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Preface

It was our privilege to serve as the program chairs for CAV 2018, the 30th International
Conference on Computer-Aided Verification. CAV is an annual conference dedicated
to the advancement of the theory and practice of computer-aided formal analysis
methods for hardware and software systems. CAV 2018 was held in Oxford, UK, July
14–17, 2018, with the tutorials day on July 13.

This year, CAV was held as part of the Federated Logic Conference (FLoC) event
and was collocated with many other conferences in logic. The primary focus of CAV is
to spur advances in hardware and software verification while expanding to new
domains such as learning, autonomous systems, and computer security. CAV is at the
cutting edge of research in formal methods, as reflected in this year’s program.

CAV 2018 covered a wide spectrum of subjects, from theoretical results to concrete
applications, including papers on application of formal methods in large-scale industrial
settings. It has always been one of the primary interests of CAV to include papers that
describe practical verification tools and solutions and techniques that ensure a high
practical appeal of the results. The proceedings of the conference are published in
Springer’s Lecture Notes in Computer Science series. A selection of papers were
invited to a special issue of Formal Methods in System Design and the Journal of the
ACM.

This is the first year that the CAV proceedings are published under an Open Access
license, thus giving access to CAV proceedings to a broad audience. We hope that this
decision will increase the scope of practical applications of formal methods and will
attract even more interest from industry.

CAV received a very high number of submissions this year—215 overall—resulting
in a highly competitive selection process. We accepted 13 tool papers and 52 regular
papers, which amounts to an acceptance rate of roughly 30% (for both regular papers
and tool papers). The high number of excellent submissions in combination with the
scheduling constraints of FLoC forced us to reduce the length of the talks to 15
minutes, giving equal exposure and weight to regular papers and tool papers.

The accepted papers cover a wide range of topics and techniques, from algorithmic
and logical foundations of verification to practical applications in distributed, net-
worked, cyber-physical, and autonomous systems. Other notable topics are synthesis,
learning, security, and concurrency in the context of formal methods. The proceedings
are organized according to the sessions in the conference.

The program featured two invited talks by Eran Yahav (Technion), on using deep
learning for programming, and by Somesh Jha (University of Wisconsin Madison) on
adversarial deep learning. The invited talks this year reflect the growing interest of the
CAV community in deep learning and its connection to formal methods. The tutorial
day of CAV featured two invited tutorials, by Shaz Qadeer on verification of con-
current programs and by Matteo Maffei on static analysis of smart contracts. The
subjects of the tutorials reflect the increasing volume of research on verification of



concurrent software and, as of recently, the question of correctness of smart contracts.
As every year, one of the winners of the CAV award also contributed a presentation.
The tutorial day featured a workshop in memoriam of Mike Gordon, titled “Three
Research Vignettes in Memory of Mike Gordon,” organized by Tom Melham and
jointly supported by CAV and ITP communities.

Moreover, we continued the tradition of organizing a LogicLounge. Initiated by the
late Helmut Veith at the Vienna Summer of Logic 2014, the LogicLounge is a series of
discussions on computer science topics targeting a general audience and has become a
regular highlight at CAV. This year’s LogicLounge took place at the Oxford Union and
was on the topic of “Ethics and Morality of Robotics,” moderated by Judy Wajcman
and featuring a panel of experts on the topic: Luciano Floridi, Ben Kuipers, Francesca
Rossi, Matthias Scheutz, Sandra Wachter, and Jeannette Wing. We thank May Chan,
Katherine Fletcher, and Marta Kwiatkowska for organizing this event, and the Vienna
Center of Logic and Algorithms for their support.

In addition, CAV attendees enjoyed a number of FLoC plenary talks and events
targeting the broad FLoC community.

In addition to the main conference, CAV hosted the Verification Mentoring
Workshop for junior scientists entering the field and a high number of pre- and
post-conference technical workshops: the Workshop on Formal Reasoning in Dis-
tributed Algorithms (FRIDA), the workshop on Runtime Verification for Rigorous
Systems Engineering (RV4RISE), the 5th Workshop on Horn Clauses for Verification
and Synthesis (HCVS), the 7th Workshop on Synthesis (SYNT), the First International
Workshop on Parallel Logical Reasoning (PLR), the 10th Working Conference on
Verified Software: Theories, Tools and Experiments (VSTTE), the Workshop on
Machine Learning for Programming (MLP), the 11th International Workshop on
Numerical Software Verification (NSV), the Workshop on Verification of Engineered
Molecular Devices and Programs (VEMDP), the Third Workshop on Fun With Formal
Methods (FWFM), the Workshop on Robots, Morality, and Trust through the Verifi-
cation Lens, and the IFAC Conference on Analysis and Design of Hybrid Systems
(ADHS).

The Program Committee (PC) for CAV consisted of 80 members; we kept the
number large to ensure each PC member would have a reasonable number of papers to
review and be able to provide thorough reviews. As the review process for CAV is
double-blind, we kept the number of external reviewers to a minimum, to avoid
accidental disclosures and conflicts of interest. Altogether, the reviewers drafted over
860 reviews and made an enormous effort to ensure a high-quality program. Following
the tradition of CAV in recent years, the artifact evaluation was mandatory for tool
submissions and optional but encouraged for regular submissions. We used an Artifact
Evaluation Committee of 25 members. Our goal for artifact evaluation was to provide
friendly “beta-testing” to tool developers; we recognize that developing a stable tool on
a cutting-edge research topic is certainly not easy and we hope the constructive
comments provided by the Artifact Evaluation Committee (AEC) were of help to the
developers. As a result of the evaluation, the AEC accepted 25 of 31 artifacts
accompanying regular papers; moreover, all 13 accepted tool papers passed the eval-
uation. We are grateful to the reviewers for their outstanding efforts in making sure
each paper was fairly assessed. We would like to thank our artifact evaluation chair,
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Igor Konnov, and the AEC for evaluating all artifacts submitted with tool papers as
well as optional artifacts submitted with regular papers.

Of course, without the tremendous effort put into the review process by our PC
members this conference would not have been possible. We would like to thank the PC
members for their effort and thorough reviews.

We would like to thank the FLoC chairs, Moshe Vardi, Daniel Kroening, and Marta
Kwiatkowska, for the support provided, Thanh Hai Tran for maintaining the CAV
website, and the always helpful Steering Committee members Orna Grumberg, Aarti
Gupta, Daniel Kroening, and Kenneth McMillan. Finally, we would like to thank the
team at the University of Oxford, who took care of the administration and organization
of FLoC, thus making our jobs as CAV chairs much easier.

July 2018 Hana Chockler
Georg Weissenbacher
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An Attestor for Verifying Java Pointer Programs
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Abstract. We present a graph-based tool for analysing Java programs
operating on dynamic data structures. It involves the generation of
an abstract state space employing a user-defined graph grammar. LTL
model checking is then applied to this state space, supporting both
structural and functional correctness properties. The analysis is fully
automated, procedure-modular, and provides informative visual feedback
including counterexamples in the case of property violations.

1 Introduction

Pointers constitute an essential concept in modern programming languages, and
are used for implementing dynamic data structures like lists, trees etc. However,
many software bugs can be traced back to the erroneous use of pointers by e.g.
dereferencing null pointers or accidentally pointing to wrong parts of the heap.
Due to the resulting unbounded state spaces, pointer errors are hard to detect.
Automated tool support for validation of pointer programs that provides mean-
ingful debugging information in case of violations is therefore highly desirable.

Attestor is a verification tool that attempts to achieve both of these goals.
To this aim, it first constructs an abstract state space of the input program by
means of symbolic execution. Each state depicts both links between heap objects
and values of program variables using a graph representation. Abstraction is per-
formed on state level by means of graph grammars. They specify the data struc-
tures maintained by the program, and describe how to summarise substructures
of the heap in order to obtain a finite representation. After labelling each state
with propositions that provide information about structural properties such as
reachability or heap shapes, the actual verification task is performed in a second
step. To this aim, the abstract state space is checked against a user-defined LTL
specification. In case of violations, a counterexample is provided.

H. Arndt and C. Matheja—Supported by Deutsche Forschungsgemeinschaft (DFG)
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In summary, Attestor’s main features can be characterized as follows:

– It employs context-free graph grammars as a formal underpinning for defining
heap abstractions. These grammars enable local heap concretisation and thus
naturally provide implicit abstract semantics.

