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Abstract. The secure information flow problem, which checks whether
low-security outputs of a program are influenced by high-security inputs,
has many applications in verifying security properties in programs. In
this paper we present lazy self-composition, an approach for verifying
secure information flow. It is based on self-composition, where two copies
of a program are created on which a safety property is checked. However,
rather than an eager duplication of the given program, it uses duplication
lazily to reduce the cost of verification. This lazy self-composition is
guided by an interplay between symbolic taint analysis on an abstract
(single copy) model and safety verification on a refined (two copy) model.
We propose two verification methods based on lazy self-composition. The
first is a CEGAR-style procedure, where the abstract model associated
with taint analysis is refined, on demand, by using a model generated
by lazy self-composition. The second is a method based on bounded
model checking, where taint queries are generated dynamically during
program unrolling to guide lazy self-composition and to conclude an
adequate bound for correctness. We have implemented these methods on
top of the SeaHorn verification platform and our evaluations show the
effectiveness of lazy self-composition.

1 Introduction

Many security properties can be cast as the problem of verifying secure informa-
tion flow. A standard approach to verifying secure information flow is to reduce it
to a safety verification problem on a “self-composition” of the program, i.e., two
“copies” of the program are created [5] and analyzed. For example, to check for
information leaks or non-interference [17], low-security (public) inputs are ini-
tialized to identical values in the two copies of the program, while high-security
(confidential) inputs are unconstrained and can take different values. The safety
check ensures that in all executions of the two-copy program, the values of the
low-security (public) outputs are identical, i.e., there is no information leak from
confidential inputs to public outputs. The self-composition approach is useful for
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checking general hyper-properties [11], and has been used in other applications,
such as verifying constant-time code for security [1] and k-safety properties of
functions like injectivity and monotonicity [32].

Although the self-composition reduction is sound and complete, it is chal-
lenging in practice to check safety properties on two copies of a program. There
have been many efforts to reduce the cost of verification on self-composed pro-
grams, e.g., by use of type-based analysis [33], constructing product programs
with aligned fragments [4], lockstep execution of loops [32], transforming Horn
clause rules [14,24], etc. The underlying theme in these efforts is to make it
easier to derive relational invariants between the two copies, e.g., by keeping
corresponding variables in the two copies near each other.

In this paper, we aim to improve the self-composition approach by making it
lazier in contrast to eager duplication into two copies of a program. Specifically,
we use symbolic taint analysis to track flow of information from high-security
inputs to other program variables. (This is similar to dynamic taint analysis [30],
but covers all possible inputs due to static verification.) This analysis works
on an abstract model of a single copy of the program and employs standard
model checking techniques for achieving precision and path sensitivity. When this
abstraction shows a counterexample, we refine it using on-demand duplication
of relevant parts of the program. Thus, our lazy self-composition1 approach is
guided by an interplay between symbolic taint analysis on an abstract (single
copy) model and safety verification on a refined (two copy) model.

We describe two distinct verification methods based on lazy self-composition.
The first is an iterative procedure for unbounded verification based on coun-
terexample guided abstraction refinement (CEGAR) [9]. Here, the taint analysis
provides a sound over-approximation for secure information flow, i.e., if a low-
security output is proved to be untainted, then it is guaranteed to not leak any
information. However, even a path-sensitive taint analysis can sometimes lead to
“false alarms”, i.e., a low-security output is tainted, but its value is unaffected
by high-security inputs. For example, this can occur when a branch depends on
a tainted variable, but the same (semantic, and not necessarily syntactic) value
is assigned to a low-security output on both branches. Such false alarms for secu-
rity due to taint analysis are then refined by lazily duplicating relevant parts of
a program, and performing a safety check on the composed two-copy program.
Furthermore, we use relational invariants derived on the latter to strengthen the
abstraction within the iterative procedure.

Our second method also takes a similar abstraction-refinement view, but in
the framework of bounded model checking (BMC) [6]. Here, we dynamically gen-
erate taint queries (in the abstract single copy model) during program unrolling,
and use their result to simplify the duplication for self-composition (in the two
copy model). Specifically, the second copy duplicates the statements (update
logic) only if the taint query shows that the updated variable is possibly tainted.
Furthermore, we propose a specialized early termination check for the BMC-

1 This name is inspired by the lazy abstraction approach [20] for software model check-
ing.
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based method. In many secure programs, sensitive information is propagated in
a localized context, but conditions exist that squash its propagation any further.
We formulate the early termination check as a taint check on all live variables
at the end of a loop body, i.e., if no live variable is tainted, then we can con-
clude that the program is secure without further loop unrolling. (This is under
the standard assumption that inputs are tainted in the initial state. The early
termination check can be suitably modified if tainted inputs are allowed to occur
later.) Since our taint analysis is precise and path-sensitive, this approach can
be beneficial in practice by unrolling the loops past the point where all taint has
been squashed.

We have implemented these methods in the SeaHorn verification plat-
form [18], which represents programs as CHC (Constrained Horn Clause) rules.
Our prototype for taint analysis is flexible, with a fully symbolic encoding of the
taint policy (i.e., rules for taint generation, propagation, and removal). It fully
leverages SMT-based model checking techniques for precise taint analysis. Our
prototypes allow rich security specifications in terms of annotations on low/high-
security variables and locations in arrays, and predicates that allow information
downgrading in specified contexts.

