta P, Larriba-Pey JL (2010a) A

discussion on the design of graph database benchmarks. In: Proceedings of the technology
conference on performance evaluation and benchmarking (TPCTC)

Dominguez-Sal D, Urbón-Bayes P, Giménez-Vañó A, Gómez-Villamor S, Martínez-Bazán N,
Larriba-Pey JL (2010b) Survey of graph database performance on the HPC scalable graph
analysis benchmark. In: Proceedings of the international conference on web-age information
management (WAIM). Springer, Berlin, pp 37–48

Dries A, Nijssen S, De Raedt L (2009) A query language for analyzing networks. In: Proceedings of
the conference on information and knowledge management (CIKM). ACM, New York, pp 485–
494

Elser B, Montresor A (2013) An evaluation study of BigData frameworks for graph processing. In:
Proceedings of the international conference on big data. IEEE, New York, pp 60–67

Erling O, Averbuch A, Larriba-Pey J, Chafi H, Gubichev A, Prat A, Pham MD, Boncz P (2015) The
LDBC social network benchmark: interactive workload. In: Proceedings of the international
conference on management of data. SIGMOD. ACM, New York, pp 619–630

Fan W (2012) Graph pattern matching revised for social network analysis. In: Proceedings of the
international conference on database theory (ICDT). ACM, New York, pp 8–21

Faye DC, Cure O, Blin G (2012) A survey of RDF storage approaches. ARIMA J 15:11–35
Gallagher B (2006) Matching structure and semantics: a survey on graph-based pattern matching.

In: AAAI fall symposium on capturing and using patterns for evidence detection, pp 45–53
Gemis M, Paredaens J (1993) An object-oriented pattern matching language. In: Proceedings of

the international symposium on object technologies for advanced software. Springer, Berlin,
pp 339–355

http://neo4j.com/developer/cypher-query-language/

30 R. Angles and C. Gutierrez

Graves M, Bergeman ER, Lawrence CB (1995) A graph-theoretic data model for genome mapping
databases. In: Proceedings of the Hawaii international conference on system sciences (HICSS).
IEEE Computer Society, New York, p 32

Gremlin (2018) http://tinkerpop.apache.org/gremlin.html
Guo Y, Biczak M, Varbanescu AL, Iosup A, Martella C, Willke TL (2014) How well do

graph-processing platforms perform? an empirical performance evaluation and analysis. In:
Proceedings of international parallel and distributed processing symposium. IEEE Computer
Society, New York, pp 395–404

Gutiérrez A, Pucheral P, Steffen H, Thévenin JM (1994) Database graph views: a practical model
to manage persistent graphs. In: Proceedings of the international conference on very large data
bases (VLDB). Morgan Kaufmann, Los Altos, pp 391–402

Güting RH (1994) GraphDB: modeling and querying graphs in databases. In: Proceedings of the
international conference on very large data bases (VLDB). Morgan Kaufmann, Los Altos,
pp 297–308

Gyssens M, Paredaens J, den Bussche JV, Gucht DV (1990) A graph-oriented object database
model. In: Proceedings of the symposium on principles of database systems (PODS). ACM,
New York, pp 417–424

Han M, Daudjee K, Ammar K, Özsu MT, Wang X, Jin T (2014) An experimental comparison of
pregel-like graph processing systems. Proc VLDB Endow 7(12):1047–1058

Harris S, Seaborne A (2013) SPARQL 1.1 Query Language, W3C Recommendation. https://www.
w3.org/TR/sparql11-query/

Harris S, Lamb N, Shadbolt N (2009) 4store: the design and implementation of a clustered RDF
store. In: Proceedings of scalable semantic web knowledge base systems (SSWS), pp 94–109

Hayes J, Gutierrez C (2004) Bipartite graphs as intermediate model for RDF. In: Proceedings of the
international semantic web conference (ISWC). Lecture notes in computer science, vol 3298.
Springer, Berlin, pp 47–61

He H, Singh AK (2008) Graphs-at-a-time: query language and access methods for graph databases.
In: Proceedings of the international conference on management of data (SIGMOD). ACM, New
York, pp 405–418

Hidders J (2002) Typing graph-manipulation operations. In: Proceedings of the international
conference on database theory (ICDT). Springer, Berlin, pp 394–409

Hidders J, Paredaens J (1993) GOAL, a graph-based object and association language. In: Advances
in database systems: implementations and applications. CISM. Springer, Wien, pp 247–265

Iosup A, Hegeman T, Ngai WL, Heldens S, Prat-Pérez A, Manhardto T, Chafio H, Capotă M,
Sundaram N, Anderson M, Tănase IG, Xia Y, Nai L, Boncz P (2016) LDBC graphalytics: a
benchmark for large-scale graph analysis on parallel and distributed platforms. Proc VLDB
Endow 9(13):1317–1328

Jouili S, Vansteenberghe V (2013) An empirical comparison of graph databases. In: Proceedings
of the international conference on social computing (SocialCom), pp 708–715

Khan A, Elnikety S (2014) Systems for big-graphs. In: Proceedings of the international conference
on very large data bases (VLDB)

Kiesel N, Schurr A, Westfechtel B (1996) GRAS: a graph-oriented software engineering database
system. In: IPSEN book. Pergamon, New York, pp 397–425

Kim W (1990) Object-oriented databases: definition and research directions. IEEE Trans Knowl
Data Eng 2(3):327–341

Klyne G, Carroll J (2004) Resource description framework (RDF) concepts and abstract syntax.
https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

Kotsev V, Minadakis N, Papakonstantinou V, Erling O, Fundulaki I, Kiryakov A (2016) Bench-
marking RDF query engines: the LDBC semantic publishing benchmark. In: Proceedings of
the workshop on benchmarking linked data, co-located with the international semantic web
conference (ISWC)

Kowalik L (2007) Adjacency queries in dynamic sparse graphs. Inform Process Lett 102:191–195

http://tinkerpop.apache.org/gremlin.html
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

1 An Introduction to Graph Data Management 31

Kunii HS (1987) DBMS with graph data model for knowledge handling. In: Proceedings of the
fall joint computer conference on exploring technology: today and tomorrow. IEEE Computer
Society Press, Los Alamitos, pp 138–142

Kuper GM, Vardi MY (1984) A new approach to database logic. In: Proceedings of the symposium
on principles of database systems (PODS). ACM, New York, pp 86–96

Levene M, Loizou G (1995) A graph-based data model and its ramifications. IEEE Trans Knowl
Data Eng 7(5):809–823

Levene M, Poulovassilis A (1990) The hypernode model and its associated query language. In:
Proceedings of the Jerusalem conference on information technology. IEEE Computer Society
Press, Los Alamitos, pp 520–530

Levene M, Poulovassilis A (1991) An object-oriented data model formalised through hypergraphs.
Data Knowl Eng 6(3):205–224

Liu YA, Stoller SD (2006) Querying complex graphs. In: Proceedings of the international
symposium on practical aspects of declarative languages. Springer, Berlin, pp 16–30

Low Y, Bickson D, Gonzalez J, Guestrin C, Kyrola A, Hellerstein JM (2012) Distributed
GraphLab: a framework for machine learning and data mining in the cloud. Proc VLDB
Endow 5(8):716–727

Mainguenaud M (1992) Simatic XT: a data model to deal with multi-scaled networks. Comput
Environ Urban Syst 16:281–288

Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, Czajkowski G (2010) Pregel:
a system for large-scale graph processing. In: Proceedings of the international conference on
management of data (SIGMOD). ACM, New York, pp 135–146

McColl R, Ediger D, Poovey J, Campbell D, Bader DA (2013) A brief study of open source graph
databases. http://arxiv.org/abs/1309.2675

McGuinness DL, van Harmelen F (2004) OWL web ontology language overview, W3C recom-
mendation. https://www.w3.org/TR/owl-features/

Mendelzon AO, Wood PT (1995) Finding regular simple paths in graph databases. SIAM J
Comput 24(6):1235–1258

Morari A, Castellana V, Villa O, Tumeo A, Weaver J, Haglin D, Choudhury S, Feo J (2014) Scaling
semantic graph databases in size and performance. IEEE Micro 34(4):16–26

Neo4j (2018) http://neo4j.com/
Neumann T, Weikum G (2010) The RDF-3X engine for scalable management of RDF data. VLDB

J 19(1):91–113
Papadopoulos AN, Manolopoulos Y (2005) Nearest neighbor search - a database perspective.

Series in computer science. Springer, Berlin
Papakonstantinou Y, Garcia-Molina H, Widom J (1995) Object exchange across heterogeneous

information sources. In: Proceedings of the international conference on data engineering
(ICDE). IEEE Computer Society, New York, pp 251–260

Paredaens J, Peelman P, Tanca L (1995) G-Log: a graph-based query language. IEEE Trans Knowl
Data Eng 7:436–453

Peckham J, Maryanski FJ (1988) Semantic data models. ACM Comput Surv 20(3):153–189
Poulovassilis A, Levene M (1994) A nested-graph model for the representation and manipulation

of complex objects. ACM Trans Inform Syst 12(1):35–68
Prud’hommeaux E, Seaborne A (2008) SPARQL query language for RDF, W3C recommendation.

https://www.w3.org/TR/rdf-sparql-query/
Rodriguez MA (2015) The gremlin graph traversal machine and language (invited talk). In:

Proceedings of the symposium on database programming languages. ACM, New York, pp 1–10
Rodriguez MA, Neubauer P (2010) Constructions from dots and lines. Bull Am Soc Inf Sci

Technol 36(6):35–41
Ronen R, Shmueli O (2009) SoQL: a language for querying and creating data in social networks.

In: Proceedings of the international conference on data engineering (ICDE). IEEE Computer
Society, New York, pp 1595–1602

http://arxiv.org/abs/1309.2675
https://www.w3.org/TR/owl-features/
http://neo4j.com/
https://www.w3.org/TR/rdf-sparql-query/

32 R. Angles and C. Gutierrez

Roussopoulos N, Mylopoulos J (1975) Using semantic networks for database management. In:
Proceedings of the international conference on very large data bases (VLDB). ACM, New York,
pp 144–172

Sakr S, Pardede E (2011) Graph data management: techniques and applications, 1st edn. IGI
Global, Hershey

Schmidt M, Hornung T, Küchlin N, Lausen G, Pinkel C (2008) An experimental comparison of
RDF data management approaches in a SPARQL benchmark scenario. In: Proceedings of the
international semantic web conference (ISWC). Springer, Berlin, pp 82–97

Shipman DW (1981) The functional data model and the data language DAPLEX. ACM Trans
Database Syst 6(1):140–173

Stegmaier F, Grobner U, Dolller M, Kosch H, Baese G (2009) Evaluation of current RDF
database solutions. In: Proceedings of the international workshop of the multimedia metadata
community on semantic multimedia database technologies (SeMuDaTe)

Theodoratos D (2002) Semantic integration and querying of heterogeneous data sources using
a hypergraph data model. In: Proceedings of the British national conference on databases
(BNCOD). Lecture notes in computer science. Springer, Berlin, pp 166–182

Tian Y, McEachin RC, Santos C, States DJ, Patel JM (2007) Saga: a subgraph matching tool for
biological graphs. Bioinformatics 23(2):232–239

Tompa FW (1989) A data model for flexible hypertext database systems. ACM Trans Inform Syst
7(1):85–100

van Rest O, Hong S, Kim J, Meng X, Chafi H (2013) Pgql: a property graph query language. In:
Proceedings of the international workshop on graph data management experiences and systems
(GRADES)

Vicknair C, Macias M, Zhao Z, Nan X, Chen Y, Wilkins D (2010) A comparison of a graph
database and a relational database: a data provenance perspective. In: Proceedings annual
southeast regional conference. ACM, New York, pp 1–6

Watters C, Shepherd MA (1990) A transient hypergraph-based model for data access. ACM Trans
Inform Syst 8(2):77–102

Weiss C, Karras P, Bernstein A (2008) Hexastore: sextuple indexing for semantic web data
management. Proc VLDB Endow 1(1):1008–1019

Wood PT (1990) Factoring augmented regular chain programs. In: Proceedings of the international
conference on very large data bases (VLDB). Morgan Kaufmann, Los Altos, pp 255–263

Wood PT (2012) Query languages for graph databases. SIGMOD Record 41(1):50–60
Xin RS, Gonzalez JE, Franklin MJ, Stoica I (2013) GraphX: a resilient distributed graph system on

spark. In: Proceedings of international workshop on graph data management experiences and
systems (GRADES). ACM, New York, pp 1–6

Yannakakis M (1990) Graph-theoretic methods in database theory. In: Proceedings of the
symposium on principles of database systems (PODS). ACM, New York, pp 230–242

Yuan P, Liu P, Wu B, Jin H, Zhang W, Liu L (2013) TripleBit: a fast and compact system for large
scale RDF data. Proc VLDB Endow 6(7):517–528

Zeng K, Yang J, Wang H, Shao B, Wang Z (2013) A distributed graph engine for web scale RDF
data. Proc VLDB Endow 6(4):265–276

Zhao Y, Yoshigoe K, Xie M, Zhou S, Seker R, Bian J (2014) Evaluation and analysis of distributed
graph-parallel processing frameworks. J Cyber Secur Mobil 3(3):289–316

Zhu AD, Ma H, Xiao X, Luo S, Tang Y, Zhou S (2013) Shortest path and distance queries on road
networks: towards bridging theory and practice. In: Proceedings of the international conference
on management of data (SIGMOD). ACM, New York, pp 857–868

Zou L, Özsu M, Chen L, Shen X, Huang R, Zhao D (2014) gStore: a graph-based SPARQL query
engine. VLDB J 23(4):565–590

Chapter 2
Graph Visualization

Peter Eades and Karsten Klein

Abstract Graphs provide a versatile model for data from a large variety of
application domains, for example, software engineering, telecommunication, and
biology. Understanding the information that is represented by the graph is crucial
for scientists and engineers to understand critical issues in these domains. Graph
visualization is the process of creating a drawing of a graph so that a human can
understand the graph. However, the depth of understanding depends on the quality of
the graph representation. Good visualization can facilitate efficient visual analysis of
the data to detect patterns and trends. Important aspects of the development of graph
drawing methods are the efficiency and accuracy of the algorithms, and the quality
of the resulting picture. In this chapter, we discuss the geometric properties of good
graph visualizations as node-link diagrams, and describe methods for constructing
good layouts of graphs.

2.1 Introduction

Graph visualization is the process of making a drawing of a graph so that a human
can understand the graph. This is illustrated as the graph visualization pipeline
in Fig. 2.1. A drawing function D takes a graph G from a graph dataset (a) and
produces a graph drawing D(G) (b). A perception function P takes the drawing
D(G) and produces some knowledge P(D(G)) in the human (c). The drawing
function D can be executed with pen and paper by a human, but since the advent
of computer graphics in the 1970s, there has been increasing interest in executing

P. Eades
University of Sydney, Sydney, NSW, Australia
e-mail: peter.eades@sydney.edu.au

K. Klein (�)
Monash University, Melbourne, VIC, Australia

University of Konstanz, Konstanz, Germany
e-mail: karsten.klein@uni-konstanz.de

© Springer International Publishing AG, part of Springer Nature 2018
G. Fletcher et al. (eds.), Graph Data Management, Data-Centric Systems
and Applications, https://doi.org/10.1007/978-3-319-96193-4_2

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96193-4_2&domain=pdf
mailto:peter.eades@sydney.edu.au
mailto:karsten.klein@uni-konstanz.de
https://doi.org/10.1007/978-3-319-96193-4_2

34 P. Eades and K. Klein

Graph Graph drawing Human

(a) (b) (c)

Fig. 2.1 A graph visualization pipeline

William

Keith

George

Brian

Morgan

John

Riley Lee

Michael

Paul

Brian Keith, John, Michael, William

George John, Paul, William

John Brian, George, Paul

Keith Brian, Michael, Morgan, William

Lee Morgan, Riley

Michael Brian, Keith, Paul

Morgan Keith, Lee, Riley

Paul George, John, Michael

Riley Lee, Morgan

William Brian, George, Keith

Keith is important

(a) (b) (c)

Fig. 2.2 A graph, a drawing of that graph, and some knowledge perceived by the human

this function on a computer; in this chapter, we discuss computer algorithms that
implement D. The perception function P is executed by the human’s perceptual
and cognitive facilities.

As an illustration, consider the social network in Fig. 2.2; it describes a friendship
relation between a group of people. It is represented in Fig. 2.2a as a table with the
first column listing the people, and the second column listing the friends of each
person. For example, the friends of Brian are Keith, John, Michael, and William.
The drawing function D produces the picture in Fig. 2.2b; each person is represented
by a box with text, and the friendship relation is represented by lines connecting the
boxes. The perception function P takes the picture as input and produces some
knowledge in the human. This could be low-level knowledge such as “John and
George are friends,” or higher-level knowledge such as “Keith is important.”

Graphs (aka networks) are one of the most pervasive models used in technology;
social networks are prime examples, but we also find graphs in areas as diverse as
biotechnology, in forensics, in software engineering, and epidemiology. For humans
to make sense of these graphs, a picture or graph drawing is helpful. In this chapter,
we introduce the basic methods for creating pictures of graphs that are helpful for
humans.

2 Graph Visualization 35

The graph data in Fig. 2.1a is a set of attributed graphs. Each such graph consists
of a set of vertices (sometimes called “nodes”) and a set of binary relationships
(often called “edges”) between the vertices. The vertices and edges usually have
attributes. For example, the vertices in Fig. 2.2 have textual names. Edge attributes
could include, for example, a number that quantifies the strength of a friendship.

The graph drawing in Fig. 2.1b is a “node-link” diagram: it consists of a glyph
D(u) for each vertex u of the graph, and a curve segment D(e) connecting the
glyphs D(u) and D(v) for each edge e = (u, v) of the graph. Each glyph D(u)

has geometric attributes (such as position and size) and graphical attributes (such
as color). Similarly, each curve D(e) has geometric attributes (such as its route)
and graphical attributes (such as color and linestyle). Note that other kinds of
graph drawing are possible; see Sect. 2.5.4 below. However, in this chapter we will
concentrate on the node-link metaphor, as it is the most commonly used.

In practice, it is relatively easy to find a good mapping from the vertex and edge
attributes to the graphical attributes of glyphs and lines, using well-established rules
of graphic design (see, e.g., Tufte 1992). A large variety of graphical notations
exist in common application areas. Figures 2.3 and 2.4 show real-world examples
of attribute mappings from biology. The representation in Fig. 2.3 uses the Systems
Biology Graphical Notation (SBGN) standard (Le Novère et al. 2009) and has
been produced with SBGN-ED (Czauderna et al. 2010), an extension of the Vanted
framework (Rohn et al. 2012). Figure 2.5 shows a real-world example from
biomedicine. The graph represents functional connectivity of brain regions; the
color is used to map the correlation of age and functional connectivity in a group
of 66 subjects onto the graph. The color coding shows an age-related decrease in

Fig. 2.3 A part of a biological pathway drawn using the SBGN notation. Attributes are mapped to
graphical attributes. The network is a part of the visual representation describing the development
of diabetic retinopathy, a condition which leads to visual impairment if left untreated

36 P. Eades and K. Klein

Fig. 2.4 A combination of three metabolic pathways with vertex attributes represented by charts
and colors mapped onto the vertex representations. Bar charts represent the amount of a metabolite
for four different plant lines

2 Graph Visualization 37

Fig. 2.5 Graph visualization of functional brain region connectivity. Edges connect brain location
that have a high activity correlation. Edge bundling is used to reduce clutter and emphasize patterns.
Figure as originally published in Böttger et al. (2014)

connection strength in the frontal region, compared to an increase in the central
region.

In contrast, it is difficult to find a good layout for a node-link diagram: if
we choose the location of each vertex and the route for each edge badly, then
the resulting diagram is tangled and hard to read. In Sect. 2.2, we examine the
geometric properties of “good” node-link diagrams. Then we describe methods
for constructing good layouts of node-link diagrams. In particular, we describe
two important approaches: the topology-shape-metrics approach (Sect. 2.3), and the
energy-based approach (Sect. 2.4).

2.2 Readability and Faithfulness

We now consider the properties of “good” drawings of graphs. We concentrate on
geometric properties, in particular the location of each vertex and the route for
each edge. There are two aspects of the quality of a graph drawing: readability
and faithfulness.

38 P. Eades and K. Klein

William

Keith

George

Brian

Morgan

John

Riley Lee Michael

Paul

(a) (b)

William

Keith

George

Brian

Morgan

John

Riley

Lee

Michael

Paul

Fig. 2.6 Poor quality drawings of the graph in Fig. 2.2a, (a) symmetric and (b) circular style

2.2.1 Readability

Readability concerns the quality of the perception function P in Fig. 2.1: how
well does the human understand the picture? Two further drawings of the graph
in Fig. 2.2a are in Fig. 2.6. Intuitively, these two drawings are less readable than that
in Fig. 2.2b.

Geometric properties of readable drawings of a graph are commonly called
“aesthetic criteria.” Discussions of aesthetic criteria began in the 1970s. For
example, Sugiyama (see Sugiyama et al. 1981) and Tamassia et al. (1988) produced
structured lists of aesthetic criteria; a sample is given below.

C1 The number of edge crossings is minimized.
C2 The total length of edges is minimized.
C3 The ratio of length to breadth of the drawing is balanced.
C4 The number of edge bends is minimized (using straight lines where possible).
C5 Minimization of the area occupied by the drawing.

All these aesthetic criteria were based on intuition and introspection rather than any
scientific evidence. Later, Purchase et al. (1995) began the scientific investigation
of aesthetic criteria, based on HCI-style human experiments. She measured the time
to complete tasks such as tracing a shortest path in a graph drawing, and errors
made in such tasks. These variables were correlated with aesthetic criteria such as
those above. Purchase found significant evidence that both time and errors increase
with the number of edge crossings and with the number of edge bends, and less
significant evidence for other aesthetic criteria. Further experiments (Purchase 2002;
Ware et al. 2002; Huang et al. 2014) confirmed, refined, and extended Purchase’s
original work.

2 Graph Visualization 39

2.2.2 Faithfulness

The work of Nguyen et al. (2013) concerns the quality of the drawing function D

in Fig. 2.1. The drawing D(G) of a graph G is faithful if it uniquely represents the
graph G. In other words, D is faithful if it has an inverse; that is, if the graph G can
be recovered uniquely from the drawing D(G). This concept may seem strange at
first, because it may seem that all graph drawings are faithful. However, the concept
is significant for very large graphs. As a simple example, consider the graph in
Fig. 2.7. This drawing uses a technique recently called edge bundling (Holten and
van Wijk 2009) (originally called edge concentration (Newbery 1989)) to cope with
the large number of edges. While this drawing may be readable, it is not faithful: it

Fig. 2.7 Money movements; an unfaithful graph drawing

40 P. Eades and K. Klein

does not uniquely represent a graph (because there are many graphs that could have
this drawing).

While readability has a long history of investigation, faithfulness has only arisen
since the advent of very large data sets, and it is currently not well-understood. One
faithfulness criterion that has been proposed (Nguyen et al. 2013) is based on the
intuition that in a faithful graph drawing, the distance between u and v in the graph
G should be reflected by the geometric distance between the positions D(u) and
D(v) of u and v in the drawing. To make this notion more precise, suppose that
ΔG(u, v) is the distance between u and v in G (e.g., ΔG(u, v) could be the length
of a graph-theoretic shortest path between u and v). For a drawing function D that
maps vertices of a graph G = (V ,E) to points in R

2, we define

σ(D(G)) = Σu,v∈V

(
ΔG(u, v) − ΔR2(D(u),D(v)

)2
(2.1)

where Δ
R2 is a distance function in R

2 (e.g., Euclidean distance). In other words,
σ is the sum of squared errors between distances in the graph G and distances
in the drawing D(G). In this way, σ measures the faithfulness of the drawings
insofar as distances are concerned. In the 1950s, Torgerson (1952) employed
a similar criterion when he proposed the Multidimensional Scaling method for
psychometrics, a projection technique that allows to represent distance information
as a two-dimensional (2D) or three-dimensional (3D) picture. Over the following
decades, such methods were refined and extended into distance-based graph drawing
methods. With the success of the stress minimization approach, these methods have
recently gained increasingly interest; see Sect. 2.4.

2.3 The Topology-Shape-Metrics Approach

Motivated by the need to create database diagrams, Batini et al. (1986) introduced a
method for drawing graphs. The method has been refined and extended many times,
and it is now known as the “topology-shape-metrics” approach. An example of a
graph drawing computed with this approach is in Fig. 2.8. The method has three
phases:

1. Topology: First, we compute an appropriate topological arrangement of vertices,
edges, and faces. In this phase, we aim for a small number of edge crossings.

2. Shape: Next, we compute the general shape of each edge of the drawing. In this
phase, we aim for a small number of edge bends.

3. Metrics: Finally, we compute the precise location of each vertex, each edge bend,
and each edge crossing. In this phase, we aim for a drawing with high resolution.

Before we describe each of these phases, we outline the concepts of orthogonal
grid drawings and planar graphs; these concepts are needed to understand the
approach.

2 Graph Visualization 41

Fig. 2.8 An orthogonal drawing of a UML class diagram, computed using the topology-shape-
metrics method in OGDF (as published in Gutwenger et al. (2003), ACM Symposium on Software
Visualization 2003)

2.3.1 Orthogonal Grid Drawings

In a grid drawing of a graph, each vertex is located at an integer grid point, that is,
it has integer coordinates. Examples of grid drawings are in Fig. 2.9. Grid drawings
are used to ensure that the drawing has adequate vertex resolution, that is, vertices
do not lie too close to each other. Suppose that we have a grid drawing in which
xmax, xmin, ymax, and ymin are the maximum and minimum x and y coordinates of a
vertex, respectively. The area of the grid drawing is

A = (xmax − xmin)(ymax − ymin)

and the aspect ratio is

R = ymax − ymin

xmax − xmin
.

42 P. Eades and K. Klein

(a)

5

2

1

8

3

7

4

6

0

5

2

1

8

3 7

4

6

0

0 1 2 3 4 5 6 0 1 2 3 4 5 6

0

1

2

3

4

0

1

2

3

4

(b)

Fig. 2.9 (a) A grid drawing. (b) An orthogonal grid drawing

The drawing in Fig. 2.9a has area A = 35 and aspect ratio R = 5
7 . If the drawing is

rendered on an X × Y screen, then the distance between two vertices is at least

A−0.5 min
(
XR0.5, YR−0.5

)
;

Thus to obtain good vertex resolution, we want a grid drawing in which the area A

is as small and the aspect ratio R is close to Y
X

.
A graph drawing is orthogonal if each edge is a polyline consisting of vertical

and horizontal line segments. Figure 2.9b shows an orthogonal grid drawing. Note
that an orthogonal drawing of a graph with a vertex of degree greater than 4 is
necessarily unfaithful; thus, for the moment we assume that every vertex has degree
at most 4. In practice, this restriction can be overcome by a variety of methods (such
as the Kandinsky approach (Fößmeier and Kaufmann 1995)).

Orthogonal drawings are widely used in software design diagrams, such as
Fig. 2.8. From the aesthetic criterion C4 in Sect. 2.2, we want an orthogonal graph
drawing with few bends.

2.3.2 Planarity and Topology

A drawing of graph is planar if it has no edge crossings; a graph G is planar if there
is a planar drawing of G. Examples of planar and nonplanar graphs are in Fig. 2.10.
The theory of planar graphs has been developed by mathematicians for hundreds of
years. For example, Kuratowski (1930) gave an elegant characterization of the class
of planar graphs: a graph is planar if and only if it does not contain a subgraph
that is a subdivision of the complete graph K5 on five vertices or the complete
bipartite graph K3,3 on six vertices (a subdivision of a graph is formed by adding
vertices along edges). The classical but inelegant linear-time algorithm of Hopcroft
and Tarjan (1974) can be used to test whether a graph is planar; simpler linear-time

2 Graph Visualization 43

(a) (b) (c) (d) (e)

Fig. 2.10 The graph drawings (a) and (b) are planar, and the graph drawings (c), (d), and (e) are
nonplanar. However, the graph in (c) is planar because there is a planar drawing of this graph. The
graphs in (d) and (e) are nonplanar

1

3 5

8 4 6

2 0

7

1

3

5

8

4

6

2

0

7

1

3 5

8

4 6

2 0

7

Fig. 2.11 The graph drawings (a) and (b) have the same topology. The graph drawing (c) displays
the same graph, but the topology is different

algorithms have been developed more recently (Boyer and Myrvold 2004b; Shih
and Hsu 1999).

A planar graph drawing divides the plane into regions called faces. The drawing
A in Fig. 2.11 has seven faces f0, f1, . . . , f6 (note that f0 is the outside face of
the drawing). Two drawings of a graph G are topologically equivalent if there is
a continuous deformation of the plane that maps one to the other; an equivalence
class under topological equivalence is a topological embedding of G. To illustrate
this, consider the three planar drawings A, B, and C of a graph in Fig. 2.11. Here A

and B have the same topological embedding: it is possible to deform the plane so
that A transforms to B. It can be seen that C has a different topological embedding,
because while A and B both have a face with eight vertices, C has no such face.

It is well-known that two planar drawings of the same graph are topologically
equivalent if and only if the clockwise circular order of edges around each vertex is
the same. One can check this property for the examples in Fig. 2.11. This property
is a combinatorial characterization of a topological embedding, and can be used
to construct data structures that implement operations on topological embeddings
efficiently (see, e.g., Chrobak and Eppstein 1991). Variations of the Hopcroft–
Tarjan algorithm (see, e.g., Mehlhorn and Mutzel 1996) can be used to construct
a topological embedding (as a clockwise circular ordering of edges around each
vertex) of a planar graph in linear time.

44 P. Eades and K. Klein

(a) (b)

Fig. 2.12 Adding dummy vertices to the nonplanar graph drawing (a) gives the planar drawing (b)

2.3.3 Computing the Topology, Using Planarization

A nonplanar graph drawing can be converted into a planar graph drawing simply
by adding new “dummy” vertices at each crossing point, as illustrated in Fig. 2.12.
This simple process of adding dummy vertices gives the intuition for the “topology”
phase of the topology-shape-metrics method. However, graph visualization begins
with a graph, not with a graph drawing, and converting to a planar graph is not
so straightforward. Further, from the aesthetic criterion C1 in Sect. 2.2, we want to
ensure that the number of crossings is small.

The “topology” phase, sometimes called a planarization process, takes a non-
planar graph G = (V ,E) as input, and produces a planar topological embedding
G′′′ = (V ′′′, E′′′) as output. The first step is to find planar subgraph G′ = (V ,E′)
(E′ ⊂ E) where |E′| is as large as possible. This is a nontrivial problem; in fact,
finding a maximum planar subgraph of a given graph is NP-hard (Garey and Johnson
1979). However, a number of heuristic methods are available (Jünger et al. 1998;
Jünger and Mutzel 1994, 1996). The next step is to find a topological embedding
G′′ of the planar graph G′. This step is relatively easy, and can be accomplished
in linear time using a variation of the Hopcroft–Tarjan algorithm, or perhaps one
of the simpler algorithms developed more recently (e.g., see Boyer and Myrvold
2004a; Shih and Hsu 1999). The third step is to insert the edges of E − E′. The
aim in this step is to minimize the number of crossings; although this is NP-hard,
it is common to use the simple strategy of inserting one edge at a time, locally
minimizing crossings at each insertion. The local minimization can be done by
using a shortest path algorithm on the graph of faces of G′′. This gives our planar
topological embedding G′′′ = (V ′′′, E′′′).

We can illustrate the planarization process with an example. We begin with a
graph G, represented as a table in Fig. 2.13a; note that this is a combinatorial graph,
with no topology or geometry. A (bad) drawing of this graph is in Fig. 2.13b. Further,
G is a nonplanar graph by Kuratowski’s Theorem, because there is a subgraph
(shown in Fig. 2.13c) that is a subdivision of the complete graph K5 on five vertices.
Next, we identify a large planar subgraph G′ of G, using one of the heuristic
methods available. In this case, we can delete the edges (2, 6) and (6, 7) to give
a planar subgraph. Using a variation of the Hopcroft–Tarjan algorithm, we can find

2 Graph Visualization 45

0

2 6

3

8

7

5

4

(b)

Nodes Adjacent nodes

0 2,5,6,8

1 3,4,7

2 0,3,6,8

3 1,2,4,7

4 1,3,5

5 0,4,6,8

6 0,2,5,7

7 1,3,6,8

8 0,2,5,7

(a)

A graph A drawing of

1

0

2 6

3

8

7

5

4

(c)

A subdivision of in

Fig. 2.13 A nonplanar graph

3

7

5

4

(a)

1

0

8

6

2

3

7

5

4

(b)

1

0

8

6

2

Fig. 2.14 (a) A topological embedding G′′ of G′. (b) The edges (2, 6) and (6, 7) are re-inserted,
with dummy vertices a, b, and c, to form a topological embedding G′′′

a topological embedding G′′ of G′. Such an embedding is illustrated in Fig. 2.14a.
Finally, we reinsert the edges (2, 6) and (6, 7), and place dummy vertices a, b, and
c at the crossing points, to give a topological embedding G′′′, as in Fig. 2.14b.

2.3.4 Computing the Shape

The output of the topology phase is a topological embedding, which we shall now
denote as G. Some of the vertices of G are dummy vertices, representing crossings
between edges in the original graph. The final drawing output from topology-
shape-metrics method is an orthogonal drawing, in that each edge is a sequence
of horizontal and vertical line segments. The shape phase chooses “shape” of each
edge, in the following sense. Suppose that the edge (u, v) is directed from u to
v, and it consists of a sequence (u0, u1), (u1, u2), . . . , (uk−1, uk) of k segments,
where u0 = u and uk = v. Each line segment (ui , ui+1) has a compass direction:
either north, south, east, or west. The sequence (d0, d1, . . . , dk−1), where di is the

46 P. Eades and K. Klein

5

2

0 1

8

3

7

4

6

(a)

5

2 0

1

8

3

7

4

6

(c)

5

2

0
1

8

3

7

4

6

(b)

Fig. 2.15 Three orthogonal drawings with the same topological embedding. The drawings in (a)
and (b) have the same shape, and each has 19 edge bends; the drawing in (c) has a different shape
and has eight edge bends

3

7

5

4

(a)

1

0

8

6

2

3

7

5

4

(b)

1

0

8

6

2

Fig. 2.16 Two orthogonal drawings with the topological embedding in Fig. 2.14. The shape (a)
has more bends than (b)

compass direction of (ui , ui+1), is the shape of the edge (u, v). As examples, the
edge (0, 1) in Fig. 2.15a has shape (north, east, south), and the edge (1, 2) has
shape (west, south,west).

Two orthogonal drawings A and B have the same shape if each edge in A has the
same shape as the corresponding edge in B. The drawing in Fig. 2.15a has the same
shape as that in Fig. 2.15b. However, Fig. 2.15c has a different shape.

Note that drawings in Fig. 2.15a, b have 19 edge bends each, but Fig. 2.15c has
only eight. The aim of the shape phase is to choose a shape with few bends.

A surprising result of Tamassia (1987) gives a polynomial-time algorithm for
choosing a shape with a minimum total number of edge bends. Tamassia’s algorithm
is based on a reduction to the maximum flow problem; the best implementa-
tion (Garg and Tamassia 1996) runs in time O(|V |1.75). A simpler algorithm of
Tamassia and Tollis (1986), based on so-called visibility graphs, runs in linear time
and results in a drawing with at most four bends per edge (but not necessarily giving
a minimum total number of bends).

A naïve routing of orthogonal edges for the topological embedding illustrated in
Fig. 2.14 is given in Fig. 2.16a. A better shape for this embedding is in Fig. 2.16b.

2 Graph Visualization 47

2.3.5 Computing the Metrics

The shape phase described above determines the sequence of horizontal and
vertical line segments that make up each edge. The metrics phase chooses integer
coordinates for each vertex, each bend, and each crossing point. Each of these
points is located at an integer grid point, and thus we have an orthogonal grid
drawing. The main aim of the metrics phase is to give a drawing of small area;
the phase is sometimes called compaction. An example is in Fig. 2.17. The problem
of constructing a layout with small area has a long history in the literature of VLSI
layout, and methods can be borrowed.

As the final step of the metrics phase, the graph is rendered without rendering the
dummy vertices. The final drawing for the graph in Fig. 2.13 is in Fig. 2.18.

(a)

5

2

1

8

3

7

4

6

0

5

2

1

8

3

7

4

6

0

(b)

Fig. 2.17 Two orthogonal grid drawings with the same shape. The drawing (a) has a larger area
than (b)

Fig. 2.18 Final drawing for the graph in Fig. 2.13

48 P. Eades and K. Klein

2.3.6 Remarks and Open Problems
for the Topology-Shape-Metrics Approach

The topology-shape-metrics approach has been improved, refined, and extended
many times since its inception. Figures 2.3 and 2.8 are examples of the output
of such algorithms. The methods work well for small-to-medium-sized orthogonal
graph drawings, but are less successful on large graphs.

Nevertheless, a number of open problems remain:

1. Clustered planarity. A common method for dealing with very large data sets is
to cluster the data, then treat each cluster as a data item. This method is also
used in graph drawing: the vertices of a very large graph can be clustered to
form “super-vertices”; these super-vertices can be clustered to form “super-super-
vertices,” and so on, in a hierarchical fashion. More formally, a clustered graph
C = (G, T) consists of a graph G and a rooted tree T such that the leaves of
T are the vertices of G. The tree T forms a cluster hierarchy on the graph. A
drawing of a clustered graph C = (G, T) consists of a drawing of the graph G

and a region r(t) of the plane for each vertex T of the tree T , such that

(a) If t1 is a child of t0 in T , then r(t1) ⊂ r(t0).
(b) If t1 is not a descendent of t0 and t0 is not a descendent of t1 in T , then

r(t1) ∩ r(t0) = ∅.
(c) If u is a vertex of G (and thus a leaf of T) then the location of u in the

drawing of G is inside r(u).
(d) If (u, v) is an edge of G and the curve representing (u, v) intersects r(t) for

some vertex t of T , then either u or v is a descendent of t .
(e) If (u, v) is an edge of G and both u and v are descendants of t , then the curve

representing (u, v) is inside r(t).

Further, the drawing of C is clustered-planar if the drawing of G is planar. An
example of a drawing of a clustered graph C = (G, T) is in Fig. 2.19a; note
that this drawing is not clustered-planar. The tree T is illustrated in Fig. 2.19b.
Note that although the underlying graph G is planar (see Fig. 2.20), there is no

r1 r2 r3
1

32

4

65

7

98 r1 r2 r3

1 32 4 65 7 98

root

(a) (b)

Fig. 2.19 (a) A drawing of a clustered graph C = (G, T); (b) the tree T

2 Graph Visualization 49

Fig. 2.20 The underlying
graph G for the clustered
graph in Fig. 2.19

Fig. 2.21 The Mutzel
experiment 4 6 8 7 5 1

4 6 3 7 5 8

5

15

14 3 2

2

13 12 9 1 11

21 23 29 28 25

12

26 27

14

20 22 17 30

21 23 29 28 25 26 27 20 22 17 30

139 1 11

a

b

clustered-planar drawing of this clustered graph. (Observe that in any planar
embedding of G, the three-cycle (4, 5, 6) must have either at least one of the
three-cycles (1, 2, 3) or (7, 8, 9) inside; thus, the cluster region r2 would have to
contain either cluster region r1 or r2, contradicting the above rules for clustered
drawings.) A clustered graph is clustered-planar if it has a clustered-planar
drawing. Clustered planarity is a significant problem: shape/metrics steps for
clustered graphs are well-established, but despite much investigation (Eades
et al. 1999; Feng et al. 1995; Jelínková et al. 2009; Dahlhaus 1998; Cortese and
Di Battista 2005; Gutwenger et al. 2002; Cortese and Di Battista 2005; Chimani
and Klein 2013; Chimani et al. 2014), the planarization step is still unsolved.

2. Different ways to count edge crossings. In the mid-1990s, Mutzel performed
an informal experiment during a lecture at a conference. She showed the
audience two drawings of the same graph, shown in Fig. 2.21a, b. The audience
overwhelmingly preferred (a), despite the fact that it has significantly more edge
crossings than (b). In fact, most of the audience mistakenly assumed that (b) had
fewer edges than (a). Mutzel’s experiment challenged the conventional wisdom
that simply counting the number of edge crossings gives a good metric for

50 P. Eades and K. Klein

Fig. 2.22 A 1-planar
drawing. Note that all edge
crossings are at right angles

the quality of a graph visualization, and led to a number of new directions for
research:

• A number of researchers (Auer et al. 2015; Brandenburg 2014; Giacomo et al.
2014; Sultana et al. 2014; Eades and Liotta 2013; Eades et al. 2013) have
begun to investigate k-planar drawings where the number of crossings on
each edge is at most k. For example, the drawing in Fig. 2.22 is 1-planar. Most
of this research concentrates on mathematical properties of k-planar drawings
with k = 1 or k = 2; a good practical algorithm for finding a k-planar drawing
with minimum k remains unknown.

• Huang et al. (2014) showed that edge crossings are tolerable if the crossing
angle is large. For example, all crossings in the drawing in Fig. 2.22 are at
right angles. For orthogonal drawings, all crossing angles are right angles,
and perhaps the number of crossings is not significant at all! (See Biedl et al.
(1997) for an orthogonal drawing algorithm that ignores edge crossings.)
Current research has been mostly mathematical (see Argyriou et al. 2013;
Arikushi et al. 2012; Didimo et al. 2009), and the investigation of good
practical methods for drawing with large crossing angles is just beginning.

2.4 Energy-Based Approaches and Stress Minimization

The most popular approach to create a layout for undirected graphs is based on
so-called energy-based layout methods. This popularity is due to the intuitive
underlying model of the basic versions, and the fact that these methods can
be reasonably easy to implement. In addition, the resulting layouts are often
aesthetically pleasing, drawings are described to have a more “organic” or natural
appearance than drawings from other methods, and that they show symmetries well.
Edges are normally represented as straight lines, which makes bend minimization
unnecessary. Figure 2.23 shows an example drawing created with an energy-based
method in comparison to an orthogonal drawing.

2 Graph Visualization 51

(a) (b)

Fig. 2.23 Drawing of a Sierpinski triangle, a fractal defined as a recursively subdivided triangle.
(a) Drawing created by an energy-based method (b) Drawing created with the topology-shape-
metrics approach described in Sect. 2.3

The underlying concept of energy-based methods is to model the graph as a
system of objects that contribute to the overall “energy” of the system, and energy-
based methods then try to minimize the energy in the system. A basic assumption for
the success of such an approach is that a low energy state of the system corresponds
to a good drawing of the graph. In order to achieve such an optimum, an energy
function is minimized. Energy-based methods thus consist of two main components:
a model of objects and their interactions (a virtual physical model), and an algorithm
to compute a configuration with low energy (an energy minimization method). There
are various models and algorithms under this approach, and the flexibility in the
definition of the energy model and energy function implies a wide range of both
optimization methods.

Energy-based drawing methods have a long history. Tutte (1960, 1963) used such
an approach in one of the earliest graph drawing methods, based on barycentric
representations that are obtained by solving a system of linear equations. Tutte
proposed the barycenter algorithm to draw a triconnected planar graph G = (V ,E),
and showed that the result is a planar drawing where every face is convex. The
algorithm proceeds by first selecting a subset A of the vertices of the graph G

to constitute the outer face of the topological embedding of G. The vertices of
A are placed on the apices of a convex polygon, and are fixed. Each remaining
vertex is placed so as to minimize an energy function that simulates a system of
elastic bands. In fact, minimum energy is obtained when each vertex in V − A

is at the barycenter of its graph-theoretic neighbors. This setting can be modeled
by a nondegenerate system of linear equations, where the position of each vertex is
determined as a convex combination of its neighbors’ positions. Such a system has a
unique solution that can be computed in polynomial time. Barycenter drawings can
be very beautiful. However, many barycenter drawings have poor vertex resolution,

52 P. Eades and K. Klein

Fig. 2.24 A barycenter drawing

in the sense that vertices can be placed very close to each other. See Fig. 2.24 for an
example.

Implementations of energy-based layout methods can be found in a large number
of software tools and web services, and most drawings published in both a scientific
and nonscientific context are computed using such methods. Some of the more
sophisticated energy-based methods allow us to compute layouts for graphs with
several hundreds of thousands of vertices in seconds on a standard desktop machine.

A classical, and still frequently used, example for energy-based methods are the
so-called force-directed models, where the graph objects are modeled as physical
objects that mutually exert forces on each other. In the most simple model,
unconnected vertices repel each other, and vertices linked by edges attract each
other. Force-directed methods have also been applied early for printed circuit
board design, where a system of elastic leads and repulsive forces was described
for the construction of circuit board drawings. For example, the spring embedder
model (Eades 1984) models vertices as electrically charged steel rings and edges
as springs, such that the electrical repulsion between vertices and the mechanical
forces exerted by the springs in a given layout define the energy of the system (see
Fig. 2.25). A minimization of the overall system energy is associated with a layout
that optimizes the Euclidean distances between the vertices with respect to a given
ideal distance.

The minimization is done in an iterative fashion, moving toward a local energy
minimum. First, the vertices are placed in an initial layout, and then in each

2 Graph Visualization 53

(a) (b)

Fig. 2.25 Applying the spring embedder model (b) to the graph in (a). Vertices are modeled by
steel rings, edges by springs. Springs exert a force when their length deviates from the natural
spring length, which is a parameter for the model, and vertices repel each other. In (b), repulsion
forces from the darker shaded steel ring are represented by arrows. The force decreases with the
square of the distance between vertex pairs

iteration a displacement is computed for each vertex based on the forces exerted
on it by vertex repulsion and edge attraction. At the end of the iteration, the
positions of all vertices are updated, and a new iteration is started unless the overall
displacement falls under a certain threshold. The spring between vertices u and v has
an ideal length
, and in a given layout this spring has a current length ΔR2(u, v)

(the Euclidean distance between u and v). A variation of Hooke’s law is applied
to compute the force exerted by a spring, based on the relation between
 and
ΔR2(u, v): if ΔR2(u, v) is larger than
, then the vertices are attracted to each other,
and if it is smaller then they are repelled.

The iterations can be continued until the total force on each vertex converges to
zero. In practice, the number of iterations may be limited to a bound K that depends
on the size of the graph; then the runtime is O(K|V |2)).

While the first energy-based methods and models were intuitive and rather
simple, and the corresponding methods were widely successful in practice, they
also exhibit certain disadvantages. First of all, they are rather slow and do not scale
well to graphs with more than a few hundred vertices. They are thus not well-suited
to cope with the much larger graphs that are visualized today, such as protein–
protein interactions in biology or social interactions in social network analysis, with
thousands to millions of vertices and edges. Secondly, they rely on an initial drawing
and tend to get stuck in a local energy minimum during optimization; see Fig. 2.26
for examples.

Recent approaches, discussed in Sect. 2.4.1, are more complex and make use
of more advanced mathematical methods for the optimization. This development
allowed large improvements both in the drawing quality and in the computational
efficiency.

