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Abstract. This paper presents a numerical algorithm to verify
continuous-time Markov chains (CTMCs) against multi-clock determin-
istic timed automata (DTA). These DTA allow for specifying properties
that cannot be expressed in CSL, the logic for CTMCs used by state-
of-the-art probabilistic model checkers. The core problem is to compute
the probability of timed runs by the CTMC C that are accepted by the
DTA A. These likelihoods equal reachability probabilities in an embed-
ded piecewise deterministic Markov process (EPDP) obtained as product
of C and A’s region automaton. This paper provides a numerical algo-
rithm to efficiently solve the PDEs describing these reachability probabil-
ities. The key insight is to solve an ordinary differential equation (ODE)
that exploits the specific characteristics of the product EPDP. We pro-
vide the numerical precision of our algorithm and present experimental
results with a prototypical implementation.

1 Introduction

Continuous-time Markov chains (CTMCs) [17] are ubiquitous. They are used to
model safety-critical systems like communicating networks and power manage-
ment systems, are key to performance and dependability analysis, and naturally
describe chemical reaction networks. The algorithmic verification of CTMCs
has received quite some attention. Aziz et al. [3] proved that verifying CTMCs
against CSL (Continuous Stochastic Logic) is decidable. CSL is a probabilistic
and timed branching-time logic that allows for expressing properties like “is the
probability of a given chemical reaction within 50 time units at least 10−3?”.
Baier et al. [5] gave efficient numerical algorithms for CSL model checking that
nowadays provide the basis of CTMC model checking in PRISM [23], MRMC [22]
and Storm [15], as well as GreatSPN [2]. Extensions of CSL to cascaded timed-
until operators [27], conditional probabilities [19], and (simple) timed regular
expressions [4] have been considered.
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This paper considers the verification of CTMCs against linear-time real-time
properties. These include relevant properties in the design of a gas burner [28],
like “the probability that the duration of leaking is more than one twentieth
over an interval with a length more than 20 s is less than 10−6”. Such real-
time properties can be conveniently expressed by deterministic timed automata
(DTA) [1]. The core problem in the verification of CTMC C against DTA A
is to compute the probability of C’s timed runs that are accepted by A, i.e.
Pr (C |= A). Chen et al. [10,11] showed that this quantity equals the reachability
probability in a piecewise deterministic Markov process (PDP) [14]. This PDP
is obtained by taking the product of CTMC C and the region automaton of A.
Computing reachability probabilities in PDPs is a challenge.

Practical implementations of verifying CTMCs against DTA specifications
are rare. Barbot et al. [7] showed that for single-clock DTA, the PDP is in
fact a Markov regenerative process. (This observation is also at the heart of
model-checking CSLTA [16].) This implies that for single-clock DTA, off-the-
shelf CSL model-checking algorithms can be employed resulting in an efficient
procedure [7]. Mikeev et al. [24] generalised these ideas to infinite-state CTMCs
obtained from stoichiometric equations, whereas Chen et al. [12] showed the the-
ory to generalize verifying single-clock DTA to continuous-time Markov decision
processes.

Multi-clock DTA are however much harder to handle. The characterisation
of PDP reachability probabilities as the unique solution of a set of partial dif-
ferential equations (PDEs) [10,11] does not give insight into an efficient compu-
tational procedure. With the notable exception of [25], verifying PDPs has not
been considered. Fu [18] provided an algorithm to approximate the probabilities
using finite difference methods and gave an error bound. This method hampers
scalability and therefore was never implemented. The same holds for model-
checking using other linear-time real-time formalisms such as MTL and timed
automata [9], linear duration invariants [8], and probabilistic duration calculus
[13]. All these multi-clock approaches suffer from scalability issues due to the
low efficiency of solving PDEs and/or integral equations on which they heavily
depend.

This paper presents a numerical technique to approximate the reachability
probability in the product PDP. The DTA A is approximated by DTA A[tf ]
which extends A with an additional clock that is never reset and that needs
to be at most tf when accepting. By increasing the time-bound tf , DTA A[tf ]
approximates A arbitrarily closely. We show that the set of PDPs characterizing
the reachability probability in the embedded PDP of C and A[tf ] can be reduced
to solving an ordinary differential equation (ODE). The specific characteristics
of the product EPDP, in particular the fact that all clocks run at the same pace,
are key to obtain these ODEs. Our numerical algorithm to solve the ODEs is
based on computing the approximations in a backward manner using tf and
the sum of all clocks. The complexity of the resulting procedure is linear in the
EPDP size, and exponential in � tf

δ � where δ is the discretization step size. We
show the approximations converges to the real solution of the ODEs at a linear
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speed of δ. Using a prototypical tool implementation we present some results
on a number of case studies such as robot navigation with varying number of
clocks in their specification. The experimental results show promising results for
checking CTMCs against multi-clock DTA.

Organization of the Paper. Section 2 introduces basic notions including
CTMCs, DTA, and PDPs. Section 3 presents the product of a CTMC and the
region graph of a DTA and shows this is an embedded PDP. Section 4 derives the
PDE (fixing some flaw in [10]), the reduction to the set of ODEs and presents the
numerical algorithm to solve these ODEs. Section 5 presents the experimental
results and Sect. 6 concludes.

