
Chapter 5
A Mathematical Model of Peer Instruction
and Its Applications

Hideo Nitta

Abstract In this chapter, we review mathematical models of learning. The focus is
on the mathematical model of peer instruction (PI) based on the master equation that
describes the dynamic change of students’ response in PI. In this model, for
evaluating the effectiveness of each question for PI, the “peer instruction efficiency
(PIE)” is introduced in analogy with the Hake gain. It is shown that, in the simplest
approximation, PIE becomes proportional to the relative number of students answer-
ing correctly before discussion. The mathematical model is applied to introductory
physics courses at a university and a high school. It is found that overall practical
data of PIE moderately agree with theory. Application of theoretical results to
practical data, such as identifying effective PI questions, is also discussed.

5.1 Introduction

Physics describes the properties of physical substances and interaction among them.
Then, human beings as “physical substances” composed of atoms and molecules
should, in principle, be described by physics. Of course, at the present stage of
physics, it is absolutely a desperate attempt to construct a mathematical theory of
dynamics, including learning, for a student. However, it may become possible to
describe a learning process for many students if we express it with only a few
“macroscopic variables.” This describing is analogous to statistic-mechanical expla-
nation of macroscopic properties of a gas. Although it is eventually impossible to
predict the motion of molecules of the gas, the thermodynamic variables, such as
pressure, specific heat, etc., are very well described by theory.

In this chapter, we first introduce a few mathematical models of learning that
developed previously. Then we present our mathematical model that describes
dynamics of the response of students in peer instruction (PI). In this model, for
evaluating the effectiveness of each question for PI, the “Peer-Instruction Efficiency
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(PIE)” is introduced in analogy with the Hake gain. It is shown that, in the simplest
approximation, PIE becomes proportional to the relative number of students answer-
ing correctly before discussion. The mathematical model is applied to introductory
physics courses at a university and physics classes at a high school. It is found that
overall practical data of PIE moderately agrees with theory. Application of PIE to
data analysis is also discussed.

5.2 The Hake Gain

The recent trend in physics education research is to evaluate the effect of teaching in
a quantitative manner. This trend originated from the celebrated work by Hake
(1998), in which the normalized learning gain (the Hake gain) was introduced for
evaluating the students’ achievement in the class. The Hake gain is defined by

gh i ¼ Spost
� �� Spre

� �

100� Spre
� � , ð5:1Þ

where hSprei and hSposti are the class-average scores of the pretest and posttest,
respectively. The Hake gain makes numerical comparison of the effectiveness of
various teaching methods possible. By using Eq. (5.1), Hake showed that the
average value of hgi for the interactive engagement classes is more than twice of
hgi for the traditional lectures. This surprising result not only triggered the world-
wide spread of the active learning method in physics classes but also impressed
researchers into the importance of quantitative evaluation of teaching methods.

5.3 A Generalized Ising Model of Teaching-Learning
Process

Although there have been a lot of interests in evaluating teaching methods quanti-
tatively, only a few mathematical theories of teaching-learning process have been
developed. An interesting theory was developed by Bordogna and Albano (2001,
2003) to simulate teaching-learning process using the Monte-Carlo method. Their
model, which we call the “BAmodel”, is based on a generalized Ising model that has
been used for spin systems, neural networks, and social systems. The BA model
assumes that the knowledge of the jth student at time t is given by σj(t) which
satisfies �1 � σj(t) � 1, where σj(t) ¼ 1 represents perfect knowledge of the target
subject considered. The knowledge σj(t) develops by the effects of “cognitive impact
(CI)” acting on the student. The BA model considers three types of CI: CITS( j, t),
CISS( j, t), and CIBS( j, t). CITS( j, t) represents the CI of the teacher on the jth student
at time t, CIBS( j, t) the student-student interaction, and CIBS( j, t) the bibliography
and other sources of information. By performing the Monte-Carlo simulation,
Bordogna and Albano showed that the learning achievements become higher for
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students engaging in collaborating work than for those only attending lectures. This
result is consistent with finding by Hake mentioned above. They also showed that
the structure of students’ groups may influence the achievements. The result of
simulation indicated that lower-knowledge students may learn at the expense of
their higher-knowledge peers.

