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Preface

This book is a tribute to Carl Adam Petri (1926–2010), a highly original and
visionary computer scientist. He was a pioneer of several key research directions
in computer science and a towering figure in the field of distributed information
processing systems. The ideas proposed by Petri were revolutionary and much ahead
of their time; they constitute deep, broad, and lasting contributions to the field.

The multitude of models which are based on the conceptual framework proposed
by Petri are collectively referred to as Petri Nets. Their strength is based on the
combination of impressive theoretical foundations with very broad and impressive
applications. In fact, Petri Nets has become a yardstick for other models of
concurrent and distributed systems.

Petri was an interdisciplinary scientist, in particular he was deeply interested and
knowledgeable in physics. As a matter of fact, he always stressed that his ideas
originated in physics and his goal was to create foundations of informatics which
are rooted in the laws of physics. His broader goal (dream) was to provide net-
theoretical foundations for physics.

He is perhaps the best known and most influential German computer scientist.
However, in Germany Petri did not receive the recognition that he deserved. This
may be partially explainable by the fact that he was totally uninterested in the social
and political rituals that (much too) often play an important role in recognition by
the academic world.

He was a very modest man with a remarkable personality, a “pure scientist”.
Science was the essence of his life, everything else was a burden imposed upon
him. Conversations with Petri were fascinating and enriching, as he was a patient
listener while he also passionately and convincingly argued for his own deep and
original ideas.

Carl Adam Petri became a source of inspiration to many. This book is a collection
of reflections about Petri and his ideas by individual scientists. Some contributions
are recollections of his remarkable personality by people who knew him, some
are stories of how Petri’s ideas influenced various people’s scientific developments
and careers, while others are more technical expositions (in a style accessible to
a broader audience) of various ideas of Petri. Altogether, these individual stories
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vi Preface

constitute a unique source of information about Carl Adam Petri and his ideas, and
a touching tribute to a remarkable scientist.

Our invitations to contribute to this book were enthusiastically received. We are
grateful to all authors for their contributions and fruitful interactions during the
editing process. We are also thankful to Ronan Nugent from Springer-Verlag for
pleasant and efficient cooperation in producing this book.

Berlin, Germany Wolfgang Reisig
Leiden, The Netherlands Grzegorz Rozenberg
Boulder, USA
June 2018
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Part I
Perspectives on Petri’s Work



Discovering Petri Nets: A Personal
Journey

Wil M. P. van der Aalst

1 Introduction

Carl Adam Petri (12 July 1926–2 July 2010) pioneered the computer science disci-
pline and is one of the founding fathers of the wonderful field of concurrency. He
single-handedly started a new subfield of computer science focusing on concurrency
[6]. As Robin Milner phrased it in the acceptance speech for his Turing Award in
1991: “Much of what I have been saying was already well understood in the sixties
by Carl Adam Petri, who pioneered the scientific modeling of discrete concurrent
systems. Petri’s work has a secure place at the root of concurrency theory!” Petri
nets have become a standard tool for modeling and analyzing processes where
concurrency plays a prominent role. The ideas have been embedded in many other
process modeling notations. For example, the widely used BPMN (Business Process
Model and Notation) models use token-based semantics [4], After working with
Petri nets for over 30 years, I remain surprised by the elegance of the formalism.
Using a few basic concepts (places, transitions, arcs, and tokens) and the simple
firing rule, one enters a new “world” where it is possible to model a wide range of
behaviors and study non-trivial phenomena (conflict, concurrency, confusion, etc.).

According to [7], Petri invented Petri nets in 1939 at the age of 13 for the purpose
of modeling chemical processes. However, many refer to his Ph.D. thesis, defended
in 1962 [5], as the starting point for Petri nets. This is only partially true, since
his Ph.D. thesis does not show the characteristic diagrams we know today. These
emerged in the mid-1960s and subsequently conquered the world. Petri nets are
used in a wide range of domains, directly benefiting from the theoretical foundations
developed over the last 50 years.

W. M. P. van der Aalst (�)
Lehrstuhl für Informatik 9 (Process and Data Science), RWTH Aachen University, Aachen,
Germany
e-mail: wvdaalst@pads.rwth-aachen.de
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4 W. M. P. van der Aalst

In the remainder, I will describe how I got submerged into Petri nets and how it
has affected my research and scientific career. Moreover, I will link two of Petri’s
guiding principles to my current research area:

– GP1: Concurrency should be a starting point for system design and analysis and
not added as an afterthought (locality of actions).

– GP2: A formalism should be consistent with the laws of physics and not take any
shortcuts at the foundational level.

Anyone familiar with Petri’s work and his lectures will recognize these guiding
principles. I will relate these two principles to process mining and the broader field
of Business Process Management (BPM). Process mining can be viewed as the
missing link between model-based process analysis and data-oriented analysis tech-
niques [12]. Many process mining techniques use Petri nets or related formalisms
and directly benefit from the above two principles proposed by Carl Adam Petri.
This paper concludes by discussing Petri’s heritage.

2 Personal Journey into the Wonderful World of Petri Nets

I met Carl Adam Petri for the first time in 1989 in Bonn while attending the 10th
International Conference on Applications and Theory of Petri Nets. I was doing my
Ph.D. at the time and it was a very exciting and inspiring experience. This was my
first Petri net conference, and I did not know that many Petri net conferences would
follow. Over the last 30 years, I have served as a program committee chair (twice,
in 2003 and 2017), organized the conference once, served as a steering committee
member since 2003, and played many other roles (e.g., chairing different workshops
and committees).

For my Master’s project [9], I worked in the research group of Kees van Hee
on a language and tool called ExSpect. In a way we “rediscovered” Petri nets, not
knowing the seminal work done by Petri. Initially, we used triangles for places rather
than circles and there were also other differences. However, the similarities between
our work and (colored) Petri nets were striking. Therefore, we soon joined the Petri
net community. I was responsible for adding time to our high-level ExSpect nets.
ExSpect was developed concurrently with Design/CPN (which later evolved into
CPN Tools, still hosted by our research group in Eindhoven). Both languages used
colored tokens and provided hierarchy notions. During my Ph.D. I continued to
work on ExSpect. My main focus was on the analysis of temporal behavior using
both model checking and simulation [10]. The primary application domain for my
work was the broader field of logistics. We analyzed supply chains, distribution
centers, railway transport, container terminals, etc. using ExSpect.
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After a few years I became the leader of a small research group in Eindhoven
and my interests shifted to workflow management [13]. I noted the huge potential
for applying Petri nets in this up and coming domain. We developed a framework
for modeling and analyzing workflow processes based on Petri nets. This led to
seminal notions such as WorkFlow nets (WF-nets) and soundness. Interestingly, we
were able to use Petri net notions such as invariants, siphons, traps, reduction rules,
etc. to verify the (in)correctness of workflow models stored in commercial systems
such as Staffware.

After designing several workflow languages and developing several workflow
management systems (YAWL, Declare, etc.), I got more and more interested in
the relationship between models and reality. This was fueled by the repeated
observation that simulation models (modeled in CPN Tools or ExSpect) rarely
behave like real organizations, machines, and people. At the same time, workflow
management research shifted from automation to Business Process Management
(BPM). See [11] for a survey describing this transition. The scope of BPM
extends far beyond workflow automation, including the understanding of why
processes and organizations achieve particular performance levels (time, quality,
costs, compliance, etc.). Process improvement requires a deep understanding of
processes that cannot be obtained through modeling alone.

The desire to link models and reality naturally evolved into the new field of
process mining around the turn of the century. We developed the first process mining
algorithms around 1999. Initially, we used the term “workflow mining” rather than
“process mining.” Process mining starts from event data and uses process models in
various ways, e.g., process models are discovered from event data, serve as reference
models, or are used to project bottlenecks onto. Many process mining techniques use
Petri nets for obvious reasons. Later, I will elaborate on the role of Petri nets and
Petri’s guiding principles in process mining.

Although I worked on very different topics (logistics, simulation, workflow
verification, workflow automation, BPM, and process mining), all of my research
was (and still is) related to Petri nets in some form.

Concurrently, I moved up the academic ranks and became assistant professor
(1992), associate professor (1996), and full professor (2000). In 2003, I organized
the Petri net conference in Eindhoven together with Kees van Hee. This conference
was a big success and quite special because Carl Adam Petri gave a talk after not
having attended the conference for many years (Fig. 1). Grzegorz Rozenberg (who
can be considered to be the “godfather” of our wonderful Petri net community)
encouraged me to organize a co-located event along side the Petri net conference.
This resulted in the first Business Process Management conference (BPM 2003).
Also within the BPM community Petri nets were adopted as a standard tool for
modeling, analyzing, and enacting business processes. BPM is just one of many
fields using Petri nets, illustrating the foundational nature of Petri’s ideas.
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Fig. 1 Carl Adam Petri (middle) and Grzegorz Rozenberg (left) during the Petri net conference
we organized in 2003. The photo was taken just after Petri was honored with the prestigious title
“Commander in the Order of the Netherlands Lion” by Her Majesty the Queen of the Netherlands

3 Concurrency is Key

Petri’s first guiding principle is “Concurrency should be a starting point for system
design and analysis and not added as an afterthought (locality of actions)” (GP1).
Many other modeling approaches start from a sequential view of the world and
then add special operators to introduce concurrency and parallelism. Petri nets are
inherently concurrent. Although Petri nets are often seen as a procedural language,
they can be viewed as declarative. A Petri net without any places and a set of
transitions T allows for any behavior involving the activities represented by T .
Adding a place is like introducing a constraint. The idea that transitions (modeling
activities or actions) are independent (i.e., concurrent) unless specified otherwise is
foundational! This allows us to model things in a natural manner and also facilitates
analysis. Actions are local and this allows us to understand things better while
enabling “divide and conquer” approaches (e.g., decomposing analysis problems).

Mainstream notations for modeling processes use token-based semantics adopted
from Petri nets. The de facto standard for business process modeling—BPMN
(Business Process Model and Notation) [4]—uses token passing. Also UML activity
diagrams use token-based semantics and a notation similar to Petri nets. Unfor-
tunately, these languages provide a plethora of control-flow constructs, basically
killing the elegance of the original proposition. However, in the back end of such
languages and supporting systems, one can often find Petri nets. For example,
BPMN models are often translated into classical Petri nets for verification.
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4 Process Mining: Relating Observed and Modeled Behavior

Petri’s second guiding principle is “A formalism should be consistent with the laws
of physics and not take any shortcuts at the foundational level” (GP2). He often
related concurrency theory to physics [2, 8]. However, the principle can also be
applied to everyday discrete event processes (e.g., in manufacturing, healthcare
logistics, luggage-handling systems, software analysis, smart maintenance, website
analytics, and customer journey analysis). We seek models adequately describing
these real-world phenomena. Interestingly, the digital universe and the physical
universe are becoming more and more aligned, making it possible to study these
discrete event processes much better. The spectacular growth of the digital universe,
summarized by the overhyped term “Big Data,” makes it possible to record, derive,
and analyze events. Events may take place inside a machine (e.g., an X-ray machine,
an ATM, or a baggage-handling system), inside an enterprise information system
(e.g., an order placed by a customer or the submission of a tax declaration),
inside a hospital (e.g., the analysis of a blood sample), inside a social network
(e.g., exchanging e-mails or twitter messages), inside a transportation system (e.g.,
checking in, buying a ticket, or passing through a toll booth), etc. [12]. Events
may be “life events,” “machine events,” or “organization events.” I coined the term
Internet of Events (IoE) to refer to all event data available [12].

The event data that are abundantly available allow us to relate real-life behavior
to modeled behavior. More specifically, we can learn process models from such
event data (process discovery) or replay event data on models to see discrepancies
(conformance checking). This is exactly what process mining aims to do.

Process mining starts from event logs. An event log contains event data related
to a particular process. Each event in an event log refers to one process instance,
often called a case. Events related to a case are ordered. Events can have attributes.
Examples of typical attribute names are activity, time, costs, and resource. Process
discovery is one of the most challenging process mining tasks. Based on an
event log, a process model is constructed thus capturing the behavior seen in
the log. Dozens of process discovery algorithms are available and many produce
Petri nets. Input for conformance checking is a process model with executable
semantics and an event log. Discrepancies between the log and the model can be
detected and quantified by replaying the events in the log. Simple conformance-
checking approaches try to play the token game and count missing and remaining
tokens. More sophisticated approaches solve optimization problems to find modeled
behavior most related to the observed behavior. Some of the discrepancies found
may expose undesirable deviations, e.g., conformance checking signals the need
for better controls. Other discrepancies may reveal desirable deviations and can be
exploited to improve process support.

The empirical nature of process mining immediately exposes formalisms that are
not able to capture real-life behavior. Choosing the wrong “representational bias”
results in discovered models that are poorly fitting (observed behavior is not allowed
or the model is overfitted or underfitted) [12].
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Petri nets are attractive for process mining given the abundance of analysis tech-
niques. For example, conformance-checking techniques use the marking equation
to dramatically reduce the search space when computing alignments. Moreover,
the fact that “a Petri net without any places and a set of transitions T allows for
any behavior involving the activities represented by T ” is a great starting point
for process discovery. Obviously, such a Petri net is underfitted, but additional
constraints can be introduced by adding places. This is related to the seminal idea of
regions (both language-based regions and state-based regions) [1, 3]. The synthesis
of Petri nets based on regions is one of the cornerstones of process discovery, very
much in the spirit of Petri’s second guiding principle.

5 Petri’s Heritage

This short paper focused on two of Petri’s guiding principles: (1) concurrency
should be a starting point for system design and analysis (and not added as an
afterthought), and (2) a formalism should be consistent with the laws of physics
and not take any shortcuts at the foundational level. I linked these two principles to
my own research over the last 30 years and discussed how these principles relate
to the emerging field of process mining. Obviously, concurrency of behavior and
consistency with reality are key notions in process mining. However, above all, this
paper described a personal journey reflecting on the influence of Petri’s work on my
career and research aimed at discovering Petri nets from events.

Carl Adam Petri discovered his nets at a time when information processing
was viewed as something sequential. Formal notations for concurrency and asyn-
chronous distributed systems were uncovered by Petri’s seminal work. Petri nets
are used in many domains and the strong theoretical foundation often helps to solve
“wicked problems” and avoid reinventing the “wheels of concurrency.” For example,
numerous workflow management, BPM, and process mining approaches directly
build on Petri nets.

However, it remains crucial to invest in the foundations of non-sequential pro-
cesses. Einar Smith’s book on Petri’s life and achievements [8] provides interesting
insights into the “good old days” of scientific research at the Gesellschaft für
Mathematik und Datenverarbeitung (GMD). At GMD in Schloss Birlinghoven there
was still time to work on the theoretical foundations of computing. This is in stark
contrast with today’s research practices driven by “quick wins” and application-
oriented projects rather than long-term scientific goals. Today’s scientists simply do
not have the time to take a step back and ask long-term questions in the way Carl
Adam Petri did. Would Petri have survived today’s research environment? As part
of his heritage we should ask ourselves this question repeatedly. This may help us to
create better research environments for work on the true foundations of computing.
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Observations of a Lateral Entrant

Einar Smith

1 Meeting Petri

Helga Genrich put down the telephone receiver: “Carl Adam is in his office, he
can receive you right away.” That is how in January 1984, I was introduced to
Petri and his world. I had come to know Helga through a common friend, and at
that time Helga worked on a research programme on Information and Law within
the Petri-Institute in the GMD. In this context Petri was looking for somebody
with a background in formal logic, and mathematical logic was in fact what I had
specialised in during my university years.

Already my first encounter with Petri was fascinating. We discussed whether the
Cartesian product in sets is associative (it is not), whether Keynesian economics was
based on a sound mathematical model, and of course, what consequences Einstein’s
views on simultaneity and causality had for a mathematical understanding of real-
world processes.

When I had returned to Helga’s office, Petri phoned her and said: “He made an
excellent impression.” So it came that I was offered a position as research assistant
beginning on March 1st. However, since as a Norwegian citizen, I had to apply for a
work permit in Germany through the German embassy in Oslo, I asked to postpone
the entry date by, say, a month. Petri’s answer was laconic: “Your first duty will be
to study the literature; and where you do that is up to you.”

E. Smith (�)
Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
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12 E. Smith

2 The Society of Followers

What soon became clear for a lateral entrant was that Petri’s words were often
considered as eternal truths by his followers, almost approaching apotheosis within
his lifetime. Many of the concepts Petri introduced were taken at face value, and
studied for their mathematical properties rather than the deeper meaning Petri
intended to express.

Density and Completeness For instance, books were filled with theorems on
Petri’s K-density and his first attempts at Dedekind completeness in discrete partial
orders. Concerning K-dense orders Petri himself notes that the “requirement can
only be violated if an infinite number of sequential processes have to wait for each
other, i.e., in a situation of no practical interest.” With K-density and Dedekind
completeness, what Petri wanted was to consolidate the intuitive sensation of
continuity on one hand and the discrete articulation of actual observations on the
other. In this respect the first attempt to formulate Dedekind completeness did not
turn out to be sufficiently sustainable.

In his second version, I was invited to take part as a co-author, an honour and
privilege I was of course overwhelmed by [1]. Petri must have appreciated my (to
be honest, very marginal) contribution, since also later I was once more invited to
join him in a publication, see e.g. [2].

A detailed discussion of the concepts mentioned above, as well as many other
aspects of Petri’s work, can be found in [4].

Contact Other important examples where Petri’s word was taken too literally
concern the notions of contact, conflict and confusion. (Details can again be found
in the biography mentioned above.)

On contacts, Petri often advocated the view that they are a consequence of badly
designed models. As a consequence contacts were often excluded in the works of
his followers.

However, on the other hand, Petri himself often also noted that contacts are
important to detect unsafe situations: “An elementary particle can not occupy the
space already occupied by another one, but a car unfortunately can, and so can a
record of data.”

Conflict As he expressed time and again, Petri believed that the world is causally
deterministic, and conflicts only exist in partial systems; for instance: “If a transition
set contains a conflict, then the system described by it possesses a non-empty
environment.”

Confusion This has an immediate and unfortunate consequence for the concept of
confusion: Simply, that confusions cannot exist, because how can a border between
system and environment exist such that (1) on one hand, the condition required for
conflict resolution is located outside the system, but (2) on the other hand, there is
possibly no such condition at all, simply because there is no conflict?
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In Petri’s own words: “When we encounter such a situation we may conclude
that we have drawn the boundary between the system and its environment in an
awkward manner, and that we should draw it somewhere else, in order to reduce
confusion to mere conflict resolution. It follows that we really don’t need to set up
a theory of confusion - which would indeed be difficult to do. It has, in fact, been
tried more than once and seems almost impossible.”

In Petri’s closer vicinity, the belief that confusion was to be—and could be—
avoided, often gave reason to concentrate research activities on special limited net
classes, where confusion was in fact excluded by construction.

However, later it turned out that—on the contrary—confusion is ubiquitous; it
will inevitably appear, whenever the consequences of independent events have to be
synchronised [3].

An often-overlooked implication of this theorem is that Petri’s own construction
of a conflict-free OR-gate in his dissertation cannot be correct.

In a later private conversation, Carl Adam commented with a sigh: “Before I used
to claim that confusion can easily be avoided; now I claim the opposite.”

‘Time’ Is a Four-Letter Word Closely related to confusion is the determination
of order between independent events. The belief in pure causality among Petri’s
followers sometimes approached the surrealistic. The innocent remark that the
winner of a 100-m dash is surely determined by the order between the independent
events of the runners crossing the finish line could be met with a smile somewhere
between sardonic and patronising: “Who knows if there is not some connecting
causal parameter hidden in the background?”

In the most programmatical form, the reluctance towards confusion and timing
was probably expressed by Anatol Holt: “Thus an extra causal factor, not repre-
sented explicitly in choices. . . has entered the scene, namely the factor of relative
timing. . . This ‘extra factor’ is both technically and philosophically unacceptable.
It is technically unacceptable because it destroys the possibility of tracing the
outcomes of choices to the outcome of other choices. . . one of the key objectives,
in my opinion, of an adequate system model.”

Regarding the philosophical significance of the time factor, Holt remarks:
“Communication and only communication establishes causal connections between
choices. Concurrency was to express the relative freedoms that remain in the light of
these relative causal constraints.” According to Holt, something that may influence
causality must be an element of communication, and that is not the case for the time
factor.

In essence, Holts conclusion amounts to the view that what should not exist
actually also does not exist. This is in complete concordance with a well-known
observation by the German satirical poet Cristian Morgenstern in a poem “Die
unmögliche Tatsache” (The impossible fact): “Weil, so schließt er messerscharf,
nicht sein kann, was nicht sein darf.” (For, he reasons pointedly, That which must
not, can not be.)
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3 The Competitors

In the modelling of distributed systems, Petri nets encountered existing competition,
mainly from models based on sequential automata theory, where the concept of
arbitrary interleaving became the standard method of formulating independence.

Petri nets appeared as late arrivals in this business. To be accommodated the net-
representatives had to show they could do everything the others could, and even
more so; as in the musical ‘Annie get your gun’: “Anything you can do, I can do
better.”

But the rules of the game were set by the others. This meant in particular that
concepts not expressable in interleaving approaches were not propagated offensively
by net-followers. Unfortunately this concerned the main topics discussed above,
such as contact and confusion.

In many scientific approaches other ideas are occasionally neglected with the
remark “not invented here”. In net theory the opposite phenomenon “not invented
by others” occasionally seems to prevail.

4 Consequences

Perhaps it is time to review some of Petri’s fundamental and seminal ideas
in the world of non-sequential processes and distributed systems. This includes
the admission that even a genius like him was sometimes caught in a web of
contradictory thoughts. Adapting Petri’s own words (actually originally referring
to the German writer Johann Wolfgang von Goethe), we should “liberate ourselves
from the prejudice that whatever is written by Petri must be great and good, simply
because it is by Petri.”

In my opinion, the main obstacle Petri encountered was one he laid himself,
namely to take philosophical determinism at face value. Without this hindrance, he
had already developed all the tools necessary to deal with the ubiquitous timing
issues in synchronisation.

In his approach to measurement theory, he noted that measurement is ultimately
based on a notion of similarity, which is by nature non-transitive, a non-transitivity
which however can be limited to a ±1-deviation. (For details again see [4].)

This approach can be carried over to the timing of independent events, and the
design of corresponding system models.

At the Bus Stop As a simple illustration, consider a bus approaching a bus stop.
If there is a passenger waiting, the driver has to stop and pick him up. If nobody
is waiting, the driver may pass by without stopping. Now a client has complained
to the bus company that he was waiting, but the bus nonetheless did not stop. The
driver, on his side, contends that he had actually first noted the passenger in the rear
mirror, because he definitely had arrived too late. It is one person’s word against
another, and the case will probably not be resolved.
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h

Fig. 1 Controlled access to a printer shared by two agents a and b

But one thing does result: If there was a dispute about this bus, then the passenger
is undoubtedly in time for the next one. Hence also in this case there is a typical ±1-
problem lurking in the background. If the frequency of bus departures is sufficiently
high, the negative consequences can be limited.

Distributed Access We present a somewhat larger example, in which conflict,
confusion and the main timing ideas above are discussed in a model to control the
access to a shared resource, say a printer, by two agents a and b (Fig. 1).

The system has to ensure that at any time only one user has access, and—on the
other hand—that every user that requires the printer will eventually get it. Presently
both agents are in states where they do not request access, represented by the tokens
on the places aid and bid (the tag “id” is short for “idle”). In this situation a, say,
can issue a request. In the model this is represented by the occurrence of wa , after
which the condition a? is satisfied (depicted graphically by moving the token).

The printer access control is based on a mechanism that alternately polls the
demands of the agents. This is represented by the inner circle ca-la-cb-lb. The token
on ca indicates that the printer is currently offered to a because now ha is enabled.
Occurrence of ha withdraws the two input tokens and puts a token on a!, reserving
the exclusive access for a. The transition sa terminates the use; a returns to the state
“idle”, cb, is marked, and the printer is now ready for user b.

Assume that the control has been designed such that whenever agent a has issued
a request (token on the condition a?), and the control unit is ready to accept it (token
on ca), then the printer will in fact be assigned to a. If additionally we can assume
that signals will stabilise within one cycle, the worst case that can happen is that a is
passed over once, when for example the request signal on a? has not yet stabilised.

As in the bus example above we again get a ±1-problem, with which we can
live, but probably also have to live, since no decisively different solution seems
viable: A system design without confusion appears impossible, and the control
must rely on a priority management that decides on the temporal order of the
concurrent independent events in the confusion. (However we stress the point
that such temporal relationships are only evaluated in the immediate vicinity of a
potential conflict. This does not imply any assumption whatsoever of a global time
concept.)
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Challenge for adherents to the deterministic tradition outlined above: Develop an
equivalent model without confusion and local timing.

Final Words In this author’s opinion the more promising alternative is to extend
the traditional approach to include confusion and its consequences in the theory.1

To formulate it with a famous quotation, attributed to various people, not least to
the great Austrian composer Gustav Mahler: “Tradition is not the adoration of the
ashes, but the passing of the flame.”
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Nets, Cats and Pigs: Carl Adam Petri
and His Slides

Giorgio De Michelis

Carl Adam Petri (1926–2010) never wrote a book, and his papers, amounting to
a total of 13 during his scientific career, are generally not written in accordance
with the standard format of scientific papers—they are so rich and dense that they
constitute a serious challenge for the readers, even those who are already experts
in the themes he treats. Moreover, except for the lemma dedicated to Petri Nets in
Scholarpedia (2008) that he wrote together with Wolfgang Reisig [1], he did not
write any paper after 1996. These simple facts are sufficient to show that he did not
consider written texts to be the main way to state and record his ideas and to make
them available to the public.

On the other hand, he dedicated great care to his slides. He prepared a new
collection of slides for almost every talk he gave, at least in the last 35 years
of his career, and, sometimes, he prepared them also for different occasions as
personalized accounts of his scientific work. In a paper I wrote recently I discuss
a slide that is quite important for understanding some ‘philosophical’ aspects of his
work whose content never appeared explicitly in his writings [2]. It is therefore
interesting to investigate in depth the role of slides in his scientific experience,
also taking into account that technological innovation seriously influenced their
preparation in the last 30 years.

The sets of slides he prepared for different occasions frequently contained
some recurrent subsets of slides, dedicated to particular aspects of his theoretical
work, The slides he used to support one of his talks, were, in some sense, a
selection and/or a combination of slides taken from a virtual collection of all his
slides, which was his ‘complete’ reference material. He continually updated this
collection adding new slides to it, substituting and/or ‘modifying some of them.
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Thus sometimes these were exactly the same as the ones that he had used on
previous occasions, sometimes they were new slides presenting his new findings
and/or formulations, and sometimes these slides introduced some changes, showing
that he was convinced that he had found a better way to express an idea or a
fact. Thus, what I have called above the “complete collection” was continually and
gradually changing together with his theories.

Einar Smith, in his biography of Petri, recalls a conversation they had about his
slides: “Together with the notes for a talk, he once packed away several overhead
slides, with the remark: �In case there are questions.� To the astonished, ‘How
could he know what questions would be asked’, he had a simple reply: �I pretend
to respond to the question, then show these slides and explain them�” [3, p. 106].

1 Handwritten Slides

The first slides of Carl Adam Petri that I saw—probably in the 1980s—were
obviously handwritten. They were clear and elegant thanks to his calligraphy and
good skills in designing them (an example is given in Fig. 1) and any set of them
supporting a talk consisted of small subsets containing, in a concise way, all the
material needed to treat a specific issue.

It is interesting to note that the slide of Fig. 1, originally prepared for a talk in
Beijing in 1981, was reused for a talk he gave 8 years later, in 1989, in Milano
with the title “Concurrency Theory and Combined Axiomatics for Concurrency,
Causality and Possibility”. The slides presented in Milano contained subsets of
slides from 1970, 1975, 1976, 1981, 1988, and 1989. This supports my claim that
none of his talks was a repetition of a talk already given before but rather, each of
his talks was a stage in a continual reworking of both his ideas and ways to present
them.

2 Digitized Slides

With the rapid expansion of personal computers in the 1980s also the way Petri
prepared his slides changed.

On the one hand, after some years, he began to prepare them with tools such
as PowerPoint, which allowed him to improve their aesthetic and communicative
quality. He used graphic editors to draw exact and precise diagrams, different
character sets to differentiate the role of different captions, and a rich colour palette
to make them more vivid and varied (Fig. 2).
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Fig. 1 The slide introducing concurrency from a set of slides prepared for a Beijing talk (1981)

This was not achieved immediately. He was experimenting, moving from well-
drafted diagrams, printed captions, and a limited use of colours, to blue or red
backgrounds, rich choice of characters and sizes, and spatially distributed diagrams
and captions. Slides were related more to what he was going to speak about in his
talks, while their communication role concentrated the (mathematical) formalization
of the main aspects of his theoretical work.

During the last years of his life, slides became ever more relevant for Petri, as
he seemed to consider them a major way of transmitting his thoughts. It is therefore
not accidental that in 2005 he copyrighted them (Fig. 3).
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Fig. 2 Slide illustrating conflicts, from the “Definitions” set of 2004

Notice

is Copyright by C.A.Petri 2005

This collection of files, entitled
“Systematics of Net Modelling”

Sixth Edition, 2005

©

WATCH
CAT

Fig. 3 Prelude to a collection of slides
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Fig. 4 One slide of the Petri-Zuse collection, 2007

3 Animals

With the prevalence of the communication role of his slides, Petri began to design
them having in mind the audience looking at them: there were frequently phrases
that explicitly addressed the audience, several captions had an ironic flavour, and,
finally, cats and pigs began to appear in them.

Small cats were the most frequent hosts of Petri’s slides (see, e.g., Figs. 3 and
4): sometimes they played a role in explaining their meaning, sometimes they
seemed not to be interested in what the slide presented, but they always interacted
empathetically with the beholder.

Pigs were less frequent inhabitants of Petri’s slides, but their ironic message was
stronger: e.g., in Fig. 5, a large group of pigs with, their backs towards the audience
represents a ‘sceptical audience inspecting Universe’.

Sometimes, as in the confusion slide of Fig. 6, cats and pigs were both present,
contributing to a sense of confusion emphasizing the content of the slide.

4 Gifts

In his final years slides were coloured, copyrighted, populated by animals, interfer-
ing with their content, and dialoguing ironically with the beholder. The personality
of Petri clearly emerges from them. It seems that, through his slides, he was able
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Fig. 5 Last slide of the Petri-Zuse collection, August 2007

Fig. 6 Confusion slide in the file donated to Giorgio De Michelis, 2003
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Fig. 7 First slide of the collection donated to Giorgio De Michelis, 2003

to establish a warm relationship with his public, where his theories lost the typical
aridity of scientific formal theories.

Consistently with this development, he began to create collections of slides as
presents for friends and colleagues (see, e.g., Fig. 7): their contents were defined
on the basis of the interests of the person to whom they were dedicated, and their
presentation was always friendly and pleasant.
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Invention or Discovery?

Kees M. van Hee

Petri nets have had a great impact in science and engineering as the most successful
formalism for modeling and analysis of processes with concurrency. In 1939, when
Carl Adam Petri was only 13 years old, he already used the diagram technique for
the description of chemical processes. So the first application was not in computer
science. The formalism has been named after Petri and it is clear that he started a
great scientific movement. Fifty-five years after Petri’s seminal dissertation there
are hundreds of researchers all over the world finding new properties of Petri nets
and extending the formalism into new application domains. Thousands of engineers
use Petri nets to design and analyze systems. There are dozens of software tools to
support these engineering activities.

A purely philosophical question is: did Carl Adam invent Petri nets or did he
discover them? The difference between these notions is clear: an invention is a
creation by a person or a group of persons and a discovery is finding something
that already existed. Instead of creation we also speak of design. First of all we
have to define what we mean by ‘Petri nets.’ Automata were already known and
so the concept of a system that, at discrete points in time, creates a state transition.
The great new concept of Petri nets was the idea of locality: not one big state space
where the whole state changes in one transition, but local states and local transitions,
such that local transitions concurrently change only a part of the whole state. The
locality of the state space is expressed by means of the notion of places and tokens.
The locality of the transitions is expressed by the notion of the transition, which is
in fact a local transition. So this concept is the basis of the formalism of Petri nets.
Of course there is the notation or syntax as a bipartite graph and then there is the
behavior of the system, e.g., expressed by the reachability graph, which can be seen
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as the semantics of the formalism. This is what Petri invented or discovered. He did
not invent or discover the (infinite) set of all the properties of Petri nets! In fact his
direct contribution to the large set of properties of Petri nets is rather modest, but he
saw the big picture, inspired many followers, and asked them the right questions. It
seems natural to consider the properties of Petri nets as part of the formalism. It is
clear that the properties were not created but that they were discovered: they were
there but we had to find them. So we have identified four elements in the Petri net
formalism: (1) the concept, (2) the syntax, (3) the semantics, and (4) the properties.
Which of these four elements were invented and which were discovered? The first
three in any case were due to Petri himself.

If you let a group of people make a drawing of some object, you will never see
two identical drawings. So creations seem to be unique. For discoveries this does not
hold: when biologists are looking for a new specimen in the jungle they may find
the same specimen in different places. The same holds also in physics: scientists
discover elementary particles, they don’t create them. We have already seen that the
properties of Petri nets were discovered. The syntax or notation seems to be created.
So the concept and the semantics are still to be classified as invention or discovery.
It seems that they are closely entangled. So they are either both invented or both
discovered.

In search of the answer I will sketch my own ‘discovery’ of Petri nets. As a
mathematician skilled in operations research I worked for several years in industry
and in 1984 I moved to computer science. My research topic was the development
of methods for specification and modeling of business information systems. At that
time database technology was coming up and an information system was considered
a central database with lots of more or less independent applications around it. The
starting point for the development of a new information system was the data model,
which was in fact the specification of the database scheme. When the data model was
established several application designers could start independently building their
applications. Concurrency issues were not very important in that area. In industry,
dataflow diagrams were the only tools to describe the information processing the
business process and the information systems. They cannot express the order of
processing and there was no natural way to integrate them with the data model. So I
started a project to design a formalism that could model all aspects of an information
system in an integrated way. A first attempt was a framework called SMARTIE [1].
Then my team developed another framework and a supporting software tool called
exSpect [2]. (Wil van der Aalst was one of the team members.) When we showed
it to our colleagues Willem Paul de Roever and Rob Gert in 1988 they said that it
looked very much like the colored Petri nets developed by Kurt Jensen [3]. So we
more or less rediscovered Petri nets. Later I remembered I had seen only one paper
on Petri nets in the 1970s, but because at that time I was interested in modeling
data-intensive systems I did not dig further into the field. So maybe this knowledge
influenced the rediscovery in the subconscious.

But then we started studying the overwhelming literature on Petri nets and we
joined the ITPN conference in 1989, where we met Carl Adam Petri in person for
the first time in Bonn (Bad Godesberg). We completely adapted our work to the
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Petri net formalism (e.g., in our diagrams we used circles for active components and
rectangles for passive ones, so we switched them.) Since then we have applied our
version of colored Petri nets to model all kinds of systems, not only information
systems.

When the kick of being able to model whatever system we wanted was over in
the 1990s, we became interested in the analysis of behavior. The possibilities for
colored Petri nets are rather limited so we switched to classical Petri nets and their
beautiful methods of analysis. Of course this provides only partial correctness, but
it turned out to be very useful in practice.

In answering the question: was it an invention or a discovery?, it is interesting to
look for similar developments. Conway’s Game of Life is a formalism to describe
self-reproducing systems (see [4]). It was designed in 1970 to answer the question
of von Neumann whether such systems could exist. It seems widely accepted that
Conway created the game. Also, most people say that, in 1936, Alan Turing invented
the abstract machine that later was called after him.

In both cases the inventors were (probably) not aware of the tremendous number
of interesting properties their invention had. This is a plea for considering it as a
discovery, because one can discover a part of something, viz., only the part that is
close to the surface while the deeper parts, such as the properties, still remain to be
discovered. If you are still in favor of the invention option then you have to accept
that the inventor has also created all the properties of the creation, but that they are
still unknown and thus have to be discovered!

When Petri attended the Petri net conference in the Netherlands in 2003, he was
honored with the prestigious title of Commander in the Order of the Netherlands
Lion (Fig. 1). The Dutch governor who led the ceremony said in his speech that
Petri’s contribution to computer science was of the same order as the contribution
of Crick, Watson, and Wilkins, who discovered DNA, to the life sciences. By the
way, they received their Nobel Prize in 1962, in the same year Petri defended his
Ph.D. Clearly Crick, Watson, and Wilkins did not create the structure of DNA, but
they discovered it and made it visible and understandable.

After the Petri net conference of 2005 in Miami, Wil van der Aalst, Ron Lee, and
I had dinner with Petri. And I asked him the question: “Did you invent the Petri nets
or did you discover them?” It took him a while and then he answered: “I discovered
them.” This answer might have been expected because Petri was a modest man and
putting himself in the role of a creator seemed to be too pretentious for him. But
I am convinced that he meant what he said: the Petri nets were already there, they
just appeared to him when he was thinking about concurrency. He did not see all the
details and properties that were discovered by hundreds of researchers later on. But
he had the big picture and I believe he saw things that still have to be discovered.

During his whole career he saw connections between Petri nets and physics, in
particular quantum physics. And although I listened to several of his lectures (e.g.,
[5]) about these relationships I could not understand all of them. Two crucial points
of Petri’s are the conservation law of information and the idea that the elementary
building blocks of physics are ‘information flows’ from which the (special) theory
of relativity as well as quantum mechanics can be derived. Petri claims that Petri
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Fig. 1 From left to right: the author, Carl Adam Petri when he received the Dutch order of
knighthood, and the governor of Noord Brabant, Frank Houben

net theory can be used to “Translate the main tenets of modern physics into their
combinatorial form. In that form they are independent of scale, and relate to direct
experience as well as to the sub-microscopic level of quantum foam” (see [5]).

Recently the Dutch physicist Erik Verlinde [6] discovered a new theory for the
fundamentals of physics in which microscopic information units, the qubits, form
the basis! (They are physically represented by strings and D-branes, with a size in
the order of magnitude of Planck’s constant.) The conservation of information is
the essence of his theory: so information cannot be created and can’t be destroyed.
Entropy can be seen as the amount of information needed to describe the state
of a system. Verlinde showed that the entropy of a black hole is the amount of
information that has disappeared into it and is proportional to the surface of the
black hole. A change in entropy will cause a force. Gravity may be considered to be
caused by this phenomenon.

So it seems that Petri discovered more than we know yet! But the details still
have to be discovered. If the conservation law of information claimed by Petri and
Verlinde holds, then so-called human creations are in fact discoveries. This answers
the question and is consistent with the answer of Petri.
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Petri’s Understanding of Nets

Dirk Fahland

My first personal exchange with Carl Adam Petri has had a long lasting impact on
my work as a researcher and teacher. At that time I was working as a Ph.D. student
in the group of Wolfgang Reisig at the Humboldt-Universität zu Berlin when Petri
was visiting us. The group spent the afternoon listening to and discussing Petri’s
latest research. As we approached the evening and came to an end, there was still
some time left before we would leave for dinner and Wolfgang Reisig suggested that
I should ask Carl Adam Petri to explain the idea of Petri nets to me. This would be
something he considered a truly fascinating angle best told by Petri himself. So, I
sat down with Carl Adam Petri and asked him this question and what follows is the
best attempt I can give to recollect his explanation.

When we think about nets, we should not start thinking about places or
transitions, but we should start by thinking about tokens, because tokens are the
only elements in a net that have an interpretation in the physical world. Think of a
token as any elementary entity of interest: at its lowest level, it could represent an
elementary physical particle or atom. The entity carries its own local properties,
which we may summarize as the entity being in some condition. Figure 1 (top
left) abstractly represents an entity X in some condition A as a labeled token.
I cannot remember whether we also discussed other interpretations of a token
in our exchange, or at least these interpretations did not stick. Nevertheless, my
personal opinion is that in the realm of information processing, Petri’s fundamental
interpretation of tokens goes as far as also including elementary units of information
that are not necessarily bound to a particular physical representation.

Now that we know what a token is, we can think of the universe as a vast
collection of net tokens. Each entity with its own local properties can be described
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X

entity Y

X in cond A

Y in cond B

X

Y in cond D

Xentity X
X in cond A

entity X
X in cond C

Xentity Z
Z in cond E

X
Z in cond F

spontaneous
state change

event emerging
from X and Y

interacting

Fig. 1 A token representing an entity in a particular condition (top left). An entity may change
its condition by interaction with another entity in an event (top right). An entity cannot change its
condition spontaneously without interaction with another entity (bottom right)

by a token in a particular condition. Of course an entity can change its local
properties but—and this is the important point Petri raised to me—it can never
change its local properties spontaneously on its own. An entity changes its properties
only through an interaction with another entity. In net theory, we express a state
change as a local event. A local event takes two (or more) tokens, each in their
own pre-condition to the event, as input and results in two (or more) tokens, which
are now in the post-conditions of the event. An event is purely local to the tokens
that participated in the event, and we should interpret the event as something that
emerged out of the interaction of the two tokens (or entities). There is no hidden
or general mechanism behind this event, but the event occurred because these two
entities interacted. Figure 1 (top right) illustrates an event involving entities X and
Y where X changes from condition A to C and Y changes from condition B to D.

An event involving only a single entity as illustrated in Fig. 1 (bottom right)
would describe a spontaneous change, which cannot occur. We discussed this last
argument a bit longer. When taking seriously Petri’s interpretation of tokens as
physical entities, then this model would not allow a description of the seemingly
spontaneous events observed in particle physics. Petri’s opinion here was that a
model that requires spontaneous state changes to describe a particular dynamics is
incomplete as it lacks the causal explanation for the state change. He argued that we
might not know the explanation yet, but the model ultimately has to be extended to
be complete.

This idea of an event transforming properties of tokens entails that a token has
a form of identity which it retains throughout the event even though its properties
may change. After an event has occurred, each entity is now free to participate in
another event with the same or another entity, leading to the occurrence of another
event. In this way, each entity gets involved in a series of local events with other
entities as it “travels along its own path through the universe.” The properties of an
entity at any point in time can be explained in terms of the history of its interactions
with other entities as it has been traveling through the universe. As each entity
follows its own path and interacts with other entities, their paths get intertwined
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Xentity X
X in cond A

Y in cond B

Z in ...

X
X in cond C

Y in cond D

U in ...

Z in ...

U in ... U in ...

X

Y in ...

X in ...

entity Y

entity Z

entity U

Y in ...

Z in ...

U in ...

X

Fig. 2 A distributed run describing how entities X,Y,Z, and U change states in local events. Each
entity follows its own path of local events (highlighted for U ). The local events intertwine the paths
of the entities involved, and the paths put the events into, a partial order

in their local interactions, creating a complex “fabric” of entity interactions. In net
theory, we describe this behavior in terms of a distributed run [1] as illustrated
in Fig. 2. Each entity X, Y,Z, and U follows its own path (highlighted for U ),
interacting at different moments with different entities in local events; events in the
distributed run are partially ordered as, for instance, the first event involving X and
Y is independent of the first event involving Z and U .

Put differently, according to net theory, the dynamics of the universe can be
described as a large distributed run of its atoms. A (Petri) net is then merely an
attempt to describe a small part of this fabric of entity interactions in a finite model.
The tokens in a net are abstractions of the entities they describe, each place describes
a condition an entity can be in (within the scope of the model), and each transition
describes the kinds of events that the entities can be involved in (within the scope
of the model). As we go from tokens, events, and runs to nets, we abstract away
details—ideally to the level of detail we are interested in studying.

A non-deterministic choice between two different transitions in a net describes
different evolutions of the same kind of entities. We did not discuss on this
occasion how Petri interpreted non-determinism in a net: whether it was necessary
(as the universe would be non-deterministic) or whether it indicated inherent
incompleteness (as the universe would be deterministic).

There are a number of simple but important conclusions that can be derived from
this view. No event can produce an entity out of nothing and no event can eliminate
an entity into nothing. In terms of net theory, each event always has a token in its
pre-condition and a token in its post-condition (each transition has a pre-place and
a post-place). Further, no event involves just a single token. If we encounter such an
event such as the one shown in Fig. 1 (bottom right), then our model is incomplete
and must be extended to also consider other entities involved in the event to explain
its occurrence.

Interestingly, classical elementary system nets allow the creation of models such
as the one in Fig. 3 that are at odds with the above interpretation of tokens and
events as changes of entities in a world governed by the constraints of physics.
A net having a transition with a single pre-place, such as transitions produce and
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produce consumeproductproducer
producer

product

produce produce

consume

product

Fig. 3 An elementary system net (left) and a prefix of its distributed run (right) that describe the
creation of new entities (new tokens on product), and the spontaneous consumption of entities
(through transition consume)
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Fig. 4 Example for introducing modeling concurrency with Petri nets to undergraduate students.
The two separate nets (top and middle) describe the behavior of a guest and a waiter in a restaurant.
Composing the nets on joint transitions (bottom) intertwines the interaction of the two entities in
terms of their intertwined behavior

consume, is an incomplete model. Also transitions with a different number of pre-
and post-places are incomplete. In the example, the occurrence of produce describes
the spontaneous creation of a new product (a physical entity) without the necessary
resources; the occurrence of consume describes the spontaneous consumption of
a product into nothing. This behavior cannot occur in reality if conservation laws
such as conservation of energy and matter hold. Such structures arise in our models
typically to abstract from a larger, unbounded environment that we do not want to
describe in detail, hence they are incomplete models on purpose.

Petri’s interpretation has proven useful to me when teaching students to model
with Petri nets to create models of complex dynamics. Figure 4 shows an example
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Fig. 5 Distributed run of the interaction of two instances of an order with two instances of a
delivery (left) and the same behavior with the inclusion of a package as a third entity

of the composition of the behavior of two independent entities (a guest and a waiter
at a restaurant) into a net that describes the joint behavior of the two entities, by
merging joint transitions. This example helps students in an under-graduate course
to relate the concept of a distributed marking to a real-world interpretation of a
system involving multiple independent entities.