2.4.1 Scaling to Large Graphs

Three major directions can be identified that in recent years have led to large
improvements both regarding the layout quality and the runtime performance. The

54 P. Eades and K. Klein

(a) (b)

Fig. 2.26 Typical unfolding and convergence problems for iterative force-directed algorithms:
A Sierpinski triangle with 1095 vertices (a) and a tree with 1555 vertices (b). Even though both
graphs are planar and sparse, no planar drawing with good structure representation was computed

first one is the emergence of so-called multilevel methods. The second one is the
improvement in optimization process, in particular fast approximations for the
energy computation. The third one is the identification of better energy functions.

2.4.1.1 Multilevel Methods

The multilevel paradigm is a generic approach to handle large datasets by reducing
the complexity over a number of hierarchically ordered levels. It is well-suited
for graph algorithms and can be used to improve energy-based layout methods,
regarding both the layout quality and computation time. The first use of the
multilevel approach is commonly credited to Barnard and Simon (1994), where
it was used to speed up the recursive spectral bisection algorithm. In the context
of graph partitioning, Karypis and Kumar (1995) showed that the quality of the
multilevel approach can also be theoretically analyzed and verified.

Multilevel layout methods consist of three components, coarsening, single-level
layout, and placement. The main idea is to construct a sequence of increasingly
smaller graph representations (“coarsening levels”) that approximately conserve
the global structure of the input graph G, and to then compute a sequence of
approximate solutions, starting with the smallest representation. Intermediate results
can be used on the subsequent level to speed up the computation and to achieve a
certain quality (Fig. 2.27).

2 Graph Visualization 55

Fig. 2.27 Several levels during multilevel layout computation for a graph with 11,143 vertices and
32,818 edges. The leftmost drawing shows the coarsest level, the rightmost the final drawing. The
graph is part of the 10th DIMACS implementation challenge, and available from the UFL Sparse
Matrix Collection (University of Florida 2015)

The graph representations are typically created by a series of graph contractions,
where a set of vertices on one level is collapsed to a single representative on the
next, smaller level. A contraction operation can, for example, simply be an edge
contraction, that is, a set of two adjacent vertices is collapsed, and the coarsening
for one level then includes contractions of all edges from a maximum independent
edge set. These contractions are repeated until the graph size reduces to a given
threshold. For graph drawing purposes, usually a threshold of 10–25 vertices is
chosen, where force-directed methods can achieve a high-quality drawing quickly.
For the resulting levels of the coarsening phase now single-level layouts are
calculated. After computing a layout for the coarsest level from scratch, for each
of the intermediate levels a force-directed layout method is applied. As each vertex
v from the coarser level li represents a set of vertices s on the current, finer level
li−1, the layout for li can be used to create an initial drawing for li−1 that is then
iteratively improved. Initial positions for vertices can be derived from li during this
placement phase by simple strategies, such as placing vertices at the barycenter
of their neighbors. Experiments indicate that the influence of different placement
strategies is marginal (Bartel et al. 2010).

Although several layouts have to be computed, including one for the original
graph, the reuse of intermediate drawings leads to less required work and much
better convergence on each level than for single-level methods.

Walshaw (2003), Harel and Koren (2002), and Gajer et al. (2004), introduced the
multilevel paradigm to graph drawing, after a closely related concept, the multiscale
method, was proposed by Hadany and Harel (2001). Another related method, the
FADE paradigm (Quigley and Eades 2001), used a geometric clustering of the
vertex locations for coarsening.

Multilevel approaches can help to overcome local minima and slow convergence
problems by improving the unfolding process due to a good coarsening and
subsequent placement. However, while multilevel methods can cope even with very
large graphs, it may still happen that the resulting layout represents a local minimum
far from the optimum. Hachul and Jünger (2007) presented an experimental study of
layout algorithms for large graphs, including energy-based multilevel approaches.
Bartel et al. (2010) presented an experimental comparison of multilevel layout
methods within a modular multilevel framework.

56 P. Eades and K. Klein

2.4.1.2 Fast Approximations

Another important concept for the practical improvement of energy-based methods
is the approximation of the forces to speed up the force calculation. Typically,
the repulsive forces are computed approximately, whereas the attraction forces are
computed exactly. This means that all edges are taken into account, but individual
forces are not calculated for every pair of vertices, as this would mean a runtime
of Ω(|V |2). One of the first such approximations was the grid-based variant of the
Fruchterman–Reingold algorithm (Fruchterman and Reingold 1991), which divides
the display space into a grid of squares and for each vertex restricts repulsive forces
to vertices within nearby squares. More sophisticated versions (Hachul and Jünger
2004; Quigley and Eades 2001) involve the application of space decomposition
structures such as quadtrees (see Fig. 2.28) for geometric clustering, as well as
efficient approximation schemes such as the multipole method (e.g., see Yunis et al.
2012).

Hachul and Jünger combine a multilevel scheme with the multipole approxi-
mation, leading to a very fast layout algorithm. With an asymptotic runtime of
O(|V | log |V | + |E|), in practice the algorithm is capable of creating high-quality
drawings of graphs up to 100,000 vertices in around a minute.

Spectral graph drawing methods are fast algebraic methods that compute a layout
based on so-called eigenvectors, sets of vectors associated with matrices defined
by the adjacency relations in a graph. Spectral drawing methods were introduced
by Hall (1970) in the 1970s. Later developments include the algebraic multigrid
method ACE (Koren et al. 2002) and the high-dimensional embedding approach
HDE (Harel and Koren 2004). These methods show that algebraic methods are very
fast and can create reasonable layouts for a variety of graph classes. However, these
methods tend to hide details of the graph and are prone to degenerative effects for
some graph classes, such as where large subgraphs are projected on a small strip
of the drawing area. Hachul and Jünger’s experimental study of large graph layout

Fig. 2.28 Use of a quadtree for space partitioning, as shown in Hachul and Jünger (2004). First
the drawing space is recursively partitioned into four squares, until each square only contains a few
vertices (left). The resulting hierarchy can be efficiently represented by a quadtree structure (right),
which in turn can be used to allow an efficient force approximation. Forces that act on a vertex are
only calculated directly for close-by vertices, whereas the force contribution of a group of vertices
that is in a faraway partition is only approximated, replaced by a group force. In the left drawing,
the impact of vertices 9, 10, and 11 on vertex 1 is combined in an approximated group force

2 Graph Visualization 57

methods, which also includes algebraic approaches, consequently shows that, while
being very fast, algebraic methods often fail to compute reasonable drawings.

2.4.1.3 Better Energy Functions

Distance-based drawing methods constitute an alternative perspective to the graph
layout problem. They aim to create a faithful projection from a high-dimensional
space to 2D or 3D, with the dimensions simply arising from some notion of
dissimilarity, or distance, of each vertex to all other vertices. To this end, distance-
based methods usually minimize the stress in the drawing, which measures the
deviation of the vertex pair distances in the drawing to their dissimilarity. The
objective function for stress minimization is

Σu,v∈V wuv

(
Δ∗(u, v) − ΔR2(D(u),D(v)

)2
(2.2)

which sums up the stress for all pairs of vertices u,v located at positions D(u) and
D(v), respectively, where duvΔ∗(u, v) is the desired distance between u and v.
Note the similarity between Eqs. (2.1) and (2.2); we can regard stress minimization
methods as faithfulness maximization methods. The value wuv is a normalization
constant that is often set to 1

ΔG(u,v)2 , where ΔG(u, v) is the length of the shortest
path between u and v. This emphasizes the influence of deviations from the desired
distance for pairs of vertices that have a short graph theoretic distance, and the
influence is dampened with increasing distances between pairs of vertices.

The energy-based approach by Kamada and Kawai (1989) uses the shortest
graph-theoretic paths as ideal pairwise distance values and subsequently tries to
obtain a drawing that minimizes the overall difference between ideal and current dis-
tances in an iterative process. Kamada and Kawai propose to use a two-dimensional
Newton–Raphson method to solve the resulting system of nonlinear equations in
a process that moves one vertex at a time to achieve a local energy minimum.
As the cost function involves the all-pairs shortest-path values, the complexity is
at least O(|V |2log|V | + |V ||E|) or |V |3 for weighted graphs, depending on the
algorithm used, and O(|V |2) for the unweighted variant. Following the Kamada–
Kawai model, stress majorization was introduced as an alternative and improved
solution method (Gansner et al. 2004). Several improvements were proposed to
make such methods more scalable, for example, by approximation of the distances
(Khoury et al. 2012), adding an entropy model (Gansner et al. 2013b), or to respect
nonuniform edge lengths (Gansner et al. 2013a).

Each of these improvements led to methods that clearly outperform their
predecessors in runtime and layout quality. The combination of the multilevel
approach and the multipole method for force approximation in the Fast Multiple
Multilevel Method FMMM (Hachul and Jünger 2004), or the use of the maxent-stress
model (Gansner et al. 2013c), efficiently computing drawings that clearly depict the
structure of many graphs up to a size of several thousand vertices and edges.

58 P. Eades and K. Klein

2.4.2 Constraint-Based Layout Using Stress

Even though not suited for drawings of large graphs, constraint-based draw-
ing methods constitute the most flexible approach to draw graphs in practice.
Constraint-based methods take a declarative approach to graph drawing (Lin and
Eades 1994); that is, instead of giving an algorithm that describes how to compute
a drawing, requirements for the drawing are defined, for example, by geometric
constraints. They often resort to generic solution techniques, such as integer linear
programming (ILP) or constraint programming (CP) methods, to solve the resulting
system of constraints, and are thus often significantly slower than other approaches.

The big advantage of constraint-based methods is that they are able to create
high-quality drawings for small-to-medium graphs while taking into account user-
defined constraints, such as requirements from a drawing convention, grouping,
node sizes and orientation, or personal preferences (see Fig. 2.29).

As a result, such methods are getting increasingly popular in application areas
where highly constrained drawings are required; for example, where representation
of structural and semantical information beyond the basic structure is needed.
Applications include the drawing of technical and flow diagrams to depict hardware
systems or biological processes (Schreiber et al. 2009; Rüegg et al. 2014). In the
last years great progress has been made in such methods to allow interactive graph
layout, in commonly used environments such as web browsers (Monash University
2015).

While constraint-based methods are well-suited for relatively easy extension of
a drawing approach by additional drawing constraints, this comes at the cost of
decreased computational efficiency of the resulting approach. While there have
been approaches to speed up the optimization for specific constraint types (Dwyer
2009), the runtime performance is still an impediment for a more widespread
use of constraint-based methods. In addition, to guarantee a certain quality of the
computed drawings a good compromise has to be found to prioritize more important
soft constraints over less important ones, and a conflict-solving strategy has to be
employed.

For further reading, see the surveys in Kobourov (2013), Hu and Shi (2015).

2.4.3 Remarks and Open Problems for Energy-Based Methods

Energy-based methods, in one form or another, are well-established tools for graph
visualization. Nevertheless, many open problems remain:

1. Animation. An important advantage of energy-based methods, based on the
iterative nature of the numerical methods to compute the layout, is that they allow
a smooth animation of the change from one drawing to another (since the energy
function is smooth). They provide one kind of solution to the so-called mental
map problem (Misue et al. 1995). Although existing graph drawing tools often

2 Graph Visualization 59

Fig. 2.29 Links between composers, ultra-compact grid layout created using a constraint-based
method (Yoghourdjian et al. 2016). For each composer, biographical information and a portrait
is shown, the layout system automatically chooses the orientation of the nodes to minimize area
usage while optimizing further quality metrics like stress. A hierarchical grouping is computed that
groups nodes with similar connections into the same group (hierarchy level represented by color
saturation). The number of required edges is thereby reduced, as edges can attach to groups and
thus are shared by all members of the group (As published in Yoghourdjian et al. (2016), ©IEEE
2015)

use this kind of animation, it has received little attention from researchers. A
thorough investigation of energy-based animation methods would be useful.

2. Why are some graphs hard to draw? Energy-based methods are successful on
many graphs, but unsuccessful on many others. Intuitively, some graph-theoretic
properties are behind success or failure; for example:

• Dense graphs (i.e., graphs with many edges) often lead to a “hairball” drawing
that makes it hard to perceive the graph structure.

• Low diameter graphs seem to become cluttered with distance-based methods.

60 P. Eades and K. Klein

It would be useful to justify this intuition with mathematical theorems.
3. Edge crossings and energy-based methods. It is commonly claimed (without

justification) that energy-based methods reduce edge crossings. However, in
some cases it seems impossible to avoid crossings with energy-based methods,
even on edges of planar subgraphs (Angelini et al. 2013). The relationship
between low-energy drawings and edge crossings needs investigation, both
mathematically and empirically. (Note that recent results seem to indicate,
however, that crossings might not be the dominating factor regarding readability
of large graphs; see (Eades et al. 2015; Kobourov et al. 2014)).

2.5 Further Topics

2.5.1 Directed Graphs

The methods described in Sects. 2.3 and 2.4 can be used to draw directed graphs (as
in Fig. 2.8), but these methods ignore the directions on the edges. It can be useful
to have the arrows representing directed edges laid out so that the general “flow”
is from one side of the screen to another. For example, in Fig. 2.30, the “flow” is
mostly from the top to the bottom.

Sugiyama et al. (1981) described a method for drawing directed graphs. The
vertex set is divided into in “layers,” and each layer is drawn on a horizontal line; in
Fig. 2.30, there are four layers. The layers are chosen so that there are not too many
layers, the number of vertices in each layer is not too large, and the edges are mostly
directed from a higher layer to a lower layer. Then the vertices are ordered inside
each layer in an attempt to minimize the number of edge crossings. Finally, each
vertex is given a location (within its layer and respecting the ordering of that layer)
so that edges are as straight as possible. The Sugiyama method involves a number

Fig. 2.30 A directed graph

2 Graph Visualization 61

of NP-hard combinatorial optimization problems, but each of these problems has
heuristic solutions that work reasonably well in practice. The method has been
refined and improved significantly since its original conception, most notably by
Gansner et al. (1993).

2.5.2 Trees

Rooted trees are normally drawn with the root at the top of the screen, and
parents above their children, as in Fig. 2.31a. Rooted trees are directed graphs,
and the Sugiyama method described above can be used; however, simpler methods
are available. A naïve algorithm to draw trees in this way is a simple exercise;
however, a naive approach often leads to drawings that are too wide. Reingold
and Tilford (1981) defined a linear-time algorithm that moves subtrees together
to avoid excessive width. The Reingold–Tilford algorithm has been improved and
extended many times (see, e.g., Buchheim et al. 2006). Unrooted trees can be drawn
using energy-based methods. However, simple algorithms using drawing vertices on
layers of concentric circles, as in Fig. 2.31b, are described in Battista et al. (1999).

2.5.3 Interaction

For large and complex graphs, interactive exploration is necessary. Interactive
operations include:

• Computer-supported filtering. For example, the system may detect salient struc-
tural or semantic features, and filter out all vertices and edges that are not related
to these features.

(a) (b)

Fig. 2.31 (a) A rooted tree drawing; (b) an unrooted radial tree drawing

62 P. Eades and K. Klein

• Zoom and pan. If the user wishes to concentrate on a specific part of the
graph, focus+context methods can be used in combination with a number of pan
methods. These include screen-space methods such as fish-eye views (see, e.g.,
Furnas 2006) and slider bars, as well as graph-space methods (see, e.g., Eades
et al. 1997).

2.5.4 More Metaphors

The node-link metaphor described in this chapter is most common, but other visual
representations of graphs are used as well. Examples include the following:

• The map metaphor is used in Fig. 2.32a to show another picture of the graph
in Fig. 2.2b. In this case, each vertex is represented by a region of the plane,
and friendship between two people is represented as adjacency between regions.
This metaphor has been developed extensively, from “treemaps” (Johnson and
Shneiderman 1991) to “Gmaps” (Gansner et al. 2010).

• The adjacency matrix metaphor, illustrated in Fig. 2.32b, has been shown to be
useful in some cases (Ghoniem et al. 2005).

• Edge bundling. For a dense and complex graph, edges can be bundled together as
in Fig. 2.7. This method reduces edge clutter at the cost of reduced faithfulness; it
seems to improve human understanding of global structural aspects of the graph.

William

Keith

George

Brian

Morgan

John

RileyLee

Michael

Paul

Brian

George

John

Keith

Lee

M
ichael

M
organ

Paul

Riley

W
illaim

Brian

George

John

Keith

Lee

Michael

Morgan

Paul

Riley

William

(a) (b)

Fig. 2.32 Drawings of the graph in Fig. 2.2: (a) using the “map metaphor”, (b) using the adjacency
matrix metaphor

2 Graph Visualization 63

(a) (b) (c)

Fig. 2.33 Representation of edges as stubs to overcome readability problems due to crossings
and clutter. Example as given in Bruckdorfer et al. (2012). (a) Original drawing with crossings.
(b) Maximum stub size where both stubs have the same length. (c) Same as (b) with the additional
constraint that the stub length to edge length ratio is the same for all edges—nearly nothing is left
of the original edge lines

• Edge stubs. One interesting way to reduce edge clutter is by removing the parts of
the edges where crossings occur, as in Fig. 2.33. For the case of directed graphs,
Burch et al. (2012) and Bruckdorfer et al. (2012) show that for complex tasks the
error rate increases with decreasing stub length, while for simple tasks (such as
detection of the vertex with highest degree) the stub drawing can be beneficial in
completion time and error rate.

• Distortion. Several approaches employ distortion as a way to reduce clutter for
large graph visualization. One example is a focus+context technique that lays out
the graph on the hyperbolic plane (Lamping et al. 1995). While this allows to put
important objects in the focus center with a large part of the graph kept in the
context area at the same time, readability might be reduced in areas with high
distortion.

2.6 Concluding Remarks

The two graph drawing approaches described in Sects. 2.3 and 2.4 cover the main
graph drawing algorithms in research and in practice. In addition to these general
approaches, there exists a variety of algorithms to visualize specific classes of
graphs like trees (Rusu 2013), dense graphs (Dwyer et al. 2014) or small-world
and scale-free graphs (Nocaj et al. 2016; Jia et al. 2008). These algorithms exploit
the characteristics of a graph class, and might be able to create improved visual-
izations for input instances from those classes. A large number of companies and
organizations distribute graph drawing software. Some examples are as follows:

1. Tom Sawyer Software—This commercial enterprise (Tom Sawyer Software
2015) currently dominates the market for graphing software. Energy-based
methods, orthogonal grid drawings, directed graph methods, and tree drawing

64 P. Eades and K. Klein

methods are included. The methods are packaged in many different ways to
handle a variety of data sources.

2. OGDF—The Open Graph Drawing Framework (Chimani et al. 2013) is a self-
contained open-source library of graph algorithms and data structures, freely
available under the GPL at OGDF (2015). It is implemented in C++ and offers a
wide variety of efficient graph drawing algorithm implementations, in particular
covering planarization- and energy-based approaches. OGDF is maintained and
used by several university research groups around the world.

3. Tulip—Tulip (TULIP 2015) is an information visualization framework that is
freely available under the LPGL. It provides a Graphical User Interface and a
C++ API. The GUI allows import of a variety of graph file formats and provides
a range of layout algorithms.

4. WebCoLa—WebCoLa is an open-source JavaScript library for arranging
HTML5 documents and diagrams using constraint-based optimization
techniques. It supports interactive layout generation in a browser and works
well with the well-known D3 library.

All of the above systems have one or more energy-based methods. In contrast,
the topology-shape-metrics approach is seldom implemented in practical systems,
despite significant attention from researchers and scientific evidence of readability.
There are a number of possible reasons for the lack of commercial interest in
the topology-shape-metrics approach: it is much more complex than the energy-
based approach, and the approach does not seem to scale visually to larger graphs.
Further research is needed to understand why energy-based methods are dominant
in practice.

References

Angelini P, Binucci C, Lozzo GD, Didimo W, Grilli L, Montecchiani F, Patrignani M, Tollis IG
(2013) Drawing non-planar graphs with crossing-free subgraphs. In: Wismath SK, Wolff A
(eds) Graph drawing. In: 21st international symposium, GD 2013, Bordeaux, September 23–25,
2013. Revised selected papers. Lecture notes in computer science, vol 8242. Springer, Berlin,
pp 292–303. http://dx.doi.org/10.1007/978-3-319-03841-4_26

Argyriou EN, Bekos MA, Kaufmann M, Symvonis A (2013) Geometric RAC simultaneous
drawings of graphs. J Graph Algorithms Appl 17(1):11–34. http://dx.doi.org/10.7155/jgaa.
00282

Arikushi K, Fulek R, Keszegh B, Moric F, Tóth CD (2012) Graphs that admit right angle crossing
drawings. Comput Geom 45(4):169–177. http://dx.doi.org/10.1016/j.comgeo.2011.11.008

Auer C, Brandenburg FJ, Gleißner A, Reislhuber J (2015) 1-Planarity of graphs with a rotation
system. J Graph Algorithms Appl 19(1):67–86. http://dx.doi.org/10.7155/jgaa.00347

Barnard ST, Simon HD (1994) Fast multilevel implementation of recursive spectral bisection for
partitioning unstructured problems. Concurrency Pract Experience 6(2):101–117. http://dx.doi.
org/10.1002/cpe.4330060203

http://dx.doi.org/10.1007/978-3-319-03841-4_26
http://dx.doi.org/10.7155/jgaa.00282
http://dx.doi.org/10.7155/jgaa.00282
http://dx.doi.org/10.1016/j.comgeo.2011.11.008
http://dx.doi.org/10.7155/jgaa.00347
http://dx.doi.org/10.1002/cpe.4330060203
http://dx.doi.org/10.1002/cpe.4330060203

2 Graph Visualization 65

Bartel G, Gutwenger C, Klein K, Mutzel P (2010) An experimental evaluation of multilevel layout
methods. In: Brandes U, Cornelsen S (eds) Graph drawing - 18th international symposium,
GD 2010, Konstanz, September 21–24, 2010. Revised selected papers. Lecture notes in
computer science, vol 6502, Springer, Berlin, pp 80–91. http://dx.doi.org/10.1007/978-3-642-
18469-7_8

Batini C, Nardelli E, Tamassia R (1986) A layout algorithm for data flow diagrams. IEEE Trans
Softw Eng 12(4):538–546. http://doi.ieeecomputersociety.org/10.1109/TSE.1986.6312901

Battista GD, Eades P, Tamassia R, Tollis IG (1999) Graph drawing: algorithms for the visualization
of graphs. Prentice-Hall, Upper Saddle River

Biedl TC, Madden B, Tollis IG (1997) The three-phase method: a unified approach to orthogonal
graph drawing. In: Battista GD (ed) (1997) Graph drawing. In: 5th international symposium,
GD ’97, Rome, September 18–20, 1997, Proceedings. Lecture notes in computer science,
vol 1353. Springer, Berlin, pp 391–402. http://dx.doi.org/10.1007/3-540-63938-1_84

Böttger J, Schurade R, Jakobsen E, Schäfer A, Margulies D (2014) Connexel visualization:
a software implementation of glyphs and edge-bundling for dense connectivity data using
brainGL. Front Neurosci 8:15. https://doi.org/10.3389/fnins.2014.00015

Boyer JM, Myrvold WJ (2004a) On the cutting edge: simplified o (n) planarity by edge addition. J
Graph Algorithms Appl 8(2):241–273

Boyer JM, Myrvold WJ (2004b) On the cutting edge: simplified o(n) planarity by edge addition. J
Graph Algorithms Appl 8(2):241–273. http://jgaa.info/accepted/2004/BoyerMyrvold2004.8.3.
pdf

Brandenburg FJ (2014) 1-visibility representations of 1-planar graphs. J Graph Algorithms Appl
18(3):421–438. http://dx.doi.org/10.7155/jgaa.00330

Bruckdorfer T, Cornelsen S, Gutwenger C, Kaufmann M, Montecchiani F, Nöllenburg M, Wolff A
(2012) Progress on partial edge drawings. In: Didimo W, Patrignani M (eds) Graph drawing -
20th international symposium, GD 2012, Redmond, September 19–21, 2012. Revised selected
papers. Lecture notes in computer science, vol 7704. Springer, Berlin, pp 67–78. http://dx.doi.
org/10.1007/978-3-642-36763-2_7

Buchheim C, Jünger M, Leipert S (2006) Drawing rooted trees in linear time. Softw Pract Exper
36(6):651–665. http://dx.doi.org/10.1002/spe.713

Burch M, Vehlow C, Konevtsova N, Weiskopf D (2012) Evaluating partially drawn links for
directed graph edges. In: Graph drawing, Springer, Berlin, pp 226–237

Chimani M, Klein K (2013) Shrinking the search space for clustered planarity. In: Graph drawing,
Springer, Berlin, pp 90–101

Chimani M, Gutwenger C, Jünger M, Klau GW, Klein K, Mutzel P (2013) The open graph drawing
framework (OGDF). In: Tamassia R (ed) (2013) Handbook on graph drawing and visualization.
Chapman and Hall/CRC, Boca Raton, pp 543–569. https://www.crcpress.com/Handbook-of-
Graph-Drawing-and-Visualization/Tamassia/9781584884125

Chimani M, Di Battista G, Frati F, Klein K (2014) Advances on testing c-planarity of embedded
flat clustered graphs. In: Graph drawing, Springer Berlin, Heidelberg, pp 416–427

Chrobak M, Eppstein D (1991) Planar orientations with low out-degree and compaction of
adjacency matrices. Theor Comput Sci 86(2):243–266

Cortese PF, Di Battista G (2005) Clustered planarity. In: Proceedings of the twenty-first annual
symposium on computational geometry. ACM, New York SCG ’05, pp 32–34. http://doi.acm.
org/10.1145/1064092.1064093

Czauderna T, Klukas C, Schreiber F (2010) Editing, validating, and translating of SBGN maps.
Bioinformatics 26(18):2340–2341

Dahlhaus E (1998) A linear time algorithm to recognize clustered graphs and its parallelization.
In: Lucchesi CL, Moura AV (eds) LATIN ’98: theoretical Informatics. Third Latin American
symposium, Campinas, April, 20–24, 1998, Proceedings. Lecture notes in computer science,
vol 1380. Springer, Berlin, pp 239–248. http://dx.doi.org/10.1007/BFb0054325

Didimo W, Eades P, Liotta G (2009) Drawing graphs with right angle crossings. In: Dehne FKHA,
Gavrilova ML, Sack J, Tóth CD (eds) Algorithms and data structures. 11th International
Symposium, WADS 2009, Banff, August 21–23, 2009. Proceedings. Lecture notes in computer

http://dx.doi.org/10.1007/978-3-642-18469-7_8
http://dx.doi.org/10.1007/978-3-642-18469-7_8
http://doi.ieeecomputersociety.org/10.1109/TSE.1986.6312901
http://dx.doi.org/10.1007/3-540-63938-1_84
https://doi.org/10.3389/fnins.2014.00015
http://jgaa.info/accepted/2004/BoyerMyrvold2004.8.3.pdf
http://jgaa.info/accepted/2004/BoyerMyrvold2004.8.3.pdf
http://dx.doi.org/10.7155/jgaa.00330
http://dx.doi.org/10.1007/978-3-642-36763-2_7
http://dx.doi.org/10.1007/978-3-642-36763-2_7
http://dx.doi.org/10.1002/spe.713
https://www.crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125
https://www.crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125
http://doi.acm.org/10.1145/1064092.1064093
http://doi.acm.org/10.1145/1064092.1064093
http://dx.doi.org/10.1007/BFb0054325

66 P. Eades and K. Klein

science, vol 5664, Springer, Berlin, pp 206–217. http://dx.doi.org/10.1007/978-3-642-03367-
4_19

Dwyer T (2009) Scalable, versatile and simple constrained graph layout. Comput Graph Forum
28(3):991–998

Dwyer T, Mears C, Morgan K, Niven T, Marriott K, Wallace M (2014) Improved optimal and
approximate power graph compression for clearer visualisation of dense graphs. In: Fujishiro
I, Brandes U, Hagen H, Takahashi S (eds) IEEE pacific visualization symposium, PacificVis
2014, Yokohama, March 4–7, 2014. IEEE Computer Society, New York, pp 105–112. http://
dx.doi.org/10.1109/PacificVis.2014.46

Eades P (1984) A heuristics for graph drawing. Congressus numerantium 42:146–160
Eades P, Liotta G (2013) Right angle crossing graphs and 1-planarity. Discrete Appl Math 161(7–

8):961–969. http://dx.doi.org/10.1016/j.dam.2012.11.019
Eades P, Cohen RF, Huang ML (1997) Online animated graph drawing for web navigation. In:

Battista GD (ed) (1997) Graph drawing. In: 5th international symposium, GD ’97, Rome,
September 18–20, 1997, Proceedings. Lecture notes in computer science, vol 1353. Springer,
Berlin, pp 330–335. http://dx.doi.org/10.1007/3-540-63938-1_77

Eades P, Feng Q, Nagamochi H (1999) Drawing clustered graphs on an orthogonal grid. J
Graph Algorithms Appl 3(4):3–29. http://www.cs.brown.edu/publications/jgaa/accepted/99/
EadesFengNagamochi99.3.4.pdf

Eades P, Hong S, Katoh N, Liotta G, Schweitzer P, Suzuki Y (2013) A linear time algorithm for
testing maximal 1-planarity of graphs with a rotation system. Theor Comput Sci 513:65–76.
http://dx.doi.org/10.1016/j.tcs.2013.09.029

Eades P, Hong S, Klein K, Nguyen A (2015) Shape-based quality metrics for large graph
visualization. In: Giacomo ED, Lubiw A (eds) Graph drawing and network visualization - 23rd
international symposium, GD 2015, Los Angeles, September 24–26, 2015. Revised selected
papers. Lecture notes in computer science, vol 9411. Springer, Berlin, pp 502–514. http://dx.
doi.org/10.1007/978-3-319-27261-0_41

Feng Q, Cohen RF, Eades P (1995) Planarity for clustered graphs. In: Spirakis PG (ed) Algorithms -
ESA ’95, Third annual European symposium, Corfu, September 25–27, 1995, Proceedings.
Lecture notes in computer science, Springer, Berlin, vol 979, pp 213–226. http://dx.doi.org/10.
1007/3-540-60313-1_145

Fößmeier U, Kaufmann M (1995) Drawing high degree graphs with low bend numbers. In:
Brandenburg F (ed) (1996) Graph drawing. In: Symposium on graph drawing, GD ’95, Passau,
September 20–22, 1995, Proceedings. Lecture notes in computer science, vol 1027. Springer,
Berlin, pp 254–266. http://dx.doi.org/10.1007/BFb0021809

Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed placement. Softw Pract
Exper 21(11):1129–1164. http://dx.doi.org/10.1002/spe.4380211102

Furnas GW (2006) A fisheye follow-up: further reflections on focus + context. In: Grinter RE,
Rodden T, Aoki PM, Cutrell E, Jeffries R, Olson GM (eds) Proceedings of the 2006 conference
on human factors in computing systems, CHI 2006, Montréal, Québec, April 22–27, 2006.
ACM, New York, pp 999–1008. http://doi.acm.org/10.1145/1124772.1124921

Gajer P, Goodrich MT, Kobourov SG (2004) A multi-dimensional approach to force-directed
layouts of large graphs. Comput Geom 29(1):3–18. http://dx.doi.org/10.1016/j.comgeo.2004.
03.014

Gansner ER, Koutsofios E, North SC, Vo K (1993) A technique for drawing directed graphs. IEEE
Trans Softw Eng 19(3):214–230. http://dx.doi.org/10.1109/32.221135

Gansner ER, Koren Y, North SC (2004) Graph drawing by stress majorization. In: Pach J (ed)
(2004) Graph drawing. In: 12th international symposium, GD 2004, New York, September
29 - October 2, 2004. Revised selected papers. Lecture notes in computer science, vol 3383.
Springer, Berlin, pp 239–250. http://dx.doi.org/10.1007/978-3-540-31843-9_25

Gansner ER, Hu Y, Kobourov SG (2010) Gmap: visualizing graphs and clusters as maps. In: IEEE
pacific visualization symposium pacificVis 2010, Taipei, March 2–5, 2010. IEEE, New York,
pp 201–208. http://dx.doi.org/10.1109/PACIFICVIS.2010.5429590

http://dx.doi.org/10.1007/978-3-642-03367-4_19
http://dx.doi.org/10.1007/978-3-642-03367-4_19
http://dx.doi.org/10.1109/PacificVis.2014.46
http://dx.doi.org/10.1109/PacificVis.2014.46
http://dx.doi.org/10.1016/j.dam.2012.11.019
http://dx.doi.org/10.1007/3-540-63938-1_77
http://www.cs.brown.edu/publications/jgaa/accepted/99/EadesFengNagamochi99.3.4.pdf
http://www.cs.brown.edu/publications/jgaa/accepted/99/EadesFengNagamochi99.3.4.pdf
http://dx.doi.org/10.1016/j.tcs.2013.09.029
http://dx.doi.org/10.1007/978-3-319-27261-0_41
http://dx.doi.org/10.1007/978-3-319-27261-0_41
http://dx.doi.org/10.1007/3-540-60313-1_145
http://dx.doi.org/10.1007/3-540-60313-1_145
http://dx.doi.org/10.1007/BFb0021809
http://dx.doi.org/10.1002/spe.4380211102
http://doi.acm.org/10.1145/1124772.1124921
http://dx.doi.org/10.1016/j.comgeo.2004.03.014
http://dx.doi.org/10.1016/j.comgeo.2004.03.014
http://dx.doi.org/10.1109/32.221135
http://dx.doi.org/10.1007/978-3-540-31843-9_25
http://dx.doi.org/10.1109/PACIFICVIS.2010.5429590

2 Graph Visualization 67

Gansner ER, Hu Y, Krishnan S (2013a) Coast: a convex optimization approach to stress-based
embedding. In: Wismath SK, Wolff A (eds) Graph drawing. In: 21st international symposium,
GD 2013, Bordeaux, September 23–25, 2013. Revised selected papers. Lecture notes in
computer science, vol 8242. Springer, Berlin. http://dx.doi.org/10.1007/978-3-319-03841-4 pp
268–279. http://dx.doi.org/10.1007/978-3-319-03841-4

Gansner ER, Hu Y, North SC (2013b) A maxent-stress model for graph layout. IEEE Trans Vis
Comput Graph 19(6):927–940. http://doi.ieeecomputersociety.org/10.1109/TVCG.2012.299

Gansner ER, Hu Y, North SC (2013c) A maxent-stress model for graph layout. IEEE Trans Vis
Comput Graph 19(6):927–940. http://doi.ieeecomputersociety.org/10.1109/TVCG.2012.299

Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-
completeness. W. H. Freeman, New York

Garg A, Tamassia R (1996) A new minimum cost flow algorithm with applications to graph
drawing. In: North SC (ed) Graph drawing, Symposium on graph drawing, GD ’96, Berkeley,
September 18–20, Proceedings. Lecture notes in computer science, vol 1190. Springer, Berlin,
pp 201–216. http://dx.doi.org/10.1007/3-540-62495-3_49

Ghoniem M, Fekete J, Castagliola P (2005) On the readability of graphs using node-link and
matrix-based representations: a controlled experiment and statistical analysis. Inform Vis
4(2):114–135. http://dx.doi.org/10.1057/palgrave.ivs.9500092

Giacomo ED, Liotta G, Montecchiani F (2014) Drawing outer 1-planar graphs with few slopes.
In: Duncan CA, Symvonis A (eds) Graph drawing - 22nd international symposium, GD
2014, Würzburg, September 24–26, 2014. Revised selected papers. Lecture notes in computer
science, vol 8871. Springer, Berlin, pp 174–185. http://dx.doi.org/10.1007/978-3-662-45803-
7_15

Gutwenger C, Jünger M, Leipert S, Mutzel P, Percan M, Weiskircher R (2002) Advances in c-
planarity testing of clustered graphs. In: Goodrich M, Kobourov S (eds) Graph drawing. Lecture
notes in computer science, vol 2528. Springer, Berlin, Heidelberg, pp 220–236. http://dx.doi.
org/10.1007/3-540-36151-0_21

Gutwenger C, Jünger M, Klein K, Kupke J, Leipert S, Mutzel P (2003) A new approach for
visualizing uml class diagrams. In: Proceedings of the 2003 ACM symposium on software
visualization. ACM, New York, pp 179–188

Hachul S, Jünger M (2004) Drawing large graphs with a potential-field-based multilevel algorithm.
In: Pach J (ed) (2004) Graph drawing. In: 12th international symposium, GD 2004, New York,
September 29 - October 2, 2004. Revised selected papers. Lecture notes in computer science,
vol 3383. Springer, Berlin, pp 285–295

Hachul S, Jünger M (2007) Large-graph layout algorithms at work: an experimental study. J Graph
Algorithms Appl 11(2):345–369

Hadany R, Harel D (2001) A multi-scale algorithm for drawing graphs nicely. Discrete Applied
Mathematics 113(1):3–21. http://dx.doi.org/10.1016/S0166-218X(00)00389-9

Hall K (1970) An r-dimensional quadratic placement algorithm. Management Science 17:219–229
Harel D, Koren Y (2002) A fast multi-scale method for drawing large graphs. J Graph

Algorithms Appl 6(3):179–202, http://www.cs.brown.edu/publications/jgaa/accepted/2002/
HarelKoren2002.6.3.pdf

Harel D, Koren Y (2004) Graph drawing by high-dimensional embedding. J Graph Algorithms
Appl 8(2):195–214, http://jgaa.info/accepted/2004/HarelKoren2004.8.2.pdf

Holten D, van Wijk JJ (2009) Force-directed edge bundling for graph visualization. Comput Graph
Forum 28(3):983–990. http://dx.doi.org/10.1111/j.1467-8659.2009.01450.x

Hopcroft JE, Tarjan RE (1974) Efficient planarity testing. J ACM 21(4):549–568. http://doi.acm.
org/10.1145/321850.321852

Hu Y, Shi L (2015) Visualizing large graphs. Wiley Interdisciplinary Reviews: Computational
Statistics 7(2):115–136. http://dx.doi.org/10.1002/wics.1343

Huang W, Eades P, Hong S (2014) Larger crossing angles make graphs easier to read. J Vis Lang
Comput 25(4):452–465. http://dx.doi.org/10.1016/j.jvlc.2014.03.001

http://dx.doi.org/10.1007/978-3-319-03841-4
http://dx.doi.org/10.1007/978-3-319-03841-4
http://doi.ieeecomputersociety.org/10.1109/TVCG.2012.299
http://doi.ieeecomputersociety.org/10.1109/TVCG.2012.299
http://dx.doi.org/10.1007/3-540-62495-3_49
http://dx.doi.org/10.1057/palgrave.ivs.9500092
http://dx.doi.org/10.1007/978-3-662-45803-7_15
http://dx.doi.org/10.1007/978-3-662-45803-7_15
http://dx.doi.org/10.1007/3-540-36151-0_21
http://dx.doi.org/10.1007/3-540-36151-0_21
http://dx.doi.org/10.1016/S0166-218X(00)00389-9
http://www.cs.brown.edu/publications/jgaa/accepted/2002/HarelKoren2002.6.3.pdf
http://www.cs.brown.edu/publications/jgaa/accepted/2002/HarelKoren2002.6.3.pdf
http://jgaa.info/accepted/2004/HarelKoren2004.8.2.pdf
http://dx.doi.org/10.1111/j.1467-8659.2009.01450.x
http://doi.acm.org/10.1145/321850.321852
http://doi.acm.org/10.1145/321850.321852
http://dx.doi.org/10.1002/wics.1343
http://dx.doi.org/10.1016/j.jvlc.2014.03.001

68 P. Eades and K. Klein

Jelínková E, Kára J, Kratochvíl J, Pergel M, Suchý O, Vyskocil T (2009) Clustered planarity:
Small clusters in cycles and Eulerian graphs. J Graph Algorithms Appl 13(3):379–422, http://
jgaa.info/accepted/2009/Jelinkova+2009.13.3.pdf

Jia Y, Hoberock J, Garland M, Hart J (2008) On the visualization of social and other scale-
free networks. IEEE Transactions on Visualization and Computer Graphics 14(6):1285–1292.
https://doi.org/10.1109/TVCG.2008.151

Johnson B, Shneiderman B (1991) Tree maps: A space-filling approach to the visualization of
hierarchical information structures. In: IEEE Visualization, pp 284–291. http://dx.doi.org/10.
1109/VISUAL.1991.175815

Jünger M, Mutzel P (1994) The polyhedral approach to the maximum planar subgraph problem:
New chances for related problems. In: Tamassia R, Tollis IG (eds) (1995) Graph drawing.
In: DIMACS international workshop, GD ’94, Princeton, October 10–12, 1994, Proceedings.
Lecture notes in computer science, vol 894. Springer, Berlin, pp 119–130. http://dx.doi.org/10.
1007/3-540-58950-3_363

Jünger M, Mutzel P (1996) Maximum planar subgraphs and nice embeddings: Practical layout
tools. Algorithmica 16(1):33–59. http://dx.doi.org/10.1007/BF02086607

Jünger M, Leipert S, Mutzel P (1998) A note on computing a maximal planar subgraph using
pq-trees. IEEE Trans on CAD of Integrated Circuits and Systems 17(7):609–612. http://doi.
ieeecomputersociety.org/10.1109/43.709399

Kamada T, Kawai S (1989) An algorithm for drawing general undirected graphs. Inf Process Lett
31(1):7–15. http://dx.doi.org/10.1016/0020-0190(89)90102-6

Karypis G, Kumar V (1995) Analysis of multilevel graph partitioning. In: Karin S (ed) Proceedings
supercomputing ’95, San Diego, December 4-8, 1995. IEEE Computer Society/ACM, New
York, p 29. http://doi.acm.org/10.1145/224170.224229

Khoury M, Hu Y, Krishnan S, Scheidegger CE (2012) Drawing large graphs by low-rank stress
majorization. Comput Graph Forum 31(3):975–984. http://dx.doi.org/10.1111/j.1467-8659.
2012.03090.x

Kobourov SG (2013) Force-directed drawing algorithms. Handbook of graph drawing and
visualization, pp 383–408

Kobourov SG, Pupyrev S, Saket B (2014) Are crossings important for drawing large graphs? In:
Graph drawing. Springer, Berlin, pp 234–245

Koren Y, Carmel L, Harel D (2002) ACE: a fast multiscale eigenvectors computation for
drawing huge graphs. In: Wong PC, Andrews K (eds) 2002 IEEE symposium on information
visualization (InfoVis 2002), 27 October–1 November 2002, Boston. IEEE Computer Society,
New York, pp 137–144. http://dx.doi.org/10.1109/INFVIS.2002.1173159

Kuratowski K (1930) Sur le problème des courbes gauches en topologie. Fund Math 15:271–283
Lamping J, Rao R, Pirolli P (1995) A focus+context technique based on hyperbolic geometry for

visualizing large hierarchies. In: Proceedings of the SIGCHI conference on human factors in
computing systems, CHI ’95. ACM Press/Addison-Wesley, New York, pp 401–408. http://dx.
doi.org/10.1145/223904.223956

Le Novère N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem
M, Wimalaratne SM, Bergman FT, Gauges R, Ghazal P, Kawaji H, Li L, Matsuoka Y, Villéger
A, Boyd SE, Calzone L, Courtot M, Dogrusoz U, Freeman T, Funahashi A, Ghosh S, Jouraku
A, Kim S, Kolpakov F, Luna A, Sahle S, Schmidt E, Watterson S, Wu G, Goryanin I, Kell
DB, Sander C, Sauro H, Snoep JL, Kohn K, Kitano H (2009) The systems biology graphical
notation. Nat Biotechnol 27:735–741

Lin T, Eades P (1994) Integration of declarative and algorithmic approaches for layout creation. In:
Tamassia R, Tollis IG (eds) (1995) Graph drawing. In: DIMACS international workshop, GD
’94, Princeton, October 10–12, 1994, Proceedings. Lecture notes in computer science, vol 894.
Springer, Berlin, pp 376–387. http://dx.doi.org/10.1007/3-540-58950-3_392

Mehlhorn K, Mutzel P (1996) On the embedding phase of the Hopcroft and Tarjan planarity testing
algorithm. Algorithmica 16(2):233–242. http://dx.doi.org/10.1007/BF01940648

Misue K, Eades P, Lai W, Sugiyama K (1995) Layout adjustment and the mental map. J Vis Lang
Comput 6(2):183–210. http://dx.doi.org/10.1006/jvlc.1995.1010

http://jgaa.info/accepted/2009/Jelinkova+2009.13.3.pdf
http://jgaa.info/accepted/2009/Jelinkova+2009.13.3.pdf
https://doi.org/10.1109/TVCG.2008.151
http://dx.doi.org/10.1109/VISUAL.1991.175815
http://dx.doi.org/10.1109/VISUAL.1991.175815
http://dx.doi.org/10.1007/3-540-58950-3_363
http://dx.doi.org/10.1007/3-540-58950-3_363
http://dx.doi.org/10.1007/BF02086607
http://doi.ieeecomputersociety.org/10.1109/43.709399
http://doi.ieeecomputersociety.org/10.1109/43.709399
http://dx.doi.org/10.1016/0020-0190(89)90102-6
http://doi.acm.org/10.1145/224170.224229
http://dx.doi.org/10.1111/j.1467-8659.2012.03090.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03090.x
http://dx.doi.org/10.1109/INFVIS.2002.1173159
http://dx.doi.org/10.1145/223904.223956
http://dx.doi.org/10.1145/223904.223956
http://dx.doi.org/10.1007/3-540-58950-3_392
http://dx.doi.org/10.1007/BF01940648
http://dx.doi.org/10.1006/jvlc.1995.1010

2 Graph Visualization 69

Monash University (2015) WebCoLa – constraint-based layout in the browser. http://marvl.
infotech.monash.edu/webcola/

Newbery FJ (1989) Edge concentration: a method for clustering directed graphs. In: SCM,
pp 76–85

Nguyen QH, Eades P, Hong S (2013) On the faithfulness of graph visualizations. In: Carpendale
S, Chen W, Hong S (eds) IEEE pacific visualization symposium, PacificVis 2013, February
27 2013-March 1, 2013, Sydney. IEEE, New York, pp 209–216. http://dx.doi.org/10.1109/
PacificVis.2013.6596147

Nocaj A, Ortmann M, Brandes U (2016) Adaptive disentanglement based on local clustering in
small-world network visualization. IEEE Trans Vis Comput Graph. http://dx.doi.org/10.1109/
TVCG.2016.2534559

OGDF (2015) The open graph drawing framework. http://www.ogdf.net
Purchase HC (2002) Metrics for graph drawing aesthetics. J Vis Lang Comput 13(5):501–516.

http://dx.doi.org/10.1006/jvlc.2002.0232
Purchase HC, Cohen RF, James MI (1995) Validating graph drawing aesthetics. In: Brandenburg F

(ed) (1996) Graph drawing. In: Symposium on graph drawing, GD ’95, Passau, September 20–
22, 1995, Proceedings. Lecture notes in computer science, vol 1027. Springer, Berlin, pp 435–
446. http://dx.doi.org/10.1007/BFb0021827

Quigley A, Eades P (2001) Fade: graph drawing, clustering, and visual abstraction. In: Graph
drawing. Springer, Berlin, Heidelberg, pp 197–210

Reingold EM, Tilford JS (1981) Tidier drawings of trees. IEEE Trans Softw Eng 7(2):223–228.
http://dx.doi.org/10.1109/TSE.1981.234519

Rohn H, Junker A, Hartmann A, Grafahrend-Belau E, Treutler H, Klapperstuck M, Czauderna T,
Klukas C, Schreiber F (2012) Vanted v2: a framework for systems biology applications. BMC
Syst Biol 6:139

Rüegg U, Kieffer S, Dwyer T, Marriott K, Wybrow M (2014) Stress-minimizing orthogonal layout
of data flow diagrams with ports. In: Graph drawing. Springer, Berlin, pp 319–330

Rusu A (2013) Three drawing algorithms. In: Tamassia R (ed) (2013) Handbook on graph drawing
and visualization. Chapman and Hall/CRC, Boca Raton, pp 155–192. https://www.crcpress.
com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125

Schreiber F, Dwyer T, Marriott K, Wybrow M (2009) A generic algorithm for layout of biological
networks. BMC Bioinform 10:375

Shih W, Hsu W (1999) A new planarity test. Theor Comput Sci 223(1–2):179–191. http://dx.doi.
org/10.1016/S0304-3975(98)00120-0

Sugiyama K, Tagawa S, Toda M (1981) Methods for visual understanding of hierarchical system
structures. IEEE Trans Syst Man Cybern 11(2):109–125. http://dx.doi.org/10.1109/TSMC.
1981.4308636

Sultana S, Rahman MS, Roy A, Tairin S (2014) Bar 1-visibility drawings of 1-planar graphs.
In: Gupta P, Zaroliagis CD (eds) Applied algorithms - first international conference, ICAA
2014, Kolkata, January 13–15, 2014. Proceedings. Lecture notes in computer science, vol 8321.
Springer, Berlin, pp 62–76. http://dx.doi.org/10.1007/978-3-319-04126-1_6

Tamassia R (1987) On embedding a graph in the grid with the minimum number of bends. SIAM
J Comput 16(3):421–444. http://dx.doi.org/10.1137/0216030

Tamassia R, Tollis IG (1986) Algorithms for visibility representations of planar graphs. In: Monien
B, Vidal-Naquet G (eds) STACS 86, 3rd annual symposium on theoretical aspects of computer
science, Orsay, January 16–18, 1986, Proceedings. Lecture notes in computer science, vol 210.
Springer, Berlin, pp 130–141. http://dx.doi.org/10.1007/3-540-16078-7_71

Tamassia R, Battista GD, Batini C (1988) Automatic graph drawing and readability of diagrams.
IEEE Trans Syst Man Cybern 18(1):61–79. http://dx.doi.org/10.1109/21.87055

Tom Sawyer Software (2015) Tom sawyer toolkit. https://www.tomsawyer.com/
Torgerson WS (1952) Multidimensional scaling: I. theory and method. Psychometrika 17(4):401–

419. http://dx.doi.org/10.1007/BF02288916
Tufte ER (1992) The visual display of quantitative information. Graphics Press, Cheshire
TULIP (2015) The Tulip framework. tulip.labri.fr

http://marvl.infotech.monash.edu/webcola/
http://marvl.infotech.monash.edu/webcola/
http://dx.doi.org/10.1109/PacificVis.2013.6596147
http://dx.doi.org/10.1109/PacificVis.2013.6596147
http://dx.doi.org/10.1109/TVCG.2016.2534559
http://dx.doi.org/10.1109/TVCG.2016.2534559
http://www.ogdf.net
http://dx.doi.org/10.1006/jvlc.2002.0232
http://dx.doi.org/10.1007/BFb0021827
http://dx.doi.org/10.1109/TSE.1981.234519
https://www.crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125
https://www.crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125
http://dx.doi.org/10.1016/S0304-3975(98)00120-0
http://dx.doi.org/10.1016/S0304-3975(98)00120-0
http://dx.doi.org/10.1109/TSMC.1981.4308636
http://dx.doi.org/10.1109/TSMC.1981.4308636
http://dx.doi.org/10.1007/978-3-319-04126-1_6
http://dx.doi.org/10.1137/0216030
http://dx.doi.org/10.1007/3-540-16078-7_71
http://dx.doi.org/10.1109/21.87055
https://www.tomsawyer.com/
http://dx.doi.org/10.1007/BF02288916
http://tulip.labri.fr

70 P. Eades and K. Klein

Tutte WT (1960) Convex representations of graphs. Proc Lond Math Soc 10:304–320
Tutte WT (1963) How to draw a graph. Proc Lond Math Soc 13:743–767
University of Florida (2015) The university of Florida sparse matrix collection. http://www.cise.

ufl.edu/research/sparse/matrices/
Walshaw C (2003) A multilevel algorithm for force-directed graph-drawing. J Graph Algorithms

Appl 7(3):253–285. http://www.cs.brown.edu/publications/jgaa/accepted/2003/Walshaw2003.
7.3.pdf

Ware C, Purchase HC, Colpoys L, McGill M (2002) Cognitive measurements of graph aesthetics.
Inf. Vis. 1(2):103–110. http://dx.doi.org/10.1057/palgrave.ivs.9500013

Yoghourdjian V, Dwyer T, Gange G, Kieffer S, Klein K, Marriott K (2016) High-quality ultra-
compact grid layout of grouped networks. IEEE Trans Vis Comput Graph 22(1):339–348.
http://doi.ieeecomputersociety.org/10.1109/TVCG.2015.2467251

Yunis E, Yokota R, Ahmadia AJ (2012) Scalable force directed graph layout algorithms using fast
multipole methods. In: Bader M, Bungartz H, Grigoras D, Mehl M, Mundani R, Potolea R (eds)
11th international symposium on parallel and distributed computing, ISPDC 2012, Munich,
June 25–29, 2012. IEEE Computer Society, New York, pp 180–187. http://dx.doi.org/10.1109/
ISPDC.2012.32

http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cs.brown.edu/publications/jgaa/accepted/2003/Walshaw2003.7.3.pdf
http://www.cs.brown.edu/publications/jgaa/accepted/2003/Walshaw2003.7.3.pdf
http://dx.doi.org/10.1057/palgrave.ivs.9500013
http://doi.ieeecomputersociety.org/10.1109/TVCG.2015.2467251
http://dx.doi.org/10.1109/ISPDC.2012.32
http://dx.doi.org/10.1109/ISPDC.2012.32

Chapter 3
gLabTrie: A Data Structure for Motif
Discovery with Constraints

Misael Mongioví, Giovanni Micale, Alfredo Ferro, Rosalba Giugno,
Alfredo Pulvirenti, and Dennis Shasha

Abstract Motif discovery is the problem of finding subgraphs of a network
that appear surprisingly often. Each such subgraph may indicate a small-scale
interaction feature in applications ranging from a genomic interaction network, a
significant relationship involving rock musicians, or any other application that can
be represented as a network. We look at the problem of constrained search for
motifs based on labels (e.g. gene ontology, musician type to continue our example
from above). This chapter presents a brief review of the state of the art in motif
finding and then extends the gTrie data structure from Ribeiro and Silva (Data Min
Knowl Discov 28(2):337–377, 2014b) to support labels. Experiments validate the
usefulness of our structure for small subgraphs, showing that we recoup the cost of
the index after only a handful of queries.

