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Abstract. We present a novel approach for solving quantified bit-vector
formulas in Satisfiability Modulo Theories (SMT) based on computing
symbolic inverses of bit-vector operators. We derive conditions that pre-
cisely characterize when bit-vector constraints are invertible for a rep-
resentative set of bit-vector operators commonly supported by SMT
solvers. We utilize syntax-guided synthesis techniques to aid in estab-
lishing these conditions and verify them independently by using several
SMT solvers. We show that invertibility conditions can be embedded into
quantifier instantiations using Hilbert choice expressions, and give exper-
imental evidence that a counterexample-guided approach for quantifier
instantiation utilizing these techniques leads to performance improve-
ments with respect to state-of-the-art solvers for quantified bit-vector
constraints.

1 Introduction

Many applications in hardware and software verification rely on Satisfiability
Modulo Theories (SMT) solvers for bit-precise reasoning. In recent years, the
quantifier-free fragment of the theory of fixed-size bit-vectors has received a lot
of interest, as witnessed by the number of applications that generate problems
in that fragment and by the high, and increasing, number of solvers that par-
ticipate in the corresponding division of the annual SMT competition. Modeling
properties of programs and circuits, e.g., universal safety properties and pro-
gram invariants, however, often requires the use of quantified bit-vector formulas.
Despite a multitude of applications, reasoning efficiently about such formulas is
still a challenge in the automated reasoning community.

The majority of solvers that support quantified bit-vector logics employ
instantiation-based techniques [8,21,22,25], which aim to find conflicting ground
instances of quantified formulas. For that, it is crucial to select good instantia-
tions for the universal variables, or else the solver may be overwhelmed by the
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number of ground instances generated. For example, consider a quantified for-
mula ¢ = Va.(x + s % t) where z, s and ¢ denote bit-vectors of size 32. To
prove that v is unsatisfiable we can instantiate = with all 232 possible bit-vector
values. However, ideally, we would like to find a proof that requires much fewer
instantiations. In this example, if we instantiate z with the symbolic term ¢ — s
(the inverse of x + s &~ t when solved for ), we can immediately conclude that
t is unsatisfiable since (¢t — s) + s % ¢ simplifies to false.

Operators in the theory of bit-vectors are not always invertible. However, we
observe it is possible to identify quantifier-free conditions that precisely char-
acterize when they are. We do that for a representative set of operators in the
standard theory of bit-vectors supported by SMT solvers. For example, we have
proven that the constraint - s & t is solvable for z if and only if (—s | s) & t ~ ¢
is satisfiable. Using this observation, we develop a novel approach for solving
quantified bit-vector formulas that utilizes invertibility conditions to generate
symbolic instantiations. We show that invertibility conditions can be embedded
into quantifier instantiations using Hilbert choice functions in a sound manner.
This approach has compelling advantages with respect to previous approaches,
which we demonstrate in our experiments.

More specifically, this paper makes the following contributions.

— We derive and present invertibility conditions for a representative set of bit-
vector operators that allow us to model all bit-vector constraints in SMT-
LIB [3].

— We provide details on how invertibility conditions can be automatically syn-
thesized using syntax-guided synthesis (SyGuS) [1] techniques, and make pub-
lic 162 available challenge problems for SyGuS solvers that are encodings of
this task.

— We prove that our approach can efficiently reduce a class of quantified for-
mulas, which we call unit linear invertible, to quantifier-free constraints.

— Leveraging invertibility conditions, we implement a novel quantifier instan-
tiation scheme as an extension of the SMT solver CVC4 [2], which shows
improvements with respect to state-of-the-art solvers for quantified bit-vector
constraints.

Related Work. Quantified bit-vector logics are currently supported by the SMT
solvers Boolector [16], CVC4 [2], Yices [7], and Z3 [6] and a Binary Decision Dia-
gram (BDD)-based tool called Q3B [14]. Out of these, only CVC4 and Z3 provide
support for combining quantified bit-vectors with other theories, e.g., the theories
of arrays or real arithmetic. Arbitrarily nested quantifiers are handled by all but
Yices, which only supports bit-vector formulas of the form JxVy. Q[z, y] [8]. For
quantified bit-vectors, CVC4 employs counterexample-guided quantifier instan-
tiation (CEGQI) [22], where concrete models of a set of ground instances and the
negation of the input formula (the counterexamples) serve as instantiations for
the universal variables. In Z3, model-based quantifier instantiation (MBQI) [10]
is combined with a template-based model finding procedure [25]. In contrast to
CVC4, Z3 not only relies on concrete counterexamples as candidates for quan-
tifier instantiation but generalizes these counterexamples to generate symbolic
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instantiations by selecting ground terms with the same model value. Boolec-
tor employs a syntax-guided synthesis approach to synthesize interpretations for
Skolem functions based on a set of ground instances of the formula, and uses a
counterexample refinement loop similar to MBQI [21]. Other counterexample-
guided approaches for quantified formulas in SMT solvers have been considered
by Bjgrner and Janota [4] and by Reynolds et al. [23], but they have mostly
targeted quantified linear arithmetic and do not specifically address bit-vectors.
Quantifier elimination for a fragment of bit-vectors that covers modular linear
arithmetic has been recently addressed by John and Chakraborty [13], although
we do not explore that direction in this paper.

2 Preliminaries

We assume the usual notions and terminology of many-sorted first-order logic
with equality (denoted by =2). Let S be a set of sort symbols, and for every
sort o € S let X, be an infinite set of variables of sort o. We assume that sets
X, are pairwise disjoint and define X as the union of sets X,. Let X be a
signature consisting of a set X*C S of sort symbols and a set X/ of interpreted
(and sorted) function symbols fo19n? with arity n > 0 and oy, ...,0,,0 € X°.
We assume that a signature X' includes a Boolean sort Bool and the Boolean
constants T (true) and L (false). Let Z be a X' -interpretation that maps: each
o € ¥* to a non-empty set o7 (the domain of T), with Bool* = {T, L}; each
z € X, to an element 27 € o7; and each fo1»7 € X/ to a total function
ffiof x ... x ol — o if n >0, and to an element in o7 if n = 0. If z € X,
and v € o, we denote by Z[x — o] the interpretation that maps z to v and is
otherwise identical to Z. We use the usual inductive definition of a satisfiability
relation = between X-interpretations and X-formulas.

