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Abstract. The aim of this paper is to study the effect of input parameters choice
of the artificial neural network (ANN), in order to obtain the best performances
of fault classification. The purpose of this network is to automate the electric
motor bearing diagnosis based on vibration signal analysis. The choice of the
components of ANN’s inputs (training and testing) has a big challenge for
prediction of the machines faults diagnosis. The vibration signals collected from
the test rig (Bearing Data Center) are preprocessed, to extract the most appro-
priate monitoring indicators to analyze the health of the experimental device.
To improve the performance of the neural network, we use three different

dataset: the first contains only time indicators, while the second contains the
frequency indicators, and the third set is a combination of these two indicators.
A comparison between the effects of each feature on the ANN performances,
allowed us to choose the optimal structure of input data. The obtained results
show that the combined dataset give the best performances compared to the two
others dataset.
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1 Introduction

Bearings are the most fragile components of rotating machines. Being located between
the fixed part and the moving part of these machines, they ensure the transmission of
forces and the rotation of the shaft. They must be continuously monitored and any
defect should be tracked to avoid costly production downtime.

However, the vibration signals generated by faults in such systems have been
widely studied (McFadden and Smith 1985), and there are many signal processing
techniques that can be used to extract the defect information from a measured vibration
signals (Randall and Antoni 2011; Rai and Upadhyay 2016).
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The artificial neural networks by their capacities of training, classification, and
decision, give a solution to the problems of diagnosis bearings by the automatic
classification of the vibratory signals, which corresponds to the various states of normal
and abnormal functioning of the machines (Alguindigue et al. 1993; Samanta and Al-
Balushi 2003; Rajakarunakaran et al. 2008; Li et al. 2000). The artificial neural net-
works are intended to increase the precision (accuracy) and to reduce errors caused by
subjective human judgments.

The accuracy of ANN model highly depends on the setting of network parameters,
such as sufficient number of hidden layers, neurons within each layer, and learning rate,
as well as activation function. Most of the research in this area suggest some methods
to find optimal parameters setting of the neural network (McCormick and Nandi 1996;
Giuliani et al. 1998; Jack and Nandi 2000; Al-Araimi et al. 2004; Abhinav and Ashraf
2007; Rao et al. 2012).

However, very little attention has been paid to the effect of the dataset structure
used to training and testing the ANNs. Therefore, the main objective of this work is to
study the effect of the components choice of the input vector on the performances of the
artificial neural network, to be used as a diagnostic tool of bearing defects. Starting
from the analysis of signals collected by vibration sensors of the bearing test rig, with
the calculation of time indicators (kurtosis, Rms, or crest factor) and frequency indi-
cators. Then, configure them to build the database which will be used for learning and
testing the ANN, which will allow us to find the best network configuration (inputs,
outputs and parameters), and subsequently to automate the decision on the possibility
of the fault bearings.

2 Background

2.1 Rolling Element Bearings

The main components of rolling bearings are the inner ring; the outer ring, the rolling
elements, and the cage (see Fig. 1). Typically, the inner ring of the bearing is mounted
on a rotating shaft, and the outer ring is mounted in the stationary housing. The rolling
elements may be balls or rollers. The balls in a ball bearing transfer the load over a very
small surface (ideally, point contact) on the raceways (Randall and Antoni 2011).

Fig. 1. Components of a rolling element bearing.
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Local or wear defects causes periodic impulses in vibration signals. Amplitude and
periodic of these impulses are determined by shaft rotational speed, fault location, and
learning dimensions. The formula for the various defect frequencies is given by:

Ball pass frequency, outer race:
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Fundamental train frequency (cage speed):
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Where fr is the shaft speed, n is the number of rolling elements, and f is the angle of
the load from the radial plane. Note that the ball spin frequency (BSF) is the frequency
with which the fault strikes the same race (inner or outer).

2.2 Bearing Fault Diagnosis Technique

A wide variety of techniques based on various algorithms were developed for the
detection and diagnosis of faults in rolling element bearings and have been introduced
to inspect raw vibration signals. These algorithms can be classified into time domain,
frequency domain, time-frequency domain, and higher order spectral analysis (Nataraj
and Kappaganthu 2011).

2.3 Multi-Layer Perceptron (MLP)

The multi-layer perceptron (MLP) is the simplest and most known structure of the
neural networks. This structure is shown in Fig. 2, is relatively simple with a layer of
inputs, a layer of outputs and one or more hidden layers. Each neuron is not only
connected to the neurons of the preceding layers, but also to all the neurons of the
following layer (Bishop 1995).
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The learning of the multilayer perceptron is supervised, and consists of adapting the
weights of the neurons so that the network is capable of performing the requested task.

The conventional method for learning the multilayer perceptron is the back-
propagation algorithm, which was developed in particular by Rumelhart and Parkenet
le Cun in 1985. This algorithm relies on the minimization of the quadratic error
between the computed outputs and those desired.

3 Materials and Methods

3.1 Data Acquisition

An experimental test rig built to predict the defects in rolling bearings is shown in
Fig. 3.

This website provides access to ball bearing test data for normal and faulty bearings
(Case Western Reserve University, bearing data Center 2006). Experiments were
conducted using a 2 horsepower (hp) Reliance Electric motor, and acceleration data
were measured at locations near to remote from the motor bearings. These web pages
are unique in that the actual test conditions of the motor as well as the bearing fault
status have been carefully documented for each experiment.

