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Preface

This volume contains the regular papers presented at ISCO 2018, the 5th International
Symposium on Combinatorial Optimization, held in Marrakesh, Morocco during April
11–13, 2018. ISCO 2018 was preceded during April 9–10 by the Spring School on
“Advanced Mixed Integer Programming Formulation Techniques” given by Juan Pablo
Vielma and Joye Huchette (MIT, USA). ISCO is a new biennial symposium. The first
edition was held in Hammamet, Tunisia, in March 2010, the second in Athens, Greece,
in April 2012, the third in Lisbon, Portugal, in March 2014, and the fourth in Vietri Sul
Mare, Italy, in May 2016. The symposium aims to bring together researchers from all
the communities related to combinatorial optimization, including algorithms and
complexity, mathematical programming, operations research, stochastic optimization,
multi-objective optimization, graphs, and combinatorics. It is intended to be a forum for
presenting original research on all aspects of combinatorial optimization, ranging from
mathematical foundations and theory of algorithms to computational studies and
practical applications, and especially their intersections.

In response to the call for papers, ISCO 2018 received 75 regular submissions. Each
submission was reviewed by at least three Program Committee (PC) members with the
assistance of external reviewers. The submissions were judged on their originality and
technical quality and the PC had to discuss in length the reviews and make tough
decisions. As a result, the PC selected 35 regular papers to be presented in the sym-
posium giving an acceptance rate of 46% (69 short papers were also selected from both
regular and short submissions). Four eminent invited speakers, Friedrich Eisenbrand
(EPFL, Lausanne, Switzerland), Marica Fampa (Federal University of Rio de Janeiro,
Brazil), Bernard Gendron (University of Montreal, Canada), and Franz Rendl
(University of Klagenfurt, Graz, Austria), also gave talks at the symposium. The
revised versions of the accepted regular papers and extended abstracts of the invited
talks are included in this volume.

We would like to thank all the authors who submitted their work to ISCO 2018, and
the PC members and external reviewers for their excellent work. We would also like to
thank our invited speakers as well as the speakers of the Spring School for their
exciting lectures. They all much contributed to the quality of the symposium.

Finally, we would like to thank the Organizing Committee members for their
dedicated work in preparing this conference, and we gratefully acknowledge our
sponsoring institutions for their assistance and support.

May 2018 Jon Lee
A. Ridha Mahjoub
Giovanni Rinaldi

The original version of the book frontmatter was revised: The second editors’ affiliations
have been corrected. The correction to the book frontmatter is available at https://doi.org/
10.1007/978-3-319-96151-4_36

https://doi.org/10.1007/978-3-319-96151-4_36
https://doi.org/10.1007/978-3-319-96151-4_36
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Proximity Results and Faster Algorithms
for Integer Programming Using

the Steinitz Lemma

Friedrich Eisenbrand

EPFL, Lausanne, Switzerland
friedrich.eisenbrand@epfl.ch

We consider integer programming problems in standard form maxfcTx : Ax ¼
b; x� 0 ; x 2 Zng where A 2 Zm�n, b 2 Zm and c 2 Zn. We show that such an integer
program can be solved in time ðmdÞOðmÞ � jjbjj21, where d is an upper bound on each
absolute value of an entry in A. This improves upon the longstanding best bound of

Papadimitriou (1981) of ðm � dÞOðm2Þ, where in addition, the absolute values of the
entries of b also need to be bounded by d. Our result relies on a lemma of Steinitz
that states that a set of vectors in Rm that is contained in the unit ball of a norm and
that sum up to zero can be ordered such that all partial sums are of norm bounded by
m. We also use the Steinitz lemma to show that the ‘1-distance of an optimal integer
and fractional solution, also under the presence of upper bounds on the variables, is
bounded by m � ð2m � dþ 1Þm. Here d is again an upper bound on the absolute values
of the entries of A. The novel strength of our bound is that it is independent of n. We
provide evidence for the significance of our bound by applying it to general knapsack
problems where we obtain structural and algorithmic results that improve upon the
recent literature.



Challenges in MINLP: The Euclidean Steiner
Tree Problem in R

n

Marcia Fampa

Federal University of Rio de Janeiro, Brazil
fampa@cos.ufrj.br

The Euclidean Steiner Tree Problem (ESTP) is to find a network of minimum length
interconnecting p points in R

n, known as terminals. Such network may be represented
by a tree, where the nodes are given by the terminals, and possibly by additional points,
known as Steiner points. The length of the network is defined as the sum of the
Euclidean lengths of the edges in the tree. Without allowing Steiner points, the problem
is the easily solved Minimum Spanning Tree Problem, nevertheless, the possibility of
using Steiner points, makes its solution very difficult, particularly when n is greater
than 2.

An interesting feature about the ESTP is its history. It traces back to the 17th
century when the French mathematician Pierre de Fermat proposed a challenge where
three points were given in the plane, and the goal was to find a fourth point such that
the sum of its distance to the three given points was at minimum. The challenge was
solved with the works of Torricelli (1640), Cavalieri (1647) and Heinen (1834). Two
generalizations of Fermat’s challenge were later presented in the famous book “What is
mathematics?”, by Courant and Robbins (1941). The first is the problem of finding a
point such that the sum of its distance to p given points is at minimum, which was
introduced as the Fermat Problem. The second generalization is the ESTP.

The solution of Fermat’s challenge made it possible to identify important properties
satisfied by an optimal solution of the ESTP, a Steiner Minimal Tree (SMT). These
properties have been used in the construction of mathematical models and algorithms
for the problem. Maculan, Michelon and Xavier (2000) presented a mixed integer
nonlinear programming (MINLP) formulation for the ESTP. The formulation
(MMX) describes topologies of SMTs with linear constraints and binary variables,
which indicate the edges in the tree. The objective function of the model is a
non-convex function on the binary variables and also on continuous variables that
represent the position of the Steiner points. Even though a great improvement was
observed on the performance of global-optimization solvers in the last decade, the
results that we obtain when applying well known solvers, such as Scip and Couenne, to
MMX are frustrating.

In this work, we are interested in identifying characteristics of the ESTP that make
it such a great challenge for MINLP solvers. By identifiyng these characteristics, we
propose alternative formulations with the objective of modeling it as a convex problem,
strengthening the formulation with the development of valid inequalities, eliminating
isomorphic topologies present in the feasible set of MMX, and handling the
non-differentiability of the square root used in the computation of the Euclidean



distance. We finally note that these characteristics are also found in other optimization
problems, especially with geometric properties, and we use them not only to advance in
the numerical solution of the ESTP, but also to point directions for improvements on
MINLP solvers. Motivated by our smoothing strategy for the square root, for example,
a new feature was incorporated into Scip, for handling piecewise-smooth univariate
functions that are globally concave.

Challenges in MINLP: The Euclidean Steiner Tree Problem in R
n XV



Lagrangian Relaxations and Reformulations
for Network Design

Bernard Gendron

University of Montreal, Canada
bernard.gendron@cirrelt.ca

We consider a general network design model for which we compare theoretically
different Lagrangian relaxations. Fairly general assumptions on the model are pro-
posed, allowing us to generalize results obtained for special cases. The concepts are
illustrated on the fixed-charge multicommodity capacitated network design problem,
for which we present different Lagrangian relaxations: the well-known shortest path
relaxation (that decomposes by commodity) and knapsack relaxation (that decomposes
by arc), and new relaxations that decompose by node. Three such node-based relax-
ations are presented: the first one is based on a partial relaxation of the flow conser-
vation equations, the second one is based on the same relaxation, but also uses
Lagrangian decomposition (also called variable splitting), while the third one exploits
solely Lagrangian decomposition. We show that these three new relaxations define
Lagrangian duals that can improve upon the linear programming relaxation bounds,
contrary to the shortest path and knapsack relaxations, which provide the same lower
bound as the linear programming relaxation. Dantzig-Wolfe reformulations are derived
for each of these Lagrangian relaxations and bundle methods are proposed for solving
these reformulations. The different Lagrangian relaxations are also used as a basis for
developing Lagrangian matheuristics that solve restricted mixed-integer linear pro-
gramming models, including intensification and diversification mechanisms. Compu-
tational results on a large set of benchmark instances are presented, demonstrating that
the node-based Lagrangian relaxation bounds are significantly better than linear pro-
gramming relaxation bounds and that the Lagrangian matheuristics are competitive
with state-of-the-art heuristic methods for the fixed-charge multicommodity capacitated
network design problem.



Order Through Partition: A Semidefinite
Programming Approach

Franz Rendl

University of Klagenfurt, Graz, Austria
franz.rendl@aau.at

Ordering Problems on n objects involve pairwise comparison among all objects. This

typically requires
n
2

� �
decision variables.

In this talk we investigate the idea of partitioning the objects into k groups (k-
partition) and impose order only among the partition blocks.

We demonstrate the efficiency of this approach in connection with the bandwidth
minimization on graphs. We consider relaxations of the partition model with the fol-
lowing characteristics:

(1) The weakest model is formulated in the space of symmetric n�n matrices and
has the Hoffman-Wielandt theorem in combination with eigenvalue optimization as a
theoretical basis.

(2) We also consider semidefinite relaxations in the space of n�n matrices,
involving k semidefinite matrix variables. The idea here is to linearize the quadratic
terms using eigenvalue decompositions.

(3) Finally, the strongest model is formulated in the space of symmetric nk�nk
matrices. It is based on the standard reformulation-linearization idea.

We present theoretical results for these relaxations, and also some preliminary
computational experience in the context of bandwidth minimization.

Co-authors: Renata Sotirov (Tilburg, Netherlands) and Christian Truden
(Klagenfurt, Austria)



Contents

Cluster Editing with Vertex Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Faisal N. Abu-Khzam, Judith Egan, Serge Gaspers, Alexis Shaw,
and Peter Shaw

Compact MILP Formulations for the p-Center Problem . . . . . . . . . . . . . . . . 14
Zacharie Ales and Sourour Elloumi

The Next Release Problem: Complexity, Exact Algorithms
and Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

José Carlos Almeida Jr., Felipe de C. Pereira, Marina V. A. Reis,
and Breno Piva

Polytope Membership in High Dimension . . . . . . . . . . . . . . . . . . . . . . . . . 39
Evangelos Anagnostopoulos, Ioannis Z. Emiris,
and Vissarion Fisikopoulos

Graph Orientation with Splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Yuichi Asahiro, Jesper Jansson, Eiji Miyano, Hesam Nikpey,
and Hirotaka Ono

The Stop Number Minimization Problem: Complexity
and Polyhedral Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Mourad Baïou, Rafael Colares, and Hervé Kerivin

Maximum Concurrent Flow with Incomplete Data. . . . . . . . . . . . . . . . . . . . 77
Pierre-Olivier Bauguion, Claudia D’Ambrosio,
and Leo Liberti

Characterising Chordal Contact B0-VPG Graphs . . . . . . . . . . . . . . . . . . . . . 89
Flavia Bonomo, María Pía Mazzoleni, Mariano Leonardo Rean,
and Bernard Ries

Approximating the Caro-Wei Bound for Independent
Sets in Graph Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Graham Cormode, Jacques Dark, and Christian Konrad

The Minimum Rooted-Cycle Cover Problem . . . . . . . . . . . . . . . . . . . . . . . 115
D. Cornaz and Y. Magnouche

Online Firefighting on Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Pierre Coupechoux, Marc Demange, David Ellison,
and Bertrand Jouve



A Multigraph Formulation for the Generalized Minimum Spanning
Tree Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Ernando Gomes de Sousa, Rafael Castro de Andrade,
and Andréa Cynthia Santos

The Distance Polytope for the Vertex Coloring Problem . . . . . . . . . . . . . . . 144
Bruno Dias, Rosiane de Freitas, Nelson Maculan, and Javier Marenco

A PTAS for the Time-Invariant Incremental Knapsack Problem . . . . . . . . . . 157
Yuri Faenza and Igor Malinovic

On Bounded Pitch Inequalities for the Min-Knapsack Polytope. . . . . . . . . . . 170
Yuri Faenza, Igor Malinović, Monaldo Mastrolilli, and Ola Svensson

Efficient Algorithms for Measuring the Funnel-Likeness of DAGs . . . . . . . . 183
Marcelo Garlet Millani, Hendrik Molter, Rolf Niedermeier,
and Manuel Sorge

Jointly Optimizing Replica Placement, Requests Distribution and Server
Storage Capacity on Content Distribution Networks . . . . . . . . . . . . . . . . . . 196

Raquel Gerhardt, Tiago Neves, and Luis Rangel

An Exact Column Generation-Based Algorithm for Bi-objective
Vehicle Routing Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Estèle Glize, Nicolas Jozefowiez, and Sandra Ulrich Ngueveu

Multi-start Local Search Procedure for the Maximum Fire Risk Insured
Capital Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Maria Isabel Gomes, Lourdes B. Afonso, Nelson Chibeles-Martins,
and Joana M. Fradinho

A Branch-and-Bound Procedure for the Robust Cyclic Job Shop Problem . . . 228
Idir Hamaz, Laurent Houssin, and Sonia Cafieri

An Exact Algorithm for the Split-Demand One-Commodity
Pickup-and-delivery Travelling Salesman Problem. . . . . . . . . . . . . . . . . . . . 241

Hipólito Hernández-Pérez and Juan José Salazar-González

Descent with Mutations Applied to the Linear Ordering Problem . . . . . . . . . 253
Olivier Hudry

Characterization and Approximation of Strong General Dual Feasible
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Matthias Köppe and Jiawei Wang

Preemptively Guessing the Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Christian Konrad and Tigran Tonoyan

XX Contents



Improved Algorithms for k-Domination and Total k-Domination in Proper
Interval Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Nina Chiarelli, Tatiana Romina Hartinger, Valeria Alejandra Leoni,
Maria Inés Lopez Pujato, and Martin Milanič

A Heuristic for Maximising Energy Efficiency in an OFDMA System
Subject to QoS Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Adam N. Letchford, Qiang Ni, and Zhaoyu Zhong

An Integer Programming Approach to the Student-Project Allocation
Problem with Preferences over Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

David Manlove, Duncan Milne, and Sofiat Olaosebikan

Even Flying Cops Should Think Ahead . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Anders Martinsson, Florian Meier, Patrick Schnider,
and Angelika Steger

A Generalization of the Minimum Branch Vertices Spanning Tree Problem . . . 338
Massinissa Merabet, Jitamitra Desai, and Miklos Molnar

A Polyhedral View to Generalized Multiple Domination
and Limited Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

José Neto

Alternating Current Optimal Power Flow with Generator Selection . . . . . . . . 364
Esteban Salgado, Andrea Scozzari, Fabio Tardella,
and Leo Liberti

Parameterized Algorithms for Module Map Problems . . . . . . . . . . . . . . . . . 376
Frank Sommer and Christian Komusiewicz

2 CSPs All Are Approximable Within a Constant Differential Factor. . . . . . . 389
Jean-François Culus and Sophie Toulouse

Finding Minimum Stopping and Trapping Sets: An Integer Linear
Programming Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

Alvaro Velasquez, K. Subramani, and Steven L. Drager

Lovász-Schrijver PSD-Operator on Some Graph Classes Defined
by Clique Cutsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

Annegret Wagler

Correction to: Combinatorial Optimization . . . . . . . . . . . . . . . . . . . . . . . . . E1
Jon Lee, Giovanni Rinaldi, and A. Ridha Mahjoub

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

Contents XXI



Cluster Editing with Vertex Splitting

Faisal N. Abu-Khzam1,2(B), Judith Egan1, Serge Gaspers3,4, Alexis Shaw5(B),
and Peter Shaw6(B)

1 Charles Darwin University, Darwin, Australia
2 Lebanese American University, Beirut, Lebanon

faisal.abukhzam@lau.edu.lb
3 The University of New South Wales, Sydney, Australia

4 Data61, CSIRO, Sydney, Australia
5 Centre for Quantum Computation and Communication Technology,

Centre for Quantum Software and Information,
Faculty of Engineering and Information Technology,

University of Technology Sydney, Sydney, NSW, Australia
alexis.shaw@gmail.com

6 Massey University, Manawatu, New Zealand
p.shaw@massey.ac.nz

Abstract. In the Cluster Editing problem, a given graph is to be
transformed into a disjoint union of cliques via a minimum number of
edge editing operations. In this paper we introduce a new variant of
Cluster Editing whereby a vertex can be divided, or split, into two or
more vertices thus allowing a single vertex to belong to multiple clusters.
This new problem, Cluster Editing with Vertex Splitting, has
applications in finding correlation clusters in discrete data, including
graphs obtained from Biological Network analysis. We initiate the study
of this new problem and show that it is fixed-parameter tractable when
parameterized by the total number of vertex splitting and edge editing
operations. In particular we obtain a 4k(k + 1) vertex kernel for the
problem.

1 Introduction

Given a graph G and a non-negative integer k, the Cluster Editing problem
asks whether G can be turned into a disjoint union of cliques by a sequence of
at most k edge-editing operations. The problem is known to be NP-Complete
since the work of Křivánek and Morávek in [20], and does not seem to have any
reasonable polynomial-time approximation unless the number of clusters is at
most two [24].

We assume that the reader is familar with fixed-parameter tractability
and kernelization [9,12,16,22]. The Cluster Editing problem is fixed-parameter
tractable when parameterized by k, the total number of edge editing operations
[6,17]. Over the last decade, Cluster Editing has been well studied from both the-
oretical and practical perspectives (see, for example, [4,7,8,10,11,13,14,18,19]).

c© Springer International Publishing AG, part of Springer Nature 2018
J. Lee et al. (Eds.): ISCO 2018, LNCS 10856, pp. 1–13, 2018.
https://doi.org/10.1007/978-3-319-96151-4_1
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2 F. N. Abu-Khzam et al.

In general, clustering results in a partition of the input graph, thus it forces
each and every data element to be in one and only one cluster. This can be a lim-
itation when a data element plays roles in multiple clusters. This situation, (i.e.
the existence of hubs), is recorded in work on gene regulatory networks [1], where
enumeration of maximal cliques was considered a viable alternative to clustering.
Moreover, the existence of hubs can effectively hide clique-like structures and also
greatly increase the computational time required to obtain optimum correlation
clustering solutions [23,25]. Improved solutions (for correlation clustering) can
be obtained using the Multi-parameterized Cluster-Editing problem [2]
which further restricts the number of false positive and/or false negative corre-
lations (add and delete edge-edits incident to a vertex) that can be ascribed to a
given variable. However, the need to identify variables that lie in the intersection
of multiple clusters could further complicate this multi-parameterized model.

The Cluster Editing with Vertex Splitting problem (CEVS) is intro-
duced in this paper in an attempt to allow for overlapping clusters in graphs that
are assumed to be noisy in the sense that edges are assumed to have been per-
turbed after the clusters overlap. CEVS can be viewed as an extended version
of the Cluster Editing problem.

In addition to introducing CEVS, we investigate its parameterized complex-
ity and obtain a polynomial kernel for the problem. In doing so we employ the
notion of a critical clique, as introduced in [21], and applied to the Cluster
Editing problem in [18]. Our proof technique is based on a novel clean edit
sequence approach which could be of interest by itself.

This paper is structured as follows. Section 2 overviews some background
material. Section 3 introduces the edit sequence approach while Sect. 4 is devoted
to critical cliques. In Sect. 5 we obtain a quadratic kernel. We conclude in Sect. 6
with a summary and future directions.

2 Preliminaries

We assume familiarity with basic graph theoretic terminology. All graphs in
this work are simple, unweighted and undirected. The vertex and edge sets of a
graph G are denoted by V (G) and E(G) respectively. For a subset V ′ of V (G),
we denote by G[V ′] the subgraph of G that is induced by V ′.

A kernelization or kernel for a parameterized problem P is a polynomial time
function that maps an instance (I, k) to an instance (I ′, k′) of P such that:

– (I, k) is a yes instance for P if and only if (I ′, k′) is a yes instance;
– |I ′| < f(k) for some computable function f ;
– k′ < g(k) for some computable function g.

A proper kernelization is a kernelization such that g(k) < k [3]. The function
f(k) is also called the size of the kernel. A problem has a kernel if and only if it
is FPT [12], however not every FPT problem has a kernel of polynomial size [5].
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A k-partition of a set S is a collection of pairwise disjoint sets S1, S2, . . . Sk

such that S =
⋃k

i=1 Si. A k-covering of a set S is a collection of sets S1, S2, . . . Sk

such that S =
⋃k

i=1 Si. A cluster graph is a graph in which the vertex set of each
connected component induces a clique.

Problem Definition. The Cluster Editing with Vertex Splitting Problem
(henceforth CEVS) is defined as follows. Given a graph G = (V,E) and an
integer k, can a cluster graph G′ be obtained from G by a k-edit-sequence e1 . . . ek
of the following operations:

1. do nothing,
2. add an edge to E,
3. delete an edge from E, and
4. an inclusive vertex split, that is for some v ∈ V partition the vertices in N(v)

into two sets U1, U2 such that U1 ∪U2 = N(v), then remove v from the graph
and add two new vertices v1 and v2 with N(v1) = U1 and N(v2) = U2.

A vertex v ∈ V (G) is said to correspond to a vertex v′ ∈ V (G′), constructed
from G by an edit-sequence S if v′ is a leaf on the division-tree T for v defined
as follows:

(i) v is the root of the tree, and
(ii) if an edit sequence operation splits a vertex u which lies on the tree then

the two vertices that result from the split are children of u.

As noted earlier, Cluster Editing corresponds to the special case where no
vertex splitting is permitted. So it would appear that Cluster Editing with
Vertex Splitting is NP-Hard due to the NP-hardness of the Cluster Edit-
ing problem. Moreover, suppressing vertex splitting is not an option in the def-
inition of CEVS. The NP-hardness of the problem is not obvious, so we pose it
as an open problem at this stage.

Our main focus in this paper is on the parameterized complexity of CEVS.
We shall present a quadratic-size kernel for the problem, which proves it to be
fixed-parameter tractable.

A similar problem has been defined and studied in [15] where a vertex is
allowed to be part of at most s clusters. In this case s is either treated as constant
or as a different parameter, which makes the NP-hardness proof easy since the
case s = 1 corresponds to the Cluster Editing problem. In our work we model
the overlap via another editing operation so we do not set a separate parameter
for the number of splittings per vertex. We are able to design a kernelization
algorithm that achieves a quadratic-size kernel (while the best kernel bound
achieved in [15] is cubic for the special case where s = 2).
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3 The Edit-Sequence Approach

Defining CEVS in terms of edit-sequences is based on looking for the closest
graph which is a cluster graph, where distance is defined by the shortest edit-
sequence. An edit-sequence may however include a lot of redundancy (for exam-
ple, swap two edge additions). In this section we show how to eliminate redun-
dancy, first by showing that we can consider a specific form of edit sequence, and
then showing that we can efficiently compute the shortest edit-sequence between
two graphs. This will provide some much needed structure to the problem and
provide a base for subsequent proofs.

3.1 Restricted Re-ordering of the Edit-Sequence

Two edit sequences S = e1 . . . ek and S′ = e′
1 . . . e′

k are said to be equivalent if:

– GS and GS′ , the graphs obtained from G by S and S′ respectively are iso-
morphic to each other with isomorphism f : V (GS) → V (GS′), and

– if uS ∈ V (GS) and uS′ = f(uS) then the division tree which uS is contained
in and the division tree which uS′ is contained in share a common root. In
other words, uS and uS′ correspond to the same vertex of the original graph.

Lemma 1. For any edit-sequence S = e1 . . . eiei+1 . . . ek where ei is an edge
deletion and ei+1 is an edge addition, there is an equivalent edit-sequence S′ =
e1 . . . e′

ie
′
i+1 . . . ek of the same length where either e′

i is an edge addition and e′
i+1

is an edge deletion, or both e′
i and e′

i+1 are do-nothing operations.

Proof. We begin by noting that we only have to consider the edits ei and ei+1

as we can think of the edit-sequence being a sequence of functions composed
with each other, thus if ei deletes edge uv and ei+1 adds edge wx then the graph
immediately after applying the two operations in the opposite order will be the
same in all cases except that where uv = wx whereby the net effect is that
nothing happens, as required.

Lemma 2. For any edit-sequence S = e1 . . . eiei+1 . . . ek where ei is a vertex
splitting and ei+1 is an edge deletion there is an equivalent edit-sequence S′ =
e1 . . . e′

ie
′
i+1 . . . ek where either e′

i is an edge deletion and ei+1 is a vertex splitting
or e′

i is a do-nothing operation and e′
i+1 is a vertex splitting.

Proof. If the edge deleted by ei+1 is not incident to one of the resulting vertices
of the splitting ei then swapping the two operations produces the required edit-
sequence E′. Otherwise let ei split vertex v and ei+1 delete edge uvi. Then if
ei has associated covering U1, U2 of N(v) and without loss of generality u ∈ U1

then if u �∈ U2 then the edit-sequence with e′
i being a deletion operation deleting

uv and e′
i being the vertex splitting and U ′

i = Ui \{u} and U ′
1 = U2 is equivalent

to E. Otherwise, u ∈ U1 ∩ U2. Without loss of generality, suppose uv2 is deleted
by ei+1. Then the sequence where e′

i is a do-nothing operation and where e′
i+1

is a vertex splitting on v with covering U ′
1, U

′
2 with U ′

1 = U1 and U ′
2 = U2 \ {u}

is equivalent.
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Lemma 3. For any edit-sequence S = e1 . . . eiei+1 . . . ek where ei is a ver-
tex splitting and ei+1 is an edge addition there exists an equivalent sequence
S′ = e1 . . . e′

ie
′
i+1 . . . ek where either e′

i is an edge addition and e′
i+1 is a vertex

splitting, or e′
i is a do-nothing operation and e′

i+1 is a vertex splitting.

Proof. If the edge added by ei+1 is not incident to one of the resulting vertices
of the splitting ei then simply swap the two operations to produce the required
edit-sequence E′. Otherwise, without loss of generality, let ei divide vertex v on
covering U1, U2 and ei+1 add vertex wv1. Then let e′

i be the operation that adds
the edge wv, if wv does not exist at that point, otherwise e′

i is a do-nothing
operation and let e′

i+1 split vertex v on covering U ′
1 = U1 ∪ {w}, U ′

2 = U2. The
resulting edit-sequence is equivalent to E.

Lemma 4. For any edit-sequence S = e1 . . . ek where ei is a do-nothing oper-
ation, the edit-sequence S′ = e1 . . . ei−1ei+1 . . . ek is equivalent to it and has
strictly smaller length.

3.2 Edit Sequences in Add-Delete-Split Form

From the above lemmas we can deduce the following theorem.

Theorem 1. For every edit-sequence S = e1 . . . ek there is an edit-sequence
S′ = e′

1 . . . e′
k′ with equal or lesser length such that

1. if e′
i is an edge addition and e′

j is an edge deletion or a vertex splitting, then
i < j,

2. if e′
i is an edge deletion and e′

j is a vertex splitting, then i < j, and
3. S′ contains no do-nothing operations.

We refer to an edit-sequence satisfying the statement of Theorem 1 as an
edit-sequence in the add-delete-split form. We will now consider only these edit-
sequences, as for any equivalence class of edit-sequences, there is a minimal
member of that equivalence class which is in add-delete-split form. In fact, the
equivalence class of an add-delete-split edit-sequence is the intersection of an
equivalence class of edit-sequences and the set of edit-sequences in add-delete-
split form. A minimal member of any such equivalence class is an edit-sequence
in add-delete-split form.

Uniqueness of the Pre-splitting Edge Modification Graph Correspond-
ing to Any Add-Delete-Split Edit-Sequence Equivalence Class. It is
now necessary to prove that in any equivalence class the graph obtained after
the addition and deletion of edges and before splitting vertices is fixed. By doing
so we provide a significant amount of structure to the problem, and do away
with the direct use of edit-sequences altogether when searching for a solution.

The approach we adopt is to work on time-reversed edit-sequences, taking
the final graph of the edit-sequence and the relation between the vertices in the
initial graph and the final graph, and proving that we always arrive at the same
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graph. In preparation for this we define the split relation, f : V → 2V
′

for a
given solution S to CEVS for a graph G and edit-distance k as a function.

The split relation for such a solution S, graph G and distance k is a function
f : V → 2V

′
defined such that when G′ = (V ′, E′) is derived from G by S the

following properties hold on f

1. For a vertex v ∈ V : v′ ∈ f(v) if and only if v corresponds to v′ under S,
2. For any u, v ∈ V that f(u) ∩ f(v) = ∅, and
3. For any u ∈ V that f(u) �= ∅.

A simple consequence of this definition is that two edit-sequences are equiv-
alent if and only if the resulting graphs are isomorphic and the split relation is
equivalent under that isomorphism.

In order to talk about time-reversed vertex-splitting sequences we define a
merge graph as being a graph G′ = (V ′, E′) derived from another graph G =
(V,E) by a sequence of vertex merge operations, that is there is a relation f :
V ′ → 2V called the merge relation which partitions the vertex set V on members
of V ′ such that u′v′ ∈ E′ if and only if uv ∈ E for some u ∈ f(u′) and some
v ∈ f(v′). A vertex merge operation constructs a merge graph with a merge
relation such that there is only one v′ such that |f(v′)| �= 1 and for that value
f(v′) = u, v; we call this the merger of u and v. A k-merge-graph G′ of G is a
merge graph for which there is a sequence of exactly k vertex merges G1 . . . Gk =
G′ such that for all i = 1 . . . k and defining G0 = G, we have Gi is derived from
Gi−1 by a vertex merge operation.

Lemma 5. For any graph G = (V,E) and merge-graph G′ = (V ′, E′) of G with
merge relation R : V ′ → 2V we have that

E′ = {u, v ∈ V ′ : ∃u′ ∈ R(u) ∃v′ ∈ R(v) such that u′v′ ∈ E} .

Proof. If V = V ′ then no merge has occurred and so this is trivially so, otherwise
we proceed by induction on k = |V | − |V ′|.

Suppose that G′ = (V ′, E′) is a k-merge-graph of G with merge relation
Rk : V ′ → 2V and suppose that G′′ is a 1-merge-graph of G′ and a (k + 1)-
merge-graph of G with relations R′ : V ′′ → 2V

′
and Rk+1 : V ′′ → 2V . Without

loss of generality suppose that G′′ was produced by merging vertices u and v of
G′ into w. Then, by definition,

E′′ = E′ \ ({vx ∈ E′|x ∈ V ′} ∪ {ux ∈ E′|x ∈ V ′}) ∪ {wx|x ∈ (NG′(u) ∪ NG′(v))})
.

Therefore we deduce that the edge set E′′ is the same as E′ except on those
edges incident to u and v, which were merged into W . However, R′(x) = {x} for
all vertices x �= w and R′(w) = {u, v} and so,

E′′ = {u′′, v′′ ∈ V ′′ : ∃u′ ∈ R′(u′′) ∃v′ ∈ R′(v′′) u′v′ ∈ E′}.
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By our induction hypothesis we also know that

E′ = {u′, v′ ∈ V ′ : ∃u ∈ Rk(u′) ∃v ∈ Rk(v′) uv ∈ E}.

By merging these two equations together (noting that we can disclose the
initial definition of u and v in the second equation) to give

E′′ = {u′′, v′′ ∈ V ′′ : ∃u′ ∈ R′(u′′) ∃v′ ∈ R′(v′′) ∃u ∈ Rk(u′) ∃v ∈ Rk(v′) uv ∈ E}.

By re-ordering the order of the existential operators we can obtain

E′′ = {u′′, v′′ ∈ V ′′ : ∃u′ ∈ R′(u′′) ∃u ∈ Rk(u′) ∃v′ ∈ R′(v′′) ∃v ∈ Rk(v′) uv ∈ E}.

This is the same as saying,

E′′ = {u′′, v′′ ∈ V ′′ : ∃u ∈
⋃

u′∈R′(u′′)

Rk(u′) ∃v ∈
⋃

v′∈R′(v′′)

Rk(v′) uv ∈ E}.

By the definition or Rk+1 this means

E′′ = {u′′, v′′ ∈ V ′′ : ∃u ∈ Rk+1(u′′) ∃v ∈ Rk+1(v′′) uv ∈ E}
as required.

3.3 Representation of Edit-Sequences as Resultant Graphs
and Merge Relations

We can see that a vertex merge is the time-reversed image of a vertex splitting,
in as much as that any sequence of splits will correspond to a time-reversed
sequence of merges and the converse. Thus we can use vertex mergers to prove
the following.

Lemma 6. For any collection of edit-sequences in add-delete-split form which
are equivalent to some edit-sequence S, the graph GRS

immediately preceding the
vertex splitting is the same for all members of the class in that form. Further
if the split relation for this equivalence class is R and the graph G′ = (V ′E′)
resulting from S are known, then

E′ = {u, v ∈ V ′ : ∃u′ ∈ R(u) ∃v′ ∈ R(v) such that u′v′ ∈ E} .

Proof. This follows directly from Lemma 5, and Theorem 1.
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We are now ready to prove the following lemma:

Lemma 7. For any graph G = (V,E) there is a computable bijection between
pairs (G′ = (V ′, E′), f : V → 2V

′
) of resultant graphs and split-relations and

equivalence classes of edit-sequences. Further there is an algorithm to compute
a min-edit-sequence from the resultant graph/split-relation pair for this class in
O((|V ′| − |V |)Δ(G) + |V | + |E| + |V ′| + |E′|) time.

Proof. The edit-sequence to graph/relation direction has been proved above,
further we have proved that if two edit-sequences have the same graph/split-
relation pair then they are equivalent. Thus all that remains to be proved is that
we can always construct a min-edit-sequence from an input graph to a valid
resultant graph/split-relation pair. We note:

– As the split-relation f can be represented as a merge-relation it is possible
by Lemma 5 to construct a graph GR such that GR has the same vertex
set as G and there is an edit-sequence consisting of only vertex divisions
from GR to G′ and with relation-relation f . Further this can be done in
O((|V ′| − |V |)Δ(G) + |V | + |E| + |V ′| + |E′|) time, and

– As GR shares the same vertex set as G it is possible to construct an opti-
mal edit-sequence from G to GR with only edge additions and deletions (by
looking at the edge sets of G and GR). Further we can do this in O(|E|) time.

So we can construct an edit-sequence from G to G′ with split-relation f in
O((|V ′| − |V |)Δ(G) + |V | + |E| + |V ′| + |E′|) time. Further by Lemma 6 this
graph GR is fixed for all edit-sequences in add-delete-divide form, of which one
is minimal. Thus as the initial add-divide sequence is minimal by construction,
and all division sequences are minimal, this sequence is a min-edit-sequence from
G to G′ with split relation f as required.

3.4 Representation of Optimal Cluster Graph Edit-Sequences
by Coverings

Consider the CEVS problem for a graph G and an edit distance k. If there is
a solution edit-sequence S for this problem, we may also represent the resulting
graph G′ by a covering of the vertices in the original graph. As G′ is a cluster
graph every pair of vertices from a clique are joined by an edge, and we can
reconstruct G′ and f : V (G) → 2V (G′), the corresponding vertex relation. And so
by Lemma 7 we can represent the search space for optimal CEVS edit-sequences
by coverings of the vertex set of G, and evaluate the min-edit distance for each
of them in O((|V ′| − |V |)Δ(G) + |V | + |E| + |V ′| + |E′|) time.
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4 Critical Cliques

Originally introduced by Lin et al. [21], critical cliques provide a useful tool in
understanding the clusters in graphs. A critical clique of a graph G = (V,E) is
a maximal induced subgraph C of G such that:

– C is a complete graph.
– There is some subset U ⊆ V such that for every v ∈ V (C), N [v] = U .

It was shown in [21] that each vertex is in exactly one critical clique. Let the
critical clique containing a vertex v be denoted by CC(v). The critical clique
graph CC(G) can then also be defined as a graph with vertices being the critical
cliques of G, having edges wherever there is an edge between the members of
the critical cliques in the original graph [21]. That is to say, that the critical
clique graph G′ = (V ′, E′) related to the graph G = (V,E) is the graph with
V ′ = CC(G) and edges E′ = {uv|∀x ∈ VC(u).∀y ∈ VC(v).xy ∈ E} Furthermore,
the vertices in G′ are given as a weight the number of vertices they represent in
the original graph, similarly for the edges.

The following lemma, dubbed “the critical clique lemma” is adapted from
Lemma 1 in [18], with a careful restatement in the context of this new problem.

Lemma 8. Any covering C = (S1 . . . Sl) corresponding to a solution to CEVS
for a graph G = (V,E) that minimizes k will always satisfy the following prop-
erty: for any v ∈ G, and for any Si ∈ C either CC(v) ⊆ Si or CC(v) ∩ Si = ∅.

Proof omitted for length reasons.
By the critical clique lemma, the CEVS problem is equivalent to a weighted

version of the problem on the critical clique graph.

Lemma 9. If there is a solution to CEVS on (G, k) then there are at most 4k
non-isolated vertices in CC(G). Moreover, there are at most 3k+1 vertices in any
connected component of CC(G) and there are at most k connected components
in CC(G) which are non-isolated vertices.

Proof. We follow an approach similar to that taken by Fellows et al. and Gou.
Let Sopt be an optimal solution of CEVS and partition the vertex set of CC(G)
into 4 sets W , X, Y and Z. Let W be the set of vertices which are the endpoint
of some edge added by Sopt, Let X be the subset of vertices which are the end-
point of some edge deleted by Sopt and not in W , Let Y be the subset of vertices
which are split by Sopt and not in W ∪ X, finally let Z be all other non-isolated
vertices in G. As each vertex in W , X, and Y is affected by some operation
in Sopt and any operation in Sopt can affect at most 2 vertices, if |Sopt| < k
then |W ∪ X ∪ Y | < 2k. Let us now consider Z. Suppose that u, v ∈ VS[opt] ∩ Z
are in the same clique in GSopt

, then as they are in Z they are adjacent to
exactly every vertex in Y as they are not involved in any edge addition, deletion
or vertex splitting. However as they are adjacent to each other and have the
same neighborhood, apart from each other, they are in a critical clique together.
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i.e. u = v. Thus there can be at most one vertex in Z for any connected compo-
nent of GSopt

.
Now every vertex in Z is adjacent to a vertex in W ∪ X ∪ Y . To see this

suppose that z ∈ Z is not, then by the above lemma it is the only vertex in Z
in its clique in GSopt

, however as it is in Z then it has neither been split nor
been severed from any vertex, thus it is an isolated vertex of CC(G). This is a
contradiction.

As each connected component of GSopt
, which is not an isolated vertex in

CC(G), contains at least one vertex of W ∪ X ∪ Y there are at most 2k vertices
in Z and there are at most 4k non-isolated vertices in CC(G).

As each connected component CC(G) has to be separated into at most k +1
cliques in GSopt

there can be at most k + 1 elements of Z in any connected
component of CC(G), thus there can be at most 3k+1 vertices in any connected
component of CC(G).

As no clique in GSopt
has members from two connected components of G, and

as if any connected component of G is not an isolated vertex in CC(G) there is at
least one edit performed to some vertex in that connected component there can be
at most k such connected components which are non isolated vertices in CC(G).

5 A 4k(k + 1) Vertex Kernel

From the result in Sect. 4 we can devise a polynomial size kernel for CEVS. To
achieve this we propose three reduction rules, prove that they are valid, and that
their application gives a kernel as required.

Reduction Rule 1. Remove all isolated Cliques.

Lemma 10. Reduction Rule 1 is sound.

Proof. As no optimal solution has a final clique which bridges two connected
components of a graph G and an isolated clique needs no edits to make it com-
plete, the clique will remain in all optimal solutions and as such can be removed
without affecting the result.

Reduction Rule 2. Reduce all critical cliques with more than k +1 vertices to
k + 1 vertices.

Lemma 11. Reduction Rule 2 is sound.

Proof. As no solution clique in an optimal solution partially contains a critical
clique and the cost to delete the edges incident to, or add edges to all of, or to
divide the vertices of such a critical clique is greater than k is too high to be
allowed we only need to maintain this invariant. Thus we can remove vertices
from any critical clique with more than k + 1 vertices until there are at most
k + 1 vertices in a critical clique and this will not affect the result.

Reduction Rule 3. If there are more than 4k non-isolated critical cliques
reduce the graph to a P3 and set k = 0 in this case.
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Lemma 12. Reduction Rule 3 is sound.

Proof. As proved in Lemma 9 if there are more than 4k non-isolated critical
cliques then there is no solution, thus we can emit a trivial No-instance.

Theorem 2. There exists a polynomial-time reduction procedure that takes an
arbitrary instance of the Cluster Editing with Vertex Splitting problem
and produces an equivalent instance whose order (number of vertices) is bounded
above by 4k(k + 1). In other words, CEVS admits a quadratic-order kernel.

Proof. As shown in the previous lemmas, Reduction Rules 1, 2 and 3 are well
founded, and as after having applied them exhaustively, there are at most 4k
critical cliques in the input graph. Due to Reduction Rule 2, there is no critical
clique with more than k + 1 vertices, and therefore, the application of these
reduction rules results in a 4k(k + 1) vertex kernel.

6 Conclusion

By allowing a vertex to split into two vertices we extend the notion of Cluster
Editing in an attempt to better-model clustering problems where a data element
may have roles in more than one cluster. The corresponding new version of
Cluster Editing is shown to be fixed-parameter tractable via a new approach
that is based on edit-sequence analysis.

The vertex splitting operation may also be applicable to other classes of
target graphs, including bipartite graphs, disjoint complete bipartite graphs (bi-
cluster graphs), chordal-graphs, comparability graphs, and perfect graphs. The
results in Sect. 3 are directly applicable to these other classes, and it may be
possible to find an analog to the critical clique lemma for bi-cluster graphs.

The work reported in this paper did not consider the exclusive version of ver-
tex splitting, where the two vertices which result from a split must additionally
have disjoint neighborhoods. This is ongoing research at this stage.
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Abstract. The p-center problem consists in selecting p centers among
M to cover N clients, such that the maximal distance between a client
and its closest selected center is minimized. For this problem we propose
two new and compact integer formulations.

Our first formulation is an improvement of a previous formulation.
It significantly decreases the number of constraints while preserving the
optimal value of the linear relaxation. Our second formulation contains
less variables and constraints but it has a weaker linear relaxation bound.

We besides introduce an algorithm which enables us to compute strong
bounds and significantly reduce the size of our formulations.

Finally, the efficiency of the algorithm and the proposed formulations
are compared in terms of quality of the linear relaxation and computation
time over instances from OR-Library.

Keywords: p-center · Discrete location · Equivalent formulations
Integer programming

1 Introduction

We consider N clients {C1, ..., CN} and M potential facility sites {F1, ..., FM}.
Let dij be the distance between Ci and Fj . The objective of the p-center prob-
lem is to open up to p facilities such that the maximal distance (called radius)
between a client and its closest selected site is minimized.

This problem is very popular in combinatorial optimization and has many
applications. We refer the reader to the recent survey [2]. Very recent publica-
tions include [6,7] which provide heuristic solutions and [3] on an exact solution
method.

In this paper, we will focus on mixed-integer linear programming formulations
of the p-center problem.
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Let M and N respectively be the sets {1, ...,M} and {1, ..., N}. The
most classical formulation, denoted by (P1), for the p-center problem (see for
example [4]) considers the following variables:

– yj is a binary variable equal to 1 if and only if Fj is open;
– xij is a binary variable equal to 1 if and only if Ci is assigned to Fj ;
– R is the radius.

(P1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min R (a)

s.t.
M∑

j=1

yj ≤ p (b)

M∑

j=1

xij = 1 i ∈ N (c)

xij ≤ yj i ∈ N , j ∈ M (d)
M∑

j=1

dij xij ≤ R i ∈ N (e)

xij , yj ∈ {0, 1} i ∈ N , j ∈ M
r ∈ R

(1)

Constraint (1b) ensures that no more than p facilities are opened. Each client
is assigned to exactly one facility through Constraints (1c). Constraints (1d) link
variables xij and yj while (1e) ensure the coherence of the objective.

A more recent formulation, denoted by (P2), was proposed in [5]. Let
D0 < D1 < ... < DK be the different dij values ∀i ∈ N ∀j ∈ M. Note that,
if many distances dij have the same value, K may be significantly lower than
M × N . Let K be the set {1, ...,K}. Formulation (P2) is based on the variables
yj , previously introduced, and one binary variable zk, for each k ∈ K, equals to
1 if and only if the optimal radius is greater than or equal to Dk:

(P2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min D0 +
K∑

k=1

(Dk − Dk−1) zk (a)

s.t. 1 ≤
M∑

j=1

yj ≤ p (b)

zk +
∑

j : dij<Dk

yj ≥ 1 i ∈ N , k ∈ K (c)

yj , z
k ∈ {0, 1} j ∈ M, k ∈ K

(2)

Constraints (2c) ensure that if no facility located at less than Dk of client Ci

is selected, then the radius must be greater than or equal to Dk.
This formulation has been proved to be tighter than (P1) [5]. However, its

size strongly depends on the value K (i.e., the number of distinct distances dij).
It also has recently been adapted to the p-dispersion problem which consists

in selecting p facilities among N such that the minimal distance between two
selected facilities is maximized [8].
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A last formulation, that can be deduced from (P2) by a change of vari-
ables, has been recently introduced [3] and named (P4). It contains, for all
k ∈ K, a binary variable uk equal to 1 if and only if the optimal radius is Dk

(i.e., uk = zk − zk+1 and zk =
∑K

q=k uq):

(P4)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
K∑

k=1

Dkuk (a)

s.t.
∑

j : dij≤Dk

yj ≥
k∑

q=1

uq i ∈ N , k ∈ K (b)

K∑

k=1

uk = 1 (c)

yj , uk ∈ {0, 1} j ∈ M, k ∈ K

(3)

They also proposed a weaker version of this formulation, called (P3), obtained
by replacing the left-hand side of constraints (3b) by uk. They proved that (P4)
leads to the same linear relaxation bound and has the same size as (P2).

The rest of the paper is organized as follows. Section 2 presents our two
new formulations. In Sect. 3 we introduce an algorithm. Finally, Sect. 4 describes
numerical results on instances from the OR-Library.

2 Our New Formulations

2.1 Formulation (CP1)

In (P2), for all k ∈ K, variable zk is equal to 1 if and only if the optimal radius
is greater than or equal to Dk. As a consequence, the following constraints are
valid

zk ≥ zk+1 k ∈ {1, ...,K − 1}. (4)

We first show that these inequalities are redundant for (P2). Let (P ′
2) be the

formulation obtained when constraints (4) are added to (P2) and let v(F ) be the
optimal value of the linear relaxation of a given formulation F . We now prove
that adding constraints (4) does not improve the quality of the linear relaxation.

Proposition 1. v(P ′
2) = v(P2)

Proof. We show that an optimal solution (ỹ, z̃) of the relaxation of (P2)
satisfies (4). For each distance Dk there exists a client i(k) such that

z̃k +
∑

j : di(k)j<Dk

ỹj = 1 (5)

otherwise z̃k can be decreased and (ỹ, z̃) is not optimal.
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We now assume that z̃k−1 < z̃k for some index k ∈ {2, ...,K}. It follows that

z̃k−1 +
∑

j : di(k)j<Dk−1

ỹj < z̃k +
∑

j : di(k)j<Dk

ỹj = 1

The last equality follows from (5). Therefore, constraints (2c) for i(k) and k − 1
is violated. �
We now prove that a large part of constraints (2c) are redundant in (P ′

2).
Let Nk

i be the set of facilities located at less than Dk from client Ci. We can
observe that Nk

i is included in Nk+1
i , for all k ∈ K. Moreover, Nk

i is equal to
Nk+1

i if and only if there is no facility at distance Dk from client Ci. Let Si be
the set of indices k ∈ {1, ...,K−1} such that Nk

i is different from Nk+1
i . Observe

that |Si| ≤ min(M,K).
We define Formulation (CP1) as Formulation (P ′

2) where only the con-
straints (2c) such that k ∈ Si or k = K are kept.

(CP1)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min D0 +
K∑

k=1

(Dk − Dk−1) zk (a)

s.t.,
zk +

∑

j : dij<Dk

yj ≥ 1 i ∈ N , k ∈ Si ∪ {K} (b)

yj , z
k ∈ {0, 1} j ∈ M, k ∈ K

(6)

The number of constraints is dominated by the number of constraints (6b). This
number is bounded by both NM and NK.

The following proposition proves that (CP1) is a valid formulation.

Proposition 2. (CP1) is a valid formulation of the p-center problem.

Proof. We show that the constraints removed from (P ′
2) are dominated. If

Nk
i = Nk+1

i , then
∑

j : dij<Dk yj =
∑

j : dij<Dk+1 yj . Since zk ≥ zk+1, we have:

zk +
∑

j : dij<Dk

yj ≥ zk+1 +
∑

j : dij<Dk+1

yj ≥ 1.

As a consequence, the constraint (2c) associated with i and k is dominated by
the one associated with i and k + 1. �
We now prove that Formulations (P2) and (CP1) lead to the same bound by
linear relaxation.

Proposition 3. v(CP1) = v(P2).

Proof. The arguments used in the proof of Proposition 2 can be used again to
show that the constraints removed from (P ′

2) do not impact the value of the
linear relaxation. �
To sum up, (CP1) is a valid formulation that has the same LP bound as (P2).
However, as detailed in Table 1, Formulation (CP1) is much smaller since it
reduces the number of constraints by a factor of up to N .
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2.2 Formulation (CP2)

We now introduce a second formulation, denoted by (CP2), which contains less
variables and constraints than (CP1).

We replace the K binary variable zk with a unique general integer variable
r which represents the index of a radius:

(CP2)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min r
s.t.

r + k
∑

j : dij<Dk

yj ≥ k i ∈ N , k ∈ Si ∪ {K} (a)

yj ∈ {0, 1} j ∈ M
r ∈ {0, ...,K}

(7)

Constraints (7a) play a similar role to Constraints (6b).
Formulation (CP2) does not directly provide the value of the optimal radius

R but its index r such that Dr = R. We now prove that Formulation (CP2) is
valid.

Proposition 4. (CP2) is a valid formulation of the p-center problem.

Proof. Let (ỹ, z̃) be an integer solution of (CP1). We first show that there exists
an integer solution (y, r) of (CP2) which provides the same radius by setting
y = ỹ and r =

∑K
k=1 z̃

k. We need to prove that constraints (7a) are satisfied.
We know that

z̃k +
∑

j : dij<Dk

ỹj ≥ 1

is satisfied for any client Ci and any distance Dk.
If z̃k is equal to 0, the corresponding Constraint (7a) is satisfied, as∑

j : dij<Dk ỹj ≥ 1. Otherwise, the same result is obtained since the z̃k vari-
ables are ordered in decreasing order which leads to r ≥ k. These two solutions
provide the same radius as D0 +

∑K
k=1(D

k − Dk−1) z̃k = D
∑K

k=1 z̃k

.
We now prove that for any solution (ỹ, r̃) of (CP2) there exists an equivalent

solution (y, z) of (CP1). We set y = ỹ and zk = 1 if and only if r̃ ≥ k. Constraint

r̃ + k
∑

j : dij<Dk

ỹj ≥ k (8)

is satisfied for any k ∈ K. If r̃ is lower than k, then at least one variable ỹj from
Eq. (8) is equal to 1 and the corresponding constraint (6b) is satisfied. Otherwise,
zk is equal to 1 and the same conclusion is reached. �

We now prove that the linear relaxation of (CP1) is stronger than the one
of (CP2).

Assumption 1. We shall suppose D0 = 0 and ∀k ∈ K, Dk − Dk−1 = 1.
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This assumption is not restrictive, one can transform any instance by
replacing any distance Dk by its rank k. The transformed problem is equiva-
lent as if the optimal radius is Dk∗

, then the optimal solution of the transformed
problem is k∗.

Under this assumption, problems (CP1) and (CP2) have the same optimal
values, both of them compute the rank of the optimal radius.

Proposition 5. Let CP1 and CP2 respectively be the LP relaxation of (CP1)
and (CP2), v(CP1) ≥ v(CP2) under Assumption 1.

Proof. Let (ỹ, z̃) be a solution of CP1. We build a solution (y, r) of CP2 with
the same value. We take y = ỹ and r =

∑K
k=1 z̃

k.
We need to prove that constraints (7a) are satisfied.
Since the zk variables are ordered in decreasing order by Constraints 4, it fol-

lows that r ≥ kz̃k ∀k ∈ K. This and Constraints (2c) imply that Constraints (7a)
are satisfied. �

Table 1 summarizes the size of the previously mentioned formulations.

Table 1. Size of the four formulations (K ≤ NM).

Formulation # of variables # of constraints

(P1) O(NM) O(NM)

(P2), (P3), (P4) O(M + K) O(NK)

(CP1) O(M + K) O(min(NM,NK))

(CP2) O(M) O(min(NM,NK))

3 A Two-Step Resolution Algorithm

We present, in this section, a two-step algorithm to solve more efficiently the
p-center problem.

Let lb be a lower bound of the optimal radius. We suppose that lb is one
of the distances Dk since, otherwise, lb can be set to the next distance. All the
distances dij lower than lb can be replaced by lb.

Similarly, all the distances dij greater than an upper bound ub can be replaced
by ub + 1 in order to discard solutions of value greater than ub.

The size of Formulations (P2) and (CP1) strongly depends on K. This value
can be reduced by identifying lower and upper bounds. Such bounds can easily
be obtained, as mentioned in [5].

Our resolution algorithm, depicted in Fig. 1, can be applied to any formula-
tion F of the p-center problem including (P1), (P2), (P3), (P4), (CP1) and (CP2).
It is mainly based on the idea that whenever the optimal value v of the linear
relaxation of F is not equal to an existing distance, then there exists k ∈ K such
that Dk−1 < v < Dk. In that case, Dk constitutes a stronger lower bound than
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v and the linear relaxation can be solved again. This process is repeated until an
existing distance is obtained as the optimal value of the linear relaxation. This
constitutes Step 1 of the algorithm.

The bound obtained when applying this algorithm over (P2) or (CP1) corre-
sponds to the one called LB∗, computed by a binary search algorithm in [5].

Step 1 can be further improved by introducing the notion of dominated clients
and dominated facilities within some reduction rules. A facility Fa is dominated
if there exists another facility Fb such that dia ≥ dib for all clients i. Such a
facility can be removed as it will always be at least as interesting to assign a
client to Fb than to Fa. Similarly, a client Ca is said to be dominated if there
exists another client Cb such that daj ≤ dbj for all facilities j. Dominated clients
can also be ignored.

Instructions 3 and 4 are repeated since new dominated clients and facilities
may be found when a bound is improved, and vice versa.

Step 2 of Algorithm 1 consists in solving Formulation F to optimality with
the improved bounds lb and ub computed in Step 1.

Algorithm 1:
F : formulation of the p-center problem
p: maximal number of centers
d: distances
lb, ub: initial bounds
Result: The optimal radius
// Step 1

1 repeat
2 repeat
3 Remove dominated clients and facilities // Reduction rules
4 (lb, ub) ← Compute bounds
5 until lb and ub are not improved and no more dominated clients or facilities

have been found
6 v ← SolveLinearRelaxation(F , lb, ub)
7 lb ← mink{Dk : v ≤ Dk}
8 until v = lb // until v is one of the existing distances

// Step 2
9 r∗ ← SolveOptimally(F , lb, ub)

10 return r∗

Fig. 1. Algorithm used to solve the p-center problem through F, a p-center formulation.

4 Numerical Results

We implement Formulations (P1), (P2), (CP1) and (CP2) as well as Algorithm
1 on an Intel XEON E3-1280 with 3,5 GHz and 32 GB of RAM with the Java
API of CPLEX 12.7. Following several authors, we consider instances from the
OR-Library [1].
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4.1 Comparing Sizes and Computation Times on 5 Instances

Table 2 presents a comparison of the sizes of the four formulations on the five first
instances of the OR-Library with N = M = 100. We use the initial lower bound
LB0 = maxi∈N minj∈M dij and initial upper bound UB0 = minj∈M maxi∈N dij
introduced in [5].

As expected, the number of variables in (CP1) and (P2) are equal and are
significantly lower than in (P1). Formulation (P2) has more constraints than
Formulation (P1). Formulation (CP1) has by far less constraints than (P2). All
this explains why (CP1) has the best performances in every aspect.

Formulation (CP2) is the most compact but this does not fully compensate
the poor quality of its LP bound.

Table 2. Size and resolution times (1 thread) of the formulations for the five first
OR-Library instances with lb = LB0 and ub = UB0.

(P1) (P2) (CP1) (CP2)

Instance 1 Number of variables 10101 286 286 101

Number of constraints 12209 18602 6089 5903

(LB0 = 0) LP bound 97,57 106,54 106,54 83,62

(UB0 = 186) Resolution time (s) 9,14 251,28 3,16 14,94

Instance 2 Number of variables 10101 277 277 101

Number of constraints 12473 17702 6094 5917

(LB0 = 0) LP bound 76,72 85,68 85,68 70,19

(UB0 = 178) Resolution time (s) 15,69 47,31 2,99 19,80

Instance 3 Number of variables 10101 305 305 101

Number of constraints 11293 20502 6852 6647

(LB0 = 0) LP bound 73,24 83,28 83,28 68,92

(UB0 = 205) Resolution time (s) 11,68 21,02 2,85 10,99

Instance 4 Number of variables 10101 299 299 101

Number of constraints 12009 19902 6403 6204

(LB0 = 0) LP bound 54,55 64,16 64,16 52,42

(UB0 = 204) Resolution time (s) 3,19 43,02 1,64 12,90

Instance 5 Number of variables 10101 270 270 101

Number of constraints 11777 17002 6263 6093

(LB0 = 0) LP bound 30,37 37,82 37,82 29,29

(UB0 = 169) Resolution time (s) 1,93 25,10 1,66 11,65
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Table 3. Comparison of the different formulations with lb = LB1 and ub = UB1. For
each instance, the smallest time appears in bold. Symbol “-” means that the instance
was not solved within 1 h.

N p opt lb ub (P1) (P2) (CP1) (CP2)

b t b t b t b t

1 100 5 127 59 133 98 2,4 107 75,3 107 1,0 85 4,0

2 100 10 98 56 117 77 2,9 86 7,3 86 0,5 71 5,2

3 100 10 93 55 116 74 2,9 84 2,5 84 0,2 69 3,1

4 100 20 74 41 127 55 0,7 65 7,9 65 0,6 53 3,4

5 100 33 48 23 87 31 0,8 38 1,0 38 0,1 30 1,5

6 200 5 84 38 94 68 35,9 75 106,7 75 2,7 59 47,1

7 200 10 64 34 79 51 20,5 58 100,2 58 1,8 46 26,1

8 200 20 55 30 72 41 20,7 48 87,2 48 1,6 38 19,6

9 200 40 37 22 73 28 8,9 33 14,9 33 1,4 27 29,8

10 200 67 20 11 44 15 1,6 18 0,8 18 0,3 14 5,5

11 300 5 59 34 67 50 99,0 54 30,4 54 6,2 44 68,1

12 300 10 51 30 72 43 229,7 48 71,0 48 7,2 39 98,7

13 300 30 36 20 56 28 114,0 33 44,6 33 4,7 26 106,9

14 300 60 26 14 60 19 157,1 23 33,4 23 12,9 18 151,7

15 300 100 18 10 42 13 8,6 16 9,4 16 0,9 13 30,2

16 400 5 47 26 51 41 403,2 45 25,3 45 3,3 36 54,5

17 400 10 39 21 47 33 737,8 36 35,0 36 24,9 29 149,2

18 400 40 28 16 50 22 664,7 25 96,4 25 22,1 20 431,4

19 400 80 18 10 40 14 226,2 16 81,4 16 18,5 13 116,9

20 400 133 13 7 32 10 9,0 12 3,0 12 0,9 10 22,5

21 500 5 40 23 48 35 2581,0 37 118,3 37 13,6 31 194,6

22 500 10 38 21 49 31 - 35 924,4 35 24,6 28 507,8

23 500 50 22 13 38 17 1375,8 20 212,2 20 38,4 16 481,8

24 500 100 15 9 35 12 573,7 14 51,0 14 29,6 11 209,2

25 500 167 11 6 27 8 57,2 10 5,1 10 2,0 8 23,1

26 600 5 38 21 43 32 3093,6 35 106,0 35 13,6 28 152,4

27 600 10 32 18 39 28 3118,9 30 104,3 30 48,3 25 341,5

28 600 60 18 10 33 14 - 16 176,2 16 103,3 13 -

29 600 120 13 7 36 10 - 12 130,7 12 77,8 9 893,6

30 600 200 9 5 29 7 106,5 8 12,4 8 15,7 7 89,8

31 700 5 30 16 34 27 1793,8 28 68,8 28 12,5 24 139,9

32 700 10 29 16 35 25 - 27 718,7 27 127,3 22 944,5

33 700 70 15 9 26 13 - 14 155,1 14 76,0 12 890,1

34 700 140 11 6 30 9 2617,9 10 168,7 10 32,8 8 464,9

35 800 5 30 16 32 27 - 29 23,0 29 13,0 23 170,6

36 800 10 27 16 34 24 - 26 130,3 26 821,7 21 1056,6

37 800 80 15 8 26 12 - 14 222,5 14 90,9 11 1706,9

38 900 5 29 15 35 25 - 27 68,8 27 19,0 21 300,1

39 900 10 23 13 28 20 - 22 348,4 22 1190,0 18 1786,4

40 900 90 13 7 22 10 - 12 551,0 12 129,5 10 1059,9

Total 57699 5129 2991 16390
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Table 4. Results obtained with Algorithm 1 of Fig. 1 with lb = LB1 and ub = UB1.

N p opt (CP1) (CP2)

t1 t2 t1 t2

1 100 5 127 0,2 0,3 0,3 0,7

2 100 10 98 0,2 0,2 0,3 0,4

3 100 10 93 0,2 0,3 0,3 0,4

4 100 20 74 0,3 0,4 0,4 0,5

5 100 33 48 0,1 0,2 0,3 0,4

6 200 5 84 1,9 2,7 5,2 6,3

7 200 10 64 1,1 1,4 3,0 3,4

8 200 20 55 0,8 1,0 2,8 3,0

9 200 40 37 2,0 2,7 4,5 5,4

10 200 67 20 0,4 0,6 0,9 1,1

11 300 5 59 0,8 0,9 2,2 2,2

12 300 10 51 3,4 4,6 10,2 12,5

13 300 30 36 3,6 4,6 8,8 9,8

14 300 60 26 3,5 4,5 14,8 17,5

15 300 100 18 1,5 2,1 3,3 3,7

16 400 5 47 1,4 1,4 6,4 6,4

17 400 10 39 3,3 4,3 9,5 10,6

18 400 40 28 5,8 8,3 29,1 33,3

19 400 80 18 4,1 6,2 9,8 12,1

20 400 133 13 2,5 3,0 4,0 5,0

21 500 5 40 3,1 4,0 9,7 10,3

22 500 10 38 16,6 26,5 38,6 48,3

23 500 50 22 7,0 9,9 31,5 37,1

24 500 100 15 7,6 11,4 18,5 23,7

25 500 167 11 3,7 4,6 7,5 9,0

26 600 5 38 4,6 5,3 19,3 20,7

27 600 10 32 9,5 12,5 23,0 26,2

28 600 60 18 14,4 17,5 42,0 48,7

29 600 120 13 23,4 32,7 91,0 111,4

30 600 200 9 10,5 15,1 17,4 21,9

31 700 5 30 8,2 9,3 15,8 17,5

32 700 10 29 18,8 71,8 33,8 109,8

33 700 70 15 10,2 14,3 25,4 34,4

34 700 140 11 34,2 46,4 90,1 107,6

35 800 5 30 2,2 2,2 11,8 12,0

36 800 10 27 20,0 30,3 40,5 53,1

37 800 80 15 21,8 27,8 50,2 60,9

38 900 5 29 12,2 12,7 29,7 30,3

39 900 10 23 36,6 49,7 45,5 153,4

40 900 90 13 21,8 31,2 50,3 70,7

Total 484 1142

4.2 Relaxation and Computation Times on the 40 OR-Library
Instances

In Table 3, we perform a larger comparison with stronger bounds lb and ub equal
to the bounds LB1 and UB1 introduced in [5]. The resolution is then performed
by CPLEX with its default parameters but with a maximal CPU time of 1 h.
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The first column is the instance number. The three following columns provide
N , p and the optimal value of the instances (N = M in these instances). Columns
5 and 6 contain the initial bounds LB and UB. For each formulation, column
“b” corresponds the optimal value of the linear relaxation and column “t” to
the resolution time in seconds.

We can first observe that Formulations (CP1) and (P2) solve all the 40
instances within 1 h while ten instances are not solved with (P1) and one instance
is not solved with (CP2). We can even observe that (CP1) solves the whole set
of instances in less than 50 min and (P2) in less than 85 min.

Formulation (P2) outperforms (CP1) mainly on instances 36 and 39. This is
possibly due to some difficulty of the solver to find good feasible solutions.

4.3 Results of Algorithm 1

Table 4 presents the results of Algorithm 1 with formulations (CP1) and (CP2).
Columns “t1” and “t2” respectively correspond to the time of the first phase
and the total time.

Formulation (CP2) is now able to solve all the instances within 1 h. We
observe that the total time to solve the 40 instances is reduced by approximately
6 times for (CP1) and 14 times for (CP2) if compared to Table 3.

5 Conclusion

We introduced two new compact formulations of the p-center problem. We the-
oretically compared the quality of their LP bounds and their sizes to existing
formulations. Numerical experiments confirmed these results and highlighted the
fact that our new formulation (CP1) outperforms the previously known formu-
lations (P1) and (P2) at all levels. Our more compact formulation (CP2) suffers
from the poor quality of its linear relaxation. Another aspect of our work was
to embed the formulations within a two-step algorithm in order to obtain better
computation times.

Our future work will focus on improving our compact formulation through
polyhedral studies.
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Abstract. The Next Release Problem (nrp) is an important problem
in Software Engineering. Several papers investigate the nrp, most of
them considering heuristics to solve the problem. However, the literature
lacks a more theoretical approach to this problem, specially regarding its
complexity, approximability and more powerful exact algorithms. In this
paper we aim to help filling this gap.

Keywords: Strong NP-hardness · FPTAS · Integer programming
Branch-and-cut · Search Based Software Engineering

1 Introduction

Search-Based Software Engineering (sbse) is concerned with solving opti-
mization problems in Software Engineering (se), or treating se problems as
search problems [6]. Through the software development cycle, several prob-
lems can be formulated as search problems. From requirements to testing and
all the way through releasing, there are problems that can be thought of as
search/optimization problems.

The Next Release Problem (nrp) was first formalized by Bagnall et al. in [1]
as a description of a company’s next release plan considering its involvement in
the development and maintenance of large, complex systems to a set of clients
that have different needs and different values for the company.

The input of nrp can be formalized as been composed by a set R of require-
ments, a set of clients C, a budget B ∈ Z

+ and a directed graph D = (R∪C,A)
indicating the association between requirements and between requirements and
clients. The set of arcs in D is A ⊆ R × (R ∪ C). There are also two func-
tions ω : R → Z

+ and δ : C → Z
+ indicating, respectively, the cost of each

requirement and the value of each client.
In a valid input of nrp, D is an acyclic and transitive graph, meaning that

if there is a path from vertex a to vertex b, there is no path from b to a. Also,
if there is a path from a to b, there is also an arc (a, b) ∈ A. Figure 1 illustrates
an nrp instance.
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Fig. 1. An nrp instance with 3 clients and 7 requirements. The transitive arcs are
omitted for clarity reasons.

A solution of nrp is given by a set R′ ⊆ R to be implemented and a set
C ′ ⊆ C of clients that are satisfied by R′. The cost of the solution is given by the
sum of the costs of the requirements in R′, i.e.,

∑
r∈R′ ω(r). Meanwhile, the value

of the solution is the sum of the values of the clients in C ′, i.e.,
∑

c∈C′ δ(c). For
a solution to be valid it must have cost at most B (the budget), if a requirement
r is implemented, all of its prerequisites, i.e., all the requirements s for which
(s, r) ∈ A, must also be implemented. At last, a client c can only be considered
satisfied if all of its requirements, i.e., all the requirements r for which (r, c) ∈ A,
are implemented.

The objective of nrp is to find a solution that satisfies the properties above
and has a maximum value. This description can be formalized using the following
integer linear program (ip) formulation due to Bagnall et al. [1]:

(nrp) z = max
∑

c∈C

δ(c)yc (1)

subject to
∑

r∈R

ω(r)xr ≤ B (2)

xr′ ≤ xr ∀ (r, r′) ∈ A (3)
yc ≤ xr ∀ (r, c) ∈ A (4)
xr, yc ∈ {0, 1}; r ∈ R, c ∈ C (5)

in this model variables xr indicate whether a requirement is implemented or not,
meanwhile, yc indicate if a client is satisfied. Inequality (2) guarantees that the
cost of the solution is not greater than the budget. The constraints described by
(3) and (4) enforce that the proper requirements are implemented.

There are different versions of the problem in the literature, for instance,
[2] considers a version of the nrp that is equivalent to a knapsack problem.
In [14] the authors propose a bi-objective version of the problem where the
goal is to maximize the solution value and minimize its cost, however, in their
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version of the problem, a client can be partially satisfied. van den Akker et al.
[8] explore different variations of the problem, considering different scenarios like
having a single pool of developers or multiple teams etc. Several other papers are
developed considering the original description by Bagnall et al., among them,
[3,7] and [12] present heuristics for the problem and [4,9] compare heuristics and
exact methods, just to cite a few of them. In this paper, whenever we mention
the nrp we mean the version from [1] as described in this section.

Motivation. Typically, the problems in sbse are solved using heuristics and the
reason is that in se usually we need fast and good (but not necessarily optimal)
solutions for instances with considerable size. Besides, several of the problems
are proven to be NP-hard.

Nonetheless, developing exact algorithms is important to produce optimal
solutions for instances of reasonable size, thus providing a basis for comparison
and possibly new insights for the improvement of heuristics. However a search
in [13] reveals that very few works in the field even consider a comparison with
exact methods, a fact pointed out in [5] and much less the use of approximative
algorithms. In fact, some theoretical aspects of the problems seem to be com-
pletely neglected, like the possible existence of pseudo-polynomial algorithms or
polynomial algorithms with approximation guarantees.

In this work we consider a classical problem in sbse, i.e., nrp, but instead of
simply trying to solve it or produce a faster algorithm, we analyze the problem
from a more theoretical point of view, although producing a faster algorithm
is certainly a good thing. In this analysis we consider the strong NP-hardness
of the problem, the existence of a fully polynomial time approximation scheme
(fptas) [10] and we use some of the theory of integer linear programming to try
to improve a previously known algorithm.

Our Contribution. In this paper we prove the strong NP-hardness of nrp. We
show that the nrp does not admit an fptas. We present a new family of valid
inequalities for the nrp ip formulation from [1]. We present a separation heuristic
routine for this family of valid inequalities and use this routine to construct a
Branch-and-Cut (b&c) algorithm. We create and make available a new set of
bigger instances for the nrp based on instances from the literature. Finally, the
performance of the b&c algorithm is compared against that of a Branch-and-
Bound (b&b) algorithm that is currently the faster algorithm in the experiments
found in the literature.

Organization of the Text. The remaining of the text is organized as follows:
Sect. 2 presents complexity results for the nrp. In Sect. 3 the new family of valid
inequalities and separation routine are described, while in Sect. 4 the results of
the computational experiments are presented and analyzed. Finally, in Sect. 5
the conclusions and future directions of research are discussed.
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2 The Complexity of nrp

In [1], Bagnall et al. showed that the nrp is NP-hard. The proof is based on the
fact that nrp generalizes the well-known 0-1 knapsack problem and, therefore,
there is an obvious reduction from this problem to the nrp. That is, for each
item in the knapsack instance we create a pair of client and requirement for that
item where the requirement has the same cost as the item and the client has the
same value as the item. The budged of the nrp instance is the capacity of the
knapsack instance.

The 0-1 knapsack problem is a weakly NP-hard problem [10], thus hav-
ing pseudo-polynomial algorithms and also fully polynomial time approximation
schemes (fptas) [10]. However, no similar results are known for nrp. In this
section we show that nrp is strongly NP-hard and for this reason it cannot
have a fptas.

According to the definition of strong NP-hardness, a problem is strongly
NP-hard if there is no pseudo-polynomial time algorithm to solve it unless P =
NP, i.e., an algorithm that has a polynomial time complexity if the problem has
an unary encoding. Therefore, in order to show that nrp is strongly NP-hard we
show that a pseudo-polynomial algorithm for this problem cannot exist unless
P = NP. This is done through a reduction from the k-clique problem.

In the k-clique problem we are given a simple graph G and a number k and we
must decide whether there is a clique of size k in G. Since a clique is a complete
subgraph and G is simple, a clique with k vertices must have k(k − 1)/2 edges.
The idea of the reduction is to construct an instance I of nrp such that if there
is a solution of value k(k −1)/2 for I, then there is a clique with k vertices in G.

Proposition 1. The nrp is strongly NP-hard.

Proof. Let G = (V,E) be a simple graph and k an integer. Thus, G and k form
an instance of the k-Clique problem. Now, let us use G and k to construct an
instance I for nrp. For each vertex v in V we create a requirement rv in I with
cost 1 and for each edge uv in E we create a client cuv in I with value 1. For
each client cuv in I we associate the requirements ru and rv. Finally, we define
the budget of I as k.

We must observe that an optimal solution for I provides a solution to the
existence of a clique with size k in G. There are two cases to consider, the first
is when the answer for the k-clique instance is positive, i.e., there is a clique of
size k in G and the other is when the maximum clique in G is smaller than k.

If there is a clique of size k in G then, there are k(k − 1)/2 edges connecting
these k vertices in G. There are also k requirements in I corresponding to the
vertices and k(k − 1)/2 clients corresponding to the edges in the clique. Since
each client is associated with the two requirements related to the endpoints of its
corresponding edge, it is clear that a solution that implements the k requirements
related to the k vertices of the clique, which is possible since each requirement
has cost 1 and the budget is k, will satisfy the k(k − 1)/2 clients corresponding
to the edges of the clique and since every client has value 1, k(k − 1)/2 will also
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be the value of the solution. Notice that since the budget is k and each client
has a unique pair of requirements, it is impossible to have a better solution.

If, on the other hand, there is no clique of size k in G, that means that
every subgraph containing k vertices has less than k(k − 1)/2 edges. Suppose
there is a solution for I with value k(k − 1)/2. Since every client has value 1,
there are k(k − 1)/2 clients satisfied and since each client has a unique pair of
requirements, there are at least k requirements implemented. Considering the
budget is k and each requirement costs 1, there must be exactly k requirements
implemented. Now, we know by the construction of I that each of the k require-
ments corresponds to a vertex in G and each of the clients corresponds to an
edge connecting a pair of these k vertices, therefore, there must be a subgraph
in G with k vertices and k(k − 1)/2 edges, a contradiction.

From the two cases described it is possible to conclude that G has a clique of
size k if and only if I has a solution of value k(k−1)/2. That is, the construction
of I describes a reduction from k-clique to nrp. It is trivial to notice that the
size of I is polynomial in the size of G and k and the construction of I can be
done in a time that is also polynomial in the size of G and k. Hence, we have a
polynomial time reduction.

Now, suppose there is a pseudo-polynomial algorithm for nrp. In the construc-
tion described above, the only numerical data in I are the values of the clients
and costs of requirements, all of them equal to 1, therefore, an encoding of I in
unary has a size that is polynomial in the size of a binary encoding so, a pseudo-
polynomial algorithm for nrp solves I in polynomial time and by consequence,
also the k-clique problem. Hence, such algorithm cannot exist unless P = NP.�	
Corollary 1. The nrp does not admit an fptas, unless P = NP.

3 Integer Programming Approach

Considering that the nrp is NP-hard, the most common approach to find solu-
tions for this problem has been through the use of heuristics. This is reasonable
since every known exact algorithm for the problem has exponential time com-
plexity. Moreover, the problem is of practical importance and, thus, solutions
for real instances must be found despite its hardness.

Nonetheless, as previously stated, having exact algorithms is still important
to produce optimal solutions to evaluate the quality of heuristics. Besides, there
are cases in the literature where the time necessary to run an exact algorithm is
experimentally competitive with the one of heuristics, thus making them a good
option in practice. In [9], Veerapen et al. showed that this might be the case fornrp.

Veerapen et al. [9] re-implemented an ip based algorithm using the formula-
tion described in [1] and tested it using the set of instances generated by Xuan
et al. [12]. Xuan et al. generated two sets of instances, the first set named Clas-
sic Instances was generated using the description given in [1]. The second set
called Realistic Instances was generated by mining a database of bug reports
for two well known softwares. Xuan et al. proposed a Backbone-based Multilevel
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Algorithm (bma) for nrp and compared the results of this algorithm with other
heuristics from literature for nrp, concluding that for most of the instances, the
bma presented a better performance, both in quality of the solution and speed.
However, in [9], the authors showed that the ip based algorithm is able to solve
all the instances tested by Xuan et al. to optimality in a few seconds while the
best heuristic takes several minutes to find a solution without any guarantees of
quality.

In the remaining of this section we describe a new valid inequality for the
formulation proposed in [1] and a separation procedure to be used in a b&c
algorithm.

Cover Inequalities. In the knapsack problem we are given a set N =
{a1, a2, ..., an} of items, a weight limit W and functions w : N → R

+ and
v : N → R

+ representing, respectively the weight and the value of each item.
The set of valid solutions for an instance of the knapsack problem can be repre-
sented as S = {X ∈ B

n|∑i∈{1...n} xiw(ai) ≤ W}, therefore, an optimal solution
is given by max{∑

i∈{1...n} xiv(ai)|(x1, x2, ..., xn) ∈ S}.
A cover in the context of the knapsack problem is a set H ⊆ {1, ..., n} such

that
∑

i∈H w(ai) > W . Therefore, the inequality
∑

i∈H xi ≤ |H| − 1 is valid
for the formulation of the problem under consideration. A minimal cover is a
cover that for any j ∈ H, H \ {j} is not a cover. An extended cover of a cover
H is given by E(H) = H ∪ {j ∈ {1, ..., n} \ H|w(aj) ≥ w(ai)∀i ∈ H} and the
inequality

∑
i∈E(H) xi ≤ |H| − 1 is also valid for this formulation [11].

Given that the weight limit in the knapsack problem and the budget in
the nrp have similar roles, it is possible to consider cover inequalities for the
nrp. Therefore, it is easy to see that the inequalities

∑
i∈H xri ≤ |H| − 1 and∑

i∈E(H) xri ≤ |H| − 1 are valid for (nrp) where H ⊆ {1, ..., |R|} such that
∑

i∈H ω(ri) > B and E(H) = H ∪ {j ∈ {1, ..., |R|} \ H|ω(rj) ≥ ω(ri)∀i ∈ H}.
The cover inequalities for the nrp shown above take into consideration only

variables related to requirements (x variables), hence we can try to strengthen
them by adding variables related to clients (y variables). Since the extended cover
inequalities are lifts of cover inequalities, they are stronger than the latter, so we
are now going to consider a lift over these inequalities. In order to facilitate the
understanding of these liftings we are going to consider the example in Fig. 1 with
budget 19 and the following costs and values, respectively for the requirements
and clients: ω(r1) = 6, ω(r2) = 11, ω(r3) = 6, ω(r4) = 7, ω(r5) = 6, ω(r6) = 8,
ω(r7) = 1 and δ(c1) = 4, δ(c2) = 6, δ(c3) = 3.

Let E(H) be an extended cover for nrp, in the example we could have
E(H) = {1, 2, 3, 4}. Let χ(C ′) denote an ordering of a set of clients C ′ accord-
ing to some criterion, for instance, χ(C) =(c2, c1, c3). And denote by χ(C ′)[0]
the index of the first client in this ordering, in our example, χ(C)[0] = 2. Now,
let F (c,H ′) = {i ∈ {1, ..., |R|} \ H ′|(ri, c) ∈ A} denote the set of requirements
whose indexes are not in H ′ that are prerequisites of client c, in the current exam-
ple, for instance, F (c2, E(H)) = {5, 6, 7}. Finally, a client cover over sets H ′ of
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requirements indexes and C ′ of clients can be defined as follows: CC(H ′, C ′) =
χ(C ′)[0]∪CC(H ′ ∪ F (χ(C ′)[0],H ′), C ′ \ {χ(C ′)[0]}) if

∑
j∈F (c,H′) ω(rj) ≥

ω(ri) for all i ∈ E(H) or CC(H ′, C ′) = CC(H ′, C ′ \ {χ(C ′)[0]}) other-
wise, moreover, CC(H ′, ∅) = ∅. This definition results recursively in the
following values: CC({1, ..., 4}, {1, 2, 3}) = {2} ∪ CC({1, ..., 7}, {1, 3}) and
CC({1, ..., 7}, {1, 3}) = CC({1, ..., 7}, {3}) = CC({1, ..., 7}, ∅) = ∅, therefore,
CC({1, ..., 4}, {1, 2, 3}) = {2}. With these definitions we can now define the
extended client cover inequalities as

∑
i∈E(H) xri +

∑
j∈CC(E(H),C) ycj ≤ |H|−1.

The validity of these inequalities follows from the same arguments as for the
extended cover inequality problem for the knapsack problem. Moreover, the cost
of each client is calculated based on sets of requirements that are disjoint from
any other set of requirement considered for the costs of other clients.

Separation Heuristic Procedure. In order to use the extended client cover inequal-
ities in a b&c algorithm we must first define a way of finding an inequality of
this family to incorporate to the model. This can be achieved through a sepa-
ration routine. The goal of a separation routine is given a point p and a set of
valid solutions P (a polyhedron), find an inequality that is valid for P but not
satisfied by p. Therefore, if we have a solution of the linear relaxation s of nrp,
we could use a separation routine to find an inequality that is valid for the set
of valid solutions of nrp but not for s, thus obligating the solution of the linear
relaxation of the model with the new inequality to be closer to a valid solution
for nrp than the previous solution.

Next we describe a routine that heuristically tries to find a separating
extended client cover inequality for the current linear relaxation solution. In
that description we consider the relative weight ur of requirement r in a solution
S for the linear relaxation as been the cost of the requirement (ω(r)) multiplied
by the value of the corresponding variable xr, i.e., ur = ω(r)xr.

Separation Routine

1. Order R decreasingly by the relative weight of its elements in

the solution.

2. Insert requirements in order in H until a cover is formed.

3. Remove from H the requirement with smallest cost until a

minimal cover is obtained.

4. Define RHS = |H|-1.

5. Extend cover H with requirements having a cost greater than any

requirement in H, obtaining E(H).

6. Define the ordering of clients decreasingly by the value of its

corresponding variable in the solution multiplied by the

sum of costs of its exclusive prerequisites not in E(H).

7. Get CC(E(H), C).

8. Check if the obtained inequality is violated by the current

solution.
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With this separation heuristic routine in hand we can now construct a b&c
algorithm by executing this routine at each node of the b&b tree. At each
execution of the routine, a corresponding inequality is added to the ip model if
it is violated by the current linear relaxation solution.

4 Computational Results

In this section we describe the experiments performed to determine the effec-
tiveness of the proposed b&c algorithm. To do so we compare a b&b algorithm
constructed using the formulation from [1] against the b&c algorithm described
in Sect. 3. In order to make a fair comparison both algorithms were implemented
and executed using the same computational environment and restricted to 1 h
(3,600 s) of computation.

Computational Environment. All the experiments were performed using an
Intel(R) Core(TM) i3-4005U CPU @ 1.70 GHz with 4 GB of RAM memory. The
programming language used was C/C++ and we used GUROBI-C++ API v6.5.1 ip
solver. All the cuts, heuristics and preprocessing were turned off and only one
thread was used to avoid confusing variables in the analysis.

Instances. Three sets of instances were used in the experiments: the two sets
from [12], Classic Instances and Realistic Instances, and a new set constructed
based on the set of Classic Instances but with all the parameters multiplied by
some factor. This set is called Big Instances.

There are five Classic Instance groups called nrp-1 to nrp-5. Each of these
instances was generate following the rules in Table 1. In that table the symbol “/”
indicates a separation between levels, therefore, according to the first line, nrp-1,
for example, has three levels with 20, 40 and 80 requirements, respectively at
the first, second and third levels. The second line of the table indicate the range
of the costs of each requirement at each level. The meaning of the remaining
lines can be inferred from its description column. All the details missing are
fulfilled randomly. To obtain an instance of nrp we still need a budget so, for
each instance group three budget values (and therefore, three instances) are
generated corresponding to 30% of the sum of all the requirements costs, 50%
and 70%. These same budget ratios were used in all instance sets.

The Big Instances set can be divided into two sets, the x1.6 set and the x2.2
set. For each of them, the name of the set indicate the multiplication factor used
to generate the instance groups. Tables 2 and 3 summarize the generation rules
for these instance groups. These instances can be downloaded from the address
http://gpto.dcomp.ufs.br.

Analysis of the Results. In Table 5 it is possible to see the results obtained from
the b&b and b&c algorithms. In that table, the column with header “Instance”
indicates the name of the instance been solved, the columns with header “Time”,
“Bound” and “Value” indicate respectively the total time (in seconds) to obtain

http://gpto.dcomp.ufs.br
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Table 1. Generation rules for Classic Instances.

Instance

group

nrp-1 nrp-2 nrp-3 nrp-4 nrp-5

# Reqs./

level

20/40/80 20/40/80/160/320 250/500/750 250/500/750/1000/750 500/500/500

Cost of

req.

1–5/2–8/5–10 1–5/2–7/3–9/4–10/5–15 1–5/2–8/5–10 1–5/2–7/3–9/4–10/5–15 1–3/2/3–5

# Max

child reqs.

8/2/0 8/6/4/2/0 8/2/0 8/6/4/2/0 4/4/0

# Rqts. of

client

1–5 1–5 1–5 1–5 1

# Clients 100 500 500 750 1000

Value of

client

10–50 10–50 10–50 10–50 10–50

Table 2. Generation rules for instances in set x1.6.

Instance

group

nrpx1.6-1 nrpx1.6-2 nrpx1.6-3 nrpx1.6-4 nrpx1.6-5

# Reqs./

level

32/64/128 32/64/128/254/512 400/800/1200 400/800/1200/1600/1200 800/800/800

Cost of

req.

1–5/2–8/5–10 1–5/2–7/3–9/4–10/5–15 1–5/2–8/5–10 1–5/2–7/3–9/4–10/5–15 1–3/2/3–5

# Max

child reqs.

12/3/0 12/9/6/3/0 12/3/0 12/9/6/3/0 6/6/0

# Rqts. of

client

1–6 1–6 1–6 1–6 1

# Clients 160 800 800 1200 1600

Value of

client

10–50 10–50 10–50 10–50 10–50

the solution, the best bound found and the value of the best valid solution.
There are two sets of these three columns, one for the b&b and one for the b&c
algorithm. Finally, the column with header “Root obj” gives the value of the
objective function at the root for both the b&b and b&c tree. This value can be
useful to analyze how much we had to improve in order to get an optimal valid
solution. Due to space constraints we omit the results for the Realistic Instances
in this table.

Since both algorithms are exact, there is no sense in comparing the values of
the solutions obtained. We can, however analyze how many of the problems were
solved to optimality by each algorithm within the given time limit, and we can
compare the times necessary to solve the instances. For the Realistic Instances
both algorithms solved all the instances to optimality within the time limit. The
same is true for the Classic Instances. For the Big Instances of set x1.6, the b&b
algorithm was able to solve all the instances while b&c was unable to solve one
of the instances (nrpx1.6-2-0.5). Regarding set x2.2, both algorithms were unable
to solve 5 out of 15 instances. It is noteworthy that the unsolved instances are
the same for both algorithms.
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Table 3. Generation rules for instances in set x2.2.

Instance

group

nrpx2.2-1 nrpx2.2-2 nrpx2.2-3 nrpx2.2-4 nrpx2.2-5

# Reqs./

level

44/88/176 44/88/176/352/704 550/1100/1650 550/1100/1650/2200/1650 1100/1100/

1100

Cost of

req.

1–5/2–8/5–10 1–5/2–7/3–9/4–10/5–15 1–5/2–8/5–10 1–5/2–7/3–9/4–10/5–15 1–3/2/3–5

# Max

child reqs.

17/4/0 17/13/8/4/0 17/4/0 17/13/8/4/0 8/8/0

# Rqts. of

client

1–8 1–8 1–8 1–8 1

# Clients 220 1100 1100 1650 2200

Value of

client

10–50 10–50 10–50 10–50 10–50

In order to compare the times we calculate the ratio between the time spent
by b&c over the time spent by b&b. Therefore, if this ratio is bigger than 1,
it means that the b&c was slower while a ratio between 0 and 1 means it was
faster. After calculating the ratio for each instance we calculated the geometric
mean. Since we are dealing with ratios, this kind of mean has the nice property
that the inverse of the mean is equal to the mean of the inverses, therefore,
our results are not affected by the choice of numerator and denominator. We
calculate the mean for each set of instances and also, the mean considering only
the instances solved to optimality by both algorithms. Table 4 summarize these
results.

Notice from Table 4 that on average, the b&c algorithm is slower than b&b
for the Classic Instances and the Realistic Instances but is faster for the Big
Instances. One possible explanation for this is that the instances in the first
two sets are too easy, therefore, the time spent by the separation routine is not
compensated. Meanwhile, the sets of Big Instances are hard enough for making
the use of cuts worth.

Table 4. Geometric means of the ratio time (b&c)/time(b&b) considering all the
instances of each group and only the instances solved to optimality by both algorithms.

Instance set Classic Realistic Big x1.6 Big x2.2

GMean 1.248 1.741 0.943 0.801

GMeanOpt 1.248 1.741 0.885 0.716
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Table 5. Results of b&b and b&c for Classic Intances and Big Instances.

Instance b&b b&c Root obj

Time Bound Value Time Bound Value

nrp-1-0.3 0.11 1100 1100 0.4 1100 1100 1116

nrp-1-0.5 0.13 1742 1742 0.21 1742 1742 1789

nrp-1-0.7 0.07 2454 2454 0.1 2454 2454 2458

nrp-2-0.3 1.06 5453 5453 1.76 5453 5453 5456

nrp-2-0.5 3.44 8679 8679 4.13 8679 8679 8716

nrp-2-0.7 0.57 11938 11938 0.66 11938 11938 11946

nrp-3-0.3 1.57 8379 8379 0.49 8379 8379 8380

nrp-3-0.5 0.96 12399 12399 0.42 12399 12399 12401

nrp-3-0.7 0.44 15007 15007 1.04 15007 15007 15008

nrp-4-0.3 13.06 11585 11585 21.11 11585 11585 11587

nrp-4-0.5 3.45 17311 17311 5.56 17311 17311 17314

nrp-4-0.7 1.58 21851 21851 1.91 21851 21851 21852

nrp-5-0.3 0.25 20626 20626 0.29 20626 20626 20626

nrp-5-0.5 0.52 26248 26248 0.46 26248 26248 26248

nrp-5-0.7 0.13 29318 29318 0.18 29318 29318 29318

nrpx1.6-1-0.3 0.21 1796 1796 0.11 1796 1796 1849

nrpx1.6-1-0.5 0.27 2906 2906 0.37 2906 2906 2947

nrpx1.6-1-0.7 0.07 4027 4027 0.06 4027 4027 4030

nrpx1.6-2-0.3 295.81 7591 7591 307.85 7591 7591 8290

nrpx1.6-2-0.5 1573.72 12608 12608 3600.34 12695 12603 13395

nrpx1.6-2-0.7 2.98 18302 18302 3.7 18302 18302 18497

nrpx1.6-3-0.3 13.37 11203 11203 12.5 11203 11203 11222

nrpx1.6-3-0.5 2.52 17479 17479 1.19 17479 17479 17479

nrpx1.6-3-0.7 0.47 22718 22718 0.61 22718 22718 22718

nrpx1.6-4-0.3 3544.15 14410 14410 2611.9 14410 14410 14985

nrpx1.6-4-0.5 180.04 23898 23898 278.49 23898 23898 24060

nrpx1.6-4-0.7 16.85 32529 32529 19.45 32529 32529 32529

nrpx1.6-5-0.3 3.76 32585 32585 1.19 32585 32585 32585

nrpx1.6-5-0.5 0.7 41944 41944 0.69 41944 41944 41944

nrpx1.6-5-0.7 0.42 48093 48093 0.41 48093 48093 48093

nrpx2.2-1-0.3 0.91 2108 2108 0.54 2108 2108 2214

nrpx2.2-1-0.5 3.11 3450 3450 4.23 3450 3450 3638

nrpx2.2-1-0.7 1.32 4930 4930 1.18 4930 4930 5059

nrpx2.2-2-0.3 3600.64 9872 8835 3600.64 9934 8850 10871

nrpx2.2-2-0.5 3600.56 16906 15208 3600.83 16937 15250 17846

nrpx2.2-2-0.7 3600.62 24025 23440 3600.66 24071 23393 24821

nrpx2.2-3-0.3 28.75 14040 14040 45.8 14040 14040 14042

nrpx2.2-3-0.5 24.17 21967 21967 8.92 21967 21967 21972

nrpx2.2-3-0.7 3.5 29364 29364 4.06 29364 29364 29365

nrpx2.2-4-0.3 3620.89 18172 16354 3621.07 18519 16174 18671

nrpx2.2-4-0.5 3620.83 29745 28845 3621.47 29753 28860 30327

nrpx2.2-4-0.7 198.2 41972 41972 222.3 41972 41972 41982

nrpx2.2-5-0.3 15.06 42891 42891 1.67 42891 42891 42891

nrpx2.2-5-0.5 7.74 56521 56521 9.16 56521 56521 56522

nrpx2.2-5-0.7 3.09 65220 65220 1.53 65220 65220 65221
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5 Conclusions and Future Works

nrp is strongly NP-hard and does not admit an fptas, however, it is still not
clear whether there is a ptas or if there is a limit on its approximability.

Despite having exponential time complexities, ip based algorithms have
shown their usefulness. Furthermore, the b&c algorithm suggests that there is
still room for improvement, since this algorithm was able to solve bigger instances
quicker than a simple b&b algorithm. A first step to better understanding these
algorithms would be to perform a polyhedral study and determine the strength
of the known valid inequalities.
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Abstract. We study the fundamental problem of polytope membership
aiming at convex polytopes in high dimension and with many facets,
given as an intersection of halfspaces. Standard data-structures and brute
force methods cannot scale, due to the curse of dimensionality. We design
an efficient algorithm, by reduction to the approximate Nearest Neigh-
bor (ANN) problem based on the construction of a Voronoi diagram
with the polytope being one bounded cell. We thus trade exactness for
efficiency so as to obtain complexity bounds polynomial in the dimen-
sion, by exploiting recent progress in the complexity of ANN search. We
present a novel data structure for boundary queries based on a Newton-
like iterative intersection procedure. We implement our algorithms and
compare with brute-force approaches to show that they scale very well
as the dimension and number of facets grow larger.

Keywords: Geometric optimization · Convex polytope
Membership oracle · Approximation algorithms · General dimension
Nearest-neighbor search

1 Introduction

In geometric optimization, convex polytopes are very important objects appear-
ing also as feasible regions in linear programming. Let us consider a convex
polytope P in H-representation, that is as the intersection of a finite set of linear
inequalities: P = {x ∈ R

d | Ax ≤ b, A ∈ R
n×d, b ∈ R

n}. An important question
on such a polytope is that of point membership. We wish to preprocess P in
order to obtain a membership data structure which, given a query point q, effi-
ciently decides whether q lies inside or outside P . A decision can be reached by
testing all n inequalities for a complexity of O(nd). This trivial approach is often
a plausible exact solution, especially in the high-dimensional case. In order to
design a more efficient algorithm in high dimension, we will focus on the approx-
imate polytope membership problem where the membership data structure is
allowed to answer incorrectly for points lying very close to the boundary of the
polytope. A formal definition will be provided later in Sect. 2.2.
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Algorithms used to solve combinatorial optimization problems, such as the
ellipsoid, interior point or randomized methods (for the latter see [1]), usually
rely on randomly sampling convex polytopes. The inner loop of such algorithms
needs access to a membership or a boundary oracle, where the latter is the
procedure that computes the intersection of a ray with the boundary of the
polytope and is equivalent to membership via binary search. The oracle specifi-
cation means that we are not interested in how the solution is computed or of its
computational complexity. Grötschel et al. [2] proposed the oracle model of com-
putation and among other results they prove the polynomial time equivalence of
basic oracles such as optimization, separation, and membership. This has become
a commonly employed tool in combinatorial optimization mainly for studying
the computational complexity of problems. Another important example of appli-
cation is volume approximation [3,4] which has also an established connection
to combinatorial optimization. For example, the volume of order polytopes gives
the number of linear extentions of the associated partial order set.

From a practical point of view opening the oracle black box, in particular
membership, and improving their complexity, implies improvements to the appli-
cability of the aforementioned algorithms. For example, the first implementation
of randomized algorithms that scale in high dimension appeared in [5]. Their app-
roach relies on the standard random walks known as hit-and-run, which require
a boundary oracle. Notice that, although this software can handle polytopes in
spaces whose dimension goes up to 200, it cannot scale as efficiently for spe-
cific classes of polytopes with a large number of facets. In particular, it cannot
approximate the volume of cross-polytopes of dimension 20 or more.

Here, we radically shift the aforementioned paradigm and, moreover, improve
upon the complexity of membership and boundary data structures, when dimen-
sion d is an input parameter. We exploit the approximate setting and allow our-
selves to answer correctly within some approximation error ε and with some suc-
cess probability. Our new paradigm uses a reduction to the Approximate Nearest
Neighbor (ANN) problem, which is the most fundamental problem among those
today with a practical, poly-time solution in high-dimensions.

Previous Work. There are two classical results for the approximate member-
ship problem, both based on creating ε-approximating polytopes and answer-
ing membership on them. Any convex body is ε-approximated by a polytope
with O(1/ε(d−1)/2) facets, which is asymptotically tight in the worst case [6].
This leads to a membership data structure with space and query complexity
in O(1/ε(d−1)/2). Using a d-dimensional grid, membership takes constant time
(assuming a model of computation that supports the floor function) and space
grows to O(1/εd−1) [7].

A relevant line of work on approximate membership in fixed d uses space-
time trade-offs [8] to achieve a space of O(1/ε(d−1)(1−(2� log t�−2)/t)) with query
time O(log(1/ε)/ε(d−1)/t), for trade-off parameter t ≥ 4. In [9], again for fixed d,
they opt for a hierarchy of ellipsoids selected by a sampling process on classical
structures from the theory of convexity defined on the polytope. They achieve
space O(1/ε(d−1)/2) with an optimal query time of log(1/ε).
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We present state-of-the-art approaches to ANN as we build atop of those for
our oracles. There are many solutions to this problem, but in principle, methods
that scale polynomially with d belong to two categories. First, the well studied
Locality Sensitive Hashing (LSH) [10]. The other category focuses on random
projections [11], then uses fast algorithms in fixed dimension. Both achieve sub-
linear query time with (near-)linear storage, while scaling polynomially in d, and
both have a probability of success p.

Our Contribution. We describe a simple constructive reduction from the poly-
tope membership problem to ANN, then show under which conditions this reduc-
tion holds for the respective approximate versions of the problems. This gives
us the flexibility to exploit advances in the research of ANN in order to offer,
the first (as far as the authors are aware) practical approximate polytope mem-
bership data structure in high dimension with complexity bounds polynomial in
the dimension d and sublinear in the number of inequalities n. This is our main
result, in Theorem 5. We also present an application of this membership data
structure for creating boundary data structures for H-polytopes. We implement
and experimentally examine our algorithms; we illustrate that they scale well as
dimension and number of facets grow larger. Our implementation is linked to
the software of [5] for polytope volume, so as to provide faster oracles.

The rest of the paper is organized as follows. The next section discusses
(approximate) membership and the reduction to ANN. Section 3 considers the
boundary data structures. The implementation and experiments are in Sect. 4.
We conclude with open questions. Certain proofs are omitted due to lack of
space; they can be found in our arXiv technical report.

2 Approximate Polytope Membership

We assume that the given H-polytope P is full dimensional and that its repre-
sentation is minimal, i.e. that it does not contain redundant inequalities.

We denote the i-th (in)equality of P as aix ≤ bi, 1 ≤ i ≤ n. We associate
each facet of the polytope with a corresponding (in)equality and denote it as
Fi. Formally: Fi = {x ∈ P | aix = bi}, 1 ≤ i ≤ n. The hyperplanes that define
non-empty Fi’s, i.e. for which Fi �= ∅ are called non-redundant or supporting
and we extend that label to their inequalities. We denote as ∂P the boundary
of P : ∂P = {x ∈ P | ∃i, 1 ≤ i ≤ n s.t. x ∈ Fi}.

2.1 Exact Polytope Membership Oracle

A reduction from the exact polytope membership problem to the exact near-
est neighbor problem was established in [12], where it was shown that there is
a connection between the boundaries of polytopes in R

d and power diagrams
in R

d−1. Power diagrams define a partition of the Euclidean space into a cell
complex based on a set of spheres. Each sphere identifies a specific cell and that
cell consists of all the points whose power distance is minimized for that sphere.
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The power diagram is a generalized Voronoi diagram, and coincides with the
Voronoi diagram of the sphere centers if all spheres have equal radii.

Theorem 1 [12, Theorem 4]. For any polyhedron P ∈ R
d, which is expressible

as the intersection of upper halfspaces, there exists an affinely equivalent power
diagram in hyperplane h0 : xd = 0.

A cell complex C and a polyhedron P ⊂ R
d+1 are said to be affinely equivalent if

there exists a central or parallel projection φ such that, for each face f of C, f =
φ(g) holds for some face g of P . This provides a reduction from ray shooting in
a polyhedron to point location in a polyhedral complex. In the case of polytope
membership, the polyhedral complex becomes a single cell (the polytope) and
the power diagram becomes a Voronoi diagram. This provides a reduction from
polytope membership to Nearest neighbor.

Corollary 2. Let P ⊂ R
d be a convex polytope described as the intersection

of n non-redundant halfspaces. For every point p∗ ∈ P \ ∂P it is possible to
compute a set S of n + 1 points such that, p∗ ∈ S and, given a query point q,
the exact Polytope Membership test for a query point q reduces to finding the
Nearest Neighbor of q among these n + 1 points.

Proof. We initialize S = {p∗}. We will describe for completeness the procedure
to compute the remaining n points of S such that the corresponding Voronoi
diagram of these n points and p∗ will have the polytope P as the voronoi cell of
p∗. These n + 1 points will be the points of the corollary (Fig. 1).

For each facet Fi and its corresponding hyperplane Hi := aix = bi, 1 ≤ i ≤ n,
we compute the projection of p∗ on Hi and denote it as fi. Then, we compute the
point pi, 1 ≤ i ≤ n, such that the line segment (p∗, p) is perpendicular to Hi and
d(p∗,Hi) = ||p∗ − fi||2 = d(pi,Hi), where d(p, S) = min

x∈S
||p − x||2. Equivalently,

pi = fi + (fi − p∗).
We now have a set of points S = {p∗, p1, . . . , pn} of n+1 points that have the

following property. In the Voronoi diagram of S, by construction, the cell that
corresponds to p∗ is precisely the input polytope P . By the Voronoi property, the
following holds: q ∈ P ⇔ ||p∗ − q||2 ≤ ||q − s||2, ∀s ∈ S. Polytope membership
returns “YES” iff the nearest neighbor of q is p∗. ��

Remark. A nearest neighbor computation or data structure on these n+1 points
of Corollary 2 provides us with an exact Membership Oracle for the polytope P .
We also emphasize that the choice of p∗ ∈ P is arbitrary. This means that a set
S satisfying the Corollary can be computed for each point p∗ ∈ P \ ∂P .

2.2 Approximate Polytope Membership Oracle

Let us consider the following relaxation.
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Fig. 1. A conceptual presentation of the constructive proof in the case of d=2. Each
pi corresponds to the symmetric point of p∗ about the facet Fi.

Definition 3 (Approximate Polytope Membership Problem). Given a
convex polytope P ⊂ R

d and an approximation parameter ε ∈ (0, 1), an ε-
approximate polytope membership query decides whether a query point q ∈ R

d

lies inside or outside of P , but may return either answer if q’s distance from the
boundary of P is at most ε · diam(P ).

We define P−ε = {x ∈ P | d(x, ∂P ) > ε · diam(P )}. Obviously the afore-
mentioned problem makes sense only when P−ε �= ∅. Otherwise, we can always
return “NO” for a query point q and be correct.

Theorem 4 (Approximate Membership). Approximate Polytope Member-
ship for an H-polytope P and an approximation parameter ε, such that P−ε �= ∅,
reduces to the ANN problem on the pointset S = {p∗, pi : 1 ≤ i ≤ n}, where
p∗ ∈ P−ε and the remaining pi are computed as in the proof of Corollary 2.

Proof. Let p∗ ∈ P−ε and S be the corresponding pointset of Corollary 2 for
P . Let Δ(P ) = max

pi∈S\{p∗}
||pi − p∗||2. By construction, the following holds for

Δ(P ): 2ε ·diam(P ) < Δ(P ) < 2diam(P ). Let q ∈ R
d be a query point such that

||q − p∗|| < Δ(P )
2ε . For any other q′ ∈ R

d, we return “NO”, because ||q′ − p∗||2 ≥
Δ(P )
2ε ⇒ ||q′ −p∗|| > diam(P ) ⇒ q′ /∈ P . We distinguish two cases when q ∈ P−ε

and q ∈ {Rd | q /∈ P ∧ d(q, ∂P ) > ε · diam(P )}.
– Let q ∈ P−ε, we wish to select an ε′ for the ANN problem such that:

(1 + ε′) < ||pi − q||2/||p∗ − q||2 (1)

Essentially, this would imply that p∗ is the nearest neighbor of q, while every
pi ∈ S \ {p∗} is not an ε′-NN of q.
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Let ri = d(p∗,Hi) ≥ ε · diam(P ), where Hi is the hyperplane defining facet
Fi. By construction, d(p∗,Hi) = d(pi,Hi). It follows that the segment p∗pi has
length 2ri, as it is perpendicular to Hi.
Next, we define the projection of q on the line spanned by the segment p∗pi as
qi = (pi−p∗)·q/||pi−p∗||2 and its distance from Hi as ai = d (qi,Hi) ≥ ε·diam(P )
Obviously now, as depicted in Fig. 2:

||pi − qi||2 = ri + ai, ||p∗ − qi||2 = ri − ai

Therefore,

||pi − q||22 = ||pi − qi||22 + ||q − qi||22 = (ri + ai)2 + k2
i

||p∗ − q||22 = ||p∗ − qi||22 + ||q − qi||22 = (ri − ai)2 + k2
i ,

where ki = ||q − qi||22 < diam(P ). It follows that,

||pi − q||22
||p∗ − q||22

=
(ri + ai)2 + k2

i

(ri − ai)2 + k2
i

= 1 +
4riai

(ri − ai)2 + k2
i

≥ 1 +
4ε2(diam(P ))2

(ri − ai)2 + k2
i

≥ 1 +
4ε2(diam(P ))2

2(diam(P ))2
≥ 1 + 2ε2

Substituting in (1), yields: (1 + ε′) <
√

1 + 2ε2 ⇒ ε′ <
√

1 + 2ε2 − 1.
– Let q ∈ {Rd | q /∈ P ∧ d(q, ∂P ) > ε ·diam(P )}. Assume the nearest neighbor
of q is pi ∈ S \ {p∗}. Similarly, we are looking for an ε′ such that:

(1 + ε′) < ||p∗ − q||2/||pi − q||2
This means p∗ cannot be an ANN of q. Now, like before:

||p∗ − q||22
||pi − q||22

=
(ri + ai)2 + k2

i

(ri − ai)2 + k2
i

= 1 +
4riai

(ri − ai)2 + k2
i

≥ 1 +
4(ε · diam(P ))2

(ri − ai)2 + k2
i

≥ 1 +
4(ε · diam(P ))2

2
(

2Δ(P )
2ε

)2

≥ 1 +
4ε4 · diam2(P )

2Δ2(P )
> 1 +

4ε4 · diam2(P )
4 · diam(P )

> 1 + e4 · diam(P )

It follows that, ε′ <
√

e4 · diam(P ) − 1.
Choosing ε′ = min{√e4 · diam(P ) − 1,

√
1 + 2ε2 − 1} and answering ε′-ANN

queries on this set solves the original problem, because if a query point q ∈ P−ε,
then we have ensured that the ε′-ANN data structure will correctly identify p∗ as
the only approximate nearest neighbor of q. Similarly in a symmetric argument,
for every q /∈ P , such that d(q, ∂P ) > ε ·diam(P ), p∗ will not be an approximate
nearest neighbor of q. Lastly, if d(q, ∂P ) ≤ ε · diam(P ) the response from the
ANN data structure does not matter. Therefore, the reduction is complete. ��
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Fig. 2. pi corresponds to the symmetric point of p∗ about the facet Fi. We decompose
the distances ||p∗ − q||2 and ||pi − q||2 and express them in terms of ai and ki. Notice
how q ∈ P −ε ⇒ ai ≥ ε · diam(P ) and how ki < diam(P ), as q cannot be a vertex.

We now employ approaches for ANN to obtain a bound polynomial in the
dimension by introducing a probability of success. Below, Õ omits logarithmic
factors.

Theorem 5 [Approximate Membership in High Dimension]. For an H-polytope
P ⊂ R

d and an approximation parameter ε, such that P−ε �= ∅, we can solve
the Approximate Polytope membership problem on P by building a data struc-
ture on P answering queries in Õ(dnρ+o(1)) time and using Õ(n1+ρ+o(1) + dn)
space, with a high probability of success, where ρ = 1/(2(1 + ε′)2 − 1) and
ε′ = min{√e4 · diam(P ) − 1,

√
1 + 2ε2 − 1}.

Proof. The Chebyshev center of a polytope P is the center of the largest inscribed
ball. Formally: arg min

x∈P
max
y∈P

||x − y||22. Let c be the Chebyshev center of P with

radius r and assume c /∈ P−ε, in order to deduce an absurdity.

c /∈ P−ε ⇒ r < ε · diam(P ) (2)

Take a point c′ ∈ P−ε, as P−ε �= ∅.

d(c′, Fi) ≥ ε · diam(P ), 1 ≤ i ≤ n ⇒ B(c′, ε · diam(P )) ⊂ P (3)

Combining (2) and (3) produces an absurdity as we have found a larger inscribed
ball in P , contradicting the property of c. Therefore, c ∈ P−ε. We use p∗ = c as
the starting point of the construction of the pointset S in the proof of Theorem 4.
Answering ANN queries on S using the LSH data structure of [13], completes
this proof. ��
Remark. Any high-dimensional ANN solution can be utilized in the last step of
Theorem 5 and we can inherit its complexity and its properties.
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3 Application to Polytope Boundary Problem

The polytope boundary problem consists of creating a data structure for an
H-polytope P such that, given a query ray emanating from inside the polytope,
we can efficiently compute the point p = r ∩ ∂P . It is possible to achieve query
time in O(log n) by using space in O(nd/ log�d/2� n) [14]. The boundary oracle is
dual to finding the extreme point in a given direction among a known pointset.
This is ε-approximated through ε-coresets for measuring extent, in particular
(directional) width, but requires a subset of O((1/ε)(d−1)/2) points [15]. The
exponential dependence on d or the linear dependence on n make these methods
of little practical use in high dimensions. Ray shooting has been studied in
practice only in low dimensions, as well.

Fig. 3. An example of the boundary oracle converging to a solution. The query ray is
r = (s, v) and t4 = r ∩ ∂P is the solution. t1, t2, t3, t4 were computed in sequence.

Exact Polytope Boundary Oracle. We now describe an iterative procedure for P
based on an exact nearest neighbor data structure E MEM defined on the pointset
S of Corollary 2 that we described in Sect. 2.2. This exact nearest neighbor data
structure will act as the exact membership oracle for the polytope P . We call
this algorithm BoundaryOracle.

Finding the Starting Point. The first step is to find a starting point t1 such that
t1 ∈ r and t1 /∈ P . We may use the intersection of r with a bounding box around
P . A bounding box of P can be readily computed by solving 2d linear programs
to compute the farthest points on P along the coordinate directions.
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Finding the Intersection Point. We obtain an efficient method following a
derivative-like approach. Given starting point t1 /∈ P : let pi be the nearest neigh-
bor of t1 using the data structure defined for membership: pi = E MEM(t1). Let
Hi be the hyperplane supporting the facet Fi used to define pi; Fi separates the
cell of pi from P in the Voronoi diagram. Let t2 = (Hi ∩ r). Iterate by comput-
ing t3, t4, . . ., until membership decides tn ∈ P . This procedure is illustrated in
Fig. 3.

Lemma 6 (Correctness of algorithm BoundaryOracle). BoundaryOracle

always converges to a solution for the boundary problem for a given polytope P .

Approximate Polytope Boundary Oracle. Now, we define an approximate version
of the polytope boundary problem.

Definition 7 (Approximate Polytope Boundary Problem). Given a con-
vex H-polytope P ⊂ R

d and an approximation parameter ε ∈ (0, 1), prepro-
cess P into a data structure such that, given a query ray r ⊂ R

d emanating
from inside P , it is possible to efficiently compute a point r∗ ∈ r such that
d(r∗, ∂P ) ≤ ε · diam(P ).

We make two additional changes to the algorithm presented in the previous
section. First, we compare ti’s and ti+1’s distance from the ray’s source point s.
If the distance is not improved, then we discard the current ti+1 and set it as
ti+1 = (ti − s) − v

||v||2 ε. In other words, in this case we take an ε-step from ti
towards the ray’s apex. The second change concerns termination. Now we stop
when the approximate membership oracle identifies a point ti as being inside
the polytope, or when the point ti lies in the opposite direction of the ray.

Algorithm 1. Approximate Boundary Oracle

Input: H-polytope P ⊂ R
d, ray r (pair (s, v)), ε

Output: t ∈ R
d s.t. t ∈ r and d(t, ∂P ) ≤ εdiam(P )

A_MEM = approximate membership oracle for P
Q = bounding_box(P )
t = Q ∩ r;
do

pi = A_MEM(t);
if pi==p then return t + v

||v||2 ε; end

tprev = t
H = Hi // facet corresponding to pi
t = H ∩ r
if ||t − s||2 ≥ ||tprev − s||2 then t = (tprev − s) − v

||v||2 ε; end

if (t − s) · v < 0 then return s + v
||v||2 ε; end

while True;

Lemma 8 (Correctness of Algorithm 1). Algorithm 1 always converges to
a solution for the approximate boundary problem.
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4 Implementation and Experiments

Implementation. All of our code1 is linked to the software of [5]. It is written
in C++11 based on using the CGAL2 library for the readily available data
structures of d-dimensional objects, Eigen3 for some linear algebra computations
and FALCONN [16] for the approximate nearest neighbor data structure. We
remind the reader at this point that for a polytope P (d, n, i) we compute n + 1
points, out of which one point p∗ ∈ P while all remaining n points pi /∈ P, 1 ≤ i ≤
n. FALCONN offers LSH only for angular distances so in order to take advantage
of that we use it in the following manner. We consider our pointset already
centered around the internal point, in our case the origin. We build a FALCONN
data structure using the Hyperplane LSH family and setting k = 11, l = 1,
number of probes=40, when the number of facets n ≥ 10000. Otherwise, we set
them to l = 1, k = 8 and number of probes=150. l corresponds to the number of
hash tables built, k corresponds to the number of hash functions used per hash
table and number of probes is a parameter for the multi-probe LSH scheme [17].
The data structure is built for every computed point besides the internal one.
Then, assuming that for a query q FALCONN returns an approximate nearest
neighbor guess xi, we compare d(xi, q) to d(p∗, q) and return the point closest
to q out of xi, p

∗. The parameters for FALCONN were selected manually, while
trying to maintain a 90% success rate for membership.

Datasets. We experiment on a synthetic dataset consisting of high-dimensional
polytopes with a large number of facets. In particular, for the following set
of possible dimensions d = {40, 100, 500, 1000} and the following set of possi-
ble number of facets n = {5000, 10000, 20000, 50000, 100000, 500000, 1000000},
we generate 5 polytopes for every combination of d × n. Each polytope
P (d, n, i), d ∈ d, n ∈ n, i ∈ {1, 2, 3, 4, 5} lives in a d-dimensional Euclidean space
and is described by n inequalities of the form: ajx ≤ 1000, 1 ≤ j ≤ n, where
aj ∼ mod(U(0, 32767), 1000). The notation U(i, j) denotes the uniform real dis-
tribution over [i, j]. By construction, each polytope contains the origin 0, which
we use as the internal point needed by the approximate membership oracle. If
that assumption was not satisfied, we could have computed an internal point
either by solving a linear program or by computing an important point of the
polytope, like the Chebyshev center.