We assume the usual definition of well-sorted terms, literals, and formulas
as Bool terms with variables in X and symbols in X, and refer to them as X-
terms, Y-atoms, and so on. A ground term/formula is a X-term/formula without
variables. We define @ = (21, ..., x,) as a tuple of variables and write Qxp with
Q € {V,3} for a quantified formula Qz - - - Qz, . We use Lit(p) to denote the
set of Y-literals of Y-formula ¢. For a Y-term or X-formula e, we denote the
free variables of e (defined as usual) as F'V(e) and use e[x] to denote that the
variables in @ occur free in e. For a tuple of X-terms t = (t1,...,t,), we write
e[t] for the term or formula obtained from e by simultaneously replacing each
occurrence of x; in e by ;. Given a X-formula ¢[z] with z € X, we use Hilbert’s
choice operator ¢ [12] to describe properties of x. We define a choice function
ex.plx] as a term where z is bound by . In every interpretation Z, ex. p[z]
denotes some value v € o such that Z[z — v] satisfies ¢[z] if such values exist,
and denotes an arbitrary element of o7 otherwise. This means that the formula
dx. p[z] & plex. p[z]] is satisfied by every interpretation.

A theory T is a pair (X, T), where X is a signature and I is a non-empty class
of X-interpretations (the models of T') that is closed under variable reassignment,
i.e., every X-interpretation that only differs from an Z € I in how it interprets
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Table 1. Set of considered bit-vector operators with corresponding SMT-LIB 2 syntax.

Symbol SMT-LIB syntax Sort
X, <u, Su, <s, >s | =, bvult, bvugt, bvslt, bvsgt Oln] X O[] — Bool
~, = bvnot, bvneg Oln] = O[n]

&, |, <<, >>, >>, |bvand, bvor, bvshl, bvlshr, bvashr | o

+, -, mod, =+ bvadd, bvmul, bvurem, bvudiv Oln] X Oln] — O[n]
o concat On] X O[m] = O[n+m)]
[u:{] extract O] = Ou—i41], 0 <I<u<n

variables is also in I. A Y-formula ¢ is T-satisfiable (resp. T-unsatisfiable) if it
is satisfied by some (resp. no) interpretation in [; it is T-valid if it is satisfied by
all interpretations in I. A choice function ex. p[z] is (T'-)valid if Jx. plx] is (T-)
valid. We refer to a term ¢ as € -(T'-)valid if all occurrences of choice functions in
t are (T-)valid. We will sometimes omit 7" when the theory is understood from
context.

We will focus on the theory Tsy = (Xpv,Ipy) of fixed-size bit-vectors as
defined by the SMT-LIB 2 standard [3]. The signature Xpy includes a unique
sort for each positive bit-vector width n, denoted here as o[,,). Similarly, X, is
the set of bit-vector variables of sort op,}, and Xpy is the union of all sets X,
We assume that Xpy includes all bit-vector constants of sort oy, for each n,
represented as bit-strings. However, to simplify the notation we will sometimes
denote them by the corresponding natural number in {0,...,27~1}. All inter-
pretations Z € Igy are identical except for the value they assign to variables.
They interpret sort and function symbols as specified in SMT-LIB 2. All function
symbols in Z};V are overloaded for every o[, € X%,,. We denote a Ypy-term
(or bit-vector term) t of width n as t[,) when we want to specify its bit-width
explicitly. We use max,, or ming,) for the mazimum or minimum signed value
of width n, e.g., max,yy = 0111 and min,y = 1000. The width of a bit-vector
sort or term is given by the function &, e.g., k(o[,)) = n and K(tf,)) = n.

Without loss of generality, we consider a restricted set of bit-vector function
symbols (or bit-vector operators) E};V as listed in Table 1. The selection of oper-
ators in this set is arbitrary but complete in the sense that it suffices to express
all bit-vector operators defined in SMT-LIB 2.

3 Invertibility Conditions for Bit-Vector Constraints

This section formally introduces the concept of an invertibility condition and
shows that such conditions can be used to construct symbolic solutions for a
class of quantifier-free bit-vector constraints that have a linear shape.

Consider a bit-vector literal x + s &~ t and assume that we want to solve for
x. If the literal is linear in x, that is, has only one occurrence of x, a general
solution for z is given by the inverse of bit-vector addition over equality: x = t—s.
Computing the inverse of a bit-vector operation, however, is not always possible.
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For example, for = - s ~ ¢, an inverse always exists only if s always evaluates
to an odd bit-vector. Otherwise, there are values for s and ¢ where no such
inverse exists, e.g., = - 2 ~ 3. However, even if there is no unconditional inverse
for the general case, we can identify the condition under which a bit-vector
operation is invertible. For the bit-vector multiplication constraint = - s ~ t with
x ¢ FV(s) U FV(t), the invertibility condition for x can be expressed by the
formula (—s | s) & t =~ t.

Definition 1 (Invertibility Condition). Let £[x] be a Xpy-literal. A quantifier-
free Xpy-formula ¢. is an invertibility condition for z in £[z] if © & FV(dc)
and ¢o < Fz. L[z] is Tpy-valid.