5.4 Mathematical Learning Models by Pritchard Et al.

Pritchard et al. developed mathematical models that describe learning processes of
tabula rasa, constructivism, and tutoring (Pritchard et al. 2008). Their aim of
developing the theory is to provide a quantitative tool that allows the parametrization
of measured learning data through the Hake gain, Eq. (5.1). They assumed that a
concept inventory (CI) covers the knowledge domain T composed of the known
knowledge domain KT(t) and the unknown knowledge domain UT(t). The knowl-
edge domain is normalized to satisfy the relation KT(t)+UT(t) ¼ 1, where t is the
amount of teaching or instruction.

In the pure memory model, Pritchard et al. assumed the following simple
differential equation:

dUT tð Þ
dt

¼ �αmUT tð Þ, ð5:2Þ

where αm represents the sticking probability of taught things in student’s mind for
the pure memory model.

In the simple connected model, based on the idea of constructivism that learning
occurs by constructing an association between the new knowledge and prior knowl-
edge, Pritchard et al. assumed the logistic differential equation

dUT tð Þ
dt

¼ �αcUT tð ÞKT tð Þ, ð5:3Þ

which can be solved analytically. They also proposed the combined model of pure
memory and constructivism called the connectedness model.

In the tutoring model, it is assumed that knowledge grows in a uniform rate of
learning:

KT tð Þ ¼ αtut þ KT 0ð Þ, ð5:4Þ

where KT(0) represents the initial knowledge before tutoring.
Based on the analytic solutions of these differential equations, Pritchard et al.

obtained an analytic expression of the Hake gain for each learning model. They
compared the analytic expressions with data and found reasonable agreement
(Pritchard et al. 2008).
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5.5 Mathematical Theory of Peer Instruction

Peer instruction (PI) is one of the simplest methods of instruction for increasing
students’ engagement in lectures (Mazur 1997). In a PI-based lecture, the teacher
presents a concept-oriented multiple-choice question (MCQ) about the material just
covered by his/her lecture. Then students are encouraged to discuss the question with
their neighbor. Due to its simplicity as well as having no limitations on the class size,
PI is suitable for introducing essence of active learning to an old-fashioned lecture
without changing the curriculum.

For the success of a PI-based lecture, it is crucial to present an effective MCQ for
discussion. A good MCQ should induce intensive discussion among students as well
as effectively support students to understand the target concept. For the purpose to
evaluate MCQs, it is important to develop a measure of their effectiveness. To obtain
such a measure, we try to express the dynamics of peer instruction by a mathematical
model.

We consider the following process. First, students in a class are posed a MCQ.
Each student considers the MCQ without discussion to give her/his own answer.
Then students discuss the MCQ with their neighbor, exchanging ideas about their
answers.

Let us first consider the dynamics describing the change of the number of students
who answer correctly before and after peer discussion for a MCQ. We define that
ρb(q, a) and ρa(q, a) are the normalized numbers of students choosing the answer
a for the MCQ (denoted by q) before and after discussion, respectively, and that
Ta0a(q) is the transition rate from an answer a to the other one a0 by peer discussion.
Then ρi(q, a) (i ¼ a,b) satisfy the following master equation (Nitta 2010):