2 Preliminaries

In this section, we introduce some basic notions which will be used later.
A probability space is denoted by a triple (Ω,F ,Pr), where Ω is a set of

samples, F is a σ-algebra over Ω, and Pr : F → [0, 1] is a probability measure
on F with Pr(Ω) = 1. Let Pr(Ω) denote the set of all probability measures over
Ω. For a random variable X on the probability space, its expectation is denoted
by E(X).

2.1 Continuous-Time Markov Chain (CTMC)

Definition 1 (CTMC). A CTMC is a tuple C = (S,P, α,AP, L,E), where

– S is a finite set of states;
– P: S × S → [0, 1] is the transition probability function, which is identified

with the matrix P ∈ [0, 1]|S|×|S| such that
∑

t∈S P(s, t) = 1, for all s ∈ S;
– α ∈ Pr(S) is the initial distribution;
– AP is a finite set of atomic propositions;
– L : S → 2AP is a labeling function; and
– E : S → R>0 is the exit rate function.

We denote by s
t−→ s′ a transition from state s to state s′ after residing in state

s for t time units. The probability of the occurrence of this transition within t
time units is P(s, s′)

∫ t

0
E(s) exp−E(s)x dx, where

∫ t

0
E(s) exp−E(s)x dx stands for

the probability to leave state s in t time units, and P(s, s′) for the probability
to select the transition to s′ from all transitions outgoing from s. A state s is
called absorbing if P(s, s) = 1. Given a CTMC C, removing the exit rate function
E results in a discrete-time Markov chain (DMTC), which is called embedded
DTMC of C. A CTMC C is called irreducible if there exists a unique stationary
distribution α, such that α(s) > 0 for all s ∈ S, and weakly irreducible if α(s)
may be zero for some s ∈ S.

Definition 2 (CTMC Path). Let C be a CTMC, a path ρ of C starting form s0

with length n is a sequence ρ = s0
t0−→ s1

t1−→ . . .
tn−1−−−→ sn ∈ S × (R>0 × S)n. The
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set of paths in C with length n is denoted by PathC
n; the set of all finite paths of C

is PathC
fin = ∪nPathC

n and the set of infinite paths of C is PathC
inf = (S × R>0)ω.

We use PathC = PathC
fin ∪ PathC

inf to denote all paths in C. As a convention, ε
stands for the empty path.

Note that we assume the time to exit a state is strictly greater than 0. For
an infinite path ρ, we use Pref(ρ) to denote the set of its finite prefixes. For a
(finite or infinite) path ρ with prefix s0

t0−→ s1
t1−→ . . ., the trace of the path is

the sequence of states trace(ρ) = s0s1 . . .. Let ρ(n) = sn be the n-th state in
the path and ρ[n] = tn be the corresponding exit time for sn. For a finite path

ρ = s0
t0−→ s1

t1−→ . . .
tn−1−−−→ sn, we use T (ρ) =

∑n−1
i=0 ti to denote the total time

spent on this path if n ≥ 1, otherwise T (ρ) = 0. For a time t ≤ T (ρ), ρ(0 . . . t)

denotes the prefix of ρ within t time units, i.e., s0
t0−→ s1

t1−→ . . .
tm−1−−−→ sm if there

exists some m ≤ n with
∑m−1

i=0 ρ[m] ≤ t ∧ ∑m
i=0 ρ[m] > t, otherwise ε.

A basic cylinder set C(s0, I0, · · · , In−1, sn) consists of all paths ρ ∈ PathC

such that ρ(i) = si for 0 ≤ i ≤ n, and ρ[i] ∈ Ii for 0 ≤ i < n. Then the
σ−algebra Fs0(C) associated with CTMC C and initial state s0 is the smallest
σ−algebra that contains all cylinder sets C(s0, I0, · · · , In−1, sn) with α(s0) > 0,
and P(si, si+1) > 0, for 1 ≤ i ≤ n, and I0, . . . , In−1 are non-empty intervals in
R≥0. There is a unique probability measure PrC on the σ−algebra Fs0(C), by
which the probability for a cylinder set is given by

PrC(C(s0, I0, · · · , In, sn)) = α(s0) ·
n∏

i=1

∫

Ii

E(si−1) exp−E(si−1)x dx · P(si−1, si)

Example 1. An example of CTMC is shown in Fig. 1, with AP = {a, b, c} and
initial state s0. The exit rate ri, i = 0, 1, 2, 3 and transition probability are
shown in the figure.

Fig. 1. An example of CTMC

2.2 Deterministic Timed Automaton (DTA)

A timed automaton is a finite state graph equipped with a finite set of non-
negative real-valued clock variables, or clocks for short. Clocks can only be
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reset to zero, or proceed with rate 1 as time progresses independently. Let
X = {x1, . . . , xn} be a set of clocks. η(x) : X → R≥0 is a X -valuation which
records the amount of time since its last reset. Let Val(A) be the set of all clock
valuations of A. For a subset X ⊆ X , the reset of X, denoted as η[X := 0], is
the valuation η′ such that η′(x) = 0,∀x ∈ X, and η′(x) = η(x), otherwise. For
d ∈ R>0, (η + d)(x) = η(x) + d for any clock x ∈ X .

A clock constraint over X is a formula with the following form

g := x < c | x ≤ c | x > c | x ≥ c | x − y ≥ c | g ∧ g,

where x, y are clocks, c ∈ N. Let Con(X ) denote the set of clock constraints over
X . A valuation η satisfies a guard g, denoted as η |= g, iff η(x) 	
 c when g is
x 	
 c, where 	
∈ {<,≤, >,≥}; and η |= g1 and η |= g2 iff g = g1 ∧ g2.