An invertibility condition for a literal £[z] provides the ezact conditions under
which ¢[z] is solvable for z. We call it an “invertibility” condition because we can
use Hilbert choice functions to express all such conditional solutions with a single
symbolic term, that is, a term whose possible values are exactly the solutions
for  in ¢[z]. Recall that a choice function ey. ¢[y| represents a solution for a
formula ¢[z] if there exists one, and represents an arbitrary value otherwise.
We may use a choice function to describe inverse solutions for a literal £[z]
with invertibility condition ¢. as ey. (¢ = f[y]). For example, for the general
case of bit-vector multiplication over equality the choice function is defined as
ey. ((—s|s)&t=t = y-s=t).

Lemma 2. If ¢. is an invertibility condition for an e-valid X gy -literal £[x] and
r is the term ey. (¢ = L[y]), then r is e-valid and ([r] & Fz.l[z] is Ty -valid.*

Intuitively, the lemma states that when £[x] is satisfiable (under condition
¢.), any value returned by the choice function ey. (¢. = £[y]) is a solution of £[x]
(and thus Jz. £[z] holds). Conversely, if there exists a value v for z that makes
{[x] true, then there is a model of Ty that interprets ey. (¢ = £[y]) as v.

Now, suppose that X' pgy-literal ¢ is again linear in x but that x occurs arbi-
trarily deep in ¢. Consider, for example, a literal s1 - (s2+x) ~ t where x does not
occur in s1, so or t. We can solve this literal for x by recursively computing the
(possibly conditional) inverses of all bit-vector operations that involve z. That
is, first we solve s1 -2’ ~ t for 2/, where 2’ is a fresh variable abstracting so + x,
which yields the choice function 2’ = ey. ((—s1 | s1) & t = ¢ = s1-y ~ t). Then,
we solve sg + x &~ z’ for x, which yields the solution z = 2’ — s = ey. ((—s1 |
s1)&txt=s5-y~t)—so.

Figure 1 describes in pseudo code the procedure to solve for z in an arbitrary
literal ¢[z] = e[z] pa t that is linear in z. We assume that e[z] is built over the
set of bit-vector operators listed in Table 1. Function solve recursively constructs
a symbolic solution by computing (conditional) inverses as follows. Let function
getlnverse(z, £[z]) return a term ¢’ that is the inverse of x in £[z], i.e., such that
l[x] & x = t'. Furthermore, let function getlC(x, ¢[z]) return the invertibility
condition ¢, for x in ¢[z]. If e[x] has the form o(eq,...,e,) with n > 0, x must

1 All proofs can be found in an extended version of this paper [19].
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solve(z, e[x] xx t):

Ife==2
If <t € {~} then return ¢
else return ey. (getlC(z, z < t) = yt).

elsee =o(ey, ..., eifz],...,en) withn > 0and z & FV(e;) for all j # i.
Letd[z'] = o(e1,...,€i—1,%',€it+1,...,en) where 2’ is a fresh variable.
If< € {~,%}ando € {~,—,+}
then let ¢’ = getlnverse(z’, d[z'] ~ t) and return solve(z, e; > t')
else let ¢ = getlC(z', d[z'] > t) and return solve(z, €; ~ ey. (¢ = d[y] > t)).

Fig. 1. Function solve for constructing a symbolic solution for x given a linear literal
elz] > t.

occur in exactly one of the subterms eq,...,e, given that e is linear in x. Let
d be the term obtained from e by replacing e; (the subterm containing x) with
a fresh variable /. We solve for subterm e;[x] (treating it as a variable z’)
and compute an inverse getlnverse(z’,d[x'] & t), if it exists. Note that for a
disequality e[z] % t, it suffices to compute the inverse over equality and propagate
the disequality down. (For example, for e;[x] + s # ¢, we compute the inverse
t' = getlnverse(z’, 2’ + s &~ t) = t — s and recurse on e;[x] % t'.) If no inverse
for e[x] > ¢ exists, we first determine the invertibility condition ¢. for d[z'] via
getlC(a’, d[x'] > t), construct the choice function ey. (¢ = d[y] < t), and set it
equal to e;[x], before recursively solving for z. If e[z] = x and the given literal
is an equality, we have reached the base case and return ¢ as the solution for x.
Note that in Fig. 1, for simplicity we omitted one case for which an inverse can
be determined, namely x - ¢ &~ t where c¢ is an odd constant.

Theorem 3. Let l[x] be an e-valid Ypy-literal linear in x, and let r =
solve(x, £[x]). Then r is e-valid, FV(r) C FV({) \ {z} and {[r] & Jz.l[z] is
Ty -valid.

Tables 2 and 3 list the invertibility conditions for bit-vector operators {-, mod
s+, &, |, >, >>,, <<, o} over relations {~, #, <,, >, }. Due to space restrictions
we omit the conditions for signed inequalities since they can be expressed in
terms of unsigned inequality. We omit the invertibility conditions over {<,,
>.} since they can generally be constructed by combining the corresponding
conditions for equality and inequality—although there might be more succinct
equivalent conditions. Finally, we omit the invertibility conditions for operators
{~, —, +} and literals x > ¢ over inequality since they are basic bounds checks,
e.g., for x <, t we have t % min. The invertibility condition for x % t and for
the extract operator is T.2

2 All the omitted invertibility conditions can be found in the extended version of this
paper [19].
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The idea of computing the inverse of bit-vector operators has been used
successfully in a recent local search approach for solving quantifier-free bit-vector
constraints by Niemetz et al. [17]. There, target values are propagated via inverse
value computation. In contrast, our approach does not determine single inverse
values based on concrete assignments but aims at finding symbolic solutions
through the generation of conditional inverses. In an extended version of that
work [18], the same authors present rules for inverse value computation over
equality but they provide no proof of correctness for them. We define invertibility
conditions not only over equality but also disequality and (un)signed inequality,
and verify their correctness up to a certain bit-width.