Motor bearings were seeded with faults using electro-discharge machining (EDM).
Faults diameter ranging from 0.17 mm to 0.71 mm in diameter were introduced sep-
arately at the inner raceway, rolling element (i.e. ball) and outer raceway. Faults
bearings were reinstalled into the test motor and vibration data were recorded for motor
loads of 0 to 3 hp (motor speeds of 1797 to 1720 RPM). Vibration data were collected
using accelerometers, which were attached to the housing with magnetic bases.
Accelerometers were placed at the 12 o’clock position at both the drive end and fan end
of the motor housing.

The time domain presentation of signal is shown in Fig. 4.

Fig. 2. Multi-layer perceptron general architecture.
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Fig. 3. (a) The bearing test rig; (b) the schematic description of the test rig. (Huang et al. 2010)

Fig. 4. The time domain signal
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3.2 Preprocessing of Vibration Signals

A signal conditioning is required to remove all kinds of useless information, and to
facilitate the task of extracting indicators for monitoring the most relevant formants
database. We chose to calculate the following indicators: the root mean square value
(RMS), crest factor, peak to peak value and kurtosis, and the energy from the spectrum
envelope.

After a preliminary analysis (Fedala 2005), we choose to calculate these indicators
as follows:

3.2.1 Time Domain Indicators
The time domain indicators (the root mean square value (RMS), crest factor, peak to
peak value and kurtosis) are calculated in 5 frequency bands with a total width of
6000 Hz. Each of these 4 bands has a width of 1500 Hz, in addition to a total band that
contains the four composed bands. The bands are then calculated within: [1–1500 Hz],
[1500–3000 Hz], [3000–4500 Hz], [4500–6000 Hz], in addition to the total band of
[1–6000 Hz]. The signal from each slice has been focused and filtered by a bandpass
filter.

3.2.2 Frequencies Domain Indicators
As the same methodology used in the calculation of time domain indicators, the Fre-
quencies domain indicator (the energy from the spectrum envelope) is calculated in five
frequencies bands of a total width of 6000 Hz, in addition to the six large one that
contain other bands with a total width of 6000 Hz. These bands are calculated as
follows: [1–1000 Hz], [1000–2000 Hz], [2000–3000 Hz], [3000–4000 Hz], and
[4000–5000 Hz], in addition to the total band of [1–6000 Hz].

3.3 Constitution of the Patterns Vector (Networks Input)

The patterns vector is consisted of three different dataset: the first contains only time
indicators, while the second contains the frequency indicators, and the third set is a
combination of these two indicators. As the main scope of this paper is limited to study
the effect of the components choice of the input vector on the performances of the
artificial neural network, to be used as a diagnostic tool of bearing defects. The detailed
methodology of combining time domain indicator and frequency domain indicator can
be found in the literature (Unal et al. 2014) 187–196 (Samanta and Al-Balushi 2003;
Jack and Nandi 2002).

The data that must be classified and treated, are stored in an array of type
observations/variables.

3.4 Choice of the Classes (Networks Output)

The network outputs vector contains various classes corresponding to each operating
conditions from the experimental test rig. We chose five classes, each one of them
corresponds to a diameter of the defect. Table 1 represents the labelling of the various
studied classes.
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3.5 Data Standardization

To improve the performances of the MLP, it is preferable to normalize the data of the
patterns vector. We divided the obtained database into two parts: a training set (70% of
database) which train the network, while the remaining database (30%) were used for
testing, on which, they have been presented to measure network’s performances.

3.6 The Network Configuration

We used a multi-layer perceptron with the following configuration (Fenineche 2008):

• Only one hidden layer.
• 5 neurons in the hidden layer.
• 5 neurons in output layer which corresponding to the various classes.
• Performance Function: MSE (Mean Square Error).

4 Results and Discussion

Table 2 summarizes the values of the MSE error using the various indicators and
parameters described above.

In each case, the network is trained until it reaches the values of the stop criteria.
The results are obtained after several executions.

The Figs. 5, 6 and 7 show the performances of ANN for different input data. We
have obtained a performance of 0.032 (for MSE) using the time indicators and a
performance of 0.036 with the frequency indicators, while the combination of the two
sets gives a better performance of 0.0235.

Table 1. Labelling of the classes

Class Fault diameter Label

1 Without fault 10000
2 0.17 mm 01000
3 0.35 mm 00100
4 0.53 mm 00010
5 0.71 mm 00001

Table 2. Performance of the MLP classification

Indicator MSE

Time 0.0324
Frequency 0.0320
Combined 0.0235
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Fig. 5. Performance using the time indicators

Fig. 6. Performance using the frequency indicators
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5 Conclusion

The objective of this work is to study the effect of the choice of the elements consti-
tuting the pattern vector (inputs) on the performances of the artificial neural network,
which has been used as a diagnostic tool for bearing fault diagnosis. Starting from the
analysis of the signals collected by vibration sensors of a rolling test rig, and the
calculation of time indicators and frequency indicators. Then, they are configured to
build the database that will be used to learn and test the ANN, which allows us to find
the best configuration of the network (inputs, parameters and outputs) in order to
automate the decision on the eventuality of a bearing defect.

The results show that the performance of the artificial neural network is better for
the case with the combined indicators. This is because the combined data include all the
indicators, which enable them to better presenting the health status of the studied
system.
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