The distributed run in Fig. 5 describes rather complex dynamics that cannot
be captured with established Petri net models [2], yet it adheres to the principles
outlined above. The run describes an order-handling process at an online shop: two
orders are handled by two delivery tours, where order1 results in two packages
(each handled by a different delivery tour), and the single package of order2 gets
handed over from delivery1 to delivery2. The run on the left describes each event
associated with a specific entity, but leaves the conditions between orders and
deliveries without any entity. Restructuring the run by explicitly including three
package entities allows events to be described as the interaction of two or more
entities, is shown in Fig. 5 (right). This run arguably gives a more comprehensive
account of the dynamics shown, and also reveals that net theory requires different
composition concepts to describe this behavior. For instance, order1 interacts with
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package1 and package3 on split whereas order2 interacts only with package2 on
split.

This last example is perhaps a useful illustration of how Petri’s rather basic
interpretation of principles still reveals in a structured way interesting aspects of
distributed behavior that are easily overlooked in classical net theory.
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On the Two Worlds of Carl Adam Petri’s
Nets

Rüdiger Valk

With his work Carl Adam Petri initiated a scientific world that includes by now a
huge number of publications. The area covers multiple aspects, but from a historical
point of view there have been two main streams or worlds of thinking. This article
describes how I experienced both of these worlds of working and thinking in over
40 years of my academic life.

During the last year of my academic studies toward a degree in mathematics
in 1971 at the University of Bonn I was employed as a student assistant at a
major research institution near Bonn, the Gesellschaft für Mathematik und Daten-
verarbeitung (GMD), where Petri was the director of the Institute for Information
Systems. As a student I saw Petri only from a distance, but I attended the Ph.D.
Defense of Hartman Genrich, where he emphasized Petri nets as the description
model of the future in contrast to the old-fashioned “steam engine” of automata
theory (a field in which I was writing my diploma thesis). This experience motivated
me to change my research interests to Petri nets after having finished my Ph.D. thesis
on topological automata in 1974 at the University of Hamburg.

Following my education at the University of Bonn (and not at the GMD) my
research on Petri nets started in the context of finite automata and formal languages,
and my first major publication in this field was on “Regular Petri Net Languages”
[22]. Such a publication would not have been possible within Petri’s research group.
Petri always emphasized the point that modeling should be in direct accordance
with physical laws and real-world observations. As a consequence, for example,
multiple tokens were not used, and side conditions or token capacities for example
were not considered. This was motivated by the requirement of “good modeling,”
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but examples of such modeling had rarely been published at that time. The entire
universe was conceived as a net, while we were working with small cutouts. Here I
cannot describe this way of thinking in detail, but will subsume it under the heading
of “General Net Theory (GNT).” At conferences, the GNT point of view has been
advocated by the members of the Petri school in such a way that P. S. Thiagarajan
was reported to call it the “Petri church.”

This was in contrast to the way Petri nets were treated outside the GMD group,
where a model or a way of modeling was not a priori considered to be “good” or
“bad,” instead, any formalism was worth studying. The value of such formalisms
was determined by the way they fitted into the general framework of theoretical
informatics or by their usefulness in applications. Here, I will call that world the
“World of the Free Petri Net (FPN).”1 These two worlds, GNT and FPN, were
even distinguishable by the way nets were depicted: transitions were represented
by simple bars in FPN, but by small boxes in GNT.

In 1976 I spent a research visit at the University Paris 6, invited by Claude
Girault. There I met a young generation of Petri net researchers who became well
known in the research community some years later (G. Roucairol, G. Memmi, G.
Berthelot, G. Vidal-Naquet, and others). I remember the following scene describing
the state of Petri net research at that time. As my first foreign language in high
school had been French, I wanted to give my introductory talk on Petri nets in
French. At that time no publication in French on the topic was known (at least
to me). Therefore I had to learn the key notions (such as “firing a transition”) from
my French colleagues just before the talk. Vice versa, papers on place invariants
(e.g., by K. Lautenbach and H. Genrich) were available only in German. Therefore
these French colleagues were strongly interested in translating them into the French
language. During a later visit Claude Girault made the proposal to create a workshop
organized by France and Germany. Following this proposal we organized the “First
European Workshop on Application and Theory of Petri Nets” in 1980 [3] in
Strasbourg. It became a series, later under the name of a conference.2

In 1978 I had a contribution at a conference in Zakopane, Poland, where I
presented an extension of ordinary Petri nets that I called “Self-modifying Nets”
[17]. But although (or because?) the model was inspired by a paper of H.E. Fuss
from GMD, there was a critical comment by Petri himself saying that my definitions
were not formally correct. At that time, I found this criticism rather strange since my
argumentation was strictly formal, contrary to Petri’s papers, which did not follow
the mathematical style with definitions, theorems, and proofs. Today, I think that
Petri’s criticism came from his convictions with respect to modeling principles;
e.g., in this case, graphical representations of Self-modifying Nets violated the
principle of locality. My interest in using this formalism was to investigate the

1At that time GNT people called it “the token game approach.”
2International Conference on Applications and Theory of Petri Nets and Concurrency. It was the
proposal of Claude Girault to mention “Applications” first, a tradition that still continues in the title
of the conference. For the history of this conference see [15].
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Turing completeness of different extensions of Petri nets, as Self-modifying Nets
contain inhibitor nets, reset nets, etc. as subclasses.3

In the year 1979 Wilfried Brauer in cooperation with Carl Adam Petri and
Brian Randell organized the Advanced Course “Net Theory and Applications” at
the University of Hamburg [1]. At that time, due to external constraints, the two
worlds of GNT and FPN were obliged not only to meet, but to coordinate their
concepts and definitions. This had already happened at a meeting at the GMD some
time before the Advanced Course started. The representatives of both worlds were
(symbolically) sitting face to face on the two sides of a large table and had intense
discussions about the topics to be presented, about the lectures to be held and the
definitions to be used. For example, an agreement was reached to call a net with
multiple tokens on places and arc weights a Place Transition Net, whereas the
favorite model of the GNT world was called a Condition Event Net. The conference
itself was a highlight in the history of Petri net development, and I had the pleasure
to be the chairman of Petri’s lecture. Researchers and students from all over the
world attended,4 and when walking downtown in a guided tour, participants where
amused to see a physical (St.) Petri church in red-brick Gothic style.

The power of modeling with Petri nets came to my attention more strongly
than ever before when, with Eike Jessen as co-author, I developed a new course
bringing together topics from classical books on operating systems, concurrency,
and queueing theory. Here I was able to design convincing net models for many
classical examples found in those books. The course was later published by Springer
[6]. Much of the material was also used in the five chapters I contributed to a book
that was the outcome of a European project [4]. In the context of the first of these
two books a certain modeling problem appeared, namely that tasks or programs are
moving and changing objects in a (queueing) system. This had been the motivation
for the more elaborate Petri net formalism of Object Systems first published in
1991 [18] and described in more detail in [19]. Later on, in a personal letter Petri
appreciated this development. An important result of this work was the development
of the Petri net tool RENEW by Kummer [9], Daniel Moldt, and others, which is
able to model place/transition nets as well as coloured nets, object nets, and object-
oriented nets, all addressed by the reference nets formalism. The work with this tool
is still important and has produced complex multi-agent systems and support for
collaborative software engineering [14].

In 1988 Carl Adam Petri became a professor at the University of Hamburg.
The proposal for this appointment was made by Hermann Flessner, who had been
in contact with Konrad Zuse and Petri some years before at Hannover. As the
responsible professor I had to initiate the necessary decisions at the Institute of
Informatics, the University and the Government [2]. As a consequence, for many
years Petri regularly gave lectures and guided seminars and research groups on

3Note that Pr/T-nets or Colored Nets were not known at that time. In later years Self-modifying
Nets were intensively studied by Philippe Darondeau and his colleagues.
4Among whom was G. Rozenberg, who wanted to be introduced to the field.
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Fig. 1 Hold up high the torch of political correctness

topics of his choice. This way we learned his way of thinking and obtained a better
understanding of the results of his research, many of which were (and still are) not
available in the literature. Notorious were the long sessions until late at night with
discussions on the topics of the day’s lecture given by Carl Adam, ignoring lunch
and dinner breaks in a room full of smoke (see the picture Fig.1, designed by Carl
Adam himself). He loved these meetings with students very much as he didn’t have
that kind of environment for discussions at the GMD institute.

Among the student participants the core group included Uwe Fenske, Stefan
Haar, Peter Langner, Hartmut Müller, and Mark-Oliver Stehr5 who were regularly
joined by several student and research staff members of the university and, in
particular, by our theory group. While attempting to absorb as much as possible
of Petri’s ideas, they especially dealt with concurrency theory and cycloids. On the
occasion of this article, from their many notes Uwe Fenske gave me the following
two of Petri’s statements (originally in German): May 25, 1990: “Electron orbitals
are nothing else than four dimensional cycloids” and May 30, 1990: “Parallel
computing via informatics achieves more than sequential computing, which is still
denied by theoretical computer scientists today.”

Petri’s approach encouraged them to apply his ideas to other disciplines, “such as
linguistics. Peter Langner developed so-called “ChronoNarratio-Graphs,” which are

5As they were always hanging on Petri’s every word (but not knowing the bon mot of Thiagarajan’s
“Petri church”) they were called Petri’s Disciples (“Petri-Jünger”).
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Petri nets expressing the causality and independence of courses of action in literary
texts, as for instance in Tolstoy’s novel “Anna Karenina” [11].

Inspired by long meetings and discussions with C. A. Petri, Mark-Oliver Stehr
developed and studied a more general theory of partial cyclic orders that includes
cycloids as a special case [16]. He is now a senior scientist at SRI International,
Menlo Park, California, and he recently sent me a very enthusiastic letter from
Petri, dated March 23, 1997, on Kummer and Stehr’s paper on Petri’s axioms for
concurrency [10], which was also a result of Petri’s lectures in Hamburg and Stehr’s
investigation of concurrency theory under the guidance of Jozef Gruska. In this letter
Petri emphasized the importance of an axiomatic system based on causality and
on concurrency relations, the general value of measurement methods for “Rough
Sets,” and the notion of coherence in general sciences. When reading the letter now,
Stehr said he was surprised that Petri explicitly mentioned Biology, as he himself is
working today with biologists at SRI on modeling biological systems. Stehr expects
that Petri’s approach to causality, already very closely related to his own current
work, might become even more relevant in view of the exponentially increasing
flood of experimental/observational data enabled by the latest technologies.

With my colleagues Daniel Moldt and Rolf v. Lüde, a sociologist, I directed
some projects to combine the methods from informatics and sociology within a new
discipline, called socionics [8]. The goal of these projects was to model theories of
the famous sociological schools of Norbert Elias, Pierre Bourdieu, Heinrich Popitz,
Niklas Luhmann, and others in such a way that they can be used for the design
of computer systems involved in human or quasi-human societies or multi-agent
systems. In these modelings, Petri nets have been successfully used. An important
idea was to structure nets according to the modeled system. In the context of
sociology especially the agent-oriented approach MULAN proved to be very suitable
[7]. For one of the books on socionics [23] that documented these results, C. A.
Petri wrote a preface, dated December 22, 2002. In this preface he argued that the
considerably increased potentials of communication are also influencing sociology.
But these effects should not be forced into the “corset” of traditional mathematics
or informatics. It is not the precision known from mathematics or physics that is
appropriate in such a model, but rather the simplicity and refutation-definiteness to
describe the margins (he wrote “Spielräume”) of actors. These margins were limited
by causal dependencies or independencies that were more adequate for description
than totally ordered time scales of events. Therefore, Petri welcomed the given
approach to model parts of sociologic theories by formal theories using net theory.

In 2007 I was asked to chair the Petri net conference 2008 in Xian, China together
with Kees van Hee. In a letter dated May 20, 2007 Carl Adam wrote: “I would
enjoy very much to fly to China, in particular with you as chairman. However, my
age as well as my health do not allow it. But I still think about producing a PPT
presentation which you can present.” After some discussions, Kurt Jensen informed
me that in order to have a different and shorter contribution than Petri’s presentation
at the Miami conference, the steering committee had agreed that I should make
such a presentation on the basis of Petri’s proposals as an invited lecture. Following
this agreement I decided to make my own presentation, partly using Petri’s slides,
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and planned to only present material I could clearly understand. This decision was
accepted by Carl Adam, but it had the consequence that for a whole year nearly
every day I had e-mail exchanges with him to discuss things that were not clear
to me. Carl Adam appreciated this procedure since it gave him the opportunity to
discuss his ideas, to remove errors, and to find new representations.

The starting point of Petri’s slides was his 3-year collaboration with Konrad Zuse
(1910–1995) on the idea of a Computing Universe [12]. They agreed that some
of the main tenets of newer physics would have to be expressed, at least those
of quantum mechanics and of special relativity. Discussing which tenets should
be tackled, Zuse proposed “Those which can be understood by an engineer.” But
many years passed before the deterministic approach of the physicist Gerard ’t
Hooft (Nobel Prize in 1999) made possible a complete elaboration of the originally
conceived ideas.6

In the slides Petri follows the principles of combinatorial modeling, which is a
proper synthesis of continuous and discrete modeling. Petri gives a reformulation
of fundamental physical laws that allows a combinatorial representation. Further
important notions are those of slowness, measurement, uncertainty of counting,
determinism, and cycloids. Of particular importance for Petri was his discovery that
fundamental gates of Boolean circuits, such as XOR-transfer, majority-transfer, or
Quine transfer, are topologically equivalent to some of his cycloids. In a recent
mail, Mark-Oliver Stehr told me that Petri’s Quine transfer, also known as the
Fredkin gate, has now been experimentally realized in quantum computing for
the first time by researchers of the Griffith University and the University of
Queensland [13].7 In the abovementioned personal communication Petri wrote to
me: “It is one of my most important concerns to confront the stochastic way of
thinking with the combinatorial one. It seems to me that combinatorial results are
irrefutable whereas the stochastic view will finally lead to the well-known problems
in quantum mechanics.” When my slides8 were finished, I asked him in what ways
the current presentation was different from the one at the Miami conference. Carl
Adam answered: “In Florida, with six hours I had plenty of time. Furthermore, the
successful presentation there was a festive experience for me.”

Looking back, the abovementioned contacts with Petri show only a very small
part of his entire work. Nevertheless, they document his universal mind, ranging
from very detailed physical knowledge through mathematical skills and to formal
reasoning about communication disciplines. Coming back to my introduction, two

6Published in a 2002 paper entitled “Determinism beneath Quantum Mechanics”.
7We cite from [5, p. 51]: “The CN gate, the Toffoli gate and the Fredkin gate were first presented
by C. A. Petri in 1965, but their publication in 1967, in German and in a not too widespread
proceedings, went apparently unnoticed by most of those working on reversible computing.
However, in view of the above fact, it would perhaps be historically more proper to talk about
Petri-Toffoli and Petri-Fredkin gates. Petri has also shown the universality of these two gates for
classical reversible computing.”
8My slides can be downloaded from [21] in their original keynote-format, but also as ppt- or pdf-
documents.
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worlds in the field that he established are highlighted in this article: the ordinary one,
where most Petri net researchers are working today, modeling systems and proving
properties such as liveness, invariants, subclasses, and so on, which is a successor
of both the GNT and FPN worlds; and the second world in which Petri seemingly
was most interested, namely the foundations of systems compliant with the physical
laws of nature, which undoubtedly is GNT.

And there’s me, having started in the FPN world in 1974 and finding myself today
partly in the second one, as a wanderer between the worlds, still doing research on
Petri’s cycloids [20].
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Petri Nets: The Next 50 Years—An
Invitation and Interpretative Translation

Heinz W. Schmidt

1 Introduction

Carl Adam Petri wrote his famous thesis over 50 years ago. In another 50 years a
future generation of scientists and practitioners will possibly look back on a hundred
years of Petri nets. Or will they? What will they consider to be the historic landmarks
in their writing on Petri nets and the pioneer Petri himself? Will these landmarks
be the same the community has read and written about for the last 50 years?
Will net theory have merged with, and be subsumed under, the other mathematical
theories on which it is based? Or will it continue to be a bridge between theory and
applications for engineered systems and models of cyberphysical reality—models
in which energy and information are treated on a par, and time and space are
intertwined in networks of fundamentally asynchronous but coordinated and parallel
change of vast numbers of parts.

This chapter is an invitation to join this endeavour, and contribute to this 100-
year history. For a broad discipline like Petri nets, this will be the work of many. We
re-emphasise selected elements of Petri’s roadmap as expressed repeatedly in the
writing of the computer pioneer, or as recollected from his seminar presentations
and communications.

The focus is on providing an interpretation that is accessible to other sciences,
both natural and social, and to practitioners. Along the way we provide some
scattered cultural and personal context of influences at the time, moving back
and forth through Petri’s life, times and work, and also attempting to capture the
influence Petri, his institute and Bonn had on the author and a group of people
around him.
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However, first we look back at the time of Petri’s thesis project and the major
principles and research streams over the past 50 years.

1.1 Past

Petri nets were introduced by the applied mathematician and later computer scientist
Carl Adam Petri over 50 years ago. Petri obtained his Ph.D. degree in 1962 at
the Technical University of Darmstadt, in the Faculty of Mathematics and Physics,
where his first advisor, Prof. Walther, lectured. At that time, Petri himself worked as
the assistant of Prof. Unger, the chair of the Institute for Applied Mathematics at the
University of Bonn. Petri had already been the assistant of Unger, when the latter
still chaired the Institute for Practical Mathematics and Projective Geometry at the
University of Hannover. Prof Unger was also Petri’s second advisor and de facto his
main advisor (see Fig. 3).

In his thesis [10],1 Petri introduced nets to develop a physically realistic notion
of Turing machines with a number of classical physics assumptions dropped, both
computationally and in the physical realisation proposed. Petri argued from the start
that under his assumptions, synchronisation based on a global clock (or dense real
time) led a model with truly concurrent evolution of physically distributed objects
to inconsistency with relativity and quantum mechanical theory, which real, parallel
communication devices and protocols ultimately need to build on.

Petri’s thesis introduced different forms of nets (such as ‘k-form nets’) that
were already much more general and non-classical than the place-transition nets
that have become synonymous with Petri nets in worldwide use today. Still
today, large numbers of future scientists, engineers and practitioners leave our
universities having learned only fleetingly, if at all, about general net theory, modern
physics, Gödel’s proof (of incompleteness) and any number of related philosophical,
mathematical and information science issues that defined the lay of the land for
Petri, and which still plague scientists and practitioners designing and building real
physical and socio-technical systems of any scale with true parallelism. Computer
science has remained largely classical. While the modern paradigms have been
widely accepted,2 the ideas in themselves do not form new theory, nor shake and
break the skins of the old ones. Those old paradigms stick, like the proverbial old
wineskins that we fill with our new wines.

Petri’s visionary ideas were viewed as eccentric initially. As documented in his
thesis, Petri’s interest has always been the pragmatic aspect, including the guidance
provided by experimental physics or the needs of practicing engineers dealing with
highly parallel systems at the hardware, software or socio-technical level.

1Nearly 4000 citations (Google Scholar).
2Albeit sometimes only grudgingly: see the experimental results on teleportation, only a couple of
years ago, and reactions in the literature confirming the misnamed ‘spooky action at a distance’.
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1.2 Present

Today Petri nets have a large number of branches. They are used in many engineer-
ing and technology disciplines due to their appealing conceptual simplicity, diagram
representation and support for automated analysis tools. There are numerous special
theories and interpretations of nets usually un/foldable (mappable) into one of
the common Petri net models. Nets have been used to define the semantics
of programming constructs or languages in a mathematically precise way. Net
theory has also found its way into the intersection of computer science with other
disciplines. The multidisciplinary and transdisciplinary application and theory of
Petri nets is a testament to the deep connection with physics, physical chemistry
and science generally. I only mention a few examples and perhaps the lesser-known
ones outside of computer science, electronics and computer systems engineering:

– Music descriptions and processing [5] for composition and analysis, including
ordering, concurrency, repetition, timing, synchrony and non-determinism;

– Reachability graphs of Predicate-Transition nets to significantly reduce the
state space of quantum computing models [9] for purposes of quantum model
checking;

– Stochastic and fluid Petri nets in biochemistry [2] as models for both stable (or
invariant) metabolic states and transitions between such states.

Petri invented the graphical net notation at age 13 in 1939 to model chemical
processes and used this notation in his professional life before beginning his Ph.D.
work. Due to their graphical presentation, Petri nets have spread into many practical
applications and are defined in industry standards:

– ISO/IEC15909-1:2004 Software and Systems Engineering—High-level Petri
nets for systems and software engineering—used in the design and analysis of
discrete event systems, including parallel and distributed systems;

– ISO/TR 12489:2013 Reliability modelling and calculation of safety systems in
the petrochemical and gas industries;

– ISO/IEC15909-2:2011 Software and Systems Engineering—High-level Petri
nets interchange formats for Petri nets, High-level Petri nets and others.

These and further standards are under continuous development at national and
international levels. Elements of Petri nets are also used explicitly in numerous
de facto industry standards such as activity diagrams in the Unified Modelling
Language for software engineering and various systems and software design
methods widely used in the software industry or software-intensive industries such
as the automotive industry, robotics and manufacturing. Their graphical notation
offers intuitive practical use, focus on critical situations in process modelling, and
error analysis. Their execution semantics, in contrast to many other visual modelling
languages, has an exact mathematical definition with a well-developed mathematical
theory for process analysis.

While much of the theory of Petri nets is still held and created in Europe, the
US has played a key role in the popularity of Petri nets in theory, practice and
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teaching—not least through a strong MIT interest in the late 1960s, when Anatol
Holt and others turned to net theory and contributed to the theory of the dominant
Petri net class of place-transition nets, and its direct or indirect use in dynamic
software models.3

In a nutshell, today Petri nets are alive, blossoming and thriving with no end in
sight.

1.3 Future

A recent Google Trends check4 reveals that Google searches for Petri nets are
dominated by searches in correlation with software and the person Petri roughly
equal at the top, followed by simulation and system at 3/4 of the top frequency, and
then workflow. While Germany tops the list followed by Russia Italy and France, the
United States has a significant presence on the list with a slightly permuted set of
correlated terms. For example here deadlock shoots up past workflow and theUnified
Modeling Language appears. In the US some search spikes seem to coincide with
times of tests and exams. We should not underestimate the role of US universities,
standards and practices in this powerhouse of software engineering in driving the
development of Petri nets over the next decades, beside the European strengths
in software intensive embedded and connected infrastructures in Industry 4.0
domains. I dare to include the emergent and future disciplines of quantum software
engineering and biomaterials programming, which are already gaining momentum
at the modelling and simulation level and are poised to make significant commercial
inroads. These systems will be truly parallel, software controlled and hybrid
(discrete-continuous). History has shown that new programming paradigms do not
remain in the hands of mathematicians and engineering-scientists. As they become
mainstream, diagram design notations suitable for practitioners, designers and
testers, combined with expressive and easy-to-use scripting, emerge for rapid pro-
gram development, driving down cost-benefit ratios and accelerating time to market.

2 Petri’s Zeit

2.1 Time

Beside removing continuous real time (the reals R) and a single global clock
from a priori assumptions ruling synchronisation, Petri’s nets take a number of
other discrete or finitary axiomatisation steps, including causality, local time and

3Anatol Holt’s role includes many contributions. He also coined the term ‘Petri nets’, according to
a letter Petri sent to Holt, as reported in a memorial lecture for Petri.
4May 10, 2017.
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limited spatial neighbourhoods. They aim to represent topological and geometrical
properties by the static structure or architecture of the nets including elements
of change. To bring the concurrent effects of these dynamics to life, only the
redistribution of tokens of information needs to be animated in these graphs.
Where this is too unwieldy, special algebraic and graphical notations are used
to show any critical evolution of the system under study or test, or solutions to
problems formulated. The seeds of the modern axioms were already sown in Petri’s
thesis. The static representation of change allows teachers of Petri nets to present
complex dynamics as a game, where student players enact processes, and the net
lays out the spatio-temporal structures and defines the rules of change including
constraints on independent moves. Tokens of various shapes and information
content represent the parts or particles, and are moved around on the net so players
can record mutual agreements, document the current states of parts and enact
the transitions, possibly with choices, dependent on the rules of the specific net
interpretation. Moreover Petri’s k-forms (a specific kind of nets), which he used to
build a Turing machine, allowed for a physical system with a growing number of
component nets. This was to avoid requiring an infinite tape but equally to avoid the
crippling limitations of a bounded finite-state machine for his general asynchronous
computational machines. Relativistic time and the problem of synchronising large
numbers of microscopically small parts (such as in computer chips) has often been a
starting point in Petri’s talks. In his thesis, however, quantum-level uncertainty and
relativistic time (bounded signal speed) are put on the same footing. Regardless of
whether clock ticks are counted, errors in timing or location, or mass concentrations
in space, Petri kept insisting to those listening, these measurements are ultimately
realised using devices that have to follow the laws of modem physics. These
impose relativistic bounds and Heisenberg uncertainty. Petri chooses explicitly not
to present discrete mathematical models of parallel systems as an approximation
of an analogue world (with continuous time and space given a priori). Rather,
he accepts a finitary continuity of nets and mappings to continuous reals as an
idealisation of an ultimately quantised world. In 1962 he wrote

We will speak as if the discrete objects of the theory are embedded in a continuous space-
time world in order to facilitate understanding. It should be noted, however, that this is
by no means necessary; the apparent vivid clarity of the continuum ultimately rests on the
erroneous assumption that the axiom of density has an operational meaning. This axiom is
rather a linguistic instrument for hypothesis formation in the sense of inductive logic.

As continuous real time is a priori absent in Petri nets, it must be reintroduced
appropriately in special net interpretations or models, when needed,5 based on net
structures and partial or cyclic partial orders only; and the occurrence elements of

5Often with a warning by the computer pioneer to make sure temporal assumptions are consistent
with concurrency axioms: “This is only for convenience and ease of understanding in classical
terms”; “Continuous real-time is based on the erroneous assumption of density, which contradicts
our axioms in terms of measurement”; “Two integer clocks can be compared to arbitrary rational
precision and ultimately violate either spatial density bounds for information or speed bounds for
synchronisation when the machine keeps getting extended”.
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computations to which a net gives rise, have to be mapped consistently to space-
time. However for a consistent modern physics notion of time, for example for the
use of nets in chemistry, metabolic biological processes or quantum computing,
different variations of Petri nets have been built in the absence of a compatible
discrete mathematical and axiomatic foundation of quantum physics and/or the
absence of a suitable quantum Petri net theory that places Petri nets into the
emerging theory of quantum automata and formal languages.

Common to all these nets is that the elementary states (usually denoted by S)
are definite in location or space (as indicated by the term place6 in some net
interpretations) but have no definite single time point in (local or global) time.
Instead they are thought and taught to be associated with a temporal region or
duration when mapped into physical global space and time by practitioners. They
are contingent. Moreover, looking at concurrent states, their simultaneity, while
explicitly possible, is objectively transient and hence potentially not observable.
Fundamentally, state elements give rise to spatial characteristics of the net. Dually,
the elementary transitions (T ) have a definite local time (point) and indefinite
location. An elementary transition t represents an interaction causally dependent
on state elements in its pre-set •t . State elements in the post-set t• depend on
t . As an interaction between two or more parts, the location of the transition is
indefinite, related to all its interacting parts, in a region defined by the parts’ possibly
multiple locations. A high-level transition or state may refine or unfold into lower-
level transition-bound and state-bound nets, respectively. Thereby transitions may
gain stability and temporal duration from underlying states, and states instability
and local dynamics from underlying transitions. These refinements or foldings (in
the other direction) preserve net topology [12]. The causal relationship or flow (F )
from pre-set states to transitions or from transitions to post-set states may be further
quantified and qualified, depending on the special net interpretation. For example,
quantities may specify the number, colour or value of tokens. Qualities in some
nets include triggering (exhibitory) or cancelling (inhibitory) of transition firings
depending on such quantities, or on predicates in terms of information carried
by such tokens. In this sense, causality is the primary concept ordering transition
occurrences, not time. The resulting causal ordering of firing sequences may be
regarded as a local and discrete time. Thus a transition firing defines a discrete time-
like point measurable/noticeable in terms of net structure, while the marking of a
state defines a space-like point. The waves of discrete firings and markings across
the net define a partially ordered global time in Petri nets in terms of so-called
(Dedekind) cuts7 of maximal sets of mutually independent net elements.

6The original German terms ‘Stelle’ and ‘Stelligkeit’ also mean ‘position’ and ‘arity’ for token
distribution variables in transitions or the entire net as functions on such distribution vectors.
7Dedekind cuts at the event occurrence net level, i.e. in terms of elementary firings and marking.
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An overriding guiding principle of Petri’s axiomatisation of concurrency and
synchronisation is that

(I) The system model must be consistent with the laws of physics.

Other luminaries acknowledge this principle:

Another important point, which may originally have seemed merely eccentric, but now
looks rather ahead of its time, is the extent to which Petri’s thinking was explicitly
influenced by physics ([. . . ] As one example, note that K-density comes from one of
Carnap’s axiomatizations of relativity). To a large extent, and by design, Net Theory can
be seen as a kind of discrete physics: lines are time-like causal flows, cuts are space-like
regions, process unfoldings of a marked net are like the solution trajectories of a differential
equation. This acquires new significance today, when the consequences of the idea that
Information is physical are being explored in the rapidly developing field of quantum
informatics. (Abramsky [1])

Much of what I have been saying was already well understood in the sixties by Carl
Adam Petri, who pioneered the scientific modeling of discrete concurrent systems. Petri’s
work has a secure place at the root of concurrency theory. He declared the aim that his
theory of nets should—at its lowest levels—serve impartially as a model of the physical
world and as a model of computation. [. . . ] Already, for him, a memory register and a
program are modeled by the same kind of object—namely a net—and this breaks down the
active/passive dichotomy. (Robin Milner in his Turing Award Lecture 1991 [8])

Both Abramsky and Petri complained at times that too many concurrency models
(including special new types of nets) are cooked up quickly as variations of existing
mathematical models because of the taste of computer scientists. In Petri’s view,
the ultimate proof was not in the convenience of notation, but in the realisation of
parallel systems and the adequacy of the nets in describing them. This principle
of an experimental information theory of concurrency, not unlike the applied and
experimental physics environment that Petri grew up in, is the other side of the coin
of Principle (I) above:

(I’) Experiment and computation shall prove the utility of the model and the theory.

Petri was aware of the grand fusion of geometry, abstract algebra, arithmetic and
topology occurring (and still unfinished) and driven by mathematical physics and
experimental physics combined. In his later lectures, he occasionally mentioned
Hilbert and Minkowski (cf. Fig. 3). The latter had lectured at Bonn and given his
famous speech in 1906, at a historic Cologne Workshop: “The views of space and
time which I wish to lay before you have sprung from physics. [. . .] Space by
itself and time by itself will totally fade into shadows.” Petri saw his nets making a
contribution by linking to physics through a deep rooting in relativistic and quantal
measurement. Towards the end of his career and into his retirement he kept working
with collaborators including Konrad Zuse and connecting the lowest-level meshes of
his nets with quantum foam in discrete complex spaces. The most recent lectures of
the late Petri bring home his view that in order to make space for parallelism present
in our natural world from the subatomic level to everyday life, methods must be
shaped that are rooted in the mathematics of quantum mechanics. This necessitated
methods allowing for, and reasoning with, uncertain judgement of temporal and
spatial distance at any scale. These would then give sufficient wiggle space to
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parallelism and acausal relationships, even at the level of socio-technical systems
where evidence is judged on the basis of de facto and principally incomplete and
uncertain measurement, by people and organisations.

2.2 Zeitgeist and Place

Let us briefly look at the time and context into which Petri’s initial ideas were born.
Petri was an applied mathematician by training with applications in physics before
starting his Ph.D. at the Faculty of Natural Sciences at the Rheinische-Friedrich-
Wilhelms University Bonn.8 Petri conducted his Ph.D. project in an environment
of applied mathematicians applying themselves to physics and solving practical
problems in geometry and PDEs, with a particular focus on the novel computational
approaches possible with computers. Even in my undergraduate days at Bonn, in
the first half of the 1970s mathematics and computer science students had to take
a common foundation in physics, and started largely with an applied mathematics
background, with practice in Fortran and Lisp9 (plus other language options such
as APL, ALGOL and PL/I) with numerous other computer science courses. From
1958, Heinz Unger was the chair of the Institute for Applied Mathematics at
Bonn—appointed by Prof. Ernst Peschl, his former Ph.D. advisor. Unger’s institute
maintained a focus on numerical methods applied to physics. Other new chairs were
subsequently appointed and covered mathematical physics and statistical methods.
Computer science was not an established discipline yet. Prof. Böhling (cf. also
Fig. 3), another former Ph.D. student of Unger around Petri’s Ph.D. time, was the
first Computer Science Chair at Bonn in the late 1960s.

This was the immediate environment in which Petri grew to become a scientist
and leader.

The Zeitgeist around the time of Petri’s thesis project was affected by global
winds of change, which had started well before. While Kurt Gödel had written his
proof 30 years earlier, his crucial works were still being digested at universities
including Bonn. Science was grappling with the related conundrum, that on the
one hand certain aspects of physical reality are fundamentally beyond the realm
of precise measurement, yet on the other, probabilities are measurable as physical
reality and therefore they exist. But had experimental science not held that which is
not measurable is not science and that which is measured in scientific experiments

8Well before I studied there and met him while working as a student and later researcher at
the GMD Schloß Birlinghoven, St. Augustin, near Bonn, where he was the foundation director
of the Institute for Information Systems Theory (1968) later renamed to Methods Foundations,
while I was conducting research in the neighbouring Institute for Systems Technology working on
compiler construction from 1976 and later on software theory, the Segras specification language
and a toolkit bridging algebraic-categorical specification and Petri nets.
9Course given by Klaus Berkling who later built the GMD reduction machine for his variant of the
λ-calculus.
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needs a logical interpretation? Different interpretations and philosophical schools
were vying for the ultimate language and logic underpinning of quantum physics
and relativity theory. The Vienna Circle (including Gödel) had disintegrated due
to Nazi persecution and emigration before WWII, but their school of thought now,
after WWII, began influencing the thinking once again.10 Von Neumann had just
passed away a few years earlier (1957) leaving deep works on axiomatisation of
quantum physics, logic, probability and computing (including brain computing)
and a legacy of collected works that would only successively appear, including
on cellular and parallel automata.11 The British Prime Minister Harold Macmillan
had decided to give independence to several colonies and gave his famous wind
of change speech in early 1960. US President John F. Kennedy had announced on
May 25, 1961, the commitment to landing a man on the moon and returning him
safely, and asked for an extra nine billion dollars in science, technology and defence
funding. Petri submitted his thesis 2 months later on July 27, 1961 in this time of
daring, courage and challenge,12 which was also the height of the cold war. Kennedy
visited Germany in June 1963. JFK gave a speech in Berlin with the famous quote
“Ich bin ein Berliner” and in Cologne (near Bonn) at the site of the old city hall and
of the relics of the medieval synagogue and Jewish quarter13 (now the site of the
planned Jewish Museum celebrating 1700 years of Jewish history in the Cologne-
Bonn area), just a short walk from the cathedral. JFK famously and comedically
ended his speech to the locals at this historic place and time with “Koelle Alaaf” but
not without mentioning Albertus Magnus (Albert of Cologne) who taught Thomas
of Aquinas. (See photo in Fig. 1a from a recent visit to Cologne and this site.)

Classical physics continued to be challenged: Feynman was publishing and
lecturing on Quantum electro-dynamics at the beginning of the 1960s, which would
earn him a share of the 1965 Nobel Prize in Physics.

It stands to reason that Petri would have been acutely aware of many of these
streams of global thinking and ideas. Antiauthoritarianism and anti-establishment
sentiment was growing well before student revolts of the late 1960s and early 1970s,
and locally—especially in the Cologne-Bonn region, where Petri lived and worked,
and Bonn the capital, the seat of federal government, was hence the target of choice
for protest marches. At the time of Petri’s thesis project, Cologne-Bonn had also
become a hub of philosophical, political and cultural movements. It was a centre
and meeting point for German and international avant-garde with the now world-
famous and late composer Stockhausen drawn into the scene by the artist Mary
Bauermeister, and then writing many of his revolutionary scores for ‘statistical’
and ‘spatial’ music, which was played on unconventional devices and deliberately

10Logical positivism: Only statements that are empirically verifiable are empirically meaningful.
But how can we even set a test and verify without prior theory and meaning?
11Taught in Bonn, where, to my delight, his entire collected works was held in multiple copies.
12Only to be admitted to his defence on June 20, 1962, almost a year later.
13Fifty years before Germany would become the country with the fastest-growing Jewish
population outside Israel.
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Fig. 1 (a) Left: (1963) John F. Kennedy visited Cologne, in times of global change; (b)
Right: (1983) Draft European Project GRASPIN press release; Petri nets for industrial software
engineering

questioned the experience of time, with temporal dynamics with or without states
and transitions—inspired by quantum physics and its modern philosophical notions.
Stockhausen, who had studied at Cologne, Paris and Bonn, moved to Kürten in
1961 and began one of his most productive and revolutionary phases not too far
from the GMD, and held professorial positions in Cologne and at a couple of US
universities. In those years, elements of the later Fluxus movement were born,
and then grew in the sixties when Mary got drawn to New York (1962–1970) by
Pop Culture. Fluxus was later described as “the most radical and experimental art
movement of the sixties”. Key figures of the later Fluxus movement and of the avant-
garde, poets, musicians, mathematicians, composers of experimental music, and
artists congregated at Cologne happenings from 1959–1960, in Mary Bauermeister’s
studio in the Lintgasse in Cologne: David Tudor, John Cage, George Brecht, La
Monte. Young, Nam June Paik, Mary Bauermeister, Karlheinz Stockhausen and
others. At the beginning of the 1970s, Mary moved to a neighbouring suburb to
mine in the broader Cologne area, and later became a good friend.14

Zeitgeist is not confined to singular happenings; it weaves together diverse
perspectives and crosses generations, and cultures; its ebbs and tides hit shores in
successive waves in culture, the sciences, technology and the wider society. A young
democratic West Germany with an old history and science grew up only slowly in
the shadows of the Holocaust [3], with the curses and blessings of European allies,
the help of a buoyant USA and admiration for popular figures like JFK and Bob
Dylan, apparently one of Petri’s favourite musicians.

14Through art, shared Yoga interest and hobbies such as bee keeping and, not least, Math tutoring
of her children and endless fascinating table conversations and occasional short courses on Eastern
philosophy and Hermetic literature.
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In 1968, from this historically strong Bonn University, Peschl, Unger and
others were also instrumental in founding the Gesellschaft für Mathematik und
Datenverarbeitung (GMD—German National Research Centre for Mathematics and
Computer Science), in which Petri soon would lead his institute, and in which Prof.
Krückeberg, another former Ph.D. student of Unger, later became the technical
director, after Peschl’s, and Unger’s directorships.

In parallel to the creation of the GMD, the term ‘software crisis’ was coined in
1968 at a NATO conference held in Munich. This led many universities in Germany
and across the world to create computer science departments and eventually full
CS degrees. While offering CS subjects and research to mathematics students for
some time, Bonn had just introduced CS before I enrolled in winter semester 1971,
in Mathematics, Computer Science and Asian Philology, with some overloading in
courses and practicals. Many of the professors listed in Fig. 3 (bottom) for Bonn
(yellow) and GMD+Bonn (green) were lecturing at Bonn during the 1970s, when I
took courses offered by Unger, Peschl, Böhling, Indermark, Olivier, Hasenjäger15

and others (not in the graph). It is interesting to note the central role that Peschl
and Unger played in applied mathematics, and in the creation of computer science
at Bonn, beside the foundation of the GMD, and how this is reflected in the Ph.D.
ancestry graph, too.

Already in 1974, I began work at the GMD as a research assistant, before
graduating. This also offered the opportunity to source a Master’s thesis within an
applied context. 1974 was also the year I married. Hence, this appointment and
the option of a thesis were important also to set me on a path of completion and
independence, and I gave up the idea to complete—beside Computer Science—a
full degree in Mathematics and at least undergraduate in Asian Philology. I assume
the first CS students in Bonn graduated in 1975, as my GMD colleague Cornelius
Hopmann mentioned later that he had been the fourth graduate from the new CS
degree, in 1975. According to my low student ID number, I would have been
among the first one or two cohorts to enrol in it. In mid-1976, immediately after
graduating—then from a ten-semester degree16 including my thesis project—I was
hired full-time by the GMD as a researcher. I had already met Petri once or twice
during this time. My Ph.D. project on Petri nets and algebra would only begin in the
early 1980s, and was entirely conducted at the GMD Bonn (Schloß Birlinghoven,
St. Augustin). I travelled for meetings with my main advisor, Prof. Hans-Jörg
Kreowski, at Bremen, or he visited GMD. Locally, I had access to my second
advisor, Prof. Kurt Lautenbach, who also joined me at my defence in Bremen, and
who was one of Petri’s close collaborators (see also Fig. 3).

Through the GMD and the foundation of with generous state and national
funding, Bonn had well-advanced computing platforms already since the foundation

15Who goes back to Hegel, not shown in the graph.
16Many students started a professional career during their last year of study or earlier. The average
number of semesters was therefore 12 or more in this unregulated environment, due to part-time
study in advanced years.
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of the GMD, still at my time, and I believe now that GMD is merged into the
Fraunhofer. These included IBM 360/50 systems with, at the time, significantly
large storage and horsepower, but later also MIT Lambda Lisp machines (beta
tested at GMD, we were told they were the first outside the US)17 and they
were soon replaced by (more reliable) Symbolics Lisp machines. Subsequently,
Symbolics 3600 series machines were used in our projects for visually editing
Petri net and algebraic specifications, rewriting, unfolding and implementing them.
The close interaction and long-lasting friendship between Bernd Krämer, Dimitrios
Christodoulakis and the author (cf. Fig. 3) was forged in those years, at GMD
Bonn, and continued into our professorial careers. This early work on Petri nets,
specification and implementation found space to expand in a successful European
ESPRIT grant, GRASPIN (Fig. 2) from 1983 [6, 7, 16, 17], and then involved
translating some of the methods into an industrial context at Siemens in Munich,
Olivetti in Pisa and other participating companies. Later our tools were ported to
(co-branded) Xerox Interlisp AI machines (“West Coast Lisp”) by Siemens and we
ported them to Unix running on Sun Microsystems.

3 Petri’s Vision

Among the many visionary themes that still run through the theory and application
of Petri nets, how can we identify the, say, two or three principles that are the most
outstanding? We approach this question by calling on Petri’s guidance, looking at
his thesis and comparing candidate themes with his (and others’) later publications,
and a recollection of his inspiring talks and conversations. To excel over the next 50
years, such key characteristics must attract the next generation of brightest minds
by

1. contributing and being seen to contribute computer science understanding and
methods to other collaborating sciences, notably physics and related sciences
(given Petri’s scientific origin there);

2. growing as an active field in its own right, with deep knowledge and beautiful
mathematics solving or helping to solve grand challenges and delivering break-
through methods;

3. offering rich opportunities for impactful translation into education and practice
of systems and software engineering, natural sciences and artificial intelligence,
including global and virtual collaboration platforms.

17From memory, 1979, due to Petri’s close links with MIT; I could make it crash occasionally by
fast mouse movements; it was usable, and entirely written in Flavors, the object-oriented East Coast
Lisp, which I would use later for both compiler construction and algebraic Petri net specification,
and as a target for pilot implementations.
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In principle (I/I’) we have already identified the importance of modelling realism
through experiment. What are the other two?

3.1 Make Space for Parallelism

True parallelism requires wiggle space for the asynchronous participants in interac-
tions and therefore relaxation of metrics, especially continuous metrics. A foremost
guiding principle is therefore:

(II) Make true concurrency a starting point rather than an afterthought.

This applies to engineering designs as much as to the axiomatic design of net
theory. The principle respects partial independence and prioritises causality over
temporal order.

Petri repeatedly stressed the point that (global) metric properties of building
blocks in models and machinery must be relaxed to faithfully achieve parallelism
and asynchronous operation, i.e. local control of actions. This is necessitated by de
facto unbounded extensibility in terms of dynamic allocation of additional physical
machinery such as (in today’s terms) memory banks, cloud servers, physical
resources, say in disaster emergency services, recruitment of brain regions for highly
demanding tasks, or ensemble formation and entanglement of particles in quantum
electrodynamics. Relaxation, so Petri claimed in his thesis already, can be achieved
in exchange for structural characteristics that enable proper synchronisation and
communication consistent with the physical realism of the computing devices, their
operation, and their communication under the principles of modern physics. These
structures occur now in a topology of Petri nets, in which it is still possible to
resurrect a discrete and (in the limit case) continuous geometry by counting alone.18

In his talks, Petri occasionally quoted Kronecker, who famously said “God made the
integers, all else is the work of man.”

Clearly Petri nets thus take an architectural approach to systems from their very
beginning—in the sense of the IEEE standard definition of systems architecture:
as the characterisation of components, their interrelation and interaction with the
environment of the system. This approach, too, was visionary and predates, for
example, the maturing of software architecture in the course of the 1990s.19

In his Ph.D. thesis, Petri showed how this relaxation of metrics could be
achieved for a realisation of the Turing machine in terms of his nets, including the
formalisation of the Turing tape, which is usually not formalised but simply taken
for granted in mathematical introductions to the Turing machine model.

18This is out of the scope of this work. We refer to work by Valk, Smith, and Petri himself.
19As celebrated for instance by Mary Shaw’s and David Garlan’s articles, or speeches on software
architecture practice and research at the International Conference on Software Engineering (2000
and beyond), the flagship conference of the software engineering discipline.
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For Petri, a key axiomatic consequence of this was to accept

– upper bounds for (temporal) signal speed and (spatial) information density;
– limitations of any finite-size machine to iterative classes of input sequences;
– unbounded on-demand extensions of finite-size machines for processing recur-

sively defined input sequences.