Evaluation Protocol. For both oracles we report pre-processing time, total query
time, and success rate vs n and d as n and d vary in their respective sets n,d.
Specifically for the boundary oracle we also report the average number of steps
that it required in order to reach a solution and we also compute the min,max and
average distances of the point returned from our approximate boundary oracle
to the actual point that the exact ray shooting problem should have computed.
We compare the query time to the naive approach of checking all n facets of
P . For the membership oracle we sample 1000 query points inside the polytope

1 https://github.com/van51/volume approximation.
2 http://www.cgal.org/.

https://github.com/van51/volume_approximation
http://www.cgal.org/
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via the popular hit-and-run paradigm and then move these points sufficiently
far from the origin so that they lie outside the polytope. This generates another
1000 points to form a total of 2000 points. Similarly for the boundary oracle we
use 1000 query points in total.

Results. Table 1 depicts the total time in seconds for creating the approximate
membership oracle on random polytopes for different values of d, n. Figures 4
and 5 depict total time in seconds for all queries to be completed. Parameters
were tuned such that the membership oracle achieved an accuracy of >90%,
i.e. at least 9 out of 10 queries succeed on average. The results matched our
expectations with regards to the behaviour of the oracles in high dimension,
where we can see a huge difference in the query time, especially as the number
of facets grows larger as well.

Table 1. Preprocessing time in seconds for membership oracle. This includes comput-
ing the n + 1 pointset and creating the ANN data structure on top of it.

Number of facets

5000 10000 20000 50000 100000 500000 1000000

Dimension 40 0.006 s 0.013 s 0.027 s 0.057 s 0.125 s 0.518 s 0.795 s

100 0.015 s 0.035 s 0.057 s 0.121 s 0.230 s 1.005 s 1.885 s

500 0.055 s 0.108 s 0.193 s 0.419 s 0.717 s 3.396 s 6.744 s

1000 0.101 s 0.192 s 0.342 s 0.783 s 1.470 s 5.500 s 10.770 s

Fig. 4. Average timing results for 2000 queries for varying n and d. Half of the queries
were inside the random polytopes and half were outside.
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Fig. 5. Average timing results for 1000 ray queries for varying n and d. The approxi-
mate boundary oracle took on average at most 4 steps.

5 Future Work

For the membership oracle it would be nice to see how the choice of the internal
point affects ε′ of the ANN. The choice of the Chebyshev center as internal
point should be optimal. For the boundary oracle we would like to bound its
convergence rate. The experiments demonstrate that it adapts well and converges
very fast. The holy grail of our efforts is to incorporate the high dimensional
version of the boundary oracle in sampling approaches.

Acknowledgements. The first two authors are partially supported by the European
Union’s H2020 research and innovation programme under grant agreement No 734242.
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Abstract. The Minimum Maximum Outdegree Problem (MMO) is to
assign a direction to every edge in an input undirected, edge-weighted
graph so that the maximum weighted outdegree taken over all vertices
becomes as small as possible. In this paper, we introduce a new variant
of MMO called the p-Split Minimum Maximum Outdegree Problem (p-
Split-MMO) in which one is allowed to perform a sequence of p split
operations on the vertices before orienting the edges, for some specified
non-negative integer p, and study its computational complexity.

Keywords: Graph orientation · Maximum flow · Vertex cover
Partition · Algorithm · Computational complexity

1 Introduction

An orientation of an undirected graph is an assignment of a direction to each of
its edges. The computational complexity of constructing graph orientations that
optimize various criteria has been studied, e.g., in [1–5,7,9,12,14], and positive
as well as negative results are known for many variants of these problems.

For example, the Minimum Maximum Outdegree Problem (MMO) [4–7,14]
takes as input an undirected, edge-weighted graph G = (V,E,w), where V ,
E, and w denote the set of vertices of G, the set of edges of G, and an edge-
weight function w : E → Z

+, respectively, and asks for an orientation of G
that minimizes the resulting maximum weighted outdegree taken over all ver-
tices in the oriented graph. In general, MMO is strongly NP-hard and cannot be
approximated within a ratio of 3/2 unless P = NP [4]. However, in the special
c© Springer International Publishing AG, part of Springer Nature 2018
J. Lee et al. (Eds.): ISCO 2018, LNCS 10856, pp. 52–63, 2018.
https://doi.org/10.1007/978-3-319-96151-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96151-4_5&domain=pdf


Graph Orientation with Splits 53

case where all edges have weight 1, MMO can be solved exactly in polynomial
time [14]. MMO has applications to load balancing, resource allocation, and data
structures for fast vertex adjacency queries in sparse graphs [6,7] based on the
technique of placing each edge in the adjacency list of exactly one of its two inci-
dent vertices. E.g., if G is a planar graph then G admits an orientation in which
every vertex has outdegree at most 3 and such an orientation can be found in
linear time [7], which means that for a planar graph, any adjacency query can be
answered in O(1) time after linear-time preprocessing. As an additional example
of a graph orientation problem, finding an orientation that maximizes the num-
ber of vertices with outdegree 0 is the Maximum Independent Set Problem [2],
which cannot be approximated within a ratio of nε for any constant 0 ≤ ε < 1 in
polynomial time unless P = NP [15]. Similarly, finding an orientation that min-
imizes the number of vertices with outdegree at least 1 is the Minimum Vertex
Cover Problem and minimizing the number of vertices with outdegree at least 2
is the problem of finding a smallest subset of the vertices in G whose removal
leaves a pseudoforest [2], both of which admit polynomial-time 2-approximation
algorithms [10].

In this paper, we introduce a new variant of MMO called the p-Split Mini-
mum Maximum Outdegree Problem (p-Split-MMO), where p is a specified non-
negative integer, and study its computational complexity. Here, one is allowed
to perform a sequence of p split operations on the vertices before orienting the
edges. When thinking of MMO as a load balancing problem, the split operation
can be interpreted as a way to alleviate the burden on the existing machines by
adding an extra machine.

The paper is organized as follows. Section 2 gives the formal definition of
p-Split-MMO. Section 3 presents an O((n + p)p · poly(n))-time algorithm for the
unweighted case of the problem, where n is the number of vertices in the input
graph, while Sect. 4 proves that if p is unbounded then the problem becomes
NP-hard even in the unweighted case. On the other hand, for the edge-weighted
case, Sect. 5 shows that p-Split MMO with weighted edges is weakly NP-hard
even if restricted to p = 1. Finally, Sect. 6 proves that the most general case
of the problem, i.e., with weighted edges as well as unbounded p, is strongly
NP-hard. See Table 1 for a summary of the new results.

Table 1. Overview of the computational complexity of p-Split MMO. Note that in
the edge-weighted case, the edge weights are included in the input so it is possible to
further classify the NP-hardness results as either weakly NP-hard or strongly NP-hard.

Unweighted graphs Edge-weighted graphs

Constant p O((n+ p)p · poly(n)) time
(Sect. 3, Theorem 1)

Weakly NP-hard
(Sect. 5, Theorem 3)

Unbounded p NP-hard
(Sect. 4, Theorem 2)

Strongly NP-hard
(Sect. 6, Theorem 4)
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2 Definitions

Let G = (V,E,w) be an undirected, edge-weighted graph with vertex set V , edge
set E, and edge weights defined by the function w : E → Z

+. An orientation Λ
of G is an assignment of a direction to every edge {u, v} ∈ E, i.e., Λ({u, v}) is
either (u, v) or (v, u). For any orientation Λ of G, the weighted outdegree of a
vertex u is

d+Λ(u) =
∑

{u,v}∈E:
Λ({u,v})=(u,v)

w({u, v})

and the cost of Λ is
c(Λ) = max

u∈V
{d+Λ(u)}.

Let MMO be the following optimization problem, previously studied in [4–7,14].

The Minimum Maximum Outdegree Problem (MMO):
Given an undirected, edge-weighted graph G = (V,E,w), where V , E, and w
denote the set of vertices of G, the set of edges of G, and an edge-weight
function w : E → Z

+, output an orientation Λ of G with minimum cost.

Next, for any v ∈ V , the set of vertices in V that are neighbors of v is denoted
by Γ [v] and the set of edges incident to v is denoted by E[v]. A split operation
on a vertex vi in G is an operation that transforms: (i) the vertex set of G to
(V \ vi) ∪ {vi,1, vi,2}, where vi,1 and vi,2 are two new vertices; and (ii) the edge
set of G to (E \E[vi])∪{{vi,1, s} : s ∈ S}∪{{vi,2, s

′} : s′ ∈ Γ [vi] \S} for some
subset S ⊆ Γ [vi]. For any non-negative integer p, a p-split on G is a sequence
of p split operations successively applied to G. Note that in a p-split, a new
vertex resulting from a split operation may in turn be the target of a later split
operation.

The problem that we study in this paper generalizes MMO above and is
defined as follows for any non-negative integer p.

The p-Split Minimum Maximum Outdegree Problem (p-Split-MMO):
Given an undirected, edge-weighted graph G = (V,E,w), where V , E, and w
denote the set of vertices of G, the set of edges of G, and an edge-weight
function w : E → Z

+, output a graph G′ and an orientation Λ′ of G′ such
that: (i) G′ is obtained by a p-split on G; (ii) Λ′ has minimum cost among
all orientations of all graphs obtainable by a p-split on G.

See Fig. 1 for an example. Throughout the paper, we denote the number of
vertices and edges in the input graph G by n and m, respectively. Any orientation
of a graph G′, where G′ can be obtained by applying a p-split to G, will be
referred to as a p-split orientation of G. The decision version of p-Split-MMO,
denoted by p-Split-MMO(W ), asks whether or not the input graph G has a
p-split orientation Λ′ with c(Λ′) ≤ W for a specified integer W .
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x y

Fig. 1. Consider the instance of 1-Split-MMO on the left (here, all edge weights
are 1). If the split operation is applied to the vertex x as shown in the middle figure, the
resulting instance of MMO can be oriented with maximum outdegree equal to 1, so this
is an optimal solution. Observe that if the vertex y had been split instead, the minimum
maximum outdegree would have been 2. This shows that greedily applying the split
operations to the highest degree nodes will not necessarily yield an optimal solution.

3 An Algorithm for Unweighted Graphs

This section presents an algorithm for p-Split-MMO on graphs with unweighted
edges (equivalently, where all edge weights are equal to 1). Its time complexity
is O((n + p)p · poly(n)), which is polynomial when p = O(1).

Our basic strategy is to transform p-Split-MMO to the maximum flow prob-
lem on directed networks with edge capacities: (i) We first select an integer W
as an upper bound on the cost of a p-split orientation. (ii) Next, we construct a
flow network N based on the input graph G and the integer W . (iii) By comput-
ing a maximum network flow in N , we solve p-Split-MMO(W ), i.e., determine
whether p-Split-MMO(W ) admits a feasible solution or not. (iv) By refining W
according to a binary search while repeating steps (ii) and (iii), we find the min-
imum possible value of W and retrieve an optimal p-split orientation of G from
the corresponding flow network.

We now describe the details. (Refer to Fig. 2 for an example of the con-
struction.) Let G = (V,E) be the input graph and p any non-negative inte-
ger. For any positive integer W and multisubset S of V (i.e., a subset of V in
which repetitions are allowed) of cardinality p, define the following flow network
NW,S = (VN , EN ):

VN = V ∪ E ∪ {s, t}
EN =

⋃

e={u,v}∈E

{(s, e), (e, u), (e, v)} ∪
⋃

v∈V

{(v, t)}

where s and t are newly created vertices. Note that |VN | = n + m + 2 and
|EN | = n + 3m. The capacity cap(u, v) of each edge (u, v) ∈ EN is set to:

• cap(s, e) = 1 for every e ∈ E;
• cap(e, u) = cap(e, v) = 1 for every e = {u, v} ∈ E; and



56 Y. Asahiro et al.

(a)

v1

e1 e2
e3

e4
e6

e5

e8

v2 v3

v4 v5

(b)

v1

v2

v3

v4

v5

e1

e2

s t

24
2

2
6

e7

e8

Fig. 2. (a) An input graph G and (b) the flow network NW,S constructed from G when
p = 3, W = 2, and S = {v2, v5, v5}. For clarity, only edge capacities in NW,S greater
than 1 are displayed.

• cap(v, t) = W + W · occ(v) for every v ∈ V , where occ(v) is defined as the
number of occurrences of v in S.

Consider any maximum flow in NW,S . Since the edge capacities are integers,
we can assume that the maximum flow is integral by the integrality theorem
(see, e.g., [8]). Then we have:

Lemma 1. The maximum directed flow from vertex s to vertex t in NW,S equals
|E| if and only if G has a p-split orientation with cost at most W obtained after
doing occ(v) split operations on each v ∈ V .

Proof. (⇒) Let F be a maximum directed flow from s to t with integer values
and assume it is equal to |E|. Since there are |E| units of flows leaving s in F ,
exactly one edge among (e, u) and (e, v) for every e = {u, v} ∈ E has one unit
of flow in NW,S . We construct a p-split orientation Λ of G by first orienting
each edge e = {u, v} ∈ E as (u, v) if (e, u) is using one unit of flow in F and
(e, v) is using zero units of flow in F , or as (v, u) otherwise. At this point, each
vertex v ∈ V has outdegree at most W + W · occ(v) because there are at most
this many units of flow entering v in NW,S . Next, for each v ∈ V , do occ(v)
split operations on v and distribute its outgoing edges evenly among each v and
its resulting new vertices so that every vertex has outdegree at most W . Since∑

v∈V occ(v) = p, the resulting Λ is a p-split orientation of G.

(⇐) Suppose there is a p-split orientation of G with cost at most W obtained
by doing occ(v) split operations on each v ∈ V . Then we can construct a flow
in NW,S that has |E| units of flow by using: (i) all |E| edges of the form (s, e);
(ii) |E| edges of the form (e, u) where e = {u, v} ∈ E (either (e, u) or (e, v)
depending on if {u, v} was oriented as (u, v) or (v, u)); and (iii) at most |V | edges
of the form (v, t). Observe that for (iii), each v ∈ V has at most W + W · occ(v)
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units of flow entering it in NW,S , which is within the capacity limit of its outgoing
edge (v, t), so in total, we have |E| units of flow from s to t. 	

Lemma 2. p-Split-MMO can be solved in O((n + p)p · n2 · T (|VN |, |EN |) · log n)
time, where T (|VN |, |EN |) is the running time for solving the maximum network
flow problem on a directed graph with vertex set VN and edge set EN .

Proof. For any candidate value of W , we can identify a p-split orientation of G
with cost at most W or determine that none exists, by evaluating every multisub-
set S of V of cardinality p, constructing NW,S , computing a maximum directed
flow in NW,S , and applying Lemma 1. The number of multisubsets is at most(
n−1+p

p

)
= O((n + p)p), constructing each NW,S takes O(n + m) = O(n2) time,

and each maximum network flow instance is solved in T (|VN |, |EN |) time.
Since the graph G is unweighted, W is upper-bounded by the maximum

degree of a vertex. Therefore, applying binary search to obtain the minimum
possible value of W (i.e., the smallest W for which the maximum flow is still |E|
for some multisubset S of V ) increases the running time by a factor of O(log n).
The total time complexity is O((n + p)p · n2 · T (|VN |, |EN |) · log n). 	


Since |VN | = O(m) and |EN | = O(m), plugging in T (|VN |, |EN |) = O(m2)
(see [13]) yields:

Theorem 1. p-Split-MMO for unweighted graphs can be solved in O((n + p)p ·
n2m2 log n) time.

4 Unweighted Graphs, Unbounded p

We now prove the NP-hardness of p-Split-MMO for unbounded p, even when
restricted to unweighted graphs. Recall that p-Split-MMO(W ) is the decision
version of p-Split-MMO which asks if G has a p-split orientation of cost at
most W . The main result of this section is:

Theorem 2. p-Split-MMO(3) for unweighted graphs and unbounded p is NP-
complete.

Proof. p-Split-MMO(3) is in NP because a nondeterministic algorithm can guess
a p-split of G and an orientation of the resulting graph in polynomial time and
check if this orientation has cost at most 3.

To prove the NP-hardness, we give a polynomial-time reduction from the
decision version of the Minimum Vertex Cover Problem, VC(k), defined as: Given
an undirected graph G = (V,E) and a positive integer k, determine if there is
a subset V ′ ⊆ V with |V ′| ≤ k such that for each {u, v} ∈ E, at least one
of u and v belongs to V ′. It is known that VC(k) remains NP-complete even if
restricted to graphs of degree at most three [11].
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Fig. 3. Illustrating the reduction from VC(k) to p-Split-MMO(3). (a) An instance of
VC(k) with four vertices and five edges. (b) The instance of p-Split-MMO(3) con-
structed from (a).

The reduction is as follows. (See Fig. 3 for an example.) Suppose we are
given an instance G = (V,E) of VC(k), where G has degree at most three. Write
V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. We construct an instance G′ of p-
Split-MMO(3) by defining: (i) a set U = {u1, u2, . . . , un} of n vertices, where each
ui corresponds to vi ∈ V ; and (ii) a set W = {w1, w2, . . . , wm} of m vertices,
where each wj corresponds to ej ∈ E. In addition, we prepare: (iii) n + m
complete graphs with six vertices each, denoted by GV

1 through GV
n and GE

1

through GE
m. Let V (GV

i ) = {ui,1, ui2 , . . . , ui,6} for each i ∈ {1, 2, . . . , n} and
V (GE

j ) = {wj,1, wj2 , . . . , wj,6} for each j ∈ {1, 2, . . . ,m}. The vertex set of G′ is
thus U ∪ W ∪ V (GV

1 ) ∪ V (GV
2 ) ∪ · · · ∪ V (GV

n ) ∪ V (GE
1 ) ∪ V (GE

2 ) ∪ · · · ∪ V (GE
m).

Next, insert the following edges into the edge set of G′ (which already includes
the edges of GV

1 through GV
n and GE

1 through GE
m): (iv) edges {uh, wj} and

{ui, wj} if ej = {uh, ui} ∈ E for each j ∈ {1, 2, . . . ,m}; (v) an edge {ui, ui,h}
for each i ∈ {1, 2, . . . , n} and each h ∈ {1, 2, . . . , 6}; and (vi) an edge {wj , wj,h}
for each j ∈ {1, 2, . . . ,m} and each h ∈ {1, 2, . . . , 5}. Note that each ui in G′

has degree equal to (6 + the degree of vi in G) and every wj in G′ has degree 7.
Finally, we set p = k. This completes the reduction.

Next, we show that G has a vertex cover with size at most p if and only if
G′ has a p-split orientation whose cost is at most three.

(⇒) Suppose that G has a vertex cover C of size p. Let C ′ ⊆ U be the
p vertices in G′ that correspond to vertices in C. Apply a split operation on
each ui ∈ C ′ to transform it into a pair of vertices ui and u∗

i , the first one
(ui) being adjacent to all six vertices from GV

i and the second one (u∗
i ) being

adjacent to the at most three neighbors from W . Let G′′ be the resulting graph.
By definition, G′′ is obtained by applying a p-split to G′ and we will now show
that G′′ admits an orientation of cost three.

First, every GV
i forms a K7 (a complete graph with seven vertices) together

with ui in G′′. Orient each such K7 so that all of its vertices have outdegree three,
e.g., by applying Proposition 2 in [3]. Secondly, orient the (at most three) edges
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incident to each u∗
i -vertex away from u∗

i . Since C is a vertex cover, every wj-
vertex in G′ will be incident to at most one unoriented edge of the form {ui, wj}
after this step is done. Next, for each wj , if there is one unoriented edge of the
form {ui, wj} then orient it away from wj . Finally, every wj and GE

j form a K7

with one edge incident to wj missing; orient this subgraph as above, but let wj

have one less outgoing edge than the other vertices so that the outdegree of each
such vertex is at most three. This yields an orientation of G′′ of cost three.

(⇐) Suppose G′ has a p-split orientation of cost at most three. If some
vertex ui,h in GV

i was split then we obtain another p-split orientation of cost at
most three by not splitting ui,h but splitting ui instead and orienting the edges
of the resulting K7 as described above, and similarly for vertices in GE

j . We may
therefore assume that every vertex that is split comes from U ∪W . Next, if some
vertex wj in W is split and it has an incident ui-vertex that is not split then
we replace the split operation on wj by a split operation on ui; by doing so and
orienting the edge between ui and wj towards wj , the cost of the orientation
will not increase. This produces a p-split orientation of G′ in which every vertex
from W is incident to at least one vertex from the set of (at most p) vertices
from U that were split, which then gives a vertex cover of G of size at most p. 	

Corollary 1. For any constant ε > 0, it is NP-hard to approximate p-Split-
MMO to within a factor of 4

3 − ε, even for unweighted graphs.

Proof. In the reduction in the proof of Theorem 2, there always exists a p-split
orientation Λ′ of G′ satisfying c(Λ′) ≤ 4, as can be seen by ignoring all available
split operations and just orienting the at most two edges of the form {ui, wj}
for each wj away from wj and all other edges as in the first part of the proof
of Theorem 2. Since there exists a p-split orientation Λ′ with c(Λ′) ≤ 3 if and
only if the given instance of VC(k) has a vertex cover with size at most k, the
above reduction is a gap-introducing one, i.e., if there existed a polynomial-time
( 43−ε)-approximation algorithm for p-split-MMO(3), then VC(k) could be solved
in polynomial time. 	


5 Edge-Weighted Graphs, Bounded p

In this section, we prove that p-Split-MMO on edge-weighted graphs is weakly
NP-hard even if restricted to p = 1. To do so, we give a polynomial-time
reduction from the Partition Problem, defined as follows: Given a set S =
{s1, s2, . . . , sn} of n positive integers, determine if there exists a subset S′ ⊆ S
such that

∑
si∈S′ si =

∑
sj∈S\S′ sj . The Partition Problem is weakly NP-hard

and admits a pseudopolynomial-time solution [11].

Theorem 3. 1-Split-MMO is weakly NP-hard even if the input is restricted to
edge-weighted wheel graphs.

Proof. We construct an edge-weighted, undirected graph G = (V,E,w) from any
given instance S = {s1, s2, . . . , sn} of the Partition Problem. Define K =

∑n
i=1 si

2
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Fig. 4. Let S = {1, 2, 4, 5, 6} be an instance of the Partition Problem. The reduction in
the proof of Theorem 3 sets K = 9 and constructs the edge-weighted graph G above.

and assume without loss of generality that si ≤ K for all si ∈ S. The ver-
tex set V consists of: (i) n vertices representing the integers in S and denoted
by v1, v2, . . . , vn; and (ii) one special vertex, denoted by vc. The edge set E con-
sists of: (iii) the n edges {v1, v2}, {v2, v3}, . . . , {vn, v1} forming a cycle; and (iv) the
n edges {vc, v1}, {vc, v2}, . . . , {vc, vn} forming a star. (Hence, G is a wheel graph.)
For every edge e of type (iii), assign w(e) = K. For every edge {vc, vi} of type (iv),
assign w({vc, vi}) = si. An example is shown in Fig. 4.

Below, we show that the answer to the given instance S of the Partition
Problem is yes if and only if G has a 1-split orientation whose cost is at most K.

(⇒) If there exists an S′ ⊆ S such that
∑

si∈S′ si =
∑

sj∈S\S′ sj then apply a
split operation on the vertex vc and let the two resulting vertices vc,1 and vc,2 be
adjacent to the set of vertices of type (i) representing S′ and S \S′, respectively.
For i ∈ {1, 2}, orient every edge that involves vc,i away from vc,i. Orient the
remaining n edges so that they form a directed cycle v1 → v2 → · · · → vn → v1.
This way, the weighted outdegree of every vertex is at most K.

(⇐) Let Λ′ be a 1-split orientation of G of cost at most K. If S contains a
single element equal to K then the answer to the given instance of the Partition
Problem is trivially yes. On the other hand, if si �= K for all si ∈ S then we claim
that the vertex in G to which the split operation was applied is vc. To prove the
claim, suppose the split operation was applied to some other vertex vj , where
j ∈ {1, 2, . . . , n}, thereby replacing vj by two vertices vj,1 and vj,2. Each of the
n edges not involving vc has weight K, so at most one of the n + 1 vertices in
{v1, v2, . . . , vn, vj,1, vj,2} \ {vj} can orient its edge involving vc towards vc. Let
the weight of this edge be sk. Then the weighted outdegree of vc is 2K −sk > K
because si < K for all si ∈ S, contradicting that the cost of Λ′ is at most K.
This proves the claim. Now, since the split operation was applied to vc (thus
replacing vc by two vertices vc,1 and vc,2) and the cost of Λ′ is at most K, each
of the n vertices in {v1, v2, . . . , vn} has one of the n edges of weight K oriented
away from it. This means that every edge of the form {vc,i, vj} is oriented away
from vc,i, and since the sum of these edges’ weights is 2K, each of vc,1 and vc,2

must have weighted outdegree exactly equal to K. Let S′ be the set of weights
of the edges incident to vc,1. Then

∑
si∈S′ si =

∑
sj∈S\S′ sj = K and the answer

to the given instance of the Partition Problem is yes. 	

Corollary 2. For every fixed integer p ≥ 1, p-Split-MMO on edge-weighted
graphs is weakly NP-hard.
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6 Edge-Weighted Graphs, Unbounded p

Here, we prove that p-Split-MMO with weighted edges is strongly NP-hard if p
is sufficiently large, i.e., p = Ω(n). This result is obtained via a polynomial-time
reduction from the 3-Partition Problem: Given a multiset S = {s1, s2, . . . , s3n}
of positive integers and an integer B such that B/4 < si < B/2 for every
i ∈ {1, 2, . . . , 3n} and

∑
si∈S si = n · B hold, determine if S can be partitioned

into n multisets S1, S2, . . . , Sn so that |Sj | = 3 and
∑

si∈Sj
si = B for every

j ∈ {1, 2, . . . , n}. The 3-Partition Problem is known to be strongly NP-hard [11].

Theorem 4. p-Split-MMO is strongly NP-hard even if the input is restricted to
edge-weighted cactus graphs.

Proof. We construct an edge-weighted, undirected graph G = (V,E,w) from any
given instance (S, B) of the 3-Partition Problem, where S = {s1, s2, . . . , s3n}.
Let p = n − 1 and recall that B =

∑3n
i=1 si

n by definition. G consists of:

• 3n subgraphs, G1 through G3n, each of which is associated with an element
in S. For each i ∈ {1, 2, . . . , 3n}, Gi contains three vertices ui, vi, and wi and
three edges {ui, vi}, {ui, wi}, and {vi, wi} (i.e., Gi is a triangle graph). The
weight of every edge in Gi is set to B.

• One special vertex vc.
• For i ∈ {1, 2, . . . , 3n}, an edge {vc, vi} of weight si that connects Gi to vc.

The constructed graph is a cactus graph. This completes the description of the
reduction. See Fig. 5 for an illustration.

Now we show that the answer to the 3-Partition Problem on input S is yes
if and only if the constructed graph G has a p-split orientation of cost B.
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Fig. 5. An instance of the 3-Partition Problem with S = {7, 7, 7, 8, 9, 10} and B = 24
yields the graph G shown above. In the construction, n = 2 and p = 2− 1 = 1.
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(⇒) If the answer to the 3-Partition Problem is yes, divide the elements of S
into n multisets S1, S2, . . . , Sn where every Sj has the sum B and |Sj | = 3.
Then, do p split operations on vc so that each of the resulting p+1 = n vertices,
called center vertices, becomes adjacent to exactly three vertices vx, vy, and vz,
where {sx, sy, sz} is one of the Sj-sets. By orienting all 3n edges involving center
vertices away from the center vertices, and for each i ∈ {1, 2, . . . , 3n}, orienting
the three edges {ui, vi}, {ui, wi}, and {vi, wi} as (ui, vi), (wi, ui), and (vi, wi),
we obtain a p-split orientation of G of cost B.

(⇐) Consider any p-split orientation Λ′ of G with cost B. Let σ be the total
number of split operations in this p-split that were done on vertices in the Gi-
subgraphs. First, we show by contradiction that σ = 0. Suppose σ ≥ 1. If we start
from G and apply a sequence of p−σ split operations to vc and the new vertices
created by these operations, vc will be replaced by a set of p − σ + 1 = n − σ
vertices, henceforth denoted by C. Call the 3n edges that contain a vertex from C
center edges. Due to the weights of the edges in each Gi-subgraph, if no split
operations are done on ui, vi, or wi then the center edge between vi and C
must be oriented away from C, but each split operation applied to a vertex of
the form ui, vi, or wi will allow at most one center edge to become oriented
towards C. Let W ′ be the sum of the weights of the center edges that were
oriented away from C in Λ′. By definition, the weight of every center edge is less
than B

2 , so W ′ > n · B − σ · B
2 . According to the pigeonhole principle, at least

one vertex in C must have weighted outdegree at least W ′/(n − σ). However,
W ′/(n−σ) > (n ·B −σ · B

2 )/(n−σ) > (n ·B −σ ·B)/(n−σ) = B, which is a
contradiction because the cost of the p-split orientation was B. Thus, σ = 0 and
|C| = p+1 = n. Next, note that if a vertex x in C was connected to four or more
vi-vertices then since these edges must be oriented away from C and each of them
has weight strictly larger than B

4 , the weighted outdegree of x would be strictly
larger than B, which is impossible. Finally, since each of the n vertices in C can
be connected to at most three vi-vertices and there are 3n vi-vertices in total, it
must be connected to exactly three vi-vertices and its weighted outdegree is B.
Letting the weights of the edges of each such vertex form one Sj-set then gives
a partition of S showing that the answer to the 3-Partition Problem is yes. 	


7 Concluding Remarks

This paper introduced the p-Split-MMO problem and presented a maximum
flow-based algorithm for the unweighted case that runs in polynomial time for
any constant p, and proved the NP-hardness of more general problem variants.
Future work includes developing polynomial-time approximation algorithms and
fixed-parameter tractable algorithms for the NP-hard variants. E.g., one could
try to approximate the minimum maximum weighted outdegree for a value of p
specified as part of the input, or approximate the smallest p for which some
specified upper bound on the maximum weighted outdegree is attainable.

Also, it would be interesting to study how the computational complexity of p-
Split-MMO changes if the output orientation is required to be acyclic or strongly
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connected. Borradaile et al. [5] recently showed that unweighted MMO with
either the acyclicity constraint or the strongly connectedness constraint added
remains solvable in polynomial time. In contrast, the closely related problem
of outputting a minimum lexicographic orientation of an input graph, which is
solvable in polynomial time for unconstrained orientations, becomes NP-hard for
acyclic orientations [5] while its computational complexity for strongly connected
orientations is still unknown.
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Abstract. The Stop Number Minimization Problem arises in the man-
agement of a dial-a-ride system with small autonomous electric vehicles.
In such a system, clients request for a ride from an origin point to a desti-
nation point, and a fleet of capacitated vehicles must satisfy all requests.
The goal is to minimize the number of pick-up/drop-off operations. In
[18], a special case was conjectured to be NP-Hard. In this paper we give
a positive answer to this conjecture for any fixed capacity greater than or
equal to 2. Moreover, we introduce a set of non-trivial instances that can
be solved in polynomial time for capacity equal to 2, but is NP-Hard for
higher capacities. We also present a new family of valid inequalities that
are facet-defining for a large set of instances. Based on these inequalities,
we derive a new efficient branch-and-cut algorithm.

Keywords: Autonomous vehicles · Branch-and-cut · Complexity

1 Introduction

Significant changes are arising in the way people travel from point to point.
Tightening CO2 regulations together with a consistent growth in the usage of
smartphones and web services are inducing new technology-driven trends in
transportation. All in all, four major trends deserve to be highlighted: diverse
mobility, autonomous driving, electrification, and connectivity [11].

In this scenario arises the VIPAFLEET project which attempts to contribute
to the development of innovative and sustainable urban mobility solutions. The
VIPA (a French acronym that stands for Autonomous Individual Passenger Vehi-
cle) is an electrical vehicle designed by Ligier [15] and EasyMile [9] to operate
without any driver, notably in closed and semi-closed sites like industrial and
commercial areas, medical complexes and campuses.

VIPAFLEET is only one among many projects derived from the changes in
transportation sector. The new trends are giving birth to new challenges, not
only in terms of modern technologies but also in terms of unexplored problems in
the management of such mobility systems (see [17] for a survey on the subject).
Among such systems we can mention ride-sharing [1], car-sharing [3,21] and
dial-a-ride (DAR) [6] systems.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Lee et al. (Eds.): ISCO 2018, LNCS 10856, pp. 64–76, 2018.
https://doi.org/10.1007/978-3-319-96151-4_6
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The VIPA may work in many modes. In this paper, we focus on the ‘tram
mode’ which asks for the management of a specific dial-a-ride system. In such
a mode, the circuit and its stations are predefined. A special station is denoted
the depot. Customers use their smartphones or a ‘call terminal’ to request for
a ride from an origin station to some destination station of their choice. For its
part, the fleet of capacitated vehicles travels around the circuit (always in the
same direction, say counterclockwise) and stops at a station if requested.

It is essential to mention that unlike usual applications, stations are not part
of the circuit but attached to it (see Fig. 1). Therefore, in order to pick-up or
drop-off some customer, a deviation on its regular route becomes necessary. If we
suppose that each deviation takes about the same amount of time to be travelled
through, then we may state that the global travel time is essentially related to
how many deviations the fleet is forced to execute. For this reason, improving
the service quality fairly corresponds to minimizing the total number of stops
performed by the fleet of vehicles.

Fig. 1. Circuit scheme

The Stop Number Minimization Problem (SNMP) consists of assigning each
client demand to a vehicle such that no vehicle gets overloaded, and the total
number of vehicles’ stops is minimized. For this, one may use as many vehicles
as desired. Notice that a vehicle is allowed to make several tours before serving
a demand and that a demand may request several seats on a single vehicle.

Typically, in practice, the system should be able to respond on-demand
through online procedures. However, in order to evaluate such responsive algo-
rithms, the static case (offline) must be benchmarked. Furthermore, the knowl-
edge and insights obtained from the resolution and difficulties of the static case
are fundamental to the design of better suited online procedures. A natural choice
is thus to investigate where lies the real difficulty of SNMP on the static case.

From this point of view, we focus on the constrained version of SNMP where
each demand can request only one seat at a vehicle and the fleet must respond to
all requests in a single tour. This restricted problem is denoted Unit Stop Number
Minimization Problem, hereafter denoted USNMP. In this paper we give new
results on the complexity of USNMP answering the conjecture given in [18]. On
the other hand, we also discuss the combinatorics behind USNMP by analyzing
the integer linear program formulation proposed in [18]. In this sense, we give
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a new family of important facet-inducing inequalities and introduce symmetry-
breaking constraints capable of improving computational performances.

The paper is organized as follows: Previous and related work are presented in
Sect. 2. In Sect. 3, we define and formalize the USNMP. In Sect. 4, the complex-
ity of USNMP is discussed, and in Sect. 5, polyhedral approaches are studied.
Finally, our computational results are presented in Sect. 6.

2 Previous and Related Work

Since autonomous and electric vehicles represent a rupture from the old tra-
ditional way of travelling, resulting in less pollution, safer traffic and a more
rational usage of public space, many studies from a wide range of perspectives
can be found in the literature [17]. Here we focus on presenting the work related
to VIPA vehicles.

Even if there remains a great deal of challenges before the deployment of fully
automated transport systems, the first steps have already been made towards
it. A certification procedure for such systems in cities and urban environments
is described in [22]. The first experiences with the procedure are also mentioned
with VIPA vehicles.

From the practical point of view, online procedures are developed and imple-
mented in order to handle the management of a similar request system, but
with different objective functions (makespan and total length for example) in
[4]. In addition, VIPA vehicles have been tested on real situations and their
performances have been reported in [20].

The number of stops was considered as a key performance indicator for the
first time in [18], where the SNMP is first introduced. Both exact and heuristic
approaches are proposed through branch-and-price and GRASP procedures. In
the same paper, the complexity of SNMP is defined to be NP-Hard with a simple
reduction from Partition Problem [12]. The USNMP variant is also mentioned
but it is not further investigated. Its complexity is conjectured to be NP-Hard
but remains an open question. In this paper we answer this question.

Arising from telecommunication industry, the C-Edge Partition (C-EP)
problem has many similarities to the USNMP. In [13], its complexity is inves-
tigated and approximation algorithms are conceived. In Sect. 4, we define this
related problem and detail its correlation to USNMP.

3 The Unit Stop Number Minimization Problem

Throughout this paper the edge set of an undirected graph G is given by E(G)
or simply E if the graph in question is implicit. Similarly, the vertex set of G is
denoted V (G) or simply V . Finally, let V (E) denote the set of vertices spanned
by the edge set E.

Since only one tour is allowed, the notion of circuit can now be replaced by an
ordered line from the depot to the last station on the circuit. Thereby, demands
can be represented by intervals (from its origin to its destination) on this line.
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Fig. 2. Construction of the associated graph GI from instance I

Let V = {1, . . . , n} denote the set of stations sequentially ordered as they
appear in the circuit network and E = {e1, . . . , em} denote the set of unit load
dial-a-ride demands such that each demand e ∈ E is specified by an origin station
oe ∈ V and a destination station de ∈ V , that is, e = (oe, de). Also, let K denote
the set of available identical vehicles each with capacity C ∈ Z+. It may be easily
seen that |E| is an upper bound on the number of available vehicles. Therefore,
we always set |K| = |E|.

Given an instance I = (V,E,C) of USNMP, the graph associated to I is
denoted GI = (V,E) (or simply G if the instance in question is implicit). Notice
that parallel edges are allowed. Figure 2 depicts the construction of GI = (V,E)
from instance I.

Let ΔE(v) = {e ∈ E : oe ≤ v and de ≥ v + 1}, that is, the set of demands
that cross or starts at station v. We say that demand e ∈ E intersects station
v ∈ V if e ∈ ΔE(v). Then a feasible solution to USNMP is a partition of E into
|K| subsets {E1, . . . , E|K|} (i.e.,

⋃|K|
i=1 Ei = E and Ei ∩ Ej = ∅ for i �= j), such

that |ΔEi
(v)| ≤ C for any i ∈ K and v ∈ V . Remark that there always exists

a trivial feasible solution where each demand is assigned to a different vehicle
(i.e., Ei = {ei} for each i ∈ {1, . . . , |K|}).

Given a feasible solution {E1, . . . , E|K|}, the vehicle i stops in every station
of V (Ei). Therefore, the cost of this solution is

∑|K|
i=1 |V (Ei)|, and the problem

USNMP is to find a feasible solution of minimum cost. To fix ideas, consider the
instance I described in Fig. 2 with C = 2. Then a feasible solution of cost 5 is
E1 = {e1, e2}, E2 = {e3, e4, e5}, and Ei = ∅ for i ∈ {3, 4, 5}.

An interesting particular case arises when there exists some station v′ wherein
all demands intersect, that is, ΔE(v′) = E. Thus each vehicle may take at most
C demands, that is, each subset Ei must have at most C edges. This case is
denoted Intersection-USNMP. To illustrate it, consider again instance I described
in Fig. 2. I is not an instance of Intersection-USNMP. However, if we define I ′ by
removing e4 from I, then every demand intersects station 2, that is, E = ΔE(2).

In this case, each station is either an origin station or a destination station,
and v′ is chosen to be the last origin station. Notice that, consequently, the
associated graph GI′ is bipartite: the set V can be divided into two independent
sets S and T , where S = {v ∈ V : v ≤ v′} is the set of origin stations and
T = {v ∈ V : v ≥ v′ + 1} is the set of destination stations. In the next section
we show that USNMP is NP-Hard even in this restricted case.
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4 Complexity

In [18], SNMP was shown to be weakly NP-Hard using a reduction from Partition
Problem and USNMP was conjectured to be NP-Hard. We answer affirmatively
to this conjecture by showing that for any fixed capacity C ≥ 2, USNMP is
strongly NP-Hard.

Theorem 1. USNMP is NP-Hard for any fixed capacity C ≥ 2.

Proof. Path Traffic Grooming (PTG) problem arises in optical networks and is
defined in [2] as follows. An instance J = (P,R, g) of PTG is given by a simple
path P on n vertices, an integer g called grooming factor and a simple graph
R on the same vertices as P , R = (V (P ), E). We say that an edge r = (i, j)
of R overlaps edge e ∈ E(P ) if e lies in the subpath between i and j in P .
The PTG problem is to find a partition of edges E into subsets {R1, . . . , R|E|}
that minimizes

∑|E|
i=1 |V (Ri)|, where the number of edges in each subset Ri

overlapping edge e ∈ E(P ) is at most g. Recall that V (Ri) is the set of end-
nodes of Ri.

The problem PTG is NP-Hard. In fact, PTG is showed in [2] to be APX-
Complete for any fixed grooming factor C ≥ 2, that is, an NP-Hard problem
that can be approximated within a constant factor but do not admits an approx-
imation factor of 1 + ε unless P = NP .

Given an instance J = (P,R, g) of PTG and an instance I = (V,E,C) of
USNMP, such that there are no parallel demands in E, it is easy to see that
both problems are equivalent. Indeed, path P may be seen as the sequence of
stations on the circuit of USNMP, the edges of R are the demands E and the
grooming factor g can be translated into the capacity of the vehicles C. USNMP
is thus a generalization of PTG. �	
Corollary 1. USNMP is APX-Complete.

We now study the particular case where there exists a station wherein all
demands intersect. For this, we define the C-Edge Partition problem (C-EP), first
introduced in [13]. Given an instance J = (H,C), where H = (V,E) is a simple
graph andC is an integer, find a partition ofE into subsets {S1, . . . , S|E|} that min-
imizes

∑|E|
i=1 |V (Si)|, such that |Si| ≤ C. Notice that given an instance J = (H,C)

of C-EP and an instance I = (V,E,C) of Intersection-USNMP, both problems are
equivalent when H is bipartite and there are no parallel demands in E.

For C = 2, it has been shown in [13] that C-EP problem reduces to the
Maximum 2-chain Packing problem, which can be solved in O(m) [16]. Below
we show that Intersection-USNMP can also be solved in polynomial time when
C = 2, even if there are parallel demands.

Theorem 2. Intersection-USNMP can be solved in polynomial time when C = 2.

Proof. Let GI = (V,E) be the graph associated with an instance I = (V,E, 2)
of Intersection-USNMP. We define a partition {E1, . . . , E|K|} of E as follows.
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Let each subset Ei be composed of two parallel demands for 0 ≤ i ≤ k′, such
that the set of remaining demands E′ = E \{⋃k′

i=0 Ei} does not contain any pair
of parallel demands. Moreover, let {Ek′+1, . . . , E|K|} be the solution given by
solving the maximum 2-chain packing problem on the simple graph G′ = (V,E′).
We show that {E1, . . . , E|K|} is an optimal solution.

For this, let OPT2(H ′) be the optimal value of Intersection-USNMP for some
graph H ′ = (V ′, E′) and capacity C = 2. Moreover, let H ′′ = (V ′, E′′) be the
graph obtained from H ′ by adding two parallel demands a and b to E′, that is,
E′′ = E′ ∪ {a, b}. We claim that OPT2(H ′′) = OPT2(H ′) + 2 and thus, in order
to obtain the optimal solution for H ′′, one can just put a and b together in the
same subset (vehicle) E′′

i , and solve the problem on H ′.
Suppose that a and b are in different subsets E′′

a and E′′
b in the optimal

solution (otherwise the claim is true) and that OPT2(H ′′) ≤ OPT2(H ′) + 1. By
definition, V (E′′

a ) and V (E′′
b ) have at least 2 vertices (the end-nodes of a and b).

If both V (E′′
a ) and V (E′′

b ) have strictly more than 2 vertices, then OPT2(H ′′) ≥
OPT2(H ′) + 2. Hence, at least one of them must have exactly 2 vertices, say
V (E′′

a ). Therefore, either E′′
a has a single edge a or it has another edge c parallel

to a. In both cases, we can put a and b on the same subset to obtain another
solution with the same cost, which proves OPT2(H ′′) = OPT2(H ′) + 2. �	

Next we show that, surprisingly, Intersection-USNMP is NP-Hard for C = 3
even when the associated bipartite graph G is planar.

Theorem 3. The Intersection-USNMP is NP-Hard for C = 3 even when G is
restricted to the class of planar graphs.

Proof. Given a graph G = (V,E), the Connected-k-Edge Partition problem is
to find a connected k-partition of E, that is, a partition of E, where each subset
induces a connected subgraph having exactly k edges. In [8], this problem is
proved to be NP-Hard for any fixed k ≥ 3, even when graph G is a planar
bipartite graph.

We reduce the Connected-3-Edge Partition to Intersection-USNMP for C =
3. Given a simple planar bipartite graph B = (S, T,E), where |S ∪ T | = n
and |E| = 3m, we construct the following Intersection-USNMP instance: Let
V = |S ∪ T | be the set of stations. We number the stations in S from 1 to |S|
and stations in T from |S| + 1 to n. The set of demands is defined by edges
E(B). Notice that each demand has its origin in S and its destination in T .
Clearly, all demands intersect each other at station |S|. We show that B has a
connected-3-edge partition if and only if the constructed instance has a solution
with 4m stops.

Given a Intersection-USNMP solution {E1, . . . , Ek′ , . . . , E|K|}, where all sub-
sets Ei �= ∅ for i ≤ k′ and Ei = ∅ for k′ + 1 ≤ i ≤ |K|, we define ρi = |Ei|

|V (Ei)| the
density of subset (vehicle) i ∈ 1, . . . , k′. From our construction, G = (V,E) is a
simple planar bipartite graph. Thus, the highest density ρ∗ a vehicle with capac-
ity 3 can get is 3

4 , which can be achieved if and only if its 3 assigned demands
are connected.
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A solution with 4m stops is optimal and all subgraphs are connected since

k∑

i=1

|Vi| =
k∑

i=1

|Ei|
ρi

≥
k∑

i=1

|Ei|
ρ∗ =

3m

ρ∗ = 4m.

Thus, if the optimal solution stops 4m times, we can derive a connected-3-
edge partition of B. Reversely, a connected-3-edge partition of B clearly gives a
solution with 4m stops. �	

For fixed C ≥ 3, C-EP is NP-Hard for general graphs [13]. From Theorem 3,
this result may be extended to the more restricted class of planar bipartite
graphs. This is summarized in the theorem below.

Theorem 4. C-EP is NP-Hard for C = 3 even when G is restricted to the class
of planar bipartite graphs.

5 Polyhedral Approach

The USNMP was formulated in [18] as the following integer linear problem:

min
∑

v∈V

∑

i∈K

yi
v (1)

subject to
∑

i∈K

xi
e = 1 ∀e ∈ E, (2)

∑

e∈ΔE(v)

xi
e ≤ C ∀v ∈ V, i ∈ K, (3)

xi
e ≤ yi

v ∀i ∈ K, e ∈ E, v ∈ {oe, de}, (4)

xi
e ≥ 0 ∀e ∈ E, i ∈ K, (5)

xi
e ∈ {0, 1} ∀e ∈ E, i ∈ K, (6)

yi
v ∈ {0, 1} ∀v ∈ V, i ∈ K. (7)

The variable xi
e expresses the fact that demand e is assigned or not to vehicle

i, that is, xi
e = 1 if e ∈ Ei, otherwise xi

e = 0. The variable yi
v expresses whether

or not vehicle i stops at station v, that is, yi
v = 1 if v ∈ V (Ei), otherwise yi

v = 0.
The objective function (1) aims at minimizing the total number of stops. The
assignment constraints (2) guarantee that each demand is assigned to exactly
one single vehicle. The capacity constraints (3) ensures the vehicle’s capacity is
not violated at any station of the circuit. Stop constraints (4) forces a vehicle to
stop at the departure and arrival stations of a demand assigned to it. Finally,
constraints (5), (6) and (7) apply bounds and domains to variables.
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Notice that, in practice, (7) can be dropped from the integer program since
the integrality of variables the y is assured by (1), (4) and (6). Furthermore, we
suppose that for each station v ∈ V , there is at least one demand that stops at
it, otherwise one may just remove it from the set of stations.

From primal-dual relations, we show that the linear relaxation defined by
(1)–(5) always provides the trivial lower bound of value |V |, that is, each station
v ∈ V must be visited at least once.

Theorem 5. The linear relaxation, defined by (1)–(5), provides a lower bound
of |V | stops.

This result shows how the given formulation is weak. To illustrate it, con-
sider an instance where all demands go from station 1 to station 2: the linear
relaxation provides a lower bound of 2 stops, while the integer optimal solution
value is 2

⌈
|E|
C

⌉
. Therefore, it is not a surprise that traditional branch-and-bound

approaches have failed in solving this integer program efficiently. In order to over-
come this, we investigate new valid inequalities that improve this formulation.

Firstly, we introduce two natural valid inequalities (8) and (9) that reinforce
the capacity constraints by ensuring that a vehicle can take at most C demands
starting or finishing at a station if and only if it stops at this station:

∑

e∈δ−
E (v)

xi
e ≤ Cyi

v ∀v ∈ V, i ∈ K, (8)

∑

e∈δ+
E(v)

xi
e ≤ Cyi

v ∀v ∈ V, i ∈ K, (9)

where δ+E(v) = {e ∈ E : oe = v} and δ−
E (v) = {e ∈ E : de = v} is the set of

demands that have v as their origin and destination, respectively.
Next we present a new important family of valid inequalities, called k-tree

inequalities that considerably improve the value of the linear relaxation even
when inequalities (8) and (9) are added. To define these inequalities we need
some additional notations.

For a given graph G, let dG(v) denote the degree of vertex v ∈ V . Given a
subset of edges T ⊆ E, the undirected graph induced by edges in T is denoted
by G[T ]. Finally, T is called a k-tree if |T | = k and G[T ] is a tree.

Consider the family of k-tree inequalities,
∑

e∈T

xi
e ≤

∑

v∈V (G[T ])

(d
G[T ](v) − 1)yi

v ∀i ∈ K, j ∈ V, T ⊆ ΔE(j),

such that T is a (C+1)-tree.
(10)

Theorem 6. The k-tree inequalities are valid.

Proof Sketch. We prove that k-tree inequalities are valid by showing that they
are Chvátal-Gomory inequalities of rank 1 [5,14]. More specifically, we show that
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with a conical combination of inequalities (3) and (4), we obtain the following
inequality:

(C + 1)
∑

e∈T

xi
e ≤ (C + 1)

∑

v∈V (G[T ])

(d
G[T ](v) − 1)yi

v + C,

which can be divided by C + 1 and the independent term C
C+1 rounded down:

∑

e∈T

xi
e ≤

∑

v∈V (G[T ])

(d
G[T ](v) − 1)yi

v +
⌊

C

C + 1

⌋

.

�	
The inclusion of constraints (8) and (9) are quite effective when the graph

is dense with respect to C, that is, nodes often have degree greater than C.
However, when the graph is sparse they fail to reinforce the formulation. The
worst case arises notably when the degree of each node is bounded by C. In this
case, such constraints become redundant and do not strengthen the formulation
at all. On the other hand, k-tree inequalities (10) are very important on sparse
graphs. Consider the example given by Fig. 3 where C = 2. In such example,
the lower bound provided by the linear program (1)–(9) is |V |, while the integer
optimal solution value is 3|V |

2 . The addition of k-tree inequalities enables the
linear relaxation to find the integer optimal solution. Indeed, we show that k-
tree inequalities are actually facet-defining.

|V |
2

1

|V |

|V |
2 + 1

Fig. 3. Example of instance where k-tree inequalities are important

Theorem 7. The k-tree inequalities are facet-defining under the following nec-
essary and sufficient conditions:

1. If G[T ] is not a star.
2. G[T ] contains more than 2 non-leaf nodes or E \ T does not contain an edge

(u, v) such that u and v are non-leaf nodes of G[T ].

Unfortunately, k-tree inequalities appear in exponential number and thus,
must be treated through a separation procedure. However, its separation prob-
lem is NP-Hard and cannot be solved exactly without spending substantial com-
putational time. As a consequence, we solve the separation problem heuristically.

Theorem 8. The separation problem of k-tree inequalities is NP-Hard even
when all variables yi

v have the same value for all v ∈ V (G[T ]) and a given
i ∈ K.
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Proof Sketch. We give a reduction from the k-Minimum Spanning Tree problem
(k-MST) which is defined as follows. Given a graph G = (V,E) with edge weights
we, find a tree T = (V ′, E′) spanning exactly k edges (or k+1 vertices) of weight
at most B. The k-MST can be solved in polynomial time when G is itself a tree
or k is a fixed constant, but it is NP-Hard in the general case [10,19]. �	

6 Computational Results

The polyhedral theory behind valid inequalities and how they are capable of
sculpting the convex hull of integer solutions is quite elegant. From the opti-
mization point of view however, our goal is clear: finding an optimal solution.
Consequently, it is not relevant whether or not an inequality is valid, as long as
we guarantee that there is at least one optimal solution in the feasible region.

Many assignment problems hide a natural symmetry issue that slows down
typical branch and bound applications. Symmetric solutions can be seen as differ-
ent solutions with the same objective function value. In [7], this issue is addressed
by introducing symmetry-breaking constraints. Such constraints are intention-
ally not valid inequalities in the sense that they attempt to remove some integer
feasible solutions from the feasible region, while keeping a symmetric solution
for each solution removed.

We have adapted these constraints to fit USNMP. Constraints (11) reinforces
constraints (2) in a way that the i-th demand must be assigned to one of the first
i vehicles. Constraints (12) assures that demand e can be assigned to vehicle i
only if vehicle i − 1 serves at least one of the first e − 1 demands.

e∑

i=1

xi
e = 1 ∀e ∈ E (11)

e∑

j=i

xj
e ≤

e−1∑

u=i−1

xi−1
u ∀e ∈ E, i ∈ K : e ≥ j (12)

Table 1 provides a comparison of performances between the formulation (1)–
(7) given in [18] solved by CPLEX 12.7 (column CPLEX) and the reinforced
formulation (1)–(9) with the addition of symmetry-breaking constraints (11)–
(12) and k-tree inequalities (10) embedded on the branch-and-cut procedure
(column B&C). The instances were generated randomly with the number of
demands |E| ranging from 30 to 50, the number of stations |V | from 10 to 30
and the capacity was fixed at 5. For each set of parameters, 3 instances were
tested (column i). The time of resolution (CPU ) is displayed in seconds. Time
limit was set to one hour and the instances that were not solved within 1 hour
are marked with an asterisks. The number of nodes on the branch-and-bound
tree is displayed under column Nodes. The gap percentage between the best
integer solution found and the lower bound provided by the linear relaxation is
displayed under column GAP. Finally, Time on Cuts shows the relative amount
of time spent on solving the separation problem.
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As Table 1 shows, some of the instances that CPLEX was not able to solve
within an hour, could be solved by the reinforced formulation. Another way to
understand the strength of the added constraints is by comparing the respective
optimality gaps and the sizes of the branch-and-bound trees. However, there is
still place for improvements as the separation problem requires a great amount
of time to be solved.

Table 1. Computational results

Instances CPLEX B & C

|E| |V | C i CPU(s) Node(×1000) GAP (%) CPU (s) Nodes(×1000) GAP (%) Time on

Cuts (%)

30 10 5 1 3.90 2.98 27.91 0.78 0.09 13.30 34.62

30 10 5 2 2.41 1.34 21.55 0.82 0.07 7.45 28.05

30 10 5 3 43.75 35.7 28.85 3.49 0.79 15.23 37.82

30 20 5 1 1.52 1.12 16.09 1.10 0.17 10.31 54.55

30 20 5 2 6.75 4.11 17.22 0.89 0.12 10.78 33.71

30 20 5 3 0.99 0.35 10.78 0.40 0.02 6.66 5.00

30 30 5 1 0.22 0.07 5.13 0.13 0.001 2.13 7.69

30 30 5 2 0.19 0.01 2.70 0.08 0 0 12.50

30 30 5 3 0.33 0.02 5.56 0.28 0.02 3.17 17.86

40 10 5 1 3600∗ 1073 39.59 225.1 15.57 16.70 63.91

40 10 5 2 70.84 30.2 35.07 14.18 2.70 18.30 51.48

40 10 5 3 3600∗ 1091 37.79 191.7 16.59 23.04 63.31

40 20 5 1 89.79 42.8 19.55 34.08 3.44 14.33 67.31

40 20 5 2 151.4 61.1 18.03 16.89 0.99 10.81 56.72

40 20 5 3 466.1 194.7 21.84 63.55 6.29 15.29 66.55

40 30 5 1 17.11 9.32 11.63 2.72 0.08 6.72 29.78

40 30 5 2 48.74 60.1 10.64 3.91 0.43 6.77 55.24

40 30 5 3 74.52 65.0 12.64 4.20 0.45 7.61 59.05

50 10 5 1 3600∗ 963.7 43.88 3600∗ 207.4 25.82 55.16

50 10 5 2 3600∗ 876.3 44.35 1210 69.67 25.81 47.91

50 10 5 3 3600∗ 773.9 43.21 3600∗ 133.4 18.94 68.46

50 20 5 1 3600∗ 848.9 33.93 3600∗ 60.66 21.39 90.90

50 20 5 2 3600∗ 868.6 31.19 3600∗ 128.0 22.13 73.06

50 20 5 3 3600∗ 930.6 31.02 3600∗ 112.3 23.94 85.88

50 30 5 1 3600∗ 1275 19.30 260.3 14.51 11.93 73.31

50 30 5 2 3600∗ 1051 18.94 311.2 17.60 13.25 71.11

50 30 5 3 3600∗ 1549 15.25 206.5 8.95 9.37 57.09

7 Conclusion

In this paper we investigated the USNMP, a constrained variant of SNMP. We
proved that USNMP is NP-Hard for any fixed capacity C ≥ 2. We also, studied
a special case where there exists a station wherein all demands intersect and
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showed that this case is easy to solve when C = 2, but is surprisingly NP-Hard
for C ≥ 3. In addition, we introduced new families of valid inequalities. Finally,
we showed that these inequalities have a great impact in the resolution of the
problem.
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Abstract. The Maximum Concurrent Flow Problem (MCFP) is often
used in the planning of transportation and communication networks. We
discuss here the MCFP with incomplete data. We call this new prob-
lem the Incomplete Maximum Concurrent Flow Problem (IMCFP). The
main objective of IMCFP is to complete the missing information assum-
ing the known and unknown data form a MCFP and one of its optimal
solutions. We propose a new solution technique to solve the IMCFP
which is based on a linear programming formulation involving both pri-
mal and dual variables, which optimally decides values for the missing
data so that they are compatible with a set of scenarios of different
incomplete data sets. We prove the correctness of our formulation and
benchmark it on many different instances.

Keywords: Maximum concurrent flow
Multi-commodity flow problems · Incomplete data · Unknown data
Uncertainty · Inverse optimization · Transportation systems

1 Introduction

Network flows have been introduced long ago (see, e.g., [12], enhanced later by
[11]) to tackle single commodity flow problems, such as the max-flow problem.
Since then, these models have been generalized for multiple commodities [20]
and grouped under the label of multi-commodity flow models. Nowadays, multi-
commodity flow formulations are extensively used in many contexts for their
ability to capture the movements of different types of commodities in various
real-world activities such as people in transportation models, data in telecommu-
nication networks, water flows... (see, e.g., [1]). These formulations are generally
used to help make the best cost-effective solution for allocating resources; this
leads to optimize a cost function.

In real-world applications, the available data are often uncertain or incom-
plete, and their actual values may only be revealed at a time when the overall
decision strategy has already been chosen. This is often the case in transporta-
tion systems where the parameters are time-dependent and event-sensitive. Sta-
tistical inference and data mining represent convenient ways to deal with this
c© Springer International Publishing AG, part of Springer Nature 2018
J. Lee et al. (Eds.): ISCO 2018, LNCS 10856, pp. 77–88, 2018.
https://doi.org/10.1007/978-3-319-96151-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96151-4_7&domain=pdf


78 P.-O. Bauguion et al.

uncertainty. One of the best known inference models in transportation systems is
the Four Step Model [18], which is an algorithm that iterates over time according
to an equilibrium criterion. More recently, a lot of attention has been devoted
to machine learning approaches, which generally performs better on large scale
datasets. In this context, [21] proposes bayesian networks and [17] uses a deep
learning approach to forecast flow in transportation systems.

However, optimization methods that deal with uncertainty actually do exist.
To the best of our knowledge, [10] was the first to propose a stochastic approach
to tackle incompleteness of input data. It assumes that uncertain data follow
some given probability distribution, and that the objective of this approach
is not to optimize a certain cost, but an expected cost instead. On the other
hand, [22] proposed a complementary approach by optimizing a robust criterion
such as the worst case or the maximum regret. This particular method received
renewed attention from [6,7], while [5] applies this approach to multi-commodity
flow problems by considering a polyhedral uncertainty set of demands. Later, [3]
mixed the recourse variables introduced in [10] with the robust approach for a
network flow and design problem.

Optimization methods can also be used to optimally fit experimental mea-
surements. In [15], multi-commodity flow optimization is used to model a gas
transportation network while retrieving missing data. The problem discussed in
[15] consists in recomposing the flow on each arc, knowing only the global amount
of incoming and outgoing flows for each node. The problem of finding a minimal
adjustment of the cost function to ensure the optimality of a given solution gen-
erated a particular interest with [9] under the label of inverse optimization. For
example [2,23] apply this concept to multi-commodity flow problems (especially
min cost flow problem). The survey [14] on this subject includes situations where
the inverse problem seeks parameters other than objective function coefficients.

The Maximum Concurrent Flow Problem (MCFP) has been extensively stud-
ied over time [4,8,20], but in this paper we present a new approach for finding
optimal maximum concurrent flows using incomplete data. Our method seeks
optimal solutions and completes the partial input. This problem typically arises
when we have insights about the global behavior of a system while data are
partially unknown [15]. Symmetrically it can validate/invalidate a hypothetical
behavior by comparing it with the observed data. This is particularly relevant
in transportation when the routing strategy of passengers is known while data
are incomplete. We call this problem Incomplete Maximum Concurrent Flow
Problem (IMCFP).

The rest of this paper is organized as follows: Sect. 2 recalls the MCFP and
presents the IMCFP. In Sect. 3 we propose a formulation for the IMCFP by inte-
grating both primal and dual formulations of the MCFP, and prove its correct-
ness based on the complementary slackness conditions of Linear Programming
(LP), which we recall for convenience [16]. Then, in Sect. 4 we present prelim-
inary experiments for these formulations and their practical interest. Finally,
Sect. 5 concludes the paper.
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2 The Maximum Concurrent Flow

Consider the following (well-known) problem.

MCFP. Given a simple directed graph G = (V,A), an arc capacity func-
tion c : A → R+, a set K of triplets k = (o, d,D) ∈ V 2 ×R+, find: a scalar
γ ≥ 0 (called threshold) and a set of flows fk on G for each k ∈ K such
that (i) for each arc a ∈ A, the arc load of f on a (i.e., the sum of the
flows on a) does not exceed the arc capacity ca; (ii) each “o − d” flow fk

has value γD for each k = (o, d,D) ∈ K; (iii) γ is maximum.

We recall that, for a given k = (o, d,D) ∈ K, a flow f having value D in a
graph G from node o to node d is a non-negative arc function f : A → R+ such
that

∑

j∈N−(d)

fjd − ∑

j∈N+(d)

fdj = D and the following flow balance equations hold

(we omit k index for clarity):

∀i ∈ V � {o, d}
∑

j∈N−(i)

fji =
∑

j∈N+(i)

fij . (1)

We also recall that N−(i) is the set of nodes j such that (j, i) ∈ A and N+(i)
such that (i, j) ∈ A, for each i ∈ V .

The MCFP was introduced in [20]. It can be formulated as follows using LP:

max
γ≥0,f≥0

γ

∀k = (o, d,D) ∈ K
∑

j∈N−(d)

fk
jd = γD +

∑

j∈N+(d)

fk
dj

∀k = (o, d,D) ∈ K, i ∈ V � {o, d} ∑

j∈N−(i)

fk
ji =

∑

j∈N+(i)

fk
ij

∀a = (i, j) ∈ A
∑

k∈K

fk
a ≤ ca.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(2)

Its dual is (one can choose appropriate inequalities instead of equalities for the
first and second sets of constraints of (2)):

min
p≥0,u≥0

∑

a∈A

uaca

∀k = (o, d,D) ∈ K,∀a = (i, j) ∈ A, pk
i + ua ≥ pk

j

∀k = (o, d,D) ∈ K, pk
o = 0∑

k=(o,d,D)∈K

pk
dD ≥ 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3)

where ua, (for a ∈ A) are the dual variables associated to the capacity con-
straints (last set of constraints of (2)) and pk

i (for k ∈ K, i ∈ V ) are the dual
variables associated to the flow conservation constraints (first and second sets
of constraints of (2)). This implies that the MCFP is polynomial-time solv-
able (for example with an interior point algorithm). The MCFP is also strongly
polynomial-time solvable [19], but it appears to be common knowledge that, for
instance sizes of current practical interest, it is empirically more efficient to use
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a good LP solver on Problem (2) rather than the algorithm in [19]. The MCFP
is often used in real-life applications in order to design networks or evaluate
the arcs with highest risk of becoming saturated [13]. The main applied interest
in the MCFP is that, through the ratio variable γ, it ensures a fairness of arc
capacity utilization over all flows.

Our motivation for studying this problem stems from transportation net-
works, be they road or rail-oriented. As a critical increase of the load can induce
a decrease of the quality of services, an hypothesis consists of assuming that the
passengers traffic tends naturally to balance itself to an equilibrium [18]. One
can model this problem by minimizing the maximum capacity utilization, and
the latter can be reformulated as a MCFP [20]. In our context, we have historical
traffic data including a partial observation of the arc loads for a certain subset of
arcs. For some networks, we are also given a subset A′ ⊂ A of arcs with known
capacities.

In general, however, we do not know the arc capacities. The problem we are
interested in is the MCFP with incomplete arc capacities. The MCFP in LP
formulation (2) without the capacity constraints is clearly an unbounded LP. To
avoid this situation, we employ a given set S of scenarios from our historical arc
load database. Each scenario s = (As, �s,Ks) ∈ S consists of a subset As ⊂ A
of arcs, a partial arc load function �s : As → R+, and a set of commodities Ks.
We require that: (i) missing capacities should be estimated so as to allow the
maximum known arc loads over all scenarios, (ii) arc loads from computed flows
should be as close as possible to the loads given in the scenarios, and (iii) each
flow solution for a scenario should describe an optimal solution of the MCFP
w.r.t. capacity and commodity values. We therefore define the following problem,
which is new as far as we could ascertain.

IMCFP. Given a graph G = (V,A), a subset A′ ⊂ A, a partial arc capacity
function c : A′ → R+, and a set S of scenarios (As ⊂ A, �s,Ks) where
�s : As → R+ and Ks is a set of triplets k = (o, d,D) ∈ V 2 × R+, find:
a threshold function γ : S → R+, a complementary arc capacity function
c : A \ A′ → R+, and a set of flows fsk (for s ∈ S and for k ∈ Ks) such
that (i) for each arc a ∈ A and for each s ∈ S, the arc load of f on a is
bounded above by ca; (ii) for each s ∈ S and arc a ∈ As, the arc load of
f on a is as close as possible to the arc load γs�

s
a; (iii) for each s ∈ S, the

flows fs and γs should be optimal with respect to an MCFP defined over
the capacities ca over all a ∈ A and the commodities Ks.

Although the IMCFP is natively cast in a multi-objective fashion (see condition
(ii)), in practice we minimize a max norm over all arcs and all scenarios. We
remark that condition (iii) is only apparently recursive: we want to decide f, c
at the same time and also require that every fs should be optimal flows w.r.t. a
putative MCFP instance defined over the values of the c variables and the Ks

parameters. We shall see below that the IMCFP can be formulated by means
of a Mixed-Integer Linear Programming formulation that combines both primal
and dual variables.
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3 The IMCFP

In this section we shall first introduce a Mixed-Integer Linear formulation for
the IMCFP, and then prove its correctness.

3.1 Formulation

– Sets:
• V : set of nodes
• A: set of arcs
• S: set of scenarios
• Ks: set of commodities for scenario s
• A′: subset of arcs from which the capacity is known
• As: subset of arcs from which the load is known.
– Parameters:
• k = (o, d,D) for k ∈ Ks, s ∈ S: commodity data (origin o ∈ V , destination

d ∈ V , demand value D ∈ R+)
• �s : As → R+: load function over the arcs As for each scenario s ∈ S
• c : A′ → R+: capacity function over the arcs A′

• Mw: “Big M” parameter associated to the binary weights w
• Mf : “Big M” parameter associated to the binary flows x.
– Decision variables:
• fsk

a ≥ 0 for a ∈ A, s ∈ S, k ∈ Ks: flow variable of arc a ∈ A, for scenario
s ∈ S and demand k ∈ Ks

• γs ≥ 0 for s ∈ S: threshold variable for scenario s ∈ S
• psk

i ≥ 0 for i ∈ V, s ∈ S, k ∈ Ks: potential variable (dual variable from
MCFP’s conservation constraint) for node i, scenario s, and demand k

• us
a ≥ 0 for a ∈ A, s ∈ S: weight variable (dual variable from MCFP’s capacity

constraint) for arc a ∈ A and scenario s ∈ S
• ws

a ∈ {0, 1} for a ∈ A, s ∈ S: binary variable that allows for a corresponding
weight us

a to be greater than 0 or not
• xsk

a ∈ {0, 1} for a ∈ A, s ∈ S, k ∈ Ks: binary variable that allows for a
corresponding flow fsk

a to be greater than 0 or not
• Δ ≥ 0: maximal difference between the load parameters with the computed

ones
• ca ≥ 0 for a ∈ A \ A′: capacity variable of arc a.
– Objective function:

min
f,γ,p,u,w,x,c

Δ. (4)

– Constraints:
• flow conservation:

∀s ∈ S,∀k = (o, d,D) ∈ Ks,∀i ∈ V \ {o, d}
∑

j∈N−(i)

fsk
ji =

∑

j∈N+(i)

fsk
ij (5)
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• demand satisfaction:

∀s ∈ S,∀k = (o, d,D) ∈ Ks
∑

j∈N−(d)

fsk
jd −

∑

j∈N+(d)

fsk
dj = γsD (6)

• min-cost node access:

∀s ∈ S,∀k ∈ Ks,∀(i, j) ∈ A psk
i + us

ij − psk
j ≥ 0 (7)

• min-cost path condition:

∀s ∈ S,∀k ∈ Ks,∀(i, j) ∈ A psk
i + us

ij − psk
j ≤ 1 − xsk

ij (8)

• origin access:
∀s ∈ S, ∀k = (o, d,D) ∈ Ks psk

o = 0 (9)

• complementary slackness condition on capacity:

∀s ∈ S,∀a ∈ A ca ≤
∑

k∈Ks

fsk
a + Mw(1 − ws

a) (10)

• binary flow constraint:

∀s ∈ S,∀k ∈ Ks,∀a ∈ A fsk
a ≤ Mfxsk

a (11)

• binary weight constraint:

∀s ∈ S,∀a ∈ A us
a ≤ ws

a (12)

• dual weights constraint:

∀s ∈ S
∑

a∈A

us
a = 1 (13)

• threshold bound:
∀s ∈ S,∀a ∈ As ca ≥ γs�

s
a (14)

• feasibility bound:
∀s ∈ S,∀a ∈ A

∑

k∈Ks

fsk
a ≤ ca (15)

• max norm (i):
∀s ∈ S,∀a ∈ As Δ ≥ γs�

s
a −

∑

k∈Ks

fsk
a (16)

• max norm (ii):

∀s ∈ S,∀a ∈ As Δ ≥
∑

k∈Ks

fsk
a − γs�

s
a. (17)
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The model aims at minimizing the maximal error Δ, which is the absolute
value of the difference for each scenario and each arc between the load of f and
the load γs�

s
a (see constraints (16) and (17)) as stated in condition (ii) of the

IMCFP. Constraints (5) and (6) are flow conservation constraints already men-
tioned in (1). Constraints (7), (8), (9), and (11) provide the system that ensures
the optimality of the routing in the sense of the weights u, which correspond to
the dual variables in (3) of capacity constraint in MCFP (2). Constraints (10)
and (12) describe the slackness conditions for the dual variables of the capac-
ities. Constraint (13) ensures a feasible dual solution of (3) for each scenario.
Finally, Constraints (15) and (14) guarantee the feasibility of (2) as condition
(i) of IMCFP. Note that ca of (14), (15), and (10) can either be a parameter or
a variable, depending whether a is in A′ or not. The condition (iii) of IMCFP
follows by Proposition 1 and Theorem 2 (below).

3.2 Correctness

Proposition 1. Let f = (fk
a | a ∈ A, k ∈ K) ≥ 0 and γ ≥ 0 be a feasible flow

solution of the MCFP (2) and p = (pk
i | k ∈ K, i ∈ V ) ≥ 0 and u = (ua | a ∈

A) ≥ 0 be a feasible solution of its dual (3). These two assertions are equivalent:

1. (a) ∀a ∈ A, we have ua(ca − ∑

k∈K

fk
a ) = 0

(b) ∀a = (i, j) ∈ A,∀k ∈ K, we have fk
a (pk

i + ua − pk
j ) = 0

(c)
∑

a∈A

ua > 0

2. f and γ are optimal for the MCF (2), and p and u (both scaled by∑

k=(o,d,D)∈K

pk
dD) are optimal for its dual (3).

Proof. 2 ⇒ 1: If f and γ (resp. p and u) are optimal for (2) (resp. for
(3)), the complementary slackness conditions [16] state immediately the first
two equations. The third complementary slackness condition of MCFP states∑

k∈K

pk
dD = 1. Therefore, (3) ensures there exists a so that ua > 0, meaning

∑

a∈A

ua > 0.

1 ⇒ 2: If
∑

a∈A

ua > 0 and ∀a ∈ A, ua ≥ 0, there exists a ∈ A so that ua > 0.

The first condition implies that for this a we have ca =
∑

k∈K

fk
a . We can

assume the arcs have a non-zero capacity (otherwise the arc should not have
existed), meaning there exists a k = (o, d,D) for which fk

a > 0. The second con-
dition implies that going through this arc satisfies the “min cost path condition”,
meaning pk

d ≥ ua > 0. We can then construct Q =
∑

k=(o,d,D)∈K

pk
dD > 0. Choose

u′
a so that u′

a = ua

Q , and, for each k = (o, d,D) ∈ K, p′k
d = pk

d

Q . Then we trivially

have
∑

k=(o,d,D)∈K

p′k
dD = 1. Substituting u by u′ and p by p′, one can observe that
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∀a ∈ A, ua(ca − ∑

k∈K

fk
a ) = 0 and ∀a = (i, j) ∈ A,∀k ∈ K fk

a (pk
i + ua − pk

j ) = 0

still hold and (u, p) becomes a feasible solution of (3). The proposition follows
from the LP complementary slackness conditions [16]. 	

Theorem 2. Given a graph G = (V,A) and a feasible solution (f, c) of IMCFP,
for each s ∈ S, fs corresponds to an optimal solution of an MCFP with respect
to c and Ks.

Proof. Let us choose a s ∈ S. fs is feasible for MCFP (2) with parameters c and
Ks due to (5), (6) and (15). ps and us describes a feasible solution of (3) with
parameters c and Ks due to (13) and (7) (one can scale the solution to ensure∑

k=(o,d,D)∈Ks

psk
d D ≥ 1 ). The combination of (10) and (12) ensure the first slack-

ness condition, as us
a = 0 if the ca − ∑

k∈Ks

fsk
a > 0. Constraints (7), (8) and (11)

validate the second slackness condition. The third slackness condition is obtained
by (13). Proposition 1 validates the optimality of fs for MCFP (2) with parame-
ters c and Ks. As it holds for each s ∈ S, it concludes the proof. 	


4 Numerical Results

We can solve IMCFP instances by simply formulating them as the Mixed-Integer
Linear Program in Sect. 3.1 and solving them using an off-the-shelf solver. By the
polynomial number of constraints and variables of our formulation, we know that
the decision version of IMCFP is in NP. Although the MCFP is polynomial-
time solvable, our IMCFP formulation introduces the need of binary variables
to ensure optimality among the different scenarios, meaning it is still an open
question whether IMCFP is NP-complete or not. To solve all the following
instances, we solved the IMCFP model with the MILP solver IBM CPLEX
12.6 with default settings and a time limit of 1200 CPU seconds on a personal
computer (Intel Core i7-6820HQ 2.70 GHz, 16 GB DDR3 RAM). All graphs
used in the following experiments are based on the topology of the Paris subway
network, often restricted to the left bank. Therefore, each node represents a
connection between one or more different metro lines, and each arc represents a
section of a line. The network is strongly connected, meaning we can generate
complete sets of demands (|K| = (|V | − 1)|V |). The demand value for each
commodity k ∈ K is an integer uniformly chosen in the interval [1,10].

Firstly, to evaluate the prediction performance of the proposed formulations,
we generated integer capacities for the MCFP in the interval [1,15] and then
calculated an optimal solution of MCFP for each scenario of demands, keeping
the same capacities C among them. It allows us to give the total configuration
of loads �s

a and Ks as input where an optimal solution with zero Δ value exists.
This let us compare the computed capacities in A \ A′, with those we chose to
construct our instances of MCFP (the generated ones). Secondly, we generated
�s
a, Ks, and ca according to a feasible flow solution (in terms of conservation

and capacity constraints) which is not MCFP compliant (i.e., whose input data
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Table 1. IMCFP, Paris left bank subway network topology (|V | = 13, |A| = 38).

|S| = 3 |S| = 4 |S| = 5

C(%) c(%) Gap T (s) Δ c(%) Gap T (s) Δ c(%) Gap T (s) Δ

0 42.11 13.00 2.95 0.00 42.11 14.00 4.31 0.00 63.16 7.00 6.11 0.00

10 60.53 9.72 2.64 0.00 65.79 11.00 3.07 0.00 63.16 9.00 7.43 0.00

20 68.42 11.00 2.12 0.00 71.05 10.00 118.00 0.00 73.68 10.00 4.82 0.00

30 60.53 14 1.83 0.00 78.95 8.58 4.48 0.00 76.32 9.00 ∗ 0.04

40 44.74 12.83 2.18 0.00 81.58 6.00 3.00 0.00 73.68 13.00 5.40 0.00

50 84.21 10.46 2.14 0.00 86.84 6.00 3.31 0.00 78.95 11.77 6.80 0.00

60 81.58 10.00 2.59 0.00 81.58 7.00 4.12 0.00 89.47 13.00 14.09 0.00

70 81.58 9.26 2.01 0.00 89.47 9.00 2.11 0.00 84.21 12.72 6.05 0.00

80 86.84 12.00 2.56 0.00 97.37 6.00 3.09 0.00 94.74 11.25 6.63 0.00

90 100.00 0.00 1.90 0.00 97.37 0.69 3.46 0.00 92.11 4.00 9.95 0.00

100 100.00 0.00 1.42 0.00 100.00 0.00 2.47 0.00 100.00 0.00 3.74 0.00

do not follow an optimal MCFP solution pattern). The second set of instances
aims at observing how our model deals with data based on a wrong hypothesis
(structure of an optimal solution of MCFP) and, hence, how the objective value
is impacted. Moreover, we studied the impact of the quantity of known and
unknown data by giving a fixed percentage of capacities for MCFP ( |A′|

|A| × 100)
as an input.

The resulting tables are organized as follows. The number of nodes (|V |) and
arcs (|A|) are reported in the caption of each table. The proportion of known
capacities is specified in the first column “C(%)”. The rest of the table is divided
in 3 subsets of columns, 4 for each value of cardinality of S. The four columns
report: (i) the amount of capacities “c(%)” that has been successfully predicted
(the percentage of successfully predicted capacities may be lower than the given
ones due to the truncation process of “C(%)|A′|”); (ii) the maximal absolute
gap (“Gap”) observed between the predicted capacities and the generated ones;
(iii) the CPU time in seconds “T (s)” (we denote termination due to time limit
by *); and (iv) objective value “Δ”.

The most striking thing one can note is the effectiveness of our methodology
in predicting arc capacities (see Table 1). Even if without insights of capacities
the prediction correctness remains low, it skyrockets to more than 50% of addi-
tionnal correct predictions with only three scenarios. This can be explained by
the fact that even with few capacities the γs become strongly bounded. This pro-
portion of corrected predictions tends naturally to arise when more and more
capacity parameters are known, but the number of scenarios seems to remain a
strong source of insights for the network, especially when the number of known
capacities is low (see Table 2). However, the number of scenarios seems more
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Table 2. IMCFP, Paris subway network topology (|V | = 57, |A| = 209).

|S| = 3 |S| = 4 |S| = 5

C(%) c(%) Gap T (s) Δ c(%) Gap T (s) Δ c(%) Gap T (s) Δ

0 13.40 12.50 ∗ 0.28 14.83 9.44 ∗ 3.66 64.60 12.11 ∗ 1.00

10 15.31 13.78 ∗ 0.33 17.70 11.84 ∗ 2.21 68.42 11.04 ∗ 3.15

20 67.46 12.53 ∗ 10.54 69.86 10.77 ∗ 5.20 60.29 13.21 ∗ 1.09

30 76.55 13.44 ∗ 2.00 74.16 12.45 ∗ 0.80 75.12 13.29 ∗ 0.71

40 73.68 13.41 ∗ 1.00 79.43 11.00 ∗ 1.52 76.56 12.04 ∗ 1.03

50 80.38 9.82 ∗ 1.00 54.07 12.54 390.44 0.00 84.21 11.54 ∗ 2.36

60 78.95 12.90 ∗ 0.33 86.12 11.43 ∗ 2.65 83.73 12.02 ∗ 9.00

70 73.2 13.02 ∗ 0.04 90.90 10.45 ∗ 3.00 90.43 9.16 ∗ 3.85

80 90.43 9.50 ∗ 2.00 92.34 10.61 ∗ 1.39 92.82 11.26 ∗ 6.03

90 90.43 12.94 ∗ 0.82 94.26 11.71 ∗ 5.00 97.13 12.10 ∗ 3.13

100 100.00 0.00 ∗ 3.00 100.00 0.00 ∗ 1.00 100.00 0.00 ∗ 1.83

and more important as the size of the instance grows. Indeed, the average per-
centage of correct predictions is quite close compared from |S| = 4 to |S| = 5
(around 81% for both) in the instances of Table 1 as if this increase did not
bring further information. But this average percentage rises from 70% to 79%
between |S| = 4 and |S| = 5 in the instances of Table 2. This could mean that
the larger the instance, the higher the number of required scenarios to reach a
similar prediction performance. It is also interesting to note that some of these
results are obtained without even reaching optimality, especially on the total
metro network instances, meaning that the routing problems are quite hard to
solve even when all capacities are known. This is confirmed by the amount of
time consumed by the instances when all the capacities are set. This suggests
that MCFPs are also quite hard to solve. This is a well-known result that moti-
vated the design of approximation schemes to solve it (see e.g. [8]). As one can
expect, confronted with inconsistent data (input data that do not follow a struc-
ture of an optimal solution of the MCFP), the prediction effectiveness does not
perform as well as the previous case (see Table 3). Nevertheless, our model often
tends to bring a solution that fits significantly the input loads, especially when
few capacities are known. Generally speaking, this means that a low objective
value does not guarantee necessarily that the MCFP pattern hypothesis on our
input data is right. However, when all capacities are set (A′ = A), this seems to
constraint drastically our model whose objective value skyrockets. Therefore, it
suggests that our model can still be used to validate/invalidate this hypothesis
on condition that all capacities are known.
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Table 3. IMCFP, Paris left bank subway network topology (|V | = 13, |A| = 38). Input
data not MCFP compliant.

|S| = 3 |S| = 4 |S| = 5

C(%) c(%) Gap T (s) Δ c(%) Gap T (s) Δ c(%) Gap T (s) Δ

0 0 13.40 1.87 0.00 10.53 13.54 ∗ 0.2 5.26 11.97 8.25 0.00

10 15.79 12.62 ∗ 0.34 10.53 13.18 121.12 0.00 10.53 10.24 ∗ 0.15

20 23.68 14.06 ∗ 0.30 28.95 9.67 4.48 0.00 21.05 12.61 5.07 0.00

30 28.95 12.64 ∗ 0.00 28.95 13.66 4.31 0.00 31.58 13.53 4.1 0.00

40 39.47 11.36 ∗ 2.00 42.11 12.26 ∗ 0.95 50.00 12.89 ∗ 1.00

50 55.26 8.95 ∗ 3.17 50.00 11.93 6.50 0.00 57.89 10.09 ∗ 1.00

60 57.90 12.63 ∗ 0.43 57.89 9.55 ∗ 1.12 65.79 11.53 5.16 1.00

70 68.42 11.89 859.08 1.00 68.42 12.93 2.67 0.00 73.68 9.00 7.28 1.00

80 81.58 7.49 2.21 1.00 78.95 9.47 4.00 2.00 81.58 8.69 5.16 1.00

90 89.47 12.08 1.16 0.50 92.10 12.08 1.07 1.00 89.47 9.89 6.33 1.35

100 100.00 0.00 0.52 14.00 100.00 0.00 0.66 11.67 100.00 0.00 0.80 14.13

5 Conclusion and Future Work

In this paper we studied a new problem called the IMCFP and proposed a solu-
tion technique to tackle it. The purpose of the new formulation proposed is to find
a routing of commodities that fits input data at best (namely loads and demand
matrix) as [15]. But, in addition, the solution has to follow an optimal structure of
MCFP regarding a set of known and unknown data. The practical interest of the
problem we discussed arises in transportation systems when it comes to recom-
pose unknown data assuming hypothesis of data structure (namely a MCFP and
one of its optimal solutions). Moreover, this formulation can validate/invalidate
hypothesis of a MCFP’s optimal routing by confronting it to observed data. More
theoretically, we showed that this problem can be tackled by embedding primal
and dual formulations and complementary slackness conditions all together into
a single Mixed Integer Linear Program. We proved the correctness of such mod-
els, and led experiments to emphasize empirical behaviours and computational
hardness. Future work will focus on computational performance improvements
so that larger graphs can be treated.
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Abstract. A graph G is a B0-VPG graph if it is the vertex intersection
graph of horizontal and vertical paths on a grid. A graph G is a contact
B0-VPG graph if the vertices can be represented by interiorly disjoint
horizontal or vertical paths on a grid and two vertices are adjacent if
and only if the corresponding paths touch. In this paper, we present a
minimal forbidden induced subgraph characterisation of contact B0-VPG
graphs within the class of chordal graphs and provide a polynomial-time
algorithm for recognising these graphs.
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1 Introduction

Golumbic et al. introduced in [2] the concept of vertex intersection graphs of
paths on a grid (referred to as VPG graphs). An undirected graph G = (V,E) is
called a VPG graph if one can associate a path in a rectangular grid with each
vertex such that two vertices are adjacent if and only if the corresponding paths
intersect at at least one grid-point. It is not difficult to see that VPG graphs are
equivalent to the well known class of string graphs, i.e., intersection graphs of
curves in the plane (see [2]).

A particular attention was paid to the case where the paths have a limited
number of bends (a bend is a 90 degrees turn of a path at a grid-point). An
undirected graph G = (V,E) is then called a Bk-VPG graph, for some integer
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k ≥ 0, if one can associate a path with at most k bends on a rectangular grid with
each vertex such that two vertices are adjacent if and only if the correspond-
ing paths intersect at at least one grid-point. Since their introduction in 2012,
Bk-VPG graphs, k ≥ 0, have been studied by many researchers and the commu-
nity of people working on these graph classes is still growing (see [1,2,4–8,11,12]).

These classes are shown to have many connections to other, more traditional,
graphs classes such as interval graphs (which are clearly B0-VPG graphs), planar
graphs (recently shown to be B1-VPG graphs (see [12])), string graphs (as men-
tioned above equivalent to VPG graphs), circle graphs (shown to be B1-VPG
graphs (see [2])) and grid intersection graphs (GIG) (equivalent to bipartite
B0-VPG graphs (see [2])). Unfortunately, due to these connections, many nat-
ural problems are hard for Bk-VPG graphs. For instance, colouring is NP-hard
even for B0-VPG graphs and recognition is NP-hard for both VPG and B0-
VPG graphs [2]. However, there exists a polynomial-time algorithm for deciding
whether a given chordal graph is B0-VPG (see [4]).

A related notion to intersection graphs are contact graphs. Such graphs can be
seen as a special type of intersection graphs of geometrical objects in which objects
are not allowed to cross but only to touch each other. In the context of VPG graphs,
we obtain the following definition. A graph G = (V,E) is called a contact VPG
graph if the vertices can be represented by interiorly disjoint paths (i.e., if an inter-
section occurs between two paths, then it occurs at one of their endpoints) on a
grid and two vertices are adjacent if and only if the corresponding paths touch. If
we limit again the number of bends per path, we obtain contact Bk-VPG graphs.
These graphs have also been considered in the literature (see for instance [5,9,13]).
It is shown in [9] that every planar bipartite graph is a contact B0-VPG graph.
Later, in [5], the authors show that every K3-free planar graph is a contact B1-
VPG graph. The authors in [13] consider the special case in which whenever two
paths touch on a grid point, this grid point has to be the endpoint of one of the
paths and belong to the interior of the other path. It is not difficult to see that in
this case, the considered graphs must all be planar.

In this paper, we will consider contact B0-VPG graphs and we will present
a minimal forbidden induced subgraph characterisation of contact B0-VPG
graphs restricted to chordal graphs. This characterisation allows us to derive a
polynomial-time recognition algorithm for the class of chordal contact B0-VPG
graphs. Recall that chordal B0-VPG graphs can also be recognised in polynomial
time (see [4]), even though no structural characterisation of them is known so
far. Our results can be considered as a first step to obtain a better understanding
of contact B0-VPG graphs and their structure.

Our paper is organised as follows. In Sect. 2, we give definitions and notations
that we will use throughout the paper. We also present some first observations
and results that will be useful in the remaining of the paper. In Sect. 3, we con-
sider chordal graphs and characterise those that are contact B0-VPG by minimal
forbidden induced subgraphs. Section 4 presents a polynomial-time algorithm for
recognising chordal contact B0-VPG graphs based on the characterisation men-
tioned before. Finally, in Sect. 5, we present conclusions and future work.
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2 Preliminaries

For concepts and notations not defined here we refer the reader to [3]. All graphs
that we consider here are simple (i.e., without loops or multiple edges). Let
G = (V,E) be a graph. If u, v ∈ V and uv /∈ E, uv is called a nonedge of G.
We write G− v for the subgraph obtained by deleting vertex v and all the edges
incident to v. Similarly, we write G − e for the subgraph obtained by deleting
edge e without deleting its endpoints.

Given a subset A ⊆ V , G[A] stands for the subgraph of G induced by A, and
G\A denotes the induced subgraph G[V \A].

For each vertex v of G, NG(v) denotes the neighbourhood of v in G and NG[v]
denotes closed neighbourhood NG(v) ∪ {v}.

A clique is a set of pairwise adjacent vertices. A vertex v is simplicial if
NG(v) is a clique. A stable set is a set of vertices no two of which are adjacent.
The complete graph on n vertices corresponds to a clique on n vertices and is
denoted by Kn. nK1 stands for a stable set on n vertices. K4-e stands for the
graph obtained from K4 by deleting exactly one edge.

Given a graph H, we say that G contains no induced H if G contains no
induced subgraph isomorphic to H. If H is a family of graphs, a graph G is
said to be H-free if G contains no induced subgraph isomorphic to some graph
belonging to H.

Let G be a class of graphs. A graph belonging to G is called a G-graph. If
G ∈ G implies that every induced subgraph of G is a G-graph, G is said to be
hereditary. If G is a hereditary class, a graph H is a minimal forbidden induced
subgraph of G, or more briefly, minimally non-G, if H does not belong to G but
every proper induced subgraph of H is a G-graph.

We denote as usual by Cn, n ≥ 3, the chordless cycle on n vertices and by
Pn the chordless path or induced path on n vertices. A graph is called chordal if
it does not contain any chordless cycle of length at least four. A block graph is
a chordal graph which is {K4-e}-free.

An undirected graph G = (V,E) is called a Bk-VPG graph, for some integer
k ≥ 0, if one can associate a path with at most k bends (a bend is a 90◦ turn
of a path at a grid-point) on a rectangular grid with each vertex such that two
vertices are adjacent if and only if the corresponding paths intersect at atleast
one grid-point. Such a representation is called a Bk-VPG representation. The
horizontal grid lines will be referred to as rows and denoted by x0, x1, . . . and the
vertical grid lines will be referred to as columns and denoted by y0, y1, . . .. We
are interested in a subclass of B0-VPG graphs called contact B0-VPG. A contact
B0-VPG representation R(G) of G is a B0-VPG representation in which each
path in the representation is either a horizontal path or a vertical path on the
grid, such that two vertices are adjacent if and only if the corresponding paths
intersect at at least one grid-point without crossing each other and without
sharing an edge of the grid. A graph is a contact B0-VPG graph if it has a
contact B0-VPG representation. For every vertex v ∈ V (G), we denote by Pv

the corresponding path in R(G) (see Fig. 1). Consider a clique K in G. A path
Pv representing a vertex v ∈ K is called a path of the clique K.
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Fig. 1. A graph G and a contact B0-VPG representation.

Let us start with some easy but very helpful observations.

Observation 1. Let G be a contact B0-VPG graph. Then the size of a biggest
clique in G is at most 4, i.e., G is K5-free.

Let G be a contact B0-VPG graph, and K be a clique in G. A vertex v ∈ K
is called an end in a contact B0-VPG representation of K, if the grid-point
representing the intersection of the paths of the clique K corresponds to an
endpoint of Pv.

Observation 2. Let G be a contact B0-VPG graph, and K be a clique in G of
size four. Then, every vertex in K is an end in any contact B0-VPG represen-
tation of K.

Next we will show certain graphs that are not contact B0-VPG graphs and
that will be part of our characterisation. Let H0 denote the graph composed of
three K4’s that share a common vertex and such that there are no other edges
(see Fig. 3).

Lemma 1. If G is a contact B0-VPG graph, then G is {K5,H0,K4-e}-free.

Proof. Let G be a contact B0-VPG graph. It immediately follows from
Observation 1 that G is K5-free.

Now let v, w be two adjacent vertices in G. Then, in any contact B0-VPG
representation of G, Pv and Pw intersect at a grid-point P . Clearly, every com-
mon neighbour of v and w must also contain P . Hence, v and w cannot have
two common neighbours that are non-adjacent. So, G is {K4-e}-free.

Finally, consider the graph H0 which consists of three cliques of size four,
say A, B and C, with a common vertex x. Suppose that H0 is contact B0-
VPG. Then, it follows from Observation 2 that every vertex in H0 is an end in
any contact B0-VPG representation of H0. In particular, vertex x is an end in
any contact B0-VPG representation of A, B and C. In other words, the grid-
point representing the intersection of the paths of each of these three cliques
corresponds to an endpoint of Px. Since these cliques have only vertex x in
common, these grid-points are all distinct. But this is a contradiction, since Px

has only two endpoints. So we conclude that H0 is not contact B0-VPG, and
hence the result follows. ��
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3 Chordal Graphs

In this section, we will consider chordal graphs and characterise those that are
contact B0-VPG. First, let us point out the following important observation.

Observation 3. A chordal contact B0-VPG graph is a block graph.

This follows directly from Lemma 1 and the definition of block graphs.
The following lemma states an important property of minimal chordal non

contact B0-VPG graphs that contain neither K5 nor K4-e.

Lemma 2. Let G be a chordal {K5,K4-e}-free graph. If G is a minimal non
contact B0-VPG graph, then every simplicial vertex of G has degree exactly three.

Proof. Since G is K5-free, every clique in G has size at most four. Therefore,
every simplicial vertex has degree at most three. Let v be a simplicial vertex of G.
Assume first that v has degree one and consider a contact B0-VPG representation
of G − v (which exists since G is minimal non contact B0-VPG). Let w be the
unique neighbour of v in G. Without loss of generality, we may assume that the
path Pw lies on some row of the grid. Now clearly, we can add one extra column
to the grid between any two consecutive vertices of the grid belonging to Pw and
adapt all paths without changing the intersections (if the new column is added
between column yi and yi+1, we extend all paths containing a grid-edge with
endpoints in column yi and yi+1 in such a way that they contain the new edges
in the same row and between column yi and yi+2 of the new grid, and any other
path remains the same). But then we may add a path representing v on this
column which only intersects Pw (adding a row to the grid and adapting the
paths again, if necessary) and thus, we obtain a contact B0-VPG representation
of G, a contradiction. So suppose now that v has degree two, and again consider
a contact B0-VPG representation of G − v. Let w1, w2 be the two neighbours
of v in G. Then, w1, w2 do not have any other common neighbour since G is
{K4-e}-free. Let P be the grid-point corresponding to the intersection of the
paths Pw1 and Pw2 . Since these paths do not cross and since w1, w2 do not
have any other common neighbour (except v), there is at least one grid-edge
having P as one of its endpoints and which is not used by any path of the
representation. But then we may add a path representing v by using only this
particular grid-edge (or adding a row/column to the grid that subdivides this
edge and adapting the paths, if the other endpoint of the grid-edge belongs to a
path in the representation). Thus, we obtain a contact B0-VPG representation
of G, a contradiction. We conclude therefore that v has degree exactly three. ��

Let v be a vertex of a contact B0-VPG graph G. An endpoint of its corre-
sponding path Pv is free in a contact B0-VPG representation of G, if Pv does
not intersect any other path at that endpoint; v is called internal if there exists
no representation of G in which Pv has a free endpoint. If in a representation of
G a path Pv intersects a path Pw but not at an endpoint of Pw, v is called a
middle neighbour of w.
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In the following two lemmas, we associate the fact of being or not an internal
vertex of G with the contact B0-VPG representation of G.

Due to lack of space, the proof of the following lemma is ommited.

Lemma 3. Let G be a chordal contact B0-VPG graph and let v be a non internal
vertex in G. Then, there exists a contact B0-VPG representation of G in which
all the paths representing vertices in G− v lie to the left of a free endpoint of Pv

(by considering Pv as a horizontal path).

Lemma 4. Let G be a chordal contact B0-VPG graph. A vertex v in G is inter-
nal if and only if in every contact B0-VPG representation of G, each endpoint
of the path Pv either corresponds to the intersection of a representation of K4

or intersects a path Pw, which represents an internal vertex w, but not at an
endpoint of Pw.

Proof. The if part is trivial. Assume now that v is an internal vertex of G
and consider an arbitrary contact B0-VPG representation of G. Let P be an
endpoint of the path Pv and K the maximal clique corresponding to all the
paths containing the point P . Notice that clearly v is an end in K by definition
of K. First, suppose there is a vertex w in K which is not an end. Then, it
follows from Observation 2 that the size of K is at most three. Without loss of
generality, we may assume that Pv lies on some row and Pw on some column.
If w is an internal vertex, we are done. So we may assume now that w is not
an internal vertex in G. Consider G \ (K \ {w}), and let Cw be the connected
component of G\(K \{w}) containing w. Notice that w is not an internal vertex
in Cw either. By Lemma 3, there exists a contact B0-VPG representation of Cw

with all the paths lying to the left of a free endpoint of Pw. Now, replace the
old representation of Cw by the new one such that P corresponds to the free
endpoint of Pw in the representation of Cw (it might be necessary to refine –by
adding rows and/or columns– the grid to ensure that there are no unwanted
intersections) and Pw uses the same column as before. Finally, if K had size
three, say it contains some vertex u in addition to v and w, then we proceed as
follows. Similar to the above, there exists a contact B0-VPG representation of
Cu, the connected component of G \ (K \ {u}) containing u, with all the paths
lying to the left of a free endpoint of Pu, since u is clearly not internal in Cu. We
then replace the old representation of Cu by the new one such that the endpoint
of Pu that intersected Pw previously corresponds to the grid-point P and Pu lies
on the same column as Pw (again, we may have to refine the grid). This clearly
gives us a contact B0-VPG representation of G. But now we may extend Pv

such that it strictly contains the grid-point P and thus, Pv has a free endpoint,
a contradiction (see Fig. 2). So w must be an internal vertex.

Now, assume that all vertices in K are ends. If |K| = 4, we are done. So we
may assume that |K| ≤ 3. Hence, there is at least one grid-edge containing P ,
which is not used by any paths of the representation. Without loss of generality,
we may assume that this grid-edge belongs to some row xi. If Pv is horizontal, we
may extend it such that it strictly contains P . But then v is not internal anymore,
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a contradiction. If Pv is vertical, then we may extend Pw, where w ∈ K is such
that Pw is a horizontal path. But now we are again in the first case discussed
above. ��

Pw

Pu Pv Pv
Pw

Pu

Cw

Cu

Fig. 2. Figure illustrating Lemma 4.

In other words, Lemma 4 tells us that a vertex v is an internal vertex in
a chordal contact B0-VPG graph if and only if we are in one of the following
situations:

– v is the intersection of two cliques of size four (we say that v is of type 1);
– v belongs to exactly one clique of size four and in every contact B0-VPG

representation, v is a middle neighbour of some internal vertex (we say that
v is of type 2);

– v does not belong to any clique of size four and in every contact B0-VPG
representation, v is a middle neighbour of two internal vertices (we say that
v is of type 3).

Notice that two internal vertices of type 1 cannot be adjacent (except when
they belong to a same K4). Furthermore, an internal vertex of type 1 cannot be
the middle-neighbour of some other vertex.

Let T be the family of graphs defined as follows. T contains H0 (see Fig. 3) as
well as all graphs constructed in the following way: start with a tree of maximum
degree at most three and containing at least two vertices; this tree is called the
base tree; add to every leaf v in the tree two copies of K4 (sharing vertex v), and
to every vertex w of degree two one copy of K4 containing vertex w (see Fig. 3).
Notice that all graphs in T are chordal.

Lemma 5. The graphs in T are not contact B0-VPG.

Proof. By Lemma 1, the graph H0 is not contact B0-VPG. Consider now a
graph T ∈ T , T 	= H0. Suppose that T is contact B0-VPG. Denote by B(T ) the
base tree of T and consider an arbitrary contact B0-VPG representation of T .
Consider the base tree B(T ) and direct an edge uv of it from u to v if the path Pv

contains an endpoint of the path Pu (this way some edges might be directed both
ways). If a vertex v has degree dB(v) in B(T ), then by definition of the family T ,
v belongs to 3− dB(v) K4’s in T . Notice that Pv spends one endpoint in each of
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(a) (b)

Fig. 3. (a) The graph H0. (b) An example of a graph in T ; the bold vertices belong to
the base tree.

these K4’s. Thus, any vertex v in B(T ) has at most 2 − (3 − dB(v)) = dB(v) − 1
outgoing edges. This implies that the sum of out-degrees in B(T ) is at most∑

v∈B(T )(dB(v) − 1) = n − 2, where n is the number of vertices in B(T ). But
this is clearly impossible since there are n − 1 edges in B(T ) and all edges are
directed. ��

Using Lemmas 2–5, we are able to prove the following theorem, which pro-
vides a minimal forbidden induced subgraph characterisation of chordal contact
B0-VPG graphs.

Theorem 4. Let G be a chordal graph. Let F = T ∪ {K5,K4-e}. Then, G is a
contact B0-VPG graph if and only if G is F-free.

Proof. Suppose that G is a chordal contact B0-VPG graph. It follows from
Lemmas 1 and 5 that G is T -free and contains neither a K4-e nor a K5.

Conversely, suppose now that G is chordal and F-free. By contradiction,
suppose that G is not contact B0-VPG and assume furthermore that G is a
minimal non contact B0-VPG graph. Let v be a simplicial vertex of G (v exists
since G is chordal). By Lemma 2, it follows that v has degree three. Consider a
contact B0-VPG representation of G − v and let K = {v1, v2, v3} be the set of
neighbours of v in G. Since G is {K4-e}-free, it follows that any two neighbours
of v cannot have a common neighbour which is not in K. First suppose that
all the vertices in K are ends in the representation of G − v. Thus, there exists
a grid-edge not used by any path and which has one endpoint corresponding
to the intersection of the paths Pv1 , Pv2 , Pv3 . But now we may add the path
Pv using exactly this grid-edge (we may have to add a row/column to the grid
that subdivides this grid-edge and adapt the paths, if the other endpoint of the
grid-edge belongs to a path in the representation). Hence, we obtain a contact
B0-VPG representation of G, a contradiction.

Thus, we may assume now that there exists a vertex in K which is not
an end, say v1. Notice that v1 must be an internal vertex. If not, there is a
contact B0-VPG representation of G− v in which v1 has a free end. Then, using
similar arguments as in the proof of Lemma 4, we may obtain a representation
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of G−v in which all vertices of K are ends. As described previously, we can add
Pv to obtain a contact B0-VPG representation of G, a contradiction. Now, by
Lemma 4, v1 must be of type 1, 2 or 3. Let us first assume that v1 is of type
1. But then v1 is the intersection of three cliques of size 4 and thus, G contains
H0, a contradiction. So v1 is of type 2 or 3. But this necessarily implies that
G contains a graph T ∈ T . Indeed, if v1 is of type 2, then v1 corresponds to a
leaf in B(T ) (remember that v1 already belongs to a K4 containing v in G); if
v1 is of type 3, then v1 corresponds to a vertex of degree two in the base tree
of T . Now, use similar arguments for an internal vertex w adjacent to v1 and
for which v1 is a middle neighbour: if w is of type 2, then it corresponds to a
vertex of degree two in B(T ); if w is of type 3, then it corresponds to a vertex
of degree three in B(T ); if w is of type 1, it corresponds to a leaf of B(T ). In
this last case, we stop. In the other two cases, we simple repeat the arguments
for an internal vertex adjacent to w and for which w is a middle neighbour. We
continue this process until we find an internal vertex of type 1 in the procedure
which then gives us, when all vertices of type 1 are reached, a graph T ∈ T .
Since G is finite, we are sure to find such a graph T . ��

Interval graphs form a subclass of chordal graphs. They are defined as being
chordal graphs not containing any asteroidal triple, i.e., not containing any three
pairwise non adjacent vertices such that there exists a path between any two of
them avoiding the neighbourhood of the third one. Clearly, any graph in T for
which the base tree has maximum degree three contains an asteroidal triple. On
the other hand, H0 and every graph in T obtained from a base tree of maxi-
mum degree at most two are clearly interval graphs. Denote by T ′ the family
consisting of H0 and the graphs of T whose base tree has maximum degree at
most two. We obtain the following corollary which provides a minimal forbid-
den induced subgraph characterisation of contact B0-VPG graphs restricted to
interval graphs.

Corollary 1. Let G be an interval graph and F ′ = T ′ ∪ {K5,K4-e}. Then, G
is a contact B0-VPG graph if and only if G is F ′-free.

4 Recognition Algorithm

In this section, we will provide a polynomial-time recognition algorithm for
chordal contact B0-VPG graphs which is based on the characterisation given
in Sect. 3. This algorithm takes a chordal graph as input and returns YES if
the graph is contact B0-VPG and, if not, it returns NO as well as a forbidden
induced subgraph. We will first give the pseudo-code of our algorithm and then
explain the different steps.
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Input: a chordal graph G = (V,E);
Output: YES, if G is contact B0-VPG; NO and a forbidden induced subgraph,
if G is not contact B0-VPG.

1. list all maximal cliques in G;
2. if some edge belongs to two maximal cliques, return NO and K4 − e;
3. if a maximal clique contains at least five vertices, return NO and K5;
4. label the vertices such that l(v) = number of K4’s that v belongs to;
5. if for some vertex v, l(v) ≥ 3, return NO and H0;
6. if l(v) ≤ 1 ∀v ∈ V \ {w} and l(w) ≤ 2, return YES;
7. while there exists an unmarked vertex v with 2 − l(v) outgoing arcs incident

to it, do
7.1 mark v as internal;
7.2 direct the edges that are currently undirected, uncoloured, not belonging

to a K4, and incident to v towards v;
7.3 for any two incoming arcs wv,w′v such that ww′ ∈ E, colour ww′;

8. if there exists some vertex v with more than 2 − l(v) outgoing arcs, return
NO and find T ∈ T ; else return YES.

Steps 1–5 can clearly be done in polynomial time (see for example [10] for
listing all maximal cliques in a chordal graph). Furthermore, it is obvious to see
how to find the forbidden induced subgraph in steps 2, 3 and 5. Notice that
if the algorithm has not returned NO after step 5, we know that G is {K4-
e,K5,H0}-free. So we are left with checking whether G contains some graph
T ∈ T , T 	= H0. Since each graph T ∈ T contains at least two vertices belonging
to two K4’s, it follows that if at most one vertex has label 2, G is T -free (step
6), and thus we conclude by Theorem 4 that G is contact B0-VPG.

During step 7, we detect those vertices in G that, in case G is contact B0-
VPG, must be internal vertices (and mark them as such) and those vertices w
that are middle neighbours of internal vertices v (we direct the edges wv from w
to v). Furthermore, we colour those edges whose endpoints are middle neighbours
of a same internal vertex.

Consider a vertex v with 2 − l(v) outgoing arcs. If a vertex v has l(v) = 2,
then, in case G is contact B0-VPG, v must be an internal vertex (see Lemma
4). This implies that any neighbour of v, which does not belong to a same K4

as v, must be a middle neighbour of v. If l(v) = 1, this means that v belongs to
one K4 and is a middle neighbour of some internal vertex. Thus, by Lemma 4
we know that v is internal. Similarly, if l(v) = 0, this means that v is a middle
neighbour of two distinct internal vertices. Again, by Lemma 4 we conclude that
v is internal. Clearly, step 7 can be run in polynomial time.

So we are left with step 8, i.e., we need to show that G is contact B0-VPG
if and only if there exists no vertex with more than 2 − l(v) outgoing arcs. First
notice that only vertices marked as internal have incoming arcs. Furthermore,
notice that every maximal clique of size three containing an internal vertex has
two directed edges of the form wv, w′v and the third edge is coloured, where v
is the first of the three vertices that was marked as internal. This is because the
graph is (K4-e)-free and the edges of a K4 are neither directed nor coloured.
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Thanks to the marking process described in step 7 and the fact that only
vertices marked as internal have incoming arcs, we can make the following obser-
vation.

Observation 5. Every vertex marked as internal in step 7 has either label 2 or
is the root of a directed induced tree (directed from the root to the leaves) where
the root w has degree 2 − l(w) and every other vertex v has degree 3 − l(v) in
that tree, namely one incoming arc and 2 − l(v) outgoing arcs.

Let us show that the tree mentioned in the previous observation is necessarily
induced. Suppose there is an edge not in the tree that joins two vertices of the
tree. Since the graph is a block graph, the vertices in the resulting cycle induce
a clique, so in particular there is a triangle formed by two edges of the tree and
an edge not in the tree. But, as observed above, in every triangle of G having
two directed edges, the edges point to the same vertex (and the third edge is
coloured, not directed). Since no vertex in the tree has in-degree more than one,
this is impossible.

Based on the observation, it is clear now that if a vertex has more than
2 − l(v) outgoing arcs, then that vertex is the root of a directed induced tree
(directed from the root to the leaves), where every vertex v has degree 3 − l(v),
i.e., a tree that is the base tree B(T ) of a graph T ∈ T . Indeed, notice that every
vertex v in a base tree has degree 3 − l(v). The fact that tree is induced can be
proved the same way as above. This base tree can be found by a breadth-first
search from a vertex having out-degree at least 3− l(v), using the directed edges.
Thanks to the labels, representing the number of K4’s a vertex belongs to, it
is then possible to extend the B(T ) to an induced subgraph T ∈ T . This can
clearly be implemented to run in polynomial time.

To finish the proof that our algorithm is correct, it remains to show that
if G contains an induced subgraph in T , then the algorithm will find a vertex
with at least 3 − l(v) outgoing arcs. This, along with Theorem 4, says that if
the algorithm outputs YES then the graph is contact B0-VPG (given that the
detection of K5, K4-e and H0 is clear). Recall that we know that G is a block
graph after step 2. Notice that if a block of size 2 in a graph of T is replaced
by a block of size 4, we obtain either H0 or a smaller graph in T as an induced
subgraph. Moreover, adding an edge to a graph of T in such a way that now
contains a triangle, then we obtain a smaller induced graph in T . Let G be a
block graph with no induced K5 or H0. By the observation above, if G contains
a graph in T as induced subgraph, then G contains one, say T , such that no edge
of the base tree B(T ) is contained in a K4 in G, and no triangle of G contains
two edges of B(T ). So, all the edges of B(T ) are candidates to be directed or
coloured.

In fact, by step 7 of the algorithm, every vertex of B(T ) is eventually marked
as internal, and every edge incident with it is either directed or coloured, unless
the algorithm ends with answer NO before. Notice that by the observation about
the maximal cliques of size three and the fact that no triangle of G contains two
edges of B(T ), if an edge vw of B(T ) is coloured, then both v and w have an



100 F. Bonomo et al.

outgoing arc not belonging to B(T ). So, in order to obtain a lower bound on the
out-degrees of the vertices of B(T ) in G, we can consider only the arcs of B(T )
and we can consider the coloured edges as bidirected edges. With an argument
similar to the one in the proof of Lemma 5, at least one vertex has out-degree
at least 3 − l(v).

5 Conclusions and Future Work

In this paper, we presented a minimal forbidden induced subgraph characteri-
sation of chordal contact B0-VPG graphs and provide a polynomial-time recog-
nition algorithm based on that characterisation. In order to obtain a better
understanding of what contact B0-VPG graphs look like, the study of contact
B0-VPG graphs within other graph classes is needed. It would also be interest-
ing to investigate contact B0-VPG graph from an algorithmic point of view and
analyse for instance the complexity of the colouring problem or the stable set
problem in that graph class.

References

1. Alcón, L., Bonomo, F., Mazzoleni, M.P.: Vertex intersection graphs of paths on a
grid: characterization within block graphs. Graphs Comb. 33(4), 653–664 (2017)

2. Asinowski, A., Cohen, E., Golumbic, M., Limouzy, V., Lipshteyn, M., Stern, M.:
Vertex intersection graphs of paths on a grid. J. Graph Algorithms Appl. 16, 129–
150 (2012)

3. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2007)
4. Chaplick, S., Cohen, E., Stacho, J.: Recognizing some subclasses of vertex inter-

section graphs of 0-Bend paths in a grid. In: Kolman, P., Kratochv́ıl, J. (eds.) WG
2011. LNCS, vol. 6986, pp. 319–330. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25870-1 29

5. Chaplick, S., Ueckerdt, T.: Planar graphs as VPG-graphs. J. Graph Algorithms
Appl. 17(4), 475–494 (2013)

6. Cohen, E., Golumbic, M.C., Ries, B.: Characterizations of cographs as intersection
graphs of paths on a grid. Discrete Appl. Math. 178, 46–57 (2014)

7. Cohen, E., Golumbic, M.C., Trotter, W.T., Wang, R.: Posets and VPG graphs.
Order 33(1), 39–49 (2016)

8. Felsner, S., Knauer, K., Mertzios, G.B., Ueckerdt, T.: Intersection graphs of L-
shapes and segments in the plane. Discrete Appl. Math. 206, 48–55 (2016)

9. de Fraysseix, H., Ossona de Mendez, P., Pach, J.: Representation of planar graphs
by segments. Intuitive Geom. 63, 109–117 (1991)

10. Galinier, P., Habib, M., Paul, C.: Chordal graphs and their clique graphs. In: Nagl,
M. (ed.) WG 1995. LNCS, vol. 1017, pp. 358–371. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60618-1 88

11. Golumbic, M.C., Ries, B.: On the intersection graphs of orthogonal line segments
in the plane: characterizations of some subclasses of chordal graphs. Graphs Comb.
29(3), 499–517 (2013)
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Abstract. The Caro-Wei bound states that every graph G = (V, E)
contains an independent set of size at least β(G) :=

∑
v∈V

1
degG(v)+1

,

where degG(v) denotes the degree of vertex v. Halldórsson et al. [1] gave
a randomized one-pass streaming algorithm that computes an indepen-
dent set of expected size β(G) using O(n log n) space. In this paper,
we give streaming algorithms and a lower bound for approximating the
Caro-Wei bound itself.

