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Abstract. Given an undirected rooted graph, a cycle containing the
root vertex is called a rooted cycle. We study the combinatorial duality
between vertex-covers of rooted-cycles, which generalize classical vertex-
covers, and packing of disjoint rooted cycles, where two rooted cycles
are vertex-disjoint if their only common vertex is the root node. We
use Menger’s theorem to provide a characterization of all rooted graphs
such that the maximum number of vertex-disjoint rooted cycles equals
the minimum size of a subset of non-root vertices intersecting all rooted
cycles, for all subgraphs.
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1 Introduction

Throughout G = (V,E) is a simple undirected graph. The minimum vertex-cover
problem amounts to find a vertex-cover (that is, a set T ⊆ V so that every edge
of G has at least one vertex in T ) minimizing |T |. This is a very well studied
NP-hard problem, equivalent to finding a maximum stable set (equivalently, the
complement of a vertex-cover, or a clique in the complementary graph) [6]. In
this paper, we introduce the minimum rooted-cycle cover problem which contains
the vertex-cover problem, and which is, given a root vertex r of G, to remove a
minimum size subset of V \ {r} so that r is contained in no cycle anymore. The
minimum vertex-cover problem is the particular case where r is adjacent with
all other vertices.

If we are given a set of terminal vertices of G, with at least two vertices, the
minimum multi-terminal vertex-cut problem is to remove a minimum number
of vertices, so that no path connects two terminal vertices anymore, see [1,2].
The weighted version of the minimum rooted-cycle cover problem contains the
minimum multi-terminal vertex-cut problem which is the particular case where
the neighborhood N(r) of r is the set of terminal vertices with infinite weight.
In turn, if we replace r by |N(r)| terminal vertices t1, . . . , tk where N(r) =
{v1, . . . , vk} and link ti to vi, then we obtain an instance of the minimum multi-
terminal vertex-cut problem the solution of which is a solution for the original
instance of the minimum rooted cycle cover problem.
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Our main motivation to introduce the minimum rooted cycle cover problem
is that it allows us to give short proofs of some min-max theorems, such results
being fundamental in combinatorial optimization and linear programming [5].
Jost and Naves gave such results for the minimum multi-terminal vertex-cut
problem in an unpublished manuscript [2] (actually we found independently this
result).

The paper is organized as follows. In Sect. 2, we recall two classical theorems
and give formal definitions. In Sect. 3, we give a characterization of all rooted
graphs (G, r) so that the minimum number of non-root vertices intersecting all
rooted cycles equals the maximum number of rooted cycles having only the
root as common node, for all partial subgraphs. In Sect. 4, we revisit a result
by Jost and Naves [2] in terms of rooted cycles. (We found the equivalent result
independently.) This is a structural characterization in terms of excluded minors
of pseudo-bipartite rooted graphs, that is, rooted graphs satisfying the min-max
equality for all rooted minors.

2 Background

Let us recall two fundamental min-max theorems.
Given a graph, a matching is a subset of pairwise vertex-disjoint edges.

Kőnig’s Theorem [3]. Let G be a bipartite graph. The minimum size of a
vertex-cover of G is equal to the maximum size of a matching of G.

Take a graph G and fix distinct vertices s, t. A st-path of G is subset P ⊆ V
of vertices of G which can be ordered into a sequence s = v0, v1, . . . , vk = t
where vivi+1 is an edge of G. The vertices v0, vk are the extremities of P , the
other vertices are the internal vertices of P . Two st-paths P,Q are internally
vertex-disjoint if P ∩ Q = {s, t}. A subset D of vertices of G is an st-vertex cut
if neither s nor t belongs to D, and D intersects every st-path.

Menger’s Theorem [4]. Let G be a graph and let s and t be two nonadjacent
vertices of G. The minimum size of a st-vertex cut is equal to the maximum
number of internally vertex-disjoint st-paths.

A subset C ⊆ V containing r and so that C \ {r} is a path the extremities
of which are adjacent with r is called a rooted cycle of (G, r). Two rooted cycles
are internally vertex-disjoint if r is their only common vertex. A rooted-cycle
cover of (G, r) is a subset of T ⊆ V \ {r} of non-root vertices so that C ∩ T �= ∅
for all rooted cycle C. A rooted-cycle cover is minimum if |T | is minimum. A
rooted-cycle packing of (G, r) is a collection C1, . . . , Ck of rooted cycles so that
Ci ∩Cj = {r} for all distinct i, j = 1, . . . , k. A rooted-cycle packing is maximum
if k is maximum. Clearly the minimum of the cover is at least the maximum of
the packing.