3.1 Synthesizing Invertibility Conditions

We have defined invertibility conditions for all bit-vector operators in X'gy where
no general inverse exists (162 in total). A noteworthy aspect of this work is that
we were able to leverage syntax-guided synthesis (SyGuS) technology [1] to help
identify these conditions. The problem of finding invertibility conditions for a
literal of the form x ¢ s <1 t (or, dually, s ¢ x < ¢) linear in x can be recast
as a SyGuS problem by asking whether there exists a binary Boolean function
C such that the (second-order) formula ICVsVi. ((FJz.z 0 s < t) < C(s,t)) is
satisfiable. If a SyGusS solver is able to synthesize the function C, then C can be
used as the invertibility condition for x ¢ s > t. To simplify the SyGuS problem
we chose a bit-width of 4 for x, s, and ¢ and eliminated the quantification over
z in the formula above by expanding it to

15
ACVsVt. (\/ iosxt) < C(s,t)
=0

Since the search space for SyGuS solvers heavily depends on the input gram-
mar (which defines the solution space for C), we decided to use two gram-
mars with the same set of Boolean connectives but different sets of bit-vector
operators:

O’l" = {_'7 /\7 ~, <uy <sy O»minsamaxsa Satv ~y T &7 ‘}
O!] - {_" /\7 \/7 2y <uy <ss Zuv 253 O,mins,maxs, Svtv ) +a ] &7 |a >>, <<}

The selection of constants in the grammar turned out to be crucial for finding
solutions, e.g., by adding ming and maxs we were able to synthesize substantially
more invertibility conditions for signed inequalities. For each of the two sets of
operators, we generated 140 SyGuS problems?®, one for each combination of bit-
vector operator ¢ € {-, mod, +, &, |, >>, >>,, <<} over relation 1 € {=, %,
<us Zus >uy Zu, <s, <s, >s, >s), and used the SyGuS extension of the CVC4
solver [22] to solve these problems.

Using operators O, (O4) we were able to synthesize 98 (116) out of 140
invertibility conditions, with 118 unique solutions overall. When we found more

3 Available at https://cvcd.cs.stanford.edu/papers/CAV2018-QBV/.
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Table 2. Conditions for the invertibility of bit-vector operators over (dis)equality.
Those for -, & and | are given modulo commutativity of those operators.

{[z] ~ #
TSt —s|s) &t sZOVEZ0
zmod spt|~(—s) >yt sE1Vt#0
smodzixit|(t+t—s)&s>ut s#EO0OVEZO
r+spdt (s-t) s~ s%0Vtz~0
s+axpat s+(s+t)y=t {S&t%() forfc(s?:1
T otherwise
r& st t& st s#ZO0V IO
x|spat t]s~t s%~0V tg~0
r>st | (t<<s)>s~t t#0V s <y k(s)
§>ax At "ﬁ\(;o)s>>z'%t s#EOV IO

(s <uk(s) = (t<<s)>>as~t) A

T3>85t T
(s>ur(s) = (tx=~0Vtx0))
K(s) t%£0V 0) A

s>zt |\ s>qirt (8% s#0)
o (t % ~0 V s % ~0)

T<LKst | (t>s)<<Kst t#0V s <y k(s)
K(s)

st Vskirt s#ZEOVE0
i=0

xospdt s~ tlk(s) —1:0] T

soxpdt s tk(t) —1: k(t) — k(s)] T

than one solution for a condition (either with operators O, and Oy, or manually)
we chose the one that involved the smallest number of bit-vector operators. Thus,
we ended up using 79 out of 118 synthesized conditions and 83 manually crafted
conditions.

In some cases, the SyGuS approach was able to synthesize invertibility con-
ditions that were smaller than those we had manually crafted. For example, we
manually defined the invertibility condition for z - s =~ t as (t = 0) V ((t &
—t) >y (s & —s) A (s % 0)). With SyGuS we obtained ((—s | s) & t) ~ t.
For some other cases, however, the synthesized solution involved more bit-vector
operators than needed. For example, for x mod s % t we manually defined the
invertibility condition (s % 1) V (¢ % 0), whereas SyGuS produced the solution
~(—=s) | t % 0. For the majority of invertibility conditions, finding a solution
did not require more than one hour of CPU time on an Intel Xeon E5-2637
with 3.5 GHz. Interestingly, the most time-consuming synthesis task (over 107h
of CPU time) was finding condition ((t +¢) —s) & s >, t for s mod = =~ .
A small number of synthesized solutions were only correct for a bit-width of 4,
e.g., solution (~s<<s)<<s <4 t for z +s < t. In total, we found 6 width-
dependent synthesized solutions, all of them for bit-vector operators + and
mod. For those, we used the manually crafted invertibility conditions instead.
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Table 3. Conditions for the invertibility of bit-vector operators over unsigned inequal-
ity. Those for -, & and | are given modulo commutativity of those operators.

L[] <u Zu
-5t t%0 t<u,—s|s
zmod st | t#0 t <y ~(—s)
smodxzxt|ts0 t <y S
r=spit 0<usNO<,t ~) s>, t
s+xat 0<u~(-t&s) NO<yt t <y ~0
& st t#%0 t<u s
x| st s <yt t <, ~0
r>sat (10 t <y ~S>>s
s>zrt |[t#0 t<us
T>>,st (L0 t <4 ~0
s>>art [(s<utVs>,0)At%0 §<s (8>~ ) ViE<ys
<< st t%0 t<u~0<<s
s<<zpat |[t#0 K\(;)(s<<i) >t
i=0
rosnt te =0 = 5 <y ts te 2 ~0 = s>, ts
wheret, = t[k(t) — 1: k(t) — k()] ts = t[k(s) — 1:0]
sox Xt s<uts AN (smits =t %0) s>uts N sty = Lo % ~0
where to = t[k(z) — 1: 0], ts = t[s(t) — 1: k(t) — x(s)]

3.2 Verifying Invertibility Conditions

We verified the correctness of all 162 invertibility conditions for bit-widths from 1
to 65 by checking for each bit-width the Ty -unsatisfiability of the formula
=(¢e < Jz.L]x]) where £ ranges over the literals in Tables2 and 3 with s and ¢
replaced by fresh constants, and ¢. is the corresponding invertibility condition.