Definition 3 (DTA). A DTA is a tuple A = (Σ,X , Q, q0, QF , ↪→), where

– Σ is a finite set of actions;
– X is a finite set of clocks;
– Q is a finite set of locations;
– q0 ∈ Q is the initial location;
– QF ⊆ Q is the set of accepting locations;
– ↪→∈ (Q\QF ) × Σ × Con(X ) × 2X × Q is the transition relation, satisfying if

q
a,g,X

↪−−−→ q′ and q
a,g′,X′

↪−−−−→ q′′ with q′ �= q′′ then g ∩ g′ = ∅.
Each transition relation, or edge, q ↪→ q′ in A is endowed with (a, g,X),

where a ∈ Σ is an action, g ∈ Con(X ) is the guard of the transition, and X ⊆ X
is a set of clocks, which should be reset to 0 after the transition. An intuitive
interpretation of the transition is that A can move from q to q′ by taking action
a and resetting all clocks in X to be 0 only if g is satisfied. There are no outgoing
transitions from any accepting location in QF .

A finite timed path of A is of the form θ = q0
a0,t0

↪−−−→ q1
a1,t1

↪−−−→ . . .
an−1,tn−1

↪−−−−−−→ qn,
where ti ≥ 0, for i = 0, . . . , n−1. Moreover, there exists a sequence of transitions

qj

aj ,gj ,Xj

↪−−−−−→ qj+1, for 0 ≤ j ≤ n − 1, such that η0 = 0, ηj + tj |= gj and
ηj+1 = ηj [Xj := 0], where ηk denotes the clock valuation when entering qk. θ is
said to be accepted by A if there exists a state qi ∈ QF for some 0 ≤ i ≤ n. As
normal, it is assumed all DTA are non-Zeno [6], that is any circular transition
sequence takes nonzero dwelling time.

A region is a set of valuations, usually represented by a set of clock con-
straints. Let Reg(X ) be the set of regions over X . Given Θ,Θ′ ∈ Reg(X ), Θ′ is
called a successor of Θ if for all η |= Θ, there exists t > 0 such that η + t |= Θ′

and ∀t′ < t, η + t′ |= Θ ∨ Θ′. A region Θ satisfies a guard g, denoted as Θ |= g,
iff ∀η |= Θ implies η |= g. The reset operation on a region Θ is defined as
Θ[X := 0] = {η[X := 0] | η |= Θ}. Then the region graph, viewed as a quotient
transition system related to clock equivalence [6] can be defined as follows:

Definition 4 (Region Graph). The region graph for DTA A = (Σ,X , Q,
q0, QF , ↪→) is a tuple G(A) = (Σ,X , Q, q0, QF , �→), where
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– Q = Q × Reg(X ) is the set of states;
– q0 = (q0,0) ∈ Q is the initial state;
– QF ⊆ QF × Reg(X ) is the set of final states;
– �→⊆ Q × ((Σ × 2X ) ∪ {λ}) × Q is the transition relation satisfying

• (q,Θ) λ�−→ (q,Θ′) if Θ′ is a successor of Θ;

• (q,Θ)
a,X�−−→ (q′, Θ′′) if there exists g ∈ Con(X ) and transition q

a,g,X
↪−−−→ q′

such that Θ |= g and Θ′′ = Θ[X := 0].

Example 2 (Adapted from [10]). Figure 2 presents an example of DTA and Fig. 3
gives its region graph, in which double circle and double rectangle stand for final
states, respectively.

Fig. 2. A DTA A Fig. 3. The region graph of A

2.3 Piecewise-Deterministic Markov Process (PDP)

Piecewise-deterministic Markov Processes (PDPs for short) [14] cover a wide
range of stochastic models in which the randomness appears as discrete events
at fixed or random times, whose evolution is deterministically governed by an
ODE system between these times. A PDP consists of a mixture of deterministic
motion and random jumps between a finite set of locations. During staying in
a location, a PDP evolves deterministically following a flow function, which is a
solution to an ODE system. A PDP can jump between locations either randomly,
in which case the residence time of a location is governed by an exponential
distribution, or when the location invariant is violated. The successor state of
the jump follows a probability measure depending on the current state. A PDP
is right-continuous and has the strong Markov property [14].

Definition 5 (PDP [14]). A PDP is a tuple Q = (Z,X , Inv, φ, Λ, μ) with

– Z is a finite set of locations;
– X is a finite set of variables;
– Inv : Z → 2R

|X|
is an invariant function;
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– φ : Z ×R
|X | ×R≥0 → R

|X |, is a flow function, which is a solution of a system
of ODEs with Lipschitz continuous vector fields;

– Λ : S → R>0 is an exit rate function;
– S → Pr(S), is the transition probability function, where S = {ξ := (z, η) |

z ∈ Z, η |= Inv(z)} is the state space for Q, S is the closure of S, S
o =

{(z, η) | z ∈ Z, η |= Inv(z)o} is the interior of S, in which Inv(z)o stands for
the interior of Inv(z), and ∂S = ∪z∈Z{z} × ∂Inv(z) is the boundary of S, in
which ∂Inv(z) = Inv(z)\Invo and Inv(z) is the closure of Inv(z).