ρa q; cð Þ � ρb q; cð Þ ¼ �
X

d 6¼cð Þ
Tdc qð Þρb q; cð Þ þ

X

d 6¼cð Þ
Tcd qð Þρb q; dð Þ ð5:5Þ

where c and d represent the correct answer and the incorrect answers, respectively.
The left-hand-side of Eq. (5.5) represents the difference of the number of students
answering correctly before and after discussion. The first term on the right-hand side
(r.h.s.) of Eq. (5.5) represents the normalized number of students who at first choose
the correct answer and then, after discussion, change it into one of the incorrect
answers. This process is usually called the “outgoing process” in the theory of
irreversible statistical mechanics. Similarly, the second term on the r.h.s. of
Eq. (5.5) represents the normalized number of students who give incorrect answers
before discussion and the correct answer after discussion (i.e., the “incoming
process”). Of course, ρa(q, c), Tdc(q), etc. are extremely simplified functions. We
have neglected enormous number of parameters such as the quality of MCQ;
students’ character, knowledge, and reasoning ability; influence of teachers; liter-
ature; quality of peer discussion; and many others. It should be noted that
Td c(q) 6¼ Tc d(q), i.e., the detailed balance which is normally assumed in physics
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problems does not hold here. Indeed, if PI is an effective education method at all, it
should result in Td c(q) � Tc d(q).

One may feel that Eq. (5.5) is rather hypothetical. However, this is not so. We
emphasize that Eq. (5.5) is, though phenomenological, an exact equation in that all
variables and functions in Eq. (5.5) can be determined by PI data for a MCQ. Indeed,
by using an audience response system, called “clicker system,” the teacher can
collect all responses from students for the MCQ, q, before and after the discussion
session. Then, from the response data, one can determine the transition probability,
Ta0a(q), as well as the normalized number of students, ρb(q, a) and ρa(q, a).

Although Eq. (5.5) is exact in the above sense, it cannot predict anything without
providing a certain analytical expression for Ta0a(q). Naturally, as mentioned before,
it is not realistic to derive such an expression from the first principle because it
should depend on enormous number of student parameters. Here we take a phenom-
enological approach for obtaining an analytical expression.

Let us neglect

1. The transition from the correct answer to an incorrect answer, i.e., the first term of
the r.h.s. of Eq. (5.5)

2. The dependence of Tcd(q) on incorrect answers
3. The MCQ dependence, q

Then we obtain,

ρa cð Þ � ρb cð Þ ¼ T
X

d 6¼cð Þ
ρb dð Þ, ð5:6Þ

where T stands for the “average” transition rate from incorrect answers to the correct
answer. Using the identity ∑d( 6¼c)ρb(d ) ¼ 1 � ρb(c), which means that “the (normal-
ized) number of students giving the incorrect answers” is equal to “the number of all
students” minus “the number of students giving the correct answer,” we obtain

ρa � ρb ¼ T 1� ρbð Þ, ð5:7Þ

where now ρb and ρa represent simply the normalized number of students giving the
correct answer before and after discussion, respectively. At this stage, only one
parameter, T, i.e., the transition rate from incorrect answers to the correct answer, is
left. Here we further assume that T is the function of ρb: T ¼ T(ρb). Then we may
expand T into the power series:

T ¼ k0 þ k1ρb þ k2ρ
2
b þ � � �, ð5:8Þ

where ki (i¼ 0, 1, 2, � � �) are constants. Under the condition that ρb ¼ 1! T¼ 1 and
ρb ¼ 0 ! ρa ¼ 0, we have k1 ¼ 1 and k0 ¼ 0; hence T ¼ ρb. This simple result
suggests that the more the number of students answering correctly before discussion
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increases, the more transition from incorrect answers to the correct answer happens.
Using T ¼ ρb with Eq. (5.7), we obtain

ρa � ρb ¼ ρb 1� ρbð Þ, ð5:9Þ

For evaluating the effectiveness of PI, let us introduce the “Peer Instruction
Efficiency” (PIE) for a MCQ q by

η qð Þ ¼ ρa q; cð Þ � ρb q; cð Þ
1� ρb q; cð Þ : ð5:10Þ

Although the definition of PIE looks the same as the Hake gain, they are different
in character. The Hake gain represents the overall learning gain for a series of
lectures as a whole, whereas PIE represents the efficiency of students’ discussion
for each MCQ.

Substituting Eq. (5.9) into Eq. (5.10), we obtain the very simple expression for
PIE:

η ¼ ρb: ð5:11Þ

We will discuss the use of PIE in the next section.
Let us generalize the idea of using the master equation for learning processes.