In the edge arrival model, we present a one-pass c-approximation
streaming algorithm that uses O(d log(n)/c2) space, where d is the aver-
age degree of G. We further prove that space Ω(d/c2) is necessary, ren-
dering our algorithm almost optimal. This lower bound holds even in
the vertex arrival model, where vertices arrive one by one together with
their incident edges that connect to vertices that have previously arrived.
In order to obtain a poly-logarithmic space algorithm even for graphs
with arbitrarily large average degree, we employ an alternative notion
of approximation: We give a one-pass streaming algorithm with space
O(log3 n) in the vertex arrival model that outputs a value that is at
most a logarithmic factor below the true value of β and no more than
the maximum independent set size.

1 Introduction

For very large graphs, the model of streaming graph analysis, where edges are
observed one by one, is a useful lens. Here, we assume that the graph of interest
is too large to store in full, but some representative summary is maintained
incrementally. We seek to understand how well different problems can be solved
in this model, in terms of the size of the summary, the time taken to process
each edge and answer a query, and the accuracy of any approximation obtained.
Variants arise in the model depending on whether edges can be removed as well
as added, and whether edges arrive grouped in some order, and so on.
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Independent Sets and the Caro-Wei Bound. We study questions pertain-
ing to independent sets within graphs. Independent sets play a fundamental role
in graph theory, and have many applications in optimization and scheduling
problems. Given a graph, an independent set is a set of nodes such that there
is no edge between any pair. One important objective is to find a maximum
independent set, i.e., an independent set of maximum cardinality. This is a chal-
lenging task even in the offline setting: Computing a maximum independent set
is NP-hard on general graphs [2], and remains hard to approximate within a
factor of n1−ε for any ε > 0 [3,4].

Despite this strong intractability result, there is substantial interest in com-
puting independent sets of non-trivial sizes. The best polynomial time algorithm
for maximum independent set was given by Feige and has an approximation fac-
tor of O(n log2(log n)

log3 n
) [5]. Since no substantial improvements on this bound are

possible, many works give approximation guarantees or absolute bounds on the
size of an independent set in terms of the degrees of the vertices of the input
graph. For example, it is known that the Greedy algorithm, which iteratively
picks a node of minimum degree and then removes all neighbors from considera-
tion, has an approximation factor of (Δ+2)/3, where Δ is the maximum degree
of the input graph [6]. The Greedy algorithm also achieves the Caro-Wei bound
[7,8], which is the focus of this paper: Caro [9] and Wei [7] independently proved
that every graph G contains an independent set of size

β(G) :=
∑

v∈V

1
degG(v) + 1

. (1)

The quantity β(G) is an attractive bound. It is known that it gives polylog-
arithmic approximation guarantees on graphs that are of polynomially bounded-
independence [10], which means (informally) that the size of a maximum inde-
pendent set in an r-neighborhood around a node is bounded in size by a polyno-
mial in r. For example, on unit disc graphs, which are of polynomially bounded-
independence, β(G) is a O

(
( log n
log log n )2

)
approximation to the size of a maximum

independent set. In distributed computing, the Caro-Wei bound is particularly
interesting, since an independent set of size β(G) can be computed in a sin-
gle communication round [10]. Very relevant to the present work is a result by
Halldórsson et al. [1], who showed that an independent set of expected size β(G)
can be computed space efficiently in the data streaming model.

Independent Sets in the Streaming Model. Due to the aforementioned
computational hardness of the maximum independent set problem, every stream-
ing algorithm that approximates a maximum independent set within a polyno-
mial factor nδ, for any constant δ < 1, requires exponential time, unless P = NP.
By sampling a subset of vertices V ′ ⊆ V , storing all edges between vertices V ′

while processing the stream, and outputting a maximum independent set in the
subgraph induced by V ′ (using an exponential time computation), it is possi-
ble to obtain a randomized one-pass c-approximation streaming algorithm for
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maximum independent set with Õ(n2

c2 ) space1. Halldórsson et al. [11] showed
that this is best possible: They proved that even for the seemingly simpler task
of approximating the size of a maximum independent set, every c-approximation
streaming algorithm requires Ω̃(n2

c2 ) space. In order to circumvent both the large
space lower bound and the exponential time computations required, in a differ-
ent work, Halldórsson et al. [1] relaxed the desired quality guarantee and gave
one-pass streaming algorithms for computing independent sets with expected
sizes that match the Caro-Wei bound. These algorithms use O(n log n) space
and have constant update times.

Approximating the Solution Size. In this paper, we ask whether we can
reduce the space requirements of O(n log n) even further, if, instead of com-
puting an independent set whose size is bounded by the Caro-Wei bound, we
approximate the size of such an independent set, i.e., the Caro-Wei bound itself.
This objective ties in with a recent trend in graph streaming algorithms: Since
many combinatorial objects such as matchings or independent sets may be of
size Ω(n), streaming algorithms that output such objects require at least this
amount of space. Consequently, many recent papers ask whether the task of
approximating the output size is easier than outputting the object itself. As
previously mentioned, this is not the case for the maximum independent set
problem, where the space complexity of both computing a c-approximate inde-
pendent set and finding a c-approximation to the size of a maximum independent
set is Θ̃(n2

c2 ) [11]. For the maximum matching problem, it is known that space
Ω(n/c) is needed for computing a c-approximation, but space Õ(n/c2) is suf-
ficient for outputting a c-approximation to the maximum matching size [12].
However, for graphs with arboricity c, the size of a maximum matching can even
be approximated within a factor of O(c) using O(c log2 n) space [13]. Another
example is a work by Cabello and Pérez-Lantero [14], which gives a polyloga-
rithmic space streaming algorithm that approximates the maximum size of an
independent set of intervals within a constant factor, while storing such a set
would require Ω(n) space.

Starting Point: Frequency Moments. Approximating β(G) is essentially the
same as approximating the −1 (negative) frequency moment (or the harmonic
mean) of a frequency vector derived from the graph stream. The pth frequency
moment of a stream of n different items where item i appears fi times is defined
by Fp =

∑
i |fi|p. Approximating the frequency moments is one of the most

studied problems in the data streaming literature, starting in 1996 with the
seminal work of Alon, Matias and Szegedy [15]. It is known that all finite positive
frequency moments can be approximated with sublinear space (see Woodruff’s
article [16] for an overview of the problem). Braverman and Chestnut [17] studied
the problem of approximating the negative frequency moments, which turn out
to be much harder to approximate: Computing a (1 + ε)-aproximation to the
harmonic mean in one pass requires Ω(n) space if the length of the input sequence

1 We use the notation Õ(.), Θ̃(.) and Ω̃(.), which correspond to O(.), Θ(.) and Ω(.),
respectively, where all polylogarithmic factors are ignored.
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is Ω(n2). While this lower bound is designed for arbitrary frequency vectors, it
can be embedded into a graph with Θ(n2) edges so that frequencies correspond
to vertex degrees. This implies we cannot find an algorithm to approximate the
Caro-Wei bound within a factor of 1 + ε which guarantees that the space used
will always be sublinear.

Our Results. Despite these lower bounds, we are able to provide upper and
lower bounds that improve on those stated above. The key advance is that they
incorporate a dependence on the target quantity, β(G). This means when this
quantity is suitably big (as is the case in many graphs of interest), we can in
fact guarantee sublinear space. In more detail, we proceed as follows. Since in
our setting the frequency vector is derived from the degrees of the vertices of the
input graph, we can exploit the properties of the underlying graph. In our first
result, we relate the space complexity of our algorithm to a given lower bound γ
on β(G). A meaningful lower bound γ is easy to obtain: It is easy to see that the
Turán bound [18] for independent sets, which shows that n/(d + 1) is a lower
bound on the size of a maximum independent set, is also a lower bound on β(G),
where d is the average degree of the input graph. Our first result is then a one-
pass randomized streaming algorithm with space O(n log n

γc2 ) that approximates
β(G) within a factor of c with high probability (Theorem 1). Using γ = n

d+1
, the

space becomes O(d log n
c2 ), which is polylogarithmic for graphs of constant average

degree such as planar graphs or bounded arboricity graphs. The algorithm can
also give a (1 + ε)-approximation using O(n log n

γε2 ) space.
We prove that our algorithm is best possible (up to poly-log factors). Via a

reduction from a hard problem in communication complexity, we show that every
p-pass streaming algorithm for computing a c-approximation to β(G) requires
Ω( n

β(G)c2p ) space (Theorem 4). This lower bound also holds in the vertex arrival
order, where vertices arrive one by one together with those incident edges that
connect to vertices that have previously arrived (see Sect. 2 for a more precise def-
inition). Our lower bound is more general than the lower bound from Braverman
and Chestnut [17], since their lower bound only holds for (1 + ε)-approximation
algorithms and does not establish a dependency on the output quantity, i.e., the
−1-negative frequency moment. Furthermore, their bound was not developed in
the graphical setting where frequencies are derived from the vertex degrees.

Our lower bound shows that the promise that the input stream is in vertex
arrival order is not helpful for approximating β(G). However, if we regard the
task of approximating β(G) as obtaining a (hopefully large) lower bound on the
size of a maximum independent set of the input graph, then any value sand-
wiched between β(G) and the maximum independent set size would be equally
suitable (or even superior). In the vertex arrival setting, we give a random-
ized one-pass streaming algorithm with space O(log3 n), which outputs a value
β′ with β′ = Ω(β(G)/ log n) and β′ is at most the maximum independent set
size (Theorem 2). Since the Caro-Wei bound is a polylogarithmic approximation
to the maximum independent set size in polynomially bounded-independence
graphs, a corollary of our result is that the maximum independent set size can be
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approximated within a polylogarithmic factor in polylogarithmic space in poly-
nomially bounded-independence graphs (e.g., the approximation factor obtained
on unit disc graphs is O( log3 n

(log log n)2 )).
Our focus is on streaming models where edges only arrive. We briefly com-

ment on when our results generalize to models which allow deletions following
each algorithm.

Further Related Work. There has been substantial interest in the topic of
streaming algorithms for graphs in the last two decades. Indeed, the introduc-
tion of the streaming model focused on graph problems [19]. McGregor pro-
vides a survey that outlines key results on well-studied problems such as finding
sparsifiers, identifying connectivity structure, and building spanning trees and
matchings [20].

Our work is the first to consider the graph frequency moments (or degree
moments) in the data streaming model. They have previously been considered
in the property testing literature [21–23], where the input graph can only be
queried a sublinear number of times. There are important connections between
the degree moments and network science and various other disciplines. For details
we refer the reader to [22].

2 Preliminaries

The Independent Set problem is most naturally modeled as a problem over graphs
G = (V,E). A set U ⊆ V is an independent set if for all pairs u,w ∈ U we have
{u,w} �∈ E, i.e. there is no edge between u and w. Let α(G) be the independence
number of graph G, i.e., the size of a maximum independent set in G.

We consider graphs defined by streams of edges. That is, we observe a
sequence of unordered pairs {u,w} which collectively define the (current) edge
set E. We do not require V to be given explicitly, but take it to be defined
implicitly as the union of all nodes observed in the stream. In the (arbitrary,
possibly adversarial) edge arrival model, no further constraints are placed on
the order in which the edges arrive. In the vertex arrival model, there is a total
ordering on the vertices ≺ which is revealed incrementally. Given the final graph
G, node v “arrives” so that all edges {u, v} ∈ E such that u ≺ v are presented
sequentially before the next vertex arrives. We do not assume that there is any
further ordering among this group of edges.

3 Algorithm in the Edge-Arrival Model

In this section, we suppose that a lower bound γ ≤ β(G) is known. For example,
γ = n

d+1
is a suitable bound, where d is the average degree of the input graph. If

no such bound is known, then the algorithm can be used with the trivial lower
bound γ = 1.
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We give an algorithm that computes an estimate B which approximates β(G)
within a factor of 1+ε with probability at least 2/3. By running Θ(log n) copies of
our algorithm and returning the median of the computed estimates, the success
probability can be increased to 1 − 1

nc , for any constant c.
The estimator B is computed as follows: First, take a uniform random sample

S ⊆ V such that every vertex v ∈ V is included in S with probability p = 3
ε2γ .

Then, while processing the stream, compute degG(v), for every vertex v ∈ S.
Let xv ∈ {0, 1} be the indicator variable of the event v ∈ S. Then B is computed
by B = 1

p

∑
v∈V avxv, where av := 1

degG(v)+1 .
We first show that B is an unbiased estimator and we bound the variance of B.

Lemma 1. Let B be the estimate computed as above. Then:

E [B] = β(G) , and V[B] <
1
p

∑

v∈V

a2
v ≤ 1

p
β(G).

The proof is a fairly straightforward calculation of expectations, and is
deferred to the full version of this paper.

Theorem 1. Let γ ≤ β(G) be a given lower bound on β(G). Then, there is
a randomized one-pass approximation streaming algorithm in the edge arrival
model with space O

(
n log n

γε2

)
that approximates β(G) within a factor of 1 + ε,

with high probability.

Proof. By Chebyshev’s inequality, the error probability of our estimate is at
most 1/3, since (recall that p = 3

ε2γ )

P [|B − β(G)| ≥ εβ(G)] ≤ V[B]
ε2β(G)2

<
1

pε2β(G)
≤ 1

3
.

By a standard Chernoff bounds argument, running Θ(log n) copies of our algo-
rithm and returning the median of the computed estimates allows us to obtain
an error probability of O(n−c), for any constant c. �	
Remarks: Observe that the previous theorem also holds for large values of ε
(e.g. ε = nδ, for some δ > 0). The core of our algorithm is to sample nodes with
a fixed probability and to count their degree. This can easily be achieved in the
model where edges are also deleted (the turnstile streaming model) without any
further data structures, so our results hold in that stream model also.

4 Algorithm in the Vertex-Arrival Model

Let v1, . . . , vn be the order in which the vertices appear in the stream. Let
Gi = G[{v1, . . . , vi}] be the subgraph induced by the first i vertices. Let nd,i :=
|{v ∈ V (Gi) : degGi

(v) ≤ d}| be the number of vertices of degree at most d in
Gi, and let nd = maxi nd,i.
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Algorithm 1. Algorithm DegTest(d, ε)
Require: Degree bound d, ε for a 1 + ε approximation
1: p ← 1, S ← ∅, m ← 0, ε′ ← ε/2, c ← 28

ε′2
2: while stream not empty do {The current subgraph is Gi}
3: v ← next vertex in stream
4: if coin(p) then
5: S ← S ∪ {v} {Sample vertex with probability p}
6: Update degrees of vertices in S, i.e., for every u ∈ S adjacent to v, increment its

degree {This ensures that for every u ∈ S degGi
(u) is known}

7: Remove every vertex u ∈ S from S if degGi
(u) > d

8: if p = 1 then
9: m ← max{m, |S|}

10: if |S| = c log(n) then
11: m ← c log(n)/p
12: Remove each element from S with probability 1

1+ε′
13: p ← p/(1 + ε′)
14: return m

We first give an algorithm, DegTest(d, ε), which with high probability
returns a (1 + ε)-approximation of nd using O( 1

ε2 log2 n) bits of space. In the
description of the algorithm, we suppose that we have a random function coin:
[0, 1] → {false, true} such that coin(p) = true with probability p and coin(p)
= false with probability 1−p. Furthermore, the outputs of repeated invocations
of coin are independent.

Algorithm DegTest(d, ε) maintains a sample S of at most c log n vertices.
It ensures that all vertices v ∈ S have degree at most d in the current graph
Gi (notice that degGi

(v) ≤ degGj
(v), for every j ≥ i). Initially, p = 1, and all

vertices of degree at most d are stored in S. Whenever S reaches the limiting size
of c log n, we downsample S by removing every element of S with probability

1
1+ε′ and update p ← p/(1 + ε′). This guarantees that throughout the algorithm
S constitutes a uniform random sample of all vertices of degree at most d in Gi.

The algorithm outputs m ← c log(n)/p as the estimate for nd, where p is the
smallest value of p that occurs during the course of the algorithm. It is updated
whenever S reaches the size c log n, since S is large enough at this moment to
be used as an accurate predictor for nd,i, and hence also for nd.

Lemma 2. Let 0 < ε ≤ 1. DegTest(d, ε) (Algorithm 1) approximates nd within
a factor 1 + ε with high probability, i.e.,

nd

1 + ε
≤ DegTest(d, ε) ≤ (1 + ε)nd ,

and uses O( 1
ε2 log2 n) bits of space.

For space reasons, we defer the proof of this Lemma to the full version of
this paper and only give a brief outline here. We say that the algorithm is
in phase i if the current value of p is p = 1/(1 + ε′)i. We focus on the key
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Algorithm 2. Algorithm in the Vertex-arrival Order
for every i ∈ {0, 1, . . . , �log n�}, run in parallel:

ñ2i = DegTest(2i, 1/2)
end for

return max

{
ñ2i

2(2i + 1)
: i ∈ {0, 1, . . . , �log n�}

}

moments (ji)i≥0 in the algorithm, where ji is the smallest index j such that
nd,j ≥ c log n(1 + ε′)i(1 + ε′/2). The core of our proof is to show that after
iteration ji, the algorithm is in phase i+1 with high probability. For an intuitive
justification of this claim, suppose that this is not true and the algorithm was in
phase at most i after iteration ji. Then, since S is a uniform sample, we expect
the size of S to be at least nd,ji/(1+ε′)i ≥ c log n(1+ε′/2), which however would
have triggered the downsampling step in Line 10 of the algorithm and would have
transitioned the algorithm into the next phase. On the other hand, suppose that
the algorithm was in phase at least i + 2 after iteration ji. In iteration k when
the algorithm transitioned into phase i + 2, the number of nodes nd,k of degree
at most d was bounded by nd,k ≤ nd,ji . The transition from phase i + 1 to
i + 2 would thus not have occurred, since the expected size of S in iteration k
was at most nd,ji/(1 + ε′)i+1 ≤ c log n(1 + ε′/2)/(1 + ε′). In our proof, we make
this intuition formal and conduct an induction over the phases. Let jĩ be the
largest occurring value of ji. Then nd,jĩ

is a good approximation of nd and, as
argued above, the algorithm is in phase ĩ+1 after iteration jĩ. Using the largest
occurring value of p, we can thus estimate nd.

Next, we run multiple copies of DegTest in order to obtain our main algo-
rithm, Algorithm 2. This consists of making multiple parallel guesses of the
parameter d as powers of 2, and taking the guess which provides the maximum
bound.

Theorem 2. Let γ be the output of Algorithm 2. Then, with high probability:

1. γ = Ω(β(G)
log n ), and

2. γ ≤ α(G).

Furthermore, the algorithm uses space O(log3 n) bits.

Proof. For 0 ≤ i < �log(n), let Vi ⊆ V be the subset of vertices with degG(v) ∈
{2i, 2i+1 − 1}. Then,

β(G) =
∑

v∈V

1
degG(v) + 1

=
∑

i

∑

v∈Vi

1
degG(v) + 1

≤
∑

i

|Vi|
2i + 1

.

Let imax := arg maxi
|Vi|
2i+1 . Then, we further simplify the previous inequality:

β(G) ≤ · · · ≤
∑

i

|Vi|
2i + 1

≤ �log(n) · |Vimax |
2imax + 1

≤ �log(n) · |V≤imax |
2imax + 1

. (2)
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where V≤i = ∪j≤iVj . Let dmax = 2imax . Since |Vimax | ≤ ndmax and ñdmax =
DegTest(dmax,

1
2 ) is a 1.5-approximation to ndmax , we obtain γ = Ω(β(G)

log n ),
which proves Item 1.

Concerning Item 2, notice that for every i and d, it holds

α(G) ≥ α(Gi) ≥ β(Gi) =
∑

v∈V (Gi)

1
degGi

(v) + 1

≥
∑

v∈V (Gi):degGi
(v)≤d

1
degGi

(v) + 1
≥ ni,d

d + 1
,

and, in particular, the inequality holds for ndmax = nimax,dmax . Since the algo-
rithm returns a value bounded by ñdmax

2·(dmax+1) , and ñdmax constitutes a 1.5-
approximation of ndmax , Item 2 follows.

Concerning the space requirements, the algorithm runs O(log n) copies of
Algorithm 1 which itself requires O(log2 n) bits of space. �	

Remark: On first glance, it may appear that our algorithm would translate to the
turnstile model where edges can be deleted: the central step of sampling vertices
at varying probabilities is reminiscent of steps from L0 sampling algorithms [24].
However, there are a number of obstacles to achieving this. First, the algorithm
computes a maximum over the estimate β(Gi) for intermediate graphs Gi. This
is correct when nodes and edges only arrive, but is not correct when a graph
may be subject to deletions. We therefore leave the question of giving comparable
bounds under the turnstile stream model as an open problem.

5 Space Lower Bound

Our lower bound follows from a reduction using a well-known hard problem from
communication complexity. Let DISJn refer to the two-party set disjointness
problem for inputs of size n. In this problem we have two parties, Alice and Bob.
Alice knows X ⊂ [n], while Bob knows Y ⊂ [n]. Alice and Bob must exchange
messages until they both know whether X ∩ Y = ∅ or X ∩ Y �= ∅.

Using R(DISJn) to refer to the randomised (bounded error probability) com-
munication complexity of DISJn, the following theorem is known.

Theorem 3 (Kalyanasundaram and Schnitger [25]). R(DISJn) ∈ Ω(n) .

To get our lower bound, we will show a reduction from randomised set dis-
jointness to randomised c-approximation of β(G).

Theorem 4. Every randomized constant error p-pass streaming algorithm that
approximates β(G) within a factor of c uses space Ω

(
n

β(G)c2p

)
, even if the input

stream is in vertex arrival order.
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Proof. Let Algc,n be any streaming algorithm that performs p passes over a
vertex arrival stream of an n-vertex graph G and returns a c-approximation of
β(G) with probability 2

3 . Suppose we are given an instance of DISJk. We will
construct a graph G from X and Y which we can use to tell whether X ∩ Y = ∅
by checking a c-approximation of β(G).

Let z ≥ 2 be an arbitrary integer. Set q = 2zc2 and a = kq. Let G = (V,E),
where V is partitioned into disjoint subsets A, B, C, and Ui for i ∈ [k]. These
are of size |A| = |B| = a, |C| = z, and |Ui| = q. So n := |V | = kq + 2a + z =
3kq + z = z(6kc2 + 1). Thus, k ∈ Θ( n

zc2 ) holds.
First consider the set of edges E0 consisting of all {u, v} with u, v ∈ A ∪ B,

u �= v. Setting E = E0 makes A ∪ B a clique, while all other vertices remain
isolated.

Figure 1a shows this initial configuration. For clarity, we represent the struc-
ture using super-nodes and super-edges. A super-node is a subset of V (in this
case we use A, B, C, and each Ui). Between the super-nodes, we have super-edges
representing the existence of all possible edges between constituent vertices. So
a super-edge between super-nodes Z1 and Z2 represents that {z1, z2} ∈ E for
every z1 ∈ Z1 and z2 ∈ Z2. The lack of a super-edge between Z1 and Z2 indicates
that none of these {z1, z2} are in E.

U1

U2

...

Uk−1

Uk

A

B

C

(a) Initial configuration.

U1

U2

U3

U4

U5

A

B

C

(b) Example with X = {2, 4}
and Y = {1, 2, 3}.

U1

U2

U3

U4

U5

A

B

C

(c) Example with X = {2, 4}
and Y = {1, 3}.

Fig. 1. Lower bound construction

Next we add dependence on X and Y . Let

EX =
⋃

i∈[n]\X

⎛

⎝
⋃

u∈Ui,v∈A

{{u, v}}
⎞

⎠ and EY =
⋃

i∈[n]\Y

⎛

⎝
⋃

u∈Ui,v∈B

{{u, v}}
⎞

⎠ .



Approximating the Caro-Wei Bound for Independent Sets in Graph Streams 111

So EX contains all edges from vertices in Ui to vertices in A exactly when index
i is not in the set X. EY similarly contains all edges from Ui to B when i �∈ Y .

Now let E = E0 ∪ EX ∪ EY . Adding these edge sets corresponds to adding
a super-edge to Fig. 1a between Ui and A (or B) whenever i is not in X (or Y ).
Figures 1b and 1c illustrate this. In Fig. 1b, the intersection is non-empty, which
creates a set of isolated nodes that push up the value of β(G). Meanwhile, there
is no intersection in Fig. 1c, so the only isolated nodes are those in C.

Now, consider β(G). In the case where X ∩ Y = ∅, we will have a super-edge
connecting each Ui to at least one of A and B, so the degree of each vertex
in each Ui is either a or 2a. Similarly, A ∪ B is a clique, so each vertex has
degree at least (2a − 1). There are 2a such vertices, so they contribute at most

2a
(2a−1)+1 = 1 to β. Vertices in C are isolated and contribute exactly z to β.

Therefore, z ≤ β(G) ≤ kq
a + 1 + z = z + 2.

Now consider the case where X ∩ Y �= ∅. This means that there exists some
i ∈ X ∩ Y , and so Ui will have no super-edges. So each vertex in Ui is isolated,
and contributes exactly 1 to β. There are q such vertices, and also accounting
for the contribution of vertices C, we obtain β(G) ≥ q + z = z(2c2 + 1).

Since the minimum possible ratio of the β-values between graphs in the two
cases is at least z(2c2+1)

z+2 > c2 (using z ≥ 2), a c-approximation algorithm for
β(G) would allow us to distinguish between the two cases.

Now, return to our instance of DISJk. We can have Alice initialise an instance
of ALGc,n and have all vertices in A, C, and each Ui arrive in any order. This
only requires knowledge of X because only edges in E0 and EX are between these
vertices and these are the only edges that will be added so far in the vertex arrival
model. Alice then communicates the state of ALGc,n to Bob. Bob can now have
all vertices in B arrive in any order. This only requires knowledge of Y because
only edges in E0 and EY are still to be added. Bob then communicates the state
of ALGc,n back to Alice (if p ≥ 2). This process continues until the p passes of
the algorithm have been executed. Bob can then compute a c-approximation of
β(G) with probability at least 2

3 from the final state of the algorithm, determining
which case we are in and solving DISJk.

From Theorem 3, we know that Alice and Bob must have communicated
at least Ω(k) bits. However, all they communicated was the state of ALGc,n.
Therefore, Ω(k/p) = Ω( n

zc2p ) bits was being used by ALGc,n at the time, since
the algorithm runs in p passes.

Consider again the graph G. The above argument shows that in order to com-
pute a c-approximation to β(G), space Ω( n

zc2p ) is needed. Since β(G) ≥ z in both
cases, we obtain the space bound Ω( n

β(G)c2p ). Last, recall that z and thus β(G)
can be chosen arbitrarily. The theorem hence holds for any value of β(G). �	
Remark: The vertices of set C of the construction employed in the previous proof
are isolated. This property may be considered undesirable – for example, it may
be relatively easy to identify and separately count isolated vertices. However, this
structure in the hard instances can be entirely circumvented by, for example,
replacing each of these vertices u ∈ C with a pair of nodes u1, u2, which are
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connected by an edge. We also note that, of course, the problem is no easier
when deletions are allowed, and so the lower bound also holds for such models.

6 Conclusion

In this paper, we gave an optimal one-pass c-approximation streaming algorithm
with space O(n polylog n

c2γ ) for approximating the Caro-Wei bound β(G) in graph
streams, where γ ≤ β(G) is a given lower bound. If the input stream is in
vertex arrival order, then we showed that a quantity β′ can be computed, which
is at most a logarithmic factor below β(G) and at most α(G), the maximum
independent set size of the input graph.

From a technical perspective, we leverage this problem to advance the study
of the degree moments in the streaming model. The fact that the frequencies
are derived from the degrees of the input graph adds an additional dimension
to the frequency moments problem, since, as illustrated by our two algorithms,
the arrival order of edges can now be exploited. Furthermore, it seems plausi-
ble that exploiting additional graph structure could reduce the space complex-
ity even further. For example, it is known that in claw-free graphs, it holds∑

u∈Γ (v)
1

deg(u) = O(1), for every vertex v [10]. It remains to be investigated
whether such properties can give additional space improvements. Last, one of
the objectives of this work was the popularization of the Caro-Wei bound, and
we thus only addressed the −1-negative frequency moment. Our algorithm for
the edge arrival model can in fact also be used for approximating any other neg-
ative degree moment

∑
v∈V ( 1

degG(v) )
p, for every p < 0, since the analysis only

requires that the contribution of a vertex to the degree moment is at most 1,
which is the case for all negative moments (it holds ( 1

degG(v) )
p ≤ 1, for every

v ∈ V and p < 0). Generalizing our approach to positive frequency moments is
left for future work.
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Abstract. Given an undirected rooted graph, a cycle containing the
root vertex is called a rooted cycle. We study the combinatorial duality
between vertex-covers of rooted-cycles, which generalize classical vertex-
covers, and packing of disjoint rooted cycles, where two rooted cycles
are vertex-disjoint if their only common vertex is the root node. We
use Menger’s theorem to provide a characterization of all rooted graphs
such that the maximum number of vertex-disjoint rooted cycles equals
the minimum size of a subset of non-root vertices intersecting all rooted
cycles, for all subgraphs.

Keywords: Kőnig’s theorem · Menger’s theorem

1 Introduction

Throughout G = (V,E) is a simple undirected graph. The minimum vertex-cover
problem amounts to find a vertex-cover (that is, a set T ⊆ V so that every edge
of G has at least one vertex in T ) minimizing |T |. This is a very well studied
NP-hard problem, equivalent to finding a maximum stable set (equivalently, the
complement of a vertex-cover, or a clique in the complementary graph) [6]. In
this paper, we introduce the minimum rooted-cycle cover problem which contains
the vertex-cover problem, and which is, given a root vertex r of G, to remove a
minimum size subset of V \ {r} so that r is contained in no cycle anymore. The
minimum vertex-cover problem is the particular case where r is adjacent with
all other vertices.

If we are given a set of terminal vertices of G, with at least two vertices, the
minimum multi-terminal vertex-cut problem is to remove a minimum number
of vertices, so that no path connects two terminal vertices anymore, see [1,2].
The weighted version of the minimum rooted-cycle cover problem contains the
minimum multi-terminal vertex-cut problem which is the particular case where
the neighborhood N(r) of r is the set of terminal vertices with infinite weight.
In turn, if we replace r by |N(r)| terminal vertices t1, . . . , tk where N(r) =
{v1, . . . , vk} and link ti to vi, then we obtain an instance of the minimum multi-
terminal vertex-cut problem the solution of which is a solution for the original
instance of the minimum rooted cycle cover problem.
c© Springer International Publishing AG, part of Springer Nature 2018
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Our main motivation to introduce the minimum rooted cycle cover problem
is that it allows us to give short proofs of some min-max theorems, such results
being fundamental in combinatorial optimization and linear programming [5].
Jost and Naves gave such results for the minimum multi-terminal vertex-cut
problem in an unpublished manuscript [2] (actually we found independently this
result).

The paper is organized as follows. In Sect. 2, we recall two classical theorems
and give formal definitions. In Sect. 3, we give a characterization of all rooted
graphs (G, r) so that the minimum number of non-root vertices intersecting all
rooted cycles equals the maximum number of rooted cycles having only the
root as common node, for all partial subgraphs. In Sect. 4, we revisit a result
by Jost and Naves [2] in terms of rooted cycles. (We found the equivalent result
independently.) This is a structural characterization in terms of excluded minors
of pseudo-bipartite rooted graphs, that is, rooted graphs satisfying the min-max
equality for all rooted minors.

2 Background

Let us recall two fundamental min-max theorems.
Given a graph, a matching is a subset of pairwise vertex-disjoint edges.

Kőnig’s Theorem [3]. Let G be a bipartite graph. The minimum size of a
vertex-cover of G is equal to the maximum size of a matching of G.

Take a graph G and fix distinct vertices s, t. A st-path of G is subset P ⊆ V
of vertices of G which can be ordered into a sequence s = v0, v1, . . . , vk = t
where vivi+1 is an edge of G. The vertices v0, vk are the extremities of P , the
other vertices are the internal vertices of P . Two st-paths P,Q are internally
vertex-disjoint if P ∩ Q = {s, t}. A subset D of vertices of G is an st-vertex cut
if neither s nor t belongs to D, and D intersects every st-path.

Menger’s Theorem [4]. Let G be a graph and let s and t be two nonadjacent
vertices of G. The minimum size of a st-vertex cut is equal to the maximum
number of internally vertex-disjoint st-paths.

A subset C ⊆ V containing r and so that C \ {r} is a path the extremities
of which are adjacent with r is called a rooted cycle of (G, r). Two rooted cycles
are internally vertex-disjoint if r is their only common vertex. A rooted-cycle
cover of (G, r) is a subset of T ⊆ V \ {r} of non-root vertices so that C ∩ T �= ∅
for all rooted cycle C. A rooted-cycle cover is minimum if |T | is minimum. A
rooted-cycle packing of (G, r) is a collection C1, . . . , Ck of rooted cycles so that
Ci ∩Cj = {r} for all distinct i, j = 1, . . . , k. A rooted-cycle packing is maximum
if k is maximum. Clearly the minimum of the cover is at least the maximum of
the packing.

We call G′ a subgraph of G if it is obtained from G by deleting vertices, and
G′ is a partial subgraph of G if it is obtained by deleting vertices and/or edges.
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3 Packing and Covering Rooted Cycles

The following consequence of Menger’s theorem is useful to characterize rooted
graphs for which the minimum equals the maximum.

Corollary 1. Let G be a graph with a vertex t and a subset S, of at least k
vertices, not containing t. If there are k internally vertex-disjoint vt-paths for
every v ∈ S, then there are k distinct vertices s1, . . . , sk of S, with sit-paths Pi

for each i = 1, . . . , k, so that t is the only vertex belonging both to distinct Pi, Pj.

Proof. Add a new vertex s to G and link it to every vertex in S. We only need
to prove that there are k internally vertex-disjoint st-paths. If it is not the case,
then, by Menger’s theorem, there is a st-vertex cut D of size |D| < k. Let
v ∈ S \ D. Clearly v is not adjacent with t. Thus D is a vt-vertex cut which
is impossible since (again by Menger’s theorem) there are k internally vertex-
disjoint vt-paths. ��

Let K4 be the complete graph on four vertices and r one of its vertices. The
rooted graph (Ĝ, r) is a subdivision of (K4, r) if it is obtained from (K4, r) by
inserting vertices in edges. Note that in any such subdivision, the vertex r has
degree three. A rooted partial subgraph of (G, r) is a rooted graph (G′, r) where
G′ is a partial subgraph of G.

Theorem 1. The minimum size of a subset of non-root vertices intersecting all
rooted cycles is equal to the maximum number of internally vertex-disjoint rooted
cycles, for all partial rooted subgraphs of (G, r), if and only if no partial rooted
subgraph of (G, r) is a subdivision of (K4, r).

Proof. (⇒) It suffices to see that, for any subdivision of (K4, r), any two rooted
cycles must have a non-root vertex in common while any rooted cycle cover
needs at least two non-root vertices.
(⇐) Let (G, r) be a minimum graph, that is, with a minimum number of edges,
such that the minimum rooted cycle cover is strictly greater than the maximum
packing of rooted cycles. Minimality implies that G has no vertices of degree < 3.
It follows that the graph G − r obtained from G by removing r has a cycle C
with at least three distinct vertices s1, s2, s3 (since G is a simple graph). Hence,
by Corollary 1, it suffices to prove (1) below, since it implies that there are three
internally vertex-disjoint sir-paths which form with C a subdivision of (K4, r).

There are three internally vertex-disjoint vr -paths for every vertex v ∈ V \ {r} (1)

Assume that (1) is not true, and let v be a counter-example. Remark that, for
any vertex s nonadjacent with r, the minimality of G implies that no sr-vertex
cut is a clique, in particular, it has at least two vertices (indeed otherwise v
belongs to no inclusion wise minimal rooted cycle). Furthermore, no vertex-cut
has only one vertex. We build a graph Ĝ from G as follows:
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(a): If v is nonadjacent with r, then (by Menger’s theorem) there is a vr-vertex
cut with size 2, say D = {u,w}. Let V ′ � v be the subset of vertices in the
component, containing v, of the graph obtained from G by removing D. We
let Ĝ be the graph obtained by removing V ′ and adding the edge e = uw.

(b): If v is adjacent with r, then, in the graph G − vr (obtained from G by
removing the edge vr), there is a vr-vertex cut D = {u}. Let V ′ � v be the
subset of vertices in the component, containing v, of the graph obtained by
removing u from G − vr. We let Ĝ be the graph obtained by removing V ′

and adding the edge e = ur.

Observe now, that if there are ν vertex-disjoint rooted cycles in Ĝ, then there
are also ν vertex-disjoint rooted cycles in G. Indeed, if some rooted cycle of Ĝ
contains the additional edge e, then e can be replaced by a path of G with all
internal vertices in V ′. Moreover, if there are τ vertices intersecting every rooted
cycles of Ĝ, then these τ vertices intersect also every rooted cycles of G. We have
a contradiction, since the minimality of G implies τ = ν. ��

Finally, since series-parallel graphs are those with no minor K4, one has:

Corollary 2. Given a graph G, the minimum rooted cycle cover equals the max-
imum rooted cycle packing, for all partial subgraphs and every choice of a root
r, if and only if G is series-parallel.

4 Pseudo-bipartite Rooted Graphs

The closed neighborhood of r is the set of N [r] = N(r) ∪ {r}.
A rooted graph is pseudo-bipartite if it is obtained from a bipartite graph

(V1, V2;E) by creating a root vertex linked to every vertex of V1 ∪ V2, and then,
by replacing some original edges uv ∈ E by any graph Guv, on new vertices,
with edges between some new vertices and u (or v), more precisely:

Definition 1. A rooted graph (G, r) is pseudo-bipartite if

(a) The subgraph G[N(r)] induced by the neighbors of r is a bipartite graph GB;
(b) There is a bipartition of GB, so that every component of the graph G\N [r],

that we obtain if we remove the closed neighborhood of r, has at most one
neighbour in each side of GB .

Contracting a vertex v is to delete v, and to add edges so that its neighborhood
N(v) forms a clique. A rooted minor of (G, r) is a rooted graph (Ĝ, r) obtained
from (G, r) by deleting vertices different from r, or by contracting vertices v ∈
V \ N [r] outside the closed neighborhood of the root.

An odd wheel is a graph composed of an odd cycle together with one vertex,
called the center of the wheel, to which all the vertices of the odd cycle are
linked. A rooted odd wheel is a rooted graph (G, r) so that G is an odd wheel the
center of which is the root r.
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Theorem 2 [2]. A rooted graph (G, r) is pseudo-bipartite if and only if it has
no rooted minor which is a rooted odd wheel.

Proof. Necessity holds since G[N(r)] = GB has no odd cycle and since every edge
which appears in G[N(r)] by contracting some vertex outside N [r] necessarily
links two vertices in different side of the bipartition of GB .

To see sufficiency, suppose that no rooted-minor of (G, r) is a rooted odd-
wheel. Condition (a) of Definition 1 is indeed satisfied since deleting all vertices
but those of an odd cycle in the neighborhood of r leaves a rooted odd wheel.
Assume that condition (b) is not satisfied. Let U1, . . . , Up be the components of
the graph obtained by removing r and all its neighbors. If Ui has at least three
neighbors x, y, z (in GB), then contracting all the vertices in Ui and deleting all
vertices but x, y, z (and r) leaves (K4, r) which is a rooted odd wheel. It follows
that Ui has at most two neighbors. Chose a bipartition V1, V2 of GB so that
the number of components U1, . . . , Up having two neighbors in the same side is
minimum. There is a component Ui with two neighbors x, y in the same side, say
x, y ∈ V1 (otherwise the proof is done). Let V x

1 (resp. V x
2 ) be the set of vertices

in V1 (resp. in V2) reachable, from x, by a path of GB . Similarly, define V y
1

and V y
2 . If either V x

1 ∩ V y
1 or V x

2 ∩ V y
2 is nonempty, then there exists a xy-path

P in GB . Yet contracting Ui and deleting all vertices but those of P (and r)
leaves a rooted odd wheel. It follows that V x

1 , V x
2 , V y

1 , V y
2 are pairwise disjoint,

and hence (V1 \ V x
1 ) ∪ V x

2 , (V2 \ V x
2 ) ∪ V x

1 is a possible bipartition for GB . The
way the bipartition V1, V2 was chosen implies that there is another component,
say Uj , with either one neighbor in V x

1 and the other in V y
2 , or one neighbor in

V y
1 and the other in V x

2 . Anyway, contracting both Ui and Uj creates an odd
cycle in the neighborhood of r. Now deleting the vertices outside this odd cycle
leaves a rooted odd wheel; contradiction. ��

Given a pseudo-bipartite rooted graph (G, r) with bipartite graph GB =
G[N(v)], we let Ĝ be the graph obtained by removing r from (G, r), and then by
creating two new vertices s and t, so that s is linked to every vertex of one side
of GB , and t is linked similarly to every vertex in the other side of GB . Observe
that:

A subsetP ⊆ V is a st-path of Ĝ if and only ifP \{s, t}∪{r} is a rooted cycle of (G, r).
(2)

Since (2) holds, Menger’s theorem implies that, for pseudo-bipartite rooted
graphs, the minimum rooted cycle cover equals the maximum rooted cycle
packing.

Observe, moreover, that for any rooted odd wheel with an odd cycle having
2k + 1 vertices, the minimum size of a cover is k + 1 while the maximum pack-
ing is k. It follows that Theorem 2 implies Corollary 3 below, which is also a
consequence of a result in [2] (namely Lemma 9).

Corollary 3 [2]. The minimum size of a subset of non-root vertices intersecting
all rooted cycles is equal to the maximum number of internally vertex-disjoint
rooted cycles, for all rooted minor of (G, r), if and only if no rooted minor of
(G, r) is a rooted odd wheel. ��
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Observe that, if every vertex is linked to r, then (G, r) is pseudo-bipartite if
and only if the graph induced by V \ {r} is bipartite. Hence by Theorem 2:

Remark 1. Corollary 3 contains Kőnig’s theorem as particular case.

Note also that recognizing if (G, r) is pseudo-bipartite or not, it suffices to
contract all vertices outside the closed neighborhood of r, to remove r, and to
check if the remaining graph is bipartite or not. So one has:

Remark 2. In can be checked in polynomial time if (G, r) is pseudo-bipartite
or not.
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3. Kőnig, D.: Graphok és alkalmazásuk a determinánsok és a halmazok elméletére
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Abstract. In the Firefighter problem, introduced by Hartnell in
1995, a fire spreads through a graph while a player chooses which vertices
to protect in order to contain it. In this paper, we focus on the case of
trees and we consider as well the Fractional Firefighter game where
the amount of protection allocated to a vertex lies between 0 and 1.
We introduce the online version of both Firefighter and Fractional
Firefighter, in which the number of firefighters available at each turn
is revealed over time. We show that the greedy algorithm on finite trees,
which maximises at each turn the amount of vertices protected, is 1/2-
competitive for both online versions; this was previously known only
in special cases of Firefighter. We also show that, for Firefighter,
the optimal competitive ratio of online algorithms ranges between 1/2
and the inverse of the golden ratio. The greedy algorithm is optimal if
the number of firefighters is not bounded and we propose an optimal
online algorithm which reaches the inverse of the golden ratio if at most
2 firefighters are available. Finally, we show that on infinite trees with
linear growth, any firefighter sequence stronger than a non-zero periodic
sequence is sufficient to contain the fire, even when revealed online.

1 Introduction and Definitions

Since it was formally introduced by B. Hartnell in 1995 ([1], cited in [2]) the
firefighting problem - Firefighter - has raised the interest of many researchers.
While this game started as a very simple model for fire spread and containment
problems for wildfires, it can also represent any kind of threat able to spread
sequentially in a network (diseases, viruses, rumours, flood . . . ).

It is a deterministic discrete-time one-player game defined on a graph. In the
beginning, a fire breaks out on a vertex and at each step, if not blocked, the fire
spreads to all adjacent vertices. In order to contain the fire, the player is given
a number fi of firefighters at each turn i and can use them to protect vertices
which are neither burning nor already protected. The game terminates when the
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fire cannot spread any further. In the case of finite graphs the aim is to save as
many vertices as possible, while in the infinite case, the player wins if the game
finishes, which means that the fire is contained.

This problem and its variants give rise to a generous literature; the reader is
referred to [2] for a broad presentation of the main research directions. A signif-
icant amount of theoretical work deals with its complexity and approximability
behaviour in various classes of graphs [3–6] and recently its parametrised com-
plexity (e.g. [7]). It is known to be very hard, even in some restrictive cases. In
particular, the case of trees was revealed to be very rich and a lot of research
focuses on it. The problem is NP-hard on finite trees [3], even in more restricted
cases [6]. Regarding approximability results on trees, it was first shown to be
1
2 -approximated by a greedy strategy [8], improved to 1− 1

e [5] and very recently
to a polynomial time approximation scheme [9], which closes essentially the
question of approximating firefighter problem in trees and motivates consider-
ing some generalisations. On general graphs the problem is hard to approximate
within n1−ε [10]. A related research direction investigates integer linear program-
ming models for the problem, especially on trees [9,11,12]. This line of research
makes very natural a relaxed version where the amount of firefighters available
at each turn is any non-negative number and the amount allocated to vertices
lies between 0 and 1. A vertex with a protection less than 1 is partially protected
and its unprotected part can burn partially and transmit only its fraction of fire
to the adjacent vertices. Thus, the fi may take any non-negative value. This
defines a variant game called Fractional Firefighter which was introduced
in [13].

Online optimisation [14] is a generalisation of approximation theory which
represents situations where the information arrives over the time and one needs
to make irrevocable decisions. We propose an online version of both firefighter
problems and consider first results on trees. In our model, the graph is known
and the sequence of available firefighters is revealed online. We then refer to the
usual case where (fi)i≥1 is known in advance as offline. To our knowledge, this is
the first attempt at analysing online firefighter problems. Even though our moti-
vation is mainly theoretical, this paradigm is particularly natural in emergency
management where one has to make quick decisions despite lack of informa-
tion. Any progress in this direction, even on simplified models, contributes to
understanding how lack of information impacts the quality of the solution.

Given a tree T rooted in r, V (T ) and E(T ) will denote the vertex set and
the edge set of T , respectively. Given two vertices v and v′, v ≺ v′ denotes that
v is an ancestor of v′ (or v′ is a descendant of v) and v � v′ denotes that either
v = v′ or v ≺ v′.

For any vertex v, let T [v] denote the sub-tree induced by v and its descen-
dants. Let Ti denote the i-th level of T rooted in r, where {r} = T0. The height
h(T ) of T , rooted in r, is the maximum length of a path from r to a leaf. If
i > h(T ), we have Ti = ∅.

If T is finite, the weight w(v) of a vertex v is the number of vertices in its
sub-tree (including v), i.e. w(v) = |V (T [v])|. When no ambiguity may occur, we
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will simply write wv = w(v). For any vertex v ∈ Ti and any i ≤ j ≤ i + h(T [v]),
we denote by vj a vertex of maximum weight wvj

in Tj ∩V (T [v]). While vj is not
defined if i + h(T [v]) < j ≤ h(T ), we define w̄vj

for all j ≤ h(T ) and v ∈ V (T )
via: w̄vj

= wvj
if j ≤ i + h(T [v]) and 0 otherwise. We denote by B(T ) the tree

obtained from T by fusing all vertices from levels 0 and 1 into a new root vertex
rB : every edge u1u2 ∈ E(T ) with u1 ∈ T1 and u2 ∈ T2 gives rise to the edge
rBu2 ∈ E(B(T )). For k ≤ h(T ), Bk(T ) will denote the kth iteration of B applied
to T : all vertices from levels 0 to k are fused into a single vertex denoted by rBk

which becomes the new root.

2 The Problems and Preliminary Results

2.1 Firefighter and Fractional Firefighter on Trees

In this paper we only play the game on finite or infinite trees. An instance of
the Fractional Firefighter on trees is defined by a triple (T, r, (fi)), where
T = (V (T ), E(T )) is a tree, r ∈ V (T ) is the root where the fire breaks out and
(fi)i≥1 is the non-negative real firefighter sequence. Turn i = 0 is the initial state
where r is burning and all other vertices are unprotected, and i ≥ 1 corresponds
to the different rounds of the game. At each turn i ≥ 1 and for every vertex v,
the player decides which amount p(v) of protection to add to v. Throughout the
game, for every vertex v the part of v which is burning is denoted by b(v). Let
us note that if T is finite, the game will end in at most h(T ) turns where h(T )
is the length of a longuest path form the root to the leaves.

Solutions on trees have a very specific structure: at each turn i, the amounts
of fire are non-increasing along any root to leaf path, which means that the fire
will spread only towards the leaves. Note that for any solution which allocates
a positive amount of protection at turn i to a vertex v ∈ Tk, k > i, allocating
the same amount of protection to v’s father instead strictly improves the per-
formance. So we may consider only algorithms that play in Ti at turn i. For an
optimal offline algorithm, this property was emphasised in [8]. So, for any vertex
v ∈ Ti, the amounts of fire b(v) and protection p(v) on v will not change after
turn i.

A solution p is characterised by the values p(v), v ∈ V (T ). For any solution
p, while p(v) represents the amount of protection received directly, vertex v also
receives protection through its ancestors, the amount of which is denoted by
Pp(v) =

∑
v′≺v p(v′) (used in Sect. 3). For any vertex v, we have the equality

p(v) + Pp(v) + b(v) = 1.
Any solution p for Firefighter or Fractional Firefighter will satisfy

the constraints:
{∑

v∈Ti
p(v) ≤ fi (i)

∀v, p(v) + Pp(v) ≤ 1 (ii)

In [12], a specific boolean linear model has been proposed for solving
Firefighter on a tree T involving these constraints. Solving Fractional
Firefighter on T corresponds to solving the relaxed version of this linear
programme.
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2.2 Online Version

We introduce online versions of Firefighter and Fractional Firefighter.
The graph - a tree T in this work - and the ignition vertex - the root r - are
known in advance but the firefighter sequence (fi)i≥1 is revealed over time by a
second player called adversary. At each turn i, the adversary reveals fi and then
the player chooses where to allocate this resource.

Let us consider an online algorithm OA for one of the two problems and let
us play the game on a finite tree T until the fire stops spreading. The value
λOA achieved by the algorithm, defined as the amount of saved vertices, is mea-
sured against the best value performed by an algorithm knowing in advance the
sequence (fi). In the present case, it is simply the optimal value of the offline
instance, referred to as the offline optimal value, denoted by βI when considering
the online Firefighter (I stands for “Integral”) and βF for the online Frac-
tional Firefighter. We will call Bob such an algorithm able to see the future
and guaranteeing the value βI or βF for online Firefighter and Fractional
Firefighter.

OA is said to be γ-competitive, γ ∈]0, 1] for the online Firefighter (resp.
Fractional Firefighter) if for every instance, λOA

βI
≥ γ (resp. λOA

βF
≥ γ). γ

is also called the competitive ratio guaranteed by OA. An online algorithm will
be called optimal if it guarantees the best possible competitive ratio.

Let us first note that one can reduce the problem to the case where f1 > 0:

Proposition 1. We can reduce online (Fractional) Firefighter on trees
to instances where f1 > 0.

Proof. If fi = 0 for all i such that 1 ≤ i ≤ k, then the instance (T, r, (fi)) is
equivalent to the instance (Bk(T ), rBk , (fi+k)).

In the infinite case we do not define competitiveness but only ask whether
the fire can be contained by an online algorithm. Sections 3 and 4 deal with the
finite case while Sect. 5 deals with a class of infinite trees.

3 Competitive Analysis of a Greedy Algorithm

Greedy algorithms are usually very good candidates for online algorithms, some-
times the only known approach. Mainly two different greedy algorithms have
been considered in the literature for Firefighter on a tree [2] and they are
both possible online strategies in our set-up. The degree greedy strategy priori-
tises saving vertices of large degree; it has been shown in [6] that it cannot guar-
antee any approximation ratio on trees, even for a constant firefighter sequence.
A second greedy algorithm was introduced in [8] for an integral sequence (fi),
maximising at each turn the weight of the vertices protected. We generalise it
to any firefighter sequence for both the integral and the fractional problems: at
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each turn i, the algorithm Gr solves the linear programme Pi with variables
x(v), v ∈ Ti and constraints:

Pi :

⎧
⎨

⎩

max
∑

v∈Ti
x(v)w(v)∑

v∈Ti
x(v) ≤ fi (i)

∀v, x(v) + Px(v) ≤ 1 (ii)

An optimal solution of Pi is obtained by ordering vertices {v1, . . . , v|Ti|} of
level i by non-increasing weight and taking them one by one in this order and
greedily assigning to vertex vj the value x(vj) = min(fi−

∑
k<j x(vk), 1−Px(vj)).

Note that Gr is valid for both Firefighter and Fractional Firefighter.
It was shown in [8] that the greedy algorithm on trees gives a 1

2 -approximation
of the restriction of Firefighter when a single firefighter is available at each
turn. They claim that this approximation ratio remains valid for a fixed num-
ber D ∈ N of firefighters at each turn. We extend this result to any firefighter
sequence (fi)i≥1, integral or not. Since Gr is an online algorithm, the perfor-
mance can also be seen as a competitive ratio for the online version.

Theorem 1. The greedy algorithm Gr is 1
2 -competitive for both online Fire-

fighter and Fractional Firefighter on finite trees.

Proof. Let us first consider the fractional case with an online instance (T, r, (fi))
of Fractional Firefighter on a tree.

Let x(v) and y(v) be the amounts of firefighters placed on vertex v by Gr
and Bob, respectively. We have λGr =

∑
v x(v)w(v) and βF =

∑
v y(v)w(v).

Recall that Px(v) =
∑

v′≺v x(v′) and Py(v) =
∑

v′≺v y(v′). We split y(v) into
two non-negative quantities, y(v) = g(v) + h(v), with:
g(v) = min{y(v),max{0, Px(v) − Py(v)}}
and h(v) = max{0, y(v) + min{0, Py(v) − Px(v)}}.

We now claim that ∀v′ ∈ T ,
∑

v�v′ g(v) ≤ Px(v′) and prove it by induction.
Since g(r) = 0, it holds for the root r. Assuming that the inequality holds

for a vertex v′, let v′′ be a child of v′. If Px(v′′) − Py(v′′) ≥ 0, then we directly
have:∑

v�v′′ g(v) =
∑

v≺v′′ g(v)+ g(v′′) ≤
∑

v≺v′′ y(v) + (Px(v′′)−Py(v′′)) = Px(v′′).

Else g(v′′) = 0 and using
∑

v�v′ g(v) ≤ Px(v′) and Px(v′′) ≥ Px(v′), the
inequality holds for v′′; which completes the proof of the claim.

Thus:
∑

v′
∑

v�v′ g(v) ≤
∑

v′ Px(v′) =
∑

v′
∑

v≺v′ x(v) ≤
∑

v′
∑

v�v′ x(v).
Since w(v) =

∑
v�v′ 1, by inverting the sums on both sides, we obtain:

∑

v

g(v)w(v) ≤
∑

v

x(v)w(v) = λGr (1)

Let us now consider the coefficients h(v). We claim that the coefficients h(v)
with v ∈ Ti satisfy the constraints (i) and (ii) of Pi: indeed for (i), we have
h(v) ≤ y(v) and y satisfies constraint (i). For (ii) note that h(v) + Px(v) =
max{Px(v), y(v) + min{Px(v), Py(v)}} ≤ max{Px(v), y(v) + Py(v)} ≤ 1.
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Hence, ∀i,
∑

v∈Ti
h(v)w(v) ≤

∑
v∈Ti

x(v)w(v) and therefore:

∑

v∈T

h(v)w(v) ≤
∑

v∈T

x(v)w(v) = λGr (2)

Finally, since g(v) + h(v) = y(v), we conclude from Eqs. (1) and (2) that
βF ≤ 2λGr. Hence the Greedy algorithm is 1

2 -competitive for the online Frac-
tional Firefighter problem. Since the greedy algorithm gives an integral
solution if (fi) has integral values and since βF ≥ βI , it is also 1

2 -competitive for
the Firefighter problem. This concludes the proof of theorem 1.

Conjecture 2.3 in [11] (which is also Conjecture 3.5 in [2]) claims that there
is a constant ρ such that the optimal value of Fractional Firefighter is at
most ρ times the optimal value of Firefighter. It was supported by extensive
experimental tests [11], but finding such a constant and proving the ratio is
one of the open problems proposed in [2] (Problem 7). It was shown in [15]
that such a constant must be greater than e

e−1 . Theorem 1 can be expressed by
λGr ≤ βI ≤ βF ≤ 2λGr, which shows that ρ = 2 is such a constant:

Corollary 1. In Fractional Firefighter, the amount of vertices saved is
at most twice the maximum number of vertices saved in Firefighter.

4 Improved Competitive Algorithm for Firefighter

In this section, we investigate possible improvements for online strategies for
Firefighter on finite trees. Let ϕ = 1+

√
5

2 denote the golden ratio, satisfying
ϕ2 = ϕ + 1 and 1

ϕ = ϕ − 1. For any integer k ≥ 2, we denote

αI,k = inf
T∈T

max
OA∈AL

min
(fi)∈NN,

∑
i fi≤k

λOA

βI
,

where T denotes the set of finite rooted trees and AL the set of online algorithms
for Firefighter on finite trees, be the best possible competitive ratio for online
Firefighter on finite trees if at most k firefighters are available. Note that the
sequence (αI,k)k is non-increasing. Then, αI = inf

k≥2
αI,k is the best possible

competitive ratio for online Firefighter on finite trees. The index I stands for
Integral and refers to the problem Firefighter.

In what follows we give an optimal online algorithm for Firefighter on
a finite tree in the case where at most two firefighters are available. Based on
Proposition 1 we may assume f1 = 1 and such an online instance is characterised
by when the second firefighter is presented.

Lemma 1. Let a and b be two vertices of maximum weights in T1. If
∑

i fi ≤ 2,
there is an optimal offline algorithm for Firefighter which places the first
firefighter on either a or b.
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Proof. If the first firefighter is placed on v ∈ T1 \ {a, b} by an optimal offline
algorithm and since at most two firefighters are available, ∃u ∈ {a, b}, T [u]
burns completely. Then replacing v by u when assigning the first firefighter
would produce another optimal solution (necessarily wv = wu).

We suppose Bob has this property but note that even if wa > wb, he will not
necessarily choose a; as illustrated by the graph W1,10,20 (Fig. 1): if the firefighter
sequence is (1, 0, 1, 0, . . .), then Bob’s first move needs to be on x. Note also that,
when the root is of degree at least 3, the second firefighter is not necessarily in
V (T [a]) ∪ V (T [b]).

We now consider algorithm 1 and assume that the adversary will reveal at
most two firefighters. The case where f1 = 2 is trivial since an online algorithm
can make the same decision as Bob by assigning both firefighters to two unburnt
vertices of maximum weights. So, we consider a binary firefighter sequence.

The algorithm works on an updated version T̃ of the tree: if one vertex is
protected, then the corresponding sub-tree is removed and all the burnt vertices
are fused into the new root r̃ so that the algorithm always considers vertices
of level 1 in T̃ . Before starting the online process, the algorithm computes all
weights of vertices. Weights of unburnt vertices will not change when updating
T̃ . The value of h(T̃ ), required in line 6 can be computed during the initial
calculation of weights and easily updated with T̃ . For clarity, we do not detail
all update in the algorithm. The notation w̄vj

used at line 6 is defined in Sect. 1.

Algorithm 1
Require: A finite tree T with root r - An online adversary.
1: ( ˜T , r̃) ← (T, r); Compute wv, ∀v ∈ V ( ˜T )
2: {Start of the online process}
3: At each turn, after fire spreads ˜T is updated - burt vertices are fused to r̃;
4: if First Firefighter is presented and r̃ has some child then
5: Let a and b denote two children of r̃ with maximum weight wa, wb and wa ≥ wb

(a = b if r̃ has only one child);

6: if min
2≤i≤1+h(T̃ )

wa+w̄bi
wb+w̄ai

≥ 1
ϕ

then

7: Place the first firefighter on a;
8: else
9: Place the first firefighter on b;

10: if Second Firefighter is presented and r̃ has some child then
11: Place the firefighter on a maximum weight child v of r̃

Theorem 2. Algorithm 1 is a 1
ϕ -competitive online algorithm for online Fire-

fighter with at most two available firefighters. It is optimal for this case.

Proof. If the adversary does not present any firefighter before the turn h(T ), both
algorithm 1 and Bob cannot save any vertex and by convention one considers
then that the competitive ratio is 1.
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Let us suppose that at least one firefighter is presented at some turn k ≤ h(T );
the tree still has at least one unburnt vertex. During the (k − 1) first turns,
the instance is updated into (Bk(T ), rBk , (fi+k)) with one firefighter presented
during the first turn and the root has at least one child. Proposition 1 ensures
that it is equivalent to the original instance.

If the root has only one child a = b at line 5 and algorithm 1 selects a and
saves all unburnt vertices inducing a competitive ratio of 1.

Else, a �= b with wa ≥ wb (line 5). Suppose first that the adversary presents
a single firefighter during the whole process, then algorithm 1 places him on a
or b while Bob places him on a, saving wa. If wa ≥ ϕwb, then we have:

∀i, 2 ≤ i ≤ 1 + h(T ),
wa + w̄bi

wb + w̄ai

≥ wa

wb + wa
≥ ϕwb

wb + ϕwb
=

1
ϕ

(3)

Therefore, (see line 6) the unique firefighter is placed on a by the algorithm,
guaranteeing a competitive ratio of 1. Else we have wb > 1

ϕwa and even placing
the firefighter on b guarantees the ratio 1

ϕ .
Suppose now that the adversary presents two firefighters. We consider two

cases.

Case (i): If algorithm 1 places the first firefighter on a in line 7 and if the adver-
sary presents the second firefighter at turn i, then the algorithm will save wa+w̄xi

for some x ∈ T1 \ {a} such that w̄xi
= maxu∈T1\{a} w̄ui

. For the same instance
Bob will save wv + w̄yi

for some v ∈ {a, b} and y ∈ T1 \ {v}. If both solutions
are not of the same value (the optimal one is strictly better), then necessarily
v = b and y = a. In this case the criterion of line 6 ensures that the related
competitive ratio is 1

ϕ .

Case (ii): Suppose now algorithm 1 places the first firefighter on b in line 9, and
say the adversary presents the second firefighter at turn j. Line 5 ensures that:

∃i, 2 ≤ i ≤ 1 + h(T ),
wa + w̄bi

wb + w̄ai

<
1
ϕ

(4)

It implies in particular that wa < ϕwb since in the opposite case Eq. (3) would
hold. In case (ii), algorithm 1 saves wb + w̄xj

with x ∈ T1 \ {b} such that
w̄xj

= maxu∈T1\{b} w̄uj
. Meanwhile, Bob selects v ∈ {a, b} and, if it exists, yj

for some y ∈ T1 \ {v}, for a total of wv + w̄yj
saved vertices. If y �= b, then

w̄yj
≤ w̄xj

, by definition of x, and thus:

wb + w̄xj

wa + w̄yj

≥
wb + w̄xj

wa + w̄xj

≥ wb

wa
>

1
ϕ

(5)

Finally, if y = b, then v = a and the competitive ratio to evaluate is
wb+w̄xj

wa+w̄bj
.

We claim that the following holds:

wa + w̄bi

wb + w̄ai

×
wb + w̄xj

wa + w̄bj

≥ 1
ϕ2

(6)
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Fig. 1. The fire on graph Wk,l,m starts at vertex r. Whether the firefighter should
protect x or y on the first turn depends on the firefighter sequence.

If i ≥ j we have w̄ai
≤ w̄aj

and since a �= b, w̄aj
≤ w̄xj

. Hence:
wb+w̄xj

wb+w̄ai
≥ wb+w̄xj

wb+w̄aj
≥ 1 and therefore:

wa + w̄bi

wb + w̄ai

×
wb + w̄xj

wa + w̄bj

≥ wa + w̄bi

wa + w̄bj

≥ wa

wa + wb
.

If now i < j, we get: wa+w̄bi

wa+w̄bj
≥ 1 and therefore:

wa + w̄bi

wb + w̄ai

×
wb + w̄xj

wa + w̄bj

≥
wb + w̄xj

wb + w̄ai

≥ wb

wa + wb
.

In both cases, since wa

wa+wb
≥ wb

wa+wb
≥ 1

1+ϕ = 1
ϕ2 we deduc Eq. (6). Now,

Eqs. (4) and (6) imply that in case (ii), when y = b, we also have
wb+w̄xj

wa+w̄bj
≥ 1

ϕ .

Together with Eq. (5), this concludes case (ii) and shows that algorithm 1 is
1
ϕ -competitive.

Even though complexity analyses are not usually proposed for online algo-
rithms, it is worth noting that line 6 only requires the weights of vertices in
V (T [a]) ∪ V (T [b]) and the maximum weight per level in T [a] and T [b] and con-
sequently algorithm 1 requires O(|V (T [a])|+ |V (T [b])|) to choose the position of
the first firefighter and O(|V (T )|) in all.

We conclude this section with a hardness result justifying that the greedy
algorithm Gr is optimal while algorithm 1 is optimal if at most two firefighters
are available.

Proposition 2. For all k ≥ 2, 1
2 ≤ αI,k ≤ 1

ϕ , more precisely:

(i) αI = 1
2 , meaning that the greedy algorithm is optimal for Firefighter in

finite trees;
(ii) αI,2 = 1

ϕ meaning that algorithm 1 is optimal if at most two firefighters are
available;

(iii) αI,4 < 1
ϕ .

Proof. Theorem 1 shows that αI ≥ 1
2 . Given integers l,m, k such that k|m − 1,

we define the graph Wk,l,m as shown in Fig. 1. We will assume that m > k2.
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(i) Let us consider an online algorithm for Wk,l,m. If f1 = 1, the algorithm
will protect either x or y. If x is selected and the firefighter sequence is
(1, 1, 0, 0, . . .), our online algorithm protects the branch of x and one of
the k chains, while the optimal offline algorithm protects y and the star.
Its performance is then l+m−1

k

l+m−1 . If, however, y is protected instead during
the first turn and if the firefighter sequence is (1, 0, 1, 1, . . .), the online
algorithm protects the branch of y and one vertex of the star whilst the
optimal algorithm protects the branch of x as well as the k chains, minus
for k(k+1)

2 vertices. If l = m, for large values of m, the online algorithm
which protects x is more performant and its competitive ratio tends to
1+ 1

k

2 . Considering, for instance, Wk,k3,k3 , when k → +∞ shows that α ≤ 1
2 .

Since the greedy algorithm Gr guarantees αI ≥ 1
2 we have αI = 1

2 .
(ii) Consider the sequence of graphs W1,l,
ϕl�. If the online algorithm protects x,

the adversary selects the sequence (1, 0, . . .), whereas if the online algorithm
protects y, (1, 0, 1, 0, . . .) is selected. In both cases, the performance tends
to 1

ϕ when l → +∞.
(iii) If at most 4 firefighters are available, the graph W4,901,1001 (Fig. 1) gives an

example where 1
ϕ cannot be reached. Ideed, if f1 = 1 and the online algo-

rithm protects x, then the adversary will select the sequence (1, 1, 0, . . .),
as in the proof (i), for a performance of 1151

1901 . If the online algorithm
protects y, since firefighters are limited to 4, the adversary will select
(1, 0, 1, 1, 1, 0, . . .), for a performance of 1002

1645 . This second choice is slightly
better, but 1002

1645 < 1
ϕ .

We have also proved that Theorem 2 holds if three firefighters are presented
(i.e., αI,3 = 1

ϕ ). However, the proof involves a much more technical case-by-case
analysis and will not be detailed here.

5 Firefighting on Trees with Linear Growth

In this section, we consider infinite trees. We say that a rooted tree (T, r) has
linear growth if the number of vertices per level increases linearly, i.e. |Ti| = O(i).

Remark 1. The linear growth property of T remains if we choose a different root
r′. Indeed, if d is the distance between r and r′, the set of vertices at distance i
from r′ is included in

⋃i+d
j=i−d Tj , the cardinal of which is a O(i).

Given two firefighter sequences (fi) and (f
′
i ), we say that (fi) is stronger

than (f
′
i ) if for all k,

∑k
i=1 fi ≥

∑k
i=1 f

′
i .

Lemma 2. If the fire can be contained in an instance (G, r, (f
′
i )) and if (fi) is

stronger than (f
′
i ), then the fire can also be contained in (G, r, (fi)).

Proof. Given a winning strategy in the instance (G, r, (f
′
i )), if (fi) firefighters are

available, we contain the fire by protecting the same vertices, eventually earlier
than in the initial strategy.
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Theorem 3. Let (T, r, (fi)) be an online instance of Fractional Fire-
fighter. If T has linear growth and (fi) is stronger than some non-zero periodic
sequence, then the fire can be contained.

The proof of theorem 3 will use the following lemma:

Lemma 3. For any a > 0, limn→+∞
∏n

j=1
aj−1

aj = 0

Proof. We have ln
∏n

j=1
aj−1

aj =
∑n

j=1 ln(1 − 1
aj ) and

∑n
j=1 ln(1 − 1

aj ) ∼
−

∑n
j=1

1
aj . So

∑n
j=1 ln(1 − 1

aj ) → −∞ and
∏n

j=1
aj−1

aj → 0.

We can now prove Theorem 3:

Proof. Since T has linear growth, let C be such that ∀i, |Ti| ≤ Ci. For all n, let
(δn|i) denote the firefighter sequence where one firefighter is available every n
turns; i.e. δn

i is equal to 1 if n|i and 0 otherwise. That the sequence (fi) is stronger
than a non-zero periodic sequence means that (fi) is stronger than (δn|i), for all
n greater than some m. First we will give an offline strategy to contain the fire
with one firefighter every n turns. Then, we will show that online instances with
(fi) stronger than a (δn|i) known to the player are winning. Finally, we will
describe the winning strategy when such a (δn|i) is unknown.

Given an integer n, let us first consider the instance (T, r, (δn|i)). It follows
from Lemma 3 that there exists an integer N such that

∏N
j=1

Cnj−1
Cnj < 1

2Cn .
Let h(n) = 2nN . A winning strategy is obtained by protecting at turn nj the
unprotected vertex of Tnj with the highest number of descendants in level h(n).
Since |Tnj | ≤ Cnj, the remaining number of unprotected vertices in Th(n) is
reduced by at least 1

Cnj of its previous value. So the number of unprotected

vertices of Th(n) remaining after nN turns is less than |Th(n)|
∏N

i=1
Cnj−1

Cnj ≤
|Th(n)|
2Cn ≤ N . Since N firefighters remain to be placed between turns N and h(n),

the strategy is winning in at most h(n) turns.
If the player knows that (fi) is stronger than (δn|i), the above strategy can

be adapted using Lemma 2.
In the general case, the player knows that (fi) is stronger than (δn|i) for some

n, but he does not know which n. The strategy proceeds as follows: we initially
play as though under the assumption that (fi) is stronger than (δn0|i), with
n0 = 100. If the fire is not contained by turn h(n0), or later on by turn h(nk),
we choose nk+1 = h(nk)(�Sh(nk)� + 1), where Sn =

∑n
i=1 fi. We now assume

that (fi) was stronger than (δh(nk)|i). It follows that after cancelling the first
h(nk) terms of (fi), the resulting sequence is stronger than (δnk+1|i). So we can
consider that the first h(nk) turns were wasted and follow the strategy for nk+1

until turn h(nk+1). Eventually, this strategy will win when nk is large enough.

6 Final Remarks

In this paper, we introduce the online version of (Fractional) Firefighter
and propose first results for both the finite and the infinite cases. To our knowl-
edge, Theorem 1 is the first non trivial competitive (but also approximation)



132 P. Coupechoux et al.

analysis for Fractional Firefighter and a first question would be to investi-
gate whether a better competitive ratio can be obtained for Fractional Fire-
fighter in finite trees. Even though the case of trees is already challenging
despite allowing many simplifications, the main open question will be to study
online (Fractional) Firefighter problem in other classes of finite graphs.
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Abstract. Given a connected, undirected and m-partite complete graph
G = (V1 ∪ V2 ∪ ... ∪ Vm;E), the Generalized Minimum Spanning Tree
Problem (GMSTP) consists in finding a tree with exactly m − 1 edges,
connecting the m clusters V1, V2, ..., Vm through the selection of a unique
vertex in each cluster. GMSTP finds applications in network design, irri-
gation agriculture, smart cities, data science, among others. This paper
presents a new multigraph mathematical formulation for GMSTP which
is compared to existing formulations from the literature. The proposed
model proves optimality for well-known GMSTP instances. In addition,
this work opens new directions for future research to the development
of sophisticated cutting plane and decomposition algorithms for related
problems.

Keywords: Generalized Minimum Spanning Tree
Trees of multigraph · Mixed integer linear programming formulations

1 Introduction

The Generalized Minimum Spanning Tree Problem (GMSTP) is defined in a
connected, undirected and m-partite complete graph G = (V,E). Its vertex set
V is partitioned into m clusters, with V = V1 ∪V2 ∪ ...∪Vm and Vr ∩Vq = ∅, for
all r �= q with r, q ∈ M = {1, ...,m}. Its edge set E is given by E = {{i, j} | i ∈
Vr, j ∈ Vq}, for all r �= q with r, q ∈ M , for which ce ∈ R+ denotes the edge cost
of e = {i, j} ∈ E. GMSTP consists in finding a minimum cost tree, spanning a
unique vertex in each cluster, with exactly m−1 edges connecting the m clusters.
c© Springer International Publishing AG, part of Springer Nature 2018
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The GMSTP extends the so-called Minimum Spanning Tree (MST), which is the
base of difficult problems and applications [20].

Classical optimization problems were generalized by means of partitioning the
set of vertices V , as it is the case of GMSTP, the generalized traveling salesman
problem [6] and the generalized vehicle routing problem [3]. The generalization
counterpart of these problems belongs to the NP-hard class of problems. In
particular, the GMSTP complexity was proved by Myung, Lee and Tcha [16]
applying a reduction to the vertex cover problem. GMSTP has applications in
network design, irrigation agriculture, smart cities, data science, among others.

In regarding mathematical models, Myung, Lee and Tcha [16] presented four
formulations for GMSTP. One formulation has a polynomial number of restric-
tions and variables, while the others have an exponential number of restric-
tions. The authors also developed a Branch and Bound (B&B) using the linear
relaxation of their polynomial formulation. In the study of Feremans, Labb and
Laporte [9], four formulations were proposed and compared with the ones of [16].
Moreover, they investigate the linear relaxations polytopes of the proposed for-
mulations and show that four polytopes are strictly contained in the remaining
ones. One may note that three of the best formulations in the literature have an
exponential number of constraints, while only one has a polynomial number of
variables and constraints [16].

A mathematical formulation, an approximation algorithm and a Lagrangian
relaxation for GMSTP were developed by Pop [18]. Given an instance for
GMSTP, let us consider ω as the number of vertices in its biggest cluster and
O∗ as its optimal solution value. The approximation algorithm of [18] obtains
solutions with rate up to ω(2 − 2/m) × O∗. It is important to highlight that
their Lagrangian relaxation found better lower bounds than the linear relax-
ation of the eight mathematical formulations presented in [9]. Another approx-
imation algorithm is found in [4], where the approximation rate is limited by
(1 + 4

√
2 + 2

√
2/O∗) considering GMSTP grid graphs, where each 1 × 1 cell is

a cluster.
The mathematical formulation proposed by [18] makes use of a graph G and

a global simple graph G∗ obtained as follows. Each vertex of G∗ represents a
cluster of G. Two clusters are connected by an edge in G∗ if some edge in G
has these clusters as its extremities. All edges in G∗ have the same cost. The
idea is to address the spanning tree constraints in G∗, while specific GMSTP
constraints are handled using G. Tests were performed with Euclidean and non-
Euclidean instances with up 240 vertices and 40 clusters. Other works use a
different strategy to model the GMSTP such as transforming the problem into
a Steiner tree problem. This is the case of Duin, Volgenant and Voss [7] and
Golden, Raghavan and Stanojevic in [13].

Exact and heuristic algorithms are also available in the literature. For
instance, a Branch-and-Cut (B&C) algorithm and several valid inequalities for
GMSTP were proposed by Feremans, Labbé and Laporte [10]. The authors
proved that many of the proposed inequalities are facets. The B&C uses a



A Multigraph Formulation for the GMSTP 135

Tabu Search as a local search and valid inequalities. Tests were performed with
Euclidean and non-Euclidean instances with up to 200 vertices and 40 clusters.

A large number of metaheuristics were developed for GMSTP such as Tabu
Search [8,12,17,22], Simulated Annealing [18], Variable Neighborhood Search
[12,14], Greedy Randomized Adaptive Search Procedure (GRASP) [11] and
Genetic Algorithm (GA) [5,13,21]. The work of Pop et al. [19] presents a two-
level optimization approach for GMSTP, combining a GA and a dynamic pro-
gramming algorithm. Among such heuristics, [5,21] produced the best known
results.

In this work, we propose a novel mathematical formulation based on multi-
graph, which performs very well on known instances from the literature. More-
over, the proposed model can be easily extended to other generalized optimiza-
tion problems and can be applied as a basis of cutting-plane methods.

The remainder of this work is organized as follows. In Sect. 2, the main
GMSTP models from the literature are reviewed. The new GMSTP model is
presented in Sect. 3. Numerical experiments are reported in Sect. 4. Concluding
remarks and perspectives for future works are given in Sect. 5.

2 Models from the Literature

The model proposed by Myung et al. [16], uses a multicommodity flow idea to
handle GMSTP. Initially, every edge [i, j] ∈ E is replaced by two arcs (i, j)
and (j, i) having same cost of edge [i, j], resulting in a set of arcs A. Let us
consider a cluster containing a root node, that is cluster {1}. The idea is to
build an arborescence T , rooted at some node in V1, spanning exactly one node
of the remaining clusters M \ {1}. For this purpose, the root node sends |M |− 1
units of flow (commodities), one unit to exactly one node of every other cluster
k ∈ M \ {1}. Only arcs defining T can transport these commodities. In model
(FMLT ), consider a node variable yi = 1 if node i is in the solution, and yi = 0
otherwise. Moreover, an arc variable wij = 1 if arc (i, j) is in the solution; and
wij = 0, otherwise. Finally, let a non-negative variable fk

ij be the flow from the
root cluster to cluster k in arc (i, j). The model is given by

(FMLT ) min
∑

(i,j) ∈ A

cijwij (1)

s.t.
∑

i∈Vk

yi = 1, ∀k ∈ M (2)

∑

(i,j)∈A: j∈Vk

wij ≤ 1, ∀k ∈ M \ {1} (3)

∑

j:(i,j)∈A

fk
ij −

∑

j:(j,i)∈A

fk
ji =

⎧
⎨

⎩

yi, i ∈ V1

−yi, i ∈ Vk

0, i /∈ V1 ∪ Vk

⎫
⎬

⎭ ∀k ∈ M \ {1}, ∀i ∈ V (4)

fk
ij ≤ wij , ∀(i, j) ∈ A; ∀k ∈ M \ {1} (5)

fk
ij ≥ 0, ∀(i, j) ∈ A; ∀k ∈ M \ {1} (6)
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wij ∈ {0, 1}, ∀(i, j) ∈ A (7)
yi ∈ {0, 1}, ∀i ∈ V (8)

Constraints (2) state that exactly one node of each cluster belongs to the solution
T . Inequalities (3) define that at most one arc enters each node in T . The well
known flow conservation constraints are provided in (4). Constraints (5) establish
that if an arc is not in solution, then the flow in this arc is null. The domain
of the variables are given from (6) to (8). Further details on this model can be
found in [16].

The model of Pop [18] determines a spanning tree topology Z connecting all
clusters in the global graph G∗ previously defined. Moreover, if two clusters r1
and r2 are connected by an edge [r1, r2] ∈ E∗ in Z, then a decision is done among
all the original edges connecting these two clusters, to obtain which original one
[i, j] ∈ E of G represents [r1, r2] of Z. Pop’s model makes use of the Martin’s
spanning tree polytope [15], defined in the following. Let us represent a spanning
tree Z of G∗. In addition, a variable zrq is associated with every edge [r, q] ∈ E∗,
r, q ∈ V ∗, where zrq = 1 if [r, q] is in Z; and zrq = 0, otherwise. For every node
k ∈ V ∗ and every edge [r, q] ∈ E∗, variables λkrq define if edge [r, q] belongs to
Z when λkrq = 1, and in this case, it is oriented from q to r w.r.t. node k; and
λkrq = 0, otherwise. Any spanning tree Z of G∗ is given by (FMartin) below.
N(i) denotes the set of nodes adjacent to node i in a given graph.

(FMartin)
∑

[i,j]∈E∗
zij = m − 1 (9)

zij − λkij − λkji = 0, ∀k ∈ V ∗, ∀[i, j] ∈ E∗ (10)
∑

j∈N(i)

λkij = 1, ∀k ∈ V ∗, ∀i ∈ V ∗ \ {k} (11)

λkkj = 0, ∀k ∈ V ∗, ∀j ∈ N(k) (12)
z ≥ 0 (13)
λ ≥ 0 (14)

Following (9), the tree Z has m − 1 edges. Constraints (10) establish that if an
edge [i, j] is in Z, then an orientation, induced by the λ variables, is obtained
w.r.t. every node k ∈ V ∗. Considering Z rooted at k, constraints (11) determine
that exactly one edge is oriented to every other node in V ∗ \ {k}. Domain of
variables are defined from (13) to (14). Pop’s model [18] has variables xij = 1 if
edge (i, j) ∈ E, of the original graph G, is in the solution; and xij = 0, otherwise.
It is given by

(FPop) min
∑

[i,j]∈E

cijxij (15)

s.t. (2), (9)−(13), and
∑

[i,j]∈E

xij = m − 1, (16)

∑

i∈Vr

∑

j∈Vq

xij = zrq, ∀[r, q] ∈ E∗ (17)
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∑

j∈Vr

xij ≤ yi, ∀r ∈ M, ∀i ∈ V \ Vr (18)

xij ∈ [0, 1], ∀[i, j] ∈ E (19)
yi ∈ [0, 1], ∀i ∈ V (20)

zij ∈ {0, 1}, ∀[i, j] ∈ E∗ (21)

Constraint (16) states that m − 1 original edges of G belong to the solution.
Equalities (17) define if an edge [r, q] is in Z, then an original edge connecting
clusters r and q is in the solution. Constraints (18) determine that a node i ∈
V \ Vr can be adjacent to at most one edge of a given cluster r if i belongs to
the solution. The domain of variables is defined from (19) to (21).

3 A Multigraph Formulation for GMSTP

The proposed GMSTP formulation is inspired by the formulation of Andrade
[2], used for determining a forest of size f for any type of graph: complete or
not, directed or not, and having one or many edges (or arcs) between any pair of
nodes. Given a graph G, previously defined, the multigraph H(G) = (V ′, E′) is
obtained as follow. Each cluster of G is considered as a vertex of V ′ and each edge
e ∈ E corresponds to exactly an edge e′ ∈ E′ of same cost ce, with |E| = |E′|. The
general idea of the model is to simultaneously define arborescences, one for every
vertex (cluster) k ∈ V ′ distinguished as root, such that each root k determines an
orientation of the edges in the solution according to the characterization theorem
for forest in graphs (see Theorem 1 in Adasme et al. [1]).

Let us consider the following variables. First, let ρ(v) denote the cluster
containing vertex v ∈ V . Let an edge e ∈ E be represented as an ordered pair
e = [i(e), j(e)], where the notations i(e) and j(e) indicate the first and the second
coordinates of e, respectively. For every edge e = [i(e), j(e)] ∈ E (or equivalently
e = [ρ(i(e)), ρ(j(e))] ∈ E′), variables xe = 1 define if e belongs to the solution;
and xe = 0, otherwise. Let every vertex (cluster) k ∈ V ′ be an orientation
for every edge e in the solution as follow. For every cluster k ∈ V ′, wk,0

e = 1
if xe = 1 and in this case, edge e = [ρ(i(e)), ρ(j(e))] is oriented from cluster
ρ(j(e)) to cluster ρ(i(e)); and wk,0

e = 0, otherwise. Following a similar idea, for
every cluster k ∈ V ′, wk,1

e = 1 if xe = 1 and edge e = [ρ(i(e)), ρ(j(e))] is oriented
from cluster ρ(i(e)) to cluster ρ(j(e)); and wk,1

e = 0, otherwise. Finally, for every
node s ∈ V of the original graph G, a binary variable ys = 1 if s belongs to
the solution; and ys = 0, otherwise. The proposed multigraph formulation for
GMSTP is given from (22) to (32).

Constraint (23) defines that exactly m−1 edges are in the solution. Equalities
(24) state that exactly a vertex of each cluster is selected. Constraints (25)
determine that either variable wk,0

e = 1 or variable wk,1
e = 1 will define the

orientation of edge e ∈ E′ w.r.t. every node k ∈ V ′ if e belongs to the solution.
Constraints (26) guarantee that for a given cluster k ∈ V ′ and for every cluster
u ∈ V ′, with u �= k, there is exactly one edge e ∈ E′ incident to u such that
its orientation points to cluster u w.r.t. cluster k. Constraints (27) have the
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same idea of (26) while considering that node s is the chosen node of its cluster.
These constraints guarantee that if node s does not belong to the solution,
then all variables referred to the orientations of the edges incident to s must be
zero. We can prove that constraints (27) are stronger than (18) because they
consider all edges incident to s from all the others clusters while in (18) only
edges incident to s from a given cluster are considered. Note that, by fixing at
zero such variables, the corresponding x variables are also fixed at zero by (25).
Constraints (28) and (29) state that there is no edge oriented from any other
cluster to k. The domain of the variables are defined in (30) and (31). The model
contains (|V | + |E′| + 2|V ′| × |E′|) variables (only |V | are required to be binary)
and (1 + |V ′| + |V ′||E′| + |V ′|(|V ′| − 1)(|V ′| + 1)) constraints.

(FSAS) min
∑

e∈E′
cexe (22)

s.t.
∑

e∈E′
xe =m − 1 (23)

∑

s∈Vk

ys = 1, ∀k ∈ M (24)

xe − wk,0
e − wk,1

e = 0, ∀e ∈ E′, ∀k ∈ V ′ (25)
∑

e∈E′
i(e)=u

wk,0
e +

∑

e∈E′
j(e)=u

wk,1
e = 1, ∀k ∈ V ′, ∀u ∈ V ′ \ {k} (26)

∑

e∈E

i(e)=s

wk,0
[ρ(i(e)),ρ(j(e))] +

∑

e∈E

j(e)=s

wk,1
[ρ(i(e)),ρ(j(e))] = ys, ∀k ∈ V ′, ∀u ∈ V ′ \ {k}, ∀s ∈ Vu (27)

wk,0
e = 0, ∀k ∈ V ′ : k = i(e), ∀e ∈ E′ (28)

wk,1
e = 0, ∀k ∈ V ′ : k = j(e), ∀e ∈ E′ (29)

wk,0
e , wk,1

e ∈ [0, 1], ∀k ∈ V ′, ∀e ∈ E′ (30)
ys ∈ {0, 1}, ∀s ∈ V (31)
xe ∈ [0, 1], ∀e ∈ E′ (32)

A correctness proof of model (FSAS) is omitted. In fact, it is based on the
fact that for a given ȳ ∈ {0, 1}|V | satisfying (24), the resulting model is total
dual integral. Thus, its corresponding optimal solution is a minimum spanning
tree induced by the subgraph w.r.t. the nodes whose entries in ȳ are equal to 1.
Note that, excepting the bounds on w and x variables, all remaining constraints
of the new model have to be satisfied at equality. Thus, an interesting question is
to check if some of them are facets of the convex hull of integer feasible solutions.

4 Computational Results

Experiments were performed on an Intel Core i7-3770 processor 3.4 GHz, 8 cores,
16 GB RAM and Ubuntu 14.04 LTS Linux operating system. The software IBM
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CPLEX solver 12.7.1, using C++, was used to run the models with a time
limit of 3600 s. The goal of the experiments is to evaluate the performance of
the proposed model (FSAS) compared to the following GMSTP formulations
from literature: the polynomial multicommodity flow formulation of Myung,
Lee and Tcha [16] and the formulation of Pop [18], refereed respectively here
as (FMLT ) and (FPop). Tests with formulation of (FPop) use all clusters as root
nodes. This, because we observed in our numerical experiments that iteratively
breaking cycles showed not to be more effective than using all nodes as root in
model (FPop).

A benchmark set of 40 instances is used in the experiments: 20 instances are
original from Öncan, Cordeau and Laporte [17] and the 20 remaining were cre-
ated by taking a subset of vertices of instances in [17]. We apply a preprocessing
procedure [11] to eliminate some edges that will never belong to any optimal
solution of the problem. This allowed to handle instances with up to 3 hundreds
nodes. It is worth mentioning that without applying a preprocessing technique,
only small instances can be solved to optimality by all models in a reasonable
execution time. The preprocessing procedure allowed us to eliminate, on aver-
age, 85% of the original edges of the benchmark instances in an average running
time of 1.37 s. The preprocessing works as follows. Let Puv = {P1, P2, . . . , PQ}
be the set of all paths between vertices u and v not containing edge [u, v] of
cost cuv. Let c̄k be the biggest edge cost of each path Pk ∈ Puv, k = 1, . . . , Q.
Moreover, consider buv = mink=1,...,Q c̄k. In every optimal GMSTP solution T ∗,
if buv < cuv, then [u, v] does not belong to T ∗. If buv ≤ cuv and T ∗ contains [u, v],
then we can show that there exists other optimal solution of same cost that does
not contain this edge. In both cases, edge [u, v] can be eliminated. The number
of paths in Puv can be exponential. Nevertheless, Ferreira et al. [11] show that
it is sufficient to check if there exists a subset of clusters, distinct of the ones of
u and v, where all paths from u to v passing by these clusters have their biggest
edge cost smaller than cuv. Thus, here only subsets formed by one cluster and
by two clusters distinct of the ones of [u, v] are considered.

Figure 1 illustrates the preprocessing procedure for the case where there exists
one distinct cluster (cluster 2) in the three paths (excluding edge [2, 6]) from node

Fig. 1. Case of paths with one transit
cluster from node 2 to 6.

Fig. 2. Case of paths with two transit
clusters from node 2 to 7.



140 E. G. de Sousa et al.

2 to 6. The smallest cost among the most costly edges of these paths is equal to
b2,6 = 2. As b2,6 < c2,6 = 10, edge [2, 6] can be eliminated. In Fig. 2, there are
two distinct clusters (clusters 1 and 3) in the four paths (excluding edge [2, 7])
from node 2 to 7. The smallest cost among the most costly edges of these paths
has cost equal to b2,7 = 12. As b2,7 < c2,7 = 20, edge [2, 7] can be eliminated.

Table 1. Numerical results for the models

Intances (FSAS) MIP (FMLT ) MIP (FPop) MIP

Inst μ m |E| Cost Time GAP Nodes Cost Time GAP Nodes Cost Time GAP Nodes

gr159 3 48 1649 36335 91.14 0.00 0 36335 198.48 0.00 0 36335 415.93 0.00 19667

gil140 3 78 578 1220 49.84 0.00 0 1220 37.17 0.00 0 1220 102.46 0.00 143

pr164 3 73 834 22692 119.41 0.00 0 22692 217.35 0.00 0 22692 3600.00 0.00 318230

pr199 3 72 1197 17241 227.19 0.00 0 17241 151.53 0.00 0 17241 3600.00 0.00 35736

lin218 3 76 1803 17739 437.20 0.00 0 17739 865.61 0.00 0 17739 928.56 0.00 5645

gr159 5 28 2916 28081 110.58 0.00 0 28081 223.33 0.00 0 28081 255.19 0.00 37554

gil140 5 59 698 1059 55.10 0.00 0 1059 50.87 0.00 0 1059 1502.29 0.00 15146

pr164 5 41 1346 18045 41.97 0.00 0 18045 90.67 0.00 0 18045 29.04 0.00 13778

pr199 5 49 2107 14431 233.82 0.00 0 14431 418.81 0.00 0 14431 3600.00 0.00 65927

lin218 5 50 2493 14407 321.12 0.00 0 14407 644.00 0.00 0 14407 2068.96 0.00 28023

gr159 7 21 3699 24198 52.25 0.00 0 24198 218.44 0.00 0 24198 107.92 0.00 29038

gil140 7 45 1094 872 47.09 0.00 0 872 95.43 0.00 0 872 591.07 0.00 6899

pr164 7 35 1533 17109 33.11 0.00 0 17109 64.03 0.00 0 17109 14.47 0.00 5976

pr199 7 37 2135 12585 103.51 0.00 0 12585 149.73 0.00 0 12585 3600.00 0.00 477100

lin218 7 36 3488 11870 229.78 0.00 0 11870 492.76 0.00 0 11870 3600.00 0.00 76804

gr159 10 14 4943 18813 36.42 0.00 0 18813 161.60 0.00 0 18813 51.16 0.00 17284

gil140 10 35 1659 726 50.39 0.00 0 726 111.50 0.00 0 726 3600.00 0.00 44272

pr164 10 21 2124 15889 9.94 0.00 0 15889 92.78 0.00 0 15889 0.31 0.00 0

pr199 10 27 3087 9826 108.70 0.00 0 9826 161.65 0.00 0 9826 751.00 0.00 246160

lin218 10 26 5135 8223 190.37 0.00 0 8223 503.25 0.00 0 8223 1410.25 0.00 138179

gr229 3 81 2778 74819 790.26 0.00 0 74819 3566.02 0.00 0 74819 3600.00 0.00 7655

gil262 3 95 2817 1255 3511.96 0.00 0 3763 3600.00 199.84 0 6007 3600.00 378.65 22

pr264 3 101 1526 29199 1425.47 0.00 0 29199 1330.97 0.00 0 29215 3600.00 0.05 3105

pr299 3 102 1960 23096 1221.02 0.00 0 23096 2356.20 0.00 0 23135 3600.00 0.17 2398

lin300 3 103 2633 23083 2620.33 0.00 0 51149 3600.00 121.59 0 23157 3600.00 0.32 2142

gr229 5 47 4569 54236 815.63 0.00 0 137333 3600.00 153.21 0 54236 3600.00 0.00 57393

gil262 5 63 5653 984 3272.10 0.00 0 3176 3600.00 222.76 0 1005 3600.00 2.13 742

pr264 5 55 2696 21351 416.20 0.00 0 21351 635.92 0.00 0 21351 3600.00 0.00 117217

pr299 5 69 3633 18582 1508.28 0.00 0 64042 3600.00 244.65 0 18881 3600.00 1.61 3890

lin300 5 62 4328 17416 1357.85 0.00 0 49053 3600.00 181.65 0 17692 3600.00 1.58 1865

gr229 7 34 6540 46030 587.30 0.00 0 46030 3091.37 0.00 0 46030 3600.00 0.00 115470

gil262 7 49 6583 802 1703.58 0.00 0 2986 3600.00 272.32 0 802 3600.00 0.00 689

pr264 7 43 3848 20438 552.99 0.00 0 20438 1192.56 0.00 0 20439 3600.00 0.00 197271

pr299 7 47 5446 15238 1254.45 0.00 0 15238 2488.00 0.00 0 15277 3600.00 0.26 24177

lin300 7 46 5199 14234 767.34 0.00 0 14234 1588.00 0.00 0 14234 3600.00 0.00 14834

gr229 10 23 9745 39797 516.46 0.00 0 39797 2853.96 0.00 0 39797 2281.24 0.00 266159

gil262 10 36 9553 639 1045.63 0.00 0 3221 3600.00 404.07 0 649 3600.00 1.56 3727

pr264 10 27 4369 16546 94.35 0.00 0 16546 400.01 0.00 0 16546 28.54 0.00 7051

pr299 10 35 7653 11624 803.65 0.00 0 11624 1920.75 0.00 0 11624 3600.00 0.00 72718

lin300 10 36 7667 10119 748.59 0.00 0 10119 1773.30 0.00 0 10119 3600.00 0.00 47010
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Preliminary tests are shown in Table 1. The four first columns depict: the
instance name in column 1, the value of parameter u in column 2 used to calculate
the number of clusters for the corresponding instance, the number of clusters m
in column 3, and the number of edges |E| in column 4. Results obtained for each
formulation is given in the remaining columns. For each experiments, four data
are provided: the solution value in column “Cost” (optimal values are highlighted
in bold), the running time in seconds in column “Time”, the relative difference in
percentage between the optimal value of each instance and the value obtained by
each model in column “GAP”, and the number of nodes generated in the B&B
tree of IBM CPLEX in column “Nodes”. Note that in formulation (FSAS) only
the variables representing the vertices in V are binary. In model (FMLT ) the
variables representing the vertices V and the variables representing the arcs of
the corresponding directed graph are binary. In model (FPop), only the variables
representing the edges of the global graph G′ are binary. Bold values for instance
cost indicate that CPLEX proved the optimality for that instances.

Considering the set of 40 instances tested, the proposed formulation (FSAS)
proved optimality for all instances, while (FMLT ) proved optimality for 32
instances and the model (FPop) proved optimality for 17 instances. The for-
mulation (FSAS) had an average runtime of 689.05 s, whereas (FMLT ) had an
average of 1423.65 s and (FPop) of 2423.45 s. The formulations reached an aver-
age GAP of 0.00, 42.51 and 9.65 for the (FSAS), (FMLT ), and (FPop) models,
respectively. The GAP of (FMLT ) and (FPop) was calculated based on result of
model (FSAS), where all results have its optimality proved.

The model (FSAS) outperforms (FMLT ) and (FPop) models w.r.t. execu-
tion times. This probably happens due to a smaller number of integer variables
among the three models. Finally, the numerical results indicate that (FSAS) and
(FMLT ) models obtained same linear relaxed cost solutions. Although this issue
has not been formally investigated, we believe that this must always be true.

5 Conclusions

In this paper, a multigraph formulation (FSAS) is proposed for the GMSTP.
A preprocessing has also been applied which allowed to reduce the problems
size significantly. On average, 85% of the original edges were eliminated within
2 s. The proposed formulation presents a competitive performance compared
to the models of (FMLT ) and (FPop). In particular, by founding better lower
bounds and by proving optimality for larger instances than the other models.
The originality of the proposed formulation by considering a multigraph opens
new research directions in terms of adaptation for related problems, as well as
for its use in cutting plane and decomposition approaches. We intend to develop
a Benders decomposition and a B&C using the proposed model, and to develop
valid inequalities to strengthen the model.
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Abstract. In this work we consider the distance model for the classical
vertex coloring problem, introduced by Delle Donne in 2009. This for-
mulation involves decision variables representing the distance between
the colors assigned to every pair of distinct vertices, thus not explic-
itly representing the colors assigned to each vertex. We show close rela-
tions between this formulation and the so-called orientation model for
graph coloring. In particular, we prove that we can translate many
facet-inducing inequalities for the orientation model polytope into facet-
inducing inequalities for the distance model polytope, and viceversa.

1 Introduction

Graph coloring is one of the most known problems in graph theory and combi-
natorial optimization. It has many applications, including channel assignment in
wireless networks [1,2], scheduling [3], register allocation [4], school timetabling
[5], and others. However, it is NP-hard (and its decision version is one of Karp’s
21 NP-complete problems [6]), for which that are many approaches to reach opti-
mal solutions. In this paper, we review some integer programming (IP) models
for the vertex coloring problem (VCP) from the literature, and present a new IP
formulation that involves decision variables representing the distance between
the colors assigned to every pair of distinct vertices, thus not explicitly repre-
senting the colors assigned to each vertex. For this, the classical VCP can be
formally described as follows: let G = (V,E) be a simple undirected graph and,
for each edge (i, j) ∈ E, the VCP asks for a mapping c : V → Z≥0 such that
|c(i) − c(j)| ≥ 1 for each edge (i, j) ∈ E, i.e., the absolute difference between
colors assigned to adjacent vertices must be greater than or equal to an uniform
value equal to one [7,8].

We present an initial polyhedral study considering the distance IP formula-
tion, for which we give two families of valid inequalities, show that they induce
facets of the associated polytope. An overview of the IP formulations for the

c© Springer International Publishing AG, part of Springer Nature 2018
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VCP, such as our proposed IP formulation and polyhedral combinatorics results
for it, can be seen in the following sections.

Fig. 1. Example of VCP instance and its corresponding optimal solution with 3 colors.
(Color figure online)

2 Known Integer Programming Models for VCP

2.1 Classic Formulation

In the classic formulation, two sets of binary variables are used: for each pair
of vertex i ∈ V and color k, we define a binary variable xik which has value
1 if color k is assigned to vertex i and 0 otherwise. For each color k, we also
define a binary variable yk which has value 1 if color k is assigned to any vertex
and 0 otherwise. Note that the set of possible colors must be known in advance,
since these variables are indexed not only by vertices (in the case of x variables),
but also by colors. Instead of considering the set of possible colors as N, we can
limit it to the interval [1, |V |], since, in the worst case, each vertex will have a
different colors (which happens with complete graphs). The coloring function is
then defined as c : V → [1, |V |]. The IP formulation is then:

Minimize
|V |∑

k=1

yk (1)

Subject to
|V |∑

k=1

xik = 1 (∀i ∈ V ) (2)

xik + xjk ≤ 1 (∀(i, j) ∈ E; k = 1, 2, ..., |V |) (3)
xik ≤ yk (∀i ∈ V ; k = 1, 2, ..., |V |) (4)
xik ∈ {0, 1} (∀i ∈ V ; k = 1, 2, ..., |V |) (5)
yk ∈ {0, 1} (∀k = 1, 2, ..., |V |) (6)

The objective function (1) makes the number of variables with value 1 from
the set y be the least possible, which equals to minimizing the number of used
colors. Constraints (2) require that each vertex receive a color. The set of con-
straints (3) enforce that adjacent vertices do not share the same color. Con-
straints (4) ensure that if for a certain color k there is a variable xik with value
1 regardless of the vertex i, then the variable yk must also be 1. Finally, sets
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(5) and (6) are integrality constraints. In Fig. 1, we have an example of graph
coloring problem and its solution encoded as variables of this formulation.

This formulation has polynomial dimension. There are O(|V |2) variables in
the x set and O(|V |) variables in the y set. The largest constraint set is (3), where
there are O(|V |2|E|) constraints. It is also easily adaptable to other variations of
vertex coloring, such as bandwidth coloring [1,9]. However, the formulation has
symmetry problems, since another solution can be derived simply by exchanging
the colors between all vertices of one color and all vertices of another color.
Its lower bound is also very weak [10]. In spite of that, the formulation has
been widely used in the literature to derive cutting planes and branch-and-cut
algorithms for vertex coloring problems [11]

Fig. 2. Example of VCP instance and its corresponding optimal solution encoded as
independent sets. (Color figure online)

2.2 Independent Set Formulation

We can note, by definition of VCP, that since vertices that share the same color
are not adjacent to each other, then they form an independent set of the graph.
Each one of them is called a color class. An IP formulation can be derived
from this observation as follows [12,13]. Let Q(G) be the set of all maximal
independent sets of G. We define, for each independent set S ∈ Q(G), a variable
xS which has value 1 if S will receive a unique color and 0 otherwise. The
formulation is given by:

Minimize
∑

S∈Q(G)

xS (7)

Subject to
∑

S∈Q(G) : i∈S

xS ≥ 1 (∀i ∈ V ) (8)

xS ∈ {0, 1} (∀S ∈ Q(G)) (9)

The objective function (7) ensures that the number of maximal independent
sets that will receive a unique color is minimized, which is equivalent to minimiz-
ing the number of used colors. Constraints (8) require that each vertex must be
present in at least one of the independent sets that will be selected for coloring.
Finally, the set (9) consists of integrality constraints. Figure 2 shows the solution
of Fig. 1 encoded as variables of this formulation.
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Although this formulation has O(|V |) constraints, it has an exponential num-
ber of variables. Since there is one for each maximal independent set of the input
graph, there are O(3|V |/3) variables in the full model (following the same bound
for the number of maximal independent sets [14]). However, this formulation
can be used in a column generation algorithm, where the subproblem consists of
finding a new and improving maximal independent sets [12,13]. This formulation
does not share the symmetry problem of the classic one, since the colors are not
directly assigned - rather, each independent set can use any color, as long as
each one of them use a distinct color.

2.3 Asymmetric Representatives Formulation

This formulation is also based on the notion of color classes (that is, indepen-
dent sets) and was proposed by Campêlo et al. [15]. Let Wk be the color class
containing vertices which use color k. For each Wk, one vertex i ∈ Wk is chosen
to be the representative of such color class. Let also N(i) be the set of vertices
that are adjacent i and N(i) its complement (that is, N(i) = V \ (N(i) ∪ {i})).
Define, for i ∈ V and j ∈ N(i), variables xij with value 1 if vertex i ∈ V is the
representative of the color of j ∈ N(i) and 0 otherwise.

To avoid symmetry between vertices in the same color class, an order ≺
between vertices is defined such that if i ≺ j, then j cannot be the representative
of the color of i, and xji is fixed to 0. If we consider the complement G of G

(where V (G) = V and E(G) = {(i, j) | i, j ∈ V and (i, j) /∈ E}), then we can
see that ≺ induces an orientation of G, since vertices that are adjacent to each
other in the complement can use the same color. Let N

+
(i) = {j ∈ N(i) | i ≺ j},

N
−

(i) = {j ∈ N(i) | j ≺ i}, G+(i) be the induced subgraph containing only
vertices from N

+
(i) and G−(i) be the induced subgraph with vertices from

N
−

(i). The orientation induced by ≺ on G is acyclic, so there are two special
sets of vertices: S = {s | N

−
(s) = ∅} and T = {t | N

+
(t) = ∅}, whose induced

subgraphs are cliques. Define variables yi with value 1 if a vertex i ∈ S and 0
otherwise. The formulation is defined as:

Minimize
∑

i∈V S

xii + |S| (10)

Subject to
∑

j∈N
s
ps(i)

xji ≥ 1 (∀i ∈ V \ S) (11)

∑

j∈L

xij ≤ yi (∀i ∈ V \ T ; L ⊆ N
+
(i) : ind. clique has size 1 or 2)

(12)

xij ∈ {0, 1} (∀i ∈ V ; j ∈ N(i)) (13)

Where yi = 1 if i ∈ S and yi = xii otherwise. The objective function (10)
consists of minimizing the number of vertices outside S that are represented by
themselves in the coloring plus the number of vertices in S (since these ones,
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called sources cannot be represented by any other vertex), which is equivalent
to minimizing the number of used colors. Constraints (11) ensure that a vertex
must be represented by itself or by some other vertex not adjacent to it. The
set of constraints (12) require that vertices which are not adjacent to a certain
vertex but are adjacent to each other be given different representatives. Figure 3
shows an example of instance using asymmetric representatives.

Fig. 3. Example of VCP instance and its corresponding optimal solution encoded using
asymmetric representatives and its complement oriented graph.

This formulation has O(|V |2 − |E|) variables, since there is one variable for
each edge in the complement graph. The largest constraint set is (12), having
O(|V |(|V |2−|E|)) = O(|V |3−|V ||E|) elements. This means that the formulation
has polynomial size, and it also avoids symmetry problems by defining the ≺
order. In [15], a polyhedral study and facet defining inequalities are provided.

2.4 Clique Based Formulation

A clique is a subset H of V such that its induced subgraph is itself a complete
graph, that is, for all i, j ∈ H, then (i, j) ∈ E. Each clique of G corresponds to
a independent set of its complement graph G, and each member of the clique
will have a different color (and, in the complement graph, each member would
use the same color). The clique cover problem consists of partitioning V into k
cliques. We can see that the least possible k for which the complement graph is
partitioned into cliques is the chromatic number of the original graph.

Two vertices i, j ∈ V of G are said to be indistinguishable if (i, j) ∈ E and
also N(i) ∪ {i} = N(j) ∪ {j}. A set of indistiguishable vertices form a supern-
ode of G. We define the reversible clique partition R of G as a partition where
each clique is a supernode r, that is, the vertices in the clique are indistiguish-
able. Consider, then, the graph G′, where V ′ = R and E′ = {(r1, r2) | (i, j) ∈
E; r1, r2 ∈ R; r1 
= r2; i ∈ r1; j ∈ r2}. By using multicoloring on G′, where
each supernode receives more than one color, equivalent to the number of ele-
ments in the supernode, we have a solution for VCP in the original graph. Based
on this, a formulation is defined [5] which use, for each supernode r ∈ R and
color k, a variable xrk which is valued 1 if k is assigned to r and 0 otherwise.
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The formulation is defined as:

Minimize

|V |∑

k=1

yk (14)

Subject to

|V |∑

k=1

xrk = |r| (∀r ∈ R) (15)

xr1k + xr2k ≤ 1 (∀(r1, r2) ∈ E′; k = 1, 2, ..., |V |) (16)
xrk ≤ yk (∀r ∈ R; k = 1, 2, ..., |V |) (17)
xrk ∈ {0, 1} (∀r ∈ R; k = 1, 2, ..., |V |) (18)
yk ∈ {0, 1} (∀k = 1, 2, ..., |V |) (19)

This model is the same one as the classic formulation applied on graph G′

and considering the color set as [1, |V |] instead of [1, |V ′|] (which is the same
as [1, |R|]). However, as discussed earlier, the reversible clique partition must be
multicolored instead of single colored, so the right-hand size in constraint set
(15) is changed so that each supernode d receive |d| colors, which ensure that
each vertex in the original graph has one color assigned to it.

There are O(|V ||r|) variables in the x set and O(|R|) variables in the y
set, which follows a similar reasoning of the classic formulation. There are also
O(|R|+ |V ||E′|) constraints. This formulation also avoids symmetry issues: since
colors assigned to supernodes can be distributed in any manner to the internal
vertices, the problem of simply exchanging the value of the color between two
vertices, resulting in a symmetric solution, is avoided. Figure 4 shows an example
of instance using this formulation.

Fig. 4. Example of VCP instance and its corresponding optimal solution encoded by
the clique formulation.

2.5 Orientation-Based Formulation

This formulation was proposed in [16] for the bandwidth coloring problem and
can be readily used for the classic vertex coloring problem (since this one is a
specific case of the latter). It is based on variables which induce an orientation
on the input graph. Using this, we can directly use variables that contain the
color of each vertex, instead of needing a variable for each pair of vertex and
color. Following this, for each i ∈ V , we introduce the integer variable zi ∈ N
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representing the color assigned to i and, for each edge (i, j ∈ E) such that i < j,
we define a binary variable yij which has value 1 if zi < zj and 0 otherwise.
Finally, the free variable zmax represents the maximum assigned color in the
optimal solution. Fix S ≥ χ(G). In this setting, the proposed formulation is the
following.

Minimize zmax (20)
Subject to zi + 1 ≤ zj + s(1 − yij) ∀(i, j) ∈ E, i < j (21)

zj + 1 ≤ zj + syij ∀(i, j) ∈ E, i < j (22)
zmax ≥ zi ∀i ∈ V (23)
zi ∈ N ∀i ∈ V (24)
yij ∈ {0, 1} ∀(i, j) ∈ E, i < j (25)

In the above formulation, constraint (21) ensures that yij = 0 if xi < xj ,
for (i, j ∈ E). On the other hand, if zj < zi then constraint (22) ensures that
yij = 1. Both constraints also guarantee that |zi − zj | ≥ 1, which ensures that
adjacent vertices use different colors. Constraints (23) impose zmax to take a
value greater than or equal to every used color, and in an optimal solution this
bound will be tight. Finally, constraints (24)–(25) define integer variable bounds.
Figure 5 shows the solution of Fig. 1 encoded as variables of this formulation.

Fig. 5. Example of an instance of the classic vertex coloring problem in graphs and its
corresponding optimal solution encoded by the orientation model.

The orientation model has O(|V |+|E|) variables and O(|V |+|E|) constraints.
The constant s must be set to a sufficiently large value, in such a way that s is
greater than or equal to the (unknown) parameter χ(G). Known upper bounds
for graph coloring, such as |V | and Δ(G) + 1 (where Δ(G) is the maximum
degree among all vertices of V ), can be used in place of χ(G). Although the
objective function is the minimization of the maximum used color instead of the
number of used colors, these values are equivalent for classic vertex coloring [2].
The constant s is indeed needed in the formulation, since if we do not impose
an upper bound to the x-variables, then the convex hull of feasible solutions is
not a polytope in general, hence an IP formulation is not possible. Based on
[16], we also remark that if s ≥ χ(G) + 2, then the corresponding polytope is
full-dimensional.
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3 Distance-Based Formulation for VCP

Given a graph G = (V,E) and a set C of colors (which can be given as C =
{1, 2, . . . , |V |} for VCP), the distance model employs an integer variable xij for
every i, j ∈ V , i < j, denoting the difference between the colors assigned to i
and j (i.e., if i takes color c(i) and j takes color c(j), then xij = c(i) − c(j)),
and, for every (i, j) ∈ E, i < j, a binary variable yij which has value 1 if xij < 0
and 0 otherwise. A feasible solution is given by the following constraints.

xik = xij + xjk ∀i, j, k ∈ V, i < j < k (26)
xij ≥ 1 − |C|yij ∀(i, j) ∈ E, i < j (27)
xij ≤ −1 + |C|(1 − yij) ∀(i, j) ∈ E, i < j (28)
xij ∈ {−|C| + 1, . . . , |V | − 1} ∀i, j ∈ V, i < j (29)
yij ∈ {0, 1} ∀(i, j) ∈ E, i < j (30)

We note that, since this formulation does not provide the colors of the ver-
tices, but only the differences between such colors for adjacent vertices, we can-
not consider an objective function for determining the chromatic number, so our
interest lies, primarily, in studying properties about the polyhedron defined by
(26–30).

Figure 6 extends the solution of Fig. 5 for this formulation. The first set of
constraints is composed by O(|V |3) equations, and may generate a large model
in practice. The following result allows us to replace these contraints by O(|V |2)
equations.

Theorem 1 ([17]). If V = {1, . . . , n}, then constraints (26) are equivalent to

xi,i+1 + xi+1,i+2 = xi,i+2 ∀i ∈ V, i ≤ n − 2 (31)
xij + xi+1,j−1 = xi,j−1 + xi+1,j ∀i, j ∈ V, i ≤ n − 3, i + 3 ≤ j (32)

For i, j ∈ V , i < j, we define xji = −xij as a notational convenience.
Similarly, for (i, j) ∈ E, i < j, we define yji = 1 − yij . Let PD(G,C) be
the convex hull of the vectors (x, y) satisfying constraints (26)–(30). Theorem 1
allows us to calculate the dimension of this polytope. Call n = |V | and m = |E|.
Theorem 2. If |C| > χ(G) + 1, then dim(PD(G,C)) = n + m − 1.

Fig. 6. Example of an instance of the classic vertex coloring problem in graphs and its
corresponding optimal solution encoded by the distance model.
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Idea of the proof. There are n(n−1)/2 x-variables and m y-variables. The family
(31) is composed by n − 2 equations, and the family (32) is composed by (n −
3)(n−2)/2 equations. It is possible to show by induction on n that the equations
in these two families are linearly independent (and this fact does not depend on
the number of colors).

Take an optimal coloring c : V → {1, . . . , χ(G)} and let v1, . . . , vn be an
ordering of V such that c(vi) ≤ c(vi+1) for i = 1, . . . , n−1. Construct the points
{(xk, y)}n−1

k=0 in such a way that xk represents the coloring ck defined by ck(vi) :=
c(vi) for i = 1, . . . , n − k and ck(vi) := c(vi) + 1 for i = n − k + 1, . . . , n. These
points are affinely independent, showing that the projection of PD(G,C) onto
the x-variables has dimension n − 1. This argument only requires |C| > χ(G).

Assume λx+γy = λ0 for every (x, y) ∈ PD(G,C). The previous construction
shows that Eqs. (31) and (32) are linearly independent, so λ is a linear combina-
tion of them. For every (i, j) ∈ E, construct a coloring c : V → {1, . . . , χ(G)+2}
with χ(G)+2 colors such that c(i) = χ(G)+1, c(j) = χ(G)+2, and c(k) ≤ χ(G)
for k ∈ V \{i, j}. Let (x, y) be the associated solution, and let (x′, y′) be the
solution obtained by swapping the colors of i and j. The existence of these two
solutions, together with the previous observation on λ, shows that γyij

= 0.
Then, the projection of PD(G,C) onto the y-variables has dimension m, and so
we have that dim(PD(G,C)) = n + m − 1. �

The formulation (26)–(30) is very similar to the orientation model for graph
coloring [18]. In this model, we have an integer variable zi ∈ {1, . . . , |C|} for every
i ∈ V , and the y-variables as in the distance model. We also set the constant
s from the orientation model to |C|, Define PO(G,C) to be the convex hull of
feasible solutions of the orientation model. The following result shows that we
can translate many facet-inducing inequalities for PO(G,C) into facet-inducing
inequalities for PD(G,C).