We present an experimental evaluation on benchmark examples. Our results
clearly show the benefits of lazy self-composition vs. eager self-composition,
where the former is much faster and allows verification to complete in larger
examples. Our initial motivation in proposing the two verification methods was
that we would find examples where one or the other method is better. We expect
that easier proofs are likely to be found by the CEGAR-based method, and eas-
ier bugs by the BMC-based method. As it turns out, most of our benchmark
examples are easy to handle by both methods so far. We believe that our gen-
eral approach of lazy self-composition would be beneficial in other verification
methods, and both our methods show its effectiveness in practice.

To summarize, this paper makes the following contributions.

– We present lazy self-composition, an approach to verifying secure informa-
tion flow that reduces verification cost by exploiting the interplay between a
path-sensitive symbolic taint analysis and safety checking on a self-composed
program.

– We present Ifc-CEGAR, a procedure for unbounded verification of secure
information flow based on lazy self-composition using the CEGAR paradigm.
Ifc-CEGAR starts with a taint analysis abstraction of information flow and
iteratively refines this abstraction using self-composition. It is tailored toward
proving that programs have secure information flow.

– We present Ifc-BMC, a procedure for bounded verification of secure informa-
tion flow. As the program is being unrolled, Ifc-BMC uses dynamic symbolic
taint checks to determine which parts of the program need to be duplicated.
This method is tailored toward bug-finding.

– We develop prototype implementations of Ifc-CEGAR and Ifc-BMC and
present an experimental evaluation of these methods on a set of benchmark-
s/microbenchmarks. Our results demonstrate that Ifc-CEGAR and Ifc-
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1 int steps = 0;

2 for (i = 0; i < N; i++) { zero[i] = product[i] = 0; }

3 for (i = 0; i < N*W; i++) {

4 int bi = bigint_extract_bit(a, i);

5 if (bi == 1) {

6 bigint_shiftleft (b, i, shifted_b , &steps);

7 bigint_add(product , shifted_b , product , &steps);

8 } else {

9 bigint_shiftleft (zero , i, shifted_zero , &steps);

10 bigint_add(product , shifted_zero , product , &steps);

11 }

12 }

Listing 1. “BigInt” Multiplication

BMC easily outperform an eager self-composition that uses the same backend
verification engines.

2 Motivating Example

Listing 1 shows a snippet from a function that performs multiword multiplica-
tion. The code snippet is instrumented to count the number of iterations of the
inner loop that are executed in bigint shiftleft and bigint add (not shown
for brevity). These iterations are counted in the variable steps. The security
requirement is that steps must not depend on the secret values in the array a;
array b is assumed to be public.

Static analyses, including those based on security types, will conclude that
the variable steps is “high-security.” This is because steps is assigned in a
conditional branch that depends on the high-security variable bi. However, this
code is in fact safe because steps is incremented by the same value in both
branches of the conditional statement.

Our lazy self-composition will handle this example by first using a symbolic
taint analysis to conclude that the variable steps is tainted. It will then self-
compose only those parts of the program related to computation of steps, and
discover that it is set to identical values in both copies, thus proving the program
is secure.

Now consider the case when the code in Listing 1 is used to multiply two “big-
ints” of differing widths, e.g., a 512b integer is multiplied with 2048b integer.
If this occurs, the upper 1536 bits of a will all be zeros, and bi will not be a
high-security variable for these iterations of the loop. Such a scenario can benefit
from early-termination in our BMC-based method: our analysis will determine
that no tainted value flows to the low security variable steps after iteration 512
and will immediately terminate the analysis.

3 Preliminaries

We consider First Order Logic modulo a theory T and denote it by FOL(T ).
Given a program P , we define a safety verification problem w.r.t. P as a tran-
sition system M = 〈X, Init(X),Tr(X,X ′),Bad(X)〉 where X denotes a set of
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(uninterpreted) constants, representing program variables; Init ,Tr and Bad are
(quantifier-free) formulas in FOL(T ) representing the initial states, transition
relation and bad states, respectively. The states of a transition system correspond
to structures over a signature Σ = ΣT ∪ X. We write Tr(X,X ′) to denote that
Tr is defined over the signature ΣT ∪ X ∪ X ′, where X is used to represent the
pre-state of a transition, and X ′ = {a′|a ∈ X} is used to represent the post-state.

A safety verification problem is to decide whether a transition system M is
SAFE or UNSAFE. We say that M is UNSAFE iff there exists a number N such
that the following formula is satisfiable:

Init(X0) ∧
(

N−1∧
i=0

Tr(Xi,Xi+1)

)
∧ Bad(XN ) (1)

where Xi = {ai|a ∈ X} is a copy of the program variables (uninterpreted con-
stants) used to represent the state of the system after the execution of i steps.

When M is UNSAFE and sN ∈ Bad is reachable, the path from s0 ∈ Init to
sN is called a counterexample (CEX).

A transition system M is SAFE iff the transition system has no counterex-
ample, of any length. Equivalently, M is SAFE iff there exists a formula Inv ,
called a safe inductive invariant, that satisfies: (i) Init(X) → Inv(X), (ii)
Inv(X) ∧ Tr(X,X ′) → Inv(X ′), and (iii) Inv(X) → ¬Bad(X).

In SAT-based model checking (e.g., based on IC3 [7] or interpolants [23,
34]), the verification procedure maintains an inductive trace of formulas
[F0(X), . . . , FN (X)] that satisfy: (i) Init(X) → F0(X), (ii) Fi(X)∧Tr(X,X ′) →
Fi+1(X ′) for every 0 ≤ i < N , and (iii) Fi(X) → ¬Bad(X) for every 0 ≤ i ≤ N .
A trace [F0, . . . , FN ] is closed if ∃1 ≤ i ≤ N · Fi ⇒

(∨i−1
j=0 Fj

)
. There is an

obvious relationship between existence of closed traces and safety of a transition
system: A transition system T is SAFE iff it admits a safe closed trace. Thus,
safety verification is reduced to searching for a safe closed trace or finding a
CEX.