We call G′ a subgraph of G if it is obtained from G by deleting vertices, and
G′ is a partial subgraph of G if it is obtained by deleting vertices and/or edges.
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3 Packing and Covering Rooted Cycles

The following consequence of Menger’s theorem is useful to characterize rooted
graphs for which the minimum equals the maximum.

Corollary 1. Let G be a graph with a vertex t and a subset S, of at least k
vertices, not containing t. If there are k internally vertex-disjoint vt-paths for
every v ∈ S, then there are k distinct vertices s1, . . . , sk of S, with sit-paths Pi

for each i = 1, . . . , k, so that t is the only vertex belonging both to distinct Pi, Pj.

Proof. Add a new vertex s to G and link it to every vertex in S. We only need
to prove that there are k internally vertex-disjoint st-paths. If it is not the case,
then, by Menger’s theorem, there is a st-vertex cut D of size |D| < k. Let
v ∈ S \ D. Clearly v is not adjacent with t. Thus D is a vt-vertex cut which
is impossible since (again by Menger’s theorem) there are k internally vertex-
disjoint vt-paths. ��

Let K4 be the complete graph on four vertices and r one of its vertices. The
rooted graph (Ĝ, r) is a subdivision of (K4, r) if it is obtained from (K4, r) by
inserting vertices in edges. Note that in any such subdivision, the vertex r has
degree three. A rooted partial subgraph of (G, r) is a rooted graph (G′, r) where
G′ is a partial subgraph of G.

Theorem 1. The minimum size of a subset of non-root vertices intersecting all
rooted cycles is equal to the maximum number of internally vertex-disjoint rooted
cycles, for all partial rooted subgraphs of (G, r), if and only if no partial rooted
subgraph of (G, r) is a subdivision of (K4, r).

Proof. (⇒) It suffices to see that, for any subdivision of (K4, r), any two rooted
cycles must have a non-root vertex in common while any rooted cycle cover
needs at least two non-root vertices.
(⇐) Let (G, r) be a minimum graph, that is, with a minimum number of edges,
such that the minimum rooted cycle cover is strictly greater than the maximum
packing of rooted cycles. Minimality implies that G has no vertices of degree < 3.
It follows that the graph G − r obtained from G by removing r has a cycle C
with at least three distinct vertices s1, s2, s3 (since G is a simple graph). Hence,
by Corollary 1, it suffices to prove (1) below, since it implies that there are three
internally vertex-disjoint sir-paths which form with C a subdivision of (K4, r).

There are three internally vertex-disjoint vr -paths for every vertex v ∈ V \ {r} (1)

Assume that (1) is not true, and let v be a counter-example. Remark that, for
any vertex s nonadjacent with r, the minimality of G implies that no sr-vertex
cut is a clique, in particular, it has at least two vertices (indeed otherwise v
belongs to no inclusion wise minimal rooted cycle). Furthermore, no vertex-cut
has only one vertex. We build a graph Ĝ from G as follows:
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(a): If v is nonadjacent with r, then (by Menger’s theorem) there is a vr-vertex
cut with size 2, say D = {u,w}. Let V ′ � v be the subset of vertices in the
component, containing v, of the graph obtained from G by removing D. We
let Ĝ be the graph obtained by removing V ′ and adding the edge e = uw.

(b): If v is adjacent with r, then, in the graph G − vr (obtained from G by
removing the edge vr), there is a vr-vertex cut D = {u}. Let V ′ � v be the
subset of vertices in the component, containing v, of the graph obtained by
removing u from G − vr. We let Ĝ be the graph obtained by removing V ′

and adding the edge e = ur.

Observe now, that if there are ν vertex-disjoint rooted cycles in Ĝ, then there
are also ν vertex-disjoint rooted cycles in G. Indeed, if some rooted cycle of Ĝ
contains the additional edge e, then e can be replaced by a path of G with all
internal vertices in V ′. Moreover, if there are τ vertices intersecting every rooted
cycles of Ĝ, then these τ vertices intersect also every rooted cycles of G. We have
a contradiction, since the minimality of G implies τ = ν. ��

Finally, since series-parallel graphs are those with no minor K4, one has:

Corollary 2. Given a graph G, the minimum rooted cycle cover equals the max-
imum rooted cycle packing, for all partial subgraphs and every choice of a root
r, if and only if G is series-parallel.

4 Pseudo-bipartite Rooted Graphs

The closed neighborhood of r is the set of N [r] = N(r) ∪ {r}.
A rooted graph is pseudo-bipartite if it is obtained from a bipartite graph

(V1, V2;E) by creating a root vertex linked to every vertex of V1 ∪ V2, and then,
by replacing some original edges uv ∈ E by any graph Guv, on new vertices,
with edges between some new vertices and u (or v), more precisely:

Definition 1. A rooted graph (G, r) is pseudo-bipartite if

(a) The subgraph G[N(r)] induced by the neighbors of r is a bipartite graph GB;
(b) There is a bipartition of GB, so that every component of the graph G\N [r],

that we obtain if we remove the closed neighborhood of r, has at most one
neighbour in each side of GB .