In total, we generated 12,980 verification problems and used all participating
solvers of the quantified bit-vector division of SMT-competition 2017 to verify
them. For each solver/benchmark pair we used a CPU time limit of one hour
and a memory limit of 8 GB on the same machines as those mentioned in the
previous section. We consider an invertibility condition to be verified for a certain
bit-width if at least one of the solvers was able to report unsatisfiable for the
corresponding formula within the given time limit. Out of the 12,980 instances,
we were able to verify 12,277 (94.6%).

Overall, all verification tasks (including timeouts) required a total of 275 days
of CPU time. The success rate of each individual solver was 91.4% for Boolector,
85.0% for CVC4, 50.8% for Q3B, and 92% for Z3. We observed that on 30.6% of
the problems, Q3B exited with a Python exception without returning any result.
For bit-vector operators {~, —, +, &, |, >>, >>,, <<, o}, over all relations, and
for operators {-, +, mod} over relations {#, <,,<;}, we were able to verify
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all invertibility conditions for all bit-widths in the range 1-65. Interestingly, no
solver was able to verify the invertibility conditions for z mod s <, t with a
bit-width of 54 and s mod = <, t with bit-widths 35-37 within the allotted
time. We attribute this to the underlying heuristics used by the SAT solvers
in these systems. All other conditions for <; and <, were verified for all bit-
vector operators up to bit-width 65. The remaining conditions for operators {-,
+, mod} over relations {=, >,, >,, >s, >4} were verified up to at least a bit-
width of 14. We discovered 3 conditions for s + x > t with 1 € {%, >4, >4}
that were not correct for a bit-width of 1. For each of these cases, we added an
additional invertibility condition that correctly handles that case.

We leave to future work the task of formally proving that our invertibility
conditions are correct for all bit-widths. Since this will most likely require the
development of an interactive proof, we could leverage some recent work by Ekici
et al. [9] that includes a formalization in the Coq proof assistant of the SMT-LIB
theory of bit-vectors.

4 Counterexample-Guided Instantiation for Bit-Vectors

In this section, we leverage techniques from the previous section for constructing
symbolic solutions to bit-vector constraints to define a novel instantiation-based
technique for quantified bit-vector formulas. We first briefly present the overall
theory-independent procedure we use for quantifier instantiation and then show
how it can be specialized to quantified bit-vectors using invertibility conditions.

We use a counterexample-guided approach for quantifier instantiation, as
given by procedure CEGQIls in Fig. 2. To simplify the exposition here, we focus
on input problems expressed as a single formula in prenex normal form and with
up to one quantifier alternation. We stress, though, that the approach applies
in general to arbitrary sets of quantified formulas in some -theory T with a
decidable quantifier-free fragment. The procedure checks via instantiation the
T-satisfiability of a quantified input formula ¢ of the form JyVe. [z, y] where
1 is quantifier-free and @ and y are possibly empty sequences of variables. It
maintains an evolving set I', initially empty, of quantifier-free instances of the
input formula. During each iteration of the procedure’s loop, there are three pos-
sible cases: (1) if I" is T-unsatisfiable, the input formula ¢ is also T-unsatisfiable
and “unsat” is returned; (2) if I" is T-satisfiable but not together with —[y, ],
the negated body of ¢, then I" entails ¢ in T, hence ¢ is T-satisfiable and “sat”
is returned. (3) If neither of previous cases holds, the procedure adds to I' an
instance of 1 obtained by replacing the variables & with some terms ¢, and
continues. The procedure CEGQI is parametrized by a selection function S that
generates the terms ¢.

Definition 4 (Selection Function). A selection function takes as input a tuple
of variables x, a model T of T, a quantifier-free X-formula [x], and a set I' of
Y-formulas such that € ¢ FV(I') and I |= I'U{—}. It returns a tuple of e-valid
terms t of the same type as  such that FV(t) C FV(y) \ z.
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CEGQIs(FyVz. ¥[y, z])
=0
Repeat:
1. If I' is T-unsatisfiable, then return “unsat”.
2. Otherwise, if I'" = I' U {—¢[y, =]} is T-unsatisfiable, then return “sat”.
3. Otherwise, letZ beamodel of T'and I and t = S(z, ¢, Z,I"). I" .= I'U{¢[y, t]}.

Fig. 2. A counterexample-guided quantifier instantiation procedure CEGQIlg, parame-
terized by a selection function S, for determining the T-satisfiability of JyVe. Y[y, x|
with ¢ quantifier-free and FV(¢)) =y U z.

Definition 5. Let ¢[x] be a quantifier-free ¥-formula. A selection function is:

1. Finite for x and v if there is a finite set S* such that S(x,v,Z,I") € §* for
all legal inputs Z and I'.
2. Monotonic for « and ¢ if for all legal inputs T and I', S(x,v¥,Z,T") =t only

if Y[t ¢ I

Procedure CEGQIs is refutation-sound and model-sound for any selection
function S, and terminating for selection functions that are finite and monotonic.

Theorem 6 (Correctness of CEGQIls). Let S be a selection function and let
p = JyVea. Y[y, x] be a legal input for CEGQIls. Then the following hold.

1. If CEGQIs(p) returns “unsat”, then ¢ is T-unsatisfiable.
2. If CEGQIs(p) returns “sat” for some final I', then ¢ is T-equivalent to

Y. Nyer -
3. If § is finite and monotonic for x and v, then CEGQls(p) terminates.

Thanks to this theorem, to define a T-satisfiability procedure for quantified
Y-formulas, it suffices to define a selection function satisfying the criteria of
Definition 4. We do that in the following section for Tzy .