Consequently, classical automata theory devices violate at least one of the above
requirements after a finite number of extension steps.

In his later writing, already from 1980 [11, 12], Petri and his inner circle of
researchers return to continuity, topology and the connection to metrics, introducing
both N-density and K-density of certain nets. Net topology is based on the relation of
proximity (P ) of a local state with a transition (sPt, read s at t) if and only if there is a
flow relation between the two. Thus transitions relate to the inseparable annihilation
and creation of local state, at the heart of causal connectedness and change, and
represented by movement of tokens, in the space-time structures of nets. Einstein
is famously quoted as saying: “Nothing happens, until something moves.” The
relation of Unitary axiomatically defined net structures to metric spaces (including
the continuous coordinate systems and time central to engineering mathematics)
remains a topic in Petri’s later work and that of others, is does the continuity of net
mappings in terms of net topology. Petri wrote [13] that “net theory was originally
presented as the combinatorial topology of causality”.

Many information theory researchers dealing with concurrency are still grappling
with its fundamental concepts. There are multiple proofs that true concurrency
includes but is different from interleaving concurrency. If Feynman’s living things
(in his own words) can all be understood in terms of jiggling and wiggling (of
atoms), then Petri’s nets provide the topological wiggling space to do so in very
large numbers, asynchronously and scalably, and in hybrid (discrete and continuous)
terms. Petri’s universal gate, studied in his thesis in 1962 for reversible computing,
was rediscovered after joint work as the Fredkin and Toffoli gate in the late
1970s and acknowledged by them in 1982 [4]. Some authors now call it the Petri-
Toffoli-Fredkin gate. Moreover, the arbitrary ordering of truly concurrent events in
interleaving semantics is not a decision or conflict in Petri nets. Leslie Lamport
writes in connection with a 2003 paper on arbiter-free synchronisation20:

In Petri nets, arbitration appears explicitly as conflict. A class of Petri nets called marked
graphs, which were studied in the early 70s by Anatol Holt and Fred Commoner, are the
largest class of Petri nets that are syntactically conflict-free. Marked-graph synchronization
is a natural generalization of producer/consumer synchronization. It was clear to me that
marked-graph synchronization can be implemented without an arbiter, though I never
bothered writing down the precise algorithm. I assumed that marked graphs describe
precisely the class of synchronization problems that could be solved without an arbiter.

That marked-graph synchronization can be implemented without an arbiter is undoubt-
edly obvious to people like Anatol Holt and Chuck Seitz, who are familiar with multiprocess

20https://www.microsoft.com/en-us/research/publication/arbiter-free-synchronization/ accessed
mid-May 2017.

https://www.microsoft.com/en-us/research/publication/arbiter-free-synchronization/
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synchronization, Petri nets, and the arbiter problem. However, such people are a dying
breed. So, I thought I should write up this result before it was lost. [. . . ] it occurred to
me that it would be fitting to contribute some unpublished 25-year-old work.

3.2 Combinatorial Nets, Logic and Algebra

High-level Nets, Coloured Petri Nets, and variations of Algebraic Petri Nets
[6, 14, 17] have become a corner-stone of Petri nets connecting them with abstract
data types and high-level programming languages, analysis methods and tools. They
permit abstraction, templates, genericity, foldings, reductions, parameterisation,
well-founded compositionality and a finitary representation without the a priori
assumption of finiteness or even boundedness. Hopcroft, Motwani and Ullman
wrote in their well-known book on automata theory:

In fact one could argue that a computer with 128 megabytes of main memory and 30
gigabyte disk, has “only” 25630,128,000,000 states, and is thus a finite automaton. However,
treating computers as finite automata (or treating brains as finite automata, which is where
the finite automata idea originated), is unproductive. The number of states involved is so
large, and the limits are so unclear, that you don’t draw any useful conclusions. In fact,
there is every reason to believe that, if we wanted to, we could expand the set of states of a
computer arbitrarily.

Most importantly, through their connection to algebra and logic, Petri nets
make it possible to abstract from the specifics of a given parallel behaviour or
communication problem, and characterise the common structures and invariants
in the dynamic variance and change, especially when it is fraught with the
combinatorial complexity of parallel processes, for which the unfriendly term ‘state
space explosion’ has been coined. Specific method worth mentioning and connected
in fundamental ways with Petri nets must include the linear algebraic and numerical
methods used in the special case of place-transition nets and their polynomial variant
of algebraic nets, especially the methods of S-invariants and the lesser-known but
equally important dual T-invariants.

In general net theory [12], different special net interpretations become speciali-
sations of higher-level ones through net mappings (morphisms). The algebraic and
logical characterisations may also help bridge from nets to algebraic models used
in other fields of science to contribute or borrow specific, net methods. In his thesis
Petri foreshadows this link and emphasises, well beyond his logic gates:

The transition to formal logic, algebra, and topology is immediately possible because of the
axiomatic method by which we introduce the concepts, and the theorems present there can
be applied directly to nets.

Petri returns to this point repeatedly in several of his papers, including his papers
on concurrency [11], for example connections to algebra and logic through so-called
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facts and violations,21 a paper on general net theory [12] illustrating a special role
for algebra, and papers and talks around 2000 on culture and mathematics of nets
[13]. While striving for simplicity where possible, Petri also stressed in his thesis

We do not ask which concepts are, in truth, the simplest. Only the successful application
of the theory, to be built upon the mathematical model proposed, will be claimed as a
justification of the conceptualizations.

Hence a further guiding principle might be formulated as follows:

(III) Focus on methods and tools for analysis before conceptual simplicity.

The algebraic, linear algebraic and polynomial representation of Petri nets
has received much attention. In practice, the ‘additive’ net structure is often
pleasantly more compact than the ‘multiplicative’ structure of its reachability graph.
Especially, the net may be finite or even small, while, through the folding structure
and dynamics in the markings, its reachability space can be very large or infinite. But
not all problems can be solved at the net level. For a specific interpretation such as
stochastic nets or quantum automata with their probability amplitude stochasticity in
complex numbers instead of real-valued probabilities, even the discrete reachability
structure implied by the net can be a further massive reduction compared to
that of the original stochastic or quantum automaton. This connection has been
exploited, for example by Leo Ojala’s group [9], when representing the control of
quantum cellular machines as Petri nets to dramatically reduce the quantum model-
checking problem. For some types of systems, Petri nets pick a balance between
capturing the partly finitary structure of change and permitting the sometimes
efficient analysis of that part, factoring it out and leaving the ‘nastier’ parts in the
space of the reachability structures. Typical Petri net matrix calculations are not only
economic; they also work in largely reduced representations of reachable markings,
in some sense allowing the conversion of space into time or vice versa, ultimately
through algebraic transformations of the nets themselves, using group theory and
net foldings [17]. Working on the graph in Fig. 3, I also came to realise again that
Felix Klein had spent significant time at Bonn University and that the core of his
new group theory was shared with me by my high-school mathematics teacher, Dr.
Bruno Bosbach, who later became Professor at Kassel University. While he held the
position at the Albertus-Magnus Gymnasium (High School) in Bensberg, he also
lectured and published on group theory at Wuppertal University, and offered group
theory to gifted students at high school.22

21Distinguishing evidence, affordance and allowance of harmful or unsafe behaviour.
22Several of us went on to study mathematics, not least due to Dr. Bosbach and his group theory
workshops.
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4 Petri the Person

Petri nets have accompanied me throughout my working life from my early work
on algebraic specification and Petri nets with one of the first working models of
algebraic Petri nets in two 1984 GMD publications using Goguen-style algebraic
specification and semantics. Petri has thus been a lasting and deep influence on me
and directly or indirectly on my collaborators and Ph.D. students.

In his talks and the personal communications I had with him, I always expe-
rienced Petri as humble, somewhat shy.23 Yet he presented his bold ideas with
exceptional clarity and occasionally carefully chosen subtlety in nuances and always
a deep understanding of neighbouring fields, especially physics.

Petri took everyone with him. For example he would, metaphorically, put the
audience into transitions and let them play the token game to illustrate parallel
independence of action and share some aspects of this quickly. Petri had a knack for
drawings, not unlike a cartoonist. His talent allowed him to condense his message
visually and playfully to achieve a surprising insight by suddenly transforming the
drawing into a similar specific net pattern abstracting the principle, regardless of the
limitations of the medium: an old-tech foil, a blackboard, the back of an envelope at
a workshop or hand-drawn figures in a journal article. His 1996 paper on space and
time is a case in point for mastery in both words and pictures.

Petri was also a master of the art of questioning his philosophy and answering
questions. For example, in the same paper, he answers the question “Is not net theory
listed among discrete models? Are you playing with words?” by following “By no
means. Consider, e.g., that every open covering of an articulation (ONet) is overlap-
connected. The set of possible measurement results for a continuous variable is
therefore overlap-connected; that is, between any two results, there is a finite chain
of intermediate possible results such that neighbours in the chain are compatible (do
not contradict each other). This does not hold for discrete models.”

I felt very privileged when joining the GMD and beginning my research work
in this context. Petri’s reputation had already grown; he was surrounded by world-
class researchers and visitors that came and went. Petri and others of reputation,
leading neighbouring institutes, had bold long-term plans to create the first this or
that and had track records demonstrating feasibility. Especially for students and
young researchers connected directly or indirectly with Petri, there was a mix of the
experiences of walking on holy ground and partaking in an exciting transformation,
not unlike the Facebook, Google or Apple (still) phenomenon these days, and
consistent with the focus on fostering a busy international research exchange in
other high-profile centres such as Prof. Hirzebruch’s at Bonn [15].

In the space of quantum information theory and quantum computing, and
generally across the sciences, Petri’s foresight lent his net theory and community an
eerily prescient focus on relevant topics arising from modern physics foundations

23Except for smoking without hesitation and without interruption, which was not uncommon in
those days.
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in combinatorial geometry and topology. Net theory also has unexplored depths and
untranslated results. Watch this space or join the community and journey!

5 Conclusion

In this work we aimed to shine a spotlight on some key principles of Petri nets
worth dissemination, exploration and experimentation over the next 50 years. Such
progress cannot be the work of a single individual or a small group but requires a
large and thriving community of practitioners, academic researchers and teachers.
Petri wrote [13]: “we stand only at the beginning of a Long March, having just taken
the first sure steps, while the end is not in view”.

We have drawn attention to aspects of Petri nets designed to contribute to
multidisciplinary sciences that increasingly demand ab initio combinatorial mod-
elling, simulation and experimentation. Especially in the not too distant future and
likely well within half a century, massively parallel nanorobotics, brain information
processing and quantum computing will require programming and software engi-
neering methods and development workflows that are agile, intelligibly and easy
to use by practitioners and at the same time trustworthy, with solid mathematically
founded analysis tools, to build machine-age systems that build reliable, safe and
secure systems—the hallmarks of Petri net theory and practice, today.

This presentation also aimed to be authentic and relevant in providing a backdrop
and historic context of the times when Petri developed his nets. In the scope and
length of this essay, it was possible only to sketch the times, the issues and the
people, in particular Petri himself. However, there is a rich and worthwhile literature
for the interested reader. Moreover, we took an evidence-based and scientific data
analysis approach to the task. Petri’s thesis is written in German but it should not be
too hard to locate or provide a proper translation that is better than the interpretation
of the thinking that I have attempted here. We have made an effort not to use
much mathematical notation, of which the Petri net literature is full, and to keep
mathematical understanding at a general level for scientists in domains other than
Petri nets or computer science. It is hoped that the essay provides broader access and
some measure of attractiveness to young interested researchers, to enter this special
field, or try and apply its results to their chosen field in science.

Acknowledgements Writing this essay and chapter allowed me to go through a small collection of
‘gem’24 papers and notes and really question hard what the longer-lasting issues were.25 I used data
analytics methods and results that would not have been possible without open science repositories
such as the Mathematics/Ph.D. Genealogy project cited, the Research Data Alliance project for

24I had carried them to the USA and Australia in long-distance moves and finally replaced most
with their digital version, creating wiggle room in my study for other parallel interests.
25Including why I was holding on to them.
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Petri Nets Are (Not Only) Distributed
Automata

David de Frutos Escrig

1 From Automata to Petri Nets: Simple but Productive

Let me start by expressing my gratitude to Carl Adam Petri for inventing Petri Nets,
which have been the topic of an important part of my research and therefore of
my enjoyment while playing the game of Science. Petri Nets have, for sure, one
of the most important features of a useful and interesting theory, viz., simplicity.
Two bright scientists who have worked on the formalisation of Programming
and Concurrency emphasised this motto throughout their career, with titles and
quotations that will remind us of this feature forever: Beauty is our Business [8],
a compendium of papers that honours Edsger W. Dijkstra, and the famous sentence
by C.A.R. Hoare from his Turing Award Lecture [9]: “There are two ways of
constructing a software design: One way is to make it so simple that there are
obviously no deficiencies and the other way is to make it so complicated that there
are no obvious deficiencies.”

Like these two geniuses, and many others, Petri contributed to the development
of Science and Engineering by proposing some simple but revolutionary ideas that
paved the way for new approaches that have proved to be extremely successful in
many applications. Certainly, to make them applicable, it is also customary that we
need to partially abandon that simplicity, because real systems are unfortunately
contaminated by various practical aspects that make them complicated to develop
and study. Fortunately, most of these visionaries got their recognition sooner or
later during their careers, and this was also the case for Petri. But at the same
time, it is not uncommon that the simplicity of their proposals is used by some
people to undervalue their goals, with the argument that anybody would have
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eventually proposed such “obvious” (because of their simplicity) theories. I have
the impression that Petri was, for sure unfairly, sometimes treated that way, possibly
as a consequence of the fact that he preferred to concentrate on the conceptually
essential aspects of his developments and thus remained intentionally outside (or at
least far away from) the developments that later made his proposals applicable, and
thus popular. His personal attitude towards life, and in particular the main interests
that guided his scientific career, are wonderfully described in his recent biography
by Smith [17].

In fact, Petri nets were initially conceived as a way of describing chemical
reactions. Therefore, we might say that there was a bit of serendipity in the fact that
they were later recognised (by Petri himself!) to be a great mechanism to describe
the essentials of Concurrent Computation. But again, many important discoveries
were connected to this serendipitous path, mainly because very often it is difficult
to distinguish casuality from causality.

In his Ph.D. Thesis Kommunikation mit Automaten, Petri presents the essential
features of Distributed-Concurrent Computation and demonstrates how they are
(simply!) represented in his net models: A synchronous execution of independent
actions, which at the same time are (either alone or when all in a certain group
have been executed) the cause that makes possible some new executions; also
possibly producing choices, when several possible futures are in conflict, together
with the idea of transformation (data are transformed, and therefore consumed,
when producing the corresponding result).

When we nowadays contemplate the definition of Petri Nets, it is not unusual to
see them as the natural distributed version of classical Automata. In fact, Petri uses
the term “automata” in the title of his thesis, although that title was so short (and
thus simple!) that many quite different interpretations of his intention in choosing
that title have been considered. But let us discuss in more detail that parallelism.
A classical automaton has an (atomic) state, which can be changed when it reads
a letter of the input word. Then the word is accepted whenever the state reached
after the whole word has been read is in a certain category of accepting states. Now
we distribute both the state and its changes. But the most important change is that
we totally change the nature of the gadget: instead of viewing it as a language
recogniser we look at it as a behaviour producer. Thus, we are interested in the
sequences of transition steps that can be produced from a certain initial state. We talk
about steps here because we also consider the parallel execution of some transitions
at the same time (which produces a single step). The choices discussed above will
possibly produce a non-deterministic behaviour. Certainly, classical automata can
also be non-deterministic, but in this case this is just a technical convenience, since
it is easy to turn any non-deterministic automation into an equivalent deterministic
automation. Instead, non-determinism is an essential feature of net behaviours that
results as a consequence of (resolution of) conflicts.

Therefore, a simple generalisation produces revolutionary changes whenever we
(read “originally Petri” here) notice that the convenient way of using the generalised
gadget is simply the opposite to the way that the original item was used. There
are other consequences of the change of our point of view: now the input must
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be reflected at the initial state from which we start to compute; this input is
transformed by the execution of the induced steps of transitions, which become
the expected output; the classical input-output finite computations to compute
mathematical functions are turned into natural infinite computations that simply
produce behaviours constituted by a sequence of steps. And all these changes just
“come for free”, as a consequence of the adequate reading of the provided definition.

A very interesting fact that also appears in most of the important developments
related to the Theory of Computation is that Petri understood that in order to develop
a “good” theory, some clearly unimplementable premises, such as unboundedness
of machines, must be assumed. At the same time, Petri nets become interesting in
applications when they are defined as finite objects. However, unboundedness must
remain somewhere if we want to claim that they are strong enough as computation
mechanisms. An alternative way of getting this unboundedness was represented by
Place-Transition Nets, where places can support a set of tokens, instead of just
Boolean information, as was the case for the simpler Case Event Nets, originally
defined and studied by Petri. Of course, when the former were introduced, Petri was
aware of their importance and applicability, but as stated already, he remained loyal
to his original model, mainly because once the key features to express concurrency
were already present, they could be studied without being disturbed by technical
obstacles caused by any unnecessary extension.

It was a great honour and quite a privilege for me to have had an opportunity to
meet Petri several times during my career. It is true that my own research has been
devoted to Place-Transition Nets and several of their variants, but it would definitely
have not been possible without Petri’s pioneering contributions. Next, I will give a
short review of them, stating the new features that my colleagues and I have studied,
thus modestly contributing to the development of Petri net theory. Its enormous size
nowadays proves the huge importance of the simple, but extremely clever, seed that
Petri planted in the forest of Science.

2 Decidability of Properties of Some Variants of P/T Nets

Whenever decidability and/or complexity of properties of any kind of system are
considered, it is essential that those properties are defined over an infinite set, for
instance the whole set of natural numbers N or any of its product sets N

k . This
is clearly the case when P/T nets with arbitrary initial markings are considered,
Monotonicity is an essential property of plain P/T nets, which makes impossible
the correct encoding of any complete conditional test. As a consequence, P/T
nets cannot be Turing-complete, because Reachability, which somehow includes
the Termination Problem for Petri nets, turns out to be decidable. Instead, it
becomes undecidable whenever inhibitor arcs are added to the basic model. Once
we know that plain P/T nets are monotonic, a natural property that somehow
replaces reachability in many situations is Coverability, where we are interested
in the reachability of any marking covering (thus being larger than) some given
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marking. This is also decidable for ordinary nets, and in fact much easier to decide,
using any variant of the coverability tree [11].

Our first work in this field was devoted to the study of the decidability of another
related property:Home States. A home state of a system is a marking that can always
be reached from any reachable marking of the system. I proved that this property is
also decidable for any P/T system [4] and later we proved in [6] that this is still the
case when we turn single states into their coverings, thus getting the notion of Home
Space.

When considering extensions of this basic model, we have found several
situations where the thin borderline between decidable and undecidable models is
reached, for instance, in the case of timed-arc Petri nets, where the tokens have an
associated age and the precondition arcs that control the firing of transitions can
take into account the age of the tokens to be consumed by their firing. We found
such a borderline situation because timed reachability was proved undecidable [16],
while instead timed coverability properties remain decidable [7]. It is really curious
how the precise way in which time is added to nets is responsible for reaching
that borderline. When time is just associated with the duration of transitions, timed
reachability remains decidable [15].

This shows that whenever we make an extension to the basic model, we need to
carefully study the resulting expressive power. For example, when the expressive
power provided by inhibitor arcs is reached, the (full) obtained model becomes
unmanageable. In such cases, we should look for adequate constraints by means of
which the effect of added features is somehow “tamed”, so that the systems resulting
from those limitations remain manageable. In a similar way, when the precise
border between decidability and undecidability is reached, we can still analyse the
constructed systems as long as the properties to be analysed remain on the safe side.
If that were not the case, we would need again to look for limitations on the use of
the extended model that keen it manageable. Finally, when there is no increase of the
expressive power, we can safely use the obtained model, even though this will not
represent any “added value”. However, the fact that the corresponding feature has
been explicitly introduced will make the obtainable systems more readable, even if
the use of the available procedures to check their properties might require a costly
elimination of the syntactic sugar represented by the new incorporated features.

More recently, we studied other, more sophisticated, extensions where security
features were considered. In particular, we studied nets with replicable components,
which somehow correspond to the idea posed by Petri of having nets with
unbounded structure, and also nets including tokens with individual identity (pure
names, using the technical terminology), so that these identities can be (only once)
produced, copied under strict control, and compared (by means of an equality
operator). Again, the borderline between decidability and undecidability is reached
by both extensions. As a matter of fact, they were proved to be absolutely equivalent
(i.e. each one can be reduced to the other) [13]. The surprising result came when
we considered both extensions at the same time. Then, even coverability becomes
undecidable, so that we need some limitations on the use of the added features, if
we want to get a manageable model [14].
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I conclude the presentation of the research on the extension of P/T nets that
we have done by referring to Ambient nets. They constitute a combination of the
Ambient Calculus [3], developed by Luca Cardelli and Andrew Gordon, and Petri
nets, so that transitions can be used either to move or to open the represented
ambients. In this way we obtained a structured model where mobility of components
is a primitive feature [5]. This work was a continuation of previous work, where
we developed our TPBC [1], a timed extension of the Petri Box Calculus [2],
developed by Eike Best, Raymond Devillers, and Maciej Koutny. Their original
proposal looked for an algebraic treatment of nets that allows a modular/composable
development of nets in a structured way. For sure, the lack of a primitive to organise
big nets into (composed) components in a systematic way is the main drawback
of Petri nets. As stated in the first section of this paper, Petri nets can be seen
as a distributed version of automata, and therefore are (initially) conceived as
state machines, whose behaviour is globally defined, even if this tries to capture
a local essence (each transition is only connected to a small number of places in
its vicinity). But the whole behaviour is defined as the unstructured aggregation of
those local firing rules, so that no systematic modular design is originally supported.

The original PBC included a Petri net Algebra, for which an operational
semantics was defined by a set of SOS-rules. It also supports a denotational
semantics that defines the net that captures the intended behaviour of each term
from the algebra, including the interpretation of recursively defined terms by means
of an adequate fixpoint operator. Moreover, a modular approach was also possible
by means of the so-called operator boxes. We extended all these elements to the
timed case, thus obtaining our TPBC [1].

As succinctly presented above, our work mainly concentrates on the study of the
expressiveness of several extensions of the basic model of P/T nets. This research
illustrates the potential flexibility of the basic model of Petri nets, which can be
extended, more or less naturally, by introducing different mechanisms to capture
the corresponding added features in a direct way. By the way, there are many other
characteristics that I have not cited here, such as probabilistic information (where
we also made a short incursion [12]), values as tokens, and in general Coloured Petri
nets [10], which enabled the development of practical tools such as CPNs, by Kurt
Jensen, which offered to the users the possibility to develop and analyse quite useful
systems.

But there are still many other conceptual and practical issues that underscore the
attractiveness of Petri nets. I am sure that most of them are discussed somewhere
else in this volume, but just to mention some of them, we have the Structural theory,
that studies the behavioural properties that can be inferred from some particular
properties of the form of a net; the Algebraic properties, that can be obtained from
the Matrix representation of the firing rule; the Language theoretical issues related
to the use of nets as language generators; and many others.
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Petri Nets: A Simple Language and Tool
for Modeling Complex Ideas

Ryszard Janicki

I first heard the name ‘Petri nets’ in the Fall of 1976. I was finishing my Ph.D.
(Theory of Coroutines) in the Computing Center (now the Institute of Computer
Science) of the Polish Academy of Sciences in Warsaw under the supervision of
Antoni Mazurkiewicz. He and Józef Winkowski were looking for a convenient tool
to deal with concurrency problems and organized a series of seminar talks on Petri
nets. They were aware of Petri’s ideas from his talk and paper presented at the
2nd International Conference on Mathematical Foundations of Computer Science
(MFCS’73) in Štrbské Pleso, Czechoslovakia in 1973 [10]. Very soon Petri nets
became the tool of choice for many people doing research in concurrency and
loosely connected to the Mazurkiewicz and Winkowski groups.

My first paper involving Petri nets was published in 1978 [3] and in the same
year I had the pleasure of meeting Carl Adam Petri in person. This happened
in Zakopane, Poland, during the MFCS’78 conference. We discussed—well I
was mainly listening—the relationship between nets, time, space, and composing
concurrent systems from sequential components. Professor Petri did not publish too
often, but all of his papers had a huge impact. The topics we discussed in Zakopane
in 1978 were eventually published by Professor Petri in 1996 [11]. This was my
only meeting with Carl Adam Petri; in those times I had more personal contacts
with his disciples and colleagues from GMD, Bonn, such as Hartman Genrich, Kurt
Lautenbach, and P. S. Thiagarajan. Yet, I believe this short encounter convinced me
that I should use Petri nets to model or at least to test and to illustrate my models
of concurrent operators and systems. And I did. Since 1978 concurrency theory
has been one of my major research topics and I use the Petri nets approach and
philosophy very often [4–7].
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One of the fundamental assumptions underlying the initial Petri nets theory was
that independent events (occurrences of actions) may be observed in any order.
Sequences (or step sequences) that differ only w.r.t. their ordering of independent
events are identified as belonging to the same concurrent run of the system under
consideration. This assumption was adopted by Antoni Mazurkiewicz among others
when he introduced the idea traces as equivalence classes of sequences comprising
all (sequential) observations of a single concurrent run [9], and by Maciej Koutny
and myself in our work on maximal concurrency and the reduction of reachability
graphs [4].

For me, and many others, the main attractions of Petri nets are their simplicity,
flexibility, and ability to model complex structures involving concurrency in a
relatively simple and convincing manner. There are very many different extensions
of the original Petri nets. One of the first simple but very powerful extensions was
the addition of inhibitor arcs by T. Agervala and M. Flynn in 1973 [1].

Inhibitor arcs allow a transition to check for the absence of a token. For example,
the arcs between transition a and place p4 in the nets N2 and N3 and between
transition b and place p3 in the net N3 from Fig. 1 are inhibitor arcs. They were
introduced in [1] to solve a synchronization problem not expressible in classical
Petri nets. In principle they allow ‘test for zero’, an operator the standard Petri nets
do not have. Elementary Petri nets with inhibitor arcs are very simple. They are just
classical one-safe place-transition nets without self-loops extended with inhibitor
arcs (cf. [5]). Nevertheless they can easily express complex behaviors involving
‘not later than’ cases [5, 7, 8], priorities, various versions of simultaneities, etc.

They also allow a very simple representation of more refined versions of
(generalized) independency relations. Figure 1, which is a motivating example in
[5], illustrates four basic cases of different behaviors that might be generated by two,
generally independent, events a and b. This and similar examples modeled with Petri
nets were crucial in the development of the theory of concurrency, where causality
is represented by two distinct relations instead of just partial orders (first proposed
in [5]), and in various generalizations of traces [6, 7]. The situation represented by

p1 p2

p3 p4

a b

N1

p1 p2

p3 p4

a b

N2

p1 p2

p3 p4

a b

N3

p1 p2

p3 p4

a b

N4

Fig. 1 Simple inhibitor nets illustrating four distinct behaviors generated by two events a and
b that can be interpreted as independent (w.r.t. generalized independency). The net N1 allows
sequences ab and ba but not a step sequence {a, b}, N2 allows a sequence ab and step sequence
{a, b} but not the sequence ba, N3 only allows a step sequence {a, b}, and N4, which is a standard
elementary Petri net, allows sequences ab, ba and the step sequence {a, b}
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Fig. 2 Illustration of ‘holding a token’ semantics for inhibitor nets. The interval order <io is an
intuitively possible run in the net N (by ‘holding a token’ in c when a ends and b starts). The
interval order <ia, is represented among others by the total order ≺io which is itself represented
by a sequence s = BaBcEaBbEbEc. The sequence s is a firing sequence of the net Nintrv

the net N1 of Fig. 1 led to the introduction of mutex arcs by Kleijn and Koutny [8],
which made modeling of such cases simpler, more convincing, and more intuitive
[7].

The models proposed and discussed in [5, 7] are not restricted to Petri nets, but
Petri nets played a crucial role in their development and provided the basic intuitions
and motivations.

It was argued by Norbert Wiener in 1914 [14] (and later more formally in [5])
that any execution that can be observed by a single observer must be an interval
order. This implies that the most precise observational semantics is defined in terms
of interval orders. However, generating interval orders directly is problematic for
most models of concurrency, including Petri nets. This is because the only feasible
sequence representation of interval order is by using the Fishburn Theorem1 [2] and
the sequences of beginnings and endings of events involved (usually denoted by Bx
and Ex for an event x) [2, 5]. This makes modeling concurrent behaviors involving
system runs represented by interval orders increasingly difficult when compared
with runs represented by event sequences or step sequences. Here is the point where
the flexibility and ease of constructing intuitive but formally correct extensions of
Petri nets becomes very helpful. Figure 2 illustrates a transformation of an ordinary

1A partial order < (of events) on X is an interval order if and only if there are mappings B : X →
Y, E : X → Y , some Y and a total order ≺ (of event beginning and endings) on Y such that
B(x) ≺ E(x) and x < y ⇔ E (x) ≺ B(y), for all x, y ∈ X (cf. [2, 5]). Often Bx and Ex are written
instead of B(x) and E(x). In Fig. 2, the total order ≺io is a possible total order representation of
the interval order <io.
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inhibitor net N into its interval representation Nintrv i.e., an inhibitor net where
transitions are instantaneous (zero time) event beginning and ends. The nets N and
Nintrv are equivalent in the sense that, when ‘holding a token’ operational semantics
is applied to N , any interval order representing a run in N can be represented
by the appropriate firing sequence of beginnings and ends in and vice versa all
appropriate firing sequences of Nintrv have their interval order counterpart run in
N . This example provided motivation and intuition to a recently published paper on
modeling concurrency with interval orders [6] (which can be seen as a descendant
of [5]).

If inhibitor arcs are not involved, transforming N into Nintrv is rather simple and
intuitive: we just replace each transition t by the subnet Bt → t© → Et , as
often happens in timed Petri nets [15]. However for inhibitor arcs the situation is a
little bit more complicated. Intuitively, assuming events a, b, and c take finite time to
execute and we can ‘hold a token’ when c is executed so it can overlap with both a

and b, the interval order <io from Fig. 2 is a legitimate run (from the initial marking
{s1, s2} to the marking {s3, s4}) in the net N from the same figure. However the step
sequence {a}{b, c} is not, as a token in. s3 after firing a prevents c from being fired,
both individually and together with b. Hence BaEaBbBcEbEc, etc., must not be a
firing sequence of Nintrv i.e., we must have the inhibitor arc connecting Bc with
b in Nintrv . ‘Holding a token’ semantics was also used in other influential results
involving interval orders such as [12, 13], albeit with different firing rules for nets
with or without inhibitor arcs.

While Petri nets are not the only formalism that is able to represent and
implement the model of concurrency based on interval orders proposed in [6],
without the intuitions and motivations Petri nets provided, the model of [6] (and
its ancestor [5]) would never have come to the existence.

To sum up, for almost 40 years Petri nets and also many of Petri’s ideas [10, 11]
provided fruitful motivation and a convenient tool for most of my research related
to concurrency and their traits can be found in most of my papers in this area of
research.
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Carl Adam Petri: A Tribute from Aarhus

Kurt Jensen and Mogens Nielsen

At Aarhus University we are delighted to be given the opportunity to pay a special
tribute to Carl Adam Petri. We were both fortunate to meet Carl Adam on several
occasions, but, more importantly, his visions and his research played a significant
role in the early development of the scientific basis of our Department of Computer
Science. As you will see, our concrete introduction to and our work with Petri Nets
was not based on strong collaboration with Carl Adam himself, but rather with a
number of his “disciples”.

Looking back in time, the foresight of Carl Adam Petri was truly astonishing,
when he introduced the notion of Petri Nets in his Ph.D. dissertation in 1962,
“Kommunikationen mit Automaten”. Remember that this was at a time when
computing was conceived purely as a sequential concept with no notions of, e.g.
parallelism and communication, and yet Petri had the vision to introduce his
formalism of nets capturing fundamental concepts for computing as we know
it today—notably the foundational concepts of concurrency, conflict and causal
dependency. It took several years before we—as well as most of the rest of the
world—discovered the significance of his ideas and visions.

Our Department of Computer Science at Aarhus University was formally estab-
lished in 1971 as part of the Institute for Mathematics, with a curriculum focusing
on the theoretical aspects of computing and with no elements of concurrency. This
situation changed dramatically in 1977. At the time, Antoni Mazurkiewicz had just
joined our department, and in the years to follow he played a significant role in our
early development of concurrency, as witnessed, e.g. by his influential early paper
on Trace Languages, written during his time in Aarhus. Importantly, one of Antoni’s
first actions in 1977 was to invite two of Petri’s colleagues from Bonn, Hartmann
Genrich and Kurt Lautenbach, to our department, where they gave an inspiring 1-
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week course on the intriguing world of Petri Nets. We both attended the course with
several of our colleagues, and the course would turn out to have a profound influence
on our careers—and on the development of our department as a whole.

We were both fascinated by Petri’s foundational ideas, and we both immediately
took up the challenge of understanding and utilizing the insight provided to us—
with different approaches and in different scientific directions.

Kurt’s early approach was to investigate the expressive power of Petri Nets
in defining the semantics of DELTA, a systems description language developed
by Kristen Nygaard, also visiting our department at the time [3], and this led
to a lifelong development of so-called High-Level Petri Nets, summarized in the
development and applications of the formalism Colored Petri Nets and a range
of associated tools [2]. It is worth acknowledging that the first notion of High-
Level Petri Nets originated from Petri’s group in Bonn, and also that the first Petri
Net tool was developed for Petri’s group in Bonn by Robert Shapiro. During a
visit to GMD Kurt worked with a prototype of the tool. A few years later Robert
Shapiro moved the tool to the Macintosh platform, and it became the basis for the
development of the Design/CPN tool at Meta Software, Cambridge, Massachusetts.
The main architects behind Design/CPN were Robert Shapiro, Kurt Jensen and
Peter Huber, heading a large, highly international group of developers, including
Hartmann Genrich from GMD.

Starting from the year 2000 a group of people at Aarhus University developed
CPN Tools [1], which was heavily based on experiences with the practical use
of Design/CPN. The main architects behind CPN Tools were Kurt Jensen, Søren
Christensen, Lars M. Kristensen and Michael Westergaard. In 2010 CPN Tools was
transferred from Aarhus University to the Technical University of Eindhoven; it
then had more than 10,000 licenses. CPN Tools is still the leading tool for editing,
simulation and analysis of High-Level Petri nets. The tool features incremental
syntax checking and code generation, which take place while a net is being
constructed. A fast simulator efficiently handles untimed and timed nets. Full and
partial state spaces can be generated and analyzed, and a standard state space report
contains information such as boundedness properties and liveness properties.

Mogens went to Edinburgh University for his postdoc in 1977, starting investiga-
tions on the theoretical foundation of Petri Nets with colleagues working on models
for concurrency, notably Glynn Winskel and Gordon Plotkin, leading to many years
working on foundational models for concurrency. At the time, formal calculi for
concurrency were developed, in Edinburgh notably the calculus CCS by Robin
Milner, and the predominant models for these calculi were so-called interleaving
models, expressing concurrency in terms of non-determinism. Our original idea was
to develop alternative models capturing Petri’s fundamental concepts of, e.g. concur-
rency, conflict and causal dependency. Our first published result [5] provided a tight
relationship between the world of Petri Nets and the world of domains developed in
denotational semantics by Dana Scott, introducing the notion of event structures.

During the following years, many such alternative models were developed by
researchers all over the world, at the time often referred to as “true concurrency”
models, and after Mogens’ return to Aarhus University, we were fortunate to be



Carl Adam Petri: A Tribute from Aarhus 83

able to establish a group of distinguished researchers contributing during the 1980s
and 1990s to the foundation of models for concurrency.

Glynn Winskel joined our department in 1980, and in 1982 he introduced
his groundbreaking categorical approach to models for concurrency [6]. Glynn’s
framework provided the mathematical foundation for understanding fundamental
concepts like unfolding of models such as Petri Nets as well as formal relationships
between models, as summarized in our survey of models for concurrency from 1995
[7]. It is worth noticing that many of the underlying concepts of models treated in
[7] can be traced back to the original concepts and insights of Petri.

P.S. Thiagarajan arrived in 1983 from Petri’s group in Bonn, and this led to
many years of collaboration, starting with a paper on degrees of non-determinism
and concurrency in Petri Nets from 1984 [4]. Vladimiro Sassone arrived at our
department in 1992 from Ugo Montanari’s group in Pisa, also leading to many years
of collaboration on models for concurrency, and in more recent years also on other
lines of research.

As indicated, the visit from Bonn to our department in 1977 was a true game-
changer for both of us, but also for our department as a whole, where concurrency
soon became a part of our curriculum—and this is still the case today.

We are grateful to have been a small part of the truly impressive development
of science based on Carl Adam Petri’s ideas over the many years since 1977,
and we are delighted to have witnessed the development of a strong Petri Net
community worldwide. In this connection, we must acknowledge the efforts of
Grzegorz Rozenberg, who played an essential role in propagating Petri’s ideas and
in building the Petri Net community.

As mentioned above, we did not have a strong working relationship with Carl
Adam himself. However, we both met and talked to Carl Adam on several occasions,
and we were always impressed by his friendly personality, his open-mindedness to
science, and his scientific generosity in conversations. As an example, we experi-
enced with admiration his insight and genuine interest in practical applications and
tool development—despite his own inclination for theoretical foundational work.
His visions and insights had enormous impact not only on us and our department,
but on computer science as a whole.
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Some Interactions with Carl Adam Petri
over Three Decades

Manuel Silva

Science and Technology are social constructions. Nevertheless, in their development
some people contribute in outstanding ways. As recognized by Isaac Newton in
a letter to Robert Hooke (1676): “If I have seen further, it is by standing on the
shoulders of giants.”

In relatively very few cases, the name of a researcher is given to a theory for
an entire subfield. This is the case with the so-called Petri Nets (PNs), a Systems
Theory initially inspired by Carl Adam Petri (1926–2010). The first stone of this
construction (in which Petri nets are not defined!) is his Ph.D. dissertation [6].1 We
can say that Petri was a mathematician—more precisely a systems theorist—in a
computer science environment. Nevertheless, he was not a classical mathematician.
Interested in the description of some real-life situations, he essentially worked at
the conceptual level, providing foundations for new ways of representing systems.
This may be viewed as a profile less frequently exercised with success than that of
a “theorem prover.” In other words, he was much more conceptual than technical.

In view of the long life cycle of many systems (conception and modeling; analysis
and synthesis from different perspectives; implementation and operation) and of the
diversity of application domains, it seems desirable to have a family of formalisms
rather than a collection of “unrelated” or weakly related formalisms. Coherence
among models usable at different phases (untimed preliminary models, different
kinds of timed models for performance evaluation and control, etc.), economy in the

1For its translation into English see: C. A. Petri, Communication with automata. Rome Air
Development Center TR-65-377, New York, 1966.
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transformations, and synergy in the development of models and theories are among
the expected advantages.

The conceptual seeds proposed by Carl Adam Petri do not just flourish as a
single formalism, initially the so-called Condition/Event nets, where the states are
expressed in terms of Boolean variables. They blossom as a set of formalisms
that constitute the foundations of a modeling paradigm, a conceptual framework
that allows us to obtain “derived” formalisms from some common concepts and
principles. In any case, it is important to remark that proceeding within a given
modeling paradigm does not mean at all that the work is not really multidisciplinary!
In our view, the PN modeling paradigm derives from the “cross-product” of the dif-
ferent levels of abstraction in PNs (Condition/Event; Place/Transition; Colored. . . )
and different interpreted extensions (for example, considering external events or
conditions and actions, adding (quantitative) time in one of the many possible ways,
etc.) [14].

I met Carl Adam Petri for the first time in the “capital of the French Alps,”
in 1976. Hosted by Gabrièle Saucier and Joseph Sifakis, he and Anatole Holt
visited the École Nationale Supérieure d’Informatique et de Mathématique
Appliquées de Grenoble (ENSIMAG). At that time I was working at the Laboratoire
d’Automatique de Grenoble (LAG) as an “allocataire de recherche CNRS.”

To meet him was an important goal for me. In fact, some time before, under the
supervision of René David, I had started my Ph.D. My initial topic was based on
interconnected finite-state automata (as the modeling formalism) and modular hard-
ware implementation with CUSAs.2 However at that time, Programmable Logic
Controllers PLCs and microprocessors became promising means for implementing
logic controllers. On the other hand, Petri Nets and their modeling and analysis
advantages (and limitations) started to become better known. So I proposed to René
David, my advisor and a long-time friend, to radically move the topic of my Ph.D.
work towards PNs and programmed implementations. A drastic change!

I attended the talks of Petri and Holt at the ENSIMAG. In particular, I managed
to have discussions with Carl Adam. I explained to him part of my difficulties
with coding in sequence instructions that represent “parallel” evolutions in a logic
controller, for example. The basic idea was that the underlying “serialization”
allows the introduction of some wrong behaviors, hazards due to the “sequential
programming” [12]. In fact, it quickly became obvious to me that the programmed
implementation of net models was not the kind of problem that he was interested
in. In fact, he was involved in questions of a quite different nature, among others,
on Synchronic Distance (SD), a metric in the firing of transitions, a fundamental
concept introduced in [7] and later generalized on several occasions (see, e.g., [15]).
This clearly meant that our interests were almost “disjoint” at that time. However,
this did change later on!

2Cellule Universelle pour Séquences Asynchrones, a CUSA is an interesting kind of memory cell
that keep “hazards under control.” It was proposed by René David in his Thèse d’État in 1969. For
a later but easy to reach reference, see [1].
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Let me restrict this note to some points of interaction concerning two different
topics, which we discussed several times. The first one that I briefly recall here
is closely related to the already mentioned questions that were of interest to him
in 1976. It led to the so-called Synchrony Theory. The second is Fluidization of
discrete event models of net systems. He showed strong interest in both topics; even
some potential cooperation was considered, although it was never realized.

The next interaction I evoke here took place in Milano in May 1986, at the
International Seminar on Applicability of Petri Nets to Operations Research. It was
organized by Anastasia Pagnoni at Bocconi University. This interaction continued
in June, at the 7th European Workshop on Applications and Theory of Petri
Nets (EWATPN, Oxford, June). At that time I was interested in dependencies
between transition firings in (weighted) net models. I presented to Carl Adam
some weaknesses of synchronic distance, a concept that does not take into account
some important transition-firing dependences. My starting consideration was that
SD-relations (they hold if there exists a weighting for the firing of transitions
such that the SD-measure is finite) were useful to deal with dependences “like”
stoichiometric ratios in chemistry, as they are concerned with some kind of linear
(and fixed) dependencies in the firing count of very long firing sequences (i.e.,
some “rigid” relationships between transition firings in long runs). Nevertheless,
many firing dependences were not captured. Therefore, together with Tadao Murata
(University of Chicago), we were working on a generalization: Bounded-Fairness
(BF) relations. Two transitions in a PN system are said to be in a BF-relation if
there exists a positive integer k such that neither of them can fire more than k times
without the other transition firing, in any firing sequence starting at any reachable
marking. Of course, if two transitions are in a SD-relation, they are in a BF-relation,
but the reverse is not true. As a matter of fact, Carl Adam always appreciated the
net system given in Fig. 1, the “smallest” live, bounded, and reversible ordinary net
system having two transitions in a BF-relation (transitions a and d), but not in an
SD-relation.

The following two interactions I want to briefly recall here happened at the
University of Zaragoza. In 1987 we organized the 8th European Workshop on

Fig. 1 Transitions a and d
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Application and Theory of Petri Nets (EWATPN) and Carl Adam came to Zaragoza.
With José Manuel Colom, we considered linear-programming techniques (LP) in
order to compute certain synchronic bounds and to characterize the corresponding
synchronic relations. Weak and strong duality theorems, unboundedness theorems,
and alternatives theorems were jointly considered for the first time in a systematic,
way in the context of analyzing Place/Transition models (for a revised version of
the paper presented at the workshop see [11]), which led to several polynomial-time
computations.3 Even though the merging of PNs and LP was partly a computational
topic, we still discussed it. Moreover, it would be easy to observe that this systematic
use of LP consists of a relaxation of solutions into the non-negative reals, which
can be “interpreted” as dealing with autonomous continuous PNs. In fact, at the
same meeting, continuous PNs were defined at the net level, rather than at the
level of the state or fundamental equation, by René David and Hassan Alla, our
colleagues from Grenoble [2] (for broader perspectives on this kind of net systems,
see [3, 10]). Nevertheless, continuous PNs were received with some reluctance by
the community, just as timed PNs had been some years before. The suspicious
reception at that time derives from the evaluation of their relevance to the series
of EWATPN meetings, because “truly discrete” models were not being considered.

A special volume of “Advances in Petri Nets” with the title Concurrency and
Nets [16] was prepared as a tribute to Carl Adam Petri on the occasion of his 60th
birthday and it was delivered to him at the banquet of the EWATPN meeting in
Zaragoza (Fig. 2). It was followed by “jotas aragonesas,” songs and dances from
Aragón that Carl Adam really liked. Our paper “Towards a Synchrony Theory for
P/T Nets” was published in that special volume [16].

Founded in 1974 as Escuela Técnica Superior de Ingenieros Industriales and
renamed Centro Politécnico Superior (CPS) since 1989, our “young” school of
engineering celebrated its 25th anniversary in April 1999. We decided to award the
first three doctorates Honoris Causa in Engineering by our university, an institution
founded by King Carlos I (Emperor Charles V) in 1542.4 For that purpose, in
accordance with the three classical basic pillars of technology, three relevant
scientists were selected: one from materials (Steve Tsai, Stanford University), the
second one from energy (Amable Liñán, Universidad Politécnica de Madrid), and
the third one from information: Carl Adam Petri, as representative of Systems
Theory and Computer Science (GMD, Bonn).