For any ξ = (z, η) ∈ S, there is an δ(ξ) > 0 such that Λ(z, φ(z, η, t)) is integrable
on [0, δ(ξ)). μ(ξ)(A) is measurable for any A ∈ F(S), where F(S) is the smallest
σ−algebra generated by {⋃z∈Z z × Az|Az ∈ F(Inv(z))} and μ(ξ)({ξ}) = 0.

There are two ways to take transitions between locations in PDP Q. A PDP
Q is allowed to stay in a current location z only if Inv(z) is satisfied. During
its residence, the valuation η evolves time-dependently according to the flow
function. Let ξ ⊕ t = (z, φ(z, η, t)) be the successor state of ξ = (z, η) after
residing t time units in z. Thus, Q is piecewise-deterministic since its behavior
is determined by the flow function φ in each location. In a state ξ = (z, η) with
η |= Inv(z)o, the PDP Q can either evolve to a state ξ′ = ξ⊕t by delaying t time
units, or take a Markovian jump to ξ′′ = (z′′, η′′) ∈ S with probability μ(ξ)({ξ′′}).
When η |= ∂Inv(z), Q is forced to take a boundary jump to ξ′′ = (z′′, η′′) ∈ S

with probability μ(ξ)({ξ′′}).

3 Reduction to the Reachability Probability of EPDP

As proved in [10], model-checking of a given CTMC C against a linear real-time
property expressed by a DTA A, i.e., determining Pr(C |= A), can be reduced
to computing the reachability probability of the product of C and G(A). This can
be further reduced to computing the reachability probability of the embedded
PDP (EPDP) of the product. But how to efficiently compute the reachability
probability of the EPDP still remains challenging, as existing approaches [7,10,
16] can only handle DTA with one clock. We will attack this challenge in this
paper. For self-containedness, we reformulate the reduction reported in [10] in
this section.

A path ρ = s0
t0−→ s1

t1−→ . . . of CTMC C is accepted by DTA A if ρ̂ =

q0
L(s0),t0

↪−−−−−→ q1
L(s1),t1

↪−−−−−→ . . .
L(sn−1),tn−1

↪−−−−−−−−→ qn induced by some ρ’s prefix is an
accepting path of A. Then Pr(C |= A) = Pr{ρ ∈ PathC | ρ is accepted by A}.

Definition 6 (Product Region Graph [7]). The product of CTMC C =
(S,P, α,AP, L,E) and the region graph of DTA G(A) = (Σ,X , Q, q0, QF , �→),
denoted by C ⊗ G(A), is a tuple (X , V, α′, VF ,⇀,Λ), where

– V = S × Q is the state space;
– α′(s, q0) = α(s) is the initial distribution;
– VF = S × QF is the set of accepting states;
– ⇀⊆ V × (([0, 1] × 2X ) ∪ {λ}) × V is the smallest relation satisfying
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• (s, q) λ−⇀ (s, q′) (called delay transition), if q
λ�−→ q′;

• (s, q)
p,X�−−→ (s′′, q′′) (called Markovian transition), if P(s, s′′) = p, p > 0

and q
L(s),X�−−−−→ q′′;

– Λ : V → R>0 is the exit rate function, where

Λ(s, q) =
{

E(s) if there exists a Markovian transition from (s, q)
0 otherwise

Remark 1. Note that the definition of region graph here is slightly different from
the usual one in the sense that Markovian transitions starting from a boundary
do not contribute to the reachability probability. Therefore we can merge the
boundary into its unique delay successor.

Example 3 (Adapted from [10]). Figure 4 shows the product region graph of
CTMC C in Example 1 and DTA A in Example 2. The graph can be split into
three subgraphs in a column-wise manner, where all transitions within a sub-
graph are probabilistic, all transitions evolve to the next subgraph are delay
transitions, and transitions with reset lead to a state in the first subgraph. For
conciseness, the location v9 stands for all nodes that may be reached by a Marko-
vian transition yet cannot reach an accepting node.

Proposition 1 ([10]). For CTMC C and DTA A, Pr(C |= A) is measurable
and

Pr(C |= A) = PrC⊗G(A){PathC⊗G(A)(♦QF )}.

Fig. 4. Product region graph C ⊗ G(A) of CTMC C in Example 1 and DTA A in
Example 2

When treated as a stochastic process, C ⊗G(A) can be interpreted as a PDP.
In this way, computing the reachability probability of QF in C ⊗ G(A) can be
reduced to computing the time-unbounded reachability probability in the EPDP
of C ⊗ G(A).
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Definition 7 (EPDP, [7]). Given C ⊗ G(A) = (X , V, α′, VF ,⇀,Λ), the EPDP
QC⊗A is a tuple (X , V, Inv, φ, Λ, μ) where for any v = (s, (q,Θ)) ∈ V

– Inv(v) = Θ, S = {(v,η) | v ∈ V,η |= Inv(v)} is the state space;
– φ(v,η, t) = η + t for η |= Inv(v);
– Λ(v, η) = Λ(v) is the exit rate of (v, η);
– Boundary jump: for each delay transition v

λ−⇀ v′ in C ⊗ G(A), μ(ξ, {ξ′}) = 1
whenever ξ = (v,η), ξ′ = (v′,η) and η |= ∂Inv(v);

– Markovian transition jump: for each Markovian transition v
p,X−−⇀ v′′ in C ⊗

G(A), μ(ξ, {ξ′′}) = p whenever ξ = (v,η), η |= Inv(v) and ξ′′ = (v′′,η[X :=
0]).