3.1 The Problem and Its Motivation

A motif in a graph is a subgraph that appears statistically significantly often.
Frequently occurring motifs may have practical significance. One familiar example
is the ubiquity of feedback networks underlying homeostasis in biological, natural,
and even economic systems. Motifs can also be useful in engineering disciplines
such as synthetic biology. Kurata et al. (2014) use the frequent motifs found in
biological networks as a library for synthetic biology. In fact, Kurata et al. pointed
out that there are often motifs that behave as a single node in a larger network motif,

M. Mongioví · G. Micale
Department of Maths and Computer Science, University of Catania, Catania, Italy
e-mail: mongiovi@dmi.unict.it; gmicale@dmi.unict.it

A. Ferro · R. Giugno · A. Pulvirenti
Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
e-mail: ferro@dmi.unict.it; giugno@dmi.unict.it; pulvirenti@dmi.unict.it

D. Shasha (�)
Courant Institute of Mathematical Science, New York University, New York, NY, USA
e-mail: shasha@courant.nyu.edu

© Springer International Publishing AG, part of Springer Nature 2018
G. Fletcher et al. (eds.), Graph Data Management, Data-Centric Systems
and Applications, https://doi.org/10.1007/978-3-319-96193-4_3

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96193-4_3&domain=pdf
mailto:mongiovi@dmi.unict.it
mailto:gmicale@dmi.unict.it
mailto:ferro@dmi.unict.it
mailto:giugno@dmi.unict.it
mailto:pulvirenti@dmi.unict.it
mailto:shasha@courant.nyu.edu
https://doi.org/10.1007/978-3-319-96193-4_3

72 M. Mongioví et al.

just as an AND gate in an electronic circuit built out of transistors and resistors acts
as a single node in a logic diagram. So, there may be motifs at different levels of
abstraction. For the purposes of our chapter, we will take the usefulness of motifs
for granted and talk about how to discover such motifs efficiently.

Further, we will be particularly concerned with graphs whose vertices have
labels. A constrained labeled motif query is to find a statistically significant motif
satisfying some constraint on the labels.

In the sequel, we will define our notion of statistical significance, but informally,
this will entail a simulation of the following process: (1) Find many random
variations of the input graph G where each random variation preserves the degree
counts of each node in G and preserves the number of edges linking nodes having
each pair of labels. (2) See how often a labeled topological structure of interest is
found in those random graphs. If infrequently, then the labeled topological structure
is significant in G and constitutes a motif.

The computational challenge in motif finding is that the number of possible
subgraphs could, depending on the graph, grow exponentially with the size of the
subgraph. For sparser graphs, the growth may be less dramatic, but still rapid.

For that reason, we use data structures to make this fast. Our work builds directly
on the gTrie data structure developed by Ribeiro and Silva (2012) which is why we
call our structure gLabTrie.

This chapter begins with a discussion of the data structure and algorithm we will
use. We then follow with a discussion of how to find rare structures. Finally, we give
an experimental evaluation of our structure and algorithms.

3.2 gLabTrie Structure

3.2.1 Preliminaries

For simplicity, our discussion will center on undirected graphs, although our method
works with directed graphs as well. Given a graph G, we denote by VG its set
of vertices, by EG its set of edges, by LG its alphabet of labels, and by lG a
function that assigns a label to each vertex. We also write G = (VG,EG,LG, lG).
A subgraph G′ of a graph G (denoted by G′ ⊆ G) is a graph that contain, a subset
of vertices VG′ ⊆ VG of G and all edges of G whose endpoints are both in VG′ .

An isomorphism between two graphs G1 and G2 is a one-to-one mapping
ϕ : VG1 → VG2 between vertices, which preserves the structure, i.e., (u, v) ∈
G1 ⇔ (ϕ(u), ϕ(v)) ∈ G2, and the labels, i.e., lG(u) = lG(ϕ(u)). If there is at
least an isomorphism between G1 and G2, we say that they are isomorphic and
write G1 ∼ G2. An automorphism in G is an isomorphism between G and itself.
Every graph admits at least one automorphism (where each vertex corresponds to
itself). Typically, a graph can have many automorphisms. We abuse the notation
and write ϕ(G), with G ⊆ G1 to denote the subgraph of G2 that corresponds to G

3 gLabTrie: A Data Structure for Motif Discovery with Constraints 73

according to ϕ (i.e. the subgraph composed of vertices ϕ(v) with v ∈ G and edges
(ϕ(v1), ϕ(v2)) with (v1, v2) ∈ G).

In what follows, we use the terms input network (denoted by G), topologies
(denoted by G), i.e., unlabeled graphs that represent motif structures and topology
instances (denoted by g), i.e., subgraphs of G that accommodate certain topologies.
A labeled topology is an undirected (vertex-) labeled connected graph G. An
unlabeled topology is a labeled topology stripped of its labels. A labeled topology
that occurs frequently in G is also called motif. An occurrence g of a topology G is
a connected subgraph of G that is isomorphic to G. So, a given topology may have
zero, one, or more occurrences in a graph.

Checking whether two (labeled or unlabeled) topologies are isomorphic is an
expensive task that requires finding an isomorphism between the topologies or
proving that no isomorphism exists. In motif discovery, this operation has to be
performed frequently to map a topology to the network subgraphs that conform
to that topology. To simplify this operation, we map a graph to its canonical
form, i.e., a string that uniquely identifies a topology and is invariant with respect
to isomorphism. In other words, two isomorphic graphs should have the same
canonical form, while two graphs that are not isomorphic should have different
canonical forms. Computing the canonical form of a graph may be expensive, but
once it is computed, the isomorphism check entails simple string comparison.

An easy way to find a canonical form for an unlabeled subgraph is to consider all
possible adjacency matrices of that subgraph (by reordering vertices in all possible
ways), linearize them into strings (by putting all rows of an adjacency matrix
contiguously in a unique line) and considering the smallest string (with respect to
a lexicographic order). This simple approach guarantees invariance with respect to
isomorphism since two isomorphic graphs have the same adjacency matrix except
for their rows/columns order. The approach can be generalized to labeled topologies
by including the sequence of labels in the string. Since enumerating all possible
vertex orders is impractical, more efficient methods have been defined. A widely
used method is nauty (McKay 1981).

The canonical form of a graph is associated to a canonical order of vertices, i.e.,
the order of vertices that produces it. Note that a canonical form may be associated
with more than one canonical order since a graph may have several automorphisms.

3.2.2 Problem Definition

We aim to support label-based queries in which the user specifies a set of constraints
and the system returns all topologies that satisfy the constraints. In our framework,
a user specifies a frequency threshold, a p-value threshold, and a bag (multiset)
of labels that the motifs must contain. An example query would be: “Give me all
labeled topologies of size k that have at least two A labels and one B label, occur at
least f times and have a p-value smaller than p.” We also want the query processing
to be fast, so when a user is not satisfied with the response, he or she can change the

74 M. Mongioví et al.

constraints and quickly get a new response. We accept a slow (but still reasonable)
offline preprocessing step in exchange for fast query processing.

Formally, we define a label-based query (more simply a query) as a quadruple
Q = (C, k, f, p), where C is a bag of labels (a bag, also called a multiset, is similar
to a set, but an element may occur more than once), k is the requested size of motifs,
f is a frequency threshold, and p is a p-value threshold.

Definition 3.1 (Label-Based Query Processing) Given a network G and a query
Q = (C, k, f, p), find all labeled topologies T with number of vertices (size) k,
whose number of occurrences in G is at least f and whose p-value is no more
than p.

We solve the defined problem in two steps. During an offline preprocessing
phase, we census the input network to find all labeled motifs up to a certain size K ,
and organize them in a suitable data structure (that we call the TopoIndex). Later,
during the online query processing phase, we probe the TopoIndex to efficiently
retrieve motifs that satisfy the query constraints.

In the remaining part of this section, we describe how we extend existing
approaches to support labeled motifs and the data structure used for quickly
processing queries. Since our approach has been implemented on top of G-Trie,
we first give an overview of G-Trie and our subsequent description will refer to it.
However, our approach is general in that it can be applied on other network-centric
algorithms for motif discovery.

3.2.3 G-Trie Method for Unlabeled Motif Discovery

The main data structure of a network-centric method for motif discovery is a key-
value map (hash table or search tree) that associates each unlabeled topology (up
to a certain size) to a counter. Unlabeled topologies may be represented by their
canonical form, so that the isomorphic check is efficient. G-Trie (Ribeiro and Silva
2014b) generalizes tries to graphs. A gTrie organizes a set of unlabeled topologies in
a multiway tree in such a way that subgraphs correspond to ancestors. An example
of gTrie that stores all unlabeled topologies of size up to four vertices is given in
Fig. 3.1.

Each node1 of the gTrie stores information associated to the corresponding
topology, typically a counter (not shown in the figure). A gTrie can be seen as a
map that associates topologies to counters (similar in principle to a hash table or a
binary tree).

1We use the term node to refer to parts of our data structures and vertex to talk about the graphs in
which we find patterns.

3 gLabTrie: A Data Structure for Motif Discovery with Constraints 75

Fig. 3.1 Example of a gTrie
with K = 4. The data
structure stores all unlabeled
topologies with up to 4
vertices. A similar, more
detailed example can be
found in Ribeiro and Silva
(2014b)

Algorithm 1: Network-centric algorithm for unlabeled motif discovery: first
find topologies in the input network that meet the frequency threshold, then
compare the number of occurrences with the number of occurrences in each of
a set of random graphs to evaluate the p-value of each such topology

Require: network, size K , frequency threshold f , p-value threshold p, number of
randomizations r {returns the set of motifs with frequency ≥ f and p-value ≤ p}
initialize gT rie with depth K

call census(network, gT rie)

initialize map_count

for i = 0 . . . r do
rand_net = randomize(network)

initialize gT rie_rand with depth K

call census(rand_net, gT rie_rand)

for all t ∈ topologies(gT rie_rand) do
if gT rie_rand[t] ≥ gT rie[t] then

map_count[t] = map_count[t] + 1
end if

end for
end for
for all t ∈ keys(map_count) do

pval = map_count[t]/r

if gT rie[t] ≥ f and pval ≤ p then
output t , gT rie[t], pval

end if
end for

To compute p-values, the GTrie system counts the number of occurrences
of all unlabeled topologies in the input network and compares them with the
corresponding number of occurrences in random networks with similar properties.
The overall algorithm is in the figure marked Algorithm 1.

First a gTrie with all unlabeled topologies up to size K is built in the input
network. Then the core procedure, census(), which takes as input a network and

76 M. Mongioví et al.

fills the gTrie2 with the correct counting, is called. This procedure enumerates all
subgraphs of the network one by one and increases the counter of the corresponding
topology. Then, a map of counters (map_count) is initialized. This map is a hash
table that associates topologies (more precisely canonical forms of topologies) to
counters and is used to store the number of random networks in which a given
topology occurs more than in the input network. Next, a number of randomizations
of the input network are computed and census() is executed on each of them. For
every topology found, if its number of occurrence is greater than the one in the
input network, its counter is increased. Function topologies(gT rie) returns all
topologies stored in gT rie while gT rie[t] refers to the counter associated with
topology t in gT rie. At the end, frequencies and p-values are computed and all
topologies that satisfy the input constraints are returned. In the next paragraphs we
give more details about the core procedure, census(). Further details on the other
parts can be found in Ribeiro and Silva (2014b).

The algorithm for graph census (procedure census()) is detailed in Algorithm 2.
The algorithm is based on the recursive procedure Match that matches paths of
the gTrie with all possible subgraph of the input network. At the beginning, the
procedure Match is called on the root of the gTrie and with an empty subgraph
(Vused = ∅). The procedure picks one vertex at a time and starts to grow a subgraph
from that vertex. Every time a new child of a gTrie node is explored, all neighbors
of previously taken vertices (N(Vused)) are considered and, if matchable, associated
with the current node and added to the current subgraph (Vused). When a leaf
node is considered, the node counter is increased. This means that a new subgraph
isomorphic to the topology associated to that node was found.

To perform a correct counting, every subgraph should be counted exactly once.
Without symmetry breaking conditions, the Match procedure would find some
subgraphs multiple times. Indeed, if a subgraph has more than one automorphism
(isomorphism between it and itself) there are multiple ways to obtain it. For
instance, consider a network that contains a triangle with vertex ids 1, 2, and 3.
The enumeration would produce the same triangle six times with the following
sequences: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). Although
multiple copies may be discarded by a post-processing step, this would require
storing all subgraphs, which would be expensive for large subgraphs. Instead,
the census algorithm considers a carefully designed set of symmetry-breaking
conditions that guarantees that each subgraph is enumerated exactly once. In the
specific example, the breaking conditions impose that the first vertex’s identifier
must be smaller than the second one’s, and the second vertex’s id must be smaller
than the third one’s. Thus, only (1, 2, 3) would be a valid sequence of vertices for
the triangle. Details on how symmetry-breaking conditions are computed are given
in Ribeiro and Silva (2014b).

2In general the overall algorithm can work with any data structure that associates keys to values
(e.g. hash tables) in place of gTrie. Keys are canonical forms of topologies, while values are
counters.

3 gLabTrie: A Data Structure for Motif Discovery with Constraints 77

Algorithm 2: Census algorithm for unlabeled motif discovery
Require: network, gTrie {returns the gTrie filled with the number of occurrences of each

topology.}
Match(gT rie.root,∅)

return gT rie

Procedure Match(node, Vused)

if Vused = ∅ then
Vcand ← V (network)

else
Vcand ← {v ∈ N(Vused) : v satisfies symmetry breaking conditions}

end if
V ← ∅
for all v ∈ Vcand do

if v is connected with Vused as defined in node then
V ← V ∪ {v}

end if
end for
for all v ∈ V do

if isLeaf (node) then
node.counter+ = 1

end if
for all children c of node do

Match(c, Vused ∪ {v})
end for

end for
End Procedure

3.2.4 gLabTrie Data Structure for Labeled Motif Discovery

A naive extension for handling labeled networks would consist in incorporating
labels into the gTrie nodes. A node would represent a labeled topology as opposed
to an unlabeled topology. However, this approach would cause an explosion of
the number of gTrie nodes as the number of labels grows. Each node has to
maintain both connectivity and label information and hence the same connectivity
information would be stored multiple times.

To optimize memory, we resort to a different approach that consists in combining
the canonical form of the unlabeled topology with the sequence of labels. This
approach introduces the problem of determining the order of labels because the
canonical order of unlabeled topologies is not sufficient. To clarify this point, let
us consider the two subgraphs in Fig. 3.2. Numbers represent the canonical order
of vertices, while letters represent labels. Note that the order between 2 and 3 is
ambiguous (1-3-2 would be a valid order as well) since by exchanging them we
obtain the same unlabeled canonical form. The two labeled topologies are clearly
isomorphic. However, the label sequences in the canonical orders are different (ABC
vs. ACB).

78 M. Mongioví et al.

Fig. 3.2 Example of two unlabeled canonical orders that produce different sequence of labels on
isomorphic graphs. The order is given by numbers. The two corresponding sequences of labels are
ABC and ACB

Fig. 3.3 By considering lexically ordered canonical orders we can guarantee that isomorphic
graphs are associated with the same sequence of labels. In this example, both sequences of labels
are ABC

To guarantee that isomorphic labeled topologies have the same label sequence,
we solve the ambiguity in the canonical ordering by ordering labels (e.g., in
alphabetic order) and using this order to break ties. This is equivalent to choosing,
among all possible canonical orders (of the single canonical form) of an unlabeled
topology, the one that corresponds to the lexicographically minimum sequence of
labels. We refer to a canonical order that satisfies this condition as a lexically ordered
canonical order. Note that network-centric tools (e.g., gTrie) solve the ambiguity by
considering the order of vertex ids to break the ties. Therefore, we just need to ensure
that the order of vertex ids is consistent with the order of labels. This can be done
by reassigning vertex ids of the input network so that vertices with smaller labels
are assigned with smaller vertex ids (i.e., v ≤ u if lG(v) ≤ lG(u)). We call a graph
that satisfies this condition a lexically numbered graph.

The procedure described above solves the problem in Fig. 3.2. The order of
the second topology is forced to be as in Fig. 3.3 and hence both label sequences
would be ABC. Now we prove that this procedure always gives the correct result.
Specifically, we prove that

• if two labeled topologies are isomorphic, then their associated labeled canonical
forms (topology + label sequence) are equal;

• given two labeled topologies, if their corresponding labeled canonical forms are
equal, then they are isomorphic (including their labels).

The second condition is trivial. Indeed the canonical order of two topologies
defines an association between vertices that preserves both the structure and the
label sequence.

3 gLabTrie: A Data Structure for Motif Discovery with Constraints 79

In order to prove the first condition, we need to prove that if two labeled
topologies are isomorphic then their corresponding sequence of labels coincide.
In fact, the labeled canonical form is computed by combining the unlabeled
canonical form with the sequence of labels. Since by stripping off the labels
two isomorphic topologies remain isomorphic, the two unlabeled canonical forms
coincide. Therefore we need to be concerned only about the label sequences.

Lemma 3.1 Let G1, G2 be two labeled subgraphs of a lexically numbered graph
and S1, S2 be the sequence of labels given by their lexically ordered canonical order.
If G1 and G2 are isomorphic, then S1 = S2.

Proof By contradiction. Suppose S1 �= S2. Without loss of generality, consider
S1 < S2. Since G1 and G2 are isomorphic, there is at least an isomorphism between
G1 and G2 (that is a one-to-one association between vertices of G1 and vertices of
G2). We can use this isomorphism to construct an order of vertices for G2 that is
equivalent to the canonical order of G1. This is a valid canonical order for G2 since
it produces the same unlabeled canonical form. Moreover this order corresponds to
the same sequence of labels as S1. That constitutes a valid canonical order for G2
that produces a sequence of labels smaller than S2. This contradicts the hypothesis
that S2 was obtained by a lexically ordered canonical order. ��

We modify the G-Trie algorithm to support labels. The main change concerns the
information associated with gTrie nodes. Specifically, we substitute the counters of
gTrie nodes with hash tables that associate label sequences to counters. To retrieve
the counter of a labeled topology, we first look up the entry corresponding to its
unlabeled topology, then we look up the counter associated with the label sequence
in the corresponding hash table.

In summary, we apply the following changes to G-Trie:

1. Introduce a first step that reassigns ids to vertices of the input network so
that vertices with smaller labels are assigned with smaller vertex ids (to create
lexically numbered graphs).

2. Substitute the counters of gTrie nodes with hash tables that associate label
sequences to counters.

3. Change the census procedure to increase the counters of labeled topologies as
opposed as unlabeled ones.

Since the major changes are in the census algorithm we focus on the census
procedure for labeled motif discovery (the overall algorithm for the labeled case
is quite similar to that of the labeled case, but the labeled case requires the
addition of the initial vertex ids assignment step). The census algorithm is shown
in Algorithm 3.

80 M. Mongioví et al.

Algorithm 3: Census algorithm for labeled motif discovery
Require: labeled network, gTrie {returns the gTrie filled with hash tables with the number

of occurrences of each labeled topology.}
Match(gT rie.root,∅)

return gT rie

Procedure Match(node, Vused)

if Vused = ∅ then
Vcand ← V (network)

else
Vcand ← {v ∈ N(Vused) : v satisfies symmetry breaking conditions}

end if
V ← ∅
for all v ∈ Vcand do

if v is connected with Vused as defined in node then
V ← V ∪ {v}

end if
end for
for all v ∈ V do

if isLeaf (node) then
label_seq ← labels of Vused in lexically ordered canonical order
node.hash_table[label_seq]+ = 1
{now we have a hash table as opposed as a counter}

end if
for all children c of node do

Match(c, Vused ∪ {v})
end for

end for
End Procedure

3.2.5 An Index for Querying Motifs

During the preprocessing phase, we find all motifs up to size K (a pre-defined
parameter) in the input network as described previously. We set neither a frequency
threshold nor a p-value threshold at this point so that queriers can set thresholds of
interest at query time. One implication is that all labeled topologies occurring in the
input network having size K or less are considered. For simplicity of exposition,
in the following, we consider only motifs of size exactly K , although our method
handles motifs with size smaller than K , as we explain later. We put all extracted
labeled topologies in a data structure, which we call the TopoIndex, that facilitates
later retrieval. An example of a TopoIndex for K = 3 and two labels (A and B) is
depicted in Fig. 3.4.

The TopoIndex consists of a DAG, which embodies the super-multiset relation
between sets, and a collection of lists of topologies contained in the leaves of the
DAG. Specifically, nodes of the DAG represent bags of labels (label constraints)
and an edge is drawn between two nodes u and v if v is super-multiset of u (i.e., it
contains all labels in u with multiplicity below or attained to the one in v), and v has

3 gLabTrie: A Data Structure for Motif Discovery with Constraints 81

Fig. 3.4 The TopoIndex. Our data structure for processing label-based queries

exactly one label more than u. The edge is associated with the label that is different
between u and v. Each leaf (node that does not have any outgoing edges) contains
a list of all labeled topologies that satisfy the label constraints associated with the
leaf, with the topologies’ frequencies and p-values.

The described TopoIndex enables fast lookup of a bag of labels and then fast
retrieval of associated topologies (by exploring the part of the DAG reachable from
the corresponding node). The DAG shown in the example in Fig. 3.4 is complete,
that is, it contains all possible nodes up to depth 3, but in general it may be not need
to be complete. For instance, if there are no topologies with labels ABB and BBB,
the nodes ABB, BBB, and BB are not included in the DAG, thus saving time and
space.

3.2.5.1 Building the TopoIndex

The building procedure is given in Algorithm 4. First we group the topologies by
their label bags. Then, for each label bag we create a leaf and store it in a hash table
that associates label bags with the corresponding nodes. We create the other nodes
of the DAG by calling create_dag() (Algorithm 5), which recursively removes one
label at a time from nodes and creates nodes up to the root. The time complexity of
Algorithm 4 is O(|T ||K| log(|K|) + |LB||K|2), where LB is the set of label bags
(|LB| ≤ |T |). The labels of every topology need to be ordered (for comparison with
other label bags), which can be done in time complexity O(|K| log(|K|)). Grouping
label bags can be done in time O(|T ||K|) in expected time using a hash table.
Inserting the label bags in the TopoIndex can be done in time O(|LB||K|2) since for
every unlabeled topologies at most |K| nodes need to be looked up by the recursive
call create_dag() and looking up a node can be done in time O(|K|). Since |K| is
usually very small, the building time is effectively linear over |T |.

82 M. Mongioví et al.

Algorithm 4: Building the TopoIndex
Require: set T of labeled topologies of size K with associated frequency and p-value

{returns the root of the TopoIndex data structure}
group T by label bags
for each label bag lb and its corresponding set of topologies Tlb do

initialize node {create a leaf node}
node.label_bag = lb

node.topologies = Tlb

hash_table[lb] = node

call create_dag(node, hash_table)

end for
return hash_table[{∅}]

Algorithm 5: Recursive procedure create_dag for building the TopoIndex
Require: a node node and the hash table of nodes hash_table

if node.label_bag == ∅ then
return

end if
for each label l in node.label_bag do

lb_parent = node.label_bag − {l}
if lb_parent ∈ keys(hash_table) then

parent = hash_table[lb_parent]
else

initialize parent {create a new node}
parent.label_bag = lb_parent

hash_table[lb_parent] = parent

call create_dag(parent, hash_table)

end if
parent.children[l] = node

end for

3.2.5.2 Query Processing

Given the TopoIndex described above, and a query Q = (C, k, f, p) with k = K ,
query processing is quite straightforward. To perform a query Q = (C, k, f, p) with
k = K , first look up the node n of the DAG associated with the set of labels in C,
then explore all nodes of the DAG reachable from n. Finally, retrieve all topologies
associated with reachable leaves and return the ones whose frequencies are greater
than or equal to f and whose p-values are less than or equal to p.

The TopoIndex can be changed to support queries of size k ≤ K by associating
internal nodes at depth k to labeled topologies of size k (for all k = 1 . . .K − 1).
Answering queries with k > K is the subject of our current work.

3 gLabTrie: A Data Structure for Motif Discovery with Constraints 83

3.3 Alternative Methods of Calculating Statistical
Significance

One might ask why we care about statistical significance (reflected in the p-value
calculation in the previous section). Studies have shown that in many biological
networks, small subnetworks of real networks that are much more frequent than
random networks of the same size (Alon 2007; Milo et al. 2002) often act as
functionally important modules. For example, in Alon (2007) and Milo et al. (2002)
the authors identified motifs representing positive and negative autoregulation
(subnetworks of one node and one edge), coherent and incoherent feed-forward
loops (subnetworks of three nodes and three edges), single-input modules (one node
connected to few or many other nodes), and dense overlapping regulons (many
nodes connected to few or many other nodes). One function of a coherent feed-
forward loop formed by a target Z and two transcription factors X and Y is the
logic operation AND of a circuit: Z is activated by both X and Y ; however, Y is
also regulated by X. Motif functionality has also been investigated with respect to
evolution (Kashtan and Alon 2005; Solé et al. 2002) showing that motifs with the
same topologies can have important functionality in different conditions.

That explains our interest in finding statistically overrepresented substructures.
This section discusses approaches to establishing statistical significance.

Formally, given a graph G = (V ,E) (directed or undirected) with n vertices
whose ids are uniquely labeled with integers from 1 to n. A connected subgraph
induced by a set of vertices of cardinality k (a topology for short) is called a
motif when it occurs statistically significantly more often than the same subgraph in
randomized networks derived from the original network (Milo et al. 2003).

The random generation method to find motifs given a real network consists of
the following steps: (1) generate a large set of random networks that share the
characteristics of the real network; (2) find candidate topologies, consisting of
subgraphs in the real network; (3) count the occurrences of these topologies; (4)
assess the significance of each topology by computing its number of occurrences in
each of the random networks.

The first step creates networks that have the same number of nodes and edges
of the real network. Moreover, each node in the generated network maintains its
original number of edges leaving and entering the node (Newman et al. 2001).
Next, by proceeding in an exhaustive manner, an algorithm can define all possible
topologies of subgraphs with n nodes and count all the occurrences of such
subgraphs in the real and in the random networks (Milo et al. 2003).

The random generation method consists of two expensive steps: the generation of
a large number of networks and the application of subgraph isomorphism algorithms
to compute the number of occurrences. Over the last decades, researchers have
worked to reduce the expense of both steps. We list the main results in the following
sections. For the sake of brevity, we point to the main alternative approaches, but
give few details.

84 M. Mongioví et al.

3.3.1 Quasi-Analytical Methods to Assess the Statistical
Significance of a Topology

The random generation method described above evaluates the significance of the
topology through the computation of a z-score using a Gaussian assumption or a
p-value using a resampling approach (Milo et al. 2002, 2003; Prill et al. 2005; Shen-
Orr et al. 2002). The Gaussian assumption may not apply to a particular application,
but a reliable p-value requires a large number of random graphs whose analysis
turns out to be computational expensive (by far more expensive than analyzing
the target network alone). Recently, researchers have investigated the possibility of
analyzing the distribution of the topologies, both noninduced and induced, from an
analytical point of view that would avoid the need for random generation. Table 3.1
summarizes the main ideas of the two above approaches.

Approximation methods, based on the Erdos–Renyi (ED) model, have studied the
asymptotic normality of the distribution of the count of the topologies (Wernicke
2006). Unfortunately, the Erdos–Renyi random model is a poor approximation to
some networks of interest, such as biological networks (Barabási and Albert 1999).
Alternative reference models include the fixed degree Distribution (FDD) (Newman
et al. 2001) that models the random generation method of swapping random edges.
The swapping approach guarantees that a given node has the same valence in the
random graphs as in the original one. There is also a variant of the FDD called
Expected Degree Distribution (EDD) (Picard et al. 2008) and the Erdos–Renyi
Mixture for Graphs (ERMG) (Picard et al. 2008). Table 3.2 depicts the main features
and differences of the models.

The EDD model generates random graphs whose degrees follow the distribution
of the original graph, but particular nodes may obtain different valences. Con-
ditional to the distribution of node degrees, the probability of edges is modeled
as independent and exists with a probability proportional to the product of the
degree distributions of the involved nodes. In the ERMG model, the nodes are
spread among Q hidden classes with respective proportionsα1, · · · , αQ. The edges
are independent conditional on the class of the nodes. The connection probability
depends on the classes of both nodes.

Table 3.1 P-value generation

Sampling + Permutation test Analytical model

Idea Generate random graph according
to some random model. P-value is
the fraction of graphs in which the
occurrences in the random graphs is
higher than the target one

The target graph belongs to a given
distribution. Define a Random Vari-
able representing the number of
occurrences of the motif under the
reference model

Pros Easy to implement Computationally inexpensive

Cons Computationally expensive May not be possible to identify an
appropriate distribution

Simulation vs analytics approach

3 gLabTrie: A Data Structure for Motif Discovery with Constraints 85

Table 3.2 Random Models: ER=Erdos–Renyi, FDD-Fixed Degree Distribution,
EDD=Expected Degree Distribution, EMGR=Erdos–Renyi Mixture for Graphs

Name Characteristics Graph Distribution generation

ER All edges of a graph are The connection probability p

independent and exist of the ER model is estimated by

with probability p. the proportion of observed

edges in the network.

FDD Generates graphs whose For the given sequence of degrees

degrees have exactly a in the input network, the graph

given distribution. is chosen uniformly at random

from the set of all graphs with

that degree sequence.

EDD Generates graphs whose The empirical distribution of

degrees follow a given the degrees in the network

distribution. is used as the distribution

of the expected degrees.

EMGR Nodes are spread among Fit a mixture model.

Q hidden classes with respective

proportions p_1, . . . , p_Q.

Edges are independent conditionally

to the class of the nodes.

The connection probability depends

on the classes of both nodes.

It has been also shown that the use of the Compound-Poisson distribution (Adel-
son 1966) in the Erdos–Renyi random model allows the accurate approximation
of the number of overrepresented topologies (Picard et al. 2008). In Picard et al.
(2008), the authors propose a model for the exact calculation of the mean and
variance under any model of exchangeable random graphs (exchangeability means
that the probability of occurrence of a topology does not dependent on its position
in the graph, i.e., on the topological structure of the neighborhood of the topology).
Furthermore, the authors have shown that the Polya–Aeppli distribution (also known
as the Poisson Geometric distribution, which is a special case of the Poisson-
Compound distribution) is a good model for the distribution of the count of the
topologies (both induced and noninduced) and leads to a more accurate p-value
than a Gaussian model for the graphs of many applications. The reason is that the
Geometric-Poisson distribution is particularly suitable for describing the number of
events that occur in clusters, where a Poisson distribution describes the number of
clusters and the counts of events within a cluster follow a geometric distribution.
Here, this fits the case when distinct topologies can share nodes and edges (i.e.
clumps) (Picard et al. 2008). In fact, the authors show that when the number of
clumps has a Poisson distribution with mean λ and the sizes of the clumps are
independent of each other and have a Geometric distribution G(1 − a), the number

86 M. Mongioví et al.

of observed events X (topologies) has a distribution P(λ, a) and leads to an estimate
of the number of occurrences of a given topology (see Table 3.1).

So far, our discussion has concerned label-free (also known as color-free)
networks. Schbath et al. (2009) propose an analytical model for the computation
of p-values for colored patterns. A colored pattern is a topology having a given
multiset of colors (vertex labels). For example, a star of size 5 having 4 Bs and 1 C.
An occurrence of the pattern is defined as a connected subgraph whose labels have
a match with the multiset. Schbath et al. would make no distinction between a star
having the C in the center or one having the C on the outside. That subtle difference
makes our job more difficult, but the starting point for our current research is their
excellent work.

Schabat et al. define analytical formulas for the mean and variance of the number
of colored topologies by using the Erdos–Renyi model. Thanks to this, they were
able to derive a reliable z-score for each topology. The authors then model the
distribution of the count of colored topologies under the Erdos–Renyi model.

3.3.2 Random Generation Methods

Whereas the previous subsection discussed analytical method, no published analyt-
ical method can discover p-values under our model of query (though, as mentioned,
we ourselves are making progress toward that goal). So we turn to random genera-
tion methods. Improving random generation methods entails intelligent searching
through graphs to enumerate topologies. The basic idea is to start from single
nodes and expand them with their neighborhoods in a tree-like fashion, checking
at each step that each subgraph in the tree appears only once and that it does not
violate the color constraints of the query. This procedure can be further improved
by sampling the network (Alon 2007) or the neighborhoods in the expanding
phases (Wernicke 2006). Alternatively, Grochow and Kellis (2007) used subgraph
enumeration and symmetry breaking to avoid the search for automorphisms of
the subgraphs occurrences. We now give some examples of the state-of-the-art
algorithms upon which we build our structure.

The ESU algorithm (Wernicke 2006) enumerates all subgraphs of size k by
starting from a root vertex v of the graph and computing the occurrences of
the topology by extending it node by node. The algorithm uses the concept of
exclusive neighborhood, which is defined as follows. For a subset V ′ ⊆ V , its open
neighborhood N(V ′) is the set of vertices in V \ V ′, which are adjacent to at least
one vertex in V ′. For each node v ∈ V \V ′, the exclusive neighborhood with respect
to V ′ and denoted by Nexcl(v, V ′) consists of all vertices that are neighbors of v but
are not in V ∪ N(V ′) (Fig. 3.5).

The key idea of the algorithm is to add into the extension set of v, called
VExtension, only those vertices satisfying the two following properties: (1) their
vertex ids must be greater than v; (2) must be neighbors only to the newly added w

and not already in Vsubgraph (i.e. they must be in N(w,Vsubgraph)).

3 gLabTrie: A Data Structure for Motif Discovery with Constraints 87

Fig. 3.5 The ESU tree for generating all subgraphs of k=3 nodes

Its randomized variant, Rand-ESU, introduces an option that performs a uniform
sampling in the graph, thus avoiding the need to explore it all. The algorithm
is essentially the same as the original one with the exception that the recursion
is carried out with a certain probability that decreases with the depth of the
enumeration. In practice, the probability is high in the first steps of the recursion
and then decreases as the size of the subgraphs to be explored increases.

The sampling in RAND-ESU is unbiased and is quite simple to implement. On
the other hand, RAND-ESU gives only an estimate of the number of occurrences.

Graph mining algorithms (Yan and Han 2002) find frequent subgraphs in a
database of graphs or in a single large graph. A subgraph is frequent if its support
(occurrence frequency) in a given dataset (or in a graph) is no less than a minimum
support threshold. Computing the statistical significance of such topologies is done
by simulation, as described above.

In this chapter, we consider the problem of searching for topologies of labeled
graphs. However, there are several possible definitions of labeled topology.

In Schbath et al. (2009), the authors define a potential k-colored motif to be any
connected subgraph of k nodes containing a specified multiset of colors (defined on
the nodes). The motif is “potential” because its statistical significance may not meet
a threshold. In this case, different topologies with the same labels define the same
motif. Adami et al. (2011) consider the definition of colored motif as above, and use
a measure based on entropy to determine the significance. In Wernicke (2006) and
Ribeiro and Silva (2014a), the authors use the definition of motifs colored on both
nodes and edges having a specific topology. Wernicke (2006) is based on the ESU

88 M. Mongioví et al.

algorithm, whereas Ribeiro and Silva (2014a) introduce a version of GTrie capable
to find colored motifs.

In this chapter, we adopt the motif definition introduced in Ribeiro and Silva
(2014a).

Definition 3.2 Let G be a labeled graph. Let m(Vm,Em,LVm,LEm) be a subgraph
of G with Vm nodes and Em edges, where LVm and LEm are two sets of colors
representing the labels of nodes and edges, respectively. Let c be the number of
isomorphic occurrences of m in G, and let α be a critical value. Let GR be a random
variant of G obtained by applying the edge shuffling method based on the Fixed
Degree Distribution, and let cR be the number of occurrences of m in the random
variant GR . We say that m is a motif of G if, by applying a permutation test using
k random variant of G, GR,i (k = 500 usually), #(cR,i>c)

k
< α, where #(cR,i > c) is

the number of times the number of occurrences of m in GR,i is greater than in G.

Because there is no analytical way to compute the significance of such a
network motif yet, we will use the simulation on the random generated networks
to establish the significance of colored network topologies. Algorithm 6 shows the
implementation of a permutation test.

In our current efforts, we extend the analytical approach of Schbath et al. (2009)
and Picard et al. (2008) to compute the significance of topologies given a multiset
of colors.

Algorithm 6: Randomized generation test to discover p-values
Require: network G, candidate topologies m1,m2, · · · ,ml , ci number of occurrences of

mi in G, number of iterations k, critical value α {returns the p-value of topology mj }
sj := 0
for j = 1, . . . l do

for i = 0 . . . k do
GR,i = randomize(G)

cR,j := number of occurrences of mj in GR,i ;
for j = 0 . . . l do

if cR,j ≥ cj then
sj + +

end if
end for

end for
end for
for j = 0 . . . l do

output p-value of topology mj is sj /k

end for

3 gLabTrie: A Data Structure for Motif Discovery with Constraints 89

3.4 Experiments

gLabTrie has been tested on a dataset of social, communication, and biological
networks. All experiments has been performed on the following configuration: Intel
Core i7-2670 2.2 Ghz CPU with a RAM of 8 GB. Table 3.3 describes the features of
the selected networks.

FLIGHTS is a network extracted from Openflights.org (http://openflights.org),
representing all possible air routes between different airports around the world
in 2011 (Opsahl 2011). BLOGS is a directed network of hyperlinks between web
logs on US politics of 2004 (Adamic and Glance 2005). PPI is a protein–protein
interaction (PPI) network in human, taken from HPRD database (Keshava Prasad
et al. 2009). DBLP is the citation network of DBLP, a database of scientific
publications, where each node in the network is a publication and edges connect
two citations A and B iff A cites B (Ley 2002). FOLDOC is an oriented semantic
network taken from the on-line computing dictionary FOLDOC (http://foldoc.org),
where nodes are computer science terms and edges connect two terms X and Y iff
Y is used to explain the meaning of X (Batagelj et al. 2002). INTERNET represents
the business relationships between autonomous systems (ASes) of Internet in 2005
(Dimitropoulos et al. 2005).

Nodes of each network have been annotated with the following labels. In
FLIGHTS, airports have been associated to one of the five continents. In BLOGS,
nodes have been classified depending on their political leaning (liberal and conser-
vative). For the labeling of nodes in PPI, we used Gene Ontology (GO) (Ashburner
et al. 2000), a hierarchical dictionary of terms related to biological processes,
components, and functions, which have been extensively used for the analysis of
biological networks so far (Maere et al. 2005; Bindea et al. 2009). We annotated
proteins with GO processes up to the first level of the hierarchy yielding 11 nodes
labels. Ten of them represent specific kinds of biological processes (whole-organism
process, metabolism, regulation, cellular organization, development, localization,
signaling, response to stimulus, biological adhesion, and reproduction). A special
label representing the generic biological process has been associated to proteins
for which we did not have GO annotations. DBLP nodes has been annotated
with different kinds of publications (articles, inproceedings, proceedings, books,
incollections, PhD thesis, and master thesis) or “www” if the node refers to a cited

Table 3.3 Networks used for experiments

Name Type Nodes Edges Reference

FLIGHTS Undirected 2939 15,677 Opsahl (2011)

BLOGS Directed 1224 16,715 Adamic and Glance (2005)

PPI Undirected 9506 37,054 Keshava Prasad et al. (2009)

DBLP Directed 12,591 49,728 Ley (2002)

FOLDOC Directed 13,356 120,239 Batagelj et al. (2002)

INTERNET Undirected 20,305 42,568 Dimitropoulos et al. (2005)

http://openflights.org
http://foldoc.org

90 M. Mongioví et al.

web site. INTERNET ASes have been partitioned into seven classes (large ISPs,
small ISPs, customers, universities, Internet exchange points, network information
centers, not classified) according to the taxonomy described in Dimitropoulos et al.
(2006). Computing terms in FOLDOC have been labeled according to their domains
(jargons, computer science, hardware, programming, graphics and multimedia,
science, people and organizations, data, networking, documentation, operating
systems, languages, software, various terms).

We compared the no-index version of gLabTrie with the index-based approach.
We run our algorithm using default randomization parameters (Nrand = 100, p =
0.01 and f = 2).