To honor Carl Adam, the day before the main ceremony we organized an
international seminar with talks given by Gianfranco Balbo (“On Petri Nets

3Among the precedent works, Genrich and Lautenbach [4] use LPP for computing in marked
graphs (a restricted subclass of ordinary net models for which the incidence matrix is fortunately
unimodular). Additionally, Memmi and Roucairol [5] and Sifakis [8] use the so-called Minkowski-
Farkas lemma or alternatives theorems in isolation.
4Therefore, in 2017 we celebrated its 475th anniversary. The foundation was made at the request
of the syndics of Zaragoza. The emperor signed the privilege that elevated the medieval Estudio
General de Artes de Zaragoza to the rank of university of all sciences in the Cortes de Monzón.
This new academic rank of the old medieval institution was confirmed by pontifical authority in
1554, when Julius III issued a papal bull, confirmed by Paul IV in 1555.
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Fig. 2 Spanish researchers on concurrent systems with Carl Adam Petri at the 8th European
Workshop on Applications and Theory of Petri Nets (Zaragoza, 1987). Some are engineers from
companies such as Standard Eléctrica/ALCATEL or Siemens España, others are computer theorists
and systems engineers from Universidad Complutense and Universidad Politénica de Madrid,
Universidad Politénica de Valencia, and Universidad de Zaragoza, the host institution

and Performance Evaluation: The GSPN case,” Universitá di Torino), Jonathan
Billington (“On the ISO/IEC Petri Net standard (15909),” University of South
Australia), David de Frutos (“Decidable properties in Timed Petri Nets,” Univer-
sidad Complutense de Madrid), Maciej Koutny (“Combining Petri Nets and Process
Algebras,” Newcastle University), and Manuel Silva (“On continuous Petri Nets,”
Universidad de Zaragoza). Carl Adam found intriguing the “smooth” passage from
discrete event systems to hybrid and continuous “relaxed” models. In particular, he
was surprised by the fact that continuous timed net models under infinite server
semantics may have discontinuous performance measures in steady-state (Fig. 3).

The last time I met Carl Adam Petri was in June 2005, in Miami, at the 26th
International Conference on Applications and Theory of Petri Nets (ICATPN). I
had the honor then to give a keynote on “Continuization of Timed Petri Nets: From
Performance Evaluation to Observation and Control.” Therefore, we discussed the
fluid “views” of discrete models, a topic that he openly declared as very interesting.
Once again, he told me about the importance of the duality of reactants and
reactions, which in time suggested to him the idea of the separation of places from
transitions. In an enjoyable conversation I claimed that my game was “in moles, not
in molecules, so I was able to consider fractions of moles.” Affectionately, he stated
that my interest in fluid net systems was “not surprising,” because of my degree in
Industrial-Chemical Engineering from the Universidad de Sevilla.

Carl Adam Petri was always a warm-hearted person.
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Fig. 3 At the Universidad de Zaragoza (15 April 1999): (1) Manuel Silva and José Manuel Colom
grant Carl Adam Petri the Honoris Causa Doctorate; (2) At the main stairs of the Paraninfo
building, with representatives of Australia, Canada, France, Italy, Spain, and the United Kingdom
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Petri Nets and Petri’s Nets: A Personal
Perspective

Maciej Koutny

In the early 1960s, Carl Adam Petri made a fundamental contribution to Computer
Science by introducing a model of non-sequential systems and non-sequential
computation based on the explicit notion of concurrency, causality, and conflict.
After that, his Petri’s nets were the subject of extensive investigations, analyses,
and practical implementations. In particular, the original model developed by Carl
Adam Petri has been extended in several directions motivated by both theoretical
and practical concerns, yielding high-level, stochastic, and hybrid Petri nets, to
name but a few. Despite significant differences between some of these models,
they still share essential characteristics of the original design, such as the notion
of distributed state, and are therefore instances of the general Petri nets. Petri nets
have been intertwined with my academic life right from the beginning. I was also
lucky to discover a roadmap through Petri’s nets thanks to personal, highly intense
meetings with Carl Adam Petri, who exposed me to his particular views and results
concerning the concurrency model that he had invented.

My first encounter with Petri nets happened in the academic year 1980/1981
during a course given at the Warsaw University of Technology by Ryszard Janicki.
This optional course was at first treated with some caution by my fellow students, as
formal models of concurrent systems were not covered by the standard curriculum
at that time. However, the course and the topic of Petri nets itself turned out to
be intriguing and inspiring, generating a lot of interest and indeed enthusiasm on
our part. In particular, both I and my future wife Marta Pietkiewicz decided to
continue the theme and in 1982 completed our M.Sc. dissertations on Petri nets
under the supervision of the course lecturer who encouraged us to delve deeper
into this fascinating subject. I feel that the adjective ‘fascinating’ is fully justified
in this case as Petri nets introduce you into an immensely complicated world of
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concurrent systems with a remarkable and unique ease and power, making sure that
before long you are absorbed into their world hook, line, and sinker. Hence, not
surprisingly, both Marta and I have subsequently completed our Ph.D. theses on
problems belonging to the field of Petri nets and concurrent systems. Moreover, for
several years we have been conducting collaborative research on topics concerned
with the synthesis of Petri nets from their behavioural specifications.

Since joining Newcastle University in 1985, my research interests have been
strongly influenced and linked with Petri nets, including both their theory and
practical applications. Shortly after the move, on the occasion of the Petri Nets
conference held in Oxford in 1986, it was possible for me to engage with the
international community working on Petri nets. Attending this meeting was a
significant step in my research career and it has since become a recurring item on
my travel agenda (now also due to chairing its Steering Committee). In particular,
attending the conference in 1986 led to closer involvement with the Petri nets
community, resulting in participation in two EU Basic Research Action projects
(Demon and Caliban) led by Eike Best, both concerned with further development
of Petri nets and their applications. Working on these projects also provided an
opportunity to meet in person with Carl Adam Petri. During two visits to GMD
Bonn, around 1990, I was invited to personal meetings during which he explained
several subtle points concerning Petri’s nets, presenting in a crisp and methodical
manner both challenging problems and his own preferred solutions, and discussing
several tantalising ideas, both old and new. In this way, I became better acquainted
with the fundamental ideas that influenced the development of Petri’s nets as well
as with Carl Adam Petri’s personal view on the possible ways of developing them
further. I still recall these meetings as something special, as they exposed me to
new ways of thinking about the foundations of Petri nets, Without a doubt, they
influenced my later work on extending the causal semantics to Petri nets with
inhibitor arcs, including their process semantics.

Throughout my academic career I was mainly concerned with the theoretical
aspects of Petri nets, collaborating, among others, with Eike Best, Raymond
Devillers, Ryszard Janicki, Victor Khomenko, Hanna Klaudel, Jetty Kleijn, Marta
Pietkiewicz-Koutny, Brian Randell, Grzegorz Rozenberg, and Alex Yakovlev. How-
ever, I always felt that they are also a powerful model to be applied when solving
important practical problems in various areas related to concurrent system design
and analysis. A notable example of such an application is an Impact Case Study
submitted by Newcastle University to the recent UK research assessment, REF
2014. The case study involved Petri net synthesis based on the theory of regions
of transition systems as well as causality-based verification algorithms and tools,
rooted in the theory of processes initiated by Carl Adam Petri. It was awarded the
highest 4* rating, demonstrating that Petri nets, providing a deep understanding and
handling of state and action information, are a suitable model to deal with complex
concurrent systems and their behaviours.

During the past 35 years I have been influenced in many ways by Carl Adam
Petri’s research, and I have derived true satisfaction from working on the model that
he invented. I have also greatly enjoyed meeting Carl Adam Petri in person, both in
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GMD and at other encounters, such as the award of the degree of Doctor Honoris
Causa by the University of Zaragoza in 1999. In particular, I have found him to be
very kind towards younger members of the academic community, and always keen
to go to great lengths to open their eyes to the beauty of science and the power of
logical thinking.



Coffee and Cigarettes

Javier Esparza

“Coffee and Cigarettes” is a movie by Jim Jarmusch consisting of 11 independent
episodes in which characters discuss quite extravagant topics—such as caffeine
popsicles—while drinking coffee and smoking cigarettes (see Fig. 1). My only one-
to-one encounter with Carl Adam Petri, in March 1989, could well have been the
12th episode of this movie. I didn’t drink any coffee at the time, and I have never
smoked, but Petri drank and smoked for three. Since only Tom Waits is smoking in
the figure, he’d be Petri, and I’d be Iggy Pop.

I was a young and inexperienced Ph.D. student. I had graduated in Physics
less than 2 years before, and I had taken the impulsive and undocumented but, in
retrospect, excellent decision of starting a Ph.D. in Petri net theory at the University
of Saragossa under the supervision of Manuel Silva. My very first paper had just
been accepted for presentation at the Petri Net Conference, and Eike Best had invited
me to visit the Gesellschaft für Mathematik und Datenverarbeitung (GMD), where
he worked as a researcher in Petri’s group, to give a talk.

I gave my talk in the morning. Petri didn’t attend, but somebody told him about
it, because that afternoon Eike informed me that Petri wanted to talk to me the next
day.

I had never met Petri before. When I entered his office, he was sitting at a table,
big like a bear, with a mug of coffee in front of him and a menthol cigarette between
his fingers—according to Eike Best, most likely the brand shown in Fig. 2.

During the next two hours Petri refilled his mug again and again, smoked one
cigarette after another, and explained his current project to me. In the last years,
he and his group had axiomatized causality and concurrency—more precisely, he
had communicated his ideas in a sort of Socratic dialogue to the researchers of his
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Fig. 1 Iggy Pop and Tom Waits in “Coffee and Cigarettes” (2003)

Fig. 2 Petri’s menthol cigarettes
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group, who had developed them further and published them.1 I knew that Petri was
interested in Physics, and that he understood the theory of nonsequential processes
as a sort of information theory compatible with the principles of special relativity.
He told me that his new goal was to axiomatize not only causality and concurrency,
but also what he called alternative events (today we would probably call them events
in conflict). He explained that his notion of alternative was inspired by Quantum
Mechanics. I’m not sure he explicitly mentioned the path integral formulation of
Quantum Mechanics, where one cannot say which is the trajectory followed by a
particle, only assign a probability to each trajectory, but that’s what he seemed to
have in mind.

Petri used two photocopies sketching the current version of his theory to explain
his ideas, making corrections and additions with a red pen. After the meeting I kept
the photocopies, which are lying on my desk as I type this note (Figs. 3 and 4). They
contain a tentative definition of Complete Orders of Signals (COS). A COS is a
tuple (H ; al, bi, co), where H is a set of events and al, bi, co ⊆ H ×H are relations
on H satisfying 12 axioms (Fig. 3). The last three axioms, Σ10 to Σ12, involve sets
A,B, . . . ,F. On the second photocopy (Fig. 4) Petri wrote a note explaining their
intended meaning: three sets of Alternatives, Bi-lines, and Cases, two sets called
Domain and Effect, and a set of Fronts.2

Petri spoke slowly, making long pauses. I listened to him in awe, understood
almost nothing, and struggled to understand the connection to Quantum Mechanics.
At some point he mentioned Heisenberg’s uncertainty principle, and I told him,
trying to show off, that I didn’t think Heisenberg had correctly interpreted his own
principle. (I was just repeating what I had read in a paper . . . ) I could see that Petri
was slightly upset, this mere pup questioning Heisenberg, such a great man . . . Very
gently, he told me how as a teenager he would cycle to Heisenberg’s home just to
see him pass by, too shy to talk to him. And I remember being moved by the tone of
his voice and the respect for science pouring out of him.

After two hours Petri was not done yet, but we were interrupted by Eike, who
opened the door, said he and others were going to lunch, and asked if I wanted
to join. Petri mumbled something like “Oh yes, lunch . . . You should go, young
people have to eat. I never have lunch myself.” I left with the two photocopies under
my arm. I later learnt that Eike had come to rescue me, because one never knew
how long a meeting with Petri could take. Jörg Desel, who also worked at GMD
for several years,3 told me that in one occasion Petri kept talking until dark, never
bothering to switch the lights on.

1The similarity of the working processes of Petri and Socrates was pointed to me by Manuel Silva.
2I also own a second piece of Petri memorabilia: a Petri-Puzzle, signed by Petri, that was distributed
at the ceremony in which he was handed the Siemens Ring by the German president Roman Herzog
(Fig. 5). After the ceremony Petri sat at a table and we queued for him to sign our puzzles with his
careful calligraphy.
3He even had to pass a job interview with Petri, which must have been an extraordinary experience.
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Fig. 3 Petri’s axioms for COS
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Fig. 4 Petri’s sets for COS
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Fig. 5 A Petri puzzle, signed by Petri

End of story? Not quite. . . Some months after my meeting with Petri, Eike Best
got a professorship at the University of Hildesheim, and offered me an assistant
position. Inspired by Eike’s work with César Fernandez [2], I started to think of
applying the theory of nonsequential processes to model checking. In 1991 Eike and
I wrote a paper [1], but I wasn’t happy because our techniques only worked for nets
with one single nonsequential process. Then I read a paper by McMillan [4] showing
how to unfold a Petri net into an occurrence net—an extension of nonsequential
processes with conflict due to Nielsen, Plotkin, and Winskel [5]—and how to use
this unfolding for verification. McMillan’s paper immediately reminded me of my
encounter with Petri. Occurrence nets, one of the models Petri was struggling to
capture axiomatically, were the model I had been looking for! I spent a large part
of the next years developing an unfolding approach to model checking, which Keijo
Heljanko and I finally published in a book [3].

So, even though that morning of March 1989 I didn’t understand much and found
Petri’s ideas obscure, I ended up working on them for about 15 years. And the
quest goes on: the best paper award of CONCUR 2015 went to a contribution by
Rodriguez, Sousa, Sharma, and Kroening on combining unfoldings and partial order
reduction [6].

I think this little story is typical of Petri’s legacy. His ideas were often strange
and sometimes extravagant, but always deeply original and powerful. So much so
that, sooner or later, they have always ended up spreading throughout the world.
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Early Interactions with Carl Adam Petri

Brian Randell

It is a great pleasure to provide a few words about my own personal memories of
Carl Adam Petri, whose work has strongly influenced my research into a number of
aspects of system dependability over the years.

I think I first learned of Carl Adam Petri and his work on net theory in the early
1970s from my colleague Peter Lauer. Peter had joined me at Newcastle University
in 1972 from the IBM Vienna Laboratory—I had reached Newcastle from the IBM
Research Laboratory in Yorktown Heights some 3 years earlier. At Newcastle,
starting in about 1975, Peter used Petri Nets to provide a formal treatment [1] of
the Path Expression concurrent–programming notation. (This notation had been
invented by Roy Campbell, then one of our Ph.D. Students, and Nico Habermann,
of Carnegie-Mellon University [2].) With this work, Peter initiated a still-continuing
and indeed flourishing line of research at Newcastle on concurrency theory and
applications, now led for many years by my colleagues Maciej Koutny and Alex
Yakovlev.

Though my role in this concurrency research was mainly that of an admiring
bystander, I was intrigued and attracted by what I learnt of net theory from Peter
and his colleagues. I assume that this is why, in 1976, I had no hesitation in inviting
Carl Adam Petri to Newcastle for the first, and I fear only, time. This was to take
part in our International Seminar on Teaching Computer Science.

This series of annual seminars, to an audience mainly of senior computer science
professors from across Europe, commenced in 1968 and continued for 32 years. It
was sponsored for many years by IBM, thus enabling us to invite leading speakers
from across the world, and to provide a very hospitable environment in which all
the participants could interact intensively.
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The 1976 Seminar was on Distributed Computing System Design. Carl Adam
Petri was one of six speakers. (The others were Joel Aron, Michael Jackson, Bill
Lynch, Doug Ross and Wlad Turski.) Carl Adam gave three excellent lectures. The
texts of these lectures—two on the subject of “General Net Theory” [3], and one
on “Communication Discipline” [4]—were included in the Report of this Seminar,
which was widely distributed. They are, I was surprised to find, the fourth- and fifth-
earliest original English-language publications by Carl Adam listed in the Petri Net
Bibliography [5].

On rereading these lectures I can readily understand why I was so impressed
when I heard Carl Adam present them. I cannot resist quoting his first lecture’s
opening words:

Those of you who attended this conference last year may remember Anatol Holt’s lecture
‘Formal Methods in System Analysis’. My intention then, had been, this year to supplement
his lecture by three hours of concentrated blackboard mathematics, because I felt that
nothing needed adding to Holt’s lectures in terms of words and figures. But I now think
I ought to keep the mathematics to a minimum, both in order to give a general idea of the
content of the theory, and to raise the entertainment value from negative to zero.

In fact his lectures provided an excellent account of the basic concepts and the
generality of the aims of net theory, illustrated by wonderfully simple yet subtle
graphical examples—so a few years ago I took great pleasure in arranging for the
texts of the lectures to be made available online.

To the best of my recollection the next occasion on which I had the pleasure
of meeting, and listening to lectures by, Carl Adam Petri was at the 1979 Advanced
Course on General Net Theory of Processes and Systems [6], To my pleased surprise
I had been invited by the Course Director, Wilfried Brauer (Univ. Hamburg), to
be one of the Course Co-Directors, together with Carl Adam. Newcastle’s more
substantive contribution to the Course was however provided by Eike Best, then one
of Peter Lauer’s Ph.D. students, who gave two of the lectures.

I was pleased to find that the correspondence I had with Wilfried Brauer
concerning this Course has been retained in my files. This indicates that the course
was held at the University of Hamburg, 8–18 October 1979, “under the auspices of
the Commission of the European Communities [and] financed by the Ministry for
Research and Technology of the Federal Republic of Germany”. The (preliminary)
course timetable indicates that the other lecturers, besides Carl Adam himself and
Eike Best, were to be Hartmann J. Genrich (GMD, St. Augustin), Claude Girault
(Univ. Paris VI), Matthias Jantzen (Univ. Hamburg), Kurt Lautenbach (GMD, St.
Augustin), Jerry D. Noe (Univ. Washington), Horst Oberquelle (Univ. Hamburg),
Suhas S. Patil (Univ. Utah), Gérard Roucairol (Univ. Paris VI), Robert M. Shapiro
(Meta Software Corp.), Joseph Sifakis (IMAG Grenoble), P.S. Thiagarajan (GMD,
St. Augustin), Rüdiger Valk (Univ. Hamburg) and Konrad Zuse (Zuse KG).
Unfortunately, I was able to attend only part of the Course myself—but I was able
to be present at the ceremony at which the University of Hamburg conferred an
Honorary Doctorate on Konrad Zuse.
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However, the main set of interactions I had with Carl Adam Petri, and the main
focus of these reminiscences, was in connection with my membership, 2 years
later, of the Progress Evaluation Committee that the Gesellschaft für Mathematik
und Datenverarbeitung (GMD) established in 1981 to review the work of the ISF
Institute that Carl Adam Petri directed at GMD St Augustin, Bonn. As a result I
made a number of visits to Bonn in late 1981 and early 1982 to attend meetings of
the Committee. (I vividly recall that several of these visits involved travel difficulties
brought on by the wintry conditions.)

I believe these were my first visits to GMD. I was amused to find that, as
with a number of other large governmental or industrial research laboratories with
which I was familiar, GMD had taken over a very impressive mansion (Schloss
Birlinghoven) and its grounds, in which a set of functional modern buildings had
been constructed for the researchers, leaving the senior administrators to enjoy the
architectural splendours of the original mansion. (These we eventually got to see
when invited to a meeting in what I seem to recall was the Director’s Office.)

The other members of the Committee were Wilfried Brauer, Herbert Fiedler
(Univ. Bonn), Kristen Nygaard (Univ. Oslo) and Rainer Prinoth (GMD, Darmstadt),
just two of whom I knew already (Brauer and Nygaard). I recall my surprise at
learning, probably at the very first meeting, that the Committee had in fact been
set up by the GMD Central Administration in the expectation of, perhaps the hope
for, a negative evaluation. Indeed, it appeared they were seeking justification for
closing down ISF! This was the background against which we had a number of very
interesting discussions with Carl Adam and various other members of ISF, and other
sections of GMD, during which we soon established that we were all favourably
impressed by the work of ISF, and inclined to regard it as one of GMD’s most
impressive research activities. Thus rather than support the GMD Administration,
we found ourselves becoming quite critical of it.

Unfortunately my files do not contain any documents about the work of the
commission, and I do not have a copy of our final report. Indeed, it is perhaps
unsurprising, given the embarrassment it must have caused, that no copies of the
report can now be found. However Eike Best had retained, and has provided me
with a copy of, the report’s Summary of Recommendations. I find that these, though
guardedly phrased, fit well with my recollection that our criticisms were mainly of
GMD itself rather than Carl Adam and his Institute.

The first few recommendations were constructive suggestions concerning the
Petri Institute’s publication policy, and future work:

a) With respect to net theory and its applications ISF should—concentrate on consolidating
net theory—restrict application examples to a few important applications within com-
puter science, and worked out in detail—publish its important original contributions
in internationally established refereed journals—produce research monographs and
textbooks—engage more intensively in teaching (university courses, summer schools,
GMD seminars, etc.)
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Our Report went on to make supportive recommendations concerning NETLAB,
which was at the time a GMD Project, though later it seems that Aarhus University
is where this project continued:

b) The NETLAB project may be the starting point for the development of a “system
development environment” building on the “world view” associated with net theory.
We strongly recommend ISF and GMD to pursue the NETLAB project so as to make it
useful both within and outside GMD.

c) NETLAB should be a cornerstone in the much wider effort, integrating also a wide
range of other facilities structurally compatible with the net theory approach. IST
should immediately assign researchers to full-time involvement in the project, and at
a later stage assume main responsibility for the NETLAB-related system development
environment effort.

d) ISF must, however, accept an ongoing commitment to the creation of further net theory-
based tools which contribute to this environment.

e) ISF, in addition to its basic research activities, should have personnel able to assist in
practical problems related to applications of the theory.

There followed various other recommendations concerning some of the other
groups in GMD whose work related to that of ISF, and the report concluded with
some recommendations that were more general in nature, and implicitly quite
critical of various aspects of the GMD Administration itself:

k) GMD should reassess the suitability of its current methods of planning and reviewing the
work of institutes, particularly as regard work largely of a fundamental and/or theoretical
character.

l) Consideration should be given to introduction of some scheme for enabling creative
researchers to be rewarded and recognised appropriately without having to carry
inappropriate administrative burdens.

m) If the present system of projects is to be continued, means should be found for providing
project leaders with authority commensurate with their responsibilities.

n) The various administrative agencies within GMD should act simply as services on which
institute directors and project directors can call, as of right, for purposes that are in line
with their currently agreed project and institute plans.

In fact, GMD is not the only institution I am familiar with for which such
recommendations are all too appropriate, so I am pleased to take this opportunity
to quote them here, and plan to reuse them if and when appropriate circumstances
arise again.

As I’ve already indicated, our Report was not well received by the GMD
Administration, and my understanding is that Carl Adam and ISF did not gain
as much benefit from the Committee’s praise and support as we hoped it would.
Nevertheless, I recall my participation in the work of this Committee with some
pride, given the high regard I had, and have, for Carl Adam’s work, and the extent
to which my own and my colleagues’ research has benefitted, and indeed continue to
benefit, from it. So I am delighted to have had this opportunity to shine a spotlight
on this perhaps now little-known early assessment of the early work of his ISF
Institute.
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A Personal Journey in Petri Net Research

Xudong He

1 Learning Petri Nets in Graduate Schools

The first time I learned the concepts of Petri nets was during my MS degree study
at Nanjing University, China in 1982. I was working on my MS thesis using formal
method VDM for defining the semantics of the system programming language XCY
developed by my advisor, Prof. Jiafu Xu (a computer science pioneer in China).
Unsatisfied with the capability of VDM to deal with concurrency, I was looking for
other formalisms for specifying concurrent systems. After talking to Prof. Xu about
my ideas, he assigned me to review two journal papers on using formal methods for
concurrent systems, one on Petri nets and the other on temporal logic.

After finishing my MS degree at Nanjing University in 1984, I went in 1985 to
Virginia Tech in USA to pursue my Ph.D. In the first quarter at Virginia Tech, I took
a computer architecture course that required a project. One of the project topics
was to use a Petri net tool to model and simulate an architecture, which I selected
happily and got a perfect score on the project. The experience of this project and the
associated research, especially reading Prof. Reisig’s paper on using Petri nets in
software engineering [1], greatly influenced my dissertation research on integrating
formal methods including Petri nets in software development. I finished my Ph.D.
dissertation in 1989 and produced several journal publications on using predicate
transition nets [2] in modeling systems [3] and integrating predicate transition nets
with temporal logic [4].
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2 Researching and Teaching Petri Nets at Universities

In 1989, I joined North Dakota State University (NDSU) as an assistant professor
after I obtained my Ph.D. degree from Virginia Tech. There I continued my
research on Petri nets. My initial focus was integrating predicate transition nets
with other formalisms including algebraic specifications [5, 6] and Z [7] to combine
the dynamic semantics and concurrency control structures of Petri nets with the
rich data definition and abstraction capabilities of other methods. My subsequent
research aimed at making Petri net models more modular by introducing hierarchies
into predicate transition nets [8]. My last major research effort at NDSU was using
hierarchical predicate transition nets to model object-oriented systems and various
UML notations [9, 10].

I joined Florida International University (FIU) in 2000. My research focused on
developing a software architecture modeling method based on predicate transition
nets and temporal logic [11, 12]. At the same time, I worked on various analysis
techniques for Petri nets including testing [13], scheduling techniques in dealing
with time [14], and model checking through net translation [15]. I also applied
Petri nets to model agent-oriented systems [16–19] and to support aspect-oriented
modeling approaches [20], Currently, my research work involves the development
of a predicate transition net modeling and analysis environment PIPE+ [21–23] by
leveraging several third-party analysis tools including model checker SPIN [24],
term rewriting system Maude [25], and SMT solver Z3 [26].

During my 30-year professional career at NDSU and FIU, I graduated 15 Ph.D.
students and 36 MS students. All my Ph.D. graduates’ dissertations covered some
aspects of Petri nets and many of my MS students also used Petri nets in their work.
Petri nets have also been covered in several of my graduate-level courses including
advanced software engineering, software specification, and software verification.

3 Organizing the ATPN Conference in Miami and Meeting
Carl Adam Petri in Person

In 2005, I had the great honor and privilege to serve as the organizing chair of
the 26th International Conference on Application and Theory of Petri Nets, in
Miami. I had the great pleasure to invite Carl Adam Petri to give a keynote speech
and subsequent talks at FIU for 3 weeks. During Carl Adam’s 3 week stay in
Miami, I had many interactions and discussed many interesting things with him.
The wonderful memories are shown in Fig. 1 ((1) Carl Adam in my lab with
my graduate students, (2) Carl Adam and me on FIU campus, (3) Carl Adam on
Miami Beach, (4) Carl Adam at Everglades National Park). Carl Adam’s brief
interactions with my two sons might also have an impact on them. My older
son, Grant Ho, who played violin during the conference banquet, graduated from
Stanford University with distinction in computer science in 2014, and is now fifth-
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Fig. 1 Memories in Miami, July 2005

year Ph.D. student pursuing system security research at University of California
at Berkeley ((5) Carl Adam with Grant). My younger son, Albert Ho, graduated
from Princeton University with higher honor in computer science in 2018, and is
now a software engineer at Facebook. ((6) Carl Adam with Albert). Carl Adam
and I had personal communications for several years until 2007. Carl Adam not
only exchanged holiday greetings with me, but also sent me birthday greetings. I
will always cherish great memories of meeting and communicating with him and
remember this computer science giant’s influence on my own career as well as
on my family. Carl Adam’s wisdom and inspiration will continue to impact my
professional and personal life.
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Carl Adam Petri’s Synchronic Distance

Jörg Desel

1 Introduction

Synchronic distance between activities or—in terms of Petri net theory—between
transitions was a major topic in early papers and books on net theory; see, e.g.,
[3, 10]. It provides a measure of the degree of dependency between the respective
transition occurrences.

Carl Adam Petri has developed this concept over years, starting with his
dissertation thesis. Several refinements of definitions were based on the cooperation
of Petri with members of his research group at the former GMD (Gesellschaft
für Mathematik und Datenverarbeitung) in Sankt Augustin, Germany. I was a
student researcher at this institute during the early 1980s, and I witnessed extensive
discussions between Petri and his close colleagues about the definition of synchronic
distance. This experience is worth recapitulating not only because synchronic
distance was an important ingredient of Petri net theory at that time, but also
because it illustrates both the openness of Carl Adam Petri and the mutual respect
and appreciation between scientists in Petri’s group, a fertile atmosphere created
and stimulated by Petri. Of course, Petri was considered a great authority by
everybody when it came to fundamental definitions. So the discussions were
somehow asymmetrical. Essentially, Petri’s colleagues provided small examples and
asked Petri about his interpretation of the presented situations, trying to create a
sound theory incorporating all the answers of Petri. On the other hand, Petri learned
from the questions and seeming contradictions, and so he sometimes changed his
mind. More often, however, he used the opportunity to widen the scope of his
theory, creating new aspects relevant to the theory, so that often his answer was “it
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depends”. For me, being at the beginning of my scientific career, it was a fascinating
opportunity to learn more about the deep thoughts of Petri and the foundations of his
theory, which goes far beyond the popular token game of Petri nets. I was surprised
that little definition problems rather than huge and complex examples led to all these
considerations.

The concept of synchronic distance applies in particular to pairs of transitions of
a Petri net that can each occur arbitrarily often. If, in any occurrence sequence of
the net, the difference between the number of occurrences of the first transition and
the number of occurrences of the second transition stays within a finite interval, then
these two transitions are said to be synchronized, and the size of the smallest interval
with this property of the interval is their synchronic distance. More specifically, if,
in each occurrence sequence, the number of occurrences of a transition a exceeds
the number of occurrences of a transition b by at most n, and likewise the number
of occurrences of b exceeds the number of occurrences of a by at most m, then the
synchronic distance between a and b is n + m; in a formula, σ (a, b) = n + m. If
no such numbers n and m can be found, then there is no finite synchronic distance
between a and b and we write σ (a, b) = ∞.

The definition of synchronic distance might seem to be rather obvious and
straightforward. However, for systems—and their Petri net models—that have only
finite runs, it turned out to be tricky to find a sound and intuitive definition.
Obviously, it cannot be argued that σ(a, b) = ∞ if neither transition a nor transition
b can occur arbitrarily often; so for each such pair an intuitive notion of synchronic
distance had to be found (since it is not trivial to see whether the number of possible
occurrences of a transition is finite or infinite, a definition relating only to transitions
that might occur infinitely often would be odd). Specifically, the question of how to
define the synchronic distance between two transitions that can only occur once
was not obvious. Exactly this question was a matter of long discussions in Petri’s
research group.

This contribution aims at three goals: After introducing synchronic distance
informally in Sect. 2, I will recapitulate in Sect. 3 the history of synchronic distance,
rummaging in old papers of Petri starting with his famous doctoral thesis. Section. 4
compares variants of the usual definition. Building on this basis, Sect. 5 recalls
the discussions mentioned above about the definition of synchronic distance in
fundamental situations. Synchronic distance and the related notion of synchronic
structure do not play any important role anymore in current work on Petri net
theory or its applications. However, in Sect. 6 three examples will demonstrate the
reappearance of the concepts in more recent work, although the name “synchronic
distance” has apparently been forgotten by many researchers.

2 The Concept of Synchronic Distance

For an illustration of the concept “synchronic distance”, consider two equally sized
chain wheels as in Fig. 1. Assume that every turn of the first chain wheel causes an
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Fig. 1 A tight chain

event a and that every turn of the second causes b. Since the two wheels are mutually
connected by a circular chain, the number of turns of the two wheels will be almost
the same, no matter how long they proceed to turn. If the chain is relatively tight, as
in the above figure, we expect for any future situation that the numbers of a-events
and b-events that have occurred so far is almost equal. More precisely, if the first
event is a, i.e., if a occurs first before b occurs first, then, for any finite run, the
number of as can exceed the number of bs by at most 1, whereas we will never see
more bs then as. If the first event is b, then the converse holds true. In both cases,
the synchronic distance between a and b is 1, i.e., σ(a, b) = 1.

Now we consider a longer chain between the two chain wheels, which still have
the same size and the same distance, as in Fig. 2. Here the two wheels are more
loosely coupled, and so are the events a and b. Still, the numbers of occurred a-
events and b-events are related at any time, but the possible mutual deviation grows
with the length of the chain. For example, if we can observe at most two more a-
events than b-events and at most one more b-event than a-events, then σ(a, b) =
2 + 1 = 3.

Notice that this chain wheel metaphor does not work when we assume two
wheels connected by a belt. Even if the diameters of the wheels are almost the
same, any tiny difference will eventually lead to an arbitrarily large difference
between the numbers of occurred a-events and b-events, assuming that we can run
the little machine as long as we like. Notice also that a synchronic distance of 0
between a and b is impossible, because it would imply that a and b always occur

Fig. 2 A loose chain
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coincidentally. First, this would be an unsolvable technical challenge. Second, it
would be impossible to verify the coincidence of the events, assuming that the
wheels are some way apart from each other.

The notion of synchronic distance discussed so far was generalized in two
directions: a weighted synchronic distance corresponds to connected chain wheels
of different sizes; if one wheel has twice as many sprockets as the other one, it
will turn at half the speed, whence its corresponding event will appear less often.
Assuming the weight 2 for this event, we can again characterize the coupling
degree by means of synchronic distance, where the weighted event is counted twice.
Another generalization considers the synchronic distance between sets of events
rather than between events. If, for example, our (equally sized) chain wheels cause
two events in each turn, say a1 and a2 for the first wheel and b1 and b2 for the
second, then the synchronic distance between the sets {a1, a2} and {b1, b2} is finite,
and it again depends on the length of the chain. If a chain wheel causes an event
a1 or an event a2 with each turn (depending on some condition not explicated in
the example), whereas the other one still causes always b, then only the synchronic
distance between {a1, a2} and {b} is able to express the mutual synchronization.

3 Petri’s Work on Synchronic Distance

One might argue that the core idea of synchronic distance can already be found in
Petri’s doctoral thesis [5, p. 42]. There Petri postulated

Even speed of clocks can only be established by communication.

and used the argument that any tiny difference of clock speeds will eventually lead to
an arbitrary difference between their mutual number of ticks. He then discussed that
even speed has no obvious definition, but can only be defined by means of a closed
signal chain containing both clocks. Since Petri did not assume the existence of time
as an objective and available entity, no clock speed can be called accurate (with
respect to what?). Hence, according to Petri, we can compare the speed of a clock
only with the speed of another clock. If we want both clocks to run with a limited
error w.r.t. the other clock, we must provide communication means between the two
clocks, in both directions. In other words: Two clocks have a limited divergence only
if there are mutual signals between the clocks. One obvious consequence of these
considerations is that synchronicity between two distinct clocks with its traditional
interpretation “ticks at the same time” is meaningless.

We will consider in the sequel two machines tick and tack, which can be
considered as clocks, but might have any interpretation. The clock tick repeatedly
produces “tick” and after each “tick” sends a message I said “tick” to tack. After
receiving this message, tack is allowed to “tack”, and then sends back a message I
said “tack” to tick, which can only then produce the next “tick”; see Fig. 3.

In [7], Petri considered Petri nets (which he always called just nets) and defined
a binary relation D between sets of transitions. Two such sets A and B are in the
relation D if, in any process representing a run, occurrences of transitions from A
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Fig. 3 Two communicating clocks

strictly alternate with occurrences of transitions from B. Roughly speaking, in our
terminology, A and B are in the relation D if and only if σ(A,B) = 1 (we ignore the
subtle difference between Petri’s notion of process and other definitions of causal
behavior). The clocks tick and tack mentioned above are in the relation D.

Now let us consider a third clock tock, which is connected to tack in the same
way as tack is connected to tick, i.e. tack and tock exchange messages and are thus
in the relation D; see Fig. 4. The clocks tick and tock are not as closely related as
the other pairs of clocks, because the sequence of events

tick tack tick tock. . .

is possible, where we can see two “tick”s before the first “tock”.
Since tick D tack (i.e., tick and tack are in the relation D) and tack D tock,

we can write tick D2 tock. In [7], Petri defined the smallest number m such that
A DmB as the synchrony of two transition sets A and B and also used the notion
synchronous with distance m. It is worth mentioning that he defined synchronous
transitions neither by synchronic distance 0, which only applies to identical sets of
transitions, nor by synchronic distance 1, which represents strict alternation, but by
synchronic distance 2! This becomes meaningful when we consider our clock tack
from above as a controller of the clocks tick and tock. Repeatedly, tack sends to both
other clocks its message, then both clocks act concurrently, and so on. This type of
concurrent behavior is apparently closer to the intuition of synchrony than identity
or alternation.

In the later paper [8], Petri defined synchronic distance as the maximal deviation
between occurrences of two transitions in a run, where here a run is a feasible

I said ”tick“

I said ”tack“

I said ”tack“

I said ”tock“

Fig. 4 Three communicating clocks
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Fig. 5 A counterexample

sequence of transition occurrences:

σ (a, b) = max
τ is a run

|(number of as in τ ) − (number of bs in τ )|

In the same paper, he referred to the previous definition based on the alternation
relation D. Clearly, the definition based on alternation provides an upper limit for the
newly defined synchronic distance σ . However, the two definitions do not coincide,
as Petri showed by means of a counterexample; see Fig. 5.

From the structure of this net, we obtain

a D b D c D d D e D f D a

and thus a D3d, but not a D2d . However, since the outer cycle of this net contains
only two tokens, we have σ(a, b) = 2.

It is important to notice that a run in the sense of Petri can start with any reachable
marking, not necessarily with a given initial one. Consider, for example, a net with
two transitions a and b such that

. . . a . . . b . . . b . . . a . . . a . . . b . . . b . . .

is a possible run. In none of its prefixes, also constituting runs, does the absolute
difference between the number of a-occurrences and b-occurrences exceed 1. How-
ever, starting with the marking reached after the first a, we observe a subsequence
with two bs and no a, which is a run proving σ(a, b) ≥ 2.

An earlier, informal paper of Petri [6] already defined a notion of synchronic
distance between clocks. In this work, Petri also referred very implicity to the
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relation D (actually, he referred to the incidence matrix of the considered net;
two sets of transitions are in the relation D if they are the pre-set and the post-
set of a place). In this early paper, Petri conjectured that synchronic distance
between clocks can be derived from the structure of the net, without considering any
marking—a conjecture disproved by himself using the counterexample shown in
Fig. 5. However, many years later it was shown by various authors that, for particular
classes of Petri nets, the existence of a finite synchronic distance between two sets
of transitions can be deduced from the incidence matrix of the net (see, e.g., [12]
and, for a different definition of synchronic distance, [1]).

4 Formal Definitions of Synchronic Distance

As mentioned before, the definition of synchronic distance originates from the
behavior of clocks or similar devices that continuously repeat their activities.
Unfortunately, the definition is not so obvious in system models with only finite
runs, and not even for all fundamental building blocks sequence, concurrency, and
conflict, as will be discussed in the following section. Before starting this discussion,
we have to provide a formal definition of synchronic distance and some notations.
We consider occurrence sequences of a Petri net N, starting with the initial marking
of N . We denote the set of all finite occurrence sequences of N by LN . If τ1 ∈ LN

is a prefix of τ ∈ LN , then we write τ1 ≺ τ . Also, #τ (a) denotes the number of
occurrences of a transition name a in the sequence τ .

The following definition of synchronic distance formalizes the intuition based on
the maximal respective leads of a transition a and a transition b:

σ1 (a, b) = max
τ∈ LN

(
max
τ1≺τ

(
#τ1 (a) − #τ1(b)

) + max
τ1≺τ

(
#τ1 (b) − #τ1(a)

))

if this maximum exists, and σ1(a, b) = ∞ otherwise.
We will show that the definition of σ1 is equivalent to the following definition of

σ0 from [10], which considers the maximal deviation between transitions a and b:

σ0 (a, b) = max
τ1τ2∈LN

∣∣#τ2(a) − #τ2(b)
∣∣

Our new formulation of the definition will make it easier to compare variants of
synchronic distance in the following section.

The equivalence between σ1 and σ0 will be shown next. It is immediate to see
that σ1(a, b) = σ1(b, a), by symmetry of the definition of σ1. Therefore, transition
name a can be replaced by a variable x in the defining term of σ1, and b by a variable
y, or vice versa, resulting in the equivalent term

max
τ∈ LN

{
max
τ1≺τ

(
#τ1 (x) − #τ1(y)

) + max
τ1≺τ

(
#τ1 (y) − #τ1(x)

) |{x, y} = {a, b}
}
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where {x, y} = {a, b} means that either x = a and y = b or that x = b and y = a.
Now assume, without loss of generality, that the first prefix τ1 in this term is not
longer than the second. Then we can rewrite the entire sequence τ as τ = τ1τ2τ3
such that τ1 is the first, shorter prefix from above, and such that τ1τ2 is the second,
longer one. We obtain

σ1 (a, b)

= max
τ1τ2τ3∈ LN

{((
#τ1 (x) − #τ1(y)

) + (
#τ1τ2 (y) − #τ1τ2(x)

)) |{x, y} = {a, b}}

= max
τ1τ2∈ LN

{((
#τ1 (x) − #τ1(y)

) + (
#τ1τ2 (y) − #τ1τ2(x)

)) |{x, y} = {a, b}}

= max
τ1τ2∈ LN

{(
#τ1τ2 (y) − #τ1(y) − #τ1τ2 (x) + #τ1(x)

) |{x, y} = {a, b}}

= max
τ1τ2∈ LN

{(
#τ2 (y) − #τ2(x)

) |{x, y} = {a, b}} = σ0 (a, b)

Finally, notice that the definition of σ0 from [10] is not exactly equivalent to
Petri’s previous definition of synchronic distance. Actually, [10] does not consider
occurrence sequences τ1τ2 starting at the initial marking, but rather just sequences τ2
enabled by arbitrary reachable markings, i.e., by markings reached from the initial
marking by some occurrence sequence τ1. Petri’s view of reachable markings was
slightly different. Assume that a marking m′ is reached from a marking m by the
occurrence of a transition. Then today’s notion of reachability is based on the axiom:

If m is reachable, then m′ is reachable as well.

Petri additionally postulated:

If m′ is reachable, then m is reachable as well,

because he insisted on symmetry between past and future. We use the simple
generalization of synchronic distance to sets of transitions to show the difference
in Fig. 6.

Taking the marking depicted by stars as initial marking, it is easy to see that
σ0({a, c}, {b, d}) = 1. According to Petri’s notion of reachability, the marking
depicted by hearts is backward reachable from the stars-marking, because from the
hearts-marking the stars-marking is reached by occurrence of the transitions b and

Fig. 6 Synchronic distance depends on the definition of reachability
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d . So, since from this marking b and d can occur without any transition of {a, c},
we obtain σ0({a, c}, {b, d}) = 2 according to Petri’s definition.

5 Synchronic Distance in Fundamental Situations

We consider three fundamental behavioral situations: Sequence, Concurrency, and
Conflict, as depicted in Figs. 7, 8, and 9, respectively. In all these three figures, the
dotted net elements and arcs represent an embedding of the situation in a cyclic
setting.

5.1 Sequence

Two transitions a and b are sequentially ordered if b can only occur after a has
occurred; see Fig. 7. This is a special variant of strict alternation. After a, the
difference between the numbers of occurrences is 1; after a b it is 0, whence
σ(a, b) = 1. So, if a b and its prefixes are the only occurrence sequences, then
σ(a, b) = 1. This does not change in the cyclic setting, in which a and b strictly
alternate.

5.2 Concurrency

Two transitions a and b occur concurrently if each can occur independently of the
other; see Fig. 8.

There are various ways to model concurrent runs, the most prominent given by
processes. For the sake of this chapter, let us assume that a process π of a net is a set
of occurrence sequences that represents all sequential observations of the process.
That is, if a and b occur concurrently after an occurrence of c, then both c a b and
c b a belong to this set. The set of all processes of a marked Petri net N is denoted
by �N .

In the cyclic constellation, we can see the first occurrence of a before the first
occurrence of b and the second occurrence of b before the second occurrence of a.

Fig. 7 Sequence
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Fig. 8 Concurrency

So this process contains a sequence. . .a b. . . b a. . . . According to the definition σ1
of synchronic distance given above, the synchronic distance between a and b is 2.

If, however, both a and b occur only once, as in Fig. 8, we still would like to
obtain the same synchronic distance, but unfortunately the same argument does not
work! The process contains sequences c a b and c b a. Each of these sequences
gives rise to a synchronic distance of 1 only. Only considering the possible lead of
a and also the possible lead of b, both possible within one process, but in different
sequences, results in the desired distance 2. Thus, here is a second definition of
synchronic distance (see [3] and [1]), solving this problem:

σ2(a, b) = max
π∈�N

(
max

τ1≺τ∈π

(
#τ1(a) − #τ1(b)

) + max
τ1≺τ∈π

(
#τ1(b) − #τ1(a)

))

if this maximum exists, and σ2(a, b) = ∞ otherwise.

5.3 Conflict

Now consider the case that either a transition a can occur or a transition b can occur,
but each of these two transitions excludes the other one, as in Fig. 9. Petri called this
situation a conflict between a and b.

In the cyclic constellation, a can occur arbitrarily often without any occurrence
of b (and vice versa), whence then there is no finite synchronic distance between the
two transitions. However, if we only have a singular conflict, then the only possible
maximal occurrence sequences are given by (only) a and (only) b. Since, in both

Fig. 9 Conflict
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cases, at most one transition can occur, an obvious suggestion is σ(a, b) = 1.
However, a can lead by 1 in one sequence (and in one process) and b can lead
by 1 in a different sequence (and in a different process). The difference with the
concurrency case is that the considered sequences a and b exclude each other.