The flow function here describes that all clocks increase with a uniform rate
(i.e., ẋ1 = 1, . . . , ẋn = 1, or simply Ẋ = 1) at all locations. The original
reachability problem is then reduced to the reachability probability of the set
{(v,η) | v ∈ VF ,η |= Inv(v)}, given the initial state (v0,0) and the EPDP
QC⊗A. Let PrQC⊗A

v (η) stand for the probability to reach the final states (VF ×∗)
from (v,η) in QC⊗A. Thus, PrQC⊗A

v (η) can be computed recursively by

PrQC⊗A
v (η) =

⎧
⎪⎨

⎪⎩

PrQC⊗A
v,λ (η) +

∑

v
p,X−−⇀v′

PrQC⊗A
v,v′ (η) if v /∈ VF

1, v ∈ VF ∧ η |= Inv(v)
0, otherwise.

(1)

Let t∗z(v,η) denote the minimal time for QC⊗A to reach ∂Inv(v) from (v,η).
More precisely,

t∗z(v,η) = inf{t | φ(v,η, t) |= Inv(v)}.

PrQC⊗A
v,λ (η) is the probability from (v, η) with a delay and then a forced jump to

(v′, η+ t∗z(v,η)), onwards evolves to an accepting state, which can be recursively
computed by

PrQC⊗A
v,λ (η) = exp(−Λ(v)t∗z(v,η)) · PrQC⊗A

v′ (η + t∗z(v,η)).

PrQC⊗A
v,v′ (η) is the probability that a Markovian transition v

p,X−−⇀ v′ happens
within t∗z(v,η) time units, onwards involves to an accepted state, which can be
recursively computed by

PrQC⊗A
v,v′ (η) =

∫ t∗
z(v,η)

0

p · Λ(v) exp(−Λ(v)s) · PrQC⊗A
v′ (η + s[X := 0]) ds.

Pr(C |= A) is reduced to compute PrQC⊗A
v0

(0), equivalent to computing the least
fixed point of the Eq. (1). That is,

Theorem 1. [10] For CTMC C and DTA A, Pr(C |= A) = PrC⊗A

{PathC⊗A(♦QF )} is the least fixed point of (1).
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Remark 2. Generally, it is difficult to solve a recursive equation like (1). As
an alternative, we discuss the augmented EPDP of QC⊗A by replacing A with a
bounded DTA resulting from A. As a consequence, using the extended generator
of the augmented EPDP, we can induce a partial differential equation (PDE)
whose solution is the reachability probability. We will elaborate the idea in the
subsequent section.

4 Approximating the Reachability Probability of EPDP

In this section, we present a numerical method to approximate PrQC⊗A
v0

(0), as we
discussed previously that exactly computing is impossible, at least too expensive,
in general. We will first introduce the basic idea of our approach in detail, then
discuss its time complexity and convergence property. A key point is that our
approach exploits the observation that the flow function of QC⊗A is linear, only
related to time t, and remains the same at all locations. This enables to reduce
computing PrQC⊗A

v0
(0) to solving an ODE system.

4.1 Reduction to a PDE System

In this subsection, we first show that PrQC⊗A
v0

(0) can be approximated by that
of the EPDP of C and a bounded DTA derived from A, i.e., the length of all its
paths is bounded. Then show that the latter can be reduced to solving a PDE
system.

Given a DTA A, we construct a bounded DTA A[tf ] by introducing a new
clock y, adding a timing constraint y < tf to the guard of each transition of A
ingoing to an accepting state in QF , and never resetting y, where tf ∈ N is a
parameter. So, the length of all accepting paths of A[tf ] is time-bounded by tf .
Obviously, PathC(A[tf ]) is a subset of PathC(A). As Pr(C |= A) is measurable
and QC⊗A is Borel right continuous, we have the following proposition.

Proposition 2. Given a CTMC C, a DTA A, and tf ∈ N,

lim
tf→∞Pr(C |= A[tf ]) = Pr(C |= A). (2)

Moreover, if C is weakly irreducible or satisfies some conditions (please refer to
Chap. 4 of [26] for details), then there exist positive constants K,K0 ∈ R≥0 such
that

Pr(C |= A) − Pr(C |= A[tf ]) ≤ K exp{−K0tf}. (3)

Remark 3. (2) was first observed in [7], thereof the authors pointed out the
feasibility of using a bounded system to approximate the original unbounded
system in order to simplify a verification obligation. (3) further indicates that
such approximation is exponentially convergent w.r.t. −tf if the CTMC is weakly
irreducible.
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For a path starting in a state (v,η) at time y, we use Pathy
(v,η)[t] to denote

the set of its locations at time t, and �v(y,η) = Pr(Pathy
(v,η)[tf ] ∈ VF ) =

E(1Pathy
(v,η )[tf ]∈VF

) as the probability of a path reaching VF within tf time units,
where 1Pathy

(v,η )[tf ]∈VF
is the indicator function of Pathy

(v,η)[tf ] ∈ VF . Then,
�v0(0,0) = Pr(C |= A[tf ]) is the probability to reach the set of accepting states
from the initial state (0,0), which satisfies the following system of PDEs.