Theorem 3. Let αzi+πy ≤ αzj +π0 be a valid (resp. facet-inducing) inequality
for PO(G,C), where (i, j) ∈ E. Then, αxij + πy ≤ π0 is valid (resp. facet-
inducing if |C| ≥ χ(G) + 2) for PD(G,C).

Idea of the Proof. Validity follows directly from the definition of the variable
xij . For facetness, take n + m affinely independent points {(zk, yk)}n+m

k=1 in
PO(G,C) satisfying αzi + πy ≤ αzj + π0 with equality. For k = 1, . . . , n + m,
map the vector zk into ẑk = (zk1 , zk2 − zk1 , zk3 − zk2 , zk4 − zk3 , . . . , zkn − zkn−1). The
vectors {(ẑk, yk)}n+m

k=1 are affinely independent since the mapping z → ẑ is a lin-
ear transformation with a nonsingular matrix. For k = 1, . . . , n + m, remove
the first component from ẑk, thus getting a vector that we shall call x̂k =
(xk

21, x
k
32, x

k
43, . . . , x

k
n,n−1). The set {(x̂k, yk)}n+m

k=1 contains, therefore, n + m − 1
affinely independent points, say {(x̂k, yk)}n+m−1

k=1 . For k = 1, . . . , n + m − 1,
define xk to be xk

t,t−1 = x̂k
t,t−1 for t = 2, . . . , n, and by setting the remaining

x-variables accordingly (this is well-defined, by the Eqs. (31) and (32)). The set
{(xk, yk)}n+m−1

k=1 is composed by n+m−1 affinely independent points satisfying
αxij + πy ≤ π0 with equality. �
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The construction in Theorem 3 can be generalized to the following setting.
Let {(ik, jk)}pk=1, where ik, jk ∈ V , ik 
= jk, for k = 1, . . . , p. If the inequality

p∑

k=1

αkzik + πy ≤
p∑

k=1

αkzjk + π0,

is valid (resp. facet-inducing if |C| ≥ χ(G)+2) for PO(G,C), then the inequality

p∑

k=1

αkxik,jk + πy ≤ π0

is valid (resp. facet-inducing) for PD(G,C). Many inequalities presented in
[19,20] fit into this pattern, hence this result provides many facet-inducing
inequalities for PD(G,C).

Finally, the following theorem provides a converse result, thus showing that
all facets of PD(G,C) come from facets of PO(G,C).

Theorem 4. Assume C = {1, . . . , |V |}. Let γx+πy ≤ π0 be a valid (resp. facet-
inducing) inequality for PD(G,C). Then,

∑
i�=j γij(zi − zj) + πy ≤ π0 is valid

(resp. facet-inducing if |C| ≥ χ(G) + 2) for PO(G,C ∪ {|C| + 1}).

Idea of the Proof. Validity follows directly from the variable definitions. For
facetness, take n + m − 1 affinely independent points {(xk, yk)}n+m−1

k=1 in
PD(G,C) satisfying γx + πy = π0. For k = 1, . . . , n + m − 1, let ck : V → C be
a coloring compatible with (xk, yk) (note that there may be more than one such
coloring, if maxi�=j |xk

ij | < |C| − 1), and construct the point (zk, yk) ∈ PO(G,C)
representing the coloring ck. Note that (zk, yk) ∈ PO(G,C ∪ {|C| + 1}), since
PO(G,C) ⊆ PO(G,D) if C ⊆ D. Also note that the map (zk, yk) → (xk, yk)
is a linear transformation L(z, y) = A × (z, y) for some nonsquare matrix A.
Consider the points (z1, y1) and (z̄1, y1), where z̄1i = z1i + 1 for i ∈ V . Both
points belong to PO(G,C ∪ {|C| + 1}) and are distinct, hence they are affinely
independent. For k = 2, . . . , n + m − 1, the point (zk, yk) is affinely independent
w.r.t. the points {(z̄1, y1)} ∪ {(zt, yt)}t<k, since otherwise the point L(zk, yk)
would be affinely dependent w.r.t. {L(z̄1, y1)} ∪ {L(zt, yt)}t<k = {L(zt, yt)}t<k,
a contradiction. Hence, we construct the n + m affinely independent points
{(z̄1, y1)} ∪ {(zt, yt)}n+m−1

t=1 satisfying the new inequality with equality. �

4 Facet-Defining Inequalities for the Distance Model

One of the main implications of Theorem3 is that we can transform most of the
facet-defining inequalities for the orientation model into ones for the distance
model. We show below three of these families of cuts and their transformation
by means of such Theorem.
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4.1 Clique Inequality

The clique inequality arises from the fact that all vertices in a clique must use
different colors and has been used in other formulations [11,15]. Let i ∈ V and
K ⊆ N(i) be a clique. In this setting, we define the following as the clique
inequality associated with the vertex i and the clique K for the orientation
model:

zi ≥
∑

k∈K

yki + 1

In order to set the clique inequality to an appropriate format to the distance
model using Theorem 3, we have to add a zj term (where j ∈ N(i)) to the RHS
(right-hand side) of the expression so that we can obtain a zi − zj expression on
the LHS (left-hand side) to be replaced by xij . However, we must add another
term to the LHS to compensate this addition in order to maintain the validity of
the inequality. Since LHS ≥ RHS in the constraint, we can add a Δ(G)+1 term
to the LHS (where Δ(G) is the maximum degree among all vertices in G), since
it is an upper bound for the maximum used color in VCP, and the zj variable
is the color used by j (so it is bounded by |C|). The modified expression is then
zi + Δ(G) + 1 ≥ zj +

∑
k∈K

yki + 1 and the corresponding clique inequality for

the distance model is:
xij + Δ(G) ≥

∑

f∈K

yfi

4.2 Double Clique Inequality

The double clique inequality arises from cliques from the intersection of neigh-
borhoods of two vertices, and has been used in some related problems, such as
chromatic scheduling [20]. Let (i, j) ∈ E and consider a clique K ⊆ N(i)∩N(j).
Also, fix a vertex p ∈ K. In this setting, we define the following as the double
clique inequality associated with the vertex i and the clique K for the orientation
model:

zi + 1 +
∑

k∈K

(yik − yjk) ≤ zj + (s − |K|)yji

By applying Theorem3 and observing that the constant s from the orienta-
tion model is equivalent to |C| in the distance model, we obtain the following
inequality for the latter:

xik + 1 +
∑

k∈K

(yik − yjk) ≤ (|C| − |K|)yji

In Table 1, a summary of informations about each formulation shown in this
work is given.
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Table 1. Summary of IP formulations for vertex coloring.

Formulation Variables Constraints Reference

Classic O(|V 2) O(|V 2E) –

Independent sets O(3|V |/3) O(|V |) [12]

Asymmetric representatives O(|V |2 − |E|) O(|V |3 − |V ||E|) [15]

Clique cover O(|V ||H|) O(|H| + |V ||E′|) [5]

Orientation-based O(|V | + |E|) O(|V | + |E|) [16]

Distance-based O(|V |2) O(|V |2) This work

5 Concluding Remarks

In this work, we presented a new IP formulation for the classical VCP, based on
the orientation model for bandwidth coloring and the original distance model
for chromatic scheduling. In this formulation, decision variables represent the
distance between the colors assigned to every pair of distinct vertices, thus not
explicitly representing the colors assigned to each vertex. We prove that we can
translate many facet-inducing inequalities for the orientation model polytope
into facet-inducing inequalities for the distance model polytope, and viceversa.
Ongoing works include the implementation of a cut-and-branch method, such as
to verify the behavior of the cuts proposed.
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Abstract. The Time-Invariant Incremental Knapsack problem (IIK) is
a generalization of Maximum Knapsack to a discrete multi-period set-
ting. At each time, capacity increases and items can be added, but not
removed from the knapsack. The goal is to maximize the sum of profits
over all times. IIK models various applications including specific financial
markets and governmental decision processes. IIK is strongly NP-Hard
[2] and there has been work [2,3,6,13,15] on giving approximation algo-
rithms for some special cases. In this paper, we settle the complexity of
IIK by designing a PTAS based on rounding a disjunctive formulation,
and provide several extensions of the technique.

1 Introduction

Knapsack problems are among the most fundamental and well-studied in discrete
optimization. Some variants forego the development of modern optimization the-
ory, dating back to 1896 [11]. The best known representative is arguably Maxi-
mum Knapsack (max-K): given a set of items with specified profits and weights,
and a threshold, find a most profitable subset of items whose total weight does
not exceed the threshold. max-K is NP-complete [8], while admitting a fully
polynomial-time approximation scheme (FPTAS) [7]. Many classical algorithmic
techniques including greedy, dynamic programming, backtracking/branch-and-
bound have been studied by means of solving this problem, e.g., see a survey by
Kellerer et al. [9]. The algorithm of Martello and Toth [10] has been known to
be the fastest in practice for exactly solving knapsack instances [1].

In order to model scenarios arising in real-world applications, more com-
plex knapsack problems have been introduced (see the survey [9]) and recent
works studied extensions of classical combinatorial optimization problems to
multi-period settings, e.g., [6,13,14]. At the intersection of those two streams of
research, Bienstock et al. [2] proposed a generalization of a max-K to a multi-
period setting that they dubbed Time-Invariant Incremental Knapsack (IIK).
In IIK, we are given a set of items [n] with profits p : [n] → R>0 and weights
w : [n] → R>0 and a knapsack with non decreasing capacity bt over time t ∈ [T ].
We can add items at each time as long as the capacity constraint is not violated,
and once inserted, an item cannot be removed from the knapsack. The goal is to
c© Springer International Publishing AG, part of Springer Nature 2018
J. Lee et al. (Eds.): ISCO 2018, LNCS 10856, pp. 157–169, 2018.
https://doi.org/10.1007/978-3-319-96151-4_14
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maximize the total profit, which is defined to be the sum, over t ∈ [T ], of profits
of items in the knapsack at time t.

IIK models a scenario where available resources (e.g., money, labour force)
augment over time in a predictable way, allowing to grow our portfolio. E.g.,
take a bond market with an extremely low level of volatility, where all coupons
render profit only at their common maturity time T (zero-coupon bonds) and an
increasing budget over time that allows buying more and more (differently sized
and priced) packages of those bonds. For variations of max-K that have been
used to model financial problems, see the survey [9]. A different application arises
in government-type decision processes, where items are assets of public utility
(schools, parks, etc.) that can be built at a given cost and give a yearly benefit
(both constant over the years), and the community will profit each year those
assets are available.

Previous Works on IIK. Although the first publication on IIK appeared
just very recently (Della Croce et al. [3]), the problem was previously studied
by Bienstock et al. [2] and covered in several PhD theses [6,13,15]. Here we
summarize all those results. The authors in [2] proved IIK to be strongly NP-
hard and they gave an instance where the natural LP relaxation has unbounded
integrality gap. In the same paper, a PTAS is designed for T = O(log n). This
improves over Sharp [13], who gave a PTAS for the special case p = w and T
being constant. Again, when p = w, a 1/2-approximation algorithm for generic T
is provided by Hartline [6]. Results by Ye [15] can be adapted to give an algorithm
that solves IIK in time polynomial in n and of order (log T )O(log T ) for a fixed
approximation guarantee ε [12]. Della Croce et al. [3] provide an alternative
PTAS for IIK with constant T , and a 1/2-approximation for arbitrary T under
the assumption that every item alone fits into the knapsack at t = 1.

Our Contribution. In this paper, we provide, for any fixed ε, an algorithm
that computes a (1 − ε)-approximate solution to IIK, and whose running time
is polynomial in both the number of items n and the number of times T . In
particular, our algorithm is a PTAS for IIK regardless of T .

Theorem 1. There exists an algorithm that, when given as input ε ∈ R>0

and an instance I of IIK with n items and T ≥ 2 times, produces a (1 − ε)-
approximation to the optimum solution of I in time O(Th(ε) · nfLP (n)). Here
fLP (m) is the time required to solve a linear program with O(m) variables and
constraints, and h : R>0 → R≥1 is a function depending on ε only. In particular,
there exists a PTAS for IIK.

Theorem 1 dominates all previous results on IIK [2,3,6,13,15] and, due to
the hardness results by Bienstock et al. [2], settles the complexity of the problem.
Interestingly, it is based on designing a disjunctive formulation – a tool mostly
common among integer programmers and practitioners1 – and then rounding the
solution to its linear relaxation with a greedy-like algorithm. We see Theorem1
as an important step towards the understanding of the complexity landscape of
1 See the full version of the paper [4] for a discussion on disjunctive programming.
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knapsack problems over time. Theorem 1 is proved in Sect. 2: see the end of the
current section for a sketch of the techniques we use and a detailed summary
of Sect. 2. In Sect. 3, we show some extensions of Theorem 1 to more general
problems.

Related Work on Other Knapsack Problems. Bienstock et al. [2] discuss
the relation between IIK and the generalized assignment problem (GAP), high-
lighting the differences between those problems. In particular, there does not
seem to be a direct way to apply, to IIK, the (1 − 1/e − ε) approximation
algorithm Fleischer et al. [5] for GAP. Other generalizations of max-K related
to IIK, but whose current solving approaches do not seem to extend, are the
multiple knapsack (MKP) and unsplittable flow on a path (UFP) problems.
We discuss those problems and highlight the new ingredients introduced by our
approach in the full version of the paper [4].

The Basic Techniques. In order to illustrate the ideas behind the proof of
Theorem 1, let us first recall one of the PTAS for the classical max-K with
capacity β, n items, profit and weight vector p and w respectively. Recall the
greedy algorithm for knapsack:

1. Sort items so that p1
w1

≥ p2
w2

≥ · · · ≥ pn

wn
.

2. Set x̄i = 1 for i = 1, . . . , ı̄, where ı̄ is the maximum integer s.t.
∑

1≤i≤ı̄

wi ≤ β.

It is well-known that pT x̄ ≥ pT x∗ − maxi≥ı̄+1 pi, where x∗ is the optimum solu-
tion to the linear relaxation. A PTAS for max-K can then be obtained as follows:
“guess” a set S0 of 1

ε items with w(S0) ≤ β and consider the “residual” knapsack
instance I obtained removing items in S0 and items � with p� > mini∈S0 pi, and
setting the capacity to β − w(S0). Apply the greedy algorithm to I as to obtain
solution S. Clearly S0∪S is a feasible solution to the original knapsack problem.
The best solutions generated by all those guesses can be easily shown to be a
(1 − ε)-approximation to the original problem.

IIK can be expressed in the form of the following integer program.

max
∑

t∈[T ]

pT xt

s.t. wT xt ≤ bt ∀t ∈ [T ]
xt ≤ xt+1 ∀t ∈ [T − 1]
xt ∈ {0, 1}n ∀t ∈ [T ].

(1)

By definition, 0 < bt ≤ bt+1 for t ∈ [T − 1]. We also assume wlog that
1 = p1 ≥ p2 ≥ ... ≥ pn.

When trying to extend the PTAS above for max-K to IIK, we face two
problems. First, we have multiple times, and a standard guessing over all times
will clearly be exponential in T . Second, when inserting an item into the knapsack
at a specific time, we are clearly imposing this decision on all times that succeed
it, and it is not clear a priori how to take this into account.

We solve these issues by proposing an algorithm that, in a sense, still follows
the general scheme of the greedy algorithm sketched above: after some prepro-
cessing, guess items (and insertion times) that give high profit, and then fill
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the remaining capacity with an LP-driven integral solution. However, the way
of achieving this is different from the PTAS above. In particular, some of the
techniques we introduced are specific for IIK and not to be found in methods
for solving non-incremental knapsack problems.

An Overview of the Algorithm:

(i) Sparsification and other simplifying assumptions. We first show that by los-
ing at most a 2ε fraction of the profit, we can assume the following (see
Sect. 2.1): item 1, which has the maximum profit, is inserted into the knap-
sack at some time; the capacity of the knapsack only increases and hence
the insertion of items can only happen at J = O(1ε log T ) times (we call
them significant); and the profit of each item is either much smaller than
p1 = 1 or it takes one of K = O(1ε log T

ε ) possible values (we call them profit
classes).

(ii) Guessing of a stairway. The operations in the previous step give a J×K grid
of “significant times” vs “profit classes” with O( 1

ε2 log2 T
ε ) entries in total.

One could think of the following strategy: for each entry (j, k) of the grid,
guess how many items of profit class k are inserted in the knapsack at time
tj . However, those entries are still too many to perform guessing over all of
them. Instead, we proceed as follows: we guess, for each significant time tj ,
which is the class k of maximum profit that has an element in the knapsack
at time tj . Then, for profit class k and carefully selected profit classes “close”
to k, we either guess exactly how many items are in the knapsack at time
tj or if these are at least 1

ε . Each of the guesses leads to a natural IP. The
optimal solution to one of the IPs is an optimal solution to our original
problem. Clearly, the number of possible guesses affects the number of the
IPs, hence the overall complexity. We introduce the concept of “stairway”
to show that these guesses are polynomially many for fixed ε. See Sect. 2.2
for details. We remark that, from this step on, we substantially differ from
the approach of [2], which is also based on a disjunctive formulation.

(iii) Solving the linear relaxations and rounding. Fix an IP generated at the
previous step, and let x∗ be the optimal solution of its linear relaxation. A
classical rounding argument relies on LP solutions having a small number of
fractional components. Unfortunately, x∗ is not as simple as that. However,
we show that, after some massaging, we can control the entries of x∗ where
“most” fractional components appear, and conclude that the profit of �x∗	
is close to that of x∗. See Sect. 2.3 for details. Hence, looping over all guessed
IPs and outputting vector �x∗	 of maximum profit concludes the algorithm.

Assumption: We assume that expressions 1
ε , (1+ε)j , log1+ε

T
ε and similar are

to be rounded up to the closest integer. This is just done for simplicity of notation
and can be achieved by replacing ε with an appropriate constant fraction of it,
which will not affect the asymptotic running time.
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2 A PTAS for IIK

2.1 Reducing IIK to Special Instances and Solutions

Our first step will be to show that we can reduce IIK, without loss of gener-
ality, to solutions and instances with a special structure. The first reduction is
immediate: we restrict to solutions where the highest profit item is inserted in
the knapsack at some time. We call these 1-in solutions. This can be assumed
by guessing which is the highest profit item that is inserted in the knapsack, and
reducing to the instance where all higher profit items have been excluded. Since
we have n possible guesses, the running time is scaled by a factor O(n).

Observation 1. Suppose there exists a function f : N × N × R>0 → N such
that, for each n, T ∈ N, ε > 0, and any instance of IIK with n items and T
times, we can find a (1 − ε)-approximation to a 1-in solution of highest profit
in time f(n, T, ε). Then we can find a (1 − ε)-approximation to any instance of
IIK with n items and T times in time O(n) · f(n, T, ε).

Now, let I be an instance of IIK with n items, let ε > 0. We say that I is
ε-well-behaved if it satisfies the following properties.

(ε1) For all i ∈ [n], one has pi = (1 + ε)−j for some j ∈ {0, 1, . . . , log1+ε
T
ε }, or

pi ≤ ε
T .

(ε2) bt = bt−1 for all t ∈ [T ] such that (1+ ε)j−1 < T − t+1 < (1+ ε)j for some
j ∈ {0, 1, . . . , log1+ε T}, where we set b0 = 0.

See Fig. 1 for an example. Note that condition (ε2) implies that the capac-
ity can change only during the set of times T := {t ∈ [T ] : t = T + 1 −
(1 + ε)j for some j ∈ N}, with |T | = O(log1+ε T ). T clearly gets sparser as t
becames smaller. Note that for T not being a degree of (1 + ε) there will be a
small fraction of times t at the beginning with capacity 0; see Fig. 1.

Next theorem implies that we can, wlog, assume that our instances are ε-
well-behaved (and our solutions are 1-in).

Theorem 2. Suppose there exists a function g : N×N×R>0 → N such that, for
each n, T ∈ N, ε > 0, and any ε-well-behaved instance of IIK with n items and
T times, we can find a (1−2ε)-approximation to a 1-in solution of highest profit
in time g(n, T, ε). Then we can find a (1 − 4ε)-approximation to any instance of
IIK with n items and T times in time O(T + n(n + g(n, T, ε)).

Proof. Fix an IIK instance I. The reason why we can restrict ourselves to finding
a 1-in solution is Observation 1. Consider instance I ′ with n items having the
same weights as in I, T times, and the other parameters defined as follows:

– For i ∈ [n], if (1 + ε)−j ≤ pi < (1 + ε)−j+1 for some j ∈ {0, 1, . . . , log1+ε
T
ε },

set p′
i := (1 + ε)−j ; otherwise, set p′

i := pi. Note that we have 1 = p′
1 ≥ p′

2 ≥
... ≥ p′

n.
– For t ∈ [T ] and (1 + ε)j−1 < T − t + 1 ≤ (1 + ε)j for some j ∈

{0, 1, . . . , log1+ε T}, set b′
t := bT−(1+ε)j+1, with b′

0 := 0.
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Fig. 1. An example of obtaining an ε-well-behaved instance for ε = 1
2

and T = 14.

One easily verifies that I ′ is ε-well-behaved. Moreover, b′
t ≤ bt for all t ∈ [T ]

and pi

1+ε ≤ p′
i ≤ pi for i ∈ [n], so we deduce:

Claim 3. Any solution x̄ feasible for I ′ is also feasible for I, and p(x̄) ≥ p′(x̄).

Proof of the next claim is given in the full version [4].

Claim 4. Let x∗ be a 1-in feasible solution of highest profit for I. There exists
a 1-in feasible solution x′ for I ′ such that p′(x′) ≥ (1 − ε)2p(x∗).

Let x̂ be a 1-in solution of highest profit for I ′ and x̄ is a solution to I ′ that
is a (1−ε)-approximation to x̂. Claims 3 and 4 imply that x̄ is feasible for I and
we deduce:

p(x̄) ≥ p′(x̄) ≥ (1−2ε)p′(x̂)≥ (1−2ε)p′(x′) ≥ (1−2ε)(1−ε)2p(x∗) ≥ (1−4ε)p(x∗).

In order to compute the running time, it is enough to bound the time required
to produce I ′. Vector p′ can be produced in time O(n), while vector b′ in time
T . Moreover, the construction of the latter can be performed before fixing the
highest profit object that belongs to the knapsack (see Observation 1). The thesis
follows. 
�

2.2 A Disjunctive Relaxation

Fix ε > 0. Because of Theorem 2, we can assume that the input instance I is
ε-well-behaved. We call all times from T significant. Note that a solution over the
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latter times can be naturally extended to a global solution by setting xt = xt−1

for all non-significant times t. We denote significant times by t(1) < t(2) < · · · <
t(|T |). In this section, we describe an IP over feasible 1-in solutions of an ε-well-
behaved instance of IIK. The feasible region of this IP is the union of different
regions, each corresponding to a partial assignment of items to significant times.
In Sect. 2.3 we give a strategy to round an optimal solution of the LP relaxation
of the IP to a feasible integral solution with a (1−2ε)-approximation guarantee.
Together with Theorem 2 (taking ε′ = ε

4 ), this implies Theorem 1.
In order to describe those partial assignments, we introduce some additional

notation. We say that items having profit (1 + ε)−k for k ∈ [log1+ε
T
ε ], belong

to profit class k. Hence bigger profit classes correspond to items with smaller
profit. All other items are said to belong to the small profit class. Note that
there are O(1ε log T

ε ) profit classes (some of which could be empty). Our par-
tial assignments will be induced by special sets of vertices of a related graph
called grid.

Definition 1. Let J ∈ Z>0,K ∈ Z≥0, a grid of dimension J × (K + 1) is the
graph GJ,K = ([J ] × [K]0, E), where

E := {{u, v} : u, v ∈ [J ] × [K]0, u = (j, k)
and either v = (j + 1, k) or v = (j, k + 1)}.

Definition 2. Given a grid GJ,K , we say that

S := {(j1, k1), (j2, k2), . . . , (j|S|, k|S|)} ⊆ V (GJ,K)

is a stairway if jh > jh+1 and kh < kh+1 for all h ∈ [|S| − 1].

Lemma 1. There are at most 2K+J+1 distinct stairways in GJ,K .

Proof. The first coordinate of any entry of a stairway can be chosen among J
values, the second coordinate from K + 1 values. By Definiton 2, each stairway
correspond to exactly one choice of sets J1 ⊆ [J ] for the first coordinates and
K1 ⊆ [K]0 for the second, with |K1| = |J1|. 
�

Now consider the grid graph with J := |T | = θ(1ε log T ), K = log1+ε
T
ε , and a

stairway S with k1 = 0. See Fig. 2 for an example. This corresponds to a partial
assignment that can be informally described as follows. Let (jh, kh) ∈ S and
th := t(jh). In the corresponding partial assignment no item belonging to profit
classes kh ≤ k < kh+1 is inside the knapsack at any time t < th, while the first
time an item from profit class kh is inserted into the knapsack is at time th (if
j|S| > 1 then the only items that the knapsack can contain at times 1, . . . , t|S|−1
are the items from the small profit class). Moreover, for each h ∈ [|S|], we
focus on the family of profit classes Kh := {k ∈ [K] : kh ≤ k ≤ kh + Cε}
with Cε = log1+ε

1
ε . For each k ∈ Kh and every (significant) time t in the set

Th := {t ∈ T : th−1 < t ≤ th}, we will either specify exactly the number of items
taken from profit class k at time t, or impose that there are at least 1

ε + 1 of
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those items (this is established by map ρh below). Note that we can assume that
the items taken within a profit class are those with minimum weight: this may
exclude some feasible 1-in solutions, but it will always keep at least a feasible
1-in solution of maximum profit. No other constraint is imposed.

More formally, set k|S|+1 = K + 1 and for each h = 1, . . . , |S|:
(i) Set xt,i = 0 for all t ∈ [th −1] and each item i in a profit class k ∈ [kh+1−1].
(ii) Fix a map ρh : Th × Kh → {0, 1, . . . , 1

ε + 1} such that for all t ∈ Th one has
ρh(t, kh) ≥ 1 and ρh(t̄, k) ≥ ρh(t, k), ∀(t̄, k) ∈ Th × Kh, t̄ ≥ t.

Additionally, we require ρh(t̄, k) ≥ ρh+1(t, k) for all h ∈ [|S| − 1], k ∈
Kh ∩ Kh+1, t̄ ∈ Th, t ∈ Th+1. Thus, we can merge all ρh into a function
ρ : ∪h∈[|S|](Th × Kh) → {0, 1, . . . , 1

ε + 1}. For each profit class k ∈ [K]
we assume that items from this class are Ik = {1(k), . . . , |Ik|(k)}, so that
w1(k) ≤ w2(k) ≤ · · · ≤ w|Ik|(k). Based on our choice (S, ρ) we define the polytope:

P (S, ρ) = {x ∈ R
Tn : wT xt ≤ bt ∀t ∈ [T ]

xt ≤ xt+1 ∀t ∈ [T − 1]
0 ≤ xt ≤ 1 ∀t ∈ [T ]

∀h ∈ [|S|] :
xt,i(k) = 0, ∀t < th, ∀k < kh+1, ∀i(k) ∈ Ik

xt,i(k) = 1, ∀t ∈ Th, ∀k ∈ Kh, ∀i(k) : i ≤ ρ(t, k)
xt,i(k) = 0, ∀t ∈ Th, ∀k ∈ Kh : ρ(t, k) ≤ 1

ε ,
∀i(k) : i > ρ(t, k)}.

The linear inequalities are those from the IIK formulation. The first set of
equations impose that, at each time t, we do not take any object from a profit
class k, if we guessed that the highest profit object in the solution at time t
belongs to a profit class k′ > k (those are entries corresponding to the dark
grey area in Fig. 2). The second set of equations impose that for each time t and
class k for which a guess ρ(t, k) was made (light grey area in Fig. 2), we take the
ρ(t, k) items of smallest weight. As mentioned above, this is done without loss
of generality: since profits of objects from a given profit class are the same, we
can assume that the optimal solution insert first those of smallest weight. The
last set of equations imply that no other object of class k is inserted in time t if
ρ(t, k) ≤ 1

ε .
Note that some choices of S, ρ may lead to empty polytopes. Fix S, ρ, an item

i and some time t. If, for some t′ ≤ t, xt′,i = 1 explicitly appears in the definition
of P (S, ρ) above, then we say that i is t-included. Conversely, if xt̄,i = 0 explicitly
appears for some t̄ ≥ t, then we say that i is t-excluded.

Theorem 5. Any optimum solution of

max
∑

t∈[T ]

pT
t xt s.t. x ∈ (∪S,ρP (S, ρ)) ∩ {0, 1}Tn

is a 1-in solution of maximum profit for I. Moreover, the number of constraints of
the associated LP relaxation is at most nT f(ε) for some function f : R>0 → R>0

depending on ε only.
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(j|S|, k|S|)

kh kh+1kh + Cε

0
1

K

J

pk

t(j)

(j1, k1)

jh

jh+1

ρ

Fig. 2. An example of a stairway S, given by thick black dots. Entries (j, k) lying in
the light grey area are those for which a value ρ is specified. No item corresponding to
the entries in the dark grey area is taken, except on the boundary in bold.

Proof. Note that one of the choices of (S, ρ) will be the correct one, i.e., it will
predict the stairway S associated to an optimal 1-in solution, as well as the
number of items that this solution takes for each entry of the grid it guessed.
Then there exists an optimal solution that takes, for each time t and class k
for which a guess ρ(t, k) was made, the ρ(t, k) items of smallest weight from
this class, and no other object if ρ(t, k) ≤ 1

ε . These are exactly the constraints
imposed in P (S, ρ). The second part of the statement follows from the fact that
the possible choices of (S, ρ) are

(# stairways) · (# possible values in each entry of ρ)(# entries of a vector ρ)

= 2O( 1
ε log T

ε ) · O( 1ε )O( 1
ε log T

ε )Cε =
(

T
ε

)O( 1
ε2

log2 1
ε )

,

and each (S, ρ) has g(ε)O(Tn) constraints, where g depends on ε only. 
�

2.3 Rounding

By convexity, there is a choice of S and ρ as in the previous section such that
any optimum solution of

max
∑

t∈[T ]

pT xt s.t. x ∈ P (S, ρ) (2)

is also an optimum solution to max{
∑

t∈[T ] p
T xt : x ∈ conv(∪S,ρP (S, ρ))}.

Hence, we can focus on rounding an optimum solution x∗ of (2). We assume
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that the items are ordered so that p1
w1

≥ p2
w2

≥ · · · ≥ pn

wn
. Moreover, let It (resp.

Et) be the set of items from [n] that are t-included (resp. t-excluded) for t ∈ [T ],
and let Wt := wT x∗

t .

Algorithm 1
1: Set x̄0 = 0.
2: For t = 1, . . . , T :

(a) Set x̄t = x̄t−1.
(b) Set x̄t,i = 1 for all i ∈ It.
(c) While Wt − wT x̄t > 0:

(i) Select the smallest i ∈ [n] such that i /∈ Et and x̄t,i < 1.

(ii) Set x̄t,i = x̄t,i + min{1 − x̄t,i,
Wt−wT x̄t

wi
}.

Respecting the choices of S and ρ (i.e., included/excluded items), at each
time t, Algorithm 1 greedly adds objects into the knapsack, until the total weight
is equal to Wt. Recall that in max-K one obtains a rounded solution which
differs from the fractional optimum by the profit of at most one item. Here the
fractionality pattern is more complex, but still under control. In fact, as we
show below, x̄ is such that

∑
t∈[T ] p

T x̄t =
∑

t∈[T ] p
T x∗

t and, for each h ∈ [|S|]
and t ∈ [T ] such that th ≤ t < th−1, vector x̄t has at most |S| − h + 1 fractional
components that do not correspond to items in profit classes k ∈ K with at least
1
ε + 1 t-included items. We use this fact to show that �x̄	 is an integral solution
that is (1 − 2ε)-optimal.

Theorem 6. Let x∗ be an optimum solution to (2). Algorithm1 produces, in
time O(T + n), a vector x̄ ∈ P (S, ρ) such that

∑
t∈[T ] p

T �x̄t	 ≥ (1 − 2ε)
∑

t∈[T ] p
T x∗

t .

Theorem 6 will be proved in a series of intermediate steps. Define Ft := {i ∈
[n] : 0 < x̄t,i < 1} to be the set of fractional components of x̄t for t ∈ [T ]. Recall
that Algorithm 1 sorts items by monotonically decreasing profit/weight ratio. For
items from a given profit class k ∈ [K], this induces the order i(1) < i(2) < . . .
– i.e., by monotonically increasing weight – since all i(k) ∈ Ik have the same
profit.

The following claim (proved in the full version [4]) shows that x̄ is in fact an
optimal solution to max{x : x ∈ P (S, ρ)}.

Claim 7. For each t ∈ [T ], one has wT x̄t = wT x∗
t and pT x̄t = pT x∗

t .

For t ∈ [T ] define Lt := {k ∈ [K] : |Ik ∩ It| ≥ 1
ε + 1 } to be the set of classes

with a large number of t-included items. Furthermore, for h = 1, 2, . . . , |S|:
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– Recall that Kh = {k ∈ [K] : kh ≤ k ≤ kh + Cε} are the classes of most
profitable items present in the knapsack at times t ∈ [T ] : th ≤ t < th−1,
since by definition no item is taken from a class k < kh at those times. Also
by definition ρ(th, kh) ≥ 1, so the largest profit item present in the knapsack
at any time t ∈ [T ] : th ≤ t < th−1 is item 1(kh). Denote its profit by ph

max.
– Define K̄h := {k ∈ [K] : kh +Cε < k}, i.e., it is the family of the other classes

for which an object may be present in the knapsack at time t ∈ [T ] : th ≤
t < th−1.

Proofs of next two claims are given in the full version [4].

Claim 8. Fix t ∈ [T ], th ≤ t < th−1. Then |Ik ∩ Ft| ≤ 1 for all k ∈ [K] ∪ {∞}.
Moreover, |((∪k∈K̄h

Ik) ∩ Ft) \ Fth−1 | ≤ 1.

Claim 9. Let h ∈ [|S|], then: p((∪k∈K̄h\Lt
Ik) ∩ Ft) ≤ ε

∑|S|
h̄=h

ph̄
max, ∀t : th ≤

t < th−1.

Proof of Theorem 6. We focus on showing that, ∀t ∈ [T ]:
∑

i∈[n]\I∞

pi�x̄t,i	 ≥
∑

i∈[n]\I∞

pix̄t,i −
∑

i∈([n]\I∞)∩Ft

pi ≥ (1 − ε)
∑

i∈[n]\I∞

pix̄t,i. (3)

The first inequality is trivial and, if t < t|S|, so is the second, since in this case
x̄t,i = 0 for all i ∈ [n] \ I∞. Otherwise, t is such that th ≤ t < th−1 for some
h ∈ [|S|] with t0 = T + 1. Observe that:

([n] \ I∞) ∩ Ft = ((∪k∈(Kh∪K̄h)\Lt
Ik) ∩ Ft) ∪ ((∪k∈(Kh∪K̄h)∩Lt

Ik) ∩ Ft)
= ((∪k∈K̄h\Lt

Ik) ∩ Ft) ∪ ((∪k∈Lt
Ik) ∩ Ft)

For k ∈ [K] denote the profit of i ∈ Ik with pk. We have:
∑

i∈([n]\I∞)∩Ft
pix̄t,i = p((∪k∈K̄h\Lt

Ik) ∩ Ft) + p((∪k∈Lt
Ik) ∩ Ft)

(By Claim 9 and Claim 8) ≤ ε
∑|S|

h̄=h
ph̄
max +

∑
k∈Lt

pk.
(4)

If k = kh̄ ∈ Lt for h̄ ∈ [|S|] then
∑

i∈Ik
pix̄t,i ≥ ( 1ε + 1)pk = ph̄

max + 1
ε pk.

Together with ρ(kh, th) ≥ 1 ∀h ∈ [|S|] and the definition of Lt this gives:

∑

i∈[n]\I∞

pix̄t,i ≥
|S|∑

h̄=h

ph̄
max +

1
ε

∑

k∈Lt

pk. (5)

Put together, (4) and (5) imply (3). Morever, by Claim 8, |I∞ ∩ Ft| ≤ 1 for all
t ∈ [T ] and since we are working with an ε-well-behaved instance pi ≤ ε

T =
ε
T p1max so

∑
t∈[T ]

∑
i∈I∞∩Ft

pi ≤ εp1max. The last fact with (3) and Claim 7 gives
the statement of the theorem. 
�

Theorem 1 now easily follows from Theorems 2, 5, and 6.
Proof of Theorem 1. Since we will need items to be sorted by profit/weight
ratio, we can do this once and for all before any guessing is performed. Classical
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algorithms implement this in O(n log n). By Theorem 2, we know we can assume
that the input instance is ε-well-behaved, and it is enough to find a solution
of profit at least (1 − 2ε) the profit of a 1-in solution of maximum profit –
by Theorem 6, this is exactly vector �x̄	. In order to produce �x̄	, as we already
sorted items by profit/weight ratio, we only need to solve the LPs associated with
each choice of S and ρ, and then run Algorithm1. The number of choices of S and
ρ are T f(ε), and each LP has g(ε)O(nT ) constraints, for appropriate functions
f and g (see the proof of Theorem 5). Algorithm 1 runs in time O(T

ε log T
ε + n).

The overall running time is:

O(n log n + n(n + T + T f(ε)(fLP (g(ε)O(nT )) +
T

ε
log

T

ε
))) = O(nTh(ε)fLP (n)),

where fLP (m)is the time required to solve an LP with O(m) variables and con-
straints, and h : R → N≥1 is an appropriate function. 
�

3 Generalizations

Following Theorem 1, one could ask for a PTAS for the general incremental
knapsack (IK) problem. This is the modification of IIK (introduced in [2]) where
the objective function is pΔ(x) :=

∑
t∈[T ] Δt · pT xt, where Δt ∈ Z>0 for t ∈ [T ]

can be seen as time-dependent discounts. We show here some partial results. All
proofs from this section are given in the full version [4].

Corollary 1. There exists a PTAS-preserving reduction from IK to IIK,
assuming Δt ≤ Δt+1 for t ∈ [T − 1]. Hence, the hypothesis above, IK has a
PTAS.

In [4], we show an auxiliary claim that there is a PTAS for IK when ‖Δ‖∞ is
polynomially bounded in n and T . The direct corollary is that IK has a PTAS
when every item fits into the knapsack at time t = 1. Additionally, our technique
gives a PTAS for IK when T is constant.

Of independent interest is the fact that there is a PTAS for the modified
version of IIK when each item can be taken multiple times. Unlike Corollary 1,
this is not based on a reduction between problems, but on a modification on our
algorithm.

Corollary 2. There is a PTAS for the following modification of IIK: in (1),
replace xt ∈ {0, 1}n with: xt ∈ Z

n
>0 for t ∈ [T ]; and 0 ≤ xt ≤ d for t ∈ [T ], where

we let d ∈ (Z>0 ∪ {∞})n be part of the input.
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Abstract. In the min-knapsack problem one aims at choosing a set of
objects with minimum total cost and total profit above a given thresh-
old. In this paper, we study a class of valid inequalities for min-knapsack
known as bounded pitch inequalities, which generalize the well-known
unweighted cover inequalities. While separating over pitch-1 inequalities
is NP-Hard, we show that approximate separation over the set of pitch-1
and pitch-2 inequalities can be done in polynomial time. We also inves-
tigate integrality gaps of linear relaxations for min-knapsack when these
inequalities are added. Among other results, we show that, for any fixed
t, the t-th CG closure of the natural linear relaxation has the unbounded
integrality gap.

1 Introduction

The min-knapsack problem (MinKnap)1

min cT x s.t. pT x ≥ 1, x ∈ {0, 1}n (1)

is the variant of the max knapsack problem (MaxKnap) where, given a cost
vector c and a profit vector p, we want to minimize the total cost given a lower
bound on the total profit. MinKnap is known to be NP-Complete, even when
p = c. Moreover, it is easy to see that the classical FPTAS for MaxKnap [11,14]
can be adapted to work for MinKnap, thus completely settling the complexity
of MinKnap.

However, pure knapsack problems rarely appear in applications. Hence, one
aims at developing techniques that remain valid when less structured constraints
are added on top of the original knapsack one. This can be achieved by providing
strong linear relaxations for the problem: then, any additional linear constraint
can be added to the formulation, providing a good starting point for any branch-
and-bound procedure. The most common way to measure the strength of a linear
relaxation is by measuring its integrality gap, i.e. the maximum ratio between
1 Note that c ∈ R

n
+, p ∈ R

n
+ and the constraint is scaled so that the right-hand side

is 1.
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https://doi.org/10.1007/978-3-319-96151-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96151-4_15&domain=pdf


On Bounded Pitch Inequalities for the Min-Knapsack Polytope 171

the optimal solutions of the linear and the integer programs (or of its inverse if
the problem is in minimization form) over all the objective functions.

Surprisingly, if we aim at obtaining linear relaxations with few inequalities
and bounded integrality gap, MinKnap and MaxKnap seem to be very dif-
ferent. Indeed, the standard linear relaxation for MaxKnap has integrality gap
2, and this can be boosted to (1 + ε) by an extended formulation with nŌ(1/ε)

many variables and constraints, for ε > 0 [2]. Conversely, the standard linear
relaxation for MinKnap has unbounded integrality gap, and this remains true
even after Θ(n) rounds of the Lasserre hierarchy [13]. No linear relaxation for
MinKnap with polynomially many constraints and constant integrality gap can
be obtained in the original space [6]. It is an open problem whether an extended
relaxation with this properties exists. Recent results showed the existence [1]
and gave an explicit construction [9] of a linear relaxation for MinKnap of
quasi-polynomial size with integrality gap 2 + ε. This is obtained by giving an
approximate formulation for Knapsack Cover inequalities (KC) (see [4] and the
references therein). Adding those exponentially many inequalities, that can be
approximately separated [4], gives an integrality gap of 2. The bound on the
integrality gap is tight, even in the simpler case when p = c. One can then look
for other classes of well-behaved inequalities that can be added to further reduce
the integrality gap. A prominent family is given by the so called bounded pitch
inequalities [3] defined in Sect. 2. Here, we remark that the pitch is a parameter
measuring the complexity of an inequality, and the associated separation prob-
lem is NP-Hard already for pitch-1. The pitch-1 inequalities are often known in
the literature as unweighted cover inequalities (see e.g. [1]).

In this paper, we study structural properties and separability of bounded
pitch inequalities for MinKnap, and the strength of linear relaxations for
MinKnap when they are added. Let F be the set given by pitch-1, pitch-2,
and inequalities from the linear relaxation of (1). We first show that, for any
arbitrarily small precision, we can solve in polynomial time the weak separa-
tion problem for the set F . Even better, our algorithm either certifies that the
given point x∗ violates an inequality from F , or outputs a point that satisfies all
inequalities from F and whose objective function value is arbitrarily close to that
of x∗. We define such an algorithm as a (1 + ε)-oracle in Sect. 2; see Sect. 3 for
the construction. A major step of our procedure is showing that non-redundant
pitch-2 inequalities have a simple structure.

It is then a natural question whether bounded pitch inequalities can help to
reduce the integrality gap below 2. We show that, when p = c, if we add to
the linear relaxation of (1) pitch-1 and pitch-2 inequalities, the integrality gap
is bounded by 3/2; see Sect. 4.1. However, this is false in general. Indeed, we
also prove that KC plus bounded pitch inequalities do not improve upon the
integrality gap of 2; see Sect. 4.3. Moreover, bounded pitch alone can be much
weaker than KC: we show that, for each fixed k, the integrality gap may be
unbounded even if all pitch-k inequalities are added. Using the relation between
bounded pitch and Chvátal-Gomory (CG) closures established in [3], this implies
that, for each fixed t, the integrality gap of the t-th CG closure can be unbounded;
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see Sect. 4.2. For an alternative proof that having all KC inequalities bounds the
integrality gap to 2 see the full version of the paper [7].

2 Basics

A MinKnap instance is a binary optimization problem of the form (1), where
p, c ∈ Q

n and we assume 0 ≤ p1 ≤ p2 ≤ · · · ≤ pn ≤ 1, 0 < ci ≤ 1, ∀i ∈ [n]. We
will often deal with its natural linear relaxation

min cT x s.t. pT x ≥ 1, x ∈ [0, 1]n. (2)

The NP-Hardness of MinKnap immediately follows from the fact that MaxK-
nap is NP-Hard [12], and that a MaxKnap instance

max vT x s.t. wT x ≤ 1, x ∈ {0, 1}n. (3)

can be reduced into a MinKnap instance (1) as follows: each x ∈ {0, 1}n is
mapped via π : Rn → R

n with π(x) = 1 − x; pi = wi∑n
j=1 wj−1 and ci = vi for

i ∈ [n]. Note that the reduction is not approximation-preserving.
We say that an inequality wT x ≥ β with w ≥ 0 is dominated by a set of

inequalities F if w′T x ≥ β′ can be written as a conic combination of inequalities
in F for some β′ ≥ β and w′ ≤ w. wT x ≥ β is undominated if any set of valid
inequalities dominating wT x ≥ β contains a positive multiple of it.

Consider a family F of inequalities valid for (1). We refer to [10] for the
definition of weak separation oracle, which is not used in this paper. We say that
F admits a (1 + ε)-oracle if, for each fixed ε > 0, there exists an algorithm that
takes as input a point x̄ and, in time polynomial in n, either outputs an inequality
from F that is violated by x̄, or outputs a point ȳ, x̄ ≤ ȳ ≤ (1+ε)x̄ that satisfies
all inequalities in F . In particular, if F contains the linear relaxation of (1),
0 ≤ ȳ ≤ 1.

Let
∑

i∈T wixi ≥ β be a valid inequality for (1), with wi > 0 for all i ∈ T .
Its pitch is the minimum k such that, for each I ⊆ T with |I| = k, we have∑

i∈I wi ≥ β. Undominated pitch-1 inequalities are of the form
∑

i∈T xi ≥ 1.
Note that the map from MaxKnap to MinKnap instances defined above gives
a bijection between minimal cover inequalities

∑

i∈I

xi ≤ |I| − 1

for MaxKnap and undominated pitch-1 inequalities for the corresponding
MinKnap instance. Since, given a MaxKnap instance, it is NP-Hard to sepa-
rate minimal cover inequalities [8], we conclude the following.

Theorem 1. It is NP-Hard to decide whether a given point satisfies all valid
pitch-1 inequalities for a given MinKnap instance.
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Given a set S ⊆ [n], such that β := 1 − ∑
i∈S pi > 0, the Knapsack cover

inequality associated to S is given by
∑

i∈[n]\S

min{pi, β}xi ≥ β (4)

and it is valid for (1).
For a set S ⊆ [n], we denote by χS its characteristic vector. An ε-approximate

solution for a minimization integer programming problem is a solution x̄ that is
feasible, and whose value is at most (1 + ε) times the value of the optimal solu-
tion. An algorithm is called a polynomial time approximation scheme (PTAS) if
for each ε > 0 and any instance of the given problem it returns an ε-approximate
solution in time polynomial in the size of the input. If in addition the running
time is polynomial in 1/ε, then the algorithm is a fully polynomial time approx-
imation scheme (FPTAS).

Given a rational polyhedron P = {x ∈ R
n : Ax ≥ b} with A ∈ Z

m×n and
b ∈ Z

m, the first Chvátal-Gomory (CG) closure [5] of P is defined as follows:

P (1) = {x ∈ R
n : �λ�A	x ≥ �λ�b	, ∀λ ∈ R

m}.

Equivalently, one can consider all λ ∈ [0, 1]m such that λ�A ∈ Z
n. For t ∈ Z≥2,

the t-th CG closure of P is recursively defined as P (t) = (P (t−1))(1). The CG
closure is an important tool for solving integer programs, see again [5].

3 A (1 + ε)-oracle for Pitch-1 and Pitch-2 Inequalities

In this section, we show the following:

Theorem 2. Given a MinKnap instance (1), there exists a (1+ε)-oracle for the
set F containing: all pitch-1 inequalities, all pitch-2 inequalities and all inequal-
ities from the natural linear relaxation of (1).

We start with a characterization of inequalities of interest for Theorem 2.

Lemma 1. Let K be the set of feasible solutions of a MinKnap instance (1).
All pitch-2 inequalities valid for K are implied by the set composed of:

(i) Non-negativity constraints xi ≥ 0 for i ∈ [n];
(ii) All valid pitch-1 inequalities;
(iii) All inequalities of the form

∑

i∈I1

xi + 2
∑

i∈I2

xi ≥ 2 (5)

where I ⊆ [n], |I| ≥ 2, β(I) := 1−∑
i∈[n]\I pi, I1 := {i ∈ I : pi < β(I)} 
= ∅

and I2 := I \ I1.

The inequalities in (iii) are pitch-2 and valid.

Proofs of Lemma 1 and Theorem 2 are given in Sects. 3.1 and 3.2, respectively.
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3.1 Restricting the Set of Valid Pitch-2 Inequalities

We will build on two auxiliary statements in order to prove Lemma 1.

Claim 3. If wT x ≥ β and uT x ≥ β are distinct valid inequalities and u ≥ w,
then the latter inequality is dominated by the former.

Proof. uT x ≥ β can be obtained summing nonnegative multiples of wT x ≥ β
and xi ≥ 0 for i ∈ [n], which are all valid inequalities. �
Claim 4. Let ∑

i∈T1

xi + 2
∑

i∈T2

xi ≥ 2 (6)

be a valid inequality for MinKnap, with T1 ∩T2 = ∅ and T1, T2 ⊆ [n]. Then, (6)
is dominated by the inequality in (iii) with I = T1 ∪ T2.

Proof. One readily verifies that Inequality (5) with I as above is valid. Suppose
now that i ∈ T1 \ I1. Then the integer solution that takes all elements in ([n] \
I) ∪ {i} is feasible for MinKnap, but it does not satisfy (6), a contradiction.
Hence T1 ⊆ I1. Since T2 = I \Ti ⊇ I \I1 = I2, (5) dominates (6) componentwise,
and the thesis follows by Claim 3. �
Proof of Lemma 1. The fact that an inequality of the form (5) is pitch-2 and
valid is immediate. Because of Claim 4, it is enough to show the thesis with (5)
replaced by (6). Consider a pitch-2 inequality valid for K:

∑

i∈T

wixi ≥ 1, (7)

where T ⊆ [n] is the support of the inequality, w ∈ R
|T |
+ . Without loss of gen-

erality one can assume that T = [h] for some h ≤ n and w1 ≤ w2 ≤ · · · ≤ wh.
Since (7) is pitch-2 we have that w1 + wi ≥ 1 for all i ∈ [h] \ {1}. We can also
assume wh ≤ 1, since otherwise

∑
i∈[h−1] wixi + xh ≥ 1 is valid and dominates

(7) by Claim 3.
Let j ∈ [h] be the maximum index such that wj < 1. Note that such j exists,

since, if w1 ≥ 1, then (7) is a pitch-1 inequality. If 1 − w1 ≤ 1/2, then, by Claim
3, (7) is dominated by the valid pitch-2 inequality

∑

i∈[j]

xi + 2
h∑

i=j+1

xi ≥ 2, (8)

which again is of the type (6). Hence 1 − w1 > 1/2 and again via Claim 3, (7) is
dominated by

w1x1 +
j∑

i=2

(1 − w1)xi +
h∑

i=j+1

xi ≥ 1, (9)
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since wi + w1 ≥ 1 for all i 
= 1, so one has wi ≥ 1 − w1 > 1/2. Thus, we can
assume that (7) has the form (9). Note that inequality

h∑

i=2

xi ≥ 1 (10)

is a valid pitch-1 inequality, since we observed w1 < 1. Therefore, (7) is implied
by (8) and (10), taken with the coefficients w1 and 1−2w1 respectively. Recalling
that (8) is a valid pitch-2 inequality of the form (6) concludes the proof. �

3.2 A (1 + ε)-oracle

We will prove Theorem 2 in a sequence of intermediate steps. Our argument
extends the weak separation of KC inequalities in [4].

Let x̄ be the point we want to separate. Note that it suffices to show how
to separate over inequalities (i)-(ii)-(iii) from Lemma 1. Separating over (i) is
trivial. We first show how to separate over (iii).

Claim 5. For α ∈]0, 1], let zα be the optimal solution to the following IP Pα,
and v(zα) its value:

min
∑

i∈[n]: pi<α

x̄izi + 2
∑

i∈[n]: pi≥α

x̄izi s.t.
∑

i∈[n]

pi(1 − zi) ≤ 1 − α, z ∈ {0, 1}n.

(11)
If v(zα) < 2, then x̄ violates Inequality (5) with I := {i ∈ [n] : zα

i = 1}, otherwise
x̄ does not violate any Inequality (5) with β(I) = α.

Proof. Fix a feasible solution z̄ to (11), and let I := {i ∈ [n] : z̄i = 1}. Then:

β := β(I) = 1 −
∑

i∈[n]\I

pi = 1 −
∑

i∈[n]

pi(1 − z̄i) ≥ α.

Hence:
∑

i∈I: pi<β x̄i + 2
∑

i∈I: pi≥β x̄i =
∑

i∈[n]: pi<β x̄iz̄i + 2
∑

i∈[n]: pi≥β x̄i

≤ ∑
i∈[n]: pi<α x̄iz̄i + 2

∑
i∈[n]: pi≥α x̄iz̄i = v(z̄),

where the central inequality holds at equality if α = β. Hence, if v(zα) < 2,
the inequality with I := {i ∈ [n] : zα

i = 1} from (11) is violated by x̄. Else, all
inequalities from (11) with β(I) = α are satisfied. �

Note that Pα is a MinKnap instance, hence we can use the appropriate
FPTAS to find, for each ε > 0, an ε-approximate solution for it.

Since all data are rationals, we can assume there exists q ∈ N such that, for
each i ∈ [n], pi = ri/q for some ri ∈ N.

Claim 6. Let r ∈ {ri + 1 : i ∈ [n]} and, for α = r/q, let z̄α be the solution
output by the FPTAS for problem Pα and v̄α its objective function value. If
v̄α < 2 for some α, then x̄ violates Inequality (5) with I = {i ∈ [n] : z̄α = 1}.
Else, (1 + ε)x̄ satisfies all inequalities in Lemma 1 (iii).
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Proof. Let r = ri + 1 for some i ∈ [n]. If v̄α < 2 then by Claim 5 x̄ violates the
corresponding inequality (5). Otherwise, vα ≥ 2/(1 + ε), and (1 + ε)x̄ is feasible
for any pitch-2 Inequality (5) induced by I with β(I) = α.

Now let I∗ ⊆ [n] with β(I∗) = r∗
q < 1. There exists i∗ ∈ [n] such that

ri∗ < r∗ ≤ ri∗+1 ≤ q (with rn+1 = q). Let α := ri∗+1
q ≤ α∗ := β(I∗). The set of

feasible solutions of Pα contains that of Pα∗ , and {i ∈ [n] : pi < α} = {i ∈ [n] :
pi < α∗}. Hence, vα∗ ≥ vα and consequently vα∗

< 2 implies vα < 2. Thus, for
separating all inequalities in Lemma 1 (iii), it suffices to check (11) for all α = r

q
as in the statement of the claim. �

The following claim follows in a similar fashion to the previous one by observ-
ing that, for β(I∗) = 1

q , (11) separates over undominated pitch-1 inequalities.

Claim 7. Let α = 1/q, and z̄α be the solution output by the FPTAS for problem
Pα, and v̄α its objective function value. If v̄α < 2, then x̄ violates the pitch-1
inequality with support I = {i ∈ [n] : z̄α = 1}. Else, (1 + ε)x̄ satisfies all valid
pitch-1 inequalities.

Next claim shows how to round a point in the unit cube that almost satisfies
all pitch-1 and pitch-2 inequalities, to one that satisfies them and is still contained
in the unit cube.

Claim 8. Let x̄ ∈ [0, 1]n be such that (1 + ε)x̄ satisfies all inequalities from
Lemma 1, and define ȳ ∈ R

n as follows: ȳi = min{1, 1+ε
1−ε x̄i} for i ∈ [n]. Then

ȳ ∈ [0, 1]n and ȳ satisfies all inequalities from Lemma 1.

Proof. Clearly ȳ ∈ [0, 1]n. Let J = {i ∈ [n] : ȳi = 1}. If J = ∅, (1 + ε)x̄ <
ȳ ≤ 1, hence ȳ satisfies all pitch-2 inequalities. Thus, J 
= ∅. Consider a pitch-2
inequality of the form (5), and note that the left-hand side of the inequality
computed in ȳ is lower bounded by

∑
i∈J αi, where αi is the coefficient of xi.

First assume there exists j ∈ J ∩ I2. Then
∑

i∈J αi ≥ αj = 2. Similarly, if
j, j′ ∈ J , then

∑
i∈J αi ≥ αj + αj′ ≥ 2. In both cases, ȳ satisfies the pitch-2

inequality. Hence, we can assume J = {j} ⊆ I1. Then:

∑

i∈I

αix̄i ≥ 2
1 + ε

, from which we deduce

∑

i∈I\{j}
αix̄i ≥ 2

1 + ε
− x̄j ≥ 2

1 + ε
− 1 =

1 − ε

1 + ε
and

∑

i∈I

αiȳi =
∑

i∈I\{j}
αiȳi + 1 =

1 + ε

1 − ε

∑

i∈I\{j}
αix̄i + 1 ≥ 2,

as required. A similar (simpler) argument shows that ȳ also satisfies all pitch-1
inequalities

∑
i∈I xi ≥ 1. �
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Algorithm 1
1: Let ε′ = ε

2+ε
.

2: For r ∈ {ri +1 : i ∈ [n]} and for α = r/q, run the FPTAS for Pα with approxima-
tion factor ε′. If any of the output solution z̄α has value v̄α < 2, output inequality
(5) with I = {i ∈ [n] : z̄α = 1} and stop.

3: For α = 1/q, run the FPTAS for Pα with approximation factor ε′. If the output
solution z̄α has value v̄α < 2, output inequality

∑
i:z̄α=1 xi ≥ 1 and stop.

4: Output point ȳ constructed as in Claim 8 with ε′ and stop. Note that x̄ ≤ ȳ ≤
1+ε′
1−ε′ x̄ = (1 + ε)x̄.

Proof of Theorem 2. We can now sum up our (1 + ε)-oracle, see Algorithm 1.
Correctness and polynomiality follow from the discussion above. �

In the full version [7] we give an example showing that inequalities of pitch-3
and higher do not have the nice structure of pitch-2. For later use (in Sect. 4.3),
we observe here that when I ⊆ [n] is fixed, we can efficiently and exactly solve
the separation problem over bounded pitch inequalities with support I just by
solving an LP. This can be seen as an application of polarity (see, e.g., Nemhauser
and Wolsey [15]), while being restricted to a specific support. Clearly, we are
interested in valid inequalities αT x ≥ 1 with α ≥ 0 and points 0 ≤ x∗ ≤ 1. Let
β = 1 − p([n] \ I). We can assume β > 0, otherwise there is no valid inequality
as above with support I. Call J ⊆ I massive if

∑
i∈J pi ≥ β. Consider the

following LP:
min

∑
i∈I αix

∗
i

s.t. ∑
i∈J αi ≥ 1 for all massive J ⊆ I

α ≥ 0

(12)

Note that, for each feasible solution ᾱ to the previous LP, we have that ᾱT x ≥ 1
is a valid inequality for the original MinKnap instance, and conversely that all
inequalities with support I can be obtained in this way. Hence, let α∗ be the
optimal solution to the previous LP. If (α∗)T x∗ < 1, we obtain an inequality
whose support is contained in I, that is violated by x∗. The support of the
inequality can be extended to I by setting αi = ε for all i ∈ I with αi = 0. On
the other hand, if (α∗)T x∗ ≥ 1, x∗ satisfies all inequalities with support I.

4 Integrality Gap of IPs for MinKnap with Bounded
Pitch Inequalities

4.1 When p = c

Theorem 9. Consider an instance of MinKnap (1) with p = c. Denote by K
the linear relaxation of (1) to which all pitch-1 and pitch-2 inequalities have been
added. The integrality gap of K is at most 3/2.

Proof. Let p = c, and let x̄ be the optimal integer solution to (1). We can
assume pT x̄ > 1.5, else we are done.
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Claim 10. The support of x̄ has size 2.

Proof. Let k be the size of the support of x̄. If k = 1, then x̄ is also the optimal
fractional solution. Now assume k ≥ 3. Remove from x̄ the cheapest item as to
obtain x̄′. We have

pT x′ ≥
(

1 − 1
k

)

pT x̄ >
2
3

· 1.5 = 1,

contradicting the fact that x̄ is the optimal integral solution. �
Hence, we can assume that the support of x̄ is given by {i, j}, with 0 < pi ≤

pj ≤ 1. Since pi + pj > 1.5, we deduce pj > .75. Since pj ≤ 1, we deduce pi > .5.

Claim 11. Let 	 < j and 	 
= i. Then p� < .25.

Proof. Recall that for S ⊆ [n] we denote its characteristic vector with χS . If
0.25 ≤ p� < pi, then χ{�,j} is a feasible integral solution of cost strictly less than
x̄. Else if 0.5 < pi ≤ p� < pj , then χ{�,i} is a feasible integral solution of cost
strictly less than x̄. In both cases we obtain a contradiction. �

Because of the previous claim, we can assume w.l.o.g. j = i + 1.

Claim 12. pn +
∑i−1

�=1 p� < 1.

Proof. Suppose pn +
∑i−1

�=1 p� ≥ 1. Since p� < .25 for all 	 = 1, . . . , i − 1, there
exists k ≤ i − 1 such that xn +

∑k
�=1 pk ∈ [1, 1.25[. Hence x{1,...,k,n} is a feasible

integer solution of cost at most 1.25, a contradiction. �
Because of the previous claim, the pitch-2 inequality

∑n
k=i xk ≥ 2 is valid.

The fractional solution of minimum cost that satisfies this inequality is the one
that sets xi = xj = 1 (since j = i + 1) and all other variables to 0. This is
exactly x̄. �

4.2 CG Closures of Bounded Rank of the Natural MinKnap
Relaxation

For t ∈ N, let Kt be the linear relaxation of (1) given by: the original knapsack
inequality; non-negativity constraints; all pitch-k inequalities, for k ≤ t.

Lemma 2. For t ≥ 2, the integrality gap of Kt is at least max{ 1
2 , t−2

t−1} times
the integrality gap of Kt−1.

Proof. Fix t ≥ 2, and let C be the cost of the optimal integral solution to (1).
Let C/v′ be the integrality gap of Kt. Since v′ is the optimal value of Kt, by the
strong duality theorem (and Caratheodory’s theorem), there exist nonnegative
multipliers α, α1, . . . , αn, γ1, . . . , γn+1 such that the inequality cT x ≥ v′ can
be obtained as a conic combination of the original knapsack inequality (with
multiplier α), non-negativity constraints (with multipliers α1, . . . , αn), and at
most n + 1 inequalities of pitch at most t (with multipliers γ1, . . . , γn+1). By
scaling, we can assume that the rhs of the latter inequalities is 1. Hence v′ =
α +

∑r
i=1 γi. Proof of Claim 13 is given in the full version [7].
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Claim 13. Let dT x ≥ 1 be a valid pitch-t inequality for (1), and assume w.l.o.g.
that d1 ≤ d2 ≤ · · · ≤ dn. Then inequality

∑n
i=2 dixi ≥ max{ 1

2 , t−2
t−1} is a valid

inequality of pitch at most t − 1 for (1).

Now consider the conic combination with multipliers α, α1, . . . , αn, γ1, . . . ,
γn+1 given above, where each inequality of pitch-t is replaced with the inequality
of pitch at most t−1 obtained using Claim 13. We obtain an inequality (c′)T x ≥
v′′, where one immediately checks that c′ ≤ c and

v′′ ≥ α +
∑n+1

i=1 γi max
{

1
2 , t−2

t−1

}
≥ max

{
1
2 , t−2

t−1

} (
α +

∑n+1
i=1 γi

)

= max
{

1
2 , t−2

t−1

}
v′.

Hence the integrality gap of Kt is

C

v′ ≥ C

v′′ max
{

1
2
,
t − 2
t − 1

}

and the thesis follows since the integrality gap of Kt−1 is at most C/v′′. �

Lemma 3. For a fixed ε > 0 and square integers n ≥ 4, consider the MinKnap
instance K defined as follows:

min εy +
√

nz +
∑n

i=1 xi

st
(n − √

n)y + n
2 z +

∑n
i=1 xi ≥ n

y, z, x ∈ {0, 1}.

For every fixed t ∈ N, the integrality gap of Kt is Ω(
√

n).

Proof. Because of Lemma 2, it is enough to show that the integrality gap of K1

is Ω(
√

n). Clearly, the value of the integral optimal solution of the instance is√
n + ε. We claim that the fractional solution

(ȳ, x̄, z̄) =

⎛

⎜
⎜
⎜
⎝

1,
1

n − √
n + 1

, . . . ,
1

n − √
n + 1

︸ ︷︷ ︸
n times

,
2√
n

⎞

⎟
⎟
⎟
⎠

is a feasible point of K1. Since εȳ +
√

nz̄ +
∑n

i=1 x̄i = ε+2+ n
n−√

n+1
, the thesis

follows.
Observe that (n − √

n)ȳ + n
2 z̄ +

∑n
i=1 x̄i = (n − √

n) + n
2

2√
n

+ n
n−√

n+1
> n,

hence (ȳ, x̄, z̄) satisfies the original knapsack inequality.
Now consider a valid pitch-1 inequality whose support contains y. Since ȳ = 1,

(ȳ, x̄, z̄) satisfies this inequality. Hence, the only pitch-1 inequalities of interest
do not have y in the support. Note that such inequalities must have z in the
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support, and some of the xi. Hence, all those inequalities are dominated by the
valid pitch-1 inequalities

z +
∑

i∈I

xi ≥ 1 ∀I ⊆ [n], |I| = n − √
n + 1,

which are clearly satisfied by (ȳ, x̄, z̄). �
Theorem 14. For a fixed q ∈ N, let CGq(K) be the q−th CG closure of the
MinKnap instance K as defined in Lemma 3. The integrality gap of CGq(K)
is Ω(

√
n).

Proof. We will use the following fact, proved (for a generic covering problem) in
[3]. Let t, q ∈ N and suppose (ȳ, z̄, x̄) ∈ Kt. Define point (y′, x′, z′), where each
component is the minimum between 1 and ( t+1

t )q times the corresponding com-
ponent of (ȳ, z̄, x̄). Then (y′, x′, z′) ∈ CGq(K). Now fix t, q. We have therefore
that

εy′ +
√

nz′ +
∑n

i=1 x′
i ≤ (

t+1
t

)q (εȳ +
√

nz̄ +
∑n

i=1 x̄i)
=

(
t+1

t

)q
(
ε + 2 + n

n−√
n+1

)

and the claim follows in a similar fashion to the proof of Lemma 3. �

4.3 When All Bounded Pitch and Knapsack Cover Inequalities
Are Added

Consider the following MinKnap instance with εn = 1√
n
:

min
∑

i∈[n]

xi +
1√
n

∑

j∈[n]

zj

s.t.
∑

i∈[n]

xi +
1
n

∑

j∈[n]

zj ≥ 1 + εn

x, z ∈ {0, 1}n.

(13)

Lemma 4. For any fixed k ∈ N and n ∈ N sufficiently large, point (x̄, z̄) ∈ R
2n

with x̄i = 1+εn

n , z̄i = k
n satisfies the natural linear relaxation, all KC and all

inequalities of pitch at most k valid for (13). Observing that the optimal integral
solution is 2, this gives an IG of 2

1+ k
n

≈ 2.

Proof. We prove the statement by induction. Fix k ∈ N. Note that (x̄, z̄) domi-
nates componentwise the point generated at step k − 1, and the latter by induc-
tion hypothesis satisfies all inequalities of pitch at most k − 1. Let

∑

i∈I

wixi +
∑

j∈J

wjzj ≥ β (14)

be a valid KC or pitch-k inequality with support I ∪J , which gives that wi, wj ∈
R>0, ∀i ∈ I, ∀j ∈ J and β > 0. Observe the following.
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Claim 15. |I| ≥ n − 1. In addition, |I| = n − 1 or |J | ≤ n(1 − εn) implies
wi ≥ β, ∀i ∈ I.

Proof. Since all coefficients in (14) are strictly positive and β > 0, |I| ≤ n − 2
gives that the feasible solution (χ[n]\I ,0) for (13) is cut off by (14), a contradic-
tion.

Furthermore, if |I| = n−1 and wi∗ < β for some i∗ ∈ I, then (χ([n]\I)∪{i∗},0)
is cut off, again a contradiction.

Finally, if |I| = n, |J | ≤ n(1 − εn) and wi∗ < β for some i∗ ∈ I, then
(χ{i∗}, χ{[n]\J}) does not satisfy (14), but it is feasible in (13). �

We first show the statement for (14) being a KC. By the definition of KC:
β = 1+εn−|[n]\I|− |[n]\J|

n , wi = min{1, β}, ∀i ∈ I and wj = min{ 1
n , β}, ∀j ∈ J .

If I = [n], then
∑

i∈I wix̄i = min{1, β}·(1+εn) ≥ β since β ≤ 1+εn. Otherwise,
|[n] \ I| = 1 so wi = β, ∀i ∈ I and

∑
i∈I wix̄i = β (n−1)(1+εn)

n > β for sufficiently
large n.

Conversely, let (14) be a valid pitch-k inequality. By Claim 15, if |I| = n − 1
or |J | ≤ n(1 − εn) then wi ≥ β, ∀i ∈ I so the proof is analogous to the one
for KC. Otherwise, |I| = n and |J | > n(1 − εn). Consider the LP (12) in Sect. 3
specialized for our case – that is, we want to detect if (x̄, z̄) can be separated
via an inequality with support I ∪J . Since (χi,̄ı,0) is feasible in (13) for i, ı̄ ∈ I,
then

αi + αı̄ ≥ 1. (15)

Furthermore, for n large enough one has |J | > n(1 − εn) ≥ k so
∑

j∈K

αj ≥ 1 (16)

for any k-subset K of J . We claim that the minimum in (12) is attained at
ᾱi = 1/2, ∀i ∈ I and ᾱj = 1/k, ∀j ∈ J . Indeed, the objective function of (12)
computed in ᾱ is given by

|I| · 1
2

· 1 + ε

n
+ |J | · 1

k
· k

n
=

1 + εn

2
+

|J |
n

.

On the other hand, by summing (15) for all possible pairs with multipliers 1+εn

2(n−1)

and (16) for all subsets of J of size k with multipliers
(|J|−1

k−1

)−1 · k
n , simple linear

algebra calculations lead to
∑

i∈I

x̄iαi +
∑

j∈J

z̄jαj ≥ 1 + εn

2
+

|J |
n

,

showing the optimality of ᾱ. Recalling |J | > n(1 − εn), we conclude that

∑

i∈I

x̄iᾱi +
∑

j∈J

z̄jᾱj =
1 + εn

2
+

|J |
n

>
1 + εn

2
+ 1 − εn > 1,

hence (x̄, z̄) satisfies all inequalities with support I ∪ J . �
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Abstract. Funnels are a new natural subclass of DAGs. Intuitively, a
DAG is a funnel if every source-sink path can be uniquely identified by
one of its arcs. Funnels are an analog to trees for directed graphs that
is more restrictive than DAGs but more expressive than in-/out-trees.
Computational problems such as finding vertex-disjoint paths or tracking
the origin of memes remain NP-hard on DAGs while on funnels they
become solvable in polynomial time. Our main focus is the algorithmic
complexity of finding out how funnel-like a given DAG is. To this end,
we study the NP-hard problem of computing the arc-deletion distance to
a funnel of a given DAG. We develop efficient exact and approximation
algorithms for the problem and test them on synthetic random graphs
and real-world graphs.

1 Introduction

Directed acyclic graphs (DAGs) are finite directed graphs (digraphs) without
directed cycles and appear in many applications, including the representation
of precedence constraints in scheduling, data processing networks, causal struc-
tures, or inference in proofs. From a more graph-theoretic point of view, DAGs
can be seen as a directed analog of trees; however, their combinatorial structure
is much richer. Thus a number of directed graph problems remain NP-hard even
when restricted to DAGs. This motivates the study of subclasses of DAGs. We
study funnels which are DAGs where each source-sink path has at least one
private arc, that is, no other source-sink path contains this arc. In independent
work, Lehmann [13] studied essentially the same graph class.

Funnels are both of combinatorial and graph-theoretic as well as of practical
interest: First, funnels are a natural compromise between DAGs and trees as,
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similarly to in- or out-trees, the private-arc property guarantees that the overall
number of source-sink paths is upper-bounded linearly by its number of arcs, yet
multiple paths connecting two vertices are possible. Second, in Sect. 2 we show
that funnels, in a divide & conquer spirit, allow for a vertex partition into a
set of forking vertices with indegree one and possibly large outdegree and a set
of merging vertices with outdegree one and possibly large indegree. This parti-
tioning helps in designing our algorithms. Third, in terms of applications, due to
the simpler structure of funnels, problems such as DAG Partitioning [4,14] or
Vertex Disjoint Paths, (also known as k-Linkage) [2,7] become tractable
on funnels while they are NP-hard on DAGs. Lehmann [13] showed that a varia-
tion of the problem Network Inhibition, which is NP-hard on DAGs, can be
solved in polynomial time on funnels. Altogether, we feel that funnels are one of
so far few natural subclasses of DAGs.

The focus of this paper is on investigating the complexity of turning a given
DAG into a funnel by a minimum number of arc deletions. The motivation for
this is twofold. First, due to the noisy nature of real-world data, we expect
that DAGs from practice are not pure funnels, even though they may adhere to
some form of funnel-like structure. To test this hypothesis we need efficient algo-
rithms to determine funnel-likeness. Second, as mentioned above, natural com-
putational problems become tractable on funnels (e.g., k-Linkage [15]). Thus
it is promising to try and develop fixed-parameter algorithms for such NP-hard
DAG problems with respect to distance parameters to funnels. This approach is
known as exploiting the “distance from triviality” [5,10,18]. A natural way to
measure the distance of a given DAG D to a funnel is the arc-deletion distance to
a funnel, the minimum number of arcs that need to be deleted from D to obtain
a funnel. The problem of computing this distance parallels the well-studied NP-
hard Feedback Arc Set problem where the task is to turn a given digraph
into a DAG by a minimum number of arc deletions. Even Feedback Arc Set
on tournaments is NP-hard and it received considerable interest over the last
years [1,3,6,11].

Formally, we study the Arc-Deletion Distance to a Funnel (ADDF)
problem, where, given a DAG D, we want to find its arc-deletion distance d
to a funnel. We show that ADDF is NP-hard and that it admits a linear-time
factor-two approximation algorithm and a fixed-parameter algorithm with linear
running time for constant d.3 In experiments we demonstrate that our algorithms
are useful in practice.

Due to the lack of space, proofs of results marked with (�) are omitted.4

2 Funnels: Definition and Properties

In this section we formally define funnels. We provide several equivalent char-
acterizations, summarized in Theorem 1, and analyze some basic properties of
funnels. We use standard terminology from graph theory.
3 There is also a simple O(5d · |V | · |A|)-time algorithm for general digraphs [15].
4 A full version is available on arXiv [17].
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s2 t
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Fig. 1. Example of a funnel (left) and a DAG which is not a funnel (right). Private
arcs are marked as dashed lines. The DAG on the right is not a funnel because all
arcs in an (s1, t)-path are shared. Removing one arc from it turns it into a funnel. A
forbidden subgraph for funnels is marked in bold.

To define funnels as a proper subclass of DAGs, we limit the number of paths
that may exist between two vertices (which can be exponential in DAGs but is
one in trees). Requiring every path between two vertices to be unique would
possibly be too restrictive, and in the case of a single source such DAGs would
simply be so-called out-trees. Instead, we require each path going from a source
to a sink to be uniquely identified by one of its private arcs. We say that an arc
is private if there is only one source-sink path which goes through that arc. An
example of a funnel can be seen in Fig. 1.

Definition 1 (Funnel). A DAG is a funnel if every source-sink path has at
least one private arc.

From this definition it is clear that the number of source-sink paths in a funnel
is linearly upper-bounded in its number of arcs.

Different characterizations of funnels reveal certain interesting properties
which these digraphs have, and are used in subsequent proofs and algorithms.
We summarize these characterizations in the theorem below. In the follow-
ing, out∗(v) denotes the set of vertices that can be reached from v in a given
DAG, out(v) denotes the set of outneighbors of v and outdeg(v) denotes v’s
outdegree; in∗(v), in(v) and indeg(v) are defined analogously.

Theorem 1 (�). Let D be a DAG. The following statements are equivalent:

1. D is a funnel.
2. For each vertex v ∈ V : indeg(v) > 1 ⇒ ∀u ∈ out∗(v) : outdeg(u) ≤ 1.
3. No subgraph of D is contained in F = {Di}∞

i=0, where
– Dk = (Vk, Ak),
– Vk = {u1, u2, v0, w1, w2} ∪ {vi}ki=1, and
– Ak = {(u1, v0), (u2, v0), (vk, w1), (vk, w2)} ∪ {(vi, vi+1)}k−1

i=1 .
4. D does not contain D0 or D1 (defined above) as a topological minor.5

Definition 1 does not give us a very efficient way of checking whether a given
DAG is a funnel or not. A simple algorithm which counts how many paths go

5 A graph H is called a topological minor of a graph G if a subgraph of G can be
obtained from H by subdividing edges (that is, replacing arcs by directed paths).



186 M. G. Millani et al.

through each arc would take O(|A|2) time. Using the characterization in Theorem
1(2) we can follow some topological ordering of the vertices of a DAG and check
in linear time whether it is a funnel.

The degree characterization in Theorem 1(2) provides some additional insight
about the structure of a funnel. We can see that a funnel can be partitioned into
two induced subgraphs: One is an out-forest and the other is an in-forest. Note
that this partition is not necessarily unique. For use below, an FM-labeling for
given a DAG with vertex set V is a function L : V → {Fork,Merge} which
gives a label to each vertex. An FM-labeling for a funnel is called funnel labeling
if the vertices in the out-forest of the funnel are assigned the label Fork and
vertices in the in-forest are assigned the label Merge. The following holds.

Observation 1. Let D = (V,A) be a funnel and L be a funnel labeling for D.
Then there is no (v, u) ∈ A with L(v) = Merge and L(u) = Fork.

With a simple counting argument it is also possible to give an upper bound on
the number of arcs in a funnel. This bound is sharp.

Observation 2 (�). Let D = (V,A) be a funnel. Then |A| ≤ |V |2 /4 + |V | − 2.

Considering that a DAG has at most |V | (|V | − 1)/2 arcs, Observation 2 implies
that a funnel can have at most roughly half as many arcs as a DAG. This means
that funnels are not necessarily sparse (unlike forests). While the degree charac-
terization is useful for algorithms, the characterizations by forbidden subgraphs
and minors (Theorem 1(3 and 4)) help us to understand the local structure of
a funnel and of graphs that are not funnels. These characterizations also imply
that being a funnel is a hereditary graph property, that is, deleting vertices does
not destroy the funnel property.

3 Computing the Arc-Deletion Distance to a Funnel

In this section we show ADDF is NP-hard, and present a linear-time factor-2
approximation algorithm and an exact fixed-parameter algorithm. Our algo-
rithms also compute the set of arcs to be deleted. We remark that the corre-
sponding vertex-deletion distance minimization problem is also NP-hard and
that it can be solved in O(6d · |V | · |A|) time, where d is the number of vertices
to delete [15]. The following result can be shown by a reduction from 3-SAT.

Theorem 2 (�). ADDF is NP-hard.

A Factor-2 Approximation Algorithm. We now give a linear-time factor-2
approximation algorithm for ADDF. We mention in passing that on tournament
DAGs the algorithm always finds an optimal solution and on real-world DAGs,
the approximation factor is typically close to one (see Sect. 4). The approxima-
tion algorithm works in three phases and makes extensive use of FM-labelings
(defined in Sect. 2). First, we greedily compute an FM-labeling which we call La
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Algorithm 1. Satisfying an FM-labeling.
1: function ArcDeletionSet(DAG D = (V,A), L : V → {Fork,Merge})
2: B := ∅
3: for all v ∈ V do
4: if L(v) = Merge then
5: Choose an arbitrary u ∈ out(v) with L(u) = Merge (if it exists)
6: B := B ∪ {(v, w) | w �= u ∧ w ∈ out(v)}
7: else if L(v) = Fork then
8: Choose an arbitrary u ∈ in(v) with L(u) = Fork (if it exists)
9: B := B ∪ {(w, v) | w �= u ∧ w ∈ in(v)}

10: return B

for the input graph (assigning each vertex v a Fork or a Merge label). The
labeling will be a funnel labeling of the output funnel indicating for each vertex
whether it can have indegree or outdegree greater than one. To construct La,
we try to minimize the number of arcs to be removed when only considering v.
This strategy guarantees that, if the approximation algorithm assigns the wrong
label to v, in the optimal solution many arcs incident to v need to be removed.
This allows us to derive the approximation factor. Formally, we assign a label to
a vertex v using the following rule.

La(v) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Fork, if outdegD(v) > indegD(v),
Fork, if outdegD(v) = indegD(v) ∧

∃u ∈ in(v) : La(u) = Fork,

Merge, otherwise.

Since we can assign a label whenever we know the labels of all incoming neigh-
bors, the label of each vertex can be computed, in linear time, by following a
topological ordering of the DAG.

In the second phase, after assigning labels to all vertices, we satisfy the
labels by removing arcs. That is, for each Fork vertex v, we choose an arbi-
trary inneighbor u with L(u) = Fork (if it exists) and remove all arcs incoming
to v from vertices other than u. Similarly, for each Merge vertex v we choose
an arbitrary outneighbor u with L(u) = Merge (if it exists) and remove all
arcs outgoing from v to vertices other than u. See Algorithm 1 for the pseu-
docode of the second phase. For use below we call the second-phase algorithm
ArcDeletionSet.

In the third phase, we greedily relabel vertices, that is, we iterate over each
vertex v (in an arbitrary order), changing v’s label if the change immediately
leads to an improvement in the solution size. To check if there is an improvement,
we only need to consider the incident arcs of v and the labels of its endpoints.
This completes the description of our approximation algorithm.

To argue about optimal solutions and for use in a search-tree algorithm below,
we now show that if the input FM-labeling L corresponds to an optimal solution,
then ArcDeletionSet outputs an optimal arc set: Say that an FM-labeling L
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of a DAG D is optimal if it is a funnel labeling for some funnel D − A′, A′ ⊆ A,
such that A′ has minimum size among all arc sets whose deletion makes D a
funnel.

Proposition 1 (�). Let D = (V,A) be a DAG, let A′ ⊆ A be a minimum arc
set such that D′ = D − A′ is a funnel, and let L∗ be an optimal labeling for D′.
Then |ArcDeletionSet(D,L∗)| = |A′|.

We now give a guarantee of the approximation factor. Due to space con-
straints we provide only a proof sketch. A full proof and an example for the
tightness of the approximation factor can be found in [17].

Theorem 3 (�). There is a linear-time factor-two approximation for ADDF.

Proof (Sketch). Let A′ be a minimum arc set such that D − A′ is a funnel and
B = ArcDeletionSet(D,La), where La is computed by the above described
procedure. Let L∗ be an optimal FM-labeling for the input DAG D = (V,A). We
define two functions b : V → P(B) and a : V → P(A′) such that

⊎
v∈V b(v) = B

and
⊎

v∈V a(v) = A′, where
⊎

is a disjoint union and P(X) denotes the family
of all subsets of a set X. Our goal is to assign each arc in A′ or B to one of its
endpoints via a or b, respectively, such that |b(v)| ≤ 2 |a(v)| for every v ∈ V . We
say that a vertex v has type T (v) = FM if La(v) = Fork and L∗(v) = Merge.
The types FF, MM and MF are defined analogously. A vertex v is correctly
labeled if La(v) = L∗(v).

We define a and b in such a way that |b(v)| = |a(v)| if v is correctly labeled.
To this end, we only assign a removed arc to a correctly labeled vertex v if both
endpoints are correctly labeled. For an incorrectly labeled vertex, we assign the
arcs which are potentially removed by ArcDeletionSet when considering v,
together with those of correctly labeled vertices. We additionally need to define
a and b in such a way that no arc is assigned to both endpoints.

By construction, it is easy to show that |b(v)| = |a(v)| if v is correctly labeled.
We now consider an incorrectly labeled vertex v.

If indeg(v) = 1 = outdeg(v), then the approximation removes at most one of
the incident arcs of v. If both are removed, then the algorithm changes the label
in the third phase, which implies that v was correctly labeled either before or
after the change. As only one arc of v is removed, we can treat (u, v) and (v, w) as
a single arc (u,w) and assign it to the same vertex that (u,w) would be assigned
to if it would be removed.

For the remaining cases, we use a counting argument based on the amount of
neighbors of v with each type. We additionally need an exchange argument, that
is, whenever we have an arc (v, u) ∈ A′ where T (v) = FM and T (u) = MF, some
arc in b(u) needs to be assigned to b(v) instead. The exchange is possible because
such arcs are always in A′ but never in B, meaning that the approximation has
an “advantage” over the optimal solution with respect to these arcs.

Because the functions a and b partition A′ and B, respectively, we obtain
that

∣
∣
⊎

v∈V b(v)
∣
∣ = |B| ≤ 2 |A′| = 2

∣
∣
⊎

v∈V a(v)
∣
∣. ��
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A Fixed-Parameter Algorithm. Using the forbidden subgraph characteri-
zation (Theorem 1(3)), we can compute a digraph’s arc-deletion distance d to
a funnel in O(5d · (|V |2 + |V | · |A|)) time: After contracting the arcs on each
vertex with in- and outdegree one into a single arc, it is enough to destroy all
subgraphs D0 or D1 as in Theorem 1(3). The optimal arc-deletion set to destroy
all these subgraphs can be found by branching into the at most five possibilities
for each subgraph D0 or D1.

In this section, we show that, if the input is a DAG, we can solve ADDF
in O(3d · (|V | + |A|)) time instead; thus, in particular, we have linear running
time if d ∈ O(1). Moreover, the resulting algorithm has also better running
time in practice. As in the approximation algorithm, we again label the vertices.
Proposition 1 shows that, after the vertices are correctly labeled with either
Merge or Fork, solving ADDF can be done in linear time on DAGs. Hence,
the complicated part of the problem lies in finding such a labeling.

In the following, we describe a search-tree algorithm that receives a DAG
D = (V,A) and an upper bound d ∈ N on the size of the solution as input, and
it maintains a partial labeling L : V → {Fork,Merge} of the vertices and a
partial arc-deletion set A′ that will constitute the solution in the end. Initially,
A′ = ∅ and L(v) is undefined for each v ∈ V , denoted by L(v) = ⊥. The
algorithm exhaustively and alternately applies the data reduction and branching
rules described below and aborts if |A′| > d. The rules either determine a label
of a vertex (based on preexisting labels and on the degree of the vertex) or put
some arcs into the solution A′. Herein, when we say that an arc is put into the
solution, we mean that it is deleted from D and put into A′. To show that the
algorithm finds a size-d arc deletion set to a funnel if there is one, we ensure that
the rules are correct, meaning that, if there is a solution of size d that respects the
labeling L and contains A′ before applying a data reduction rule or branching
rule, then there is also such a solution in at least one of the resulting instances.

Reduction Rule 1 labels vertices of indegree (outdegree) at most one in a
greedy fashion, based on the label of the single predecessor (successor) if it
exists.

Reduction Rule 1 (Set Label) (�). Let v ∈ V be an unlabeled vertex.
Set L(v) := Fork if at least one of the following is true: I) indeg(v) = 0; II)

indeg(v) = 1 and ∃u ∈ in(v) : L(u) = Fork; III) outdeg(v) > 1, indeg(v) = 1
and ∀u ∈ out(v) : L(u) �= ⊥.

Set L(v) := Merge if at least one of the following is true: I) outdeg(v) = 0;
II) outdeg(v) = 1 and ∃u ∈ out(v) : L(u) = Merge; III) outdegv =
1, indeg(v) > 1 and ∀u ∈ in(v) : L(u) �= ⊥.

Having labeled some vertices—whose labels will be as in an optimal labeling
in some branch of the search tree—we simulate in Satisfy Label the behavior of
ArcDeletionSet and remove arcs from labeled vertices.
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Reduction Rule 2 (Satisfy Label) (�). Let v be some vertex where L(v) =
Fork and outdeg(v) > 1. If ∃u ∈ in(v) : L(u) = Fork, then put the arcs {(x, v) |
x ∈ in(v) ∧ x �= u} into the solution. Otherwise, put {(x, v) | x ∈ in(v) ∧ L(x) =
Merge} into the solution.

Let v be some vertex where L(v) = Merge and outdeg(v) > 1. If ∃u ∈
out(v) : L(u) = Merge, then put the arcs {(v, x) | x ∈ out(v) ∧ x �= u} into the
solution. Otherwise, put {(v, x) | x ∈ out(v) ∧ L(x) = Fork} into the solution.

To assign a label to each remaining vertex, we branch into assigning one of
the two possible labels. Key to an efficient running time is the observation that
there is always a vertex which, regardless of the label set, has some incident arc
which then has to be in the solution. This observation is exploited in Branching
Rule 1.

Branching Rule 1 (Label Branch). If there is some vertex v such that ∀w ∈
in(v) : L(w) �= ⊥ or ∃w ∈ in(v) : L(w) = Fork, then branch into two possibili-
ties: Set L(v) := Fork; Set L(v) := Merge.

If there is some vertex v such that ∀w ∈ out(v) : L(w) �= ⊥ or ∃w ∈
out(v) : L(w) = Merge, then branch into two possibilities: Set L(v) := Fork;
Set L(v) := Merge.

The final Branching Rule 2 tries all possibilities of satisfying a label of a vertex.

Branching Rule 2 (Arc Branch). If there is a vertex v with L(v) = Fork
and indeg(v) > 1, then branch into all possibilities of removing all but one incom-
ing arc of v. If there is a vertex v with L(v) = Merge and outdeg(v) > 1, then
branch into all possibilities of removing all but one outgoing arc of v.

The correctness of Arc Branch follows from Proposition 1. To show the algo-
rithm’s correctness, it remains to show the following central lemma.

Lemma 1. Let D be a DAG. If Label Branch, Arc Branch, Set Label, and
Satisfy Label are not applicable, then D is a funnel and all vertices have a label.

Proof. First, note that if the label of a vertex has been set, it will be satisfied
by either applying Satisfy Label or by branching with Arc Branch. Since satis-
fying all labels turns D into a funnel (Theorem 1(2)), it is enough to show that
all vertices have a label if Label Branch, Set Label, and Satisfy Label are not
applicable.

We first show that if there is some forbidden subgraph D′ = (V ′, A′) ⊆ D,
that is, D′ is isomorphic to some Di from Theorem 1(3), and if additionally
Set Label and Satisfy Label are not applicable, then Label Branch is appli-
cable. Let D′ be the forbidden subgraph in D with the smallest number of
vertices. Let v, u ∈ V ′ be two (not necessarily distinct) vertices in D′ such
that indegD′(v) > 1, outdegD′(u) > 1. Observe that all vertices between v and u
in D′ (if any) have in- and outdegree one in D, because D′ has the smallest
number of vertices. We distinguish two cases.
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F x v u M

F w F M F M

Fig. 2. A DAG where Satisfy Label and Set Label are not applicable. The letter F
stands for a Fork label and M stands for Merge. Label Branch cannot be applied
to v since u does not have a label, yet it can be applied to x ∈ in∗(w).

Case 1: ∀w ∈ inD(v) : L(w) �= ⊥. Then either outdegD(v) > 1, meaning that
we can apply Label Branch (as required), or L(v) = Merge due to Set Label.
Since all vertices between v and u have in- and outdegree one, we also know from
the latter case that there is some arc (x, y) in the (uniquely defined) (v, u)-path
such that L(x) = Merge and L(y) = ⊥. Note that it cannot happen that L(y) =
Fork since Satisfy Label is not applicable. We also know that outdegD(y) > 1
since Set Label is not applicable. This implies Label Branch is applicable on y.

Case 2: ∃w ∈ inD(v) : L(w) = ⊥. This case is illustrated in Fig. 2.
We show that we can find some vertex in in∗(w) to which we can apply

Label Branch. Consider the longest (x,w)-path that only contains vertices
in in∗(w) which do not have a label. Clearly, ∀y ∈ in(x) : L(y) �= ⊥
and indeg(x) > 0 since all sources have a label. Thus, we can apply Label Branch
on x.

Since only these two cases are possible, and in both we can apply
Label Branch, it follows, by contraposition, that D is a funnel and all vertices
have a label if Label Branch, Set Label, and Satisfy Label are not applicable. ��

By combining the previous data reduction and branching rules, we obtain a
search-tree algorithm for ADDF on DAGs:

Theorem 4 (�). ADDF can be solved in O(3d · (|V | + |A|)) time, where d is
the arc-deletion distance to a funnel of a given DAG D = (V,A).

To improve the running time of the search-tree algorithm in practice, we
compute a lower bound of the arc-deletion distance to a funnel of the input and
we stop expanding a branch of the search tree when the lower bound exceeds
the available budget. A simple method for computing a lower bound is to find
arc-disjoint forbidden subgraphs. Clearly, the sum of the arc-deletion distances
to a funnel of the subgraphs found is not larger than the distance of the input
DAG. To find such subgraphs, we first look for vertices with both in- and out-
degree greater than one, which are not allowed in funnels. Then we search for
paths v1, v2, . . . , vk such that indeg(v1) > 1 and outdeg(vk) > 1. With some
bookkeeping we can find a maximal set of arc-disjoint forbidden subgraphs in
linear time.

4 Empirical Evaluation of the Developed Algorithms

In this section, we empirically evaluate the approximation algorithm and the
fixed-parameter algorithm for ADDF described in Sect. 3. We used artificial data
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sets and data based on publicly available real-world graphs. Our experiments
show that both our algorithms are efficient in practice.

We implemented the algorithms in Haskell 2010. All experiments were run on
an Intel� Xeon� E5-1620 3.6 GHz processor with 64 GB of RAM. The operating
system was GNU/Linux, with kernel version 4.4.0-67. For compiling the code,
we used GHC version 7.10.3. The code is released as free software [16].

Experiments on Synthetic Funnel-like DAGs. We generated random funnel-like
DAGs through the following steps. (1) Choose the number of vertices, arc den-
sity p ∈ [0, 1], and some s ∈ N. (2) Fix a topological ordering of the vertices.
(3) Uniformly at random assign a label Fork or Merge to each vertex. (4)
Create an out-forest with Fork vertices, and an in-forest with Merge vertices.
(5) Add random arcs from Fork to Merge vertices until a density of p (relative
to the maximum number of arcs allowed by the labeling) is achieved. (6) Add s
random arcs which respect the topological ordering. Steps (1) through (5) result
in a funnel which we call planted funnel below.

For a fixed labeling, the algorithm above generates funnels uniformly at ran-
dom from the input parameters. The labeling, however, is drawn uniformly at
random from all 2|V | possible labelings, without considering how many different
funnels exist with a given labeling. Hence, funnels with fewer arcs have a larger
chance of being generated than funnels with many arcs (when compared to the
chances in a uniform distribution). We consider this bias to be harmless for the
experiments since, for the exact algorithm, the number of arcs is not decisive
for the running time, and for the approximation algorithm the number of arcs
should not have a big impact on the solution quality.

For n ∈ {250, 300, 500, 1000}, p ∈ {0.15, 0.5, 0.85} and s ∈ {125, 150, 175} we
generated 30 funnels with n vertices and density p, and then added s random
arcs as described above. This gives us a total of 1080 DAGs.

Our fixed-parameter algorithm computed the arc-deletion distance to funnel
of 1059 instances (98%) within 10 min. The approximation algorithm finished on
average in less than 72 ms. A cumulative curve with the percentage of instances
solved within a certain time range is depicted in Fig. 3a. Most instances were
solved fairly quickly: 932 (86%) instances were solved optimally within 15 s. We
can also observe that there were essentially two types of instances: Easy ones
which were solved within few seconds, and harder ones which often were not
solved within 10 min. That is, if we limit the running time to five seconds, then
we can solve 856 (79%) instances, and if we increase it to sixty seconds, we can
solve only 141 additional instances.

Figure 3b shows the relation between the error of the approximation algo-
rithm with the density of the planted funnel. The approximation algorithm found
an optimal solution in 574 (54%) instances, and in 260 (25%) it removed only
one more arc than necessary. As the arc-deletion distance to a funnel of most
instances was greater than 100, this means that the approximation ratio is very
close to one. Since the DAGs used here are already close to funnels, most deci-
sions of the approximation algorithm are correct. Intuitively, having correct local
information helps the approximation make a globally optimal decision, and so it
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Fig. 3. Running time and approximation error.

is unsurprising that the approximation factor in funnel-like DAGs is much better
than the theoretical bound. This is supported also by the fact that the approxi-
mation performed worse on sparse planted funnels than on dense ones, since the
proportion of “wrong” information regarding the arcs is larger on sparse funnels
(when adding the same number of random arcs).

Experiments on DAGs Based on Real-World Data Sets. We obtained ten
digraphs from the Konect database [12], containing food-chains, interactions
between animals, and source-code dependencies. We also downloaded the depen-
dency network of all packages in Arch Linux.6 Since most of the gathered
digraphs contain cycles, we performed a pre-processing step turning them into
DAGs: we merged cycles into a single vertex, and then removed self-loops. For
each of the eleven DAGs we computed a lower bound and an approximation
of its arc-deletion distance to funnel. We also attempted to compute the real
distance, stopping the algorithm if no solution was found within four hours.

The dataset was divided into six small DAGs (≤ 156 vertices and ≤ 1197
arcs) and five larger ones (≥ 5730 vertices and ≥ 26218 arcs). In the small
ones, our fixed-parameter algorithm solved ADDF within one second, and our
approximation algorithm found the correct distance in ≤ 2 ms. In two of the six
small DAGs the distance was 60 and 129, which means that the exact algorithm
is in practice much faster than what the worst-case upper bound predicts.

On the larger DAGs the fixed-parameter algorithm could not solve ADDF
within four hours. By computing a lower bound for the distance, we managed to
give an upper bound for the approximation factor, which was at most 1.16. This
means that the approximation algorithm is practical since it is fast (≤ 228 ms
on average) and yields a near-optimal solution. Relative to the number of arcs,
the arc-deletion distance to a funnel parameter was small (9% on average).

6 Listed at https://www.archlinux.org/packages/ and obtained using pacman.

https://www.archlinux.org/packages/
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5 Conclusion

Our results add to the relatively small list of fixed-parameter tractability results
for directed graphs and introduce a novel interesting structural parameter for
directed (acyclic) graphs. In particular, our approximation and fixed-parameter
algorithms could help to establish the arc-deletion distance to a funnel as a
useful “distance-to-triviality measure” [5,10,18] for designing fixed-parameter
algorithms for NP-hard problems on DAGs. We consider finding lower bounds
for the approximation factor and for the running time of an exact algorithm to
be an interesting task for future work. Finally, funnels might provide a basis for
defining some useful digraph width or depth measures [8,9,15].
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Abstract. A Content Distribution Network includes dedicated servers
creating an architecture that moves the content to servers that are closer
to the user, reducing delays and traffic. In this structure several prob-
lems are studied, including the Problem of Allocation of Storage Capacity
(SCAP) and the Replica Placement and Request Distribution Problem
(RPRDP). This work analyzes these problems in an integrated way and
proposes the creation of a new problem named Capacities, Replicas and
Requests Distribution Problem (CRRDP), which enables the dynamic
allocation of disk space on the servers and distribution of replicas and
requests. The main contributions of this work are the creation of a new
problem and a new formulation which associates variables and restric-
tions presents in mathematical formulations for this problems. The Math-
ematical formulation was analyzed and computational results shows that
operational costs can be reduced and that it is possible to disable unused
servers over the network.

Keywords: Content Distribution Networks
Combinatorial optimization · Mathematical formulation
Storage capacity optimization

1 Introduction

The demand for fast and reliable Internet services and the augment of infor-
mation traffic require, from content providers, innovative ways to deliver such
services in the most efficient manner to the customers. In this scenario it is possi-
ble to observe the increasing use of Content Distribution Networks (CDNs). The
CDNs are able to continuously improve service performance. Such improvement
is achieved through replication of the contents in strategically positioned servers,
closer to the users, and the requests are handled by these surrogate servers, that
can deliver the contents faster and at lower cost [1,2].
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In the CDNs context, there are several optimization problems that have
already been addressed in multiple ways [1–6]. This work proposes a new opti-
mization problem, called the Capacities, Replicas and Requests Distribution
Problem (CRRDP). This new problem involves the simultaneous optimization
of servers disk capacities, replica positioning and the distribution of requests
through CDN servers, solving two related optimization problems in a jointly way,
the Storage Capacity Allocation Problem (SCAP) and the Replication Replica
Placement and Request Distribution Problem (RPRDP). With data volume
increasing and content popularity, CloudCDN [7] structures bring new insights
that utilize network virtualization to facilitate its operations. Such insights are
also used in the this paper and will be better explored latter.

The remaining of this paper is organized as follows: Section 2 presents the
problem definition. Section 3 shows the mathematical formulations analyzed.
Section 4 exposes the computational result and Sect. 5 concludes the work.

2 Problem Definition

Some contents are more popular in determined regions than others. In addition,
it is not always possible to allocate servers with sufficient capacity to serve all
customers in all regions. Therefore, sometimes it is necessary to spend a higher
cost to deliver these contents and assume the risk of not providing the service
in the Quality of Service (QoS) expected by the user. In this way, it is possible
to define a quality indicator for a CDN service, adding the following costs: total
cost = request reply cost + content replication cost + backlog penalties.

During the CDN operation, if servers storage capacities are not totally used,
the available resources may be underutilized. To avoid this kind of inefficiency, one
option is to redistribute total capacity across servers according to the volume of
requests, increasing or reducing the server capacity to better serve customers [3].

There are a number of papers in the literature [7] that handle multiple
requests in jointly way (that deal with requests from different users as they
were equal). Such approach may not be so advantageous for the clients, since
network problems may occur and QoS specifications may be different. In order to
reduce the network load without violating the requests’ quality constraints, it is
important to optimize the positioning of the replicas throughout a CDN network
and the distribution of the requests over the servers, dealing with requests indi-
vidually. It is also important to have the possibility of a request being handled
by multiple servers simultaneously, as long as they have a copy of the desired
content. The RPRDP, proposed by [1], addresses all this realistic characteristics
and is one of the most general problems in the CDNs context.

Besides the mentioned aspects, the RPRDP also considers during the opti-
mization process: servers’ bandwidth and disk space limits; the existence of mul-
tiple contents; changes in the network over time; content submission; content
removal; and the appearance of new requests. This problem tries to fulfill clients’
quality criteria, using its maximum limits whenever possible [1]. However, this
problem still does not treat the problem of capacity allocation of servers and
considers that the location of servers is already known.
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The SCAP [3] appears as an alternative to treat this issue, since its objective
is to determine the proportion of the total storage capacity available in the
network that should be allocated on each CDN server. However, this problem was
not proposed in a multi period context, and thus, it does not consider the changes
that may occur in the network and in the servers during the entire horizon.
Besides, the request handling is not considered by SCAP although its results
increase the chances of a request being serviced by a nearby server, thereby
reducing the delay and even loading the network links.

Based on the gaps identified in each of the mentioned optimization problems
and in the face of a increasing demand scenario, we claim that it is necessary
to analyze these problems together. In this way, it is possible to describe a new
optimization problem in the CDNs context, called the Capacity, Replica and
Request Distribution Problem, or CRRDP. The CRRDP treats in an integrated
way the problem of the positioning of the replicas in the servers and the dis-
tribution of the requests, and it also deals with the dynamic allocation of the
storage capacity of the servers, which can be optimized to meet the variations
of the demand over time periods. The characteristics of the CRRDP addressed
in this work are: (1) Requests are treated individually and can be handled by
multiple servers simultaneously; (2) Storage capacity of servers can be changed
according to demand fluctuation; (3) New requests and contents may come up
and contents can be removed; (4) Network delays can change over the time hori-
zon; (5) Bandwidth constraints are considered for clients and servers; (6) clients’
QoS requirements are fulfilled whenever possible; (7) The problem is Offline,
meaning that all changes are known in advance.

3 Mathematical Formulations

The model of CRRDP should contain characteristics of SCAP and RPRDP. The
mathematical formulations proposed by Uderman [3] and Neves [1] are analyzed
separately. In the Sect. 3.3 a new formulation to solve the CRRDP is presented.

3.1 Storage Capacity Allocation Problem

Uderman [3] has studied a series of mathematical problems that deal with stor-
age capacity of the servers optimization. The author proposed a mathematical
formulation for the SCAP solution, suitable for CDNs without a hierarchical
topology and capable of supporting contents of any size, reducing the number
of variables needed to describe the model and reducing complexity. Uderman
defined the problem as follows: Let ψ be the set of contents, where each content
k has size Lk; let E be the total storage capacity of a CDN; let V be the set of
servers; let J be the set of clients, where each client j has a request rate λj , a
demand (for contents) distribution pj and an source server oj ∈ V , that is the
closest CDN server to j (and thus the server that should preferably handle j);
The distance between a client j ∈ J and a server v ∈ V is given by dj,v : J x V .
The SCAP aims to minimize the distance between the client and the requested
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content, given the demand rates for the content, defining the optimal allocation
of the total available storage space E through the servers set V . Xj,v(k) is a
binary variable equals to 1 if a client j receive the content k from the server v
and equals to zero in the other cases. The variable δv(k) is auxiliary that is equal
to one if the content k is positioned on the server v and equal to zero in the
other cases. Using a static approach in which there is a single time period, the
optimal allocation of the total available capacity in a CDN can be obtained by
the formulation described by Uderman [3], here transcribed for didactic reasons.
The formulation can be expressed as follows:

Max
∑

j∈J

λj

∑

k∈ψ

pj(k)
∑

v∈V

(dj,oj
− dj,v)Xj,v(k) (1)

S.t.
∑

j∈J

Xj,v(k) ≤ U · δv(k), ∀v ∈ V, ∀k ∈ ψ, U ≥ |J |, (2)

∑

v∈V

∑

k∈ψ

δv(k) · Lk ≤ E, (3)

Xj,v(k) ∈ [0, 1], ∀v ∈ V, ∀k ∈ ψ, ∀j ∈ J, (4)
δv(k) ∈ [0, 1], ∀v ∈ V, ∀k ∈ ψ, (5)

The objective of the problem (1) is to minimize the distance between the
client and the content to be requested, since the distance between the client and
its source server will always be less than or equal to the distance between client
j and v that satisfies the request, the term dj,oj

− dj,v in the objective function
will always be less than or equal to zero. The constraints (2) represent that a k
content can only be delivered to the client if it is present on the server v, and the
constraints (3) limit the capacity allocated on all servers to the total available
storage capacity.

3.2 Replica Placement and Request Distribution Problem

The server storage capacity, determined by the SCAP, has a direct influence
on the RPRDP. The RPRDP consists of determining the optimal positioning of
content replicas in the network and distributing the requests through the servers,
in order to reduce the operational cost of the CDN.

In order to distribute the requests, the RPRDP model, presented in [1],
considers that a request can be redirected only to servers that have a copy of the
requested content, checking the QoS parameters. If such parameters are violated,
a penalization is added in the Objective Function of the model.

Thus, in a simplified way, given a set R of requests from customers; a set of
S of CDN servers and a set C of contents, one must determine the best locations
(servers in S) to place the replicas of each contents of C and the distribution of
each request in R through servers in S in order to minimize the penalties applied
for delaying requests handling. The bandwidth limits of servers and clients must
be ensured, as well as the servers disk space.



200 R. Gerhardt et al.

The formulation presented in [1] considers the capacity of each server as a
constant, thus, it does not contemplate the optimization of the disk space used
by each server. The inclusion of this characteristics will be proposed later.

3.3 Capacity, Replica and Request Distribution Problem

Due to the interdependence between the SCAP and the RPRDP, both problems
were studied by Uderman [3], so that the results of the first one were directly
used as input data for the second. In this approach, SCAP is used to find an
optimal distribution of storage space for each CDN server. In his work, Uderman
uses two approaches. In the first, the SCAP is solved using average rates of the
requests, but the results obtained by the SCAP solution are used only once, at
the beginning of the optimization horizon. In the second, the SCAP is solved for
each period of the planning horizon, considering as input data the current state
of the CDN. However, this second approach continues to treat the two problems
(SCAP and RPRDP) separately, which means that the changes that occur over
time are not observed with care.

Modifying the RPRDP formulation proposed by Neves [1], and later revised
by Gerhardt [8], it is possible to make a formulation that also can deal with the
concept of storage space optimization. This formulation can be used to solve the
CRRDP. The main objective of this problem is to optimally allocate the available
storage capacity, distribute the content replicas and customer requests in order
to improve resource utilization and reduce operational costs, always observing
QoS standards. In this way, the CRRDP can be seen as a more general problem,
which solves RPRDP and SCAP in a jointly approach.

The formulation for CRRDP, proposed in this work, can be described as fol-
lows: Considering S the set of CDN servers, C the set of replicated contents, R the
set of requests to be met and E the total space available for distribution between
servers. Let cijt be the cost of servicing the request i on the server j, in the period
t, qit punishment for backlogging the request i in the period t, hkjlt the cost of
replicating the contents k on server j from server l in period t. In addition, Lk the
content size k (in bytes), MBj maximum server band j (in bytes/second), BRi

request bandwidth requirement i (in bytes/second), BXi is the maximum band-
width of client i (in bytes/second), δ is the length of the periods in seconds, G(i)
the content required by the request i and N a constant that represents the sum of
the size of all contents. The following sets of variables are also defined:

– xijt = fraction of content requested by request i delivered by server j in
period t

– ykjt =

{
1, if and only if the content k is replicated on the server j in the period t
0, otherwise

– bit = backlog of the request i in the period t

– wkjlt =

⎧
⎨

⎩

1, if and only if the content k is copied by the server j from
server l in period t

0, otherwise
– rjt = space allocated on server j during period t
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Min
∑

i∈R

∑

j∈S

∑

t∈T

cijtxijt +
∑

i∈R

∑

t∈T

qitbit +
∑

k∈C

∑

j∈S

∑

l∈S

∑

t∈T

hkjltwkjlt (6)

S.t.
∑

j∈S

LG(i)xijt − bi(t−1) + bit = Dit, ∀i ∈ R,∀t ∈ [BG(i), EG(i)], (7)

∑

i∈R

LG(i)xijt ≤ δMBj , ∀j ∈ S, ∀t ∈ T, (8)

∑

j∈S

LG(i)xijt ≤ δBXi, ∀i ∈ R, ∀t ∈ T, (9)

yG(i)jt ≥ xijt, ∀i ∈ R, ∀j ∈ S, ∀t ∈ T, (10)
∑

j∈S

ykjt ≥ 1, ∀k ∈ C,∀t ∈ [Bk, Ek], (11)

ykjt = 0, ∀k ∈ C, ∀j ∈ S, ∀t /∈ [Bk, Ek], (12)
ykjBk

= 0, ∀k ∈ C, ∀j ∈ {S|j �= Ok}, (13)

ykj(t+1) ≤
∑

l∈S

wkjlt, ∀k ∈ C, ∀j ∈ S, ∀t ∈ T, (14)

ykjt ≥ wkljt, ∀k ∈ C,∀j, ∀l ∈ S, ∀t ∈ T, (15)
∑

k∈C

Lkykjt ≤ rjt, ∀j ∈ S, ∀t ∈ T, (16)

∑

j∈S

rjt ≤ E, ∀t ∈ T, (17)

xijt ∈ [0, 1], ∀i ∈ R,∀j ∈ S,∀t ∈ T, (18)
ykjt ∈ {0, 1}, ∀k ∈ C,∀j ∈ S,∀t ∈ T, (19)
bit ≥ 0, ∀i ∈ R,∀t ∈ T, (20)
wkjlt ∈ {0, 1}, ∀k ∈ C,∀j ∈ S,∀l ∈ S,∀t ∈ T, (21)
rjt ∈ [0, N ], ∀j ∈ S,∀t ∈ T. (22)

This formulation objective (6) is to minimize the cost of delivering content
to customers as well as the punishment for delaying requests’ handling and also
the cost of replicating contents on the servers. The constraints (7) guarantee
that the demand will be fully satisfied. The constraints (8) and (9) ensure the
bandwidth limits of servers and clients. Restrictions (10) assure that a request
can only be served by a server that has a copy of the requested content. The
constraints (11) and (12) control the replicas, ensuring that there is at least one
copy of the content during its lifetime and that there is no replication outside
this period. Restrictions (13) ensure that during the appearance of the con-
tent, all other servers except the source server do not contain any replica of the
content out of its lifetime. Restrictions (14) require that a new replica to be cre-
ated for each replication (no partial replication is allowed), and constraints (15)
require replication can occur only from servers that has a copy of the content.
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Restrictions (16) indicate that the sum of the space occupied on a server must
not exceed the space allocated to this server. Restrictions (17) ensure that on
each period, the sum of disk spaces allocated to servers must be less than or
equal to the total space available. The remaining restrictions are integrality and
non-negativity restrictions.

4 Formulation Analysis Throughout Computational Tests

In order to validate the model, we performed tests using two mathematical for-
mulations: one the RPRDP proposed in [1]; and one for the CRRDP, proposed
in this work. Both formulations were solved using the CPLEX [9] software, that
is a well known software for solving Integer Programming Problems. We choose
the standard CPLEX configuration for all instances, meaning that a Branch-
and-Bound like algorithm was used. The objective of the tests is to verify if the
dynamic allocation of space can reduce costs without compromising the quality
of service.

The instances used are the same ones used in several works [1,3,8] and are
available at LABIC [10] website. This set of instances is the first set that simul-
taneously considers several characteristics close to reality, such as QoS require-
ments, different server capacity and dynamic content. As mentioned in [1], these
instances are divided into four classes, A, B, C, and D. The instances of class
A are small scale instances, used for testing and, therefore, virtually all values
used for this class are chosen arbitrarily. Instances of class B are instances con-
structed based on values found in the literature and based on market equipment
available when these instances were created (2008). The instances of class C are
instances similar to the instances of class B, however, in instances of class C
the servers have less storage capacity. Class D instances are instances with more
severe restrictions in terms of storage capacity and bandwidth on the servers.
For each possible size of 10, 20, 30 or 50 servers, 5 instances of each class were
used. For all instances, it was considered that each period lasts 60 s.

4.1 CRRDP Dynamic

The solution status reported by the CPLEX [9] on CRRDP instances can be
classified as optimal (Optimal), optimal within the established tolerance of 4
decimal places (Tol. Opt.) or best solution found within the timeout of 10800 s
(Time).

Figure 1 shows the solution status presented by the CPLEX. The percent-
age difference (gap) between the two approaches is obtained by the following
equation:

(
F1−F2

F1

)
· 100, where F1 is the result of the objective function for the

RPRDP and F2 is the result of the objective function for the CRRDP. The pos-
itive gap shows that the solution of the CRRDP presented a smaller objective
function value when compared to the RPRDP solutions, indicating reduction of
operational costs.
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Fig. 1. Results for instances with status optimal or optimal within tolerance

Figure 1 shows the results for the instances that obtained the status optimal
or optimal within the tolerance. In this way, the gaps indicate a reduction of
up to 4.55% of an optimal solution over RPRDP when using the dynamic storage
capacity allocation.

The data shown in Fig. 1 represent that the better use of servers can reduce
the distribution costs of the contents in the network, because the allocation of
the space is made according to the volume of requests. The dynamic allocation
of space allows the reduction of the distances between the clients and the servers
that handle them, especially when the volume of requests is high. This is possible
because the dynamic allocation provides more storage capacity to the source
servers with higher request rate, allowing these servers to handle more requests,
avoiding unnecessary forwarding, reducing the delays and ensuring the quality
of service.