4 Information Flow Analysis

Let P be a program over a set of program variables X. Recall that Init(X) is
a formula describing the initial states and Tr(X,X ′) a transition relation. We
assume a “stuttering” transition relation, namely, Tr is reflexive and therefore it
can non-deterministically either move to the next state or stay in the same state.
Let us assume that H ⊂ X is a set of high-security variables and L := X\H is
a set of low-security variables.

For each x ∈ L, let Obsx(X) be a predicate over program variables X that
determines when variable x is adversary-observable. The precise definition of
Obsx(X) depends on the threat model being considered. A simple model would
be that for each low variable x ∈ L, Obsx(X) holds only at program completion
– this corresponds to a threat model where the adversary can run a program that
operates on some confidential data and observe its public (low-security) outputs
after completion. A more sophisticated definition of Obsx(X) could consider, for
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example, a concurrently executing adversary. Appropriate definitions of Obsx(X)
can also model declassification [29], by setting Obsx(X) to be false in program
states where the declassification of x is allowed.

The information flow problem checks whether there exists an execution of
P such that the value of variables in H affects a variable in x ∈ L in some state
where the predicate Obsx(X) holds. Intuitively, information flow analysis checks
if low-security variables “leak” information about high-security variables.

We now describe our formulations of two standard techniques that have been
used to perform information flow analysis. The first is based on taint analy-
sis [30], but we use a symbolic (rather than a dynamic) analysis that tracks
taint in a path-sensitive manner over the program. The second is based on self-
composition [5], where two copies of the program are created and a safety prop-
erty is checked over the composed program.

4.1 Symbolic Taint Analysis

When using taint analysis for checking information flow, we mark high-security
variables with a “taint” and check if this taint can propagate to low-security
variables. The propagation of taint through program variables of P is determined
by both assignments and the control structure of P . In order to perform precise
taint analysis, we formulate it as a safety verification problem. For this purpose,
for each program variable x ∈ X, we introduce a new “taint” variable xt. Let
Xt := {xt|x ∈ X} be the set of taint variables where xt ∈ Xt is of sort Boolean.
Let us define a transition system Mt := 〈Y, Init t,Tr t,Bad t〉 where Y := X ∪ Xt

and

Init t(Y ) := Init(X) ∧
( ∧

x∈H

xt

)
∧

( ∧
x∈L

¬xt

)
(2)

Tr t(Y, Y ′) := Tr(X,X ′) ∧ T̂r(Y,X ′
t) (3)

Bad t(Y ) :=

( ∨
x∈L

Obsx(X) ∧ xt

)
(4)

Since taint analysis tracks information flow from high-security to low-security
variables, variables in Ht are initialized to true while variables in Lt are initialized
to false. W.l.o.g., let us denote the state update for a program variable x ∈ X
as: x′ = cond(X) ? ϕ1(X) : ϕ2(X). Let ϕ be a formula over Σ. We capture the
taint of ϕ by:

Θ(ϕ) =

⎧⎨
⎩

false if ϕ ∩ X = ∅∨
x∈ϕ

xt otherwise

Thus, T̂r(Xt,X
′
t) is defined as:

∧
xt∈Xt

x′
t = Θ(cond)∨(cond ? Θ(ϕ1) : Θ(ϕ2))

Intuitively, taint may propagate from x1 to x2 either when x1 is assigned
an expression that involves x2 or when an assignment to x1 is controlled by x2.
The bad states (Bad t) are all states where a low-security variable is tainted and
observable.
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4.2 Self-composition

When using self-composition, information flow is tracked over an execution of
two copies of the program, P and Pd. Let us denote Xd := {xd|x ∈ X} as
the set of program variables of Pd. Similarly, let Initd(Xd) and Trd(Xd,X

′
d)

denote the initial states and transition relation of Pd. Note that Initd and Trd

are computed from Init and Tr by means of substitutions. Namely, substituting
every occurrence of x ∈ X or x′ ∈ X ′ with xd ∈ Xd and x′

d ∈ X ′
d, respectively.

Similarly to taint analysis, we formulate information flow over a self-composed
program as a safety verification problem: Md := 〈Z, Initd,Trd,Badd〉 where
Z := X ∪ Xd and

Initd(Z) := Init(X) ∧ Init(Xd) ∧
( ∧

x∈L

x = xd

)
(5)

Trd(Z,Z ′) := Tr(X,X ′) ∧ Tr(Xd,X
′
d) (6)

Badd(Z) :=

( ∨
x∈L

Obsx(X) ∧ Obsx(Xd) ∧ ¬(x = xd)

)
(7)

In order to track information flow, variables in Ld are initialized to be equal
to their counterpart in L, while variables in Hd remain unconstrained. A leak
is captured by the bad states (i.e. Badd). More precisely, there exists a leak iff
there exists an execution of Md that results in a state where Obsx(X), Obsx(Xd)
hold and x �= xd for a low-security variable x ∈ L.

5 Lazy Self-composition for Information Flow Analysis

In this section, we introduce lazy self-composition for information flow analysis.
It is based on an interplay between symbolic taint analysis on a single copy
and safety verification on a self-composition, which were both described in the
previous section.

Recall that taint analysis is imprecise for determining secure information
flow in the sense that it may report spurious counterexamples, namely, spurious
leaks. In contrast, self-composition is precise, but less efficient. The fact that self
composition requires a duplication of the program often hinders its performance.
The main motivation for lazy self-composition is to target both efficiency and
precision.