The performance of gLabTrie has been evaluated with respect to three parame-
ters:

(a) m: the motif size, i.e., the number of its nodes
(b) c: the number of motif constraints, i.e., the number of specified node labels in

the query
(c) l: the number of labels in the input networks

For tests (a) and (b) we used real labels, while in case (c) we ran our algorithm with
randomly assigned labels. To measure the influence of these parameters, we varied
the parameter of interest and assigned default values to the other ones (m = 4, c = 4
and l = 2). For each test, we ran gLabTrie on a set of 10 random queries. In the
experiments with real labels, label constraints for random queries were generated
according to the frequency of a node label: the more frequent a label x, the higher
the probability that x is added as a label constraint to the query. In the tests with
artificial labels, label constraints were added to the queries according to the uniform
distribution of node labels.

Table 3.4 reports the running times for building indexes for motif of size m

up to 4 in networks annotated with real labels. In all cases, the performance of
gLabTrie strongly depends on the size of the network, its orientation (undirected
graphs contain more instances of a certain topology on average), and the number of
labels. Most of the time is spent in storing all the motif occurrences of a given size
into the database. The number of occurrences increases exponentially with m.

Table 3.5 shows the results of the comparison between the no-index and the
index-based approach of gLabTrie on querying motifs of different sizes, up to size
4. For each network and each motif size, we reported the mean and the standard

Table 3.4 Running times
(minutes) to build indexes on
varying motif size

Network m = 3 m = 4

FLIGHTS 8.59 245.39

BLOGS 7.78 566.83

PPI 21.72 425.59

DBLP 30.91 1211.91

FOLDOC 46.28 1486.59

INTERNET 87.48 40,605.23

3 gLabTrie: A Data Structure for Motif Discovery with Constraints 91

Table 3.5 Running times (s)
for querying motifs of
different size with no-index
and index-based approach

Network m No-index Index

FLIGHTS
3 333.02 ± 4.71 0.01 ± 0.01

4 364.81 ± 38.70 0.56 ± 0.86

BLOGS
3 155.36 ± 2.27 0.08 ± 0.15

4 960.07 ± 159.01 1.44 ± 0.54

PPI
3 872.68 ± 21.77 0.01 ± 0.01

4 866.10 ± 5.17 0.06 ± 0.10

DBLP
3 553.46 ± 4.02 0.11 ± 0.09

4 882.63 ± 152.05 6.28 ± 5.06

FOLDOC
3 1290.23 ± 8.45 0.02 ± 0.01

4 1308.40 ± 12.55 0.75 ± 0.22

INTERNET
3 2116.65 ± 6.38 0.70 ± 2.04

4 2649.60 ± 1305.87 670.22 ± 200.59

deviation. In both cases, the running time includes the time needed to retrieve all the
subgraphs matching a given query.

The results show (unsurprisingly) that the index-based approach is much faster
(100s of times) than having no index. We define qmin to be the minimum number of
query operations required to recoup the time cost of building the index. For m = 3,
qmin � 2, so the time cost of building the index is recouped after two queries on
average, while for m = 4 we have qmin � 44.

It is worth noting that the benefit of the index decreases as the size of the network
(measured in terms of the number of its nodes) increases. For instance, in the
INTERNET network, which is by far the biggest network in our dataset, when m = 4
the index-based approach is only four times faster than the no-index one. In this
case, the disappointing performance of the index-based approach is due to the very
high number of query occurrences that the algorithm must retrieve from the dataset,
resulting in a large number of I/O operations. In the INTERNET network with m = 4
the I/O time is 99% of the total running time, on average.

In Table 3.6, we compare the running times of the no-index and the index-based
approach on querying motifs with a variable number of label constraints in the
query. Again, network nodes have been annotated with real labels. We set m = 4
and we varied c from 1 to 4.

As the number of query label constraints defined by the user increases, the
performance of both approaches improves. However, the more selective the query,
the greater is the benefit of the index. The gain enjoyed by the index is proportional
to the size of the network and the number of constraints, because of the exponential
decrease of the number of occurrences matching the query. For example, when c

goes from 1 to 4, the no-index approach becomes �28 times faster and the index-
based approach �16400 times faster in the INTERNET network, while in the BLOGS

network the two algorithms are only �3 and �15 faster, respectively.

92 M. Mongioví et al.

Table 3.6 Running times (s) for querying motifs with variable num-
ber of label constraints with no-index and index-based approach

Network c No-index Index

FLIGHTS

1 685.06 ± 155.22 13.35 ± 9.6

2 576.76 ± 116.71 5.70 ± 4.93

3 412.65 ± 61.02 2.09 ± 3.32

4 343.85 ± 17.17 0.52 ± 1.06

BLOGS

1 2214.74 ± 8.36 48.32 ± 2.75

2 1953.47 ± 199.11 21.20 ± 20.42

3 1430.81 ± 336.02 15.83 ± 20.09

4 829.10 ± 214.59 6.16 ± 13.74

PPI

1 1228.73 ± 221.05 10.79 ± 10.18

2 1116.63 ± 216.56 9.35 ± 11.52

3 897.56 ± 34.87 0.51 ± 0.75

4 861.30 ± 9.43 0.04 ± 0.06

DBLP

1 4041.38 ± 316.75 139.08 ± 1.84

2 3186.24 ± 693.96 80.60 ± 34.95

3 1867.96 ± 475.73 40.26 ± 18.37

4 871.19 ± 131.45 7.43 ± 4.14

FOLDOC

1 3751.95 ± 686.84 78.29 ± 50.07

2 2075.93 ± 334.84 7.24 ± 2.42

3 1288.12 ± 42.41 2.47 ± 2.15

4 1212.23 ± 16.79 0.58 ± 0.46

INTERNET

1 57,988.44 ± 13,722.07 11,642.50 ± 5519.74

2 28,082.31 ± 13,974.45 8984.35 ± 6945.80

3 9165.14 ± 5849.21 3660.06 ± 3297.24

4 2101.29 ± 35.61 0.71 ± 1.05

Table 3.7 summarizes the results of the comparison between the performance of
the two approaches when the number of labels vary. To perform these experiments,
we annotated network nodes with artificial labels. Given a set of l labels, each
node has been associated with a random unique label between 1 and l, according
to a uniform distribution. We ran five different series of experiments with l =
2, 6, 10, 14, 18. In each series, we set m = 4 and c = 4.

The time costs of both approaches decrease when the number of node labels
increase. In all networks, the greatest reduction of the running time happens when
we move from l = 2 to l = 6.

3 gLabTrie: A Data Structure for Motif Discovery with Constraints 93

Table 3.7 Running times (s) for querying motifs with variable
number of node labels with no-index and index-based approach

Network l No-index Index

FLIGHTS

2 483.08 ± 35.09 4.97 ± 1.29

6 331.79 ± 3.18 0.09 ± 0.03

10 327.36 ± 0.63 0.03 ± 0.01

14 326.89 ± 0.39 0.04 ± 0.02

18 327.00 ± 0.82 0.09 ± 0.02

BLOGS

2 931.77 ± 254.88 7.37 ± 2.32

6 192.27 ± 29.18 0.29 ± 0.18

10 160.67 ± 5.44 0.55 ± 0.05

14 151.54 ± 2.77 1.16 ± 0.12

18 149.44 ± 1.36 2.25 ± 0.10

PPI

2 1066.70 ± 95.43 2.10 ± 1.66

6 870.64 ± 5.42 0.17 ± 0.12

10 861.66 ± 1.72 0.04 ± 0.02

14 860.80 ± 1.55 0.05 ± 0.03

18 851.23 ± 2.16 0.10 ± 0.07

DBLP

2 1686.55 ± 496.97 32.66 ± 20.59

6 623.22 ± 25.33 1.59 ± 0.94

10 571.75 ± 11.92 1.23 ± 0.76

14 559.46 ± 5.47 0.57 ± 0.36

18 555.38 ± 2.36 1.32 ± 0.64

FOLDOC

2 2749.55 ± 539.16 18.67 ± 6.22

6 1266.62 ± 43.13 0.81 ± 0.83

10 1218.74 ± 10.16 1.01 ± 0.80

14 1204.28 ± 6.85 1.63 ± 0.88

18 1201.15 ± 1.64 3.07 ± 0.98

INTERNET

2 17270.40 ± 5731.44 1154.77 ± 2030.07

6 2595.38 ± 382.33 94.18 ± 106.23

10 2250.07 ± 111.54 23.98 ± 20.00

14 2162.81 ± 44.00 5.68 ± 4.18

18 2113.16 ± 20.06 5.08 ± 4.59

3.5 Conclusion

Our structures gLabTrie and TopoIndex contribute to all aspects of motif finding,
by giving a very fast method for finding labeled topological structures in both input
networks and related random networks. As this is work in progress, we plan in
the near future to (1) find analytical methods for computing p-values on labeled
topological structures to avoid the need for random graphs; (2) extend the search
algorithms to enable search for topologies having, say, k vertices, even though the
TopoIndex holds topologies of only a smaller size.

94 M. Mongioví et al.

Acknowledgements Shasha’s work has been partially supported by an INRIA International Chair
and the U.S. National Science Foundation under grants MCB-1412232, IOS-1339362, MCB-
1355462, MCB-1158273, IOS-0922738, and MCB-0929339. This support is greatly appreciated.

References

Adami C, Qian J, Rupp M, Hintze A (2011) Information content of colored motifs in complex
networks. Artif Life 17(4):375–390

Adamic LA, Glance N (2005) The political blogosphere and the 2004 u.s. election: divided they
blog. In: Proceedings of the 3rd international workshop on link discovery, LinkKDD ’05. ACM,
New York, pp 36–43

Adelson RM (1966) Compound Poisson distributions. Oper Res Q 17(1):73–75
Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450–461
Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J, Davis A, Dolinski K, Dwight

S, Eppig J, Harris M, Hill D, Issel-Tarver L, Kasarskis A, Lewis S, Matese J, Richardson J,
Ringwald M, Rubin G, Sherlock G (2000) Gene ontology: tool for the unification of biology.
Nat Genet 25(1):25–29

Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–
512

Batagelj V, Mrvar A, Zaversnik M (2002) Network analysis of dictionaries. In: Language
technologies, pp 135–142

Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F,
Trajanoski Z, Galon J (2009) ClueGO: a cytoscape plug-in to decipher functionally grouped
gene ontology and pathway annotation networks. Bioinformatics 25(8):1091–1093

Dimitropoulos X, Krioukov D, Huffaker B, Claffy K, Riley G (2005) Inferring AS relationships:
dead end or lively beginning? In: Nikoletseas SE (ed) Experimental and efficient algorithms.
Springer, Berlin, pp 113–125

Dimitropoulos XA, Krioukov DV, Riley GF, Claffy KC (2006) Revealing the autonomous system
taxonomy: the machine learning approach. CoRR abs/cs/0604015

Grochow JA, Kellis M (2007) Network motif discovery using subgraph enumeration and
symmetry-breaking. In: Speed T, Huang H (eds) Research in computational molecular biology.
Springer, Berlin, pp 92–106

Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network motifs. Proc Natl
Acad Sci 102(39):13773–13778

Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla
D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan
DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK,
Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ram-
abadran S, Chaerkady R, Pandey A (2009) Human protein reference database–2009 update.
Nucleic Acids Res 37(Database issue):D767–772

Kurata H, Maeda K, Onaka T, Takata T (2014) BioFNet: biological functional network database
for analysis and synthesis of biological systems. Brief Bioinform 15(5):699–709

Ley M (2002) The DBLP computer science bibliography: evolution, research issues, perspectives.
In: Laender AHF, Oliveira AL (eds) String processing and information retrieval. Springer,
Berlin, pp 1–10

Maere S, Heymans K, Kuiper M (2005) BiNGO: a cytoscape plugin to assess overrepresentation
of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449

McKay BD (1981) Practical graph isomorphism. Congressus numerantium 30:45–87
Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple

building blocks of complex networks. Science 298(5594):824–827

3 gLabTrie: A Data Structure for Motif Discovery with Constraints 95

Milo R, Kashtan N, Itzkovitz S, Newman MEJ, Alon U (2003) On the uniform generation of
random graphs with prescribed degree sequences. eprint arXiv:cond-mat/0312028

Newman MEJ, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions
and their applications. Phys Rev E 64:026118

Opsahl T (2011) Why anchorage is not (that) important: binary ties and sample selection. https://
toreopsahl.com/2011/08/12/

Picard F, Daudin JJ, Koskas M, Schbath S, Robin S (2008) Assessing the exceptionality of network
motifs. J Comput Biol 15(1):1–20

Prill RJ, Iglesias PA, Levchenko A (2005) Dynamic properties of network motifs contribute to
biological network organization. PLOS Biol 3(11):e343

Ribeiro P, Silva F (2012) Querying subgraph sets with g-tries. In: Proceedings of the 2Nd ACM
SIGMOD workshop on databases and social networks, DBSocial ’12. ACM, New York, pp 25–
30

Ribeiro P, Silva F (2014a) Discovering colored network motifs. In: Contucci P, Menezes R, Omicini
A, Poncela-Casasnovas J (eds) Complex networks V. Springer International Publishing, Cham,
pp 107–118

Ribeiro P, Silva F (2014b) G-Tries: a data structure for storing and finding subgraphs. Data Min
Knowl Discov 28(2):337–377

Schbath S, Lacroix V, Sagot MF (2009) Assessing the exceptionality of coloured motifs in
networks. EURASIP J Bioinform Syst Biol 2009:3:1–3:9

Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation
network of Escherichia coli. Nat Genet 31(1):64–68

Solé RV, Pastor-Satorras R, Smith E, Kepler TB (2002) A model of large-scale proteome evolution.
Adv Complex Syst 05(01):43–54

Wernicke S (2006) Efficient detection of network motifs. IEEE/ACM Trans Comput Biol
Bioinform 3(4):347–359

Yan X, Han J (2002) gSpan: graph-based substructure pattern mining. In: Proceedings - 2002 IEEE
international conference on data mining. ICDM 2002, pp 721–724

https://toreopsahl.com/2011/08/12/
https://toreopsahl.com/2011/08/12/

Chapter 4
Applications of Flexible Querying
to Graph Data

Alexandra Poulovassilis

Abstract Graph data models provide flexibility and extensibility, which makes
them well-suited to modelling data that may be irregular, complex, and evolving
in structure and content. However, a consequence of this is that users may not be
familiar with the full structure of the data, which itself may be changing over time,
making it hard for users to formulate queries that precisely match the data graph
and meet their information-seeking requirements. There is a need, therefore, for
flexible querying systems over graph data that can automatically make changes to
the user’s query so as to find additional or different answers, and so help the user to
retrieve information of relevance to them. This chapter describes recent work in this
area, looking at a variety of graph query languages, applications, flexible querying
techniques and implementations.

4.1 Introduction

Due to their fine modelling granularity (in its simplest form, comprising just nodes
and edges, naturally representing entities and relationships), graph data models
provide flexibility and extensibility, which makes them well-suited for modelling
complex, dynamically evolving datasets. Moreover, graph data models are typically
semi-structured: there may not be a schema associated with the data; if there is a
schema, then aspects of it may be missing from parts of the data and, conversely,
parts of the data may not correspond to the schema. This makes graph data models
well-suited to modelling heterogeneous and irregular datasets. Graph data models
place a greater focus on the relationships between entities than other approaches to
data modelling, viewing relationships as important as the entities themselves.

In recent years there has been a resurgence of academic and industry interest in
graph databases, due to the generation of large volumes of data from web-based,

A. Poulovassilis (�)
Birkbeck, University of London, London, UK
e-mail: ap@dcs.bbk.ac.uk

© Springer International Publishing AG, part of Springer Nature 2018
G. Fletcher et al. (eds.), Graph Data Management, Data-Centric Systems
and Applications, https://doi.org/10.1007/978-3-319-96193-4_4

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96193-4_4&domain=pdf
mailto:ap@dcs.bbk.ac.uk
https://doi.org/10.1007/978-3-319-96193-4_4

98 A. Poulovassilis

mobile and pervasive applications centred on the relationships between entities,
for example: the web graph itself; RDF Linked Data1; social and collaboration
networks2 (Martin et al. 2011; Suthers 2015); transportation and communication
networks (Deo 2004); biological networks (Lacroix et al. 2004; Leser and Trissl
2009); workflows and business processes (Vanhatalo et al. 2008); customer rela-
tionship networks (Wu et al. 2009); intelligence networks (Ayers 1997; Chen et al.
2011); and much more!3

As the volume of graph-structured data continues to grow, users may not be aware
of its full details and may need to be assisted by querying systems which do not
require queries to match exactly the data structures being queried, but rather can
automatically make changes to the query so as to help the user find the information
being sought. The OPTIONAL clause of SPARQL (Harris and Seaborne 2013)
has the aim of returning matchings to a query that may fail to match some of the
query’s triple patterns. However, it is possible to “relax” a SPARQL query in ways
other than just ignoring optional triple patterns, for example, making use of the
knowledge encoded in an ontology associated with the data in order to replace an
occurrence of a class in the query by a superclass, or an occurrence of a property by
a superproperty.

This observation motivated the introduction in Hurtado et al. (2008) of a RELAX
clause for querying RDF data, which can be applied to those triple patterns of a
query that the user would like to be matched flexibly. These triple patterns are
successively made more general so that the overall query returns successively more
answers, at increasing ‘costs’ from the exact form of the query. We review this
work on ontology-based query relaxation in this section, starting with an example
application in heterogeneous data integration in Sect. 4.1.1.

Section 4.2 goes beyond conjunctive queries to consider conjunctive regular path
queries over graph data, and approximate answering of such queries. In contrast to
query relaxation, which generally returns additional answers compared to the exact
form of a database query, query approximation returns potentially different answers
to the exact form of a query.

Section 4.3 considers combining both query relaxation and approximate answer-
ing for conjunctive regular path queries over graph data, describing also an
automaton-based implementation. Section 4.4 considers extending SPARQL 1.1
with query relaxation and approximation, describing an implementation based on
query rewriting. Along the way, we consider applications of query relaxation and
query approximation for graph data in areas such as heterogeneous data integration,
ontology querying, educational networks, transport networks and analysis of user–
system interactions. Section 4.5 covers additional topics: possible user interfaces for
supporting users in incrementally constructing and understanding flexible queries

1http://linkeddata.org, http://www.w3.org/standards/semanticweb, accessed at 18/6/2015.
2https://snap.stanford.edu/data, accessed at 18/6/2015.
3See for example http://neo4j.com/use-cases, http://www.objectivity.com/products/infinitegraph,
http://allegrograph.com/allegrograph-at-work, accessed at 18/6/2015.

http://linkeddata.org
http://www.w3.org/standards/semanticweb
https://snap.stanford.edu/data
http://neo4j.com/use-cases
http://www.objectivity.com/products/infinitegraph
http://allegrograph.com/allegrograph-at-work

4 Applications of Flexible Querying to Graph Data 99

and the answers being returned; and possible extensions to the query languages
considered so far with additional flexibility beyond relaxation and approximation,
and with additional expressivity in the form of path variables. Section 4.6 gives an
overview of related work on query languages for graph data and flexible querying
of such data. Section 4.7 gives our concluding remarks and possible directions of
future work.

Flexible Database Query Processing
Before beginning our discussion of flexible query processing for graph data, we first
review the main approaches to flexible query processing for other kinds of data. Due
to the considerable breadth of this area, the references cited here are representative
of the approaches discussed rather than an exhaustive list. Readers are referred to
the proceedings of the bi-annual conference on Flexible Query Answering Systems
(FQAS) for a broad coverage of work in this area.

Query languages for structured data models, such as SQL and OQL, include
WHERE clauses that allow filtering criteria to be applied to the data matched
by their SELECT clauses. Therefore, a natural way to relax queries expressed in
such languages is by dropping a selection criterion, or by ‘widening’ a selection
criterion so as to match a broader range of values (Bosc and Pivert 1992; Heer et al.
2008). Another common approach to query relaxation is to allow fuzzy matching of
selection criteria, accompanied by a scoring function that determines the degree
of matching of the returned query answers (Galindo et al. 1998; Na and Park
2005; Bordogna and Psaila 2008; Bosc et al. 2009). Conversely, queries can be
made more specific by adding user preferences as additional filter conditions, with
possibly fuzzy matching of such conditions (Mishra and Koudas 2009; Eckhardt
et al. 2011). Chu et al. (1996) use type abstraction hierarchies to both generalise
and specialise queries, while Zhou et al. (2007) explore statistically based query
relaxation through ‘malleable’ schemas containing overlapping definitions of data
structures and attributes.

Turning to approximate query answering, approaches include histograms (Ioan-
nidis and Poosala 1999), wavelets (Chakrabarti et al. 2001) and sampling (Babcock
et al. 2003). Sassi et al. (2012) describe a system that enables the user to issue an
SQL aggregation query, see results as they are being produced, and dynamically
control query execution. Fink and Olteanu (2011) study approximation of conjunc-
tive queries on probabilistic databases by specifying lower- and upper-bound queries
that can be computed more efficiently.

In principle, techniques proposed for flexible querying of structured data can also
be applied to graph-structured data. However, such techniques do not focus on the
connections (i.e. edges and paths) inherent in graph-structured data, thus missing
opportunities for further supporting the user through approximation or relaxation of
the path structure that may be present in a graph query.

Semi-structured data models aim to support data that are self-describing and that
need not rigidly conform to a schema (Abiteboul et al. 1997; Buneman et al. 2000;
Fernandez et al. 2000; Bray et al. 2008). Generally, such data can be modelled
as a tree, though cyclic connections between nodes may also be allowed by the

100 A. Poulovassilis

model (e.g. in XML, through the ID/IDREF constructs). Much work has been
done on relaxing tree-pattern queries over XML data. For example, Amer-Yahia
et al. (2004) undertake query relaxation through removal of conditions from XPath
expressions; Theobald et al. (2005) support relaxation by expanding queries using
vocabulary information drawn from an ontology or thesaurus; Liu et al. (2010) use
available XML schemas to relax queries; and Hill et al. (2010) use ontologies such
as Wordnet to guide XML query relaxation. Buratti and Montesi (2008) discuss
query approximation for XML based on the notion of a cost-based edit distance for
transforming one path into another within an XQuery expression, while Almendros-
Jimenez et al. (2014) propose a fuzzy approach to XPath query evaluation.

Similar approaches to those developed for XML can be adopted for flexible
querying of graph-structured data, and indeed in subsequent sections of this chapter
we discuss ontology-based relaxation of graph queries and also edit distance-based
ranking of approximate answers to graph queries. However, the techniques proposed
for flexibly querying XML generally assume one kind of relationship between
entities (parent-child), whereas in graph-structured data there may be numerous
relationships, potentially giving rise to higher complexity and diversity in the data
and requiring query approximation and relaxation techniques that are able to operate
on the relationships referenced within a user’s query.

4.1.1 Example: Heterogeneous Data Integration

Much work has been done since the early 1990s in developing architectures and
methodologies for integrating biological data (Goble and Stevens 2008). Such
integrations are beneficial for scientists by providing them with easy access to
more data, leading to more extensive and more reliable analyses and, ultimately,
new scientific insights. Traditional data integration methodologies (Batini et al.
1986) require semantic mappings between the different data sources to be initially
determined, so that a global integrated schema or ontology can be created through
which the data in the sources can then be accessed. This approach means that
significant resources for data integration projects must be committed upfront, and
an active area of research is how to reduce this upfront effort (Halevy et al. 2006).
A general approach adopted is to present initially all of the source data in an
unintegrated format, and to provide tools that allow data integrators to incrementally
identify semantic relationships between the different data sources and incrementally
improve the global schema. Such an approach is termed ‘pay-as-you-go’ (Sarma and
et al. 2008), since the integration effort can be committed incrementally as time and
resources allow.

Heterogeneous data integration was identified in Hurtado et al. (2008) as a
potential Use Case for flexible query processing over graph data. To illustrate,
the In Silico Proteome Integrated Data Environment Resource (ISPIDER) project
developed an integrated platform bringing together three independently developed
proteomics data sources, providing an integrated global schema and support for

4 Applications of Flexible Querying to Graph Data 101

distributed queries posed over this (Siepen et al. 2008).4 The development of
the global schema took many months. An alternative approach would have been
to adopt a ‘pay-as-you-go’ integration approach, refining the global ontology
by incrementally identifying common concepts between the data sources and
integrating these using additional superclasses and superproperties.

For example, the initial ontology may include (amongst others) the following
classes arising from three source databases, DB1,DB2,DB3:

• Peptide1, Protein1, Peptide2, Protein2, Peptide3, Protein3

For simplicity here, we assume that common concepts are commonly named, and
we identify the data source relating to a concept by its subscript. Likewise, it may
include (amongst others) the following properties:

• PepSeqi , 1 ≤ i ≤ 3, each with domain Peptidei and range Literal
• Alignsi , 1 ≤ i ≤ 3, each with domain Peptidei and range Proteini

• AccessNoi , 1 ≤ i ≤ 3, each with domain Proteini and range Literal

(In proteomics, proteins consist of several peptides, each peptide comprising a
sequence of amino acids; hence the properties PepSeqi above, in which the
amino acid sequence is represented as a Literal. In proteomics experiments, several
peptides may result from a protein identification process and each peptide aligns
against a set of proteins; hence the properties Alignsi above. Each protein is
characterised by an Accession Number, c.f. the properties AccessNoi above, a
textual description, its predicted mass, the organism in which it is found, etc.)

A data integrator may observe some semantic alignments between the above
classes and properties and may add the following superclasses and superproperties
to the ontology in order to semantically integrate the underlying data extents from
the three databases:

• Superclass Peptide of classes Peptidei , 1 ≤ i ≤ 3
• Superclass Protein of classes Proteini , 1 ≤ i ≤ 3
• Superproperty PepSeq of properties PepSeqi , 1 ≤ i ≤ 3, with domain Peptide

and range Literal
• Superproperty Aligns of properties Alignsi , 1 ≤ i ≤ 3, with domain Peptide

and range Protein

• Superproperty AccessNo of properties AccessNoi , 1 ≤ i ≤ 3, with domain
Protein and range Literal.

A fragment of this global ontology is shown in Fig. 4.1 (omitting the AccessNoi

and AccessNo properties, and the domain and range information of PepSeq and
Aligns).

4The example presented here is a simplification of one given in Hurtado et al. (2008).

102 A. Poulovassilis

Literal

Aligns PepSeq

sc sc
sc sc

sc
sc

sp
sp
sp sp

sp
sp

dom
dom

dom dom
dom dom range range range

range range
range

range
Literal

dom

PepSeq1 Aligns1 PepSeq2 Aligns2
PepSeq3 Aligns3

Pep�de1 Pept ide3 Protein2 Protein3

Pept ide
 Protein

Protein1

dom

Pep�de2

range

Fig. 4.1 Example ontology

Consider now the following query posed over the global ontology by a user who
is only familiar with DB1:

?Y, ?Z <- RELAX(?X,PepSeq1,"ATLITFLCDR"),
RELAX(?X,Aligns1,?Y),
RELAX(?Y,AccessNo1,?Z)

The syntax used here is that of a conjunctive query comprising one or more triple
patterns on its right-hand side (RHS)—see Sect. 4.1.2, and zero or more variables
on its left-hand side (LHS), which must also appear in the RHS. The entire RHS
comprises a graph pattern—see Sect. 4.1.2. Variables are distinguished by an initial
?. In its non-relaxed form, this query will return the identifiers and accession
numbers of proteins identified in DB1 through experiments yielding the peptide
sequence ‘ATLITFLCDR’.

A first level of relaxation of all three triple patterns in the above query results in
the following query:

?Y, ?Z <- RELAX(?X,PepSeq,"ATLITFLCDR"),
RELAX(?X,Aligns,?Y),
RELAX(?Y,AccessNo,?Z)

Evaluation of this query will expand the result set to include similar results also
from DB2 and DB3, without the user needing to have detailed knowledge of their
schemas.

In contrast to conventional data integration approaches, this kind of incremental
integration coupled with flexible querying requires less upfront integration effort,

4 Applications of Flexible Querying to Graph Data 103

Fig. 4.2 RDFS inference
rules

allows a more exploratory approach to query answering, and does not require the
user to have comprehensive knowledge of the entire global schema.

4.1.2 Theoretical Foundations of Query Relaxation

Hurtado et al. (2008) studied query relaxation in the setting of the RDF/S data model
and showed that query relaxation can be naturally formalised using RDFS entail-
ment. The entailment was characterised by the derivation rules given in Fig. 4.2,
grounded in the semantics developed in Gutierrez et al. (2004) and Hayes (2004),
and encompassing a fragment of the overall set of RDFS entailment rules known as
ρDF (Munoz et al. 2007).

In the setting of Hurtado et al. (2008), an ontology K is a directed graph
(NK,EK) where each node in NK represents either a class or a property, so NK =
classNodes (NK)∪propertyNodes(NK); and each edge in EK is labelled with a
symbol from the set {sc, sp, dom, range}. These edge labels encompass a fragment
of the RDFS vocabulary: rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain,
rdfs:range, respectively.

In the accompanying data graph G = (N,E), each node in N represents an
instance or a class and each edge in E a property. The intersection of N and
NK is contained in classNodes(NK). The predicate type, representing the RDF
vocabulary rdf:type, can be used in E to connect an instance of a class to a node
representing that class.

Pairwise disjoint sets U and L of URIs and literals are assumed, respectively.
Also assumed is an infinite set V of variables, disjoint from U and L. We abbreviate
any union of the sets U , L and V by concatenating their names, e.g. UL = U ∪ L.

Nodes in N are labelled with constants from UL (blank nodes are not considered
in this work, and in any case their use is discouraged for Linked Data). Edges in E

are labelled either with type or a with symbol drawn from a finite alphabet Σ such
that type /∈ Σ and Σ ∪ {type} ⊂ U .

An RDF triple is a tuple 〈s, p, o〉 ∈ U × U × (U ∪ L), where s is the subject,
p the predicate and o the object of the triple. A triple pattern is a tuple 〈x, p, y〉 ∈
UV ×UV ×UV L. A graph pattern is a set of triple patterns. Given a triple pattern
t (graph pattern P), vars(t) (vars(P)) is the set of variables occurring in it.

An RDF/S graph I = (NI ,EI) is the union of an ontology graph K = (NK,EK)

and a data graph G = (N,E), i.e. NI = NK ∪ N and EI = EK ∪ E.

104 A. Poulovassilis

Fig. 4.3 Additional rules for
computing the extended
reduction of an ontology

An RDF/S graph I1 entails an RDF/S graph I2, denoted I1 |�RDFS I2, if I2 can
be derived by applying the rules in Fig. 4.2 iteratively to I1.

The closure of an RDF/S graph I under these rules is denoted by cl(I). Given
an RDF/S graph I , query evaluation takes place on the graph given by restricting
cl(I) to nodes in N ∪ classNodes(NK) and edges with labels in Σ ∪ {type} ∪
propertyNodes(NK). Each such edge is viewed as an RDF triple for the purposes
of query evaluation.

In order to apply relaxation to queries, the subgraphs of the ontology K induced
by edges labelled sc and sp need to be acyclic, so that an unambiguous cost can be
assigned to a relaxed query. Moreover, K must be equal to its extended reduction,
extRed(K), which is computed as follows:

(a) Compute cl(K)

(b) Apply the rules of Fig. 4.3 in reverse until no more rules can be applied
(applying a rule in reverse means deleting a triple deducible by the rule)

(c) Apply rules 1 and 3 of Fig. 4.2 in reverse until no more rules can be applied

Requiring that K = extRed(K) allows direct relaxations to be applied to queries
(see below), which correspond to the ‘smallest’ possible relaxation steps. This in
turn allows an unambiguous cost to be associated with relaxed queries, so that
query answers can be returned to users incrementally in order of increasing cost
(see Hurtado et al. (2008) for a detailed discussion).

Following the terminology of Hurtado et al. (2008), a triple pattern 〈x, p, y〉
directly relaxes to a triple pattern 〈x ′, p′, y ′〉 with respect to an ontology
K = extRed(K), denoted 〈x, p, y〉 ≺ 〈x ′, p′, y ′〉, if vars(〈x, p, y〉) =
vars(〈x ′, p′, y ′〉) and 〈x ′, p′, y ′〉 is derived from 〈x, p, y〉 by applying some rule i,
1 ≤ i ≤ 6, from Fig. 4.2.

A triple pattern 〈x, p, y〉 relaxes to a triple pattern 〈x ′, p′, y ′〉, denoted
〈x, p, y〉 ≤ 〈x ′, p′, y ′〉, if there is a sequence of direct relaxations that derives
〈x ′, p′, y ′〉 from 〈x, p, y〉. The relaxation cost of deriving 〈x ′, p′, y ′〉 from 〈x, p, y〉
is the minimum cost of applying such a sequence of direct relaxations.

An essential aspect of this approach, which distinguishes it from earlier work on
query relaxation, is that the answers to a query are ranked based on how ‘closely’
they satisfy the query. The notion of ranking is based on a structure called the
relaxation graph, in which relaxed versions of the original query are ordered from
less to more general.

To illustrate, Fig. 4.4 shows the relaxation graphs of two triple patterns:

(?X,Aligns1,?Y) and (?X,PepSeq1,"ATLITFLCDR")

4 Applications of Flexible Querying to Graph Data 105

(?X,Aligns1,?Y) (?X,PepSeq1,"ATLITFLCDR")

(?X,PepSeq,"ATLITFLCDR") (?X,type,Peptide1)

(?X,type,Peptide)

(?X,Aligns,?Y)

2 2 5

5 4

Fig. 4.4 Triple pattern relaxation graphs

(?X,Aligns1,?Y),
(?X,PepSeq1,"ATLITFLCDR")

(?X,Aligns1,?Y),
(?X,PepSeq,"ATLITFLCDR“)

(?X,Aligns1,?Y),
(?X,type,Peptide1)

(?X,Aligns,?Y),
(?X,PepSeq1,"ATLITFLCDR")

(?X,Aligns,?Y),
(?X,PepSeq,"ATLITFLCDR")

(?X,Aligns,?Y),
(?X,type,Peptide)

(?X,Aligns1,?Y),
(?X,type,Peptide)

(?X,Aligns,?Y),
(?X,type,Peptide1)

2

2

5

5

2

2

5

5

4

4

Fig. 4.5 Graph pattern relaxation graph

assuming that K is the ontology of Fig. 4.1. The edges of the relaxation graph are
labelled with the rule number from Fig. 4.2 which has been applied to obtain a
relaxed triple pattern from one directly below it.

Triple pattern relaxation is generalised to graph pattern relaxation using the
notion of the direct product of partial orders. The direct product of n partial orders
α1, α2, . . . αn, denoted α1 ⊗ α2 ⊗ . . . ⊗ αn, is another partial order α such that
(a1, . . . an) α (b1, . . . bn) if and only if ai αi bi for all 1 ≤ i ≤ n.

Consider graph patterns consisting of n triple patterns, t1, . . . , tn. The graph
pattern relaxation relation ≤n is defined as ≤ ⊗ ≤ . . .⊗ ≤ (n times). The direct
graph pattern relaxation relation ≺n is the reflexive and transitive reduction of ≤n.
The relaxation graph of a graph pattern is the directed acyclic graph induced by ≺n.

As an example, consider the graph pattern

(?X,Aligns1,?Y),(?X,PepSeq1,"ATLITFLCDR")

Figure 4.4 shows the relaxation graphs of its two triple patterns and Fig. 4.5 shows
their direct product.

106 A. Poulovassilis

Fig. 4.6 Algorithm to compute the relaxed answer of a query

Algorithm RelaxEval in Fig. 4.6 (from Hurtado et al. 2008) incrementally
computes the relaxed answer to a query Q and returns the answers in ranked
order, where maxLevel is the maximum number of relaxations desired for the
evaluation of Q; body(Q) denotes the graph pattern in the RHS of Q; and the
set deltaFind(t ′i , I) consists of the triples 〈s, p, o〉 ∈ I such that t ′i matches
〈s, p, o〉 and no triple pattern directly below t ′i in the relaxation graph of ti matches
〈s, p, o〉. This algorithm assumes that all direct relaxations of triple patterns have
the same cost. We will see later two methods that are able to handle different costs.

Another class of relaxations is also discussed in Hurtado et al. (2008), consisting
of relaxations that can be entailed without an ontology, such as dropping triple
patterns, replacing constants with variables and breaking join dependencies. We
refer the reader to that paper for details of these.

4.2 Beyond Conjunctive Queries: Regular Path Queries

Regular path queries have been proposed by several researchers as a means of
assisting users in querying complex or irregular graph data by finding paths through
the data graph that match a given regular expression over edge labels (Cruz et al.
1987; Mendelzon and Wood 1989, 1995; Fernandez and Suciu 1998).

Consider the same simple data model as introduced above, comprising a directed
graph G = (N,E), where each node in N is labelled with a constant and each
edge in E is labelled with a symbol drawn from a finite alphabet Σ ∪ {type}. Edges
can be traversed both from their source to their target node and in reverse, from
their target to their source node. The inverse of an edge label l, denoted by l−,
is used to specify the reverse traversal of an edge. Let Σ− = {l− | l ∈ Σ}. If
l ∈ Σ ∪ Σ− ∪ {type, type−}, we use l− to mean the inverse of l, that is, if l is a for
some a ∈ Σ ∪ {type}, then l− is a−, while if l is a− for some a ∈ Σ ∪ {type}, then
l− is a.

4 Applications of Flexible Querying to Graph Data 107

A regular path query (RPQ) Q has the form

vars ← (X,R, Y) (4.1)

where X and Y are constants or variables, R is a regular expression over Σ ∪{type},
and vars is the subset of {X,Y } that are variables. A regular expression R over
Σ ∪ {type} is defined as follows:

R := ε | a | a− | _ | (R1 · R2) | (R1|R2) | R∗ | R+

where ε is the empty string, a is any symbol in Σ ∪ {type}, ‘_’ denotes the
disjunction of all constants in Σ ∪ {type}, and the operators have their usual
meaning.

A semipath (Calvanese et al. 2000) p in G = (N,E) from v ∈ N to w ∈ N is
a sequence of the form (v1, l1, v2, l2, v3, . . . , vn, ln, vn+1), where n ≥ 0, v1 = v,

vn+1 = w and for each vi, li , vi+1 either vi
li→ vi+1 ∈ E or vi+1

l−i→ vi ∈ E. A
semipath p conforms to a regular expression R if l1 · · · ln ∈ L(R), the language
denoted by R.

Given an RPQ Q and graph G, let θ be a matching from {X,Y } to nodes of G

that maps each constant to itself and such that there is a semipath from θ(X) to θ(Y)

whose concatenation of edge labels is in L(R). The answer of Q on G is the set of
tuples θ(vars) for all such matchings θ .

A conjunctive regular path query (CRPQ) Q consisting of n conjuncts has the
form

Z1, . . . , Zm ← (X1, R1, Y1), . . . , (Xn,Rn, Yn) (4.2)

in which each Xi and Yi , 1 ≤ i ≤ n, is a variable or constant, each Zi , 1 ≤ i ≤ m,
is a variable appearing in the body of Q, and each Ri , 1 ≤ i ≤ n, is a regular
expression over Σ ∪ {type}.

Given a CRPQ Q and graph G, let θ be a matching from variables and constants
of Q to nodes of G such that (i) each constant is mapped to itself, and (ii) there is a
semipath from θ(Xi) to θ(Yi) that conforms to Ri , for all 1 ≤ i ≤ n. The answer of
Q on G is the set of m-tuples θ(Z1, . . . , Zm) for all such matchings θ .

The answer to a CRPQ Q on a graph G can be computed as follows. First find,
for each 1 ≤ i ≤ n, a binary relation ri over the scheme (Xi, Yi) such that tuple
(v,w) ∈ ri if and only if there is a semipath from node v to node w in G that
conforms to Ri , v = Xi if Xi is a constant, and w = Yi if Yi is a constant. Then
form the natural join of the relations r1, . . . , rn and project over Z1 to Zm.

108 A. Poulovassilis

Los Angeles

Fig. 4.7 Part of a transport network

4.2.1 Example: Transport Networks

Consider the graph in Fig. 4.7 showing information about a transport network.
The nodes of the graph are city identifiers and city names. The edges show direct
transport links from one city to another.5

Suppose we want to find the cities from which we can travel to city u5 using
only airplanes as well as to city u6 using only trains or buses. This can be expressed
by the following CRPQ query Q:

?X <- (?X, airplane+, u5),
(?X, (train|bus)+, u6)

When Q is evaluated on G, the bindings for ?X generated by the first conjunct are
u1, u4, while those for the second conjunct are u1, u2, u4. Hence the answer is
u1, u4.

Suppose now that a user who has little knowledge of the structure of the data
wishes to find all cities reachable from Santiago by direct flights and poses the
following query which makes use of the query approximation operator APPROX
that we will discuss in more detail in Sect. 4.2.2:

?X <- APPROX (Santiago,airplane,?X)

The exact form of this query returns no answers because it does not match the struc-
ture of the graph. Inserting name after airplane, to obtain the regular expression
airplane. name (at a cost of c1, say) still returns no answers. Inserting name
before airplane, to obtain the regular expression name.airplane.name (at
an additional cost of c1) again returns no answers. Finally, inverting the first name

5This example is adapted from one in Hurtado et al. (2009b).

4 Applications of Flexible Querying to Graph Data 109

label, to obtain name-.airplane.name (at an additional cost of c2, say) returns
as answers Temuco and Chillan, at an overall cost of 2c1 + c2.

Suppose now a user formulates the following query to find cities reachable from
Santiago by train, directly or indirectly. The user is also potentially interested in
routes combining train and bus, and elects to allow replacement of train by bus
in their query, as well as insertion of train and bus:

?X <- APPROX (Santiago,name-.train+.name,?X)

The exact answers to this query are Talca and Chillan. Replacing
one occurrence of train by bus (at a cost of c3, say), to obtain the
regular expression name-.bus.train*.name, returns Valparaiso at
cost c3. Inserting train after name- (at a cost of c4, say), to obtain
name-.train.bus.train*.name, returns no more answers. Inserting again
train after name- (at a cost of c4), to obtain name-.train.train.bus.
train*.name, returns answers Concep- cion and Los Angeles, at a cost
of c3 + 2c4. Inserting bus before train* (at a cost of c5, say), to obtain
name-.train.train.bus.bus.train*.name returns answer Temuco,
at a cost of c3 + 2c4 + c5.

4.2.2 Approximate Matching of CRPQs

We have seen above examples of circumstances where approximate matching of
regular path queries and ranking of query results in terms of how closely they
match the original query can help the user find relevant information from unfamiliar,
irregular graph data. The work in Hurtado et al. (2009b) discusses how such
approximate answers can be computed for CRPQ queries, based on edit operations
such as insertions, deletions, inversions, substitutions and transpositions of edge
labels being applied to a semipath. A user can specify which of these edit operations
should be applied by the system when answering a particular query, and the cost to
be assigned when applying each operation, more formally presented as follows.

The edit distance from a semipath p to a semipath q is the minimum cost of
any sequence of edit operations which transforms the sequence of edge labels of p

to the sequence of edge labels of q . The edit distance of a semipath p to a regular
expression R, edist(p,R), is the minimum edit distance from p to any semipath that
conforms to R.

Given a graph G, an RPQ Q of the form (4.1) and a matching θ from variables
and constants of Q to nodes in G such that any constant is mapped to itself, the
tuple θ(vars) has edit distance edist(p,R) to Q if p is a semipath from θ(X) to
θ(Y) in G having the minimum edit distance to R of any semipath from θ(X) to
θ(Y). (Note that if p conforms to R, then θ(vars) has edit distance 0 to Q.)

The approximate top-k answer of Q on G is the list of k tuples θ(vars) with
minimum edit distance to Q, ranked in order of increasing edit distance to Q.

Generalising to CRPQs, given a graph G, a CRPQ Q of the form (4.2), and a
matching θ from variables and constants of Q to nodes in G such that any constant

110 A. Poulovassilis

is mapped to itself, the tuple θ(Z1, . . . , Zm) has edit distance edist(p1, R1) + · · · +
edist(pn,Rn) to Q if each pi is a semipath from θ(Xi) to θ(Yi) in G having the
minimum edit distance to Ri of any semipath from θ(Xi) to θ(Yi). The approximate
top-k answer of Q on G is the list of k distinct tuples θ(Z1, . . . , Zm) with minimum
edit distance to Q, ranked in order of increasing edit distance to Q.

Since the answers for single conjuncts are ordered by non-decreasing edit
distance, pipelined execution of any rank-join operator (see Finger and Polyzotis
2009) can be used to output the answers to a CRPQ Q in order of non-decreasing
edit distance.

There are a fixed number of variables in the head of a CRPQ query, so if its
conjuncts are acyclic then the evaluation of the approximate top-k answer can be
accomplished in polynomial time (see Gottlob et al. 2001; Grahne and Thomo 2001;
Hurtado et al. 2009b).

4.3 Combining Approximation and Relaxation in CRPQs

The ideas from the previous two sections can be combined to allow both relaxation
and approximation of CRPQs, providing their combined flexibility within one query
processing framework. This possibility was first explored in Poulovassilis and Wood
(2010).

4.3.1 Example: Educational Networks

The L4All system (de Freitas et al. 2008) was developed to support learners in a
network of Further and Higher Education institutions in the London region. The
system allows users to create and maintain a chronological record of their learning,
work and personal episodes—their ‘timelines’—with the aim of supporting learners
in exploring learning and career opportunities and in planning and reflecting on their
learning. Figures 4.8 and 4.9 illustrate a fragment of the data and metadata relating
to two users’ timelines. The episodes within a timeline have a start and an end date
associated with them (for simplicity these are not shown in the figure). Episodes
are ordered by their start date—as indicated by edges labelled next. There are
several types of episode, e.g. University and Work episodes. Associated with
each type of episode are several properties—the figures show just two of these,
qualif[ication] and job.6

Suppose that Mary is studying for a BA in English and wishes to find out
what possible future career choices there are for her. Timelines may have edges
labelled prereq between episodes, indicating that the timeline’s owner believes

6This example is adapted from one in Poulovassilis and Wood (2010).

4 Applications of Flexible Querying to Graph Data 111

prereq

English Studies Air Travel
Assistant

Journalist Assistant
Editor

ep21 ep22 ep23 ep24 next next

next

University Work Work Work

type type type type

j22

job

j23 j24

job job

BA Eng-
 lish

qualif

type type type type

Languages
Travel Service
Occupa�on

Media Professional

Editor-in-Chief

Associate Editor

Editor
Humani�es

Educa�on Occupa�on

sc

sc
sc

sc

sc
sc

sc sc

sc

sc
sc

Fig. 4.8 Fragment of data and metadata from Anne’s timeline

that undertaking an earlier episode was necessary in order for them to be able to
proceed to or achieve a later episode. So Mary might pose this CRPQ query, Q1:

(?E2,?P)<-(?E1,type,University),
(?E1,qualif.type,EnglishStudies),
(?E1,prereq+,?E2),
(?E2,type,Work),
(?E2,job.type,?P)

However, this will return no results even though Anne’s timeline in Fig. 4.8 contains
information that would be relevant to Mary. This is because, in practice, users may
or may not create prereq metadata relating to their timelines.