Theorem 2. Given a CTMC C, a bounded DTA A[tf ], and the EPDP
QC⊗G(A[tf ]) = (X , V, Inv, φ, Λ, μ), �v0(0,0) is the unique solution of the following
system of PDEs:

∂�v(y,η)
∂y

+
|X |∑

i=1

∂�v(y,η)
∂η(i)

+Λ(v)·
∑

v
p,X−−⇀v′

p·(�v′(y,η[X := 0])−�v(y,η)) = 0, (4)

where v ∈ V \VF ,η |= Inv(v),η(i) is the i-th clock variable and y ∈ [0, tf ). The
boundary conditions are:

(i) �v(y,η) = �v′(y,η), for every η |= ∂Inv(v) and transition v
λ−→ v′;

(ii) �v(y,η) = 1, for every vertex v ∈ VF , η |= Inv(v), and y ∈ [0, tf );
(iii) �v(tf ,η) = 0, for every vertex v ∈ V \VF and η |= Inv(v) ∪ ∂Inv(v).

Remark 4. Note that the PDE system (4) in Theorem 2 is different from the one
presented in [10] for reducing PrQC⊗A

v0
(0). In particular, the boundary condition

in [10] has been corrected here.

4.2 Reduction to an ODE System

There are several classical methods to solve PDEs. Finite element method, which
is a numerical technique for solving PDEs as well as integral equations, is a
prominent one, of which different versions have been established to solve different
PDEs with specific properties. Other numerical methods include finite difference
method and finite volume method and so on, the reader is referred to [20,21]
for details. Thanks to the special form of the Eq. (4), we are able to obtain a
numerical solution in a more efficient way.

The fact that the flow function (which is the solution to the ODE
system

∧
x∈X ẋ = 1 ∧ ẏ = 1) is the same at all locations of the EPDP QC⊗A[tf ]

suggests that the partial derivatives of η and y in the left side of (4) evolve with
the same pace. Thus, we can view all clocks as an array, and reformulate (4) as

[
∂�v(y,η)

∂y
,
∂�v(y,η)

∂η(1)
, . . . ,

∂�v(y,η)
∂η(|X |)

]

• 1

+ Λ(v) ·
∑

v
p,X−−⇀v′

p · (�v′(y,η[X := 0]) − �v(y,η)) = 0, (5)
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where • stands for the inner product of two vectors of the same dimension, e.g.,

(a1, . . . , an) • (b1, . . . , bn) =
∑n

i=1 aibi, and 1 for the vector (
n times

︷ ︸︸ ︷
1, . . . , 1).

By Theorem 2, there exist v0, y0 and η0 such that v0 ∈ VF , y0 = tf , and
η0 |= Inv(v) ∨ ∂Inv(v). Besides, by the definition of QC⊗A[tf ], it follows ∂z

∂t = 1,
which implies dz = dt, for any z ∈ {y} ∪ X . Hence, we can simplify (5) as the
following ODE system:

d�v((y0,η0) + t)
dt

+ Λ(v)·
∑

v
p,X−−⇀v′

p · (�v′((y0,η0) + t)[X := 0]) − �v(y0,η0)) = 0, (6)

with the initial condition v0 ∈ VF , y0 = tf , and η0 |= Inv(v) ∨ ∂Inv(v), where
v ∈ V \VF . Note that we compute the reachability probability by (6) backwards.

4.3 Numerical Solution

Since �v((y0,η0) + t) satisfies an ODE equation, we can apply a discretization
method to (6) and obtain an approximation efficiently. To this end, the remaining
obstacle is how to deal with the reset part �v′(y0 + t, (η0 + t)[X := 0]). Notice
that X �= ∅ ⇒ sum((η0+ t)[X := 0])+(tf −y0− t)) < sum(η0+ t)+(tf − t0− t),
where sum(η) =

∑
x∈X η(x). So we just need to solve the ODE system starting

from (tf ,η0) using the descending order over sum(η) in a backward manner.
In this way, all of the reset values needed for the current iteration have been
computed in the previous iterations. Therefore for each iteration, the derivation
is fixed and easy to calculate.

We denote by δ the length of discretization step, the number of total dis-
cretization steps is � tf

δ � ∈ N. An approximate solution to (4) can be computed
efficiently by the following algorithm.

Line 4 in Algorithm 1 computes a numerical solution to (6) on [tf − t, tf ]
by discretizing d�v((y0,η0)+t)

dt with 1
δ (�v((y0,η0) + (t + δ)) − �v((y0,η0) + t)).

A pictorial illustration to Algorithm 1 for the two-dimensional setting is shown
in Fig. 5. The blue polyhedron covers all the points we need to calculate. The
algorithm starts from (0, 0, tf ), where sum(η) = x1 + x2 = 0. Then sum(η) is
incremented until 2tf in a stepwise manner. For each fixed sum(η), for exam-
ple sum(η) = tf , the algorithm calculates all discrete points in the gray plane
following the direction (−1,−1,−1), and finally reaches the two reset lines. The
red line reaching the origin provides the final result.
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Algorithm 1. Finding numerical solution to (4)
Input: C ⊗ G(A), the region graph of the product of CTMC C and DTA A; tf , the
time bound
Output: A numerical solution for �v0(0,0), an approximation of Pr(C |= A[tf ])

1: for n ← 0 to |X | · tf by δ do
2: for each η in {η′ | sum(η′) = n ∧ ∀i ∈ {1, . . . , |X |} 0 ≤ η(i) ≤ tf} do
3: for t from 0 down to − min(tf , η) do
4: Compute numerical solution to (6) with (y0, η0) = (tf , η) on [tf − t, tf ]
5: end for
6: end for
7: end for
8: return numerical solution for �v0(0,0)

Fig. 5. Illustrating Algorithm 1 (left) and Algorithm 2 (right) for the 2-dimensional
setting (Color figure online)

Example 4. Consider the product C ⊗G(A) shown in Example 3 (in page 8). For
state v3 in which clock x is 1 and y is arbitrary, the corresponding PDE is

∂�v3(y, 1)

∂y
+

∂�v3(y, 1)

∂x
+ r0[0.5·�v0(y, 0) + 0.2·�v4(y, 0) + 0.4·�v9(y, 0) − �v3(y, 0)] = 0.