Contracting a vertex v is to delete v, and to add edges so that its neighborhood
N(v) forms a clique. A rooted minor of (G, r) is a rooted graph (Ĝ, r) obtained
from (G, r) by deleting vertices different from r, or by contracting vertices v ∈
V \ N [r] outside the closed neighborhood of the root.

An odd wheel is a graph composed of an odd cycle together with one vertex,
called the center of the wheel, to which all the vertices of the odd cycle are
linked. A rooted odd wheel is a rooted graph (G, r) so that G is an odd wheel the
center of which is the root r.
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Theorem 2 [2]. A rooted graph (G, r) is pseudo-bipartite if and only if it has
no rooted minor which is a rooted odd wheel.

Proof. Necessity holds since G[N(r)] = GB has no odd cycle and since every edge
which appears in G[N(r)] by contracting some vertex outside N [r] necessarily
links two vertices in different side of the bipartition of GB .

To see sufficiency, suppose that no rooted-minor of (G, r) is a rooted odd-
wheel. Condition (a) of Definition 1 is indeed satisfied since deleting all vertices
but those of an odd cycle in the neighborhood of r leaves a rooted odd wheel.
Assume that condition (b) is not satisfied. Let U1, . . . , Up be the components of
the graph obtained by removing r and all its neighbors. If Ui has at least three
neighbors x, y, z (in GB), then contracting all the vertices in Ui and deleting all
vertices but x, y, z (and r) leaves (K4, r) which is a rooted odd wheel. It follows
that Ui has at most two neighbors. Chose a bipartition V1, V2 of GB so that
the number of components U1, . . . , Up having two neighbors in the same side is
minimum. There is a component Ui with two neighbors x, y in the same side, say
x, y ∈ V1 (otherwise the proof is done). Let V x

1 (resp. V x
2 ) be the set of vertices

in V1 (resp. in V2) reachable, from x, by a path of GB . Similarly, define V y
1

and V y
2 . If either V x

1 ∩ V y
1 or V x

2 ∩ V y
2 is nonempty, then there exists a xy-path

P in GB . Yet contracting Ui and deleting all vertices but those of P (and r)
leaves a rooted odd wheel. It follows that V x

1 , V x
2 , V y

1 , V y
2 are pairwise disjoint,

and hence (V1 \ V x
1 ) ∪ V x

2 , (V2 \ V x
2 ) ∪ V x

1 is a possible bipartition for GB . The
way the bipartition V1, V2 was chosen implies that there is another component,
say Uj , with either one neighbor in V x

1 and the other in V y
2 , or one neighbor in

V y
1 and the other in V x

2 . Anyway, contracting both Ui and Uj creates an odd
cycle in the neighborhood of r. Now deleting the vertices outside this odd cycle
leaves a rooted odd wheel; contradiction. ��

Given a pseudo-bipartite rooted graph (G, r) with bipartite graph GB =
G[N(v)], we let Ĝ be the graph obtained by removing r from (G, r), and then by
creating two new vertices s and t, so that s is linked to every vertex of one side
of GB , and t is linked similarly to every vertex in the other side of GB . Observe
that:

A subsetP ⊆ V is a st-path of Ĝ if and only ifP \{s, t}∪{r} is a rooted cycle of (G, r).
(2)

Since (2) holds, Menger’s theorem implies that, for pseudo-bipartite rooted
graphs, the minimum rooted cycle cover equals the maximum rooted cycle
packing.

Observe, moreover, that for any rooted odd wheel with an odd cycle having
2k + 1 vertices, the minimum size of a cover is k + 1 while the maximum pack-
ing is k. It follows that Theorem 2 implies Corollary 3 below, which is also a
consequence of a result in [2] (namely Lemma 9).

Corollary 3 [2]. The minimum size of a subset of non-root vertices intersecting
all rooted cycles is equal to the maximum number of internally vertex-disjoint
rooted cycles, for all rooted minor of (G, r), if and only if no rooted minor of
(G, r) is a rooted odd wheel. ��
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Observe that, if every vertex is linked to r, then (G, r) is pseudo-bipartite if
and only if the graph induced by V \ {r} is bipartite. Hence by Theorem 2:

Remark 1. Corollary 3 contains Kőnig’s theorem as particular case.

Note also that recognizing if (G, r) is pseudo-bipartite or not, it suffices to
contract all vertices outside the closed neighborhood of r, to remove r, and to
check if the remaining graph is bipartite or not. So one has:

Remark 2. In can be checked in polynomial time if (G, r) is pseudo-bipartite
or not.
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