If Mary chooses to allow replacement of the edge label prereq in her query by
the label next (at an edit cost of 1, say), she can submit a variant of Q1:

(?E2,?P)<-(?E1,type,University),
(?E1,qualif.type,EnglishStudies),
APPROX (?E1,prereq+,?E2),
(?E2,type,Work),
(?E2,job.type,?P)

112 A. Poulovassilis

History Writer Associate Editor

ep31 ep32 ep33
next next

University Work Work

type type type

j32 j33

job job

BA Hist-
ory

qualif

type type type

Media Professional
Editor Humani�es

Educa�on Occupa�on

sc
sc

sc sc

sc

sc

Fig. 4.9 Fragment of data and metadata from Bob’s timeline

The regular expression prereq+ can be approximated by the regular expression
next.prereq* at edit distance 1 from prereq+, returning the answer

(ep22,AirTravelAssistant)

Mary may judge this not to be relevant and may seek further results, at a further level
of approximation. The regular expression next.prereq* can be approximated
by next.next.prereq*, at edit distance 2 from prereq+, returning the
answers

(ep23,Journalist), (ep24,AssistantEditor)

Mary may judge these as being relevant, and she can then request the system to
return the whole of Anne’s timeline for her to explore further.

The previous example took as input a starting timeline episode and explored
possible future work choices. The next example additionally specifies an end goal
and explores how someone might reach this from a given starting point.

Suppose now Mary knows she wants to become an Assistant Editor and would
like to find out how she might achieve this, given that she’s done an English degree.
Mary might pose this query, Q2:

4 Applications of Flexible Querying to Graph Data 113

(?E2,?P)<-(?E1,type,University),
(?E1,qualif.type,EnglishStudies),
APPROX(?E1,prereq+,?E2),(?E2,job.type,?P)
APPROX(?E2,prereq+,?Goal),(?Goal,type,Work),
(?Goal,job.type,AssistantEditor)

At edit distance 0 and 1 there are no results from Anne’s timeline. At edit distance
2, the answers

(ep22,AirTravelAssistant), (ep23,Journalist)

are returned, the second of which gives Mary potentially useful information.
Suppose Mary wants to know what other jobs, similar to an Assistant Editor,

might be open to her. There are many categories of jobs classified under Media
Professional but none of these will be matched by her query Q2 above. She
can pose instead query Q3:

(?E2,?P)<-(?E1,type,University),
(?E1,qualif.type,EnglishStudies),
APPROX(?E1,prereq+,?E2),(?E2,job.type,?P)
APPROX(?E2,prereq+,?Goal),(?Goal,type,Work),
RELAX(?Goal,job.type,AssistantEditor) ,

which allows the system to relax Assistant Editor to its parent class
Editor, matching jobs such as Assistant Editor, Associate Editor
etc., as well as in parallel approximating the two instances of prereq+. Query
results will be returned in increasing overall cost.

As a further extension, suppose another user, Joe, wants to know what jobs
similar to being an Assistant Editor might be open to someone who has studied
English or a similar subject at university. Joe may pose query Q4 which is the same
as Q3 above but with RELAX in front of the second conjunct:

(?E2,?P)<-(?E1,type,University),
RELAX(?E1,qualif.type,EnglishStudies),
APPROX(?E1,prereq+,?E2),(?E2,job.type,?P)
APPROX(?E2,prereq+,?Goal),(?Goal,type,Work),
RELAX(?Goal,job.type,AssistantEditor)

Suppose Joe sets the cost of relaxing a class to its parent class to 2 and replacing
the label prereq by the label next to 1. Then, the answers produced for query
Q4 from the graphs in Figs. 4.8 and 4.9 are shown in the table below. The first
seven columns refer to the answers produced for each of the query conjuncts. For
brevity, we do not show the full answer tuples, only the variable instantiations for
each conjunct. We also show the relaxation distance (cost), rd , for the second and
seventh conjucts, and the edit distance, ed , for the third and fifth conjuncts. In the
table, ‘Air T.A.’ stands for Air Travel Assistant, ‘Assist. Ed.’ for Assistant Editor
and ‘Assoc. Ed.’ for Associate Editor. The final column shows the overall query
answers and their overall distance (d) (which is the sum of the rd and ed values

114 A. Poulovassilis

from the second, third, fifth and seventh conjuncts). For greater clarity, the tuples
contributing to the first two answers are italicised and those contributing to the third
answer are shown in bold.

?E1 ?E1,rd ?E1,?E2,ed ?E2,?P ?E2,?Goal,ed ?Goal ?Goal,rd ?E2,?P,d

ep21 ep21,0 ep23,ep24,0 ep22,Air T.A. ep23,ep24,0 ep22 e24,0 ep23,Journalist,2

ep31 ep31,4 ep21,ep22,1 ep23,Journalist ep21,ep22,1 ep23 e33,2 ep22,Air T.A.,6

ep22,ep23,1 ep24,Assist.Ed. ep22,ep23,1 ep24 e23,4 ep32,Writer,8
ep31,ep32,1 ep32,Writer ep31,ep32,1 ep32 e32,4

ep32,ep33,1 ep33,Assoc.Ed. ep32,ep33,1 ep33 e22,6

ep21,ep23,2 ep21,ep23,2

ep21,ep24,2 ep21,ep24,2

ep31,ep33,2 ep31,ep33,2

A prototype implementation extending the original L4All system with this
flexible querying functionality is described in Poulovassilis et al. (2012). A GUI
is provided that allows the user to incrementally build up their query through a
forms-based interface, including specifying their preferences for approximation or
relaxation to be applied to each subquery. Drop-down menus are used for selecting
classes, properties and regular expressions. The CRPQ query is automatically, and
incrementally, generated by the system from the user’s interactions and preferences.
Visualisations are available that allow the user to view at a glance the subqueries
they have constructed so far. Query results are displayed one screenful at a time, in
increasing distance from the non-approximated, non-relaxed version of the user’s
query. For each result, an avatar representing the timeline’s owner is displayed, as
well as their name, the last episode in their timeline matching the user’s query, the
‘distance’ at which this result has been retrieved, and a summary of the timeline’s
owner and the contents of their timeline. The aim of this summary information is to
allow the user to decide if this timeline is relevant for their needs and if they wish
to explore it in more detail. These functionalities were evaluated by two Lifelong
Learning expert practitioners who gave positive feedback regarding the flexibility
of the querying supported and the fact that there is a clear causality between a user’s
information requirements, as reflected in the query they have constructed, and the
results returned by the system.

4.3.2 Automaton-Based Implementation Approach

We now discuss an automaton-based approach to evaluating regular path queries
supporting both query approximation and query relaxation. The description is based
on that from Poulovassilis and Wood (2010), with some modifications. We refer
the reader to Poulovassilis and Wood (2010) and Poulovassilis et al. (2016) for full
details.

4 Applications of Flexible Querying to Graph Data 115

4.3.2.1 Computing Approximate Answers

Approximate matching of an RPQ query Q with respect to a graph G is achieved
by applying edit operations to sequences in L(R). Let q be a sequence in L(R) and
l be a label in Σ ∪ Σ− ∪ {type,type−}. We assume support for the following
edit operations, each at some non-negative cost: insertion of l into q , deletion of l

from q , substitution of some label other than l by l in q . The cost of substitution
is assumed to be less than the combined cost of insertion and deletion (otherwise
the substitution operation would be redundant). The inversion operation is achieved
through substitution, since this allows some label a in q to be substituted by a−.
The transposition operation can be achieved by applying a substitution operation to
each of the two labels to be transposed.

Given an RPQ Q with body (X,R, Y) and a graph G = (N,E), the approximate
answer of Q on G can be computed as follows (the italicised terms are explained in
more detail below):

1. A weighted NFA, MR , recognising L(R) is constructed from R.
2. A query automaton, MQ, is constructed from Q.
3. An approximate automaton, AQ, is constructed from MQ.
4. The product automaton, H , of AQ and G is constructed.
5. One or more shortest path traversals are performed on H in order to find the

approximate answer of Q on G.

Definition 4.1 A weighted non-deterministic finite state automaton (weighted
NFA) MR recognising L(R) is the same as a normal NFA except that each transition
and each final state has a weight associated with it (all of which are initially zero). It
can be constructed using Thompson’s construction (Aho et al. 1974), which makes
use of ε-transitions.

Formally, MR = (S,Σ ∪ Σ− ∪ {type,type−}, δ, s0, Sf , ξ), where: S is the
set of states; Σ ∪ {type} is the alphabet of edge labels in G; δ ⊆ S × Σ ∪ Σ− ∪
{type,type−} × N × S is the transition relation; s0 ∈ S is the start state; Sf is
the set of final states, initially only consisting of sf ∈ S; and ξ is the final weight
function mapping each state in Sf to a non-negative number (initially, this will be
zero for sf).

The query automaton MQ for Q is MR with additional annotations on the
initial and final states: if X (resp. Y) is a constant c, then s0 (sf) is annotated
with c; otherwise, s0 (sf) is annotated with the symbol ∗ which matches any
constant.

Definition 4.2 The approximate automaton AQ for Q is constructed by first
constructing an automaton AR from MR . Formally, AR = (S,Σ ∪ Σ− ∪
{type,type−}, δ, s0, Sf , ξ), with S, δ, s0 and Sf initially defined as in Defi-
nition 4.1. AR is then transformed as follows:

• For each transition (s, a, 0, t) ∈ δ (s �= t and a ∈ Σ ∪ Σ− ∪ {type,type−}),
the transition (s, ε, cd , t) is added to δ, where cd is the cost of deletion.

116 A. Poulovassilis

• All ε-transitions are removed from δ using the method of Droste et al. (2009). The
method first computes the ε-closure, which is the set of pairs of states connected
by a sequence of ε-transitions along with the minimum summed weight for each
such pair. Then for each pair (s, t) with weight w in the ε-closure and each
transition (t, b, 0, u) ∈ δ (b �= ε), a new transition (s, b,w, u) is added to δ.
If t ∈ Sf , then s is added to Sf with ξ [s] = w if ξ [s] was previously undefined,
or with ξ [s] set to the minimum of ξ [s] and w otherwise.

• For each transition (s, a,w, t) ∈ δ and label b ∈ Σ ∪ Σ− ∪ {type,type−}
(b �= a), the transition (s, b,w + cs, t) is added to δ, where cs is the cost of
substitution.

• For each state s ∈ S and label a ∈ Σ ∪ Σ− ∪ {type,type−}, the transition
(s, a, ci , s) is added to δ, where ci is the cost of insertion.

The approximate automaton AQ for Q is formed from AR by annotating the
initial and final states in AR with the annotations from the initial and final states,
respectively, in MQ.

Definition 4.3 Let AQ = (S,Σ ∪ Σ− ∪ {type,type−}, δ, s0, Sf , ξ) be an
approximate automaton and G = (N,E) be a graph. G can be viewed as an
automaton in which each node is both an initial and a final state. The product
automaton (Mendelzon and Wood 1989), H , of AQ and G is the weighted
automaton (T ,Σ ∪ Σ− ∪ {type,type−}, σ, I, F, ξ), where I ⊆ T is a set of
initial states and F ⊆ T is a set of final states. The set of states T is given by
{(s, n) | s ∈ S ∧ n ∈ N}. The set of transitions σ consists of transitions of the
form

• ((s, n), a, c, (s′, n′)) if (s, a, c, s′) ∈ δ and (n, a, n′) ∈ E

• ((s, n), a−, c, (s′, n′)) if (s, a−, c, s′) ∈ δ and (n′, a, n) ∈ E

The set of initial states I is given by {(s0, n) | n ∈ N}. The set of final states F is
given by {(sf , n) | (sf , n) ∈ T ∧ sf ∈ Sf }. ξ is the final weight function mapping
each state s ∈ F to a non-negative number. The annotations on initial and final states
in H are carried over from the corresponding initial and final states in AQ.

Having formed the product automaton H , we can now compute the approximate
answer of Q on G:

(i) Suppose first that X is a constant v. If v /∈ N , then the answer is empty. If
v ∈ N , we perform a shortest path traversal of H starting from the initial
state (s0, v). Whenever we reach a final state (sf , n) in H we output n,
provided n matches the annotation on (sf , n) (recall that if Y is a constant
the annotation on sf will be that constant, and if Y is a variable the annotation
will be the symbol ∗). Node n matches the annotation if the annotation is n

or ∗.
(ii) Now suppose X is a variable. In this case, we again perform a shortest path

traversal of H , outputting nodes as above, but this time starting from state
(s0, v) for every node v ∈ N .

4 Applications of Flexible Querying to Graph Data 117

Two optimisations to this naive traversal to avoid starting at every node
of G are described in Selmer et al. (2015). Firstly, if Y is a constant, then
(X,R, Y) is transformed to (Y,R−,X), where R− is the reversal of R, thus
reverting to case (i) above. Otherwise (i.e. both X and Y are variables), we
examine the labels on the transitions outgoing from the initial state of AQ,
s0, we retrieve from G the set of edges (v, l, w) matching these labels, and
we perform the shortest path traversal starting from state (s0, v) for each such
node v.

The above evaluation can be accomplished “on-demand” by incrementally con-
structing the edges of the product automaton H as required, rather than computing
the entire graph H , as follows. Three collections are maintained (all initially
empty):

• A set visitedR containing tuples of the form (v, n, s), representing the fact
that node n of G was visited in state s of AQ having started the traversal from
node v.

• A priority queue queueR containing tuples of the form (v, n, s, d, f), ordered
by non-decreasing values of d , where d is the edit distance associated with
visiting node n in state s having started from node v, and f is a flag denoting
whether the tuple is ‘final’ or ‘non-final’.

• A list answersR containing tuples of the form (v, n, d), where d is the smallest
edit distance of this answer tuple to Q, ordered by non-decreasing values of d .
This list is used to avoid returning an answer (v, n, d ′) if there is already an
answer (v, n, d) with d ≤ d ′.

The evaluation of Q begins by adding to queueR the initial tuple or tuples
(v, v, s0, 0, f) as detailed in (i) and (ii) above.

Procedure getNext is then called to return the next query answer, in order
of non-decreasing edit distance from Q. getNext repeatedly dequeues the first
tuple of queueR , (v, n, s, d, f), adding (v, n, s) to visitedR if the tuple is
not a final one, until queueR is empty. If (v, n, s, d, f) is a final tuple and the
answer (v, n, d ′) has not been generated before for some d ′, the triple (v, n, d)

is returned after being added to answersR . If (v, n, s, d, f) is not final tuple,

we enqueue (v,m, s′, d + d ′, f)) for each transition
d ′→ (s′,m) returned by

Succ(s, n) such that (v,m, s′) �∈ visitedR . Here, the Succ function returns

all transitions
d ′→ (s′,m) such that there is an edge from (s, n) to (s′,m) in

H with cost d ′. Within Succ, the function nextStates(AQ, s, a) returns the
set of states in AQ that can be reached from state s on reading input a, along
with the cost of reaching each. If s is a final state, its annotation matches n, and
the answer (v, n, d ′) has not been generated before for some d ′, then we add
the final weight function for s to d , mark the tuple as final, and enqueue the
tuple.

118 A. Poulovassilis

Procedure getNext(X,R, Y)
Input: query conjunct (X,R, Y)

Output: triple (v, n, d), where v and n are instantiations of X and Y

(1) while nonempty(queueR) do
(2) (v, n, s, d, f) ← dequeue(queueR)

(3) if f �= ‘final’ then
(4) add (v, n, s) to visitedR

(5) foreach
d ′→ (s′,m) ∈ Succ(s, n) s.t. (v,m, s′) �∈ visitedR do

(6) enqueue(queueR, (v,m, s′, d + d ′, f))

(7) if s is a final state and its annotation matches n and
� ∃d ′.(v, n, d ′) ∈ answersR then

(8) enqueue(queueR, (v, n, s, d + ξ [s],‘final’))

(9) else
(10) if � ∃d ′.(v, n, d ′) ∈ answersR then
(11) append (v, n, d) to answersR

(12) return (v, n, d)

(13) return null

Function Succ(s, n)
Input: state s of AQ and node n of G

Output: set of transitions which are successors of (s, n) in H

(1) W ← ∅
(2) for (n, a,m) ∈ G and (p, d) ∈ nextStates(AQ, s, a) do

(3) add the transition
d→ (p,m) to W

(4) return W

4.3.2.2 Computing Relaxed Answers

We now describe how the relaxed answer of an RPQ query Q with body (X,R, Y)

can be computed, starting from the weighted NFA MR that recognises L(R). Below
we denote by ci the cost of applying rule i, i ∈ {2, 4, 5, 6}, from Fig. 4.2 (since
queries and data graphs cannot contain edges labelled sc and sp, rules 1 and 3 are
inapplicable to them, although of course they are used in computing the closure of
the RDF/S graph).

Given a weighted automaton MR = (S,Σ ∪{type}, δ, s0, Sf , ξ) from which all
ε-transitions have been removed, and an ontology K such that K = extRed(K),
an automaton MK

R = (S′,Σ ∪ {type}, τ, S0, S
′
f , ξ ′) is constructed as described

below. The set of states S′ includes the states in S as well as any new states defined

4 Applications of Flexible Querying to Graph Data 119

below. S0 and S′
f are sets of initial and final states, respectively, with S0 including

the initial state s0 of MR , S′
f including the final states Sf of MR , and both possibly

including additional states as defined below. We obtain the relaxed automaton of Q

with respect to K , MK
Q , by annotating each state in S0 and S′

f either with a constant
or with ∗ depending on whether X and Y in Q are constants or variables. ξ ′ is the
final weight function mapping states in S′

f to a non-negative number. The transition
relation τ includes the transitions in δ as well as any transitions added to τ by the
rules defined below. The rules below are repeatedly applied until no further changes
to τ and S′ can be inferred. The process terminates because of the assumption that
the subgraphs of K induced by edges labelled sc and sp are acyclic.

• (rule 2(i)) For each transition (s, a, d, t) ∈ τ and triple (a, sp, b) ∈ K , add the
transition (s, b, d + c2, t) to τ .

• (rule 2(ii)) For each transition (s, a−, d, t) ∈ τ and triple (a, sp, b) ∈ K , add the
transition (s, b−, d + c2, t) to τ .

• (rule 4(i)) For each transition (s,type, d, t) ∈ τ such that t ∈ S′
f , t is annotated

with c, and (c, sc, c′) ∈ K , add to S′ a new final state t ′ annotated with c′ (unless
there is already such a final state); add a copy of all of t’s outgoing transitions to
t ′; and add the transition (s,type, d + c4, t

′) to τ .
• (rule 4(ii)) For each transition transition (s,type−, d, t) ∈ τ such that s ∈ S0, s

is annotated with c, and (c, sc, c′) ∈ K , add to S′ a new initial state s′ annotated
with c′ (unless there is already such an initial state); add a copy of all of s’s
incoming transitions to s′; and add the transition (s′,type−, d + c4, t) to τ .

• (rule 5(i)) For each transition (s, a, d, t) ∈ τ such that t ∈ S′
f and (a, dom, c) ∈

K , add to S′ a new final state t ′ annotated with c (unless there is already such a
final state); add a copy of all of t’s outgoing transitions to t ′; and add the transition
(s,type, d + c5, t

′) to τ .
• (rule 5(ii)) For each transition (s, a−, d, t) ∈ τ such that s ∈ S0 and

(a, dom, c) ∈ K , add to S′ a new initial state s′ annotated with c (unless there is
already such an initial state); add a copy of all of s’s incoming transitions to s′;
and add the transition (s′,type−, d + c5, t) to τ .

• (rule 6(i)) For each transition (s, a, d, t) ∈ τ such that s ∈ S0 and (a, range, c) ∈
K , add to S′ a new initial state s′ annotated with c (unless there is already such
an initial state); add a copy of all of s’s incoming transitions to s′; and add the
transition (s′,type−, d + c6, t) to τ .

• (rule 6(ii)) For each transition (s, a−, d, t) ∈ τ such that t ∈ S′
f and

(a, range, c) ∈ K , add to S′ a new final state t ′ annotated with c (unless there is
already such a final state); add a copy of all of t’s outgoing transitions to t ′; and
add the transition (s,type, d + c6, t

′) to τ .

Having constructed the relaxed automaton MK
Q , its product automaton with the

closure of the graph G is then constructed, and the computation proceeds similarly
to cases (i) and (ii) for computing approximate answers above, except that in (i) if
X is a class c then the shortest path traversal starts from all initial states (s0, c

′) such
that c′ is a superclass of c. The evaluation can again be accomplished ‘on-demand’

120 A. Poulovassilis

Console
layer

System layer

Data store - Sparksee

NFA builder

Data
utilities

Evaluation utilities

Q
ue

ry
 m

an
ag

er

Sparksee
manager

Query Tree builder

Query Tree initialiser NFA utilities

Construction
utilities

Data graph

Conjunct builder

Query Tree evaluator

Join manager

Conjunct evaluator

NFA managerConjunct initialiser

Query submitterResult manager

Ontology
manager

Sparksee API (C#)

Initialisation utilities

Query optimiser

Fig. 4.10 Omega system architecture

by incrementally constructing the edges of the product automaton. The same data
structures and algorithms as for computing approximate answers can be used, the
only difference being that the Succ function now uses the automaton MK

Q .

4.3.3 System Architecture and Performance

A prototype implementation of combined approximation and relaxation for CRPQs,
called Omega, is described in Selmer et al. (2015) and Selmer (2016). Sparksee7

is used as the data store. The development was undertaken using the Microsoft
.NET framework. The system comprises four components (see Fig. 4.10): (1) the
console layer, to which queries are submitted and which displays the incrementally
computed query results; (2) the system layer in which query plans are constructed,

7http://www.sparsity-technologies.com, accessed at 18/6/2015.

http://www.sparsity-technologies.com

4 Applications of Flexible Querying to Graph Data 121

optimised and executed; (3) the Sparksee API, which provides an interface for
invoking data access methods to the data store; and (4) the data store itself.

Query evaluation commences when Query submitter invokes Query manager,
passing it a CRPQ query that is to be evaluated. Query manager invokes Query
Tree builder to construct the query tree, comprising inner nodes representing
join operators and leaf nodes representing individual query conjuncts. Query Tree
builder calls Conjunct builder to construct each leaf node of the query tree. Query
manager next passes the query tree to Query Tree initialiser, which traverses the
query tree in a top-down manner, beginning at the root. Whenever Query Tree
initialiser encounters a leaf node in the query tree, it invokes Conjunct initialiser
on that conjunct. This in turn invokes NFA builder to construct the automaton
corresponding to the conjunct’s regular expression. If the conjunct is approximated
or relaxed, then NFA manager is invoked to produce an approximate or relaxed
automaton, with the relevant edit or relaxation operators applied. For construction of
a relaxed automaton, NFA manager interacts with Ontology manager, which stores
the extended reduction of the ontology. Query manager then invokes Query Tree
evaluator. This first invokes the Query optimiser to transform the query tree into its
final form for execution (see below for a discussion of optimisation). Query Tree
evaluator then traverses the optimised query tree, starting from the leftmost leaf
node, and proceeding upwards. If the current query tree node is a leaf, the ranked
answers for the query conjunct are computed by invoking Conjunct evaluator. This
module constructs the weighted product automaton, H , of the conjunct’s automaton
with the (closure of) the data graph G. The construction of H is incremental, with
Conjunct evaluator invoking Sparksee manager to retrieve only those nodes and
edges of G that are required in order to compute the next batch of k results (for some
predefined value of k, default 100). If the current query tree node is a join, Query
Tree evaluator works in conjunction with Join manager to perform a ranked join of
the answers returned thus far by its two children nodes. The join algorithm used is
that described in Hurtado et al. (2009b), itself adapted from Ilyas et al. (2004). Once
the root of the query tree has been reached, the processing terminates and the list of
answers now holds the next k results, ranked by increasing distance. Query manager
passes this list to Result manager, which displays the results in ranked order.

For constructing the automata, use is made of several data structures provided by
the C5 Generic Collection library,8 all of which have an amortised time complexity
of O(1) for look-ups and updates:

• HashSet: a set of items (of some type T) implemented as a hash table with
linear chaining

• HashedLinkedList: A linked list of items (of some type T) with an
additional hash table to optimise item lookups within the list

• HashDictionary: A hash table of typed (key,value) pairs

8http://www.itu.dk/research/c5, accessed at 18/6/2015.

http://www.itu.dk/research/c5

122 A. Poulovassilis

The HashDictionary data structure is used to implement the automata,
where the key is an integer representing a ‘from’ state s, and the value is a
HashedLinkedList of tuples representing the transitions outgoing from s. The
priority queue queueR is also implemented by a HashDictionary. The key is
an integer–boolean variable (where the integer portion represents a distance and the
boolean portion represents the final or non-final tuples at that distance). The value
associated with each key, implemented using a HashedLinkedList, comprises
tuples of the form (v, n, s, d, f), ordered by increasing values of d , where d is the
distance associated with visiting node n in state s having started from node v, and f

is a flag denoting whether the tuple is ‘final’ or ‘non-final’. Distinguishing between
these two kinds of tuples in the priority queue allows the removal of ‘final’ tuples to
be prioritised, so that answers may be returned earlier.

Readers are referred to Selmer et al. (2015) and Selmer (2016) for further
details of the implementation and physical optimisations of the Omega system.
Those works also report on a performance study of regular path queries with
approximation and relaxation on several datasets sourced from the L4All system
and from the SIMPLETAX and CORE portions of YAGO (Kasneci et al. 2009).
The L4All data graphs used in the performance study were of size up to 220.8 MB
for the closure of the data graph while the size of the closure of the YAGO data
graph was 1.76 GB. Most of the APPROX and RELAX queries executed quickly
on all datasets. However, some of the APPROX queries on YAGO either failed
to terminate or did not complete within a reasonable amount of time. This was
mainly due to a large number of intermediate results being generated, due to the
Succ function returning a large number of transitions which are then converted
into tuples in GetNext and added to queueR. Some optimisations are explored in
Selmer et al. (2015) and Selmer (2016) for such queries, enabling several—but not
all—of the APPROX queries to execute faster. Future work includes making use of
disk-resident data structures for queueR to guarantee the termination of APPROX
queries with large intermediate results, and using knowledge of the graph structure
(e.g. to prioritise the evaluation of rarer paths within the graph) to reduce the amount
of unnecessary processing. Another promising direction is to identify labels that are
rare in the graph and to split the processing of a regular expression into smaller
fragments whose first or last label is a rare label, as described in Koschmieder and
Leser (2012) (but not for approximated/relaxed queries).

4.4 SPARQLAR : Extending SPARQL with Approximation
and Relaxation

Relaxation of triple patterns and approximate matching of regular RPQs can be
applied to the more pragmatic setting of the SPARQL 1.1 query language (Harris
and Seaborne 2013). SPARQL is the predominant language for querying RDF data
and, in the latest extension to SPARQL 1.1, it supports RPQs over the RDF graph

4 Applications of Flexible Querying to Graph Data 123

(known as ‘property path queries’). However, it does not support notions of query
approximation and relaxation, other than the OPTIONAL operator. Users querying
complex RDF datasets may lack full knowledge of the structure of the data, its
irregularities, and the URIs used within it. The schemas and URIs used can also
evolve over time. This may make it difficult for users to formulate queries that
precisely express their information retrieval requirements. Calì et al. (2014) and
Frosini et al. (2017) investigate extensions to various fragments of SPARQL 1.1 to
allow query approximation and relaxation. These works show that the introduction
of the query approximation and query relaxation operators does not increase the
complexity class of the language fragments studied, and complexity bounds for
several fragments are derived. The extended language is called SPARQLAR .

4.4.1 Example: Flexible Querying of RDF/S Knowledge Bases

Example 4.1 Suppose the user wishes to find the geographic coordinates of the
‘Battle of Waterloo’ event by posing the following query on the YAGO knowledge
base,9 which is derived from multiple sources such as Wikipedia, WordNet and
GeoNames:

PREFIX yago:<http://yago-knowledge.org/resource/>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT * WHERE {

<http://yago-knowledge.org/resource/Battle_of_Waterloo>
yago:happenedIn/(yago:hasLongitude|yago:hasLatitude)
?x }

This query uses the property paths extension of SPARQL 1.1, including its
concatenation (/) and disjunction (|) operators. The above query does not return
any answers since YAGO does not store the geographic coordinates of Waterloo.

The user may therefore choose to approximate the triple pattern in their query:

SELECT * WHERE {
APPROX(<http://yago-knowledge.org/resource/Battle_of_Waterloo>
yago:happenedIn/(yago:hasLongitude|yago:hasLatitude)
?x) }

YAGO does store directly the coordinates of the ‘Battle of Waterloo’ event. So
the system can apply an edit operation that deletes happenedIn from the property
path, and the resulting query

SELECT * WHERE {
<http://yago-knowledge.org/resource/Battle_of_Waterloo>
(yago:hasLongitude|yago:hasLatitude)
?x }

9http://www.mpi-inf.mpg.de/yago-naga/yago/.

http://www.mpi-inf.mpg.de/yago-naga/yago/

124 A. Poulovassilis

returns the desired answers, showing both high precision and high recall:

"4.4"^^<degrees>
"50.68333333333333"^^<degrees>

Example 4.2 Consider the following portion K = (NK,EK) of the YAGO
ontology, where NK is

{hasFamilyName, hasGivenName, label, actedIn,Actor}

and EK is

{(hasFamilyName, sp, label), (hasGivenName, sp, label),

(actedIn, domain, actor)}

Suppose the user is looking for the family names of all actors who played in the film
‘Tea with Mussolini’ and poses this query:

SELECT * WHERE {
?x yago:actedIn <http://yago-knowledge.org/resource/

Tea_with_Mussolini> .
?x yago:hasFamilyName ?z }

The above query returns only four answers, since some actors have only a single
name (e.g. Cher), while others have their full name recorded using the label
property.

The user may choose to relax the second triple pattern in their query in an attempt
to retrieve more answers:

SELECT * WHERE {
?x yago:actedIn <http://yago-knowledge.org/resource/

Tea_with_Mussolini> .
RELAX (?x yago:hasFamilyName ?z) }

The system can now replace hasFamilyName by label, and the resulting
query returns the given names of actors in that film recorded through the property
hasGivenName (hence returning Cher), as well as actors’ full names recorded
through the property label: a total of 255 results.

Example 4.3 Suppose a user wishes to find events that took place in Berkshire in
1643 and poses the following query on YAGO (in the query, we use ‘Event’ for
simplicity but the actual URI is <wordnet_event_100029378>):

SELECT * WHERE {
?x rdf:type Event .
?x yago:on "1643-##-##" .
?x yago:in "Berkshire" }

This query returns no results because there are no property edges named on or in
in YAGO.

4 Applications of Flexible Querying to Graph Data 125

The user may choose to approximate the second and third triple patterns of their
query:

SELECT * WHERE {
?x rdf:type Event .
APPROX (?x yago:on "1643-##-##") .
APPROX (?x yago:in "Berkshire") }

The system can now substitute on by happenedOnDate (which does appear in
YAGO) and in by happenedIn, giving the following query:

SELECT * WHERE {
?x rdf:type Event .
?x yago:happenedOnDate "1643-##-##" .
?x yago:happenedIn "Berkshire" }

This still returns no answers, since happenedIn does not connect event instances
directly to literals such as "Berkshire".

The user can choose to relax now the third triple pattern of the above query:

SELECT * WHERE {
?x rdf:type Event .
?x yago:happenedOnDate "1643-##-##" .
RELAX (?x yago:happenedIn "Berkshire")}

The system can replace the triple ?x yago:happenedIn "Berkshire" by
the triple ?x rdf:type Event, using knowledge encoded in YAGO that the
domain of happenedIn is Event, giving the following query, which returns all
events recorded as occurring in 1643:

SELECT * WHERE {
?x rdf:type Event .
?x yago:happenedOnDate "1643-##-##" .
?x rdf:type Event }

Several answers are returned by this query, including the ‘Siege of Reading’ that
happened in 1643 in Berkshire, but also several events that did not happen in
Berkshire:

<http://yago-knowledge.org/resource/Battle_of_Olney_Bridge>
<http://yago-knowledge.org/resource/Battle_of_Heptonstall>
<http://yago-knowledge.org/resource/Siege_of_Reading>
<http://yago-knowledge.org/resource/Torstenson_War>
<http://yago-knowledge.org/resource/Battle_of_Alton>
<http://yago-knowledge.org/resource/Second_Battle_of_Middlewich>
<http://yago-knowledge.org/resource/Kieft’s_War>

So the query exhibits better recall than the original query, but possibly low
precision.

The user can instead choose to approximate the third triple pattern:

SELECT * WHERE {
?x rdf:type Event .
?x yago:happenedOnDate "1643-##-##" .
APPROX (?x yago:happenedIn "Berkshire")}

126 A. Poulovassilis

The system can now insert the property label that connects URIs to their labels,
giving the following query:

SELECT * WHERE {
?x rdf:type Event .
?x yago:happenedOnDate "1643-##-##" .
?x yago:happenedIn/label "Berkshire" }

This query now returns the only event recorded as occurring in 1643 in Berkshire,
i.e. the ‘Siege of Reading’. It exhibits both better recall than the original query and
also high precision.

4.4.2 Query Rewriting-Based Implementation Approach

For specifying the semantics of SPARQLAR queries, we extend the notion of
SPARQL query evaluation from returning a set of (exact) mappings to returning
a set of mapping/cost pairs of the form 〈μ, c〉, where μ is a mapping and c is a non-
negative number that indicates the cost of the answers arising from this mapping.
Following on from the definitions of sets V , U and L, triples and triple patterns in
Sect. 4.1, we have the following definitions (c.f. Pérez et al. 2006):

Definition 4.4 (Mapping) A mapping μ from ULV to UL is a partial function
μ : ULV → UL such that μ(x) = x for all x ∈ UL, i.e. μ maps URIs and literals
to themselves. The set var(μ) is the subset of V on which μ is defined. Given a triple
pattern 〈x, z, y〉 and a mapping μ such that var(〈x, z, y〉) ⊆ var(μ), μ(〈x, z, y〉)
is the triple obtained by replacing the variables in 〈x, z, y〉 by their image according
to μ.

Definition 4.5 (Compatibility and Union of Mappings) Two mappings μ1 and
μ2 are compatible if ∀x ∈ var(μ1) ∩ var(μ2), μ1(x) = μ2(x). The union of
two mappings μ = μ1 ∪ μ2 can be computed only if μ1 and μ2 are compatible.
The resulting μ is a mapping such that var(μ) = var(μ1) ∪ var(μ2) and: for
each x in var(μ1) ∩ var(μ2), μ(x) = μ1(x) = μ2(x); for each x in var(μ1)

but not in var(μ2), μ(x) = μ1(x); and for each x in var(μ2) but not in var(μ1),
μ(x) = μ2(x).

The union of two sets of SPARQLAR query evaluation results, M1 ∪ M2,
comprises the following set of mapping/cost pairs:

{〈μ, c〉 | 〈μ, c1〉 ∈ M1 or 〈μ, c2〉 ∈ M2, with c = c1 if �c2.〈μ, c2〉 ∈ M2, c = c2 if

�c1.〈μ, c1〉 ∈ M1, and c = min(c1, c2) otherwise}.

In Calì et al. (2014) and Frosini et al. (2017) a query rewriting approach
is adopted for SPARQLAR query evaluation, in which a SPARQLAR query Q

is rewritten to a set of SPARQL 1.1 queries for evaluation. We summarise this
approach here, refering the reader to those papers for further details.

4 Applications of Flexible Querying to Graph Data 127

To keep track of which triple patterns in Q need to be relaxed or approximated,
such triple patterns are labelled with A for approximation and R for relaxation.
The query rewriting algorithm starts by generating a query Q0 which returns the
exact answer of Q, i.e. ignoring any APPROX and RELAX operators. For each
triple pattern 〈xi, Ri, yi〉 in Q0 labelled with A or R, and each URI p that appears
in Ri , a set of new queries is constructed by applying all possible one-step edit
operations or relaxation operations to p (these are the ‘first-generation’ queries). To
each such query Q1 is assigned the cost of applying the edit or relaxation operation
that derived it. A new set of queries is constructed by applying a second step of
approximation or relaxation to each query Q1 (the ‘second-generation’ queries),
accumulating summatively the cost of the two edit or relaxation operations applied
to obtain each query and assigning this cost to the query. The process continues for a
bounded number of generations, accumulating summatively the cost of the sequence
of edit or relaxation operations applied to obtain each query in the ith generation.
The rewriting process terminates once the cost of all the queries generated in a
generation has exceeded a maximum value m.

The overall query evaluation algorithm is defined below, where QRA denotes
the Query Rewriting Algorithm and it is assumed that the output set, M , of
mapping/cost pairs is maintained in order of increasing cost, e.g. as a priority queue.
Ordinary SPARQL query evaluation—denoted SPARQLeval in the algorithm—
is applied to each query generated by QRA, in ranked order of the query costs.
SPARQLeval takes as input a SPARQL query Q′ and a graph G and returns a set
of (exact) mappings. The mappings are then assigned the cost of the query Q′. If a
mapping is generated more than once, only the one with the lowest cost is retained in
M (by the semantics of the union operator, ∪, applied to sets of mapping/cost pairs).

Algorithm 7: SPARQLAR flexible query evaluation
input : Query Q; maximum cost m; Graph G; Ontology K .
output: List of mapping/cost pairs, M , sorted by cost.
M := ∅;
foreach 〈Q′, cost〉 ∈ QRA(Q,m,K) do

foreach μ ∈ SPARQLeval(Q′,G) do
M := M ∪ {〈μ, cost〉}

return M;

A formal study of the correctness and termination of the Query Rewriting
Algorithm can be found in Frosini et al. (2017) where the Rewriting Algorithm
itself is also specified in detail.

4.4.3 System Architecture and Performance

A prototype implementation of SPARQLAR is described in Frosini et al. (2017).
The implementation is in Java and Jena is used for the SPARQL query execution.

128 A. Poulovassilis

GUI System

Main Window

User queries

Cost Setter

Data/Ontology
Selector

Domain Classes

Jena Wrapper

SPARQLAR Parser

Answer
Wrapper

Utilities

Query Evaluator

Approx/Relax
Constructor

Data/Ontology
Loader

Relax

SPARQLAR

Query

Approx

Data/Ontology
Wrapper

Rewriting Algorithm Evaluator

Cache

SPARQL
Queries

Optimiser

Answers
Answers Window

Jena API

RDF Schema TDB Database

Data

Fig. 4.11 SPARQLAR system architecture

Figure 4.11 illustrates the system architecture, consisting of three layers: the GUI
layer, the System layer, and the Data layer.

The GUI layer supports user interaction with the system, allowing queries to be
submitted, costs of the edit and relaxation operators to be set, datasets and ontologies
to be selected, and query answers to be incrementally displayed to the user.

The System layer is responsible for the processing of the SPARQLAR queries.
It comprises three components: the Utilities, containing classes providing the
core logic of the system; the Domain Classes, providing classes relating to the
construction of SPARQLAR queries; and the Query Evaluator in which query
rewriting, optimisation and evaluation are undertaken.

The Data layer connects the system to the selected RDF dataset and ontology
using the JENA API. Jena library methods are used to execute SPARQL queries
over the RDF dataset and to load the ontology into memory. The RDF datasets are
stored as a TDB database10 and the RDF schema can be stored in multiple RDF
formats (e.g. Turtle, N-Triple, RDF/XML).

When a user query is submitted to the GUI, this invokes a method of the
SPARQLAR Parser to parse the query string and construct an object of the class
SPARQLAR Query. The GUI also invokes the Data/Ontology Loader which creates

10https://jena.apache.org/documentation/tdb/.

https://jena.apache.org/documentation/tdb/

4 Applications of Flexible Querying to Graph Data 129

an object of the class Data/Ontology Wrapper, and the Approx/Relax Constructor
which creates objects of the classes Approx and Relax.

Once these objects have been initialised, they are passed to the Query Evaluator
by invoking the Rewriting Algorithm. This generates the set of SPARQL queries to
be executed over the RDF dataset. The set of queries are passed to the Evaluator,
which interacts with the Optimiser and the Cache to improve query performance.
Specifically, the answers of parts of queries are computed and stored in the Cache,
and these answers are retrieved from the Cache when the Evaluator needs these
results. A SPARQLAR query is first split into two parts: the triple patterns which
do not have APPROX or RELAX applied to them (the exact part) and those which
have (the A/R part). The exact part is first evaluated and the results are cached.
The query rewriting algorithm is then applied to the A/R part. Each triple pattern
generated is evaluated individually, as also are all possible pairs of triple patterns,
and the answers for each evaluation are cached. To avoid memory overflow, an upper
limit is placed on the size of the cache. Finally, the overall results of a SPARQL
query are obtained by joining subquery results already cached with those obtained
by evaluating the rest of the query.

The Evaluator uses the Jena Wrapper to invoke Jena library methods for
executing SPARQL queries over the RDF dataset. The Jena Wrapper also gathers
the query answers and passes them to the Answer Wrapper. Finally, the answers are
displayed by the Answers Window, in ranked order.

A performance study using data generated from the Lehigh University Bench-
mark (LUBM)11 is described in Calì et al. (2014). Three datasets were generated,
the largest of which contained 673,416 triples (65 MB). A larger-scale performance
study on the YAGO dataset is described in Frosini et al. (2017). YAGO contains over
120 million triples which were downloaded and stored in a Jena TDB database. The
size of the TDB database was 9.70 GB, and the nodes of the YAGO graph were
stored in a 1.1 GB file.

The overall results show that the evaluation of SPARQLAR queries through a
query rewriting approach is promising (see Calì et al. 2014; Frosini et al. 2017
for details). The difference between the execution time of the exact form and
the APPROXed/RELAXed forms of the queries is acceptable for queries with
fewer than five conjuncts. For most of the other queries that were trialled, the
simple caching technique described above also brings down the run times of their
APPROXed/RELAXed forms to more reasonable levels. For more complex queries
(e.g. involving combinations of Kleene closure and the wildcard symbol, “_”, within
a property path), more sophisticated optimisation techniques are needed.

Our ongoing work involves investigating optimisations to the query rewriting
algorithm, since this can generate a large number of queries. In particular, we
are studying the query containment problem for SPARQLAR and how query costs
impact on this. For example, for a query Q = Q1 AND Q2 it is possible to
decrease the number of queries generated by the rewriting algorithm if we know

11http://swat.cse.lehigh.edu/projects/lubm/.

http://swat.cse.lehigh.edu/projects/lubm/

130 A. Poulovassilis

that Q1 ⊆ Q2, in which case we can evaluate Q1 rather than Q. Other optimisations
under investigation include using statistics about path frequencies in the data graph
to reorder the evaluation of triple patterns so as to evaluate first those returning
fewer results; and using summaries of the data graph to avoid evaluating subqueries
that we know, after evaluation on the graph summary, cannot return any answers.
Also planned is a detailed comparison of this query rewriting approach to query
approximation and relaxation with the ‘native’ implementation of Omega described
in the previous section.

4.5 Further Topics

4.5.1 User Interaction

In Sect. 4.3.1 we briefly discussed an application-specific prototype that provides a
forms-based GUI for incrementally generating CRPQ queries, parts of which can
optionally be approximated or relaxed, and for displaying ranked query results to
the user. A detailed discussion of that prototype can be found in Poulovassilis et al.
(2012). An area of future work identified in that paper was how such systems might
provide explanations to the user of how the overall ‘distance’ of each query result
has been derived, based on the application of a sequence of edit and relaxation
operations each of some cost specified by the user.

One possible visualisation for such explanations, in a more generic setting, is
the Query Graph illustrated in Figs. 4.12 and 4.13, which is based on an ‘inverted’
version of the relaxation graph for graph patterns discussed in Sect. 4.1. To illustrate,
consider Example 4.3 from Sect. 4.1 which is enacted in successive screenshots
in the two figures, moving from left-to-right and top-to-bottom. The user begins
(Screen 1) by constructing their initial query, which is shown both in the main pane
and in the Query Graph panel below. The user then presses the RUN button to run
the query. However, no answers are returned (Screen 2). The user elects to edit
the second triple pattern, by clicking on that pattern and then on the ‘Conj[unct]’
button, selecting ‘substitution’ from a drop-down list of edit operations displayed
by the system, and then happenedOnDate from a list of properties suggested
by the system (e.g. properties that are known to have domain Event). Screen 3
shows the new query and its distance from the original one, the updated Query
Graph and—in the top-left—the edit operations applied so far. The user presses
RUN but again no answers are returned. The user elects to edit now the third triple
pattern, again selecting ‘substitution’ from a drop-down list of edit operations, and
now happenedIn from the list of properties suggested by the system. Screen 4
shows the new query and the updated Query Graph. The user presses RUN but
again no answers are returned. At this point, the user seeks help by clicking on
the “?’ button and system suggests three alternatives: (i) relaxation of the second
triple pattern to ?x rdf:type Event, (ii) relaxation of the third triple pattern

4 Applications of Flexible Querying to Graph Data 131

Fig. 4.12 User interaction and visualisation

to ?x rdf:type Event, (iii) insertion of a literal-valued property to follow
happenedIn. Suppose the user chooses option (ii). Screen 5 shows the new
query and the updated Query Graph (scrolling down now in the expanded Query
Graph pane). The user presses RUN and Screen 6 illustrates the results returned (all
events taking place in 1643, at any location). The user decides these results are too
diverse to be useful and backtracks to Query 3, where the system provides again
alternatives (i)–(iii). Suppose the user now chooses option (iii). The system offers a
list of literal-valued properties (those with domain Place, or a superclass, on the
basis of knowledge that this is the range of happenedIn), and the user selects the
property label. Screen 7 shows the new query and the updated Query Graph. The
user presses RUN and Screen 8 shows the result returned, which is the one event
recorded as occurring in Berkshire in 1643.

Allowing the user to visualise how queries are incrementally generated, what
distance is associated with each query, and what results are returned, if any, can
help the user decide whether the answers being returned are useful and to try out
different edit/relaxation operations. Detailed design, implementation and evaluation
of such interactive flexible querying facilities and visualisations for end-users are an
area requiring further work.

132 A. Poulovassilis

Fig. 4.13 User interaction and visualisation

4.5.2 More Query Flexibility

There are several directions in which the approaches discussed in the previous
sections can be extended. One area of ongoing work is to merge the APPROX
and RELAX operators into one integrated FLEX operator that simultaneously
applies edit and relaxation operations to a regular path query. This would allow
greater ease of querying for users, in that they would not need to be aware of the
ontology structure and to identify which conjuncts of their query may be amenable
to relaxation and which to approximation. Another ongoing direction is to extend
our languages with lexical and semantic similarity measures, in order to allow
approximate matching of literals and resources.

To illustrate, suppose a History of Science researcher wishes to find scientists
born in London. She is also interested in scientists living in or near London.
However, she doesn’t know how YAGO records that a person is a scientist, and poses
the following query that makes use of the hasGloss property linking resources
to textual descriptions, seeking to find the word ‘scientist’ or similar within such
descriptions:

SELECT * WHERE {
FLEX (?p yago:wasBornIn London) .

4 Applications of Flexible Querying to Graph Data 133

?p rdf:type ?c . ?c yago:hasGloss ?descr .
FILTER sim (?descr, "scientist") > 0.7}

The system can find matches for ‘scientist’ within values of thehasGloss property
(e.g. as in the descriptions ‘person with advanced knowledge of one or more
sciences’, ‘an expert in the science of economics’), allowing relevant answers
to be returned. Use of the FLEX operator also allows the system to substitute
wasBornIn by livesIn, giving additional answers of relevance.

Similarity measures could also be applied by the system to distinguish between
different alternatives when an edge label in a regular path query is being substituted
by a different label. Having knowledge of the semantic similarly of properties—
for example, exploiting dictionaries such as Wordnet—would allow the system to
assign a finer-grained cost to edge label substitutions, thereby allowing finer ranking
of the top-k answers and increasing their precision.