Since sum(y, 0) = y < y + 1 = sum(y, 1), the value for �v0(y, 0), �v4(y, 0)
and �v3(y, 0) have been calculated in the previous iterations, thus the value for
�v3(y, 1) can be computed.

To optimize Algorithm 1 for multi-clock objects, we exploit the idea of
“lazy computation”. In Algorithm1, in order to determine the reset part for
(6), we calculate all discretized points generated by all ODEs. The efficiency
is influenced since the amount of ODEs is quite large (the same as the num-
ber of states in product automaton). However in Algorithm2, we only compute
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the reset part that we need for computing �v0(0,0). If we meet a reset part
�v(y,η[X := 0]) which has not been decided yet, we suspend the equation we
are computing now and switch to compute the equation leading to the unde-
cided point following the direction of (−1, . . . ,−1). The algorithm terminates
since the number of points it computes is no more than that of Algorithm1. A
pseudo-code is described in Algorithm 2.

Algorithm 2. The lazy computation to find numerical solution to (4)
Input: C ⊗G(A), the region graph of the product of CTMC C and DTA A; tf , the time bound

Output: A numerical solution for �v0 (0,0), an approximation of Pr(C |= A[tf ])

Procedure dhv(y, η) //Computing numerical solution for (y, η)

1: for t from 0 down to −min(tf , η) by δ do

2: for v ∈ V do

3: Check if η satisfies initial and boundary condition from Theorem 2

4: for each Markovian transition v
p,X−−−⇀ v′ do

5: up = (−t − δ) · 1+ ((t + δ) · 1)[X := 0]

6: if reset exists and η[X := 0] + up is undecided then

7: call dhv(tf , η[X := 0] + up)

8: end if

9: comput hv

10: end for

11: end for

12: execute λ−transition according to Theorem 2

13: compute �v((y0, η0) + t) by equation (6)

14: end for

15: mark η decided

End Procedure

1: Call dhv(v0, tf , (tf ))

2: return numerical solution for �v0 (0,0)

4.4 Complexity Analysis

Let |S| be the number of the states of the CTMC, and n the number of the
clocks of the DTA. The worst-case time complexity of Algorithms 1 and 2 lies
in O(|V | · � tf

δ �(n+1)), where |V | is the number of the equations in (4), i.e., the
number of the locations in the product region graph, that are not accepting.
The number of states in the region graph of the DTA is bounded by n! · 2n−1 ·∏

x∈X (cx + 1), denoted by Cb, where cx is the maximum constant occurring in
the guards that constrain x. Note that Cb differs from the bound given in [1],
since the boundaries of a region do not matter in our setting and hence can be
merged into the region. Thus, the number of states in the product region graph,
as well as the number of PDE equations in Theorem 2, is at most Cb · |S|. So the
total complexity is O(Cb · |S| · � tf

δ �(n+1)).
Let �v,n(y0,η0) denote the numerical solution to ODE (6) with t = −nδ,

and Λmax = max{Λ(vi) | 0 ≤ i ≤ |S|}. Let N = � tf
δ �. By Proposition 2,

lim
tf→+∞ �v(0,0) = Pr(C |= A) and �v(0,0) is monotonically increasing for tf . In
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the following proposition, for simplicity of discussion, we assume tf equal to Nδ.
Then, the error caused by discretization can be estimated as follows:

Proposition 3. For N ∈ N
+ and δ = tf

N ,

|�v0,N (tf , tf · 1) − �v0(0,0)| = O(δ)

For function f(δ), f is of the magnitude O(δ) if lim
δ→0

∣
∣
∣
f(δ)

δ

∣
∣
∣ = C, where C

is a constant. From Proposition 3, if we view Λmax and tf as constants, then
the error is O(δ) to the step length δ. By Proposition 2, the numerical solution
generated by Algorithm 1 converges to the reachability probability of C ⊗A, and
the error can be as small as we expect if we decrease the size of discretization δ,
and increase the time bound tf .

5 Experimental Results

We implemented a prototype including Algorithms 1 and 2 in C and a tool
taking a CTMC C and a DTA A as input and generating a .c file to store their
product in Python, which is used as an input to Algorithms 1 and 2. The first
two examples (Examples 5 and 6) come from [10] to show the feasibility of our
tool. The last case study is an example of robot navigation from [7]. In order to
demonstrate the scalability of our approach, we revise the example with different
real-time requirements, which require DTA with different number of clocks. The
examples are executed in Linux 16.04 LTS with Intel(R) Core(TM) i7-4710HQ
2.50 GHz CPU and 16 G RAM. The column “time” reports the running time
for Algorithm 1, and “time (lazy)” reports the running time for Algorithm2. All
time is counted in seconds.