Intuitively, the model for symbolic taint analysis Mt can be viewed as an
abstraction of the self-composed model Md, where the Boolean variables in Mt

are predicates tracking the states where x �= xd for some x ∈ X. This intuition
is captured by the following statement: Mt over-approximatesMd.
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Corollary 1. If there exists a path in Md from Initd to Badd then there exists
a path in Mt from Init t to Bad t.

Corollary 2. If there exists no path in Mt from Init t to Bad t then there exists
no path in Md from Initd to Badd.

This abstraction-based view relating symbolic taint analysis and self-
composition can be exploited in different verification methods for checking secure
information flow. In this paper, we focus on two – a CEGAR-based method
(Ifc-CEGAR) and a BMC-based method (Ifc-BMC). These methods using
lazy self-composition are now described in detail.

5.1 IFC-CEGAR

We make use of the fact that Mt can be viewed as an abstraction w.r.t. to Md, and
propose an abstraction-refinement paradigm for secure information flow analysis.
In this setting, Mt is used to find a possible counterexample, i.e., a path that
leaks information. Then, Md is used to check if this counterexample is spurious
or real. In case the counterexample is found to be spurious, Ifc-CEGAR uses
the proof that shows why the counterexample is not possible in Md to refine Mt.

A sketch of Ifc-CEGAR appears in Algorithm 1. Recall that we assume that
solving a safety verification problem is done by maintaining an inductive trace.
We denote the traces for Mt and Md by G = [G0, . . . , Gk] and H = [H0, . . . , Hk],
respectively. Ifc-CEGAR starts by initializing Mt, Md and their respective
traces G and H (lines 1–4). The main loop of Ifc-CEGAR (lines 5–18) starts
by looking for a counterexample over Mt (line 6). In case no counterexample is
found, Ifc-CEGAR declares there are no leaks and returns SAFE.

If a counterexample π is found in Mt, Ifc-CEGAR first updates the trace
of Md, i.e. H, by rewriting G (line 10). In order to check if π is spurious,
Ifc-CEGAR creates a new safety verification problem Mc, a version of Md

constrained by π (line 11) and solves it (line 12). If Mc has a counterexample,
Ifc-CEGAR returns UNSAFE. Otherwise, G is updated by H (line 16) and
Mt is refined such that π is ruled out (line 17).

The above gives a high-level overview of how Ifc-CEGAR operates. We
now go into more detail. More specifically, we describe the functions ReWrite,
Constraint and Refine. We note that these functions can be designed and
implemented in several different ways. In what follows we describe some possible
choices.

Proof-Based Abstraction. Let us assume that when solving Mt a counterex-
ample π of length k is found and an inductive trace G is computed. Following a
proof-based abstraction approach, Constraint() uses the length of π to bound
the length of possible executions in Md by k. Intuitively, this is similar to bound-
ing the length of the computed inductive trace over Md.

In case Mc has a counterexample, a real leak (of length k) is found. Other-
wise, since Mc considers all possible executions of Md of length k, Ifc-CEGAR
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Algorithm 1. Ifc-CEGAR (P,H)

Input: A program P and a set of high-security variables H
Output: SAFE, UNSAFE or UNKNOWN.

1 Mt ← ConstructTaintModel(P, H)
2 Md ← ConstructSCModel(P, H)
3 G ← [G0 = Initt]
4 H ← [H0 = Initd]
5 repeat
6 (G, Rtaint, π) ← MC.Solve(Mt,G)
7 if Rtaint = SAFE then
8 return SAFE

9 else
10 H ← ReWrite(G,H)
11 Mc ← Constraint(Md, π)
12 (H , Rs, π) ← MC.Solve(Mc,H)
13 if Rs = UNSAFE then
14 return UNSAFE

15 else
16 G ← ReWrite(H ,G)
17 Mt ← Refine(Mt,G)

18 until ∞
19 return UNKNOWN

deduces that there are no counterexamples of length k. In particular, the coun-
terexample π is ruled out. Ifc-CEGAR therefore uses this fact to refine Mt

and G.

Inductive Trace Rewriting. Consider the set of program variables X, taint
variables Xt, and self compositions variables Xd. As noted above, Mt over-
approximates Md. Intuitively, it may mark a variable x as tainted when x does
not leak information. Equivalently, if a variable x is found to be untainted in Mt

then it is known to also not leak information in Md. More formally, the following
relation holds: ¬xt → (x = xd).

This gives us a procedure for rewriting a trace over Mt to a trace over Md. Let
G = [G0, . . . , Gk] be an inductive trace over Mt. Considering the definition of
Mt, G can be decomposed and rewritten as: Gi(Y ) := Ḡi(X)∧Ḡt

i(Xt)∧ψ(X,Xt).
Namely, Ḡi(X) and Ḡt

i(Xt) are sub-formulas of Gi over only X and Xt variables,
respectively, and ψ(X,Xt) is the part connecting X and Xt.

Since G is an inductive trace Gi(Y )∧Tr t(Y, Y ′) → Gi+1(Y ′) holds. Following
the definition of Tr t and the above decomposition of Gi, the following holds:

Ḡi(X) ∧ Tr(X,X ′) → Ḡi+1(X ′)
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Let H = [H0, . . . , Hk] be a trace w.r.t. Md. We define the update of H by
G as the trace H∗ = [H∗

0 , . . . , H∗
k ], which is defined as follows:

H∗
0 := Initd (8)

H∗
i (Z) := Hi(Z) ∧ Ḡi(X) ∧ Ḡi(Xd) ∧

(∧
{x = xd|Gi(Y ) → ¬xt}

)
(9)

Intuitively, if a variable x ∈ X is known to be untainted in Mt, using Corol-
lary 2 we conclude that x = xd in Md.