Similarly, it would be possible to assign a finer ranking to the application of
relaxation operations where a specific property is replaced by superproperty, or a
specific class by a superclass.

4.5.3 More Query Expressivity

Another direction of work is to extend the expressivity of the query languages
beyond conjunctive regular path queries. In this direction, Hurtado et al. (2009a)
investigated approximate matching of extended regular path (ERP) queries in which
the regular expression R in a query conjunct (X,R, Y) can be associated with a path
variable P—using the syntax (X,R : P, Y)—and these path variables can appear
also in the query head, thereby allowing graph paths to be returned to the user as part
of the query answer. It was shown that top-k approximate answers can be returned
in polynomial time in the size of the graph and the query. Thus, for example,
revisiting the transport network example in Sect. 4.2.1, the following query finds
cities reachable from Santiago by train, directly or indirectly, or by combinations of
other modes of transport, returning also the routes:

?P, ?X <- APPROX (u1, train+.name:?P ,?X)

The answers returned are:
([train,u2,name],Talca),
([train,u2,train,u4,name],Chillan)
at distance 0;
([bus,u3,name],Valparaiso),
([airplane,u7,name],Temuco),
([airplane,u4,name],Chillan)
at distance c3;
([airplane,u4,airplane,u5,name],Concepcion),
([airplane,u4,bus,u5,name],Concepcion),

134 A. Poulovassilis

([airplane,u4,bus,u6,name],Los Angeles)
at distance c3 + c4; and so forth.

Another application of this kind of flexible querying, where it is useful to
return paths in the query results, is described in Poulovassilis et al. (2015), which
discusses the analysis of user–system interaction data as arising from exploratory
learning environments. The interaction data is stored in Neo4j. Interaction events,
and their types, are represented by nodes. Events are linked to their event-type
by edges labelled OCCURRENCE_OF while successive events are linked to each
other by edges labeled NEXT. Poulovassilis et al. (2015) give examples of how
approximate matching of ERP queries over such data can allow pedagogical
experts to investigate how students are undertaking exploratory learning tasks,
and how feedback messages generated by the system are affecting students’
behaviours, with the aim of designing improved support for students. For example,
the following query (expressed in Neo4j’s Cypher language12) finds pairs of
events x, y such that x is an intervention (i.e. a message) generated by the
system and y is the user’s next action; the path between x and is returned,
through the variable p, as are the event-type of x and y, through the variables v
and w.

MATCH (x:Event)-[:OCCURRENCE_OF]->
(v:EventType {event_cat:"intervention"}),

p = (x:Event)-[:NEXT]->(y:Event),
(y:Event)-[:OCCURRENCE_OF]->(w:EventType)

RETURN v.event_type as start_node_type,
extract(n IN nodes(p) | n.id_fltask) as path_node_ids,
w.event_type as end_node_type

Results returned include:

start_node_type path_node_ids end_node_type
highMessage ["344509","344510"] ClickButton
highMessage ["344519","344520"] ClickButton
highMessage ["344522","344523"] ClickButton
highMessage ["344714","344715"] ClickButton
highMessage ["344760","344761"] ClickButton

If query approximation were supported in Cypher, then applying APPROX to
the subquery (x:Event)-[:NEXT]->(y:Event) above, and enabling just
insertion of edge labels, would generate the subquery(x:Event)-[:NEXT*2]->

12http://neo4j.com, accessed at 18/6/2015.

http://neo4j.com

4 Applications of Flexible Querying to Graph Data 135

(y:Event). Evaluation of the new query would return answers such as the
following, all at distance 1 from the original query:

start_node_type path_node_ids end_node_type
highMessage ["344509","344510","346027"] ClickButton
highMessage ["344519","344520","344521"] PlatformEvent
highMessage ["344522","344523","344712"] ClickButton
highMessage ["344714","344715","344716"] ClickButton
highMessage ["344760","344761","344762"] PlatformEvent

Following this, the subquery (x:Event)-[:NEXT*2]->(y:Event) could be
automatically approximated again to (x:Event)-[:NEXT*3]->(y:Event).
Evaluation of the new query would return answers such as the following, now at edit
distance 2 from the original query:

start_node_type path_node_ids end_node_type
highMessage ["344509","344510","346027","346028"] FractionGenerated
highMessage ["344519","344520","344521","344522"] highMessage
highMessage ["344522","344523","344712","344713"] FractionGenerated
highMessage ["344714","344715","344716","344717"] FractionChange
highMessage ["344760","344761","344762","344763"] highMessage

By this point, the pedagogical expert is able to see that some high-level interruption
messages (‘highMessage’) are leading students towards productive behaviours, such
as generating a fraction—lines 1 and 3, or changing a fraction—line 4 (the specific
learning environment to which this data relates aims to teach young learners about
fractions). However, other messages are just resulting in more messages being
generated by the system (lines 2 and 5), which may lead experts to explore the data
further (e.g. to retrieve the messages associated with events 344519 and 344760)
and possibly reconsider this part of the system’s design.

4.6 Related Work

A general overview of graph databases from the perspectives of graph character-
istics, graph data management, applications and benchmarking can be found in
Larriba-Pey et al. (2014). The work described in this chapter has considered only the
simple graph data model introduced in Sect. 4.1, and a broader survey of graph data
models can be found in Angles and Gutierrez (2008). Likewise, a survey of graph
query languages can be found in Wood (2012), and we focus here on languages that
support RPQs and on flexible query processing for graph-structured data.

Using regular expressions to specify path queries on graph-structured data has
been studied for nearly 30 years, being introduced in the languages G, G+ and

136 A. Poulovassilis

Graphlog (Cruz et al. 1987; Consens and Mendelzon 1989; Mendelzon and Wood
1989, 1995) and taken up in several languages for other semi-structured data models
(Abiteboul et al. 1997; Fernandez et al. 2000; Buneman et al. 2000). More recently,
CRPQs are supported in NAGA (Kasneci et al. 2009), SPARQLeR (Kochut and
Janik 2007), PSPARQL (Alkhateeb et al. 2009), G-SPARQL (Sakr et al. 2012) and
SPARQL 1.1 (Harris and Seaborne 2013). Cypher, the declarative query language
supported by the Neo4j graph DBMS, also supports a restricted form of regular path
queries. The nSPARQL language (Pérez et al. 2008) extends SPARQL with nested
regular expressions and shows that these enable query answers that encompass the
semantics of the RDFS vocabulary by direct graph traversal, without materialising
the closure of the graph. In addition to the automaton-based approach described
in Sect. 4.3, other approaches proposed for evaluating (exact) CRPQs include
translation into Datalog or recursive SQL (Consens and Mendelzon 1993; Wood
2012; Dey et al. 2013), search-based processing (Fan et al. 2011; Koschmieder and
Leser 2012) and reachability indexing (Gubichev et al. 2013).

Recent work in the WAVEGUIDES project is investigating cost-based optimi-
sation for SPARQL 1.1, focusing in the first instance on query optimisation for
property paths (Yakovets et al. 2015), and this has potential application in the
optimisation of approximated/relaxed CRPQs as well.

Early work on flexible querying for semi-structured data was undertaken by
Kanza and Sagiv (2001), who considered matchings returning paths whose set of
edge labels contain those appearing in the query; such semantics can be captured
by transposition and insertion edit operations on edge labels. More generally,
Grahne and Thomo (2001, 2006) explored approximate matching of single-conjunct
regular path queries, using a weighted regular transducer to perform transformations
to RPQs for approximately matching semi-structured data. This approach was
extended in Hurtado et al. (2009b) to CRPQs. In other work, Grahne et al. (2007)
introduced preferential RPQs where users can specify the relative importance of
symbols appearing in the query by annotating them with weights.

The work in Barcelo et al. (2010, 2012) extends CRPQs to allow comparisons
between path variables within the bodies of queries, as well as allowing path
variables to appear in query heads, calling this extension extended conjunctive
regular path queries (ECRPQs) (but not considering flexible querying). The work
in Libkin and Vrgoc (2012) extends CRPQs to include manipulation also of the
data values associated with nodes along a path. Other extensions to CRPQs are
discussed in Wood (2012), for example with aggregation functions such as count ,
sum, max, min to allow finding properties of graphs that are useful for network
analysis (e.g. in/out-degree of nodes, length of shortest paths between nodes, graph
diameter). Extending these more expressive graph query languages with flexible
querying capabilities is an open area. Also open is extending graph query languages
for more complex graph models (e.g. property graphs, hyperedges, hypernodes—
see Angles and Gutierrez 2008) with flexible queries.

There have been several proposals for flexibly querying Semantic Web data
using similarity measures to retrieve additional relevant answers. For example,
in iSPARQL (Kiefer et al. 2007) similarity measures are applied to resources; in

4 Applications of Flexible Querying to Graph Data 137

Hogan et al. (2012) similarity functions are applied to constants such as strings and
numeric values; and in De Virgilio et al. (2013) a structural similarity approach is
proposed that exploits the graph structure of the data. In other work, ontology-driven
similarity measures are developed, using an RDFS ontology to retrieve additional
answers and assign a score to them (Huang et al. 2008; Huang and Liu 2010; Reddy
and Kumar 2010).

In Mandreoli et al. (2009) knowledge of the semantic relationships between
graph nodes is used for approximate query matching, and Cedeno and Candan
(2011) describe a framework for cost-aware querying of weighted RDF data through
predicates that express flexible paths between nodes. Elbassuoni et al. (2009,
2011) propose extending SPARQL with keyword search capabilities, together
with IR-style ranking of query answers. In Yang et al. (2014), a set of trans-
formation functions are used to map attributes of nodes and edges appearing
in a graph query to matches in the data graph, and a ranking model for query
answers is learnt using automatically generated training instances and the query
log.

Dolog et al. (2006, 2009) consider relaxing queries on RDF data based on user
preferences; user preferences mined from the query log are also used for query
relaxation in Meng et al. (2008); and flexible querying using preferences expressed
as fuzzy sets is investigated in Buche et al. (2009).

Approximate graph matching has also been much studied (Zhang et al. 2010;
Zhu et al. 2011; Zou et al. 2011; Fan et al. 2013; Ma et al. 2014), including adding
regular expressions as edge constraints on the graph patterns to be matched (Fan
et al. 2011) and ontology-based subgraph querying (Wu et al. 2013). This work
has synergies with the flexible querying processing approaches discussed in this
chapter, since the algorithms proposed could potentially be leveraged for improved
query performance of approximated/relaxed CRPQs: this is currently an open area
of research.

4.7 Concluding Remarks

We have given an overview of motivations, applications and implementation
techniques for extending graph query languages with relaxation and approximation.
Along the way we have highlighted directions of ongoing work, relating to provid-
ing additional flexibility through similarity matching, designing further logical and
physical optimisations, and conducting more extensive performance studies. On the
theory front, future work involves investigating the query containment problem for
SPARQLAR and the complexity implications of extending more expressive query
languages with relaxation and approximation features. On the usability front, further
work is required on designing user interfaces that allow users to control and visualise
how flexible queries are incrementally generated and evaluated, so as to be able
to decide whether the answers being returned are useful and to try out alternative
relaxations or approximations.

138 A. Poulovassilis

Acknowledgements The author gratefully thanks Andrea Calì, Riccardo Frosini, Sergio
Gutierrez-Santos, Carlos Hurtado, Manolis Mavrikis, Petra Selmer, Alex Wollenschlaeger and
Peter Wood for our collaboration in the work described here.

References

Abiteboul S, Quass D, McHugh J, Widom J, Wiener J (1997) The LOREL query language for
semistructured data. Int J Digit Libr 1(1):68–88

Aho AV, Hopcroft JE, Ullman JD (1974) The design and analysis of computer algorithms. Addison-
Wesley, Reading

Alkhateeb F, Baget J, Euzenat J (2009) Extending SPARQL with regular expression patterns (for
querying RDF). J Web Semantics 7(2):57–73

Almendros-Jimenez J, Luna A, Moreno G (2014) Fuzzy XPath queries in XQuery. In: Proceedings
of OTM 2014, pp 457–472

Amer-Yahia S, Lakshmanan LVS, Pandit S (2004) FleXPath: flexible structure and full-text
querying for XML. In: Proceedings of ACM SIGMOD 2004, pp 83–94

Angles R, Gutierrez C (2008) Survey of graph database models. ACM Comput Surv 40(1):1–39
Ayers R (1997) Databases for criminal intelligence analysis: knowledge representation issues. AI

Soc 11:18–35
Babcock B, Chaudhuri S, Das G (2003) Dynamic sample selection for approximate query

processing. In: Proceedings of ACM SIGMOD 2003, pp 539–550
Barcelo P, Hurtado CA, Libkin L, Wood PT (2010) Expressive languages for path queries over

graph-structured data. In: Proceedings of PODS 2010, pp 3–14
Barcelo P, Libkin L, Lin AW, Wood PT (2012) Expressive languages for path queries over graph-

structured data. ACM Trans Database Syst 37(4):1–46
Batini C, Lenzerini M, Navathe SB (1986) A comparative analysis of methodologies for database

schema integration. ACM Comput Surv 18(4):323–364
Bordogna G, Psaila G (2008) Customizable flexible querying in classical relational databases.

In: Handbook of research on fuzzy information processing in databases. IGI Global, Hershey,
pp 191–217

Bosc P, Pivert O (1992) Some approaches for relational databases flexible querying. J Intell Inf
Syst 1(3):323–354

Bosc P, Hadjali A, Pivert O (2009) Incremental controlled relaxation of failing flexible queries. J
Intell Inf Syst 33(3):261–283

Bray T et al (eds) (2008) Extensible markup language (XML) 1.0, W3C Recommendation
Buche P, Dibie-Barthelemy J, Chebil H (2009) SPARQL querying of web data tables driven by an

ontology. In: Proceedings of FQAS 2009
Buneman P, Fernandez M, Suciu D (2000) A query language and algebra for semistructured data

based on structural recursion. VLDB J 9(1):76–110
Buratti G, Montesi D (2008) Ranking for approximated XQuery full-text queries. In: Proceedings

of BNCOD 2008, pp 165–176
Calì A, Frosini R, Poulovassilis A, Wood PT (2014) Flexible querying for SPARQL. In:

Proceedings of ODBASE 2014 (OTM Conferences), pp 473–490
Calvanese D, Giacomo GD, Lenzerini M, Vardi MY (2000) Containment of conjunctive regular

path queries with inverse. In: Proceedings of KR 2000, pp 176–185
Cedeno J, Candan KS (2011) R2DF framework for ranked path queries over weighted RDF graphs.

In: Proceedings of WIMS 2011
Chakrabarti K, Garofalakis M, Rastogi R, Shim K (2001) Approximate query processing using

wavelets. VLDB J 10(2–3):199–223

4 Applications of Flexible Querying to Graph Data 139

Chen AC, Gao S, Karampelas P, Alhajj R, Rokne J (2011) Finding hidden links in terrorist networks
by checking indirect links of different sub-networks. In: Counterterrorism and open source
intelligence, pp 143–158

Chu W, Yang H, Chiang K, Minock M, Chow G, Larson C (1996) CoBase: a scalable and extensible
cooperative information system. J Intell Inf Syst 6(2/3):223–259

Consens M, Mendelzon AO (1989) Expressing structural hypertext queries in GraphLog. In:
Proceedings of ACM hypertext 1989, pp 269–292

Consens M, Mendelzon AO (1993) Low complexity aggregation in Graphlog and Datalog. Theor
Comput Sci 116(1–2):95–116

Cruz IF, Mendelzon AO, Wood PT (1987) A graphical query language supporting recursion. In:
Proceedings of SIGMOD 1987, pp 323–330

de Freitas S, Harrison I, Magoulas G, Papamarkos G, Poulovassilis A, van Labeke N, Mee A,
Oliver M (2008) L4All: a web-service based system for lifelong learners. In: The learning grid
handbook: concepts, technologies and applications. The future of learning, vol 2. IOS Press,
Amsterdam

De Virgilio R, Maccioni A, Torlone R (2013) A similarity measure for approximate querying over
RDF data. In: Proceedings of EDBT/ICDT 2013 workshops, pp 205–213

Deo N (2004) Graph theory with applications to engineering and computer science. PHI Learning,
New Delhi

Dey S, Cuevas-Vicenttin V, Kohler S, Gribkoff E (2013) On implementing provenance-aware
regular path queries with relational query engines. In: Proceedings of EDBT 2013, pp 214–
223

Dolog P, Stuckenschmidt H, Wache H (2006) Robust query processing for personalized informa-
tion access on the semantic web. In: Proceedings of FQAS 2006

Dolog P, Stuckenschmidt H, Wache H, Diederich J (2009) Relaxing RDF queries based on user
and domain preferences. J Intell Inf Syst 33(3):239–260

Droste M, Kuich W, Vogler H (2009) Handbook of weighted automata. Springer, Berlin
Eckhardt A, Hornicak E, Vojtas P (2011) Evaluating top-k algorithms with various sources of data

and user preferences. In: Proceedings of FQAS 2011, pp 258–269
Elbassuoni S, Ramanath M, Schenkel R, Sydow M, Weikum G (2009) Language model-based

ranking for queries on RDF-graphs. In: Proceedings of CIKM 2009, pp 977–986
Elbassuoni S, Ramanath M, Weikum G (2011) Query relaxation for entity-relationship search. In:

Proceedings of ESWC 2011 (Part 2)
Fan W, Li J, Ma S, Tang N, Wu Y (2011) Adding regular expressions to graph reachability and

pattern queries. In: Proceedings of ICDE 2011, pp 39–50
Fan W, Wang X, Wu Y (2013) Diversified top-k graph pattern matching. PVLDB 6(13):1510–1521
Fernandez M, Suciu D (1998) Optimizing regular path expressions using graph schemas. In:

Proceedings of ICDE 1998, pp 14–23
Fernandez M, Florescu D, Levy A, Suciu D (2000) Declarative specification of web sites with

strudel. VLDB J 9(1):38–55
Finger J, Polyzotis N (2009) Robust and efficient algorithms for rank join evaluation. In:

Proceedings of SIGMOD 2009
Fink R, Olteanu D (2011) On the optimal approximation of queries using tractable propositional

languages. In: Proceedings of ICDT 2011, pp 174–185
Frosini R, Calì A, Poulovassilis A, Wood PT (2017) Flexible query processing for SPARQL.

Semantic Web 8(4):533–563
Galindo J, Medina J, Pons O, Cubero C (1998) A server for fuzzy SQL queries. In: Proceedings of

FQAS 1998, pp 164–174
Goble CA, Stevens R (2008) State of the nation in data integration for bioinformatics. J Biomed

Inform 41(5):687–693
Gottlob G, Leone N, Scarcello F (2001) The complexity of acyclic conjunctive queries. J ACM

43(3):431–498
Grahne G, Thomo A (2001) Approximate reasoning in semi-structured databases. In: Proceedings

of KRDB 2001

140 A. Poulovassilis

Grahne G, Thomo A (2006) Regular path queries under approximate semantics. Ann Math Artif
Intell 46(1–2):165–190

Grahne G, Thomo A, Wadge WW (2007) Preferentially annotated regular path queries. In:
Proceedings of ICDT 2007, pp 314–328

Gubichev A, Bedathur S, Seufert S (2013) Sparqling kleene: fast property paths in rdf-3x. In:
Proceedings of 1st international workshop on graph data management experiences and systems
(GRADES’13)

Gutierrez C, Hurtado C, Mendelzon AO (2004) Foundations of Semantic Web Databases. In:
Proceedings of PODS 2004, pp 95–106

Halevy A, Rajaraman A, Ordille J (2006) Data integration: the teenage years. In: Proceedings of
VLDB 2006, pp 9–16

Harris S, Seaborne A (eds) (2013) SPARQL 1.1 Query Language, W3C Recommendation
Hayes P (ed) (2004) RDF Semantics, W3C Recommendation
Heer J, Agrawala M, Willett M (2008) Generalized selection via interactive query relaxation. In:

Proceedings of CHI 2008, pp 959–968
Hill J, Torson J, Guo B, Chen Z (2010) Toward ontology-guided knowledge-driven XML query

relaxation. In: Proceedings of 2nd international conference on computational intelligence,
modelling and simulation (CIMSiM) 2010, pp 448–453

Hogan A, Mellotte M, Powell G, Stampouli D (2012) Towards fuzzy query relaxation for RDF. In:
Proceedings of ISWC 2012, pp 687–702

Huang H, Liu C (2010) Query relaxation for star queries on RDF. In: Proceedings of WISE 2010,
pp 376–389

Huang H, Liu C, Zhou X (2008) Computing relaxed answers on RDF databases. In: Proceedings
of WISE 2008, pp 163–175

Hurtado CA, Poulovassilis A, Wood PT (2008) Query relaxation in RDF. J Data Semantics X:31–
61

Hurtado CA, Poulovassilis A, Wood PT (2009a) Finding top-k approximate answers to path
queries. In: Proceedings of FQAS 2009, pp 465–476

Hurtado CA, Poulovassilis A, Wood PT (2009b) Ranking approximate answers to semantic web
queries. In: Proceedings of ESWC 2009, pp 263–277

Ilyas I, Aref W, Elmagarmid A (2004) Supporting top-k join queries in relational databases. VLDB
J 13:207–221

Ioannidis Y, Poosala V (1999) Histogram-based approximation of set-valued query-answers. In:
Proceedings of VLDB 1999, pp 174–185

Kanza Y, Sagiv Y (2001) Flexible queries over semistructured data. In: Proceedings of ACM PODS
2001, pp 40–51

Kasneci G, Ramanath M, Suchanek F, Weikum G (2009) The YAGO-NAGA approach to
knowledge discovery. ACM SIGMOD Rec 37(4):41–47

Kiefer C, Bernstein A, Stocker M (2007) The fundamentals of iSPARQL: a virtualtriple approach
for similarity-based semantic web tasks. In: Proceedings of ISWC 2007

Kochut K, Janik M (2007) Extended SPARQL for semantic association discovery. In: Proceedings
of ESWC 2007, pp 145–159

Koschmieder A, Leser U (2012) Regular path queries on large graphs. In: Proceedings of SSDBM
2012, pp 177–194

Lacroix Z, Murthy H, Naumann F, Raschid L (2004) Links and paths through life sciences data
sources. In: Proceedings of DILS 2004, pp 203–211

Larriba-Pey J, Martinez-Bazan N, Dominguez-Sal D (2014) Introduction to graph databases. In:
Proceedings of reasoning web 2014, pp 171–194

Leser U, Trissl S (2009) Graph management in the life sciences. In: Encyclopedia of database
systems, pp 1266–1271

Libkin L, Vrgoc D (2012) Regular path queries on graphs with data. In: Proceedings of ICDT
2012, pp 74–85

Liu C, Li J, Yu J, Zhou R (2010) Adaptive relaxation forquerying heterogeneous XML data sources.
Inf Syst 35(6):688–707

4 Applications of Flexible Querying to Graph Data 141

Ma S, Cao Y, Fan W, Huai J, Wo T (2014) Strong simulation: capturing topology in graph pattern
matching. ACM Trans Database Syst 39(1):1–46

Mandreoli F, Martoglia R, Villani G, Penzo W (2009) Flexible query answering on graph-modeled
data. In: Proceedings of EDBT 2009, pp 216–227

Martin MS, Gutierrez C, Wood PT (2011) A social networks query and transformation language.
In: Proceedings of AMW 2011, pp 631–646

Mendelzon AO, Wood PT (1989) Finding regular simple paths in graph databases. In: Proceedings
of VLDB 1989, pp 185–193

Mendelzon AO, Wood PT (1995) Finding regular simple paths in graph databases. SIAM J Comput
24(6):1235–1258

Meng X, Ma ZM, Yan L (2008) Providing flexible queries over web databases. In: Knowledge-
based intelligent information and engineering systems, pp 601–606

Mishra C, Koudas N (2009) Interactive query refinement. In: Proceedings of EDBT 2009, pp 862–
873

Munoz S, Pérez J, Gutierrez C (2007) Minimal deductive systems for RDF. In: Proceedings of
ESWC 2007, pp 53–67

Na S, Park S (2005) A process of fuzzy query on new fuzzy object oriented data model. In:
Proceedings of DEXA 2005, pp 500–509

Pérez J, Arenas M, Gutierrez C (2006) Semantics and complexity of SPARQL. In: Proceedings of
ISWC 2006, pp 30–43

Pérez J, Arenas M, Gutierrez C (2008) nSPARQL: a navigational language for RDF. In:
Proceedings of ISWC 2008, pp 66–81

Poulovassilis A, Wood PT (2010) Combining approximation and relaxation in semantic web path
queries. In: Proceedings of ISWC 2010, pp 631–646

Poulovassilis A, Selmer P, Wood PT (2012) Flexible querying of lifelong learner metadata. IEEE
Trans Learn Technol 5(2):117–129

Poulovassilis A, Gutierrez-Santos S, Mavrikis M (2015) Graph-based modelling of students’
interaction data from exploratory learning environments. In: Proceedings of GEDM 2015 (at
Educational Data Mining 2015), pp 46–51

Poulovassilis A, Selmer P, Wood PT (2016) Approximation and relaxation of semantic web path
queries. J Web Semant 40:1–21

Reddy BRK, Kumar PS (2010) Efficient approximate SPARQL querying of web of linked data. In:
Proceedings of URSW 2010, pp 37–48

Sakr S, Elnikety S, He Y (2012) G-SPARQL: a hybrid engine for querying large attributed graphs.
In: Proceedings of CIKM 2012, pp 335–344

Sarma D et al (2008) Bootstrapping pay-as-you-go data integration systems. In: Proceedings of
SIGMOD 2008, pp 861–874

Sassi M, Tlili O, Ounelli H (2012) Approximate query processing for database flexible querying
with aggregates. Trans Large-Scale Data- Knowl Centered Syst V:1–27

Selmer P (2016) Flexible querying of graph-structured data. PhD thesis, Birkbeck, University of
London

Selmer P, Poulovassilis A, Wood PT (2015) Implementing flexible operators for regular path
queries. In: Proceedings of GraphQ 2015 (EDBT/ICDT Workshops), pp 149–156

Siepen J et al (2008) ISPIDER Central: an integrated database web-server for proteomics. Nucleic
Acids Res (Web-Server-Issue) 36:485–490

Suthers D (2015) From contingencies to network-level phenomena: multilevel analysis of activity
and actors in heterogeneous networked learning environments. In: Proceedings of LAK 2015,
pp 368–377

Theobald M, Schenkel R, Weikum G (2005) An efficient and versatile query engine for TopX
search. In: Proceedings of VLDB 2005, pp 625–636

Vanhatalo J, Völzer H, Leymann F, Moser S (2008) Automatic workflow graph refactoring and
completion. In: Proceedings of ICSOC 2008. Springer, Berlin, pp 100–115

Wood PT (2012) Query languages for graph databases. ACM SIGMOD Rec 41(1):50–60

142 A. Poulovassilis

Wu B, Ye Q, Yang S, Wang B (2009) Group CRM: a new telecom CRM framework from social
network perspective. In: Proceedings of 1st ACM international workshop on complex networks
meet information and knowledge management (CNIKM’09), pp 3–10

Wu Y, Yan X, Yang S (2013) Ontology-based subgraph querying. In: Proceedings of ICDE 2013,
pp 697–708

Yakovets N, Godfrey P, Gryz J (2015) Towards query optimization for SPARQL property paths.
arXiv preprint arXiv:150408262

Yang S, Wu Y, Sun H, Yan X (2014) Schemaless and structureless graph querying. Proc VLDB
Endowment 7(7):565–576

Zhang S, Yang J, Jin W (2010) SAPPER: subgraph indexing and approximate matching in large
graphs. PVLDB 3(1):1185–1194

Zhou X, Gaugaz J, Balke WT, Nejdl W (2007) Query relaxation using malleable schemas. In:
Proceedings of ACM SIGMOD 2007, pp 545–556

Zhu L, Ng WK, Cheng J (2011) Structure and attribute index for approximate graph matching in
large graphs. Inf Syst 36(6):958–972

Zou L, Mo J, Chen L, Ozsu MT, Zhao D (2011) gStore: answering SPARQL queries via subgraph
matching. PVLDB 4(8):482–493

Chapter 5
Parallel Processing of Graphs

Bin Shao and Yatao Li

Abstract Graphs play an indispensable role in a wide range of application domains.
Graph processing at scale, however, is facing challenges at all levels, ranging
from system architectures to programming models. In this chapter, we review the
challenges of parallel processing of large graphs, representative graph processing
systems, general principles of designing large graph processing systems, and various
graph computation paradigms. Graph processing covers a wide range of topics and
graphs can be represented in different forms. Different graph representations lead to
different computation paradigms and system architectures. From the perspective of
graph representation, this chapter also briefly introduces a few alternative forms of
graph representation besides adjacency list.

5.1 Overview

Graphs are important to many applications. However, large-scale graph processing
is facing challenges at all levels, ranging from system architectures to programming
models. There are a large variety of graph applications. We can roughly classify the
graph applications into two categories: online query processing, which is usually
optimized for low latency; and offline graph analytics, which is usually optimized
for high throughput. For instance, deciding instantly whether there is a path between
two given people in a social network belongs to the first category, while calculating
PageRank for a web graph belongs to the second.

Let us start with a real-life knowledge graph query example. Figure 5.1 gives
a real-life relation search example on a big knowledge graph. In a knowledge
graph, queries that find the paths linking a set of given graph nodes usually give
the relations between these entities. In this example, we find the relations between
entities Tom Cruise, Katie Holmes, Mimi Rogers, and Nicole Kidman.

B. Shao (�) · Y. Li
Microsoft Research Asia, Beijing, China
e-mail: binshao@microsoft.com; yatli@microsoft.com

© Springer International Publishing AG, part of Springer Nature 2018
G. Fletcher et al. (eds.), Graph Data Management, Data-Centric Systems
and Applications, https://doi.org/10.1007/978-3-319-96193-4_5

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96193-4_5&domain=pdf
mailto:binshao@microsoft.com
mailto:yatli@microsoft.com
https://doi.org/10.1007/978-3-319-96193-4_5

144 B. Shao and Y. Li

Fig. 5.1 Relation search on a knowledge graph

Fig. 5.2 A general graph processing system stack

Many sophisticated real-world applications highly rely on the interplay between
offline graph analytics and online query processing. Given two nodes of a graph,
the “distance oracle” algorithm designed by Qi et al. (2014) estimates the shortest
distance between two given nodes; it is an online algorithm. However, to estimate
the distances, the algorithm relies on “landmark” nodes in the graph and an optimal
set of landmark nodes are discovered using an offline analytics algorithm.

Generally speaking, the system stack of a graph processing system consists of
all or some of the layers shown in Fig. 5.2. At the top, graph algorithms manipulate
graphs via programming interfaces provided by a graph processing system. Between
the programming interfaces and the storage backend, there usually is a computation
engine that executes the graph manipulation instructions dictated by the graph
algorithms through programming interfaces.

At the bottom, the storage backend hosts the graph data using a certain graph rep-
resentation, either in a single machine or over multiple distributed machines. Storage
backends have important system design implications. The storage layer largely

5 Parallel Processing of Graphs 145

determines the system optimization goal, as discussed in Kaoudi and Manolescu
(2015). For example, systems including SHARD by Rohloff and Schantz (2011),
HadoopRDF by Husain et al. (2011), RAPID by Ravindra et al. (2011), and EAGRE
by Zhang et al. (2013) use a distributed file system as their storage backends. The
systems that directly use a file system as storage backend are usually optimized for
throughput due to the relatively high data retrieval latency. In contrast, systems such
as H2RDF by Papailiou et al. (2012), AMADA by Aranda-Andújar et al. (2012),
and Trinity.RDF by Zeng et al. (2013) are optimized for better response time via the
fast random data access capability provided by their key-value store backends.

In this section, we first introduce the notation and discuss why it is difficult to
process large graphs. Then, we present some general principles of designing large-
scale graph processing systems after a brief survey of some representative graph
processing systems.

5.1.1 Notation

Let us introduce the terminology and notation that will be used throughout this
chapter. A graph may refer to a topology-only mathematical concept as defined in
Bollobás (1998) or a data set. In the former sense, a graph is a pair of finite sets
(V ,E) such that the set of edges E is a subset of the set V × V . If each pair of
vertices are ordered, we call G a directed graph; otherwise, we call it an undirected
graph.

In what follows when we represent a data set as a graph, especially when there are
data associated with the vertices, we refer to the vertices as graph nodes or nodes.
Correspondingly, we call adjacent vertices neighboring nodes. If the data set only
contains graph topology or if we only want to emphasize its graph topology, we call
them vertices.

There are two common ways of representing and storing a graph: adjacency list
and adjacency matrix. The way of representing a graph determines the way we can
process the graph. As most graph query processing and analytics algorithms highly
rely on the operator that gets adjacent vertices of a given vertex, adjacency list is
usually a preferred way of representing a graph especially when the graph is large.
If we use the adjacency matrix representation, we need to scan a whole adjacency
matrix row to access the adjacent vertices of given vertex. For a graph with billions
of vertices, the costs of scanning matrix rows will be prohibitive. In this chapter, we
assume graphs are represented and stored as adjacency lists unless otherwise stated.

5.1.2 Challenges of Large Graph Processing

It is difficult to process large graphs mostly because they have a large number
of encoded relations. We summarize the challenges of large graph processing as:

146 B. Shao and Y. Li

(1) the complex nature of graph; (2) the diversity of graphs; (3) the diversity of
graph computations; (4) the scale of graph size.

5.1.2.1 The Complex Nature of Graph

Graphs are inherently complex. The contemporary computer architectures are good
at processing linear and simple hierarchical data structures, such as Lists, Stacks,
or Trees. When the data scale goes large, the divide and conquer computation
paradigm still works well for these data structures, even if the data is partitioned
over distributed machines.

However, when we are handling graphs, especially large graphs, the situation
is changed. Andrew Lumsadine and Douglas Gregor (2007) summarize the char-
acteristics of parallel graph processing as data-driven computations, unstructured
problems, poor locality, and high data access to computation ratio. The implication
is twofold: (1) From the perspective of data access, a graph node’s neighboring
nodes cannot be accessed without “jumping” in the storage no matter how we
represent a graph. In other words, a large amount of random data accesses are
required during graph processing. Many modern program optimization techniques
rely on data locality and data reuse. Unfortunately, the random data access nature of
graph breaks the premise. This usually causes poor system performance as the CPU
cache is not effective for most of the time. (2) From the perspective of program
structure, it is difficult to extract parallelism because of the unstructured nature of
graphs. Partitioning large graphs itself is an NP-hard problem as shown by Garey
et al. (1974); this makes it hard to get an efficient divide and conquer solution for
many large graph processing tasks.

5.1.2.2 The Diversity of Graphs

There are many kinds of graphs, such as scale-free graphs, graphs with community
structures, and small-world graphs. A scale-free graph is a graph whose degrees
follow a power-law distribution. For graphs with community structure, the graph
nodes can easily be grouped into sets of nodes such that each set of nodes are densely
connected. For small-world graphs, most nodes can be reached from other nodes by
a small number of hops. The performance of graph algorithms may vary a lot on
different kinds of graphs.

5.1.2.3 The Diversity of Graph Computations

Furthermore, there are a large variety of graph computations. As discussed earlier,
graph computations can be roughly classified into two categories: online query
processing and offline graph analytics. Besides common graph query processing
and analytics tasks, there are other useful graph operations such as graph generation,

5 Parallel Processing of Graphs 147

graph visualization, and interactive exploration. It is challenging to design a system
that can support all these operations on top of the same infrastructure.

5.1.2.4 The Scale of Graph Size

Last but not least, the scale of graph size does matter. Graphs with billions of nodes
are common now, for example, the Facebook social network has more than two
billion monthly active users.1 The World Wide Web has more than one trillion
unique links. The De brujin graph for genes even has more than one trillion nodes
and at least eight trillion edges. The scale of graph size makes many classic graph
algorithms from textbooks ineffective.

5.1.3 Representative Graph Processing Systems

Recent years have witnessed an explosive growth of graph processing systems as
shown by Aggarwal and Wang (2010). However, many graph algorithms are ad hoc
in the sense that each of them assumes that the underlying graph data is organized
in a certain way to maximize its performance. In other words, there is not a standard
or de facto graph system on which graph algorithms are developed and optimized.
In response to this situation, a number of graph systems have been proposed. Some
representative systems are summarized in Table 5.1.

Neo4j2 focuses on supporting online transaction processing (OLTP) of graphs.
Neo4j is like a regular database system, with a more expressive and powerful data
model. Its computation model does not handle graphs that are partitioned over
multiple machines. For large graphs that cannot be stored in the main memory, disk
random access becomes the performance bottleneck.

From the perspective of online graph query processing, a few distributed in-
memory systems have been designed to meet the challenges faced by disk-based
single-machine systems. Representative systems include Trinity by Shao et al.
(2013) and Horton by Sarwat et al. (2013). These systems leverage RAM to speed
up random data accesses and use a distributed computation engine to process graph
queries in parallel.

On the other end of the spectrum are MapReduce by Dean and Ghemawat
(2008), PEGASUS by Kang et al. (2009), Pregel by Malewicz et al. (2010), Giraph,
GraphLab by Low et al. (2012), GraphChi by Kyrola et al. (2012), and GraphX
by Gonzalez et al. (2014). These systems are usually not optimized for online
query processing. Instead, they are optimized for high-throughput analytics on large
graphs partitioned over many distributed machines.

1http://newsroom.fb.com/company-info/.
2http://neo4j.com/.

http://newsroom.fb.com/company-info/
http://neo4j.com/

148 B. Shao and Y. Li

Table 5.1 Some representative graph processing systems (SB means the
feature depends on its storage backend)

Native Online Data In-memory Transaction

graphs query sharding storage support

Neo4j Yes Yes No No Yes

Trinity Yes Yes Yes Yes Atomicity

Horton Yes Yes Yes Yes No

FlockDBa No Yes Yes No Yes

TinkerGraphb Yes Yes No Yes No

InfiniteGraphc Yes Yes Yes No Yes

Cayleyd Yes Yes SB SB Yes

Titane Yes Yes SB SB Yes

MapReduce No No Yes No No

PEGASUS No No Yes No No

Pregel No No Yes No No

Giraphf No No Yes No No

GraphLab No No Yes No No

GraphChi No No No No No

GraphX No No Yes No No
ahttps://github.com/twitter/flockdb
bhttps://github.com/tinkerpop/blueprints/wiki/TinkerGraph
chttp://www.objectivity.com/products/infinitegraph/
dhttps://github.com/google/cayley
ehttp://thinkaurelius.github.io/titan/
fhttp://giraph.apache.org/

MapReduce-based graph processing depends heavily on inter-processor band-
width as graph structures are sent over the network iteration after iteration. Pregel
and its follow-up systems mitigate this problem by passing computation results
instead of graph structures between processors. In Pregel, analytics are expressed
using a vertex-centric computation paradigm. Although some well-known graph
algorithms such as PageRank and shortest path discovery can be expressed using
vertex-centric computation paradigm easily; there are many sophisticated graph
computations that cannot be expressed in a succinct and elegant way.

The systems listed in Table 5.1 are compared from five aspects. First, does the
graph exist in its native form? When a graph is in its native form, graph algorithms
can be expressed in standard, natural ways as discussed by Cohen (2009). Second,
does the system support low-latency query processing? Third, does the system
support data sharding and distributed parallel graph processing? Fourth, does the
system use RAM as the main storage? Fifth, does the system support transactions?

https://github.com/twitter/flockdb
https://github.com/tinkerpop/blueprints/wiki/TinkerGraph
http://www.objectivity.com/products/infinitegraph/
https://github.com/google/cayley
http://thinkaurelius.github.io/titan/
http://giraph.apache.org/

5 Parallel Processing of Graphs 149

5.2 General Design Principles

We have reviewed a few representative graph processing systems. In this section,
we discuss a few general principles of designing a general-purpose, real-time graph
processing system.

5.2.1 Addressing the Grand Random Data Access Challenge

As discussed earlier, a graph node’s neighboring nodes’ cannot be accessed without
“jumping” in the storage no matter how we represent a graph. A lot of random
accesses on hard disks lead to performance bottlenecks. It is important to keep
graphs memory-resident for efficient graph computations, especially for real-time
online query processing. In order to create a general-purpose graph processing
system that supports both low-latency online query processing and high-throughput
offline analytics, the grand challenge of random accesses must be well addressed at
the data access layer.

Despite the great progress made in disk technology, it still cannot provide the
level of efficient random access required for graph processing. DRAM (dynamic
random-access memory) is still the only promising storage medium that can provide
a satisfactory level of random access performance with acceptable costs. On the
other hand, in-memory approaches usually cannot scale to very large graphs due to
the capacity limit of a single machine. We argue that distributed RAM storage is a
promising approach to efficient large graph processing.

By addressing the random data access challenge, we can design systems that
efficiently support both online graph query processing and offline graph analytics
instead of optimizing the systems for certain graph computations. For online
queries, it is particularly effective to keep graphs in-memory, as most online query
processing algorithms, such as BFS, DFS, and subgraph matching, require a certain
degree of graph exploration. On the other hand, offline graph computations are
usually conducted in an iterative, batch manner. For iterative computations, keeping
data in RAM can boost the performance by an order of magnitude due to the reuse
of intermediate results as discussed by Zaharia et al. (2010).

5.2.2 Avoiding Prohibitive Indexes

For offline graph analytics, partitioning the computation task well (if possible) is, to
some extent, the silver bullet. As long as we can find an efficient way to partition the
graph data, we basically have a solution to efficient offline graph processing. Due
to the random data access challenge, general-purpose, efficient disk-based solutions
usually do not exist. But under certain constraints, offline graph analytics tasks can

150 B. Shao and Y. Li

have efficient disk-based “divide and conquer” solutions. A good example is the
GraphChi system proposed by Kyrola et al. (2012). If a computational problem can
be well-partitioned, then the subproblems can be loaded in the main memory and
processed in-memory one at a time. However, as discussed by Lumsdaine et al.
(2007), many graph problems are inherently irregular and computation partitioning
is hard, especially for online queries.

Compared with offline analytics, online queries are much harder to handle due
to the following two reasons. First, online queries are sensitive to network latency.
It is harder to reduce communication latency than to increase throughput by adding
more machines. On the one hand, adding more machines can reduce each machine’s
workload; on the other hand, having more machines incurs higher communication
costs. Second, it is generally difficult to predict the data access patterns of a graph
query, thus it is hard to optimize the execution by leveraging I/O optimization
techniques such as prefetching.

Many graph computations are I/O intensive; data accesses usually dominate the
graph computation costs. The performance of processing a graph query depends
on how fast we randomly access the graph. A traditional way of speeding up
random data access is to use indexes. Graph indexes are widely employed to speed
up online query processing, either by precomputing and materializing the results
of common query patterns or by storing redundant information. To capture the
structural information of graphs, graph indexes usually require super-linear indexing
time and super-linear storage space. For large graphs, for example, graphs with
billions of nodes, the super-linear complexity means infeasibility. We will show
in the following section that index-free graph processing is a possible and efficient
approach to many real-time graph query processing tasks.

5.2.3 Supporting Fine-Grained One-Sided Communications

Most graph computations are data-driven and the communication costs typically
contribute a large portion to the overall system costs. Overlapping computations
well with the underlying communication is the key to high performance.

MPI is the de facto standard for message passing programming in high-
performance computing and pairwise two-sided send/receive communication is the
major paradigm provided by MPI.3 The communication progress is dictated by
explicitly invoked MPI primitive calls as shown by Majumder and Rixner (2004).
Nearly all modern network communication infrastructures provide asynchronous
network events. MPI communication paradigm incurs unnecessary latency because
it responds to network events only during send and receive primitive invocations.

In contrast, active messages introduced by von Eicken et al. (1992) is a
communication architecture that can well overlap computation and communication.

3Even one-sided primitives are included starting from MPI-2 standard, their usage is still limited.

5 Parallel Processing of Graphs 151

The communication architecture is desirable for data-driven graph computation,
especially for online graph query processing, which is sensitive to network latency.

When we use active messages, a user-space message handler will be invoked
upon the arrival of a message. The message handler is pointed by a handler index
encoded in the message. Let us use a simple example to illustrate the difference
between the two-sided communication paradigm and active messages. Suppose we
want to send some messages from one machine to another according to the output
values of a random number generator. Using active messages, we can check the
random values on the sender side and invoke a send operation only if the value
matches certain sending condition. Using the pairwise two-sided communication
paradigm, we need to invoke as many send/receive calls as the number of generated
random values and perform the value checkings on the receiver side.

5.3 Online Query Processing

In this section, we review two online query processing techniques specially designed
for distributed large graphs: asynchronous fanout search and index-free query
processing.

5.3.1 Asynchronous Fanout Search

Most graph algorithms require a certain kind of graph exploration; breadth-first
search (BFS) and depth-first search (DFS) are among the commonest. Here, we
use people search in a social network as an example to demonstrate an efficient
graph exploration technique called asynchronous fanout search. The problem is the
following: given a user of a social network, find the people whose first name is
“David” among his friends, his friends’ friends, and his friends’ friends’ friends.

It is unlikely that we can index the social network to solve the “David” problem.
One option is to index the neighboring nodes for each user, so that given any user, we
can use the index to check if there is “David” within his or her 3-hop neighborhood.

Algorithm 1: Asynchronous Fanout search
Require: v (a given graph node)
Ensure: all “Davids” within the 3-hop neighboring nodes
1: N ← the ids of v’s neighboring nodes
2: k ← (the number of machines)
3: hop ← 1
4: Partition N into k parts: N = N1 ∪ · · · ∪ Nk

5: parallel-foreach Ni in N

6: async_send message (Ni, hop) to machine i

152 B. Shao and Y. Li

Algorithm 2: On receiving message (Ni, hop)

1: Si ← the graph nodes with ids in Ni

2: check if there are “Davids” in Si

3: if hop < 3 then
4: N ′ ← ids of the neighboring nodes of the nodes in Si

5: Partition N ′ into k parts: N ′ = N ′
1 ∪ · · · ∪ N ′

k

6: parallel-foreach N ′
i in N ′

7: async_send message (N ′
i , hop + 1) to machine i

However, the size and the update cost of such an index are prohibitive for a large
graph. The second option is to create an index to answer 3-hop reachability queries
for any two nodes. This is infeasible either because “David” is a popular name and
we cannot check every “David” in the social network to see whether he is within 3
hops to the current user.

We can tackle the “David” problem by leveraging fast memory-based graph
explorations. The algorithm simply sends asynchronous “fan-out search” requests
recursively to remote machines as shown by Algorithms 1 and 2. Specifically, it
partitions v’s neighboring nodes into k parts N1, N2, . . . , Nk (line 4 of Algorithm 1),
where k is the total number of machines. Then, the “fan-out” search is performed
by sending message (Ni, hop) (line 6 of Algorithm 1) to all machines in parallel.
On receiving the search requests, machine i searches for “David” in its local data
storage (line 2 of Algorithm 2) and sends out the next-hop “fan-out” search requests
(N ′

i , hop + 1) (line 7 of Algorithm 2).
This simple fanout search works well for randomly partitioned large distributed

graphs. As demonstrated by Shao et al. (2013), for a Facebook-like graph, exploring
the entire 3-hop neighborhood of any given node in the graph takes less than 100 ms
on average.