Example 5. Consider Example 3 with ri = 1, i = 0, . . . 3 and δ = 0.01, experi-
mental result is shown in Table 1. The relevant error when tf = 30 and tf = 40
is 5 × 10−7.

Table 1. The experimental results for Examples 5 and 6

tf Example 5 Example 6

�v0(0,0) time time (lazy) �v0(0,0) time time (lazy)

20 0.110791 0.8070 0.7232 0.999999 0.1685 0.0002

30 0.110792 1.7246 1.6260 0.999999 0.3453 0.0003

40 0.110792 3.0344 2.8760 0.999999 0.6265 0.0003

Example 6. Consider the reachability probability for the product of a CTMC
and a DTA as shown in Fig. 6. A part of its region graph is shown in Fig. 7. Set
r0 = r1 = 1, δ = 0.1, the experimental result is given in Table 1. The relevant
error when tf = 30 and tf = 40 is 1 × 10−7. Note that even for this simple
example, none of existing tools can handle it.
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Fig. 6. The product automaton of
Example 6

Fig. 7. The reachable product region graph of
Fig. 6.

Example 7. Consider a robot moves on a N ×N grid as shown in Fig. 8 (adapted
from [7]). It can move up, down, left and right. For each possible direction, the
robot moves with the same probability. The cells are grouped with A, B, C and
D. We consider the following real-time constraints:

P1: The robot is allowed to stay in adjacent C-cells for at most T1 time units,
and D-cells for at most T2 time units;

P2: The total time of the robot continuously resides in adjacent C-cell and D-cell
is no more than T3 time units, with T1 ≤ T3 and T2 ≤ T3;

P3: The total time of the robot continuously resides in adjacent A-cell and C-cell
is no more than T4 time units, with T1 ≤ T4.

In this example, we are verifying whether the CTMC satisfies (i) P1; (ii) P1∧P2;
(iii) P1 ∧ P2 ∧ P3. Obviously, P1 can be expressed by a DTA with one clock, see
Fig. 9; to express P1 ∧ P2, a DTA with two clocks is necessary, see Fig. 10; to
express P1 ∧ P2 ∧ P3, A DTA with three clocks is necessary, see Fig. 11.

Fig. 8. An example grid Fig. 9. A DTA with one clock for P1

The experimental results are summarized in Table 2. The relevant error of
tf = 20 and tf = 21 is smaller than 10−2. As can be seen, the running time
of our approach heavily depends on the number of clocks. Compared with the
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Fig. 10. A DTA with two clocks for
P1 ∧ P2

Fig. 11. A DTA with three clocks for
P1 ∧ P2 ∧ P3

Table 2. Experimental results for the robot example with δ = 0.1, running time longer
than 2700 s is denoted by ‘TO’ (timeout), the column “#(P)” counts the number of
states in the product automaton C ⊗G(A), “time([7])” is the running time of prototype
in [7] when precision = 0.01, T1 = T2 = 3, T3 = 5, T4 = 7

One clock Two clocks Three clocks

N tf #(P) time time (lazy) time([7]) #(P) time time (lazy) #(P) time time (lazy)

4 10 39 0.027 0.027 0.011 139 2.583 1.746 733 525.7 141.4

15 0.049 0.043 7.117 3.445 TO 257.35

20 0.070 0.071 12.88 5.49 TO 583.76

10 10 232 0.167 0.164 0.087 968 39.41 25.92 5134 TO 1039.7

15 0.278 0.278 108.48 53.28 TO TO

20 0.417 0.421 226.56 89.50 TO TO

20 10 940 1.142 0.909 1.23 4000 250.1 180.7 TO TO

15 1.65 1.54 672.8 375.6 TO TO

20 2.54 2.41 1326.8 616.1 TO TO

30 10 2125 2.38 2.45 6.84 9120 812.9 380.5 TO TO

15 4.45 5.42 2058.1 770.8 TO TO

20 7.45 7.28 TO 1283.4 TO TO

40 10 3820 5.62 6.52 20.31 16395 1484.3 759.8 TO TO

15 11.97 11.02 TO 1619.9 TO TO

20 15.26 16.17 TO 2661.3 TO TO

results reported in [7] for the case of one clock in this case study (when the
precision is set to be 10−2), our result is as fast as theirs, but their tool cannot
handle the cases of multiple clocks. In contrast, our approach can handle DTA
with multiple clocks as indicated in the verification of P2 and P3. Algorithm 2
is much more faster than Algorithm 1 when the number of clocks grows up. To
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the best of our knowledge, this is the first prototypical tool verifying CTMCs
against multi-clock DTA.

6 Concluding Remarks

In this paper, we present a practical approach to verify CTMCs against DTA
objectives. First, the desired probability can be reduced to the reachability prob-
ability of the product region graph in the form of PDPs. Then we use the aug-
mented PDP to approximate the reachability probability, in which the reachabil-
ity probability coincides with the solution to a PDE system at the starting point.
We further propose a numerical solution to the PDE system by reduction it to
a ODE system. The experimental results indicate the efficiency and scalability
compared with existing work, as it can handle DTA with multiple clocks.

As a future work, it deserves to investigate whether our approach also works
in the verification of CTMCs against more complicated real-time properties,
either expressed by timed automata and MTL as considered in [9], or by linear
duration invariants as considered in [8].
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