– The full instruction set of Java Bytecode is handled. Program actions that are
outside the scope of our analysis, such as arithmetic operations or Boolean
tests on payload data, are handled by (safe) over-approximation.

– Specifications are given by linear-time temporal logic (LTL) formulae which
support a rich set of program properties, ranging from memory safety over
shape, reachability or balancedness to properties such as full traversal or
preservation of the exact heap structure.

– Except for expecting a graph grammar that specifies the data structures han-
dled by a program, the analysis is fully automated. In particular, no program
annotations are required.

– Modular reasoning is supported in the form of contracts that summarise the
effect of executing a (recursive) procedure. These contracts can be automat-
ically derived or manually specified.

– Valuable feedback is provided through a comprehensive report including (min-
imal) non-spurious counterexamples in case of property violations.

– The tool’s functionality is made accessible through the command line as well
as a graphical user and an application programming interface.

Availability.Attestor’s source code, benchmarks, and documentation are avail-
able online at https://moves-rwth.github.io/attestor.

2 The Attestor Tool

Attestor is implemented in Java and consists of about 20.000 LOC (excluding
comments and tests). An architectural overview is depicted in Fig. 1. It shows the
tool inputs (left), its outputs (right), the Attestor backend with its processing
phases (middle), the Attestor frontend (below) as well as the API connecting
back- and frontend. These elements are discussed in detail below.

2.1 Input

As shown in Fig. 1 (left), a verification task is given by four inputs. First, the
program to be analysed. Here, Java as well as Java Bytecode programs with
possibly recursive procedures are supported, where the former is translated to
the latter prior to the analysis. Second, the specification has to be given by a
set of LTL formulae enriched with heap-specific propositions. See Sect. 3 for a
representative list of exemplary specifications.

As a third input, Attestor expects the declaration of the graph grammar
that guides the abstraction. In order to obtain a finite abstract state space,
this grammar is supposed to cover the data structures emerging during program

https://moves-rwth.github.io/attestor
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Fig. 1. The Attestor tool

execution. The user may choose from a set of grammar definitions for standard
data structures such as singly- and doubly-linked lists and binary trees, the
manual specification in a JSON-style graph format and combinations thereof.

Fourth, additional options can be given that e.g. define the initial heap config-
uration(s) (in JSON-style graph format), that control the granularity of abstrac-
tion and the garbage collection behaviour, or that allow to re-use results of
previous analyses in the form of procedure contracts [11,13].

2.2 Phases

Attestor proceeds in six main phases, see Fig. 1 (middle). In the first and third
phase, all inputs are parsed and preprocessed. The input program is read and
transformed to Bytecode (if necessary), the input graphs (initial configuration,
procedure contracts, and graph grammar), LTL formulae and further options
are read.

Depending on the provided LTL formulae, additional markings are inserted
into the initial heap (see [8] for details) in the second phase. They are used to
track identities of objects during program execution, which is later required to
validate visit and neighbourhood properties during the fifth phase.

In the next phase the actual program analysis is conducted. To this aim,
Attestor first constructs the abstract state space as described in Sect. 2.3 in
detail. In the fifth phase we check whether the provided LTL specification holds
on the state space resulting from the preceding step. We use an off-the-shelf
tableau-based LTL model checking algorithm [2].
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If desired, during all phases results are forwarded to the API to make them
accessible to the frontend or the user directly. We address this output in Sect. 2.4.

2.3 Abstract State Space Generation

The core module of Attestor is the abstract state space generation. It employs
an abstraction approach based on hyperedge replacement grammars, whose the-
oretical underpinnings are described in [9] in detail. It is centred around a graph-
based representation of the heap that contains concrete parts side by side with
placeholders representing a set of heap fragments of a certain shape. The state
space generation loop as implemented in Attestor is shown in Fig. 2.

Fig. 2. State space generation.

Initially it is provided with
the initial program state(s),
that is, the program counter
corresponding to the starting
statement together with the ini-
tial heap configuration(s). From
these, Attestor picks a state
at random and applies the
abstract semantics of the next
statement: First, the heap con-
figuration is locally concretised
ensuring that all heap parts
required for the statement to
execute are accessible. This is
enabled by applying rules of the
input graph grammar in for-
ward direction, which can entail
branching in the state space.
The resulting configurations are
then manipulated according to
the concrete semantics of the statement. At this stage, Attestor automati-
cally detects possible null pointer dereferencing operations as a byproduct of the
state space generation. In a subsequent rectification step, the heap configuration
is cleared from e.g. dead variables and garbage (if desired). Consequently, mem-
ory leaks are detected immediately. The rectified configuration is then abstracted
with respect to the data structures specified by means of the input graph gram-
mar. Complementary to concretisation, this is realised by applying grammar
rules in backward direction, which involves a check for embeddings of right-
hand sides. A particular strength of our approach is its robustness against local
violations of data structures, as it simply leaves the corresponding heap parts
concrete. Finalising the abstract execution step, the resulting state is labelled
with the atomic propositions it satisfies. This check is efficiently implemented by
means of heap automata (see [12,15] for details). By performing a subsumption
check on the state level, Attestor detects whether the newly generated state
is already covered by a more abstract one that has been visited before. If not, it
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Fig. 3. Screenshot of Attestor’s frontend for state space exploration. (Color figure
online)

adds the resulting state to the state space and starts over by picking a new state.
Otherwise, it checks whether further states have to be processed or whether a
fixpoint in the state space generation is reached. In the latter case, this phase is
terminated.

2.4 Output

As shown in Fig. 1 (right), we obtain three main outputs once the analysis is
completed: the computed abstract state space, the derived procedure contracts,
and the model checking results. For each LTL formula in the specification, results
comprise the possible answers “formula satisfied”, “formula (definitely) not sat-
isfied”, or “formula possibly not satisfied”. In case of the latter two, Attestor
additionally produces a counterexample, i.e. an abstract trace that violates the
formula. If Attestor was able to verify the non-spuriousness of this counterex-
ample (second case), we are additionally given a concrete initial heap that is
accountable for the violation and that can be used as a test case for debugging.

Besides the main outputs, Attestor provides general information about the
current analysis. These include log messages such as warnings and errors, but
also details about settings and runtimes of the analyses. The API provides the
interface to retrieve Attestor’s outputs as JSON-formatted data.

2.5 Frontend

Attestor features a graphical frontend that visualises inputs as well as results
of all benchmark runs. The frontend communicates with Attestor’s backend
via the API only. It especially can be used to display and navigate through the
generated abstract state space and counterexample traces.

A screenshot of the frontend for state space exploration is found in Fig. 3.
The left panel is an excerpt of the state space. The right panel depicts the
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currently selected state, where red boxes correspond to variables and constants,
circles correspond to allocated objects/locations, and yellow boxes correspond
to nonterminals of the employed graph grammar, respectively. Arrows between
two circles represent pointers. Further information about the selected state is
provided in the topmost panel. Graphs are rendered using cytoscape.js [6].

3 Evaluation

Tool Comparison. While there exists a plethora of tools for analysing pointer
programs, such as, amongst others, Forester [10], Groove [7], Infer [5],
Hip/Sleek [17], Korat [16], Juggrnaut [9], and Tvla [3], these tools differ
in multiple dimensions:

– Input languages range from C code (Forester, Infer, Hip/Sleek) over
Java/Java Bytecode (Juggrnaut, Korat) to assembly code (Tvla) and
graph programs (Groove).

– The degree of automation differs heavily: Tools like Forester and Infer
only require source code. Others such as Hip/Sleek and Juggrnaut addi-
tionally expect general data structure specifications in the form of e.g. graph
grammars or predicate definitions to guide the abstraction. Moreover, Tvla
requires additional program-dependent instrumentation predicates.

– Verifiable properties typically cover memory safety. Korat is an exception,
because it applies test case generation instead of verification. The tools
Hip/Sleek, Tvla, Groove, and Juggrnaut are additionally capable of
verifying data structure invariants, so-called shape properties. Furthermore,
Hip/Sleek is able to reason about shape-numeric properties, e.g. lengths of
lists, if a suitable specification is provided. While these properties are not
supported by Tvla, it is possible to verify reachability properties. Moreover,
Juggrnaut can reason about temporal properties such as verifying that
finally every element of an input data structure has been accessed.