4.1 Selection Functions for Bit-Vectors

In Fig. 3, we define a (class of) selection functions S2V for quantifier-free bit-
vector formulas, which is parameterized by a configuration c, a value of the
enumeration type {m, k, s, b}. The selection function collects in the set M
all the literals occurring in I that are satisfied by Z. Then, it collects in the
set N a projected form of each literal in M. This form is computed by the
function project, parameterized by configuration c. That function transforms its
input literal into a form suitable for function solve from Fig. 1. We discuss the
intuition for projection operations in more detail below.

After constructing set IV, the selection function computes a term t; for each
variable z; in tuple &, which we call the solved form of z;. To do that, it first
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SBV(x,v¢,T,I") wherec € {m,k,s, b}
Let M ={¢|Z = ¢,¢ € Lit(y)}, N = {project,(Z,¢) | £ € M}.

Fori=1,...,nwherex = (z1,...,%n):
Let Ni = Uy 0y yjen linearize(zi, T, {[ta, .. tia]).
Lett, — sozlve(xi, choose(NN;)) if N; is non-empty
x; otherwise

t; ==tj{x; > t;} foreach j < i.
Return (¢1,...,tn).

project,,(Z, s >1t) : return T project, (Z,s > t) :return s & t + (s — t)©
st if 7 =%
project, (Z,s><it) :return s it  project,(Z,sdt) ireturn { s ~ ¢t 41 if s > ¢7
sat—1 ifst <t*

Fig. 3. Selection functions SZV for quantifier-free bit-vector formulas. The procedure
is parameterized by a configuration ¢, one of either m (model value), k (keep), s (slack),
or b (boundary).

constructs a set of literals IV; all linear in z;. It considers literals ¢ from N and
replaces all previously solved variables x1,...,x;_1 by their respective solved
forms to obtain the literal ¢ = £[ty,...,t;—1]. It then calls function linearize on
literal ¢’ which returns a set of literals, each obtained by replacing all but one
occurrence of z; in ¢ with the value of z; in Z.*

Example 7. Consider an interpretation Z where 27 = 1, and Xy -terms a and b
with z € FV(a) U FV(b). We have that linearize(z,Z,x - (x 4+ a) ~ b) returns the
set {1-(x+a)=b,x-(1+a)=b}; linearize(x,Z,x >, a) returns the singleton
set {x >, a}; linearize(x,Z,a % b) returns the empty set. A

If the set V; is non-empty, the selection function heuristically chooses a literal
from N; (indicated in Fig. 3 with choose(N;)). It then computes a solved form ¢;
for x; by solving the chosen literal for x; with the function solve described in the
previous section. If N; is empty, we let ¢; is simply the value of x; in the given
model Z. After that, z; is eliminated from all the previous terms ¢q,...,t;_1 by
replacing it with ¢;. After processing all n variables of @, the tuple (¢1,...,t,)
is returned.

The configurations of selection function SPV determine how literals in M
are modified by the project, function prior to computing solved forms, based
on the current model Z. With the model value configuration m, the selection
function effective ignores the structure of all literals in M and (because the
set N; is empty) ends up choosing the value x7 as the solved form variable
4 This is a simple heuristic to generate literals that can be solved for x;. More elaborate

heuristics could be used in practice.
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x;, for each i. On the other end of the spectrum, the configuration k keeps all
literals in M unchanged. The remaining two configurations have an effect on
how disequalities and inequalities are handled by project.. With configuration s
project, normalizes any kind of literal (equality, inequality or disequality) s < ¢
to an equality by adding the slack value (s — t) to t. With configuration b it
maps equalities to themselves and inequalities and disequalities to an equality
corresponding to a boundary point of the relation between s and ¢ based on
the current model. Specifically, it adds one to ¢ if s is greater than ¢ in Z, it
subtracts one if s is smaller than ¢, and returns s = t if their value is the same.
These two configurations are inspired by quantifier elimination techniques for
linear arithmetic [5,15]. In the following, we provide an end-to-end example of
our technique for quantifier instantiation that makes use of selection function
SEY.

Ezample 8. Consider formula ¢ = Jy. V. (z1 -a <, b) where a and b are terms
with no free occurrences of x;. To determine the satisfiability of ¢, we invoke
CEGQIszv on ¢ for some configuration c. Say that in the first iteration of the
loop, we find that IV = I" U {x1 - a >, b} is satisfied by some model Z of Tgy
such that ¥ = 1, e = 1, and b = 0. We invoke SPV((z;),Z,I") and first
compute M = {z1 - a >, b}, the set of literals of I that are satisfied by Z.
The table below summarizes the values of the internal variables of SZV for the
various configurations:

Config | N1 t1

m 0 1

k {z1-a >, b} ez.(a<y—=b|b)=>z-a>,b

s, b {z1-a=b+1}|ez.((—a|a) &b+1xb+1)=>z-ax~b+1

In each case, va returns the tuple (¢1), and we add the instance t1 -a <, b
to I'. Consider configuration k where ¢; is the choice expression ez. ((a <, —b |
b) = z-a >, b). Since t; is e-valid, due to the semantics of €, this instance is
equivalent to:

((a<y =b|b)=k-a>,b)ANk-a<,b (1)

for fresh variable k. This formula is Tpy-satisfiable if and only if —(a <,, —b | b) is
T'py-satisfiable. In the second iteration of the loop in CEGQIssv, set I" contains
formula (1) above. We have two possible outcomes:

(i) =(a <y —b | b) is Tpy-unsatisfiable. Then (1) and hence I' are Tpy-
unsatisfiable, and the procedure terminates with “unsat”.