Instead of ρa,b(q, c), we consider the fraction of students in the correct stage of
knowledge c about a concept q at time t, p(q; c; t). Following the idea of Eq. (5.5), we
assume that the development of knowledge during the time Δt is described by the
master equation

Δp q; c; tð Þ ¼ �
X

d 6¼cð Þ
Tdc q; tð Þp q; c; tð Þ þ

X

d 6¼cð Þ
Tcd q; tð Þp q; d; tð Þ, ð5:12Þ

whereΔp(q; c; t)¼ p(q; c; t+Δt)� p(q; c; t) and d represent incorrect or blank state of
knowledge about the concept q and Tcd(q; t) the transition rate of the state of
knowledge from d to c during the time interval Δt. If we neglect the “outgoing
process” of the knowledge construction, i.e., the first term of the r.h.s. of Eq. (5.12),
and make other similar approximations as before, we obtain

Δp tð Þ ¼ αΔtð Þ 1� p tð Þð Þ ð5:13Þ

where we have omitted the parameters q and c and denoted the transition rate to the
correct state of knowledge per unit time as α. Further, we neglect the explicit time
dependence of α but assume that α is the function of p(t). Then, by expanding α into
the power series and taking the lowest-order terms like Eq. (5.8), we obtain

92 H. Nitta



α ¼ k0 þ k1p tð Þ, ð5:14Þ

where k0 and k1 are constants. Substituting Eq. (5.14) into Eq. (5.13) and taking the
limit Δt ! 0, we obtain the differential equation

dp tð Þ
dt

¼ k0 þ k1p tð Þð Þ 1� p tð Þð Þ, ð5:15Þ

which is essentially the same differential equation given by Pritchard et al. for their
“connectedness model” (Pritchard et al. 2008). It is worthwhile to note that if we set
k0 ¼ αm, k1 ¼ 0, and 1 � p(t) ¼ UT(t), Eq. (5.15) is reduced to the pure memory
model of Eq. (5.2). On the other hand, by setting k0¼ 0, k1¼ αc, and p(t)¼ KT(t), we
recover the simple connected model of Eq. (5.3).

5.6 Applications

Now we compare our theoretical result with class data. In Fig. 5.1, we compare the
theoretical curve given by Eq. (5.9) and data of the fraction of correct answer before
and after peer discussion. The data was taken from an introductory physics course
for the first year students in TGU during the academic years 2009–2011 (Nitta et al.

Fig. 5.1 Comparison of theory with data of the fraction of correct answer before and after peer
discussion (Nitta et al. 2014)

5 A Mathematical Model of Peer Instruction and Its Applications 93



2014). The numbers of enrolled students were 60 (2009), 55 (2010), and 81 (2011).
Teacher A taught 2009 class while teacher B taught 2010 and 2011 classes. The
contents of the courses and MCQs were almost the same between teacher A and
teacher B. In Fig. 5.1, data from 17 MCQs in each year were plotted, i.e., 51 plots
altogether are shown.

In Fig. 5.2, the same data of Fig. 5.1 are represented in the form of PIE. The
straight line corresponds to the simple theoretical expression of PIE, η ¼ ρb.
Although the data are dispersed, the theoretical line roughly agrees with the data.
This agreement indicates that the approximation T ¼ ρb is basically valid. In other
words, the transition rate from the incorrect answers to the correct answer by peer
discussion tends to increase as the number of students answering correctly before
discussion increases.

In Figs. 5.3 and 5.4, we show the data of PI taken from an introductory physics
course in TGU High School. Only the data about mechanics are shown. The number
of plots is 161, which have been gathered from 2008 to 2016. Each plot represents
responses of about 40–120 students for 1–3 classrooms. The best-fit curves in
Figs. 5.3 and 5.4 are given by, respectively, y ¼ � 1.2x2þ2.3x � 0.069 and
y ¼ 1.0x � 0.012. In Fig. 5.4, although the best-fit line agrees well with the
theoretical line, data seem to deviate from theory at the region where the rate of
correct answers before discussion is low, typically ρb is less than 0.2. In this region,
almost every point is lower than theoretical line. This indicates that discussion is

Fig. 5.2 The peer instruction efficiency
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ineffective when there is not enough fraction of students who can lead the discussion
into the right direction.