A similar update can be defined when updating a trace G w.r.t. Mt by a trace
H w.r.t. Md. In this case, we use the following relation: ¬(x = xd) → xt. Let
H = [H0(Z), . . . , Hk(Z)] be the inductive trace w.r.t. Md. H can be decomposed
and written as Hi(Z) := H̄i(X) ∧ H̄d

i (Xd) ∧ φ(X,Xd).
Due to the definition of Md and an inductive trace, the following holds:

H̄i(X) ∧ Tr(X,X ′) → H̄i(X ′)

H̄d
i (Xd) ∧ Tr(Xd,X

′
d) → H̄d

i (X ′
d)

We can therefore update a trace G = [G0, . . . , Gk] w.r.t. Mt by defining the
trace G∗ = [G∗

0, . . . , G
∗
k], where:

G∗
0 := Initd (10)

G∗
i (Y ) := Gi(Y ) ∧ H̄i(X) ∧ H̄d

i (X) ∧
(∧

{xt|Hi(Z) → ¬(x = xd)}
)

(11)

Updating G by H, and vice-versa, as described above is based on the fact
that Mt over-approximates Md w.r.t. tainted variables (namely, Corollaries 1 and
2). It is therefore important to note that G∗ in particular, does not “gain” more
precision due to this process.

Lemma 1. Let G be an inductive trace w.r.t. Mt and H an inductive trace
w.r.t. Md. Then, the updated H∗ and G∗ are inductive traces w.r.t. Md and
Mt, respectively.

Refinement. Recall that in the current scenario, a counterexample was found
in Mt, and was shown to be spurious in Md. This fact can be used to refine both
Mt and G.

As a first step, we observe that if x = xd in Md, then ¬xt should hold in
Mt. However, since Mt is an over-approximation it may allow x to be tainted,
namely, allow xt to be evaluated to true.

In order to refine Mt and G, we define a strengthening procedure for G,
which resembles the updating procedure that appears in the previous section.
Let H = [H0, . . . , Hk] be a trace w.r.t. Md and G = [G0, . . . , Gk] be a trace
w.r.t. Mt, then the strengthening of G is denoted as Gr = [Gr

0, . . . , G
r
k] such

that:
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Gr
0 :=Initd (12)

Gr
i (Y ) :=Gi(Y ) ∧ H̄i(X) ∧ H̄s

i (X) ∧
(∧

{xt|Hi(Z) → ¬(x = xd)}
)

∧(∧
{¬xt|Hi(Z) → (x = xd)}

)
(13)

The above gives us a procedure for strengthening G by using H. Note that
since Mt is an over-approximation of Md, it may allow a variable x ∈ X to be
tainted, while in Md (and therefore in H), x = xd. As a result, after strengthen-
ing Gr is not necessarily an inductive trace w.r.t. Mt, namely, Gr

i ∧Tr t → Gr
i+1

′

does not necessarily hold. In order to make Gr an inductive trace, Mt must be
refined.

Let us assume that Gr
i ∧ Tr t → Gr

i+1
′ does not hold. By that, Gr

i ∧ Tr t ∧
¬Gr

i+1
′ is satisfiable. Considering the way Gr is strengthened, three exists x ∈ X

such that Gr
i ∧ Tr t ∧ x′

t is satisfiable and Gr
i+1 ⇒ ¬xt. The refinement step is

defined by:

x′
t = Gr

i ? false : (Θ(cond) ∨ (cond ? Θ(ϕ1) : Θ(ϕ2)))

This refinement step changes the next state function of xt such that whenever
Gi holds, xt is forced to be false at the next time frame.

Lemma 2. Let Gr be a strengthened trace, and let Mr
t be the result of refine-

ment as defined above. Then, Gr is an inductive trace w.r.t Mr
t .

Theorem 1. Let A be a sound and complete model checking algorithm w.r.t.
FOL(T ) for some T , such that A maintains an inductive trace. Assuming Ifc-
CEGAR uses A, then Ifc-CEGAR is both sound and complete.

Proof (Sketch). Soundness follows directly from the soundness of taint analysis.
For completeness, assume Md is SAFE. Due to our assumption that A is sound
and complete, A emits a closed inductive trace H. Intuitively, assuming H is of
size k, then the next state function of every taint variable in Mt can be refined to
be a constant false after a specific number of steps. Then, H can be translated to
a closed inductive trace G over Mt by following the above presented formalism.
Using Lemma 2 we can show that a closed inductive trace exists for the refined
taint model.

5.2 IFC-BMC

In this section we introduce a different method based on Bounded Model Check-
ing (BMC) [6] that uses lazy self-composition for solving the information flow
security problem. This approach is described in Algorithm 2. In addition to the
program P , and the specification of high-security variables H, it uses an extra
parameter BND that limits the maximum number of loop unrolls performed on
the program P . (Alternatively, one can fall back to an unbounded verification
method after BND is reached in BMC).
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Algorithm 2. Ifc-BMC (P,H,BND)

Input: A program P , a set of high-security variables H, max unroll bound
BND

Output: SAFE, UNSAFE or UNKNOWN.
1 i ← 0
2 repeat
3 M(i) ← LoopUnroll(P, i)
4 Mt(i) ← EncodeTaint(M(i))
5 TR of Ms(i) ← LazySC(M(i), Mt(i))
6 Bad of Ms(i) ← ∨

y∈L

¬(y = y′)