The core of the discussion within Petri’s research group was the question of
whether in this case the synchronic distance between a and b should be 1 or 2. As
the authors of [4] report in their paper, Petri decided that both results are possible.
In particular, if no further control is assumed and both a and b are therefore really
possible, he decided that the synchronic distance should be 2. This is obtained by
the following, much easier definition σ3 of synchronic distance, which does not
maximize the mutual deviation of the considered transitions a and b within one
sequence or within one process, but within all occurrence sequences:

σ3 (a, b) = max
τ∈LN

(#τ (a) − #τ (b)) + max
τ∈LN

(#τ (b) − #τ (a))

if these maxima exist, and σ3(a, b) = ∞ otherwise.
If, however, some control is assumed that decides how to choose between a and

b, then Petri voted for synchronic distance 1. Hence, at this point he introduced
synchronic distance between transitions not as a behavioral property of the net, but
as a specification of a property, which the net does not necessarily satisfy. Instead,
it is assumed that the modeled system is embedded in an environment such that the
composed system will have the specified property. By providing the specification
of a synchronic distance, we thus consider the behavior of one Petri net component
restricted to the behavior of the entire composed net.

6 What Happened to Synchronic Distance?

6.1 Places as Specifications

Petri did not like nets where the flow of control is established by places with
multiple tokens. Instead, he considered only signals between transitions that cannot
accumulate or overtake each other. Actually, he considered all original places of a
net as conditions, which can be true (one token, existing signal) or false (no token).
According to his firing rule, a transition can only be enabled if all its post-conditions
are unmarked; thus multiple tokens on a place cannot occur.

However, Petri also used places with arbitrary markings, but for a different pur-
pose. He added such places to nets with conditions and transitions, but distinguished
these places from the conditions (actually, he used dotted lines for these places and
their in-and out-going arcs; see [4]). The purpose of such an additional place was
not to restrict the behavior of transitions, but to count the number of occurrences
of transitions in the pre-set minus the number of occurrences of transitions in the
post-set of the additional place. This way, the place can model a buffer, a resource
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or suchlike. If the number of tokens on that place ranges between a lower and an
upper limit, then the difference between these numbers is the synchronic distance
between two sets of transitions, the pre-set and the post-set of the place. Again, this
view assumes that, for some initial marking of the additional place, this place will
never run out of tokens, which would disable the transitions in its post-set.

Hence, Petri did not only invent Petri nets with conditions and transitions, but
also arbitrary places in nets which can carry more than one token. He distinguished
these places from conditions and motivated these places by the concept of syn-
chronic distance. He explicitly mentioned that the synchronic distance between the
pre- and post-set of a condition is always 1 (assuming that all transitions can fire
at some reachable marking), and thus the condition can be replaced by a place in
the above sense. The synchronic structure of the net is given by all transitions and
all places representing a finite synchronic distance. Petri considered this view, a
place/transition net, as an important alternative way to represent the behavior of a
distributed system.

6.2 Hybrid Specifications

As reported in detail in [4], Petri assumed that each modeled system has some envi-
ronment that influences or controls the system’s behavior. By means of declarative
specifications, assumptions about the environment’s behavior can be specified.

Petri first added places as described above to depict a behavioral property of
a Petri net, namely the synchronic distance between the respective pre- and post-
set. Later, he suggested adding such places as a declarative specification. More
specifically, an additional place states that the behavior of the net should respect
this synchronic distance, even if the net without the place does not. Thus, he used
a mixture of procedural specification (the net itself) and declarative specification
(additional places expressing an assumed synchronic distance). Whereas, for many
years, other modeling formalisms concentrated either only on procedural specifi-
cations or only on declarative specifications, hybrid specifications such as the ones
invented by Petri became hip only in this century, particularly in the application area
of business process models. See, for example, [2] and [9].

6.3 Synthesis Based on Synchronic Structure

In the last few decades, a rich theory of Petri net synthesis from a behavioral
specification has been developed. The specification of behavior ranges from tran-
sition systems, sets of occurrence sequences, and terms of occurrence sequences
(expressing infinite behavior, too) to sets of causally ordered runs such as process
nets. The core concept of synthesis is to construct a Petri net by taking all transitions
from the input descriptions and successively adding places, which restrict the
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behavior of the net. The restriction caused by such a place may never exclude a
part of the input behavior, i.e., the specified behavior must still be possible in the
net constructed so far. Adding all such feasible places respecting the input behavior
results in a Petri net which has exactly this behavior, if such a net exists. However,
allowing arbitrary arc weights, the set of all such feasible places is usually infinite,
and most of these feasible places are redundant. Therefore, research about Petri net
synthesis concentrates on efficient algorithms for creating a finite, or even minimal,
subset of feasible places such that the net with only these places is behaviorally
equivalent to the net with all feasible places.

How is this connected to synchronic distance? Each place to be added can be
viewed as a synchronic distance between its pre- and post-set. So Petri net synthesis
is about identifying the synchronic structure from a given behavioral description.
Whenever there is a finite synchronic distance between two sets of transitions, the
corresponding place is feasible. Petri also already thought about small feasible sets,
by identifying the previously mentioned relation D expressing a synchronic distance
1. However, he realized that in general it is not possible to synthesize a net by just
using places representing elements of D, as mentioned earlier.

7 Conclusion

I have collected thoughts and findings of Carl Adam Petri about the concept
of synchronic distance in Petri nets. Sources have been early papers of Petri,
papers reporting on discussions with Petri, and my own recollection of fascinating
discussions between Petri and members of his research group.

The precise definition of synchronic distance has changed slightly over the years,
and so has its interpretation. Reformulating the respective definitions that can be
found in the literature, I gave the most important ones in a (hopefully) better-
comparable way. Although synchronic distance seems to be a forgotten concept
in Petri net theory, I provided examples to prove that the core ideas are still
relevant, namely the interpretation of a bounded place, the use of special places
in hybrid specifications, and finally the synthesis of Petri net places from behavioral
specifications.

Synchronic distance between two sets of transitions describes a very strict mutual
dependency. There have been generalizations in various ways. In particular the
existence of a finite synchronic distance between transitions a and b implies that
neither of the transitions can occur infinitely often if the other transition does not
occur, which is in turn a special case of a fairness assumption, as introduced much
later within Temporal Logics. For an attempt to define a synchronic distance-related
fairness notion, see, e.g., [11].
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How Carl Adam Petri Deeply Influenced
My Understanding of Invariance
and Parallelism

Gerard Memmi

We were a group of eight researchers and had recently published the first book
in French on Petri Nets1 summing up the main results of the French research in
the field (both theoretical and applied). A few months later, I received a letter of
appraisal from Carl Adam Petri. We were not expecting such a letter and we were
touched and indeed very pleased about it.

Thanks to this book and this letter I was able to meet with Carl Adam Petri
a few times and have short but meaningful conversations with him. This was the
early 1980s and every informal meeting took place at European Workshops on
Application and Theory of Petri Nets. I remember him as a fine man, astonishingly
reserved given his reputation and the high esteem he enjoyed among his colleagues. I
was at the time a young researcher, somewhat clumsy and certainly quite introverted.
We talked about the book and I remember one comment in particular from him as
it concerned the heart of my own research: Petri had not anticipated how linear
algebra could be applied to his model to deduce a variety of behavioral properties.
He encouraged me to dig further in this direction. In what follows, I propose to
focus on the notion of invariance and how linear algebra relates to this fundamental
notion. I will conclude with some additional thoughts on the issue.

1G. W. Brams “Réseaux de Petri, Théorie et Pratique”, Masson, 1983. GW Brams is a nom de
plume made up from the first letter of each author’s name in the following order: C. Girault, R.
Valette, G. Vidal-Naquet, G. Berthelot, G. Roucairol, C. André, G. Memmi, and J. Sifakis. The W
standing for Valette and Vidal-Naquet is a pun: in French the letter W is pronounced ‘double V’
and not ‘double U.’ A good number of the results described in this short presentation can be found
in this book.
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1 By the Way, What Exactly Is an Invariant?

In computer science or in software engineering, an invariant is a system behavioral
property or relationship the value of which does not vary over time, over the
evolution of the said system. Each time you use words like ‘is constantly,’ ‘must
always,’ or ‘never will’ you can suspect that your sentence can be associated with
an invariant. In any system model, invariants will be used to describe behavioral
requirements or system exceptions which are often used to support the detection of
a possible physical failure and provide valuable alerts. Invariants can be described
in a temporal logic; they have a constant truth value that is always satisfied.

With regard to Petri Nets, these properties or relationships will be expressed
or deduced by using places and transitions. Most of the time, places will model
variables and transitions will model equations over these variables. Then, the
bipartite graph connecting places and transitions supports the system structure.
Together with the “token game,” which in turn models the dynamic evolution of the
system under consideration, we have two distinctive elements that in my opinion
make Petri Nets so unique and famous. Sometimes, researchers would find Petri
Nets too low level to describe complex systems and would compare Petri Nets to
Turing machines, which is not to say that they have the same power of algorithmic
description (we know since the reachability problem has been solved for Petri Nets
that Petri Nets are less powerful in terms of algorithmic description than Turing
machines) but rather in order to stress the need for a more concise model, providing
a higher level of abstraction. Hence, the many proposals introduced to enrich the
token game, making the enabling rule more elaborate using, for instance, priorities,
time, or probabilities or making tokens more complex with, for instance, colors,
letters, or abstract data types.2 However, the bipartite structure between places and
transitions would remain and the notion of invariance likewise. In a way, considering
markings and tokens, an invariant can also be seen as a constant function over the
distribution of tokens in a Petri Net independent of the sophistication of its enabling
rule or the complexity of the structure of its tokens.

A classic example of an invariant is the relationship expressing mutual exclusion
between two tasks of two entities. By modeling these two entities and their
interactions by a Petri Net and the fact that their tasks are active by the presence
of tokens in two places A and B, respectively, proving that M(A)×M(B) = 0 for
any reachable marking from the initial M0 will show exactly what we are looking
for: the two entities cannot be active at the same time (i.e., at the same marking).
The set of all reachable markings from the initial marking is traditionally called
the reachability set. Then, an invariant is a property true for all elements of the
reachability set.

2The interested reader can consult the excellent book edited by Kurt Jensen and Grzegorz
Rozenberg: «High-level Petri Nets, Theory and Application», Springer, 1991.
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2 Invariants Lead to Liveness and Boundedness

With regard to Petri Nets, invariants are interesting not only because they express
a property that is looked for itself (for instance, to comply with the system spec-
ification) but also because they allow the exclusion of a vast number of markings
that can’t be reached from the initial marking without violating the invariant. If a
marking does not satisfy an invariant, then it is not reachable. This aspect is critical
to analyze and prove many important behavioral Petri Net properties such as liveness
or boundedness.

To explore this idea on a deeper level, we associate invariants with sets of
markings: An invariant I can be associated with a set IM of all markings satisfying
the invariant property or relationship (i.e., for which the invariant is true). A property
P will be an invariant if the reachability set is included in its associated set IP. Then,
we introduced the notion of home space.

A set of markings, HS, is a home space if and only if for any evolution of the
Petri Net, it is always possible to go back to an element of HS via a sequence of
transitions. It is not easy to prove that a given set of markings is a home space
since it requires verifying the property for all reachable markings from the initial
marking of the Petri Net under consideration. Actually, it is worth noting that any
home space has at least one element in each sink strongly connected component of
the reachability graph.

When HS is reduced to one single marking, we say that HS is a home state,
which is a well-known critical notion for physical systems and is usually associated
with the reset function of the system. If the initial marking M0 is a home state, then
any reachable marking also is a home state and the reachability graph is strongly
connected. It is then obvious that any transition that can be enabled once is live.

Now, we can see that a set of markings associated with an invariant is a trivial
home space since it includes the entire reachability set.

These observations lead us to look for the smallest set of markings associated
with invariants, or at least to look for the smallest one that can be easily handled.
From there, we try to characterize how tokens are distributed over places and, for
each possibility of this token distribution, to prove that a specific given marking
M (M0 being the usual case) is reachable. When this is possible, it can easily be
deduced that M is a home space. Then, it is possible to conclude and be able to
prove whether the net under study is live or not.

Sometimes, the token distribution that I just mentioned can allow us to prove that
some places are bounded. When places are bounded for any initial marking, they
are said to be structurally bounded. I will come back to this point soon, but first, let
us understand how to proceed to discover some of them.
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3 Invariant Calculus

In general, invariants can be proven as such by using a model checker. However, the
question is not only to prove that a given proposition is an invariant (which is no
small undertaking), but also to design algorithms able to discover as many of them
as possible with as little guidance as possible and understand which ones are the
most potent.

If I and J are two invariants associated with their associated marking sets IM and
JM , then it is easy to define a third invariant K such that its associated marking
set is IM ∩ JM . AS we can see, the intersection is stable over the associated
sets of invariants; this is important since we are looking for as small as possible
an associated set. It is also worth noting that it is easy to combine invariants in
various ways and to generate many of them. It is therefore important to understand
whether invariants are organized and how to develop some computational rules over
invariants relative to a given net.

Until now, all these definitions have been pretty general and can be applied to
any transition system model.

For a Petri Net, any transition t can be defined by its Pre and Post conditions and
if M′ is reached by enabling t from M, then we can compute M′ from M such that

M ′ = M + Post(.,t) − Pre(.,t)

If an invariant I can be defined as a function over markings, then we have

I
(
M ′) = I(M + Post(.,t) − Pre(.,t))

Moreover, if I has the good taste to be a homorphism that preserves addition, then
we may rewrite our equation to obtain I(M′) = I(M) + I(Post(.,t)) − I(Pre(.,t)).
Since I is an invariant, I(M′) = I(M) and I must verify the following system of
equations:

I(Post(.,t)) = I(P re (.,t)) for every transition t of the net.

This system of equations is fundamental; it sets some constraints over the
topology of the net and expresses a law of conservation over the net and its
evolution. This law of conservation says that during the dynamic evolution of the
net, a function of token distribution remains constant: when a transition is enabled,
the evaluation of this function over what is consumed by the transition (described by
Pre) is equivalent to the evaluation of the function over what is produced (described
by Post). H. Genrich and K. Lautenbach were among the first ones, if not the first
ones, to describe such a concept for Petri Nets.

In many papers, an invariant is associated with an integer weight function f over
the set of places, named semiflow, that verifies Kirchhoff’s law for each transition.
We then have the following invariant: f TM = f TM0 for any marking M reachable
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from M0, where f TM is the scalar product of f and M and it can be computed by
solving the following system of equations:

f TPost(.,t) = f TPre(.,t) for every transition t of the net.

The vast corpus of linear algebra results and algorithms can be applied to analyze
a net and compute semiflows. However, the most interesting semiflows from a
behavioral point of view are defined over natural numbers instead of integers. A
first reason for particularly defining f over non-negative integers is that it can be
proven that if

f > 0 and f T Post(.,t) ≤ f TPre(.,t) for every transition t of the net,

then the set of places (the net) is structurally bounded. The reverse is also true: if
the net is structurally bounded, then there exists a strictly positive solution for the
system above. This characteristic property is indeed false for a semiflow that verifies
the system and has at least one negative element. ‖ f ‖ usually denotes the support
of f, that is to say the subset of places that have a non-null weight relative to f. Any
subset of places included in ‖ f ‖ is structurally bounded.

A second reason for particularly defining f over non-negative integers is that the
inequation

f TPre(.,t) ≥ f TM0

becomes a necessary condition for t to stand a chance to be enabled or live.
Of course, a linear combination of semiflows is still a semiflow. Unfortunately,

the set of semiflows over natural numbers is not a space vector. However, it is
still possible to characterize this set by the following result: any semiflow is a
linear combination (with rational coefficients) of the family of minimal semiflows of
minimal support. Several algorithms have been published to compute such a family
of semiflows. This finite family is critical since once we have it we can generate any
other semiflow.

These results have been cited and utilized many times in various applications
going beyond computer science, electrical engineering, or software engineering. For
instance, they have very recently been used in the domain of biomolecular chemistry
for chemical reaction networks, which brings us back to the original vision of C. A.
Petri when he claimed that his nets could be used in chemistry. I remember that at
the time I was among the skeptical on . . . and of course, I was wrong!

Let us illustrate some of the above concepts through an example.
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4 A Tiny Example

The Petri Net below models a machine semi-deciding whether a given number n is
even assuming it is greater than 1. That is to say, this net will be live only if the
initial marking is such that M0(A) = n = 2k + 1 for k ≥ 1; and on the other hand,
it will always be possible to find a sequence of transitions such that the net stops
(t1 and t2 are not enabled anymore) only if M0(A) = n = 2k, whatever the initial
marking of B.

We have: Pre(.,t1)T = (2,0); Pre(.,t2)T = (1,1); Post(.,t1)T = (0,1);
Post(.,t2)T = (3,0).

f T = (1, 2) is a semiflow: for t1 and t2 Kirchhoff’s law is easily verified. Moreover,
it can be proven that f is a minimal semiflow and its support is minimal as well.

The scalar product f TM defines an invariant: for any marking M reachable from
an initial marking M0, f TM =M(A) + 2M(B) = f TM0 is constant. This can be
rewritten as M(A) = f TM0 − 2M(B), which means that the parity of M(A) will
never change (considering that zero is even). It is then easy to prove that if f TM > 2
and is odd, then the Petri Net is live; if f TM is even, then the Petri Net is not live (t1
can be enabled until A has no token which means that it is not possible to enable t1
and t2 anymore).

Because f > 0, we have A and B bounded by f TM0 for any initial marking M0. A
and B are therefore structurally bounded.

What is remarkable about this tiny example is that it was not necessary to develop
the reachability Artless graph in order to decide whether or not the net is live
or bounded. We could analyze the net even partially ignoring the initial marking
[namely, M0(B)].

An interesting behavioral lesson to draw from this tiny example has to do with
liveness: once a net is live, adding more tokens does not guarantee that liveness
will persist; as a matter of fact, adding one token to A will make the net not live
while adding a second token will make it live again. Adding more tokens does not
necessarily result in liveness. This is a false “good idea” that I encountered with
many students and engineers.
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We encourage the reader to similarly design another Petri Net to semi-decide
whether a number is odd.

5 A Few Words to Conclude

About nets, I can never sufficiently stress the combination of their two key
concepts that set Petri Nets apart from many other models. First, a bipartite graph
captures and models so well the relationship and connections between actions and
resources. Second, the “token game” allows simulations and development of a
reachability graph given an initial marking. Clearly, this combination is able to
depict concurrency and, in my opinion, plainly supports the notion of parallelism.
We have seen how invariants create a link from the static structure (the bipartite
graph) to the dynamic evolution (the tokens) of the net. They express constraints
over all possible markings, which greatly helps the analysis and discovery of
behavioral properties which can be somewhat independent from the initial marking
of the net under consideration. Last but not least, they can be computed despite
some level of parameterization, avoiding a painstaking symbolic development of
the reachability graph.

Well, sometimes just a few words at the right time suffice. As I said in the
introduction, I met Carl Adam Petri only a few times, however, I keep a vivid and
precious recollection of his encouragements.



Toward Distributed Computability
Theory

Roberto Gorrieri

1 Introduction

Petri nets were introduced by Carl Adam Petri through his Ph.D. dissertation [19]
in 1962, the year I was born. Unfortunately, I never had the opportunity to talk
to Petri about his important computational model. As a matter of fact, I became
acquainted with Petri nets in the late 1980s in Pisa, during my Ph.D. studies, under
the illuminating supervision of Ugo Montanari and Pierpaolo Degano. At those
times, they were studying, together with Rocco De Nicola, how to find a suitable
distributed semantics for CCS in terms of safe Petri nets [7]. This line of research
can be defined by the motto Petri nets for Process Algebras. More recently, I
approached the reverse problem of finding suitable process algebras to represent
specific classes of Petri nets, whence the motto Process Algebras for Petri Nets [9].
The problem described in this short chapter is a sort of by-product of this line of
research; this note emphasizes the prominent role that, in my opinion, Petri nets
should play in the theory of computation.

In fact, classic computability theory is based on sequential models of compu-
tation, such as Turing machines [6, 14, 23]. It is sometimes argued that Turing-
complete models of computations are equally expressive. However, I argue that
there are problems in distributed computing, such as the Last Man Standing
problem [9, 24], that are not solvable in the Turing-complete model CCS(25,12)
[10], while they are solvable within finite, nonpermissive [9] Petri nets, a class of
nets conservatively extending finite Petri nets with inhibitor arcs. Hence, I argue
that Petri nets, in their many facets, are more suitable than sequential models of
computation for assessing the relative expressive power of different languages for
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distributed systems. In doing so, I lay the foundation for distributed computability
theory, as a generalization of sequential (or Turing) computability theory.

2 Turing Computability

Classic computability theory was developed in the 1930s and 1940s starting from
sequential models of computation, such as Turing machines [6, 14, 23], lambda
calculus [1, 4], and the like [5, 17, 22]. The computable objects of these formalisms
are partial functions over natural numbers. The famous Church-Turing thesis [15]
states that any function that is algorithmically computable in some finite formal
system is computable by means of a Turing machine. Hence, the supposed validity
of the Church-Turing thesis ensures that two sequential models of computation (or
two sequential languages) are equally expressive if they are both Turing-complete,
i.e., if they both compute all the Turing-computable functions.

However, when considering concurrent models of computations, such as process
algebras, the situation is a bit different. First of all, it is well known that a function
may not be the suitable semantic model for a concurrent program (this dates back at
least to the work of Bekič [2] at the beginning of the 1970s; see also [12, 16] for a
more recent and accessible discussion of the problem), and so Turing-completeness
does not seem to be the right criterion for comparing the expressive power of two
concurrent languages. As a matter of fact, the class of problems that a concurrent
language can solve may include the Turing-computable functions, but it may also
include many problems that have nothing to do with functions, as illustrated in the
next section.

3 Last Man Standing Problem

The Last Man Standing (LMS, for short) problem, originally introduced in [24], can
be solved in a process algebra if there exists a process p able to detect, in a finite
amount of time, the presence or absence of other copies of itself. We need to identify
a process p such that p is able to execute an action a only when there is exactly one
copy of p in the current system, while p is able to perform an action b only when
there are at least two copies of p in the current system. To be precise, if qi , is the
system where i copies of p are enabled, we require that all of its computations will
end eventually (i.e., no divergence is allowed) and that the observable content of
each of these computations is a if i = 1 and b if i > 1, where a �= b, In other
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words, if
�=⇒ stands for a, possibly empty, sequence of silent transitions followed

by an �-labeled transition, then

q1 = p q1
a=⇒ q ′

1 � q1
b
�

while

q2 = p | p q2
a
� q2

b=⇒ q ′
2 �

. . .

qn = p | p | . . . | p︸ ︷︷ ︸
n

qn
a
� qn

b=⇒ q ′
n �

where –|– is the parallel composition operator of the calculus under scrutiny. The
operational rules for parallel composition of CCS [12, 16] state that any process p,
able to execute some action a, can perform the same action in the presence of other
processes as well, so that if p

a=⇒ p′, then also p | p a=⇒ p | p′, which contradicts
the requirement that q2

a
�. As a matter of fact, CCS is permissive: no parallel process

can prevent the execution of an action of another process. Hence, CCS cannot solve
the LMS problem.

However, the LMS problem can be solved in other calculi that possess some
ability to make contextual checks. In fact, [24] proposes a simple, non-Turing-
complete calculus, called FAP, which is able to express some form of priority among
its actions and to solve the LMS problem. Furthermore, [9] proposes a Turing-
complete calculus, called NPL, which is able to perform atomic tests for absence
of certain concurrent processes, which can also solve the LMS problem.

Hence, there exists a problem in concurrency theory (i.e., the LMS problem)
that a Turing-complete language (e.g., CCS(25,12), i.e., CCS using at most 25
constants and 12 actions [10]) cannot solve, while it can be solved by a non-Turing-
complete calculus (i.e., FAP). Therefore, what is the analog of computable function
for concurrency? And what is the analog of Turing-completeness for concurrency?
New definitions are necessary. Here I present my own proposal as a possible new
foundation for distributed computability theory—as a generalization of classic,
sequential (or Turing) computability theory.

4 Distributed Computability Theory

A process is a semantic model, up to some behavioral equivalence. For instance,
if the chosen models are labeled transition systems and the chosen equivalence is
(weak completed) trace equivalence, then a process is nothing but a formal language
[6, 14]; if, instead, the chosen models are Petri nets [18, 19, 21] and the chosen
equivalence is net isomorphism, then a process is a Petri net, up to net isomorphism.
In other words, the notion of computable function on the natural numbers for
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sequential computation is to be replaced by a model with an associated equivalence
relation, which we call a process, for concurrent computation.

A process algebra is complete w.r.t. a given class of models if it can represent
all the elements of that class, up to the chosen behavioral equivalence. A class
of models is Turing-complete if it can compute all the computable functions; if
a process algebra is complete w.r.t. that class of models, then it is also Turing-
complete.

Different process algebras usually have different expressive power. In [9] I
present a list of six increasingly expressive process algebras, each one complete
w.r.t. some class of Petri nets, up to net isomorphism. The most expressive one
is NPL, which is the only language studied in [9] to be Turing-complete, as it can
represent all finite, nonpermissive Petri nets (a class of nets conservatively extending
the class of nets with inhibitor arcs), and which can also solve the LMS problem.
However, there are other process algebras, such as CCS(25,12) [10], that are Turing-
complete, but that can neither represent all the finite, nonpermissive Petri nets,
nor solve the LMS problem. Nonetheless, CCS(25,12) can represent many infinite
Place/Transition Petri nets, and so NPL and CCS(25,12) are incomparable, at least
if the considered semantic equivalence is net isomorphism.

5 Why Not Use Labeled Transition Systems?

If a process is a semantic model, up to some behavioral equivalence, we might think,
as many process algebra scholars do, that labeled transition systems, equipped with
some bisimulation-like equivalence, are more than enough for the purpose.

As a matter of fact, it is often assumed that the only relevant part of the
behavior of a system is given by its interaction capabilities, i.e., the actions the
system performs with which an observer can interact. This argument is based
on the assumption that a system, like a vending machine, is actually a black
box, and that the observer of the system can only interact with this system by
means of the externally visible buttons or slots, but without any knowledge of
the internal structure of the machine. This idea is quite appealing and has an
obvious consequence that an interleaving model such as labeled transition systems,
showing which visible actions can be performed and when, is more than enough
to completely describe the behavior of a system. However, by modeling a reactive,
distributed system with a transition system, we are forced to make one fundamental
abstraction of its structure: the states of the reactive system are monolithic entities
that cannot be inspected and each transition from, say, state q to state q ′, with
label a, transforms the state q as a whole, even if only some components of the
system are actually involved in the execution of action a. As the structure of
the system is abstracted away in interleaving semantics, distributed systems with
very different structures and very different properties can be equated. For instance,
a deterministic, symmetric, fully distributed, deadlock-free solution to the well-
known dining philosophers problem (originally proposed by Dijkstra [8], and then
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elaborated on by Hoare [13] in its current formulation) can be provided in Multi-
CCS (see Chapter 6 of [12]). Let p be the Multi-CCS solution to this problem;
its interleaving semantics is a finite-state labeled transition system, which is also the
semantics of a purely sequential process q; since p and q are interleaving equivalent,
we may wrongly conclude that q is also a deterministic, symmetric, fully distributed,
deadlock-free solution to the dining philosophers problem! Of course, this is not the
case. Since the properties of interest for a distributed system are often related to
the structure of the system, the semantics cannot abstract away from this aspect of
the system. Not surprisingly, the Petri net semantics of the Multi-CCS process p

mentioned above is expressive enough to show that the solution that p offers to
the dining philosophers problem is deterministic, symmetric, fully distributed and
deadlock-free, indeed.

6 Conclusion and Future Research

If a process is a Petri net, up to some behavioral equivalence, which behavioral
equivalence is the most adequate? In my study [9] I have used net isomorphism.
However, this equivalence is very concrete and one may wonder whether some
weaker equivalence relation can be more suitable instead. Process algebra scholars
usually compare the expressive power of different process algebras by showing the
existence (or nonexistence) of suitable encodings, up to (weak) bisimulation equiv-
alence. If we desire a similar technique, a suitable candidate behavioral equivalence
for Petri nets should be the distributed generalization of (sequential) bisimulation
for labeled transition systems. Even though some concurrent bisimulation-like
definitions for Petri nets have been proposed in the literature (see, e.g., [3, 20]),
I think that further research is needed to yield a really satisfactory definition in this
direction [11].
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Petri Inheritance: The Foundation
of Nondeterministic, Concurrent Systems

Roberto Bruni and Ugo Montanari

1 A Personal Experience

In September 1973 I (the second author) attended one of the first (actually the
second) conference on Mathematical Foundations of Computer Science at Štrbské
Pleso, High Tatras. I was travelling by car and it was quite an adventure since
there were some problems at the borders due to prevention measures for cholera. At
Štrbské Pleso I met for the first time Carl Adam Petri. Actually, on this occasion I
also heard about Petri nets for the first time. There was a lot of excitement about nets,
which were anyway already more than 10 years old. I was very impressed by Petri:
his taste for mathematical foundations of concurrency, reminiscent of Dedekind,
was quite appealing to me. Thus I decided to invite him for the first Italian Convegno
di Informatica Teorica, which I coorganised at Mantova, in November 1974. Later
on, a thread of collaboration was developed: a former Pisa student, Pippo Torrigiani,
worked for a few years at Schloss Birlinghoven, Sankt Augustin, where I also visited
for two 1-month periods at the end of the 1970s.

At Schloss Birlinghoven I had several interesting discussions with Hartmann
Genrich, Kurt Lautenbach and P. S. Thiagarajan. With Petri I had just one
session, a full afternoon long, about general net theory. As a main goal, I was
interested in possible semantic domains for concurrency consisting of unfolded
occurrence nets representable in three dimensions: causality, nondeterminism and
concurrency. Here maximal sections having as dimensions nondeterminism and
concurrency would represent states of the nondeterministic computation, causality
× nondeterminism would show the views of certain sequential observers, while
causality × concurrency would model concurrent computations. Some results were
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presented in a joint paper with Andrea Simonelli. I learned quite a lot during my stay
at Schloss Birlinghoven, in particular concepts and constructions very useful for my
subsequent work on concurrency. Slightly later, the work by Nielsen, Plotkin and
Winskel on event structures and domains appeared at a conference on Semantics
of Concurrent Computation and Glynn Winskel wrote his thesis at the University
of Edinburgh on events in computation, establishing a strong basis for domain-
based concurrency theory. In both cases the formal developments were explicitly
motivated and made possible by Petri net models and results.

A renewed interest in Petri nets matured during my sabbatical at SRI in 1987.
José Meseguer and I wrote a paper (published at LICS 1988 and in Information
and Computation) titled Petri Nets are Monoids, which gave for the first time a
presentation of the semantics of Place Transition (PT) nets in terms of symmetric
monoidal categories (SMC). Later on, together with Vladimiro Sassone, a full
picture connecting SMC with event structures and prime algebraic domains was
developed. Finally, further work, in collaboration with the first author, made the
connection stronger, in fact functorial.

More recently, a variety of networks were represented as arrows of SMC enriched
with signatures of operations equipped with axioms, concisely represented as string
diagrams. This research suggested a line (by both authors, Hernán Melgratti and
Pawel Sobocinski) where compositional versions of Petri nets with observations
and connector algebras have been defined. Particularly interesting is the enabling
mechanism, defining a distributed choice in the presence of distribution, concur-
rency and nondeterminism. An abstract definition of such mechanisms has shown
that it is the most general possible. This universal result confirms the importance and
generality of Petri nets, also in comparison with other formalisms (BIP, REO etc.).
This fundamental result is presented succinctly in the remainder of this chapter.

2 Petri Nets as a Connector Algebra

Net composition is a useful tool for modelling systems and proving their properties
as well as for comparing the expressive power of Petri nets with other formalisms.
Several notions of composition have appeared in the literature, often based on
interfaces made of places, of transitions or of both. Notable examples are the
approaches by Nielsen, Priese and Sassone, based on combinators, by Best,
Devillers and Koutny, based on the Petri box algebra, by Baldan, Corradini, Ehrig
and König, based on open nets, by Reisig, based on interface nets, by Katis, Sabadini
and Walters, based on the bicategory of Span(Graph), by van der Aalst and others,
based on net modules, and the very recent Springer book by Roberto Gorrieri that
surveys suitable process algebras that can represent specific classes of Petri nets.
Here we overview nets with boundaries, as introduced by Pawel Sobocinski and
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Lnil

(a)

Wkready

busy

(b)

Bf

empty full

(c)

Rnil

(d)

Fig. 1 Some nets with boundaries. (a) Lnil. (b) Worker model. (c) Buffer model. (d) Rnil

studied in our joint work Connector algebras for C/E and P/T nets’ interactions1

Interestingly, they have been exploited to compare the expressiveness of Petri nets
with other formalisms for modelling distributed decisions, such as Reo and BIP.

Nets with boundaries extend ordinary Petri nets with left and right interfaces that
can be used for composition. An interface is just a list of ports, to which transitions
can be attached. Names of ports are not important, so they are named as natural
numbers, according to the position they occupy in the interface. The distinction
of left and right interfaces is convenient for defining sequential composition of
nets with boundaries, but it would be misleading to think about an input/output
distinction. The general idea is that a transition attached to some ports is a sort of
fragmented transition that must be completed with other fragments via an interaction
on shared ports. Graphically, this intuition is rendered by using undirected arcs to
connect ports with transitions.

The operational semantics of nets with boundaries can be expressed as a labelled
transition system whose labels are pairs modelling the observable interactions on
the ports of the left and right interfaces. Interestingly, the corresponding bisimilarity
equivalence is a congruence w.r.t. parallel and sequential composition of nets with
boundaries. A concise formal account follows.

For a natural number n ∈ N, we let n = {0, 1, . . . , n − 1}. Given m,n ∈ N, a
net with boundaries N : m → n is a tuple N = (S, T , ◦−,−◦,• −,−•) where S is
the set of places, T is the set of transitions, the functions ◦−,−◦ : T → 2S assign
sets of places, called respectively the pre-set and the post-set, to each transition
and the functions: •−: T → 2m and −• : T → 2n transitions to the left and right
boundaries of N , respectively.

Figure 1 presents some nets with boundaries that we use as a running example.
The net Wk: 1 → 1 in Fig. 1b models a worker (either a producer or a consumer) that
is ready to perform some action to enter the busy state. Its left and right interfaces
each consist of just one port. The transition from ready to busy is attached to the
unique port of the right interface. The bottom transition is attached to both ports: it

1Logical Methods in Computer Science 9(3) (2013).
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will be used to compose the worker with other workers. The transitions that share a
port compete for interaction with that port.

The net Bf: 2 → 2 in Fig. 1c models a buffer to store the item produced by some
worker. The buffer has only one slot: it can be empty and ready to accept an item,
or full and ready to dispense the stored item. In this case the left and right interfaces
have two ports each: the topmost port in the left interface will be used to combine
the buffer with some producer; the bottom port in the left interface will be used to
combine the buffer with some consumer, the two ports in the right interface can be
used to combine the buffer with other buffers.

The nets Lnil: 0 → 1 in Fig. 1a and Rnil: 1 → 0 in Fig. 1d are empty: they can
be used to restrict interaction on some ports.

Given two nets N1 : m1 → n1 and N2 : m2 → n2, their parallel composition is
the net N1 ⊗ N2 : m1 + m2 → n1 + n2 obtained by the disjoint union of the two
nets, up to an obvious rearrangement of their left and right interfaces (the ports of
N1 precede those of N2).

Sequential composition is defined when the right interface of one net with
boundaries matches the left interface of another net. Given N1 : m → k and
N2 : k → n, their sequential composition is the net N1; N2 : m → n whose places
are the disjoint union of the places of N1 and N2 and whose transitions are all the
possible (minimal) synchronisations of (mutually independent) sets of transitions
from N1 and N2 that interact over the k shared ports.

Formally, two transitions t , u are said to be independent when their sources as
well as their targets are separated, i.e. when

◦t ∩ ◦u = ∅ ∧ t◦ ∩ u◦ = ∅ ∧ •t ∩ •u = ∅ ∧ t• ∩ u• = ∅

and a set U of transitions is mutually independent when, for all t , u ∈ U , if
t �= u then t and u are independent. We say that a synchronisation is a pair
(U1, U2) with U1 and U2 mutually independent (disjoint) sets of transitions of N1
and N2, respectively, such that: (1) U1 ∪ U2 �= ∅ and (2) U•

1 = •U2. The set
of synchronisations inherits an ordering from the subset relation, i.e. (U1, U2) ⊆
(U ′

1U
′
2) when U1 ⊆ U ′

1 and U2 ⊆ U ′
2. A synchronisation is minimal when it is

minimal with respect to this order. The intuition is that a minimal synchronisation
cannot be broken in simpler synchronisations. As a special case, note that any
transition t1 in N1 (respectively t2 in N2) not connected to the shared boundary
k defines a minimal synchronisation ({t1},∅) (respectively (∅, {t2})).

Next, we discuss some compositions of the nets of our running example.
First we can model a single worker by restricting the left interface of a worker:
the corresponding net SWk = Lnil; Wk is shown in Fig. 2a. Similarly, we can
model a single buffer by restricting the right interface of a composable buffer:
the corresponding net SBf = Bf; (Rnil ⊗ Rnil) is shown in Fig. 2b. Then, we can
assemble two workers (a producer and a consumer) with a buffer: the corresponding
net PC = (SWk ⊗ SWk); SBf is shown in Fig. 3.

It is interesting to observe what happens when we compose several workers or
several buffers together. The net 2Wk = Lnil; Wk; Wk is given in Fig. 4, while the
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Fig. 2 Some composed nets. (a) The net SWk = Lnil; Wk. (b) The net SBf = Bf; (Rnil ⊗ Rnil)
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Fig. 3 The net PC = (SWk ⊗ SWk); SBf
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Fig. 4 The net 2Wk = Lnil; Wk; Wk

net 2Bf = Bf; Bf; (Rnil ⊗ Rnil) is given in Fig. 5. We can then compose a system
with two producers, one consumer and two buffers as shown in Fig. 6. Of course,
the composition immediately generalises to any number of workers and buffers,
with the advantage that the notion of synchronisation automatically accounts for the
combinatorial explosion of cases (any producer can post an item in any empty buffer
and any consumer can retrieve an item from any full buffer).

Parallel and sequential compositions of nets with boundaries have been useful
in showing several results. First, it has been shown that Petri nets with boundaries
are equivalent to an algebra of connectors that is freely generated by a small set of
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Fig. 5 The net 2Bf = Bf; Bf; (Rnil ⊗ Rnil)
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Fig. 6 The net 2PC = (2Wk ⊗ Wk); 2Bf

basic stateless components (identity, swap, synch, mutex, hiding and noact) together
with a one-position buffer component. Exploiting this correspondence, Petri nets
with boundaries have been shown to be equivalent to the exogenous coordination
framework Reo proposed by Arbab et al. Moreover, exploiting compositionality at
the semantic level, Petri nets with boundaries have also been shown to be equivalent
to the BIP framework (in the absence of priorities), even in the hierarchical case. An
informal account of the above results can be found in our joint paper with Hernán
MelgrattiA Survey on Basic Connectors and Buffers,2 where interesting connections
with the tile model and the wire calculus are also made.

Such semantical equivalences provide further evidence that Petri nets (with
boundaries) offer a core stateful model that accounts for distribution, concurrency
and nondeterminism, and that Carl Adam Petri’s, vision was very insightful in this
respect.

2Proc. of FMCO 2011, LNCS vol.7542, pp. 49–68, 2013.
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However, decades of studies have not been sufficient to solve in a fully
satisfactory manner all the issues related to Petri nets. In fact they give rise to
a still very active and lively research area, with many interesting open problems.
Having the occasion to pick one of them, we direct the reader’s attention to the
replacement of nondeterminism with probability distributions, i.e. to the coexistence
of concurrency and probability. A number of probabilistic versions of Petri nets have
been proposed, but most of them introduce time-dependent stochastic distributions,
thus giving up the time and speed independence feature typical of proper truly
concurrent models. In the absence of confusion, a solution has been proposed
by Varacca and Winskel based on event structures. In the more general case,
Abbes and Benveniste’s branching cells provide a more complex solution but they
miss compositionality and a description of the probabilistic execution in terms of
some concurrent transition system. The authors and Hernán Melgratti have recently
achieved substantial progress about these aspects (LICS’18).

We foresee that the connection between Petri nets (with boundaries) and algebras
of connectors can be instrumental in devising a compositional approach to the
definition of a general model where concurrency and probability are accounted for in
a fully satisfactory manner. Also, remarkable analogies between probabilistic Petri
processes without confusion and Bayesian networks may suggest how to extend
well-known analysis techniques from the latter to the former model.



Coordinating Behaviour

Ekkart Kindler

1 Introduction

I met Carl Adam Petri in person only a few times. But I grew up, scientifically
speaking, in the group of Wolfgang Reisig who came directly from Petri’s group at
GMD in Sankt Augustin, bringing along with him Jörg Desel as my, so to speak,
older brother and some other Ph.D. students who had been working at GMD. In
this group at TU München, we had many discussions about Petri’s philosophy and
I learned about Petri’s way of thinking. I also learned how much time Petri spent
coming up with good titles with the right level of ambiguity—or, more precisely,
with a meaning on different levels—such as his Ph.D. thesis [1]. Most of all, I
learned about Petri nets and the philosophy behind them.

In this short paper, I briefly discuss a notation which I came up with much later
in my career, the Event Coordination Notation (ECNO), which allows modelling of
the behaviour of larger software and generation of the code for that software fully
automatically from such models [2, 3]. ECNO’s concepts have been inspired by
Petri’s philosophy and the discussions in my early scientific life with people who
had been exposed to Petri’s ideas. I know that Petri would not have liked some of
ECNO’s concepts, but I hope that he would have liked some of its core concepts,
and I am sure he would have liked the “meta”-aspect of it, in the sense that ECNO
can be used for defining the semantics of Petri nets and even the semantics of ECNO
itself.

For lack of space, ECNO is introduced by example only, and the example
is actually the semantics of Petri nets. To be precise, it is the semantics of
Place/Transition Systems [4], which would probably be Petri’s first disappointment,
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since he did not particularly like Place/Transition Systems. Section 2 introduces
Place/Transition Systems and defines their intuitive semantics, which, along the
same lines, is formalised in Sect. 3 using ECNO. Finally, in Sect. 4, I discuss some
of ECNO’s main ideas and what, I believe, Petri would have made of them.

2 Petri Nets

Figure 1 shows a Petri net in which transition t1 is about to fire, and the events
involved in firing t1 are indicated in an octagon. Carl Adam Petri would probably not
be happy with this example for two reasons: firstly, the example is a Place/Transition
System, where more than one token can be on a place, which violates his idea of
elementary states being based on logic; secondly, we break down the firing of a
transition into smaller parts – something which he considered to be atomic is broken
down to sub-atomic parts. Anyway let us see where this will lead us and hope that,
in the end, Petri would be happy again.

When transition t1 in the Petri net of Fig. 1 fires, we say that the transition
participates in a fire event, indicated by the dashed line from the fire event in the
octagon to the transition. The fire event is broken down into two other events:
remove and add. So, when the transition participates in the fire event, the transition
also participates in these two events. And the requirements on the remove and add
events will actually define when a fire event can happen and what its effect will be.
When a transition participates in a remove event, it is required that all incoming arcs
also participate in this remove event; in the situation of Fig. 1, this is indicated by
the two dashed lines from the remove event to the incoming arcs of t1. If an arc
participates in a remove event, this requires the source place of the arc to participate
in this event too; in our example, these are the two places p1 and p2. And for each
of these places, one token on each place also needs to participate in the remove
event—again indicated by dashed lines. For place p1, we would actually have two
choices, where the top left token was chosen in the interaction shown in Fig. 1.
These two tokens are the ones removed when the transition fires. Likewise, when
the transition participates in an add event, all outgoing arcs also need to participate

Fig. 1 A Petri net example
with an interaction firing
transition t1



Coordinating Behaviour 157

in this add event; in our example indicated by the dashed line again. Finally, when
an arc participates in an add event, the target place of that arc needs to participate
in the add event too. And the place participating in the add event will create a new
token on the place. Together, these rules define the firing rule of Petri nets: we need
a token on each of the incoming places, which will be removed when the transition
fires, and one new token will be created on each outgoing place.

For Petri, this was to happen atomically. But above, we have broken this down
into smaller, simpler and local rules, which together have this effect, and will be
executed atomically (we say as an interaction) if and when all the above elements
participating in the events fall into place.

3 Modelling Petri Nets

In order to make the firing rules from Sect. 2 explicit, we formalise them in
ECNO. We distill the underlying principles of Petri nets and how their behaviour
is coordinated into an ECNO model.

Figures 2, 3, 4, 5, and 6 completely define the behaviour of Place/Transition
systems. Figures 3, 4, 5, and 6 model the life cycles of the different Petri net
elements as so-calledECNO nets, and Fig. 2 shows the coordination of the behaviour
among the different Petri net elements as a so-called ECNO coordination diagram.
Here, we use the example to explain some of ECNO’s concepts and notations, and
show how they can be used to rephrase our informal description of the firing rule
from Sect. 2.

The ECNO coordination diagram from Fig. 2 defines the three types of events
fire, remove and add that we used in the informal discussion. They are shown as
rounded rectangles. Moreover, the coordination diagram shows the four types of
elements of Petri nets and their relation and how the different elements coordinate
their participation in the events.

Let us now assume that a transition participates in a fire event. The life cycle of a
transition shown in Fig. 3 says that a transition can participate in a fire event at any
time, but, when that happens, the transition will also participate in a remove and an
add event.

Fig. 2 ECNO coordination diagram for P/T-systems
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Fig. 3 Life cycle of a Transition

Fig. 4 Life cycle of a Token

Fig. 5 Life cycle of a Place

The coordination diagram in Fig. 2 says that, when a transition participates in
a remove event, all its incoming arcs will participate in this remove event too.
Likewise, it says that, when an arc participates in a remove event, all1 its source
places will participate in the remove event, too. For a place participating in a remove
event, the coordination diagram requires one of its tokens to participate in the
remove event, too: the one that will be removed from the place.

Similarly, the coordination diagram in Fig. 2 says that, with a transition partici-
pating in an add event, all its outgoing arcs and indirectly also the associated target
places need to participate in the add event.