(ii) =(a <, —b | b) is satisfied by some model J of Tpy. Then Jz.z-a <, b is
false in J since the invertibility condition of z - a <, b is false in 7. Hence,
I =TuU{z; -a >, b} is unsatisfiable, and the algorithm terminates with
“sat”.
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In fact, we argue later that quantified bit-vector formulas like ¢ above, which
contain only one occurrence of a universal variable, require at most one instanti-
ation before CEGQIlgsv terminates. The same guarantee does not hold with the
other configurations. In particular, configuration m generates the instantiation
where t1 is 1, which simplifies to a <, b. This may not be sufficient to show
that I" or I is unsatisfiable in the second iteration of the loop and the algo-
rithm may resort to enumerating a repeating pattern of instantiations, such as
z1 +— 1,2,3,... and so on. This obviously does not scale for problems with large
bit-widths. A

More generally, we note that CEGQI spV terminates with at most one instance
for input formulas whose body has just one literal and a single occurrence of each
universal variable. The same guarantee does not hold for instance for quantified
formulas whose body has multiple disjuncts. For some intuition, consider extend-
ing the second conjunct of (1) with an additional disjunct, i.e. (k-a <, bV {[k]).
A model can be found for this formula in which the invertibility condition
(a <y —b | b) is still satisfied, and hence we are not guaranteed to terminate
on the second iteration of the loop. Similarly, if the literals of the input formula
have multiple occurrences of x1, then multiple instances may be returned by the
selection function since the literals returned by linearize in Fig. 3 depend on the
model value of x1, and hence more than one possible instance may be considered
in loop in Fig. 2.

The following theorem summarizes the properties of our selection functions.
In the following, we say a quantified formula is unit linear invertible if it is of
the form Va.f[z] where £ is linear in « and has an invertibility condition for .
We say a selection function is n-finite for a quantified formula ¢ if the number
of possible instantiations it returns is at most n for some positive integer n.

Theorem 9. Let ¢[x] be a quantifier-free formula in the signature of Ty .

1. 8BV s a finite selection function for © and v for all c € {m,k,s, b}.
2. 8BV is monotonic.

3. SBV is 1-finite if ¢ is unit linear invertible.

4. SEV is monotonic if 1 is unit linear invertible.

This theorem implies that counterexample-guided instantiation using configura-
tion SBVY is a decision procedure for quantified bit-vectors. However, in practice
the worst-case number of instances considered by this configuration for a variable
x[,) is proportional to the number of its possible values (2"), which is practi-
cally infeasible for sufficiently large n. More interestingly, counterexample-guided
instantiation using SZV is a decision procedure for quantified formulas that are
unit linear invertible, and moreover has the guarantee that at most one instan-
tiation is returned by this selection function. Hence, formulas in this fragment
can be effectively reduced to quantifier-free bit-vector constraints in at most two
iterations of the loop of procedure CEGQIs in Fig. 2.
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4.2 Implementation

We implemented the new instantiation techniques described in this section as an
extension of CVC4, which is a DPLL(T')-based SMT solver [20] that supports
quantifier-free bit-vector constraints, (arbitrarily nested) quantified formulas,
and support for choice expressions. For the latter, all choice expressions ex. p[x]
are eliminated from assertions by replacing them with a fresh variable k of the
same type and adding ¢[k] as a new assertion, which notice is sound since all
choice expressions we consider are e-valid. In the remainder of the paper, we
will refer to our extension of the solver as cegqi. In the following, we discuss
important implementation details of the extension.

Handling Duplicate Instantiations. The selection functions S2V and SEV are
not guaranteed to be monotonic, neither is SZV for quantified formulas that
contain more than one occurrence of universal variables. Hence, when applying
these strategies to arbitrary quantified formulas, we use a two-tiered strategy
that invokes SV as a second resort if the instance for the terms returned by a
selection function already exists in I

Linearizing Rewrites. Our selection function in Fig. 3 uses the function linearize
to compute literals that are linear in the variable z; to solve for. The way we
presently implement linearize makes those literals dependent on the value of z;
in the current model Z, with the risk of overfitting to that model. To address
this limitation, we use a set of equivalence-preserving rewrite rules whose goal
is to reduce the number of occurrences of x; to one when possible, by applying
basic algebraic manipulations. As a trivial example, a literal like x; + x; = a
is rewritten first to 2 - x; =~ a which is linear in x; if a does not contain z;. In
that case, this literal, and so the original one, has an invertibility condition as
discussed in Sect. 3.

Variable Elimination. We use procedure solve from Sect. 3 not only for selecting
quantifier instantiations, but also for eliminating variables from quantified for-
mulas. In particular, for a quantified formula of the form Vay. ¢ = [z, y], if £ is
linear in « and solve(x, £) returns a term s containing no e-expressions, we can
replace this formula by Vy. ¢[s, y]. When £ is an equality, this is sometimes called
destructive equality resolution (DER) and is an important implementation-level
optimization in state-of-the-art bit-vector solvers [25]. As shown in Fig. 1, we use
the getlnverse function to increase the likelihood that solve returns a term that
contains no e-expressions.

Handling Extract. Consider formula Visy. (z[31 : 16] % apg V z[15 : 0] %
brig)). Since all invertibility conditions for the extract operator are T, rather
than producing choice expressions we have found it more effective to eliminate
extracts via rewriting. As a consequence, we independently solve constraints
for regions of quantified variables when they appear underneath applications of
extract operations. In this example, we let the solved form of x be y[16) 0 2[16]
where y and z are fresh variables, and subsequently solve for these variables in
y ~ a and z = b. Hence, we may instantiate x with a o b, a term that we would
not have found by considering the two literals independently in the negated body
of the formula above.
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5 Evaluation

We implemented our techniques in the solver cegqi and considered four configu-
rations cegqi,, where ¢ is one of {m, k, s, b}, corresponding to the four selection
function configurations described in Sect.4. Out of these four configurations,
cegqi,, is the only one that does not employ our new techniques but uses only
model values for instantiation. It can thus be considered our base configuration.
All configurations enable the optimizations described in Sect. 4.2 when applica-
ble. We compared them against all entrants of the quantified bit-vector division
of the 2017 SMT competition SMT-COMP: Boolector [16], CVC4 [2], Q3B [14]
and Z3 [6]. With the exception of Q3B, all solvers are related to our approach
since they are instantiation-based. However, none of these solvers utilizes invert-
ibility conditions when constructing instantiations. We ran all experiments on
the StarExec logic solving service [24] with a 300s CPU and wall clock time
limit and 100 GB memory limit.