Some results presented a gap of 0% in the best solution found. These results
are among the instances belonging to classes A and B, which are the simplest
and mainly used for testing [1,2]. In these cases, both approaches easily find the
best possible solutions.

The Table 1 shows the results for eight hard to solve instances with status
Optimal or Tol. Opt for the RPRDP and with status time for the CRRDP.
Although the optimal solution were not found for the CRRDP the final gaps
presented by CPLEX for these instances were less than 0.5% meaning that the
values are to close to the optimal. The first column exposes the instances ana-
lyzes. The second column presents the solution status for the RPRDP. The third
column depicts the relative difference between the final objective functions found
by the CPLEX. The relative difference is calculated in the same manner used
in Fig. 1. It is possible to note that even though the optimal solution for these
instances were not found for, the gaps calculated for all of them show positive
values. This means that even if we are not able to reach the optimal result found
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Table 1. Comparison between objective function RPRDP and CRRDP

“Server.Instance” Status RPRDP GAP in relation to RPRDP

10.16 Tol. Opt. 2,08%

10.17 Tol. Opt. 1,99%

10.18 Tol. Opt. 2,20%

10.19 Tol. Opt. 2,47%

10.20 Tol. Opt. 2,99%

20.11 Optimal 5,33%

20.14 Tol. Opt. 3,44%

20.17 Tol. Opt. 2,31%

for CRRDP in the time limit is already better than the optimal solution of the
RPRDP, thus, it can be concluded that there was a reduction of the operational
costs for these instances.

For these instances were not found, the gaps calculated for all of them show
positive values. This means that even if we are not able to reach the optimal
result, the best result found for CRRDP in the time limit is already better than
the optimal solution for the RPRDP, thus, it can be concluded that, for these
instances, there was also reduction of the operational costs. The CPLEX gaps
founded for these instances were less than 0.5% and represents that the values
are to close to the optimal.

4.2 Instances that Do Not Consider All the Servers as Source

In a scenario with no disk space optimization on the servers, resources may be
waste due to underutilization on some servers. This means that after optimizing
the disk space allocation, some servers may not be used to handle requests and,
thus, be deactivated, leading to further reduction of costs. In order to prove this
concept, some instances were created based on instances of class D, that are
instances closer to reality and that present a scarcity of resources. For this, we
used instances of class D with 20 servers as baseline and, during the creation
of the new instances, it was considered that only 15 out of the 20 servers could
be used as source. The number of requests of each instance was preserved, but
the sources of the requests were redistributed among 15 randomly chosen servers
following a Uniform Distribution.

The results for these cases show that, no disk space was allocated for some
servers on some periods, meaning that they were not needed for the problem
solution. The Fig. 2 graphically shows a comparison between the percentage of
servers occupied per period and also the total space allocated on the servers.

Figure 2 indicate that the use of dynamic allocation may determine that
some servers can be disabled or that their resources can be transfered to another
application, in the case of the use of shared servers. Some servers, like servers 2,
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Fig. 2. Distribution of the allocated space on the optimization horizon

11, 12, and 19, have no disk space allocated in more than 90% of periods. The
Fig. 2 also shows that in none of the periods we had 100% of the servers used,
and, in some cases only 40% of the servers available on the network were used.

For all these instances, the solution status obtained was Time, that is, even
in intermediate solutions, it is possible to reduce the number of servers in the
network without reducing the quality of service.

4.3 CRRDP with Allocation Cost

In order to make the model even closer to reality, a modification was proposed
in the objective function of the CRRDP, adding costs for the allocation of disk
space in the servers. Without a cost associated with allocation of disk space on
servers the use of a server becomes indifferent to the objective function, but, such
allocation generates costs on real CDN environments. In addition, the inclusion
of these costs helps to differentiate solutions that were previously considered
equal by the model, favoring solutions that use a smaller fraction of the available
space. Thus, considering F the cost of allocating a unit of disk space on a server,
the objective function described in Eq. (6), should be rewritten as:

Min
∑

i∈R

∑

j∈S

∑

t∈T

cijtxijt +
∑

i∈R

∑

t∈T

qitbit +
∑

k∈C

∑

j∈S

∑

l∈S

∑

t∈T

hkjltwkjlt + F
∑

j∈S

∑

t∈T

rjt (23)

Through the results obtained with the new objective function, it is possible
to notice that, in some cases, the results are inconclusive, but they strongly
indicate that the use of these associated costs helps the search process through
more robust cuts, making possible to solve instances closer to the reality. In 80%
of cases it was possible to observe a positive gap between the objective functions
of the CRRDP and of the RPRDP. This indicates that the dynamic allocation
reduced the operational costs. In all cases it was possible observe that it was not
necessary to use all the servers to solve the problem since some servers were not
used during the planning horizon. This shows that dynamic allocation of server
space can reduce the replication and content delivery costs.
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When a cost for the allocation of servers in the network is added, it is observed
that the gaps found in relation to the solution for the RPRDP with cost allocated
are increasing more and more as the cost increases. In the tests it is possible to
notice that the solution gap increases almost 10 times more when allocated
the cost of at least 1 unit. This fact indicates that the dynamic allocation of
the servers in the CDNs can considerably reduce the cost of content delivery
solution without compromising quality of service and that the cost of allocation
of space in the servers can potentialize the necessity of the use of the dynamic
allocation of the total space of a CDN.

Figure 3 depicts the amount of total disk space used in the optimal solution
as the value of F increases for instance 30.11. It is possible to notice that when
the value of F is augmented from 0 to 1, there is already a reduction of the total
space allocated, and, as this value increases, the total space allocated is reduced
until a certain limit.

Fig. 3. Analysis Sensitivity of the constant F for instance 30.11

5 Conclusions and Future Work

We showed that when the content replication, request distribution and storage
capacity are jointly optimized it is possible to reduce the operational costs of a
CDN. We were able to obtain optimal results for almost all instances belonging
to Classes A, B and C and the results presented a reduction of up to 4.55% on
the costs. However, there were some instances, where the results are inconclusive.
On such instances, it was observed that CPLEX could not even solve the linear
relaxation of the problem in the proposed time limit due to the great number of
variables and restrictions.

Through the analysis of occupation of the servers on each period, it was
possible to identify that some servers did not have disk space allocated during
some moments of the optimization horizon. This fact indicates that the use of the
CRRDP may determine that some servers can be disabled, reducing operational
cost even further without affecting quality of service and reliability.
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It was identified the possibility of including a cost for disk space allocation
in the model. A sensitivity analysis of such inclusion in the objective function
identified that optimizing content replication, request distribution and storage
capacity together become essential on scenarios where this cost is relevant.

The model used was able to solve two optimization problems jointly (SCAP
and RPRDP), obtaining success for most of the instances used. The model was
able to prove that the dynamic allocation of servers’ disk space was able to
indeed reduce the operational cost of a CDN without violating the required
quality standards.

As future work we intend to verify if some specialized techniques, such as cut
or column generation, can improve the solvability of the problem.
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Abstract. We propose a new exact method for bi-objective vehicle rout-
ing problems where edges are associated with two costs. The method gen-
erates the minimum complete Pareto front of the problem by combining
the scalarization of the objective function and the column generation
technique. The aggregated objective allows to apply the exact algorithm
for the mono-objective vehicle routing problem of Baldacci et al. (2008).
The algorithm is applied to a bi-objective VRP with time-windows. Com-
putational results are compared with a classical bi-objective technique.
The results show the pertinence of the new method, especially for clus-
tered instances.

Keywords: Combinatorial MOP · Vehicle routing problem
Exact method · Column generation

1 Introduction

This paper proposes a competitive method for solving to optimality a variant of
the vehicle routing problem (VRP) [1]: the bi-objective VRP (BOVRP) where
edges are associated with two costs. These objectives can be conflictive: in motor
vehicle, the travel time differs from the distance. In this case, solving to opti-
mality means finding the non-dominated set. Many industrials are interested in
finding a good compromise.

Multi-objective VRPs (MOVRPs) are more and more studied. A complete
survey of MOVRP can be found in Jozefowiez et al. [2]. In addition to the
minimization of travel distance, most MOVRPs aim to minimize the number of
vehicles or to maximize the fairness of routes.

In the larger scope of multi-objective integer programming (MOIP), exact
methods are divided into two classes: methods working on the feasible solution
space [3] and those working on the objective space [4]. These last methods solve
a sequence of mono-objective problems and so, rely on the efficiency of single-
objective integer programming solvers. The ε-constraint method is the most
c© Springer International Publishing AG, part of Springer Nature 2018
J. Lee et al. (Eds.): ISCO 2018, LNCS 10856, pp. 208–218, 2018.
https://doi.org/10.1007/978-3-319-96151-4_18
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commonly used objective space search algorithm [5–7] as its efficiency is verified.
The balanced box method of Boland et al. [8] shows significant improvements
for solution of MOIPs by exploring the decision space smartly. Recently, the
efficient method of Dai and Charkhgard [9] which combines the balanced box
method and the ε-constraint technique, has been applied to a 2-Dimensional
Knapsack Problem and to the bi-objective Assignment Problem.

Section 2 gives preliminaries about bi-objective optimization and an intro-
duction of an algorithm to solve the mono-objective VRP. It also defines a for-
mulation of the BOVRP. The branch-and-price method is presented in Sect. 3.
Then, Sect. 4 introduces a classical bi-objective technique and computationally
compares the two methods. Finally, Sect. 5 concludes about this new method.

2 Preliminaries

2.1 Problem Definition

Let G = (V,E) be a non-oriented graph. A node i ∈ V \v0 is called a customer
and has a demand qi. These demands are satisfied by a fleet of K vehicles of
capacity Q. A vehicle k starts and returns at a node v0 called the depot and
performs a route rk by passing through a set of customers. The route rk is said
to be feasible if the total capacity of a vehicle is not exceeded by the demands.

An edge e ∈ E of the graph has two costs c1e and c2e. Each route rk provides
two costs c1k and c2k representing the sum of the two costs on the used edges. The
aim of the studied BOVRP is to minimize the sum of each cost of the routes used.

Let Ω be the set of feasible routes rk and aik be equal to 1 if the customer i
belongs to the route rk. The Set Partitioning formulation of the BOVRPR [10]
is stated in the model (1).

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

minimize (
∑

rk∈Ω

c1kθk,
∑

rk∈Ω

c2kθk)
∑

rk∈Ω

aikθk ≥ 1 (vi ∈ V \{v0}),
∑

rk∈Ω

θk ≤ K,

θk ∈ {0, 1} (rk ∈ Ω).

(1)

where θk is a variable that indicates if the route rk ∈ Ω is selected in the solution
(θk = 1) or not (θk = 0).

2.2 Single Objective Algorithm for the VRP

The method presented in this paper works on the objective space and is based
on the exact algorithm for the single objective VRP of Baldacci et al. [11].

This state-of-the-art method considers the set partitioning formulation of
the VRP as a master problem MP . As this formulation contains an exponential
number of variables θk, rk ∈ Ω, MP needs to be solved optimally on a reduced
set of columns. This set is obtained with a three steps algorithm:
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1. Compute a good lower bound LB by column generation algorithm and a good
upper bound UB . Compute the gap γ = UB − LB .

2. Generate all routes with a reduced cost lower than γ. Indeed, it can be proven
that routes with a reduced cost higher than γ cannot be in the optimal integer
solution. Let Ω be this reduced set of routes.

3. Solve the initial integer problem on Ω to obtain the optimal (integer) solution.

The second step uses dynamic programming to generate the lower bounds on
reduced cost necessary to go from the depot to the node i with a load lower than
q in non-elementary paths. Then, it solves an elementary shortest path problem
with resource constraints (ESPPRC ) with a bi-directional labeling algorithm to
produce interesting paths. Finally, feasible routes are produced by combining
pairs of these paths.

As previously mentioned, this method will be used to solve the BOVRP. In
the following, we will refer to the second step by GENROUTE (UB ,LB) with
UB and LB the upper bound and the lower bound previously computed.

2.3 Multi-objective Optimization

The main purpose of this work is to obtain, in a-posteriori fashion, the minimum
complete Pareto front of the BOVRP. All concepts of multi-objective optimiza-
tion are detailed in [12], but an introduction is given in the following of the
paper.

Let denote Θ the set of combinations of θk, rk ∈ Ω, which lead to a feasible
solution. An element θ ∈ Θ is a binary vector of size card(Ω) with card(Ω)
the size of the set Ω indicating which routes are in the solution θ. For θ ∈
Θ, let F (θ) = (c1 (θ), c2 (θ)) = (

∑

rk∈Ω

c1
k θk ,

∑

rk∈Ω

c2
k θk ) be the function vector to

minimize. Y = F (Θ) represents the objective space and y = F (θ) ∈ Y a point in
the objective space. The following definitions are only valid for a minimization
problem and specify the output of the method.

Definition 1. (a, b) ∈ Θ2.

a is Pareto dominant with respect to b ⇔
{

fi(a) ≤ fi(b) ∀i ∈ {1, 2}
fi(a) < fi(b) ∃i ∈ {1, 2}

Definition 2. A solution a ∈ Θ is said to be an efficient (or a Pareto-optimal)
solution if � ∃b ∈ Θ, b �= a, such that b is Pareto dominant with respect to a.

Definition 3. A point y ∈ Y is said to be a non-dominated point if the solution
a ∈ Θ\F (a) = y is an efficient solution.

Definition 4. A non-dominated point y ∈ Y is said to be supported if it is
located on the boundary of the convex hull of Y. A non-dominated point y ∈ Y
is said to be non-supported if it is located on the interior of the convex hull of Y.
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A complete Pareto front is the set of all non-dominated points of the problem.
Furthermore, as the same point y ∈ Y can be associated with several different
solutions in Θ, the number of efficient solutions can be larger than the number of
non-dominated points. In this paper, the method provides the minimum Pareto
front that-is-to-say that only one efficient solution per non-dominated point is
provided.

To lighten the notation, we will refer to the costs of a point y ∈ Y associated
to a solution θ ∈ Θ, by c1(y) and c2(y) instead of the cost of the solution c1(θ)
and c2(θ).

3 Two-Step Method

3.1 Global Algorithm

The two-step method is an objective space search method, that is to say that
the algorithm determines areas in the objective space in which non-dominated
points could be present. Once the areas are delimited, the method scalarizes the
objectives to apply a single objective method to go through them. The scalar-
ization we use is a weighted-sum of the two objectives [13]. The set partitioning
formulation in this case is Model (2), where all notations are the same for the
formulation (1). It is called the master problem MPλ and its linear relaxation is
denoted LMPλ.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

minimize λ
∑

rk∈Ω

c1kθk + (1 − λ)
∑

rk∈Ω

c2kθk

∑

rk∈Ω

aikθk ≥ 1 (vi ∈ V \{v0}),
∑

rk∈Ω

θk ≤ K,

θk ∈ {0, 1} (rk ∈ Ω).

(2)

Let introduce the call of the second step of Baldacci et al. method for the
weight λ: GENROUTE (UB , LB , λ). In this algorithm, the gap γ is computed
with respect to λ: γ = λ(c1(UB) − c1(LB)) + (1 − λ)(c2(UB) − c2(LB)). We
also denote c(S)λ as the weighted cost of a point S for the weight λ such that
c(S)λ = λc1(S) + (1 − λ)c2(S).

The algorithm of the two-step method returns the set Θ of all non-dominated
points of the BOVRP and is described in Algorithm 1. It is decomposed in
two steps as the algorithm of Ulungu and Teghem [13]. First, the supported
points are computed thanks to the function findSupportedPoint described in
Sect. 3.2. Let S1 and S2 denote the optimal solutions that minimize the costs c1

and c2 respectively. The aim of the first step is to generate all routes that can
conduct to a non-dominated point in the triangle defined by S1, S2 and their
ideal point I = (c1(S1), c2(S2)). These set of routes are returned as Ωsupp. All
supported points are also returned as they are optimal solutions of MPλ, for
some λ [14]. Figure 1 represents a Pareto front with only supported points S1 to
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Fig. 1. Example front with supported points and their nadir points.

S5. S1 minimizes the first cost c1 (λ1 = 1) and S2 minimizes the second cost c2
(λ6 = 0). For instance, ∀λ ∈ [λ2;λ3], S3 is the optimal solution of MPλ.

Then, the non-supported points are found in areas not explored yet. These
areas are triangles defined by two consecutive supported points and their nadir
point N = (c1(S2), c2(S1)). The search in a triangle is performed by the function
findAllPoint detailed in Sect. 3.3.

The intermediate functions getOptimalSolution and gradient are used in the
global algorithm and are described in Algorithms 2 and 3 respectively. The first
one takes a direction λ in input and aims to return the optimal solution of
MPλ using the GENROUTE algorithm. The other gives the gradient of the line
between the two points it receives in input.

3.2 First Step

The first step is defined by the function findSupportedPoint(S1, S2, λsupp) in
Algorithm 4. It needs as input the non-dominated points S1 and S2 and a direc-
tion λsupp. It generates all routes that can conduct to a non-dominated point
situated below the line (S1S2).

To do so, we compute the optimal solution LBsupp of LMPλsupp
. Then, we

apply GENROUTE (UB = S1,LBsupp , λsupp) to have a reduced set of routes
Ωsupp. By taking the point S1 as upper bound and the direction λsupp, we ensure
that all non-dominated points situated below the line (S1 S2) is represented by
a combination of routes in Ωsupp.

Finally, we search all supported points in Ωsupp in a dichotomic approach
summarized in Algorithm 5.
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Algorithm 1. Two-step method
Input: A graph G representing the BOVRP
Output: A set Θ of all non-dominated points

1: Set Θ = ∅;
2: S1 ← getOptimalSolution(1); // S1 the optimal solution minimizing c1
3: S2 ← getOptimalSolution(0); // S2 the optimal solution minimizing c2
4: Θ = Θ ∪ {S1} ∪ {S2};
5: λsupp ← gradient(S1,S2);
6: (Θ,Ωsupp) ← findSupportedPoint(S1,S2,λsupp); // return all supported points and

a set of routes
7: Compute c(S1)λsupp = λsuppc1(S1) + (1 − λsupp)c2(S2);
8: for Si and Sj two consecutive points in Θ such that c1(Si) < c1(Sj) do
9: Θ ← findAllPoint(Si,Sj,c(S1)λsupp , λsupp,Ωsupp);

10: end for
11: return Θ

Algorithm 2. getOptimalSolution(λ)
Input: A value λ
Output: The optimal solution S of MPλ

1: Solve LMPλ to obtain a lower bound LB;
2: Solve MPλ to obtain an upper bound UB;
3: Ω ← GENROUTE(UB, LB, λ);
4: Solve MPλ on Ω to obtain the optimal solution S;
5: return S;

Algorithm 3. gradient(Si,Sj)
Input: Two points Si and Sj

Output: The gradient of (SiSj)

1: λ =
abs(c1(Sj)−c1(Si))

abs(c2(Si)−c1(Si)−c2(Sj)+c1(Sj))
;

2: return λ;

Algorithm 4. findSupportedPoint(S1,S2,λsupp)
Input: Points S1 and S2 and the direction λsupp

Output: Set Θsupp of supported points. Set of routes Ωsupp

1: Set Θsupp = ∅ and Ωsupp = ∅;
2: Solve LMPλsupp to obtain LBsupp;

3: Ωsupp ← GENROUTE(UB=S1,LBsupp,λsupp);
4: dichotomicSearch(Θsupp,S1,S2,Ωsupp);
5: return (Θsupp,Ωsupp);
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Algorithm 5. dichotomicSearch(Θsupp,Si,Sj ,Ωsupp)

Input: Set Θsupp. 2 points Si and Sj . Set of routes Ωsupp.

1: λi ← gradient(Si,Sj);
2: Solve MPλi on Ωsupp to obtain the optimal solution Sk;
3: if Sk �= Si and Sk �= Sj then
4: Θsupp = Θsupp ∪ {Sk};
5: if c1(Si) + 1 < c1(Sk) and c2(Si) − 1 > c2(Sk) then
6: dichotomicSearch(Θsupp,Si,Sk,Ωsupp);
7: end if
8: if c2(Sj) + 1 < c2(Sk) and c1(Sk) − 1 > c1(Sk) then
9: dichotomicSearch(Θsupp,Sk,Sj ,Ωsupp);

10: end if
11: end if

After the first step, all supported non-dominated points are already found.
It calls the algorithm GENROUTE only once and solves the integer problem
for each supported points. However, the set of routes Ωsupp contains important
information and has to be returned to be used in the second step.

3.3 Second Step

The second step aims to explore each upper right triangle defined by two consec-
utive non-dominated points computed in the first step and their nadir point. In
practice, input data are integers, therefore we substract one to each coordinate of
the nadir because non-dominated points having a same coordinate than the nadir
are weakly dominated. For instance, in Fig. 1, if a point is located on the segment
[N1S3] (resp. [S1N1]), it is strictly dominated by S3 (resp. S1). The search is
performed as explained in Algorithm 6. It requires in input two non-dominated
points Si and Sj such that c1(Si) < c1(Sj). First, a condition has to be checked:
if the nadir N = (c1(Sj)−1, c2(Si)−1) is such that c(N)λsupp

≤ c(S1)λsupp
, then

directly apply the function findInTriangle to search on the set of known routes
Ωsupp. Indeed, if c(N)λ1 ≤ c(S1)λ1 , we already have generated all routes that
can conduct to a non-dominated point in this triangle in the first step. Other-
wise, some routes has to be generated before applying findInTriangle because
the nadir point is upside the line (S1S2).

Figure 1 represents a partial front obtained after the first step. The second
step explores the triangles defined by two consecutive points S and their nadir
N like S3S4N2 or S4S5N3. We already have generated in the first phase all
routes that can conduct to a non-dominated point below the dotted line passing
through S1 and S2. So, all interesting routes for non-dominated points in S3S4N2

are already generated because the nadir N2 is under this line. The condition
c(N2)λsupp

≤ c(S1)λsupp
is satisfied. On the contrary, we don’t have all the routes

that can conduct to a non-dominated point in S4S5N3 as the dotted line passing
through N3 is above the dotted line passing through S1 and S2. So, we have the
condition c(N3)λsupp

> c(S1)λsupp
.
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Algorithm 6. findAllPoint(Si,Sj ,c(S1)λsupp
,λsupp,Ωsupp)

Input: Points Si and Sj . The cost c(S1)λsupp , the direction λsupp and set Ωsupp of the
first step
Output: The set Θnd of non-dominated points

Set N = (c1(Sj) − 1, c2(Si) − 1); Set Θnd = ∅
if c(N)λsupp ≤ c(S1)λsupp then

findInTriangle(Θnd,Si,Sj,Ωsupp);
else

λi ← Gradient(Si,Sj);
Solve LMPλi to obtain LBi ;
Ωi ← GENROUTE(N ,LBi ,λi);
findInTriangle(Θnd,Si,Sj,Ωi)

end if
return Θnd;

The algorithm findInTriangle(Θnd, Si, Sj , Ω) is similar to DichotomicSearch.
It works on the computed set Ω given in input and requires two non-dominated
points Si and Sj and their gradient λi. It solves the integer problem MPλi

on
Ω with two additional constraints:

∑

rk∈Ω

c1kθk ≤ c1(N) and
∑

rk∈Ω

c2kθk ≤ c2(N). If

there is no optimal solution, it means that there is no non-dominated points in
the area and the function stops. Otherwise, if there is an optimal solution Sk,
Sk is added to Θnd and the function findInTriangle is called again for (Si, Sk)
and (Sk, Sj).

4 Computational Experiments

To compare proposed the two-step method to the state-of-the-art, we have imple-
mented a reference method. It is the more direct way to use the Baldacci et al.
method in an ε-constraint technique as it is classically done in the literature. The
algorithm, summarized in Algorithm7, is based on the ε-constraint formulation
that aims to minimize the first cost c1 under the constraint that the second cost
has to be lower than a certain value ε.

At the beginning, ε is set to +∞. At each iteration, the reference method con-
sists in finding a lower bound LB and an upper bound UB. Then, it applies the
mono-objective algorithm GENROUTE (UB ,LB) to obtain Ω, the restricted set
of routes with (i) their reduced cost within the gap γ = UB − LB and (ii) below
the constraints that the second cost is lower than ε. The algorithm optimally solves
the integer problem restricted to Ω. If a new integer solution is found, ε is set to the
value of the second objective of the solution minus one and the process is repeated.
If no new optimal solution is found, the algorithm stops.
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Algorithm 7. Algorithm of the reference method
ε ← +∞
while ∃ a solution do

Solve the linear relaxation of the problem for ε to obtain LB
Find a feasible solution UB of the integer problem for ε
Ω ← GENROUTE(UB ,LB)
Solve the integer problem on Ω to obtain SOPT

if ∃SOPT then
Set ε ← SOPT

2 − 1
end if

end while

Results. To the best of our knowledge, there is no benchmark for multi-
objective vehicle routing problems with different costs on edges. Therefore we
propose new instances for the BOVRP with time windows (BOVRPTW ) which
minimizes two different route costs. Each instance is a combination of two
Solomon’s instances. The first instance provides the first edge costs, the time
windows, the charges and the capacities. The second instance only provides the
second edge costs. We have tested the algorithm on 20 instances of 25 customers
and 20 instances of 50 customers, which correspond to the 25 and 50 first cus-
tomers of Solomon’s instances. Each method returns the minimum complete
Pareto Front of the BOVRPTW.

The experiments have been conducted on a Xeon E5-2695 processor with a
2.30 GHz CPU and 3.5Go in a single thread. The implementation is in C++ and
the linear problems and the integer problems are solved with Gurobi 7.1. The
time limit for all experiments is 6 hours. Results are reported in Table 1 for the
27 instances for which at least one of the method tested converged.

Table 1 presents the features of the instances like the number of customers, if
it is a clustered instance or not, the number of strict non-dominated points and
the number of non-supported non-dominated points in the final Pareto front.
It also shows the mean CPU time in seconds on 10 executions as well as their
standard deviations for each method. We can notice that the reference method
dominates the two-step method on instances easily solved - inferior to 49 s for
the two methods. On the contrary, the two-step method dominates the other on
harder instances. Furthermore, the instances noted 9, 21, 22 and 23 of 25 cus-
tomers are only solved by the two-step method. 3 of them are clustered instances
with very few non-dominated points in the final exact Pareto front. It suggests
that the two-step method outperforms the state-of-the-art method for graphs
with clustered structure.

Table 1 also exhibits the execution time in seconds for the methods in graphs
with 50 customers (instances from 24 to 30). The number of non-dominated
points is, as expected, larger than for the graphs with 25 clients. The execution
of the algorithms is more time consuming and only converges for 2 instances in
the reference method and for 7 in the two-step methods over 20 tested instances.
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5 Conclusion

In this paper, we proposed an exact method to solve the bi-objective vehi-
cle routing problem: the two-step method. It scalarizes the objective function
and uses column generation to find all non-dominated points, supported and
non-supported points. The method is also generic for all classes of BOVRP as
it doesn’t exploit any specific property. To show the efficiency of the scheme
proposed we have implemented the ε-constraint method combined with the
GENROUTE component. Computational experiments showed that the two-step
method outperforms this reference method, especially for clustered graphs.
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7. Özlen, M., Azizoğlu, M.: Multi-objective integer programming: a general approach
for generating all non-dominated solutions. Eur. J. Oper. Res. 199(1), 25–35 (2009)

8. Boland, N., Charkhgard, H., Savelsbergh, M.: A criterion space search algorithm for
biobjective integer programming: the balanced box method. INFORMS J. Comput.
27(4), 735–754 (2015)

9. Dai, R., Charkhgard, H.: A two-stage approach for bi-objective integer linear pro-
gramming. Oper. Res. Lett. 46(1), 81–87 (2018)

10. Balinski, M.L., Quandt, R.E.: On an integer program for a delivery problem. Oper.
Res. 12(2), 300–304 (1964)

11. Baldacci, R., Christofides, N., Mingozzi, A.: An exact algorithm for the vehicle
routing problem based on the set partitioning formulation with additional cuts.
Math. Program. 115(2), 351–385 (2008)

12. Ehrgott, M.: Multicriteria Optimization, vol. 491. Springer Science & Business
Media, Heidelberg (2005)

13. Ulungu, E., Teghem, J.: The two phases method: an efficient procedure to solve bi-
objective combinatorial optimization problems. Found. Comput. Dec. Sci. 20(2),
149–165 (1995)

14. Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math.
Anal. Appl. 22(3), 618–630 (1968)

https://doi.org/10.1007/978-3-319-07557-0_14
https://doi.org/10.1007/978-3-319-07557-0_14


Multi-start Local Search Procedure
for the Maximum Fire Risk Insured

Capital Problem

Maria Isabel Gomes1(B), Lourdes B. Afonso1, Nelson Chibeles-Martins1,
and Joana M. Fradinho2

1 Centre of Mathematics and Applications, Faculty of Science and Technology,
Nova University of Lisbon, Caparica, Portugal

mirg@fct.unl.pt
2 Department of Mathematics, Faculty of Science and Technology,

Nova University of Lisbon, Caparica, Portugal

Abstract. A recently European Commission regulation requires insur-
ance companies to determine the maximum value of insured fire risk
policies of all buildings that are partly or fully located within circle of
a radius of 200 m. In this work, we present the multi-start local search
meta-heuristics that has been developed to solve the real case of an
insurance company having more than 400 thousand insured buildings in
mainland Portugal. A random sample of the data set was used and the
solutions of the meta-heuristic were compared with the optimal solution
of a MILP model based on the Maximal Covering Location Problem.
The results show the proposed approach to be very efficient and effective
in solving the problem.

Keywords: Meta-heuristics · Local search · Solvency II
Continuous location problem

1 Introduction

Recently the European Union (EU) has published a new legistative programme -
Solvency II - aiming at the harmonization of insurance industry across the
European market and defining a policyholders protection framework that is
risk-sensitive [1]. Among other aspects Solvency II comprises risk-based capital
requirements that need to be allocate in order to ensure the financial stability
of insurance companies with assets and liabilities valued on a market consistent
basis. More precisely the Solvency Capital Requirement (SRC) should reflect a
level of eligible own funds that enables the insurance undertakings to absorb
significant losses without compromising the fulfilling of its obligations. As a
risk-sensitive and prudential regime, Solvency II wants to take into account all
possible outcomes, including events of major magnitude. Therefore, the capi-
tal requirement for catastrophe risk should assess all possible catastrophes, as
c© Springer International Publishing AG, part of Springer Nature 2018
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natural catastrophes and man-made catastrophes, and establish how these risks
should be quantified to integrate the whole.

In this work we will focus on the man-made catastrophe risk which com-
prises extreme events directly accountable to men (as motor vehicle liability
risk; marine risk; aviation risk; fire risk; liability risk; credit and suretyship
risk). Specifically we will address the capital requirement for fire risk (as fire,
explosion and acts of terrorism) that should “(...) be equal to the loss in basic
own funds of insurance and reinsurance undertakings that would result from an
instantaneous loss of an amount that (...) is equal to the sum insured by the
insurance or reinsurance undertaking with respect to the largest fire risk con-
centration”. The fire risk assumes 100% damage on the total sum of the capital
insured for each building located partly or fully within a 200 m radius [2,3].
Until now, and to best of our knowledge, the choice of 200 m as the radius for
the concentration was based on statistics and expert judgment.

This problem can be stated as: “find the centre coordinates of a circle with
a fixed radius that maximizes the coverage of total fire risk insured”. This prob-
lem can be viewed as a particular instance of the Maximal Covering Location
Problem (MCLP) with fixed radius [4]. Church and Revelle, in 1974, were the
first authors to address the MCLP under the assumption that both demand and
possible site locations are discrete points [5]. Mehrez extended this seminal work
by proposing a zero-one integer linear formulation considering as possible site
locations the entire plan [6]. A widely used approach to the continuous space
optimization has been to discretize the demand region, transforming the prob-
lem into a discrete location model [7]. Under the assumption that demand point
is either covered or not by the facility, it has been proven that a discrete and
finite set contains an optimal coverage solution [5].

This work has been motivated by the real case of an insurance company that,
having more than 400 thousand buildings in Portugal covered by a fire insurance
policy, needs to determine the maximum accumulated risk within a circle with
200 m radius. Each building can be viewed as a “demand point” of the MCLP.
Such a number of points leads to “enormous” MILP model which only “super”
computers might be able to cope with. Although few meta-heuristic approaches
already have been proposed to solve the MCLP, to the best of our knowledge, non
of them fits our problem. For instance, Bruno et al. have developed a agent-based
framework that could suit this problem. However no computational experiments
were performed to access the scalability of the proposed framework to large
problem instances [8]. Maximo et al. developed a meta-heuristic, named by the
authors Intelligent-Guided Adaptive Search, to deal with large-scale instances
where both demand points and possible site locations are discrete points [9]. The
assumption of having discrete possible site locations may lead to non-optimal
solutions, in our problem context.

An algorithm had to be designed so that the insurance company could use it
at least once a year. Therefore, we have developed a meta-heuristic - the Fire
Risk Meta-heuristic - inspired by the pattern search method proposed by
Custódio and Vicente [10] that can be run in an ordinary desktop computer.
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This paper will develop as follows. In the next section the meta-heuristic will
be described in detail. Then test results will be reported to assess the quality of
the proposed approach. Lastly, some conclusions and future work are given.

2 Fire Risk Meta-Heuristic

The Fire Risk Meta-heuristic is a multi-start local search procedure where
intensification and exploration strategies have been defined. In a nutshell, this
procedure can be stated as: given an initial coordinate point (randomly selected)
for the circle centre, determine the total fire risk within a k meters radius;
generate and evaluate four neighbourhood points by increasing/decreasing each
coordinate by a Δ value; make the best neighbourhood point as the new center.

Initial Solution: (x0, y0) is randomly selected from the search space where
the maximal risk is to be determined.

Objective Function: For a given solution s, the objective function value f(s)
is the fire risk covered by the circle with centre in s and radius k.

Neighbourhood Structure: At iteration i and considering a given Δi value,
compute four new centre coordinates as shown in Fig. 1.

The step size Δi varies according to the quality of the neighbour solutions.

Fig. 1. Neighbourhood structure of a given point (xi, yi) [11]

Stopping Rules: Two stopping rules have been defined: one for the local search
procedure and one for the multi-start algorithm. For the local search procedure
one assumes as stopping criteria a small value for Δi, Δmin. The meta-heuristic
stopping criteria has two components: minimum number of iterations, imin, and
maximum fire risk of a single building, Best. The imin is set empirically so that
an adequate exploration of the search space is performed. The second component
assures that the optimal circle must have a total fire risk (the objective function
value) greater than the largest fire risk associated to a single building.

Algorithm Description: Algorithm 1 presents the pseudo-code of the Fire Risk
Meta-heuristic. Parameters initialization is performed in lines 1 to 5. The local
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search procedure is presented between in lines 11 to 26. Given an initial solution
si and the step size Δi, a set of four neighbourhood solutions are generated
(line 12). The best of the four (in term of the objective function value) is
compared with the value of si. If the best neighbourhood has a better value
(a success), the current solution moves to neighbouring solution (lines 14 and
15). When the algorithm produces two consecutive successes, the step size is
increased; the new step size doubles the previous one (lines 16 and 17). With
a larger step size, we aim at broadening the search procedure in ”promising”
areas of the search space. If none of the four neighbours presents better val-
ues (line 21) the current solution does not change and the step size decreases -
the idea is to intensify the search near the current solution, since it might be
a local optimum (lines 22 and 23). The local search procedure stops when the
step size is small enough (line 26) and the most promising solution found at the
moment is update (or not) - line 27. This local search algorithm is embedded
in the multi-start procedure. In the restart step, the random initial solution of
iteration i (si) is generated and the step size is reset to Δ0 (lines 7 to 10). The
multi-start algorithm ends when both stopping criteria are met.

3 Results

In order to assess the Fire Risk Meta-heuristic solution, the MILP formulation
for the maximal covering location problem (MCLP) was adapted from Farahani
et al. [12], formulated in GAMS, and solved by CPLEX to optimality [13]. The
formulation is given in Appendix. Being a discrete approach, it provides a lower
bound to our problem, since the circle centre as to match one of the buildings.

The Fire Risk Meta-heuristic was programmed in R software, a requisite of
the insurance company. The ggplot2 and ggmap were the packages chosen to
plot all the maps using Google Maps information. All the results were obtained
by a PC with Intel R© Xeon 10 cores and 32 GB of RAM.

Data
Given the volume of data for a national study and being this work a first step
towards the development of an optimization approach, we confined the study to
the Lisbon area. The Insurance Company provided a data set which encompasses
the chosen geographical area and has 46 843 buildings (points). Each points is
defined by the two geographical coordinates (longitude and latitude) and the fire
capital insured.

The MILP model is unable to solve real instance with 46 thousand points
since it leads to out of memory issues. Our approach was then to select two
random samples of tractable size (1000 points): samples A and B. Figure 2 shows
the distribution of the insured capitals over the samples areas. Notice that no
extreme point exists on sample A (by extreme we mean a building with an
insured capital so large that it will obviously belong the optimal circle), while
in sample B there are a few of such points. Figure 3 depicts the geographical
location of the sample A.
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Algorithm 1. Fire Risk Meta-heuristic
1: Best Find maximum risk of a single building
2: Δ0 Set step size
3: s0 Generate initial solution
4: s∗ = s0
5: i = 0 Iteration counter
6: While i < imin ∨ f(s∗) < Best do
7: If i > 0 then
8: si Generate iteration i initial solution
9: Δi = Δ0 Set step size

10: EndIf
11: Do
12: N (si) Generation of candidate neighbours
13: s′ Set the best neighbour s′ ∈ N (si)
14: If f(s′) > f(si) is a better neighbour (success) then
15: si+1 = s′

16: If this is the second consecutive success then
17: Δi+1 = 2 · Δi

18: else
19: Δi+1 = Δi

20: EndIf
21: else (unsuccess)
22: si+1 = si

23: Δi+1 =
Δi

2
24: EndIf
25: i = i + 1
26: Until Δi−1 < Δmin

27: If f(si) > f(s∗) then s∗ = si
28: EndWhile
29: Return s∗, f(s∗)

Fig. 2. Distribution of the 1000 insured capitals for samples A (left) and B (right)

In terms of descriptive statistics both samples also present differences. Table 1
shows the maximum and minimum fire insured capital, the amplitude, the aver-
age and standard deviation within each sample. With these two sets of points,
we aimed at assessing the capability of the algorithm for overcoming the trap of
local optimality.
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Fig. 3. Geographical location of the 1000 points

Table 1. Samples descriptive statistics (e)

Sample Maximum Minimum Amplitude Average Stand. dev.

A 14490,6 239,2 14251,4 10342,7 2785,9

B 5112903,0 5833,9 5107069,1 123052,0 335729,9

Meta-heuristic validation
The Risk Fire Meta-heuristic parameters were set to Δ0 = 200 · 27 = 25 600 m,
Δmin = 50 m and imin = 50 000 iterations. For each sample 20 runs were per-
formed. All starting point coordinates were randomly chosen while assuring an
adequate covering the search space. The results are presented in Table 2 together
with the optimal values found by GAMS/CPLEX. The columns “no. of build-
ings” show how many builds lie within the circle corresponding to the “Optimal
value” (or “Best value”). The last column presents the average number of iter-
ations needed to find the “Best value”.

For sample A, the optimal fire risk found by GMAS/CPLEX is of e 28 857.46
and two buildings are covered. The algorithm was able to find a better value for
the covered fire risk (e 33 323, 56 vs. e 28 857, 46). In fact, the meta-heuristic
only found two different values (not shown): the best value was found in 19 out
of the 20 runs, and in one single run the same value as the one proposed by
GAMS/CPLEX was found. As mentioned above, the MILP model assumes that
the circle centre as being one of the building, while the meta-heuristic allows it to
be placed in any point of the plane. The highest fire risk value improves in 15%
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Table 2. Results (e)

GAMS/CPLEX Fire-risk Meta-heuristic

Sample Optimal value No. of
buildings

Best value No. of
buildings

Average no. of
iterations

A 28857,46 2 33233,56 3 2785,9

B 5112903,0 1 5112903,0 1 30431

the optimal value found by the MILP model. Figure 4 shows the two buildings
covered of the MILP optimal solution (on the left). On the right side of Fig. 4,
one depicts the three building covered by the 19 runs that provided the best risk
value. Lastly, we should refer that the meta-heuristic took on average 54 s per
run and GMAS/CPLEX needed about 0.03 s to reach the optimal solution.

Fig. 4. Sample A: optimal solution from the MILP model (left) and meta-heuristic
best solution (right)

Regarding sample B, one should emphasise that the optimal value was found
by the meta-heuristic in all the 20 runs performed. These results suggest the
proposed algorithm is able to escape from local optima. Additional tests are
nonetheless needed to support this suggestion.

4 Final Remarks and Future Work

In this work we proposed a new meta-heuristic approach to determine the coor-
dinates of a k radius circle that covers the maximum fire risk according to the EU
legislative programme Solvency II. Until last year, insurance companies reported
only the largest capital that covers one single insured building. The new legisla-
tive programme demands companies to solve a much harder problem, which can
only be done using computational tools.
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In the two tested samples, the Risk Fire Meta-heuristic found optimal value
or even a better value than the best one computed by a MILP model. Notice, this
MILP model provides a lower-bound for the problem since it is a discrete based
model and, therefore, not allowing the circle centre coordinates to be defined
outside the existing set of points.

The meta-heuristic has been applied to a data set of more than 46 thousand
points [14] and it is currently being used by the insurance company.

As future work we will pursue three main directions. First, we will extended
the computational experiments and assess the meta-heuristic solution quality
with regard to the optimal solution provided by 01 integer formulation proposed
by Mehrez, in 1983 [6]. Second, additional computational experiments will be
performed so that statistical tests can be used to validate the usefulness of this
method. Third, the computational performance of the algorithm will also be
investigated to overcome the long times it is currently taking.
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FCT-UNL for the computational support. This work was partially supported by the
Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Tech-
nology) through the project UID/MAT/00297/2013(CMA).

Appendix

Let (ai, bi) be the longitude and latitude coordinates of building i, i = 1, ..., n, Ri

be the risk associated with building i, and Dij the Euclidean distance between
buildings i and j, and consider the set

Δij = {(i, j) : Dij ≤ 2k + ε},

with ε > 0 and k the circle radius.
Let two binary variables be defined as: xij = 1 if building i is covered by the

circle centred at j, 0 otherwise; and yj = 1 if j is the centre of the circle.

max
∑

ij∈Δij

Rijxij

s.t. Dijxij ≤ kyi (i, j) ∈ Δij

n∑

i:=1

yi = 1

xii ≤ yi i ∈ {1, ..., n}
xij , yi ∈ {0, 1}

The objective function is defined by the sum of the fire risks insured of
the buildings covered by the circle. The first constraint assures that only the
buildings distancing less that k from the circle centre yj will be considered. The
second constraint assures that only one circle is determined. The last constraint
is needed since one has a maximization model. Notice that Dii = 0, i = 1, ..., n.
Therefore, all xii = 1 will verify the first constraint, whatever the value of yi.
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Abstract. This paper deals with the cyclic job shop problem where
the task durations are uncertain and belong to a polyhedral uncertainty
set. We formulate the cyclic job shop problem as a two-stage robust
optimization model. The cycle time and the execution order of tasks
executed on the same machines correspond to the here-and-now decisions
and have to be decided before the realization of the uncertainty. The
starting times of tasks corresponding to the wait-and-see decisions are
delayed and can be adjusted after the uncertain parameters are known.
In the last decades, different solution approaches have been developed
for two-stage robust optimization problems. Among them, the use of
affine policies, column generation algorithms, row and row-and-column
generation algorithms. In this paper, we propose a Branch-and-Bound
algorithm to tackle the robust cyclic job shop problem with cycle time
minimization. The algorithm uses, at each node of the search tree, a
robust version of the Howard’s algorithm to derive a lower bound on the
optimal cycle time. We also develop a heuristic method that permits to
compute an initial upper bound for the cycle time. Finally, encouraging
preliminary results on numerical experiments performed on randomly
generated instances are presented.

Keywords: Cyclic job shop problem · Robust optimization
Branch-and-Bound algorithm

1 Introduction

Most models for scheduling problems assume deterministic parameters. In con-
trast, real world scheduling problems are often subject to many sources of uncer-
tainty. For instance, activity durations can decrease or increase, machines can
break down, new activities can be incorporated, etc. In this paper, we focus on
scheduling problems that are cyclic and where activity durations are affected by
uncertainty. Indeed, the best solution for a deterministic problem can quickly
become the worst one in the presence of uncertainties.

In this work, we focus on the Cyclic Job Shop Problem (CJSP) where process-
ing times are affected by uncertainty. Several studies have been conducted on the
c© Springer International Publishing AG, part of Springer Nature 2018
J. Lee et al. (Eds.): ISCO 2018, LNCS 10856, pp. 228–240, 2018.
https://doi.org/10.1007/978-3-319-96151-4_20
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CJSP in its deterministic setting. The CJSP with identical jobs is studied in [1]
and the author shows that the problem is NP-hard and proposes a Branch-and-
Bound algorithm to solve the problem. The more general CJSP is investigated in
[2], where the author proposes a mixed linear integer programming formulation
and presents a Branch-and-Bound procedure to tackle the problem. A general
framework for modeling and solving cyclic scheduling problems is presented in
[3]. The authors present different models for cyclic versions of CJSP. However,
a few works consider cyclic scheduling problems under uncertainty. The cyclic
hoist scheduling problem with processing time window constraints where the
hoist transportation times are uncertain has been investigated by Che et al. [4].
The authors define a robustness measure for cyclic hoist schedule and present a
bi-objective mixed integer linear programming model to optimize both the cycle
time and the robustness.

Two general frameworks have been introduced to tackle optimization prob-
lems under uncertainty. These frameworks are Stochastic Programming (SP) and
Robust Optimization (RO). The main difference between the two approaches
is that the Stochastic Programming requires the probability description of the
uncertain parameters while RO does not. In this paper, we focus on the RO
paradigm. More precisely, we model the robust CJSP as a two-stage RO problem.
The cycle time and the execution order of tasks on the machines correspond-
ing to the here-and-now decisions have to be decided before the realization of
the uncertainty, while the starting times of tasks corresponding to the wait-and
see decisions are delayed and can be adjusted after the uncertain parameters
are known. In recent years there has been a growing interest in the two-stage
RO and in the multi-stage RO in general. The two-stage RO is introduced in
[5], referred to as adjustable optimization, to address the over-conservatism of
single stage RO models. Unfortunately, the two-stage RO problems tend to be
intractable [5]. In order to deal with this issue, the use of affine policies ([5]) and
decomposition algorithms ([6–8]) have been proposed.

This paper deals with the CJSP where the task durations are uncertain and
belong to a polyhedral uncertainty set. The objective is to find a minimum cycle
time and an execution order of tasks executed on the same machines such that
a schedule exists for each possible scenario in the uncertainty set. To tackle the
problem we design a Branch-and-Bound algorithm. More precisely, at each node
of the search tree, we solve a robust Basic Cyclic Scheduling Problem (BCSP),
which corresponds to the CJSP without resource constraints, using a robust
version of Howard’s algorithm to get a lower bound. We also propose a heuristic
algorithm to find an initial upper bound on the cycle time. Finally, we provide
results on numerical experiments performed on randomly generated instances.

This paper is structured as follows. In Sect. 2, we present both the Basic
Cyclic Scheduling Problem and the Cyclic Job Shop Problem in their determin-
istic case and introduce the polyhedral uncertainty set considered in this study.
Section 3 describes a Branch-and-Bound (B&B) procedure to solve the robust
CJSP. Numerical experiments performed on randomly generated instances are
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reported and discussed in Sect. 4. Finally, some concluding remarks and perspec-
tives are drawn in Sect. 5.

2 The Cyclic Scheduling Problems

In this section, we first introduce the Basic Cyclic Scheduling Problem which
corresponds to the CJSP without resource constraints. This problem will rep-
resent a basis for the Branch-and-Bound method designed for the robust CJSP
solving. Next, we present the CJSP in its deterministic case. Finally, we present
the uncertainty set that we consider in this paper and we formulate the CJSP
with uncertain processing times as a two-stage robust optimization problem.

2.1 Basic Cyclic Scheduling Problem (BCSP)

Let T = {1, ..., n} be a set of n generic operations. Each operation i ∈ T has a
processing time pi and must be performed infinitely often. We denote by < i, k >
The kth occurrence of the operation i and by t(i, k) the starting time of < i, k >.

The operations are linked by a set P of precedence constraints (uniform con-
straints) given by

t(i, k) + pi � t(j, k + Hij), ∀(i, j) ∈ P, ∀k ≥ 1, (1)

where i and j are two generic tasks and Hij is an integer representing the depth
of recurrence, usually referred to as height.

Furthermore, two successive occurrences of the same task i are not allowed
to overlap. This constraint corresponds to the non-reentrance constraint and can
be modeled as a uniform constraint with a height Hii = 1.

A schedule S is an assignment of starting time t(i, k) for each occurrence
< i, k > of tasks i ∈ T such that the precedence constraints are met. A schedule
S is called periodic with cycle time α if it satisfies

t(i, k) = t(i, 0) + αk, ∀i ∈ T , ∀k ≥ 1. (2)

For the sake of simplicity, we denote by ti the starting time of the occurrence
< i, 0 >. Since the schedule is periodic, a schedule can be completely defined by
the vector of the starting times (ti)i∈T and the cycle time α.

The objective of the BCSP is to find a schedule that minimizes the cycle time
α while satisfying precedence constraints. Note that other objective functions can
be considered, such as work-in-process minimization [2].

A directed graph G = (T ,P), called uniform graph, can be associated with a
BCSP such that each node v ∈ T (resp. arc (i, j) ∈ P) corresponds to a generic
task (resp. uniform constraint) in the BCSP. Each arc (i, j) ∈ P is labeled with
two values, a length Lij = pi and a height Hij .

We denote by L(c) (resp. H(c)) the length (resp. height) of a circuit c in
graph G, representing the sum of lengths (resp. heights) of the arcs composing
the circuit c.

Let us recall the necessary and sufficient condition for the existence of a
feasible schedule.
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Theorem 1 (Hanen C. [2]). There exists a feasible schedule if and only if
any circuit of G has a positive height.

A graph that satisfies the condition of Theorem 1 is called consistent. In the
following, we assume that the graph G is always consistent. In other words, a
feasible schedule always exists.

The minimum cycle time is given by the maximum circuit ratio of the graph
G that is defined by

α = max
c∈C

L(c)
H(c)

where C is the set of all circuits in G. The circuit c with the maximum circuit
ratio is called a critical circuit. Thus, the identification of the critical circuit in
graph G allows one to compute the minimum cycle time.

Many algorithms for the computation of the cycle time and the critical circuit
can be found in the literature. A binary search algorithm with time complex-
ity O(nm

(
log(n) + log(max(i,j)∈E(Lij ,Hij))

)
) has been proposed in [9]. Exper-

imental study about maximum circuit ratio algorithms has been presented in
[10]. This study shows that the Howard’s algorithm is the most efficient among
the tested algorithms.

Once the optimal cycle time α is determined by one of the algorithms cited
above, the optimal periodic schedule can obtained by computing the longest
path in the graph G = (T ,P) where each arc (i, j) ∈ P is weighted by pi −αHij .

The BCSP can also be solved by using the following linear program:

min α (3)
s.t. tj − ti + αHij ≥ pi ∀(i, j) ∈ P (4)

where ti represents t(i, 0), i.e., the starting time of the first occurrence of the
task i. Note that the precedence constraints (4) are obtained by replacing in (1)
the expression of t(i, k) given in (2).

2.2 Cyclic Job Shop Problem (CJSP)

In the present work, we focus on the cyclic job shop problem (CJSP). Contrary
to the BCSP, in the CJSP, the number of machines is lower than the number
of tasks. As a result, an execution order of the operations executed on the same
machine have to be determined.

Each occurrence of an operation i ∈ T = {1, ..., n} has to be executed,
without preemption, on the machine M(i) ∈ M = {1, ...,m}. Operations are
grouped on a set of jobs J , where a job j ∈ J represents a sequence of generic
operations that must be executed in a given order. To avoid overlapping between
the tasks executed on the same machine, for each pair of operations i and j where
M(i) = M(j), the following disjunctive constraint holds

∀ i, j s.t. M(i) = M(j), ∀k, l ∈ N : t(i, k) ≤ t(j, l) ⇒ t(i, k) + pi ≤ t(j, l) (5)
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To summarize, the CJSP is defined by

• a set T = {1, ..., n} of n generic tasks,
• a set M = {1, ...,m} of m machines,
• each task i ∈ T has a processing time pi and has to be executed on the

machine M(i) ∈ M,
• a set P of precedence constraints,
• a set D of disjunctive constraints that occur when two tasks are mapped on

the same machine,
• a set J of jobs corresponding to a sequence of elementary tasks. More pre-

cisely, a job Jj defines a sequence Jj = Oj,1 . . . Oj,k of operations that have
to be executed in that order.

The CJSP can be represented by directed graph G = (T ,P ∪ D), called
disjunctive graph. The sequence of operations that belong to the same job are
linked by uniform arcs in P where the heights are equal to 0. Additionally, for
each pair of operations i and j executed on the same machine, a disjunctive pair
of arcs (i, j) and (j, i) occurs. These arcs are labeled respectively with Lij = pi

and Hij = Kij , and Lji = pj and Hji = Kji where Kij is an occurrence shift
variable to determine that satisfy Kij +Kji = 1 (see [2] for further details). Note
that the Kij variables are integer variables and not binary variables as is the
case for the non-cyclic job shop problem. Two dummy nodes s and e representing
respectively the start and the end of the execution are added to the graph. An
additional arc (e,s) with Les = 0 and Hij = WIP is considered. The WIP
parameter is an integer, called a work-in-process, and represents the number of
occurrences of a job concurrently executed in the system.

A lower bound on each occurrence shift value Kij that makes the graph G
consistent can be obtained as follows (see [2,11]):

K−
ij = 1 − min{H(μ) |μ is a path from j to i in G = (T ,P ∪ ∅)}. (6)

Since Kij + Kji = 1, one can deduce an upper bound:

K−
ij ≤ Kij ≤ 1 − K−

ji . (7)

The objective of the problem is to find an assignment of all the occur-
rence shifts, in other words, determining an order on the execution of opera-
tions mapped to the same machine such that the cycle time is minimum. Note
that, once the occurrence shifts are determined, the minimum cycle time can be
obtained by computing the critical circuit of the associated graph G.

2.3 CJSP Problem with Uncertain Processing Times (UΓ -CJSP)

We define the uncertainty set through the budget of uncertainty concept intro-
duced in [12]. The processing times (pi)i∈T are uncertain and each processing
time pi belongs to the interval [p̄i, p̄i + p̂i], where p̄i is the nominal value and p̂i

the deviation of the processing time pi from its nominal value. We associate a
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binary variable ξi to each operation i ∈ T . The variable ξi is equal to 1 if the
processing time of the operation i takes its worst-case value, 0 otherwise. For a
given budget of uncertainty Γ , that is a positive integer representing the max-
imum number of tasks allowed to take their worst-case values, the processing
time deviations can be modeled trough the following uncertainty set:

UΓ =

{

(pi)i∈T ∈ R
n : pi = p̄i + p̂iξi, ∀ i ∈ T ; ξi ∈ {0, 1};

∑

i∈T
ξi ≤ Γ

}

.

The BCSP problem under the uncertainty set UΓ is studied in [13]. Three
exact algorithms are proposed to solve the problem. Two of them use a nega-
tive circuit detection algorithm as a subroutine and the last one is a Howard’s
algorithm adaptation. Results of numerical experiments show that the Howard
algorithm adaptation yields efficient results.

The problem we want to solve in this study can be casted as follows:

min α (8)

s.t. ∀ p ∈ UΓ : ∃ t ≥ 0

{
tj − ti + αHij ≥ pi ∀ (i, j) ∈ P
tj − ti + αKij ≥ pi ∀ (i, j) ∈ D

(9)

Kij + Kji = 1 ∀ (i, j) ∈ D (10)
K−

ij ≤ Kij ≤ 1 − K−
ji ∀ (i, j) ∈ D (11)

Kij ∈ Z ∀ (i, j) ∈ D (12)
α ≥ 0 (13)

In other words, we aim to find a cycle α and occurrence shifts (Kij)(i,j)∈D such
that, for each possible value of the processing times p ∈ UΓ , there always exists
a feasible vector of starting time (ti)i∈T .

Note that, once the occurrence shifts are fixed, the problem can be solved as
a robust BCSP by using the algorithms described in [13]. The following theorem
characterizes the value of the optimal cycle time for UΓ -CJSP:

Theorem 2 ([13]). The optimal cycle time α of the UΓ -CJSP is character-
ized by

α = max
c∈C

⎧
⎪⎨

⎪⎩

∑

(i,j)∈c

L̄ij

∑

(i,j)∈c

Hij
+ max

ξ:
∑

i∈T ξi≤Γ

⎧
⎪⎨

⎪⎩

∑

(i,j)∈c

L̂ijξi

∑

(i,j)∈c

Hij

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭
,

where L̄ij = p̄i, L̂ij = p̂i and C is the set of all circuits in G.

3 Branch-and-Bound Method

We develop a Branch-and-Bound algorithm for solving UΓ -CJSP. Each node of
the Branch-and-Bound corresponds to a subproblem defined by the subgraph
Gs = (T ,P ∪ Ds), where Ds ⊆ D is a subset of occurrence shifts already fixed.
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The algorithm starts with a root node Groot where Droot = ∅, in other words,
no occurrence shifts are fixed. The branching is performed by fixing an undeter-
mined occurrence shift Kij and creates a child node for each possible value of Kij

in [K−
ij , 1 − K−

ji ]. Each of these nodes is evaluated by computing the associated
cycle time, such that a schedule exists for each p ∈ UΓ . This evaluation is made
by means of the robust version of Howard’s algorithm. Our method explores the
search tree in best-first search (BeFS) manner, and, in order to branch, it chooses
the node having the smallest lower bound. This search strategy can lead to a
good feasible solution. A feasible solution is reached when all occurrence shifts
are determined. Note that the nominal starting times (i.e. the starting times
when no deviation occurs) can be determined by computing the longest path in
the graph G where each arc (i, j) is valued by pi − αHij , and the adjustment is
accomplished by shifting the starting of the following tasks by the value of the
deviation. More details are provided in the next subsections.

3.1 Computation of an Initial Upper Bound of the Cycle Time

In order to compute an initial upper bound, we design a heuristic that combines
a greedy algorithm with a local search. The greedy algorithm assigns randomly
a value to a given occurrence shift Kij in the interval [K−

ij , 1−K−
ji ], and updates

the bounds on the rest of the occurrences shifts such that the graph remains
consistent. These two operations are repeated until all occurrence shifts are
determined. Once all occurrence shifts are determined, a feasible schedule is
obtained, consequently the associated optimal cycle time represents an upper
bound of the global optimal cycle time. The local search algorithm consists in
improving the cycle time by adjusting the values of the occurrence shifts that
belong to the critical circuit. The idea behind these improvements is justified by
the following proposition:

Proposition 1. Let (Kij)(i,j)∈D be a vector of feasible occurrence shifts and
ᾱ the associated cycle time given by the critical circuit c. Let (u, v) ∈ D be a
disjunctive arc such that (u, v) ∈ c. If the following relation holds:

max
l∈P uv

max
p∈UΓ

∑

(i,j)∈l

pi − ᾱHij + pv − ᾱ(Kvu − 1) ≤ 0, (14)

where Puv is the set of paths from u to v, then the solution (K
′
ij)(i,j)∈D where

K ′
uv = Kuv + 1 and K ′

vu = Kvu − 1 has a cycle time less or equal to ᾱ.

Proof. Let (Kij)(i,j)∈D be a vector of feasible occurrence shifts, ᾱ the associated
cycle time given by the critical circuit c and (u, v) ∈ D a disjunctive arc that
belongs to c. Let us assume that relation (14) is verified. It is easily seen that
putting K ′

uv = Kuv + 1 makes the height of the circuit c increase by one and
consequently makes decrease the value of its circuit ratio. In order to maintain
the condition K ′

uv +K ′
vu = 1 verified, increasing the value of Kuv by one involve

decreasing the value of Kvu by one. Now, it follows that decreasing the value
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of Kvu by one must ensure that the values of the circuits passing through the
disjunctive arc (u, v) do not exceed ᾱ. This condition is verified, because by (14)
we have:

max
l∈P uv

max
p∈UΓ

∑
(i,j)∈l pi + pv

∑
(i,j)∈l Hij + (Kvu − 1)

≤ ᾱ

In other words, the maximum circuit ratio passing by the disjunctive arc
(j, i) has a value less or equal to ᾱ. Moreover, since the value of ᾱ and the values
of the processing times are positives, then

∑
(i,j)∈l Hij + (Kvu − 1) > 1. This

ensure that the associated graph to the robust CJSP is still consistent and the
solution (K

′
ij)(i,j)∈D is feasible. ��

The pseudo-code of the proposed heuristic is given in Algorithm 1.

Algorithm 1. Initial upper bound computation
1: Compute a lower bounds on the occurrences shifts Kij ;
2: for all (i, j) ∈ D do
3: Update bounds on the occurrence shifts;
4: Affect randomly value to Kij on the interval [K−

ij , 1 − K−
ji ];

5: end for
6: Compute the associated cycle time ᾱ and the critical circuit c.
7: while it < itmax do
8: Let (u, v) ∈ {(u, v) ∈ D such that (u, v) ∈ c};
9: luv ← max

l∈P uv
max
p∈UΓ

∑
(i,j)∈l pi − ᾱHij ;

10: if luv + pv − ᾱ(Kvu − 1) ≤ 0 then
11: Kuv ← Kuv + 1;
12: Kvu ← Kvu − 1;
13: end if
14: Compute the associated cycle time ᾱ and the critical circuit c;
15: it← it+1;
16: end while

3.2 Lower Bound

In the Branch-and-Bound algorithm, an initial lower bound is derived and com-
pared to the incumbent. If the value of the initial lower bound and the value of
the incumbent are equal, then an optimal solution is obtained and the Branch-
and-Bound is stopped. It is easily seen that the problem where the disjunctive
arcs are ignored is a relaxation of the initial problem. Consequently, the associ-
ated cycle time, αbasic, is a lower bound on the optimal cycle time. Furthermore,
an other lower bound can be computed by reasoning on the machine charges.
Let M(i) ∈ M be a given machine and S ⊆ T the set of operations mapped on
the machine M(i), then the optimal cycle time αopt ≥

∑
i∈S pi, for each p ∈ UΓ .
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Since this relation is verified for each machine, one can deduce the following
lower bound:

αmachine = max
m∈M,p∈UΓ

⎧
⎨

⎩

∑

i∈T :M(i)=m

pi

⎫
⎬

⎭
.

In the Branch-and-Bound procedure, we set the initial lower bound LB to the
maximum value between αmachine and αbasic.

3.3 Node Evaluation

In the Branch-and-Bound algorithm, we aim to find a feasible vector (Kij)(i,j)∈D
of occurrence shifts such that the value of the associated cycle time that ensure,
for each p ∈ UΓ , the existence of schedule is minimum. In order to fathom nodes
with partial solution in the search tree, it has to be evaluated by computing an
associated lower bound. Let us consider a given node of the search tree defined
by the subgraph Gs = (T ,P ∪ Ds), where Ds ⊆ D is the set of fixed occurrence
shifts. This subgraph represents a relaxation of the initial problem since only a
subset a disjunctive arcs is considered. Consequently, the associate cycle time is
a lower bound on the optimal cycle time.

3.4 Branching Scheme and Branching Rule

To our knowledge, two branching schemes have been proposed for the cyclic job
shop problem. In both of the branching schemes, the branching is performed
on the unfixed occurrence shifts. The first one is introduced in [2]. Based on
the interval of possibles values [K−

ij , 1 − K−
ji ] for the occurrence shift Kij such

that (i, j) ∈ D, the author uses a dichotomic branching. In the first generated
node, the interval of possible values of the occurrence shifts Kij is restricted to
[K−

ij , cij ] and in the second one it is restricted to [cij + 1, 1 − K−
ji ], where cij

is the middle of the initial interval. The second branching scheme is introduced
in [11]. The branching consists in selecting an unfixed disjunction and generate
a child node for each possible value of the occurrence shift Kij in the interval
[K−

ij , 1 − K−
ji ]. In each node, the algorithm assigns the corresponding possible

value to the occurrence shift Kij . In this paper, we follow the same branching
scheme introduced in [11]. This branching scheme allows us to have, at each
node, a subproblem which corresponds to a robust BCSP. Consequently, we can
use the existing robust version of the Howard’s algorithm to find the cycle time
ensuring, for each p ∈ UΓ , the existence of a schedule. Different branching rules
have been tested and numerical tests show that branching on occurrence shifts
Kij where K−

ij + K−
ji is maximum yields best running times. This performance

can be explained by the fact that this branching rule generates a small number
of child nodes, which limits the size of the search tree.
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4 Numerical Experiments

We implemented the Branch-and-Bound algorithm in C++ and conducted the
numerical experiments on an Intel Xeon E5-2695 processor running at 2.30 GHz
CPU. The time limit for each instance is set up to 900 s.

Since there are no existing benchmarks for the CJSP, even in its deter-
ministic setting, we generate randomly 20 instances for each configura-
tion as follows. We consider instances where the number of tasks n varies
{10, 20, 30, 40, 50, 60, 80, 100}, the number of jobs j in {2, 3, 4, 5, 6, 10, 16} and
the number of machines m in {5, 6, 8, 10}. Each nominal duration p̄i of task i
is generated with uniform distribution in [1, 10] and its deviation value p̂i in
[0, 0.5p̄i].

Table 1 reports average solution times for the instances having from 10 to
40 tasks and with a budget of uncertainty varying from 0% to 100%. All these
instances are solved before reaching the time limit. The average running times
show that the Branch-and-Bound algorithm is not very sensitive to the variation
of the budget of the uncertainty, but there is still a small difference. This can be
explained by the number of the nodes explored in the Branch-and-Bound tree
which can differ from an instance with a given value of Γ to another one. Table 1
also displays the percentage of deviation, for a given budget of uncertainty Γ ,
of the optimal cycle time αΓ from the nominal optimal cycle time αnom, where
all tasks take their nominal values. This percentage of deviation is computed as
Devα = αΓ −αnom

αnom
. The table shows that the percentage of deviations varies from

25.41% to 56.43%. In other words, these deviations represent the percentage of
the nominal cycle time that has to be increased in order to protect a schedule
against the uncertainty. We remark that the deviations stabilize when the budget
of the uncertainty is greater than 20 or 30 percent. This situation occurs probably
when the number of arcs of the circuit having the maximum number of arcs is less
than Γ . In this case, increasing Γ does not influence the optimal cycle time. The
second situation occurs when heights of other circuits than the actual critical
circuit c have greater value than the height of c. In this case, increasing the
budget of the uncertainty does not make the value of c lower than the others.

Table 2 shows the number of the instances that are solved before reaching
the time limit. These results concern instances having from 50 to 100 tasks. The
table shows that the Branch-and-Bound is not able to solve all these instances
in less then 900 s. For example, among instances with 80 tasks, 16 jobs and 5
machines, only three instances have been solved.
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Table 1. Average solution times in seconds for the Branch-and-Bound algorithm and
percentage value of the deviation of the cycle time from the nominal cycle.

# Tasks # Jobs # Machines Γ (%) Devα(%) Time (s)

10 2 5 0 0 0.012

10 25.41 0.0123

20 41.89 0.0137

30 48.95 0.0157

40 51.67 0.0171

50 53.18 0.0185

70 53.49 0.0214

90 53.49 0.0251

100 53.49 0.0256

20 3 6 0 0 0.2980

10 33.61 0.2136

20 49.49 0.2432

30 55.44 0.5685

40 56.43 0.2994

50 56.43 0.3258

70 56.43 0.3783

90 56.43 0.3996

100 56.43 0.4695

30 5 8 0 0 22.6434

10 38.25 12.0085

20 49.03 15.4099

30 50.91 66.2474

40 50.91 16.3096

50 50.91 17.1160

70 50.91 13.8331

90 50.91 15.7524

100 50.91 15.8249

40 4 8 0 0 138.9174

10 37.92 55.9220

20 54.46 92.1455

30 54.91 96.7587

40 54.91 134.4442

50 54.91 155.2327

70 54.91 187.2088

90 54.91 204.4813

100 54.91 177.2455
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Table 2. Number of solved instances in less than 900 s among 20 instances.

# tasks # jobs # machines Γ (%)

0 10 20 30 40 50 70 90 100

50 5 10 11 10 11 14 13 13 12 12 12

60 6 10 7 5 4 4 4 3 3 1 1

80 16 5 3 0 0 0 0 0 0 0 0

100 10 10 3 1 3 1 0 0 0 0 0

5 Concluding Remarks and Perspectives

In this paper, we consider the cyclic job shop problem where the task dura-
tions are subject to uncertainty and belong to a polyhedral uncertainty set. We
model the problem as two-stage robust optimization problem where the cycle
time and the execution order of tasks mapped on the same machine have to be
decided before knowing the uncertainty, and the starting times of tasks have
to be determined after the uncertainty is revealed. We propose a Branch-and-
Bound method that solves instances with at most 40 tasks but starts to have
difficulties with bigger instances. The next step is to investigate other techniques
such as decomposition algorithms.
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Abstract. This paper concerns the problem of designing a route of min-
imum cost for a capacitated vehicle moving a single commodity between
a set of customers. The route must allow two characteristics uncommon
in the literature. One characteristic is that a customer may be visited
several times. The other characteristic is that a customer may be used
as intermediate location to temporarily collect and deliver part of the
load of the vehicle. Routes with these characteristics may lead to cost
reductions when compared to routes without them. The paper describes
a branch-and-cut algorithm based on a relaxation of a model of Mixed
Integer Programming. Preliminary computational results on benchmark
instances demonstrate the good performance of the algorithm compared
with the original model.

1 Introduction

The Split-Demand One-Commodity Pickup-and-Delivery Travelling Salesman
Problem (SD1PDTSP) is a generalization of the One-Commodity Pickup-and-
Delivery Traveling Salesman Problem (1-PDTSP) addressed in e.g. [5]. The 1-
PDTSP looks for a route for a capacitated vehicle to move a single commod-
ity between customers, visiting each customer exactly once. The SD1PDTSP
extends the 1-PDTSP by allowing more than one visit to each customer, and
therefore may find routes with smaller cost. The SD1PDTSP is also a general-
ization of the Capacitated Vehicle Routing Problem (CVRP), aimed at designing
the routes for a fleet of identical vehicles to deliver a commodity from the depot
to a set of customers. In the CVRP, each route starts and ends at the depot, and
the load of a vehicle through a route should never exceed the vehicle capacity.
The CVRP can be seen as a pickup-and-delivery single-vehicle problem with
only one pickup location (the depot) which can be visited by the vehicle a num-
ber of times at most the fleet size, and several delivery locations (the customers)
that can be visited at most once. Even more, the SD1PDTSP can be seen as a
generalization of the Split Delivery Vehicle Routing Problem (SDVRP).
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The SD1PDTSP is defined as follows. Let us consider a finite set of locations.
Each location is related to a customer, with a known positive or negative demand
of a commodity. For example, the commodity can be bicycles of identical type,
the locations can represent bike stations in a city, and the demand can be the
difference between the number of bicycles at the beginning of a day and at the
end of the previous day in each station. We assume that the sum of all demands
is equal to zero. Customers with negative demands correspond to pickup loca-
tions, and customers with positive demands correspond to delivery locations. The
travel distances (or costs) between the locations are assumed to be known. There
is one vehicle with a given capacity that must visit each location at least once
through a route to move the commodity between the customers as they require.
Each visit may partially satisfy the demand of a customer, and all the visits to
that customer must end up with exactly its complete demand. The SD1PDTSP
consists of finding a minimum-cost route for the vehicle such that it satisfies
the demand of all customers without violating the vehicle capacity. Although a
customer may be visited several times, a maximum number of allowed visits is
assumed on each customer. When this parameter is 1 for each customer, we refer
to the split-forbidden variant of the problem, and the SD1PDSTP coincides with
the 1-PDTSP. As for the 1-PDTSP [4,6,7], checking whether a feasible solution
exists for the SD1PDTSP is a NP-complete problem.

The vehicle is not required to leave any location with an a-priori known load
(neither empty nor full). If a location is considered the starting (ending) point
of the route, the initial (final) load of the vehicle in the SD1PDTSP is a decision
that must be determined within the optimization problem. Although our results
can be adapted to the variant with a fixed initial load of the vehicle in a location,
we do not consider it in this paper.

Since several visits to a location are allowed, the vehicle could deliver some
units of the commodity in a location and collect them later in another visit.
Similarly, the vehicle can collect some units of the commodity in a location and
deliver them later in another visit. The SD1PDTSP allows these solutions and
therefore it can be seen as an inventory-routing problem where each customer has
an a-priori stock of the commodity, requires to have an a-posteriori stock, has a
capacity, and the demand is the difference between the a-priori and a-posteriori
stocks. In other words, a customer in the SD1PDTSP may be used to temporarily
deliver or collect units of commodity. This characteristic is called preemption and
it may provide routes with smaller costs respect to the non-preemption variant.

The SD1PDTSP was introduced in [9], together with a flow formulation and
a branch-and-cut algorithm to solve it. When the vehicle capacity is large enough
and the maximum number of visits to a location is one, the SD1PDTSP coincides
with the Travelling Salesman Problem (TSP), thus the SD1PDTSP is NP-hard
too. [1–3] study a very similar problem where the vehicle must start the route
with empty load, and the number of visits to each customer is unlimited. [1]
propose a branch-and-cut algorithm for computing a lower bound of the optimal
solution value, and a tabu search heuristic algorithm to compute an upper bound
on instances with up to 100 customers. [3] propose an exact approach, analyzed
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on instances with up to 60 customers. A hybrid iterative local search heuristic
is designed in [2], and analyzed on instances with up to 100 customers. A math-
heuristic approach is described in [8] to solve instances with up to 500 customers.

This paper is organized as follows. Section 2 presents two models for the
SD1PDTSP. The first model is taken from the literature while the second model
is new. Section 3 describes a branch-and-cut algorithm to solve the second formu-
lation. Preliminary computational results in Sect. 4 show the good performance
of the algorithm on benchmark instances.

2 Mathematical Models

This section shows a formulation introduced by [9] (corrected in [8]), and intro-
duces a new formulation inspired by [3]. We need some notation before.

2.1 Problem Definition

Let I = {1, . . . , n} be the set of locations, all representing customers. Let pi be
the units of product in i before starting the service at location i, and p′

i the units
of product desired in i at the end of the service. Let di = p′

i − pi be the demand
of customer i. When di > 0 then the location i requires di units of product to be
delivered by the vehicle. When di < 0 then the location i provides −di units of
product that must be collected by the vehicle. We assume that

∑
i∈I di = 0, so

the number of units of the product in the system remains equal before and after
performing the vehicle service. We also assume that all locations must be served
by the vehicle, including those with zero demand (if any). In addition, there is
a capacity qi associated with each location i ∈ I, meaning that this location can
store between 0 and qi units of the commodity, and satisfying that 0 ≤ pi ≤ qi

and 0 ≤ p′
i ≤ qi. The capacity of the vehicle is given a-priori, and it is denoted

by Q. We denote by cij the travel cost for the vehicle to go from i to j, with
i, j ∈ I. Let m be a known integer value representing the maximum number of
visits allowed to a customer.

Although SD1PDTSP assumes that also zero-demand customers must be
visited by the vehicle, it is possible to adapt the contributions of this paper to
deal with the variants where, either zero-demand customers must be discarded,
or zero-demand customers are optionally visited if convenient.

2.2 First Model

Let Vi be an ordered set of m nodes representing potential visits to location i.
Since all nodes in Vi are identical, we intend that the sequence of visits of the
vehicle to i is represented by consecutive nodes in Vi with i1 representing the
first visit. The set V = ∪i∈IVi is the node set of a directed graph G = (V,A)
where A is the arc set connecting nodes associated with different locations. For
a given subset S of nodes, we write δ+A(S) = {(v, w) ∈ A : v ∈ S,w �∈ S} and
δ−
A(S) = {(v, w) ∈ A : v �∈ S,w ∈ S}. Given an arc a = (v, w) we also denote the
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cost ca from v to w as the travel cost cij from the location i associated with v
to the location j associated with w.

We consider the following mathematical variables. For each arc a ∈ A, a
binary variable xa assumes value 1 if and only if the route includes a, and a
continuous variable fa is the load of the vehicle when traversing a. For each
node v ∈ V , a binary variable yv assumes value 1 if and only if the route
includes v, and a continuous variable gv determines the number |gv| of units
delivered (if gv > 0) or collected (if gv < 0) when performing the visit v. Then,
the SD1PDTSP can be formulated as:

min
∑

a∈A

caxa (1)

subject to:

yi1 = 1 for all i ∈ I (2)
∑

a∈δ+
A(v)

xa =
∑

a∈δ−
A (v)

xa = yv for all v ∈ V (3)

∑

a∈δ+
A(S)

xa ≥ yv + yw − 1 for all S ⊆ V , v ∈ S , w ∈ V \ S (4)

∑

a∈δ+
A(S)\δ+

A(11)

xa ≥ yil+1 for all i ∈ I , l = 1, . . . ,m − 1 (il �= 11),

S ⊆ V : 11, il ∈ S , il+1 ∈ V \ S (5)
∑

a∈δ−
A (v)

fa −
∑

a∈δ+
A(v)

fa = gv for all v ∈ V (6)

0 ≤ fa ≤ Qxa for all a ∈ A (7)
∑

1≤l≤m

gil = di for all i ∈ I (8)

0 ≤ pi +
∑

1≤k≤l

gik ≤ qi for all i ∈ I , l = 1, . . . ,m − 1 (9)

−qiyil ≤ gil ≤ qiyil for all i ∈ I , l = 2, . . . ,m (10)
yv, xa ∈ {0, 1} for all v ∈ V , a ∈ A. (11)

Equations (2) ensure that each customer is visited by the vehicle. Equations (3)
force the vehicle to enter and leave once each node v with yv = 1. Inequalities
(4) ensure a connected route. Inequalities (5) ensure that the vehicle visits il
before il+1 if 1 ≤ l < m and yil+1 = 1. Constraints (6)–(8) ensure that the load
of the vehicle is able to satisfy the demand decided at each visit. Constraints
(9) guarantee that the storage of product in a customer i is always between 0
and its capacity qi. Inequalities (10) impose that product can be delivered to or
collected from a location in each visit, i.e., the preemption characteristic. Note
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that this characteristic can be easily forbidden by replacing (10) with:

gil ≥ 0 for all i ∈ I : di ≥ 0 , l = 1, . . . , m

gil ≤ 0 for all i ∈ I : di < 0 , l = 1, . . . , m.

In such case, when preemption is not desired in the problem, then the parameters
pi, p′

i and qi are useless, and parameters di are enough for validating a non-
preemptive route.

To better understand the validity of model (1)–(11), observe that (2)–(4)
and (11) ensure that (x, y) represents a cycle visiting each customer. When a
customer is visited several times (say, yil = yil+1 = 1) then constraints (5)
ensure that the cycle goes from il to il+1 with 11 not in between. In other words,
starting from 11, constraints (5) ensure that the cycle will continue to il, then to
il+1, and then to 11. Constraints (6)–(8) guarantee a flow of product collected
or delivered within the cycle. Inequalities (9) use the fact that the visits il and
il+1 are done in this order, and then ensure that the cumulative product at the
customer i is always within the limits 0 and qi. Inequalities (10) guarantee that
collections and deliveries are only done on visits.

2.3 Second Model

We first start presenting a relaxed (invalid) formulation based on an smaller
graph. Let G′ = (I,B) be the oriented graph where each node represents a
location (instead of a visit) and each arc b ∈ B represents an arc between two
locations. For a given subset S ⊆ I, we write δ+B(S) = {(i, j) ∈ B : i ∈ S, j �∈ S}
and δ−

B(S) = {(i, j) ∈ B : i �∈ S, j ∈ S}. Then we define the following decision
variables. For each arc b ∈ B, let be xb an integer variable representing the
number of times the edge b is traversed by the vehicle. Observe that we are
using the notation x for variables in both models; however, this should not
confuse the reader as the subindex identifies the model univocally. For example,
xa is a binary variable and xb can be greater than one. For each i ∈ I, let zi

be an integer variable representing the number of visits to location i. For each
b = (i, j) ∈ B let cb be the travel cost cij from i to j. Consider now the following
mathematical formulation:

min
∑

b∈B

cbxb (12)

subject to:
∑

b∈δ−
B (i)

xb =
∑

b∈δ+
B(i)

xb = zi for all i ∈ I (13)

1 ≤ zi ≤ m for all i ∈ I (14)
∑

b∈δ+
B(S)

xb ≥ max
{

1,

⌈ |∑i∈S di|
Q

⌉}

for all S ⊂ I (15)

xb ≥ 0 and xb ∈ Z for all b ∈ B. (16)
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Equations (13) forces the same number of arc in the route going in and out of
at each location. Inequations (14) limit the number of visits to each location.
Inequations (15) ensure the connectivity of the route and the vehicle capacity.
Clearly, all SD1PDTSP solutions satisfy the above formulation, but there may
be solutions of the formulation which do not correspond to SD1PDTSP solutions
(note that (13)–(16) considers di but not pi and qi).

Variables xb are integer variables that can be replaced by binary variables
wbk with:

xb =
�log2 m�∑

k=0

2kwbk.

These binary variables are used in [3] to eliminate an invalid (integer) solution
(x∗, z∗) of model (12)–(16) with the following (weak) inequality:

∑

b∈B,k∈{0,...,log2 m}:w∗
bk=0

wbk +
∑

b∈B,k∈{0,...,log2 m}:w∗
bk=1

(1 − wbk) ≥ 1. (17)

We propose a different procedure to obtain a valid formulation for the
SD1PDTSP from (12)–(16). Our procedure consists of restricting the invalid
formulation with a new linear system of linear constraints. The linear system is
taken from the model in Sect. 2.2, but now considering that customer i is visited
z∗
i times. Let G′′ be the subgraph of G induced by V ∗ := ∪i∈I{i1, . . . , iz∗

i
}. For

each arc a in G′′, consider a binary variable xa assuming value 1 if and only if
the route includes a, and a continuous variable fa representing the vehicle load
when traversing a. For each node v in G′′, consider a continuous variable gv rep-
resenting the commodity |gv| delivered (if gv > 0) or collected (if gv < 0) when
performing the visit v. The linear system contains now the constraints (2)–(11)
with V replaced by V ∗ and the yi variables fixed to value 1 for all i ∈ V ∗. The
only variables in the linear system are now xa, fa and gi. In addition the linear
system to restrict the formulation (12)–(16) also includes the equations

∑

a=(ik,jl):(i,j)=b

xa = x∗
b for all b ∈ B. (18)

A solution of the new linear system can be seen as a certificate that the solution
(x∗, z∗) from (12)–(16) represents a valid route for the SD1PDTSP.

3 Branch-and-Cut Algorithm

The second formulation in the previous section suggests a new algorithm to
solve the SD1PDTSP. The algorithm solves the master model (12)–(16) where
constraints (15) are heuristically separated. To this end, first, it computes max-
flow problems to guarantee ∑

b∈δ+
B(S)

xe ≥ 1.
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Second, it computes other max-flow problems to guarantee
∑

b∈δ+
B(S)

xb ≥ |
∑

i∈S

di|/Q.

When no violated constraints has been detected, the algorithm verifies whether
z∗
i ∈ Z for all i ∈ I. Fractional solutions are discarded through a classical binary

branching procedure. For an integer solution (x∗, z∗), consider the subproblem
with zero objective function and linear system described in Sect. 2.3. We first
solve the dual problem of the linear-programming relaxation of the subproblem.
If it is unbounded then the current solution from the master program is invalid
for the SD1PDSTSP, and a dual ray defines a violated constraint to be added
to the master model, exactly as done in a Benders’ decomposition framework.
Otherwise, we now solve the subproblem, which is an integer program. If it is
feasible then (x∗, z∗) is valid for the SD1PDTSP. Otherwise, the constraint (17)
is inserted to avoid this solution.

It is worst noting that the subproblem also includes fa = 0 for all a ∈ δ+A(V1)
when solving the problem in [3]. These additional requirements increase the
chance of getting dual rays defining violated inequalities.

4 Preliminary Computational Results

The branch-and-cut (B&C) algorithm described in the previous section has been
implemented in C++, and executed on a personal computer with an Intel Core
i7-2600 CPU 3.4 Ghz running Microsoft Windows 7, using the callable libraries
of CPLEX 12.7 to solve the MILP problems. To evaluate the performance of
our implementation, we have used the benchmark instances also used in [3] and
[9]. These instances are based in the 1-PDTSP instances proposed in [6], and
are generated in the following way. Customers 2, . . . , n are randomly located
in the square [−500, 500] × [−500, 500] and have integer demands di randomly
chosen in the interval [−10, 10]. Customer 1 is located in the point (0, 0) with a
demand d1 such that the sum of all customer demands is zero. The travel costs
are computed as the Euclidean distances, rounded to the closest integer numbers
in [9] and truncated to integers numbers in [3]. Another difference between the
experiments in [9] and [3] is that the zero-demand customers must be visited in
[9] while they are visited if convenient in [3]. Finally, pi = 10 − di and p′

i = 10
in [9] and pi = 10 and p′

i = 10 + di in [3]; in both cases, qi = 20 for all i.
Finally, [3] add another point in (0, 0), called depot, represented by 0, with
d0 = p0 = p′

0 = q0 = 0, and from which the vehicle must leave with zero load,
as detailed in [1] and [2]. Our paper show results solving these instances with
preemption allowed and at most 3 visits to each customer.

The algorithm described in [9] was executed on a personal computer with
Intel Core 2 Duo CPU E8600 3.33 Ghz and IBM ILOG CPLEX 12.5 as MILP
solver. The algorithm described in [3] was executed on an IRIDIS 4 computing
cluster 2.6 Ghz and IBM ILOG CPLEX 12.5 as MILP solver. These two B&C
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algorithms and our B&C algorithm are all executed using one thread of the CPU.
The time limit of the three algorithms is 2 h, although different computers.

Table 1 compares the results of the algorithm proposed in [9] with the results
of the B&C algorithm described in this paper. Table 2 compares the B&C algo-
rithm with the results of the algorithm in [3]. In both tables, each row corre-
sponds to the average results over ten instances. For the results of Table 2, we
relaxed the requirement to visit zero-demand customers, as assumed in [3]. The
column heading “Average customers several visits” refers to the average number
of customers which are visited at least twice in the optimal solution; “Average
optimal gap” refers to the average percentage deviation between the best result
of the B&C algorithm and the best known lower bound for each algorithm;
“Average CPU time” refers to the average computing time for each algorithm
(including time limit); and “Number of instances solved” refers to the number
of instances (over 10) solved to optimality (before the time limit).

Table 1. Summary of the results compared with [9].

B&C in [9] Our B&C

n Q Average
customers
several visits

Average
CPU time

Number
instances
solved

Average
CPU time

30 5 13.9 4361.3 4 1.8

30 6 11.5 3066.0 8 1.4

30 7 8.3 1736.2 10 1.1

30 10 2.6 2604.4 8 1.0

30 12 1.6 773.5 10 0.8

30 15 0.8 155.5 10 0.8

Our B&C algorithm solved all instances to optimality, and for that reason
we do not include the columns “Average opt gap” and “Number of instances
solved” for such algorithm in these tables. It is clear that our new B&C algorithm
outperforms the previous algorithms in the literature. We believe that this major
milestone is due to work a master problem based on a small graph G′ and with
a subproblem that is easy to solve and that generates a good valid inequality
when it is infeasible. Indeed, the master problem in [9] is fully defined on G, as
described in Sect. 2.2, while the weak aspect in [3] is solving their subproblem,
which consists of enumerating Eulerian circuits and checking their feasibility on
an extended network.

To better illustrate the difficulty of solving the SD1PDTSP we conclude
this section comparing optimal routes obtained with and without some problem
characteristics. To this end, we selected the instance n20q12H with n = 20 and
Q = 12. Figure 1(a) shows the optimal route when split demand is not allowed
and the vehicle is forced to leave empty from the depot (customer 1). Relaxing
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Table 2. Summary of the results compared with [3].

B&C in [3] Our B&C

n Q Average
customers
several
visits

Average
CPU time

Number
instances
solved

Average
optimal
gap

Average
CPU time

20 10 2.7 0.4 10 0.4

20 15 1.6 0.3 10 0.3

20 20 1.0 0.1 10 0.2

20 1000 1.0 0.8 10 0.2

30 10 3.9 6.2 10 1.5

30 15 2.1 3.9 10 0.9

30 20 1.6 163.6 10 0.6

30 1000 1.0 190.2 10 2.0

40 10 4.1 124.8 10 3.0

40 15 1.7 25.6 10 1.7

40 20 1.3 14.7 10 1.2

40 1000 1.2 70.2 10 0.7

50 10 5.2 1198.5 9 0.79 144.4

50 15 2.5 1970.1 8 0.43 35.3

50 20 1.9 295.5 10 5.8

50 1000 1.0 1909.8 9 0.11 1.6

60 10 6.7 3924.6 6 1.24 178.5

60 15 2.4 1957.5 8 0.51 14.6

60 20 1.8 1285.0 10 6.6

60 1000 1.2 2816.4 8 0.18 2.8

the empty load requirement, Fig. 1(b) shows a shorter route in which the vehicle
leaves the depot with 2 units of product that will be returned back to the depot
after having finished the service. Allowing visiting a customer more than once,
even shorter routes can be found. Figure 2(a) is the optimal route when each
customer can be visited at most three times if preemption is forbidden. If pre-
emption is allowed, then Fig. 2(b) shows the optimal route. These SD1PDTSP
solutions were computed without fixing the load of the vehicle when leaving the
depot. When the vehicle is forced to leave Customer 1 with zero load, then the
optimal cost is 5203 (5131) with preemption forbidden (allowed); these routes
are not depicted in this paper. Figure 2(b) is also the optimal solution of the for-
mulation (12)–(16), which means that the first linear system (2)–(11) and (18)
was feasible, thus there was no need to solve a second master problem. This sit-
uation happened on most instances in our experiments and it may be explained
due to the large value of the qi numbers when compared to the di numbers. By
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(a) With initial load fixed to zero; cost = 5376.
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Fig. 1. Optimal 1PDTSP routes.
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Fig. 2. Optimal SD1PDTSP routes.
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changing p1 = p′
1 = 2 and q1 = 4 in the selected instance, the master prob-

lem is the same, while the first subproblem is now infeasible because the route
in Fig. 2(b) needs to collect (and deliver) 3 units from customer 1; when the
inequality (17) associated to that route with cost 5118 is added to the master
problem, another route with cost 5119 is obtained; the second subproblem is
infeasible again, a second inequality (17) is added to the master problem, and a
new route with cost 5131 is obtained; the third subproblem is feasible, proving
that the last route is optimal.

For the future, we plan to investigate the performance of the new algorithm
on larger instances than the ones in the literature, potentially improved with a
primal heuristic procedure and a sophisticated branching scheme to avoid using
the very weak inequality (17).
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Abstract. We study here the application of the “descent with muta-
tions” metaheuristic to the linear ordering problem. We compare this
local search metaheuristic with another very efficient metaheuristic,
obtained by the hybridization of a classic simulated annealing with some
ingredients coming from the noising methods. The computational exper-
iments on the linear ordering problem show that the descent with muta-
tions provides results which are comparable to the ones given by this
improved simulated annealing, or even better, while the descent with
mutations is much easier to design and to tune, since there is no param-
eter to tune (except the CPU time that the user wants to spend to solve
his or her problem).

Keywords: Combinatorial optimization · Metaheuristics
Simulated annealing · Noising methods · Linear ordering problem
Median order · Slater’s problem · Condorcet-Kemeny’s problem

1 Introduction

We deal here with a metaheuristic (for recent references on metaheuristics, see for
instance [17,27] or [29]) called “descent with mutations” (DWM). This method
looks like the usual descent, but with random elementary transformations which
are performed, from time to time, in a blind way, in the sense that they are
accepted whatever their effects on the function f to optimize (such an elementary
transformation performed without respect to its effect on f will be called a
mutation in the sequel). The density of performed mutations decreases during
the process, so that the method at its end is the same as a classic descent. DWM
can also be considered as a variant of the noising methods (see for instance [12]
for a survey and references on the noising methods).

In this paper, we study the application of DWM to two problems arising
from the field of the aggregation and the approximation of binary relations: the
approximation of a tournament by a linear order at minimum distance (this
problem is also known as Slater’s problem [28]) and the aggregation of linear
orders into a median linear order (this problem is sometimes called Kemeny’s
problem [25], though Kemeny considered complete preorders instead of linear
c© Springer International Publishing AG, part of Springer Nature 2018
J. Lee et al. (Eds.): ISCO 2018, LNCS 10856, pp. 253–264, 2018.
https://doi.org/10.1007/978-3-319-96151-4_22
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orders; it seems that Condorcet was the first one to consider this aggregation
problem at the end of the 18th century [13]; because of this, we shall call this
problem “Condorcet-Kemeny’s problem” in the rest of the paper). Both can be
represented by another problem, which is known in graph theory as the linear
ordering problem (LOP in the following; for a survey on these topics and for
references, see for instance [5,11,24,26]). We compare DWM with a simulated
annealing method (SA) improved by ingredients coming from the noising meth-
ods (as done in [7] and in [9] for the Travelling Salesman Problem).

In the next section, we detail the principles of DWM. In Sects. 3 and 4, we
briefly depict the studied problems and the chosen elementary transformations
allowing us to apply a descent and DWM. Experimental results can be found in
Sect. 5. Conclusions are in Sect. 6.

2 Principle of DWM

As the other metaheuristics, DWM is not designed to be applicable to only one
combinatorial problem, but to many of them. Such a problem can be stated as
follows:

Minimize f(s) for s ∈ S,

where S is assumed to be a finite set and f is a function defined on S; the
elements s of S will be called solutions.

As many other metaheuristics, DWM is based on elementary transformations.
A transformation is any operation changing a solution into another solution. A
transformation will be considered as elementary (or local) if, when applied to
a solution s, it changes one feature of s without modifying its global structure
much. For instance, if s is a binary string, a possible elementary transformation
would be to change one bit of s into its complement. Thanks to the elementary
transformations, we may define the neighbourhood N(s) of a solution s: N(s) is
the set of all the solutions (called the neighbours of s) that we can obtain from
s by applying an elementary transformation to s.

Then, we may define an iterative improvement method, or descent for a
minimization problem (it is the case for the problems considered here), as follows.
A descent starts with an initial solution s0 (which can be for instance randomly
computed, or found by a heuristic) and then generates a series of solutions
s1, s2, . . . , si, . . . , sq such that:

1. for any i ≥ 2, si is a neighbour of si−1: si ∈ N(si−1);
2. for any i ≥ 2, si is better than si−1 with respect to f : f(si) < f(si−1);
3. no neighbour of sq is better than sq: ∀s ∈ N(sq), f(s) ≥ f(sq).

Then sq is the solution returned by the descent, the descent is over and the
final solution sq provided by the descent is (at least) a local minimum of f
with respect to the adopted elementary transformation. The whole method may
stop here, or restarts a new descent from a new initial solution (to get repeated
descents, as it will be done below).
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In such a descent, the process is not blind in the sense that the elementary
transformations are adopted only if they improve the value taken by f . In DWM
(see below for the general description of the method), we also apply the basic
process of a descent but, from time to time, we apply and accept the considered
elementary transformation, whatever its effect on f : we say that we have a blind
elementary transformation, or simply a mutation, since it is the word commonly
used in genetics (and in genetic algorithms) for this kind of blind transformation.
Thus, the only thing to specify in order to apply DWM (in addition to what
must be defined to apply a descent, i.e. the elementary transformation) is when
a mutation is adopted. It is what we depict in the next section, for the problems
studied in this paper.

– Repeat:
• with a certain probability, apply an arbitrary elementary transformation

(irrespective improvement or worsening: this is a mutation)
• otherwise, apply an elementary transformation which brings an improve-

ment
– until a given condition is fulfilled.

General description of DWM.

We said at the beginning that DWM can be considered as a variant of the
noising methods (which can be seen as a generalization of methods like simu-
lated annealing or threshold accepting). Remember that the most general scheme
of the noising methods (see [12]) consists in computing a “noised” variation
Δfnoised(s, s′) of f when a neighbour s′ of the current solution s is considered:
Δfnoised(s, s′) = f(s′)−f(s)+r , where r is a random number depending on dif-
ferent things (like s, s′, the iteration number, the scheme of the noising method,
the adopted probability law, and so on); then the acceptance criterion becomes
the following: the transformation of s into s′ is accepted if Δfnoised(s, s′) is lower
than 0. We find back the usual descent method if r is equal to 0 and the accept-
ing criterion applied in simulated annealing if r is equal to T ln p, where T is the
current temperature and p is a random number belonging to ]0, 1[ and to which
e−Δf/T is compared in the classic simulated annealing, with Δf = f(s′) − f(s).
In a similar way, it is not difficult to design the characteristics of the law fol-
lowed by r in order to show that DWM constitutes a special case of the noising
methods: it is sufficient to choose a very negative value for r (that is, a negative
value with a great absolute value) when we decide to perform a mutation, or 0
otherwise; details are left to the interested reader. But the main advantage of
DWM with respect to methods like simulated annealing or the noising meth-
ods is that there is no parameter to tune (except the CPU time, which in its
turn defines the number of iterations performed by the method; the relationship
between the CPU time and the number of iterations obviously depends on the
used computer).

We turn now to the specification of the problems considered here.



256 O. Hudry

3 Slater’s Problem, Condorcet-Kemeny’s Problem,
the Linear Ordering Problem

Let X be a finite set. If R is a binary relation defined on X and if x and y are
two elements of X, we write xRy if x is in relation with y with respect to R. Let
R and S be two binary relations defined on X. If Δ denotes the usual symmetric
difference between sets, the symmetric difference distance δ(R,S) between R
and S is defined by

δ(R,S) = |RΔS|,

i.e.

δ(R,S) = |{(x, y) ∈ X2 s.t. [xRy and not xSy] or [not xRy and xSy]}|.

This distance, which owns good axiomatic properties (see [2]), measures the
number of disagreements between R and S. From this distance, we may define a
remoteness ρ (see [3]) between a collection, called a profile, Π = (R1, R2, ..., Rm)
of m binary relations defined on X and any linear order O which is also defined
on X by:

ρ(Π,O) =
m∑

i=1

δ(Ri, O).

Thus ρ(Π,O) measures the total number of disagreements between Π and O. A
median linear order [3] of Π is a linear order O∗ which minimizes the remoteness
from Π:

ρ(Π,O∗) = min
O∈Ω(X)

ρ(Π,O),

where Ω(X) denotes the set of all the linear orders defined on X.
Slater’s problem [28] corresponds to the case for which Π contains only one

relation (i.e., m = 1) which is a tournament T defined on X, that is, a complete
asymmetric relation: between two distinct elements x and y of X, there is one
and only one of the two possibilities xTy or yTx (observe that a transitive
tournament is a linear order and conversely). A tournament can be considered
for example as the result of a paired-comparison experiment in voting theory. In
such a context, a decider must rank n candidates (which are the elements of X).
To do this, each pair of candidates is displayed to the decider, and this one
chooses exactly one of the two candidates. A lack of transitivity in the choice of
the decider may happen, and thus we obtain a tournament while a linear order
may be expected. Then we look for a linear order at minimum distance from T ,
i.e., we want to minimize δ(T,O) or, equivalently, ρ(Π,O) with Π = (T ).

Condorcet-Kemeny’s problem [13,25] arises also in the context of voting the-
ory. Here, m voters want to rank n candidates. The preference of any voter is
assumed to be a linear order. We want to aggregate these preferences into a
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unique linear order (which will represent a ranking that we may consider as the
collective preference) by minimizing the total number of disagreements between
the collective preference and the individual preferences of the m voters. In other
words, we look for a median linear order of the profile Π = (O1, O2, ..., Om),
where Oi is the linear order associated with the preference of the i-th voter. (As
said above, in the genuine problem considered by Kemeny [25], the preferences
are assumed to be complete preorders, i.e., rankings of the candidates in which
ties are allowed, and, similarly, we look for a median complete preorder. Anyway,
many authors call “Kemeny’s problem” the aggregation of linear orders into a
median linear order, by an abuse of language; note that there always exists a
median complete preorder of a profile of tournaments – what includes linear
orders – which is a linear order – see [22]).

These two problems can be considered as special cases of the linear ordering
problem (LOP; see for instance [11] for details). In LOP, we consider a graph
which is a weighted tournament T = (X,A,w) (as for a binary relation, a tour-
nament in graph theory is a complete, asymmetric, directed graph: between two
distinct vertices x and y of X, there is one and only one of the two arcs – i.e.,
directed edges – (x, y) or (y, x)). Each arc a ∈ A has a weight w(a) which is
a non-negative integer. Then, we want to determine a subset B of A with a
maximum weight such that (X,B) is without circuit (i.e., directed cycle) or,
equivalently, such that reversing the arcs belonging to A \ B into T transforms
T into a linear order, which is then a median linear order of T.

For Slater’s problem, all the weights are equal to 1. For Condorcet-Kemeny’s
problem, let mxy denote the number of voters who prefer x to y; then the weight
of an arc (x, y) is equal to 2mxy − m (remember that m denotes the number of
voters), when mxy is greater than myx; if mxy is equal to myx, the orientation
of the unique arc between x and y is arbitrarily chosen and its weight is equal to
0 (we may note that the weight 2mxy − m is also equal to mxy − myx; we may
also observe that we have mxy + myx = m ; as a consequence, 2mxy − m cannot
be equal to 0 if m is odd).

Example. To illustrate these concepts, consider the example below, with n = 4
candidates x, y, z, t and m = 34 voters whose preferences are the following linear
orders:

– for 13 voters: t > x > y > z;
– for 11 voters: z > y > t > x;
– for 4 voters: x > y > z > t;
– for 3 voters: x > y > t > z;
– for 3 voters: z > x > y > t.

Then we obtain:
mxy = 23; myx = 11; mxz = 20; mzx = 14; mxt = 10; mtx = 24; myz = 20;
mzy = 14; myt = 21; mty = 13; mzt = 18; mtz = 16.

The weighted tournament T1 summarizing the situation is depicted in Fig. 1,
on the left, while the associated unweighted tournament T2 is given on the right
side of Fig. 1.
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Fig. 1. The weighted tournament T1 and the unweighted tournament T2 of the example.

It is easy to see that, in order to destroy all the circuits of T1, the optimal
way consists in removing the two arcs (y, t) and (z, t), with a total weight equal
to 10. Reversing the orientation of these arcs provides a transitive tournament
which is the median linear order of the profile of the example, namely the order
t > x > y > z, which is thus the solution of Condorcet-Kemeny’s problem for
the instance given by the example.

On the other hand, if we consider the unweighted tournament T2, removing
the arc (t, x) is sufficient to destroy all the circuits of T2. Thus, if we reverse this
arc into the arc (x, t), we obtain a linear order, namely x > y > z > t, which is
the solution of Slater’s problem for the instance given by the example.

Through this example, we may observe by the way that the optimal solutions
of Condorcet-Kemeny’s problem and of Slater’s problem are not necessarily the
same.

Slater’s problem, Condorcet-Kemeny’s problem and LOP are NP-hard
problems (for references on these complexity aspects, see for instance [1,4–
6,11,14,16,18–22]). Hence the interest of designing heuristics and metaheuristics
to solve them at least approximately, but within a “reasonable” CPU time.

4 Application of DWM to LOP

The application of DWM to LOP (and thus to Slater’s problem or to Condorcet-
Kemeny’s problem) requires the definition of an elementary transformation. Let
O be the current linear order to which we want to apply the elementary transfor-
mation. This one consists in considering another linear order O′ obtained from
O by moving a vertex from its place in O to another place. More precisely, let
O be the following linear order, with x >O y meaning that x is preferred to y
with respect to O:

x1 >O x2 >O ... >O xi−1 >O xi >O xi+1 >O ... >O xj−1 >O xj >O ... >O xn,

Then, if xi is inserted just before xj (note that we may also move xi just after
xn), O′ looks like

x1 >O′ ... >O′ xi−1 >O′ xi+1 >O′ ... >O′ xj−1 >O′ xi >O′ xj >O′ ... >O′ xn.
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Thanks to this elementary transformation, it is possible to generate n(n − 1)
new linear orders from any linear order O.

To apply a descent, we begin with a linear order randomly chosen and we
consider the vertices one after the other, in a cyclic way: the neighbours are
sorted in a arbitrary order (which is not necessarily the same during the whole
process) and they are all considered in this order once, before being considered for
a second time; a neighbour better than the current solution is accepted as soon
as it has been discovered (see [15] for this way of exploring the neighbourhood;
observe that the way of ordering the vertices is not very important: what is
important is to scan every vertex once before considering a same vertex a second
time). More precisely, for each vertex x, we compute if there is a place for x which
is better than its current place; if so, we insert x at its best place and we go on
with the new current linear order; otherwise, we consider the next vertex. When
all the vertices are successively considered and no vertex can be moved towards
a place better than its current place, the descent is over.

For DWM, we apply almost the same principle but, from time to time, we do
not move the considered vertex to its best place, but we move it to a place chosen
randomly, with a uniform probability on the possible places. This random move
is performed with a probability p, which decreases during the run of the method.
The application of DWM to LOP is summarized below (the arrow ← denotes the
affectation; totNbIter is a parameter specified by the user and which is related
to the CPU time that the user wants to spend for the run of the method; observe
that this relation depends on the speed of the computer, so that it is difficult to
be more explicit about this relation here).

– Choose a linear order O randomly;
– bestSolution ← O;
– numIter ← 0;
– while numIter < totNbIter, do:

• p ← totNbIter−numIter
totNbIter ;

• x ← 1;
• while x ≤ n, do

∗ choose a real number q between 0 and 1 randomly, with a uniform
probability;
∗ if q < p, then move x from its current place in O to another place in
O randomly chosen, with a uniform probability (we thus change the
current linear order O by a mutation);
∗ else compute the best place (with respect to O) for x and update
O by moving x to this best place;
∗ if necessary, update bestSolution;
∗ x ← x + 1;

• numIter ← numIter + 1;
– apply a descent to O;
– if necessary, update bestSolution;
– return bestSolution.

Scheme of DWM for the linear ordering problem.
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We can see in the scheme of DWM that the probability totNbIter−numIter
totNbIter of

performing a mutation is computed at the beginning of each run of the while-
loop and decreases arithmetically, until it reaches 0 (it is also possible to apply
a geometrical decrease, as in simulated annealing, but then not down to 0). Of
course, we keep the best solution obtained during the process in memory. To be
sure to obtain at least a local minimum at the end, we complete the process with
a descent before returning the best solution computed since the beginning.

5 Experiments

For our experiments, we compare the results of DWM with those provided by
repeated descents (RD in the following) and by a method (SA in the following)
which is based on simulated annealing: the differences with respect to a classic
simulated annealing is that the neighbourhood is explored in a cyclic way (see
above) and that descents (without mutations) are inserted periodically in the
process of SA (a more precise description of this method can found in [7,8]).
Note that this kind of simulated annealing appears, from previous experiments
(see references in [11]), to be among the best methods applied on the problems
studied here and that it is much more efficient than a classic simulated annealing.

For the three methods, it is necessary to specify the number of iterations
or, equivalently, the CPU time devoted to the computations. In addition, it
is also necessary to tune SA, especially the initial temperature, which is not
always an easy task (note that there is no parameter to be tuned for RD or
for DWM). In a more general context, we developed in [10] an automatically
tuned version of SA which only requires the specification of the CPU time that
the user wishes to spend in order to solve his or her problem. This version
computes, for any given instance, a good solution and also good values for the
parameters of SA, especially the initial temperature. The experiments reported
in [10] show that this automatically computed initial temperature is very close to
the initial temperature carefully tuned by an “expert” with statistical tools. As
the automatically tuned version can be a little bit longer than manually tuned
versions, we first compute, for each instance of our problems, the “advised”
initial temperature with the automatically tuned version and then used this
initial temperature in a more classic version needing two parameters: the initial
temperature and the total number of iterations (related to the CPU time that
the user wishes to spend in order to solve his or her instance). The CPU time
required to tune SA is not taken into account in the results described below.

The three methods are compared on the same instances and with the same
CPU time (except the tuning time for SA, not taken into account, as just said
in the previous paragraph). We report here some results obtained for random
graphs; other experimental results lead to the same qualitative conclusions.

More precisely, for any pair of distinct vertices x and y of T = (X,A), we
choose the orientation of the arc between x and y with the same probability (0.5)
for (x, y) and (y, x). This completely defines an instance for Slater’s problem.
For Condorcet-Kemeny problem, we then choose the weight of an arc (x, y)



Descent with Mutations Applied to the Linear Ordering Problem 261

randomly between 0 and 10 with a uniform distribution (we performed other
experiments, with other maximum weights: the qualitative conclusions are the
same as the ones reported here). For each problem, we report the results obtained
for graphs with 100, 200, 300, 400 or 500 vertices; thus we get ten cases (five
for Slater’s problem and five for Condorcet-Kemeny’s problem). For each case,
we generated 100 instances randomly. For each instance, we performed DWM,
SA and RD twenty times. The same CPU time was given to each method. The
averages obtained on the 100 instances of each case and for each method are
displayed in Table 1.

Table 1. Average results.

Problem n CPU time DWM SA RD GSA GRD

Slater 100 3 s 1861.58 1918.41 2158.02 3.05% 15.92%

Slater 200 5 s 9752.42 10048.89 11319.63 3.04% 16.07%

Slater 300 10 s 19028.13 19609.69 22097.68 3.06% 16.13%

Slater 400 40 s 36841.27 38359.63 43306.95 4.12% 17.55%

Slater 500 100 s 54855.39 57858.09 65298.37 5.47% 19.04%

Condorcet-Kemeny 100 3 s 9661.76 9955.92 11180.48 3.04% 15.72%

Condorcet-Kemeny 200 5 s 51802.14 53957.11 61349.27 4.16% 18.43%

Condorcet-Kemeny 300 10 s 100908.90 106054.42 122883.54 5.10% 21.78%

Condorcet-Kemeny 400 40 s 183766.58 196115.70 227925.69 6.72% 24.03%

Condorcet-Kemeny 500 100 s 292831.14 316853.58 369383.67 8.20% 26.14%

In this table, the first column specifies the type of problem considered, while
the second provides the number n of vertices. The third column specifies the
CPU time given to each method for each instance. The next three columns give,
still for each type of problem, the average values of the remoteness ρ among the
100 instances (remember that LOP is a minimization problem: thus, the lowest,
the best). The last two columns specify the relative gains provided by DWM
with respect to SA or to RD: more precisely, GSA (respectively GRD) gives
the average relative gap between DWM and SA (respectively between DWM
and RD): GSA is the average value of (VSA − VDWM )/VDWM and GRD is the
average value of (VRD − VDWM )/VDWM , where VDWM , VSA and VRD denote
respectively the values provided by DWM, SA and RD for each instance.

To be more specific, Fig. 2 shows how the average values of ρ computed by
DWM, SA and RD evolve when the CPU time increases, for a given instance
of Condorcet-Kemeny’s problem with 300 vertices (this behaviour is typical; we
observe the same kind of behaviour for the other instances). More precisely, the
horizontal axis shows the different CPU times tried in this experiment, from 1 s
per trial to 1024 s per trial, with a logarithmic scale. The vertical axis gives,
for each one of the three methods, the average value of ρ over 100 trials. The
horizontal line just above the axis shows what seems to be the optimal value,
i.e. 93482.
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Fig. 2. Evolution of DWM, SA and RD when the CPU time increases.

Another way, more qualitative or at least more ordinal, to compare DWM
with SA, is to consider the number of times that a method computes a result
which is better than the one computed by the other method (note that DWM and
SA are always at least as good as RD with this respect). Table 2 provides such a
comparison, still for Slater’s problem and for Condorcet-Kemeny’s problem. In
this table, the first column specifies the considered problem (Slater’s problem or
Condorcet-Kemeny’s problem). The second one gives the number n of vertices
(the CPU times are the same as above). Then, the column “DWM < SA” shows
how many times the solution computed by DWM is better (i.e., lower) than
the one of SA over the 100 instances. Similarly, the column “DWM = SA”
(respectively “DWM > SA”) shows how many times the solution computed by
DWM is equal to (respectively worse than) the one of SA over the 100 instances.

Table 2. Numbers of times that a method is better than the other.

Problem n DWM < SA DWM = SA DWM > SA

Slater 100 41 12 47

Slater 200 48 9 43

Slater 300 54 7 39

Slater 400 59 5 36

Slater 500 64 4 32

Condorcet-Kemeny 100 53 13 34

Condorcet-Kemeny 200 57 10 33

Condorcet-Kemeny 300 62 6 32

Condorcet-Kemeny 400 66 4 32

Condorcet-Kemeny 500 70 0 30

From these experiments (and other ones lead to the same conclusions), it
appears that DWM provides results which are comparable with a sophisticated
version of simulated annealing, sometimes better, even if the relative gains are
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not always very large (from about 3% for Slater’s problem with n = 100 vertices
to a little more than 8% for Condorcet-Kemeny’s problem with n = 500). The
fact that the gap is not large surely comes from the fact that SA is already a
very good method: thus it is not easy to improve its results. Anyway, DWM
succeeds in performing better than SA in a large majority of instances studied
here. We may also observe an interesting fact: DWM becomes still better when
the number n of vertices increases.

6 Conclusion

By studying DWM, the aim is not to add one more method to the long list
of possible metaheuristics, but to point out that this very simple method is
experimentally as efficient as the most sophisticated ones, at least for some com-
binatorial problems, like the ones studied here. Indeed, the results obtained for
LOP show that DWM may provide very good results, with about the same qual-
ity than the ones obtained by an improved version of simulated annealing, which
proved to be already very efficient, within the same CPU time. In fact, as said
above, the main advantage of DWM is that there is no parameter to tune (except
the CPU time, which in its turn defines the number of iterations performed by
the method). The aim of future works will be to investigate the application of
DWM to other combinatorial problems (we already did it for the aggregation of
symmetric relations or of equivalence relations into a median equivalence rela-
tion, with the same type of conclusion; see [23]), and then we hope that DWM
will succeed in finding good solutions for them within a reasonable CPU time.

Acknowledgements. I thank the referees for their valuable comments.
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Abstract. Dual feasible functions (DFFs) have been used to provide
bounds for standard packing problems and valid inequalities for integer
optimization problems. In this paper, the connection between general
DFFs and a particular family of cut-generating functions is explored.
We find the characterization of (restricted/strongly) maximal general
DFFs and prove a 2-slope theorem for extreme general DFFs. We show
that any restricted maximal general DFF can be well approximated by
an extreme general DFF.
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1 Introduction

Dual feasible functions (DFFs) are a fascinating family of functions φ : [0, 1] →
[0, 1], which have been used in several combinatorial optimization problems and
proved to generate dual bounds efficiently. DFFs are in the scope of superad-
ditive duality theory, and superadditive and nondecreasing DFFs can provide
valid inequalities for general integer linear programs. Lueker [17] studied the
bin-packing problems and used certain DFFs to obtain lower bounds for the
first time. Vanderbeck [20] proposed an exact algorithm for the cutting stock
problems which includes adding valid inequalities generated by DFFs. Rietz
et al. [18] recently introduced a variant of this theory, in which the domain of
DFFs is extended to all real numbers. Rietz et al. [19] studied the maximality
of the so-called “general dual feasible functions.” They also summarized recent
literature on (general) DFFs in the monograph [1]. In this paper, we follow the
notions in [1] and study the general DFFs.

Cut-generating functions play an essential role in generating valid inequali-
ties which cut off the current fractional basic solution in a simplex-based cutting
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plane procedure. Gomory and Johnson [10,11] first studied the corner relaxation
of integer linear programs, which is obtained by relaxing the non-negativity of
basic variables in the tableau. Gomory–Johnson cut-generating functions are
critical in the superadditive duality theory of integer linear optimization prob-
lems, and they have been used in the state-of-art integer program solvers. Köppe
and Wang [16] discovered a conversion from minimal Gomory–Johnson cut-
generating functions to maximal DFFs.