Benchmarks. Due to the above mentioned diversity there is no publicly avail-
able and representative set of standardised benchmarks to compare the afore-
mentioned tools [1]. We thus evaluated Attestor on a collection of challenging,
pointer intensive algorithms compiled from the literature [3,4,10,14]. To assess
our counterexample generation, we considered invalid specifications, e.g. that a
reversed list is the same list as the input list. Furthermore, we injected faults
into our examples by swapping and deleting statements.

Properties. During state space generation, memory safety (M) is checked. More-
over, we consider five classes of properties that are verified using the built-in
LTL model checker:
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Table 1. The experimental results. All runtimes are in seconds. Verification time
includes state space generation. SLL (DLL) means singly-linked (doubly-linked) list.

No. states State space gen. Verification Total runtime

Benchmark Properties Min Max Min Max Min Max Min Max

SLL.traverse M, S, R, V, N, X 13 97 0.030 0.074 0.039 0.097 0.757 0.848

SLL.reverse M, S, R, V, X 46 268 0.050 0.109 0.050 0.127 0.793 0.950

SLL.reverse (recursive) M, S, V, N, X 40 823 0.038 0.100 0.044 0.117 0.720 0.933

DLL.reverse M, S, R, V, N, X 70 1508 0.076 0.646 0.097 0.712 0.831 1.763

DLL.findLast M, C, X 44 44 0.069 0.069 0.079 0.079 0.938 0.938

SLL.findMiddle M, S, R, V, N, X 75 456 0.060 0.184 0.060 0.210 0.767 0.975

Tree.traverse (Lindstrom) M, S, V, N 229 67941 0.119 8.901 0.119 16.52 0.845 17.36

Tree.traverse (recursive) M, S 91 21738 0.075 1.714 0.074 1.765 0.849 2.894

AVLTree.binarySearch M, S 192 192 0.117 0.172 0.118 0.192 0.917 1.039

AVLTree.searchAndBack M, S, C 455 455 0.193 0.229 0.205 0.289 1.081 1.335

AVLTree.searchAndSwap M, S, C 3855 4104 0.955 1.590 1.004 1.677 1.928 2.521

AVLTree.leftMostInsert M, S 6120 6120 1.879 1.942 1.932 1.943 2.813 2.817

AVLTree.insert M, S 10388 10388 3.378 3.676 3.378 3.802 4.284 4.720

AVLTree.sllToAVLTree M, S, C 7166 7166 2.412 2.728 2.440 2.759 3.383 3.762

– The shape property (S) establishes that the heap is of a specific shape, e.g. a
doubly-linked list or a balanced tree.

– The reachability property (R) checks whether some variable is reachable from
another one via specific pointer fields.

– The visit property (V) verifies whether every element of the input is accessed
by a specific variable.

– The neighbourhood property (N) checks whether the input data structure coin-
cides with the output data structure upon termination.

– Finally, we consider other functional correctness properties (C), e.g. the return
value is not null.

Setup. For performance evaluation, we conducted experiments on an Intel Core
i7-7500U CPU @ 2.70 GHz with the Java virtual machine (OpenJDK version
1.8.0 151) limited to its default setting of 2 GB of RAM. All experiments were run
using the Java benchmarking harness jmh. Our experimental results are shown
in Table 1. Additionally, for comparison purpose we considered Java implemen-
tations of benchmarks that have been previously analysed for memory safety by
Forester [10], see Table 2.
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Table 2. Forester benchmarks (memory
safety only). Verification times are in sec-
onds.

Benchmark No. states Verification

SLL.bubblesort 287 0.134

SLL.deleteElement 152 0.096

SLLHeadPtr (traverse) 111 0.095

SLL.insertsort 369 0.147

ListOfCyclicLists 313 0.153

DLL.insert 379 0.207

DLL.insertsort1 4302 1.467

DLL.insertsort2 1332 0.514

DLL.buildAndReverse 277 0.164

CyclicDLL (traverse) 104 0.108

Tree.construct 44 0.062

Tree.constructAndDSW 1334 0.365

SkipList.insert 302 0.160

SkipList.build 330 0.173

Discussion. The results show that
both memory safety (M) and shape
(S) are efficiently processed, with
regard to both state space size and
runtime. This is not surprising as
these properties are directly han-
dled by the state space generation
engine. The most challenging tasks
are the visit (V) and neighbourhood
(N) properties as they require to
track objects across program execu-
tions by means of markings. The lat-
ter have a similar impact as pointer
variables: increasing their number
impedes abstraction as larger parts
of the heap have to be kept concrete.
This effect can be observed for the
Lindstrom tree traversal procedure
where adding one marking (V) and three markings (N) both increase the verifi-
cation effort by an order of magnitude.
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shape analysis based on forest automata. CoRR abs/1304.5806 (2013)

11. Jansen, C.: Static analysis of pointer programs - linking graph grammars and
separation logic. Ph.D. thesis, RWTH Aachen University, Germany (2017)

12. Jansen, C., Katelaan, J., Matheja, C., Noll, T., Zuleger, F.: Unified reasoning about
robustness properties of symbolic-heap separation logic. In: Yang, H. (ed.) ESOP
2017. LNCS, vol. 10201, pp. 611–638. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54434-1 23

13. Jansen, C., Noll, T.: Generating abstract graph-based procedure summaries for
pointer programs. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp.
49–64. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09108-2 4

14. Loginov, A., Reps, T., Sagiv, M.: Automated verification of the Deutsch-Schorr-
Waite tree-traversal algorithm. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp.
261–279. Springer, Heidelberg (2006). https://doi.org/10.1007/11823230 17

15. Matheja, C., Jansen, C., Noll, T.: Tree-like grammars and separation logic. In:
Feng, X., Park, S. (eds.) APLAS 2015. LNCS, vol. 9458, pp. 90–108. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-26529-2 6

16. Milicevic, A., Misailovic, S., Marinov, D., Khurshid, S.: Korat: a tool for generating
structurally complex test inputs. In: Proceedings of the 29th International Confer-
ence on Software Engineering, ICSE 2007, pp. 771–774. IEEE Computer Society,
Washington, DC, USA (2007). https://doi.org/10.1109/ICSE.2007.48

17. Nguyen, H.H., David, C., Qin, S., Chin, W.-N.: Automated verification of shape
and size properties via separation logic. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-69738-1 18

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-54434-1_23
https://doi.org/10.1007/978-3-662-54434-1_23
https://doi.org/10.1007/978-3-319-09108-2_4
https://doi.org/10.1007/11823230_17
https://doi.org/10.1007/978-3-319-26529-2_6
https://doi.org/10.1109/ICSE.2007.48
https://doi.org/10.1007/978-3-540-69738-1_18
https://doi.org/10.1007/978-3-540-69738-1_18
http://creativecommons.org/licenses/by/4.0/


MaxSMT-Based Type Inference
for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_2&domain=pdf
http://orcid.org/0000-0003-4891-6950
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Fig. 1. A Python implementation of the odds and evens hand game.

Typpete accepts programs written in (a large subset of) Python 3. Having a
static type system imposes a number of requirements on Python programs: (a) a
variable can only have a single type through the whole program; (b) generic types
have to be homogeneous (e.g., all elements of a set must have the same type);
and (c) dynamic code generation, reflection and dynamic attribute additions and
deletions are not allowed. The supported type system includes generic classes
and functions. Users must supply a file and the number of type variables for any
generic class or function. Typpete then outputs a program with type annotations,
a type error, or an error indicating use of unsupported language features.

Our experimental evaluation demonstrates the practical applicability of our
approach. We show that Typpete performs well on a variety of real-world open
source Python programs and outperforms state-of-the-art tools.

2 Constraint Generation

Typpete encodes the type inference problem for a Python program into an
SMT constraint resolution problem such that any solution of the SMT problem
yields a valid type assignment for the program. The process of generating the
SMT problem consists of three phases, which we describe below.

In a first pass over the input program, Typpete collects: (1) all globally
defined names (to resolve forward references), (2) all classes and their respective
subclass relations (to define subtyping), and (3) upper bounds on the size of cer-
tain types (e.g., tuples and function parameters). This pre-analysis encompasses
both the input program—including all transitively imported modules—and stub
files, which define the types of built-in classes and functions as well as libraries.
Typpete already contains stubs for the most common built-ins; users can add
custom stub files written in the format that is supported by MyPy.