We evaluated our approach on all 5,151 benchmarks from the quantified bit-
vector logic (BV) of SMT-LIB [3]. The results are summarized in Table 4. Config-
uration cegqiy, solves the highest number of unsatisfiable benchmarks (4, 399),
which is 30 more than the next best configuration cegqi; and 37 more than

Table 4. Results on satisfiable and unsatisfiable benchmarks with a 300 s timeout.

unsat Boolector | CVC4 | Q3B | Z3 cegqi,, | cegqi, | cegqi, | cegqi,
h-uauto 14 12 93 24 10 103 105 106
keymaera 3917 3790 | 3781 3923 | 3803 3798 3888 | 3918
psyco 62 62 49 62 62 39 62 61
scholl 57 36 13 67 36 27 36 35
tptp 55 52 | 56| 56| 56 56 56 56
uauto 137 72 131 | 137 72 72 135 137
ws-fixpoint 74 71 75 74 75 74 75 75
ws-ranking 16 8 18 19 15 11 12 11
Total unsat |4332 4103 |4216 | 4362 | 4129 4180 4369 4399
sat Boolector | CVC4 | Q3B | Z3 cegqi,, | cegqi, | cegqi, | cegqiy,
h-uauto 15 10 17 13 16 17 16 17
keymaera 108 21 24 | 108 20 13 36 75
psyco 131 132 50 | 131 | 132 60 132 129
scholl 232 160 201 | 204 | 203 188 208 211
tptp 17 17 | 17| 17| 17 17 17 17
uauto 14 14 15 16 14 14 14 14
ws-fixpoint 45 49 54 36 45 51 49 50
ws-ranking 19 15 37 33 33 31 31 32
Total sat 581 418 415 | 558 | 480 391 503 545
Total (5151) | 4913 4521 | 4631 | 4920 | 4609 4571 4872 14944
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the next best external solver, Z3. Compared to the instantiation-based solvers
Boolector, CVC4 and Z3, the performance of cegqi, is particularly strong on the
h-uauto family, which are verification conditions from the Ultimate Automizer
tool [11]. For satisfiable benchmarks, Boolector solves the most (581), which is
36 more than our best configuration cegqiy,.

Overall, our best configuration cegqi, solved 335 more benchmarks than
our base configuration cegqi,,. A more detailed runtime comparison between
the two is provided by the scatter plot in Fig.4. Moreover, cegqi, solved 24
more benchmarks than the best external solver, Z3. In terms of uniquely solved
instances, cegqi;,, was able to solve 139 benchmarks that were not solved by
73, whereas Z3 solved 115 benchmarks that cegqi, did not. Overall, cegqiy,
was able to solve 21 of the 79 benchmarks (26.6%) not solved by any of the
other solvers. For 18 of these 21 benchmarks, it terminated after considering
no more than 4 instantiations. These cases indicate that using symbolic terms
for instantiation solves problems for which other techniques, such as those that
enumerate instantiations based on model values, do not scale.

Interestingly, configuration cegqiy, despite having the strong guarantees
given by Theorem 9, performed relatively poorly on this set (with 4,571 solved
instances overall). We attribute this to the fact that most of the quantified for-
mulas in this set are not unit linear invertible. In total, we found that only 25.6%
of the formulas considered during solving were unit linear invertible. However,
only a handful of benchmarks were such that all quantified formulas in the prob-
lem were unit linear invertible. This might explain the superior performance of
cegqi, and cegqi, which use invertibility conditions but in a less monolithic way.

For some intuition on this, consider the
problem Vz.(z > a V x < b) where
a and b are such that a > b is Try-
valid. Intuitively, to show that this for-
mula is unsatisfiable requires the solver
to find an x between b and a. This
is apparent when considering the dual
problem Jz.(z < a Az > b). Con-
figuration cegqiy, is capable of finding
such an x, for instance, by consider-
ing the instantiation x — a when solv-
ing for the boundary point of the first
disjunct. Configuration cegqi,, on the
other hand, would instead consider the
instantiation of x for two terms that
witness e-expressions: some k; that is
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Fig. 4. Configuration cegqi,, vs. cegqi,.

never smaller than a, and some ko that is never greater that b. Neither of these
terms necessarily resides in between a and b since the solver may subsequently
consider models where k1 > b and ks < a. This points to a potential use for
invertibility conditions that solve multiple literals simultaneously, something we
are currently investigating.
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6 Conclusion

We have presented a new class of strategies for solving quantified bit-vector for-
mulas based on invertibility conditions. We have derived invertibility conditions
for the majority of operators in a standard theory of fixed-width bit-vectors. An
implementation based on this approach solves over 25% of previously unsolved
verification benchmarks from SMT LIB, and outperforms all other state-of-the-
art bit-vector solvers overall.

In future work, we plan to develop a framework in which the correctness of
invertibility conditions can be formally established independently of bit-width.
We are working on deriving invertibility conditions that are optimal for linear
constraints, in the sense of admitting the simplest propositional encoding. We
also are investigating conditions that cover additional bit-vector operators, some
cases of non-linear literals, as well as those that cover multiple constraints. While
this is a challenging task, we believe efficient syntax-guided synthesis solvers can
continue to help push progress in this direction. Finally, we plan to investigate
the use of invertibility conditions for performing quantifier elimination on bit-
vector constraints. This will require a procedure for deriving concrete witnesses
from choice expressions.
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