7 result ← SolveSMT(Ms(i))
8 if result = counterexample then
9 return UNSAFE

10 live taint ← CheckLiveTaint(Mt(i))
11 if live taint = false then
12 return SAFE

13 i ← i + 1

14 until i = BND
15 return UNKNOWN

Algorithm 3. LazySC(Mt,M)
Input: A program model M and the corresponding taint program model Mt

Output: Transition relation of the self-composed program Trs
1 for each state update x ← ϕ in transition relation of M do
2 add state update x ← ϕ to Trs
3 tainted ← SolveSMT(query on xt in Mt)
4 if tainted = false then
5 add state update x′ ← x to Trs
6 else
7 add state update x′ ← duplicate(ϕ) to Trs

8 return Trs

In each iteration of the algorithm (line 2), loops in the program P are unrolled
(line 3) to produce a loop-free program, encoded as a transition system M(i). A
new transition system Mt(i) is created (line 4) following the method described
in Sect. 4.1, to capture precise taint propagation in the unrolled program M(i).
Then lazy self-composition is applied (line 5), as shown in detail in Algorithm 3,
based on the interplay between the taint model Mt(i) and the transition system
M(i). In detail, for each variable x updated in M(i), where the state update is
denoted x := ϕ, we use xt in Mt(i) to encode whether x is possibly tainted. We
generate an SMT query to determine if xt is satisfiable. If it is unsatisfiable, i.e.,
xt evaluates to False, we can conclude that high security variables cannot affect
the value of x. In this case, its duplicate variable x′ in the self-composed program
Ms(i) is set equal to x, eliminating the need to duplicate the computation that
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will produce x′. Otherwise if xt is satisfiable (or unknown), we duplicate ϕ and
update x′ accordingly.

The self-composed program Ms(i) created by LazySC (Algorithm 3) is then
checked by a bounded model checker, where a bad state is a state where any
low-security output y (y ∈ L, where L denotes the set of low-security vari-
ables) has a different value than its duplicate variable y′ (line 6). (For ease of
exposition, a simple definition of bad states is shown here. This can be suit-
ably modified to account for Obsx(X) predicates described in Sect. 4.) A coun-
terexample produced by the solver indicates a leak in the original program P .
We also use an early termination check for BMC encoded as an SMT-based
query CheckLiveTaint, which essentially checks whether any live variable is
tainted (line 10). If none of the live variables is tainted, i.e., any initial taint
from high-security inputs has been squashed, then Ifc-BMC can stop unrolling
the program any further. If no conclusive result is obtained, Ifc-BMC will return
UNKNOWN .

6 Implementation and Experiments

We have implemented prototypes of Ifc-CEGAR and Ifc-BMC for informa-
tion flow checking. Both are implemented on top of SeaHorn [18], a software
verification platform that encodes programs as CHC (Constrained Horn Clause)
rules. It has a frontend based on LLVM [22] and backends to Z3 [15] and other
solvers. Our prototype has a few limitations. First, it does not support bit-
precise reasoning and does not support complex data structures such as lists.
Our implementation of symbolic taint analysis is flexible in supporting any given
taint policy (i.e., rules for taint generation, propagation, and removal). It uses
an encoding that fully leverages SMT-based model checking techniques for pre-
cise taint analysis. We believe this module can be independently used in other
applications for security verification.

6.1 Implementation Details

Ifc-CEGAR Implementation. As discussed in Sect. 5.1, the Ifc-CEGAR imple-
mentation uses taint analysis and self-composition synergistically and is tai-
lored toward proving that programs are secure. Both taint analysis and self-
composition are implemented as LLVM-passes that instrument the program.
Our prototype implementation executes these two passes interchangeably as the
problem is being solved. The Ifc-CEGAR implementation uses Z3’s CHC solver
engine called Spacer. Spacer, and therefore our Ifc-CEGAR implementation,
does not handle the bitvector theory, limiting the set of programs that can be
verified using this prototype. Extending the prototype to support this theory
will be the subject of future work.

Ifc-BMC Implementation. In the Ifc-BMC implementation, the loop unroller,
taint analysis, and lazy self-composition are implemented as passes that work on
CHC, to generate SMT queries that are passed to the backend Z3 solver. Since
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the Ifc-BMC implementation uses Z3, and not Spacer, it can handle all the
programs in our evaluation, unlike the Ifc-CEGAR implementation.

Input Format. The input to our tools is a C-program with annotations indicating
which variables are secret and the locations at which leaks should be checked.
In addition, variables can be marked as untainted at specific locations.

6.2 Evaluation Benchmarks

For experiments we used a machine running Intel Core i7-4578U with 8GB of
RAM. We tested our prototypes on several micro-benchmarks2 in addition to
benchmarks inspired by real-world programs. For comparison against eager self-
composition, we used the SeaHorn backend solvers on a 2-copy version of the
benchmark. fibonacci is a micro-benchmark that computes the N-th Fibonacci
number. There are no secrets in the micro-benchmark, and this is a sanity check
taken from [33]. list 4/8/16 are programs working with linked lists, the trailing
number indicates the maximum number of nodes being used. Some linked list
nodes contain secrets while others have public data, and the verification problem
is to ensure that a particular function that operates on the linked list does not
leak the secret data. modadd safe is program that performs multi-word addition;
modexp safe/unsafe are variants of a program performing modular exponen-
tiation; and pwdcheck safe/unsafe are variants of program that compares an
input string with a secret password. The verification problem in these examples
is to ensure that an iterator in a loop does not leak secret information, which
could allow a timing attack. Among these benchmarks, the list 4/8/16 use
structs while modexp safe/unsafe involve bitvector operations, both of which
are not supported by Spacer, and thus not by our Ifc-CEGAR prototype.