In the second phase, Typpete declares an algebraic datatype Type, whose
members correspond one-to-one to Python types. Typpete declares one
datatype constructor for every class in the input program; non-generic classes are
represented as constants, whereas a generic class with n type parameters is rep-
resented by a constructor taking n arguments of type Type. As an example, the
class Odd in Fig. 1 is represented by the constant classOdd. Typpete also declares
constructors for tuples and functions up to the maximum size determined in the
pre-analysis, and for all type variables used in generic functions and classes.
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The subtype relation <: is represented by an uninterpreted function subtype
which maps pairs of types to a boolean value. This function is delicate to define
because of the possibility of matching loops (i.e., axioms being endlessly instanti-
ated [7]) in the SMT solver. For each datatype constructor, Typpete generates
axioms that explicitly enumerate the possible subtypes and supertypes. As an
example, for the type classOdd, Typpete generates the following axioms:

∀t. subtype(classOdd, t) = (t = classOdd ∨ t = classItem ∨ t = classobject)
∀t. subtype(t, classOdd) = (t = classnone ∨ t = classOdd)

Note that the second axiom allows None to be a subtype of any other type (as
in Java). As we discuss in the next section, this definition of subtype allows us to
avoid matching loops by specifying specific instantiation patterns for the SMT
solver. A substitution function substitute, which substitutes type arguments for
type variables when interacting with generic types, is defined in a similar way.

In the third step, Typpete traverses the program while creating an SMT
variable for each node in its abstract syntax tree, and generating type constraints
over these variables for the constructs in the program. During the traversal, a
context maps all defined names (i.e., program variables, fields, etc.) to the corre-
sponding SMT variables. The context is later used to retrieve the type assigned
by the SMT solver to each name in the program. Constraints are generated for
expressions (e.g., call arguments are subtypes of the corresponding parameter
types), statements (e.g., the right-hand side of an assignment is a subtype of
the left hand-side), and larger constructs such as methods (e.g., covariance and
contravariance constraints for method overrides). For example, the (simplified)
constraint generated for the call to item1.compete(item2) at line 21 in Fig. 1
contains a disjunction of cases depending on the type of the receiver:

(vitem1 = classOdd ∧ competeOdd = f 2(classOdd, arg, ret) ∧ subtype(vitem2, arg))
∨ (vitem1 = classEven ∧ competeEven = f 2(classEven, arg, ret) ∧ subtype(vitem2, arg))

where f 2 is a datatype constructor for a function with two parameter types (and
one return type ret), and vitem1 and vitem2 are the SMT variables corresponding
to item1 and item2, respectively.

The generated constraints guarantee that any solution yields a correct type
assignment for the input program. However, there are often many different valid
solutions, as the constraints only impose lower or upper bounds on the types rep-
resented by the SMT variables (e.g., subtype(vitem2, arg) shown above imposes
only an upper bound on the type of vitem2). This has an impact on performance
(cf. Sect. 4) as the search space for a solution remains large. Moreover, some type
assignments could be more desirable than others for a user (e.g., a user would
most likely prefer to assign type int rather than object to a variable initial-
ized with value zero). To avoid these problems, Typpete additionally generates
optional type equality constraints in places where the mandatory constraints only
demand subtyping (i.e., local variable assignments, return statements, passed
function arguments), thereby turning the SMT problem into a MaxSMT opti-
mization problem. For instance, in addition to subtype(vitem2, arg) shown above,
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Typpete generates the optional equality constraint vitem2 = arg. The optional
constraints guide the solver to try the specified exact type first, which is often
a correct choice and therefore improves performance, and additionally leads to
solutions with more precise variable and parameter types.

3 Constraint Solving

Typpete relies on Z3 [7] and the MaxRes [18] algorithm for solving the gener-
ated type constraints. We use e-matching [6] for instantiating the quantifiers used
in the axiomatization of the subtype function (cf. Sect. 2), and carefully choose
instantiation patterns that ensure that any choice made during the search imme-
diately triggers the instantiation of the relevant quantifiers. For instance, for the
axioms shown in Sect. 2, we use the instantiation patterns subtype(classOdd, t) and
subtype(t, classOdd), respectively. Our instantiation patterns ensure that as soon
as one argument of an application of the subtype function is known, the quan-
tifier that enumerates the possible values of the other argument is instantiated,
thus ensuring that the consequences of any type choices propagate immediately.
With a näıve encoding, the solver would have to guess both arguments before
being able to check whether the subtype relation holds. The resulting constraint
solving process is much faster than it would be when using different quantifier
instantiation techniques such as model-based quantifier instantiation [12], but
still avoids the potential unsoundness that can occur when using e-matching
with insufficient trigger expressions.

When the MaxSMT problem is satisfiable, Typpete queries Z3 for a model
satisfying all type constraints, retrieves the types assigned to each name in the
program, and generates type annotated source code for the input program. For
instance, for the program shown in Fig. 1, Typpete automatically annotates the
function evalEven with type Even for the parameter item and a str return type.
Note that Item and object would also be correct type annotations for item; the
choice of Even is guided by the optional type equality constraints.

When the MaxSMT problem is unsatisfiable, instead of reporting the unful-
filled constraints in the unsatistiable core returned by Z3 (which is not guaran-
teed to be minimal), Typpete creates a new relaxed MaxSMT problem where
only the constraints defining the subtype function are enforced, while all other
type constraints are optional. Z3 is then queried for a model satisfying as many
type constraints as possible. The resulting type annotated source code for the
input program is returned along with the remaining minimal set of unfulfilled
type constraints. For instance, if we remove the abstract method compete of class
Item in Fig. 1, Typpete annotates the parameters of the function match at line
20 with type object and indicates the call compete at line 21 as problematic. By
observing the mismatch between the type annotations and the method call, the
user has sufficient context to quickly identify and correct the type error.
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T(SMT) T(MaxSMT) Unfulfilled T(Relaxed) Pytype
adventure 2.99s / 6.30s 3.27s / 6.76s 42 / 2 1.95s / 8.83s 0 [0]

icemu 9.45s / 6.79s 9.51s / 3.63s 4 / 2 0.08s / 21.76s 18 [2]
imp 16.88s / 59.95s 16.91s / 15.87s 67 / 2 0.82s / 82.56s 3 [2]

scion 4.65s / 3.35s 4.72s / 2.97s 28 / 2 0.16s / 3.39s 0 [0]
test suite 14.66s / 1.63s 14.66s / 2.17s - - 55 [34]

Fig. 2. Evaluation of Typpete on small programs and larger open source projects.

4 Experimental Evaluation

In order to demonstrate the practical applicability of our approach, we evaluated
our tool Typpete on a number of real-world open-source Python programs that
use inheritance, operator overloading, and other features that are challenging for
type inference (but not features that make static typing impossible):

adventure [21]: An implementation of the Colossal Cave Adventure game (2
modules, 399 LOC). The evaluation (and reported LOC) excludes the mod-
ules game.py and prompt.py, which employ dynamic attribute additions.

icemu [8]: A library that emulates integrated circuits at the logic level (8 mod-
ules, 530 LOC). We conducted the evaluation on revision 484828f.

imp [4]: A minimal interpreter for the imp toy language (7 modules, 771 LOC).
The evaluation excludes the modules used for testing the project.

scion [9]: A Python implementation of a new Internet architecture (2 modules,
725 LOC). For the evaluation, we used path store.py and scion addr.py
from revision 6f60ccc, and provided stub files for all dependencies.

We additionally ran Typpete on our test suite of manually-written programs
and small programs collected from the web (47 modules and 1998 LOC).

In order to make the projects statically typeable, we had to make a num-
ber of small changes that do not impact the functionality of the code, such as
adding abstract superclasses and abstract methods, and (for the imp and scion
projects) introducing explicit downcasts in few places. Additionally, we made a
number of other innocuous changes to overcome the current limitations of our
tool, such as replacing keyword arguments with positional arguments, replacing
generator expressions with list comprehensions, and replacing super calls via
inlining. The complete list of changes for each project is included in our artifact.

The experiments were conducted on an 2.9 GHz Intel Core i5 processor with
8GB of RAM running Mac OS High Sierra version 10.13.3 with Z3 version
4.5.1. Figure 2 summarizes the result of the evaluation. The first two columns
show the average running time (over ten runs, split into constraint generation
and constraint solving) for the type inference in which the use of optional type
equality constraints (cf. Sect. 2) is disabled (SMT) and enabled (MaxSMT),
respectively. We can observe that optional type equality constraints (consid-
erably) reduce the search space for a solution as disabling them significantly

https://github.com/hsoft/icemu/tree/484828fe9cf18b7abf548700f4c17b4fb42a6b3d
https://github.com/scionproto/scion/tree/6f60ccc50b25870606810628b3da9e62779d8d11
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increases the running time for larger projects. We can also note that the con-
straint solving time improves significantly when the type inference is run on
the test suite, which consists of many independent modules. This suggests that
splitting the type inference problem into independent sub-problems could fur-
ther improve performance. We plan to investigate this direction as part of our
future work.