Our aim to introduce PIE has been for evaluating the effectiveness of each PI. We
shall try to demonstrate such usage of PIE for the evaluation of PI or MCQs.
Figure 5.5 represents the deviation of the PIE data, shown in Fig. 5.2, from the
theoretical value. The deviation δ is defined by

δ ¼ PIE datumð Þ � ρb, ð5:16Þ

The average value and the standard deviation of δ areδtot ¼ 0:062and σtot¼ 0.22,
respectively. These values can be used for evaluating the effectiveness of MCQs
grouped in specific subjects. For example, let us consider the δ for MCQs about
interpretation of kinematics graphs. The frequency distribution of δ for MCQs about
interpretation of kinematics graphs is shown in Fig. 5.6. By the one-tailed Welch’s t-
test, the average value of delta, δgraph ¼ 0:20, turns out to be larger than δtot with the
significance level of p < 0.05. In other words, PI for interpretation of kinematic
graphs is more effective than other types of PI. We may interpret this result in the
following way. The difficulties students have on understanding kinematic graphs are

Fig. 5.3 Comparison of theory with data of the fraction of correct answer before and after PI for
high school classes. The dashed line and the solid line represent the theoretical curve and the best-fit
curve in the quadratic function, respectively
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not conceptual difficulties but rather simple technical problems that can be easily
resolved by instruction from other students who have already overcome the technical
difficulties. This result indicates that interpretation of kinematic graphs is one of the
best subjects for PI in that students’ difficulties can be overcome very effectively by

Fig. 5.4 PIE for high school classes. The dashed line and solid line represent the theoretical line
and the best-fit line by the linear function, respectively

Fig. 5.5 Deviation of PIE data from theory
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instruction among students. In other words, on this specific subject, instruction by
peers will be more effective than that by a teacher. It should be noted, however, that
interpretation of graphs on kinematics are rather special than other subjects related to
laws of physics, such as graphs on force and motion. Since the relation among
position, velocity, and acceleration is mathematical, the origin of students’ diffi-
culties would not come from understanding of the law of physics but from “technical
difficulties” on interpreting mathematical meaning of graphs.

Another example of the distribution of δ is shown in Fig. 5.7 for MCQs about
action-reaction law. In this case, the average value of delta, δar ¼ �0:13, is signifi-
cantly lower than δtot ( p < 0.05). This result implies that students have so robust
naïve conceptions on action-reaction forces that they do not likely to change their
beliefs by peer discussion.

Fig. 5.6 The distribution of δ for PI on interpretation of kinematics graphs

Fig. 5.7 The distribution of δ for PI on action-reaction law
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5.7 Concluding Remarks

In this chapter, we have presented a mathematical theory of peer instruction (PI) that
describes the dynamics of student discussion. The derived simple expression gives a
kind of standard line that reasonably agrees with data. We have demonstrated that
PIE is useful for rough estimations of the effectiveness of multiple-choice questions
(MCQs) for students’ discussion. If PIE is larger than the normalized rate of correct
answers before discussion, then the MCQ used for the PI turns out to be, roughly
speaking, more effective than standard; if smaller, less effective. Although this
evaluation is very rough, we find it useful for improving MCQs and lectures in our
practice for years.

Finally, we would like to point out that, by combining data of PIE with the results
of pre/post concept inventory, such as FCI, one may obtain rich information about
students’ naïve conceptions as well as the effectiveness of her/his PI-based lectures
(Nitta et al. 2014).

The author would like to thank Tomoshige Kudo and Takuya Aiba for useful
discussions and their help of data analysis as well as many graduate students who
taught introductory physics classes in TGU High School for getting the data of PI.
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