6.3 IFC-CEGAR Results

Table 1 shows the Ifc-CEGAR results on benchmark examples with varying
parameter values. The columns show the time taken by eager self-composition
(Eager SC) and Ifc-CEGAR, and the number of refinements in Ifc-CEGAR.
“TO” denotes a timeout of 300 s.

We note that all examples are secure and do not leak information. Since
our path-sensitive symbolic taint analysis is more precise than a type-based
taint analysis, there are few counterexamples and refinements. In particular,
for our first example pwdcheck safe, self-composition is not required as our
path-sensitive taint analysis is able to prove that no taint propagates to the
variables of interest. It is important to note that type-based taint analysis cannot
prove that this example is secure. For our second example, pwdcheck2 safe, our
path-sensitive taint analysis is not enough. Namely, it finds a counterexample,
due to an implicit flow where a for-loop is conditioned on a tainted value, but
there is no real leak because the loop executes a constant number of times.

2 http://www.cs.princeton.edu/∼aartig/benchmarks/ifc bench.zip.

http://www.cs.princeton.edu/~aartig/benchmarks/ifc_bench.zip
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Table 1. Ifc-CEGAR results (time in seconds)

Benchmark Parameter Eager SC Ifc-CEGAR

Time (s) Time (s) #Refinements

pwdcheck safe 4 8.8 0.2 0

8 TO 0.2 0

16 TO 0.2 0

32 TO 0.2 0

pwdcheck2 safe N > 8 TO 61 1

modadd safe 2048b 180 0.2 0

4096b TO 0.3 0

Our refinement-based approach can easily handle this case, where Ifc-CEGAR
uses self-composition to find that the counterexample is spurious. It then refines
the taint analysis model, and after one refinement step, it is able to prove that
pwdcheck2 safe is secure. While these examples are fairly small, they clearly
show that Ifc-CEGAR is superior to eager self-composition.

6.4 IFC-BMC Results

The experimental results for Ifc-BMC are shown in Table 2, where we use some
unsafe versions of benchmark examples as well. Results are shown for total time
taken by eager self-composition (Eager SC) and the Ifc-BMC algorithm. (As
before, “TO” denotes a timeout of 300 s.) Ifc-BMC is able to produce an answer
significantly faster than eager self-composition for all examples. The last two
columns show the time spent in taint checks in Ifc-BMC, and the number of
taint checks performed.

Table 2. Ifc-BMC results (time in seconds)

Benchmark Result Eager SC Ifc-BMC Taint checks #Taint checks

Time (s) Time (s) Time (s)

fibonacci SAFE 0.55 0.1 0.07 85

list 4 SAFE 2.9 0.15 0.007 72

list 8 SAFE 3.1 0.6 0.02 144

list 16 SAFE 3.2 1.83 0.08 288

modexp safe SAFE TO 0.05 0.01 342

modexp unsafe UNSAFE TO 1.63 1.5 364

pwdcheck safe SAFE TO 0.05 0.01 1222

pwdcheck unsafe UNSAFE TO 1.63 1.5 809
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To study the scalability of our prototype, we tested Ifc-BMC on the modular
exponentiation program with different values for the maximum size of the integer
array in the program. These results are shown in Table 3. Although the Ifc-BMC
runtime grows exponentially, it is reasonably fast – less than 2 min for an array
of size 64.

7 Related Work

A rich body of literature has studied the verification of secure information flow
in programs. Initial work dates back to Denning and Denning [16], who intro-
duced a program analysis to ensure that confidential data does not flow to
non-confidential outputs. This notion of confidentiality relates closely to: (i)
non-interference introduced by Goguen and Meseguer [17], and (ii) separability
introduced by Rushby [27]. Each of these study a notion of secure information
flow where confidential data is strictly not allowed to flow to any non-confidential
output. These definitions are often too restrictive for practical programs, where
secret data might sometimes be allowed to flow to some non-secret output (e.g.,
if the data is encrypted before output), i.e. they require declassification [29]. Our
approach allows easy and fine-grained de-classification.

A large body of work has also studied the use of type systems that ensure
secure information flow. Due to a lack of space, we review a few exemplars and
refer the reader to Sabelfeld and Myers [28] for a detailed survey. Early work in
this area dates back to Volpano et al. [35] who introduced a type system that
maintains secure information based on the work of Denning and Denning [16].
Myers introduced the JFlow programming language (later known as Jif: Java
information flow) [25] which extended Java with security types. Jif has been
used to build clean slate, secure implementations of complex end-to-end sys-
tems, e.g. the Civitas [10] electronic voting system. More recently, Patrigiani et
al. [26] introduced the Java Jr. language which extends Java with a security type
system, automatically partitions the program into secure and non-secure parts
and executes the secure parts inside so-called protected module architectures. In

Table 3. Ifc-BMC results on modexp (time in seconds)

Benchmark Parameter Time (s) #Taint checks

modexp 8 0.19 180

16 1.6 364

24 3.11 548

32 8.35 732

40 11.5 916

48 21.6 1123

56 35.6 1284

64 85.44 1468
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contrast to these approaches, our work can be applied to existing security-critical
code in languages like C with the addition of only a few annotations.

A different approach to verifying secure information flow is the use of dynamic
taint analysis (DTA) [3,12,13,21,30,31] which instruments a program with taint
variables and taint tracking code. Advantages of DTA are that it is scalable to
very large applications [21], can be accelerated using hardware support [13],
and tracks information flow across processes, applications and even over the
network [12]. However, taint analysis necessarily involves imprecision and in
practice leads to both false positives and false negatives. False positives arise
because taint analysis is an overapproximation. Somewhat surprisingly, false
negatives are also introduced because tracking implicit flows using taint analysis
leads to a deluge of false-positives [30], thus causing practical taint tracking
systems to ignore implicit flows. Our approach does not have this imprecision.