The third column of Fig. 2 shows the evaluation of the error reporting feature
of Typpete (cf. Sect. 3). For each benchmark, we manually introduced two type
errors that could organically happen during programming and compared the
size of the unsatisfiable core (left of /) and the number of remaining unfulfilled
constraints (right of /) for the original and relaxed MaxSMT problems given
to Z3, respectively. We also list the times needed to prove the first problem
unsatisfiable and solve the relaxed problem. As one would expect, the number
of constraints that remain unfulfilled for the relaxed problems is considerably
smaller, which demonstrates that the error reporting feature of Typpete greatly
reduces the time that a user needs to identify the source of a type error.

Finally, the last column of Fig. 2 shows the result of the comparison of Typ-
pete with the state-of-the-art type inferencer Pytype [16]. Pytype infers
PEP484 [25] gradual type annotations by abstract interpretation [5] of the
bytecode-compiled version of the given Python file. In Fig. 2, for the considered
benchmarks, we report the number of variables and parameters that Pytype
leaves untyped or annotated with Any. We excluded any module on which
Pytype yields an error; in square brackets we indicate the number of mod-
ules that we could consider. Typpete is able to fully type all elements and thus
outperforms Pytype for static typing purposes. On the other hand, we note that
Pytype additionally supports gradual typing and a larger Python subset.

5 Related and Future Work

In addition to Pytype, a number of other type inference approaches and tools
have been developed for Python. The approach of Maia et al. [17] has some
fundamental limitations such as not allowing forward references or overloaded
functions and operators. Fritz and Hage [11] as well as Starkiller [22] infer sets
of concrete types that can inhabit each program variable to improve execution
performance. The former sacrifices soundness to handle more dynamic features of
Python. Additionally, deriving valid type assignments from sets of concrete types
is non-trivial. MyPy and a project by Cannon [3] can perform (incomplete) type
inference for local variables, but require type annotations for function parameters
and return types. PyAnnotate [13] dynamically tracks variable types during
execution and optionally annotates Python programs; the resulting annotations
are not guaranteed to be sound. A similar spectrum of solutions exists for other
dynamic programming languages like JavaScript [2,14] and ActionScript [20].

The idea of using SMT solvers for type inference is not new. Both F* [24] and
LiquidHaskell [26] (partly) use SMT-solving in the inference for their dependent
type systems. Pavlinovic et al. [19] present an SMT encoding of the OCaml type
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system. Typpete’s approach to type error reporting can be seen as a simple
instantiation of their approach.

As part of our future work, we want to explore whether our system can be
adapted to infer gradual types. We also aim to develop heuristics for inferring
which functions and classes should be annotated with generic types based on the
reported unfulfilled constraints. Finally, we plan to explore the idea of splitting
the type inference into multiple separate problems to improve performance.

Acknowledgments. We thank the anonymous reviewers for their feedback. This work
was supported by an ETH Zurich Career Seed Grant (SEED-32 16-2).
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Abstract. JKind is an open-source industrial model checker developed
by Rockwell Collins and the University of Minnesota. JKind uses mul-
tiple parallel engines to prove or falsify safety properties of infinite state
models. It is portable, easy to install, performance competitive with other
state-of-the-art model checkers, and has features designed to improve the
results presented to users: inductive validity cores for proofs and coun-
terexample smoothing for test-case generation. It serves as the back-end
for various industrial applications.

1 Introduction

JKind is an open-source1 industrial infinite-state inductive model checker for
safety properties. Models and properties in JKind are specified in Lustre [17],
a synchronous data-flow language, using the theories of linear real and integer
arithmetic. JKind uses SMT-solvers to prove and falsify multiple properties in
parallel. A distinguishing characteristic of JKind is its focus on the usability of
results. For a proven property, JKind provides traceability between the prop-
erty and individual model elements. For a falsified property, JKind provides
options for simplifying the counterexample in order to highlight the root cause
of the failure. In industrial applications, we have found these additional usability
aspects to be at least as important as the primary results. Another important
characteristic of JKind is that is it designed to be integrated directly into user-
facing applications. Written in Java, JKind runs on all major platforms and
is easily compiled into other Java applications. JKind bundles the Java-based
SMTInterpol solver and has no external dependencies. However, it can option-
ally call Z3, Yices 1, Yices 2, CVC4, and MathSAT if they are available.

2 Functionality and Main Features

JKind is structured as several parallel engines that coordinate to prove prop-
erties, mimicking the design of PKind and Kind 2 [8,21]. Some engines are
1 https://github.com/agacek/jkind.

c© The Author(s) 2018
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Fig. 1. JKind engine architecture

directly responsible for proving properties, others aid that effort by generating
invariants, and still others are reserved for post-processing of proof or coun-
terexample results. Each engine can be enabled or disabled separately based
on the user’s needs. The architecture of JKind allows any engine to broadcast
information to the other engines (for example, lemmas, proofs, counterexamples)
allowing straightforward integration of new functionality.

The solving engines in JKind are show in Fig. 1. The Bounded Model
Checking (BMC) engine performs a standard iterative unrolling of the transi-
tion relation to find counterexamples and to serve as the base case of k-induction.
The BMC engine guarantees that any counterexample it finds is minimal in
length. The k-Induction engine performs the inductive step of k-induction,
possibly using invariants generated by other engines. The Invariant Genera-
tion engine uses a template-based invariant generation technique [22] using its
own k-induction loop. The Property Directed Reachability (PDR) engine
performs property directed reachability [11] using the implicit abstraction tech-
nique [9]. Unlike BMC and k-induction, each property is handled separately by a
different PDR sub-engine. Finally, the Advice engine produces invariants based
on previous runs of JKind as described in the next section.

Invariant sharing between the solvers (shown in Fig. 1) is an important part
of the architecture. In our internal benchmarking, we have found that implicit
abstraction PDR performs best when operating over a single property at a time
and without use of lemmas generated by other approaches. On the other hand,
the invariants generated by PDR and template lemma generation often allow
k-induction, which operates on all properties in parallel, to substantially reduce
the verification time required for models with large numbers of properties.

2.1 Post Processing and Re-verification

A significant part of the research and development effort for JKind has focused
on post-processing results for presentation and repeated verification of models
under development.

Inductive Validity Cores (IVC). For a proven property, an inductive valid-
ity core is a subset of Lustre equations from the input model for which the
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property still holds [13,14]. Inductive validity cores can be used for traceability
from property to model elements and determining coverage of the model by a
set of properties [15]. This facility can be used to automatically generate trace-
ability and adequacy information (such as traceability matrices [12] important
to the certification of safety-critical avionics systems [26]). The IVC engine uses
a heuristic algorithm to efficiently produce minimal or nearly minimal cores. In
a recent experiment over a superset of the benchmark models described in the
experiment in Sect. 3, we found that our heuristic IVC computation added 31%
overhead to model checking time, and yielded cores approximately 8% larger
than the guaranteed minimal core computed by a very expensive “brute force”
algorithm. As a side-effect, the IVC algorithm also minimizes the set of invariants
used to prove a property and emits this reduced set to other engines (notably
the Advice engine, described below).

Smoothing. To aid in counterexample understanding and in creating structural
coverage tests that can be more easily explained, JKind provides an optional
post-processing step to minimize the number of changes to input variables—
smoothing the counterexample. For example, applied to 129 test cases generated
for a production avionics flight control state machine, smoothing increased run-
time by 40% and removed 4 unnecessary input changes per test case on aver-
age. The smoothing engine uses a MaxSat query over the original BMC-style
unrolling of the transition relation combined with weighted assertions that each
input variable does not change on each step. The MaxSat query tries to satisfy
all of these weighted assertions, but will break them if needed. This has the effect
of trying to hold all inputs constant while still falsifying the original property
and only allowing inputs to change when needed. This engine is only available
with SMT-solvers that support MaxSat such as Yices 1 and Z3.