5.3.2 Index-Free Query Processing

It is usually harder to optimize online query processing because of its limited
response time budget. We use the subgraph matching problem as an example to
introduce an efficient online query processing paradigm for distributed large graphs.

Subgraph matching is the basic graph operation underpinning many graph
applications. Graph G′ = (V ′, E′) is a subgraph of G = (V ,E) if V ′ ⊂ V and
E′ ⊂ E. Graph G′′ = (V ′′, E′′) is isomorphic to G′ = (V ′, E′) if there is a
bijection f : V ′ → V ′′ such that xy ∈ E′ iff f (x)f (y) ∈ E′′. For a given data
graph G and a query graph G′, subgraph matching is to retrieve all the subgraphs of
G that are isomorphic to the query graph.

5 Parallel Processing of Graphs 153

Canonical subgraph matching algorithms are usually conducted in the following
three steps:

1. Break the data graph into basic units such as edges, paths, or frequent subgraphs.
2. Build indexes for the basic units.
3. Decompose a query into multiple basic unit queries, do subgraph matching for

the unit queries, and join their results.

It is much more costly to index graph structure than to index a relational table.
For instance, 2-hop reachability indexes usually require O(n4) construction time.
Depending on the structure of the basic unit, the space costs vary. In many cases,
they are super-linear. Furthermore, multiway joins are costly too, especially when
the data is disk-resident.

To demonstrate the infeasibility of index-based solutions for large graphs, let
us review a survey on subgraph matching made by Sun et al. (2012), as shown in
Tables 5.2 and 5.3.

Table 5.2 shows the index costs of a few representative subgraph matching
algorithms proposed by Ullmann (1976), Cordella et al. (2004), Neumann and
Weikum (2010), Atre et al. (2010), Holder et al. (1994), Zhu et al. (2011), Cheng
et al. (2008), Zou et al. (2009), He and Singh (2008), Zhao and Han (2010), Zhang
et al. (2009), and Sun et al. (2012). To illustrate what the costs listed in Table 5.2
imply for a large graph, Table 5.3 shows their estimated index construction costs and
query time for a Facebook-like social network. Although RDF-3X and BitMat have
linear indexing complexity, they take more than 20 days to index a Facebook-like
large graph, let alone those super-linear indexes. The evident conclusion is that the
costly graph indexes are infeasible for large graphs.

To avoid building sophisticated indexes, the STwig method proposed by Sun et al.
(2012) and the Trinity.RDF system proposed by Zeng et al. (2013) process subgraph
matching queries without using structural graph indexes. This ensures scalability;

Table 5.2 Survey on subgraph matching algorithms by Sun et al. (2012)

Algorithms Index Index Update Graph size

size time cost in experiments

Ullmann, VF2 – – – 4484

RDF-3X O(m) O(m) O(d) 33M

BitMat O(m) O(m) O(m) 361M

Subdue – Exponential O(m) 10K

SpiderMine – Exponential O(m) 40K

R-join O(nm1/2) O(n4) O(n) 1M

Distance-join O(nm1/2) O(n4) O(n) 387K

GraphQL O(m + ndr) O(m + ndr) O(dr) 320K

Zhao O(ndr) O(ndr) O(dL) 2M

GADDI O(ndL) O(ndL) O(dL) 10K

STwig O(n) O(n) O(1) 1B

154 B. Shao and Y. Li

Table 5.3 Index costs and query time of subgraph matching algorithms for a Facebook-
like graph

Algorithms Index size Index time Query time

Ullmann, VF2 – – >1000

RDF-3X 1T >20 days >48

BitMat 2.4T >20 days >269

Subdue – >67 years –

SpiderMine – >3 years –

R-join >175T >1015 years >200

Distance-join >175T >1015 years >4000

GraphQL >13T(r=2) >600 years >2000

Zhao >12T(r=2) >600 years >600

GADDI >2 × 105T (L=4) >4 × 105 years >400

STwig 6G 33 s <20

they work well for graphs with billions of nodes, which are not indexable in terms
of both index space and index time.

To compensate for the performance loss due to the lack of structural indexes,
both STwig and Trinity.RDF heavily make use of in-memory graph explorations to
replace costly join operations. Given a query, they split it into a set of subqueries that
can be efficiently processed via in-memory graph exploration. They only perform
join operations when they are absolutely necessary and not avoidable, for example,
when there is a cycle in the query graph. This dramatically reduces query processing
time, which is usually dominated by join operations.

5.4 Offline Analytics

Graph analytics jobs perform a global computation against a graph. Many of them
are conducted in an iterative manner. When the graph is large, the analytics jobs are
usually conducted as offline tasks.

In this section, we review the MapReduce computation paradigm and vertex-
centric computation paradigm for offline graph analytics. Then, we discuss commu-
nication optimization and a lightweight analytics technique called local sampling.

5.4.1 MapReduce Computation Paradigm

MapReduce, as elaborated by Dean and Ghemawat (2008), is a high-latency yet
high-throughput data processing platform that is optimized for offline analytics for
large partitioned data sets. MapReduce is a very successful programming model

5 Parallel Processing of Graphs 155

for big data processing. However, when used for processing graphs, it suffers from
the following problems: First, it is very hard to support real-time online queries.
Second, the data model of MapReduce cannot model graphs natively and graph
algorithms cannot be expressed intuitively. Third, MapReduce highly relies on data
partitioning; however, it is inherently hard to partition graphs.

It is possible to run a graph processing job efficiently on a MapReduce platform
if the graph could be well-partitioned. Some well-designed graph algorithms
implemented in MapReduce are given by Qin et al. (2014). The computation
parallelism a MapReduce system can achieve depends on how well the data can be
partitioned. Unfortunately, the partitioning task of a large graph can be very costly,
as elaborated by Wang et al. (2014).

5.4.2 Vertex-Centric Computation Paradigm

The vertex-centric graph computation paradigm, which was first advocated by
Malewicz et al. (2010), provides a vertex-centric computational abstraction over
the BSP model proposed by Valiant (1990). A computation task is expressed in
multiple iterative super-steps and each vertex acts as an independent agent. During
each super-step, each agent performs some computations, independent of each other.
It then waits for all other agents to finish their computations before the next super-
step begins.

Compared with MapReduce, Pregel exploits finer-grained parallelism at the
vertex level. Moreover, Pregel does not move graph partitions over the network;
only messages among graph vertices are passed at the end of each iteration. This
greatly reduces the network traffic.

Many follow-up works, such as GraphLab by Low et al. (2012), PowerGraph
by Gonzalez et al. (2012), Trinity by Shao et al. (2013), and GraphChi by Kyrola
et al. (2012), support the vertex-centric computation paradigm for offline graph
analytics. Among these systems, GraphChi is specially worth mentioning as it well
addresses the “divide and conquer” problem for graph computation under certain
constraints. GraphChi can perform efficient disk-based graph computation as long
as the computation could be expressed as an asynchronous vertex-centric algorithm.
An asynchronous algorithm is one where a vertex can perform a computational
task based solely on the partially updated information from its incoming links. This
assumption, on the one hand, frees the need of passing messages from the current
vertex to all its outgoing links so that it can perform the graph computations block
by block. On the other hand, it inherently cannot efficiently support traversal-based
graph computations and synchronous graph computations because it cannot freely
access the outgoing links of a vertex.

Although quite a few graph computation tasks, including Single Source Short-
est Paths, PageRank, and their variants, can be expressed elegantly using the
vertex-centric computation paradigm, there are many that cannot be elegantly and

156 B. Shao and Y. Li

intuitively expressed using the vertex-centric paradigm, for example, multilevel
graph partitioning.

5.4.3 Communication Optimization

Communication optimization is very important for distributed graph computation.
Although a graph is distributed over multiple machines, from the point view of
a local machine, vertices of the graph are in two categories: vertices on the local
machine, and vertices on any of the remote machines. Figure 5.3 shows a local
machine’s bipartite view of the entire graph.

Let us take the vertex-centric computation as an example. One naive approach
is to run jobs on local vertices without preparing any messages in advance. When a
local vertex is scheduled to run a job, we obtain remote messages for the vertex and
run the job immediately after they arrive. Since the system usually does not have
space to hold all messages, we discard messages after they are used. For instance,
in Fig. 5.3, in order to run the job on vertex x, we need messages from vertices u,
v, and others. Later on, when y is scheduled to run, we need messages from u and
v again. This means a single message needs to be delivered multiple times, which
is unacceptable in an environment where network capacity is an extremely valuable
resource.

Some graph processing systems, such as the ones built using Parallel Boost
Graph Library (PBGL), use ghost nodes (local replicas of remote nodes) for
message passing as elaborated by Gregor and Lumsdaine (2005). This mechanism
works well for well-partitioned graphs. However, it is difficult to create partitions
of even size while minimizing the number of edge cuts. A great memory overhead
would be incurred for a large graph if it is not well-partitioned. To illustrate the

Fig. 5.3 Bipartite view on a
local machine

x

y

u

v

Local
Remote

5 Parallel Processing of Graphs 157

Fig. 5.4 Breadth-first search
using PBGL

20 21 22 23 24 25 26 27 28
0

100

200

300

400

500

600

Node Count (Million)

M
em

or
y
U
sa
ge

(G
B
)

Avg Degree 4
Avg Degree 8
Avg Degree 16
Avg Degree 32

memory overhead, Fig. 5.4 shows the memory usage for graphs with 1 million to
256 million vertices. It takes nearly 600 GB main memory for the 256-million-node
graph when the average degree is 16.

The messages are usually too big to be RAM-resident. We will have a great
performance penalty, if we buffer the messages on the disk and perform random
accesses on the disk. To address this issue, we can cache the messages in a smarter
way. For example, on each machine, we can differentiate remote vertices into two
categories. The first category contains hub vertices, that is, vertices having a large
degree and connecting to many local vertices. The second category contains the
remaining vertices. We buffer messages from the vertices in the first category for
the entire duration of one computation iteration. For a scale-free graph, for example,
one generated by degree distribution P(k) ∼ ck−γ with c = 1.16 and γ = 2.16,
20% hub vertices are sending messages to 80% of vertices. Even if we only buffer
messages from 10% hub vertices, we have addressed 72.8% of the message needs.

5.4.4 Local Sampling

In a distributed graph processing system, a large graph is partitioned and stored
on a number of distributed machines. This leads to the following question: Can
we perform graph computations locally on each machine and then aggregate their
results to derive the final result for the entire graph? Furthermore, can we use
probabilistic inferences to derive the result for the entire graph from the result
on a single machine? This paradigm has the potential to overcome the network
communication bottleneck, as it minimizes or even totally eliminates the network
communication. The answers to these questions are positive. If a graph is partitioned
over ten machines, each machine has full information about 10% of the vertices and
10% of the edges. Also, the edges link to a large amount of the remaining 90% of
the vertices. Thus, each machine actually contains a great deal of information about
the entire graph.

158 B. Shao and Y. Li

Fig. 5.5 Effectiveness of
local sampling in distance
oracle

100 200 300 400 500
0

20

40

60

80

100

Number of Landmarks

E
st
im

at
io
n
A
cc
ur
ac
y
(%

)

Largest Degree
Local Betweenness
Global Betweenness

The distance oracle proposed by Qi et al. (2014) demonstrated this graph
computation paradigm. Distance oracle finds landmark vertices and uses them to
estimate the shortest distances between any two vertices in a large graph. Figure 5.5
shows the effectiveness of three methods for picking landmark vertices. Here,
the X axis shows the number of used landmark vertices and the Y axis shows
estimation accuracy. The best approach is to use vertices that have the highest
global betweenness and the worst approach is to simply use vertices that have the
largest degree. The distance oracle approach uses the vertices that have the highest
betweenness computed locally. Its accuracy is close to the best approach and its
computation costs are dramatically less than that of calculating the highest global
betweenness.

5.5 Alternative Graph Representations

In the previous sections, we assume the graph is modeled and stored in the adjacency
list form. For a certain task, transforming a graph to other representation forms can
help tackle the problem. This section covers three of them: matrix arithmetic, graph
embedding, and matroids.

5.5.1 Matrix Arithmetic

A representative system is Pegasus by Kang et al. (2009). Pegasus is an open source
large graph mining system. The key idea of Pegasus is to convert graph mining
operations into iterative matrix–vector multiplications.

Pegasus uses an n by n matrix m and a vector v of size n to represent
graphs. Pegasus defines an operation called Generalized Iterated Matrix–Vector

5 Parallel Processing of Graphs 159

Multiplication (GIM-V).

M × v = v′, where v′
i = Σn

j=1mi,j × vj

Based on it, three primitive graph mining operations are defined. Graph mining
problems are solved by customizing the following three operations:

• combine2(mi,j , vj): multiply mi,j and vj ;
• combineAlli (x1, . . . , xn): sum the multiplication results from combine2 for

node i;
• assign(vi, vnew): decide how to update vi with vnew .

Many graph mining algorithms, including PageRank, random walk, and con-
nected component, can be expressed elegantly using these three customized primi-
tive operations.

5.5.2 Graph Embedding

Some graph problems can be easily solved after we embed a graph into a high-
dimensional space as illustrated by Zhao et al. (2010, 2011) and Qi et al. (2014).
This approach is particularly useful for estimating the distances between graph
nodes.

Let us use an example given by Zhao et al. (2011) to illustrate the main
idea of high-dimensional graph embedding. To compute the distance between
two given graph vertices, we can embed a graph into a geometric space so that
the distances in the space preserve the shortest distances in the graph. In this
way, we can immediately give an approximate shortest distance between two
vertices by calculating the Euclidean distance between their coordinates in the high-
dimensional geometric space.

5.5.3 Matroids

As illustrated by Oxley (1992), any undirected graph can be represented by a
binary matrix that in turn can produce a graphic matroid. Matroids usually use an
“edge-centric” graph representation. As elaborated by Truemper (1998), instead of
representing a graph as (V ,E), we consider a graph as a set E of edges and consider
graph nodes as certain subsets of E. For example, a graph (V ,E) = ({a, b, c}, {e1 =
ab, e2 = bc, e3 = ca}) can be represented as follows: E = {e1, e2, e3} and
V = {a = {e1, e3}, b = {e1, e2}, c = {e2, e3}}.

Matroids provide a new angle of looking at graphs with a powerful set of tools
for solving many graph problems. Even though the interplay between graphs and

160 B. Shao and Y. Li

matroids has been proven fruitful, as elaborated by Oxley (2001), how matroids can
be leveraged to help design graph processing systems is still an open problem.

5.6 Summary

The proliferation of large graph applications demands efficient graph processing
systems. Parallel graph processing is an active research area. This chapter tried
to shed some light on parallel large graph processing from a pragmatic point of
view. We discussed the challenges and general principles of designing a general-
purpose, large-scale graph processing system. After surveying a few representative
systems, we reviewed a few important graph computation paradigms for online
query processing and offline analytics. Different graph representations lead to
different graph computation paradigms; each of them may be suitable for solving
a certain range of problems. At the end of this chapter, we briefly explored a few
alternative graph representation forms and their applications.

References

Aggarwal CC, Wang H (eds) (2010) Managing and mining graph data. Advances in database
systems, vol 40. Springer, Berlin

Aranda-Andújar A, Bugiotti F, Camacho-Rodríguez J, Colazzo D, Goasdoué F, Kaoudi Z,
Manolescu I (2012) Amada: web data repositories in the amazon cloud. In: Proceedings of
the 21st ACM international conference on information and knowledge management, CIKM
’12. ACM, New York, pp 2749–2751

Atre M, Chaoji V, Zaki MJ, Hendler JA (2010) Matrix “bit” loaded: a scalable lightweight join
query processor for RDF data. In: WWW, pp 41–50

Bollobás B (1998) Modern graph theory. Graduate texts in mathematics, Springer, Berlin
Cheng J, Yu JX, Ding B, Yu PS, Wang H (2008) Fast graph pattern matching. In: ICDE, pp 913–

922
Cohen J (2009) Graph twiddling in a mapreduce world. In: Computing in science & engineering,

pp 29–41
Cordella LP, Foggia P, Sansone C, Vento M (2004) A (sub)graph isomorphism algorithm for

matching large graphs. IEEE Trans Pattern Anal Mach Intell 26(10):1367–1372
Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun

ACM 51:107–113
Garey MR, Johnson DS, Stockmeyer L (1974) Some simplified np-complete problems. In:

Proceedings of the sixth annual ACM symposium on theory of computing, STOC ’74. ACM,
New York, pp 47–63

Gonzalez JE, Low Y, Gu H, Bickson D, Guestrin C (2012) Powergraph: distributed graph-parallel
computation on natural graphs. In: OSDI, pp 17–30

Gonzalez JE, Xin RS, Dave A, Crankshaw D, Franklin MJ, Stoica I (2014) Graphx: graph pro-
cessing in a distributed dataflow framework. In: Proceedings of the 11th USENIX conference
on operating systems design and implementation, OSDI’14. USENIX Association, Berkeley,
pp 599–613

5 Parallel Processing of Graphs 161

Gregor D, Lumsdaine A (2005) The parallel BGL: a generic library for distributed graph
computations. In: Parallel object-oriented scientific computing (POOSC), POOSC ’05

He H, Singh AK (2008) Graphs-at-a-time: query language and access methods for graph databases.
In: SIGMOD

Holder LB, Cook DJ, Djoko S (1994) Substucture discovery in the subdue system. In: KDD
workshop, pp 169–180

Husain M, McGlothlin J, Masud MM, Khan L, Thuraisingham BM (2011) Heuristics-based
query processing for large RDF graphs using cloud computing. IEEE Trans Knowl Data
Eng 23(9):1312–1327

Kang U, Tsourakakis CE, Faloutsos C (2009) Pegasus: a peta-scale graph mining system imple-
mentation and observations. In: Proceedings of the 2009 ninth IEEE international conference
on data mining, ICDM ’09. IEEE Computer Society, Washington, pp 229–238

Kaoudi Z, Manolescu I (2015) RDF in the clouds: a survey. VLDB J 24(1):67–91
Kyrola A, Blelloch G, Guestrin C (2012) Graphchi: large-scale graph computation on just a pc. In:

OSDI, pp 31–46
Low Y, Bickson D, Gonzalez J, Guestrin C, Kyrola A, Hellerstein JM (2012) Distributed graphlab:

a framework for machine learning and data mining in the cloud. Proc VLDB Endow 5(8):716–
727

Lumsdaine A, Gregor D, Hendrickson B, Berry JW (2007) Challenges in parallel graph processing.
Parallel Process Lett 17(1):5–20

Majumder S, Rixner S (2004) An event-driven architecture for MPI libraries. In: Proceedings of
the 2004 Los Alamos computer science institute symposium

Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, Czajkowski G (2010) Pregel: a
system for large-scale graph processing. In: Proceedings of the 2010 international conference
on management of data, SIGMOD ’10. ACM, New York, pp 135–146

Neumann T, Weikum G (2010) The rdf-3x engine for scalable management of RDF data. VLDB J
19(1):91–113

Oxley J (1992) Matroid theory. Oxford University Press, Oxford
Oxley J (2001) On the interplay between graphs and matroids. In: Surveys in combinatorics 2001.

Cambridge University Press, Cambridge
Papailiou N, Konstantinou I, Tsoumakos D, Koziris N (2012) H2rdf: adaptive query processing

on RDF data in the cloud. In: Proceedings of the 21st international conference on World Wide
Web, WWW ’12 Companion. ACM, New York, pp 397–400

Qi Z, Xiao Y, Shao B, Wang H (2014) Distance oracle on billion node graphs. In: VLDB, VLDB
Endowment

Qin L, Yu JX, Chang L, Cheng H, Zhang C, Lin X (2014) Scalable big graph processing
in mapreduce. In: Proceedings of the 2014 ACM SIGMOD international conference on
management of data, SIGMOD ’14. ACM, New York, pp 827–838

Ravindra P, Kim H, Anyanwu K (2011) An intermediate algebra for optimizing RDF graph pattern
matching on mapreduce. In: Proceedings of the 8th extended semantic web conference on the
semanic web: research and applications - volume Part II, ESWC’11. Springer, Berlin, pp 46–61

Rohloff K, Schantz RE (2011) Clause-iteration with mapreduce to scalably query datagraphs in
the shard graph-store. In: Proceedings of the fourth international workshop on data-intensive
distributed computing, DIDC ’11. ACM, New York, pp 35–44

Sarwat M, Elnikety S, He Y, Mokbel MF (2013) Horton+: a distributed system for processing
declarative reachability queries over partitioned graphs. Proc VLDB Endow 6(14):1918–1929

Shao B, Wang H, Li Y (2013) Trinity: a distributed graph engine on a memory cloud. In:
Proceedings of the 2013 ACM SIGMOD international conference on management of data,
SIGMOD ’13. ACM, New York, pp 505–516

Sun Z, Wang H, Wang H, Shao B, Li J (2012) Efficient subgraph matching on billion node graphs.
Proc VLDB Endow 5(9):788–799

Truemper K (1998) Matroid decomposition. Elsevier, Amsterdam
Ullmann JR (1976) An algorithm for subgraph isomorphism. J ACM 23(1):31–42
Valiant LG (1990) A bridging model for parallel computation. Commun ACM 33:103–111

162 B. Shao and Y. Li

von Eicken T, Culler DE, Goldstein SC, Schauser KE (1992) Active messages: a mechanism for
integrated communication and computation. In: Proceedings of the 19th annual international
symposium on computer architecture, ISCA ’92. ACM, New York, pp 256–266

Wang L, Xiao Y, Shao B, Wang H (2014) How to partition a billion-node graph. In: IEEE 30th
international conference on data engineering, ICDE 2014, Chicago, March 31–April 4, 2014,
pp 568–579

Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I (2010) Spark: cluster computing with
working sets. In: HotCloud’10 proceedings of the 2nd USENIX conference on hot topics in
cloud computing. USENIX Association, Berkeley, 18 pp.

Zeng K, Yang J, Wang H, Shao B, Wang Z (2013) A distributed graph engine for web scale RDF
data. In: VLDB, VLDB Endowment

Zhang S, Li S, Yang J (2009) Gaddi: distance index based subgraph matching in biological
networks. In: EDBT

Zhang X, Chen L, Tong Y, Wang M (2013) Eagre: towards scalable I/O efficient SPARQL query
evaluation on the cloud. In: Proceedings of the 2013 IEEE international conference on data
engineering (ICDE 2013), ICDE ’13. IEEE Computer Society, Washington, pp 565–576

Zhao P, Han J (2010) On graph query optimization in large networks. PVLDB 3(1):340–351
Zhao X, Sala A, Wilson C, Zheng H, Zhao BY (2010) Orion: shortest path estimation for large

social graphs. In: WOSN’10
Zhao X, Sala A, Zheng H, Zhao BY (2011) Fast and scalable analysis of massive social graphs.

CoRR
Zhu F, Qu Q, Lo D, Yan X, Han J, Yu PS (2011) Mining top-k large structural patterns in a massive

network. In: VLDB
Zou L, Chen L, Özsu MT (2009) Distancejoin: pattern match query in a large graph database.

PVLDB 2(1):886–897

Chapter 6
A Survey of Benchmarks
for Graph-Processing Systems

Angela Bonifati, George Fletcher, Jan Hidders, and Alexandru Iosup

Abstract Benchmarking is a process that informs the public about the capabilities
of systems-under-test, focuses on expected and unexpected system-bottlenecks, and
promises to facilitate system tuning and new systems designs. In this chapter, we
survey benchmarking approaches for graph-processing systems. First, we describe
the main features of a benchmark for graph-processing systems. Then, we system-
atically survey across these features a diverse set of benchmarks for RDF databases,
benchmarks for graph databases, benchmarks for parallel and distributed graph-
processing systems, and data-only benchmarks. We trace in our survey not only
the important benchmarks, but also their innovative approaches and how their core
ideas evolved from previous benchmarking approaches. Last, we identify ongoing
and future research directions for benchmarking initiatives.

A. Bonifati (�)
Université Claude Bernard Lyon 1, Villeurbanne, France
e-mail: angela.bonifati@univ-lyon1.fr

G. Fletcher
Department of Mathematics and Computer Science, Eindhoven University of Technology,
Eindhoven, the Netherlands
e-mail: g.h.l.fletcher@tue.nl

J. Hidders
Department of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium
e-mail: jan.hidders@vub.be

A. Iosup
Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

Delft University of Technology, Delft, the Netherlands
e-mail: A.Iosup@vu.nl

© Springer International Publishing AG, part of Springer Nature 2018
G. Fletcher et al. (eds.), Graph Data Management, Data-Centric Systems
and Applications, https://doi.org/10.1007/978-3-319-96193-4_6

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96193-4_6&domain=pdf
mailto:angela.bonifati@univ-lyon1.fr
mailto:g.h.l.fletcher@tue.nl
mailto:jan.hidders@vub.be
mailto:A.Iosup@vu.nl
https://doi.org/10.1007/978-3-319-96193-4_6

164 A. Bonifati et al.

6.1 Introduction

In computer science and computer engineering, the role of a benchmark is to provide
a standardized test that allows us to evaluate and compare the performance of certain
computer systems. Such tests are important in different ways. One is that it allows
the prospective users of these systems to decide on the basis of relatively objective
measurements which one is probably the best for their needs. Another is that it gives
the researchers who develop such systems a clear goal to work toward and a way to
determine their progress relative to that of other researchers. It is in this final role
that good benchmarks can help to stimulate a research community to produce more
and better results where the quality of the results is well-understood.

They can, in fact, turn research into a competition with clearly defined rules
where it is possible to objectively beat earlier research. However, this obviously
only works well if the standardized tests indeed measure the right properties and
measure them well. It is therefore a crucial property of a benchmark that it is widely
accepted by the relevant research community as having these properties.

There are different ideas about what makes a benchmark the most effective as a
tool to drive research forward. On the one hand, it might be argued that a benchmark
should be focused in the sense that it concentrates on particular bottlenecks, for
example, particular features in certain queries that are hard to implement efficiently,
for which the community would like to make progress. Such benchmarks typically
consist of a small number of fixed data sets and workloads, or even just parts of
workloads such as in microbenchmarks. On the other hand, it can be argued that a
benchmark should be broad in the sense that it attempts to cover a whole class of
workloads that might appear in practice. Such benchmarks typically have generated
data sets and workloads. Next to this dimension, a benchmark can also be narrow
or broad in the sense that it is more or less domain-specific. As is also argued in
the introduction of Gray (1993), even though many successful benchmarks in the
past, such as the TPC benchmarks, have been focused, there are both advantages
and disadvantages to benchmarks that are focused or broad in these two senses.
For example, a focused benchmark gives a clear focus to research with well-
understood goals for what are considered the hard problems and promotes small
feasible advances for them. In contrast, broad benchmarks encourage out-of-the-
box thinking, can more often be used in unforeseen applications, and discourage
tweaking of solutions that toward certain artifacts of the benchmark. We will there-
fore take in this work the position that all these types of benchmarks are relevant.

In this chapter, we restrict ourselves to benchmarks for graph data management,
specifically for graph databases and graph-processing frameworks. We exclude
here benchmarks for related systems such as NoSQL databases and distributed
data-processing frameworks that do not specifically and explicitly address graph
processing. However, the benchmarks we do consider still vary greatly in several
aspects:

System Under Test: The System Under Test (SUT) might be stand-alone or it
might be part of a distributed system where also other processing happens. The

6 Benchmarks for Graph-Processing Systems 165

SUT might be considered as a black box, or it might be considered as consisting
of components of which we also would like to measure the performance.

Benchmark process: The benchmark process describes how the system and
its context are set up for the measurements and how the measurements are
done. This might consist only of loading the data and executing the predefined
workload, but it might also include starting up other workloads that run in
parallel. For database benchmarks, it might also include rules about repeating
the measurements under different circumstances to take for example caching into
account.

Data sets: The data sets that need to be stored, retrieved and processed might be
fixed or generated. If they are generated it might be that all kinds of aspects and
characteristics of the data that influence the measurement might be varied in a
controlled way to make sure that the data are representative. For graph data this
typically includes graph properties such as the distribution of the degrees of the
nodes, but also the distribution of average distance between nodes, or for example
the distribution of clusters of highly connected nodes.

Workload: The workload for graph-processing frameworks might consist of
relatively simple computational tasks or algorithms, or complex workflows
consisting of such tasks, or even of collections of such workflows that all
should be executed in parallel. For databases the workload might for transaction
processing consist of collections of transactions, containing usually both updates
and queries, and specification of the frequency of these transactions. If the
benchmark focuses on query processing, the workload might simply be collection
of queries, which might be fixed or generated according to some specifications.
For graph processing the workloads will typically contain mostly operations that
concern the graph structure in the data such as computing certain graph properties
and graph queries such as path expression.

Measurements: The measurements can in the simplest case just be the time it
takes on average to complete the workload, but it can also be the consumed
computational resources such as memory, number of CPUs, CPU time and net-
work bandwidth. Alternatively, the measurement might be aimed at determining
the quality of the output, for example, in the cases of community detection
algorithms, entity matching algorithms and schema mapping algorithms. In those
cases the measurement usually consists of a comparison to a predefined ground
truth that defines the ideal output.

All the mentioned aspects of the benchmark are usually influenced by to what
extent the benchmark is domain oriented and what this domain is. In different
domains we find networks with different characteristics and different computational
tasks that need to be performed on these networks. Therefore, the data sets and
workloads that might be considered typical might be different. Examples of such
domains might be biology, the life sciences, sociology, finance, the web, social
networks, telecommunication, software engineering, e-commerce, crime fighting,
and fraud detection. On the other hand, some benchmarks focus entirely on partic-
ular computational tasks on graphs such as finding shortest paths, graph clustering,
computing betweenness centrality, finding triangles, and computing Page Rank.

166 A. Bonifati et al.

6.2 Survey of Main Benchmarking Approaches

In this section, we survey the main benchmarking approaches. Across the features
described in the previous section, we survey benchmarks for RDF databases, bench-
marks for graph databases, benchmarks for parallel and distributed graph-processing
systems, and data-only benchmarks, in turn. We take a balanced view across the
domain, and ascribe the differences in the number of surveyed benchmarks for each
benchmark type to the historical maturity of the fields when the first benchmarking
approaches were proposed, and to the diversity of system architectures appearing in
each field.

6.2.1 RDF Databases

The Resource Description Framework (RDF) and RDF Schema (RDFS) are W3C
standards for modeling and sharing graph-structured linked data on the web (Cyga-
niak et al. 2014; Brickley and Guha 2014). RDF represents relationships between
web resources using triples of the form (subject, predicate, object), indicating that
there is a relationship from resource subject to resource object described by resource
predicate. An RDF graph is then a finite collection of triples. RDFS is a vocabulary
for describing, by means of triples, ontological structures in RDF graphs, such as
class–subclass hierarchies and domain/range restrictions on predicates. SPARQL is
the W3C standard for expressing queries over RDF graphs (The W3C SPARQL
Working Group 2013).

RDF, RDFS, and SPARQL have experienced broad uptake in the (Semantic) Web
community. As the adoption of these standards has grown so has the development
of commercial and open source systems for management of massive RDF graphs.
In conjunction with the study and engineering of these so-called triple stores,
benchmarks specifically targeting RDF data management have been proposed in
the community.

In this section, we survey RDF benchmarks, with a focus on six exemplary
proposals (summarized in Tables 6.1 and 6.2). Our goal is to illustrate the challenges
and distinguishing features of RDF benchmarks. As our focus here is on graph
benchmarking, we will not address the role of special RDF features, such as
ontological reasoning and blank nodes, in our survey.

6.2.1.1 Lehigh University Benchmark (LUBM) (Guo et al. 2005)

LUBM was one of the earliest proposals for an RDF benchmark, motivated
by rapidly expanding development of Semantic Web technologies. The LUBM
framework consists of an ontology modeling a university domain, a data generator

6 Benchmarks for Graph-Processing Systems 167

Table 6.1 Characterizing features of existing RDF benchmarks (Part 1)

Name Input Output Type of workload

LUBM # of universities, ran-
dom seed

Graph instances Analytical

BSBM # of products Graph instances Analytical

SP2Bench # of years/triples, ran-
dom seed

Graph instances Analytical

AO RDF graph, # of triples
degree of structured-
ness

Graph instances –

RBench RDF graph, scale fac-
tors

Graph and workload
instances

Analytical

Grr Graph schema descrip-
tions

Graph instances –

Table 6.2 Characterizing features of existing RDF benchmarks (Part 2)

Name Data model Query language support Distinguishing features,
choke points

LUBM RDF SPARQL Large input, low output
queries

BSBM RDF SPARQL, SQL Query mixes

SP2Bench RDF SPARQL, SQL Full coverage of SPARQL
features

AO RDF – Data-driven application-
specific graph instances

RBench RDF SPARQL Data-driven application-
specific graph instances

Grr RDF – Schema-driven application-
specific graph instances

for creating synthetic instances of the ontology, and a set of fixed queries for
benchmarking query-processing solutions.1

The LUBM ontology Univ-Bench models universities, their departments, the
people that work in departments, and university activities. The ontology consists of
43 classes (e.g., Professor is a subclass of Faculty, Faculty is a subclass of Employee,
and Employee is a subclass of Person; Student is a subclass of Person) and 32
properties (e.g., a Professor can be an Advisor of a Person).

Data generation in LUBM is performed by the Univ-Bench Artificial data
generator (UBA). Synthetic ontology instances are generated in units of universities
(i.e., the smallest instance consists of one university). Class instances are generated
randomly using a user-provided seed, with hard-coded lower and upper bounds on

1http://swat.cse.lehigh.edu/projects/lubm/.

http://swat.cse.lehigh.edu/projects/lubm/

168 A. Bonifati et al.

the sizes of classes (e.g., each university has a minimum number and maximum
number of departments).

There are 14 fixed queries in the LUBM benchmark, ranging from small queries
with no joins to large queries with up to five joins. The design goal of these queries
is to provide broad coverage of input sizes (i.e., the proportion of classes and
class instances involved in query evaluation), selectivity (i.e., the ratio of query
output size to input size), and complexity (i.e., the number of joins and selection
conditions). In order to stress-test RDF engines, the LUBM designers particularly
biased the benchmark queries toward large input size and high selectivity (i.e.,
queries with large inputs and relatively small outputs).

In summary, LUBM was the first RDF benchmark to provide a complete
principled solution to triple store benchmarking, with a particular stress on data-
intensive queries (rather than on ontological reasoning). Consequently, LUBM has
had a major impact on the research community, with over 1200 citations at the
beginning of 2018.

6.2.1.2 Berlin SPARQL (BSBM) and SPARQL Performance (SP2Bench)
Benchmarks (Bizer and Schultz 2009; Schmidt et al. 2009)

Following up on LUBM are the BSBM2 and SP2Bench3 benchmarks. Like LUBM,
both benchmarks adopt fixed graph schemas and fixed sets of benchmark queries
and provide tools for synthetic instance generation. Furthermore, while the focus is
on RDF graphs and SPARQL queries, both also provide relational representations
of instances and the benchmark queries, (i.e., relation tables and SQL queries).

BSBM models an e-commerce scenario, with eight classes (e.g., Product,
Producer, Vendor, Review, and Person) and seven properties between these classes
(e.g., Products are Produced by Producers; Products Have Reviews). BSBM data
generation centers around Product instances. Given a user-provided scale factor n,
BSBM generates n products and assigns values to the properties of each product
following fixed production rules (e.g., each product has between 3 and 5 numeric
properties, each having a value between 1 and 2000, following a normal distribu-
tion). Furthermore, for each product instance, related instances of the other classes
such as producer and review are similarly created following fixed production rules.

The instances generated by SP2Bench follow a bibliographic scenario, modeled
after the well-known DBLP4 data set. Here node types include eight types of
documents (e.g., Article, Book) and Person, and 22 relationships such as References
(from documents to documents) and Creator (from documents to persons). Given a
number of years or a number triples to generate, instance generation is based on
fixed production rules and a user-provided random seed, just as with LUBM.

2http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/.
3http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/.
4http://dblp.uni-trier.de/xml/.

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/
http://dblp.uni-trier.de/xml/

6 Benchmarks for Graph-Processing Systems 169

The fixed benchmark queries of both BSBM and SP2Bench aim to extend the
stress-testing of the LUBM queries with further features of SPARQL and variety
of queries. BSBM includes 12 benchmark queries that include place holders for
randomly chosen constant values, with the aim of simulating query mixes (i.e.,
sequences of instantiations of the benchmark queries) typical of consumers search-
ing for particular products. SP2Bench’s 17 benchmark queries, on the other hand,
have a particular focus on deeper stress testing, data-intensive query processing,
beyond LUBM, including for example non-monotonic queries (i.e., those with
negation).

To summarize, BSBM and SP2Bench extend the fixed-schema and workload
benchmarking approach introduced with LUBM, with new graph and query sce-
narios and further data-intensive features of SPARQL. Both benchmarks have
significantly influenced and shaped subsequent developments in the field, with
BSBM and SP2Bench each having hundreds of citations already in early 2018.

6.2.1.3 Data-Driven RDF Benchmarks: Apples & Oranges (AO) and
RBench (Duan et al. 2011; Qiao and Özsoyoglu 2015)

We next discuss a pair of benchmarks that take a completely different approach
from the fixed-schema fixed-workload LUBM, BSBM, and SP2Bench benchmarks.
Motivated by the observation that these three RDF benchmarks generate instances
that differ markedly from real-world RDF graphs (Duan et al. 2011), the Apples
& Oranges (AO) benchmark proposes a data-driven approach to synthetic instance
generation. In particular, given an RDF graph instance (i.e., a “seed”), a desired
output instance size, and a desired level of “structuredness” (i.e, how regular the
graph should be), AO generates a synthetic graph instance of the target size and
structuredness, mimicking the characteristics of the given seed input graph. In this
way, users can finely control and tailor benchmarks instances to a given application,
unlike with the fixed-schema benchmarks.

Continuing in this data-driven approach to benchmark instance generation,
RBench provides for further control of the generated synthetic instance (in terms
of scale factor and degree factor) and for synthetic query workload generation.
Generated queries can be shaped as chains, stars, trees, and cycles. The structures
and edge labels occurring as basic building blocks of queries are selected from the
frequent structures extracted from the input graph instance, which are also used in
graph generation. Richer structures, such as trees and cycles, are then formed by
random walks on the graph instance.

Together, AO and RBench provide users with the ability to generate sophisticated
tailored benchmarks that exhibit the rich structure of real RDF graphs.

170 A. Bonifati et al.

6.2.1.4 Generating Random RDF (Grr) (Blum and Cohen 2011)

In a sense, AO and RBench are not strictly benchmarks, but rather tools for generat-
ing benchmarks tailored to particular application domains. We close our discussion
of RDF benchmarks by briefly noting an additional interesting approach to synthetic
instance generation, Grr, which could be used as a basis for benchmarking triple
stores, which does not take a data-driven approach.

Grr is a system for generating random synthetic data, which explicitly presents
itself not as a benchmark, but rather as a tool for data-driven application testing
(i.e., a tool for generating concrete benchmarks). This system provides an abstract
declarative language and programming model for specifying essentially graph
schemas for synthetic data generation. In particular, using a SPARQL-based syntax,
users can define construction patterns that define nodes and edges to generate,
built using user-provided procedures to generate data values appropriate for the
domain being modeled. The framework is demonstrated to be effective in generating
large graphs matching the LUBM scenario in addition to the well-known FOAF
schema. Furthermore, the intuitiveness and ease-of use of the Grr language is richly
demonstrated with these scenarios.

Grr’s flexible, controlled, schema-driven approach to graph instance generation
distinguishes it from the other five RDF benchmarks surveyed here.

6.2.2 Graph Databases

Graph databases emphasize queries that are quite different from relational database
queries, for which well-established benchmarks (Gray 1993; Transaction Processing
Performance Council (TPC) 2016) exist. In particular, graph queries may involve
both bounded and unbounded recursion, may also exhibit complex patterns and
aggregates, or may entail expensive analytical operations, such as PageRank,
centrality, or clustering. Each of these query types motivates specific benchmarking
needs, none of which can be found in other benchmarks for graph-like data models,
as for example in benchmarks for XML (Schmidt et al. 2002; Yao et al. 2004;
Barbosa et al. 2009) or for Object Oriented Databases (Cattell and Skeen 1992;
Carey et al. 1993). In this section, we summarize leading benchmarking efforts in
graph data management (summarized in Tables 6.3 and 6.4).

The Linked Data Benchmark Council (LDBC)5 (Erling et al. 2015) is an
industry-neutral foundation for developing graph and RDF benchmarks, auditing
and publishing benchmark results. The benchmarks conceived by LDBC allow
to quantitatively compare different technological solutions, helping IT users to
make more objective choices for their software architectures and to stimulate
technological progress among graph data management systems. The first LDBC

5http://www.ldbcouncil.org/.

http://www.ldbcouncil.org/

6 Benchmarks for Graph-Processing Systems 171

Table 6.3 Characterizing features of existing graph database benchmarks (Part 1)

Name Input Output Type of workload

LDBC Scale factor Graph
instances/queries
updates

Analytical/transactional

WatDiv Scale factor/fixed
schema, fixed query
templates

Graph
instances/queries

Transactional

gMark Scale factor, arbitrary
schemas, bidirectional
distributions

Graph
instances/queries

Transactional

GSCALER Graph instance, Scale
factors

Graph instances –

Table 6.4 Characterizing features of existing graph database benchmarks (Part 2)

Name Data model Query language support Distinguishing
features, choke points

LDBC Arbitrary Arbitrary Choke-point-driven
design, cardinality
estimation, join order,
parameter curation,
parallelism

WatDiv RDF SPARQL Schema-driven genera-
tion, query workload
diversity

gMark Directed edge-labeled
graph

Arbitrary Schema-driven
selectivity estimation,
recursive queries,
diversity control,
user-defined schemas

GSCALER Directed graph – Data-driven
application-specific
graph instances

benchmark is the social network benchmark (SNB) that simulates user activity in
a social network. LDBC benchmark design is guided by the notion of a choke
point, which is an aspect of query execution or optimization that is known to
be problematical for the present generation of various DBMS (relational, graph
and RDF). SNB includes a data set generator (DATAGEN) and a set of complex
queries. The data set generation relies on a fixed schema consisting of 11 entities
(such as Persons, Tags, Forums, Messages, Likes, Organizations, Places, etc.)
and 20 relations (such as knows, studyAt, workAt, likes, hasMember, etc.). The
schema of SNB encodes the associations between the different entities via standard
UML notation (such as one-to-many or many-to-many associations) and leverages
subtyping (e.g., City, Country, and Continent are all subtypes of the type Place).
Another important feature of the instance generation performed in DATAGEN is

172 A. Bonifati et al.

the ability to produce a highly correlated social network graph, in which attribute
values are correlated among themselves and also influence the connection patterns
in the social graph. As an example, the place where a person was born and gender
influence the first name distribution. The volume of person activity in a real social
network, that is, number of messages created per unit of time, is not uniform, but
rather driven by spiking trends. Therefore, an event-driven post generation can
be enabled to generate spikes of different magnitude. Structure correlation is also
taken care of since the number of friendship edges generated per person (friendship
degree) is skewed. Parameter Curation (Gubichev and Boncz 2014) is an important
choke point of DATAGEN that allows to find substitution parameters with equivalent
behavior via a data mining step during data generation.

DATAGEN can generate social networks of arbitrary size, by varying the input
scale factor, which corresponds to the amount of GB of uncompressed data in
comma separated value (CSV) representation. DATAGEN can also generate RDF
data in Ntriple format. DATAGEN is implemented on top of Hadoop to provide
scalability.

The SNB-interactive workload consists of three query classes: transactional
update queries that can be generated by using DATAGEN by following some fixed
query patterns; simple read-only queries, consisting of simple lookups; 14 complex
read-only queries, involving friendship patterns, and other related social queries
presenting the core of query optimization choke points in the benchmark. The
LDBC web site provides query definitions in SPARQL, Cypher, and SQL, as well
as API reference implementations for Neo4j and Sparksee.

Among the choke points stressed by the SNB-interactive query workload, we
mention: (1) the estimation of cardinality in transitive queries; (2) identifying
the right join order and type, which is more challenging for triple patterns
than for relational queries; (3) handling scattered index access patterns to allow
graph traversals (such as neighborhood lookup) with random access and without
predictable locality; (4) parallelism and result reuse, by ensuring query workloads
with intra- and inter-query parallelism. Other two query workloads of SNB, namely,
the Business Intelligence and Graph Algorithms, are currently under development.

Summarizing, among the novel features of SNB, the choke-point-driven design,
the user and expert inputs in the design of the domain, and the presence of mixed
query workloads, including updates are worth mentioning.

The Waterloo SPARQL Diversity Test Suite (WatDiv)6 (Aluç et al. 2014) supports
user-defined schemas via a so-called data set description language and employs
them in the graph generation. Precisely, WatDiv supports local constraints for
the graph predicates. As an example, the local constraints in WatDiv specify for
instance that 30% of the products have a content rating. For what concerns the graph
encoding, WatDiv relies solely on RDF, even though it also makes use of subtyping
similar to LDBC (e.g., a product can be an album, a movie, a concert, and so on).
Regarding the query workload, WatDiv introduces two classes of query features,

6http://dsg.uwaterloo.ca/watdiv/.

http://dsg.uwaterloo.ca/watdiv/

6 Benchmarks for Graph-Processing Systems 173

namely, structural features and data-driven features that should be used to evaluate
the diversity of the datasets and workloads in a SPARQL benchmark. The key notion
is a constrained basic graph pattern (CBGP), which is a finite set of triple patterns
and a finite set of SPARQL filters. Then, structural features defined upon CBGPs are
for instance the triple pattern count or the join vertex count, the first representing the
number of triples involved in a query and the latter representing the number of join
vertices across multiple triple patterns. Then, data-driven features of the queries in
the workload are the result of cardinality and the selectivity of CBGPs.

WatDiv consists of multiple tools capable of stress testing RDF data management
systems. The data generator generates scalable data sets at user-specified scale
factors. Data are generated according to a fixed WatDiv schema with customizable
value distributions. The query template generator traverses the WatDiv schema and
generates a diverse set of query templates. Users can specify the number of query
templates to be generated as well as other parameters on the query templates such
as the maximum number of triple patterns or whether predicates in triple patterns
should contain constants. Given a set of query templates, the query generator
instantiates these templates with actual RDF terms from the data set. The number
of actual queries to be instantiated per query template can be specified by users.
Given a WatDiv data set and test workload, for each query in the workload, the
feature extractor computes the structural and data-driven features discussed above.
To this purpose, the tool needs to point to a third-party RDF data management
system. Summarizing, WatDiv features a data generator based on a schema and
a query generator based on a template. This allows for some degree of freedom
by customizing distributions in the graph, making Watdiv more diverse than other
benchmark tools; however, query generation requiring a data set instance is not
entirely schema-based.

gMark, a graph database benchmark (Bagan et al. 2017; van Leeuwen et al.
2017) is the first domain- and query-language-independent synthetic graph bench-
marking tool. The advantage of using gMark compared to other benchmarks is that
it leverages a flexible graph schema that allows to model any domain, and that it
allows to generate queries based on this schema instead of requiring an instance
of the graph. Other important features of gMark are the coverage of regular path
queries (RPQs) and the possibility of generating query workload with given schema-
driven selectivity estimation, as explained next.