Our formulation of secure information flow is based on the self-composition
construction proposed by Barthe et al. [5]. A specific type of self-composition
called product programs was considered by Barthe et al. [4], which does not allow
control flow divergence between the two programs. In general this might miss
certain bugs as it ignores implicit flows. However, it is useful in verifying crypto-
graphic code which typically has very structured control flow. Almeida et al. [1]
used the product construction to verify that certain functions in cryptographic
libraries execute in constant-time.

Terauchi and Aiken [33] generalized self-composition to consider k-safety,
which uses k − 1 compositions of a program with itself. Note that self-
composition is a 2-safety property. An automated verifier for k-safety properties
of Java programs based on Cartesian Hoare Logic was proposed by Sousa and
Dillig [32]. A generalization of Cartesian Hoare Logic, called Quantitative Carte-
sian Hoare Logic was introduced by Chen et al. [8]; the latter can also be used to
reason about the execution time of cryptographic implementations. Among these
efforts, our work is mostly closely related to that of Terauchi and Aiken [33], who
used a type-based analysis as a preprocessing step to self-composition. We use a
similar idea, but our taint analysis is more precise due to being path-sensitive,
and it is used within an iterative CEGAR loop. Our path-sensitive taint analysis
leads to fewer counterexamples and thereby cheaper self-composition, and our
refinement approach can easily handle examples with benign branches. In con-
trast to the other efforts, our work uses lazy instead of eager self-composition,
and is thus more scalable, as demonstrated in our evaluation. A recent work [2]
also employs trace-based refinement in security verification, but it does not use
self-composition.

Our approach has some similarities to other problems related to tainting [19].
In particular, Change-Impact Analysis is the problem of determining what parts
of a program are affected due to a change. Intuitively, it can be seen as a form
of taint analysis, where the change is treated as taint. To solve this, Gyori et
al. [19] propose a combination of an imprecise type-based approach with a pre-
cise semantics-preserving approach. The latter considers the program before
and after the change and finds relational equivalences between the two ver-
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sions. These are then used to strengthen the type-based approach. While our
work has some similarities, there are crucial differences as well. First, our taint
analysis is not type-based, but is path-sensitive and preserves the correctness
of the defined abstraction. Second, our lazy self-composition is a form of an
abstraction-refinement framework, and allows a tighter integration between the
imprecise (taint) and precise (self-composition) models.

8 Conclusions and Future Work

A well-known approach for verifying secure information flow is based on the
notion of self-composition. In this paper, we have introduced a new approach
for this verification problem based on lazy self-composition. Instead of eagerly
duplicating the program, lazy self-composition uses a synergistic combination
of symbolic taint analysis (on a single copy program) and self-composition by
duplicating relevant parts of the program, depending on the result of the taint
analysis. We presented two instances of lazy self-composition: the first uses taint
analysis and self-composition in a CEGAR loop; the second uses bounded model
checking to dynamically query taint checks and self-composition based on the
results of these dynamic checks. Our algorithms have been implemented in the
SeaHorn verification platform and results show that lazy self-composition is
able to verify many instances not verified by eager self-composition.

In future work, we are interested in extending lazy self-composition to sup-
port learning of quantified relational invariants. These invariants are often
required when reasoning about information flow in shared data structures of
unbounded size (e.g., unbounded arrays, linked lists) that contain both high-
and low-security data. We are also interested in generalizing lazy self-composition
beyond information-flow to handle other k-safety properties like injectivity, asso-
ciativity and monotonicity.

References

1. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying
constant-time implementations. In: 25th USENIX Security Symposium, USENIX
Security, pp. 53–70 (2016)

2. Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.:
Decomposition instead of self-composition for proving the absence of timing chan-
nels. In: PLDI, pp. 362–375 (2017)

3. Babil, G.S., Mehani, O., Boreli, R., Kaafar, M.: On the effectiveness of dynamic
taint analysis for protecting against private information leaks on Android-based
devices. In: Proceedings of Security and Cryptography (2013)

4. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 17

5. Barthe, G., D’Argenio, P.R., Rezk,T.: Secure information flow by self-composition.
In: 17th IEEE Computer Security Foundations Workshop, CSFW-17, pp. 100–114
(2004)

https://doi.org/10.1007/978-3-642-21437-0_17


154 W. Yang et al.

6. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

7. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

8. Chen, J., Feng, Y., Dillig, I.: Precise detection of side-channel vulnerabilities using
quantitative Cartesian Hoare logic. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, pp. 875–890.
ACM, New York (2017)

9. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

10. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: toward a secure voting system.
In: Proceedings of the 2008 IEEE Symposium on Security and Privacy, SP 2008,
pp. 354–368. IEEE Computer Society, Washington, DC (2008)

11. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

12. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham,
P.: Vigilante: end-to-end containment of Internet worms. In: Proceedings of the
Symposium on Operating Systems Principles (2005)

13. Crandall, J.R., Chong, F.T.: Minos: control data attack prevention orthogonal to
memory model. In: Proceedings of the 37th IEEE/ACM International Symposium
on Microarchitecture (2004)

14. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Relational verification
through horn clause transformation. In: Rival, X. (ed.) SAS 2016. LNCS, vol.
9837, pp. 147–169. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53413-7 8

15. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

16. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504–513 (1977)

17. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 26–28 April 1982, pp.
11–20 (1982)

18. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
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