Advice. The advice engine saves and re-uses the invariants that were used by
JKind to prove the properties of a model. Prior to analysis, JKind performs
model slicing and flattening to generate a flat transition-relation model. Inter-
nally, invariants are stored as a set of proven formulas (in the Lustre syntax)
over the variables in the flattened model. An advice file is simply the emitted
set of these invariant formulas. When a model is loaded, the formulas are loaded
into memory. Formulas that are no longer syntactically or type correct are dis-
carded, and the remaining set of formulas are submitted as an initial set of
possible invariants to be proved via k-induction. If they are proved, they are
passed along to other engines; if falsified, they are discarded. Names constructed
between multiple runs of JKind are stable, so if a model is unchanged, it can be
usually be re-proved quickly using the invariants and k-induction. If the model is
slightly changed, it is often the case that most of the invariants can be re-proved,
leading to reduced verification times.

If the IVC engine is also enabled, then advice emits a (close to) minimal
set of lemmas used for proof; this often leads to faster re-verification (but more
expensive initial verification), and can be useful for examining which of the
generated lemmas are useful for proofs.
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Fig. 2. Performance benchmarks

3 Experimental Evaluation

We evaluated the performance of JKind against Kind 2 [8], Zustre [20], Gen-
eralized PDR in Z3 [19], and IC3 in nuXmv [9]. We used the default options
for each tool (using check invar ic3 for nuXmv). Our benchmark suite comes
from [9] and contains 688 models over the theory of linear integer arithmetic2.
All experiments were performed on a 64-bit Ubuntu 17.10 Linux machine with
a 12-core Intel Xeon CPU E5-1650 v3 @ 3.50 GHz, with 32 GB of RAM and a
time limit of 60 s per model.

Performance comparisons are show in Fig. 2. The key describes the number
of benchmarks solved for each tool, and the graph shows the aggregate time
required for solving, ordered by time required per-problem, ordered indepen-
dently for each tool. JKind was able to verify or falsify the most properties,
although Z3 was often the fastest tool. Many of the benchmarks in this set
are quickly evaluated: Z3 solves the first 400 benchmarks in just over 12 s. Due
to JKind’s use of Java, the JVM/JKind startup time for an empty model is
approximately 0.35s, which leads to poor performance on small models3. As
always, such benchmarks should be taken with a large grain of salt. In [8], a
different set of benchmarks slightly favored Kind 2, and in [9], nuXmv was the
most capable tool. We believe that all the solvers are relatively competitive.

4 Integration and Applications

JKind is the back-end for a variety of user-facing applications. In this section,
we briefly highlight a few of these applications and how they employ the features
discussed previously.
2 https://es.fbk.eu/people/griggio/papers/tacas14-ic3ia.tar.bz2. Note that we remo-

ved 263 duplicate benchmarks from the original set.
3 Without startup time, the curve for JKind is close to the curve for Zustre.

https://es.fbk.eu/people/griggio/papers/tacas14-ic3ia.tar.bz2
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(1) The Specification and Analysis of Requirements (SpeAR) tool is an open-
source tool for prototyping and analysis of requirements [12]. Starting from
a set of formalized requirements, SpeAR uses JKind to determine whether
or not the requirements meet certain properties. It uses IVCs to create
a traceability matrix between requirements and properties, highlighting
unused requirements, over-constrained properties, and other common prob-
lems. SpeAR also uses JKind with smoothing for test-case generation using
the Unique First Cause criteria [28].

(2) The Assume Guarantee Reasoning Environment (AGREE) tool is an
open-source compositional verification tool that proves properties of
hierarchically-composed models in the Architectural Analysis and Design
Language (AADL) language [3,10,23]. AGREE makes use of multiple
JKind features including smoothing to present clear counterexamples, IVC
to show requirements traceability, and counterexample generation to check
the consistency of an AADL component’s contract. AGREE also uses
JKind for test-case generation from component contracts.

(3) The Static IMPerative AnaLyzer (SIMPAL) tool is an open-source tool for
compositional reasoning over software [27]. SIMPAL is based on Limp, a
Lustre-like imperative language with extensions for control flow elements,
global variables, and a syntax for specifying preconditions, postconditions,
and global variable interactions of preexisting components. SIMPAL trans-
lates Limp programs to an equivalent Lustre representation which is passed
to JKind to perform assume-guarantee reasoning, reachability, and viability
analyses.

(4) JKind is also used by two proprietary tools used by product areas within
Rockwell Collins. The first is a Mode Transition Table verification tool used
for the complex state machines which manage flight modes of an aircraft.
JKind is used to check properties and generate tests for mode and transi-
tion coverage from Lustre models generated from the state machines. IVCs
are used to establish traceability, i.e. which transitions are covered by which
properties. The second is a Crew Alerting System MC/DC test-case gener-
ation tool for a proprietary domain-specific language used for messages and
alerts to airplane pilots. Smoothing is very important in this context as test
cases need to be run on the actual hardware where timing is not precisely
controllable. Thus, test cases with a minimum of changes to the inputs are
ideal.

5 Related Work

JKind is one of a number of similar infinite-state inductive model checkers
including Kind 2 [8], nuXmv [9], Z3 with generalized PDR [19], and Zus-
tre [20]. They operate over a transition relation described either as a Lustre
program (Kind 2, JKind, and Zustre), an extension of the SMV language
(nuXmv), or as a set of Horn clauses (Z3). Each tool uses a portfolio-based solver
approach, with nuXmv, JKind, and Kind 2 all supporting both k-induction
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and a variant of PDR/IC3. nuXmv also supports guided reachability and k-
liveness. Other tools such as ESBMC-DepthK [25], VVT [4] CPAchecker,
[5], CPROVER [7] use similar techniques for reasoning about C programs.

We believe that the JKind IVC support is similar to proof-core support
provided by commercial hardware model checkers: Cadence Jasper Gold and
Synopsys VC Formal [1,2,18]. The proof-core provided by these tools is used for
internal coverage analysis measurements performed by the tools. Unfortunately,
the algorithms used in the commercial tool support are undocumented and per-
formance comparisons are prohibited by the tool licenses, so it is not possible to
compare performance on this aspect.

Previous work has been done on improving the quality of counterexamples
along various dimensions similar to the JKind notion of smoothing, e.g. [16,24].
Our work is distinguished by its focus on minimizing the number of deltas in
the input values. This metric has been driven by user needs and by our own
experiences with test-case generation.

There are several tools that support reuse or exchange of verification results,
similar to our advice feature. Recently, there has been progress on standardized
formats [6] of exchange between analysis tools. Our current advice format is
optimized for use and performance with our particular tool and designed for re-
verification rather than exchange of partial verification information. However,
supporting a standardized format for exchanging verification information would
be a useful feature for future use.

6 Conclusion

JKind is similar to a number of other solvers that each solve infinite state
sequential analysis problems. Nevertheless, it has some important features that
distinguish it. First, a focus on quality of feedback to users for both valid prop-
erties (using IVCs) and invalid properties (using smoothing). Second, it is sup-
ported across all major platforms and is straightforward to port due to its imple-
mentation in Java. Third, it is small, modular, and well-architected, allowing
straightforward extension with new engines. Fourth, it is open-source with a
liberal distribution license (BSD), so it can be adapted for various purposes, as
demonstrated by the number of tools that have incorporated it.

Acknowledgments. The work presented here was sponsored by DARPA as part of
the HACMS program under contract FA8750-12-9-0179.
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Abstract. In this paper we describe the DeepSec prover, a tool for
security protocol analysis. It decides equivalence properties modelled as
trace equivalence of two processes in a dialect of the applied pi calculus.

1 Introduction

Cryptographic protocols ensure the security of communications. They are dis-
tributed programs that make use of cryptographic primitives, e.g. encryption,
to ensure security properties, such as confidentiality or anonymity. Their correct
design is quite a challenge as security is to be enforced in the presence of an
arbitrary adversary that controls the communication network and may compro-
mise participants. The use of symbolic verification techniques, in the line of the
seminal work by Dolev and Yao [19], has proven its worth in discovering logical
vulnerabilities or proving their absence.

Nowadays mature tools exist, e.g. [7,10,24] but mostly concentrate on trace
properties, such as authentication and (weak forms of) confidentiality. Unfor-
tunately many properties need to be expressed in terms of indistinguishability,
modelled as behavioral equivalences in dedicated process calculi. Typically, a
strong version of secrecy states that the adversary cannot distinguish the sit-
uation where a value v1, respectively v2, is used in place of a secret. Privacy
properties, e.g., vote privacy, are also stated similarly [2,4,18].