The life cycles of the arc and place elements of Figs. 6 and 5 show that the arc
and place are always ready to participate in add and remove events.
The life cycle of the place shown in Fig. 5 is slightly more interesting: when a place
participates in an add event, this is associated with an action: the piece of Java code
self.getTokens().add(factory.createToken()). This will actually
create a new token on the place when the place participates in an add event.

1Note that the arc has exactly one source place, so all means one in this case.
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Fig. 6 Life cycle of an Arc

Similarly, the life cycle of the token shown in Fig. 4 has an action associated with
a remove event: self.setOwner(null). This removes the token from the place
it is contained in.

Altogether, this formally defines the behaviour of Petri nets as informally
discussed in Sect. 2. Figure 4 shows that the life cycles of the Petri net elements
are actually a special kind of Petri net. The others are very degenerate Petri nets
(transitions without any places in their pre- and post-set). Only for the life cycle
of tokens, there is a precondition: a token can be used (removed) only once in
its lifetime. This is an aspect that might have fascinated Carl Adam Petri: in the
definition of the behaviour of Petri nets, Petri nets are used again—just very simple
ones.

4 Discussion

Altogether, ECNO allows us to define the behaviour of a system by two kinds of
models: first, the life cycles for the system’s elements defining at which points an
element can participate in which events and which actions are executed when they
do; second, the coordination diagram, which defines rules for which other elements
need to participate in an event when a certain element participates in this event.
The life cycles are local to the elements; the coordination requirements are local
too, in that they require elements adjacent to an element to participate too. This
locality would certainly be appealing to Petri. What Petri probably would not like is
that the coordination requirements apply transitively, and, this way, a corresponding
interaction can involve many not directly related elements—and there is no upper
bound on the number and distance of elements participating in an interaction. For
our ECNO model of Petri nets, this would be the pre-set and the post-set of the
transitions and the respective tokens, which is local. But, in general it could be
much more.

Petri was, however, very much interested in the fundamental principles of
“communication with automata” being practical [1]. The question is whether the
way “behaviour is coordinated” should be governed by the principles of physics or
by what an engineer would want to achieve even if it is not directly achievable
by physics—as long as it can be enacted by some underlying mechanism. The
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implementation of ECNO shows that interactions can be enacted atomically and
independently of each other. And as long as the sets of participating elements of
two interactions are disjoint, they can even be executed concurrently. This would
probably appeal to Petri.

Petri would probably be surprised that ECNO nets (a kind of Petri nets) are used
for defining the life cycles of the elements, which are local and not coordinating
behaviour at all. Interestingly enough, it turns out that it is crucial for defining
some behaviours that the life cycle of an element can participate in different events
concurrently: for example, in order to fire a transition with a loop, the involved place
needs to participate in an add and a remove event at the same time.

Very much in the spirit of Petri nets, ECNO does not mandate what will actually
happen in a modelled system. ECNO defines only which interactions can happen in
a given situation, very much like conflicting enabled transitions. What will actually
happen in an ECNO application is non-deterministic—or driven by some external
controller.

Here, we have shown that ECNO can model the behaviour of Petri nets, and this
works also for other approaches for modelling behaviour, such as process algebras.
This way, ECNO distills the underlying principles of “coordinating behaviour”. In
particular, ECNO comes with a notion of atomicity: the corresponding interactions.
And I hope that Petri would have liked that. Finally, I believe that ECNO can be
used to define its own semantics including its notion of atomicity. And I am sure
that Carl Adam Petri would have had fun with that idea.
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Inductive Counting and the Reachability
Problem for Petri Nets

Peter Chini and Roland Meyer

1 A Tough Homework

Being late for a class usually has negative consequences for a student. Your
professor will dart an angry glance at you, for sure you will have missed an
important argument, and you may have missed details of your homework. It rarely
happens that coming late turns into something good. The following is a legend that
proves this belief wrong.

Back in 1987, in Bratislava, then in Czechoslovakia, a student is running through
the hallways of Comenius University: It is Róbert Szelepcsényi, and he is late for
a class. Only after minutes of athletics he reaches the classroom, enters, and sits
down. Just arrived, he realizes that the blackboard is already full of text. In a hurry,
he unpacks paper and pencil, but there is not enough time to copy everything from
the board. Instead, he tries to catch the important bits. Luckily, he manages to copy
the exercises.

When doing his homework a few days later, everything works fine, as always:
The ideas compose into a solution at a speed that only allows for poor handwriting
so as not to slow down the creative process. But on one exercise, his thoughts start
stuttering. This exercise is so hard that it cannot be solved right away. But giving
up is not an option: Provoked by the hardness, Szelepcsényi considers it his duty to
solve the exercise. He tries again and again. More unsuccessful attempts. But still
there are so many ideas to follow. He has to put in more hours! He is thinking about
the problem every free minute; even in his dreams the problem chases him.

After 2 weeks of obsession, Szelepcsényi finds a solution and hands it in. To his
surprise, rather than returning the corrected sheets, the professor calls him in for
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a discussion. What he had solved, the professor explains, was not meant to be his
homework. It was a research problem that had been open for more than 20 years!
The professor had checked the proposed solution and found it to be correct. He is
the first to congratulate him, and the whole computer science community would
follow. Altogether, the story seems unlikely, but to phrase it with the words of the
famous computer scientist Richard J. Lipton: Theory is like that sometimes. The
quote is taken from Lipton and Regan’s blog where they describe Szelepcsényi’s
contribution [5] and explain its relation to the work of Lipton [6]. We will elaborate
on this relation below.

2 Complexity Theory

Róbert Szelepcsényi solved a problem in a branch of computer science called
complexity theory. The subject of complexity theory is computational problems
formulated as a combination of input and computation task: Given an input from
a well-defined domain, compute some specified information over this input. A
computational problem that is immediately recognized as such is the task of
determining the integral over a given curve. Often, however, the computation task
is formulated as determining a yes-or-no answer. An example of such a decision
problem is checking whether a given graph contains a Hamiltonian cycle. A graph
is a set of elements, called vertices, that are connected via so-called edges, Fig. 1a.
Think of the vertices as a number of cities and the edges as direct train connections
between the cities. A path is a sequence of vertices, every neighboring pair of which
are connected by an edge. A path is a cycle if the first and last vertex coincide.
It is Hamiltonian if it contains every vertex of the graph exactly once (except the
first vertex, which occurs twice). In the example, v1.v3.v2.v4.v1 is a path, even a
cycle, and Hamiltonian. If the graph represents the rail network, a Hamiltonian cycle
corresponds to an itinerary that is optimal in that it visits every city once.

Complexity theory aims at understanding the resources that are required to solve
a computational problem. What does it mean to solve a computational problem of
the form input/task? It means to give a step-by-step description of a computation
process such that, for every input, by following the description the corresponding
calculation will accomplish the task at hand. Such a step-by-step description is
called an algorithm, and typically written in the form of a program a computer
can execute. Indeed, computer scientists often consider programming, describing

Fig. 1 A graph (a) and a
depth-first search in this
graph (b)
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(b) v1
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v3

v1, fail

v4
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computation processes, the heart of their discipline. The most fundamental resources
consumed by an algorithm are time and space. The time requirement of an algorithm
is a function t (n) that, depending on the size n of the input, returns the maximal
time a computation may take on an input of this size. Phrased differently, the
function value is a guaranteed time limit for the computation. Technically, the time
is measured as the number of basic operations that the computation executes on a
representative processor. Assume the input consists of n numbers, then an algorithm
requiring n2 additions will be able to finish relatively quickly, within seconds,
even for many numbers, whereas an algorithm performing nn additions will soon
compute for weeks. The space requirement s(n) of an algorithm is the maximal
amount of memory that is allocated during the computation on an input of size n.

For the problem of finding a Hamiltonian cycle, a possible algorithm proceeds as
follows, Fig. 1b. Mark the first vertex in the list of vertices, here v1. Give an ordering
on the list of edges connected to each vertex. In the example, we assume the ordering
is given by the indices, so v2 is ordered before v3, which in turn is ordered before
v4. Then do a depth-first search on the graph from the marked vertex. By a depth-
first search, we mean the algorithm first tries to extend the path from every vertex
that is reached, and only later tries out alternatives. In the example, the algorithm
extends the path from v1 by v2, then by v3 because it is ordered before v4, and
then again by v1. Whenever a vertex is visited that already belongs to the path, the
algorithm checks whether it is the initial vertex. If so, it checks whether the path
contains all vertices. If the vertex belongs to the path but is not initial or the path
does not contain all vertices, the algorithm tries a different path from the preceding
vertex. This is called backtracking. In the example, the initial vertex is found but v4
is missing on the path. The algorithm thus backtracks to v3, which does not have
alternatives to choose from. It then backtracks to v2 and continues the computation
with v4, as indicated by the dots. Also this computation will be unsuccessful and the
algorithm will backtrack to v1, from where it will try v3. As the algorithm backtracks
over and over again, the time requirement is nn, where n is the number of vertices.

There are two kinds of results that complexity theorists strive for: Upper and
lower bounds. Upper bounds show that a problem can be solved within given
resource constraints. Establishing an upper bound thus means designing an algo-
rithm, writing a program, that solves the problem and whose resource requirements
meet the constraints. Lower bound results, in turn, show that a problem requires
a certain amount of time or space. No algorithm working with less resources
can solve the problem. There are two points of view to this. From the problem’s
perspective, a lower bound shows that the problem has some inherent complexity,
like an unavoidable physical law of computation. From an algorithm’s perspective,
a lower bound gives information about the nature of efficient algorithms: Their
behavior is such that it does not allow them to solve the problem. Proving lower
bounds has turned out extremely complicated, and close to none are known. The
famous P �= NP conjecture can be cast as the belief that Hamiltonian cycles cannot
be found within polynomial time.

The reader may object to the conjecture and argue that judging whether a given
path is a Hamiltonian cycle can be done quickly. We check whether we visited all
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vertices precisely once, say by marking a list of all vertices, and in the end verify that
we arrived at the vertex we started from. Hence, all that would be needed to solve
the Hamiltonian cycle problem efficiently is appropriate signs on the graph that
guide the way. We would then follow the signs and check whether the resulting path
is a Hamiltonian cycle. The reason why the community thinks the problem cannot
be solved efficiently is that the assumption of guidance is a strong one. It means
relaxing the postulate of determinism. The algorithm is allowed to make a choice
whenever there are alternative ways to continue the computation. A different choice
yields a different computation on the same input. The resulting non-deterministic
algorithm would return yes if one of the computations returns yes, and no otherwise.
To find a Hamiltonian cycle, a non-deterministic algorithm would guess the signs
on the graph and test the corresponding path.

3 The Problem

When confronted with a decision problem, the task is to find an algorithm that
returns yes if the input is a yes-instance, say a graph containing a Hamiltonian cycle,
and no if the input is a no-instance, say a graph without such a cycle. Interestingly,
one may also view this as the task of finding two algorithms. We need one algorithm
that returns yes for the yes-instances. A second and independent algorithm should
answer the no-instances. Given these two algorithms, we let them run in parallel and
obtain an algorithm that solves the problem.

If the focus is on the no-instances, we talk about the complement problem.
Consider the task of finding a path from a vertex s to a vertex t in a given graph.
To be precise, from now on we drop the Hamiltonicity requirement but assume
the edges to be directed (indicated by arrows like in Fig. 1b). We refer to this
computational problem as PATH. The complement problem PATH is to show that
there is no path from s to t in a given directed graph. The thing to note is that the
complement problem asks for a guarantee about all paths, namely that none of them
connects s to t .

Complement problems seem to be difficult to solve with non-deterministic algo-
rithms. The former ask about universal statements whereas the latter existentially
guess guidance for the computation. A bad match! But is this really true? Or
does non-determinism actually help to solve complement problems, detecting no-
instances? If complexity theory aims at understanding the nature of computation, it
has to give a definite answer.

Róbert Szelepcsényi answered the question in the case of space complexity,
where it is formulated as follows. Can we construct from a non-deterministic
algorithm with space requirement s(n) a non-deterministic algorithm that solves the
complement problem and has the same space requirement? Intuitively, can we detect
no-instances without using more space? Technically, consider a decision problem
P for which there is a non-deterministic algorithm with space requirement s(n). Is
there a non-deterministic algorithm for the complement problem P that also requires
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s(n) space? If we write NSPACE(s(n)) for the class of all problems that can be
solved with s(n) space, and coNSPACE(s(n)) for the complement problems, the
question is

NSPACE(s (n)) = coNSPACE (s (n))?

This equality must have been on the blackboard when Róbert Szelepcsényi entered
the class. He took it to be his homework, and solved it.

4 Science Beats Borders

After more than 20 years of unsuccessful investigations, the solution to the problem
came unexpectedly: The equality does hold! Every non-deterministic algorithm can
be turned into a non-deterministic algorithm for the complement problem that does
not require more space. As we will see in a moment, the solution is not even
complicated. Why was the problem not solved earlier? There are two plausible
answers to this. First, the community was searching in the wrong direction. The
consensus belief was that the equality does not hold, and people were looking for
ways to prove so. The second reason may be the demonization of the problem: If
the classes were different, a lower bound would be needed, and that should be really
hard to establish. This may have scared researchers away and they did not even start
working on the problem.

Despite the apparent difficulty, a leading researcher tackled the problem: Neil
Immerman, in the mid-1980s associate professor at Yale University, today among
the leading figures in theoretical computer science and a key person in the
development of a research branch called descriptive complexity theory. In 1987,
Neil Immerman came up with his most famous result. Independently of Róbert
Szelepcsényi, he proved the equality. Together, the two were awarded the Gödel
prize in 1995, the highest award in theoretical computer science, for their publica-
tions [3, 11].

That Immerman and Szelepcsényi solved the same problem in the same year
already seems unlikely. Even worse, their proofs rely on the same technique. Still,
they have the best conceivable proof of the independence of their work. In 1987,
the Cold War divided the world into East and West, and the two lived on competing
sides with close to no possibility of communication. Phrased positively scientific
insight is independent of political opinions and borders. A technique as natural as
theirs seems to be guaranteed to be found. Again, quoting Lipton: Theory is like that
sometimes.
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5 The Solution

We elaborate on Immerman and Szelepcsényi’s idea, called inductive counting. The
first thing to note is that PATH can be solved with a non-deterministic algorithm
requiring space s(n) roughly equal to the memory needed to store a vertex. The
algorithm simply enumerates the vertices one by one, and stores the current vertex
and a counter. The counter is used to stop the computation when the path has become
too long and thus contains a cycle. Indeed, if n is the number of vertices in the given
graph, then any path longer than n will contain a cycle. As for correctness, there is
a path from the given vertex s to the given t if and only if there is an acyclic one. By
non-determinism, the algorithm will find it.

The no-instances of PATH are those where there is no path from s to t . Checking
this requires us to go through all potential paths between s and t . This can be done
by a depth-first search like the one in Sect. 2. The resulting algorithm would need
memory to store every vertex on the path, and hence require space n ·s(n). Since our
goal is to obtain a space usage of s(n), detecting no-instances this way is too space
consuming. The consequence is that we cannot store full paths. But the algorithm is
also a bad idea conceptually. It is fully deterministic and does not take advantage of
the power of non-determinism. How can we make use of non-determinism to reduce
the space consumption when detecting no-instances of PATH?

The key idea of Immerman and Szelepcsényi is to assume that we have an
additional input. Let N be the number of vertices that are reachable from s by a
path. Surprisingly, having N is sufficient to show the absence of a path from s to
t with a non-deterministic algorithm. The algorithm works as follows. It maintains
a counter count keeping track of how many vertices have been found reachable so
far, initially 0. The algorithm goes through all vertices of the graph in a predefined
order, like in Sect. 2. For a vertex v, it makes a guess at whether or not the vertex
is reachable from s. If the guess is unreachable, the computation proceeds to the
next vertex in the ordering. If the guess is reachable, the algorithm tries to find a
path using the above one-by-one enumeration that is stopped by a counter. This
enumeration may guess any path of at most n vertices starting in s, leading to v or
not. If the path does not reach v, the computation stops with output no. This should
be interpreted as an unsuccessful branch in the non-deterministic computation. If
the path reaches v and moreover v happens to be the vertex t of interest, the output
is also no, meaning there actually is a path from s to t (recall that we consider the
complement problem). If the path reaches v and v is not t, another reachable vertex
has been found. In this case, count is increased by 1.

If the computation did not stop while going through the list of vertices, we cannot
yet conclude that there is no path from s to t . We may have guessed incorrectly that a
vertex is unreachable although it is reachable. If this happened for t , we would give
an incorrect answer. To overcome the problem, the algorithm compares count to the
initially given N . If count = N , all reachable vertices were guessed correctly. If t

was not among them, the algorithm returns yes, t is not reachable from s. Otherwise,
the algorithm returns no, indicating a mistake in the non-deterministic choices.



Inductive Counting and the Reachability Problem for Petri Nets 167

It remains to check the space requirement. The algorithm needs memory for the
counters count and N, for the counter in the path exploration, and for two vertices,
the one that is currently being explored, and the one that is guessed to be on a path.
Altogether, this sums up to roughly s(n) space.

We still have to compute N . Interestingly, the above algorithm can also be
used for this task. Assume we have computed Ni, the number of vertices that
are reachable in at most i steps. Using this number and the above algorithm, we
can compute Ni+1 non-deterministically. Then N is Nn, where n is the number of
vertices. The method is called inductive counting as the numbers Ni are computed
inductively.

6 Lipton

Like structural analysis checks the stability of buildings, a branch of computer
science called verification checks the correctness of computer programs. For a
braking system in a car, verification would compute the response time. For an
online-banking application, verification would ensure that a secure connection is
established. Like structural analysis, verification is conducted on a model of the
overall system. This model is often a Petri net; see, e.g., [2, 8–10]. Petri nets
reflect well the interaction among the system components, and today close to
every program either interacts with an environment, like the braking system, or is
concurrent by nature, like the banking application.

Concerning safety, verification amounts to showing that the system cannot reach
an unsafe state. A defect in the braking system, for example, would lead to a state
where the pedal has been pushed, a certain amount of time has elapsed, and the
brakes have not been applied. For the banking application, an unsafe state would
contain a seemingly secure connection between a client and the bank to which a third
person has access. Formulated as a decision problem for Petri nets, the reachability
problem is as follows. Given a Petri net, an initial and a final marking, the task is to
check whether the final marking can be obtained from the initial one by executing a
sequence of transitions.

A person who helped to understand the reachability problem is Richard J. Lipton.
He is one of the founders of complexity theory and came up with results so
fundamental that they are now standard in computer science education. In 1976,
Lipton was a researcher at Yale University and proved a result that would turn out
to be important: The first lower bound on the reachability problem for Petri nets.
He did not publish his proof; it only appeared as a technical report [4]. Lipton must
have thought the result could be improved and would not persist. He was wrong:
Even today, his lower bound is the best known.1 This is even more remarkable since

1After writing this chapter, a new lower bound for the reachability problem was found [1]. This is
the first improvement of Lipton’s result after more than 40 years.
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in 1976 no upper bound for the problem was known. Hence, it was not clear where
to start from when searching for a lower bound.

The upper bound remained open until 1981, when Ernst W. Mayr gave the first
algorithm to solve the reachability problem for Petri nets [7]. Also Mayr’s result has
not been improved until today. That researchers unsuccessfully tried to improve the
lower and the upper bound in particular means the two do not match. There is a gap,
a canyon, between them. The difference is astronomically large! Lipton showed that
every algorithm solving the reachability problem requires at least exponential space,
in numbers 2

√
n. Mayr’s algorithm may consume a non-primitive-recursive amount

of memory, in numbers

22..
.2n

and the height of the tower of exponentials depends on the size of the input. Closing
the gap between upper and lower bound is among the most important problems in
theoretical computer science.

We elaborate on the idea behind Lipton’s proof. He showed that Petri nets can
simulate bounded programs. These programs only have integer variables, which
they manipulate by increment and decrement, and which they test for holding value
zero. Bounded means that the variable values never exceed 22n

. For this class
of programs, an exponential-space lower bound was known, and with Lipton’s
construction it carries over to Petri nets. In his construction, each variable is
translated into a place. The value of the variable is represented by the number of
tokens in that place. The hard part is to simulate a zero-test: Does place p hold
0 tokens? Petri nets cannot model this check right away. To simulate it, Lipton
introduced complement places: For a place p holding x tokens, the complement
place p is guaranteed to contain exactly 22n − x tokens. Testing whether p holds 0
tokens then amounts to checking p for 22n

tokens.
The main difficulty is to generate 22n

tokens. Lipton used an inductive argument.
Assume a Petri net Inci generating 22i

tokens has already been constructed. Lipton
showed how to construct, out of Inci , the Petri net Inci+1 generating 22i+1

tokens.
The idea is to use the equation 22i ·22i = 22i+1

, and repeatedly execute Inci , namely
22i

times.
Taking a step back, Lipton’s idea is inductive counting in an exponential manner

[6]. He showed how to generate 22i+1
tokens provided the smaller number of

22i
tokens has already been produced. Lipton may have been the first to propose

inductive counting—11 years before Immerman and Szelepcsényi did. But Theory
is like that sometimes.
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Part IV
Connecting to Other Areas



On Petri Nets in Performance
and Reliability Evaluation of Discrete
Event Dynamic Systems

Gianfranco Balbo and Gianfranco Ciardo

1 Preface

We began using Petri Nets for Performance Evaluation of Discrete Event Dynamic
Systems in the early 1980s, after learning of Mike Molloy’s work at UCLA and
finding that his Stochastic Petri Net extension was a valuable tool for describing
and analyzing complex computer systems behavior. At that time, Gianfranco Balbo
was working with Marco Ajmone Marsan and Gianni Conte on the analysis of the
prototype architecture for a multiprocessor system being developed at Politecnico
di Torino, and Gianfranco Ciardo was a student in the Informatics Department of
the University of Torino, developing a software tool for evaluating models of this
prototype as part of his thesis.

Importing the network theory developed by Carl Adam Petri to the area of the
Performance Evaluation of Computer Systems was an important step in the devel-
opment of this field, since modeling concurrency, synchronization, cooperation, and
competition in Discrete Event Dynamic Systems became straightforward exploiting
the binary relations of concurrency and causality of Petri’s theory. Adding time to
Petri Nets by assuming a stochastic duration of transition firings is compatible with
the essence of Petri’s theory, as long as the firing-time distributions have infinite
support and are memoryless, since this only changes the nondeterminism of standard
Petri Nets into a probabilistic choice among the transitions enabled in a marking.
The negative exponential distributions in Molloy’s Stochastic Petri Nets satisfy
these requirements, so the timed model is still based on concurrency and causality
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relations. This feature of Petri’s net theory remained a guiding reference we tried
to respect in further Petri Net extensions we used in our career, mainly to keep the
models of complex systems as simple as possible and to develop computationally
efficient analysis and solution methods.

Gianfranco Balbo met Petri for the first time in 1999, when Petri was awarded a
Doctorate Honoris Causa by the University of Zaragoza. In a private conversation,
Petri graciously stated that he understood our desire to use continuous times in
our models and that, indeed, the Markovian assumption of the Stochastic Petri
Nets we were using did not destroy the qualitative properties of the net, even
though he still believed that there was no need to represent time in this manner.
But what turned out to be extremely interesting during this event was the “Lectio
Magistralis” he delivered after receiving his Doctorate, in which he recalled that
the graphical representation of Petri Nets was not part of his Ph.D. thesis, but was
instead originally proposed years before, when developing “his second network”
for the representation of chemical reactions. Seven years later we started using Petri
Nets in Systems Biology to study biological pathways usually defined as sets of
biochemical reactions, and it was reassuring to know that they had indeed originally
been developed precisely for that purpose.

2 Introduction

Discrete event dynamic systems (DEDSs) [12] are ubiquitous and we often analyze
them to assess their logical (reachability, model checking) or timing (scheduling,
performance, and reliability) properties. To study a DEDS, we first model its
behavior (with an appropriate formalism), then we describe the measures of interest
(either in a formal language or by choosing from a menu of predefined choices), and
finally we solve it (by using a tool implementing algorithms that can compute these
measures).

For performance analysis, queuing networks, where customers move between
stations to request service, gained acceptance in the 1970s [22, 26], Predefined
scheduling policies (defining the order in which customers are served) and routing
policies (defining where a customer goes after completing service) were sufficient
to model the nascent timesharing computer systems, where the most important
goal was dimensioning (e.g., deciding how many CPUs and disks suffice to obtain
an acceptable response time while maintaining a high utilization—the typical
predefined measures for such systems). For reliability or availability analysis, fault
trees and reliability block diagrams were used to express the conditions under
which a system would fail, or be operational [17]. Each component has a failure
time distribution, and the model connectivity specifies how to combine these failure
probabilities to obtain the overall reliability over time.

However, as systems and analysis needs grew, the specification and solution ease
offered by specialized formalisms and algorithms could not offset their inability
to model common situations [8, 13]. For example, classic queueing networks
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cannot model non-memoryless routing or fork-and-join behavior, while failures
affecting multiple components or shared repair facilities in a fault tree require
additional specifications and, worse yet, violate the independence needed for a
simple combinatorial analysis.

When activities have independent exponentially distributed random durations,
these DEDS can be described by continuous-time Markov chains (CTMCs), whose
behavior can in principle be analyzed numerically. One might manually list the
CTMC state space and transition rates, but this is not practically feasible, as they
can be huge. A general-purpose high-level formalism was needed to describe these,
and future, systems. In the 1980s, stochastic extensions to Petri Nets (SPNs) were
introduced as a viable solution, and they are still an excellent choice decades later
[19, 31, 39].

3 Modeling Discrete Event Dynamic Systems

A system is often defined as a collection of objects and relations among them.
Objects have attributes, which describe their local states, and the collection of
the states for all objects constitutes a (global) system state. Relations describe
the possible state changes, or transitions. In particular, Discrete Event Dynamic
Systems (DEDSs) have a discrete, i.e., finite or countably infinite, set S of states, or
slate space, and their evolution is not directly due to the passage of time, but to the
occurrence of events.

DEDSs arise in diverse application domains such as flexible manufacturing,
computing, telecommunications, traffic, chemistry, and biology. Regardless of
the meaning of different components, understanding the behavior of DEDSs is
challenging because of the intrinsic complexity (S is usually huge) and the many
and sometimes subtle interactions among components, often leading to unforeseen
and counterintuitive behaviors.

Reasoning about such systems, understanding and learning their operation,
improving their performance, and making decisions about their design and operation
requires us to properly describe the system, so that the relations among its
components become clear. This is best done by building a model of the actual
system to capture the important features of its structure and to provide ways of
quantifying its properties, and requires choosing an appropriate level of abstraction,
deciding which aspects to include in the model and which details to neglect, so
that the representation is sufficiently faithful while still amenable to analysis. A
model is thus a simplified representation of reality, and the effort required to
fit a complex situation within the constraints of a formalism is rewarded with
a better understanding of the system, which helps remove incompleteness and
contradictions, identify properties, and discover possible improvements [7].

The mathematical nature of a formal model allows us to rigorously reason about
the behavior of the system. It is also a prerequisite for its automated analysis, pro-
vided the appropriate algorithms are implemented in a software tool. Furthermore,
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models are usually parametric; this not only highlights the key numerical inputs
affecting the system size and behavior, but also allows one to easily ask “what-if”
questions and perform sensitivity analysis by simply varying the values of these
parameters.

4 Analyzing Discrete Event Dynamic Systems

While most DEDSs are studied to optimize their operation, real systems are fault
prone, thus their models must also capture failure and repair aspects to examine
how the system performs under less-than-perfect conditions. Performance and
dependability (or performability [30]) evaluation uses mathematical models to
compute performance indices such as resource utilization, system productivity, and
system response time, while accounting for system failures. Time plays a crucial
role in the analysis of such systems, since the occurrence of certain desired (or
undesired) events within a certain finite time horizon, or the efficiency of the system
in the long run, are key topics to be addressed.

To capture these aspects, the modeling formalism must be able to specify the
timing of events (usually in terms of the distribution of the time to complete a
given action) and the probability of different outcomes when an event occurs. The
resulting probabilistic model describes a stochastic process, so that performance
and reliability indices are defined in terms of the probability of finding the DEDS in
each of its possible states.

A stochastic process {X(t), t ∈ T } is a family of random variables X(t) taking
values over the state space S and indexed by time parameter t , where T is the
natural numbers N, for discrete-time models, or the non-negative reals R

≥0, for
continuous-time models. Special classes of stochastic processes are of particular
interest because their probabilistic characterization and their analysis are simpler.
In a Markov process, for example, the future behavior depends only on the present
state; there is no memory of the trajectory that led to the present state. Markov
chains are Markov processes with discrete slate spaces; they can be discrete-time
(DTMCs) or continuous-time (CTMCs).

The formalism of Queueing Networks (QNs) is particularly suited to modeling
DEDSs when the focus is on competition for the use of shared resources and
the congestion arising in the system. Under commonly adopted distributional
assumptions, the process underlying a QN is a CTMC, but the greatest appeal of this
formalism is the existence of product form solutions for a class of QNs. The BCMP
theorem [6] provides sufficient conditions for a model to be a Product Form Queuing
Network (PFQN). Computationally efficient algorithms for PFQN analysis do not
require to generate the state space S, whose size is O(NM) where N is the number
of queues and M is the number of customers; their time and memory complexity is
instead polynomial in N and M .

Many DEDSs exhibiting queueing behavior, however, cannot be modeled by
traditional QNs due to synchronizations, blocking, splitting and fusion of customers,
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or dependencies across queues. Proposed QN extensions seek to keep the model
description concise, but claim no completeness. The lack of descriptive power
becomes apparent, even with these extensions, when trying to capture the increas-
ingly common behaviors just listed; the gap between the DEDS and the model
is sometimes bridged with natural language specifications, and ad hoc solution
methods must be devised for each individual case. Unless the solution relies on
numerical analysis of the underlying CTMC, the results obtained may even just be
(hopefully good) approximations.

In the reliability field, fault trees (FTs) and reliability block diagrams (RBDs, the
dual of FTs, not discussed further) are two commonly used formalisms. The leaves
of an FT correspond to atomic components with a known failure probability, while
internal nodes are boolean gates describing how the failure of a subsystem depends
on that of its children, up to the root node, describing the overall system failure.
For example, if the failure of any one of A,B, and C composing a subsystem X

causes its failure, then the three leaves A,B, and C are the children of an OR gate
X, while, if a second subsystem Y is functionally equivalent to X so that the overall
system works as long as either one does, X and Y are the children of an AND
root node. Assuming independence in the failed/repaired status of each component,
efficient combinatorial algorithms can compute the overall reliability. In the simplest
case, we specify the probability of any component being up or down at any one
time, and we seek the long-term availability (probability of the system working).
Another amenable case arises if there are no repairs, components have exponentially
distributed failure times, and we seek the reliability at a finite time t (without repairs,
failure is certain in the long run).

However, just as for PFQNs, both FT specifications and their solution algorithms
become inadequate as soon as we attempt to include certain realistic aspects.
For example, failure of a component may stress other components and increase
their fault rate; or the repair facility may have finite capacity, so that only a few
components can be repaired concurrently (this gives rise to queueing, since failed
components not being repaired must wait, with a complex service policy, since failed
components critical to the overall system reliability should have repair priority).
Also in these models, the solution approach relies on the generation and solution of
the underlying CTMC.

5 Stochastic Petri Nets

If we are willing to pay the price of generating and solving the underlying
CTMC, there is little reason to restrict ourselves to formalisms inherently limited
in description power and requiring ad hoc algorithms to cope with situations not
satisfying the requirements for efficient solutions. A natural alternative then is to
adopt a general formalism, such as Petri Nets (PNs) [1, 35–37], which are ideally
suited to modeling concurrency and synchronization. PNs are more powerful than
finite-state machines, thus can describe any finite state space S and any graph
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specifying arbitrary transitions between states. More importantly, they are usually
concise and rely on a minimal set of primitives and dynamic rules. PNs can
even model many DEDSs with infinite state spaces, such as those modeled by
“open” QNs. Indeed, PNs with inhibitor arcs or transition priorities become Turing
complete, thus able to model the structure of any DEDS, but at the cost of decision
power (mostly a theoretical problem, since we use these extensions merely to ease
the modeling of a finite DEDS, not to attain Turing completeness).

PNs are not concerned with actual event durations, but several ways to add
timing have been proposed [3, 29, 33, 34], Stochastic PNs (SPNs) [19, 31, 39] are
arguably the most successful extension, and the most appropriate for performance
and reliability analysis, where the time between the enabling of a transition and its
firing is a random variable. If these firing times are exponentially distributed, the
SPN defines a CTMC.

5.1 Simple Primitives, Precise Semantics, Powerful Modeling
Capabilities

PNs pair a simple formalism with a precise semantics: their static structure and
dynamic behavior can be described in a paragraph. A PN is a tuple (P, T , I,O, iinit )

where P and T are disjoint sets of places and transitions, I,O : P × T → N

describe the cardinality of the input arcs from places to transitions and of the output
arcs from transitions to places, and iinit : P → N is the initial marking (assignment
of tokens to places). A transition t ∈ T is enabled in a marking i if I (p, t) ≤ i(p),
for each p ∈ P . An enabled transition t in a marking i can fire, leading to a new
marking j satisfying j(p) = i(p) − I (p, t) + O(p, t), for each p ∈ P . Researchers
from different backgrounds can easily grasp this formalism and use it to model the
structure of a DEDS.

The additional specifications to define an SPN may also be simple, or quite
complex, depending on the particular type of SPN. If all firing times are described
by random variables with support [0,∞) and we assume a race policy with atomic
firing and preemptive-repeat-different policy [5] (firing times are resampled once the
transition fires or becomes disabled), the state space S of the (untimed) PN coincides
with that of the SPN, and the results and algorithms for logical PN analysis apply
to the SPN. Then, if all firing times are exponentially distributed, we simply specify
the firing rate λ(t) of each transition t, and the race semantics implies that transition
t enabled in marking i fires next with probability λ (t) /σ (i), where σ (i) is the sum
of the firing rates of the enabled transitions in i, thus the rate of the exponentially
distributed sojourn time in i.

The specification and the solution algorithms become instead more complex if
we have non-memoryless distributions and policies such as preemptive-resume (if
a transition becomes disabled, its remaining firing time continues when it becomes
enabled again) or preemptive-repeat-identical (if a transition becomes disabled, its
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previous entire firing time restarts once it becomes enabled again) [5]. Additional
information is needed if the SPN has discrete-time distributions, since multiple
conflicting transitions may attempt to fire at the same time; such situations require
us to specify priorities or probabilities over the transitions to avoid nondeterminism.
Even with these additions, though, SPNs retain the advantage of a general-purpose
formalism with a clear semantics, allowing automated analysis using software tools,
many of which exist today.

5.2 Correctness of the Untimed Model

Another advantage of SPNs is that the analysis of the corresponding untimed PN can
yield important insights into the structural or logical aspects of the DEDS behavior,
such as the presence of deadlocks, the reachability of certain conditions, the liveness
of portions of the system, or the boundedness of the state space. This is particularly
true when the state spaces of the SPN and of the PN coincide, which is true when
all firing times have infinite support, as already mentioned. However, even when the
behavior of the SPN is affected by timing specifications, its state space is guaranteed
to be a subset of that of the PN; thus analysis of the PN can provide valuable
information. For example, if the PN has no deadlock, then neither does the SPN;
on the other hand, a deadlock in the PN might also correspond to a deadlock in the
SPN, so it might be worth exploring whether this is the case or whether the SPN
timing makes this deadlock impossible.

This ability to perform logical verification is new in performance and reliability,
because the formalisms traditionally used for these fields were limited, while
SPNs can more accurately describe the behavior of complex systems, which may
have logical design flaws worth discovering before we undertake a timing and
probabilistic analysis.

5.3 SPN Extensions

After the introduction of SPNs with exponentially distributed timing and an
underlying CTMC, many SPN variants and extensions have been proposed in the
literature (still respecting the key idea that places can be interpreted as resources,
transitions as activities) with the aim of simplifying the construction of models for
complex systems without completely losing the connection between the timed and
the untimed models.

One alternative is discrete time SPNs, with geometrically distributed firing
times [32] or more generally firing times with a “defective discrete phase-type
distribution” (any distribution corresponding to the absorption time for a finite
DTMC) [15]. The underlying process is a DTMC, but the SPN description is
complicated by the need to arbitrate simultaneous firing of conflicting transitions,
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so this is best used for DEDSs whose behavior itself exhibits such timing conflicts,
e.g., clocked systems.

A widely employed extension of SPNs, generalized SPNs (GSPNs) [2], adds
instead immediate transitions with zero firing times. Immediate transitions are often
devoted to the representation of logical actions that do not consume time, but
they can also model situations where branching probabilities are independent of
timing specifications (the effect of an exponentially distributed timed transition is
otherwise deterministic). When timed and immediate transitions are simultaneously
enabled in the same marking, immediate transitions are assumed to fire first. This
implies that, when timed specifications are disregarded, the underlying untimed
models of GSPNs are PNs extended with a priority structure that can be used
for a preliminary qualitative analysis. Timescale differences captured by timed
vs. immediate transitions are related to the concepts of visible and invisible
transitions in classical PN theory. When time is taken into consideration instead,
the exponential distributions of the firing times of timed transitions insures that the
underlying stochastic process of a GSPN remains a CTMC, as long as pathological
situations such as vanishing loops are avoided.

A further extension allows SPN firing times to have any continuous phase-
type distribution [16], possibly in addition to immediate transitions. Just as for the
discrete phase-type case, the benefit of using these more complex distributions is
a more faithful representation of the actual duration of DEDS activities, and the
price is a larger underlying state space, since the state must encode both the SPN
marking and the phase of each enabled SPN transition. One important advantage of
using continuous phase-type firing times, though, is that the logical behavior of the
untimed PN still reflects that of the SPN, while the same does not hold for discrete
phase-type firing times.

The SPN of a complex system may be cluttered due to the need to capture system
peculiarities, thus the need for more powerful constructs has been felt since the early
use of SPNs in the analysis of multiprocessor architectures. Timed extensions of
high-level Petri Nets (colored PNs [24]) have been proposed, to allow researchers
already familiar with the basic formalism to address more difficult problems with
the little additional effort needed to use these high-level extensions. For example,
DEDSs may contain internal symmetries, which can be exploited to achieve a more
compact specification, and a class of Colored SPNs called Stochastic Symmetric
Nets (SSN) (previously known as Stochastic Well-formed Nets) has been proposed,
to represent the system in a way that naturally leads to a lumped model [14]. Usually,
this compact representation is exploited only when specifying the model [28], but
the compact colored net is “unfolded” into a much larger (uncolored) SPN before it
is analyzed.
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5.4 Analysis Algorithms

The numerical solution of a generic CTMC underlying the SPN (or any other
formalism for that matter) modeling a DEDS requires the following steps:

– Generate the state space S, which must be finite but can be huge in practice.
– Build the infinitesimal generator Q ∈ R

|S|×|S| by summing in Q[i, j] the
rate of events whose occurrence in state i leads to j, then letting Q [i, i] =
− ∑

j�=i Q [i, j].
– Compute the desired solution, either the transient probability vector πτ satisfying

dπ τ /dτ = π τ ·Q with initial condition given by the initial state, or the stationary
probability vector π solution of π · Q = 0, well defined if the CTMC is ergodic,
i.e., every state can reach every other state, as is often the case for Performance
Evaluation models.

The memory requirements for a traditional sparse encoding of Q are proportional to
the number η(Q) of its nonzero entries, usually a reasonably small multiple of |S|.
In case of CTMCs with very large slate space, the use of decision diagrams [42]
may allow the model to be stored in main memory. However, the time to compute
πτ or π numerically depends on the nature of Q; stiff matrices may require many
iterations, each with cost η (Q). Once πτ or π has been computed, most measures of
interest can be expressed as simple weighted sums. For example, if a place p models
jobs waiting to be processed, their expected number in steady state is computed as∑

i∈∫ π [i] · i (p); the probability of having a specific number of jobs waiting can be
similarly computed, just as easily.

If the state space S is infinite, or even just too large to fit in memory, or if
the firing-time distributions are such that the underlying process is not a CTMC
and is not amenable to a numerical solution, the SPN can still be analyzed using
discrete event simulation [18, 20]. This technique is completely general and has
been used to study DEDSs in many application areas, as in principle it is always
applicable: any formalism defining how each event modifies the state and how
its duration can be randomly sampled can use a simulation “engine.” The reality,
however, is that this generality makes it even more important to have a formal
model semantic (here, again, SPNs have a clear advantage), and the results from
a simulation study need to be carefully validated, as it is possible that the model has
flaws that may be hard to discover by looking at just a handful of numerical outputs
(here, too, PN analysis tools can help find logical errors in the model). In any case,
because of its statistical-sampling nature, simulation can at best provide confidence
intervals for the measures of interest (e.g., “with 95% confidence the response
time is between 3.2 and 3.7 seconds”). However, if the process being simulated
is Markov regenerative, i.e., we can define instants at which the evolution of the
process statistically depends only on the current state, the simulation results have
more desirable statistical properties, since we are now essentially able to sample
multiple truly independent runs. This holds for the regenerative SPNs of Haas and
Shedler [23].
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Somewhere between SPNs with an underlying CTMC and the full generality of
SPNs requiring simulation, there are classes of non-Markovian SPNs that admit a
numerical solution based on embedding. These are extensions of the original SPNs,
but we discuss them here because the reason for their definition was the availability
of new numerical solutions. The deterministic and stochastic PNs (DSPNs) [4] were
the first such class to be proposed. Firing times can be deterministic or exponentially
distributed, but at most one deterministic transition can be enabled at any time,
ensuring that the SPNS has an underlying Markov renewal process whose kernel
can be computed numerically. Phase-delay PNs [25] instead have firing times with
discrete or continuous phase-type distribution; conditions about when both types can
be enabled exist but, if these are not satisfied, at least regenerative simulation can
be employed. Markov regenerative SPNs [21] allow generally distributed instead
of deterministic firing times, but are still affected by the number of enabled non-
exponential transitions: if there is only one, the solution generalizes the one for
DSPNs; otherwise, the method of supplementary variables is used, but complexity
and numerical stability can become problematic.

Finally, when the SPN models large groups of elements with similar behavior
(e.g., internet users, human populations, or reagent molecules), exploiting these
symmetries for lumpability may be insufficient, and performance indices may
have to be estimated with discrete event simulation instead of computed with
numerical methods. Alternatively, we may approximate the stochastic model with
a deterministic one where the time evolution of quantities of interest is captured
by a system of ordinary differential equations (ODEs) whose solution provides
the expected values of these quantities as a function of time [9, 11, 38]. The
convergence of the solution to the correct expected values when the size of the
involved populations grows has been studied by many researchers. Starting from
the work of Kurtz [27], it has been shown that the accuracy of the approximation
is acceptable when the model can be considered as the representation of a system
of interacting population quantities [40, 41]. The approach is based on the idea of
replacing the integer vector representation of the markings of the SPN model with a
vector of real values, thus fluidifying the tokens of the SPN.

6 Conclusions

After some initial reluctance to accept this new formalism, SPNs are now widely
used for performance and reliability evaluation of many practical systems by
researchers with considerably different backgrounds. Key features that made SPNs
popular are:

Graphical representation. SPNs have a clear, precise, and compact semantics,
but also a graphical representation, which helps us to discuss and communicate
models in an intuitive manner.
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Generality. SPNs can model DEDSs irrespective of the application field, and are
not limited to choosing from sets of predefined building blocks as required by
more specialized formalisms.

Fidelity. The automatic construction of the underlying stochastic model relieves
the analyst from the burden of specifying it by hand, ensuring that it is
truly equivalent to the specification of the system, and avoiding errors due to
misinterpreting or oversimplifying system details.

Structural analysis. The analysis of the PN obtained from the SPN by ignoring
timing and probabilistic information can provide valuable insight into the
structure of the DEDS by revealing the existence of unexpected behaviors such
as deadlocks, livelocks, or unboundedness.

Analysis tools. Performance and reliability experts can rely on many tools that
have been developed to model and analyze SPNs. These tools employ state-
of-the-art techniques to tackle SPNs with ever-larger underlying CTMCs, or
resort to simulation when the underlying stochastic process is not amenable to
a numerical solution.

Despite their success, much work is still needed to make SPNs the formalism
of choice to model and analyze current DEDSs. One obstacle is the difficulty of
building large models comprising several sub-models, which call for better divide-
and-conquer approaches, even if compositionality is not an inherent feature of PNs.

A much more fundamental need, however, is the ability to solve models with
extremely large state spaces, where, again, compositionality should be explored
further. Once we build a complex model from small building blocks, this structure
should be exploitable for the solution. Hierarchical techniques for specific problems
have been proposed [10], but a general methodology that can be safely and
automatically applied to SPNs to speed up their solution, be it numerical or
simulative, is needed.

Decision diagrams have been shown to greatly help the generation and storage
of the state space and infinitesimal generator of Markovian SPNs, but not their
numerical solution. Approximations exploiting the decision diagram structure have
been introduced [42], but more desirable would be algorithms to bound the measures
of interest.

Another way of tackling the solution of large SPNs is the already mentioned
fluidification, where the discrete SPN marking is replaced by a continuous approx-
imation. This is justifiable when the number of tokens in the model becomes very
large or tends to infinity [38] but much more difficult are intermediate situations
where the population is large, yet discrete system features cannot be completely
neglected.

In conclusion, we can say that SPNs are another example of the impact that the
original work of Carl Adam Petri had (and is still having) on many application
and research fields, but we must also observe that research on performance and
reliability evaluation of DEDSs must still refer to the ideas of Carl Adam Petri
to address the challenges coming from application domains with ever increasing
complexity.
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Modelling Time Using Petri Nets

Michel Diaz

When we started our research on testing the first computer systems, including
computer peripherals, which were already rather complex to understand and design,
we were using hardware and logical descriptions. Later when the complexity
increased, it became obvious to us that a formal behavioural description would be
of great help. Looking at the existing proposals we discovered Petri Nets (PNs)
and it appeared to us that they would provide an excellent model and very useful
support to represent the systems’ behaviours, as they include intrinsic parallelism
and synchronisation. We then designed Petri-net-based simulators to derive test
sequences. Still later, the behaviours of communicating systems depending on
time and delays proved to be more and more important, making the designs more
complex, and so we devoted a part of our research to the description of systems
whose behaviour depends on explicit values of time. Again, we found that Petri
Nets provide an excellent basic model to represent and handle behaviours based on
explicit values of time.