Yıldız and Cornuéjols [21] introduced a generalized model of Gomory–
Johnson cut-generating functions. In the single-row Gomory–Johnson model,
the basic variables are in Z. Yıldız and Cornuéjols considered the basic variables
to be in any set S ⊂ R. Their results extended the characterization of mini-
mal Gomory–Johnson cut-generating functions in terms of the generalized sym-
metry condition. Inspired by the characterization of minimal Yıldız–Cornuéjols
cut-generating functions, we complete the characterization of maximal general
DFFs.

We connect general DFFs to the classic model studied by Jeroslow [14], Blair
[9] and Bachem et al. [3] and a relaxation of their model, both of which can be
studied in the Yıldız–Cornuéjols model [21] with various sets S. General DFFs
generate valid inequalities for the model with S = (−∞, 0], and certain cut-
generating functions generate valid inequalities for the Jeroslow model where
S = {0}. The relation between these two families of functions is explored.

Another focus of this paper is on the extremality of general DFFs. In terms
of Gomory–Johnson cut-generating functions, the 2-slope theorem is a famous
result of Gomory and Johnson’s masterpiece [10,11]. Basu et al. [8] proved that
the 2-slope extreme Gomory–Johnson cut-generating functions are dense in the
set of continuous minimal functions. We show that any 2-slope maximal general
DFF with one slope value 0 is extreme. This result is a key step in our approx-
imation theorem, which indicates that almost all continuous maximal general
DFFs can be approximated by extreme (2-slope) general DFFs as close as we
desire. In contrast to the fill-in procedure Basu et al. [8] used, our 2-slope fill-in
procedure uses 0 as one slope value, which is necessary since the 2-slope theorem
of general DFFs requires 0 to be one slope value.

This paper is structured as follows. In Sect. 2, we provide the preliminaries
of DFFs from the monograph [1]. The characterizations of maximal, restricted
maximal and strongly maximal general DFFs are described in Sect. 3. In Sect. 4,
we explore the relation between general DFFs and a particular family of cut-
generating functions. The 2-slope theorem for extreme general DFFs is studied in
Sect. 5. In Sect. 6, we introduce our approximation theorem, adapting a parallel
construction in Gomory–Johnson’s setting [8].

2 Literature Review

Definition 1. A function φ : [0, 1] → [0, 1] is called a (valid) classical Dual
Feasible Function (cDFF), if for any finite list of real numbers xi ∈ [0, 1], i ∈ I,
it holds that

∑
i∈I xi ≤ 1 ⇒ ∑

i∈I φ(xi) ≤ 1. A function φ : R → R is called
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a (valid) general Dual Feasible Function (gDFF), if for any finite list of real
numbers xi ∈ R, i ∈ I, it holds that

∑
i∈I xi ≤ 1 ⇒ ∑

i∈I φ(xi) ≤ 1.

We are interested in so-called “maximal” functions since they yield better
bounds and stronger valid inequalities. A cDFF/gDFF is maximal if it is not
(pointwise) dominated by a distinct cDFF/gDFF. A cDFF/gDFF is extreme if it
cannot be written as a convex combination of other two different cDFFs/gDFFs.

Theorem 1 ([1, Theorem 2.1]). A function φ : [0, 1] → [0, 1] is a maximal
cDFF if and only if φ(0) = 0, φ is superadditive and φ is symmetric in the sense
φ(x) + φ(1 − x) = 1.

Theorem 2 ([1, Theorem 3.1]). Let φ : R → R be a given function. If φ satisfies
the following conditions, then φ is a maximal gDFF: (i) φ(0) = 0. (ii) φ is
symmetric in the sense φ(x) + φ(1 − x) = 1. (iii) φ is superadditive. (iv) There
exists an ε > 0 such that φ(x) ≥ 0 for all x ∈ (0, ε).

If φ is a maximal gDFF, then φ satisfies conditions (i), (iii) and (iv).

Remark 1. The function φ(x) = cx for 0 ≤ c < 1 is a maximal gDFF but it does
not satisfy condition (ii). Note that conditions (i), (iii) and (iv) guarantee that
any maximal gDFF is nondecreasing and consequently nonnegative on R+.

Proposition 1 shows that any maximal gDFF is the sum of a linear func-
tion and a bounded function. Proposition 2 explains the behavior of nonlinear
maximal gDFFs at given points. Proposition 3 uses gDFFs to generate valid
inequalities for general linear integer optimization problems.

Proposition 1 ([1, Proposition 3.4]). If φ : R → R is a maximal gDFF and
t = sup{φ(x)

x : x > 0}. Then we have limx→∞
φ(x)

x = t ≤ −φ(−1), and for any
x ∈ R, it holds that: tx − max{0, t − 1} ≤ φ(x) ≤ tx.

Proposition 2 ([1, Proposition 3.5]). If φ : R → R is a maximal gDFF and
not of the kind φ(x) = cx for 0 ≤ c < 1, then φ(1) = 1 and φ(12 ) = 1

2 .

Proposition 3 ([1, Proposition 5.1]). If φ is a maximal gDFF and L = {x ∈
Z

n
+ :

∑n
j=1 aijxj ≤ bj , i = 1, 2, . . . ,m}, then for any i,

∑n
j=1 φ(aij)xj ≤ φ(bj) is

a valid inequality for L.

3 Characterization of Maximal General DFFs

Alves et al. [1] provided several sufficient conditions and necessary conditions of
maximal gDFFs in Theorem 2, but they do not match precisely. Inspired by the
characterization of minimal cut-generating functions in the Yıldız–Cornuéjols
model [21], we complete the characterization of maximal gDFFs.

Proposition 4. A function φ : R → R is a maximal gDFF if and only if the
following conditions hold: (i) φ(0) = 0. (ii) φ is superadditive. (iii) φ(x) ≥ 0
for all x ∈ R+. (iv) φ satisfies the generalized symmetry condition in the sense
φ(r) = infk{ 1

k (1 − φ(1 − kr)) : k ∈ Z+}.
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Proof. Suppose φ is a maximal gDFF, then conditions (i), (ii), (iii) hold by
Theorem 2. For any r ∈ R and k ∈ Z+, kr+(1−kr) = 1 ⇒ kφ(r)+φ(1−kr) ≤ 1.
So φ(r) ≤ 1

k (1 − φ(1 − kr)) for any positive integer k, then φ(r) ≤ infk{ 1
k (1 −

φ(1 − kr)) : k ∈ Z+}.
If there exists r0 such that φ(r0) < infk{ 1

k (1 − φ(1 − kr0)) : k ∈ Z+}, then
define a function φ1 which takes value infk{ 1

k (1 − φ(1 − kr0)) : k ∈ Z+} at r0
and φ(r) if r 	= r0. We claim that φ1 is a gDFF which dominates φ. Given a
function y : R → Z+ with finite support and satisfying

∑
r∈R

r y(r) ≤ 1, we have∑
r∈R

φ1(r) y(r) = φ1(r0) y(r0) +
∑

r �=r0
φ(r) y(r). If y(r0) = 0, then it is clear

that
∑

r∈R
φ1(r) y(r) ≤ 1. Let y(r0) ∈ Z+, then φ1(r0) ≤ 1

y(r0)
(1−φ(1−y(r0) r0))

by definition of φ1, then φ1(r0) y(r0)+φ(1−y(r0) r0) ≤ 1. From the superadditive
condition and increasing property, we get

∑
r �=r0

φ(r) y(r) ≤ φ(
∑

r �=r0
r y(r)) ≤

φ(1 − y(r0) r0). From the two inequalities we conclude that φ1 is a gDFF and
dominates φ, which contradicts the maximality of φ. So the condition (iv) holds.

Suppose there is a function φ : R → R satisfying all four conditions. Choose
r = 1 and k = 1, we can get φ(1) ≤ 1. Together with conditions (i), (ii), (iii), we
conclude that φ is a gDFF. Assume that there is a gDFF φ1 dominating φ and
there exists r0 such that φ1(r0) > φ(r0) = infk{ 1

k (1 − φ(1 − kr0)) : k ∈ Z+}. So
there exists some k ∈ Z+ such that

φ1(r0) >
1
k

(1 − φ(1 − kr0))

⇔ kφ1(r0) + φ(1 − kr0) > 1
⇒ kφ1(r0) + φ1(1 − kr0) > 1.

The last step contradicts the fact that φ1 is a gDFF. Therefore, φ is maximal.

Parallel to the restricted minimal and strongly minimal functions in the
Yıldız–Cornuéjols model [21], “restricted maximal” and “strongly maximal”
gDFFs are defined by strengthening the notion of maximality.

Definition 2. We say that a gDFF φ is implied via scaling by a gDFF φ1, if
βφ1 ≥ φ for some 0 ≤ β ≤ 1. We call a gDFF φ : R → R restricted maximal
if φ is not implied via scaling by a distinct gDFF φ1. We say that a gDFF φ
is implied by a gDFF φ1, if φ(x) ≤ βφ1(x) + αx for some 0 ≤ α, β ≤ 1 and
α + β ≤ 1. We call a gDFF φ : R → R strongly maximal if φ is not implied by
a distinct gDFF φ1.

Suppose a gDFF φ is not strongly maximal, or equivalently φ is implied by
a distinct gDFF φ1, then the following inequalities indicate that

∑
φ1(x) ≤ 1 is

stronger than
∑

φ(x) ≤ 1. Similar conclusion can be drawn for non-restricted
maximal gDFFs.

∑
φ(x) ≤

∑
(βφ1(x) + αx) = β

∑
φ1(x) + α

∑
x ≤ β + α ≤ 1.

Note that restricted maximal gDFFs are maximal and strongly maximal
gDFFs are restricted maximal. Based on the definition of strong maximal-
ity, φ(x) = x is implied by the zero function, so φ is not strongly maximal,
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though it is extreme. We include the characterizations of restricted maximal
and strongly maximal gDFFs here, which only involve the standard symme-
try condition instead of the generalized symmetry condition. The proofs of the
characterizations are omitted since they can be easily adapted from the proof of
Proposition 4.

Theorem 3. A function φ : R → R is a restricted maximal gDFF if and only if
φ is a maximal gDFF and φ(x) + φ(1 − x) = 1.

Theorem 4. A function φ : R → R is a strongly maximal gDFF if and only if
φ is a restricted maximal gDFF and limε→0+

φ(ε)
ε = 0.

Remark 2. Let φ be a maximal gDFF that is not linear, we know that φ(1) = 1
from Proposition 2. If φ is implied via scaling by a gDFF φ1, or equivalently
βφ1 ≥ φ for some 0 ≤ β ≤ 1, then βφ1(1) ≥ φ(1). Then β = 1 and φ is dominated
by φ1. The maximality of φ implies φ = φ1, so φ is restricted maximal. Therefore,
we have a simpler version of characterization of maximal gDFFs.

Theorem 5. A function φ : R → R is a maximal gDFF if and only if the fol-
lowing conditions hold:

(i) φ(0) = 0.
(ii) φ is superadditive.
(iii) φ(x) ≥ 0 for all x ∈ R+.
(iv) φ(x) + φ(1 − x) = 1 or φ(x) = cx, 0 ≤ c < 1.

The following theorem indicates that maximal, restricted maximal and
strongly maximal gDFFs exist, and they are potentially stronger than just valid
gDFFs. The proof is analogous to the proof of [21, Theorem 1, Proposition 6,
Theorem 9] and is therefore omitted.

Theorem 6. (i) Every gDFF is dominated by a maximal gDFF.
(ii) Every gDFF is implied via scaling by a restricted maximal gDFF.
(iii) Every nonlinear gDFF is implied by a strongly maximal gDFF.

4 Relation to Cut-Generating Functions

We define an infinite dimensional space Y called “the space of nonbasic vari-
ables” as Y = {y : y : R → Z+ and y has finite support}, and we refer to the
zero function as the origin of Y . In this section, we study valid inequalities of
certain subsets of the space Y and connect gDFFs to a particular family of
cut-generating functions.

Yıldız and Cornuéjols [21] considered the following generalization of the
Gomory–Johnson model:

x = f +
∑

r∈R

r y(r) (1)
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x ∈ S, y : R → Z+, and y has finite support.

where S can be any nonempty subset of R. A function π : R → R is called
a valid cut-generating function if the inequality

∑
r∈R

π(r) y(r) ≥ 1 holds for
all feasible solutions (x, y) to (1). In order to ensure that such cut-generating
functions exist, they only consider the case f /∈ S. Otherwise, if f ∈ S, then
(x, y) = (f, 0) is a feasible solution and there is no function π which can make
the inequality

∑
r∈R

π(r) y(r) ≥ 1 valid. Note that all valid inequalities in the
form of

∑
r∈R

π(r) y(r) ≥ 1 to (1) are inequalities which separate the origin of Y .
We consider two different but related models in the form of (1). Let f = −1,

S = {0}, and the feasible region Y=1 = {y :
∑

r∈R
r y(r) = 1, y : R →

Z+ and y has finite support}. Let f = −1, S = (−∞, 0], and the feasible region
Y≤1 = {y :

∑
r∈R

r y(r) ≤ 1, y : R → Z+ and y has finite support}. It is imme-
diate to check that the latter model is the relaxation of the former. Therefore
Y=1 � Y≤1 and any valid inequality for Y≤1 is also valid for Y=1.

Jeroslow [14], Blair [9] and Bachem et al. [3] studied minimal valid inequali-
ties of the set Y=b = {y :

∑
r∈R

r y(r) = b, y : R → Z+ and y has finite support}.
Note that Y=b is the set of feasible solutions to (1) for S = {0}, f = −b. The
notion “minimality” they used is in fact the restricted minimality in the Yıldız–
Cornuéjols model. In this section, we use the terminology introduced by Yıldız
and Cornuéjols. Jeroslow [14] showed that finite-valued subadditive (restricted
minimal) functions are sufficient to generate all necessary valid inequalities of
Y=b for bounded mixed integer programs. Kılınç-Karzan and Yang [15] dis-
cussed whether finite-valued functions are sufficient to generate all necessary
inequalities for the convex hull description of disjunctive sets. Interested read-
ers are referred to [15] for more details on the sufficiency question. Blair [9]
extended Jeroslow’s result to rational mixed integer programs. Bachem et al. [3]
characterized restricted minimal cut-generating functions under some continuity
assumptions, and showed that restricted minimal functions satisfy the symmetry
condition.

In terms of the relaxation Y≤1, gDFFs can generate the valid inequalities in
the form of

∑
r∈R

φ(r) y(r) ≤ 1, and such inequalities do not separate the origin.
Note that there is no valid inequality separating the origin since 0 ∈ Y≤1.

Cut-generating functions provide valid inequalities which separate the origin
for Y=1, but such inequalities are not valid for Y≤1. In terms of inequalities that
do not separate the origin, any inequality in the form of

∑
r∈R

φ(r) y(r) ≤ 1
generated by some gDFF φ is valid for Y≤1 and hence valid for Y=1, since the
model of Y≤1 is the relaxation of that of Y=1. Clearly, there also exist valid
inequalities which do not separate the origin for Y=1 but are not valid for Y≤1.

Yıldız and Cornuéjols [21] introduced the notions of minimal, restricted min-
imal and strongly minimal cut-generating functions. We call the cut-generating
functions to the model (1) when f = −1, S = {0} cut-generating functions
for Y=1. We restate the definitions and characterizations of minimality of such
cut-generating functions for Y=1. A valid cut-generating function π is called
minimal if it does not dominate another valid cut-generating function π′. A cut-
generating function π′ implies a cut-generating function π via scaling if there
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exists β ≥ 1 such that π ≥ βπ′. A valid cut-generating function π is restricted
minimal if there is no another cut-generating function π′ implying π via scaling.
A cut-generating function π′ implies a cut-generating function π if there exist
α, β, and β ≥ 0, α+β ≥ 1 such that π(x) ≥ βπ′(x)+αx. A valid cut-generating
function π is strongly minimal if there is no another cut-generating function π′

implying π. As for the strong minimality and extremality, they mainly focused
on the case where f ∈ conv(S) and conv(S) is full-dimensional.

Theorem 7. A function π : R → R is a minimal cut-generating function for
Y=1 if and only if π(0) = 0, π is subadditive, and π(r) = supk{ 1

k (1−π(1−kr)) :
k ∈ Z+}.
Theorem 8. A function π : R → R is a restricted minimal cut-generating func-
tion for Y=1 if and only if π is minimal and π(1) = 1.

We show that gDFFs are closely related to cut-generating functions for Y=1.
The main idea is that valid inequalities generated by cut-generating functions for
Y=1 can be lifted to valid inequalities generated by gDFFs for the relaxation Y≤1.
The procedure involves adding a multiple of the defining equality

∑
r∈R

r y(r) =
1 to a valid inequality, which is called “tilting” by Aráoz et al. [2].

The following theorem describes the conversion between gDFFs and cut-
generating functions for Y=1. We omit the proof which is a straightforward
computation, utilizing the characterization of (restricted) maximal gDFFs and
(restricted) minimal cut-generating functions.

Theorem 9. Given a valid/maximal/restricted maximal gDFF φ, then for every
0 < λ < 1, the following function is a valid/minimal/restricted minimal cut-
generating function for Y=1:

πλ(x) =
x − (1 − λ)φ(x)

λ
.

Given a valid/minimal/restricted minimal cut-generating function π for Y=1,
which is Lipschitz continuous at x = 0, then there exists δ > 0 such that for all
0 < λ < δ the following function is a valid/maximal/restricted maximal gDFF:

φλ(x) =
x − λπ(x)

1 − λ
, 0 < λ < 1.

Remark 3. We discuss the distinctions between these two families of functions.

(i) It is not hard to prove that extreme gDFFs are always maximal. However,
unlike cut-generating functions for Y=1, extreme gDFFs are not always
restricted maximal. φ(x) = 0 is an extreme gDFF but not restricted maxi-
mal.

(ii) By applying the proof of [21, Proposition 28], we can show that no strongly
minimal cut-generating function for Y=1 exists. However, there do exist
strongly maximal gDFFs by Theorem 6. Moreover, we can use the same con-
version formula in Theorem 9 to convert a restricted minimal cut-generating
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function to a strongly maximal gDFF (see Theorem 10 below). In fact, it
suffices to choose a proper λ such that limε→0+

φλ(ε)
ε = 0 by the character-

ization of strongly maximal gDFFs (Theorem 4).
(iii) There is no extreme piecewise linear cut-generating function π for Y=1

which is Lipschitz continuous at x = 0, except for π(x) = x. If π is such
an extreme function, then for any λ small enough, we claim that φλ is an
extreme gDFF. Suppose φλ = 1

2φ1+ 1
2φ2 and let π1

λ, π2
λ be the corresponding

cut-generating functions of φ1, φ2 by Theorem 9. Note that π = 1
2 (π1

λ +π2
λ),

which implies π = π1
λ = π2

λ and φλ = φ1
λ = φ2

λ. Thus φλ is extreme. By
Lemma 1 in the next section and the extremality of φλ, we know φλ(x) = x
or there exists ε > 0, such that φλ(x) = 0 for x ∈ [0, ε). If φλ(x) = x, then
π(x) = x. Otherwise, limx→0+

φλ(x)
x = 0 for any small enough λ.

0 = lim
x→0+

φλ(x)
x

= lim
x→0+

x − λπ(x)
(1 − λ)x

=
1 − λ limx→0+

π(x)
x

1 − λ
.

The above equation implies limx→0+
π(x)

x = 1
λ for any small enough λ,

which is not possible. Therefore, π cannot be extreme except for π(x) = x.

Theorem 10. Given a non-linear restricted minimal cut-generating function π
for Y=1, which is Lipschitz continuous at 0, then there exists λ > 0 such that the
following function is a strongly maximal gDFF:

φλ(x) =
x − λπ(x)

1 − λ
.

5 Two-Slope Theorem

In this section, we prove a 2-slope theorem for extreme gDFFs, in the spirit of
the 2-slope theorem of Gomory and Johnson [10,11].

Lemma 1. Let φ be a piecewise linear1 extreme gDFF.

(i) If φ is strictly increasing, then φ(x) = x.
(ii) If φ is not strictly increasing, then there exists ε > 0, such that φ(x) = 0

for x ∈ [0, ε).

Proof. We provide a proof sketch.
By studying the superadditivity of maximal gDFFs, it is not hard to prove

that φ is continuous at 0 from the right. Suppose φ(x) = sx, x ∈ [0, x1) and
s > 0. We claim 0 ≤ s < 1 due to maximality of φ and φ(1) = 1. Define a
function: φ1(x) = φ(x)−sx

1−s , and it is straightforward to show that φ1 is maximal,
and φ(x) = sx + (1 − s)φ1(x). From the extremality of φ, s = 0 or φ(x) = x.

1 We will use the term “piecewise linear” throughout the paper without explanation.
We refer readers to [13] for precise definitions of “piecewise linear” functions in both
continuous and discontinuous cases.
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From Lemma 1, we know 0 must be one slope value of a piecewise linear
extreme gDFF φ, except for φ(x) = x. Next, we introduce the 2-slope theorem
for extreme gDFFs. The proof is parallel to the proof of the Gomory–Johnson’s
2-slope theorem and therefore omitted.

Theorem 11. Let φ be a continuous piecewise linear strongly maximal gDFF
with only 2 slope values, then φ is extreme.

Remark 4. Alves et al. [1] claimed the following functions by Burdet and John-
son with one parameter C ≥ 1 are maximal gDFFs, where {a} represents the
fractional part of a.

φBJ,1(x;C) =
�Cx� + max(0, {Cx}−{C}

1−{C} )

�C� .

Actually we can prove that they are extreme. If C ∈ N, then φBJ,1(x) = x. If
C /∈ N, φBJ,1 is a continuous 2-slope maximal gDFF with one slope value 0,
therefore it is extreme by Theorem 11. Figure 1 shows two examples of φBJ,1

and they are constructed by the Python function phi 1 bj gdff2.

Fig. 1. φBJ,1 [1, Example 3.1] for C = 3/2 (left) and C = 7/3 (right).

6 Restricted Maximal General DFFs Are Almost
Extreme

In this section, we prove that extreme gDFFs are dense in the set of continu-
ous restricted maximal gDFFs. Equivalently, for any given continuous restricted
maximal gDFF φ, there exists an extreme gDFF φext which approximates φ as
close as desired (with the infinity norm). The idea of the proof is inspired by the

2 In this paper, a function name shown in typewriter font is the name of the function
in our SageMath program [12]. At the time of writing, the function is available on
the feature branch gdff. Later it will be merged into the master branch.
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approximation theorem of Gomory–Johnson functions [8]. We first introduce the
main theorem in this section. The approximation3 is implemented for piecewise
linear functions with finitely many pieces.

Theorem 12. Let φ be a continuous restricted maximal gDFF, then for any
ε > 0, there exists an extreme gDFF φext such that ‖φ − φext‖∞ < ε.

Remark 5. The result cannot be extended to maximal gDFF. φ(x) = ax is max-
imal but not extreme for 0 < a < 1. Any non-trivial extreme gDFF φ′ satisfies
φ′(1) = 1. φ′(1) − φ(1) = 1 − a > 0 and 1 − a is a fixed positive constant.

We briefly explain the structure of the proof. Similar to [4–7], we introduce
a function ∇φ : R × R → R, ∇φ(x, y) = φ(x + y) − φ(x) − φ(y), which measures
the slack in the superadditivity condition. First we approximate a continuous
restricted maximal gDFF φ by a piecewise linear maximal gDFF φpwl. Next, we
perturb φpwl such that the new maximal gDFF φloose satisfies ∇φloose(x, y) >
γ > 0 for “most” (x, y) ∈ R

2. After applying the 2-slope fill-in procedure to
φloose, we get a superadditive 2-slope function φfill-in, which is not symmetric
anymore. Finally, we symmetrize φfill-in to get the desired φext.

By studying the superadditivity of maximal gDFFs near the origin, it is not
hard to prove Lemma 2. By choosing a large enough q ∈ N and interpolating the
function over 1

q Z we can obtain Lemma 3.

Lemma 2. Any continuous restricted maximal gDFF φ is uniformly continuous.

Lemma 3. Let φ be a continuous restricted maximal gDFF, then for any ε > 0,
there exists a piecewise linear continuous restricted maximal gDFF φpwl, such
that ‖φ − φpwl‖∞ < ε

3 .

Next, we introduce a parametric family of restricted maximal gDFFs φs,δ

which will be used to perturb φpwl.

φs,δ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sx − sδ if x < −δ

2sx if − δ ≤ x < 0

0 if 0 ≤ x < δ
1

1−2δ
x − δ

1−2δ
if δ ≤ x < 1 − δ

1 1 − δ ≤ x < 1

2sx − 2s + 1 1 ≤ x < 1 + δ

sx − s + 1 + sδ x ≥ 1 + δ

Fig. 2. φs,δ for s = 1
5

and δ = 2.

φs,δ is a continuous piecewise linear function, which has breakpoints: −δ, 0,
δ, 1 − δ, 1, 1 + δ and slope values: s, 2s, 0, 1

1−sδ , 0, 2s, s in each affine piece.

3 See the constructor two slope approximation gdff linear.
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Figure 2 shows the graph of one φs,δ function constructed by the Python function
phi s delta.

Let Eδ = {(x, y) ∈ R
2 : −δ < x < δ or −δ < y < δ or 1−δ < x+y < 1+δ}.

We claim that φs,δ is a continuous restricted maximal gDFF and ∇φs,δ(x, y) ≥ δ
for (x, y) /∈ Eδ, if s > 1 and 0 < δ < min{ s−1

2s , 1
3}. Verifying the above properties

of φs,δ is a routine computation by analyzing the superadditivity slack at every
vertex in the two-dimensional polyhedral complex of φs,δ, which can also be
verified by using metaprogramming4 [12] in SageMath.

Lemma 4. Let φpwl be a piecewise linear continuous restricted maximal gDFF,
then for any ε > 0, there exists a piecewise linear continuous restricted maximal
gDFF φloose satisfying: (i) ‖φloose − φpwl‖∞ < ε

3 ; (ii) there exist δ, γ > 0 such
that ∇φloose(x, y) ≥ γ for (x, y) not in Eδ.

Proof. By Proposition 1, let t = limx→∞
φpwl(x)

x , then tx− t+1 ≤ φpwl(x) ≤ tx.
We can assume t > 1, otherwise φpwl is the identity function and the result is
trivial. Choose s = t and δ small enough such that 0 < δ < min{ s−1

2s , 1
3 , 1

q }, where
q is the denominator of breakpoints of φpwl in previous lemma. We know that
the limiting slope of maximal gDFF φt,δ is also t and tx − t + 1 ≤ φt,δ(x) ≤ tx,
which implies ‖φt,δ − φpwl‖∞ ≤ t − 1.

Define φloose = (1 − ε
3(t−1) )φpwl + ε

3(t−1) φt,δ. It is immediate to check φloose

is restricted maximal. ‖φloose − φpwl‖∞ < ε
3 is due to ‖φt,δ − φpwl‖∞ ≤ t − 1.

Based on the property of φt,δ, ∇φloose(x, y) = (1 − ε
3(t−1) )∇φpwl(x, y) +

ε
3(t−1)∇φt,δ(x, y) ≥ ε

3(t−1)∇φt,δ(x, y) ≥ γ = εδ
3(t−1) for (x, y) not in Eδ.

The proof of Lemma 5 is similar to the proof of [8, Lemma 3.3] and therefore
omitted.

Lemma 5. Given a piecewise linear continuous restricted maximal gDFF φloose

satisfying properties in previous lemma, there exists an extreme gDFF φext such
that ‖φloose − φext‖∞ < ε

3 .

Combine the previous lemmas, then we can conclude the main theorem.
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Abstract. An online algorithm is typically unaware of the length of the
input request sequence that it is called upon. Consequently, it cannot
determine whether it has already processed most of its input or whether
the bulk of work is still ahead.

In this paper, we are interested in whether some sort of orientation
within the request sequence is nevertheless possible. Our objective is to
preemptively guess the center of a request sequence of unknown length
n: While processing the input, the online algorithm maintains a guess
for the central position n/2 and is only allowed to update its guess to
the position of the current element under investigation. We show that
there is a randomized algorithm that in expectation places the guess at
a distance of 0.172n from the central position n/2, and we prove that
this is best possible. We also give upper and lower bounds for a natural
extension to weighted sequences.

This problem has an application to preemptively partitioning integer
sequences and is connected to the online bidding problem.

1 Introduction

Online Algorithms. Online algorithms process their inputs item by item in a
linear fashion. They are characterized by the fact that the algorithm’s decision
as to how to process the current input item is irrevocable. A key difficulty in the
design of online algorithms is that they are typically unaware of the length of the
input request sequence1. Indeed, for many online problems (e.g. problems with
a rent or buy flavor such as the ski rental problem [2]), knowing the input length
would allow the algorithm to solve the problem optimally. Without knowing
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the input length, online algorithms are unable to determine the position of the
current element within the request sequence.

Guessing the Center. In this paper, we ask whether we can nevertheless obtain
some sort of orientation within the request sequence. We study the natural task
of guessing the central position n/2 within a request sequence of unknown length
n in an online fashion. In this problem, the online algorithm maintains a guess of
the central position while processing the input request sequence. The algorithm
is only allowed to update its guess to the position of the current element under
investigation. It may thus potentially update the guess many times, however,
each update bears the risk that the input sequence may end very soon and the
guess is thus far from the center. Such an algorithm follows the following scheme:

Algorithm 1. Scheme for Preemptively Guessing the Center
p ← 0 {initialization of our guess}
for each request j = 1, 2, . . . , n do {n is unknown}

if TODO: add condition here then {update guess}
p ← j

return p

We also study a generalization of this problem to weighted requests. This
is best modelled as follows. The online algorithm processes a sequence X =
w1, w2, . . . , wn of positive integers. Let W =

∑n
i=1 wi be the total weight of the

sequence. We assume that there exists an index m with 1 ≤ m ≤ n, such that∑m
i=1 wi =

∑n
i=m+1 wi, i.e., the sequence can be split into two parts of equal

weight. This assumption is necessary for a meaningful problem definition as we
will discuss in Sect. 4.1 in more detail. While processing X, an online algorithm
A maintains a guess p for the position m as in the unweighted case. The objective
is to minimize the weight between the guess p and the position m of the central
weight, that is, the deviation

ΔX
A :=

max{p,m}∑

i=min{p,m}+1

wi ,

is to be minimized, where A refers to the employed algorithm and X is the
input sequence. Note that the unweighted version of this problem is obtained by
setting wi = 1, for every 1 ≤ i ≤ n. One property of this definition is that we
only consider unweighted sequences of even length, since sequences of odd lengths
cannot be split into two parts of equal weight. This is only for convenience; a
meaningful problem statement with similar results for unweighted sequences of
odd lengths can easily be derived from this work. For unweighted sequences we
write Δn

A instead of ΔX
A , where n denotes the input length.

Results. For unweighted request sequences, we give an optimal randomized
preemptive online algorithm for guessing the center. Our algorithm has expected
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deviation 0.172n from the central position n/2 (Theorem 1). Our main result is
a lower bound, which shows that this is best possible (Theorem 3). We further
give a barely random algorithm that uses only a single random bit and reports a
position with expected deviation 0.25n. This is also proved to be best possible for
the class of algorithms that only use a single random bit. For weighted sequences,
we give a randomized preemptive online algorithm that reports a position with
expected deviation 0.313W , where W is the total weight of the input sequence
(Theorem 4). This is complemented by a lower bound of 0.25W (Theorem 5).
Closing this gap proves challenging and is left as an open problem.

Techniques. Both our algorithms for unweighted and weighted sequences
employ the doubling method with a random seed. In the unweighted case, our
algorithm updates its guess to the current position j if j ∈ {�xiδ� | i ∈ N} (this
condition is slightly different in the weighted case), where x > 2 is an optimized
parameter that determines the step size between the guesses (this parameter is
different for weighted and unweighted sequences), and δ ∈ (0, 1) is a seed that
is chosen uniformly at random. This technique is well known and has previously
been applied for various problems, see for example [3]. While our algorithms are
extremely simple, their analyses require careful case distinctions.

Our main result is a lower bound for unweighted sequences, which proves
that the doubling method is optimal. The argument relies on Yao’s Minimax
principle [4]. We define a hard input distribution where the probability of a
specific input length is inversely proportional to its length. We then argue that
a deterministic guessing algorithm, which can be identified by a sequence of
increasing positions at which it updates its guess, will in expectation (over the
hard input distribution) have a deviation of 0.172n from the central position.
By Yao’s Minimax principle, this implies that our algorithm for unweighted
sequences is best possible. This argument is the most technical contribution
of the paper. The lower bound for weighted sequences follows the same line,
however, it uses a sequence of exponentially increasing weights.

Further Related Work. Preemptively guessing the center is strongly related
to the online bidding problem [5]. In online bidding, the objective is to guess an
unknown target value. The algorithm submits increasing guesses until a guess
that is at least as large as the target value is submitted. For this problem, the
usual cost function is the sum of the submitted guesses, which is very differ-
ent from our cost function. However, similarly to the problem of guessing the
center, an optimal randomized strategy can be obtained by using a sequence of
exponentially increasing guesses.

Guessing the center is a special case of the problem of partitioning integer
sequences. In this problem, an integer array A of length n and an integer p ≥ 2
is given, and the goal is to find (p − 1) separator positions s1, s2, . . . , sp−1 with
1 = s0 ≤ s1 ≤ s2 ≤ · · · ≤ sp−1 ≤ sp = n+1 such that max{∑sj+1−1

i=sj
Ai | 0 ≤ j <

p} is minimized. This load balancing task has a long history in the offline setting
(e.g. [6–9]) and has recently been studied in the context of data streams [10]
and online algorithms [11] by the authors of this paper. In the preemptive online
model, an algorithm is only allowed to insert a new partition separator at the
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current position, and, once all separators have been placed, previously inserted
separators can be removed and then reinserted again. As shown in [11], a 2-
approximation algorithm for arbitrary values of p can be obtained. The special
case p = 2 boils down to determining the central position of an integer sequence
using a preemptive guessing scheme. The problem studied in this paper thus
correspond to preemptively partitioning an integer sequence of length n into
two parts of equal weights.

Outline. We give our algorithm for unweighted sequences in Sect. 2 and our
lower bound for unweighted sequences in Sect. 3. In Sect. 4, we address extensions
to weighted sequences. We conclude with an open problem in Sect. 5. Due to
space restrictions, we only sketch the proofs of Theorems 4 and 5 are defer the
full proofs to the complete version of this paper.

2 Algorithm for Guessing the Center

Our algorithm, denoted Ax, is parametrized by a real number x > 2. It employs a
well-known doubling technique with randomized seeding. We first pick a seed δ ∈
(0, 1) uniformly at random. The parameter x determines the distance between
two consecutive guesses and will be optimized later. The algorithm updates
our guess for the central position whenever we process requests �x1+δ�, �x2+δ�,
�x3+δ�, . . . . This is depicted in Algorithm 2.

Algorithm 2. Algorithm Ax for guessing the center
Choose uniform random δ ∈ (0, 1), i ← 0, p ← 0 {initialization}
for each request j = 1, 2, . . . , n do {n is unknown}

if j = �xi+δ� then {update guess}
p ← j
i ← i + 1

return p

While the suggested doubling strategy is fairly standard, the analysis requires
a very careful case distinction. Moreover, this algorithm is optimal, which will
be proved in Sect. 3.

One may wonder about the choice of δ to be a real-valued quantity of pre-
sumably infinite precision. This assumption is only taken for convenience in the
analysis; a bit precision of O(log n) is enough to provide sufficient granularity.
This does not mean that n needs to be known in advance in order to deter-
mine the O(log n) random bits: We can choose additional random bits for the
description of δ when necessary as the algorithm proceeds.

After giving the analysis of our main algorithm, we further present an algo-
rithm that uses only a single random bit and achieves an expected deviation
of 0.25n. We also prove that this is best possible for the class of algorithms
that only use a single random bit. Observe that deterministic algorithms (i.e.,
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using no randomness at all) fail for guessing the center: If the input sequence
ends exactly when the deterministic algorithm has updated its guess, then the
deviation is as large as it could be. Without randomness, this is unavoidable.

Theorem 1. There is a constant x ≈ 3.052 such that:

E
[
Δn

Ax

] ≈ 0.172n + O(1).

Proof. Let α ∈ [0, 1) and i ∈ N be such that n = 2xi+α. Then the central
position is n

2 = xi+α. In order to bound the expected deviation, we conduct a
case distinction for various ranges of α and δ. We distinguish two ranges for α,
and within each case, we distinguish three ranges of δ.

Case 1: α > 1 − logx 2 (note that we assumed x > 2). In order to bound Δn
Ax

,
we split the possible values of δ into three subsets:

– If δ ∈ (0, α + logx 2 − 1], then we have that xδ+i+1 ≤ 2xi+α = n. In this case,
the deviation is Δn

Ax
= xδ+i+1 − n/2 = xδ+i+1 − xi+α.

– If δ ∈ (α + logx 2 − 1, α], then we have that xδ+i+1 > n but xδ+i ≤ n
2 . In this

case, Δn
Ax

= xi+α − xδ+i.
– If δ ∈ (α, 1), then we have that xδ+i+1 > n and xδ+i ∈ (n

2 , n). In this case,
Δn

Ax
= xδ+i − xi+α.

Using these observations, we can bound the expected deviation as follows:

E
[
Δn

Ax

]
=

∫ α+logx 2−1

0

(xδ+i+1 − xi+α)dδ +
∫ α

α+logx 2−1

(xα+i − xδ+i)dδ

+
∫ 1

α

(xδ+i − xα+i)dδ

= xi+α ·
(

1 − 2 logx 2 +
2

x ln x

)

.

Case 2: α ≤ 1 − logx 2. We deal with this case similarly, but we need to group
the possible values for δ in a different way:

– If δ ∈ (0, α], then xδ+i+1 > n but xδ+i ≤ n
2 . In this case, Δn

Ax
= xi+α −xδ+i.

– If δ ∈ (α, α + logx 2], then xδ+i > n
2 and xδ+i ≤ n. In this case, Δn

Ax
=

xδ+i − xi+α.
– If δ ∈ (α + logx 2, 1), then xδ+i > n. In this case, Δn

Ax
= xi+α − xδ+i−1.

Plugging the values above in the formula for the expected value, we obtain
a different sum of integrals, which however leads to the same function as above:

E
[
Δn

Ax

]
=

∫ α

0

(xα+i − xδ+i)dδ +
∫ α+logx 2

α

(xδ+i − xi+α)dδ

+
∫ 1

α+logx 2

(xα+i − xδ+i−1)dδ

= xi+α ·
(

1 − 2 logx 2 +
2

x ln x

)

.



282 C. Konrad and T. Tonoyan

Moreover, the factor 1 − 2 logx 2 + 2
x ln x above is independent of α. Thus, it

remains to find a value of x that minimizes f(x)
def
= 1 − 2 logx 2 + 2

x ln x .
Observe that f ′(x) = − 2

x2 ln2 x
− 2

x2 ln x + ln 2
x ln2 x

, and f ′(x) = 0 if and only
if x = log2(ex). With a simple transformation, the latter is equivalent to
zez = − ln 2

e with z = −x ln 2, so the value that minimizes f(x) can be computed
as xmin = −W−1(− ln 2/e)

ln 2 ≈ 3.052, where W−1 is the lower branch of Lambert’s
W function. The claim of the theorem follows by calculating f(xmin) ≈ 0.344.
The additive O(1) corresponds to the approximation of the finite range of δ by
a continuous distribution. �	

Next, we give an algorithm that only relies on a single random bit. We prove
that its expected deviation from the center is 0.25n, which is best possible.

Algorithm 3. Single-bit algorithm A0

i ← 0 or 1 with probability 1/2 each, p ← 0 {initialization}
for each request j = 1, 2, . . . n do {n is unknown}

if j = 2i then
p ← j {update guess to current position}
i ← i + 2

return p

Theorem 2. The expected deviation of algorithm A0 is E
[
Δn

A0

] ≤ 0.25n, which
is optimal for the class of algorithms that only use a single random bit.

Proof. Let α ∈ [0, 1) and i ∈ N be such that the length of the sequence is
n = 2 · 2i+α. Since 2i+2 > n, the algorithm reports either position 2i or position
2i+1, each with probability 1/2. In the first case, the deviation from the center
is n/2 − 2i, while in the second case it is 2i+1 − n/2. Thus, in expectation, we
have, as required, E

[
Δn

A0

]
= 1

2 · (n/2 − 2i) + 1
2 · (2i+1 − n/2) = 2i−1 ≤ n/4.

In order to see that this is best possible for the class of algorithms that only
use a single random bit, first observe that a randomized algorithm that uses a
single random bit is a uniform distribution over two deterministic algorithms.
Note further that each deterministic algorithm is a fixed (potentially infinite)
sequence of positions at which it updates its guess. Suppose that B is such
a randomized algorithm, and let S1 = {p1, p2, . . . } and S2 = {q1, q2, . . . } be
the corresponding sequences. Now, if the sequence has length pi for some i, B
would have maximal deviation if it chooses the first sequence (with probability
1/2), and may have minimal deviation 0 (with the remaining 1/2 probability) if
the largest qj ≤ pi is equal to pi/2. Therefore the smallest expected deviation
achievable is n/4, which implies that our algorithm is optimal. �	

3 Lower Bound

We prove that no algorithm can achieve a smaller expected deviation than the
one claimed in Theorem 1. The proof applies Yao’s Minimax principle and uses
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a hard input distribution over all-ones sequences of length n ∈ [nmin, nmax], for
some large values of nmin and nmax, where the probability that the sequence is
of length n is proportional to 1/n.

Theorem 3. For any randomized algorithm A, the expected deviation is

E [Δn
A] ≥ 0.172n.

Proof. We will prove the theorem by using Yao’s Minimax principle [4]. To this
end, let us first consider an arbitrary deterministic algorithm Adet. Assume
the length of the sequence is random in the interval X := [nmin, nmax] for
large values of nmax and nmin with nmax > 2 · nmin and has the follow-
ing distribution: The sequence ends at position n ∈ X with probability pn

which is proportional to 1
n , i.e., using the definition S =

nmax∑

m=nmin

1
m

, we have

pn := P[sequence is of length n] = 1
n·S .

In order to apply the Minimax principle, we will consider a normalized mea-
sure of the performance of an algorithm. For an algorithm A, let Bn

A denote the
larger of the two parts created by the algorithm for a sequence of length n, and
let Rn

A = Bn
A

n/2 ∈ [1, 2]. Then it is easily verified that

Δn
A = Bn

A − n

2
= n · Rn

A − 1
2

.

We will show that for each deterministic algorithm Adet, if the input is dis-
tributed as above, then E

[
Rn

Adet

] ≥ 1.344 − O(ln−1 nmax
nmin

), where the expec-
tation is taken over the distribution of n. Then, by the Minimax principle,
every randomized algorithm A has a ratio of at least Rn

A ≥ E
[
Rn

Adet

] ≥
1.344 − O(ln−1 nmax

nmin
). Since the ratio nmax

nmin
is arbitrary, this implies the

theorem.
Let J denote the set of requests at which Adet updates its guess when

processing the all-ones sequence of length nmax. Note that the positions of
guess updates by Adet on sequences of shorter lengths are a subset of J . Let
I = J ∩ X = {i1, . . . , ik} (the ij are ordered with increasing value).

We bound E
[
Rn

Adet

]
=

∑nmax
n=nmin

pnRn
Adet

by separately bounding every par-
tial sum in the following decomposition:

E
[
Rn

Adet

]
= E(nmin, i1) + E(i1, i2) + · · · + E(ik−1, ik) + E(ik, nmax),

where for each a < b, E(a, b) =
∑b−1

n=a pnRn
Adet

. The first and last terms need
special care, so we will start with bounding the other terms. In the following,
Hq

p =
∑q

n=p
1
n denotes partial harmonic sums for q ≥ p ≥ 1. Observe that

S = Hnmax
nmin

. We proceed in three steps:

1. Consider an index 1 ≤ j < k and let us bound the sum E(ij , ij+1). Let us
denote a = ij and b = ij+1. We need to consider two cases.
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Case 1: b ≤ 2a. Then for all n ∈ {a, . . . , b − 1}, we have Bn
Adet

= a (since
n/2 < a). Then:

E(a, b) ≥
b−1∑

n=a

1
nS

· a

n/2
≥ 2a

S

b−1∑

n=a

1
n(n + 1)

=
2a

S

(
1
a

− 1
b

)

> 1.4 · H
b−1
a

S
, (1)

where the last inequality can be proved as follows. First, it can be checked
by direct inspection that for Φ(a, b) = 2(1 − a

b )/Hb−1
a and b > a, it holds

that Φ(a, b + 1) < Φ(a, b). Hence, recalling that b ≤ 2a and using standard
approximations of harmonic sums, we obtain

Φ(a, b) ≥ Φ(a, 2a) = 1/H2a−1
a ≥ 1

ln 2 + 1
a

> 1.4,

where the last inequality holds for large enough a = ij , e.g., ij ≥ nmin
2 ≥ 50.

Case 2: b > 2a. In this case, for all n = a, . . . , 2a − 1, if the sequence is of
length n, then Bn

Adet
= a, as in case 1. However, when n ≥ 2a, then n/2 ≥ a,

so Bn
Adet

= n − a. Using these observations, we can bound E
[
Rn

Adet

]
:

E
[
Rn

Adet

]
=

2a−1∑

n=a

1
nS

a

n/2
+

b−1∑

n=2a

1
nS

n − a

n/2

≥ 2a

S

2a−1∑

n=a

1
n(n + 1)

+
2
S

Hb
2a+1 − 2a

S

b−1∑

n=2a

1
n(n + 1)

=
2a

S

(
1
a

− 1
2a

)

+
2
S

Hb
2a+1 − 2a

S

(
1
2a

− 1
b

)

=
2a

Sb
+

2
S

(Hb
a − H2a

a )

=
Hb

a

S
·
(

2 +
2a

bHb
a

− 2H2a
a

Hb
a

)

,

where the third line is obtained by using the identity Hb
2a+1 = Hb

a − H2a
a .

Again, using a standard approximation for harmonic sums and setting x = b
a ,

we can approximate:

2 +
2a

bHb
a

− 2H2a
a

Hb
a

≥ 2 + 2a
b ln b

a

− ln 2
ln b

a

− O(a−1)

= 2 + 2
x lnx − 2 logx 2 − O(a−1).

Note that the function f(x) = 2 + 2
x ln x − 2 logx 2 is exactly the same that

was minimized in the proof of Theorem1, with an additional term +1, and
achieves its minimum in (1,∞) at xmin ≈ 3.052, giving f(xmin) ≈ 1.344.

Thus, we have E(ij , ij+1) ≥ H
ij+1−1
ij

S (1.344 − O( 1
ij

)).
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2. The term E(ik, nmax) can be bounded by
Hnmax−1

ik

S (1.344−O( 1
ik

)) by an iden-
tical argument as above.

3. The term E(nmin, i1) needs a slightly different approach. Let i0 denote the last
position where the algorithm updates its guess before nmin. We can assume
that i0 ≥ nmin/2, as otherwise the algorithm could only profit by updating
its guess at position nmin/2. We consider two cases. First, if i1 ≤ 2i0, then
we simply assume the algorithm performs optimally in the range [nmin, i1):

E(nmin, i1) =
Hi1−1

nmin

S
≥ 1.344 · Hi1−1

nmin

S
− 0.5

Hi1−1
nmin

S
> 1.344 · Hi1−1

nmin

S
− 1/S,

since (recalling that i1 ≤ 2i0 ≤ 2nmin), Hi1
nmin

< H2nmin
nmin

< 1.

On the other hand, when i1 > 2i0 (and by the discussion above, 2i0 ≥ nmin),
then with calculations similar to the one in Case 2 above, we obtain:

E(xmin, i1) =
2i0−1∑

n=nmin

1
nS

i0
n/2

+
i1−1∑

n=2i0

1
nS

n − i0
n/2

≥ 2i0
S

2i0−1∑

n=nmin

1
n(n + 1)

+
2
S

Hi1
2i0+1 − 2i0

S

i1−1∑

n=2i0

1
n(n + 1)

≥ 2
S

(
i0

nmin
+

i0
i1

+ Hi1
nmin

− H2i0
nmin

)

≥ 2 · Hi1
nmin

S
− O(1/S),

because i0 ≤ nmin and thus H2i0
nmin

< 1.

It remains to plug the obtained estimates into Inequality 1:

E
[
Rn

Adet

]
= E(nmin, i1) +

k−1∑

j=1

E(ij , ij+1) + E(ik, nmax)

≥ (1.344 − O(1/nmin)) · Hi1
nmin

+
∑k−1

j=1 H
ij+1−1
ij

+ Hnmax
ik

S
− O(1/S)

= 1.344 − O(1/S).

This completes the proof. �	

4 Weighted Sequences

4.1 Algorithm

The algorithm for weighted instances is an adaptation of the algorithm Ax pre-
sented in Sect. 2. Namely, the guess is updated as soon as adding the current
weight wj to the weight of the prefix that has already been processed

∑j−1
i=1 wi

increases the total weight to be at least �xi+δ�, i.e., if
∑j−1

i=1 wi < �xi+δ� ≤
∑j

i=1 wi. We will keep the notation Ax for the modified algorithm.
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Theorem 4. There is a constant value of x ≈ 5.357 such that

E
[
ΔX

Ax

] ≤ 0.313W + O(1)

holds for every weighted sequence X of total weight W .

Proof (Sketch). Let X = w1, w2, . . . , wn be the input sequence of total weight
W , and let m be such that

∑
i≤m wi = W

2 . Then, wm is the central weight of
the sequence. We will argue first that replacing all wi left of wm including wm

by a sequence of
∑

i≤m wi unit requests, and replacing all wi right of wm by
a single large request of weight

∑
i>m wi worsens the approximation factor of

the algorithm. Indeed, suppose that the algorithm attempts to update its guess
at a position j that falls on an element wi, which is located left of wm. Then
the algorithm updates its guess after wi, bringing the guess closer to the center
than if wi were of unit weight. Similarly, suppose that the algorithm attempts to
update its guess at position j that falls on an element wi, which is located right
of wm. By replacing all weights located to the right of wm by a single heavy
element, the algorithm has to place its guess at the end of the sequence, which
gives the worst possible deviation. Thus, we suppose from now on that X is of
the form X = 1 . . . 1B, where B = W/2.

After this simplification, via a case distinction as in the proof of Theorem1
it can be shown that E[ΔX

Ax
] ≤ W

2 · g(x) + O(1), where g(x)
def
= 1 − 1

lnx + 2
x ln x .

It can then be shown that xmin = −2W−1(− 1
2e ) ≈ 5.3567 minimizes g(x) and

g(xmin) ≈ 0.627, which implies the theorem. �	
Remark. Recall that we work with the assumption that the input sequence
X = w1, . . . , wn can be split into two parts of exactly equal weight. This may
seem like an artificial restriction. It is, however, necessary for a meaningful prob-
lem definition: Suppose we allowed arbitrary sequences and the goal is to min-
imize the distance between the guess and the most central position, i.e., the
position c such that max{∑c

i=1 wi,
∑n

i=c+1 wi} is minimized. Consider now the
instance X = 11 . . . 1W , where W is extremely heavy (e.g., W is a 0.99 fraction
of the entire sequence). Then the most central position is the position of the last
1, while an algorithm that places a guess after W is at distance W from the
most central position. We believe that this should not be penalized since such
an input sequence does not have a good central position. An alternative prob-
lem formulation, which is meaningful when applied to the previously described
instance, is obtained when asking for a guess that minimizes the size of the
larger part as compared to the larger part in a most central split. Indeed, this
formulation is coherent with the problem of partitioning integer sequences. Our
algorithm for weighted sequences can be analyzed for this situation and gives a
1.628 approximation.

4.2 Lower Bound

Note that the expected deviation of 0.313W is tight for the algorithm Ax on
weighted sequences. This is achieved on sequences consisting of W/2 unit weight
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elements followed by an element of weight W/2. However, we were not able to
obtain a matching lower bound. The main difficulty in applying the Minimax
principle is that in the weighted case, the deterministic algorithm may know the
probability distribution of the individual weights. Instances similar to the one
described above become easy if the algorithm knows their structure. Instead, we
prove a lower bound of 0.25W using a different construction.

Theorem 5. For every randomized algorithm A, there is a weighted instance X
of total weight W , such that the expected deviation is E

[
ΔX

A
] ≥ 0.25W − O(1).

Proof (Sketch). Let Xi = 20, 20, 21, 22, . . . , 2i−1 denote the exponentially increas-
ing sequence of length i, and Wi = 2i denotes the weight of Xi. Note that the
middle of Xi is the position before the weight 2i−1. Let further nmin, nmax be
large integers with nmax ≥ 2nmin, and denote S = [nmin, nmax]. We consider the
performance of any deterministic algorithm Adet on the uniform input distribu-
tion over the set Σ = {Xi : i ∈ S} of exponentially increasing sequences. As
in the proof of Theorem3, we need a normalized performance measure in order
to apply the Minimax lemma. For an algorithm A, let BX

A denote the larger
of the two parts that the algorithm creates on the input sequence X, and let
RX

A = BX
A

W/2 ∈ [1, 2]. Again, note that ΔX
A = BX

A − W/2 = W · (RX
A − 1)/2.

Hence, showing that E
[
RX

Adet

] ≥ 1.5 for every deterministic algorithm implies
the corresponding bound E

[
ΔX

A
] ≥ 0.25W for every randomized algorithm, by

Yao’s lemma.
Let J be the set of positions where Adet updates its guess on input Xnmax .

Note that the set of positions on any other input of Σ is a subset of J . Let
I = J ∩ S = {i1, . . . , ik} be the positions within the interval S (ordered so that
ij < ij+1, for every j).

We bound now the expected ratio of Adet, where the expectation is taken over
the inputs Σ. In the formulas below, we will use the abbreviation Ri = RXi

Adet
,

as we will only deal with such ratios. Then:

E [Rn] =
1

nmax − nmin + 1
·

nmax∑

n=nmin

Rn , and

nmax∑

n=nmin

Rn =
i1−1∑

n=nmin

Rn

︸ ︷︷ ︸
I

+
i2−1∑

n=i1

Rn + · · · +
ik−1∑

n=ik−1

Rn +
nmax∑

n=ik

Rn

︸ ︷︷ ︸
II

.

We bound I, II, and
∑ij+1−1

n=ij
Rn for every 1 ≤ j ≤ k−1, separately. Recall that

for every i the half-weight of Xi is Wi/2 = 2i−1. First, observe that for every
1 ≤ j ≤ k − 1, we have the worst ratio Rij = 2ij

2ij−1 = 2 when the sequence ends
at a guess update, and the best ratio Rij+1 = 1 when it ends one item after a
guess update and if ij + 1 < ij+1. Generally, when it ends at an intermediate
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position ij + a such that a ≥ 2 and ij + a < ij+1, then the last guess update is
after the weight ij , while the middle is just before ij + a so we have

Rij+a =
2ij+a − 2ij−1

2ij+a−1
≥ 1.75.

These bounds together imply that
∑ij+1−1

n=ij
Rn ≥ 1.5(ij+1 − ij).

It can be shown by similar arguments that I ≥ 1.5(i1 − nmin) − 1.25 and
II > 1.5(nmax − ik) − 1.25. Putting the partial bounds together, we can bound
E

[
Rn

Adet

]
by:

E
[
Rn

Adet

] ≥ 1.5(nmax − nmin + 1) − 2 · 1.25
nmax − nmin + 1

= 1.5 − O(n−1
max).

Since nmax can be chosen arbitrarily large, the latter bound on the expected per-
formance of every deterministic algorithm then implies the claim of the theorem
by applying Yao’s principle, as described above. �	

5 Conclusion

In this paper, we gave an algorithm for preemptively guessing the center of a
request sequence. It has expected deviation 0.172n from the central position on
an instance of length n. We proved that this is optimal. We extended our algo-
rithm to weighted sequences and showed that it has expected deviation 0.313W ,
where W is the total weight of the input sequence. We also gave a lower bound
showing that no algorithm achieves an expected deviation smaller than 0.25W .

The most intriguing open problem is to close the gap between the upper
and lower bounds for weighted sequences. Progress could potentially be made
by combining our lower bound for unweighted sequences with an exponentially
increasing sequence as it is used in our lower bound for weighted sequences. For
this to be successful, a better understanding of our lower bound for unweighted
sequences could be beneficial, since it relies on a non-uniform input distribution
which renders it difficult to extend it.
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1 Introduction

Among the many variants of the domination problems [30,31], we consider in this
paper a family of generalizations of the classical domination and total domina-
tion problems known as k-domination and total k-domination. Given a positive
integer k and a graph G, a k-dominating set in G is a set S ⊆ V (G) such that
every vertex v ∈ V (G)\S has at least k neighbors in S, and a total k-dominating
set in G is a set S ⊆ V (G) such that every vertex v ∈ V (G) has at least k neigh-
bors in S. The k-domination and the total k-domination problems aim to find the
minimum size of a k-dominating, resp. total k-dominating set, in a given graph.
The notion of k-domination was introduced by Fink and Jacobson in 1985 [23]
and studied in a series of papers (e.g., [14,20,22,27,42]) and in a survey by
Chellali et al. [13]. The notion of total k-domination was introduced by Kulli in
1991 [41] and studied under the name of k-tuple total domination by Henning and
Kazemi in 2010 [32] and also in a series of recent papers [1,39,43,53]. The ter-
minology “k-tuple total domination” was introduced in analogy with the notion
of “k-tuple domination”, introduced in 2000 by Harary and Haynes [29].1 The
redundancy involved in k-domination and total k-domination problems can make
them useful in various applications, for example in forming sets of representa-
tives or in resource allocation in distributed computing systems (see, e.g., [31]).
However, these problems are known to be NP-hard [37,53] and also hard to
approximate [17].

The k-domination and total k-domination problems remain NP-hard in the
class of chordal graphs. More specifically, the problems are NP-hard in the class
of split graphs [42,53] and, in the case of total k-domination, also in the class of
undirected path graphs [43]. We consider k-domination and total k-domination
in another subclass of chordal graphs, the class of proper interval graphs. A
graph G is an interval graph if it has an intersection model consisting of closed
intervals on a real line, that is, if there exist a family I of intervals on the
real line and a one-to-one correspondence between the vertices of G and the
intervals of I such that two vertices are joined by an edge in G if and only
if the corresponding intervals intersect. A proper interval graph is an interval
graph that has a proper interval model, that is, an intersection model in which
no interval contains another one. Proper interval graphs were introduced by
Roberts [57], who showed that they coincide with the unit interval graphs, that
is, graphs admitting an interval model in which all intervals are of unit length.
Various characterizations of proper interval graphs have been developed in the
literature (see, e.g., [24,26,36,49]) and several linear-time recognition algorithms
are known, which in case of a yes instance also compute a proper interval model
(see, e.g., [18] and references cited therein).

Domination and total domination problems are known to be solvable in linear
time in the class of interval graphs (see [6,12,33] and [10,12,40,55,56], respec-
tively). Furthermore, for each fixed integer k ≥ 1, the k-domination and total

1 A set S of vertices is said to be a k-tuple dominating set if every vertex of G is
adjacent or equal to at least k vertices in S.
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k-domination problems are solvable in time O(n6k+4) in the class of interval
graphs where n is the order of the input graph. This follows from recent results
due to Kang et al. [38], building on previous works by Bui-Xuan et al. [8] and
Belmonte and Vatshelle [3]. In fact, Kang et al. studied a more general class of
problems, called (ρ, σ)-domination problems, and showed that every such prob-
lem can be solved in time O(n6d+4) in the class of n-vertex interval graphs,
where d is a parameter associated to the problem (see Corollary 3.2 in [38] and
the paragraph following it).

1.1 Our Results and Approach

We significantly improve the above result for the case of proper interval graphs.
We show that for each positive integer k, the k-domination and total k-
domination problems are solvable in time O(n3k) in the class of n-vertex proper
interval graphs. Except for k = 1, this improves on the best known running time.

Our approach is based on a reduction showing that for each positive integer k,
the total k-domination problem on a given proper interval graph G can be reduced
to a shortest path computation in a derived edge-weighted directed acyclic graph.
A similar reduction works for k-domination. The reductions immediately result in
algorithms with running time O(n4k+1). We show that with a suitable implemen-
tation the running time can be improved to O(n3k). The algorithms can be easily
adapted to the weighted case, at no expense in the running time.

1.2 Related Work

We now give an overview of related work and compare our results with most
relevant other results, besides those due to due to Kang et al. [38], which moti-
vated this work.
Overview. For every positive integer k, the k-domination problem is NP-hard in
the classes of bipartite graphs [2] and split graphs [42], but solvable in linear time
in the class of graphs every block of which is a clique, a cycle or a complete bipar-
tite graph (including trees, block graphs, cacti, and block-cactus graphs) [42],
and, more generally, in any class of graphs of bounded clique-width [19,50] (see
also [16]). The total k-domination problem is NP-hard in the classes of split
graphs [53], doubly chordal graphs [53], bipartite graphs [53], undirected path
graphs [43], and bipartite planar graphs (for k ∈ {2, 3}) [1], and solvable in
linear time in the class of graphs every block of which is a clique, a cycle, or
a complete bipartite graph [43], and, more generally, in any class of graphs of
bounded clique-width [19,50], and in polynomial time in the class of chordal
bipartite graphs [53]. k-domination and total k-domination problems were also
studied with respect to their (in)approximability properties, both in general [17]
and in restricted graph classes [2], as well as from the parameterized complexity
point of view [9,34].
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Besides k-domination and total k-domination, other variants of domination
problems solvable in polynomial time in the class of proper interval graphs (or
in some of its superclasses) include k-tuple domination for all k ≥ 1 [45] (see
also [44] and, for k = 2, [54]), connected domination [56], independent domina-
tion [21], paired domination [15], efficient domination [11], liar’s domination [51],
restrained domination [52], eternal domination [5], power domination [46], outer-
connected domination [48], Roman domination [47], Grundy domination [7], etc.

Comparison. Bertossi [4] showed how to reduce the total domination problem in
a given interval graph to a shortest path computation in a derived edge-weighted
directed acyclic graph satisfying some additional constraints on pairs of consecu-
tive arcs. A further transformation reduces the problem to a usual (unconstrained)
shortest path computation. Compared to the approach of Bertossi, our approach
exploits the additional structure of proper interval graphs in order to gain gener-
ality in the problem space. Our approach works for every k and is also more direct,
in the sense that the (usual or total, unweighted or weighted) k-domination prob-
lem in a given proper interval graph is reduced to a shortest path computation in
a derived edge-weighted acyclic digraph in a single step.

The works of Liao and Chang [45] and of Lee and Chang [44] consider various
domination problems in the class of strongly chordal graphs (and, in the case
of [45], also dually chordal graphs). While the class of strongly chordal graphs
generalizes the class of interval graphs, the domination problems studied in [44,
45] all deal with closed neighborhoods, and for those cases structural properties
of strongly chordal and dually chordal graphs are helpful for the design of linear-
time algorithms. In contrast, k-domination and total k-domination are defined
via open neighborhoods and results of [44,45] do not seem to be applicable or
easily adaptable to our setting.

Structure of the Paper. In Sect. 2, we describe the reduction for the total k-
domination problem. The specifics of the implementation resulting in improved
running time are given in Sect. 3. In Sect. 4, we discuss how the approach can be
modified to solve the k-domination problem and the weighted cases. We conclude
the paper with some open problems in Sect. 5. Due to lack of space, most proofs
are omitted. They can be found in the full version [58].

In the rest of the section, we fix some definitions and notation. Given a graph
G and a set X ⊆ V (G), we denote by G[X] the subgraph of G induced by X
and by G − X the subgraph induced by V (G) \ X. For a vertex u in a graph G,
we denote by N(u) the set of neighbors of u in G. Note that for every graph G,
the set V (G) is a k-dominating set, while G has a total k-dominating set if and
only if every vertex of G has at least k neighbors.

2 The Reduction for Total k-Domination

Let k be a positive integer and G = (V,E) be a given proper interval graph.
We will assume that G is equipped with a proper interval model I = {Ij | j =
1, . . . , n} where Ij = [aj , bj ] for all j = 1, . . . , n. (As mentioned in the introduc-
tion, a proper interval model of a given proper interval graph can be computed in



294 N. Chiarelli et al.

linear time.) We may also assume that no two intervals coincide. Moreover, since
in a proper interval model the order of the left endpoints equals the order of the
right endpoints, we assume that the intervals are sorted increasingly according
to their left endpoints, i.e., a1 < . . . < an. We use notation Ij < I� if j < � and
say in this case that Ij is to the left of I� and I� is to the right of Ij . Also, we
write Ij ≤ I� if j ≤ �. Given three intervals Ij , I�, Im ∈ I, we say that interval
I� is between intervals Ij and Im if j < � < m. We say that interval Ij intersects
interval I� if Ij ∩ I� �= ∅.

Our approach can be described as follows. Given G, we compute an edge-
weighted directed acyclic graph Dt

k (where the superscript “t” means “total”)
and show that the total k-domination problem on G can be reduced to a shortest
path computation in Dt

k. The definition of the digraph given next is followed by
an example and an explanation of the intuition behind the reduction.

To distinguish the vertices of Dt
k from those of G, we will refer to them

as nodes. Vertices of G will be typically denoted by u or v, and nodes of Dt
k

by s, s′, s′′. Each node of Dt
k will be a sequence of intervals from the set I ′ =

I∪{I0, In+1}, where I0, In+1 are two new, “dummy” intervals such that I0 < I1,
I0 ∩ I1 = ∅, In < In+1, and In ∩ In+1 = ∅. We naturally extend the linear order
< on I to the whole set I ′. We will say that an interval I ∈ I ′ is associated with
a node s of Dt

k if it appears in sequence s. The set of all intervals associated with
s will be denoted by Is. Given a node s of Dt

k, we will denote by min(s) and
max(s) the first, resp., the last interval in Is with respect to ordering < of I ′. A
sequence (Ii1 , . . . , Iiq

) of intervals from I is said to be increasing if i1 < . . . < iq.
The node set of Dt

k is given by V (Dt
k) = {I0, In+1} ∪ S ∪ B, where:

– I0 and In+1 are sequences of intervals of length one.2

– S is the set of so-called small nodes. Set S consists exactly of those increasing
sequences s = (Ii1 , . . . , Iiq

) of intervals from I such that:
(1) k + 1 ≤ q ≤ 2k − 1,
(2) for all j ∈ {1, . . . , q − 1}, we have Iij

∩ Iij+1 �= ∅, and
(3) every interval I ∈ I such that min(s) ≤ I ≤ max(s) intersects at least k

intervals from the set Is \ {I}.
– B is the set of so-called big nodes. Set B consists exactly of those increasing

sequences s = (Ii1 , . . . , Ii2k
) of intervals from I of length 2k such that:

(1) for all j ∈ {1, . . . , 2k − 1}, we have Iij
∩ Iij+1 �= ∅, and

(2) every interval I ∈ I such that Iik
≤ I ≤ Iik+1 intersects at least k intervals

from the set Is \ {I}.

The arc set of Dt
k is given by E(Dt

k) = E0 ∪ E1, where:

– Set E0 consists exactly of those ordered pairs (s, s′) ∈ V (Dt
k) × V (Dt

k) such
that:
(1) max(s) < min(s′) and max(s) ∩ min(s′) = ∅,

2 This assures that the intervals min(s) and max(s) are well defined also for s ∈
{I0, In+1}, in which case both are equal to s.
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(2) every interval I ∈ I such that max(s) < I < min(s′) intersects at least k
intervals from Is ∪ Is′ ,

(3) if s ∈ B, then the rightmost k + 1 intervals associated with s pairwise
intersect, and

(4) if s′ ∈ B, then the leftmost k + 1 intervals associated with s′ pairwise
intersect.

– Set E1 consists exactly of those ordered pairs (s, s′) ∈ V (Dt
k) × V (Dt

k) such
that s, s′ ∈ B and there exist 2k + 1 intervals Ii1 , . . . , Ii2k+1 in I such that
s = (Ii1 , Ii2 , . . . , Ii2k

) and s′ = (Ii2 , Ii3 , . . . , Ii2k+1).

To every arc (s, s′) of Dt
k we associate a non-negative length �(s, s′), defined

as follows:

�(s, s′) =

⎧
⎨

⎩

|Is′ |, if (s, s′) ∈ E0 and s′ �= In+1;
1, if (s, s′) ∈ E1;
0, otherwise.

(∗)

The length of a directed path in Dt
k is defined, as usual, as the sum of the lengths

of its arcs.

Example 1. Consider the problem of finding a minimum total 2-dominating set
in the graph G given by the proper interval model I depicted in Fig. 1(a). Using
the reduction described above, we obtain the digraph Dt

2 depicted in Fig. 1(c),
where, for clarity, nodes (Ii1 , . . . , Iip

) of Dt
2 are identified with the corresponding

strings of indices i1i2 . . . ip. We also omit in the figure the (irrelevant) nodes
that do not belong to any directed path from I0 to In+1. There is a unique
shortest I0, I9-path in Dt

2, namely (0, 2356, 3567, 9). The path corresponds to
{2, 3, 5, 6, 7}, the only minimum total 2-dominating set in G.

The correctness of the above reduction is established by proving the following.

Proposition 1. Given a proper interval graph G and a positive integer k, let
Dt

k be the directed graph constructed as above. Then G has a total k-dominating
set of size c if and only if Dt

k has a directed path from I0 to In+1 of length c.

The intuition behind the reduction is the following. The subgraph of G
induced by a minimum total k-dominating set splits into connected components.
These components as well as vertices within them are naturally ordered from
left to right. Moreover, since each connected subgraph of a proper interval graph
has a Hamiltonian path, the nodes of Dt

k correspond to paths in G, see condition
(2) for small nodes or condition (1) for big nodes. Since each vertex of G has
at least k neighbors in the total k-dominating set, each component has at least
k + 1 vertices. Components with at least 2k vertices give rise to directed paths
in Dt

k consisting of big nodes and arcs in E1. Each component with less than 2k
vertices corresponds to a unique small node in Dt

k, which can be seen as a trivial
directed path in Dt

k. The resulting paths inherit the left-to-right ordering from
the components and any two consecutive paths are joined in Dt

k by an arc in
E0. Moreover, I0 is joined to the leftmost node of the leftmost path with an arc
in E0 and, symmetrically, the rightmost node of the rightmost path is joined to
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Fig. 1. (a) A proper interval model I, (b) the corresponding proper interval graph G,
and (c) a part of the derived digraph Dt

2, where only nodes that lie on some directed
path from I0 to I9 are shown. Edges in E1 are depicted bold.

In+1 with an arc in E0. Adding such arcs yields a directed path from I0 to In+1

of the desired length.
The above process can be reversed. Given a directed path P in Dt

k from I0 to
In+1, a total k-dominating set in G of the desired size can be obtained as the set
of all vertices corresponding to intervals in I associated with internal nodes of
P . The total k-dominating property is established using the defining properties
of small nodes, big nodes, and arcs in E0 and in E1. For example, condition (3)
in the definition of arcs in E0 guarantees that the vertex corresponding to the
rightmost interval associated with s ∈ B where (s, s′) ∈ E0 is k-dominated. The
condition is related to the fact that in proper interval graphs the neighborhood
of a vertex represented by an interval [a, b] splits into two cliques: one for all
intervals containing a and another one for all intervals containing b.

The digraph Dt
k has O(n2k) nodes and O(n4k) arcs and can be, together with

the length function � on its arcs, computed from G directly from the definition
in time O(n4k+1). A shortest directed path (with respect to �) from I0 to all
nodes reachable from I0 in Dt

k can be computed in polynomial time using any of
the standard approaches, for example using Dijkstra’s algorithm. Actually, since
Dt

k is acyclic, a dynamic programming approach along a topological ordering of
Dt

k can be used to compute shortest paths from I0 in linear time (in the size
of Dt

k). Proposition 1 therefore implies that the total k-domination problem is
solvable in time O(n4k+1) in the class of n-vertex proper interval graphs.
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We will show in the next section that, with a careful implementation, a
shortest I0, In+1-path in Dt

k can be computed without examining all the arcs of
the digraph, leading to the claimed improvement in the running time.

3 Improving the Running Time

We assume all notations from Sect. 2. In particular, G is a given n-vertex proper
interval graph equipped with a proper interval model I and (Dt

k, �) is the derived
edge-weighted acyclic digraph with O(n2k) nodes. We apply Proposition 1 and
show that a shortest I0, In+1-path in Dt

k can be computed in time O(n3k). The
main idea of the speedup relies on the fact that the algorithm avoids examining
all arcs of the digraph. This is achieved by employing a dynamic programming
approach based on a partition of a subset of the node set into O(nk) parts
depending on the nodes’ suffixes of length k. The partition will enable us to
efficiently compute minimum lengths of four types of directed paths in Dt

k, all
starting in I0 and ending in a specified vertex, vertex set, arc, or arc set. In
particular, a shortest I0, In+1-path in Dt

k will be also computed this way.

Theorem 1. For every positive integer k, the total k-domination problem is
solvable in time O(|V (G)|3k) in the class of proper interval graphs.

Proof (sketch). By Proposition 1, it suffices to show that a shortest directed
path from I0 to In+1 in Dt

k can be computed in the stated time. Due to lack
of space, we only explain some implementation details. In order to describe the
algorithm, we need to introduce some notation. Given a node s ∈ S ∪ B, say
s = (Ii1 , . . . , Iiq

) (recall that k + 1 ≤ q ≤ 2k), we define its k-suffix of s as the
sequence (Iiq−k+1 , . . . , Iiq

) and denote it by sufk(s).
The algorithm proceeds as follows. First, it computes the node set of Dt

k and
a subset B′ of the set of big nodes consisting of precisely those nodes s ∈ B
satisfying condition (3) in the definition of E0 (that is, the rightmost k + 1
intervals associated with s pairwise intersect). Next, it computes a partition
{Aσ | σ ∈ Σ} of S ∪ B′ defined by Σ = {sufk(s) : s ∈ S ∪ B′} and Aσ = {s ∈
S ∪ B′ | sufk(s) = σ} for all σ ∈ Σ.

The algorithm also computes the arc set E1. On the other hand, the arc set
E0 is not generated explicitly, except for the arcs in E0 with tail I0 or head In+1.
Using dynamic programming, the algorithm will compute the following values.

(i) For all s ∈ V (Dt
k) \ {I0}, let p0s denote the minimum �-length of a directed

I0,s-path in Dt
k ending with an arc from E0.

(ii) For all s ∈ V (Dt
k) \ {I0}, let ps denote the minimum �-length of a directed

I0,s-path in Dt
k.

(iii) For all e ∈ E1, let pe denote the minimum �-length of a directed path in
Dt

k starting in I0 and ending with e.
(iv) For all σ ∈ Σ, let pσ denote the minimum �-length of a directed path in Dt

k

starting in I0 and ending in Aσ.
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In all cases, if no path of the corresponding type exists, we set the value of the
respective p0s, ps, pe, or pσ to ∞.

Clearly, once all the p0s, ps, pe, and pσ values will be computed, the length
of a shortest I0, In+1-path in Dt

k will be given by pIn+1 .
The above values can be computed using the following recursive formulas:

(i) p0s values:
– For s ∈ S ∪ B, let Σs = {σ ∈ Σ | (s̃, s) ∈ E0 for some s̃ ∈ Aσ} and set

p0s =

⎧
⎪⎨

⎪⎩

|Is|, if (I0, s) ∈ E0;
min
σ∈Σs

pσ + |Is|, if (I0, s) �∈ E0 and Σs �= ∅;

∞, otherwise.

– For s = In+1, let p0s = min
(s̃,s)∈E0

ps̃.

(ii) ps values: For all s ∈ V (Dt
k) \ {I0}, we have ps = min

{

p0s, min
(s̃,s)∈E1

p(s̃,s)

}

.

(iii) pe values: For all e = (s, s′) ∈ E1, we have pe = ps + 1.
(iv) pσ values: For all σ ∈ Σ, we have pσ = min

s∈Aσ

ps.

The above formulas can be computed following any topological sort of Dt
k such

that if s, s′ ∈ S ∪ B are such that sufk(s) �= sufk(s′) and sufk(s) is lexicograph-
ically smaller than sufk(s′), then s appears strictly before s′ in the ordering.
When the algorithm processes a node s ∈ V (Dt

k) \ {I0}, it computes the values
of p0s, pe for all e = (s̃, s) ∈ E1, and ps, in this order. For every σ ∈ Σ, the value
of pσ is computed as soon as the values of ps are known for all s ∈ Aσ. This
completes the description of the algorithm. �

4 Modifying the Approach for k-Domination and
for Weighted Problems

With minor modifications of the definitions of small nodes, big nodes, and arcs
in E0 of the derived digraph, the approach developed in Sects. 2 and 3 for total
k-domination leads to an analogous result for k-domination.

Theorem 2. For every positive integer k, the k-domination problem is solvable
in time O(|V (G)|3k) in the class of proper interval graphs.

The approach of Kang et al. [38], which implies that k-domination and total
k-domination are solvable in time O(|V (G)|6k+4) in the class of interval graphs
also works for the weighted versions of the problems, where each vertex u ∈ V (G)
is equipped with a non-negative cost c(u) and the task is to find a (usual or total)
k-dominating set of G of minimum total cost. For both families of problems, our
approach can also be easily adapted to the weighed case. Denoting the total
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cost of a set J of vertices (i.e., intervals) by c(J ) =
∑

I∈J c(I), it suffices to
generalize the length function from (∗) in a straightforward way, as follows:

�(s, s′) =

⎧
⎨

⎩

c(Is′), if (s, s′) ∈ E0 and s′ �= In+1;
c(min(s′)), if (s, s′) ∈ E1;
0, otherwise.

(1)

This results in O(|V (G)|3k) algorithms for the weighted (usual or total) k-
domination problems in the class of proper interval graphs.

5 Conclusion

In this work, we presented improved algorithms for weighted k-domination and
total k-domination problems for the class of proper interval graphs. The time
complexity was significantly improved, from O(n6k+4) to O(n3k), for each fixed
integer k ≥ 1. Our work leaves open several questions. Even though polyno-
mial for each fixed k, our algorithms are too slow to be of practical use, and
the main question is whether having k in the exponent of the running time
can be avoided. Are the k-domination and total k-domination problems fixed-
parameter tractable with respect to k in the class of proper interval graphs?
Could it be that even the more general problems of vector domination and total
vector domination (see, e.g., [17,25,28,35]), which generalize k-domination and
total k-domination when k is part of input, can be solved in polynomial time in
the class of proper interval graphs? It would also be interesting to determine the
complexity of these problems in generalizations of proper interval graphs such as
interval graphs, strongly chordal graphs, cocomparability graphs, and AT-free
graphs.
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Abstract. OFDMA is a popular coding scheme for mobile wireless
multi-channel multi-user communication systems. In a previous paper,
we used mixed-integer nonlinear programming to tackle the problem of
maximising energy efficiency, subject to certain quality of service (QoS)
constraints. In this paper, we present a heuristic for the same problem.
Computational results show that the heuristic is at least two orders of
magnitude faster than the exact algorithm, yet yields solutions of com-
parable quality.

Keywords: OFDMA systems · Energy efficiency · Heuristics

1 Introduction

In many mobile wireless communications systems, mobile devices communicate
with one another via transceivers called base stations. Many base stations follow
the so-called Orthogonal Frequency-Division Multiple Access (OFDMA) scheme
to code and transmit messages (see, e.g., [3]). In OFDMA, we have a set of com-
munication channels, called subcarriers, and a set of users (i.e., mobile devices
that are currently allocated to the given base station). Each subcarrier can be
assigned to at most one user, but a user may be assigned to more than one sub-
carrier. The data rate achieved by any given subcarrier is a nonlinear function
of the power allocated to it.

Several different optimisation problems have been defined in connection with
OFDMA systems (e.g., [6–11,15,17–21]). Unfortunately, it turns out that most of
these problems are NP-hard [5,10,11]. Thus, most authors resort to heuristics.
In our recent papers [8,9], however, we presented exact solution algorithms based
on mixed-integer nonlinear programming (MINLP). The problem considered in
[9] is to maximise the total data rate of the system subject to certain quality of
service (QoS) constraints called user rate constraints. The one considered in [8]
c© Springer International Publishing AG, part of Springer Nature 2018
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is similar, except that the objective is to maximise the energy efficiency (defined
as the total data rate divided by the total power used).

The algorithm in [9] is capable of solving many realistic problem instances to
proven optimality (or near-optimality) within a couple of seconds. The algorithm
in [8], however, is a lot slower, taking several minutes in some cases. This makes
it of little use in a highly dynamic environment, when users may arrive and
depart frequently at random. Thus, we were motivated to devise a fast heuristic
for the problem described in [8]. That heuristic is the topic of the present paper.

Our heuristic is based on a combination of fractional programming, 0-1 linear
programming and binary search. It turns out to be remarkably effective, being
able to solve realistic instances to within 1% of optimality within a few seconds.

The paper has a simple structure. The problem is described in Sect. 2, the
heuristic is presented in Sect. 3, the computational results are given in Sect. 4,
and concluding remarks are made in Sect. 5.

To make the paper self-contained, we recall the following result from [13] (see
also [1,14]). Consider a fractional program of the form:

max
{

f(y)/g(y) : y ∈ C
}

,

where C ⊆ R
n is convex, f(y) is non-negative and concave over the domain C,

and g(y) is positive and convex over C. This problem can be reformulated as

max
{

tf(y′/t) : tg(y′/t) ≤ 1, y′ ∈ tC, t > 0
}

,

where t is a new continuous variable representing 1/g(y), and y′ is a new vector of
variables representing y/g(y). The reformulated problem has a concave objective
function and a convex feasible region.

2 The Problem

The problem under consideration is as follows. We have a set I of subcarriers
and a set J of users, a (positive real) system power σ (measured in watts) and
a total power limit P (also in watts). For each i ∈ I, we are given a bandwidth
Bi (in megahertz), and a noise power Ni (in watts). Finally, for each j ∈ J , we
are given a demand dj (in megabits per second). The classical Shannon-Hartley
theorem [16] implies that, if we allocate p units of power to subcarrier i, the data
rate of that subcarrier (again in Mb/s) cannot exceed

fi(p) = Bi log2 (1 + p/Ni) .

The task is to simultaneously allocate the power to the subcarriers, and the
subcarriers to the users, so that energy efficiency is maximised and the demand
of each user is satisfied.
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In [8], this problem was called the fractional subcarrier and power allocation
problem with rate constraints or F-SPARC. It was formulated as a mixed 0-1
nonlinear program, as follows. For all i ∈ I and j ∈ J , let the binary variable xij

indicate whether user j is assigned to subcarrier i, let the non-negative variable
pij represent the amount of power supplied to subcarrier i to serve user j, and
let rij denote the associated data rate. The formulation is then:

max
∑

i∈I

∑
j∈J rij

σ+
∑

i∈I

∑
j∈J pij

(1)
∑

i∈I

∑
j∈J pij ≤ P − σ (2)∑
j∈J xij ≤ 1 (∀i ∈ I) (3)∑
i∈I rij ≥ dj (∀j ∈ J) (4)

rij ≤ fi(pij) (∀j ∈ J) (5)
pij ≤ (P − σ)xij (∀i ∈ I, j ∈ J) (6)

xij ∈ {0, 1} (∀i ∈ I, j ∈ J)
pij , rij ∈ R+ (∀i ∈ I, j ∈ J).

The objective function (1) represents the total data rate divided by the total
power (including the system power). The constraint (2) enforces the limit on
the total power. Constraints (3) ensure that each subcarrier is assigned to at
most one user. Constraints (4) ensure that user demands are met. Constraints
(5) ensure that the data rate for each subcarrier does not exceed the theoretical
limit. Constraints (6) ensure that pij cannot be positive unless xij is one. The
remaining constraints are just binary and non-negativity conditions.

The objective function (1) and the constraints (5) are both nonlinear, but
they are easily shown to be concave and convex, respectively. The exact algo-
rithm in [8] starts by applying the transformation mentioned at the end of
the introduction, to make the objective function separable. After that, it uses
a well-known generic exact method for convex MINLP, called LP/NLP-based
branch-and-bound [12], enhanced with some specialised cutting planes called bi-
perspective cuts. As mentioned in the introduction, however, this exact method
can be too slow on some instances of practical interest.

3 The Heuristic

We now present our heuristic for the F-SPARC. We will show in the next section
that it is capable of solving many F-SPARC instances to proven near-optimality
very quickly.

3.1 The Basic Idea

Let D =
∑

j∈J dj be the sum of the user demands. We start by solving the
following NLP:

max

{∑
i∈I

fi(pi) :
∑
i∈I

pi ≤ P − σ, p ∈ R
|I|
+

}
. (NLP1)
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This gives the maximum possible data rate of the system, which we denote by M .
If D > M , the F-SPARC instance is infeasible, and we terminate immediately.

We remark that NLP1 can be solved extremely quickly in practice, since its
objective function is both concave and separable. (In fact, it can be solved by
the well-known water-filling approach; see, e.g., [2,4].)

Now consider the following fractional program:

max
∑

i∈I fi(pi)/(σ +
∑

i∈I pi)
s.t.

∑
i∈I fi(pi) ≥ D∑
i∈I pi ≤ P − σ

pi ≥ 0 (i ∈ I).

This is a relaxation of the F-SPARC instance, since it ignores the allocation
of subcarriers to users, and aggregates the user demand constraints. Using the
transformation mentioned in the introduction, it can be converted into the fol-
lowing equivalent convex NLP:

max
∑

i∈I tfi(p̃i/t)
s.t. σt +

∑
i∈I p̃i = 1

1/P ≤ t ≤ 1/σ∑
i∈I tfi(p̃i/t) ≥ D t

p̃i ≥ 0 (i ∈ I).

(NLP2)

The solution of NLP2 yields an upper bound on the efficiency of the optimal
F-SPARC solution, which we denote by U .

Now, if we can find an F-SPARC solution whose efficiency is equal to U , it
must be optimal. In an attempt to find such a solution, one can take the optimal
solution of NLP2, say (p̃∗, t∗), construct the associated data rate r∗

i = fi(p̃∗
i /t∗)/t∗

for all i ∈ I, and then solve the following 0-1 linear program by branch-and-
bound:

max
∑

i∈I

∑
j∈J xij

s.t.
∑

j∈J xij ≤ 1 (i ∈ I)∑
i∈I r∗

i xij ≥ dj (j ∈ J)
xij ∈ {0, 1}

(01LP)

Note that 01LP, having |I| |J | variables, is of non-trivial size. On the other hand,
all feasible solutions (if any exist) represent optimal F-SPARC solutions. Thus,
if any feasible solution is found during the branch-and-bound process, we can
terminate branch-and-bound immediately.

3.2 Improving with Binary Search

Unfortunately, in practice, 01LP frequently turns out to be infeasible. This is
because the sum of the r∗

i is frequently equal to D, which in turn means that
a feasible solution of 01LP would have to satisfy all of the linear constraints at
perfect equality. Given that the r∗

i and dj are typically fractional, such a solution
is very unlikely to exist. (In fact, even if such a solution did exist, it could well
be lost due to rounding errors during the branch-and-bound process.)
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These considerations led us to use a more complex approach. We define a
modified version of NLP2, in which D is replaced by (1 + ε)D, for some small
ε > 0. We will call this modified version “NLP2(ε)”. Solving NLP2(ε) in place
of NLP2 usually leads to a small deterioration in efficiency, but it also tends to
lead to slightly larger r∗

i values, which increases the chance that 01LP will find
a feasible solution.

We found that, in fact, even better results can be obtained by performing
a binary search to find the best value of ε. The resulting heuristic is described
in Algorithm 1. When Algorithm 1 terminates, if L and U are sufficiently close
(say, within 1%), then we have solved the instance (to the desired tolerance).

Algorithm 1. Binary search heuristic for F-SPARC
input: power P , bandwidths Bi, noise powers Ni,

demands dj , system power σ, tolerance δ > 0.
Compute total user demand D =

∑
j∈J dj ;

Solve NLP1 to compute the maximum possible data rate M ;
Output D and M ;
if D > M then

Print “The instance is infeasible.” and quit;
end
Solve NLP2 to compute upper bound U on optimal efficiency;
Output U ;
Set L := 0, ε� := 0 and εu := (M/D) − 1;
repeat

Set ε := (ε� + εu)/2;
Solve NLP2(ε). Let (p̃∗, r̃∗, t∗) be the solution and L′ its efficiency;
Solve 01LP with r∗ set to r̃∗/t∗;
if 01LP is infeasible then

Set ε� := ε;
else

Let x∗ be the solution to 01LP;
if L′ > L then

Set L := L′, p̄ := p̃∗/t∗ and x̄ := x∗;
end
Set εu := ε;

end

until εu − ε� ≤ δ or L ≥ U/(1 + δ);
if L > 0 then

Output feasible solution (x̄, p̄);
else

Output “No feasible solution was found.”;
end
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3.3 Improving by Reallocating Power

Algorithm 1 can be further enhanced as follows. Each time we find a feasible
solution x∗ to 01LP, we attempt to improve the efficiency of the associated F-
SPARC solution by solving the following fractional program:

max
∑

i∈I fi(pi)/(σ +
∑

i∈I pi)
s.t.

∑
i∈I pi ≤ P − σ∑

i∈I:x∗
ij=1 fi(pi) ≥ dj (j ∈ J)
pi ≥ 0.

This is equivalent to a convex NLP that is similar to NLP2, except that we replace
the single constraint

∑
i∈I r̃i ≥ D t with the “disaggregated” constraints

∑
i∈I:x∗

ij=1

r̃i ≥ dj t (j ∈ J).

We call this modified NLP “NLP2dis”. We found that this enhancement leads
to a significant improvement in practice. Intuitively, it “repairs” much of the
“damage” to the efficiency that was incurred by increasing the demand by a
factor of 1 + ε.

4 Computational Experiments

We now report on some computational experiments that we conducted. The
heuristic was coded in Julia v0.5 and run on a virtual machine cluster with 16
CPUs (ranging from Sandy Bridge to Haswell architectures) and 16 GB of RAM,
under Ubuntu 16.04.1 LTS. The program calls on MOSEK 7.1 (with default set-
tings) to solve the NLPs, and on the mixed-integer solver from the CPLEX Callable
Library (v. 12.6.3) to solve the 0–1 LPs. In CPLEX, default setting were used,
except that the parameter “MIPemphasis” was set to “emphasize feasibility”,
and a time limit of 1 s was imposed for each branch-and-bound run. We also
imposed a total time limit of 5 s for each F-SPARC instance.

4.1 Test Instances

To construct our test instances, we used the procedure described in [9], which is
designed to produce instances typical of a small (indoor) base station following
the IEEE 802.16 standard. These instances have |I| = 72, |J | ∈ {4, 6, 8} and P
set to 36 W. The noise powers Ni are random numbers distributed uniformly in
(0, 10−11), and the bandwidths Bi are all set to 1.25 MHz.

The user demands dj are initially generated according to a unit lognormal
distribution, and are then scaled to create instances of varying difficulty. Recall
that, for a given instance, D denotes the total demand and M denotes the
maximum possible data rate of the system. The quantity D/M is called the
demand ratio (DR) of the instance. The user demands are scaled so that the
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DR takes values in {0.75, 0.8, 0.85, 0.9, 0.95, 0.98}. As the DR approaches 1 from
below, the instances tend to get harder.

For each combination of |J | and DR, we generated 500 random instances.
This makes 3 × 6 × 500 = 9, 000 instances in total. For each instance, we first
ran the exact algorithm in [8], with a tolerance of 0.01%, to compute tight upper
bounds on the optimal efficiency. Although this was very time-consuming, it was
necessary in order to assess the quality of the solutions found by our heuristic.
We remark that some of the instances with high DR were proven to be infeasible
by the exact algorithm.

4.2 Results

Table 1 shows, for various combinations of |J | and DR, the number of instances
(out of 500) for which the heuristic failed to find a feasible solution within the
5 s time limit. We see that the heuristic always finds a solution when the DR
is less than 0.9, but can fail to find one when the DR is close to 1, especially
when the number of users is high. This is however not surprising, since a high
DR leads to fewer options when solving problem 01LP, and an increase in |J |
increases the number of user demands that the heuristic needs to satisfy. Also,
as mentioned above, some of the instances are actually infeasible.

Table 1. Number of instances where heuristic failed to find a feasible solution

|J | Demand ratio

0.75 0.80 0.85 0.90 0.95 0.98

4 0 0 0 0 5 9

6 0 0 0 7 22 29

8 0 0 0 10 59 82

Table 2 shows, for the same combinations of |J | and DR, the average gap
between the efficiency of the solution found by the heuristic, and our upper bound
on the optimal efficiency. The average is taken over the instances for which the
heuristic found a feasible solution. We see that the heuristic consistently finds
an optimal solution when the DR is less than 0.85. Moreover, even for higher
DR values, the solutions found by the heuristic are of excellent quality, with
average gaps of well under 1%. (Closer inspection of the date revealed that the
gap exceeded 1% only for some instances with DR equal to 0.9 or higher.)

Finally, Table 3 shows the average time taken by the heuristic, again aver-
aged over the instances for which the heuristic found a feasible solution. We see
that, when the DR is less than 0.85, the heuristic finds the optimal solution
within a fraction of a second. Moreover, even for higher DR values, the heuris-
tic rarely needed the full 5 s allocated to it to find a solution of good quality.
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Table 2. Average percentage gap between lower and upper bounds.

|J | Demand ratio

0.75 0.80 0.85 0.90 0.95 0.98

4 0.00 0.00 0.30 0.24 0.33 0.38

6 0.00 0.00 0.31 0.32 0.48 0.54

8 0.00 0.00 0.33 0.41 0.67 0.90

(Closer inspection of the data revealed that, in the majority of the cases in which
the time limit was met, it was because the heuristic had not found a feasible
solution by that time.)

Table 3. Average time (in seconds) taken by the heuristic when it succeeded.

|J | Demand ratio

0.75 0.80 0.85 0.90 0.95 0.98

4 0.07 0.06 0.11 0.13 0.28 0.38

6 0.07 0.06 0.36 0.57 1.10 1.40

8 0.07 0.09 0.58 0.90 2.00 2.83

All things considered, the heuristic performs very well, both in terms of
solution quality and running time. Although we have not given detailed running
times for the exact algorithm, we can report that the heuristic is typically faster
by at least two orders of magnitude.

5 Concluding Remarks

Due to environmental considerations, it is becoming more and more common to
take energy efficiency into account when designing and operating mobile wire-
less communications systems. We have presented a heuristic for one specific
optimisation problem arising in this context, concerned with maximising energy
efficiency in an OFDMA system. The computational results are very promising,
with optimal or near-optimal solutions being found for the majority of instances
in less than a second.

We believe that our heuristic is suitable for real-life application in a dynamic
environment, as long as users arrive and depart only every few seconds. However,
there is one caveat: our heuristic involves the solution of nonlinear programs
(NLPs) and 0–1 linear programs (0-1 LPs), which in itself consumes energy. We
believe that the NLP subproblems could be solved more quickly and efficiently
using a specialised method (such as water-filling). As for the 0-1 LP subproblems,
note that they are actually only feasibility problems, rather than optimisation
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problems per se. It may well be possible to solve them efficiently using a simple
local-search heuristic, rather than invoking the “heavy machinery” of an exact
0-1 LP solver. This may be the topic of a future paper.
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Abstract. The Student-Project Allocation problem with preferences
over Projects (SPA-P) involves sets of students, projects and lecturers,
where the students and lecturers each have preferences over the projects.
In this context, we typically seek a stable matching of students to projects
(and lecturers). However, these stable matchings can have different sizes,
and the problem of finding a maximum stable matching (MAX-SPA-P) is
NP-hard. There are two known approximation algorithms for MAX-SPA-

P, with performance guarantees of 2 and 3
2
. In this paper, we describe

an Integer Programming (IP) model to enable MAX-SPA-P to be solved
optimally. Following this, we present results arising from an empirical
analysis that investigates how the solution produced by the approxi-
mation algorithms compares to the optimal solution obtained from the
IP model, with respect to the size of the stable matchings constructed,
on instances that are both randomly-generated and derived from real
datasets. Our main finding is that the 3

2
-approximation algorithm finds

stable matchings that are very close to having maximum cardinality.

1 Introduction

Matching problems, which generally involve the assignment of a set of agents
to another set of agents based on preferences, have wide applications in many
real-world settings. One such application can be seen in an educational context,
e.g., the allocation of pupils to schools, school-leavers to universities and stu-
dents to projects. In the context of allocating students to projects, university
lecturers propose a range of projects, and each student is required to provide a
preference over the available projects that she finds acceptable. Lecturers may
also have preferences over the students that find their project acceptable and/or
the projects that they offer. There may also be upper bounds on the number of
students that can be assigned to a particular project, and the number of stu-
dents that a given lecturer is willing to supervise. The problem then is to allocate
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students to projects based on these preferences and capacity constraints – the
so-called Student-Project Allocation problem (SPA) [3,11].

Two major models of SPA exist in the literature: one permits preferences
only from the students [2,6,10,14], while the other permits preferences from
the students and lecturers [1,8]. Given the large number of students that are
typically involved in such an allocation process, many university departments
seek to automate the allocation of students to projects. Examples include the
School of Computing Science, University of Glasgow [10], the Faculty of Science,
University of Southern Denmark [4], the Department of Computing Science,
University of York [8], and elsewhere [2,3,6,16].

In general, we seek a matching, which is a set of agent pairs who find one
another acceptable that satisfies the capacities of the agents involved. For match-
ing problems where preferences exist from the two sets of agents involved (e.g.,
junior doctors and hospitals in the classical Hospitals-Residents problem (HR)
[5], or students and lecturers in the context of SPA), it has been argued that the
desired property for a matching one should seek is that of stability [15]. Infor-
mally, a stable matching ensures that no acceptable pair of agents who are not
matched together would rather be assigned to each other than remain with their
current assignees.

Abraham et al. [1] proposed two linear-time algorithms to find a stable match-
ing in a variant of SPA where students have preferences over projects, whilst lec-
turers have preferences over students. The stable matching produced by the first
algorithm is student-optimal (that is, students have the best possible projects
that they could obtain in any stable matching) while the one produced by the
second algorithm is lecturer-optimal (that is, lecturers have the best possible
students that they could obtain in any stable matching).

Manlove and O’Malley [12] proposed another variant of SPA where both stu-
dents and lecturers have preferences over projects, referred to as SPA-P. In their
paper, they formulated an appropriate stability definition for SPA-P, and they
showed that stable matchings in this context can have different sizes. Moreover,
in addition to stability, a very important requirement in practice is to match
as many students to projects as possible. Consequently, Manlove and O’Malley
[12] proved that the problem of finding a maximum cardinality stable match-
ing, denoted MAX-SPA-P, is NP-hard. Further, they gave a polynomial-time 2-
approximation algorithm for MAX-SPA-P. Subsequently, Iwama et al. [7] described
an improved approximation algorithm with an upper bound of 3

2 , which builds
on the one described in [12]. In addition, Iwama et al. [7] showed that MAX-SPA-P

is not approximable within 21
19 − ε, for any ε > 0, unless P = NP. For the upper

bound, they modified Manlove and O’Malley’s algorithm [12] using Király’s idea
[9] for the approximation algorithm to find a maximum stable matching in a
variant of the Stable Marriage problem.

Considering the fact that the existing algorithms for MAX-SPA-P are only
guaranteed to produce an approximate solution, we seek another technique to
enable MAX-SPA-P to be solved optimally. Integer Programming (IP) is a powerful
technique for producing optimal solutions to a range of NP-hard optimisation
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problems, with the aid of commercial optimisation solvers, e.g., Gurobi [17],
GLPK [18] and CPLEX [19]. These solvers can allow IP models to be solved in
a reasonable amount of time, even with respect to problem instances that occur
in practical applications.

Our Contribution. In Sect. 3, we describe an IP model to enable MAX-SPA-P to
be solved optimally, and present a correctness result. In Sect. 4, we present results
arising from an empirical analysis that investigates how the solution produced
by the approximation algorithms compares to the optimal solution obtained
from our IP model, with respect to the size of the stable matchings constructed,
on instances that are both randomly-generated and derived from real datasets.
These real datasets are based on actual student preference data and manufac-
tured lecturer preference data from previous runs of student-project allocation
processes at the School of Computing Science, University of Glasgow. We also
present results showing the time taken by the IP model to solve the problem
instances optimally. Our main finding is that the 3

2 -approximation algorithm
finds stable matchings that are very close to having maximum cardinality. The
next section gives a formal definition for SPA-P.

2 Definitions and Preliminaries

We give a formal definition for SPA-P as described in the literature [12]. An
instance I of SPA-P involves a set S = {s1, s2, . . . , sn1} of students, a set P =
{p1, p2, . . . , pn2} of projects and a set L = {l1, l2, . . . , ln3} of lecturers. Each
lecturer lk ∈ L offers a non-empty subset of projects, denoted by Pk. We assume
that P1, P2, . . . , Pn3 partitions P (that is, each project is offered by one lecturer).
Also, each student si ∈ S has an acceptable set of projects Ai ⊆ P. We call a pair
(si, pj) ∈ S×P an acceptable pair if pj ∈ Ai. Moreover si ranks Ai in strict order
of preference. Similarly, each lecturer lk ranks Pk in strict order of preference.
Finally, each project pj ∈ P and lecturer lk ∈ L has a positive capacity denoted
by cj and dk respectively.

An assignment M is a subset of S × P where (si, pj) ∈ M implies that si
finds pj acceptable (that is, pj ∈ Ai). We define the size of M as the number
of (student, project) pairs in M , denoted |M |. If (si, pj) ∈ M , we say that si is
assigned to pj and pj is assigned si. Furthermore, we denote the project assigned
to student si in M as M(si) (if si is unassigned in M then M(si) is undefined).
Similarly, we denote the set of students assigned to project pj in M as M(pj).
For ease of exposition, if si is assigned to a project pj offered by lecturer lk, we
may also say that si is assigned to lk, and lk is assigned si. Thus we denote the
set of students assigned to lk in M as M(lk).

A project pj ∈ P is full, undersubscribed or oversubscribed in M if |M(pj)|
is equal to, less than or greater than cj , respectively. The corresponding terms
apply to each lecturer lk with respect to dk. We say that a project pj ∈ P is
non-empty if |M(pj)| > 0.
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A matching M is an assignment such that |M(si)| ≤ 1 for each si ∈ S,
|M(pj)| ≤ cj for each pj ∈ P, and |M(lk)| ≤ dk for each lk ∈ L (that is,
each student is assigned to at most one project, and no project or lecturer is
oversubscribed). Given a matching M , an acceptable pair (si, pj) ∈ (S ×P) \M
is a blocking pair of M if the following conditions are satisfied:

1. either si is unassigned in M or si prefers pj to M(si), and pj is undersub-
scribed, and either
(a) si ∈ M(lk) and lk prefers pj to M(si), or
(b) si /∈ M(lk) and lk is undersubscribed, or
(c) si /∈ M(lk) and lk prefers pj to his worst non-empty project,
where lk is the lecturer who offers pj .

If such a pair were to occur, it would undermine the integrity of the match-
ing as the student and lecturer involved would rather be assigned together than
remain in their current assignment. With respect to the SPA-P instance given in
Fig. 1, M1 = {(s1, p3), (s2, p1)} is clearly a matching. It is obvious that each of
students s1 and s2 is matched to her first ranked project in M1. Although s3 is
unassigned in M1, the lecturer offering p3 (the only project that s3 finds accept-
able) is assumed to be indifferent among those students who find p3 acceptable.
Also p3 is full in M1. Thus, we say that M1 admits no blocking pair.

Fig. 1. An instance I1 of SPA-P. Each project has capacity 1, whilst each of lecturer l1
and l2 has capacity 2 and 1 respectively.

Another way in which a matching could be undermined is through a group
of students acting together. Given a matching M , a coalition is a set of students
{si0 , . . . , sir−1}, for some r ≥ 2 such that each student sij (0 ≤ j ≤ r − 1)
is assigned in M and prefers M(sij+1) to M(sij ), where addition is performed
modulo r. With respect to Fig. 1, the matching M2 = {(s1, p1), (s2, p2), (s3, p3)}
admits a coalition {s1, s2}, as students s1 and s2 would rather permute their
assigned projects in M2 so as to be better off. We note that the number of
students assigned to each project and lecturer involved in any such swap remains
the same after such a permutation. Moreover, the lecturers involved would have
no incentive to prevent the switch from occurring since they are assumed to be
indifferent between the students assigned to the projects they are offering. If a
matching admits no coalition, we define such matching to be coalition-free.

Given an instance I of SPA-P, we define a matching M in I to be stable if M
admits no blocking pair and is coalition-free. It turns out that with respect to
this definition, stable matchings in I can have different sizes. Clearly, each of the
matchings M1 = {(s1, p3), (s2, p1)} and M3 = {(s1, p2), (s2, p1), (s3, p3)} is stable
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in the SPA-P instance I1 shown in Fig. 1. The varying sizes of the stable matchings
produced naturally leads to the problem of finding a maximum cardinality stable
matching given an instance of SPA-P, which we denote by MAX-SPA-P. In the next
section, we describe our IP model to enable MAX-SPA-P to be solved optimally.

3 An IP Model for MAX-SPA-P

Let I be an instance of SPA-P involving a set S = {s1, s2, . . . , sn1} of students, a
set P = {p1, p2, . . . , pn2} of projects and a set L = {l1, l2, . . . , ln3} of lecturers.
We construct an IP model J of I as follows. Firstly, we create binary variables
xi,j ∈ {0, 1} (1 ≤ i ≤ n1, 1 ≤ j ≤ n2) for each acceptable pair (si, pj) ∈
S × P such that xi,j indicates whether si is assigned to pj in a solution or not.
Henceforth, we denote by S a solution in the IP model J, and we denote by M
the matching derived from S. If xi,j = 1 under S then intuitively si is assigned
to pj in M , otherwise si is not assigned to pj in M . In what follows, we give the
constraints to ensure that the assignment obtained from a feasible solution in J
is a matching.

Matching Constraints. The feasibility of a matching can be ensured with the
following three sets of constraints.

∑

pj∈Ai

xi,j ≤ 1 (1 ≤ i ≤ n1), (1)

n1∑

i=1

xi,j ≤ cj (1 ≤ j ≤ n2), (2)

n1∑

i=1

∑

pj∈Pk

xi,j ≤ dk (1 ≤ k ≤ n3). (3)

Note that (1) implies that each student si ∈ S is not assigned to more than one
project, while (2) and (3) implies that the capacity of each project pj ∈ P and
each lecturer lk ∈ L is not exceeded.

We define rank(si, pj), the rank of pj on si’s preference list, to be r+1 where
r is the number of projects that si prefers to pj . An analogous definition holds for
rank(lk, pj), the rank of pj on lk’s preference list. With respect to an acceptable
pair (si, pj), we define Si,j = {pj′ ∈ Ai : rank(si, pj′) ≤ rank(si, pj)}, the set of
projects that si likes as much as pj . For a project pj offered by lecturer lk ∈ L,
we also define Tk,j = {pq ∈ Pk : rank(lk, pj) < rank(lk, pq)}, the set of projects
that are worse than pj on lk’s preference list.

In what follows, we fix an arbitrary acceptable pair (si, pj) and we impose
constraints to ensure that (si, pj) is not a blocking pair of the matching M (that
is, (si, pj) is not a type 1(a), type 1(b) or type 1(c) blocking pair of M). Firstly,
let lk be the lecturer who offers pj .
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Blocking Pair Constraints. We define θi,j = 1 − ∑
pj′∈Si,j

xi,j′ . Intuitively,
θi,j = 1 if and only if si is unassigned in M or prefers pj to M(si). Next we
create a binary variable αj in J such that αj = 1 corresponds to the case when
pj is undersubscribed in M . We enforce this condition by imposing the following
constraint.

cjαj ≥ cj −
n1∑

i′=1

xi′,j , (4)

where
∑n1

i′=1 xi′,j = |M(pj)|. If pj is undersubscribed in M then the RHS of (4)
is at least 1, and this implies that αj = 1. Otherwise, αj is not constrained. Now
let γi,j,k =

∑
pj′∈Tk,j

xi,j′ . Intuitively, if γi,j,k = 1 in S then si is assigned to a
project pj′ offered by lk in M , where lk prefers pj to pj′ . The following constraint
ensures that (si, pj) does not form a type 1(a) blocking pair of M .

θi,j + αj + γi,j,k ≤ 2. (5)

Note that if the sum of the binary variables in the LHS of (5) is less than or
equal to 2, this implies that at least one of the variables, say γi,j,k, is 0. Thus
the pair (si, pj) is not a type 1(a) blocking pair of M .

Next we define βi,k =
∑

pj′∈Pk
xi,j′ . Clearly, si is assigned to a project offered

by lk in M if and only if βi,k = 1 in S. Now we create a binary variable δk in J
such that δk = 1 in S corresponds to the case when lk is undersubscribed in M .
We enforce this condition by imposing the following constraint.

dkδk ≥ dk −
n1∑

i′=1

∑

pj′∈Pk

xi′,j′ , (6)

where
∑n1

i′=1

∑
pj′ ∈Pk

xi′,j′ = |M(lk)|. If lk is undersubscribed in M then the
RHS of (6) is at least 1, and this implies that δk = 1. Otherwise, δk is not
constrained. The following constraint ensures that (si, pj) does not form a type
1(b) blocking pair of M .

θi,j + αj + (1 − βi,k) + δk ≤ 3. (7)

We define Dk,j = {pj′ ∈ Pk : rank(lk, pj′) ≤ rank(lk, pj)}, the set of projects
that lk likes as much as pj . Next, we create a binary variable ηj,k in J such that
ηj,k = 1 if lk is full and prefers pj to his worst non-empty project in S. We
enforce this by imposing the following constraint.

dkηj,k ≥ dk −
n1∑

i′=1

∑

pj′∈Dk,j

xi′,j′ . (8)

Finally, to avoid a type 1(c) blocking pair, we impose the following constraint.

θi,j + αj + (1 − βi,k) + ηj,k ≤ 3. (9)
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Next, we give the constraints to ensure that the matching obtained from a
feasible solution in J is coalition-free.

Coalition Constraints. First, we introduce some additional notation. Given
an instance I′ of SPA-P and a matching M ′ in I′, we define the envy graph
G(M ′) = (S, A), where the vertex set S is the set of students in I′, and the arc
set A = {(si, si′) : si prefers M ′(si′) to M ′(si)}. It is clear that the matching
M2 = {(s1, p1), (s2, p2), (s3, p3)} admits a coalition {s1, s2} with respect to the
instance given in Fig. 1. The resulting envy graph G(M2) is illustrated below
(Fig. 2).

Fig. 2. The envy graph G(M2) corresponding to the SPA-P instance in Fig. 1.

Clearly, G(M ′) contains a directed cycle if and only if M ′ admits a coalition.
Moreover, G(M ′) is acyclic if and only if it admits a topological ordering. Now
to ensure that the matching M obtained from a feasible solution S under J is
coalition-free, we will enforce J to encode the envy graph G(M) and impose the
condition that it must admit a topological ordering. In what follows, we build
on our IP model J of I.

We create a binary variable ei,i′ for each (si, si′) ∈ S × S, si �= si′ , such that
the ei,i′ variables will correspond to the adjacency matrix of G(M). For each i
and i′ (1 ≤ i ≤ n1, 1 ≤ i′ ≤ n1, i �= i′) and for each j and j′ (1 ≤ j ≤ n2, 1 ≤
j′ ≤ n2) such that si prefers pj′ to pj , we impose the following constraint.

ei,i′ + 1 ≥ xi,j + xi′,j′. (10)

If (si, pj) ∈ M and (si′ , pj′) ∈ M and si prefers pj′ to pj , then ei,i′ = 1 and we
say si envies si′ . Otherwise, ei,i′ is not constrained. Next we enforce the condition
that G(M) must have a topological ordering. To hold the label of each vertex
in a topological ordering, we create an integer-valued variable vi corresponding
to each student si ∈ S (and intuitively to each vertex in G(M)). We wish to
enforce the constraint that if ei,i′ = 1 (that is, (si, si′) ∈ A), then vi < vi′ (that
is, the label of vertex si is smaller than the label of vertex si′). This is achieved by
imposing the following constraint for all i and i′ (1 ≤ i ≤ n1, 1 ≤ i′ ≤ n1, i �= i′).

vi < vi′ + n1(1 − ei,i′). (11)

Note that the LHS of (11) is strictly less than the RHS of (11) if and only if
G(M) does not admit a directed cycle, and this implies that M is coalition-free.

Variables. We define a collective notation for each variable involved in J as
follows.

X = {xi,j : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}, Λ = {αj : 1 ≤ j ≤ n2},

H = {ηj,k : 1 ≤ j ≤ n2, 1 ≤ k ≤ n3}, Δ = {δk : 1 ≤ k ≤ n3},

E = {ei,i′ : 1 ≤ i ≤ n1, 1 ≤ i′ ≤ n1}, V = {vi : 1 ≤ i ≤ n1}.
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Objective Function. The objective function given below is a summation of all
the xi,j binary variables. It seeks to maximize the number of students assigned
(that is, the cardinality of the matching).

max
n1∑

i=1

∑

pj∈Ai

xi,j . (12)

Finally, we have constructed an IP model J of I comprising the set of integer-
valued variables X,Λ,H,Δ,E and V , the set of constraints (1)–(11) and an
objective function (12). Note that J can then be used to solve MAX-SPA-P opti-
mally. Given an instance I of SPA-P formulated as an IP model J using the above
transformation, we present the following result regarding the correctness of J
(see [13] for proof).

Theorem 1. A feasible solution to J is optimal if and only if the corresponding
stable matching in I is of maximum cardinality.

4 Empirical Analysis

In this section we present results from an empirical analysis that investigates
how the sizes of the stable matchings produced by the approximation algorithms
compares to the optimal solution obtained from our IP model, on SPA-P instances
that are both randomly-generated and derived from real datasets.

4.1 Experimental Setup

There are clearly several parameters that can be varied, such as the number of
students, projects and lecturers; the length of the students’ preference lists; as
well as the total capacities of the projects and lecturers. For each range of values
for the first two parameters, we generated a set of random SPA-P instances. In
each set, we record the average size of a stable matching obtained from running
the approximation algorithms and the IP model. Further, we consider the average
time taken for the IP model to find an optimal solution.

By design, the approximation algorithms were randomised with respect to the
sequence in which students apply to projects, and the choice of students to reject
when projects and/or lecturers become full. In the light of this, for each dataset,
we also run the approximation algorithms 100 times and record the size of the
largest stable matching obtained over these runs. Our experiments therefore
involve five algorithms: the optimal IP-based algorithm, the two approximation
algorithms run once, and the two approximation algorithms run 100 times.

We performed our experiments on a machine with dual Intel Xeon CPU E5-
2640 processors with 64GB of RAM, running Ubuntu 14.04. Each of the approx-
imation algorithms was implemented in Java1. For our IP model, we carried out

1 https://github.com/sofiat-olaosebikan/spa-p-isco-2018.

https://github.com/sofiat-olaosebikan/spa-p-isco-2018
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the implementation using the Gurobi optimisation solver in Java (see footnote 1).
For correctness testing on these implementations, we designed a stability checker
which verifies that the matching returned by the approximation algorithms and
the IP model does not admit a blocking pair or a coalition.

4.2 Experimental Results

Randomly-Generated Datasets. All the SPA-P instances we randomly gener-
ated involved n1 students (n1 is henceforth referred to as the size of the instance),
0.5n1 projects, 0.2n1 lecturers and 1.1n1 total project capacity which was ran-
domly distributed amongst the projects. The capacity for each lecturer lk was
chosen randomly to lie between the highest capacity of the projects offered by
lk and the sum of the capacities of the projects that lk offers. In the first exper-
iment, we present results obtained from comparing the performance of the IP
model, with and without the coalition constraints in place.

Experiment 0. We increased the number of students n1 while maintaining a
ratio of projects, lecturers, project capacities and lecturer capacities as described
above. For various values of n1 (100 ≤ n1 ≤ 1000) in increments of 100, we cre-
ated 100 randomly-generated instances. Each student’s preference list contained
a minimum of 2 and a maximum of 5 projects. With respect to each value of
n1, we obtained the average time taken for the IP solver to output a solution,
both with and without the coalition constraints being enforced. The results,
displayed in Table 1, show that when we removed the coalition constraints, the
average time for the IP solver to output a solution is significantly faster than
when we enforced the coalition constraints.