In this paper we present the DeepSec prover (Deciding Equivalence Proper-
ties in Security protocols). The tool decides trace equivalence for cryptographic
protocols that are specified in a dialect of the applied pi calculus [1]. DeepSec
offers several advantages over existing tools, in terms of expressiveness, preci-
sion and efficiency: typically we do not restrict the use of private channels, allow
else branches, and decide trace equivalence precisely, i.e., no approximations
are applied. Cryptographic primitives are user specified by a set of subterm-
convergent rewrite rules. The only restriction we make on protocol specifications
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is that we forbid unbounded replication, i.e. we restrict the analysis to a finite
number of protocol sessions. This restriction is similar to that of several other
tools and sufficient for decidability. Note that decidability is nevertheless non-
trivial as the system under study is still infinite-state due to the active, arbitrary
attacker participating to the protocol.

2 Description of the Tool

2.1 Example: The Helios Voting Protocol

An input of DeepSec defines the cryptographic primitives, the protocol and
the security properties that are to be verified. Random numbers are abstracted
by names (a, b, . . .), cryptographic primitives by function symbols with arity
(f/n) and messages by terms viewed as modus operandi to compute bit-
string. For instance, the functions aenc/3, pk/1 model randomized asymmetric
encryption and public-key generation: term aenc(pk(k), r, m) models the plain
text m encrypted with public key pk(k) and randomness r. In DeepSec we
write:

fun aenc/3. fun pk/1.

On the other hand, cryptographic destructors are specified by rewrite rules. For
example asymmetric decryption (adec) would be defined by

reduc adec(k,aenc(pk(k),r,m)) -> m.

A plain text m can thus be retrieved from a cipher aenc(pk(k), r, m) and the
corresponding private key k. Such user-defined rewrite rules also allow us to
describe more complex primitives such as a zero-knowledge proof (ZKP) assert-
ing knowledge of the plaintext and randomness of a given ciphertext:

fun zkp/3.
const zpkok.
reduc check(zkp(r,v,aenc(p,r,v)), aenc(p,r,v)) -> zkpok.

Although user-defined, the rewrite system is required by DeepSec to be subterm
convergent, i.e., the right hand side is a subterm of the left hand side or a ground
term in normal form. Support for tuples and projection is provided by default.

Protocol Specification. Honest participants in a protocol are modeled as pro-
cesses. For instance, the process Voter(auth,id,v,pkE) describes a voter in
the Helios voting protocol. The process has four arguments: an authenticated
channel auth, the voter’s identifier id, its vote v and the public key of the tally
pkE.
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let Voter(auth,id,v,pkE) =
new r;
let bal = aenc(pkE,r,v) in
out(auth,bal);
out(c, (id, bal, zkp(r,v,bal))).

let VotingSystem(v1,v2) =
new k; new auth1; new auth2;
out(c,pk(k)); (

Voter(auth1,id1,v1,pk(k)) |
Voter(auth2,id2,v2,pk(k)) |
Tally(k,auth1,auth2) ).

The voter first generates a ran-
dom number r that will be used
for encryption and ZKP. After that,
she encrypts her vote and assigns
it to the variable bal which is out-
put on the channel auth. Finally,
she outputs the ballot, id and the
corresponding ZKP on the pub-
lic channel c. All in all, the pro-
cess VotingSystem(v1,v2) repre-
sents the complete voting scheme:
two honest voters id1 and id2
respectively vote for v1 and v2; the

process Tally collects the ballots, checks the ZKP and outputs the result of
the election. The instances of the processes Voter and Tally are executed con-
currently, modeled by the parallel operator |. Other operators supported by
DeepSec include input on a channel (in(c,x); P), conditional (if u = v then
P else Q) and non-deterministic choice (P + Q).

Security Properties. DeepSec focuses on properties modelled as trace equiv-
alence, e.g. vote privacy [18] in the Helios protocol. We express it at indistin-
guishability of two instances of the protocol swapping the votes of two honest
voters:

query trace_equiv(VotingSystem(yes,no),VotingSystem(no,yes)).

DeepSec checks whether an attacker, implicitly modelled by the notion of
trace equivalence, cannot distinguish between these two instances. Note that all
actions of dishonest voters can be seen as actions of this single attacker entity;
thus only honest participants need to be specified in the input file.

2.2 The Underlying Theory

We give here a high-level overview of how DeepSec decides trace equivalence.
Further intuition and details can be found in [14].

Symbolic Setting. Although finite-depth, even non-replicated protocols have infi-
nite state space. Indeed, a simple input in(c,x) induces infinitely-many poten-
tial transitions in presence of an active attacker. We therefore define a symbolic
calculus that abstracts concrete inputs by symbolic variables, and constraints
that restrict their concrete instances. Constraints typically range over deducibil-
ity contraints (“the attacker is able to craft some term after spying on public
channels”) and equations (“two terms are equal”). A symbolic semantics then
performs symbolic inputs and collects constraints on them. Typically, executing
input in(c,x) generates a deducibility constraint on x to model the attacker



The DEEPSEC Prover 31

being able to craft the message to be input; equations are generated by condi-
tionals, relying on most general unifiers modulo equational theory.

Decision Procedure. DeepSec constructs a so-called partition tree to guide deci-
sion of (in)equivalence of processes P and Q. Its nodes are labelled by sets of
symbolic processes and constraints; typically the root contains P and Q with
empty constraints. The tree is constructed similarly to the (finite) tree of all
symbolic executions of P and Q, except that some nodes may be merged or
split accordingly to a constraint-solving procedure. DeepSec thus enforces that
concrete instances of processes of a same node are indistinguishable (statically).

The final decision criterion is that P and Q are equivalent iff all nodes of the
partition tree contain both a process originated from P and a process originated
from Q by symbolic execution. The DeepSec prover thus returns an attack iff
it finds a node violating this property while constructing the partition tree.

2.3 Implementation

DeepSec is implemented in Ocaml (16k LOC) and the source code is licensed
under GPL 3.0 and publicly available [17]. Running DeepSec yields a terminal
output summarising results, while a more detailed output is displayed graphically
in an HTML interface (using the MathJax API [20]). When the query is not
satisfied, the interface interactively shows how to mount the attack.

Partial-Order Reductions. Tools verifying equivalences for bounded number of
sessions suffer from a combinatorial explosion as the number of sessions increases.
We therefore implemented state-of-the-art partial-order reductions (POR) [8]
that eliminate redundant interleavings, providing a significant speedup. This
is only possible for a restricted class of processes (determinate processes) but
DeepSec automatically checks whether POR can be activated.

Parallelism. DeepSec generates a partition tree (cf Sect. 2.2) to decide trace
equivalence. As sibling nodes are independent, the computation on subtrees can
be parallelized. However, the partition tree is not balanced, making it hard to
balance the load. One natural solution would be to systematically add children
nodes into a queue of pending jobs, but this would yield an important commu-
nication overhead. Consequently, we apply this method only until the size of the
queue is larger than a given threshold; next each idle process fetches a node and
computes the complete corresponding subtree. Distributed computation over n
cores is activated by the option -distributed n. By default, the threshold in
the initial generation of the partition tree depends on n but may be overwritten
to m with the option -nb sets m.

3 Experimental Evaluation

Comparison to Other Work. When the number of sessions is unbounded, equiv-
alence is undecidable. Verification tools in this setting therefore have to sacrifice
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termination, and generally only verify the finer diff-equivalence [9,11,23], too
fine-grained on many examples. We therefore focus on tools comparable to
DeepSec, i.e. those that bound the number of sessions. SPEC [25,26] verifies a
sound symbolic bisimulation, but is restricted to fixed cryptographic primitives
(pairing, encryption, signatures, hashes) and does not allow for else branches.
APTE [13] covers the same primitives but allows else branches and decides
trace equivalence exactly. On the contrary, Akiss [12] allows for user-defined
primitives and terminates when they form a subterm-convergent rewrite sys-
tem. However Akiss only decides trace equivalence without approximation for
a subclass of processes (determinate processes) and may perform under- and
over-approximations otherwise. Sat-Eq [15] proceeds differently by reducing
the equivalence problem to Graph Planning and SAT Solving: the tool is more
efficient than the others by several orders of magnitude, but is quite restricted in
scope (it currently supports pairing, symmetric encryption, and can only analyse
a subclass of determinate processes). Besides, Sat-Eq may not terminate.