During our research we actually met Carl Adam Petri and discussed with him our
ideas for modelling systems and the selected ways to extend Petri Nets to represent
and handle explicit values of time. He was really quite interested in these new
efficient extensions of the basic model and he found them quite simple, elegant
and attractive.

We will now discuss how these models can express fundamental and complex
temporal requirements by extending Place-Transition (PT) PNs. To represent and
analyse systems relying on explicit values of time, three of the proposed extensions
of PTs will be briefly discussed, viz., Timed PNs, Time PNs and Timely Synchro-
nised PNs.
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1 Timed PNs

In their basic semantics PNs do not have time values. Nevertheless, when going from
a marking to a successor marking the model assumes the indivisibility of the firing of
transitions, which means that a firing takes no (i.e. zero) time. In PTs the behaviour
of a timed system is represented in an ad hoc way, for instance in protocols by adding
a place that is marked when a message is lost. Such a simple solution allows the
validation of rather complex algorithms, such as a virtual ring protocol, e.g. showing
that its logical design is correct not only with respect to the loss of messages, but also
when an interface cannot send any message and when an interface cannot receive
any message [1].

The first time extension of PTs was called Timed PNs [2] and used for
performance analysis. This model added to PTs a time value for each transition, to
represent the time needed for a firing. Here a transition is fired as soon as it enabled.

2 Time PNs (TPN)

A more general definition was given by [3]. It defines Time Petri Nets by adding a
two-valued time interval [τ imin, τ imax] to each transition ti, (Fig. 1). The semantics
is that when a transition ti becomes enabled, for instance at time θ , it cannot be fired
before the time (θ + τ imin) and it must be fired by the time (θ + τ imax). Also here,
firing a transition takes zero time.

Note that any significant time values in the system must be explicitly represented
in the model.

Fig. 1 A Time PN
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Clearly, Time PNs are able to exactly express real timers, i.e. a delay value
together with its potential maximum drift, but also the min and max times of a
given computation. The formal analysis of the behaviours of TPNs is given in
[4, 5].

We had an opportunity to discuss the TPN model with Carl Adam Petri, twice,
during two PN conferences. Although he was not working on time representation
and analysis, he found this approach quite appealing and easy to use and understand.
Unfortunately, we had no opportunity to discuss with Carl Adam our next model,
TSPN.

3 Timely Synchronised PNs (TSPNs)

When carefully considering TPNs, it appears that the behaviour of a transition can
be decomposed into two steps. Step 1: The transition waits to be enabled, i.e., there
exists, for instance between the first token and the last token marking the input
places of the transition, an undefined waiting time. Step 2: At the time when the
transition becomes enabled, the model starts counting the time (of the time interval).
These two steps imply a subtle underspecification that must be well understood: the
time behaviours of the enabling input places are not explicitly handled before the
enabling of the transition, as counting the time starts only at the moment when
the transition is enabled. Consequently, as the input places do not have an explicit
temporal behaviour, fully autonomous behaviours cannot be modelled.

This led to the definition of temporal synchronisation and composition in [6–
8]. The idea is that, as counting time is local to all behaviours, when a place is
marked, its temporal behaviour has to be enabled. It follows then that the [min, max]
value intervals must be assigned, not to the synchronisation transition, but rather
to the arcs connecting places with transitions. In such a model, the time interval
related to the place can start as soon as it is marked. As a consequence, the temporal
synchronisation begins as soon as the first place of a given transition receives a
token, and continues until all the places receive a token, of course together with
their arc-related intervals.

As can be seen from Fig. 2, the time arcs can lead to very different semantics for
the firing of transitions in TSPNs, and many cases are possible.

For instance, it may happen, with just two places p1 and p2 and θ i being the
time at which place pi is marked, that the time value (θ1 + τ 1max) is smaller than
(θ2 + τ 2min). In such a case, the transition is then not really enabled (Fig. 3), as the
second token has not arrived before the end of the time existence of the first token.
Of course, one possible semantics is to state that there is an error in the modelled
behaviour, and the simulation or verification can be stopped.

Nevertheless, in real life, missing a time synchronisation (rendezvous) often does
not stop the behaviour, for instance of the first arrived token. This shows that this
simple error semantics has to be refined, for instance by tagging the transition to be
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Fig. 2 A TSPN

Fig. 3 Missed timed synchronisation

temporally Possibly Missed (PM), and by sending in such a case a warning message,
while still continuing the simulation or validation.

Furthermore, even for the classical enabling behaviour, in which all places enable
the transition, it appears that different semantics are still possible and acceptable. As
an example, Fig. 4 gives four different temporal firing semantics that were proposed
for multimedia systems (in the papers [6–8] cited already): AND from max of the
min to min of the max (all arcs enabled), WEAK-AND, STRONG-OR, OR from
min of the min to max of the max (at least one arc enabled).

This shows that several relevant semantics of composition can be defined, in
particular in different application areas. A paramount aspect of these different
semantics is that temporal synchronisation cannot be defined a priori. In fact, the
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Fig. 4 Possible firing semantics for TSPNs

semantics to be selected depends on the meaning of the composition, defined by the
application context in which the composition occurs. The semantics will depend on
the (higher) identity of the tokens, as the waiting time for the tokens may depend
on the context. For instance, to represent the reality, if the synchronisation concerns
two people, then a token representing the behaviour of one person may stay (wait)
longer or shorter, depending on the other person that the first arrived is waiting for.

These different semantics have a very important implication: The choice of the
semantics of a temporal synchronisation is a pragmatic decision (in the chain
syntax, semantics, pragmatics), as it comes from a higher design level than the
considered level, e.g., from the application level.

This implies that a simple automatic (programmed) composition semantics can-
not be used for defining full time synchronisation, for instance in contradistinction
to the normal non-timed rendezvous that is defined by merging related transitions,
independently of the higher levels.

4 Conclusion

Nowadays, there exist more and more systems, such as real-time systems and
embedded systems, whose behaviours depend on explicit values of time.

Of course, present autonomous temporal behaviours greatly complicate the
models and the specifications of these systems.
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Nevertheless, it has been shown that simple, easy to understand models are able
to represent and analyse sophisticated and complex time behaviours, showing again
the potential descriptive power and relevance of PNs in this area.
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All True Concurrency Models Start
with Petri Nets: A Personal Tribute
to Carl Adam Petri

Wojciech Penczek

1 Starting from Petri Nets

Paraphrasing ‘All roads lead to Rome’ one might say ‘All true concurrency models
start with Petri nets.’ So, in my case, Petri nets have been my first research topic.
Initially, I investigated their algebraic properties, but later my work focused on
verification of Petri nets using various model reduction techniques and symbolic
model-checking approaches.

1.1 Petri Nets Have Always Been Around

My first contact with Petri nets was in 1984–1985 during my studies at Warsaw
University of Technology and the University of Warsaw. Then I learned the basic
definitions of this true concurrency model for distributed systems and could enjoy
its attractive graphical representations.

In 1986 when I joined the Institute of Computer Science of the Polish Academy
of Sciences, my work, supervised by Prof. Antoni Mazurkiewicz, was focused on
prime event structures, traces, and trace systems. I have been impressed by the match
between trace systems and condition-event systems, their elegant composition and
decomposition methods, and how the trace theory is used as a tool for reasoning
about the behavior of Petri nets [5]. Later, I could also see how extensions of traces,
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such as infinite traces or semi-traces, are used for modeling behaviors of more
involved variants of Petri nets.

1.2 Meeting Carl Adam Petri at GMD

My first foreign research trip was to the ‘Gesellschaft fur Mathematik und Datenver-
arbeitung’ (GMD, Society for Mathematics and Information Technology) in 1988.
Invited by Prof. Ursula Goltz I spent a few weeks at GMD, having the privilege of
meeting there famous people working on Petri nets. These were Wolfgang Reisig,
Eike Best, Kurt Lautenbach, and finally I was introduced to Carl Adam Petri. This
was a very short meeting and we only exchanged a few sentences, but I do remember
this contact very well, being under a very strong impression of the personality of
Prof. Petri who was kindly interested in my research. He asked about my scientific
interests and the aim of my visit to GMD. This personal contact with Prof. Petri has
strongly influenced my scientific career and the topics of my interest. Most of my
further research results have been concerned with verification of Petri nets.

2 Verification of Time Petri Nets

My work on verification of (time) Petri nets started with several results concerning
abstractions and partial order reductions [8, 9]. In 2001 these were the main methods
for alleviating the state explosion problem of state spaces. Regardless of the true
concurrency nature of Petri nets, their state spaces built on marking graphs may
grow exponentially in the number of transitions or can be infinite in the case of time
Petri nets. So, efficient verification was possible only after abstracting or reducing
the state spaces. Many verification methods for time Petri nets were adapted from
those developed for Timed Automata and vice versa [10]. One of the most important
examples is minimization algorithms for time Petri nets [12] exploiting partitioning
refinement. Then, we put forward methods based on bounded model checking using
BDDs as well as SAT- and SMT-solvers, applied to both concrete and abstract state
spaces [4, 6, 7, 11, 13].

In order to discuss verification methods of time Petri nets in more detail, it is
useful to recall their definition.

Definition 1 A time Petri net (TPN) is a six-tuple N = (P, T , F,m◦, Ef t, Lf t),
where

• P = {p1, . . . , pnp} is a finite set of places,
• T = {t1, . . . , tnT } is a finite set of transitions, where P ∩ T = ∅,
• F : (P × T ) ∪ (T × P) → N is the flow function, where N is the set of natural

numbers, including 0,
• m0 : P → N is the initial marking of N ,
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Fig. 1 A time Petri net

• Ef t : T → N, Lf t : T → NU{∞} are functions describing respectively the
earliest firing time and the latest firing time of the transitions, where clearly
Ef t(t) ≤ Lf t(t) for each t ∈ T .

A four-tuple (P, T , F,m0) is called a Petri net.

An example of a time Petri net is shown in Fig. 1. The values of the functions Ef t

and Lf t are given by Ef t(t) = 1 and Lf t(t) = 2 for t ∈ {t1, t3, t5, t6}, Ef t(t2) =
0, Lf t(t2) = 3, and Ef t(t4) = Lf t(t4) = 1.

Intuitively, a marking specifies how many tokens (denoted by the black dots) are
stored in particular places. Firing of a transition consumes a number of tokens from
its input places and produces a number of tokens in its output places; the above
numbers are given by the corresponding values of F (represented in the figure by
the numbers decorating the arrows connecting those pairs of a place and a transition
for which the value of F is not equal to zero).

Intuitively, a transition t is enabled if all its input places contain a sufficient
number of tokens to be consumed by the flow function. The earliest and latest firing
times of a transition t specify the timing interval in which t can be fired. If the
time passed since the transition t has become enabled reaches the value Lft(t), the
transition has to be fired, unless disabled by a firing of another transition. In order
to simplify some subsequent notions, we consider only nets satisfying the following
two conditions:

• the flow function F maps onto {0, 1}, so F can be identified with the relation
F ⊆ (P × T ) ∪ (T × P), and

• the number of tokens that can be stored in a place is limited to 1, so m0 can be
identified with the set of places m0 assigns to 1. Introducing such a limit changes
slightly the conditions under which a transition is enabled, which can be seen
below.

In order to describe models for time Petri nets we need to give some basic
definitions.

Let t ∈ T be a transition.

– By the preset of t we mean the set of its input places •t = {p ∈ P |F(p, t) = 1}.
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– By the postset of t we mean the set of its output places t• = {p ∈ P |F(t, p) =
1}.

– By a marking of N we mean any subset m ⊆ P .
– A transition t is enabled at m(m[t〉 for short) if •t ⊆ m and t • ∩(m \ • t) = ∅,

i.e., m contains each input place of t , and m does not contain any output place of
t except for these places which are both input and output places of t .

– By en(m) = {t ∈ T |m[t〉} we mean the set of transitions enabled at m.
– If t is enabled at m, then t leads from m to the marking m′ = (m \ • t) ∪ t•.

2.1 Concrete Models of TPNs

A concrete state records a snapshot of the behavior of a TPN. In order to verify
whether a system modeled by a TPN satisfies some properties, we need to represent
the set of all its concrete states, defined below, together with their valuation, with
propositions, which are used for formulating the properties. Such a structure is
called a concrete model. Typically, one of two approaches to building concrete
models is applied, depending on whether the flow of time is recorded by real
variables, called clocks, or firing intervals. We discuss the clock approach in more
detail.

A concrete state of a TPN is a pair σ = (m, clock), where m is a marking
and clock is a function that gives values to the clocks that can be associated with
the transitions or the places. If a net is distributed, i.e., composed of well-defined
sequential processes, then the clocks can be also assigned to its processes [10]. The
explanation below is for the clocks assigned to the transitions. The initial state is
denoted by σ 0 = (m0, (0, . . . , 0)). The concrete state changes because of either
the firing of an enabled transition t ∈ T for which Ef t(t) ≤ clock(t) ≤ Lf t(t),

denoted σ
t−→c σ′, or the passing of some time provided this does not disable any

enabled transition, denoted σ
t−→c σ ′, where τ is a special symbol. Notice that τ

does not specify how much time passed, but it is used to label the time transitions.
Since our aim is to verify temporal (i.e., changing in time) properties of

markings of a TPN N = (P, T , F,m0,Eft,Lft), we use the propositional variables
corresponding to its places. Formally, let PV = {℘p\p ∈ P } be a set of
propositional variables, where the propositional variable ℘p corresponds to a place
p ∈ P .

Definition 2 (Concrete Model for TPN) A concrete model for a time Petri net
N = (P, T , F,m0, Ef t, Lf t) is a tuple Mc(N ) = ((�, σ 0,→c), Vc), where

• � is the set of all the concrete states of N ,
• σ 0 is the initial state,
• →c is the transition relation, and
• Vc : � → PV is a valuation function such that Vc((m, ·)) = {℘p | p ∈ m} i.e.,

Vc assigns the same propositions to concrete states with the same markings.
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To abstract from the flow of time in the transition relation, in the definition of a
concrete model instead of −→c one can use also the discrete transition relation

→d ⊆ �×T ×�, defined as: σ
t−→d σ ′ iff (∃σ1, σ2 ∈ �)σ

τ∗−→c σ1
t−→c σ2

τ∗−→c σ ′.
Unfortunately, concrete models are typically infinite. Therefore, we need to

abstract them into preferably finite abstract ones, i.e., models whose nodes are sets
of concrete states. The transitions of the abstract models are labeled with elements
of the set B = T ∪ {τ }, consisting of the transitions T of N and the special symbol
τ, as defined below.

Definition 3 (Abstract Model for TPN) A structure Ma(N ) = ((W,w0,→), V )

is an abstract model for a concrete model MC(N ) = ((S, s0,→), Vc), where

• each node w ∈ W is a set of states of S and s0 ∈ w0,
• V (w) = Vc(s) for each s ∈ w,
• →⊂ W × B × W such that

EE : (∀w1, w2 ∈ W) (∀b ∈ B) : w1
b−→ w2 if (∃s1 ∈ w1)(∃s2 ∈ w2) s.t. s1

b−→ s2.

The condition EE is illustrated in Fig. 2.
Definition 3 is very general, so it needs to be refined in order to ensure that

abstract models preserve the properties expressible in a given temporal logic.
Moreover Definition 3 does not give any clue how to build abstract models. We
elaborate on these two issues in the next two sections.

2.2 Abstract Models Preserving Temporal Logics

Properties of timed systems are usually expressed using temporal logics. In this
section our focus is on the logics that are most commonly, used, i.e., Linear Time
Temporal Logic (LTL) and Computation Tree Logic∗ (CTL∗); see Chapter 4 of [10].
LTL is interpreted over all the state sequences of a model starting at the initial state,
while CTL∗ is interpreted over the tree resulting from unwinding a model starting

b

b b

b

Fig. 2 An example of an abstract model satisfying the condition EE. The ovals represent the
abstract states, the black dots stand for the concrete states, and the red (blue) arrows represent
the concrete (abstract, resp.) transitions. Valuations of the nodes are omitted. The same graphical
conventions apply to Figs. 3, 4, and 5
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from the initial state. The formulas of LTL and of CTL∗ are built from propositional
variables of PV using standard Boolean operators ¬, v, ∧, and the state operators
X (neXt), U (Until), and R (Release), the meanings of which correspond to their
names. Since CTL∗ is interpreted over trees, its language contains also the two path
quantifiers A (for All sequences) and E (there Exists a sequence) that allow us (to
apply the state operators to some sequence or to all sequences starting at some state.
We also use the restriction of CTL∗, called ACTL∗, such that negation can only
by applied to the propositional variables and the operator E cannot be used. For
example, X{℘pU℘q) is an LTL formula, AG(EX(℘pU℘q)) is a formula of CTL∗,
while AG(AX(℘pU℘q)) is an ACTL∗ formula.

Three more properties, EA, AE, and U, of abstract models are defined below
in order to ensure the preservation of the three temporal logics, LTL, CTL∗,
and ACTL∗, respectively. Surjective models are abstract models that satisfy the
condition EA, given below.

These models preserve the logic LTL.

EA : (∀w1, w2 ∈ W) (∀b ∈ B) : w1
b−→ w2 ⇒ (∀s2 ∈ w2) (∃s1 ∈ w1)s1

b−→ s2.

The condition EA is illustrated in Fig. 3.
Bisimulating models are abstract models that satisfy the condition AE, defined

below. These models preserve the logic CTL∗.

AE : (∀w1, w2 ∈ W) (∀b ∈ B) : w1
b−→ w2 ⇒ (∀s1 ∈ w1) (∃s2 ∈ w2)s1

b−→ s2.

The condition AE is illustrated in Fig. 4.
Simulating models are abstract models that satisfy the condition U, defined

below. These models preserve the logic ACTL∗.
U: For each w ∈ W there is a nonempty wcor ⊆ w such that s0 ∈ (w0)cor , and

(∀w1, w2 ∈ W) (∀b ∈ B) : w1
b−→ w2 ⇒ (∀s1 ∈ w1

cor
) (∃s2 ∈ w2

cor
)
s1

b−→ s2.

The condition U is illustrated in Fig. 5, where the blue ovals denote subsets wcor

of the abstract states and the blue-dashed-violet arrows represent the abstract
transitions.

Fig. 3 An example of an
abstract model satisfying the
condition EA

b1 b1 b2

b2b1
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Fig. 4 An example of an
abstract model satisfying the
condition AE b1 b2

b1 b1 b2 b2

Fig. 5 An example of an
abstract model satisfying the
condition U

b1 b2

b1 b1 b2

There are different methods of generating abstract models, descriptions of which
can be found in [10]. One of the main methods, called partitioning refinement, starts
with a small abstract model preserving only the propositional variables of a given
formula. Then, this abstract model is refined by splitting states until one of the
properties EA, AE, or U begins to hold, depending on which temporal logic the
formula belongs to. Abstract models constructed this way are finite, thus they allow
the standard model-checking method to be applied.

2.3 Partial Order Reductions (POR) [8]

However, it may turn out that the abstract models defined above are still too
large to be efficiently verified. Then, we can weaken languages of temporal
logics by disallowing the use of the next-step operator. This is indicated with
−X added to the name of each logic. Then, the equivalence to be preserved by
a reduced model is weakened as well. Such an equivalence relation preserving
CTL∗−X (ACTL∗−X, LTL−X) is called stuttering bisimulation (simulation, trace
equivalence, respectively).

The intuitive idea behind partial order reductions consists in generating reduced
abstract models such that for each maximal path p in the abstract model, the reduced
one contains at least one (but as few as possible) maximal path p′, which differs
from p only in the ordering of independent transitions. This independence relation
is symmetric and is defined for Petri nets as follows. Two transitions t , t ′ are
independent iff (•t ∪ t•)∩(•t ′ ∪ t ′•) = ∅, i.e., t and t ′ have no common input and no
common output places. In the case of time Petri nets one can define an asymmetric
covering relation by t covers t ′ iff t, t ′ are independent and Ef t(t) = 0.
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There are many algorithms that use this independency or covering relation to
generate a reduced model without building the full one. At each node w of the
generated reduced state space, the algorithm computes a subset (called stubborn or
ample) of the set of all the enabled transitions and generates the successor nodes for
the transitions of this subset only.

2.4 Symbolic Model Checking for TPN

At the Institute of Computer Science, Polish Academy of Sciences we have
developed several new methods for verification of (parametric) time Petri nets. We
considered two symbolic approaches, SAT- and BDD-based, to bounded model
checking (BMC) of (parametric) time Petri nets and focused on the properties
expressed in Linear Temporal Logic and the existential fragment of Computation
Tree Logic. More specifically, we developed a SAT-based (parametric) reachability
method for a class of distributed time Petri nets [11], which are TPNs composed
of sequential processes, BMC approaches for verification of distributed time Petri
nets [7], bounded parametric model checking for Petri nets [4], and a BDD-based
BMC method for temporal properties of 1-Safe Petri nets [6]. Moreover, we proved
and exploited the fact that the discrete-time semantics is sufficient to verify the
properties formulated in the existential and the universal version of CTL∗ of time
Petri nets with the dense semantics [2]. Recently, an SMT-based reachability-
checking method for bounded time Petri nets was defined [13].

2.5 Verics

Our tool Verics [3] is a model checker composed of several independent mod-
ules aimed at verification of (parametric) time Petri nets, timed automata, and
multiagent systems. The verification engine is mainly based on translations of
the model-checking problem into the SAT problem. Depending on the type of
considered system, the verifier enables us to test various classes of properties—from
reachability of a state satisfying certain conditions to more complicated features
expressed with formulas of (timed) temporal, epistemic, or deontic logics. The
implemented model-checking methods include SAT-based ones as well as these
based on generating abstract models for systems.

2.6 SAT-Based Bounded Model Checking

Bounded model checking is a symbolic method aimed at verification of temporal
properties of distributed (timed) systems. It is based on the observation that some
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properties of a system can be checked using only a part of its model. In order
to apply SAT-based BMC to testing whether a system satisfies a certain (usually
undesired) property, the transition relation of a given system is unfolded up to
some depth k and encoded as a propositional formula. The formula expressing the
property of interest is encoded as a propositional formula as well and satisfiability
of the conjunction of these two formulas is checked using a SAT-solver. If the
conjunction is satisfiable, one can conclude that a witness was found. Otherwise,
the value of k is incremented. The above process is terminated when the value of k

is equal to the diameter of the system, i.e., to the maximal length of a shortest path
between its two arbitrary states.

2.7 Encoding for PN and TPN

Below we show how to encode the paths of length k. A set of global states is
represented by a single symbolic state, i.e., as a vector of propositional variables
w (called a state variable vector). Then, k+1 state variable vectors stand for a
symbolic k-path, where the first symbolic state encodes the initial state of the system
while the last one corresponds to the last states of the k-paths. The formula encoding
the symbolic k-path is defined as follows:

pathk

(
w0, . . . , wk

)
= I

(
w0

)
∧

k−1∧
i=0

T
(

wi , wi+1
)

(1)

where I(w0) encodes the initial state of the system, and T(wi , wi+1) encodes a
transition between symbolic states represented by the global state vectors wi and
wi+1.

In what follows we briefly describe how to define T(wi , wi+1) for PN and TPN.

Implementation for PN Consider a Petri net N = (P, T , F,m0), where the places
are denoted by the integers smaller than or equal to n = |P |. We use the set
{p1, . . . , pn} of propositions, where pi is interpreted as the presence of a token in
the place i. The states of S are encoded by valuations of a vector of state variables
w = (w[1], . . . , w[n]), where w[i] = pi for 0 ≤ i ≤ n. The initial state and the
transition relation → are encoded as follows:

– I
(
w0

) := ∧
i∈m0 w0[i] ∧ ∧

i∈P \m0 ¬w0[i],
– T (w, v) := ∨

t∈T

(∧
i∈•t w [i] ∧ ∧

i∈(t•\pre(t)) ¬w [i] ∧ ∧
i∈(•t\t•) ¬v [i] ∧

∧
i∈t• v [i] ∧ ∧

i∈(p\(•t∪t•))∪(•t∩t•) w [i] ⇔ v [i]
)

.

A more detailed description and the encoding of the formulas of the existential
fragment of CTL can be found in [11].
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Implementation for Distributed TPN The main difference between the symbolic
encoding of the transition relation of PN and TPN consists in the time flow. Below,
we give some details of the encoding for distributed TPN. A current state of a TPN
N is given by its marking and the time passed since each of the enabled transitions
became enabled (which influences the future behavior of the net). Thus, a concrete
state σ of N can be defined as an ordered pair (m, clock), where m is a marking and
clock : : I → R+ is a function, which for each index i of a process of M gives the
time elapsed since the marked place of this process became marked most recently
[12]. In order to deal with countable structures instead of uncountable ones, we can
use extended detailed region graphs, i.e., abstract models based on the well-known
detailed region graphs introduced by Alur et al. for timed automata [1].

To apply the BMC approach we deal with a model obtained by a discretization
of its extended detailed region graph. The model is of an infinite but countable
structure, which, however, is sufficient for BMC (which deals with finite sequences
of states only). Instead of dealing with the whole extended detailed region graph,
we discretize this structure, choosing for each region one or more appropriate
representatives. The discretization scheme is based on the one for timed automata
[14], and it preserves the qualitative behavior of the underlying system. The details
and the formal definitions can be found in [11].

2.8 Bounded Parametric Model Checking

BMC is also applied to verification of properties expressed in the existential
fragment of the logic PRTCTL, which is an extension of Computation Tree Logic
(CTL) by allowing the formulation of properties involving lengths of paths in
a model. For example, consider EG≤5℘, which expresses the fact that there is
a path such that in the first six states of this path ℘ holds. Another example
is ∀�1≤1∃�2≤2EF≤�1+�2℘, which expresses the fact that for each value of the
parameter �1 not greater than 1 there is a value of the parameter �2 not exceeding
2 such that ℘ can be reached at a prefix of length at most �1 + �2 + 1 of some
path. The propositions appearing in these formulas correspond to the places of the
net considered. In order to apply verification using BMC, the qualitative properties
expressed in PRTECTL are directly encoded as propositional formulas.

3 Final Remarks

We have discussed some features of verification that are specific to Petri nets, in
particular model abstraction techniques, partial order reductions, and SAT-based
bounded-model-checking methods for (time) Petri nets.
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Verification of (time) Petri nets is a very active area of research with many new
verification methods emerging every year. This is motivated by broad practical
applications of time Petri nets to model concurrent systems, real-time systems,
stochastic systems, and hybrid systems. It is also important to mention that the
efficiency of tools for (time) Petri nets is improving every year (see http://mcc.lip6.
fr/).
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checking approaches for verification of distributed time Petri nets, in Proceedings of the
International Workshop on Petri Nets and Software Engineering (PNSE’11) (2011), pp. 72–
91

8. W. Penczek, A. Półrola, Abstractions and partial order reductions for checking branching
properties of time Petri nets, in Proceedings of the 22nd International Conference on
Applications and Theory of Petri Nets (ICATPN’01), ed. by J.M. Colom, M. Koutny. LNCS,
vol. 2075 (Springer, Berlin, 2001), pp. 323–342

9. W. Penczek, A. Półrola, Specification and model checking of temporal properties in time Petri
nets and timed automata, in Proceedings of the 25th International Conference on Applications
and Theory of Petri Nets (ICATPN ’04), ed. by J. Cortadella, W. Reisig. LNCS, vol. 3099
(Springer, Berlin, 2004), pp. 37–76

10. W. Penczek, A. Półrola, Advances in Verification of Time Petri Nets and Timed Automata: A
Temporal Logic Approach. Studies in Computational Intelligence, vol. 20 (Springer, Berlin,
2006)

11. W. Penczek, A. Półrola, A. Zbrzezny, SAT-based (parametric) reachability for a class of
distributed time Petri nets, in Trans. Petri Nets and Other Models of Concurrency, ed. by M.
Knapik et al. LNCS, vol. 6550(4) (Springer, Berlin, 2010), pp. 72–97

http://mcc.lip6.fr/
http://mcc.lip6.fr/


204 W. Penczek

12. A. Półrola, W. Penczek, Minimization algorithms for time Petri nets. Fundam. Inform. 60(1–4),
307–331 (2004)

13. A. Półrola, P. Cybula, A. Meski, SMT-based reachability checking for bounded time Petri nets.
Fundam. Inform. 135(4), 467–882 (2014)

14. A. Zbrzezny, SAT-based reachability checking for timed automata with diagonal constraints.
Fundam. Inform. 67(1–3), 303–322 (2005)



Petri Nets for BioModel Engineering: A
Personal Perspective

Monika Heiner

Preamble This paper gives my personal reflections on an exciting field of research
which started its journey about 20 years ago. I’m convinced that it will still carry
us a very long way, in our quest to gain deep understanding of living organisms
by elucidating the components and their interactions which govern their behaviour.
This will finally permit us, among other things, to cautiously direct organic
evolution, correct unwanted (spontaneous) mutations or to derive recommendations
for personalised treatment of certain diseases.

1 How Everything Began

The Begin of the Beginning I fell in love with Petri nets in the late 1970s, while
searching for a Ph.D. subject. My supervising professor arranged for me to get
access to the best library in town, usually reserved for the company’s employees
only. Reading my way through the hidden gems, I stumbled over two Ph.D. theses,
one written by K. Lautenbach, introducing what is known today in Petri net theory
as transition/place invariants [16], the other by O. Herzog, analysing PL/1 programs
for deadlocks by mapping the programs’ control structure onto Petri nets [14].
These two treasures, well-protected in the company’s library, were the begin of the
beginning of my professional orientation. A cross-check in the library of the local
technical university didn’t reveal a single item with the Petri net buzzword—not yet.
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But this was about to change, with my Ph.D. thesis [6] becoming one tiny piece of
the ever-growing puzzle.

Thus, I started my career by applying Petri nets for verifying technical
systems—hardware/software structures alike, writing compilers to do the boring
part automatically—the mapping onto Petri nets, so one can concentrate on the
interesting part—how to analyse the model, and even more importantly, how to
interpret the results gained by Petri net analysis in terms of the modelled technical
system. But there were and still are tight limits to this pretty simple idea; and all
models are more or less similar in their basic characteristics, with minor variations
by changing the programming language, from Pl/1 to Algol 68, Ada, OCCAM,
CHILL, Java, you name it—so I got tired.

Later, when turning my attention from human-made systems to systems created
by organic evolution, I quickly realised that biologists think differently than
hardware/software engineers, maybe because they encounter different problems,
want to solve different riddles and are hunting different phenomena; anyway, my
professional life got exciting again.

Petri Net Versus Petri Dish No, the two notions are not related, to answer one
of the top FAQs right from the start. Petri dishes were invented by Julius Richard
Petri (1852–1921), and Petri nets by Carl Adam Petri (1926–2010); so the two even
didn’t have a chance to meet each other.

According to some email communication which I had with C.A. Petri in the first
decade of this century, he drew some inspiration from chemistry, with his first ideas
of how to visualise stoichiometric equations sketched on his high school chemistry
textbook. However, his textbook copy got lost in WW2, so it’s up to you whether
you buy the story.

Anyway, written proofs do exist. C.A. Petri himself mentioned the analogy
between the abstract notions of places/transitions and chemical substances/reactions
in one of his numerous internal research reports [20], and continued to do so, see
Fig. 1. Similarly, very early scientific publications about Petri nets employed simple
stoichiometric equations, such as

2 · H2 + O2 → 2 · H2O, (1)

as introductory illustrations to explain the key idea, e.g. the very first textbook
about Petri nets in English by J.L. Peterson [19] and the seminal journal paper by
T. Murata [18]; see Fig. 2. This doesn’t come as a big surprise, as there is a one-to-
one correspondence—if you understand one of the two notations, you immediately
understand the other one as well. Both describe exactly the very same behaviour;
there is zero leeway for interpretation.

This might be the explanation for a remarkable effect I experienced more than
one time: biologists or physicians looking for the very first time in their life at a
Petri net, with the Petri net describing one of their favourite subjects (e.g. a specific
pathway, some very specific proteins or protein interactions), and they immediately
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Fig. 1 C.A. Petri at the Deutsches Technikmuseum in Berlin, November 2006; photographs taken
by the author
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Fig. 2 Petri net representations for stoichiometric equations in early publications; (left) repro-
duced from [19], (right) Petri net for Eq. (1) reproduced from [18]

start to comment: here something is missing, this can’t be right, this is probably
meant to be . . . , etc..

So, it was just a matter of time before the business got more serious. First papers
re-discovering the key modelling ideas and applying them to metabolic pathways
were published in the early 1990s [15, 21], while my first talks addressing this
subject go back to the late 1990s [7, 10], followed by my own reviewed publications
starting in this century.

Growing Complexity These days, systems biology and Petri nets employ a
number of related terms, e.g. reactions/transitions, metabolites/places, which are
often used interchangeably; see Table 1 for a quick reference, and Fig. 3 for three
equivalent Petri net representations of a typical building block of which biochemical
pathways are often made—metabolic, signal transduction and gene regulatory
pathways alike:

A + E
k1
�
k2

A|E k3−→ B + E. (2)

Small Petri net components of this kind can then be composed together to
form arbitrarily complex networks, and we are sooner or later bound to encounter
a problem—how to cope with the growing complexity of the Petri nets to be
constructed?

Being a software engineer myself, help is just around the corner. So, let’s
re-use construction principles, well established in many engineering disciplines:
composition of model components (see Fig. 3) and hierarchical structuring (see
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Table 1 Terminology analogies in Petri nets vs systems biology

Petri nets Systems biology

Place Species (metabolite, enzyme, gene, mRNA)

Transition Reaction (transport step, conformational change)

Arc weight Stoichiometry

Tokens Molecules, mass

Token number Concentrationa

Marking State

(Firing) rate Flux

Incidence matrix Stoichiometric matrixb

P-invariant Mass conserving subnet

Minimal T-invariant Elementary mode, extreme pathwayb

a Up to obvious normalisation
b Up to reversible reactions

Fig. 3 Three graphically different, but mathematically equivalent Petri net representations for the
basic enzymatic reaction according to Eq. (2)

Fig. 4). Both principles postpone the problem and work quite well up to Petri nets
of a few hundred nodes (assuming the right tool support).

It may even carry us beyond, when committing ourselves to a strictly modular
modelling discipline, as demonstrated in [1] for biomolecules involved in the
JAK/STAT signalling pathway. Here, each biomolecule gets its own model compo-
nent (module), composable by shared interface subnets. This allows professionals
with expertise in specific biomolecules to concentrate and curate exactly those mod-



210 M. Heiner

Fig. 4 Hierarchical Petri net representations for the process-oriented view in Fig. 3

ules they feel competent in. Modular modelling also permits us to systematically
mimic in silico mutations that a biomolecule may undergo in vivo or in vitro,
and then to automatically generate model versions corresponding to a very specific
constellation of mutations (gene profile).

But what next, if all these techniques don’t help?

2 And Then There Was Colour

Basics Coloured Petri nets offer a modelling concept entirely orthogonal to the
engineering principles of compositionality and hierarchical structuring. They can
be considered to be a shorthand notation for (plain) Petri nets. The reduction in
the visible model size is achieved by folding similar net components into one
component; the different components are then technically distinguished by coloured
tokens (instead of simply having black tokens). This just requires us to borrow
a few concepts from standard high-level programming languages. Consequently,
modelling with coloured Petri nets requires some basic programming skills, too.

Coloured Petri nets can be automatically unfolded into the underlying (plain)
Petri nets, as long as we confine ourselves to finite colour sets. In return for this
concession, we can do everything with coloured Petri nets (animation, simulation,
analysis) that we are able to do with (plain) Petri nets, a compromise that is paid off
over the long term.

What for From a practical point of view, the capabilities of coloured Petri nets
exceed by far those of (plain) Petri nets. Coloured Petri nets can cope with large
biological models, which could hardly be handled by Petri nets without colour. For
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Fig. 5 Planar Cell Polarity in Drosophila, from left to right: wing, wing tissue, cell arrangement,
inter- and intracellular signalling cartoon; reproduced from [9]

Fig. 6 Wallpaper-sized Petri net, obtained by unfolding a coloured Petri net modelling molecular
interactions between seven neighbouring cells of a fly wing tissue; by courtesy of Q. Gao; for more
details see [3]

instance, to explore planar cell polarity in fly wing tissue, we developed a coloured
Petri net modelling the molecular interactions between neighbouring cells [3]; see
also Fig. 5. This model can be configured by the number of cells the tissue shall
be made of. This could be seen as a nice and flexible wallpaper generator, see
Fig. 6; e.g. a tissue comprising 400 cells yields by unfolding an uncoloured Petri
net consisting of 164,000 places and 229,669 transitions.
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Likewise, colour permits us to encode spatial attributes, and thus opens the
door to multilevel modelling. Spatial grid structures of arbitrary dimension and
neighbourhood relations can be prepared and later used off the shelf in different
settings; e.g. to explore phase variation in multistrain bacterial cell colonies [5].
Assuming a disc-like universe for our growing colonies and choosing a resolution
of 101 × 101 for the corresponding 2D grid generates by unfolding a Petri net
comprising 30,603 places and 362,404 transitions.

In any case, crucial points advocating the use of coloured Petri nets for our appli-
cation scenarios are the modelling comfort in describing structural regularities and
their scalability, which permits convenient model configuration while preserving the
power of all Petri net techniques to explore the model behaviour.

3 The Big Pros

Looking through my Petri net glasses I can see a lot of very good reasons to adopt
Petri net technologies for BioModel Engineering. They just simplify our life. I
compress them here into two categories.

Bridging Gaps Representation style is often a matter of taste. Which kind of
representation best serves its purpose and is considered to be most appropriate may
depend on many aspects, one of them simply what one is used to. This holds for
biochemical network representations, too.

However, systems biology is an inherently interdisciplinary field of research.
Thus, communication means are crucial which are easily approachable by profes-
sionals having quite diverse backgrounds, while not being specifically addicted to
mathematical notations. See [22] for a recent paper with a wide spectrum of authors
that would not have been possible without Petri nets and their intuitive graphical
approach.

Unifying Diversity Having agreed upon the model structure, the next step usually
consists in getting the time-dependent behaviour right. This can basically be done
in two different ways—stochastically or continuously. Stochastic Petri Nets (SPN )

seem to be a natural choice, as the behaviour of biochemical networks is inherently
governed by stochastic laws. However, if molecules are in high numbers and
stochastic effects can be neglected, one can easily switch to a deterministic setting
and read the given net structure and its attached kinetics as a Continuous Petri Net
(CPN ). Combining both yields Hybrid Petri Nets (HPN ). In summary, Petri nets
may serve as a kind of umbrella formalism—the models share structure, but vary
in their kinetic details. We obtain a family of related models with high analytical
power [2, 8]; compare Fig. 7.

So there is no reason to be afraid of ordinary differential equations (ODEs);
they are automatically generated out of the given CPN [4]. Likewise, our Petri
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Fig. 7 The unifying Petri net framework comprising a family of related models:
PN ,SPN , CPN ,HPN and their coloured counterparts; adapted from [11], with kind
permission of Springer Science + Business Media B.V., Fig. 1, p. 399

net technology allows us to describe and analyse systems that are elsewhere treated
as partial differential equations (PDEs) [17].

4 Nothing Without the Right Tools

Having spent I-don’t-know-how-many nights drawing Petri nets with pen and ink
in my early technical reports, Ph.D. thesis and papers, I was desperate for computer
support, so desperate that we started in the early 1990s to develop our own tools and
continue to do so.

Long-term software development comes with its own challenges. It’s pretty easy
to write a simple Petri net editor and animator, able to deal with a few tens of nodes.
It’s getting more tricky, and thus more interesting from a software engineering
point of view, to construct software able to handle up to millions of nodes, while
supporting the Petri net design principles sketched above. But to explain this
appropriately would make a paper in its own right.

Currently, the main components of our toolkit include Snoopy—a Petri net
editor, animator and simulator [11], Charlie—standard analysis methods of Petri
net theory, complemented by explicit model checking [13], Marcie—symbolic exact
analysis and model checking for QPN and SPN , as well as approximative and
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Fig. 8 (left) Our Petri net toolkit, comprising a family of close friends, (right) Some of Charlie’s
components. All tools available at https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software

simulative analysis for SPN [12], and the tiny Patty—for web-based Petri net
animation; see Fig. 8 for a quick overview.

By the way, if you want to give it a try by playing the token game yourself, just go
to https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Sampler. There you
will find Patty, a Petri net animator directly executable within any standard web
browser; nothing needs to be downloaded or installed.

5 Looking Forward

The technologies I sketched above still face many challenges, but their potential
is breathtaking. Let me illustrate this by just one example—personalised medicine
(also known as precision medicine).

Everybody is familiar with smart cards, one popular application scenario of
which is health insurance cards. So far, they just store general patient data, such
as name, address, insurance company etc. But they could easily carry any kind of
patient-specific data, including—among others—the personal gene profile, which
then would allow a GP, assisted by then state-of-the art computing techniques,
to automatically generate individualised biochemical networks permitting model-
based recommendations for the best diet, drug dosage or therapy. Some readers
might find this threatening. But actually, I don’t care, as long as my personal
biochemical networks will be represented and interpreted as Petri nets.

https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software
https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Sampler
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Petri Nets in Systems Biology: Transition
Invariants, Maximal Common Transition
Sets, Transition Clusters, Mauritius
Maps, and MonaLisa

Ina Koch

1 Preface

The first time I met Carl Adam Petri was in January 1992 in St. Augustin close
to Bonn—at that time still the capital of Germany. Our small computational
biology group, later called the bioinformatics group, moved to the former GMD
(“Gesellschaft fur Mathematik und Datenverarbeitung mbH”). We came from the
Institute of Cybernetics and Information Processes of the Academy of Sciences
of the former GDR (German Democratic Republic) in East Berlin. Under the
terms of the unification treaty, our institute was closed. Our group was offered the
chance to proceed with our research at the GMD in St. Augustin. At that time, we
were working on secondary structure prediction of proteins using graph-theoretic
methods.

Arriving at the GMD, we were warmly welcomed by the colleagues of the Petri
institute. Carl Adam Petri was already an emeritus professor, but was still doing
research. His presence in the institute was indicated by a fuming door; he was
sitting behind it in a cold room with opened windows, wearing outdoor clothes,
smoking, and, of course, working. His group had the nice tradition of meeting in
the library after lunch for tea and coffee. These meetings were not only relaxing,
but also informative and inspiring. I remember that we discussed protein structures
and biology without thinking about an application of Petri net theory to model
biochemical systems. Carl Adam Petri was interested in all topics and discussed
every point in a lively manner.
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Nearly seven years later, when I was working in the group of Jens Reich at
the MDC (Max Delbrueck Center for Molecular Medicine) in Berlin-Buch, it
was Stefan Schuster who gave me the paper by Reddy et al. [1], after my talk
about application of graph theory to protein structure analysis. I read the paper
with interest and discussed it with colleagues, among them Stefan Schuster, Falk
Schreiber, and Monika Heiner. In particular, the concept of invariants and its
relation to the concept of elementary flux modes or elementary modes (EMs)
defined by Schuster for metabolic systems [2] formed one focus of our work. We
were able to show that minimal semi-positive transition invariants (TIs) defined by
Lautenbach in 1973 [3] correspond to elementary modes [4]. We started to apply
Petri nets, first to model only metabolic pathways, and obtained interesting results.
We illustrated dependencies of EMs or TIs, respectively, for the central carbon
metabolism of potato Jubers [5]. Moreover, we could easily find a modeling error
in the underlying kinetic model as first formulated, which did not converge. We
extended the application of PNs and started to consider also signal transduction
systems (e.g., [6]) and gene regulatory systems (e.g., [7]).

In the following, we will consider molecular or biochemical Petri nets, discuss
the special importance of minimal semi-positive transition invariants, define max-
imal common transition sets, and introduce transition clusters, Mauritius maps,
and MonaLisa as software tools. At the end, we will give an overview of further
developments and challenges.

2 Molecular Petri Nets

Now, we introduce the basic definitions that are necessary to follow the paper. We
use the standard Petri net notations according to Reisig [8] and Koch et al. [9].

A Petri net (PN) is a bipartite, directed graph. A Petri net consists of two
types of nodes, places P = {p1, . . . , pk} and transitions T = {t1, . . . , tl}. Places,
drawn as circles, model passive system elements such as conditions, states, or
biological species (or chemical compounds, such as proteins, RNA, DNA, and
protein complexes). Transitions, drawn as squares or rectangles, stand for active
system elements, such as events or chemical reactions, e.g., de-/phosphorylations
and complex formation/degradation. Nodes of different type are connected by
directed, positively weighted arcs. The arcs describe the relation between active and
passive elements. Pre-places of a transition are those places that are connected by
arcs which start at these places and end at the considered transition. Post-places of
a transition are those places that are connected by arcs which start at the considered
transition and end at these places. Analogously, we define pre-transitions and post-
transitions of a place. A transition without pre-places (post-places) is called an
input (output) transition, and is often drawn as a rectangle.

Transitions describe events. An event takes place if its pre-conditions represented
by the pre-places and post-conditions represented by its post-places are fulfilled.
The fulfillment of the pre-conditions is realized via movable objects called tokens,
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which are located on the pre-places. Tokens represent a discrete amount, e.g., one
molecule or one mole of a chemical compound. The distribution of tokens over
all places describes a certain system state and is called a marking, m. The initial
marking, m0, defines the system state before any firing takes place. In this paper,
the post-conditions are always fulfilled, because we do not restrict the number of
tokens on a place.