In the remaining experiments, we thus remove the constraints that enforce
the absence of a coalition in the solution. We are able to do this for the purposes
of these experiments because the largest size of a stable matching is equal to
the largest size of a matching that potentially admits a coalition but admits no
blocking pair2, and we were primarily concerned with measuring stable matching
cardinalities. However the absence of the coalition constraints should be borne
in mind when interpreting the IP solver runtime data in what follows.

In the next two experiments, we discuss results obtained from running the
five algorithms on randomly-generated datasets.

Experiment 1. As in the previous experiment, we maintained the ratio of the
number of students to projects, lecturers and total project capacity; as well as
the length of the students’ preference lists. For various values of n1 (100 ≤ n1 ≤
2500) in increments of 100, we created 1000 randomly-generated instances. With
respect to each value of n1, we obtained the average sizes of stable matchings
constructed by the five algorithms run over the 1000 instances. The result dis-
played in Fig. 3 (and also in Fig. 4) shows the ratio of the average size of the

2 This holds because the number of students assigned to each project and lecturer in
the matching remains the same even after the students involved in such coalition
permute their assigned projects.
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stable matching produced by the approximation algorithms with respect to the
maximum cardinality matching produced by the IP solver.

Figure 3 shows that each of the approximation algorithms produces stable
matchings with a much higher cardinality from multiple runs, compared to run-
ning them only once. Also, the average time taken for the IP solver to find a
maximum cardinality matching increases as the size of the instance increases,
with a running time of less than one second for instance size 100, increasing
roughly linearly to 13 s for instance size 2500 (see [13, Fig. 3(b)]).

Experiment 2. In this experiment, we varied the length of each student’s pref-
erence list while maintaining a fixed number of students, projects, lecturers and
total project capacity. For various values of x (2 ≤ x ≤ 10), we generated 1000
instances, each involving 1000 students, with each student’s preference list con-
taining exactly x projects. The result for all values of x is displayed in Fig. 4.
Figure 4 shows that as we increase the preference list length, the stable matchings
produced by each of the approximation algorithms gets close to having maximum
cardinality. It also shows that with a preference list length greater than 5, the
3
2 -approximation algorithm produces an optimal solution, even on a single run.
Moreover, the average time taken for the IP solver to find a maximum matching
increases as the length of the students’ preference lists increases, with a running
time of two seconds when each student’s preference list is of length 2, increasing
roughly linearly to 17 s when each student’s preference list is of length 10 (see
[13, Fig. 4(b)]).

Real Datasets. The real datasets in this paper are based on actual student
preference data and manufactured lecturer data from previous runs of student-
project allocation processes at the School of Computing Science, University of
Glasgow. Table 2 shows the properties of the real datasets, where n1, n2 and
n3 denotes the number of students, projects and lecturers respectively; and l
denotes the length of each student’s preference list. For all these datasets, each
project has a capacity of 1. In the next experiment, we discuss how the lecturer
preferences were generated. We also discuss the results obtained from running
the five algorithms on the corresponding SPA-P instances.

Experiment 3. We derived the lecturer preference data from the real datasets
as follows. For each lecturer lk, and for each project pj offered by lk, we obtained
the number aj of students that find pj acceptable. Next, we generated a strict
preference list for lk by arranging lk’s proposed projects in (i) a random manner,
(ii) ascending order of aj , and (iii) descending order of aj , where (ii) and (iii) are
taken over all projects that lk offers. Table 2 shows the size of stable matchings
obtained from the five algorithms, where A,B,C,D and E denotes the solution
obtained from the IP model, 100 runs of 3

2 -approximation algorithm, single run
of 3

2 -approximation algorithm, 100 runs of 2-approximation algorithm, and single
run of 2-approximation algorithm respectively. The results are essentially consis-
tent with the findings in the previous experiments, that is, the 3

2 -approximation
algorithm produces stable matchings whose sizes are close to optimal.



An Integer Programming Approach to the Student-Project Allocation 323

Table 1. Results for Experiment 0. Average time (in seconds) for the IP solver to
output a solution, both with and without the coalition constraints being enforced.

Size of instance 100 200 300 400 500 600 700 800 900 1000

Av. time without
coalition

0.12 0.27 0.46 0.69 0.89 1.17 1.50 1.86 2.20 2.61

Av. time with
coalition

0.71 2.43 4.84 9.15 13.15 19.34 28.36 38.18 48.48 63.50
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Fig. 3. Result for Experiment 1.

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 2  3  4  5  6  7  8  9  10

A
pp

ro
xi

m
at

e 
so

lu
tio

n

Preference list length

2-approx
2-approx-100

3-2-approx
3-2-approx-100

Fig. 4. Result for Experiment 2.

Table 2. Properties of the real datasets and results for Experiment 3.

Random Most popular Least popular

Year n1 n2 n3 l A B C D E A B C D E A B C D E

2014 55 149 38 6 55 55 55 54 53 55 55 55 54 50 55 55 55 54 52

2015 76 197 46 6 76 76 76 76 72 76 76 76 76 72 76 76 76 76 75

2016 92 214 44 6 84 82 83 77 75 85 85 83 79 76 82 80 77 76 74

2017 90 289 59 4 89 87 85 80 76 90 89 86 81 79 88 85 84 80 77

4.3 Discussions and Concluding Remarks

The results presented in this section suggest that even as we increase the number
of students, projects, lecturers, and the length of the students’ preference lists,
each of the approximation algorithms finds stable matchings that are close to
having maximum cardinality, outperforming their approximation factor. Perhaps
most interesting is the 3

2 -approximation algorithm, which finds stable matchings
that are very close in size to optimal, even on a single run. These results also
holds analogously for the instances derived from real datasets.
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We remark that when we removed the coalition constraints, we were able
to run the IP model on an instance size of 10000, with the solver returning a
maximum matching in an average time of 100 s, over 100 randomly-generated
instances. This shows that the IP model (without enforcing the coalition con-
straints), can be run on SPA-P instances that appear in practice, to find maxi-
mum cardinality matchings that admit no blocking pair. Coalitions should then
be eliminated in polynomial time by repeatedly constructing an envy graph, sim-
ilar to the one described in [11, p. 290], finding a directed cycle and letting the
students in the cycle swap projects.
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Abstract. We study the entanglement game, which is a version of cops
and robbers, on sparse graphs. While the minimum degree of a graph G
is a lower bound for the number of cops needed to catch a robber in G,
we show that the required number of cops can be much larger, even for
graphs with small maximum degree. In particular, we show that there
are 3-regular graphs where a linear number of cops are needed.

Keywords: Cops and robbers · Entanglement game
Probabilistic method

1 Introduction

The game of cops and robbers was first introduced and popularised in the 1980s
by Aigner and Fromme [1], Nowakowski and Winkler [15] and Quilliot [16]. Since
then, many variants of the game have been studied, for example where cops can
catch robbers from larger distances ([10]), the robber is allowed to move at
different speeds ([2,13]), or the cops are lazy, meaning that in each turn only
one cop can move ([3,4]).

In this paper we consider the entanglement game, introduced by Berwanger
and Grädel [5] that is the following version of the cops and robbers game on a
(directed or undirected) graph G. First, the robber chooses a starting position
and the k cops are outside the graph. In every turn, the cops can either stay
where they are, or they can fly one of them to the current position of the robber.
Regardless of whether the cops stayed or one of them flew to the location of the
robber, the robber then has to move to a neighbor of his current position that
is not occupied by a cop. If there is no such neighbor, the cops win. The robber
wins if he can run away from the cops indefinitely. The entanglement number of
a graph G, denoted by ent(G), is the minimal integer k such that k cops can
catch a robber on G. In order to get accustomed to the rules of the game, it is
a nice exercise to show that the entanglement number of an (undirected) tree is
at most 2.

The main property that distinguishes the entanglement game from other
variants of cops and robbers is the restriction that the cops are only allowed
to fly to the current position of the robber. This prevents the cops from cut-
ting off escape routes or forcing the robber to move into a certain direction.
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As we will show in this paper, it is this restriction that enables the robber to
run away from many cops.

In a similar way to how the classical game of cops and robbers can be used
to describe the treewidth of a graph, the entanglement number is a measure
of how strongly the cycles of the graph are intertwined, see [6]. Just like many
problems can be solved efficiently on graphs of bounded treewidth, Berwanger
and Grädel [5] have shown that parity games of bounded entanglement can be
solved in polynomial time.

As the cops do not have to adhere to the edges of the graph G in their
movement, adding more edges to G can only help the robber. In fact, it can be
seen easily that on the complete graph Kn with n ≥ 2 vertices, n − 1 cops are
needed to catch the robber. Furthermore, observe that the minimum degree of
the graph G is a lower bound on the entanglement number, as otherwise the
robber will always find a free neighbor to move to. These observations seem to
suggest that, on sparse graphs, the cops should have an advantage and therefore
few cops would suffice to catch the robber. Indeed, on 2-regular graphs, it is
easily checked that three cops can always catch the robber.

Motivated by this, we study the entanglement game on several classes of
sparse graphs. We show that for sparse Erdős-Rényi random graphs, with high
probability linearly many cops are needed. We then apply similar ideas to show
our main result, c.f. Theorem 2, which states that the union of three random
perfect matchings is with high probability such that the robber can run away
from αn cops, for some constant α > 0. Further, we show in Theorem 3 that for
any 3-regular graph �n

4 �+4 cops suffice to catch the robber. Finally, we consider
the entanglement game for graphs that are given by a more specific union of
three perfect matchings, in fact, that are the union of a Hamilton cycle and a
perfect matching. For graphs given by a Hamilton cycle and a perfect matching
connecting every vertex to its diagonally opposite vertex, it may seem that the
diagonal “escape” edges are quite nice for the robber. This, however, is not so:
we show in Proposition 1 that for these graphs six cops are always sufficient.
However, we also show, cf. Corollary 2, that if we replace this specific perfect
matching by a random one, then with high probability a linear number of cops
is needed. We conclude that in contrast to the intuition that sparse graphs are
advantageous for the cops, they are often not able to use the sparsity to their
advantage.

As mentioned previously, the entanglement game and entanglement number
is also defined for directed graphs, the difference being that the robber moves
to a successor of his current position. In fact, motivated by an application in
logic ([7]), the authors of the original papers about the entanglement game ([5,6])
focused on the directed version. As a corollary of our main result we construct
directed graphs of maximum (total) degree 3 which again require linearly many
cops. Our result on Erdős-Rényi graphs also easily carries over to directed graphs.
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2 Results

In this section, we present and motivate our results. In order to increase the
readability, we postpone the proofs to Sect. 3. We start by analyzing the entan-
glement game on sparse random graphs.

Theorem 1. For every 0 < α < 1 there exists a constant C = C(α) > 0 such
that for any p ≥ C/n, αn cops do not suffice to catch the robber on Gn,p with
high probability. The same result holds for directed random graphs.

Note that Gn,p with p = C/n has average degree p(n− 1) < C. On the other
hand, it is known that the maximum degree is with high probability Θ(log(n)).
In the following, we construct graphs that need linearly many cops and have
maximum degree 3. The idea is that we define G as the union of three random
perfect matchings. Extending the proof ideas from Theorem 1, we obtain the
following results.

Theorem 2. There exists an α > 0 such that with high probability αn cops do
not suffice to catch the robber on the graph G = M1∪M2∪M3, where M1,M2,M3

are independent uniformly chosen random perfect matchings.

Corollary 1. There exists an α > 0 and an n0 ∈ N such that for every even
n ≥ n0 there exists a 3-regular graph on n vertices for which αn cops are not
enough to catch the robber.

This result may look surprising at first sight. In particular, consider the 3-
connected 3-regular graph DGn obtained by taking a Hamilton cycle of length
2n and connecting every vertex to its antipode by an edge.

Proposition 1. For the graph DGn six cops suffice to catch the robber.

The fact that all diagonals go to a vertex that is “furthest away” may seem
to make catching the robber quite difficult for the cops. However, as it turns
out, the symmetry of the construction is the reason for the small entanglement
number. If we replace the matching of diagonals by a random matching then the
entanglement number is typically large again.

Corollary 2. Consider the graph G = H ∪ M where H is a Hamiltonian cycle
and M is a random perfect matching. There exists an α > 0 such that with high
probability αn cops do not suffice to catch the robber on G.

We complement these lower bounds by the following upper bounds.

Theorem 3. For any 3-regular graph on n vertices, �n
4 � + 4 cops suffice.

We now turn to directed graphs. Theorem 2 immediately implies that there
are graphs that are the union of six perfect matchings on which a linear number
of cops is needed: simply direct each edge in both directions. However, there
also exist directed graphs with maximum out-degree two and (total) maximum
degree three can be very hard for the cops.
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Corollary 3. There exists an α > 0 and an n0 ∈ N such that for every even
n ≥ n0 there is a directed 3-regular (that is, the sum of in and out degree of
every vertex is 3) graph G on 6n vertices, such that αn cops do not suffice to
catch the robber on G.

The idea here is that we “blow up” an undirected 3-regular graph to a directed
one by replacing each vertex by a directed cycle of length six. We note that, in
contrast to the undirected version, we cannot just take a union of three random
directed matchings. This follows from the fact that the largest strongly connected
component in the union of three random directed matchings contains with high
probability only sublinearly many vertices as can be shown using some ideas
from [11].

3 Proofs

We start the proof section by considering the entanglement game for Erdős-Rényi
random graphs Gn,p, cf. [9,14] or [12] for an introduction to random graphs. In
Sect. 3.2 we will generalize this proof to obtain Theorem 2. In Sect. 3.3, we use
Theorem 2 to prove Corollaries 1, 2 and 3. Finally, in Sect. 3.4, we will prove the
stated upper bounds of Proposition 1 and Theorem 3.

3.1 Proof of Theorem 1

Recall from the introduction that adding edges to the graph can only make it
harder for the cops. Without loss of generality it thus suffices to consider the case
Gn,p, where p = C/n for some (large) constant C > 0. A standard result from
random graph theory is that such a random graph has with high probability
one large component (of size approximately βn, where β is a function of the
constant C of the edge probability p), while all additional components have at
most logarithmic size. Here we need the following strengthening of this result:

Lemma 1. For every 0 < ᾱ < 1 there exists a constant C = C(ᾱ) > 0 such
that for any p ≥ C/n the random graph Gn,p is with high probability such that
every subset X ⊆ V of size ᾱn induces a subgraph that contains a connected
component of size at least 2

3 ᾱn.

Proof. First observe that any graph on ᾱn vertices that does not contain a
component of size at least βn contains a cut (S, S̄) such that E(S, S̄) contains no
edge and |S|, |S̄| ≤ 1

2 (ᾱ+β)n. This follows easily by greedily placing components
into S as long as the size constraint is not violated. Note that such a cut (S, S̄)
contains at least 1

4 (ᾱ2 − β2)n2 possible edges. The probability that all these
edges are missing in the random graph Gn,p is thus at most (1 − p)

1
4 (ᾱ

2−β2)n2 ≤
e−C

4 (ᾱ2−β2)n. By a union bound over all sets X of size ᾱn and all possible cuts
(S, S̄) we thus obtain that the probability that the random graph Gn,p does not
satisfy the desired property is at most(

n

ᾱn

)
· 2ᾱn · e−C

4 (ᾱ2−β2)n,
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which in turn can be bounded by

2H(ᾱ)n · 2ᾱn · e−C
4 (ᾱ2−β2)n

by using the standard estimations for the binomial coefficient, where H(x) =
−x log2 x − (1 − x) log2(1 − x). By letting β = 2

3 ᾱ and making C large enough
we see that this term goes to zero, which concludes the proof of the lemma. 	


With Lemma 1 at hand we can now conclude the proof of the theorem as
follows. Pick any 0 < α < 1 and let ᾱ = 1 − α. Assume that Gn,p satisfies the
property of Lemma 1. The robber can win against αn cops with the following
strategy: he aims at always staying in a component of size at least 2

3 ᾱn in a
subgraph G[A] for some cop-free set A of size ᾱn. Clearly, this can be achieved
at the start of the game. Now assume that the robber is in such a component C
of a subgraph G[A]. If a cop moves to the location of the robber, we change A
by removing this vertex and add instead another vertex not covered by a cop.
Call this new cop-free set A′. By assumption G[A′] contains a component C ′ of
size 2

3 ᾱn. Since C and C have size at least 2
3 |A|, C is contained in A and C ′

contains at most one vertex that is not in A, C and C ′ overlap. Thus, the robber
can move to a neighbor that is in C ′, as required.

The directed cases follows similarly. The only slightly more tricky case is
the argument for the existence of the cut (S, S̄). This can be done as follows.
Consider all strongly connected components of Gn,p. It is then not true that
there exist no edges between these components. What is true, however, is that
the cluster graph (in which the components are replaced by vertices and the
edges between components by one or two directed edges depending on which
type of edges exist between the corresponding components) is acyclic. If we thus
repeatedly consider sink components, placing them into S as long as the size
constraint is not violated, we obtain a cut (S, S̄) which does not contain any
edge directed from S to S̄. From here on the proof is completed as before. 	


3.2 Proof of Theorem 2

In this section, we prove the a slightly stronger version of Theorem 2, i.e., we
show that the statement of Theorem 2 holds with exponentially high probability.
We need this statement to proof the corollaries in Sect. 3.3. For completeness we
restate the theorem in this form:

Theorem 4. There exists an α > 0 such that, with probability 1 − e−Ω(n), αn
cops do not suffice to catch the robber on the graph G = M1 ∪ M2 ∪ M3, where
M1,M2,M3 are independent uniformly chosen random perfect matchings.

Let α > 0 denote a sufficiently small constant to be chosen later, and, as
before, let ᾱ := 1 − α. The main idea of the proof of Theorem 4 is similar to the
strategy that we used in the proof of Theorem 1. Namely, we show that every
subgraph induced by an ᾱ-fraction of the vertices contains a large connected
component. In the proof of Theorem 1 we used 2

3 ᾱn as a synonym for “large”.
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As it turns out, in the proof of Theorem 4 we have to be more careful. To
make this precise we start with a definition. Given α > 0, we say that a graph
G = (V,E) is α-robust, if for every set X ⊆ V of size |X| ≥ ᾱn = (1 − α)n the
induced graph G[X] contains a connected component that is larger than |X|/2.

Lemma 2. Assume G = (V,E) is an α-robust graph for some 0 < α < 1. Then
α|V | − 2 cops are not sufficient to catch the robber.

Proof. Let n = |V | and assume there are αn − 2 cops. The robber can win
with the following strategy, similar to the one used on the random graphs: he
aims at always staying in the unique component of size greater than |A|/2 in a
subgraph G[A] for some cop-free set A of size |A| ≥ ᾱn such that |A| is even.
In the beginning of the game, this can easily be achieved. If some cop is placed
on the current position of the robber, then we remove this vertex from A and
add some other cop-free vertex arbitrarily to obtain a set A′. Let C resp. C ′ be
the vertex set of the largest component in G[A] resp. G[A′]. It remains to show
that C and C ′ overlap. Assume they do not. Then |C ∪ C ′| = |C| + |C ′|. By
α-robustness and the evenness assumption of A and A′ we have |C| ≥ |A|/2 + 1
and |C ′| ≥ |A′|/2 + 1. As A′ (and thus C ′) contains at most one vertex that is
not in A, this is a contradiction. 	


For the proof that the union of three perfect matchings is α-robust for suffi-
ciently small α, we will proceed by contradiction. Here the following lemma will
come in handy.

Lemma 3. Let G = (V,E) be a graph on n = |V | vertices that does not contain
a component on more than n/2 vertices. Then there exists a partition V =
B1 ∪ B2 ∪ B3 such that

(i) |Bi| ≤ n/2 for all i = 1, 2, 3 and
(ii) E(Bi, Bj) = ∅ for all 1 ≤ i < j ≤ 3.

Proof. This follows straightforwardly from a greedy type argument. Consider
the components of G in any order. Put the components into a set B1 as long as
B1 contains at most n/2 vertices. Let C be a component whose addition to B1

would increase the size of B1 above n/2. Placing C into B2 and all remaining
components into B3 concludes the proof of the lemma. 	


We denote by pm(n) the number of perfect matchings in a complete graph
on n vertices. For sake of completeness let us assume that in the case of n
odd we count the number of almost perfect matchings. We are interested in
the asymptotic behavior of pm(n). In fact, we only care on the behavior of the
leading terms. With the help of Stirling’s formula

n! = (1 + o(1)) ·
√

2πn · (n/e)n ,

one easily obtains that

pm(n) =
n!

�n/2�! · 2�n/2� = poly(n) ·
(n

e

)n/2

, (1)
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where here and in the remainder of this section we use the term poly(n) to
suppress factors that are polynomial in n.

For any non-negative real numbers x, y, z such that x + y + z = 1, we define
H(x, y, z) = −x log2 x − y log2 y − z log2 z.

Lemma 4
min

0≤x,y,z≤1/2
x+y+z=1

H(x, y, z) = 1.

Proof. As −x log2 x is concave, H(x, y, z) must attain its minimum in a vertex
of the simplex 0 ≤ x, y, z ≤ 1/2, x + y + z = 1, which, up to permutation of the
variables, is given by x = y = 1

2 and z = 0. 	

We are now ready to prove Theorem 4, which implies Theorem 2. Let n = |V |.

In light of Lemma 2, the theorem follows if we can show that G = (V,E) =
M1∪M2∪M3 is α-robust with exponentially high probability for some sufficiently
small α > 0. By Lemma 3, it suffices to show that, for all C ⊆ V of size at most
ᾱn = (1 − α)n and all partitions B1, B2, B3 of B = V \ C such that no set Bi

contains more than |B| /2 vertices, the graph contains an edge that goes between
two sets Bi, Bj where i = j.

Consider any such partition B1, B2, B3, C. For each i = 1, 2, 3, let βi =
|Bi| / |B|. Let M be one uniformly chosen perfect matching. Let us estimate the
probability that EM (Bi, Bj) = ∅ for all i = j. First, condition on the set of edges
M ′ in M with at least one end-point in C. These will connect to at most αn
vertices in B. Let B′, B′

1, B
′
2 and B′

3 respectively denote the subsets of vertices
that remain unmatched. Hence, the remaining edges in the matching M \ M ′ is
chosen uniformly from all perfect matchings on B′.

We write β′
i = |B′

i| / |B′|. Clearly, if |B′
i| for some i = 1, 2, 3 is odd, then

P(EM (Bi, Bj) = ∅ ∀i = j|M ′) = 0.

Otherwise, by (1), we get

P(EM (Bi, Bj) = ∅ ∀i = j|M ′) =
1

pm(|B′|)
3∏

i=1

pm(|B′
i|)

= poly(n) ·
(

e

|B′|
)|B′|/2 3∏

i=1

( |B′
i|

e

)|B′
i|/2

= poly(n) ·
(
β

′β′
1

1 β
′β′

2
2 β

′β′
3

3

)|B′|/2

= poly(n) · 2−H(β′
1,β′

2,β′
3)|B′|/2.

As H(x, y, z) is uniformly continuous, we know that for any ε > 0, there exists
an α0 > 0 such that, for any 0 < α < α0, |(|B| − |B′|)/n| and |β′

i − βi| are suffi-
ciently small that the above expression can be bounded by 2−H(β1,β2,β3)ᾱn/2+εn,
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where the choice of α0 holds uniformly over all β1, β2, β3. As the above bound
holds for any matching M ′, we get

P(EM (Bi, Bj) = ∅ ∀i = j) ≤ 2−H(β1,β2,β3)|B|/2+εn,

for any partition {B1, B2, B3, C} as above.
We now do a union bound over all such partitions. For a given set C and

given sizes b1, b2, b3 of the sets B1, B2, B3, the number of choices for these sets
is

( |B|
b1,b2,b3

)
= poly(n) · 2H(β1,β2,β3)|B| where B = V \ C. Moreover, by the

above calculation, given a partition B1, B2, B3, C as above, the probability that
E(Bi, Bj) = ∅ for a union of three independent uniformly chosen perfect match-
ings is at most 2−3H(β1,β2,β3)|B|/2+3εn. This yields

P(∃B1, B2, B3, C : E(Bi, Bj) = ∅ ∀i = j)

≤ poly(n) ·
∑
B⊆V

|B|≥ᾱn

∑
0≤b1,b2,b3≤|B|/2

b1+b2+b3=|B|

2−H(β1,β2,β3)|B|/2+3εn

≤ poly(n) · 23εn
∑
B⊆V

|B|≥ᾱn

⎛
⎝ max

0≤β1,β2,β3≤1/2
β1+β2+β3=1

2−H(β1,β2,β3)

⎞
⎠

|B|/2

≤ poly(n) · 23εn
∑
B⊆V

|B|≥ᾱn

2−|B|/2,

where the second inequality follows since there are only poly(n) triples {b1, b2, b3}
satisfying 0 ≤ b1, b2, b3 ≤ |B|/2 and b1 + b2 + b3 = |B|, and the third inequality
follows by Lemma 4. The remaining sum can be rewritten as

∑n
k=	ᾱn


(
n
k

)
2−k/2.

Assuming ᾱ ≥ 1
2 , the summand is decreasing. Hence the sum is at most poly(n) ·(

n
ᾱn

)
2−ᾱn/2. We conclude that

P(G is not α-robust) ≤ poly(n) · 2(H(ᾱ)−ᾱ/2+3ε)n. (2)

As H(ᾱ)− ᾱ
2 = − 1

2 +H(α)+ α
2 → − 1

2 as α → 0, we see that choosing 0 < ε < 1/6
and α > 0 sufficiently small, the right-hand side of (2) tends to 0 exponentially
fast in n, as desired. 	


3.3 Proof of Corollary 1, 2 and 3

Proof (of Corollary 1). A standard method from random graph theory for the
construction of regular graphs is the so-called configuration model introduced
by Bollobás in [8]. Constructing a graph G by taking the union of three inde-
pendent uniformly chosen random perfect matchings M1,M2,M3 is equivalent
to constructing a 3-regular random graph with the configuration model and con-
ditioning that no self-loops appear. Since conditioning that no self-loops appear
increases the probability of producing a simple graph (because all graphs with
self-loops are not simple), Corollary 1 thus follows immediately from [8].
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For sake of completeness we also give a direct proof. By symmetry the proba-
bility that a given edge is contained in a random perfect matching is exactly 1

n−1 .
The expected number of edges common to M1 and M2 is thus n

2(n−1) . Hence, by
Markov’s inequality, with probability at least 1 − n

2(n−1) ≈ 1
2 , M1 and M2 are

disjoint. Assuming the two first matchings are disjoint, we uniformly choose one
pair of vertices {u, v} to form an edge in M3. With probability 1− 2

n−1 , this edge
is not in M1 ∪M2, and hence shares one end-point with exactly 4 of the n edges
in M1 ∪ M2. Adding the remaining n

2 − 1 edges to M3, the expected number
of these that are contained in M1 ∪ M2 is n−4

n−3 = 1 − 1
n−3 . Again by Markov’s

inequality, this means that M3 is disjoint M1∪M2 with probability at least 1
n−3 .

It follows that M1,M2,M3 are pairwise disjoint with probability at least Ω
(
1
n

)
.

As Theorem 4 holds with exponentially high probability, for sufficiently large n,
we can find disjoint matchings M1,M2,M3 such that αn cops do not suffice to
catch the robber on G = M1 ∪ M2 ∪ M3. 	

Proof (of Corollary 2). Let M1,M2,M3 be random perfect matchings chosen
independently and uniformly. We claim that M1 ∪ M2 is a Hamiltonian cycle
with probability at least 1

n−1 . Therefore, the graph G = M1 ∪ M2 ∪ M3 is with
probability at least 1

n−1 a union of a Hamiltonian cycle and a random matching.
Since Theorem 4 holds with probability 1−e−Ω(n), it holds with high probability
that αn cops do not suffice to catch the robber on the graph G = H ∪M , where
H is an Hamiltonian cycle and M is a random perfect matching.

To see why the claim holds, note that there are 1
2 (n−1)! Hamiltonian cycles,

each of which can be written as a union M1 ∪ M2 of two perfect matchings in
two ways, and (n−1) ·(n−3) · . . . ·1 perfect matchings. Therefore the probability
that the union of two random matchings is Hamiltonian is

2 · 1
2 (n − 1)!

((n − 1) · (n − 3) · . . . · 1)2
=

1
n − 1

(n − 2)
1

n − 3
(n − 4) · · · 21

1
>

2
n − 1

. 	


Proof (of Corollary 3). Choose an even n large enough. By Theorem 2, there
exist three perfect matchings M1,M2,M3 on n vertices such that αn cops do
not suffice to catch the robber on the graph G′ = M1 ∪ M2 ∪ M3. We construct
the graph G in the following way. We label the 6n vertices by vij for 1 ≤ i ≤ n
and 1 ≤ j ≤ 6. For all i, we connect vi1, . . . , vi6 as a directed 6-cycle. For each
edge of one of the matchings, we will connect two of these cycles. More precisely,
let e ∈ Mk and suppose that e connects vertex i and j in G′. Then, we add the
directed edges (vik, vj(k+3)) and (vjk, vi(k+3)) to G.

We call a cycle i free if no cop is on this cycle, and occupied otherwise. If the
robber enters a free cycle, then he can reach any vertex of the cycle and while
doing so, the cops cannot occupy any new vertex outside of the cycle. Consider
a situation of the game on the graph G with occupied cycles F ⊂ [n], where the
robber enters a free cycle i. This corresponds to the situation on the graph G′

with occupied vertices F where the robber enters vertex i. On this graph the
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robber moves according to its winning strategy to a free vertex j with (i, j) ∈ Mk

for some 1 ≤ k ≤ 3. On the graph G the robber moves first along the cycle i to
vertex vik and then enters the free cycle j via the edge (vik, vj(k+3)). Therefore,
any winning strategy for the robber on graph G′ with αn cops gives a winning
strategy for the robber on graph G with αn cops. 	


3.4 Proofs of Upper Bounds

Proof (of Proposition 1). Consider the graph DGn on 2n vertices consisting of
a Hamilton cycle u1, u2, . . . , un, v1, v2, . . . , vn and n additional edges (ui, vi) for
1 ≤ i ≤ n. We call these additional edges diagonal edges and the other edges
cycle edges. Note that every DGn graph is 3-regular. Since the graph cannot
be disconnected by removing 2 vertices, the graph DGn is also 3-connected.
Furthermore, the removal of any two pairs of opposite vertices (ui, vi), (uj , vj)
for i = j splits the graph into two connected components. This structure turns
out to be very useful for the cops. By occupying four such vertices the robber is
trapped in the connected component he is in.

As in real life, our cops never come alone. Consider three pairs of cops ci, c
′
i

for 1 ≤ i ≤ 3. In order to catch the robber it suffices that each pair of cops
can execute the command chase robber. If a pair i of cops is told to chase the
robber, ci and c′

i alternate in flying to the robbers location. This ensures that
the robber can never move to its previous location. The first time the robber
uses a diagonal edge, this pair of cops blocks the diagonal, i.e., it stays on the
two endpoints of the diagonal edge until it receives the command to chase the
robber again. Note that if there is a third cop placed somewhere on the graph,
then the robber is forced to use a diagonal edge after less than 2n steps.

In the beginning of the game, when the robber has chosen its starting posi-
tion, cop c3 flies to the position of the robber. Then, cop pair c1, c

′
1 chases the

robber. The first time the robber uses a diagonal edge, these cops block the diag-
onal, and the second pair of cops starts chasing the robber. When the robber
uses a diagonal edge again, this pair of cops blocks that diagonal and the third
pair of cops c3, c

′
3 starts chasing the robber.

From now on there will always be two cop pairs blocking two diagonals.
Therefore, the robber cannot leave the area between these two diagonals. The
remaining pair of cops chases the robber until he moves along a diagonal edge;
this diagonal is subsequently blocked by this pair of cops. Note that the robber
is now in the component defined by this diagonal and one of the two previ-
ously blocked diagonals. Correspondingly, one of the two cop pairs is not needed
anymore and this pair of cops takes on the chase. The size of the entangled
component the robber is in decreases by at least 2 every time the robber uses a
diagonal edge. When the component has size 2 the robber is caught. 	

Proof (of Theorem 3). Our main approach is the following. First, we identify a
set A of size �n

4 � with the property that 4 cops suffices to catch the robber on
G \ A. Then �n

4 � + 4 cops can catch the robber using the following strategy. As
long as the robber plays on the vertices in G\A, we follow the optimal strategy on
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G\A using at most 4 cops. Unless this catches the robber, he must at some point
move to a vertex in A. If that happens, place one cop there permanently and
repeat. Eventually, the robber runs out of non-blocked vertices in A to escape
to and gets caught.

In order to identify the vertices that we want to place in A, we observe the
following. Assume that the strategy on G \ A for the cops is such that there
will always be cops placed at the robbers last two positions, e.g. two cops take
turns to drop on the robber. Then in order to catch the robber in G \ A, we can
ignore all vertices that have degree one in G \A (as the robber will be caught, if
he moves to such a vertex) and replace paths in which all internal vertices have
degree two by a single edge (as two cops suffice to chase the robber along such
a path).

To formalize this, we consider two operations to reduce a graph G: (i) remove
any degree 1 vertices, (ii) replace any degree two vertices by an edge. Note that
the second operation could create loops or multiple edges, so a reduced graph
may not be simple. Moreover, reducing a max degree 3 graph as far as possible
will result in components that are non-simple 3-regular or a vertex or a loop.

We now use these operations to define the set A. Pick any vertex of degree
3 and remove it from G. This decreases the number of degree 3 vertices by 4.
Reduce G as far as possible. If the remaining graph has a vertex with 3 distinct
neighbors, remove it from G, and reduce as far as possible. Again, this decreases
the number of degree 3 vertices by 4. Repeat until no vertex in G has more than
2 distinct neighbors. Let A be the set of removed vertices. Then |A| ≤ �n

4 �.
It remains to show that 4 cops can catch the robber on G\A. By construction,

any connected component of G\A can be reduced to either a loop, a vertex, or a
(non-simple) graph where all vertices have degree 3 but at most two neighbors.
It is easy to see that the only way to satisfy these properties is for each vertex to
either be incident to one loop and one single edge, one single edge and one double
edge, or one triple edge. Thus, the only possible graphs are (a) an even cycle
where every second edge is double, (b) a path where every second edge is double
and where the end-points have loops attached, or (c) two vertices connected by
a triple edge. We leave it as an exercise to see that the robber can be caught on
any such graphs using at most 4 cops. Note that, due to (ii), it might be possible
for the robber to have the same position at times t and t + 2 by following a pair
of edges between the same two vertices, but this can be prevented using one of
the cops. 	


4 Conclusion

We have shown that there are many graphs with maximum degree three for
which the entanglement number is of linear size, in the directed cases as well as
in the undirected case. This shows that the freedom of the cops of being able to
fly to any vertex is not helpful when they are only allowed to fly to the current
position of the robber. In other words, they should not only follow the robber,
but they should think ahead of where the robber might want to go, as the title
of our paper indicates.
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All our examples were found by taking the union of three random matchings.
We have shown that there exists an α such that with high probability, the robber
can run away from αn cops. We also showed that � 1

4n� + 4 cops do suffice. We
leave it as an open problem to determine the exact value of α.

Acknowledgments. We thank Malte Milatz for bringing this problem to our
attention.
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massinissa.merabet@ensiie.fr
2 Manufacturing and Industrial Engineering Cluster, School of Mechanical

and Aerospace Engineering, Nanyang Technological University (NTU),
Singapore, Singapore
jdesai@ntu.edu.sg

3 The Montpellier Laboratory of Informatics, Robotics and Microelectronics,
University of Montpellier, Montpellier, France

miklos.molnar@lirmm.fr

Abstract. Given a connected graph G = (V, E) and its spanning tree T ,
a vertex v ∈ V is said to be a branch vertex if its degree is strictly greater
than 2 in T . The Minimum Branch Vertices Spanning Tree (MBVST)
problem is to find a spanning tree of G with the minimum number of
branch vertices. This problem has been extensively studied in the lit-
erature and has well-developed applications notably related to routing
in optical networks. In this paper, we propose a generalization of this
problem, where we begin by introducing the notion of a k-branch vertex,
which is a vertex with degree strictly greater than k + 2. Our goal is to
determine a spanning tree of G with the minimum number of k-branch
vertices (k-MBVST problem). In the context of optical networks, the
parameter k can be seen as the limiting capacity of optical splitters to
duplicate the input light signal and forward to k destinations. Proofs of
NP-hardness and non-inclusion in the APX class of the k-MBVST prob-
lem are established for a generic value of k, and then an ILP formulation
of the k-MBVST problem based on single commodity flow balance con-
straints is derived. Computational results based on randomly generated
graphs show that the number of k-branch vertices included in the span-
ning tree increases with the size of the vertex set V, but decreases with
k as well as graph density. We also show that when k ≥ 4, the number
of k-branch vertices in the optimal solution is close to zero, regardless of
the size and the density of the underlying graph.
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1 Introduction

Given a connected graph G = (V, E), a vertex v ∈ V is defined to be a branch
vertex in a spanning tree if its degree (denoted dG(v)) is strictly greater than two,
i.e., dG(v) > 2. The Minimum Branch Vertices Spanning Tree (MBVST) prob-
lem is to find a spanning tree of graph G with the minimum number of branch
vertices. This NP-hard and non-APX problem [GHSV02] has been well-studied
in the literature and Cerrulli et al. [CGI09] were the first to formulate this prob-
lem as an integer linear program (ILP), wherein they used single commodity
flow balance constraints to guarantee connectivity. In [CCGG13], Carabbs et al.
provided two alternative ILP formulations based on multi-commodity flow bal-
ance constraints and the well-known cycle eliminating Miller-Tucker-Zemlin con-
straints, respectively. They also determined lower and upper bounds for the
MBVST using the Lagrangian relaxation method. In [Mar15], Marin presented
a branch-and-cut algorithm based on an enforced integer programming formu-
lation for the MBVST problem. Melo et al. [MSU16] observed that an articula-
tion vertex connecting at least three connected subgraphs of G must necessarily
be a branch vertex in any optimal solution of the MBVST. Using this prop-
erty, they independently solved the MBVST on each subgraph and conjoined
these partially optimal trees to recover the overall optimal solution. In [CCR14],
Cerrone et al. determined a unified memetic algorithm for three related problems,
namely the MBVST; the problem of minimizing the degree sum of branch ver-
tices (MDST); and the minimum leaves problem (ML). Landete et al. [LMSP17]
studied the resolutions of these three problems, when the graph contains spe-
cial nodes whose removal produces two or more connected components. Ad-hoc
algorithms for each problem are developed that combine partial solutions to the
thereby problems on the components produced by the removal of the nodes,
guaranteeing the optimality of the global solution. Merabet et al. proved in
[MDM13b] that the set of optimal solutions for MBVST and the set of opti-
mal solutions for MDST are disjoint. They also proposed two variants of these
problems which impose branch vertices to belong to a subset of nodes to bet-
ter deal with the optical network constraints. In [MDM13a], another variant
based on a more flexible graph structure, namely the so-called hierarchy is pro-
posed. A hierarchy, which can be seen as a generalization of trees, is defined as a
homomorphism of a tree in a graph [Mol11], and as minimizing the number of
branch vertices in a hierarchy has no practical relevance, the authors determined
the minimum cost spanning hierarchy such that the number of branch vertices
is less than or equal to a given integer r.

The most widespread application of such MBVST problems arises in
Wavelength-Division Multiplexing (WDM), which is an effective technique to
exploit the available bandwidth of optical fibers to meet the explosive growth
of bandwidth demand across the Internet [HGCT02]. Now, a multicast tech-
nique consists of simultaneously transmitting information from one source to
multiple destinations in a bandwidth efficient way (duplicating the information
only when required). From a computational viewpoint, multicast routing pro-
tocols in WDM networks are mainly based on light-trees [SM99], which require
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intermediate nodes to have the ability to split and direct the input signal to mul-
tiple outputs as and when necessary. A node which has the ability to replicate
an input signal on any wavelength to any subset of output fibers is referred to
as a Multicast-Capable (MC) node [MZQ98]. (A light-splitting switch has to be
placed in the optical device to perform such a task at an MC node.) On the other
hand, a node which has the ability to tap into a signal and forward it to only one
output is called a Multicast-Incapable (MI) node. As light-splitter switches are
rather expensive devices, it is imperative to minimize the number of MC nodes
in the light-tree, and hence this problem lends itself to being expressed as the
MBVST problem (see Gargano et al. in [GHSV02]).

Extending this, if a light signal is split into k copies (at an MC node without
amplifiers), then the signal power of each resultant copy is reduced by, at least,
a factor of 1/k of the original signal power [AD00]. If k is too large, then the
information cannot be deciphered at the destinations due to the signal strength
dropping below the minimum threshold value, and therefore, k functions as a
limiting (tolerance) parameter.

Definition 1. A k-branch vertex is a vertex with degree strictly greater than
k + 2 in the spanning tree.

Therefore, given a k-branch vertex, it is useful to look for a light-tree in the
WDM network with the minimum number of k-branch vertices, where k is fixed
as the threshold parameter. If the light-tree contains some k-branch vertices, an
optical amplifier must be installed near each k-branch vertex to guarantee the
efficiency of the broadcast/multicast. This leads to our problem:

Definition 2. Let G = (V, E) be a graph. The k-MBVST problem consists of
finding a spanning tree T of G such that the number of k-branch vertices in T
is minimized.

The remainder of this paper is organized as fellows. In Sect. 2, proofs of
NP-hardness and non-inclusion in the APX class of the k-MBVST problem are
established for any generic value of k. An improved ILP formulation of this
problem based on single commodity flow balance constraints is derived in Sect. 3,
and finally Sect. 4 records some preliminary computational results along with
associated insights and conclusions.

2 Proofs of NP-Hardness and Negative Approximability

In a Hamiltonian graph, it is evident that finding a 0-MBVST is equivalent
to finding a Hamiltonian path in G. Thus, the k-MBVST is NP-complete in
this case. Furthermore, the classical MBVST problem is NP-complete, even on
non-Hamiltonian graphs [GHSV02], and moreover, it is a particular case of the
k-MBVST problem corresponding to k = 0. Therefore, the 0-MBVST is at least
as difficult as the MBVST even in this case.

In the following discussion, we prove that the k-MBVST problem is NP-hard
for any generic k > 0. Towards this end, denote by sk(G) the smallest number
of k-branch vertices in any spanning tree of G.
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Theorem 1. Let r be a fixed non-negative integer. It is NP-complete to decide
whether a given graph G satisfies sk(G) ≤ r for any value of k.

Proof. Case 1: r=0
Let G = (V, E) be a given connected graph. Construct a new graph Ḡ by linking
k leaves to each vertex v ∈ V. Deciding whether Ḡ contains a spanning tree
with no k-branch vertex is equivalent to determining whether G is Hamiltonian
or not.

G(a) Graph (b) Graph

leavesk

Ḡ

Fig. 1. Reduction from the Hamiltonian problem to the 0-MBVST (k = 5).

Case 2: r ≥ 1
Let G = (V, E) be a given connected graph. Construct a graph Ḡ by replicating
r · (k+1) times the graph G and add a chain C of size r+2. Choose an arbitrary
vertex v ∈ V and link every internal vertex of C to (k + 1) distinct replications
of G from their corresponding vertices (duplicates) v. Moreover, link k leaves to
each vertex of each duplication of G. In any spanning tree of Ḡ, the r internal
vertices of the chain are necessarily k-branch vertices. Thus, the graph Ḡ will
contain a spanning tree with sk(Ḡ) = r if and only if G admits a Hamiltonian
path starting from v (Fig. 2).

: Chain

: Leaves

C

v v

v v

Fig. 2. Construction of graph Ḡ, with k = 1 and r = 2, corresponding to G (Fig. 1a).

In the following discussion, we show that the k-MBVST problem is not in the
APX class for any generic k > 0. Knowing that if an optimization problem P1

is AP-reducible to an optimization problem P2 and P2 �∈ APX, then P1 �∈ APX
[GPMS+99], we prove this result by applying an AP-reduction (f, g, ρ) from the
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Minimum Set Cover (MSC ) problem to the k-MBVST problem. Consider an
instance of the MSC problem given by a ground set U = {x1, x2, ..., xn}, and

a collection of m subsets S = {Si}mi=1, such that
m⋃

i=1

Si ≡ U . A solution to the

MSC problem aims to find a minimum number of subsets whose union contains
each element of U . This MSC problem is NP-complete and is not in the APX
class [GPMS+99].

Theorem 2. The k-MBVST problem is not in APX for any value of k.

Proof. Let X = (U ,S) be a given instance of the MSC problem. We now con-
struct a graph G, underlying an instance of the k-MBVST problem, such that a
feasible solution for the k-MBVST problem exists if and only if the instance X
contains a feasible solution for the MSC problem. This construction procedure is
described next. Define G = f(x, r) = f(x) by adding a vertex vi corresponding
to each element xi ∈ U . Similarly, add a vertex sj for each subset Sj ∈ S. If
xi ∈ Sj , then connect sj and vi by an edge. Moreover, add a vertex z and link
it to each vertex si. Finally, link (k − 2) leaves to each vertex si and link (k − 1)
leaves to z (refer Fig. 3 for an illustrative example).

z

z1 z4z3z2

u3u2u1 u4 u5 u6 u7 u8 u9 u12u11u10 u15u14u13 u16 u17 u18

s2

s1

s3 s4

s5

s6

v4v3v1 v2 v5 v6
v7 v9

Fig. 3. Reduction of the MSC to the k-MBVST with k = 5, U = {1, 2, 3, 4, 5, 6, 7, 8, 9},
and S = {{v1}, {v1, v2, v3, v4}, {v2, v4, v5}, {v4, v5, v7}, {v4, v6, v7, v9}, {v9}}.

This construction ensures that if an optimal solution for the MSC problem in
X contains n subsets then the optimum objective function value of the k-MBVST
problem, defined over G, equals (n + 1), i.e., the number of k-branch vertices in
the optimal solution is (n + 1). Conversely, if the optimum objective function
value of the k-MBVST in G equals n, then an optimal solution for the MSC
problem in X contains exactly (n − 1) subsets. (An additional but necessary
criterion of any AP-reduction process is that the graph construction must be
done in polynomial time. Clearly, in our case, a polynomial time computation of
the graph G is trivial). Now, let c∗(f(x, r)) be the optimum value of the instance
f(x, r) and let c(f(x, r), y) denote the value of a feasible solution y. Let c∗(x)
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denote the optimum value of an instance x. Finally, let c(x, g(x, y, r)) be the
objective function value of a solution g(x, y, r). Then, suppose that

r ≥ c(f(x, r), y)
c∗(f(x, r))

. (2a)

Our mapping yields that c∗(x) = c∗(f(x, r)) − 1 and that c(x, g(x, y, r)) =
c(f(x, r), y) − 1. Hence, for some r > 1 and fixed ρ = 2, it is sufficient for
us to show that

1 + 2(r − 1) ≥ c(f(x, r), y) − 1
c(f(x, r)) − 1

. (2b)

Using inequality (2a), it is enough to prove that

(r − 1)(c∗(f(x, r)) − 2) ≥ 0. (2c)

Since every spanning tree of G has at least two k-branch vertices (including
z and at least one of si), the inequality (2c) is trivially true for r > 1.

Thus, the above defined (f, g, 2) is an AP-reduction from the MSC problem
to the k-MBVST problem.

Having proved the NP-completeness and non-inclusion in the APX class of
the k-MBVST problem, in the following section, we turn our attention to deriving
an integer linear programming formulation of this problem.

3 An ILP Formulation of the k-MBVST Problem

Recall that dG(v) denotes the degree of v in G, and let CG(v) represent the number
of connected components in G\{v}. Before proceeding with the derivation of the
ILP formulation of the k-MBVST problem, as a pre-processing step, we exploit
the structure of the underlying graph to ascertain which vertices must necessarily
be, can never be, or could possibly be k-branch vertices in the optimal solution.
Towards this end, we partition the vertex set V into V1, V2, V3:

V1 = {v ∈ V : dG(v) ≤ k + 2} (3a)
V2 = {v ∈ V : (dG(v) > k + 2) ∧ (CG(v) ≤ k + 2)} (3b)
V3 = {v ∈ V : CG(v) > k + 2}, (3c)

where V1 ∩ V2 ∩ V3 = ∅ and V1 ∪ V2 ∪ V3 = V. Clearly, the V1 vertices do not
have a sufficiently high enough degree to be k-branch in any spanning tree of
G. Conversely, the V3 vertices must necessarily be selected as k-branch vertices
in any spanning tree of G as deleting any of those vertices decomposes G into
at least k + 3 connected components. While deleting a vertex in V2 decomposes
G into at most k + 2 connected components, such vertices could be k-branch
vertices in the optimal solution (Fig. 4). Furthermore, it is trivially true that an
isthmus (an edge of a graph whose deletion increases its number of connected
components) must be in any spanning tree of G. Denote by I the set of isthmuses
of G.
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v1

v2 v3

G(a) A graph (c) An optimal tree(b)

v2 v3

G′ = G \ {v1}
v1

v2 v3

Fig. 4. Graph G′ = G \{v1} is connected and yet v1 is a 2-branch vertex in the optimal
solution (k = 0).

Lemma 1. The number of k-branch vertices belonging to V2 in any spanning
tree of graph G is at most

(
|V| −

∑

v∈(V1∪V3)

CG(v)
)
/(k + 2).

Proof. By definition, it follows that exactly CG(v) components are connected
to each vertex v ∈ (V1 ∪ V3). Consequently, each one is connected to v in any
spanning tree of G by at least one edge. Therefore, at most |V|−

∑

v∈(V1∪V3)

CG(v)

remaining vertices can be connected to the V2 vertices. Moreover, the degree
of each k-branch vertex is at least equal to k + 3 and at least k + 2 remaining
vertices are connected to each other, as one edge serves to connect a V2 vertex
to the tree. Therefore, the number of k-branch vertices in V2 in any spanning
tree of G is upper bounded by

(
|V| −

∑

v∈(V1∪V3)

CG(v)
)
/(k + 2).

The formulation of the k-MBVST problem as an integer linear program
(ILP) derived in this paper is predicated on the single balance commodity flow
formulation proposed in [CGI09]. However, it is worthwhile to note that by con-
sidering the partitions of graph vertices; computing a tighter upper bound on
the maximum quantity of flow transiting on the graph edges; and deploying a
tight constraint to check if a vertex is k-branch or not, a significantly improved
version as compared to the classical formulation is presented in this paper. The
concepts alluded to above are as follows.

In order to define a spanning tree T of G, we can send from a source vertex
s ∈ V, one unit of flow to every other vertex v ∈ V \{s}. As this flow needs to be
directed, the given graph G is transformed into a symmetrically oriented graph
Gd = (V, Ed), where each edge {u, v} ∈ E now corresponds to two directed arcs
(u, v) and (v, u) in Ed. Similarly, the set Id corresponds to the symmetrically
directed version of I. For each arc (u, v) ∈ Ed, we define an integer variable f(u,v)
representing the (directed) flow going from u to v. Furthermore, for each edge
{u, v} ∈ E \ I, define a binary decision variable x(u,v), which equals 1 if f(u,v) or
f(v,u) carry a non-zero flow, and 0 otherwise. Finally, for each v ∈ V2, we have
a decision variable yv that equals 1, if v is a k-branch vertex in the spanning
tree, and 0 otherwise. We denote by Iv the set of isthmus edges which have the
vertex v ∈ V as an extremity, and moreover, let I+

v and by I−
v be the set of

outgoing isthmus edges from v and the set of incoming isthmus edges to v in Id,
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respectively. We denote by S+ the set of vertices of Gd which have at least one
outgoing isthmus edge and by S− the set of vertices of Gd which have at least
one incoming isthmus edge.

We are now ready to formally present the ILP program of the k-MBVST
problem. Since the V1 vertices cannot be k-branch and the V3 vertices are
necessarily k-branch, the objective of our problem is to minimize the number
of k-branch vertices of V2 belonging to the spanning tree of G, which can be
expressed as follows.

Objective Function:

Minimize
∑

v∈V2

yv (4a)

Spanning Tree Constraints:
∑

u∈V:
(u,v)∈Ed

x(u,v) = 1, ∀v ∈ V \ (S− ∪ {s}) (4b)

∑

u∈V:
(u,v)∈Ed

x(u,v) = 0, ∀v ∈ S− (4c)

∑

(u,v)∈Ed

x(u,v) = |V| − |I| − 1. (4d)

As a vertex with more than one parent creates a cycle, constraints (4b) and
(4c) ensure that each vertex except the source has exactly one predecessor. Next,
as the number of edges in any spanning tree must be equal to |V|−1 and the edges
in I are systematically present in any connected subgraph of G, constraint (4d)
ensures that exactly |V|−|I|−1 arcs are added to the optimal solution. Note that
these two constraints are necessary but are not sufficient to generate a spanning
tree as connectedness is not yet guaranteed. To obtain connectivity, additional
flow balance-based constraints are incorporated, and these are described next.

Connectivity Constraints:
∑

(s,v)∈Ed

f(s,v) −
∑

(v,s)∈Ed

f(v,s) = |V| − 1 (4e)

∑

u∈V:
(v,u)∈Ed

f(v,u) −
∑

u∈V:
(u,v)∈Ed

f(u,v) = −1, ∀v ∈ V \ {s} (4f)

x(u,v) ≤ f(u,v) ≤ B(u,v) · x(u,v), ∀(u, v) ∈ Ed \ Id (4g)

Constraint (4e) states that the flow emitted by the source is equal to |V| − 1
and constraint (4f) ensures that each vertex except the source “consumes” one
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and only one unit of flow, which in turn also guarantees that each vertex is
reachable from the source s. Constraint (4g) allows each arc in Ed \ Id to carry
non-zero flow if and only if it is used in the optimal spanning tree, and the value
of this flow on each arc (u, v) cannot exceed an upper bound B(u,v). Finally,
constraints (4e)–(4g) also enforce that each isthmus arc must be included in the
optimal solution, and carries a non-zero flow because it is the only arc that links
two connected components.

Degree Constraints:
Let’s denote by Xv the set of outgoing arcs from v ∈ V2 . We pose Qv as the set
of all partitions qv of Xv of size (k − |I+

v |).
∑

u∈qv

x(v,u) + |I+
v | − k − 1 ≤ yv, ∀qv ⊂ Qv,∀v ∈ V2 (4h)

Constraint (4h) imposes vertex v to be a k-branch vertex if and only if its
degree is strictly greater than k + 2 in the spanning tree. Note that while the
above constraint merely sets the value of yv to be greater than or equal to zero
if d(v) ≤ k +2, nevertheless, the objective function (which minimizes the sum of
the yv-variables) drives the value of yv ≡ 0 at optimality. For each vertex v ∈ V2,
this constraint certainly appears

( Xv

k−|I+
v |

)
times but it is tight only when v is a

k-branch vertex and is redundant otherwise, which is a significantly improved
version to those used in the literature [CGI09].

Valid Inequalities:

x(u,v) + x(v,u) ≤ 1, ∀(u, v) ∈ Ed \ Id (4i)

∑

u∈V:
(v,u)∈Ed

x(u,v) ≥ CG(v) − 1, ∀v ∈ V (4j)

∑

v∈V2

yv ≤
(
|V| −

∑

v∈(V1∪V3)

CG(v)
)
/(k + 2) (4k)

As cycles are not authorized, constraint (4i) states that only one arc is allowed
between two vertices. Constraint (4j) guaranties that the degree of each vertex in
the optimal solution is lower bounded by CG(v), since a least CG(v) components
are exclusively linked to v. Finally, constraint (4k) enforces an upper bound
on the number of the V2 k-branch vertices belonging to the optimal solution
(Lemma 1).

Once an optimal solution to the ILP (4a)–(4k) is obtained, it is easy to recon-
struct the optimal spanning tree T ∗ = (V, E∗). Indeed, it suffices to add to E∗ the
edges in E corresponding to the arcs in Ed which carry a non-zero flow and add
all the isthmus edges of G. Therefore, E∗ =

{
{u, v} ∈ E | x(u,v) = 1 or x(v,u) =

1 or {u, v} ∈ I
}

.
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Remark 1: Let G′ = (V ′, E ′) be the graph obtained by deleting from G the edges
which have at least one articulation vertex extremity. In enforcing constraint
(4g), the trivial upper bound used in the literature is B(u,v) ≡ |V| − 1, but
this value can only be attained if G′ is connected. However, if G contains at
least one vertex articulation, then this bound can be improved by computing
an upper bound on the maximum flow possible on each arc of Gd. To extract
these improved (tight) upper bounds, let G′′ = (V ′′, E ′′) be the graph obtained
by considering each connected component of G′ as a vertex in G′′. If two vertices
in different connected components in G′ are also linked by an edge in G than the
two vertices corresponding to these connected components are linked by an edge
in G′′. The connected component which contains the source in Gd is selected as
a source vertex and a sink is added to G′′. Finally, edges linking each vertex to
the sink are added to obtain the resultant graph G′′. All the edges are directed
from the source to the sink t. Each arc outgoing from a vertex v ∈ V ′′ \ {t} and
incoming to the sink has a capacity the size of the connected component in G′

represented by v in G′′. All other arcs have capacity +∞ (Fig. 5).

G(a) A graph  (b) The graph  (c) The graph  

+

G′

C4

C6

∞

C3

C5

∞

C2
∞∞

S

∞

t

|C5| |C6|

|C4||C3|

|C2| |C2|

G′′

+

+

+

+

Fig. 5. Transformation of G to a single-source, single-sink flow network.

Now, clearly the maximum flow from the source to the sink can be computed
in polynomial time using the push-relabel method. The quantity of flow transit-
ing in an arc (u, v) of G′′ corresponds to the upper bound of the value of f(w,x)

such that x is in the connected component represented by v in G′′. We denote
by B(u,v) these obtained bounds, which in turn serve to tighten constraint (4g)
in our implementation.

Summarizing, the exact resolution method (see Algorithm 1) for solving the
k-MBVST problem can be seen to be composed of the following six steps, each
of which can be accomplished in polynomial time with the exception of Step 5.
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Algorithm 1. Exact resolution of the k-MBVST problem
Input: A connected graph G = (V, E) and an empty graph T ∗ = (V, E∗ = ∅).
Output: An optimal spanning tree T ∗ = (V, E∗).

1: Decompose the vertex set V into three partitions V1, V2, V3 showen in (3a)–(3c),
and identify the isthmus set I.

2: Transform the graph G into a symmetrically oriented graph Gd.
3: Construct the graph G′′.
4: Compute a maximum flow in G′′ to find the upper bound B(u,v) on the quantity of

flow that can be transmitted on each arc (u, v) of Gd.
5: Solve the ILP.
6: E∗ =

{
{u, v} ∈ E | x(u,v) = 1 or x(v,u) = 1 or {u, v} ∈ I

}
.

4 Computational Results

In this section, we present the computational results obtained by applying the
proposed single commodity flow formulation for the k-MBVST problem on a set
of instances, synthetically generated based on the parameters originally proposed
in [CCGG13]. We considered nine different values for the number of vertices
given by: |V| = {50, 100, 200, 300, 400, 500, 600, 700, 800}. The number of edges
is generated according to the following formula:

�(|V| − 1) + i × 1.5 × �
√

|V|��, with i ∈ {1, 2, 3}. (5)

For each value of the parameter k ∈ {0, 1, 2, 3, 4, 5}, we randomly generated 30
instances for each choice of |V| and i. In order to obtain a significant number
of branch vertices, the instances generated using (5) are typically sparse graphs.
The time limit was set to be 3600 s for each instance. All of our computations
were performed on an Intel i7 6820HQ 2.7 Ghz (with 8 Cores) Windows work-
station with 16 GB RAM, using C++ as the modeling environment and Cplex
12.7.0 [cpl16] as the underlying ILP solver.

Table 1 displays the optimum number of k-branch vertices (averaged over
all solved instances), the CPU time (seconds), and the number of instances of
each type that were successfully solved to optimality (within the specified time
limit). From the numerical results recorded in Table 1, it can be observed that
the computational time increases along with an increase in the size of the graph
and with higher graph density, as the number of decision variables in the ILP are
directly correlated to the size and density of the graph. Moreover, as the size of
the instance increases, constraint (4g) no longer remains tight, and furthermore,
the number of branch vertices reduce in higher density instances (i = 2 and i = 3)
because the propensity of the graph to be Hamiltonian increases in such cases.
Finally, the number of branch vertices increases (almost linearly) with instance
size, and this phenomenon is amplified by the fact that the edge generation
scheme used in our work makes the density decrease with instance size.
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Table 1. Solution value, running time, and number of solved instances for varying
values of |V|, k and i.

k = 0

Instances i = 1 i = 2 i = 3

|V| Sol Time # Inst Sol Time # Inst Sol Time # Inst

50 8.00 0.22 30 3.80 0.60 30 2.50 0.62 30

100 18.00 0.39 30 12.30 1.11 30 7.60 5.44 30

200 38.40 1.14 30 28.90 5.21 30 20.70 18.31 30

300 59.90 1.91 30 49.40 9.73 30 37.90 42.76 30

400 80.60 4.06 30 67.40 15.15 30 53.80 50.98 30

500 102.60 4.32 30 86.60 19.69 30 74.10 446.47 30

600 130.50 5.93 30 107.70 21.81 30 91.22 289.46 29

700 149.80 6.68 30 131.70 40.04 30 113.44 275.39 29

800 175.20 8.73 30 149.80 43.79 30 131.00 188.82 30

k = 1

50 1.50 0.10 30 0.00 0.21 30 0.00 0.25 30

100 4.60 0.31 30 1.00 0.46 30 0.50 0.82 30

200 12.60 0.58 30 5.30 1.80 30 2.67 3.73 27

300 20.20 1.72 30 10.70 8.32 30 4.88 9.35 24

400 28.10 3.21 30 17.70 12.19 30 9.50 21.20 25

500 41.00 4.78 30 24.67 16.92 27 14.00 42.85 27

600 49.00 6.16 30 31.89 22.37 27 20.43 108.02 21

700 61.20 8.11 30 38.90 23.84 30 31.00 77.04 6

800 68.70 8.99 30 46.60 40.74 30 34.60 150.90 12

k = 2

50 0.30 0.07 30 0.00 0.12 30 0.00 0.17 30

100 0.70 0.16 30 0.10 0.31 30 0.00 0.49 30

200 3.00 0.49 30 0.50 1.45 30 0.33 1.68 27

300 4.90 0.94 30 1.80 3.56 30 0.71 6.19 21

400 9.80 2.09 30 2.67 7.36 27 1.22 15.07 27

500 12.00 2.29 30 4.63 12.04 24 2.50 25.04 30

600 16.20 4.23 30 6.33 24.68 18 3.25 32.69 12

700 20.00 5.56 30 9.75 19.19 12 5.00 118.11 6

800 24.70 5.62 30 12.00 23.90 9 4.33 57.01 9

k = 3

50 0.10 0.07 30 0.00 0.10 30 0.00 0.13 30

100 0.10 0.15 30 0.10 0.17 30 0.00 0.27 30

200 0.60 0.32 30 0.10 0.93 30 0.00 1.56 30

300 1.10 0.79 30 0.50 1.63 30 0.10 3.98 30

400 1.40 1.32 30 1.00 4.42 24 0.40 10.80 30

500 3.50 1.62 30 1.38 9.50 24 0.13 22.14 24

600 4.56 3.00 27 2.00 5.59 7 1.00 30.55 21

700 6.20 4.18 30 1.40 53.08 15 0.33 69.49 9

800 7.30 3.04 30 2.14 21.57 20 2.50 57.01 6

k = 4

50 0.00 0.05 30 0.00 0.09 30 0.00 0.12 30

100 0.00 0.08 30 0.00 0.13 30 0.00 0.23 30

200 0.00 0.18 30 0.00 0.54 30 0.00 0.35 30

300 0.50 0.32 30 0.14 0.98 21 0.00 1.88 27

400 0.60 0.54 30 0.00 09.12 21 0.00 2.41 24

500 0.40 0.51 30 0.13 5.00 24 0.00 24.68 18

600 1.60 1.15 30 0.20 8.65 15 0.25 50.22 12

700 1.30 2.63 30 0.67 15.77 9 0.00 86.80 9

800 1.80 3.59 30 0.33 16.36 18 0.40 14.20 15

k = 5

50 0.00 0.05 30 0.00 0.08 30 0.00 0.10 30

100 0.00 0.09 30 0.00 0.15 30 0.00 0.14 30

200 0.00 0.11 30 0.00 0.42 30 0.00 0.50 30

300 0.00 0.20 30 0.00 1.12 24 0.00 1.08 30

400 0.30 0.34 30 0.00 21.68 24 0.00 4.76 24

500 0.10 0.29 30 0.00 80.04 21 0.00 45.24 18

600 0.30 0.64 30 0.00 6.34 15 0.00 40.58 15

700 0.00 1.83 21 0.00 16.95 8 0.00 42.75 8

800 0.11 2.39 27 0.00 10.39 21 0.00 49.27 6
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Fig. 6. Variation of sk(G) as a function of |V|, k and i.

Figure 6 displays the number of k-branch vertices as a function of the param-
eters k and |V| for each value of i. As noted before, the number of k-branch
vertices increases as the size of the vertex set increases, but decreases with k
as well as with i. When k ≥ 4, the number of k-branch vertices is close to zero
irrespective of the value of |V| and i.

5 Conclusion

In this paper, we propose a generalization of the well-known MBVST problem
by introducing the notion of the k-branch vertex, which is a vertex with degree
strictly greater than k + 2. Our new parametrized problem (k-MBVST) aims to
find a spanning tree of G with the minimum number of k-branch vertices. For
any non-negative integer r, we proved that it is NP-complete to decide whether
a graph can be spanned by a tree with at most r k-branch vertices, irrespective
of the value of k. Furthermore, we also established that the k-MBVST is hard
to approximate by proving its non-inclusion in the APX class. We also proposed
an integer linear programming formulation based on a single commodity flow
balance constraints. Tests on sparse random graphs allowed us to evaluate the
number of k-branch vertices in the optimal solution as well as the computational
time required to determine the optimum objective function value with respect
to the value of k, the graph size, and the graph density. Our results indicate that
the number of k-branch vertices increases with graph size but decreases with k
as well as with graph density. It was also observed that when k ≥ 4, the number
of k-branch vertices is close to zero, and is independent of the size and density
of the graph.
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Abstract. Given an undirected simple graph G = (V,E) and integer
values fv, v ∈ V , a node subset D ⊆ V is called an f -tuple dominating
set if, for each node v ∈ V , its closed neighborhood intersects D in at
least fv nodes. We investigate the polyhedral structure of the polytope
that is defined as the convex hull of the incidence vectors in R

V of the
f -tuple dominating sets in G. We provide a complete formulation for
the case of stars and introduce a new family of (generally exponentially
many) inequalities which are valid for the f -tuple dominating set poly-
tope and that can be separated in polynomial time. A corollary of our
results is a proof that a conjecture present in the literature on a com-
plete formulation of the 2-tuple dominating set polytope of trees does
not hold. Investigations on adjacency properties in the 1-skeleton of the
f -tuple dominating set polytope are also reported.

1 Introduction

Let G = (V,E) denote an undirected simple graph with node set V = {1, 2, . . . , n}
and edge set E. Given some node v ∈ V , let dG

v (or more simply dv when G
is clear from the context) denote the degree of node v in G. Given a node sub-
set S ⊆ V , N(S) denotes the open neighborhood of S: N(S) = {v ∈ V \
S : vw ∈ E for some node w ∈ S}, and N [S] stands for its closed neighborhood:
N [S] = N(S) ∪ S. When S is a singleton, i.e. S = {v} for some node v ∈ V , we
will write N(v) (resp. N [v]) in lieu of N({v}) (resp. N [{v}]). Given a node sub-
set S ⊆ V , the subgraph of G induced by S is the graph G[S] = (S,E(S)) with
E(S) = {uv ∈ E : (u, v) ∈ S2}.

Let ̂FG (resp. FG) stand for the following set of vectors indexed on the
nodes of G: ̂FG = {f ∈ Z

n
+ : 0 ≤ fv ≤ dG

v + 1,∀v ∈ V } (resp. FG = {f ∈
̂FG : fv ≤ dG

v ,∀v ∈ V }). Given f ∈ FG, a node subset D ⊆ V is called an
f -dominating set of G if each node v in V \D has at least fv neighbors in D, i.e.
|N(v) ∩ D| ≥ fv. If the latter inequality holds for all the nodes in V , then D is
called a total f -dominating set of G. Given f ∈ ̂FG, an f -tuple dominating set of
G is a node subset D ⊆ V satisfying: |N [v] ∩ D| ≥ fv,∀v ∈ V . The notions just

c© Springer International Publishing AG, part of Springer Nature 2018
J. Lee et al. (Eds.): ISCO 2018, LNCS 10856, pp. 352–363, 2018.
https://doi.org/10.1007/978-3-319-96151-4_30
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introduced generalize those of dominating set, total dominating set and k-tuple
dominating set (where k denotes a positive integer) from classical domination
theory, respectively. The notion of k-tuple dominating set corresponds to the
particular case of f -tuple dominating set, when fv = k,∀v ∈ V [11,14] [15,
p. 189]. The natural complementary notion to f -tuple domination is that of
f-limited packing: Given f ∈ ̂FG, an f -limited packing is a node subset S ⊆ V
such that |N [v] ∩ S| ≤ fv,∀v ∈ V . For the particular case when fv = k,∀v ∈ V
for some positive integer k, we speak of k-limited packing. Let f̃ ∈ Z

n be defined
as follows: f̃v = dv − fv + 1. Then, S is an f -limited packing if and only if V \ S
is an f̃ -tuple dominating set.

The “Minimum weight f-tuple dominating set problem” denoted by [MWf ]
can be stated as follows. Given an undirected graph G = (V,E), w ∈ R

n
+ and

f ∈ ̂FG, find a minimum weight f -tuple dominating set of G, i.e. find a node
subset S ⊆ V such that S is an f -tuple dominating set and the weight of S:
∑

v∈S wv, is minimum. This problem may be formulated as the following integer
program.

(IP1)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
∑

v∈V wvxv

s.t.
∑

u∈N [v] xu ≥ fv,∀v ∈ V,

x ∈ {0, 1}n.

Let Uf
G denote the convex hull of the feasible solutions of (IP1) (or equiva-

lently, the convex hull of the incidence vectors in R
n of the f -tuple dominating

sets in G). It will be called the f -tuple dominating set polytope in what follows.
Also, let (LP1) denote the linear relaxation of (IP1) (obtained by replacing
x ∈ {0, 1}n by x ∈ [0, 1]n).

Remark 1. Let Df
G (resp. T f

G ) denote the convex hull in R
n of the incidence

vectors of the f -dominating (resp. total f -dominating) sets in G. One can easily
check the following inclusions hold:

T f
G ⊆ Uf

G ⊆ T f−1
G ⊆ Df−1

G , and T f
G ⊆ Uf

G ⊆ Df
G,

where 1 stands for the n-dimensional all-ones vector.

Given the afore mentioned connection between f -tuple domination and lim-
ited packing, the f-limited packing polytope, which corresponds to the convex hull
of the incidence vectors of f -limited packings, is isomorphic to U f̃

G so that the

results established next w.r.t. U f̃
G are also relevant w.r.t. this polytope and the

following equation, which generalizes Lemma 5 in [12], can be easily proved:

max{wtχS : S is a f -limited packing}+
min{wtχS : S is a (d + 1 − f)-tuple dominating set} = wt1,

where χS stands for the incidence vector of S in R
n: χS

v = 1 if v ∈ S and
χS

v = 0 otherwise. Given this, we will simply focus on f -tuple domination in the
next sections: the derivation of the corresponding results for limited packing are
straightforward.
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Motivation. The concept of domination naturally arises in location problems
for the strategic placement of facilities in a network. A wide variety of appli-
cations are presented in [15,16], e.g. sets of representatives, location of radio
stations, land surveying, ... Considering the variant of f -tuple domination, and
some of its extensions, they arise notably in the design of fault tolerant networks
(e.g., [23]). Limited packings arise for the strategic placement of obnoxious facili-
ties [12]: for each location (represented by some node in a graph), we require that
no more than some given number of such facilities are placed in its neighborhood.

Related Work. Most of the works we can find in the literature on f -tuple
domination focus on complexity and algorithmic aspects of cardinality problems
(i.e. node weights are uniform) and when fv = k,∀v ∈ V for some fixed posi-
tive integer k. The decision problems corresponding to the minimum cardinality
f -tuple dominating set and maximum cardinality limited packing problems are
NP-complete, and this holds also when the graph is restricted to be split or
bipartite [9,20]. Both cardinality problems can be solved in linear time when the
graph is a tree [8,19]. For any f ∈ ̂FG, a minimum cardinality f -tuple dominat-
ing set can be found in polynomial time in strongly chordal graphs, and in linear
time if a strong ordering of the nodes is given [20]. Gallant et al. [12] estab-
lish bounds on the maximum cardinality of a k-limited packing and investigate
structural properties of graphs for which some bounds are satisfied with equality.
A (ln(|V |) + 1)-approximation algorithm to find a minimum cardinality k-tuple
dominating set in any graph is presented in [17], where it is also shown that this
problem cannot be approximated within a ratio of (1 − ε)ln|V | for any ε > 0
unless NP ⊆ DTIME(|V |log log |V |). Cicalese et al. [5] have shown the mini-
mum cardinality f -tuple domination problem can be solved in polynomial time
in graphs with bounded clique-width. Some peculiar graph families for which
minimum cardinality f -tuple dominating set and maximum cardinality limited
packing problems can be polynomially reduced to each other are investigated
in [18].

There are few works dedicated to polyhedral results on f -tuple domination
and limited packing problems. And for the existing ones, they essentially deal
with the basic case when fv = 1,∀v ∈ V . In particular, complete formulations of
the dominating set polytope are known for strongly chordal graphs [10], cycles
[4], some peculiar webs [3]. Recent investigations on polytopes related to the
concept of total f -domination are reported in [7]. Otherwise, there is a much
vaster literature on polyhedral aspects related to more general covering and
packing concepts and whose survey goes beyond the scope of this paper; see, e.g.
[2,6,22]. But to the present author’s knowledge, they do not cover the accurate
polyhedral results that we report hereafter.

Our Contribution. The contributions of the present paper may be summarized
as follows. We provide:

– Complete formulations for the f -tuple dominating set (and thus also for
f -limited packing) polytopes of stars.
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– A new family of valid inequalities for Uf
G that can be separated in polynomial

time.
– The proof that a conjecture made by Argiroffo [1] on a complete formulation

for the 2-tuple dominating set polytope of a tree does not hold.
– Investigations on the adjacency relations of extreme points of the f -tuple

dominating set polytope.

The paper is organized as follows. In Sect. 2, we investigate general prop-
erties of the polyhedral structure of f -tuple dominating set polytopes. Then,
we provide a complete formulation for stars in Sect. 3. A new family of valid
inequalities, which led us to disprove a conjecture on a complete formulation for
the 2-tuple dominating set polytope of trees, is introduced in Sect. 4. In Sect. 5,
we study adjacency properties between extreme points of f -tuple dominating set
polytopes, before we conclude in Sect. 6. Note that, due to length restrictions,
some proofs are omitted from this version.

2 General Polyhedral Properties

Dimension of Uf
G

Given a polyhedron P , let dim(P ) denote its dimension. Let R denote the set of
the nodes whose closed neighborhood belongs to all feasible solutions of (IP1):
R = {v ∈ V : fv = dv + 1}.

Proposition 1. Let G = (V,E) denote an undirected simple graph and f ∈ ̂FG.
Then dim(Uf

G) = |V | − |N [R]|.

Remark 2. Let G′ = G[V \ R] and define f ′ ∈ FG′ and w′ ∈ R
V \R as

follows: f ′
v = fv − |N(v) ∩ R|,∀v ∈ V \ R, w′

v = wv,∀v ∈ V \ N [R] and
wv = 0,∀v ∈ N(R). It is easy to check that an optimal solution to the problem
[MWf ] defined by the parameters (G, f,w), can be obtained by the union of
the set N [R] with an optimal solution of a problem having the same form and
defined by the parameters (G′, f ′, w′). So, given that the “required” nodes (i.e.
the nodes in R) have no peculiar relevance w.r.t. solving [MWf ] neither w.r.t. the
polyhedral description of Uf

G (which is obtained by adding to a description of Uf ′
G′

the variables (xv)v∈R, together with the set of equations: xv = 1,∀v ∈ N [R]),
in what follows, we shall always assume f ∈ FG unless otherwise stated. So, in
particular, from Proposition 1, the polytope Uf

G is full-dimensional.

Trivial Inequalities

Proposition 2. Let f ∈ FG and u ∈ V. Then, the inequality xu ≥ 0 is
facet-defining for Uf

G iff (if and only if) fv ≤ dv − 1,∀v ∈ N [u].

Proposition 3. Let f ∈ FG and u ∈ V. Then, the inequality xu ≤ 1 is
facet-defining for Uf

G.



356 J. Neto

Neighborhood Inequalities of Critical Nodes

Definition 1. Let f ∈ FG. A node v ∈ V is said to be critical if fv = dv.

Proposition 4. Let f ∈ FG and let u denote a critical node. Then, the neigh-
borhood inequality

∑

v∈N [u]

xv ≥ fu(= du) (1)

is facet-defining for Uf
G.

Proof. The following node subsets are f -tuple dominating sets and their inci-
dence vectors are affinely independent: V \ {u,w} for all w ∈ V \ N [u], and
V \ {v}, for all v ∈ N [u]. 	


General Properties of Facet-Defining Inequalities

Proposition 5. Let atx ≥ b denote a non trivial facet-defining inequality of Uf
G,

with f ∈ FG. Let S = {v ∈ V : av �= 0}. Then, the following holds:

(i) |S| ≥ 2,
(ii) av ≥ 0,∀v ∈ V, and b > 0.

3 Complete Formulation for Stars

Proposition 6. Let G = (V,E) be a star with center v0 and let atx ≥ b denote
a non trivial facet-defining inequality of Uf

G. Then, av0 > 0.

For the case when the graph G = (V,E) is a star having for center the node
v0 such that fv0 = 0, the trivial inequalities together with the neighborhood
inequalities of the critical leaves provide a complete formulation of the polytope
Uf

G. This follows from the total unimodularity of the corresponding constraint
matrix. So, in the rest of this section we assume the center v0 satisfies fv0 ≥ 1.

Proposition 7. Let G = (V,E) denote a star with V = {v0, v1, . . . , vn−1},
where v0 denotes the center of the star. Let f ∈ FG such that fv0 ≥ 1 and let
(L0, L1) denote a partition of {v1, v2, . . . , vn−1} with L0 = {v ∈ V : fv = 0},
(and L1 = V \ ({v0} ∪ L0)) (possibly L0 = ∅ or L1 = ∅). Then, a complete
description of Uf

G is given by the set of the trivial, the neighborhood inequalities
of the nodes in L1, the following inequality:

[max(|L1|, fv0) − fv0 + 1]xv0 +
∑

v∈V \{v0}
xv ≥ max(|L1|, fv0), (2)

and the inequalities

(|L1| − fv0 + |Z| + 1)xv0 +
∑

v∈L1∪(L0\Z)

xv ≥ |L1|, (3)

for all node subsets Z ⊂ L0 satisfying max(0, fv0 −|L1|) < |Z| < fv0 −1 (in case
such a set exists).
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Proof. Let atx ≥ b denote a facet-defining inequality of Uf
G that is not trivial and

different from a neighborhood inequality of a node in L1. Using the next four
claims (whose proofs are omitted here due to length restrictions) we show that
it must correspond (up to multiplication by a positive scalar), to an inequal-
ity of the type (2) or (3). In what follows we denote by Z0 the node subset
Z0 = {v ∈ V : av = 0}. Note that by Proposition 6, v0 /∈ Z0.

Claim 1. The following holds: if L1 �= ∅, then av = c1,∀v ∈ L1, where c1 denotes
a fixed positive value. �

Claim 2. Assume that Z0 = ∅. Then av = c1,∀v ∈ V \ {v0}, where c1 denotes a
positive value. �

Claim 3. Assume that Z0 �= ∅. Then, the following holds: L1 �= ∅ and fv0−|L1| <
|Z0| < fv0 − 1. �

Claim 4. Assume that Z0 �= ∅. Then, the following holds: av = c1,∀v ∈ L1 ∪
(L0 \ Z0) (with c1 as introduced in Claim 1). �

Making use of the four claims above, we do the proof by establishing a rela-
tion between av0 and c1. Let D stand for an f -tuple dominating set such that
atχD = b and v0 /∈ D. Then, necessarily L1 ⊆ D, and

– if Z0 = ∅: from Claim 2, we deduce b = max(fv0 , |L1|)c1.
– if Z0 �= ∅: from Claim 3, we have av = 0,∀v ∈ D \L1. By Claim 4, we deduce

b = c1|L1|.

Now let D̃ stand for an f -tuple dominating set such that atχD̃ = b and
v0 ∈ D̃. Then,

– if Z0 = ∅: av0 = c1(max(fv0 , |L1|) − fv0 + 1),
– if Z0 �= ∅: av0 = c1(|L1| − fv0 + 1 + |Z0|). 	


In the next proposition, we address the relevance of the inequalities
(2)–(3) from an “optimization” point of view by considering the integrality gap
of the formulation (LP1) for the case when G is a star and the weight func-
tion corresponds to the left-hand-side of an inequality of the type (2). The same
result can be shown to hold if we consider a weight function corresponding to
an inequality of type (3).

Proposition 8. Let G = (V,E) denote a star with center v0. Let n = |V |,
n ≥ 3, f ∈ FG, L1 = {v ∈ V \{v0} : fv = 1}, L0 = V \({v0}∪L1), and let ŵ ∈ R

n

be defined as follows: ŵv0 = max(|L1|, fv0) − fv0 + 1, and ŵv = 1,∀v ∈ V \ {v0}.
Then, the integrality gap of (LP1) with an objective function corresponding to
ŵ is upper bounded by 4

3 and this bound is asymptotically tight.

Proof. Firstly note that for the case when fv0 ≤ 1 or fv0 ≥ |L1|, the objective
values of (IP1) and (LP1) coincide. So assume from now on that 2 ≤ fv0 < |L1|.
Then, notice that the node set L0 has no incidence on the optimal objective value
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of (LP1). Indeed, given the assumption |L1| > fv0 , if x∗ denotes any optimal
solution to (LP1) with x∗

u > 0 for some node u ∈ L0, then we can easily
determine another optimal solution x̂∗ satisfying x̂∗

u = 0,∀u ∈ L0 (decreasing
positive entries of x∗ indexed on L0 and increasing entries indexed on L1 that
are lower than 1). So, in what follows and to simplify the presentation, we shall
assume L0 = ∅ and thus |L1| = n − 1.

Consider the dual problem to (LP1):

(D1)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max
∑

v∈V (fvyv − zv)
s.t.

∑

u∈N [v] yu − zv ≤ ŵv,∀v ∈ V,

y, z ∈ R
n
+.

The vector (y,0) ∈ (Rn
+)2 defined as follows is feasible for (D1): yv0

= fv0−1

n−2 ,
yv = 1 − yv0

,∀v ∈ V \ {v0}. A feasible solution to (LP1) is given by the vector
x ∈ R

n defined as follows: xv0 = n−1−fv0
n−2 and xv = 1 − xv0 ,∀v ∈ V \ {v0}. Both

(y,0) and x have the same objective value: z(fv0) = 1
n−2 [fv0(fv0 − 1) + (n −

1)(n − fv0 − 1)], and are thus optimal.
Now the quantity z(f) is minimized for f ∈ {�n

2 �, �n
2 �}, and we get z(n

2 ) =
3n−2

4 if n is even and z(�n
2 �) = z(�n

2 �) = (n−1)(3n−5)
4(n−2) if n is odd. So in both cases

the integrality gap is lower than 4
3 and it converges to 4

3 as n grows to infinity. 	

Proposition 8 can be used to prove the next result on the integrality gap of
(LP1) when G is a star.

Proposition 9. Let the graph G be a star and let f ∈ FG. Then, the integrality
gap of (LP1) is upper bounded by 4

3 and this bound is asymptotically tight.

4 Further Valid Inequalities

In this section, we introduce valid inequalities which extend the families (2) and
(3) for stars. We also investigate on their facet-defining properties, disproving a
conjecture on a complete formulation of the 2-tuple dominating set polytope for
trees.

We start with a simple extension of the inequalities (2).

Proposition 10. Let G = (V,E) denote an undirected simple graph and f ∈
FG. Given any node u, let Lu

0 = {v ∈ N(u) : fv ≤ dv − 1}, and Lu
1 = N(u) \ Lu

0 .
Then, the following inequality is valid for Uf

G.

[max(|Lu
1 |, fu) − fu + 1]xu +

∑

v∈N(u)

xv ≥ max(|Lu
1 |, fu),∀u ∈ V. (4)

Proposition 11. Let G = (V,E) be an undirected simple graph and let f ∈ FG.
Let u ∈ V denote an articulation point in G such that fu ≥ 2 and all the
neighbors of u in G belong to different connected components in G[V \ {u}].
Then the inequality (4) is facet-defining w.r.t. Uf

G.

We now introduce a new family of inequalities generalizing (3).
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Proposition 12. Let G = (V,E) denote an undirected simple graph and let
f ∈ FG. Let u ∈ V denote an articulation point in G such that fu ≥ 2 and all
the neighbors of u in G belong to different connected components in G[V \ {u}].
Let (Z,L0, L1) denote a tripartition of N(u) such that

(i) fu − |L1| < |Z| < fu − 1,
(ii) fv ≤ dv − 1,∀v ∈ Z ∪ L0,
(iii) for each node w ∈ L1, fw ≥ 1 and |Qw| ≥ dw − fw, with Qw = {v ∈

N(w) \ {u} : fv ≤ dv − 1}.

For each node w ∈ L1, let N(u,w) denote a subset of Qw ∪ {w} such that
w ∈ N(u,w) and |N(u,w)| = dw −fw +1. Then, the following inequality is valid
for Uf

G.

(|L1| − fu + |Z| + 1)xu +
∑

w∈L1

∑

v∈N(u,w)

xv +
∑

v∈L0

xv ≥ |L1|. (5)

Proposition 13. If the graph G is a tree, then the inequality (5) is facet-defining
w.r.t. Uf

G.

For an example of a facet-defining inequality of type (5), consider the graph G′

of Fig. 1(a) where the node domination requirements (f ′
v)v∈V correspond to the

values close to the nodes. Then the inequality 2x1+x2+x3+x4+x5+x7+x8 ≥ 3
is facet-defining for Uf ′

G′ .
A conjecture formulated by Argiroffo (see Sect. 3 in [1]) on the formulation of

the 2-dominating set polytope of trees (i.e. the f -tuple dominating set polytope
of trees for the particular case when fv = 2,∀v ∈ V ) stated that a complete for-
mulation of the 2-tuple dominating set polytope was given by a set of inequalities,
each one having a support included in the closed neighborhood of a single node.
From Proposition 13, it follows that this conjecture does not hold: the instance
illustrated in Fig. 1(b) provides a counterexample since a complete formulation
of Uf

G can be obtained by adding to the one of the instance from Fig. 1(a), the
set of equations xv = 1,∀v ∈ R (see Remark 2 above).

Given a polytope P ⊆ R
n and a vector x∗ ∈ R

n, the separation problem w.r.t.
P consists in determining whether x∗ ∈ P and, if not, in giving an inequality
that is valid for P and violated by x∗. W.r.t. the family of inequalities (5), we
have the next result.

Proposition 14. The separation problem w.r.t. the family of inequalities (5)
can be solved in polynomial time.

From Proposition 14 and the equivalence between optimization and separation
[13], it follows that the relaxation of [MWf ] obtained by adding the inequalities
(5) to (LP1) can be solved in polynomial time and leads to a generally better
bound on the optimal objective value.
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(a) (G′, f ′) (b) (G, f)

Fig. 1. Illustrations for a facet-defining inequality of type (5)

5 On Adjacency Relations and Diameter

It is known that the diameter of any (0, 1)-polytope is at most its dimension
[21]. This bound is tight in general w.r.t. the polytope Uf

G: considering f = 0,
Uf

G corresponds to an hypercube with dimension value n that coincides with
its diameter. In what follows we investigate more closely adjacency relations
between vertices on this polytope, firstly on general graphs and then for the case
of stars, for which a better bound on the diameter can be obtained.

5.1 General Properties

Let G denote an undirected simple graph. The next three propositions provide
two simple sufficient conditions and a necessary one for two incidence vectors
of f -tuple dominating sets to be adjacent on Uf

G. Given two sets A and B, the
notation AΔB stands for their symmetric difference, i.e. AΔB = (A∪B)\(A∩B).

Proposition 15. Let f ∈ ̂FG. Let S1, S2 denote two f-tuple dominating sets in
G such that |S1ΔS2| = 1. Then, χS1 and χS2 are adjacent on Uf

G.

Proof. Let w ∈ R
V be defined as follows

wv =

⎧

⎪

⎨

⎪

⎩

−1 if v ∈ S1 ∩ S2

1 if v ∈ V \ (S1 ∪ S2),
0 otherwise.

Then, the only optimal solutions to min{wtx : x ∈ Uf
G ∩ {0, 1}V } are χS1

and χS2 . 	


Proposition 16. Let f ∈ ̂FG. Let S1, S2 denote two f-tuple dominating sets in
G such that

– |S1ΔS2| ≥ 2,
– |S1 \ S2| = 1, and
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– Si \{v} is not an f-tuple dominating set for any v ∈ Si \Sj, for (i, j) = (1, 2)
and (i, j) = (2, 1).

Then, χS1 and χS2 are adjacent on Uf
G.

Proposition 17. Let f ∈ ̂FG. Let S1, S2 denote two f-tuple dominating sets
in G such that |S1ΔS2| ≥ 2 and the vectors χS1 and χS2 are adjacent on Uf

G.
Then, Si \ Sj �= ∅ and Si \ {v} is not an f-tuple dominating set in G, for any
v ∈ Si \ Sj, for (i, j) = (1, 2) and (i, j) = (2, 1).

Proof. Assume, for a contradiction, that S1 \ {v} is an f -tuple dominating set,
with v ∈ S1 \ S2. Define S′

1 = S1 \ {v}, S′
2 = S2 ∪ {v}. Both S′

1 and S′
2

are f -tuple dominating sets in G. Then, the equation χS1 + χS2 = χS′
1 + χS′

2

implies the result. 	


5.2 The Case of Stars

Restricting the family of graphs to stars, the next results provide a character-
ization of adjacency for any two incidence vectors of f -tuple dominating sets.

Proposition 18. Let G denote a star with center v0. Let f ∈ FG, let S1 and
S2 denote two f-tuple dominating sets in G such that either v0 ∈ (S1 ∩ S2) or
v0 /∈ (S1 ∪ S2). Then, χS1 and χS2 are adjacent on Uf

G if and only if either
|S1ΔS2| = 1, or the following conditions are all satisfied for (i, j) = (1, 2) and
(i, j) = (2, 1):

(i) |Si \ Sj | = 1,
(ii) Si \ {v} is not an f-tuple dominating set in G, where v ∈ Si \ Sj.

Proposition 19. Let G denote a star with center v0. Let f ∈ FG, S1 and S2

denote two f-tuple dominating sets in G such that v0 ∈ S1 \ S2. Then, χS1

and χS2 are adjacent on Uf
G if and only if either |S1ΔS2| = 1, or the following

conditions are all satisfied:

(i) S2 \ S1 �= ∅,
(ii) Si \ {v} is not an f-tuple dominating set in G, for any v ∈ Si \ Sj, (i, j) =

(1, 2) and (i, j) = (2, 1),
(iii) (S2 \ S1) ∩ L0 �= ∅ ⇒ S1 ∩ L0 ⊆ S2 ∩ L0, with L0 = {v ∈ V \ {v0} : fv = 0}.

Of peculiar interest w.r.t. [MWf ] are the (inclusionwise) minimal f -tuple dom-
inating sets, since there is always an optimal solution among them (assuming
the node weights are nonnegative). In what follows, we take a closer look at the
subgraph of the skeleton of Uf

G that is induced by the nodes corresponding to
such dominating sets in stars.

Proposition 20. Let G denote a star and let f ∈ FG. Let S1, S2 denote two
distinct minimal f-tuple dominating sets in G. Then the distance between the
nodes corresponding to these sets in the skeleton of Uf

G is at most � |S1ΔS2|
2 �.
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Proof. Consider firstly the case when either v0 ∈ S1 ∩ S2 or v0 /∈ S1 ∪ S2. Note
that since S1, S2 are minimal we necessarily have |S1| = |S2| and |S1ΔS2| even.
Let S1 \ S2 = {v1, v2, . . . , vq}, S2 \ S1 = {w1, w2, . . . , wq}. Then, define D0 = S1

and Dk = Dk−1Δ{vk, wk},∀k ∈ {1, 2, . . . , q}. All the sets (Dk)q
k=0 are minimal

f -tuple dominating sets in G. By Proposition 16, χDk

and χDk−1
are adjacent

on Uf
G and since at each iteration k we have |DkΔDk−1| = 2, the result follows.

Consider now the case when v0 ∈ S1 \ S2. Note that, since S1 and S2 are
minimal, |S1ΔS2| ≥ 2. Let Z2 = (S2∪{v0})\Q with Q ⊆ S2\S1 such that |Q| =
max(1, |L1| − fv0 + 1). Notice that S2 and Z2 are minimal f -tuple dominating
sets in G to which Proposition 19 applies, so that χS2 and χZ2 are adjacent on
Uf

G. Considering now the distance between the nodes corresponding to Z2 and
S1, we can now apply the result derived for the first case (since v0 ∈ Z2 ∩ S1) to
terminate the proof. 	


The next result follows from Proposition 20 and its proof.

Proposition 21. Let G denote a star with center v0 and let f ∈ FG. Then, the
subgraph of the skeleton of Uf

G that is induced by nodes corresponding to minimal
f-tuple dominating sets is connected and has diameter D(G) ≤ min(fv0 , �n

2 �).

6 Conclusion and Perspectives

In this paper we proceeded to investigations related to f -tuple domination and
limited packing problems from a polyhedral perspective. We provided a complete
formulation for stars, introduced a new family of facet-defining inequalities for
trees, disproving a conjecture from the literature. We also presented results on
the integrality gap of (LP1) for stars and studied adjacency relations in the
1-skeleton of the f -tuple dominating set polytope.

Future research work may be directed towards the study of the integrality
gap of (LP1) and the determination of a complete formulation of the f -tuple
dominating set polytope for trees.
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6. Cornuéjols, G.: Combinatorial Optimization: Packing and Covering. CBMS-
NSF Regional Conference Series in Applied Mathematics CBMS 74, SIAM,
Philadelphia, PA (2001)

7. Dell’Amico, M., Neto, J.: On total f -domination: polyhedral and algorithmic
results. Technical report. University of Modena and Reggio Emilia, Italy (2017)

8. Dobson, M.P., Leoni, V., Nasini, G.: Arbitrarly limited packings in trees. II MACI
(2009)

9. Dobson, M.P., Leoni, V., Nasini, G.: The limited packing and multiple domination
problems in graphs. Inf. Process. Lett. 111, 1108–1113 (2011)

10. Farber, M.: Domination, independent domination, and duality in strongly chordal
graphs. Discrete Appl. Math. 7, 115–130 (1984)

11. Gallant, R., Gunther, G., Hartnell, B., Rall, D.: Limited packings in graphs. Electr.
Notes Discrete Math. 30, 15–20 (2008)

12. Gallant, R., Gunther, G., Hartnell, B., Rall, D.: Limited packings in graphs. Dis-
crete Appl. Math. 158, 1357–1364 (2010)

13. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)

14. Harary, Y., Haynes, T.W.: Double domination in graphs. Ars Combin. 55, 201–213
(2000)

15. Haynes, T.W., Hedetniemi, S.T., Slater, J.B.: Fundamentals of Domination in
Graphs. Marcel Dekker, New York (1998)

16. Haynes, T.W., Hedetniemi, S.T., Slater, J.B.: Domination in Graphs: Advanced
topics. Marcel Dekker, New York (1998)

17. Klasing, R., Laforest, C.: Hardness results and approximation algorithms of k-tuple
domination in graphs. Inf. Process. Lett. 89, 75–83 (2004)

18. Leoni, V., Nasini, G.: Limited packing and multiple domination problems: polyno-
mial time reductions. Discrete Appl. Math. 164, 547–553 (2014)

19. Liao, C.S., Chang, G.J.: Algorithmic aspect of k-tuple domination in graphs. Tai-
wanese J. Math. 6(3), 415–420 (2002)

20. Liao, C.S., Chang, G.J.: k-tuple domination in graphs. Inf. Process. Lett. 87, 45–50
(2003)

21. Naddef, D.: The Hirsh Conjecture is true for (0, 1)-polytopes. Math. Program. 45,
109–110 (1989)

22. Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program.
5, 199–215 (1973)

23. Shang, W., Wan, P., Yao, F., Hu, X.: Algorithms for minimum m-connected k-tuple
dominating set problem. Theor. Comput. Sci. 381, 241–247 (2007)



Alternating Current Optimal Power Flow
with Generator Selection

Esteban Salgado1, Andrea Scozzari2, Fabio Tardella3, and Leo Liberti1(B)
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Abstract. We investigate a mixed-integer variant of the alternating cur-
rent optimal flow problem. The binary variables activate and deactivate
power generators installed at a subset of nodes of the electrical grid.
We propose some formulations and a mixed-integer semidefinite pro-
gramming relaxation, from which we derive two mixed-integer diagonally
dominant programming approximation (inner and outer, the latter pro-
viding a relaxation). We discuss dimensionality reduction methods to
extract solution vectors from solution matrices, and present some com-
putational results showing how both our approximations provide tight
bounds.

Keywords: Smart grid · Semidefinite programming
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1 Introduction

The Alternating Current Optimal Power Flow (ACOPF) problem is as follows:
given an electric power network consisting of nodes (called buses) and links
(called lines) one seeks an optimal generation and distribution plan of active
and reactive power under physical constraints (Ohm’s and Kirchhoff’s laws), and
subject to power generation, voltage magnitude and current bounds on each line.

Not every bus can produce power. Those which can are called generators.
There is often a planning issue related to their activation and deactivation. This
is important because of two reasons. First, the minimum amount of power pro-
duced by a generator may be a (reasonably large) positive constant, so disabling
a generator is not equivalent to keeping it active at minimum levels. Secondly,
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there can be a cost to keep it activated. Modelling this choice implies the addi-
tion of binary variables to the model, which yields a Mixed-Integer Quadratically
Constrained Quadratic Programming (MIQCQP) problem.

Most of the recent ACOPF literature [5,9,17,18] ignores the generator activa-
tion/deactivation issue: every available generator is always active. Equivalently,
every binary variable is fixed to 1, which yields a continuous Quadratically Con-
strained Quadratic Programming (QCQP) formulation. We were drawn to the
mixed-integer ACOPF variant by [22], where the authors also consider the selec-
tion of Phase-Shifting Transformers (PST), used to control the flow of real power,
as well as shunts, which are stabilizing devices. We do not consider PSTs nor
shunts in this paper: they require technical data (specifically, more information
about the admittance matrices) which we do not possess at this stage. From a
theoretical point of view, however, the activation/deactivation of generators and
the selection of PSTs yield formulations of the same MIQCQP class, that are
likely to require similar solution approaches.

In this paper we study the ACOPF with selection of generators (ACOPFG).
Based on the ideas in [1–3], we will derive Mixed-Integer Linear Programming
(MILP) formulations using Diagonally Dominant Programming (DDP) for inner
and outer approximations for the ACOPF with binary variables. More precisely,
we propose the following relaxations:

1. a Mixed-Integer Semidefinite Programming (MISDP) relaxation of the
original MIQCQP formulation of the ACOPFG;

2. an inner Diagonally Dominant Programming (DDP) [1,10] approximation of
the MISDP relaxation;

3. an outer DDP relaxation obtained by replacing the primal DD cone in the
inner DDP approximation with its dual.

We shall exhibit some computational results showing that DDP yields tight
upper and lower bounds on the optimal objective function value of the original
MIQCQP.

One of the important reasons for the usefulness of a tight lower objec-
tive function bound is that ACOPF/ACOPFG problems are sometimes solved
as lower-level subproblems of bilevel problems where the upper-level decisions
concern unit electricity prices. A non-guaranteed heuristic ACOPF/ACOPFG
solution might be detrimental to finding good solutions of the upper-level prob-
lem with cutting plane approaches. Since we cannot hope to find a guaran-
teed global optimum in reasonable times, a tight lower bound represents a good
trade-off.

1.1 Notation

We remark first that alternating currents are commonly modelled by means of
scalar and vector quantities over the complex field C. On the other hand, physi-
cists have always denoted current by i. The ambiguity with the usual notation for√−1 is resolved by denoting the latter by j. Accordingly, we shall refrain from
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using j as an index (as is common in Mathematical Programming). In agreement
with standard notation in complex numbers, we denote complex conjugation by
means of a bar over the corresponding quantity: ı̄, for example, is the complex
conjugate of the current, rather than −√−1. Complex conjugation is applied
componentwise to tensors.

We often neglect to explicitly mention matrix sizes in formulations, in order
to lighten the notation. Symbols denoting classes of matrices, such as S, D, etc.,
really stand for “the subset of matrices of appropriate size with the corresponding
property”.

1.2 Contents

The rest of this paper is organized as follows. In Sect. 2 we discuss formulations
of the ACOPFG. In Sect. 3 we introduce a MISDP relaxation. In Sect. 4 we
present our new inner and outer relaxations based on DDP. In Sect. 5 we briefly
discuss dimensionality reduction issues in order to retrieve a good solution from
the relaxation output. In Sect. 6 we report computational results.

2 ACOPF Formulations

Consider an electric power network with set of buses N , set of generators G ⊆ N
and set of lines L ⊆ N × N . The parameters of the problem are:

• ∀n ∈ N SD
n � PD

n + jQD
n active/reactive power demand at bus n

• ∀g ∈ G Smin
g � Pmin

g + jQmin
g lower bound on power generated at bus g

• ∀g ∈ G Smax
g � Pmax

g + jQmax
g upper bound power generated at bus g

• ∀n ∈ N vmin
n , vmax

n bounds on voltage magnitude at bus n
• ∀(n,m) ∈ L imax

nm upper bound on current on line (n,m)
• Y bus admittance matrix in C

|N |×|N|

• Y f, Y s line admittance matrices in C
|L|×|N|.

We want to find the optimal values of active and reactive power at each
generator g ∈ G that is switched on (SG

g
Δ= PG

g + jQG
g ). We must also decide the

current and the voltage for the nodes and lines of the system. Given that:

∀n ∈ N in =
∑

m∈N
Ynmvm

∀n ∈ N � G vn ı̄n = −SD
n

∀n ∈ G vn ı̄n = SG
n − SD

n
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we can model the problem by only using voltage variables vn ∈ C (for n ∈ N )
[23] and binary variables zg (for g ∈ G) representing the activation of a generator
to produce power. The formulation of the ACOPFG is as follows:

min
v∈C

|N|
z∈{0,1}|G|

f(v, z)

∀n ∈ N � G ∑
m∈N

vnv̄mȲnm = −SD
n

∀g ∈ G ∑
m∈N

vg v̄mȲgm − Smax
g zg ≤ −SD

g

∀g ∈ G ∑
m∈N

vg v̄mȲgm − Smin
g zg ≥ −SD

g

∀n ∈ N vnv̄n ≤ vmax
n

∀n ∈ N vnv̄n ≥ vmin
n

∀(n,m) ∈ L ∑
k,�∈N

v̄kv�Ȳ
f
(n,m)kY f

(n,m)� ≤ imax
nm

∀(n,m) ∈ L ∑
k,�∈N

v̄kv�Ȳ
s
(n,m)kY s

(n,m)� ≤ imax
nm ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(ACOPFGC) (1)

where f is a real-valued function that is commonly considered as a polynomial
on the total active power generated, i.e.:

f(v, z)
Δ
=

∑

g∈G

⎛

⎝cg,0zg +
∑

1≤�≤L

cg,�(P
G
g )

�

⎞

⎠=
∑

g∈G

⎛

⎝cg,0zg +
∑

�≤L

cg,�

⎛

⎝ Re

⎛

⎝
∑

m∈N
vg v̄mȲgm

⎞

⎠

⎞

⎠
�⎞

⎠ .

We shall consider polynomials which are quadratic in vg and linear in PG
g

(e.g. L = 1). This makes (ACOPFC) a complex-valued MIQCQP.
By doubling the number of the variables (which implies quadrupling the sizes

of the matrices in each constraint), the problem can be exactly reformulated into
a real-valued MIQCQP:

min
v∈R

2|N|
z∈{0,1}|G|

v�Cv + c�z

∀k ∈ E v�Akv = ak

∀� ∈ I v�B�v ≤ b�

∀w ∈ Z v�Qwv − qmax
w z�w/2� ≤ qw

∀w ∈ Z v�Qwv − qmin
w z�w/2� ≥ qw,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(ACOPFGR) (2)

where E is the set indexing the 2|N �G| equality constraints, Z is the set indexing
the 2|G| inequalities with binary variables and I is the set indexing the other
2(2|G| + 2|N | + 2|L|) inequality constraints.

We remark that this problem is non-convex. Equation (2) therefore cannot
generally be solved globally using local optimization methods (as a convex QCQP
would). Indeed, it is well known that the decision problem associated to Eq. (2)
is NP-hard [24].

3 MISDP Relaxation

Semidefinite Programming (SDP) [4,16] is widely employed in order to derive
relaxations of the continuous version of the ACOPF [5,9,18]. We derive a cor-
responding MISDP relaxation for the ACOPFG. First we rewrite Eq. (2) by
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replacing the products of the form v�Mv as 〈M,V 〉 = tr(M�V ) and adding the
rank constraint V = vv�:

min
V ∈S

〈C, V 〉 + c�z

∀k ∈ E 〈Ak, V 〉 = ak

∀� ∈ I 〈B�, V 〉 ≤ b�

∀w ∈ Z 〈Qw, V 〉 − qmax
w z�w/2� ≤ qw

∀w ∈ Z 〈Qw, V 〉 − qmin
w z�w/2� ≥ qw

V = vv�,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(ACOPFGR) (3)

where S is the set of all n × n symmetric matrices.
Given that V does not encode any integrality constraint, Eq. (3) is essentially

a MILP with the additional (non-convex) constraint V = v v�, which states that
V must be positive semidefinite (PSD) and have rank 1. The standard MISDP
relaxation is obtained by relaxing the rank 1 constraint to V − v v� 
 0, i.e. by
requiring that the Schur complement of V and v, defined as

S (V, v) =
(

1 v�

v V

)

is PSD:

min
V ∈S,v∈R

2|N|
z∈{0,1}|G|

〈C, V 〉 + c�z

∀k ∈ E 〈Ak, V 〉 = ak

∀� ∈ I 〈B�, V 〉 ≤ b�

∀w ∈ Z 〈Qw, V 〉 − qmax
w z�w/2� ≤ qw

∀w ∈ Z 〈Qw, V 〉 − qmin
w z�w/2� ≥ qw

S (V, v) 
 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(ACOPFGMISDP) (4)

Most SDP solvers are unable to solve MISDP formulations directly (with
some exceptions, e.g. Pajarito [21] and PENLAB [11]). A possible workaround
consists in reformulating the binary constraints on z by ∀g ∈ G (z2g = zg). These
can in turn be relaxed, within the SDP framework, with the constraints:

• diag(Z) = z
• S (Z, z) 
 0,

This yields the following SDP relaxation:

min
V ∈S,v∈R

2|N|
Z∈S,z∈R

|G|

〈C, V 〉 + c�z

∀k ∈ E 〈Ak, V 〉 = ak

∀� ∈ I 〈B�, V 〉 ≤ b�

∀w ∈ Z 〈Qw, V 〉 − qmax
w z�w/2� ≤ qw

∀w ∈ Z 〈Qw, V 〉 − qmin
w z�w/2� ≥ qw

diag(Z) − z = 0
S (V, v) 
 0
S (Z, z) 
 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(ACOPFGSDP) (5)
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While Eq. (5) can be tackled by an SDP solver, there are two issues with
it: (a) the fact that today, current SDP solver technology is far from allowing
the systematic solution of ACOPF instances of even moderate sizes (into the
hundreds or thousands of nodes and beyond); (b) the proposed SDP relaxation
of the binary variables usually yields very poor bounds. Instead, we shall inves-
tigate below some MILP formulations derived from Eq. (5). While MILP is also
NP-hard, its state-of-the-art solvers are much faster than MIQCQP solvers.

4 Diagonal Dominance

A real square symmetric matrix Y = (Yj�) is diagonally dominant (DD) if

∀j Yjj ≥
∑

� �=j

|Yj�|. (6)

The main observation leading to our tight MILP relaxations of the MIQCQP
is the well-known fact that every diagonally dominant matrix is PSD [13]. This
means that by replacing the constraint S (V, v) 
 0 with membership in the cone
of DD matrices (also called the DD cone) we obtain an inner approximation of
the SDP cone. We restrict our attention to two formulations of these Diagonally
Dominant Programs (DDP) applied to (ACOPFGMISDP): a formulation based on
the extreme rays of the DD cone [6], and the outer approximation obtained
by replacing the extreme rays of the DD cone with the extreme rays of the
dual DD cone. We devote particular attention to the latter, since it has two
desirable properties: (i) it provides a relaxation of the MISDP, and (ii) we found
empirically that it provides tight lower bounds.

From Eq. (4) we derive the inner approximation:

min
V ∈S , v∈R2|N| , z∈{0,1}|G|

〈C, V 〉 + c�z

∀k ∈ E 〈Ak, V 〉 = ak

∀� ∈ I 〈B�, V 〉 ≤ b�

∀w ∈ Z 〈Qw, V 〉 − qmax
w zw ≤ qw

∀w ∈ Z 〈Qw, V 〉 − qmin
w zw ≥ qw

V ∈ D,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(ACOPFGinner) (7)

where D denotes the DD cone. Given that the decision variable vector v only
appears in the conic constraint S (V, v) 
 0, we can replace the latter by V 
 0
without modifying the feasible region. We then inner-approximate it by means
of the constraint V ∈ D, which is equivalent to Eq. (6) and can be written as
follows using linear constraints:

∀j Vjj ≥ ∑
� �=j

Zj�

−Z ≤ V ≤ Z.

}
(8)
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By [6] and [2, Lemma 3.2], we know that the extreme rays of D are square
matrices defined as follows: ∀ j, � such that j < �,

• Ej = e�
j ej

• E+
j� = (ej + e�)

�(ej + e�) (9)

• E−
j� = (ej − e�)

�(ej − e�)

In other words, the rays either have one nonzero entry in the diagonal which is
equal to 1 or have a single nonzero principal minor

(
1 ±1

±1 1

)

where, for j < �, the ones on the diagonal are in positions (j, j) and (�, �), and
the ±1 components are in positions (j, �) and (�, j). The main relevant result is
that every matrix M ∈ D can be written as a non-negative combination of these
extreme rays:

∃ δj , δ
+
j�, δ

−
j� ≥ 0 M =

∑

j

δjEj +
∑

j<�

(δ+j�E
+
j� + δ−

j�E
−
j�). (10)

This allows us to write membership of a square symmetric matrix M in the
dual DD cone D∗ by means of linear constraints as stated in the following result.

Lemma 4.1 (From paper [23]). The dual DD cone D∗ can be written as
follows:

D∗ = {M ∈ S | ∀x ∈ X (x�Mx ≥ 0)}, (11)

where X = {(ej)j , (ej ± e�)j<�} is a set of |N | + 2
(|N |

2

)
= |N |2 elements.

From Eq. (4) we derive the outer approximation:

min
V ∈S,v∈R

2|N|
z∈{0,1}|G|

〈C, V 〉 + c�z

∀k ∈ E 〈Ak, V 〉 = ak

∀� ∈ I 〈B�, V 〉 ≤ b�

∀w ∈ Z 〈Qw, V 〉 − qmax
w z�w/2� ≤ qw

∀w ∈ Z 〈Qw, V 〉 − qmin
w z�w/2� ≥ qw

V ∈ D∗.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(ACOPFGouter) (12)

By our description of the extreme rays of D, the constraint V ∈ D∗ can be
written using Lemma 4.1. Equation (12) is an outer approximation of Eq. (4)
because D ⊆ S+ = (S+)∗ ⊆ D∗, where S+ is the cone of PSD matrices.

4.1 Iterative Inner Approximation

There are two potential issues with the inner approximation Eq. (7): (a) given
that we are modifying the conic constraints of Eq. (4) by an inner approximation
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of the original cone, the resulting problem may be infeasible; (b) even if the
problem turns out to be feasible, the solution may not be a good approximation
of the MISDP.

The authors of [1,2] introduce a possible way around these issues by means
of iteratively solving a sequence of auxiliary problems, until a cone C ⊆ S+ is
found on which Eq. (4) is feasible when replacing the conic constraint V ∈ D
by V ∈ C. The auxiliary problems are obtained by varying the (square matrix)
parameter U in the formulation below:

min
V ∈S,z∈{0,1}|G|

δ∈(R+)4|N|2

〈C, V 〉 + c�z

∀k ∈ E 〈Ak, V 〉 = ak

∀� ∈ I 〈B�, V 〉 ≤ b�

∀w ∈ Z 〈Qw, V 〉 − qmax
w z�w/2� ≤ qw

∀w ∈ Z 〈Qw, V 〉 − qmin
w z�w/2� ≥ qw

U�
( ∑

x∈X
δxxx�

)
U = V.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(ACOPFGinner(U)) (13)

We remark that, while U� (∑
x∈X δxxx�)

U is an appropriate description of
V ∈ D∗, implementation performances improve if we use an additional auxiliary
matrix variable:

∀i Wii = δi +
∑

j �=i

(δ+ij + δ−
i,j)

∀i, j Wij = δ+ij − δ−
ij (14)

V = U�WU

The iterative procedure is the following:

1. Solve (ACOPFGinner), obtaining the solution V ∗;
2. Define U = chol(V ∗);
3. Solve (ACOPFGinner(U)) to obtain V ∗. While the solution is improving, repeat

from Step 2.

At the k-th iteration of this procedure, we consider the parametrization matrix
Uk and the optimum V ∗

k of (ACOPFGinner(Uk)). Then the following holds [1,2].

Proposition 4.2. V ∗
k is feasible for (ACOPFGinner(Uk+1)) and cannot worsen

the current objective value: val(ACOPFGinner(Uk+1)) ≤ val(ACOPFGinner(Uk)).
Moreover, if V ∗

k is PSD and val(ACOPFGinner(Uk)) is not optimal, then V ∗
k is

improving, i.e. val(ACOPFGinner(Uk+1)) < val(ACOPFGinner(Uk)).

In particular, we know that if we start from a feasible problem, the iterated prob-
lems will always remain feasible. To find an initial U such that the parametrized
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problem is feasible, we solve a slightly different formulation, where we add a
slack variable that we minimize in order to attempt to achieve feasibility:

min
V ∈S,z∈{0,1}|G|

δ∈(R+)4|N|2 ,α∈R
4|N|2

α

∀k ∈ E 〈Ak, V + αI〉 = ak

∀� ∈ I 〈B�, V + αI〉 ≤ b�

∀w ∈ Z 〈Qw, V + αI〉 − qmax
w zw ≤ qw

∀w ∈ Z 〈Qw, V + αI〉 − qmin
w zw ≥ qw

U�
( ∑

x∈X
δxxx�

)
U = V + αI.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(ACOPFGph1(U)) (15)

Algorithmically, we start with U = I. While α∗ > 0, we set U = chol(V ∗ + α∗
I).

We solve (ACOPFph1(U)) using the procedure previously stated.
The pseudocode for our inner approximation algorithm is given in

Algorithm 1.