The input for gMark is an XML file called the schema definition. It consists
of two parts, out of which the first part sets constraints during graph generation
by the following variables: types and predicates (expressed as proportions or fixed
numbers); for each predicate, in and out degree distributions; while the second part
describes the (possibly multiple) query workloads on a schema, by specifying the
properties the queries should have and the number of queries to be generated. Within
the second part, one can set the following parameters of a query workload: its
size (number of possibly distinct queries to be generated); minimum and maximum
number of conjuncts (or disjuncts) of queries; maximum and minimum path length;
recursion, namely, the probability (between 0 and 1) for a query to contain a Kleene-
star operator; the arity of the query, namely, the number of variables in the query

174 A. Bonifati et al.

head; and the selectivity. The latter parameter determines the expected number
of results by a query on a graph, by choosing among three classes: constant (the
number of output results stays steady as the graph increases in size); linear (the
number of results grows at roughly the same rate as the graph does); quadratic
(growth of results is quadratic to graph growth).

gMark is designed to be language-independent and broadly applicable, so the
instance data can be expressed as CVS, customized format on a given graph
database, or N-Triples, and so on. Similarly for the generated queries, the supported
fragment is the Union of Conjunctive Regular Path Queries, an important fragment
of graph queries (Pérez et al. 2010). The desired syntax can be obtained depending
on the system one wants to test (e.g., SPARQL, LogicQL, OpenCypher, and
recursive SQL are those supported in the current release7).

Summarizing, gMark pursues even further the diversity of query workloads
initiated by WatDiv, by relying on a more expressive language fragment and also
by letting specify the desired selectivity of the queries, the latter feature being
not present in previous benchmarks. Another notable feature is the schema-driven
generation, which guides both instance and query workload generation, making the
latter independent of the underlying graph instance.

GSCALER is a graph database generator (Zhang and Tay 2016). This recent
approach to synthetic graph generation is in the same spirit as AO and RBench.
Following a novel approach inspired by shotgun sequencing in DNA analysis,
the generator takes an example graph as input and produces a synthetic graph
instance exhibiting similar structure to that of the input graph. The synthetic
instance can be both scaled down and scaled up in size. Complementing AO and
RBench, GSCALER targets preservation of basic graph properties such as degree
and community structure. Experimental study demonstrates the high quality of
generated instances, relative to state-of-the-art approaches.

6.2.3 Parallel and Distributed Graph-Processing Systems

We survey in this section benchmarks developed for parallel and distributed graph-
processing systems. We focus on key features such as input, output, workload type,
and data model. We also focus on the SUT, which can range from typical distributed
and HPC systems, to more modern multicore, and GPU-based or CPU+GPU
systems. We also identify for each benchmark the distinguishing features, and
analyze the history of main ideas and the influence of important benchmarks on
future technology. Tables 6.5 and 6.6 summarize this survey.

We also focus on the data model or structure supported in each benchmark, for
which we consider edge lists (EL), where a single input file describes one edge per
line; edge-vertex list (EVL), where a first input file is in EL structure, and a second

7https://github.com/graphMark/gmark.

https://github.com/graphMark/gmark

6 Benchmarks for Graph-Processing Systems 175

T
ab

le
6.

5
C

ha
ra

ct
er

iz
in

g
fe

at
ur

es
of

ex
is

ti
ng

be
nc

hm
ar

ks
fo

r
di

st
ri

bu
te

d
an

d
pa

ra
ll

el
gr

ap
h-

pr
oc

es
si

ng
sy

st
em

s
(P

ar
t1

)

B
en

ch
m

ar
k

na
m

e
In

pu
t

O
ut

pu
t

D
at

a
m

od
el

/s
tr

uc
tu

re
SU

T
D

is
ti

ng
ui

sh
in

g
fe

at
ur

es
,c

ho
ke

-p
oi

nt
s

H
P

C
-S

G
A

B
(2

00
5–

20
09

)
Sc

al
e

fa
ct

or
U

se
r-

le
ve

lm
et

ri
cs

St
at

ic
,(

E
L

)
Pa

ra
ll

el
In

tr
od

uc
es

T
E

PS

G
ra

ph
50

0
(2

01
0–

)
(H

P
C

-S
G

A
B

su
cc

es
so

r)

Sc
al

e,
ed

ge
fa

ct
or

s
U

se
r-

le
ve

lm
et

ri
cs

St
at

ic
,(

E
L

)
Pa

ra
ll

el
D

e
fa

ct
o

st
an

da
rd

H
PC

co
m

m
un

it
y

G
re

en
G

ra
ph

50
0

(2
01

4–
)

(G
ra

ph
50

0
ex

te
ns

io
n)

Sc
al

e,
ed

ge
fa

ct
or

s
U

se
r-

le
ve

lm
et

ri
cs

St
at

ic
,(

E
L

)
Pa

ra
ll

el
Fo

cu
s

on
en

er
gy

co
ns

um
pt

io
n

T
ra

ve
rs

al
op

er
at

io
ns

(2
01

2)
Sc

al
e

fa
ct

or
(n

um
be

r
of

ve
rt

ic
es

)
U

se
r-

le
ve

lm
et

ri
c

n/
a

Si
ng

le
-n

od
e

Pr
op

er
ty

gr
ap

hs

W
G

B
(2

01
3)

N
um

be
r

of
se

ed
ch

ar
ac

te
rs

(k
)

pr
ob

ab
il

it
y

of
se

pa
ra

to
r

(q
)

n/
a

n/
a

V
ar

io
us

(d
is

tr
ib

ut
ed

)
Pr

og
ra

m
m

in
g

m
od

el
s

E
ar

ly
be

nc
hm

ar
k

(2
01

3)
N

on
e

(n
ot

sc
al

ab
le

)
U

se
r-

le
ve

lm
et

ri
c

(r
un

ti
m

e)
St

at
ic

(u
nc

le
ar

w
hi

ch
)

D
is

tr
ib

ut
ed

,m
ul

ti
co

re
sy

st
em

s
D

is
tr

ib
ut

ed
vs

.
m

ul
ti

co
re

C
lo

ud
Su

it
e

(2
01

2–
20

16
)

N
on

e
(n

ot
sc

al
ab

le
)

Pe
rf

or
m

an
ce

co
un

te
rs

,
ru

nt
im

e
St

at
ic

(u
nc

le
ar

w
hi

ch
)

M
ul

ti
co

re
sy

st
em

s
M

ul
ti

co
re

,h
ar

dw
ar

e
pe

rf
or

m
an

ce
co

un
te

rs

pr
ot

o-
G

ra
ph

al
yt

ic
s

(2
01

4–
20

15
)

Sc
al

e
fa

ct
or

(o
nl

y
fo

r
sy

nt
h.

da
ta

)
U

se
r-

an
d

sy
st

em
-l

ev
el

m
et

ri
cs

V
ar

io
us

,s
ta

ti
c

(E
V

L
,

E
V

L
P)

V
ar

io
us

(d
is

tr
ib

ut
ed

,
C

PU
+G

PU
,

si
ng

le
-n

od
e

pa
ra

ll
el

)

A
lg

or
it

hm
co

ve
ra

ge
,

w
ea

k
an

d
st

ro
ng

sc
al

ab
il

it
y

L
D

B
C

G
ra

ph
al

yt
ic

s
(2

01
5–

)
Sc

al
e

fa
ct

or
(o

nl
y

fo
r

sy
nt

h.
da

ta
)

U
se

r-
an

d
sy

st
em

-l
ev

el
m

et
ri

cs
,g

ra
ph

in
st

an
ce

s
in

va
li

da
ti

on
m

od
e

V
ar

io
us

,s
ta

ti
c

(E
V

L
,

E
V

L
P)

V
ar

io
us

(d
is

tr
ib

ut
ed

,
C

PU
+G

PU
,

si
ng

le
-n

od
e

pa
ra

ll
el

)

In
du

st
ri

al
-g

ra
de

,
co

m
pr

eh
en

si
ve

pr
oc

es
s

G
ra

ph
B

IG
(2

01
5)

Sc
al

e
fa

ct
or

(o
nl

y
fo

r
sy

nt
h.

da
ta

)
U

se
r-

an
d

sy
st

em
-l

ev
el

m
et

ri
cs

,g
ra

ph
in

st
an

ce
s

in
va

li
da

ti
on

m
od

e

D
yn

am
ic

(C
SR

/C
O

O
)

V
ar

io
us

(d
is

tr
ib

ut
ed

,
C

PU
+G

PU
,

si
ng

le
-n

od
e

pa
ra

ll
el

)

D
yn

am
ic

gr
ap

hs
,

m
od

el
in

g
IB

M
Sy

st
em

G
pl

at
fo

rm

176 A. Bonifati et al.

T
ab

le
6.

6
C

ha
ra

ct
er

iz
in

g
fe

at
ur

es
of

ex
is

ti
ng

be
nc

hm
ar

ks
fo

r
di

st
ri

bu
te

d
an

d
pa

ra
ll

el
gr

ap
h-

pr
oc

es
si

ng
sy

st
em

s
(P

ar
t2

)

B
en

ch
m

ar
k

na
m

e
C

om
pl

ex
it

y
D

at
as

et
L

oa
d

Pr
og

ra
m

m
in

g
m

od
el

H
P

C
-S

G
A

B
(2

00
5–

20
09

)
K

er
ne

ls
(o

pe
ra

ti
on

s,
al

go
ri

th
m

s)
Sy

nt
h.

,R
-M

A
T

B
FS

,
cl

as
si

fy
,

be
tw

.c
en

.,
co

ns
tr

uc
ti

on

G
en

er
ic

G
ra

ph
50

0
(2

01
0–

)
(H

P
C

-S
G

A
B

su
cc

es
so

r)

K
er

ne
ls

(o
pe

ra
ti

on
s,

al
go

ri
th

m
s)

Sy
nt

h.
,R

-M
A

T
B

FS
,c

on
st

ru
ct

io
n

G
en

er
ic

G
re

en
G

ra
ph

50
0

(2
01

4–
)

(G
ra

ph
50

0
ex

te
ns

io
n)

K
er

ne
ls

(o
pe

ra
ti

on
s,

al
go

ri
th

m
s)

Sy
nt

h.
,R

-M
A

T
B

FS
,c

on
st

ru
ct

io
n

G
en

er
ic

Tr
av

er
sa

l
op

er
at

io
ns

(2
01

2)
Q

ue
ry

,
ke

rn
el

(a
lg

o-
ri

th
m

)
Sy

nt
h.

,L
FR

1
on

li
ne

qu
er

y,
1

it
er

at
iv

e
ke

rn
el

G
en

er
ic

W
G

B
(2

01
3)

K
er

ne
ls

(a
lg

or
it

hm
s)

Sy
nt

h.
,

R
T

G
(A

ko
gl

u
an

d
Fa

lo
ut

so
s

20
09

)

5
on

li
ne

+
6

up
da

te
qu

er
ie

s,
3

it
er

at
iv

e
ke

rn
el

s

G
en

er
ic

E
ar

ly
be

nc
hm

ar
k

(2
01

3)
K

er
ne

l
R

ea
l,

fr
om

SN
A

P
1

co
re

al
go

ri
th

m
(k

-
co

re
de

co
m

p.
)

G
en

er
ic

C
lo

ud
Su

it
e

(2
01

2–
20

16
)

K
er

ne
l

R
ea

l,
fr

om
Tw

it
te

r
1

co
re

al
go

ri
th

m
(P

ag
eR

an
k)

G
en

er
ic

pr
ot

o-
G

ra
ph

al
yt

ic
s

(2
01

4–
20

15
)

K
er

ne
ls

(a
lg

or
it

hm
s)

Sy
nt

h.
+

re
al

5
co

re
al

go
ri

th
m

s
G

en
er

ic

L
D

B
C

G
ra

ph
al

yt
ic

s
(2

01
5–

)
K

er
ne

ls
(a

lg
or

it
hm

s)
Sy

nt
h.

+
re

al
6

co
re

al
go

ri
th

m
s,

se
ve

ra
l

no
nc

or
e

Si
ng

le
jo

b

G
ra

ph
B

IG
(2

01
5)

K
er

ne
ls

(a
lg

or
it

hm
s)

Sy
nt

h.
+

re
al

5
co

re
al

go
ri

th
m

s,
se

ve
ra

l
no

nc
or

e
Si

ng
le

jo
b

6 Benchmarks for Graph-Processing Systems 177

file includes all possible vertex identifiers (possibly sorted); edge and vertex lists,
with properties (EVLP), where an EVL file may additionally include columns for
properties, and so on.

HPC Scalable Graph Analysis Benchmark (HPC-SGAB) (Bader and Madduri
2005) is the first benchmark proposal for parallel (HPC) systems running graph-
processing workloads. Formulated as a general specification in 2005, it has been
refined by a committee of authors and published in full form around 2009. This
seminal benchmark, which later has been followed by the very popular Graph500
benchmark, proposes in its 2009 form (Bader et al. 2009) a scalable data generator
using the R-MAT power-law graph generator and a scale factor as parameter, four
workload kernels of which BFS and a graph-processing algorithm for computing
betweenness centrality, and introduces TEPS as the key metric to assess the
performance of the system.

Graph500 (Bader et al. 2010) is the successor of HPC-SGAB, whose specifi-
cation it clarifies and tightens. Graph500 focuses on two kernels, of which one
generates the graph and the other is the execution of the BFS algorithm. Only the
latter kernel is timed, and the result is reported in TEPS. Graph500 is currently the
de facto standard for the HPC community, with the results archive at http://www.
graph500.org/ presenting results for over 200 systems (last update, June 2016).

GreenGraph500 (Hofler et al. 2014) is an extension of Graph500 that focuses on
energy consumption. GreenGraph500 focuses on the same kernels and has the same
elements as Graph500. The main performance metric in TEPS/W. GreenGraph500
is currently the de facto standard for the HPC community, with the results archive
at http://green.graph500.org/lists.php presenting results for over 35 systems (last
update, June 2016).

A benchmark focusing on traversal operations (Ciglan et al. 2012) repeats the
contribution of HPC-SGAB in the databases community, but its key contribution is
the focus on property graphs. The benchmark focuses on BFS, which it restricts to
2- and 3-hop operations, and uses a scalable generator for synthetic data sets (LFR).
To the best of our knowledge, this benchmark has not been extended and is no longer
maintained.

WGB (Ammar and Özsu 2013) is an ambitious proposal for a universal graph
benchmark. A key innovation that will last is the focus on different programming
models, here, the Hadoop-based MapReduce and the Pregel-like vertex-centric.
The core workload consists of several online, update, and iterative queries; the
iterative queries (algorithms) are PageRank and an algorithm for clustering. The
proposal includes data generation using a synthetic generator based on the RTG
algorithm, which it evaluates experimentally. The benchmark does not propose a
specific performance metric and does not specify a data model. To the best of our
knowledge, the queries were never implemented or used to test real-world parallel
and/or distributed systems, and the benchmark is no longer maintained.

An early study (2013) of multiple distributed graph-processing systems (Elser
and Montresor 2013) is the first to compare distributed and multicore parallel
systems for graph processing. This benchmark uses a generic specification coupled
with platform-specific code to implement a core graph-processing algorithm. The

http://www.graph500.org/
http://www.graph500.org/
http://green.graph500.org/lists.php

178 A. Bonifati et al.

benchmark uses real-world data sets from the SNAP archive (see Sect. 6.2.4); thus,
the input is realistic, but the benchmark is not scalable. The benchmark uses runtime
as its main performance metric. The authors conduct experiments on five different
systems.

CloudSuite (’15 extension) (Ferdman et al. 2012) takes a similar approach as the
previous benchmark in its 2015 extension with graph analytics (http://cloudsuite.
ch/graphanalytics/). It focuses on PageRank, a graph analytics kernel popularized
by Google’s search business, applied to one real-world data set published in a
previous study about Twitter. The key innovation of this benchmark is the use
of low-level, hardware performance counters, which leads to a seminal analysis
of architectural impact on the performance of multicore systems running graph-
processing workloads.

Proto-Graphalytics (Guo et al. 2014, 2015) is a series of benchmarking pro-
totypes that, much like HPC-SGAB earlier for Graph500, will stimulate the
community to form around the creation of de facto standard for benchmarking
distributed systems running graph-processing workloads. The first study published
on proto-Graphalytics (2014) introduces a process for selecting multiple core
kernels with provable algorithm coverage, real-world and a scalable synthetic data
generator derived from Graph500, and a focus on weak and strong scalability to
characterize performance. This study also leverages best practices from the field,
focusing on five kernels, user- and system-level metrics. The later extension (2015)
introduces for the first time capabilities to benchmark GPU and hybrid CPU+GPU
systems, next to multicore systems. This work has generated much follow-up work.
For example, the experimental study of Pregel-like systems (Han et al. 2014)
proposes as a possible key contribution the use of a star-rating system for a variety
of criteria; however, the attribution of stars is not quantified, and thus cannot be
reproduced in practice. As another example, an experimental study focusing on
programming models (Satish et al. 2014) proposes native implementations for a
variety of algorithms and platforms; the authors focus on manually optimizing the
implementations and thus are able to assess the limits of diverse programming
models. Last, another experimental study using more algorithms (Lu et al. 2014)
and graphs gives more insight into the interplay between workload characteristics
and performance, but does not formulate a performance model.

LDBC Graphalytics (Capota et al. 2015; Iosup et al. 2016) is the first industrial-
grade specification of a graph analysis benchmark. LDBC Graphalytics focuses
on a comprehensive benchmarking process that reports TEPS, scalability, and
robustness metrics. It introduces support for property graphs, and uses a scalable
and configurable data generator that can represent Facebook-like social-network
graphs with much more realistic properties than Graph500 (Erling et al. 2015). For
the industrial focus, the benchmark includes a renewal process, allows for vendor-
implemented drivers, and uses modern software engineering practices (continuous
development/continuous integration, low technical debt, support for many data
formats, and release of harness and exemplary drivers). LDBC Graphalytics also
refines the ideas introduced by proto-Graphalytics, for example, by extending the
workload selection process, adding more algorithms, and introducing an extensive

http://cloudsuite.ch/graphanalytics/
http://cloudsuite.ch/graphanalytics/

6 Benchmarks for Graph-Processing Systems 179

validation process for each supported algorithm, including epsilon and equivalence
matches, which do not require the output to be identical to a prescribed solution,
in both format and values. This benchmark is since 2016 supported by the LDBC
consortium (Angles et al. 2014) for benchmarking linked data (www.ldbcouncil.
org).

GraphBIG (Nai et al. 2015) Developed for modeling the IBM System G platform,
GraphBIG provides a valuable extension of work on hardware performance counters
(CloudSuite) and comprehensive process (Graphalytics): the inclusion of dynamic
(mutable) graphs in the workload. To the best of our knowledge, this benchmark has
not received an update since 2015.

6.2.4 Data Sets Used for Benchmarking

Community resources for graph benchmarking also take the form of real-world data
sets and data collections. In the following, we give an overview of some of the more
popular data sets and data collections that are freely available and often used for
benchmarking.

6.2.4.1 SNAP Data Sets/Stanford Large Network Dataset Collection

Location: https://snap.stanford.edu/data/
Origin: This repository of data Sets started in 2004 and grew from research in

analysis of large social and information networks. The data Sets available on the
web site were mostly collected (scraped) for the purposes of that research. The
web site for the collection was launched in July 2009.

Interesting sets: The largest network that was analyzed so far using the library
was the Microsoft Instant Messenger network from 2006 with 240 million nodes
and 1.3 billion edges. The collection also contains social network graphs with
ground truth describing communities.

Managers: The Stanford Network Analysis Project at Stanford University.
Domains: Social networks, Communication networks, Citation networks, Col-

laboration networks, Web graphs, Co-purchasing networks, P2P networks, Road
networks, Online communities, Online reviews, Twitter, and Blogs

6.2.4.2 KONECT: The Koblenz Network Collection

Location: http://konect.uni-koblenz.de/
Origin: KONECT is a project to collect large network data sets to support

research in the area of network mining. The site of the collection also provides
statistics and plots, and code to generate all network data sets from the web.

www.ldbcouncil.org
www.ldbcouncil.org
https://snap.stanford.edu/data/
http://konect.uni-koblenz.de/

180 A. Bonifati et al.

Interesting sets: Twitter graphs of followers with 1.47B edges and 1.96B edges,
and a Friendster graph of friends with 2.59B edges.

Managers: Institute of Web Science and Technologies at the University of
Koblenz–Landau.

Domains: Authorship, Web commerce, Communication, Tag clouds, Biology,
P2P networks, Ratings, Bibliographies, Semantic Web, Social networks.

6.2.4.3 The Web Data Commons

Location: http://webdatacommons.org/hyperlinkgraph/index.html
Origin: The Web Data Commons project was started by researchers from Freie

Universität Berlin and the Karlsruhe Institute of Technology (KIT) in 2012. The
goal of the project was to facilitate research and support companies in exploiting
the information on the web by extracting structured data from web crawls and
provide these data for public download.

Interesting sets: The 2012 graph is claimed to be the largest hyperlink graph
that is available to the public outside companies such as Google, Yahoo, and
Microsoft. It covers 3.5 billion web pages and 128 billion hyperlinks between
these pages. In addition, there are general extracted RDF data sets based on
RDFa, microdata, and microformat as found in the crawled data.

Managers: The WDC Project is mainly maintained by the Data and Web Science
Research Group at the University of Mannheim.

Domains: Web pages.

6.2.4.4 The Yahoo Webscope Program

Location: https://webscope.sandbox.yahoo.com/
Origin: The Yahoo Webscope Program is a reference library provided by Yahoo

and consists of interesting and scientifically useful data sets for noncommercial
use by academics and other scientists.

Interesting sets: It has a particular set of 3.5 TB (uncompressed) aimed at large-
scale machine learning that consists of anonymized user interaction data. It
contains interactions from about 20 million users from February 2015 through
May 2015, including those that took place on the Yahoo homepage, Yahoo News,
Yahoo Sports, Yahoo Finance, and Yahoo Real Estate. The data set contains user-
connected information like age range, gender, and some geographic data. There
is also news-item information such as title, summary, and key phrases of the news
article in question, plus local timestamps.

Managers: Yahoo Labs, the research department of Yahoo.
Domains: Advertising, Market Data, Competition Data, Computing Systems,

Social Data, Image Data.

http://webdatacommons.org/hyperlinkgraph/index.html
https://webscope.sandbox.yahoo.com/

6 Benchmarks for Graph-Processing Systems 181

6.2.4.5 The Game Trace Archive

Location: http://gta.st.ewi.tudelft.nl/
Publications: There is one key publication on the data format and original

contents (Guo and Iosup 2012), and further characterization and exploration of
the data (Iosup et al. 2014; Jia et al. 2015).

Origin: The Game Trace Archive (GTA) (Guo and Iosup 2012) was designed
to provide a virtual meeting space for the game community to exchange online
gaming traces. It also defines a unified Game Trace Format (GTF) to facilitate
the exchange of game traces and tools to convert from and to this format. A
key feature of the data sets included in the archive is that they represent basic
relationships between online players, which need to be combined to express as
interaction graphs (Wilson et al. 2012) the more complex pro-social relationships
that emerge in gaming communities.

Interesting sets: There are data sets of different sizes, from hundreds of thousand
edges to tens of millions of edges. The sets cover card games, board games,
MMOFPSs (first person shooters) and MMORPGs (role playing games).

Managers: The Parallel and Distributed Systems research group at TUDelft.
Domains: Online gaming.

6.2.4.6 The Billion Triples Challenge Data Sets

Location: http://km.aifb.kit.edu/projects/btc-2014/ (links also to the older data
sets)

Publications: In Käfer and Harth (2014) an overview of the 2014 data set is
presented.

Origin: The datasets were created as a basis for submissions to the Big Data
Track (formerly the Billion Triples Track) of the Semantic Web Challenge. There
were sets created in the years 2009, 2010, 2012, and 2014 by crawling for RDF
data on the web. The data set consists of 15 RDF graphs that were each separately
crawled during February to June 2014.

Interesting sets: The sizes of the individual graphs range from tens of thousands
of quads to more than a billion quads. The total sum of quads exceeds 4 Billion.

Managers: The Web Science und Wissensmanagement group at the Karlsruhe
Institute of Technology.

Domains: The crawled data sets cover a very wide range of domains, such and
in some sense all domains that the crawl happened to arrive at. This included
domains such as the life sciences, chemistry, national government, scientific
bibliographies, geography, geology, national law, world health, national health,
museums, Nobel prizes and world economics. Alongside, it also included general
data sets such as DBpedia and YAGO3.

http://gta.st.ewi.tudelft.nl/
http://km.aifb.kit.edu/projects/btc-2014/

182 A. Bonifati et al.

6.2.4.7 The Microsoft Academic Graph

Location: http://research.microsoft.com/en-us/projects/mag/
Publications: In Sinha et al. (2015) an overview is given.
Origin: The Microsoft Academic Graph is an entity graph concerning scientific

publications that serves as the backbone of Microsoft Academic Service (MAS),
which is maintained by Microsoft to support the Microsoft Academic search
engine that has been publicly available since 2008 as a research prototype.
The graph contains information about publication records, citation relationships
between those publications, as well as authors, institutions, journals and confer-
ence “venues,” and fields of study.

Interesting sets: The single but heterogenous graph contained in 2015 infor-
mation about more than 83 million papers, 20 million authors, 770 thousand
institutions and 22 thousand journals. Since February 2016 it also contains extra
files for the KDD Cup 2016.

Managers: The Microsoft Academic Graph project is run by the Internet Services
Research Center (ISRC) of Microsoft.

Domains: Scientific publications.

6.3 Ongoing and Future Work

There is much ongoing work, but still also a wide range of topics for further study
concerning the benchmarks discussed in this chapter. We will mention some of them
in this section.

New types of performance: As discussed, for example, in the Beckman report
presented in Abadi et al. (2016), benchmarks should not only focus on scalability in
terms of data size, but also look at metrics such as total cost of ownership, end-to-
end processing time (from raw data ingestion to producing insights), and usability
for nonexpert users. These all require new types of benchmarks that differ from the
existing ones.

Mapping out typical usage within different application domains: The discussed
benchmarks are all intended to be general benchmarks, but these systems will be
used differently within different domains such as the life sciences, intelligence
gathering, sociology, urban analytics, and so on, and have different requirements. It
is likely that they will require specialized benchmarks, or that general benchmarks
will have to make sure to be relevant for them. One important aspect here, for
example, is the interplay and mix between graph-oriented queries, which focus
on the structure of the graph, and data-oriented queries, which focus on attribute
values, or queries that combine both aspects. What is the typical mix for certain
applications, and should this be reflected in the benchmark?

Organizing the evolution of benchmarks: As systems will develop, and also their
usage will change, it will be important to define and manage a process to keep
benchmarks up-to-date and relevant. Rather than being replaced, benchmarks should

http://research.microsoft.com/en-us/projects/mag/

6 Benchmarks for Graph-Processing Systems 183

be adapted, to prevent duplication of work and the loss of experience. Ideally this
should be done in rounds with deadlines, where in each round both commercial and
academic systems are evaluated and compared. The deadlines would ensure that
relative latecomers do not have an unfair advantage in the competition.

Generation of workflows and graphs: The artificial generation of typical work-
flows is still largely an open issue, both for static workflows as well as dynamic
workflows that evolve in time. The latter requires a better understanding of typical
arrival patterns for workloads. For static workflows, there is also still much to do in
the area of scalable generation of very large graphs that have the typical and desired
combinations of properties, such as the small-world property and being scale-free.

Understanding the relationship between similar or shared components in bench-
marks: It will be interesting to create an overview of shared components of
benchmarks and how they relate to each other in terms of performance. For example,
several benchmarks contain reachability queries, and so it will be important to
understand if the performance of that component within one benchmark has a
relationship with the performance of similar components in other benchmarks. This
overview was not yet attempted in this work, and it would require a common
platform on which to run the benchmarks.

We close this section with the remark that this list is of course not exhaustive, but
summarizes some of the most important and interesting future research directions.
Their successful pursuit will provide important support for both accelerating the
developments in the field of graph data management and graph processing, as well
as make sure that they remain relevant outside of the research communities.

6.4 Concluding Remarks

In this chapter, we have given an overview of existing benchmarks for graph data
management and graph processing as are found in the database research community
and the parallel and distributed research community. In the introduction the origin
and motivation of benchmarks was discussed, and it was explained how this is
perceived in the different communities. Therefore in this section also a common
terminology was established, which is used for the presentation and comparison of
the different benchmarks discussed in this chapter.

This was followed by a survey of the different benchmarks in the research
domains of RDF Databases, Graph Databases, and Parallel and Distributed Graph-
Processing Systems. The benchmarks from the database research domain were
compared on aspects such as the types of input and output they consume and
produced, the type of workloads they consider, the data models or data structures
they consider, the query languages that are used, and the distinguishing features
and choke points. The benchmarks from the data-processing domain were also
compared on aspects such as the type of SUT, the complexity of the considered
operations, the origin of the datasets, the considered loads, and finally the pro-
gramming model. Finally, we also gave an overview of the different collections of

184 A. Bonifati et al.

graph-oriented data sets that are freely or almost freely available, and that are often
used for benchmarking.

At the end of this chapter the main topics for ongoing and future research were
presented, to give an idea of the evolution of graph benchmarks in the near future.
The benchmarks presented in this chapter illustrate that already much has been
achieved. It is interesting to observe that the involved research communities have
been slowly converging, as is witnessed by joint papers and participation in each
other’s events. We hope and expect that this will continue in the future, towards
addressing the large shared challenges that still lie ahead.

References

Abadi D, Agrawal R, Ailamaki A, Balazinska M, Bernstein PA, Carey MJ, Chaudhuri S, Chaudhuri
S, Dean J, Doan A, Franklin MJ, Gehrke J, Haas LM, Halevy AY, Hellerstein JM, Ioannidis
YE, Jagadish HV, Kossmann D, Madden S, Mehrotra S, Milo T, Naughton JF, Ramakrishnan
R, Markl V, Olston C, Ooi BC, Ré C, Suciu D, Stonebraker M, Walter T, Widom J (2016)
The Beckman report on database research. Commun ACM 59(2):92–99. http://doi.acm.org/10.
1145/2845915

Akoglu L, Faloutsos C (2009) RTG: a recursive realistic graph generator using random typing.
Data Min Knowl Discov 19(2):194–209. http://dx.doi.org/10.1007/s10618-009-0140-7

Aluç G, Hartig O, Özsu MT, Daudjee K (2014) Diversified stress testing of RDF data management
systems. In: ISWC, pp 197–212

Ammar K, Özsu MT (2013) WGB: towards a universal graph benchmark. In: Advancing big data
benchmarks - proceedings of the 2013 workshop series on big data benchmarking, WBDB.cn,
Xi’an, July 16–17, 2013 and WBDB.us, San José, CA, October 9–10, 2013 Revised Selected
Papers, pp 58–72

Angles R, Boncz PA, Larriba-Pey J, Fundulaki I, Neumann T, Erling O, Neubauer P, Martínez-
Bazan N, Kotsev V, Toma I (2014) The linked data benchmark council: a graph and RDF
industry benchmarking effort. SIGMOD Record 43(1):27–31. http://doi.acm.org/10.1145/
2627692.2627697

Bader DA, Madduri K (2005) Design and implementation of the HPCS graph analysis benchmark
on symmetric multiprocessors. In: High performance computing - HiPC 2005, 12th interna-
tional conference, proceedings, India, December 18–21, 2005, pp 465–476

Bader DA, Feo J, Gilbert J, Kepner J, Koester D, Loh E, Madduri K, Mann B, Meuse T, Robinson
E (2009) HPC scalable graph analysis benchmark. Online technical specification, v.1.0, Feb 24.
http://www.graphanalysis.org/benchmark/GraphAnalysisBenchmark-v1.0.pdf

Bader et al DA (2010) Graph500. Online technical specification, v.0.1 (2010) through 1.2 (2011).
http://www.graph500.org/specifications

Bagan G, Bonifati A, Ciucanu R, Fletcher GHL, Lemay A, Advokaat N (2017) gmark: schema-
driven generation of graphs and queries. IEEE Trans Knowl Data Eng 29(4):856–869

Barbosa D, Manolescu I, Yu JX (2009) XML benchmarks. In: Liu L, Özsu MT (eds) Encyclopedia
of database systems. Springer, Berlin, pp 3576–3579

Bizer C, Schultz A (2009) The Berlin SPARQL benchmark. Int J Semant Web Inf Syst 5(2):1–24
Blum D, Cohen S (2011) Grr: generating random RDF. In: ESWC, pp 16–30
Brickley D, Guha RV (2014) Rdf schema 1.1. W3C recommendation. https://www.w3.org/TR/rdf-

schema/
Capota M, Hegeman T, Iosup A, Prat-Pérez A, Erling O, Boncz PA (2015) Graphalytics: a big data

benchmark for graph-processing platforms. In: Proceedings of the third international workshop

http://doi.acm.org/10.1145/2845915
http://doi.acm.org/10.1145/2845915
http://dx.doi.org/10.1007/s10618-009-0140-7
http://doi.acm.org/10.1145/2627692.2627697
http://doi.acm.org/10.1145/2627692.2627697
http://www.graphanalysis.org/benchmark/GraphAnalysisBenchmark-v1.0.pdf
http://www.graph500.org/specifications
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/

6 Benchmarks for Graph-Processing Systems 185

on graph data management experiences and systems, GRADES 2015, Melbourne, May 31–
June 4, 2015, pp 7:1–7:6

Carey MJ, DeWitt DJ, Naughton JF (1993) The oo7 benchmark. In: Proceedings of the 1993 ACM
SIGMOD international conference on management of data, Washington, May 26–28, 1993,
pp 12–21

Cattell RGG, Skeen J (1992) Object operations benchmark. ACM Trans Database Syst 17(1):1–31
Ciglan M, Averbuch A, Hluchý L (2012) Benchmarking traversal operations over graph databases.

In: Workshops proceedings of the IEEE 28th international conference on data engineering,
ICDE 2012, Arlington, April 1–5, 2012, pp 186–189. http://dx.doi.org/10.1109/ICDEW.2012.
47

Cyganiak R, Wood D, Lanthaler M (2014) RDF 1.1 concepts and abstract syntax. W3C recom-
mendation. https://www.w3.org/TR/rdf11-concepts/

Duan S, Kementsietsidis A, Srinivas K, Udrea O (2011) Apples and oranges: a comparison of RDF
benchmarks and real RDF datasets. In: SIGMOD, pp 145–156

Elser B, Montresor A (2013) An evaluation study of bigdata frameworks for graph processing. In:
Big data

Erling O, Averbuch A, Larriba-Pey J, Chafi H, Gubichev A, Prat A, Pham MD, Boncz P (2015)
The LDBC social network benchmark: interactive workload. In: SIGMOD, pp 619–630

Ferdman et al M (2012) Clearing the clouds: a study of emerging scaleout workloads on modern
hardware. In: ASPLOS

Gray J (ed) (1993) The benchmark handbook for database and transaction systems, 2nd edn.
Morgan Kaufmann, San Mateo

Gubichev A, Boncz P (2014) Parameter curation for benchmark queries. In: TPCTC, pp 113–129
Guo Y, Iosup A (2012) The game trace archive. In: 11th annual workshop on network and systems

support for games, NetGames 2012, Venice, November 22–23, 2012, pp 1–6. http://dx.doi.org/
10.1109/NetGames.2012.6404027

Guo Y, Pan Z, Heflin J (2005) LUBM: a benchmark for OWL knowledge base systems. J Web Sem
3(2–3):158–182

Guo et al Y (2014) How well do graph-processing platforms perform? In: IPDPS
Guo et al Y (2015) An empirical performance evaluation of gpu-enabled graph-processing systems.

In: CCGrid
Han M, Daudjee K, Ammar K, Özsu MT, Wang X, Jin T (2014) An experimental comparison of

pregel-like graph processing systems. PVLDB 7(12):1047–1058
Hofler T et al (2014) GreenGraph500. Online technical specification, v.1.1 (2014). http://green.

graph500.org/greengraph500rules.pdf
Iosup A, van de Bovenkamp R, Shen S, Jia AL, Kuipers FA (2014) Analyzing implicit social

networks in multiplayer online games. IEEE Int Comput 18(3):36–44. http://dx.doi.org/10.
1109/MIC.2014.19

Iosup A, Hegeman T, Ngai WL, Heldens S, Prat-Pérez A, Manhardt T, Chafi H, Capota M,
Sundaram N, Anderson MJ, Tanase IG, Xia Y, Nai L, Boncz PA (2016) LDBC graphalytics:
a benchmark for large-scale graph analysis on parallel and distributed platforms. PVLDB
9(13):1317–1328. http://www.vldb.org/pvldb/vol9/p1317-iosup.pdf

Jia AL, Shen S, van de Bovenkamp R, Iosup A, Kuipers FA, Epema DHJ (2015) Socializing by
gaming: revealing social relationships in multiplayer online games. TKDD 10(2):11. http://doi.
acm.org/10.1145/2736698

Käfer T, Harth A (2014) Billion Triples Challenge data set. Downloaded from http://km.aifb.kit.
edu/projects/btc-2014/

Lu Y, Cheng J, Yan D, Wu H (2014) Large-scale distributed graph computing systems: an
experimental evaluation. PVLDB 8(3):281–292. http://www.vldb.org/pvldb/vol8/p281-lu.pdf

Nai L, Xia Y, Tanase IG, Kim H, Lin C (2015) Graphbig: understanding graph computing in
the context of industrial solutions. In: Proceedings of the international conference for high
performance computing, networking, storage and analysis, SC 2015, Austin, November 15–20,
2015, pp 69:1–69:12

http://dx.doi.org/10.1109/ICDEW.2012.47
http://dx.doi.org/10.1109/ICDEW.2012.47
https://www.w3.org/TR/rdf11-concepts/
http://dx.doi.org/10.1109/NetGames.2012.6404027
http://dx.doi.org/10.1109/NetGames.2012.6404027
http://green.graph500.org/greengraph500rules.pdf
http://green.graph500.org/greengraph500rules.pdf
http://dx.doi.org/10.1109/MIC.2014.19
http://dx.doi.org/10.1109/MIC.2014.19
http://www.vldb.org/pvldb/vol9/p1317-iosup.pdf
http://doi.acm.org/10.1145/2736698
http://doi.acm.org/10.1145/2736698
http://km.aifb.kit.edu/projects/btc-2014/
http://km.aifb.kit.edu/projects/btc-2014/
http://www.vldb.org/pvldb/vol8/p281-lu.pdf

186 A. Bonifati et al.

Pérez J, Arenas M, Gutierrez C (2010) nSPARQL: a navigational language for RDF. J Web Semant
8(4):255–270

Qiao S, Özsoyoglu ZM (2015) RBench: application-specific RDF benchmarking. In: SIGMOD,
pp 1825–1838

Satish N et al (2014) Navigating the maze of graph analytics frameworks using massive datasets.
In: SIGMOD

Schmidt A, Waas F, Kersten ML, Carey MJ, Manolescu I, Busse R (2002) XMark: a benchmark
for XML data management. In: VLDB, pp 974–985

Schmidt M, Hornung T, Lausen G, Pinkel C (2009) SP2Bench: a SPARQL performance bench-
mark. In: ICDE, pp 222–233

Sinha A, Shen Z, Song Y, Ma H, Eide D, Hsu BJP, Wang K (2015) An overview of microsoft
academic service (MAS) and applications. In: Proceedings of the 24th international conference
on World Wide Web, WWW ’15 Companion. ACM, New York, pp 243–246. http://doi.acm.
org/10.1145/2740908.2742839

The W3C SPARQL Working Group (2013) SPARQL 1.1 overview. W3C recommendation. https://
www.w3.org/TR/sparql11-overview/

Transaction Processing Performance Council (TPC) (2016) TPC benchmark. http://www.tpc.org/
van Leeuwen W, Bonifati A, Fletcher GHL, Yakovets N (2017) Stability notions in synthetic graph

generation: a preliminary study. In: EDBT, pp 486–489
Wilson C, Sala A, Puttaswamy KPN, Zhao BY (2012) Beyond social graphs: user interactions

in online social networks and their implications. TWEB 6(4):17. http://doi.acm.org/10.1145/
2382616.2382620

Yao BB, Özsu MT, Khandelwal N (2004) XBench benchmark and performance testing of XML
DBMSs. In: ICDE, pp 621–632

Zhang JW, Tay YC (2016) GSCALER: synthetically scaling a given graph. In: EDBT 2016, pp 53–
64

http://doi.acm.org/10.1145/2740908.2742839
http://doi.acm.org/10.1145/2740908.2742839
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/sparql11-overview/
http://www.tpc.org/
http://doi.acm.org/10.1145/2382616.2382620
http://doi.acm.org/10.1145/2382616.2382620

	Preface
	Contents
	Contributors
	1 An Introduction to Graph Data Management
	1.1 Introduction
	1.1.1 Graph Database Models
	1.1.2 Graph Data Management Systems
	1.1.3 Contents and Organization of This Chapter

	1.2 Overview of the Field
	1.2.1 What is a Graph Database Model?
	1.2.2 Historical Overview
	1.2.2.1 The First Wave
	1.2.2.2 The Second Wave

	1.2.3 Comparison with Classical Models

	1.3 Graph Database Models
	1.3.1 The Basics: Labeled Graphs
	1.3.2 Complex Relations: The Hypergraph Model
	1.3.3 Nested Graphs: The Hypernode Model
	1.3.4 The Property Graph Model
	1.3.5 Web Data Graphs: The RDF Model

	1.4 Querying Graph Databases
	1.4.1 Classification of Graph Queries
	1.4.1.1 Adjacency Queries
	1.4.1.2 Pattern Matching Queries
	1.4.1.3 Reachability Queries (Connectivity)
	1.4.1.4 Analytical Queries

	1.4.2 A Short Review of Graph Query Languages

	1.5 Graph Data Management Systems
	1.5.1 Graph Database Systems
	1.5.2 Graph-Processing Frameworks
	1.5.3 RDF Database Systems

	1.6 Conclusions
	References

	2 Graph Visualization
	2.1 Introduction
	2.2 Readability and Faithfulness
	2.2.1 Readability
	2.2.2 Faithfulness

	2.3 The Topology-Shape-Metrics Approach
	2.3.1 Orthogonal Grid Drawings
	2.3.2 Planarity and Topology
	2.3.3 Computing the Topology, Using Planarization
	2.3.4 Computing the Shape
	2.3.5 Computing the Metrics
	2.3.6 Remarks and Open Problems for the Topology-Shape-Metrics Approach

	2.4 Energy-Based Approaches and Stress Minimization
	2.4.1 Scaling to Large Graphs
	2.4.1.1 Multilevel Methods
	2.4.1.2 Fast Approximations
	2.4.1.3 Better Energy Functions

	2.4.2 Constraint-Based Layout Using Stress
	2.4.3 Remarks and Open Problems for Energy-Based Methods

	2.5 Further Topics
	2.5.1 Directed Graphs
	2.5.2 Trees
	2.5.3 Interaction
	2.5.4 More Metaphors

	2.6 Concluding Remarks
	References

	3 gLabTrie: A Data Structure for Motif Discovery with Constraints
	3.1 The Problem and Its Motivation
	3.2 gLabTrie Structure
	3.2.1 Preliminaries
	3.2.2 Problem Definition
	3.2.3 G-Trie Method for Unlabeled Motif Discovery
	3.2.4 gLabTrie Data Structure for Labeled Motif Discovery
	3.2.5 An Index for Querying Motifs
	3.2.5.1 Building the TopoIndex
	3.2.5.2 Query Processing

	3.3 Alternative Methods of Calculating Statistical Significance
	3.3.1 Quasi-Analytical Methods to Assess the Statistical Significance of a Topology
	3.3.2 Random Generation Methods

	3.4 Experiments
	3.5 Conclusion
	References

	4 Applications of Flexible Querying to Graph Data
	4.1 Introduction
	4.1.1 Example: Heterogeneous Data Integration
	4.1.2 Theoretical Foundations of Query Relaxation

	4.2 Beyond Conjunctive Queries: Regular Path Queries
	4.2.1 Example: Transport Networks
	4.2.2 Approximate Matching of CRPQs

	4.3 Combining Approximation and Relaxation in CRPQs
	4.3.1 Example: Educational Networks
	4.3.2 Automaton-Based Implementation Approach
	4.3.2.1 Computing Approximate Answers
	4.3.2.2 Computing Relaxed Answers

	4.3.3 System Architecture and Performance

	4.4 SPARQLAR : Extending SPARQL with Approximation and Relaxation
	4.4.1 Example: Flexible Querying of RDF/S Knowledge Bases
	4.4.2 Query Rewriting-Based Implementation Approach
	4.4.3 System Architecture and Performance

	4.5 Further Topics
	4.5.1 User Interaction
	4.5.2 More Query Flexibility
	4.5.3 More Query Expressivity

	4.6 Related Work
	4.7 Concluding Remarks
	References

	5 Parallel Processing of Graphs
	5.1 Overview
	5.1.1 Notation
	5.1.2 Challenges of Large Graph Processing
	5.1.2.1 The Complex Nature of Graph
	5.1.2.2 The Diversity of Graphs
	5.1.2.3 The Diversity of Graph Computations
	5.1.2.4 The Scale of Graph Size

	5.1.3 Representative Graph Processing Systems

	5.2 General Design Principles
	5.2.1 Addressing the Grand Random Data Access Challenge
	5.2.2 Avoiding Prohibitive Indexes
	5.2.3 Supporting Fine-Grained One-Sided Communications

	5.3 Online Query Processing
	5.3.1 Asynchronous Fanout Search
	5.3.2 Index-Free Query Processing

	5.4 Offline Analytics
	5.4.1 MapReduce Computation Paradigm
	5.4.2 Vertex-Centric Computation Paradigm
	5.4.3 Communication Optimization
	5.4.4 Local Sampling

	5.5 Alternative Graph Representations
	5.5.1 Matrix Arithmetic
	5.5.2 Graph Embedding
	5.5.3 Matroids

	5.6 Summary
	References

	6 A Survey of Benchmarks for Graph-Processing Systems
	6.1 Introduction
	6.2 Survey of Main Benchmarking Approaches
	6.2.1 RDF Databases
	6.2.1.1 Lehigh University Benchmark (LUBM) (Guo et al. 2005)
	6.2.1.2 Berlin SPARQL (BSBM) and SPARQL Performance (SP2Bench) Benchmarks (Bizer and Schultz 2009; Schmidt et al. 2009)
	6.2.1.3 Data-Driven RDF Benchmarks: Apples & Oranges (AO) and RBench (Duan et al. 2011; Qiao and Ozsoyoglu 2015)
	6.2.1.4 Generating Random RDF (Grr) (Blum and Cohen 2011)

	6.2.2 Graph Databases
	6.2.3 Parallel and Distributed Graph-Processing Systems
	6.2.4 Data Sets Used for Benchmarking
	6.2.4.1 SNAP Data Sets/Stanford Large Network Dataset Collection
	6.2.4.2 KONECT: The Koblenz Network Collection
	6.2.4.3 The Web Data Commons
	6.2.4.4 The Yahoo Webscope Program
	6.2.4.5 The Game Trace Archive
	6.2.4.6 The Billion Triples Challenge Data Sets
	6.2.4.7 The Microsoft Academic Graph

	6.3 Ongoing and Future Work
	6.4 Concluding Remarks
	References