The firing rule defines the dynamic behavior of a PN. It determines under which
conditions and how the event takes place. We consider discrete place/transition nets
without any time properties, i.e., the firing rule is timeless. If the preconditions of a
transition are fulfilled, i.e., each pre-place carries at least as many tokens as indicated
by the incoming arc weight, the transition has concession or is activated or enabled,
and can fire. Then, the required number of tokens is consumed on the pre-places,
and as many tokens are produced on the post-places as dictated by the outgoing arc
weights. This takes place instantaneously since the firing rule is timeless. If tokens
on the pre-places are not consumed during the firing, but are required to enable the
transition, we use bidirectional arcs called read arcs or test arcs. In biochemical
systems, we model catalytic activities using read arcs.

3 Transition Invariants

The incidence matrix C of a given PN is a (k × l) matrix, where k is the number
of places and l is the number of transitions. Every matrix element, Ci,j, corresponds
to the number of tokens changed on place pi by firing of transition tj. Invariant
properties of the net hold independently of any firing in each system state. For
chemical stoichiometric reaction systems in chemistry and for metabolic systems in
biology, the incidence matrix is known as stoichiometric matrix. The stoichiometric
factors in the chemical stoichiometric equations correspond to the integer numbers
of the entries of the stoichiometric matrix. For a PN of a metabolic system, these
stoichiometric factors define the arc weights for incoming and outgoing arcs of the
transitions.

Based on the incidence matrix we define transition invariants (TIs) and place
invariants (PIs) [3]. A TI is a vector, x ≥ 0, x ∈ N′

0, that satisfies the equation
C · x = 0, representing a multiset of transitions. The firing of these transitions
reproduces a given marking. The vector, x, defines a Parikh vector, which indicates
the firing frequency for each transition in the TI to reproduce a given marking.

In biology, the invariant condition expressed by the equation C · x = 0 corre-
sponds to the steady state of a metabolic system. A steady state, also called steady-
state equilibrium or flux balance, is a stationary state, in which the substances,
coming into the system and going out of the system, are balanced, such that their
weighted sums remain constant during the considered time. Interestingly, in 1994,
nearly 20 years later, the biological meaning of TIs for metabolic networks was
proven by Stefan Schuster who defined elementary modes (EMs). His approach is
based on the analysis of a pointed convex cone [2], where vectors inside the cone
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and on the cone’s surface correspond to invariants. Mathematically, the convex cone
analysis can be mapped to integer linear programming based on the fundamental
theorem of linear inequalities. Schuster showed that EMs can be interpreted as
minimal functional units at steady state in metabolic systems. The concept of EMs
is well established and widely used in the field of systems biology. Using EMs, new
pathways have been predicted that were later validated experimentally, for example
the glyoxylate pathway, which was theoretically predicted by Liao et al. [10] and
Schuster et al. [11] and later experimentally proven in hungry Escherichia coli [12].

For the sake of completeness, we define a place invariant, PI, as a vector y ≥ 0,
y ∈ Nk

0, that satisfies the equation CT ·y = 0. It stands for a set of places over
which the weighted sum of tokens is always constant. Thus, PIs indicate substance
conservations of the system. This property is also used in biology, but will not be
considered here in the following.

The set of non-zero elements of an invariant u is called the support of u, written
as supp(u). An invariant u is called minimal, if its support supp(u) does not contain
the support of any other invariant z, i.e., there does not exists an invariant z, such
that supp(z) ⊆ supp(u) and the largest common divisor of all non-zero entries of
u is equal to one. Linear combinations of invariants again give invariants. In the
following we consider always minimal, semi-positive TIs writing only TIs.

A net covered by TIs is called CTI if every transition participates in at least one
TI. A TI defines a subnet, consisting of its support, its pre-and post-places, and all
arcs in between. A trivial TI describes, for example, reversible reactions. It consists
of two transitions, representing the forward and backward reaction. Typically, trivial
TIs occur in metabolic networks.

To verify a molecular PN model, we check whether it is connected and CTI. A
biochemical PN should be CTI because a transition which is not contained in any
TI does not contribute to the system’s behavior. Moreover, in a biological PN, each
invariant should be biologically reasonable. Otherwise, in most cases, a modeling
error has occurred. This makes the CTI property essential during the modeling
process.

4 Maximal Common Transition Sets and Transition Clusters

The number of TIs increases exponentially with larger and more complex networks.
Even for networks with hundreds of nodes and arcs, the computation of TIs becomes
not only very expensive in time and space, but hundreds and thousands of TIs
are generated, making an exploration of TIs for their biological meaning very
difficult and often not manageable. One way to handle large numbers of TIs is
their classification and further decomposition. For this purpose, we definedmaximal
common transition sets (MCT-sets) and transition clusters (T-Clusters).

To define MCT-sets, let us consider a PN with n TIs, and let X denote the set
of all TIs. A transition set A ⊆ T is called an MCT-set if and only if for each TI
x ∈ X : A ⊆ supp(x) or A ∩ supp(x) = Ø. Thus, two transitions ti and tj belong to
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the same MCT-set if and only if they participate in exactly the same TIs, i.e., the
transitions of an MCT-set always occur together in the same TIs and do not belong
to any other TI, for all i, j ∈ {1,..., n}, ti and tj correspond to the same MCT-set if an
only if for each TI x ∈ X, ti ∈ supp(x) ⇐⇒ tj ∈ supp(x).

This dependency relation leads to maximal common sets of transitions. An
MCT-set defines a disjunctive subnet, which is not necessarily connected. These
subnets represent a possible structural decomposition of large biochemical networks
into rather small subnets. MCT-sets can be interpreted as smallest biologically
meaningful, functional units. They decompose a network into nonintersecting
building blocks [6].

A transition that models a biochemical reaction is often represented by an
enzyme, i.e., a certain protein that catalyzes a chemical reaction. Since a protein can
exhibit more than one function, a transition can be part of two or more functional
building blocks. Using MCT-sets, the transition would belong to no more than one
such building block, because MCT-sets do not overlap. To address the biological
reality, we apply clustering techniques to define overlapping subnetworks. We
cluster TIs using the well-known UPGMA algorithm. We use a normalized, simple
distance measure, the Tanimoto coefficient, which is known from drug design. It is
based on the support vector (e.g., [13]). For TIs xi and xj, we define the pairwise
similarity sij as the ratio of the number of shared transitions and the number of
all transitions. A pairwise similarity sij can easily be transformed into a distance
dij = 1 − sij. For a detailed description see Grafahrend-Belau et al. [14].

5 Mauritius Maps and Knockout Matrices

Biochemical reactions (transitions in PN models) often model the protein or the gene
that expresses that protein, i.e., the gene is switched on and protein production starts.
In experimental biochemistry and biology, it is common to remove a single gene or
more genes, i.e., to knock them out, and to check the behavior of the knocked-out
system. This technique, called knockout analysis, has been systematically applied
to better understand the system’s behavior. In a mathematical model, in silico
knockouts can easily be performed, such that, for example, certain experiments can
a priori be excluded. Thus, in silico knockout analysis is very useful in planning
experiments. In this context, it is of great interest to explore also in silico the
dependencies between TIs.

Mauritius maps (MMs) have been developed to visualize dependencies between
TIs and the knockout behavior of a biological PN model. We consider the supports
of TIs and define an MM as a finite, binary tree. A node represents a transition
that belongs to a TI. The root node is located in the lower left corner, A horizontal
arc connects nodes of the same TI. A branch in the tree indicates another TI that
shares the nodes (transitions) of the left part of the horizontal arc, see Fig. 1. Vertical
arcs connect nodes of the left subtree with nodes of the right upper subtree of the
same TI.
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Fig. 1 A Petri net and its Mauritius map. (a) The Petri net, consisting of six transitions and
four places. The PN exhibits two TIs, whose supports are supp(TI1) = {out, in, 3, 2, 1} and
supp(TI2) = {out, in, 3, 4}. (b) The Mauritius map of the PN in (a). Nodes indicate transitions.
Transition out represents the root node. The horizontal arcs connect nodes of the same TI, here,
for example, the nodes out, in, 3, 2, and 1. A branch in the tree indicates another TI that shares
the nodes of the left part of the horizontal arc. Vertical arcs connect nodes of the left subtree with
nodes of the right upper subtree of the same TI, here the nodes out, in, 3, and 4

Starting with the root, the horizontal line until the first branch is labeled by the
transitions that are part of every TI and thus, can be considered to be the most
important transitions of the PN. The protein or gene represented by such a transition
would have the highest impact if it would be knocked out. For the PN in Fig. 1, the
transitions in, out, and 3 are then considered to be most important.

The impact of a knockout of a transition can be measured by the number of
affected, i.e., destroyed, TIs. Thus, one part of the system remains active and another
part loses its biological function. The knockout of a single transition affects all TIs
(pathways) that are described by the corresponding right subtree. The knockout
of a transition fragments a net covered by TIs into two subnets. One subnet (left
child) does not contain the transition knocked out, and represents the function of
the model not affected by the knockout, The second subnet (right child) depends
on the presence of the transition knocked out. Thus, only those TIs (pathways)
that cover the left child and its successors are not affected, maintaining their
biological functionality. These subsets of TIs with the corresponding places in
between represent sub-PN models, which are, in turn, CTI.

We represent the results of the knockout analysis in a color-coded knockout
matrix, see Fig. 2. The rows indicate the transitions to be knocked out and the
columns the places that are affected (colored red) or not affected (colored green)
by the knockout of the corresponding transition [15].
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Fig. 2 The knockout matrix
of the PN model in Fig. 1.
The transitions (proteins or
genes) to be knocked out are
shown vertically, and the
places (chemical compounds)
that are affected (red) or not
affected (green) by the
knockout of the
corresponding transition are
shown horizontally

6 MonaLisa

MonaLisa is an open-source software tool for creation, visualization, and analysis
of PNs that we developed especially for applications to biochemical PNs. It
implements a PN editor with numerous functions for creating, removing, moving,
zooming, coloring, and labeling of objects as well as several network analysis
techniques, such as invariant analysis (implemented in C, see [16]), including
the graphical visualization of the resulting functional modules, general topology
features, e.g., the distribution of node degrees and cluster coefficients, knockout
analysis (single and multiple knockouts), and others, all without any knowledge of
kinetic parameters, such as substance concentrations or reaction rates. The analysis
methods focus on decomposition methods to identify functional modules at steady
state. Besides network visualization, editing, and analysis, the software enables a
visual inspection of the analysis results [17].

Moreover, MonaLisa provides stochastic simulation abilities. The intuitive
graphical user interface allows the user to focus on modeling and simulation
at different scales. Constant places and the usage of mathematical expressions for
describing simulation parameters offer improved flexibility compared to other tools,
allowing for modeling of non-standard kinetics and complex relationships to the
external environment. Useful features, such as built-in plotting, navigation through
the simulation history, export of the simulation setups to XML-files, and setting the
seed of the random number generator, can help to easily adjust parameters to follow
and assess simulation results [18].

MonaLisa implements interfaces to many tools in systems biology, the Petri
net world, and graph theory, supporting a broad range of file formats, such as
PNML (Petri Net Markup Language), PNT (Petri Net Technology), SPPED, SBML
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(Systems Biology Markup Language), KGML (KEGG Markup Language), DAT
(Metatool format), and the image file formats Portable Network Graphics (PNG)
and Scalable Vector Graphics (SVG). MonaLisa provides the possibility to easily
extend its functionality by new modules. It also supports annotation with MIRIAM
identifiers and SBO terms [19].

The software is licensed under Artistic License 2.0. It is freely available at http://
www.bioinformatik.uni-frankfurt.de/software.html. It requires at least Java 6 and
runs under Linux, Microsoft Windows, and Mac OS.

7 Summary

I’m not sure whether I would have began to use Petri nets for modeling biochemical
systems without meeting Carl Adam Petri. His personality, his curiosity, and
his ideas inspired our work. Meanwhile, Petri nets represent a well-established
approach in the systems biology community. In the last 15 years many papers has
been published on applications of Petri nets to biology, e.g., Matsuno et al. [20],
Hardy and Robillard [21], Peleg et al. [22], Koch and Chaouiya [23], Rodriguez et
al. [24], Minervini et al. [25], and Scheidel et al. [26].

Until now, the work of our group was mainly focused on invariant analysis.
We developed interesting extensions such as MCT-sets, T-clusters for network
decomposition, and Mauritius maps to represent dependencies between invariants
and knockout matrices. Recently, Manatee invariants were defined, espcially for
modeling signaling pathways by Amstein et al. [27]. All these concepts were
inspired by questions that arose during modeling of biochemical systems. We have
demonstrated that all these concepts can also be used for modeling signal trans-
duction systems and gene regulatory systems. To make these new ideas attractive
to users from biology and medicine and to combine them with a powerful editor
and with topological network analysis, we developed the open-source software
MonaLisa.

Nonetheless, there are still many open problems and challenges that are typical
for modeling big biological systems based on incomplete data. The reachability
analysis alone, which would be very useful in biology and medicine, is not
manageable at the moment. To bring the ideas to biologists and physicians, there
is a big need for the graphical representation of the results.

Based on various experiments at different scales, there exist several types
of models of biochemical systems for modeling of metabolic systems, signal
transduction pathways, and gene regulatory pathways. These models represent
different levels of abstraction and exhibit different typical properties that can and
should be addressed in the analysis techniques.

http://www.bioinformatik.uni-frankfurt.de/software.html
http://www.bioinformatik.uni-frankfurt.de/software.html
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From Nets to Circuits and from Circuits
to Nets

Jordi Cortadella

1 Introduction

It is a mere coincidence that Petri nets came on the scene the same year the author
of this paper was born [15]. But it not a coincidence that they have had a strong
relationship since the early 1990s. Petri nets have had widespread use in multiple
areas where a computational model capable of expressing concurrency, causality
and choice is required. One of these areas is Electronic Design Automation [2], since
hardware is inherently concurrent [10]. Dataflow systems [11], communication
protocols [8], hardware/software co-design [12] etc. are examples of domains where
Petri nets have been used for specification, synthesis and verification of electronic
systems.

This paper reviews the impact of Petri nets in one of the domains in which they
have played a predominant role: asynchronous circuits. The paper also discusses
challenges and topics of interest for the future.

2 Minimalist Petri Nets

When associating certain semantics with events, Petri nets inherit an interpretation
that represents the functioning of a particular system. An event can symbolise the
initiation of a task, the arrival of a message, the utilisation of a resource etc. Here is
an interesting question:

What is the simplest interpretation one can conceive for a Petri net?
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If one bit is the minimum unit of information, changing the state of one bit
can be considered the most elementary event. If each bit is implemented by an
electronic signal, we end up with a circuit in which each signal may change its
state asynchronously according to a certain behaviour. This is precisely what an
asynchronous circuit is (see Fig. 1): a set of input signals (x1, . . . , xn), a set of
output signals (y1, . . . , ym), a set of components (logic gates) and a protocol that
specifies the interaction between the circuit and its environment.

Signal Transition Graphs (STG) [17] are the minimalist version of Petri nets
that can specify the behaviour of asynchronous circuits. Figure 2 presents an STG
specifying a circuit with two input signals (a and b) and one output signal (c). The
figure also depicts a possible circuit implementation using a Muller C-element [13].
More precisely, the circuit waits for signals a and b to go high (in any order). After
that, the circuit generates a rising transition of c. Next, the circuit waits for a and b

to go low and generates a falling transition of c. This is iteratively repeated forever.
Fortunately, the author of this paper had the pleasure to briefly talk about

minimalist nets with Prof. Carl Adam Petri in 2003 (Eindhoven) and the impact
of his contributions in the small community of asynchronous design: the term Petri
net appears 44 times in the Asynchronous Bibliography1 [14].

1Let us bear in mind that the Asynchronous Bibliography has not been updated since 2004.
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3 Synthesis and Verification

The marriage between Petri nets and asynchronous circuits gives rise to interesting
design automation problems, most of them related to logic synthesis and formal
verification. State encoding and logic decomposition have been the most challenging
knots in synthesis [5].

Formal verification is also an intricate problem [16] that is computationally
expensive when dealing with timed circuits [3]. In this area, Petri net unfoldings
have also played a fundamental role when dealing with timed circuits [18].

For most synthesis and verification problems, the reachability graph of the system
needs to be generated and transformed. But a fundamental problem arises: the
system is specified as a Petri net, but the transformations at the level of reachability
graph (e.g. insertion of new events) cannot be observed as a Petri net unless some
method exists to retrieve a Petri net from a reachability graph.

Here is where the theory of regions [9], by Ehrenfeucht and Rozenberg, plays a
crucial role in this area. Visualising the transformations of a reachability graph with
the same formal model with which it was generated is an extremely useful engine to
gain intuition about the algorithms used for synthesis. In fact, the theory of regions
was the main motivation for creating one of the state-of-the-art tools for synthesis
of asynchronous circuits and Petri nets: petrify [4]. The tool not only synthesises
circuits, but also Petri nets. For the authors of the tool, the term petrifying means
returning to the Petri net world from the reachability graph. The tool is still actively
used in the community of asynchronous circuit designers.

4 Mining: From Circuits to Nets

Figure 3 depicts the main problems that can be envisioned when relating specifi-
cations and implementations. In the previous section we discussed synthesis and
verification. Process mining [19], also known as process discovery or specification
mining, is becoming an area of growing interest in different domains. How can
process mining help in asynchronous design?

An interesting problem to solve is as follows: given a circuit, is it possible to
discover environments that can safely interact with it? Moreover, can we describe
these environments using Petri nets? This is a kind of reverse engineering problem
still in its infancy, although some initial effort has been recently undertaken [7].

Fig. 3 Interesting problems
in asynchronous design

Synthesis

Mining

Verification

Circuit
Specification

(Petri net)
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Solving this problem might contribute to improve some of the tasks in circuit
design and verification. For example, the discovered specifications might be used
to re-synthesise and improve the quality of the circuits. Compositional verification
might also benefit by substituting fragments of circuits with their mined specifica-
tions (potentially more abstract and simpler than the implementations).

In the area of mining, the recent work by Best and Devillers [1] may be extremely
useful since it may help to characterise those environments that preserve certain
properties (e.g. persistence) and can still be represented as a Petri net (e.g. a choice-
free net). We envision more progress in this direction in the next few years.

5 The Challenge

In the long journey to introduce asynchronous design in industry, we have realised
that most designers have an Electrical Engineering background, whereas Petri nets
have been mainly used by an academic community with a Computer Science
background. This creates a cultural gap that makes the adoption of this technology
difficult, if not impossible in some cases.

The potential users of this technology are mostly familiar with finite-state
machines, waveforms, schematics and HDLs such as Verilog or VHDL. One of
the challenges for the future is to approach designers with a formalism that can
have the expressive power of Petri nets (or some subclass of them) while exposing a
friendly specification language similar to the formalisms typically used by electrical
engineers.

Along this direction, Waveform Transition Graphs (WTG) [6] have recently been
proposed as an alternative to STGs. In this formalism, the choice-free fragments of
the behaviour are represented as waveforms, which are objects very well known
by circuit designers. Additionally, concurrency and choice are mutually exclusive in
such a way that choices can only be made when the system has sequential behaviour.
Thus, the choice/join places mimic states of the system that glue the waveforms.

An example is shown in Fig. 4 where the left part represents an STG and the
right part represents a WTG. The dotted arc in the STG is required to sacrifice some
performance and prevent concurrency during the choice represented by s0 in the
WTG.

Petri nets have played a remarkable role in concurrent hardware and their
computational model will prevail in the future. It is now time for academia to create
bridges for engineers that enable a broader adoption of Petri nets so that the footprint
of Carl Adam Petri’s legacy becomes deeper in this area.

Long live Petri nets!
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Fig. 4 STG (left) and WTG (right)
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Living Lattices

Alex Yakovlev

Once upon a time there were lattices. They were nice,
diamond-like, but they were too big, cumbersome and
immobile . . . Then came Petri nets to capture them and to give
them life! (from a hypothetical book “The Future Origin of
Species”)

1 Prologue

In the third year of our university life we were gradually being absorbed into
research activities in our department (Department of Computer Engineering,
Leningrad Electrical Engineering Institute, aka LETI—now called St. Petersburg
State Electrotechnical University). That was a usual thing in the USSR, for students
planning to continue their studies for a doctorate to get involved in research a
few years before graduation. I went along to explore ideas of microcomputer
implementation of finite automata defined in tabular form, with applications to
numerical control of industrial machines. One of my classmates went to study
formal modelling of operating systems. He once showed me the Russian translation
of a book by D.C. Tsichritzis and P.A. Bernstein, Operating Systems, which had an
appendix on Petri nets. My friend and I spent a few hours playing with Petri nets
describing semaphores. That was 1976 and that was probably the first time I touched
this wonderful mathematical object. From the very start it fascinated me with the
ease with which one could start playing with a mathematical model. The strange
impact that Petri nets had on me from the very beginning was that the model was
very unconventional, compared to all previous maths I had studied before. Graphs
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even with different types of vertices were too static. Finite automata, or state
machines, were more dynamic but they always had one state at a time. Computer
programs were “too syntactic”, much like formal languages and grammars. The
awe and charm of Petri nets was that they seemed to be free from all these
limitations!

But then, with my greater involvement with numerical control and the arrival
of microprocessors, which quickly occupied my interests (come on, I was able
to play with one of the first USSR microcomputers Elektronika NC-3!), I some-
how stopped thinking about Petri nets, for a few more years . . . little did I
know!

The next thing I remember well was that I was joining Victor Varshavsky’s
group as a Ph.D. student. One of the few starting pieces of reading recom-
mended by Varshavsky was R.M. Karp and R.E. Miller’s “Parallel Programs
Schemata” (Journal of Computer and Systems Sciences, 1969) in Russian trans-
lation. That wasn’t an easy read for someone who was trained as an electronic
and computer engineer. But that paper opened my eyes to formal models to
describe parallel computing. I remember some combinations of terms such as
“parallel sequencing” (!) I learned from that paper. Why Varshavsky asked me
to read that paper I understood a bit later, when I delved into the world of
asynchronous automata, or better to say Aperiodic Automata (this term was born
in Varshavsky’s group). These automata were quite different from the classical
state machines that we studied at the university. Aperiodic automata were very
much like parallel programs. My subsequent studies took me through the world
of speed-independent circuits, invented by David Muller. I read about Muller’s
theory and such things as a C-element, semi-modularity and many other puzzling
objects and properties from the wonderful book by R.E. Miller “Sequential Circuit
Theory”, volume 2. The famous chapter 10 in that book was a real marvel—
it talked about the particular type of logic circuits that could coordinate their
switching behaviour in time by themselves—without a clock! The circuits mys-
teriously passed the signal transitions from one element to another, sometimes
forking switching threads in parallel and then joining them. The state graphs
that described them looked quite peculiar. Their shapes had lots of diamond-
like rectangles, where signals firing in parallel were in some form of interleav-
ing.
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Victor Varshavsky with members of his group at our reunion in Eilat, Israel, in 2000; left to right:
Alex Kondratyev, Alexander Taubin, Michael Kishinevsky, Victor Varshavsky, Alex Yakovlev (me)
and Maria Yakovlev (my wife)

These shapes, as Muller proved, had the properties of lattices, and what was most
interesting, he showed the link between the correct operation, i.e. independence
of the behaviour of the actual values of gate delays (similar to the absence of
hazards), and the classes of lattices. So, that way I learnt about semi-modular
(distributive) lattices and semi-modular (distributive) circuits. I think the most
influential paper by Muller for me was this one: D.E. Muller and W.S. Bartky, “A
theory of asynchronous circuits”, Annals of the Computation Laboratory of Harvard
University vol. 29, Harvard University Press, 1959, pp. 204–243. I recommend it to
anyone who really wants to understand fundamental links between mathematical
models of concurrency (similar to Petri nets in spirit) and physical behaviour of
digital circuits.

2 On Handling Complexity

One important aspect of modelling concurrency concerned the question of how
to represent concurrency. In my early attempts to represent concurrency in asyn-
chronous circuits I used the so-called Muller Diagrams, which were basically state
graphs (or as people usually call them now Labelled Transition Systems). States
were labelled with Boolean vectors corresponding to the values of circuit signals and
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Fig. 1 Muller diagram (a) and corresponding signal graph (b)

transitions were labelled by signal changes (see Fig. 1a). I spent days modelling and
synthesising circuits, such as bus interface controllers, say UNIBUS, using Muller
diagrams. The difficulty was that with the number of signals becoming greater,
the number of states could grow exponentially—so even producing a specification
was a challenge. At the same time, another less formal notation was also in use
amongst electronic engineers—that was Timing Diagrams, or waveforms, in which
signal transitions—from 0 to 1 and back—were connected by arrows, representing
causal relationships. At some point, my other PhD advisor, Leonid Rosenblum,
suggested to me to use a similar causal representation to capture the behaviour
of asynchronous circuits. That gave rise to the so-called Signal Graphs (see Fig.
1b), which could be made equivalent to Muller Diagrams, provided that certain
semantical conventions were followed. Basically, the path from Signal Graphs
to Muller Diagrams was facilitated via a token game that was adopted from the
reachable state construction for Petri nets. At first, we used only a subclass of Petri
nets called Marked Graphs (which contained only causality and concurrency but
no choice). Using Signal Graphs made my life with circuit design a lot easier and
that’s what I called “Rosenblum’s magic”. With Signal Graphs I could achieve linear
complexity of the representation of the specification of a circuit with many signals—
the exponential size was hidden! The other nice feature of this notation was that the
concurrency and causality were captured by it in a true form (not via an interleaving
of states).

Leonid Rosenblum was the first in the USSR who used Petri nets to describe
asynchronous circuits (called Aperiodic Automata in Varshavsky’s group, as men-
tioned above)—it was around 1975. Sometime later, in mid-1980s, he wrote a
very important article for “Tekhnicheskaya Kibernetika” (Engineering Cybernetics)



Living Lattices 237

of the USSR Academy of Science. It was a comprehensive literature survey
on Petri nets. At that time, besides the work of Vadim Kotov and his team at
Novosibirsk nobody else in the USSR wrote much on Petri nets. Rosenblum’s
paper was a tremendous success and made a great impact on young researchers.
It opened up a wealth of interesting research problems, not only in Petri net
theory but also in its applications, to many people in various Soviet research
centres. Naturally, for me this was a way to explore in terms of using them in
digital circuit design and connecting them with models like Muller Diagrams
and Lattices. In particular, the behaviour of Petri nets could be treated in the
same way as that of asynchronous circuits. Namely, a Petri net produced a
Reachable State Graph, which could be unfolded into a Cumulative State Graph,
in which (cumulative) states were Parikh vectors (built on transition counts) rather
than markings. So, I asked myself questions such as what classes of Petri nets
corresponded to distributive lattices and to semi-modular lattices on those Parikh
vectors? Later, I found an answer to the first question: Safe-Persistent nets, or
Marked Graphs, to which Safe-Persistent nets could be unfolded. The second
question was however a bit trickier. Why? The answer was in learning how to
capture OR-causality!

Leonid Rosenblum, who introduced Petri nets into asynchronous circuit modelling and popularised
Petri nets in the USSR in the 1970s and 1980s

Meanwhile, the important lesson learnt form that study was that true causal
representations could make the modelling more compact and natural, and could find
a much shorter road to the minds of practical engineers.
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Here, I cannot help mentioning the following. Today, we have a much more
comprehensive understanding of the relationship between state-based models (e.g.
labelled transition systems) and event-based models such as different types of Petri
nets—thanks to the theory of regions, whose pioneers include Andrzej Ehrenfeucht,
Grzegorz Rozenberg, Eric Badouel, Luca Bernardinello, Philippe Darondeau and
several other members of the Petri Nets community. The theory of regions underpins
many developments in various prolific application areas such as process mining,
visualisation and asynchronous circuit synthesis. Tools such as Petrify, developed
by Jordi Cortadella, help to automate these steps.

3 On AND and OR Causality

I first studied Signal Graphs at the level of Marked Graphs. The two papers that
had most effect on me then were: F. Commoner, A.W. Holt, S. Even and A.
Pnueli, “Marked Directed Graphs” (Journal of Computer and Systems Sciences,
1971) and J.R. Jump and P.S. Thiagarajan “On the interconnection of asynchronous
control structures” (Journal of the ACM, 1975). I would also highly recommend
them to anyone who wants to understand the way of causality and concurrency
in discrete event systems. One important aspect of this class of models was that
the causality was in its strong aspect, e.g. if an event C had two causes A and
B, then it was imperative for both of them to have happened before C was
enabled. At some point, I realised that in my Muller Diagrams I could also model
another form of causality, which I called weak or OR-causality, which was also
sometimes associated with the so-called inclusive OR element in logic. In the OR
causal case, the above-mentioned event C would be caused by A or B, whichever
comes first. This behaviour was still within the class of semi-modular circuits,
captured by the Parikh (cumulative state) vector graph as a semi-modular lattice.
My colleagues Michael Kishinevsky, Alexander Taubin and Alex Kondratyev, in
order to capture semimodular behaviour, invented their own event-based model
called Change Diagrams. It basically coincided with Marked Graphs in the class of
distributive lattices, but to handle OR causality it required a special type of dashed
(weak-causality) arcs and some other ‘tricks’ (e.g. negative marking). I preferred to
stay within Petri nets as I eventually found how to represent OR causality in them—
I just needed to employ non-1-safe Petri nets, so from the practical point of view the
problem was solved. The theoretical problem, however, was about finding the exact
class of Petri nets that would correspond to Change Diagrams. It remained open
until about 1996 when I published a paper “On the models for asynchronous circuit
behaviour with OR causality” with M. Kishinevsky, A. Kondratyev, L. Lavagno
and M. Pietkiewicz-Koutny in Formal Methods in System Design, 1996. This paper
proved (using languages generated by the models and an observation equivalence
notion) that within finite Petri nets we could not capture some behaviours of Change
Diagrams. On the other hand Change Diagrams could not model processes with non-
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determinism and conflicts. As a result a new model, called Causal Logic Nets, was
proposed in that paper.

As it happened in the early 1990s, after I came to England, for me there was no
alternative but to start calling our Signal Graph model a Signal Transition Graph, or
STG for short. STGs in this nomenclature were proposed by Tam-Anh Chu (a Ph.D.
student of Jack Dennis at MIT), who published his first paper on STGs “A design
methodology for concurrent VLSI systems” in ICCD-85 in October 1985, while our
paper with Leonid Rosenblum “Signal Graphs: from Self-Timed to Timed Ones”
was published in the Workshop on Timed Petri Nets in July 1985. Incidentally, Chu,
in his work, limited the class of STGs for which he developed his circuit synthesis
method to the so-called persistent STGs. I felt that was an unnecessary limitation
(see below).

Meanwhile an important lesson learnt from this study was that there was an
important link between the algebraic structure of the state semantics of a concurrent
system and the “causal fabric” of the system, which ultimately reflected the
functionality (use of AND and OR logic). It is also worth mentioning that the
properties of distributivity and semi-modularity, closely connected with the use of
only AND causality and AND-plus-OR causality respectively, were also linked with
the idea of extendibility of the concurrency relation. As shown in our paper “A look
at concurrency semantics through lattice glasses”, published in the Bulletin of the
EATCS in 1989, the class of distributive behaviours allowed the generalisation of the
relation of concurrency between a set of N events from being pairwise concurrent
to being N-way concurrent. This showed a way to distinguish between the notion
of independence between events or actions and their parallelism in execution. The
latter was connected with the availability of sufficient resources to run them in
parallel.

4 On Persistence

Persistence is an interesting property of Petri nets. It refers to the behaviour of a net
in which an enabled transition cannot be disabled by another transition’s firing. This
property has an inherent analogy with the property of semi-modularity in Muller’s
asynchronous circuits, where a gate if excited cannot be disabled from firing by
the fact that one of its inputs (concurrently excited) changes its state. This sort
of persistence was natural to me and clearly separated good behaviour from bad.
Tam-Anh Chu defined another notion of persistence (specific to an STG) that had
nothing to do with the persistence of the Petri net (any of its transitions) underlying
the STG model under consideration. Instead, what Chu called the violation of
persistence was the following. Suppose a transition a+ causes a transition b+.
Suppose a+ also causes another transition c+ immediately followed by a−, in
which case b+ can be concurrent with a−. This sort of effect my colleagues
and I used to call “takeover”. Takeover has a certain influence on the way logic
circuits are derived and the fact that they normally require the use of OR gates
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for positively switching logic. However, for some reason Chu required that STGs
had to be persistent in this sense. This condition was a limitation which was not
necessary for deriving a logic implementation from the STG. Methodologically,
though, it reflected an interesting discrepancy between the way concurrency and
causality was perceived at the level of the behavioural graph specification (Petri net,
STG) and how it was perceived at the circuit level. Again, deeper understanding
of the semantics of Petri nets as a model of a system by itself, its interpretation in
terms of the STG, as well as the relationship between these semantics, was very
important. My papers “On limitations and extensions of STG model for designing
asynchronous control circuits” (ICCD 1992) and “A unified signal transition graph
model for asynchronous control circuit synthesis” (with Lavagno and Sangiovanni-
Vincentelli at ICCAD-92, which in full appeared in Formal Methods in System
Design, 1996) resolved this and a few other important modelling discrepancies with
significant impact on practical asynchronous design, including a characterisation of
the classes of delay-insensitive circuits due to Jan-Tijmen Udding in terms of STG
classes.

Basically, an important lesson was learnt from the study of persistence: one had
to pay attention to the details of models and their semantical interpretations. In the
last few years thanks to the efforts of Eike Best and other colleagues, theoretical
interest in capturing persistent behaviours has increased and produced interesting
papers in Petri net synthesis.

5 Epilogue

Many other exciting avenues concerning ways to represent concurrency in a
compact form were explored (e.g. Petri net unfoldings) and it is only due to space
limitations that they are omitted here.

I would like to finish this essay by saying how much effect the event of meeting
with Carl Adam Petri in person for the first and last time in my life had on
me. It was in June 2005, at the 26th Conference on Petri nets in Miami, where
Petri gave a keynote lecture. His lecture contained very interesting links between
information theory and physics. Namely, what fascinated me was the notion of
information preservation in the course of information processing. Later I only
heard Petri’s lectures given by his associates, in particular, by Rudiger Valk (2008,
Xi’an). And they continued to intrigue me. With my increased interest in the last
10 years in studying ways to mathematically model energy flow, or what Oliver
Heaviside called “energy current”, in electronic circuits, everything seems to be
gradually connecting together. I am sure that Petri nets will be at centre of some
unification theories and practical applications linking information processing and
physics!

Finally, I would like to thank Professors Wolfgang Reisig and Grzegorz Rozen-
berg for inviting me to contribute to this collection. It’s a great honour and pleasure.
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Our recent book on modelling of concurrent processes using Petri nets (by L. Rosenblum, V.
Marakhovsky and me), published in Russian, Saint-Petersburg, 2014



The Road from Concurrency to Quantum
Logics

Luca Bernardinello and Lucia Pomello

In this contribution we revisit the influence that Carl Adam Petri has had, either
through personal interaction or through his work, on our research over almost 35
years.

Given the nature of the present volume, we will often refer to our personal
memories and experiences, and will use abbreviations (LP and LB) to refer to each
of us.

1 Carl Adam Petri in Milano

We had the luck to meet Carl Adam Petri several times, not only because LP
spent 10 months during her Ph.D. course at GMD when C. A. Petri was director
of the F1 institute in 1983/84, or because Carl Adam Petri often attended the
Petri Net Conferences as well as the advanced courses on PN, but also because
Petri visited the University of Milano in 1989 and in 1997, and the universities of
Milano and Milano-Bicocca in 2004, staying for quite a long period of time, giving
lectures and always being willing to meet and discuss with students and researchers.
In fact, in the 1970s Petri nets had been introduced at the Istituto di Cibernetica of
the University of Milano by the director Giovanni Degli Antoni, who was firmly
promoting net theory, stimulating people to do research on Petri nets, and invited
Carl Adam Petri, with whom he was very close.
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2 From Concurrent Programming to Petri Nets

During her Master’s thesis in Mathematics at the Istituto di Cibernetica, under
the supervision of Giorgio De Michelis and Carla Simone, LP learned about Petri
nets and afterwards, also together with Fiorella De Cindio, started to do research
in net theory. Since the group had a background in program semantics and in
languages for concurrent programming, we started by modeling with Predicate
Transition Nets both Hoare’s Communicating Sequential Processes and Milner’s
Calculus of Communicating Systems. In contrast to the interleaving semantics, we
proposed models in which any sequential process is described by a state machine
and the whole CSP program/CCS system is obtained by superposing the nets
modeling the different sequential processes on the basis of the specification of a
synchronic distance zero between corresponding transitions. As a natural result
of this research a subclass of Petri nets, called Superposed Automata nets, was
introduced. Superposed Automata nets are indeed obtained by considering systems
to be composed of autonomous sequential components interacting with one another,
where the interactions are modeled by the identification of transitions.

Inspired by Petri’s proposal to use nets to model organizational systems and in
particular the information flow among the different system components, this class
of nets was proposed, with success, to model different aspects of organizational
systems in the context of negotiation of organizational changes. Thanks also to the
simplicity of the net language, the different actors involved in the changes were even
able to construct the model and to discuss within the model itself aspects such as the
impact of the proposed change, e.g., the degree of autonomy of a system component
on the basis of the locality of the solution of net conflicts.

The study of Milner’s approach, and in particular his proposal of observational
equivalence as supporting organizational abstraction on the basis of which a
sequential component can be substituted by the composition of different interacting
subcomponents without changing its behavior, led us to introduce, also in the frame-
work of net theory, observational equivalences as a tool to verify the correctness of
each step in the model construction process.

3 A Whole Afternoon with Carl Adam Petri

When, during my stay at GMD, I (LP) gave a talk on my work on equivalence
notions for concurrent systems modeled by nets, Carl Adam Petri, with great
patience and generosity, spent a whole afternoon till late evening complaining about
my use of event labeled nets, where different events, with different extensionality,
could be labeled by the same observable action name. I tried, without success, to
explain the intuition on organizational abstraction and to justify the presence of
transitions with the same label.
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During that afternoon, Petri explained to me a lot of different aspects of
net theory, suggesting that I should take more deeply into account not only the
extensionality principle, but also the duality events-conditions, the non-sequential
processes as behavioral models with their basic relations of causal independence
and causal dependence, the notions of morphisms between nets, . . .

Taking into account these suggestions, and also encouraged by Eike Best and
César Fernández, the various considered equivalence notions have been defined also
on partial order semantics on the basis of non-sequential processes.

This led to a contribution to the controversy, which was taking place in those
years, between interleaving and true concurrency semantics. On the basis of a
simple example, we pointed out that interleaving semantics strongly depend on
the axiom of action atomicity. This in turn led to an investigation of refinement-
preserving equivalence notions based on partial orders.

Concerning the duality events-conditions, the notion of observability has been
applied also to conditions. In this way, it is possible to abstract, through the
corresponding introduced equivalence relations, from the level of action description
and instead to preserve the transformations of the observable local states.

4 Local Structures: LST Algebras, Regions

One of the recurrent themes in our research, and one where the influence of Petri
is crucial, is the search for “local” structures in models of distributed or concurrent
systems. This search has taken several shapes over time.

In particular, around the 1990s, in collaboration with Carla Simone, in order to
capture the locality of system evolution, the system state space was characterized by
a relational algebraic structure, called a Local State Transformation (LST) algebra,
in which both global and local states as well as local state transformations are
explicitly taken into account.

A class of injective morphisms between such algebras was introduced, allowing
the comparison of system models at different levels of abstraction of the action
description, together with a notion of state observability and of preorder and
equivalence based on state observability.

A different way of looking at relations between local elements of a model relies
on the notion of a region of a transition system, and on the corresponding duality
between global states and local properties of a system.

In 1989, Grzegorz Rozenberg visited Milano and Mantova on two occasions,
introducing, in a couple of talks, 2-structures and regions; in 1990 a series of
papers on the subject, by Rozenberg and Andrzej Ehrenfeucht, appeared in Acta
Informatica.

Although 2-structures were introduced as a very general kind of mathematical
object, we immediately became interested in the use of regions as the key to solving
the synthesis problem for Petri nets: given a transition system, decide whether there
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exists a net of conditions and events such that its case graph is isomorphic to the
given transition system.

We started working on this subject, and the first result was a proof that minimal
regions (minimal with respect to set inclusion) are sufficient to solve the synthesis
problem.

This result prompted us to look more deeply into the structure of the family of
regions of a transition system. In the same period, LB and Giorgio De Michelis met,
in Leiden, Eric Badouel and Philippe Darondeau, who were working on the notion of
region, in relation to trace languages and trace nets. During that meeting, the idea of
a new class of regions, corresponding to places in PT-nets, started to take shape, and,
not surprisingly, proved to be closely related to the notion of weighted synchronic
distance, which Petri and others had introduced with the idea of measuring the
degree of independence between transitions.

Our work on regions proceeded since then along two paths. On one hand,
following the major results obtained by Badouel and Darondeau on the complexity
of the synthesis problem, and on the notion of type of nets, defined as a transition
system describing the possible states, and state changes, of a single “place”, leading
to a very general notion of local state.

On the other hand, we showed, working with Carlo Ferigato, that elementary
regions, partially ordered by set inclusion, form an algebraic structure known as
an orthomodular poset, quantum logic, or partial Boolean algebra. The link with
quantum logics prompts one to reflect on Petri’s original claim that the conceptual
basis of his theory was constructed with a clear reference to modern physics.

It is interesting to note that the family of regions of a single sequential component
is a Boolean algebra, while the presence of concurrency disrupts the global
Boolean character, producing a family of partially overlapping Boolean subalgebras
corresponding to sequential components. This observation leads us to conjecture
that the proper logic for distributed systems should not be classical.

5 Morphisms and Composition of System Models

In General Net Theory (1977), Petri states that concepts and results of the theory
are transformed into “concepts and results on higher (and lower) levels of system
description, by means of certain kinds of net-mapping,” (morphisms).

We have introduced abstraction and composition notions based on morphisms
between elementary system models, which preserve the logic and algebraic structure
of the system’s local properties.

Through a morphism, a model can be seen as the refinement of a more abstract
one, where some regions/conditions are refined by some others, which are contained
in set terms, and imply the more abstract ones in logical terms. Two different
refinements of the same abstract model can therefore be composed by identifying
those conditions representing the same observable property in the two different
models. The result is a new model comprising the details of both operands and
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indeed such that there are morphisms into the result from both the operands and the
abstract starting model.

The intuition underlying this morphism-based composition is again due to
the duality conditions-events applied to the extensionality principle, where any
condition is completely specified by the events changing its truth value: its pre-
and post-events. Thus, the composition of two different elementary net models
containing the same condition is obtained by identifying not only that condition,
but also the events changing its value, and this is given to an appropriate pairwise
event superimposition.

6 Closure Operators Based on Concurrency

We have already noted that Petri has always referred to modern physics as a source
of inspiration for his theory of information flow. We believe that the tightest link
is that with relativity theory. The relativity of simultaneity, and the corresponding
notion of space-like relation between events, have a direct correspondence in Petri
nets.

We started looking at occurrence nets as a discretization of relativistic space-
time, focusing on some properties of the concurrency relation.

Our starting point was a well-known result of lattice theory: given a symmetric
and irreflexive binary relation on a given set, one can define a closure operator so that
the corresponding closed sets form a complete lattice with an orthocomplement. It
turned out that this lattice, in the case of the concurrency relation in occurrence nets,
is orthomodular. This gives the discrete counterpart of a series of results obtained
by several authors on continuous Minkowski spacetime. In our case, the closed sets
can be seen as “causally closed” subprocesses, and the orthocomplement of a closed
set as the maximal independent subprocess.

To illustrate this, we consider an example frequently used by Petri, and shown
in Fig. 1 (taken from C.A. Petri, Concurrency, in LNCS 84, Springer, 1980). The
figure shows a Condition/Event net system, a portion of its unfolding, and the
corresponding concurrency relations. Figure 2 shows a portion of the infinite lattice
of closed sets of the unfolding.

Going further along this direction, we proved that the orthomodularity of the
lattice holds for a wider class of posets, namely for N-dense posets. Further
interesting properties of the lattice of closed sets turn out to depend on K-density of
the occurrence net. In particular, in K-dense nets, any line, which can be interpreted
as a worldline, crosses either a given closed set or its orthocomplement.

Also in this case, like for regions, concurrency makes the overall structure non-
Boolean.



248 L. Bernardinello and L. Pomello

b)a)

c)

d)

Fig. 1 From C.A. Petri, Concurrency, 1980. (a) A Condition-Event-System. (b) The concurrency
structure of the system (a). (c) Section of the cycle-free occurrence net of the System (a). (d) The
concurrency structure of (c)

Fig. 2 The lattice of closed sets of the occurrence net in Fig. 1c

7 Teaching with Petri’s Examples

Besides their major role in our research, for us Petri nets are also an effective tool
in teaching. We believe that their effectiveness comes from the combination of a
simple conceptual basis (the ideas of local states, local changes of states, and clear
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representation of fundamental situations, such as causal dependence, conflict, and
independence), together with a rigorous formal apparatus (and the rich theory that
comes with it), and the graphical representation. This allows one to present several
concepts in a gradual way, from simple and intuitive examples to more elaborate
formal results.

When explaining to the students the difference between synchronous, asyn-
chronous, and alternating events we always find very useful and impressive the
following simple examples Petri often used during his lectures. A pair of asyn-
chronous events is two hands slapping together (in parallel) on the table: if we do it
in slow motion we can perceive that one is slapping before the other, and if we repeat
it twice, or even more times, between two subsequent slaps on the table of the same
hand it is possible to register zero, one, or even two, but no more than two, slaps
of the other hand. That means that their synchronic distance is two and that they
are concurrent. Only if we deliberately alternate the slap of the left with the slap
of the right hand, then we can register exactly one slap of one hand between two
subsequent slaps of the other one: their synchronic distance is one and indeed there
is a causal dependence between the two different alternating events. An example of
synchronous events is given instead by two hands clapping each other. The clap of
the left hand synchronizes with the clap of the right one: their synchronic distance
is zero, no clap of one hand is possible without the other one, they are just one
unique event. These examples are really illuminating, the students appreciate them
very much and like modeling the different situations with Petri nets.
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