Algorithm 1. Iterative inner approximation
1: procedure innerACOPFMI
2: ε ← 10−5, aux ← 1, U ← I

3: # Achieve feasible U first
4: while aux > 0 do
5: (V ∗, z∗, α∗) ← optimal solution of (ACOPFGph1(U))
6: aux ← α∗, U ← chol(X + α∗

I)

7: valf ← +∞, vali ← 0
8: # Now improve the approximation
9: while |vali − valf| > ε do

10: vali ← valf
11: ((V ∗, z∗),valf ) ← optimal solution and value of (ACOPFGinner(U))
12: U ← chol(V ∗)

return ((V ∗, z∗),valf)

4.2 Negative Rank of Outer Approximation

One of the issues with Eq. (12) is that, being an outer approximation of Eq. (4),
it does not ensure that V 
 0. In fact, we empirically found that, although the
bound was often tight, the solution V ∗ had a considerable number of negative
eigenvalues. We therefore propose to add the following cutting planes to the
formulation: for each eigenvector p of V ∗ corresponding to a strictly negative
eigenvalue we add the following inequality to the formulation Eq. (12):

p�V p ≥ 0. (16)

These cuts make V ∗ infeasible since, by definition of negative eigenvector, we
have that p�V ∗p < 0. Unfortunately, we found that in practice these cuts, by
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themselves, do not yield a PSD solution. Nevertheless, this procedure decreases
the number and/or the sum of the strictly negative eigenvalues.

The pseudocode for our outer approximation algorithm is given in
Algorithm 2. The function SpectralDecomposition() returns the spectral
decomposition of its argument.

Algorithm 2. Iterative outer approximation
1: procedure outerACOPFMI
2: P ← ∅
3: λ− ← 1
4: while λ− > 0 and time < maxtime do
5: ((V ∗, z∗),valf) ← optimal solution of (ACOPFGouter)
6: (W, Λ) ← SpectralDecomposition(V ∗)
7: λ− ← number of negative eigenvalues
8: P− ← eigenvectors associated to the negative eigenvalues
9: P ← P ∪ P−

return (X∗, z∗,valf)

5 Dimensionality Reduction

All our methods solve either inner or outer matrix approximations of the original
MIQCQP Eq. (2), derived from Eq. (3) by relaxing the rank constraint. As such,
they will not provide a solution vector v∗ for the voltage in the original problem
Eq. (2), but rather a solution matrix V ∗, which will be very unlikely to have
rank 1.

In order to heuristically extract a vector v∗ from a matrix V ∗ with higher
rank we considered two options for a dimensionality reduction algorithm: (a)
Principal Component Analysis (PCA) [15] and (b) Barvinok’s naive algorithm
[7, Sect. 5]. Both produce some estimate v′ of v∗ according to different analyses.
We then used v′ as a starting point for a local descent carried out by a local
Nonlinear Programming (NLP) solver.

Both options are simple and effective in different settings. PCA is well known
and needs no introduction. Barvinok’s algorithm is as follows:

1. factor V ∗ into V ∗ = F F�;
2. sample a random vector y componentwise from a standard Gaussian distri-

bution N(0, 1);
3. let v′ = Fy.

The analysis carried out by A. Barvinok shows that v′ has high probability of
being “not too far” from the feasible set. We remark that we applied Barvinok’s
algorithm to a wrong setting (in general), since the analysis only holds whenever
V ∗ is a solution of an SDP, and some of our algorithms do not ensure PSD
solutions. This being “just a heuristic”, we proceeded nonetheless, based on the
fact that the formulations that produce V ∗ are themselves derived from SDP
formulations.



374 E. Salgado et al.

Some empirical tests showed a promise of superiority of Barvinok’s naive
algorithm to PCA (also see [19]), which was therefore our dimensionality reduc-
tion method of choice in obtaining computational results (Sect. 6).

6 Numerical Results

We tested our approach using Cplex-12.6.3 [14] on YALMIP [20] for the inner and
outer approximations. The MIQCQP was solved with Bonmin-4.8.4 [8] on AMPL
[12]. Our results were obtained on an Intel i7 dual-core CPU at 2.1 GHz with 15
GB RAM.

The time limits for decreasing the negative rank (outer approximation) and
feasible solution improvement (inner approximation) were set to 300 s. The limit
of time for solving MIQCQPs was set to 1200 s (Table 1).

Table 1. ACOPF inner and outer MILP relaxations.

As we can observe the bounds we obtained are tight with respect to the
feasible solution we obtained for the MIQCQP formulation. In general, inner
approximations seem to provide solutions with a smaller rank than outer ones.
Unfortunately, we could not scale these experiments to larger sizes because of
the slow convergence of the loop from Step 4 to Step 6 of Algorithm1. It is for
this reason that we write “-” on some instances for the inner approximation.
When we write “(x)” we mean that the local solver was not able to find a local
optimum in the time limit.
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Abstract. We introduce and study the NP-hard Module Map problem
which has as input a graph G with red and blue edges and asks to
transform G by at most k edge modifications into a graph which does
not contain a two-colored K3, that is, a triangle with two blue edges
and one red edge, a blue P3, that is, a path on three vertices with two
blue edges, and a two-colored P3, that is, a path on three vertices with
one blue and one red edge, as induced subgraph. We show that Module
Map can be solved in O(2k · n3) time on n-vertex graphs and present a
problem kernelization with O(k2) vertices.

1 Introduction

Graphs are a useful tool for many tasks in data analysis such as graph-based
data clustering or the identification of important agents and connections in social
networks. In graph-based data clustering, the edges in the graph indicate sim-
ilarity between the objects that are represented by the vertices. The goal is
to obtain a partition of the vertex set into clusters such that the objects inside
each cluster should be similar to each other and objects between different clusters
should be dissimilar. One of the central problems in this area is called Cluster
Editing [3], also known as Correlation Clustering [18].

Cluster Editing
Input: An undirected graph G = (V,E) and a non-negative integer k.
Question: Can we transform G into a cluster graph, that is, a disjoint
union of cliques, by deleting or adding at most k edges?

Here, we essentially view the clustering problem as a graph modification problem:
If we can transform G into a cluster graph G′ by at most k edge modifications,
then the connected components of G′ define a partition of V into clusters such
that at most k edges of G contradict this partition; these are exactly the deleted
and inserted edges. In recent years, there has been an increased focus to model
the observed data more precisely by incorporating different edge types. As a con-
sequence, many data analysis tasks are now carried out on graphs with multiple
edge types [7,15]. In this work, we study a generalization of Cluster Editing
in graphs with two types of edges.
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Module Maps. The problem arises in the construction of so-called module maps
in computational biology [2,19]. Here, the input is a two-edge-colored graph
G = (V,Eb, Er) with a set Eb of blue edges and a set Er of red edges. In the
following, we will refer to these objects simply as graphs. The vertices of G repre-
sent genes of an organism, the blue edges represent physical interactions between
the proteins that are built from these genes, and the red edges represent genetic
interactions between the genes. These may be inferred, for example from a high
correlation of expression levels of the genes [2]. In the biological application, the
task is to find modules which are groups of genes that have a common function
in the organism.

According to Amar and Shamir [2], the following properties are desirable for
these modules: First, each module should be highly connected with respect to the
physical protein interactions. In other words, within each module there should
be many blue edges. Second, there should be few physical interactions and, thus,
few blue edges between different modules. Third, two different modules A and B
may have a link between them. If they have a link, then there are many genetic
interactions and, thus, many red edges between them; otherwise, there are few
genetic interactions and, thus, few red edges between them. Amar and Shamir [2]
discuss different objective functions for obtaining a module map that take these
properties into account.

We study the problem of obtaining module maps from a graph modification
point of view in the same spirit as Cluster Editing is a canonical graph
modification problem for graph clustering. That is, we first define formally the
set of module graphs which are the graphs with a perfect module map. Then,
the computational problem is to find a module graph that can be obtained from
the input graph by few edge modifications.

Module Graphs. By the above, each module is ideally a blue clique and there
are no blue edges between different modules. In other words, the blue subgraph
Gb := (V,Eb) obtained by discarding all red edges is a cluster graph. Each con-
nected component of Gb is called a cluster, and we say that a graph G where Gb

is a cluster graph fulfills the cluster property. Moreover, ideally for each pair of
different clusters A and B there are either no edges between u ∈ A and v ∈ B
or each u ∈ A and each v ∈ B are connected by a red edge. In other words, the
graph Gr[A ∪ B] is either edgeless or complete bipartite with parts A and B,
where Gr := (V,Er) is the red subgraph obtained by discarding all blue edges.
This property is called link property, and the red bicliques are called links. The
link property is only defined for graphs that fulfill the cluster property. A graph
has a perfect module map if it satisfies both properties.

Definition 1. A graph G = (V,Eb, Er) is a module graph if G satisfies the
cluster property and the link property.

A module graph is shown in Fig. 1. Clearly, not every graph is a module graph.
For example a graph G with three vertices u, v, and w where the edges {u, v}
and {u,w} are blue and the edge {v, w} is red, violates the cluster property. Our
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Fig. 1. A module graph with the clusters {a, b, c}, {d}, and {e, f}.

aim is to find a module graph which can be obtained from the input graph G
by as few edge transformations as possible.

Module Map
Input: A graph G = (V,Eb, Er) and a non-negative integer k.
Question: Can we transform G into a module graph by deleting or
adding at most k red and blue edges?

Herein, to transform a blue edge into a red edge, we first have to delete the blue
edge and in a second step we may insert the red edge, thus transforming a blue
edge into a red edge has cost two and vice versa.

As in the case of Cluster Editing, the module graph that is obtained by
at most k edge modifications directly implies a partitioning of the input vertex
set into clusters such that at most k vertex pairs contradict the input vertex
pairs. Here, a contradiction is a red edge or a non-edge inside a cluster, a blue
edge between different clusters, or a non-edge between different clusters that
have a link and a red edge between different clusters that have no link. Our
problem formulation is thus related to previous ones [2,19] but more simplistic:
for example it does not use statistically defined p-values to determine whether
a link between modules should be present or not. As observed previously [2,
19] most formulations of the construction problem for module maps contain
Cluster Editing as a special case. This is also true for Module Map: if
the input has no red edges, then it is not necessary to add red edges, and thus
Module Map is the same as Cluster Editing.

As a consequence, hardness results for Cluster Editing transfer directly
to Module Map. Since Cluster Editing is NP-complete [17] and cannot be
solved in 2o(|V |+|E|) time under a standard complexity-theoretic assumption [11,
16] we observe the following.

Proposition 1. Module Map is NP-complete and cannot be solved in
2o(|V |+|E|) time unless the Exponential-Time Hypothesis (ETH) fails.

Because of this algorithmic hardness, heuristic approaches are used in
practice [2,19]. In this work, we are interested in exact algorithms for
Module Map. In particular, we are interested in fixed-parameter algorithms
that have a running time of f(k) · nO(1) for a problem-specific parameter k.
If k has moderate values and f grows not too fast, then these algorithms solve
the problem efficiently [9]. Motivated by the practical success of fixed-parameter
algorithms with the natural parameter number k of edge transformations for
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Cluster Editing [6,13], we focus on fixed-parameter algorithms for Module
Map with the same parameter. We find that viewing Module Map as a graph
modification problem facilitates the algorithmic study of the problem.

A Weighted Problem Variant. In practice, it is useful to consider edge-weighted
versions of the problem, where the input includes a weight function g :

(
V
2

) → N
+

on vertex pairs. The higher the weight, the more confidence we have in the
observed edge type. To obtain the cost of a set of edge deletions and additions,
we multiply each edge modification {u, v} with the weight g({u, v}). For example,
a blue edge {u, v} with weight ω can be transformed into a non-edge with cost ω
and into a red edge with cost 2ω. This gives the following problem:

Weighted Module Map
Input: A graph G = (V,Eb, Er) with edge weights g :

(
V
2

) → N
+ and a

non-negative integer k.
Question: Can we transform G into a module graph by edge transfor-
mations of cost at most k?

Our Results. In Sect. 2, we present a characterization of module graphs by three
forbidden induced subgraphs and show how to determine whether a graph G
contains one of these in linear time. This implies a simple linear-time fixed-
parameter algorithm for Module Map with running time O(3k · (|V | + |E|)),
where |E| = |Eb| + |Er|.

In Sect. 3, we present an improved (in terms of the exponential running-
time part) fixed-parameter algorithm for Weighted Module Map with run-
ning time O(2k · |V |3). This algorithm is an extension of a previous algorithm
for Weighted Cluster Editing [5]. In order to transfer the technique to
Weighted Module Map, we solve a more general variant of Weighted Mod-
ule Map that uses a condensed view of the modification costs of an edge in terms
of cost vectors. Here, each possible type of a vertex pair (blue edge, red edge,
or non-edge) corresponds to one component of the cost vector. We believe that
this view can be useful for other graph modification problems with multiple edge
types.

Finally, in Sect. 4 we show that Weighted Module Map admits a problem
kernel with a quadratic number of vertices. More precisely, we show that given
an instance of Weighted Module Map we can compute in O(|V |3 + k · |V |2)
time an equivalent instance that has O(k2) vertices. As a corollary, we can
solve Weighted Module Map in O(2k · k6 + |V |3) time by first applying the
kernelization and then using the search tree algorithm.

Related Work. Compared to the study of graphs with only one edge type, there
has been little work on algorithms for graphs with multiple edge types which
may be referred to as multilayer graphs [15] or edge-colored (multi)graphs.

Chen et al. [8] introduced Multi-Layer Cluster Editing, a variant of
Cluster Editing with multiple edge types. In this problem, one asks to trans-
form all layers into cluster graphs which differ only slightly. Here, a layer is the
subgraph containing only the edges of one type. Roughly speaking, the task is
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to find one cluster graph such that each layer can be transformed into this clus-
ter graph by at most k edge modifications. Chen et al. [8] show fixed-parameter
algorithms and hardness results for different parameter combinations. The prob-
lem differs from Module Map in the sense that all edge types play the same role
in the problem definition and that layers are evaluated independently whereas
in Module Map the aim is to obtain one graph with blue and red edges that
fulfills different properties for the blue and red edges. A further problem studied
in this context is Simultaneous Feedback Vertex Set [1] where the aim is
to delete at most k vertices in a multilayer graph such that each layer is acyclic.
Further, Bredereck et al. [7] present several algorithmic and hardness results for
a wide range of subgraph problems in multilayer graphs.

Preliminaries. We follow standard notation in graph theory. For a graph
G = (V,E) and a set V ′ ⊆ V , the subgraph of G induced by V’ is denoted
by G [V ′] := (V ′, {{u, v} ∈ E | u, v ∈ V ′}). For two sets A and B, the symmetric
difference A�B := (A ∪ B)\(A ∩ B) is the set of elements which are in exactly
one of the two sets. A solution S for an instance of Module Map is a tuple
of edge transformations (E′

b, E
′
r) of size at most k such that the transformed

graph G′ = (V,Eb�E′
b, Er�E′

r) is a module graph. Herein, the size of (E′
b, E

′
r)

is |E′
b| + |E′

r|. The graph G′ is called target graph. A solution S is optimal if
every other solution is at least as large as S.

For the basic definitions on parameterized complexity such as fixed-parameter
tractability and kernelization, we refer to the literature [9]. We present our ker-
nelization via reduction rules. A reduction rule is safe if the resulting instance
is equivalent. An instance is reduced exhaustively with respect to a reduction
rule if an application of the rule does not change the instance. A branching
rule transforms an instance (I, k) of a parameterized problem into instances
(I1, k1), . . ., (I�, k�) of the same problem such that ki < k. A branching rule is
safe if (I, k) is a yes-instance if and only if there exists a j such that (Ij , kj)
is a yes-instance. A standard tool in the analysis of search tree algorithms are
branching vectors; for further background refer to the monograph of Fomin and
Kratsch [10].

Due to lack of space, several proofs are deferred to a long version of the article.

2 Basic Observations

In the following we present a forbidden subgraph characterization for the prop-
erty of being a module graph. To this end, we define the following three graphs
which are shown in Fig. 2: a blue P3 is a path on three vertices consisting of two
blue edges, a two-colored K3 is a clique of size three, where one edge is red and
the other two are blue, and a two-colored P3 is a path on three vertices with
exactly one blue and one red edge.

The first step towards the forbidden subgraph characterization is to show
that the subgraph induced by the blue edges Gb is a cluster graph if and only
if G contains no blue P3 and no two-colored K3.
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Fig. 2. The forbidden induced subgraphs for module graphs. From left to right: a
blue P3, consisting of two (dark) blue edges, a two-colored K3, consisting of two blue
and one (light) red edge and a two-colored P3, consisting of one blue and one red edge.
(Color figure online)

Lemma 1. A graph G fulfills the cluster property if and only if G contains
neither a blue P3 nor a two-colored K3 as induced subgraphs.

Next, we can show that the existence of a two-colored P3 leads to a violation of
the link property which gives the complete forbidden subgraph characterization.

Theorem 1. A two-colored graph G is a module graph if and only if G has no
blue P3, no two-colored K3, and no two-colored P3 as induced subgraph.

We now show a simple linear-time fixed-parameter algorithm for Module
Map and Weighted Module Map. The algorithm uses the standard approach
to branch on the graphs of the forbidden subgraph characterization presented in
Theorem 1. The main point is to obtain a linear running time. To this end, we
show that we can determine in O(|V | + |E|) time if a graph contains any of the
three forbidden subgraphs.

We start by determining if the blue subgraph Gb of the two-colored input
graph G = (V,Eb, Er) is a cluster graph. According to Lemma 1, we have to
determine if G has a blue P3 or a two-colored K3. The normal approach would be
to search for each forbidden subgraph individually. As we show in the following,
however, under a standard assumption in complexity theory it is impossible to
find a two-colored K3 in O(|V | + |E|) time.

The current best algorithm to determine if a graph G contains a triangle has
a running time of O(|V |ω) time, where ω < 2.376 is the exponent of the time
that is needed to multiply two n × n matrices [14].

Proposition 2. We cannot find a two-colored K3 in a graph G = (V,Eb, Er)
in O(|V |+|E|) time, unless we can detect triangles in O((|V |+|E|)·log |V |) time.

Instead, we obtain a linear-time algorithm by searching in one step for
two-colored K3s and for blue P3s.

Lemma 2. For a two-colored graph G = (V,Eb, Er) we can find in O(|V |+ |E|)
time a blue P3 or a two-colored K3 if G contains either one.

Now we show how to find a two-colored P3 in time O(|V | + |E|) in a
graph G = (V,Eb, Er) when we assume that G contains no blue P3 and no
two-colored K3.



382 F. Sommer and C. Komusiewicz

Lemma 3. A two-colored P3 in a graph G = (V,Eb, Er) which contains no
blue P3 and no two-colored K3 can be found in O(|V | + |E|) time if it exists.

With Lemmas 2 and 3 at hand, it can be determined in O(|V |+ |E|) time if a
graph G = (V,Eb, Er) contains a forbidden subgraph and, thus, also whether G
is a module graph. A simple fixed-parameter algorithm for Module Map now
works as follows: Check whether G is a module graph. If this is the case, then
return ‘yes’. Otherwise, check whether k = 0. If this is the case, return ‘no’.
Otherwise, find one of the three forbidden subgraphs and branch on the pos-
sibilities to destroy it by an edge modification. If G contains a blue P3 with
vertex set {u, v, w} and non-edge {u,w}, then transform {u,w} into a blue edge
in the first case, transform {u, v} into a non-edge in the second case, and trans-
form {v, w} into a non-edge in the third case. In each case, decrease k by one
and solve the resulting instance recursively. The treatment of the other forbid-
den subgraphs is similar: If G contains a two-colored P3, transform the blue
edge into a non-edge, or transform the red edge into non-edge, or transform the
non-edge into a red edge (observe that the case where a non-edge is transformed
into blue edge need not be considered since this produces a two-colored K3).
If G contains a two-colored K3, either transform one of the blue edges into a
non-edge or transform the red edge into a blue edge. For each forbidden induced
subgraph, the algorithm branches into three cases and decreases k by at least
one. This leads to a branching vector of (1, 1, 1). Since branching is performed
only as long as k > 0, the overall search tree size is O(3k); the steps of each
search tree node can be performed in O(|V | + |E|) time. Altogether, we obtain
the following.

Proposition 3. Module Map can be solved in O(3k · (|V | + |E|)) time.

For Weighted Module Map, we can use the same algorithm: since the edge
weights are positive integers, the parameter decrease is again at least 1 in each
created branch of the search tree algorithm. A subtle difference is that, due to
the edge weight function g, the overall instance size is O(|V |2).
Proposition 4. Weighted Module Map can be solved in O(3k · |V |2) time.

3 An Improved Search Tree Algorithm

To improve the running time, we adapt a branching strategy for Cluster
Editing [5]. To apply this strategy, we first introduce a generalization of
Weighted Module Map. Then, we explain our branching strategy. Finally, we
solve certain instances in polynomial time to obtain an O(2k · |V |3)-time search
tree algorithm.

A More Flexible Scoring Function. To describe our algorithm for Weighted
Module Map, we introduce a more general problem since during branching,
we will merge some vertices. To represent the adjacencies of the merged vertices,
we generalize the concept of edge weights: Recall that in Weighted Module
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Map, transforming a blue edge with weight ω into a non-edge costs ω and
transforming it into a red edge costs 2ω. Hence, the two transformation costs
are directly related. From now on, we allow independent transformation costs
for the different possibilities. To this end, we introduce an edge-cost function s :(
V
2

) → R3 for all pairs of vertices {u, v} of a given graph G where s(u, v) :=
(bu,v, nu,v, ru,v). This vector (bu,v, nu,v, ru,v) is called cost vector. Herein, bu,v

is the cost of making {u, v} blue, nu,v is the cost of making {u, v} a non-edge
and ru,v is the cost of making {u, v} red. For a short form of the cost vector we
also write (b, n, r)u,v. If there is no danger of confusion we omit the index of the
associated vertices u and v. For example, let {u, v} be a blue edge in an instance
of Weighted Module Map with weight ω. Then we get cost vector (0, ω, 2ω).

We call a vertex pair {u, v} with its cost vector (b, n, r) a blue pair if b = 0
and n, r > 0, a non-pair if n = 0 and b, r > 0, and a red pair if r = 0 and b, n > 0.
As for unweighted graphs, three vertices u, v, and w form a blue P3 if {u, v}
and {u,w} are blue and {v, w} is a non-pair, they form a two-colored K3 if {u, v}
and {u,w} are blue and {v, w} is red, they form a two-colored P3 if {u, v} is
blue, {u,w} is red and {v, w} is a non-pair. Finally, a graph G is called a pair
module graph if each pair {u, v} of vertices in G is a blue pair, a non-pair or a
red pair and G contains no blue P3, two-colored K3 and two-colored P3.

We do not allow arbitrary scoring functions but demand the following three
properties. The first property restricts the relation between the three costs.

Property 1. For each cost vector (b, n, r)u,v, we have b + r ≥ 2n.

Property 1 is essentially a more relaxed version of the property that transforming
a blue edge into a red edge is at least as expensive as transforming this edge first
into a non-edge and subsequently into a red edge.

Property 2. In each cost vector s(u, v) either all components are non-negative
integers or all three are non-negative and half-integral. In the latter case, at least
two components are equal to 1/2.

A cost vector (b, n, r)u,v where all three components are half-integral is called
half-integral. All other cost vectors are called integral. Half-integral cost vectors
will be introduced during the algorithm for technical reasons.

The final property demands that each vertex pair whose cost vector is not
half-integral has exactly one component equal to zero. This guarantees the unam-
biguous construction of a pair module graph from each vertex pair.

Property 3. Each integral cost vector (b, n, r)u,v contains exactly one component
which is equal to zero.

Properties 1–3 are fulfilled by the scoring function obtained from Weighted
Module Map instances. Moreover, we can observe the following.
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Proposition 5. Let (b, n, r)u,v be a cost vector fulfilling Property 1–3.

– If {u, v} is blue, then n ≥ 1 and r ≥ 2n.
– If {u, v} is red, then n ≥ 1 and b ≥ 2n.
– If {u, v} is half-integral, then n = 1/2.

Proof. The first two claims follow from the fact that (b, n, r) has only integer
components in these cases and that only one component is zero. The third claim
can be seen as follows. By Property 2, all three components are half-integral and
at least two of them are equal to 1/2. By Property 1, b + r ≥ 2n. If n > 1/2,
then b = 1/2 = r and Property 1 is violated. Thus, n = 1/2. 	


We may now define Module Map with Scoring Function (MMS).

MMS
Input: A graph G with an edge-cost function s :

(
V
2

) → R3 which fulfills
Properties 1–3 and a non-negative integer k.
Question: Can we transform G into a pair module graph with trans-
formation costs at most k?

Our aim is to show the following.

Theorem 2. MMS can be solved in O(2k · |V |3) time.

Merge-Based Branching. We branch on blue pairs since each forbidden subgraph
contains at least one blue edge. In one case we will delete this blue edge and in
the other case we will keep this blue edge.

Definition 2. A blue pair {u, v} forms a conflict triple with a vertex w if {u,w}
and {v, w} are not both blue, not both non-pairs, or not both red.

To resolve all conflict triples, we branch on blue pairs. In the corresponding
branching, similar to the approach of Böcker et al. [5], we merge the vertex
pair {u, v} in one of the cases.

Definition 3. Let (G, s, k) be an instance of MMS. Merging two vertices u
and v is the following operation: Remove u and v from G and add a new vertex u′.
For all vertices w ∈ V \ {u, v} set s(u′, w) := s(u,w) + s(v, w).

We call s(u′, w) the join of s(u,w) and s(v, w). Note that s(u′, w) may not
fulfill Properties 1–3. Because of this, we have to reduce joint cost vectors as
far as possible. Herein, reducing (b, n, r) by a value t is to decrease each of its
components by t. Simultaneously we can reduce the parameter k by t.

Reduction Rule 1. Let {u, v} be a vertex pair with cost vector (b, n, r). If
(b, n, r) has a unique minimum component, then reduce (b, n, r) and parameter k
by min (b, n, r). Otherwise, reduce (b, n, r) and parameter k by min (b, n, r)−1/2.



Parameterized Algorithms for Module Map Problems 385

Let x = min(b, n, r) be a minimal value of (b, n, r). If x is unique, then we can
reduce (b, n, r) by x, since afterwards exactly one component of the cost vector is
equal to zero. Otherwise, we cannot reduce the cost vector by x, since afterwards
at least two components have value zero, a contradiction to Property 3. Clearly,
we could reduce the vector by x−1, but this would not give a parameter decrease
for vectors such as (1, 1, 3). According to the bookkeeping trick introduced in [5],
in such a case, we reduce this vector by x−1/2 to circumvent the above problem.
For example, we reduce the vector (1, 1, 3) by 1/2 and get vector (1/2, 1/2, 5/2).

Branching Rule 1. Let (G, s, k) be an instance of MMS. If (G, s, k) contains
a blue pair {u, v} and two distinct vertices w and w′ that form a conflict triple
with {u, v}, then branch into two cases:

Case 1: Set bu,v := k + 1. Afterwards apply Reduction Rule 1.
Case 2: Merge the vertex pair {u, v}. Afterwards apply Reduction Rule 1.

Lemma 4. Branching Rule 1 is safe.

Now we prove that Properties 1–3 remain true if we set bu,v := k + 1 for a
blue pair {u, v} and apply Reduction Rule 1, and if we merge a blue pair {u, v}
and apply Reduction Rule 1.

Lemma 5. Let {u, v} be a blue pair in an instance (G, s, k) of MMS, and
let (G′, s′, k′) be obtained by setting bu,v := k + 1 and applying Reduction Rule 1
or by merging u and v and applying Reduction Rule 1. Then, (G′, s′, k′) is an
instance of MMS. In particular, s′ fulfills Properties 1–3.

We now show that if we merge a blue pair {u, v} where {u,w} and {v, w}
are not both blue, non-, or red, then Reduction Rule 1 reduces the resulting cost
vector (b, n, r)u′,w by at least 1/2.

Proposition 6. Let s(u′, w) be a joint cost vector that is the join of two cost
vectors s(u,w) and s(v, w), where {u,w} and {v, w} are not both blue, non- or
red. Then Reduction Rule 1 applied to s(u′, w) decreases k by at least 1/2.

Now we show that increasing b for blue pairs decreases k by at least 1.

Lemma 6. Let {u, v} be a blue pair and let (b∗, n, r) be the cost vector that
results from (b, n, r) by setting b = k + 1. Then, applying Reduction Rule 1
to (b∗, n, r) decreases k by at least 1 or this instance has no solution.

Proof. Form Proposition 5 we conclude: b = 0, n ≥ 1 and r ≥ 2n. If n ≥ k,
then each component of (b∗, n, r) will be larger than k. Hence there exists no
solution for this instance. Thus, the reduced cost vector is integral with a unique
minimum component. Consequently, it is reduced by at least 1. 	


Now consider the instances obtained by an application of Branching Rule 1.
In Case 1, the new parameter is at most k − 1 due to Lemma 6. In Case 2, the
new parameter is also at most k − 1 because {u, v} is in two conflict triples.
By Proposition 6 this means that we create two cost vectors which are both
reduced by at least 1/2.
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Corollary 1. Branching Rule 1 has a branching vector of (1, 1) or better.

Applying Branching Rule 1 states that every blue pair which is contained in at
least two conflict triples has branching vector (1, 1) or better. Branching Rule 2
deals with blue pairs {u, v} which are contained in exactly one conflict triple
with vertex w where {u,w} and {v, w} give a join that can be reduced by at
least 1.

Branching Rule 2. If (G, s, k) contains a blue pair {u, v} and a vertex w such
that u, v, and w form a conflict triple and the joined vertex pair can be reduced
by at least 1, then branch into the following two cases:

Case 1: Set bu,v := k + 1. Afterwards apply Reduction Rule 1.
Case 2: Merge the vertex pair {u, v}. Afterwards apply Reduction Rule 1.

Lemma 7. Branching Rule 2 is correct and has branching vector (1, 1) or better.

Solving the Remaining Instances in Polynomial Time. We now show that
instances to which Branching Rules 1 and 2 do not apply can be solved
efficiently.

Lemma 8. Let (G, s, k) be an instance of MMS. If Branching Rules 1 and 2
do not apply, then (G, s, k) can be solved in O(|V |2) time.

We now can prove Theorem 2.

Proof (of Theorem 2). First, check for each blue pair {u, v} if Branching Rule 1
or 2 applies. This needs O(|V |3) time. If this is the case, we will branch on {u, v}.
According to Corollary 1 and Lemma 7, Branching Rules 1 and 2 have a branch-
ing vector of (1, 1) or better. This implies a search tree size of O(2k) because we
only branch as long as k > 0. In one case, we set bu,v := k + 1, which can be
done in constant time. In the other case, we merge u and v. Hence, we delete the
vertices u and v from the graph and replace them by a new vertex u′ and join all
incident pairs of vertices. These are n pairs. So we can calculate the cost vector
for each new, joined pair in O(|V |) time. In both cases we reduce the parameter
accordingly. Hence, we need O(|V |3) time per search tree node. By Lemma 8,
MMS can be solved in O(|V |2) time if Branching Rules 1 and 2 do not apply.
Hence, we obtain an O(2k · |V |3)-time algorithm for MMS. 	


4 A Polynomial Problem Kernel

We also obtain a problem kernelization for Weighted Module Map that yields
a problem kernel with O(k2) vertices. The basic idea is the following: Let {u, v}
be a vertex pair of an instance (G = (V,Eb, Er), k, g) of Weighted Module
Map. We investigate if it is possible that the vertex pair {u, v} can be a blue,
non-, or red edge in any target graph of a size-k solution. To this end, we estimate
for each edge type the induced costs of transforming {u, v} into this type; this
approach was also used for Cluster Editing [5,12].

Theorem 3. Weighted Module Map admits a problem kernel of O(k2)
vertices which can be found in O(|V |3 + k · |V |2) time.
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5 Conclusion

There are many open questions: Does Module Map admit a problem kernel
with O(k) vertices? Can we compute a constant-factor approximation in polyno-
mial time? Is Module Map NP-hard when Gb is a cluster graph? Is Module
Map fixed-parameter tractable for smaller parameters, for example when param-
eterized above a lower bound as it was done for Cluster Editing [4]?
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Abstract. Only a few facts are known regarding the approximability of
optimization CSPs with respect to the differential approximation mea-
sure, which compares the gain of a given solution over the worst solution
value to the instance diameter. Notably, the question whether kCSP−q
is approximable within any constant factor is open in case when q ≥ 3
or k ≥ 4. Using a family of combinatorial designs we introduce for
our purpose, we show that, given any three constant integers k ≥ 2,
p ≥ k and q > p, kCSP−q reduces to kCSP−p with an expansion of
1/(q − p + k/2)k on the approximation guarantee. When p = k = 2,
this implies together with the result of Nesterov as regards 2CSP−2 [1]
that for all constant integers q ≥ 2, 2CSP−q is approximable within
factor (2 − π/2)/(q − 1)2.

Keywords: Differential approximation
Optimization constraint satisfaction problems
Approximation-preserving reductions · Combinatorial designs

1 Introduction

1.1 Optimization Constraint Satisfaction Problems

Thereafter, given a positive integer N , we denote by [N ] the discrete inter-
val {1, . . . , N}. Optimization Constraint Satisfaction Problems (CSPs) over an
alphabet Σ consider a set {x1, . . . , xn} of variables and a set {C1, . . . , Cm} of
constraints, where the variables have domain Σ, and the constraints consist of
(non constant) predicates applied to tuples of variables. Most often, a positive
weight is associated with each constraint Ci. The goal is then to optimize over
Σn an objective function of the form

∑m
i=1 wiCi =

∑m
i=1 wiPi(xJi

) =
∑m

i=1 wiPi(xi1 , . . . , xiki
)

where for all i ∈ [m], Pi : Σki → {0, 1}, Ji = (i1, . . . , iki
) ⊆ [n], and wi > 0.
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For example, the Satisfiability Problem (Sat) is the boolean CSP where con-
straints are disjunctive clauses. In Lin−q, the alphabet is Zq = Z/qZ, and a
constraint is a linear equation modulo q. In this paper, given two universal con-
stant integers q, k ≥ 2, we consider the optimization CSP kCSP−q where Σ
has size q, each constraint depends on at most k variables, and functions Pi are
allowed to take rational values.1 In the sequel, given an instance I of kCSP−q,
we will assume either Σ = [q] or Σ = Zq, and that the optimization goal is to
maximize. These assumptions are without loss of generality.2.

kCSP−q most often becomes harder as k or q grows. On the one hand, given
two integers h ≥ 2 and k > h, hCSP−q is a special case of kCSP−q. On the
other hand, given two integers p ≥ 2 and q > p, any surjective map from [q] to [p]
can be used to convert a function on [p]k to a function on [q]k. The alphabet size
more accurately has a logarithmic impact on the constraint arity: if κ = �logp q�,
then any surjective map from [p]κ to [q] similarly allows to convert a function
on [q]k to a function on [p]κk. As 2CSP−2 is NP−hard [2], a major issue as
regards kCSP−q consists in charactering its approximation degree.

1.2 Their Differential Approximability

Given an instance I of an optimization problem Π, we denote by v(I, .) its
objective function, by opt(I) and wor(I) respectively the best and the worst
solution values on I. Approximation algorithms aim at providing within polyno-
mial time solution values proved to be relatively close to the optimum solution
value, where the proximity to opt(I) is defined with respect to a specific mea-
sure. In this paper, we consider the differential approximation measure (see [3]
for an introduction). On I, the differential ratio reached at a given solution x is
the ratio:

v(I, x) − wor(I)
opt(I) − wor(I)

Given ρ ∈]0, 1], x is said ρ-approximate if this ratio is at least ρ. A polyno-
mial time algorithm A is a ρ-approximation algorithm for Π if it returns on
every instance of Π a solution with differential ratio at least ρ. Finally, Π is
approximable within factor ρ whenever such an algorithm exists.

Only a few facts are known regarding the approximability of kCSP−q within
a constant differential factor. On the one hand, the restrictions of MaxSat and
Min Sat to unweighted instances (i.e., to instances in which weights wi all are
equal to 1) are not approximable within any constant factor unless P = NP [4].
On the other hand, for 2CSP−2, the semidefinite programming-based algorithm
1 CSPs in which constraints take non-boolean values are commonly called generalized
CSPs in the literature. However, given a function P : Σk → Q with minimal value P∗,
a constraint P (xJi) coincides, up to an additive constant term, with the combination∑

v∈Σk(P (v) − P∗) × (xJi = v) of constraints. Thus when k and q are universal
constants, we may indifferently consider functions with codomain {0, 1} or Q.

2 For the latter assumption, consider that minimizing
∑m

i=1 wiPi(xJi) reduces to
maximize

∑m
i=1 wi × −Pi(xJi).
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of Goemans and Williamson [5] produces solutions with expected differential
ratio at least 2 − π/2 > 0.429 [1], and the algorithm can be derandomized [6].

A common way to exhibit new approximability lower and upper bounds for a
given optimization problem consists in reducing to or from another optimization
problem for which approximability bounds are known:

Definition 1 (Informal). An optimization problem Π D-reduces to another
optimization problem Π ′ if one can derive from any ρ-approximation algorithm
A for Π ′ a γ × ρ-approximation algorithm for Π, where γ is some positive
quantity. When this occurs, γ is called the expansion of the reduction.

In particular, it is possible to derive from the (2 − π/2)-approximation
algorithm for 2CSP−2 a (1 − π/4)-approximation algorithm for 3CSP−2:

Proposition 1. 3CSP−2 D-reduces to E2 Lin−2 with an expansion of 1/2 on
the approximation guarantee.

Proof (sketch). The discrete Fourier transform allows to convert any instance I of
3CSP−2 over {0, 1} to an instance J ofMax 3 Lin−2 such that v(J, .) coincides, up
some constant term, with v(I, .). From such an instance J , build an instance H of
2 Lin−2 by removing the equations of odd arity. Let W refer to the total weight of
such equations in J . Then for all x ∈ {0, 1}n, v(J, x) + v(J, x̄) = 2 × v(H,x) + W ,
where x̄ refers to the componentwise negation of x. Assume that x ∈ {0, 1}n is ρ-
approximate on J . Then the preceding equality taken at x, an optimum solution on
J , and a worst solution on H allows to conclude that solution x or x̄ that performs
the best objective value on J is ρ/2-approximate on J . �	

Still, the question whether kCSP−q is approximable within any constant
factor remains open in case when q ≥ 3 or k ≥ 4.

1.3 Outline

Given an integer k ≥ 2 and two integers q, p ≥ 2 with q > p, we address the
question whether kCSP−q D-reduces to kCSP−p. We more specifically study
the expansion of a specific reduction: given an instance I of kCSP−q, the reduc-
tion basically consists in considering the restrictions of I to solutions sets of the
form Tn where T is a p-element subset of Σ. The analysis we propose, though,
requires to restrict to the case when p ≥ k.

In the next section, we introduce a family of combinatorial designs
(Definition 2) that provides some lower bound γ(q, p, k) for the expansion of
the reduction (Theorem 1). Section 3 is then dedicated to the exhibition of such
combinatorial designs. Using a recursive construction for the case when p = k
(Theorem 2), we show that 1/(q − p + k/2)k is a proper lower bound of for
γ(q, p, k). Therefore, we obtain the following conditional approximation result:

Corollary 1. Given any three integers k ≥ 2, p ≥ k and q > p, kCSP−q
D-reduces to kCSP−p with an expansion of 1/(q−p+k/2)k on the approximation
guarantee. The reduction involves O(qp) instances of kCSP−p.
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The question whether kCSP−q is approximable within some constant factor
consequently reduces to the consideration of integers k, q such that k ≥ q ≥ 2.
Most importantly, it follows from Nesterov’s result as regards 2CSP−2 (we more
specifically refer to Theorem 2.3, Theorem 3.3 and Corollary 3.4 of [1]) that for
all integers q ≥ 2, 2CSP−q is approximable within a constant factor:

Corollary 2. For all integers q ≥ 2, 2CSP−q is approximable within factor
(2 − π/2)/(q − 1)2.

2 Reducing the Alphabet Size of a CSP Instance

Let k ≥ 2, p ≥ 2 and q > p be three integers, and I be an instance of kCSP−q
over alphabet [q]. Thereafter, Pp([q]) refers to the set of the p-element subsets
of [q].

Given S = (S1, . . . , Sn) ∈ Pp([q])n, any set {πS,j : Sj → [p] | j ∈ [n]} of
bijections allows to interpret the restriction of I to solutions in S as an instance
of kCSP−p. Therefore, a natural way to derive approximate solutions on I from a
hypothetical algorithm A for kCSP−p consists in restricting I to solution subsets
S ∈ Pp([q])n. The standard approximation measure evaluates the performance of
a given solution x by the ratio v(I, x)/opt(I). In [7], the authors study the ran-
domized reduction that consists in picking S ∈ Pp([q])n uniformly at random, and
then using A to compute a solution x ∈ S. They show that, provided that the goal
on I is to maximize and I is such that wiPi ≥ 0, i ∈ [m], the expected value of
maxy∈S{v(I, y)} over all S ∈ Pp([q])n is at least (p/q)k × opt(I). Accordingly,
picking S ∈ Pp([q])n uniformly at random, and then computing a solution x ∈ S
with value at least ρ×maxy∈S{v(I, y)}, one gets a solution with expected value at
least (p/q)kρ × opt(I). The reduction therefore preserves the expected standard
ratio up to a multiplicative factor of (p/q)k.

Given T ∈ Pp([q]), we denote by I(T ) the restriction of I to solution set
Tn. Then similarly to [7], we analyse the reduction that consists in using A to
compute for all T ∈ Pp([q]) an approximate solution x(T ) on I(T ), and then
returning a solution x(T ) that performs the best objective value.

2.1 Seeking Symmetries in the Solution Set

We assume w.l.o.g. that the goal on I is to maximize, in which case the extremal
values on I and on subinstances I(T ) trivially satisfy:

opt(I) ≥ opt(I(T )) ≥ wor(I(T )) ≥ wor(I), T ∈ Pp([q]) (1)

Now assume that for all T ∈ Pp([q]), we are given a solution x(T ) ∈ Tn that
is ρ-approximate on I(T ). Then for all T ∗ ∈ Pp([q]), we have:

maxT∈Pp([q]) {v(I, x(T ))} ≥ v(I, x(T ∗))

≥ ρ × opt(I(T ∗)) + (1 − ρ) × wor(I(T ∗))
≥ ρ × opt(I(T ∗)) + (1 − ρ) × wor(I) by (1) (2)
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Eventually assume that T ∗ is a set in Pp([q]) that contains a solution
with optimal value over {Tn |T ∈ Pp([q])}. Then, provided that opt(I(T ∗)) is
δ-approximate on I, one gets the following connection with opt(I(T )):

maxT∈Pp([q]) {v(I, x(T ))} − wor(I) ≥ ρ × (opt(I(T ∗)) − wor(I)) (2)

≥ ρ × δ × (opt(I) − wor(I)) (3)

Hence, if we are able to compare—in a differential approximation manner—
opt(I(T ∗)) to opt(I), then we can deduce from approximate solutions on subin-
stances I(T ) approximate solutions on I. We thus shall seek a lower bound for
the differential ratio reached on I at opt(I(T ∗)).

Let x∗ be an optimal solution of I. Then one way to obtain such a lower
bound consists in exhibiting two solution multisets X = (x1, . . . , xR) and
Y = (y1, . . . , yR) of the same size R, and that satisfy the following conditions:

X ⊆ {Tn |T ∈ Pp([q])} (4)

R∗ � |{r ∈ [R] | yr = x∗|} ≥ 1 (5)

|{r ∈ [R] |xr
Ji

= v}| = |{r ∈ [R] | yr
Ji

= v}|, v ∈ [q]Ji , i ∈ [m] (6)

Requirements (4), (5) and (6) respectively ensure that X exclusively con-
siders solutions of subinstances I(T ), x∗ occurs at least once in Y, and each
constraint Pi(xJi

) of I is evaluated on the same collection of |Ji|-tuples over
solution multisets X and Y. Requirement (6) thus ensures that the sum of solu-
tion values over X and Y are identical. Provided that such a pair (X ,Y) exists,
we have:

opt(I(T ∗)) ≥ ∑R
r=1{v(I, xr)}/R by definition ofT ∗, and (4)

=
∑R

r=1{v(I, yr)}/R by (6)
≥ R∗ × opt(I)/R + (R − R∗) × wor(I)/R by (5) (7)

Thus opt(I(T ∗)) is R∗/R-approximate on I. Therefore, one shall seek such
pairs (X ,Y) on which the ratio R∗/R is as hight as possible.

This is precisely what we do, and this is why we restrict our analysis to the
case when k ≤ p. Indeed, e.g. assume that J1 = (1, . . . , k) and (x∗

1, . . . , x
∗
k) =

(1, . . . , k). Then by (6) and (5), X shall contain at least R∗ > 0 solutions xr

with (xr
1, . . . , x

r
k) = (1, . . . , k). If k > p, then such solutions violate condition

(4). Hence, from now on, we assume q > p ≥ k.

2.2 Partition-Based Solution Multisets

Solution x∗ induces a partition of [n] into q—possibly empty—subsets depending
on the q possible values taken by its coordinates. Given c ∈ [q], we denote by Vc

the set of indices j ∈ [n] such that x∗
j = c.

We restrict our solution multisets to vectors x that satisfy x∗
j = x∗

h ⇒ xj =
xh, j, h ∈ [n]. It is thus possible to identify X and Y with two arrays Ψ and Φ
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with q columns, coefficients in [q], and the same number R of rows, where: each
row Ψr = (Ψ1

r , . . . , Ψ q
r ) of Ψ gives rise in X to the vector of [q]n that satisfies

for every c ∈ [q] that its coordinates with index in Vc all are equal to Ψ c
r ; Y is

derived from Φ in the exact same way. Formally, we define πx∗ : [q]q → [q]n by

πx∗(u)Vc
= (uc, . . . , uc), c ∈ [q]

and X , Y by X = (πx∗(Ψr) | r ∈ [R]) and Y = (πx∗(Φr) | r ∈ [R]). Given i ∈ [m],
we denote by ci,1, . . . , ci,hi

the distinct values taken by the coordinates of x∗

with index in Ji, by Hi = {ci,1, . . . , ci,hi
} the set of such values, by ΨHi and ΦHi

the restrictions of Ψ and Φ to their columns with index in Hi. Then solution
multisets X and Y meet requirements (4), (5) and (6) of Sect. 2.1 iff arrays Ψ
and Φ satisfy:

|{Ψ1
r , . . . , Ψ q

r }| ≤ p, r ∈ [R] (8)

R∗ � |{r ∈ [R] |Φr = (1, . . . , q)}| ≥ 1 (9)

|{r ∈ [R] |ΨHi
r = v}| = |{r ∈ [R] |ΦHi

r = v}|, v ∈ [q]|Hi|, i ∈ [m] (10)

Hence, if we are aware of such a pair of arrays, then we know by (7) that
opt(I(T ∗)) is R∗/R-approximate. In light of these observations, we introduce
the following families of combinatorial designs and their associated numbers:

Definition 2. Let k ≥ 2, p ≥ k and q ≥ p be three integers. Then given any two
integers R ≥ 1 and R∗ ∈ [R], we define Γ (R,R∗, q, p, k) as the (possibly empty)
set of pairs (Ψ,Φ) of arrays with R rows, q columns, and coefficients in [q] that
satisfy the following:

1. the components of each row of Ψ take at most p distinct values;
2. (1, . . . , q) occurs R∗ times as a row in Φ;
3. for all J = {c1, . . . , ck} ⊆ [q] with |J | = k, subarrays ΨJ = (Ψ c1 , . . . , Ψ ck) and

ΦJ = (Φc1 , . . . , Φck) coincide up to the ordering of their rows.

Furthermore, we define γ(q, p, k) as the greatest number γ ∈ [0, 1] for
which there exist two natural numbers R,R∗ such that R∗/R = γ and
Γ (R,R∗, q, p, k) �= ∅.

Table 1. Pairs of arrays that achieve γ(4, 3, 2) and γ(5, 3, 2).
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Table 1 pictures two such combinatorial designs. Since cardinalities |Hi| may
be at most min{q, k} = k, by requirement 3, a pair (Ψ,Φ) ∈ Γ (R,R∗, q, p, k)
does satisfy (10) regardless of the precise instance I of kCSP−q and the precise
solution x∗ of I we consider. By (7), this implies that γ(q, p, k) is a proper
lower bound for the differential ratio reached on I at opt(I(T ∗)). We thus have
established the following:

Lemma 1. For all integers k ≥ 2, p ≥ k and q > p, on any instance of
kCSP−q, solutions that perform the best objective value among those whose
coordinates take at most p distinct values are γ(q, p, k)-approximate.

To conclude, according to inequality (3), Lemma 1 also establishes that
γ(q, p, k) is a proper lower bound for the expansion of our reduction:

Theorem 1. For all integers k ≥ 2, p ≥ k and q > p, kCSP−q D-reduces to
kCSP−p with an expansion of γ(q, p, k) on the approximation guarantee. The
reduction involves O(qp) instances of kCSP−p.

3 A Lower Bound for Numbers γ(q, p, k)

It remains us to exhibit lower bounds for numbers γ(q, p, k). To do so, we mainly
present a recursive construction for the case when p = k. But first, we mention a
few combinatorial identities that are involved in the analysis of this construction.

We define:

T (a, b) �
∑b

r=0

(
a
r

)(
a−1−r

b−r

)
, a, b ∈ N, a > b (11)

S(a, b, c) �
∑

r≥0(−1)r
(
a
r

)(
b−r
c−r

)
, a, b, c ∈ N, b ≥ c (12)

Numbers T (a, b) and S(a, b, c) satisfy the following:

Property 1. For all a, b ∈ N with a > b ≥ 1, the following equalities hold:

T (a, b) = 2b
(
a−1

b

)
+ T (a − 1, b − 1) (13)

= 2b
(
a
b

) − T (a, b − 1) (14)

= 2
∑a−1

c=b T (c, b − 1) + 1 (15)

Proof (sketch). Recursions (13) and (14) are obtained applying Pascal’s rule to
coefficients of the form respectively

(
a
r

)
and

(
a−1−r

b−r

)
. Identity (15) can then be

deduced from those recursions. �	
Property 2. For all a, b, c ∈ N with b ≥ max{a, c}, S(a, b, c) equals

(
b−a

c

)
.

Proof (sketch). By induction on integer b − a. �	
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3.1 A Recursive Construction for Families Γ (R, 1, q, k, k)

This section is dedicated to the proof of the following Theorem:

Theorem 2. Let k ≥ 2 and q ≥ k be two integers. Then γ(q, k, k) is equal to 1
if q = k, and bounded below by 2/(T (q, k) + 1) otherwise.

The case when q = k is trivial, considering Ψ = Φ = {(1, . . . , k)}. For greater
integers q − k, the argument relies on the following Lemma:

Lemma 2. Let k ≥ 2, q > k, R∗ ≥ 1 and R ≥ R∗ be four integers such that
Γ (R,R∗, q − 1, k, k) �= ∅. Then Γ (R + T (q − 1, k − 1), 1, q, k, k) �= ∅.
Proof. Let (Ψ,Φ) ∈ Γ (R,R∗, q − 1, k, k). We assume w.l.o.g. that (1, . . . , q − 1)
occurs at row 1 in Φ. Our goal is to add in arrays Ψ and Φ a single new column,
and as few rows as possible, so as to obtain a new pair (Ψ,Φ) of arrays with q
columns and coefficients in [q] that meets requirements 1, 2, 3 of Definition 2.

Table 2. Construction of a pair of arrays in Γ (R + T (q − 1, k − 1), 1, q, k, k) starting
with a pair (Ψ, Φ) ∈ Γ (R, R∗, q − 1, k, k) with Φ1 = (1, . . . , q − 1).

The construction is described in Table 2. We make a few comments before
proving its rightness. Step 1 first inserts a qth column in the arrays. If we set Ψ q

to Ψ1 and Φq to Φ1, then (Ψ,Φ) trivially fulfils requirements 1 and 3. However,
as (1, . . . , q) mu st occur at least once as a row in Φ, we assign value q rather
than Φ1

1 to Φq
1. As a result, (Ψ,Φ) violates requirement 3. Hence, during Step 2,

we insert new rows in the arrays until they satisfy this requirement.
Let J = {c1, . . . , ck−1} be a (k − 1)-element subset of [q − 1], and

v = (c1, . . . , ck−1). After Step 1, row 1 is the single row of subarray (ΦJ , Φq) that
coincides with (v, q), while there is no such row in (ΨJ , Ψ q). As (ΦJ

1 , Φ1
1) = (v, 1)

while (Φ, Ψ) ∈ Γ (R,R∗, q − 1, k, k), (ΦJ , Φq) symmetrically coincides with (v, 1)
on one less row than (ΨJ , Ψ q) does. Iteration h = k − 1 corrects this precise
imbalance when it inserts row vectors (α(J), q) in Ψ and (α(J), 1) in Φ.

However, this iteration also introduces new violations of requirement 3.
Notably, let s ∈ [k − 1], and v = (c1, . . . , cs−1, q, cs+1, . . . , ck−1). Then itera-
tion h = k −1 inserts in each array a new row u with uJ = v each time it selects
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a (k − 1)-element subset H of [q − 1] with c1, . . . , cs−1, cs+1, . . . , ck−1 ∈ H and
cs /∈ H. Since there are q − 1 − (k − 1) = q − k such subsets, we deduce that
at the end of this iteration, vectors (v, q) and (v, 1) occur respectively q − k and
0 times as a row in (ΨJ , Ψ q), while the converse holds for (ΦJ , Φq). Iteration
h = k − 2 corrects this precise imbalance when it inserts q − k copies of row vec-
tors (α(J\{cs}), 1) and (α(J\{cs}), q) in respectively Ψ and Φ. More generally,
for all h ∈ {0, . . . , k − 1}, given any v ∈ {c1, q} × . . . × {ck−1, q} with exactly h
coordinates in [q − 1] and any a ∈ {1, q}, iteration h ensures that (v, a) occurs
the same number of times as a row in (ΨJ , Ψ q) and (ΦJ , Φq).

Table 3. The recursive construction for families Γ ((T (5, 2) + 1)/2, 1, 5, 2, 2) and
Γ ((T (4, 3) + 1)/2, 1, 4, 3, 3) of combinatorial designs.

We now prove that, at the end of the process, (Ψ,Φ) ∈ Γ (R′, 1, q, k, k) where
R′ = R + T (q − 1, k − 1). By construction, the resulting arrays satisfy that:

– their number R′ of rows is R +
∑k−1

h=0

(
q−1

h

)(
q−2−h
k−1−h

)
= R + T (q − 1, k − 1);

– in Ψ , the coefficients of every row take at most k distinct values;
– in Φ, row 1 is the single row that coincides with (1, . . . , q).

It remains us to show that (Ψ,Φ) fulfils requirement 3. Let J = (c1, . . . , ck)
be a strictly increasing sequence of integers in [q], and v be a vector of [q]k. We
shall establish that subarrays ΨJ and ΦJ coincide with v on the same number
of rows. The case when q /∈ J is trivial. Thus assume ck = q. We consider two
cases:
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• v /∈ {c1, q} × . . . × {ck−1, q} × {1, q}. ΨJ
r = v or ΦJ

r = v may not occur unless
r ∈ [R]. Let r ∈ [R] and let K = (c1, . . . , ck−1, 1). Then ΨJ

r = ΨK
r , while

ΦJ
r = ΦK

r unless r = 1, in which case ΦJ
1 �= v �= ΦK

1 . Since the original pair
of arrays belongs to Γ (R,R∗, q − 1, k, k), we deduce that ΨJ and ΦJ indeed
coincide with v on the same number of rows.

• v ∈ {c1, q} × . . . × {ck−1, q} × {1, q}. If (v1, . . . , vk−1) = (c1, . . . , ck−1), then
we already argued that iteration h = k − 1 of Step 2 corrects the imbalance
induced by assignment Φq

1 = q. Otherwise, let L refer to the set of indices
cs ∈ {c1, . . . , ck−1} such that vs = cs, and let  = |L|. As  ≤ k−2, ΨJ

r = v or
ΦJ

r = v may not occur unless r > R. So consider an iteration h ∈ {0, . . . , k−1}
of Step 2. For each h-element subset H of [q − 1] with L ⊆ H and H\L ⊆
[q − 1]\J , this iteration generates

(
q−2−h
k−1−h

)
rows u with uJ = v. If vk = q

(resp., vk = 1), then these rows occur in Ψ (resp., in Φ) iff h has the same
parity as k − 1. Since there are

(
q−k
h−�

)
such subsets H of [q − 1], we deduce:

|{r ∈ [R′] |ΨJ
r = v}| − |{r ∈ [R′] |ΦJ

r = v}|
= ±∑k−1

h=�(−1)k−1−h
(

q−2−h
k−1−h

)(
q−k
h−�

)

= ±∑k−1−�
r=0 (−1)k−1−�−r

(
q−2−�−r
k−1−�−r

)(
q−k

r

)
= ±S(q − k, q − 2 − , k − 1 − )

Now we know from Property 2 that S(q − k, q − 2 − , k − 1 − ) is equal to(
k−2−�
k−1−�

)
, which is 0. We conclude that (Ψ,Φ) indeed belongs to Γ (R + T (q −

1, k − 1), 1, q, k, k). �	
The proof of Theorem 2 is straightforward from Lemma 2. Namely, given two

integers k ≥ 2 and q ≥ k, we consider the following recursive construction:

1. Set Ψ = {(1, . . . , k)} and Φ = {(1, . . . , k)}.
2. For a = k + 1 to q, apply construction underlying Lemma 2 to (Ψ,Φ).

Table 3 illustrates the construction when k ∈ {2, 3}. On the one hand, in
view of Lemma 2, the resulting pair (Ψ,Φ) of arrays belongs to Γ (R, 1, q, k, k)
where

R = 1 +
∑q

a=k+1 T (a − 1, k − 1) = 1 +
∑q−1

a=k T (a, k − 1)

On the other hand, by (15), we have:

1 +
∑q−1

a=k T (a, k − 1) = 1 + (T (q, k) − 1)/2 = (T (q, k) + 1)/2

This completes the proof of Theorem 2.

3.2 Deduced Approximation Results

Let k ≥ 2, p ≥ k and q > p be three integers. If p = k, then Theorem 2 together
with Theorem 1 provides a lower bound of 2/(T (q, k) + 1) for the expansion of
our reduction from kCSP−q to kCSP−k. We seek an estimate of 2/(T (q, k)+1).
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Property 3. For all a, b ∈ N with a > b ≥ 2, (a − b/2)b is a proper lower bound
for (T (a, b) + 1)/2.

Proof. Applying recursions first (14), and then (13), one gets equality:

T (a, b) + 1 = 2b
(
a
b

) − 2b−1
(
a−1
b−1

) − T (a − 1, b − 2) + 1 (16)

On the one hand, we deduce again from (13) that T (a − 1, b − 2) − 1 ≥
T (a − b + 1, 0) − 1 = 0. On the other hand, we can rewrite 2b

(
a
b

) − 2b−1
(
a−1
b−1

)
as:

2b
(
a
b

) − 2b−1
(
a−1
b−1

)
= 2(a − b/2) × 2b−1/b! × ∏b−2

i=0 (a − 1 − i)

On the one hand, 2b−1/b! ≤ 1. On the other hand, the inequality of arithmetic
and geometric means yields inequality

∏b−2
i=0 (a − 1 − i) ≤ (a − b/2)b−1. �	

Table 4. Numbers γ(q, p, k) and γE(q, p, k) for some triples (q, p, k). These values (and
the underlying pairs of arrays) were calculated by computer.

Hence, when p = k, the expansion of the reduction is at least 1/(q − k/2)k.
In particular, if k = 2, then 2/(T (q, 2)+1) = 1/(q −1)2. As 2CSP − 2 is approx-
imable within factor 2−π/2, Corollary 2 thus holds. When p > k, simply observe
that we have:

γ(q, p, k) ≥ γ(q − p + k, k, k) ≥ 2/(T (q − p + k, k) + 1) (17)

Indeed, let a = q − p + k, and assume that R and R∗ are two integers such
that Γ (R,R∗, a, k, k) �= ∅. Let then (Ψ,Φ) ∈ Γ (R,R∗, a, k, k). Substituting for
every row u = (u1, . . . , ua) of Ψ and Φ row vector u = (u1, . . . , ua, a + 1, . . . , q),
one gets a new pair of arrays that trivially belongs to Γ (R,R∗, q, p, k). Hence,
combining Theorem 1, inequality (17) and Property 3, one obtains Corollary 1.
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Table 5. Pairs of arrays that achieve γE(5, 3, 2) and γE(5, 4, 3).

4 Concluding Remarks

We make a few remarks as regards the combinatorial designs we introduced.
When p = k, we think that 2/(T (q, k) + 1) is the exact value of γ(q, k, k). The
question whether 2/(T (q, k) + 1) is optimal, though, still has to be settled. By
contrast, when p > k, the only estimate of γ(q, p, k) we are aware of is the trivial
lower bound of γ(q − p + k, k, k). Yet, it the most likely holds given three integers
k ≥ 2, p ≥ k and q > p that γ(q + 1, p + 1, k) > γ(q, p, k). Table 4, in which we
indicate the value of γ(q, p, k) for a few triples (q, p, k), illustrates this fact quite
well. Now, according to Lemma 1, these numbers provide for optimization CSPs
with a bounded arity some lower bound on “how much we lose” on their optimum
value when decreasing the size of their alphabet. This is a good motivation for
studying families Γ (R,R∗, q, p, k) of combinatorial designs in case when p > k.

Likewise, let kCSP(Eq) refer to the (generalized) optimization CSP over Zq

where functions Pi that occur in the constraints have arity at most k, are
rational-valued, and satisfy:

Pi(y1 + a, . . . , yki
+ a) = Pi(y1, . . . , yki

), y ∈ Z
ki
q , a ∈ Zq (18)

kCSP(Eq) notably covers the restriction of Lin−q to equations of the form
α1y1 + . . .+αk−1yk−1 − (α1 + . . .+αk−1)yk ≡ α0 mod q. Given an integer a, we
denote by a the vector—of dimension that depends on the context—(a, . . . , a).
On an instance I of kCSP(Eq), any constraint Ci evaluates the same on any two
entries xJi

and xJi
+ a. The objective function v(I, .) similarly evaluates the same

on any two entries x and x + a. This suggests to consider the slight relaxation
ΓE(R,R∗, q, p, k) of families Γ (R,R∗, q, p, k) where Ψ and Φ have coefficients in
Zq and, rather than requirements 2 and 3, satisfy the two conditions below:

2’. Φr ∈ {(a, 1 + a, . . . , q − 1 + a) | a ∈ Zq} holds for R∗ indices r ∈ [R];
3’. for all J ⊆ [q] with |J | = k and all v ∈ {0} × Z

k−1
q , ΨJ and ΦJ coincide

with a vector in {(v1 + a, . . . , vk + a) | a ∈ Zq} on the same number of rows.



2 CSPs All Are Approximable Within a Constant Differential Factor 401

We define numbers γE(q, p, k) just as the same as numbers γ(q, p, k). Table 5
pictures two such pairs of arrays, while Table 4 provides the value of γE(q, p, k)
for some triples (q, p, k). Using a similar argument as for the general case, it is not
hard to see that, when restricting to input instances of kCSP(Eq), the reduction
we proposed from kCSP−q to kCSP−p preserves the differential ratio up to a
multiplicative factor of γE(q, p, k). Notably, as γE(q, 2, 2) = 1/q, q ∈ {3, 4, 5, 7},
it follows from [1] that when q ∈ {3, 4, 5, 7}, 2CSP(Eq) is approximable within
factor 0.429/q (and not only 0.429/(q−1)2). Therefore, one also shall investigate
families ΓE(R,R∗, q, p, k) of combinatorial designs, starting with the case when
p = k = 2.
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Abstract. In this paper, we discuss the problems of finding minimum
stopping sets and trapping sets in Tanner graphs, using integer linear
programming. These problems are important for establishing reliable
communication across noisy channels. Indeed, stopping sets and trap-
ping sets correspond to combinatorial structures in information-theoretic
codes which lead to errors in decoding once a message is received. We
present integer linear programs (ILPs) for finding stopping sets and sev-
eral trapping set variants. In the journal version of this paper, we prove
that two of these trapping set problem variants are NP-hard for the
first time. The effectiveness of our approach is demonstrated by finding
stopping sets of size up to 48 in the (4896, 2474) Margulis code. This
compares favorably to the current state-of-the-art, which finds stopping
sets of size up to 26. For the trapping set problems, we show for which
cases an ILP yields very efficient solutions and for which cases it per-
forms poorly. The proposed approach is applicable to codes represented
by regular and irregular graphs alike.

1 Introduction

The use of codes as mathematical formalisms lies at the heart of reliable
communication. These codes provide a fault-tolerant structure to messages by
appending redundant check bits via a generator matrix. After these bits have
been added, the codeword is sent across a noisy channel, such as the binary
erasure channel (BEC), binary symmetric channel (BSC), and additive white
Gaussian noise channel (AWGNC). These channels differ in the way noise is
modeled. For example, the BEC introduces probabilities of bit erasures while
the BSC accounts for bit flips. Once the message arrives at its destination, it
is decoded via a parity-check matrix. It is during this decoding step that cer-
tain combinatorial structures in the code lead to errors. In this paper, we are
concerned with finding such structures. This problem is central to the design of
better codes and, consequently, more reliable communication.
c© Springer International Publishing AG, part of Springer Nature 2018
J. Lee et al. (Eds.): ISCO 2018, LNCS 10856, pp. 402–415, 2018.
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One of the principal metrics used to test the reliability of a code is the bit
error rate (BER). This corresponds to the number of bit errors per unit time.
It is well-known that the BER of a code decreases as the signal-to-noise ratio
increases. However, there is a point in which the BER plateaus. This region in
the performance curve is known as the error floor of the code. Experiments were
performed in [1] to analyze the error floor of the BSC and AWGNC. It was
demonstrated that all decoding failures in these channels were due to the pres-
ence of trapping sets. These sets correspond to variables that are not eventually
corrected by the decoder, thus causing failures in decoding when using iterative
algorithms [2]. Similar experiments have demonstrated that decoding failures
over the BEC are due to the presence of stopping sets [3]. More specifically, it is
the smallest stopping and trapping sets that cause poor decoding performance
in their respective channels [4].

Stopping sets and trapping sets are defined by simple combinatorial struc-
tures in the graph representation of the underlying code. There have been efforts
to estimate their minimum size [5,6], find the minimum sets [7], and enumerate
such sets for up to some small-size parameter [8]. In this paper, we make two
contributions. First, we propose integer linear programming solutions to these
problems. We improve on the results of [7], which demonstrate that the mini-
mum stopping set in the (4896, 2474) Margulis code [9] is of size 24 and that
no stopping sets of size 25 and 26 exist. Our results establish that the next
largest stopping sets in said code are of sizes 36 and 48 (See Figs. 10 and 11 in
https://www.cs.ucf.edu/∼velasquez/StoppingSets/). As a point of reference, the
number of points in the search spaces for finding stopping sets of sizes 26, 36,
and 48 are ( 4896

26 ) ≈ 2 × 1069, ( 4896
36 ) ≈ 1.61 × 1091, and ( 4896

48 ) ≈ 8.28 × 10115,
respectively. This demonstrates the efficiency of a programming-based approach
to explore much larger parameter spaces than competing methods. The second
contribution we make pertains to the previously unknown complexities of two
trapping set problem variants. In the journal version of this paper, we prove that
these variants are NP-hard, thereby rounding out the complexity results in the
literature.

The remainder of this paper is organized as follows. Section 2 provides back-
ground information and definitions for the stopping and trapping set problems.
Known and new complexity results for these problems are presented in Sect. 3.
A brief exposition of related work is provided in Sect. 4. Our approach based on
integer linear programming follows in Sect. 5 and experimental results are shown
in Sect. 6. We conclude and allude to future work in Sect. 7.

2 Preliminaries

An (n, k) code is one whose codewords have length n and whose dimension is
k. The dimension k of the code specifies the number of linearly independent
codewords that form the basis c1, . . . , ck ∈ {0, 1}n for the code. That is, any
codeword can be expressed as a linear combination of these basis vectors. Any
given codeword of length n contains k original bits of information and n − k

https://www.cs.ucf.edu/{~}velasquez/StoppingSets/
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redundant check bits that are used to detect and correct errors that arise during
message transmission across a noisy channel.

Given an (n, k) code, its corresponding parity-check matrix H ∈ {0, 1}m×n,
where m = n − k, defines the linear relations among codeword variables. Each
column in H corresponds to a bit in the codeword and each row corresponds to
a redundant check bit. Given a codeword c = c1, . . . , cn, the entry Hij is 1 if cj is
involved in a check operation, which is used to detect errors after transmission.
For any such matrix H, let G = (V ∪ C,E) denote its representation as a
bipartite graph, where V = {v1, . . . , vn} and C = {c1, . . . , cm} are the sets of
variable and check nodes, and E = {(vi, cj)|Hji = 1} defines the adjacency set.
This is known as the Tanner graph of a code. We can now define the stopping
and trapping set problems.

Definition 1 (Stopping set). Given a Tanner graph G = (V ∪ C,E), a
stopping set S ⊆ V is a set of variable nodes such that all neighbors of nodes in
S are connected to S at least twice [7].

As an example, suppose we are given the parity-check matrix H below with
Tanner graph G = (V ∪ C,E). We can determine the minimum stopping set
S = {v7, v9} as pictured in Fig. 1. For ease of presentation, we often argue in
terms of induced subgraphs. Given a graph G = (V ∪ C,E), we denote by GS

the subgraph induced by the set S ⊆ V . That is, GS = (S ∪ CS , ES), where
CS = {cj ∈ C|si ∈ S, (si, cj) ∈ E} and ES = {(si, cj)|si ∈ S, (si, cj) ∈ E}.

H =

⎛
⎜⎜⎜⎜⎝

0 0 1 1 0 0 1 1 1 0
1 0 0 1 0 1 0 0 0 1
1 0 1 0 1 0 0 1 0 1
0 1 0 0 1 1 1 0 1 0
0 1 0 0 0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎠

v10
v9
v8
v7
v6
v5
v4
v3
v2
v1

c5
c4
c3
c2
c1

v9
v7

c5
c4
c1

Fig. 1. (left) Parity-check matrix H for some code. (center) Tanner graph
G = (V ∪ C,E) of H. (right) Subgraph GS induced by the minimum stopping set
S = {v7, v9} in G.

Definition 2 ((a, b)-trapping set). Given a Tanner graph G = (V ∪ C,E),
an (a, b)-trapping set T ⊆ V is a set of variable nodes with cardinality |T | = a
such that b neighbors of T are connected to T an odd number of times [10].

It is worth noting that there exist several trapping set variants. The most
popular variant is known as an elementary trapping set. These sets, defined
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below, are frequently the structures that lead to iterative decoding failures [11].
That is, the minimum trapping sets in a Tanner graph are often of elementary
form. See Fig. 2 for an example. An interesting lower-bound result that helps
explain this prevalence was recently established in [12], where it was shown that
the lower bound on the size of non-elementary trapping sets is greater than that
of their elementary counterparts.

Definition 3 (Elementary (a, b)-trapping set). Given a Tanner graph
G = (V ∪ C,E), an elementary (a, b)-trapping set T ⊆ V is a set of variable
nodes with cardinality |T | = a such that b neighbors of T are connected to T
exactly once and the remaining neighbors are connected to T exactly twice [11].

v630
v385
v204

c500
c495
c484
c410
c165
c75
c27

Fig. 2. Elementary (3, 5)-trapping set found in the (1008, 504) Mackay code [13]. Note
that, of the seven neighbors of T = {v204, v385, v630}, only five are connected exactly
once to T .

3 Complexity

Assume we are given the Tanner graph G = (V ∪ C,E) of some code. For the
remainder of this paper, we are concerned with the computational complexities
of and solutions to the following optimization problems:

– SS: Find a minimum-cardinality stopping set S ⊆ V .
– TS(a, b)|a: Find a trapping set T ⊆ V such that |T | = a and b is minimized.
– TS(a, b)|b: Find a minimum-cardinality trapping set T ⊆ V for a given b.
– ETS(a, b)|a: Find an elementary trapping set T ⊆ V such that |T | = a and b

is minimized.
– ETS(a, b)|b: Find a minimum-cardinality elementary trapping set T ⊆ V for

a given b.

While the foregoing problems are straightforward to define, their apparent
simplicity belies significant complexity. In the case of the SS problem, it has
been shown that it is NP-hard to approximate within a logarithmic factor of
the problem input size [10]. An even stronger negative result is obtained when
we assume that NP � DTIME(npoly(log n)), where n is the size of the problem’s
encoding and k ∈ N. Under such an assumption, it was shown in [14] that there
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is no polynomial-time algorithm to approximate a solution to the SS problem
within a factor of 2(log n)1−ε

for any ε > 0.
Not surprisingly, hardness and inapproximability results have also been

established for some trapping set problems. Namely, that it is NP-Hard to
α-approximate a solution to the TS(a, b)|a and ETS(a, b)|b problems [10].
However, the complexities of TS(a, b)|b and ETS(a, b)|a have remained an open
problem which we resolve in this paper. We prove the hardness of TS(a, b)|b and
ETS(a, b)|a by demonstrating that efficient solutions to these problems would
yield efficient solutions to the MAX-k-LIN and REGULAR-k-INDEPENDENT-
SET problems, which are NP-hard. More specifically, the MAX-k-LIN problem
is hard for k ≥ 2 [15] and the REGULAR-k-INDEPENDENT-SET problem is
a special instance of the independent set problem on regular graphs, which is
known to be hard for graphs of degree δV ≥ 3 [16]. Due to space constraints, the
proofs of Theorems 1 and 2 and examples can be found in the journal version of
the paper.

Theorem 1. TS(a, b)|b is NP-hard.

Theorem 2. ETS(a, b)|a is NP-hard.

Theorems 1 and 2 round out the complexity results previously established
in the literature. Thus, the problems SS, TS(a, b)|a, TS(a, b)|b, ETS(a, b)|a, and
ETS(a, b)|b all belong to the NP-hard complexity class.

4 Related Work

Many of the methods proposed in the literature stem from work presented in
[17], wherein a search of the code’s iterative decoding trees is performed. Boolean
functions are defined on these trees to calculate the bit-error rate of a code. Any
time the bit error rate is 1, there are one or more stopping sets in the decod-
ing tree. By taking as input a parity-check matrix H and a subset of variable
nodes V ′ ⊂ V , this method outputs the stopping sets that contain V ′. This
method is used to find stopping sets S of size |S| ≤ 13 in codes of length up to
n ≈ 500. An extension has been proposed in [18] to enumerate trapping sets of
size |T | ≤ 11. Based on this approach, a branch-and-bound algorithm for enu-
merating stopping sets is presented in [7], wherein the lower bound on the size
of the sets is computed via linear programming relaxations. Each variable can
be constrained to be included in or excluded from the stopping set, or it can be
unconstrained. The branching step chooses the unconstrained variable node v
with neighboring check nodes connected to the most unconstrained nodes. This
creates two new constraints. Namely, the ones that arise by including/excluding
v in the stopping set. This approach was used successfully to search for stopping
sets of size up to 26 in codes with thousands of nodes, like the (4896, 2474)
Margulis code [9]. A similar algorithm is proposed for finding trapping sets
in [8]. Since modern integer programming solvers use similar branch-and-bound
techniques complemented with cutting plane algorithms, we conjecture that the
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aforementioned approach is subsumed by a purely programming-based method
like the one we present in the next section.

In [19], it is demonstrated that an efficient procedure to find stopping sets
can be used as a subroutine to find trapping sets. Given a Tanner graph G, the
algorithm proceeds by finding k edges such that no two edges share an endpoint.
The parity-check matrix is then modified to eliminate vertices in G that are not
endpoints in this set. The algorithm from [17] is called using this modified parity-
check matrix and endpoint vertices as input. This solves the ETS(a, b)|b problem
with a runtime of O(nb), where n is the length of the code. Another effective
approach which finds trapping sets of increasing size from an initial set of small
trapping sets is presented in [20]. This method exploits the relationship between
trapping sets and cycles in the Tanner graph, which that has been studied in
[21]. However, while it is very efficient at finding small trapping sets, its reliance
on cycle enumeration as input makes it inadequate for large problem instances.

Probabilistic approaches have also been proposed. In [5], random subsets of
the variables in a code are sampled and the minimum stopping sets in these
subsets are found. Even though this is an efficient way to partition the search
space, there is a probability that the minimum stopping set is missed during
this procedure. Indeed, the size of the minimum stopping set in a (1008, 504)
MacKay code is predicted to be 28, which we prove to be incorrect in Sect. 6.
The authors demonstrate how this error probability can be computed and how
it decreases as the maximum number of attempts allowed is increased.

A different probabilistic approach is presented in [6]. This approach itera-
tively splits a permutation of the parity-check matrix H into two sub-matrices
and uses a probabilistic codeword-finding algorithm to find stopping sets in said
sub-matrices. This is repeated until a specified maximum iteration bound is
reached. The probability of error is improved over the work in [5] and it cor-
rectly predicts with high probability that the size of the minimum stopping set
in a (1008, 504) MacKay code is 26.

5 Methodology

We propose integer linear programs (ILPs) for the SS, TS(a, b)|a, TS(a, b)|b,
ETS(a, b)|a, and ETS(a, b)|b problems given the Tanner graph representation
G = (V ∪ C,E) of a parity-check matrix H ∈ {0, 1}m×n. For the remainder of
this paper, we adopt the notation [k] to denote the set {1, 2, . . . , k}.

5.1 Stopping Sets

We want to find the stopping set S ⊆ V of minimum cardinality. To do so,
we define the following integer linear program with n variables and |E| + 1
constraints, where xi ∈ {0, 1} is 1 if vi ∈ V is in the minimum stopping set.
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Integer Linear Program for SS:

min
∑
vi∈V

xi such that

⎛
⎝ ∑

(vi,cj),(cj ,vk)∈E

xk

⎞
⎠ − 2xi ≥ 0, ∀(vi, cj) ∈ E

∑
vi∈V

xi ≥ 2

xi ∈ {0, 1}, ∀i ∈ [n]

The first constraint looks at all paths {(vi, cj), (cj , vk)} of length 2 from a
node vi ∈ S in the minimum stopping set. If the destination node vk is in the
stopping set S, then its indicator variable xk is 1. Adding over all the indicator
variables corresponding to the destination nodes of all paths of length 2 gives us
the number of variable nodes connected back to S. In order to check if this value
is at least 2, we subtract from it the factor 2xi. Two cases arise. First, if xi is 1,
then vi is in the stopping set S and all of its neighbors must be connected back
to S at least twice in order to satisfy the inequality. Second, if xi is 0, then vi is
not in S and the inequality is trivially satisfied. This satisfies the connectivity
condition in Definition 1. That is, every neighbor of a node in S is connected to
S at least twice.

The second constraint enforces a minimum stopping set size of 2. This elim-
inates the possibility of a stopping set of size 0, which would be erroneous. It is
worth noting that we can enforce a minimum stopping set size of any arbitrary
value. For example, we set this lower bound to 25 and 37 in order to find the
stopping sets of sizes 36 and 48 in Figs. 10 and 11, respectively (See https://
www.cs.ucf.edu/∼velasquez/StoppingSets/). While we are generally interested
in stopping sets of minimum size, it is useful to be able to set lower bounds on
the size of these sets.

5.2 Elementary Trapping Sets

For the elementary (a, b)-trapping set variants, another set of binary variables
is introduced, where yj ∈ {0, 1} is 1 if cj ∈ C is a neighbor of some node in
the trapping set T . The two ILPs below have n + m variables and |E| + 2m + 1
constraints. They encode the elementary (a, b)-trapping set problems ETS(a, b)|b
and ETS(a, b)|a.

https://www.cs.ucf.edu/{~}velasquez/StoppingSets/
https://www.cs.ucf.edu/{~}velasquez/StoppingSets/
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Integer Linear Program for ETS(a, b)|b :

min
∑
vi∈V

xi such that

xi − yj ≤ 0, ∀(vi, cj) ∈ E

yj −
∑

(vi,cj)∈E

xi ≤ 0, ∀j ∈ [m]

∑
(vi,cj)∈E

xi ≤ 2, ∀j ∈ [m]

∑
cj∈C

⎛
⎝2yj −

∑
(vi,cj)∈E

xi

⎞
⎠ = b

xi, yj ∈ {0, 1}, ∀i ∈ [n], j ∈ [m]

The first constraint xi−yj ≤ 0 ensures that, if vi and cj are neighbors and vi
is in T , then cj is understood to be a neighbor of T . These y variables allow us
to count the number of neighbors of T that satisfy more complicated properties
than those required by stopping sets. For example, we need to count the number
of neighbors of T connected to T exactly once or twice. The second constraint
satisfies the proposition that, if cj is a neighbor of the trapping set T , then there
must be some neighbor of cj which is in T . The third constraint ensures that all
neighbors of T are connected to T at most twice. As such, we look over all check
nodes cj to make sure that the number of neighboring variable nodes vi in T is
at most 2.

Recall that we want an elementary trapping set with b neighbors of T con-
nected to T exactly once. The fourth constraint achieves this as follows. Let us
consider an arbitrary term 2yj −∑

(vi,cj)∈E xi in the outer sum. Two cases arise.
First, if yj = 0, then xi = 0 for any node vi connected to cj . This follows from
the first constraint and the term in question will thus not contribute any value
to the outer sum. Second, consider the case where yj is 1. Note that the inner
sum

∑
(vi,cj)∈E xi is guaranteed to be at least 1 (Second constraint) and at most

2 (Third constraint). Whenever this sum is 2, the term in question does not
contribute any value to the outer sum. However, if the sum is 1, then this term
contributes a value of 1 to the outer sum. Thus, the fourth constraint counts the
number of neighbors of the trapping set T that are connected to T exactly once
and enforces this number to be equal to b.
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Integer Linear Program for ETS(a, b)|a :

min
∑
cj∈C

⎛
⎝2yj −

∑
(vi,cj)∈E

xi

⎞
⎠ such that

xi − yj ≤ 0, ∀(vi, cj) ∈ E

yj −
∑

(vi,cj)∈E

xi ≤ 0, ∀j ∈ [m]

∑
(vi,cj)∈E

xi ≤ 2, ∀j ∈ [m]

∑
vi∈V

xi = a

xi, yj ∈ {0, 1}, ∀i ∈ [n], j ∈ [m]

This ILP is largely similar to the previous one. However, the objective func-
tion which we are trying to minimize is the same as the fourth constraint in the
previous ILP. Namely, we want to minimize the value of b given some value of a.
As such, the fourth constraint in this ILP enforces the size of the trapping set
T to be equal to a.

5.3 Trapping Sets

For the (a, b)-trapping set variants, we need to count the neighbors of T that are
connected to T an odd number of times. For this, we introduce the parameter
δmax and new variables αj and Ioddj , where δmax denotes the largest degree of
any check node in C. The indicator variable Ioddj will be 1 if check node cj is
connected to T an odd number of times and 0 otherwise. The auxiliary variable
αj will be used to ensure that Ioddj is assigned the correct value. The following
ILPs have n + 2m variables and m + 1 constraints. They encode the TS(a, b)|b
and TS(a, b)|a problems.

Integer Linear Program for TS(a, b)|b:

min
∑
vi∈V

xi such that

2αj + Ioddj −
∑

(vi,cj)∈E

xi = 0, ∀j ∈ [m]

∑
cj∈C

Ioddj = b

xi, Ioddj ∈ {0, 1}, αk ∈ {0, . . . , 
δmax/2�},∀i ∈ [n], j, k ∈ [m]

The first constraint ensures that Ioddj will be 1 if check node cj is connected
to T an odd number of times and 0 otherwise. Note that 2αj can take any
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even value from 0 to δmax. It follows that, if
∑

(vi,cj)∈E xi is odd, then the only
way to satisfy the constraint is if Ioddj = 1. Similarly, if

∑
(vi,cj)∈E xi is even,

then we have Ioddj = 0. This allows us to count odd-degree nodes. The second
constraint adds over all of these indicator variables and enforces this value to be
equal to b.

Integer Linear Program for TS(a, b)|a :

min
∑
cj∈C

Ioddj such that

2αj + Ioddj −
∑

(vi,cj)∈E

xi = 0,∀j ∈ [m]

∑
vi∈V

xi = a

xi, Ioddj ∈ {0, 1}, αk ∈ {0, . . . , 
δmax/2�},∀i ∈ [n], j, k ∈ [m]

This ILP is similar to the previous one. However, we are now minimizing the
number of nodes connected to the trapping set T an odd number of times. The
second constraint ensures that the size of T is equal to a.

6 Experimental Results

We test our ILPs on codes taken from Mackay’s encyclopedia of codes [13].
The experiments were performed using the Gurobi platform version 7.5.1 [22]
on a Ubuntu 14.04 server with 64 GB memory and 64 Intel(R) Celeron(R) M
processors running at 1.50 GHz. One of our main results is finding a stopping
set of size 48 in the (4896, 2474) Margulis Code (See Fig. 11 in https://www.cs.
ucf.edu/∼velasquez/StoppingSets/) in 700451 s. This compares favorably to the
method proposed in [7], which searches for stopping sets of size up to 26.

Table 1. The size of minimum stopping sets in 4 popular codes are presented based
on the results of various methods in the literature. The numbers in parentheses denote
the execution time to find said sets. See Figs. 6 through 9 in https://www.cs.ucf.edu/
∼velasquez/StoppingSets/ for a visualization of the sets found by our approach.

Code [5] [6] [7] Us

(504, 252) Mackay 16 (N/A) 16 (600 h) 16 (N/A) 16 (37 s)
(504, 252) PEG N/A (N/A) 19 (25 h) 19 (N/A) 19 (365 s)
(1008, 504) Mackay 28 (N/A) 26 (3085 h) N/A (N/A) 26 (18.73 h)
(4896, 2474) Margulis 24 (N/A) 24 (162 h) 24 (N/A) 24 (267 s)

https://www.cs.ucf.edu/{~}velasquez/StoppingSets/
https://www.cs.ucf.edu/{~}velasquez/StoppingSets/
https://www.cs.ucf.edu/{~}velasquez/StoppingSets/
https://www.cs.ucf.edu/{~}velasquez/StoppingSets/
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In Table 1, we demonstrate that the size of the minimum stopping set in
various codes is found by our approach to be the same as that reported in
[6,7]. Our results disagree with those presented in [5] for the (1008, 504) Mackay
code. Our approach determined that the minimum size of a stopping set in
this code is 26, while the method in [5] predicted a size of 28. However, see
Fig. 8 in https://www.cs.ucf.edu/∼velasquez/StoppingSets/ for the minimum-
size stopping set of size 26 found by our approach. We have also provided the
execution time expended to find these sets. It is worth noting that our method
is significantly faster than the one proposed in [6].

While these results demonstrate the effectiveness of a mathematical program-
ming approach, they also raise an important question about the complexity of
different codes. Consider the results for the (1008, 504) Mackay and (4896, 2474)
Margulis codes. They are both represented by (3, 6)-regular Tanner graphs, with
the latter having over four times more variables in the ILP formulation. How-
ever, note that finding a minimum stopping set for the former took over 250
times longer! This is a surprising result that reflects our limited knowledge of
the stopping set polytope. A deeper understanding of the stopping set and trap-
ping set polytopes formed by the ILP formulation is essential in order to extend
the proposed approach to codes with over 10000 variables.

Table 2. Execution time (in seconds) expended to solve each problem instance (in
seconds) is reported for the (1008, 504) Mackay code and (2640, 1320) Margulis code.

a, b value (1008, 504) Mackay code (2640, 1320) Margulis code

TS(a, b)|a TS(a, b)|b ETS(a, b)|a ETS(a, b)|b TS(a, b)|a TS(a, b)|b ETS(a, b)|a ETS(a, b)|b
5 53.42 0.41 236.17 1.61 520.95 0.37 5676.61 4.24

6 31.74 0.03 201.76 0.08 4373.78 0.14 39881.11 0.19

7 984.51 0.01 358.5 0.2 716.04 1.42 4308.11 0.49

8 4.1 0.41 211.67 0.67 18843.19 2.06 72311.44 1.51

9 4864.37 0.04 317.43 0.13 13504.13 0.12 4611.72 0.37

10 8143.11 0.39 712.88 0.19 − 0.17 92301.37 0.49

11 485919.5 0.39 870.13 0.71 − 1.55 15427.42 3.79

12 245.1 0.04 923.7 0.13 − 0.1 7566.81 0.35

13 − 0.03 1493.47 0.2 − 0.15 21374.26 0.49

14 − 0.39 1194.83 0.65 − 0.93 8148.08 1.51

15 − 0.04 6432.95 0.11 − 0.09 31408.17 0.49

16 − 0.04 737.11 0.19 − 0.08 618888.55 0.49

17 − 0.39 15557.55 0.67 − 0.16 65567.79 1.2

18 − 0.04 2174.66 0.11 − 0.09 1184184.74 0.53

For the trapping set problems, we use the (1008, 504) Mackay code [13] and
the (2640, 1320) Margulis code [9] as inputs. The values of a and b given range
from 5 to 18. The time to solve each problem instance can be seen in Table 2.
While the TS(a, b)|b and ETS(a, b)|b problems were solved surprisingly quickly
by the proposed ILPs, the TS(a, b)|a and ETS(a, b)|a problems yielded simi-
larly surprising results. Namely, that our programming approach was inefficient,
especially in the case of the TS(a, b)|a problem. The stopping and trapping sets

https://www.cs.ucf.edu/{~}velasquez/StoppingSets/
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found as well as the Gurobi output files can be seen in the following repository:
https://www.cs.ucf.edu/∼velasquez/StoppingSets/.

It is worth noting that every trapping set we found for the TS(a, b)|a and
TS(a, b)|b problems was of elementary form. That is, each neighbor of the trap-
ping set T ⊆ V was connected to T at most twice. This correlates well with
recent findings in [11,12], which demonstrate that minimum trapping sets are
often of elementary form.

7 Conclusion and Future Work

We have reformulated the problems of finding minimum stopping sets and
trapping sets in codes using the language of mathematical programming. We
demonstrated the effectiveness of our approach by finding these structures orders
of magnitude faster than competing approaches. More importantly, we have
shown that our method can handle larger problem instances than what is found
in the literature. Indeed, for the (4896, 2474) Margulis code, we have found stop-
ping sets of size up to 48. As a point of reference, the previous state-of-the-art
finds stopping sets of size up to 26 for this code.

While we have been effective in exploring large problem instances, a unified
approach which leverages the enumerative capabilities of competing methods is
desirable. We believe the foregoing is a precursor to such an approach. As we
argued earlier, an extensive study of the stopping set and trapping set polytopes
is required in order to discover problem-specific cuts that may be added to the
integer linear programs (ILPs) proposed in this paper. This is especially impor-
tant for the (a, b) trapping set problems when a is given since the performance of
our approach was poor for these problems. We plan to extend our programming-
based method with such cuts as well as code-specific program lower bounds. We
do this in the hope that the stopping set and trapping set problems will enjoy the
same success that traditional combinatorial optimization problems have experi-
enced with innovations in integer programming practices.
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Abstract. This work is devoted to the study of the Lovász-Schrijver
PSD-operator LS+ applied to the edge relaxation ESTAB(G) of the
stable set polytope STAB(G) of a graph G. In order to characterize
the graphs G for which STAB(G) is achieved in one iteration of the
LS+-operator, called LS+-perfect graphs, an according conjecture has
been recently formulated (LS+-Perfect Graph Conjecture). Here we
study two graph classes defined by clique cutsets (pseudothreshold
graphs and graphs without certain Truemper configurations). We com-
pletely describe the facets of the stable set polytope for such graphs,
which enables us to show that one class is a subclass of LS+-perfect
graphs, and to verify the LS+-Perfect Graph Conjecture for the other
class.

1 Introduction

In this work, we study the stable set polytope, some of its linear and semi-definite
relaxations, and graph classes for which certain relaxations are tight.

The stable set polytope STAB(G) of a graph G = (V,E) is defined as the
convex hull of the incidence vectors of all stable sets of G (in a stable set all
nodes are mutually nonadjacent). Two canonical relaxations of STAB(G) are
the edge constraint stable set polytope

ESTAB(G) = {x ∈ [0, 1]V : xi + xj ≤ 1, ij ∈ E},

and the clique constraint stable set polytope

QSTAB(G) = {x ∈ [0, 1]V : x(Q) =
∑

i∈Q

xi ≤ 1, Q ⊆ V clique}

(in a clique all nodes are mutually adjacent, hence a clique and a stable set share
at most one node). We have STAB(G) ⊆ QSTAB(G) ⊆ ESTAB(G) for any
graph, where STAB(G) equals ESTAB(G) for bipartite graphs, and QSTAB(G)
for perfect graphs only [7]. Perfect graphs are precisely the graphs without chord-
less cycles C2k+1 with k ≥ 2, termed odd holes, or their complements, the odd
antiholes C2k+1 [5].
c© Springer International Publishing AG, part of Springer Nature 2018
J. Lee et al. (Eds.): ISCO 2018, LNCS 10856, pp. 416–427, 2018.
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There are several ways to tighten relaxations with the goal to become closer
to the integral polytope, here the stable set polytope.

The Chvátal-Gomory procedure is such a method that adds inequalities
to linear relaxations, generated on the basis of the constraint system of the
studied relaxation, see [6]. If an inequality aTx ≤ b is valid for a rational
polyhedron P ⊂ Rn and a ∈ Zn, then aTx ≤ �b� is valid for the integer poly-
hedron PI := conv(P ∩ Zn) and called a Chvátal-Gomory cut. The Chvátal
closure of a relaxation is the system of all inequalities that can be generated
that way. For instance, Chvátal showed in [6] that from the edge constraints
defining ESTAB(G), only one type of inequalities (associated with odd cycles
in G) can be generated and called the graphs G whose stable set polytope is
described that way t-perfect.

Lovász and Schrijver introduced in [16] the PSD-operator LS+ (called N+ in
[16]) which has the potential to tighten relaxations in a much stronger way. We
denote by e0, e1, . . . , en the vectors of the canonical basis of Rn+1 (where the
first coordinate is indexed zero) and by Sn

+ the convex cone of symmetric and
positive semi-definite (n × n)-matrices with real entries. Given a convex set K
in [0, 1]n, let

cone(K) =
{(

x0

x

)
∈ Rn+1 : x = x0y; y ∈ K

}
.

Then, we define the polyhedral set

M+(K) =
{
Y ∈ Sn+1

+ : Y e0 = diag(Y ), Y ei ∈ cone(K),
Y (e0 − ei) ∈ cone(K), i = 1, . . . , n} ,

where diag(Y ) denotes the vector whose i-th entry is Yii, for every i = 0, . . . , n.
Projecting this lifting back to the space Rn results in

LS+(K) =
{
x ∈ [0, 1]n :

(
1
x

)
= Y e0, for some Y ∈ M+(K)

}
.

In [16], Lovász and Schrijver proved that LS+(K) is a relaxation of the convex
hull of integer solutions in K and that LSn

+(K) = conv(K ∩ {0, 1}n), where
LS0

+(K) = K and LSk
+(K) = LS+(LSk−1

+ (K)) for every k ≥ 1.
This operator, applied to ESTAB(G), generates a positive semi-definite relax-

ation LS+(G) of STAB(G). Lovász and Schrijver [16] showed that the following
class of inequalities is valid for LS+(G): joined antiweb constraints

∑

i≤k

1
α(Ai)

x(Ai) + x(Q) ≤ 1 (1)

associated with the complete join of some antiwebs A1, . . . , Ak and a clique Q.
An antiweb Ak

n is a graph with n nodes 0, . . . , n − 1 and edges ij if and only if
k ≤ |i − j| ≤ (n − k) mod n. Note that antiwebs include cliques Kk = A1

k, odd
holes C2k+1 = Ak

2k+1 and odd antiholes C2k+1 = A2
2k+1.
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We denote by ASTAB∗(G) the linear relaxation of STAB(G) given by all
joined antiweb constraints and conclude

STAB(G) ⊆ LS+(G) ⊆ ASTAB∗(G) (2)

as joined antiweb constraints are valid for LS+(G) by [16].
Graphs G with STAB(G) = LS+(G) are called LS+-perfect, and all other

graphs LS+-imperfect. A conjecture has been proposed in [1], which can be
equivalently reformulated as follows, as noted in [13]:

Conjecture 1 (LS+-Perfect Graph Conjecture). G is LS+-perfect if and only if
LS+(G) = ASTAB∗(G).

Note that graphs G with STAB(G) = ASTAB∗(G) are called joined a-perfect
by [10]. By (2), we have that all joined a-perfect graphs are LS+-perfect.

Subclasses of joined a-perfect graphs can be obtained by restricting joined
antiweb constraints to special cases. Well-studied subclasses include, besides per-
fect graphs, t-perfect, h-perfect, and a-perfect graphs, whose stable set polytopes
are given by nonnegativity constraints and joined antiweb constraints associated
with edges, triangles and odd holes (resp. cliques and odd holes, resp. antiholes).
Note that antiwebs are a-perfect by [19]. Besides these polyhedrally defined sub-
classes, the only known examples of joined a-perfect graphs are near-bipartite
graphs (where the non-neighbors of every node induce a bipartite graph) due to
Shepherd [17].

Moreover, we can easily see from the above remarks that the conjecture in
fact states that LS+-perfect graphs coincide with joined a-perfect graphs.

Conjecture 1 has already been verified for several graph classes: fs-perfect
graphs [1] (where the only facet-defining subgraphs are cliques and the graph
itself), webs [12] (the complements W k

n = A
k

n of antiwebs), line graphs [13]
(obtained by turning adjacent edges of a root graph into adjacent nodes of the
line graph), and claw-free graphs [2]; the latter result includes graphs G with
stability number α(G) at most 2.

Our aim is to verify Conjecture 1 for further graph classes and to identify
further subclasses of joined a-perfect and LS+-perfect graphs.

For that, we study graph classes where clique cutsets play a role in a decom-
position theorem. A clique cutset of a graph G is a (possibly empty) clique Q
such that removing Q disconnects G. Many graph classes can be characterized
as those graphs that either have a clique cutset or belong to some basic families.
A famous example is the class of chordal graphs (that are graphs that contain
no holes Ck with k ≥ 4):

Theorem 1 ([11]). A graph is chordal if and only if it is a clique or has a clique
cutset.

Here we study two graph classes defined in a similar spirit by clique cutsets
Q whose blocks of the decomposition (i.e. the subgraphs G[Vi ∪ Q] induced by
the clique Q and any component Vi of G − Q) belong to some basic families.
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We describe the facet-defining system of the stable set polytopes for each of
those basic families and then apply the result of Chvátal [7] that the facets of
STAB(G) belong to the union of the facets of the stable set polytopes of the
blocks of the decomposition.

A Generalization of Threshold Graphs. Given a 0/1-matrix A, Chvátal and
Hammer asked in [8] whether there is a single linear inequality aTx ≤ b whose
0/1-solutions x are precisely the 0/1-solutions of the system Ax ≤ 1 with
1 = (1, . . . , 1)T . They showed that this is the case if and only if A is a threshold
matrix. Furthermore, they studied the intersection graph G(A) of A whose nodes
stand for the columns of A where two nodes are adjacent if and only if the cor-
responding columns of A have a positive scalar product. Then the 0/1-solutions
x of the system Ax ≤ 1 are precisely the characteristic vectors of stable sets
in G(A). Chvátal and Hammer called a graph threshold if and only if it is the
intersection graph G(A) of a threshold matrix A.

As a generalization of threshold graphs, Chvátal and Hammer [8] call a graph
G = (V,E) pseudothreshold if there are real numbers b and av for all v ∈ V such
that for every subset V ′ ⊆ V ,

∑
v∈V ′ av < b ⇒ V ′ is stable∑
v∈V ′ av > b ⇒ V ′ is not stable (3)

and characterized pseudothreshold graphs as follows:

Theorem 2 ([8]). A graph G = (V,E) is pseudothreshold if and only if there is
a partition V = S ∪ Q ∪ U such that

– S is stable, and there are no edges between S and U ,
– Q is a clique, and there are all edges between Q and U ,
– U does not contain a stable set of size 3.

That way, pseudothreshold graphs G = (S ∪ Q ∪ U,E) contain several sub-
classes, which include

– graphs with stability number α(G) = 2 (i.e., with S = ∅),
– graphs without induced C4, C4 (which are by Blázsik et al. [3] precisely the

pseudothreshold graphs with U = ∅ or U = C5),
– split graphs (i.e., with U = ∅ by [14]), and
– threshold graphs (without induced P4, C4, C4 by [8]).

Hence, pseudothreshold graphs contain two subclasses of chordal graphs: thresh-
old graphs and split graphs [14].

Moreover, Chvátal and Hammer noted that (3) can be satisfied for any
pseudothreshold graph G = (S ∪ Q ∪ U,E) with b = 2 and

av =

⎧
⎨

⎩

0 if v ∈ S
1 if v ∈ U
2 if v ∈ Q
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Indeed, a(V ′) < 2 if V ′ is a subset S′ of S, or equals S′ ∪ {u} for some u ∈ U ,
but we have a(V ′) > 2 if V ′ contains 3 nodes from U , or one node from U and
Q each, or two nodes from Q. However, for other subsets V ′, e.g. {u, u′} ⊆ U or
S′ ∪ {q} for some q ∈ Q, it is not decidable via (3) whether or not V ′ is stable.

We provide the system of linear inequalities that exactly encodes all charac-
teristic vectors of stable sets of a pseudothreshold graph. That is, we will present
the facet-defining inequalities of the stable set polytope STAB(G) for G pseu-
dothreshold. As a consequence, we can verify the LS+-Perfect Graph Conjecture
for pseudothreshold graphs.

Moreover, we define a graph G to be strongly pseudothreshold if both G and
its complement G are pseudothreshold, and show that strongly pseudothreshold
graphs are joined a-perfect (see Sect. 2).

Generalizations of Chordal Graphs. A graph G is universally signable if for every
prescription of parities to its holes, there exists an assignment of 0/1-weights to
its edges such that for each hole, the weights of its edges sum up to the prescribed
parity, and for each triangle, the sum of the weights of its edges is odd. Truemper
[18] studied universally signable graphs and identified the following forbidden
configurations for such graphs:

– thetas (subdivisions of the complete bipartite graph K2,3),
– pyramids (subdivisions of the complete graph K4 such that one triangle

remains unsubdivided),
– prisms (subdivisions of C6 where the two triangles remain unsubdivided),
– wheels (consisting of a hole C and an additional node v having at least 3

neighbors on C).

(a) (b) (c) (d) (e) (f)

Fig. 1. Truemper configurations: (a) thetas, (b) pyramids, (c) prisms, (d)–(f) wheels
(in the drawings, a full line represents an edge, a dashed line a path).

Conforti et al. [9] called them Truemper configurations (see Fig. 1) and
characterized universally signable graphs as follows:

Theorem 3 ([9]). A graph is universally signable if and only if it has no Truem-
per configuration. A universally signable graph is either a clique, a hole, or has
a clique cutset.

Thus, universally signable graphs form a superclass of chordal graphs.
Boncompagni et al. [4] defined further superclasses of universally signable graphs
by allowing some wheels as induced subgraphs.
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A wheel is called universal if the additional node v is adjacent to all nodes of
C, a twin wheel if v is adjacent to precisely 3 consecutive nodes of C, and proper
otherwise (see Fig. 1(d)–(f) for examples). Note that universal wheels are often
just called wheels in the literature and are, in fact, the complete join of a single
node and a hole.

GU denotes the class of all graphs not having thetas, pyramids, prisms, proper
wheels and twin wheels. Hence, the only Truemper configurations that can occur
in graphs in GU are universal wheels. Boncompagni et al. provided a decompo-
sition result for GU in terms of clique cutsets and identified two basic families:

– graphs G such that every anticomponent1 of G is isomorphic to K1 or K2;
we call such graphs light cliques as they can be obtained from a clique by
removing a (possibly empty) matching (and note that they are perfect);

– graphs G such that one anticomponent of G is a hole Ck with k ≥ 5 and all
other anticomponents of G (if any) are isomorphic to K1; we call such graphs
fat universal wheels as they can be obtained as complete join of the hole Ck

and a (possibly empty) clique.

Using these terms, the decomposition result of Boncompagni et al. reads as
follows:

Theorem 4 ([4]). Every graph in GU is either a light clique, a fat universal
wheel, or has a clique cutset.

Based on this result, we give a complete description of the stable set polytope
for graphs in GU and conclude that every graph in GU is joined a-perfect (see
Sect. 3).

Finally, we discuss the relations of the studied graph classes, revealing that
strongly pseudothreshold graphs form a subclass of GU and that GU is a new
subclass of joined a-perfect graphs, being incomparable to all such classes known
so far. We close with some concluding remarks.

2 About Pseudothreshold Graphs

In order to describe the facet-defining inequalities of the stable set polytope of
pseudothreshold graphs, we rely on the following results from the literature.

Recall that a pseudothreshold graph has a partition of its node set into
S ∪ Q ∪ U by Theorem 2.

A pseudothreshold graph G = (S ∪ Q,E), i.e. with U = ∅, is a split graph
and thus perfect by [14], so its stable set polytope is given by nonnegativity and
clique constraints only [7].

A pseudothreshold graph G = (U ∪ Q,E), i.e. with S = ∅, has α(G) ≤ 2
by Theorem 2. Cook (see [17]) studied the stable set polytope of graphs G with

1 An anticomponent is an inclusion-wise maximal subgraph G′ of G such that G
′
is a

component of G.
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α(G) = 2 and showed that only the following type of inequalities is needed to
describe the stable set polytope of such graphs: constraints F (Q′) with

2x(Q′) + x(N ′(Q′)) ≤ 2

where N ′(Q′) = {v ∈ V (G) : Q′ ⊆ N(v)}. Such constraints F (Q′) are valid for
all graphs G with α(G) ≤ 2 and include clique constraints (if Q′ is maximal
and, thus, N ′(Q′) = ∅ holds). Furthermore, Cook (see [17]) showed that F (Q′)
is a facet if and only if G[N ′(Q′)] has no bipartite component. We call the
constraints F (Q′) clique-neighborhood constraints as N ′(Q′) = {v ∈ V (G) :
Q′ ⊆ N(v)}, and conclude that the stable set polytope of a pseudothreshold
graph G = (S ∪ Q,E) is described by nonnegativity and clique-neighborhood
constraints only.

If both parts S and U are non-empty, then Q is a clique cutset of a pseu-
dothreshold graph G = (S∪Q∪U,E) due to Theorem 2, since Q is a clique whose
removal disconnects the graph. Hence, we can apply Chvátal’s result from [7]
that the facets of STAB(G) belong to the union of the facets of STAB(G[S ∪Q])
and STAB(G[U ∪ Q]).

Based on these results, we can prove:

Theorem 5. The stable set polytope of pseudothreshold graphs is given by non-
negativity and clique-neighborhood constraints only.

In order to verify the LS+-Perfect Graph Conjecture for pseudothreshold
graphs, we further determine when a clique-neighborhood constraint defines a
facet of the stable set polytope of a pseudothreshold graph and use a result on
LS+-perfect graphs with α(G) ≤ 2 from [2].

We next describe precisely those clique-neighborhood constraints which
define facets for pseudothreshold graphs. Given a graph G = (V,E), we define
a block B to be an inclusion-wise maximal subset of nodes such that each node
in V − B is adjacent to all nodes in B. Clearly, G is the complete join of its
blocks (therefore, blocks are sometimes also called anticomponents). If G has
stability number α(G) = 2, then a block is imperfect if and only if it contains an
odd antihole by [5], see Fig. 2 for illustration. A clique-neighborhood constraint
F (Q′) defines a facet if and only if G[N ′(Q′)] has no bipartite component, i.e.,
if each block of G[N ′(Q′)] has an odd antihole.

Based on these results, we can prove:

Theorem 6. Let G = (S ∪ Q ∪ U,E) be a pseudothreshold graph. A clique-
neighborhood constraint F (Q′) defines a facet of STAB(G) if and only if

– F (Q′) is a clique constraint x(Q′) ≤ 1 where Q′ equals N [v] for some node
v ∈ S or is a maximal clique in G[U ∪ Q],

– F (Q′) is a constraint 2x(Q′) + x(N ′(Q′)) ≤ 2 where N ′(Q′) consists of some
imperfect blocks of G[U ] and Q′ is a maximal clique in (U − N ′(Q′)) ∪ Q,

– F (Q′) is the rank constraint x(U) ≤ 2 associated with Q′ = ∅ if Q = ∅ and
every block of G[U ] is imperfect.
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In [2], it was proved that all facet-defining LS+-perfect graphs G with
α(G) = 2 are odd antiholes or complete joins of one or several odd antihole(s)
and a (possibly empty) clique.

Both results together imply that, in an LS+-perfect pseudothreshold graph,
a clique-neighborhood constraint F (Q′) defines a non-clique facet if and only if
N ′(Q′) equals one or the complete join of some odd antiholes, and we obtain:

Corollary 1. A pseudothreshold graph is joined a-perfect if and only if every
imperfect block of G[U ] equals an odd antihole.

To illustrate this with the help of an example, consider the pseudothreshold
graph G depicted in Fig. 2. Within G[U ], there are two blocks: B1 induces a C5,
but B2 is different from an odd antihole, thus G is not joined a-perfect. However,
removing node v11 yields a pseudothreshold graph with the property that every
imperfect block of G[U ] equals an odd antihole and is, thus, joined a-perfect.

BB1 2

1 2

3

4

5

6 7

8

9

10 11

12

13 14

Fig. 2. An example of a pseudothreshold graph: The two nodes v14 and v13 constitute
the stable set S, the node v12 the clique Q, and all nodes v1 . . . v11 belong to U . Within
G[U ], there are two blocks: nodes v1 . . . v5 constitute one block B1 and induce a C5,
nodes v6 . . . v11 constitute a second block B2 and induce another imperfect graph. The
presence of all possible edges between B1 and B2 as well as between the clique Q and
B1, B2 is indicated by bold lines.

Corollary 1 further implies:

Corollary 2. The LS+-Perfect Graph Conjecture is true for pseudothreshold
graphs.

It is left to draw some conclusions for subclasses of pseudothreshold graphs.
Recall that a graph G is strongly pseudothreshold if both G and G are pseu-
dothreshold. Due to Theorem2, it is easy to see that S and Q change their roles
in G such that G is pseudothreshold if and only if also G[U ] has stability number
2. We can characterize strongly pseudothreshold graphs as follows:

Theorem 7. A graph G = (S∪Q∪U,E) is strongly pseudothreshold if and only
if G[U ] is empty or equals C4, C4, or C5.
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Due to Theorems 6 and 7, in the stable set polytope of a strongly pseu-
dothreshold graph G = (S ∪ Q ∪ U,E), the only non-clique facet can be

2x(Q) + x(U) ≤ 2

if G[U ] = C5, which is a joined antiweb constraint. Hence, we conclude:

Corollary 3. Strongly pseudothreshold graphs are joined a-perfect.

Note that this result includes the subclass of (C4, C4)-free graphs, which are
obviously strongly pseudothreshold by Theorem7 and the result of Blázsik et al.
[3] showing that (C4, C4)-free graphs are precisely the pseudothreshold graphs
with U = ∅ or U = C5.

3 About the Graphs in GU

In order to describe the facet-defining system of inequalities of the stable
set polytope for graphs G in GU , we rely on the decomposition theorem by
Boncompagni et al. [4] (see Theorem 4) telling that G either has a clique cutset
or is a light clique or a fat universal wheel.

In the case that G has a clique cutset Q, we know from [7] that the facets
of STAB(G) belong to the union of the facets of the stable set polytopes of the
blocks of the decomposition (i.e. to G[Vi ∪ Q] for any component Vi of G − Q).

Any graph G in GU without a clique cutset is either a light clique (and, thus,
perfect), or a fat universal wheel (and, thus, the complete join of a hole C of
length k ≥ 5 and a (possibly empty) clique Q). In the latter case, G is perfect
(if C is even), or an odd hole (if C is odd and Q is empty), or else (if C is odd
and Q non-empty) defines the facet

x(C) + α(C)x(Q) ≤ α(C) =
|C| − 1

2

by the behavior of the stable set polytope under taking complete joins due to
Chvátal [7]. Calling such inequalities fat universal wheel constraints, we con-
clude:

Theorem 8. The stable set polytope of graphs in GU is completely described by

– nonnegativity constraints,
– clique constraints,
– odd hole constraints,
– fat universal wheel constraints.

As constraints associated with cliques, odd holes or fat universal wheels are
clearly special cases of joined antiweb constraints, we conclude:

Corollary 4. All graphs in GU are joined a-perfect.
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A further consequence is concerned with universally signable graphs. Recall
that a universally signable graph is either a clique, a hole, or has a clique cutset
(Theorem 3).

Since every clique is in particular a light clique (where the matching is empty)
and every hole is a special fat universal wheel (where the involved clique is
empty), we clearly have that every universally signable graph belongs to GU . We
further conclude from Theorem 8:

Corollary 5. The stable set polytope of every universally signable graph is given
by nonnegativity, clique and odd hole constraints. Every universally signable
graph is h-perfect.

4 Conclusion and Future Research

The context of this work was the study of LS+-perfect graphs, i.e., graphs where
a single application of the Lovász-Schrijver PSD-operator LS+ to the edge relax-
ation yields the stable set polytope. The LS+-Perfect Graph Conjecture says that
such graphs precisely coincide with joined a-perfect graphs.

In this work, we identified subclasses of joined a-perfect graphs: strongly
pseudothreshold graphs, universally signable graphs, and GU . Whereas it follows
directly from Theorems 3 and 4 that universally signable graphs form a subclass
of GU , we further establish:

Theorem 9. Every strongly pseudothreshold graph belongs to GU .

Indeed, by Theorem 7, every strongly pseudothreshold graph G = (S ∪ Q ∪
U,E) has Q as clique cutset and the blocks of the decomposition are light cliques
(if G[U ] is empty or equals C4, C4) or a fat universal wheel (if G[U ] equals C5).
Hence, also graphs without C4, C4 form a subclass of GU by [3]. Note how-
ever that the universal 5-wheel is strongly pseudothreshold but not universally
signable, whereas C7 is universally signable but not strongly pseudothreshold.

Moreover, we note that GU forms a new subclass of joined a-perfect graphs,
since GU is incomparable to all previously known such classes:

– C6 is t-perfect (and thus also h-perfect and a-perfect) as well as near-bipartite,
but belongs clearly not to GU (recall that C6 is a prism);

– every strongly pseudothreshold graph G = (S ∪ Q ∪ U,E) with G[U ] = C5

and S = ∅ is not near-bipartite (as the non-neighbors of any node in S
contain C5).

Note further that GU is a proper subclass of joined a-perfect graphs (for instance
C7 is joined a-perfect but not in GU by Theorem 4 by [4]).

In addition, we verified the LS+-Perfect Graph Conjecture for pseudothresh-
old graphs. We shortly discuss the conjecture for a superclass GUT of GU , defined
in [4] as the class of all graphs not having thetas, pyramids, prisms and proper
wheels.
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By definition, we have for any graph G in GUT that G either belongs to GU

or else has a twin wheel (i.e. a hole C and an additional node v that is adjacent
to precisely 3 consecutive nodes of C). From results in [15], it follows that a twin
wheel is LS+-imperfect whenever C is odd: the twin wheel with C = C5 was
identified as LS+-imperfect graph in [15]. In addition, there it was proven that
further LS+-imperfect graphs can be obtained by applying certain operations
preserving LS+-imperfection, including the even subdivision of edges. Clearly,
any twin wheel with C = C2k+1 is an even subdivision of the twin wheel with
C = C5 so that all twin wheels with odd C are LS+-imperfect.

This shows that a graph in GUT can be LS+-perfect only if it has no odd
twin wheel. Though every even twin wheel is perfect, this does not yet verify the
LS+-Perfect Graph Conjecture for GUT : for instance the graph obtained from
C7 by replicating one node is a graph in GUT without an odd twin wheel (but
containing a twin 4-wheel), but is LS+-imperfect by [1].

Fig. 3. The graph obtained from C7 by replicating one node, the contained twin
4-wheel is highlighted by bold edges.

Hence, it remains open to verify the LS+-Perfect Graph Conjecture for GUT .
This could be done with the help of a decomposition theorem for GUT presented
in [4], provided that the facet-defining system of the stable set polytope for all
basic classes of GUT can be found.

Finally, we note that the approach presented here to verify the LS+-Perfect
Graph Conjecture can be applied to all graph classes whose members can be
decomposed along clique cutsets into basic classes for which the stable set
polytope can be completely described.
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