Authentication. Figure 1 displays a sample of our benchmarks (complete results
can be found in [17]). DeepSec clearly outperforms Akiss, APTE, and SPEC,
but Sat-Eq takes the lead as the number of sessions increase. However, the
Otway-Rees protocol already illustrates the scope limit of Sat-Eq.

Besides, as previously mentioned, DeepSec includes partial-order reductions
(POR). We performed experiments with and without this optimisation: for exam-
ple, protocols requiring more than 12 h of computation time without POR can
be verified in less than a second. Note that Akiss and APTE also implement
the same POR techniques as DeepSec.

Fig. 1. Benchmark results on classical authentication protocols
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Fig. 2. Benchmark results for verifying privacy type properties

Privacy. We also verified privacy properties on the private authentication pro-
tocol [2], the passive-authentication and basic-access-control protocols from the
e-passport [21], AKA of the 3G telephony networks [6] and the voting protocols
Helios [3] and Prêt-à-Voter [22]. DeepSec is the only tool that can prove vote
privacy on the two voting protocols, and private authentication is out of the
scope of Sat-Eq and SPEC. Besides, we analysed variants of the Helios vot-
ing protocol, based on the work of Arapinis et al. [5] (see Fig. 2). The vanilla
version is known vulnerable to a ballot-copy attack [16], which is patched by a
ballot weeding (W) or a zero-knowledge proof (ZKP). DeepSec proved that,
(i) when no revote is allowed, or (ii) when each honest voter only votes once
and a dishonest voter is allowed to revote, then both patches are secure. How-
ever, only the ZKP variant remains secure when honest voters are allowed to
revote.

Parallelism. Experiments have been carried out on a server with 40 Intel Xeon
E5-2687W v3 CPUs 3.10 GHz, with 50 GB RAM and 25 MB L3 Cache, using
35 cores (Server 1). However the performances of parallelisation had some unex-
pected behavior. For example, on the Yahalom-Lowe protocol, the use of too
many cores on a same server negatively impacts performances: e.g. on Server 1,
optimal results are achieved using only 20 to 25 cores. In comparison, opti-
mal results required 40–45 cores on a server with 112 Intel Xeon vE7-4850
v3 CPUs 2.20 GHz, with 1.5 TB RAM and 35 MB L3 Cache (Server 2). This
difference may be explained by cache capacity: overloading servers with pro-
cesses (sharing cache) beyond a certain threshold should indeed make the hit-
miss ratio drop. This is consistent with the Server 2 having a larger cache and
exploiting efficiently more cores than Server 1. Using the perf profiling tool, we
confirmed that the number of cache-references per second (CRPS) stayed rela-
tively stable up to the optimal number of cores and quickly decreased beyond
(Fig. 3).

DeepSec can also distribute on multiple servers, using SSH connections.
Despite a communication overhead, multi-server computation may be a way
to partially avoid the server-overload issue discussed above. For example, the
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verification of the Helios protocol (Dishonest revote W) on 3 servers (using
resp. 10, 20 and 40 cores) resulted in a running time of 18 m 14 s, while the
same verification took 51 m 49 s on a 70-core server (also launched remotely via
SSH).
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Abstract. We present a new safety hardware model checker SimpleCAR
that serves as a reference implementation for evaluating Complemen-
tary Approximate Reachability (CAR), a new SAT-based model check-
ing framework inspired by classical reachability analysis. The tool gives
a “bottom-line” performance measure for comparing future extensions
to the framework. We demonstrate the performance of SimpleCAR on
challenging benchmarks from the Hardware Model Checking Competi-
tion. Our experiments indicate that SimpleCAR is particularly suited for
unsafety checking, or bug-finding ; it is able to solve 7 unsafe instances
within 1 h that are not solvable by any other state-of-the-art techniques,
including BMC and IC3/PDR, within 8 h. We also identify a bug (reports
safe instead of unsafe) and 48 counterexample generation errors in the
tools compared in our analysis.

1 Introduction

Model checking techniques are widely used in proving design correctness, and
have received unprecedented attention in the hardware design community [9,16].
Given a system model M and a property P , model checking proves whether or
not P holds for M . A model checking algorithm exhaustively checks all behav-
iors of M , and returns a counterexample as evidence if any behavior violates the
property P . The counterexample gives the execution of the system that leads to
property failure, i.e., a bug. Particularly, if P is a safety property, model checking
reduces to reachability analysis, and the provided counterexample has a finite
length. Popular safety checking techniques include Bounded Model Checking
(BMC) [10], Interpolation Model Checking (IMC) [21], and IC3/PDR [12,14]. It
is well known that there is no “universal” algorithm in model checking; different
algorithms perform differently on different problem instances [7]. BMC outper-
forms IMC on checking unsafe instances, while IC3/PDR can solve instances that
BMC cannot and vice-versa. [19]. Therefore, BMC and IC3/PDR are the most
popular algorithms in the portfolio for unsafety checking, or bug-finding.
c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 37–44, 2018.
https://doi.org/10.1007/978-3-319-96142-2_5
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Complementary Approximate Reachability (CAR) [19] is a SAT-based model
checking framework for reachability analysis. Contrary to reachability analysis
via IC3/PDR, CAR maintains two sequences of over- and under- approximate
reachable state-sets. The over-approximate sequence is used for safety check-
ing, and the under-approximate sequence for unsafety checking. CAR does not
require the over-approximate sequence to be monotone, unlike IC3/PDR. Both
forward (Forward-CAR) and backward (Backward-CAR) reachability analysis are
permissible in the CAR framework. Preliminary results show that Forward-CAR
complements IC3/PDR on safe instances [19].

We present, SimpleCAR, a tool specifically developed for evaluating and
extending the CAR framework. The new tool is a complete rewrite of CARChecker
[19] with several improvements and added capabilities. SimpleCAR has a lighter
and cleaner implementation than CARChecker. Several heuristics that aid
Forward-CAR to complement IC3/PDR are integrated in CARChecker. Although
useful, these heuristics make it difficult to understand and extend the core func-
tionalities of CAR. Like IC3/PDR, the performance of CAR varies significantly
by using heuristics [17]. Therefore, it is necessary to provide a basic implemen-
tation of CAR (without code-bloating heuristics) that serves as a “bottom-line”
performance measure for all extensions in the future. To that end, SimpleCAR
differs from CARChecker in the following aspects:

– Eliminates all heuristics integrated in CARChecker except a configuration
option to enable a IC3/PDR-like clause “propagation” heuristic.

– Uses UNSAT cores from the SAT solver directly instead of the expensive
minimal UNSAT core (MUC) computation in CARChecker.

– Poses incremental queries to the SAT solver using assumptions;
– While CARChecker contributes to safety checking [19], SimpleCAR shows a

clear advantage on unsafety checking.

We apply SimpleCAR to 748 benchmarks from the Hardware Model Checking
Competition (HWMCC) 2015 [2] and 2017 [3], and compare its performance to
reachability analysis algorithms (BMC, IMC, 4× IC3/PDR, Avy [22], Quip [18]) in
state-of-the-art model checking tools (ABC, nuXmv, IIMC, IC3Ref). Our extensive
experiments reveal that Backward-CAR is particularly suited for unsafety check-
ing: it can solve 8 instances within a 1-h time limit, and 7 instances within a
8-h time limit not solvable by BMC and IC3/PDR. We conclude that, along with
BMC and IC3/PDR, CAR is an important candidate in the portfolio of unsafety
checking algorithms, and SimpleCAR provides an easy and efficient way to evalu-
ate, experiment with, and add enhancements to the CAR framework. We identify
1 major bug and 48 errors in counterexample generation in our evaluated tool
set; all have been reported to the tool developers.

2 Algorithms and Implementation

We present a very high-level overview of the CAR framework (refer [19] for
details). CAR is a SAT-based framework for reachability analysis. It maintains
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two over- and under- approximate reachable state sequences for safety and
unsafety checking, respectively. CAR can be symmetrically implemented either in
the forward (Forward-CAR) or backward (Backward-CAR) mode. In the forward
mode, the F-sequence (F0, F1, . . . , Fi) is the over-approximated sequence, while
the B-sequence (B0, B1, . . . , Bi) is under-approximated. The roles of the F- and
B- sequence are reversed in the backward mode. We focus here on the backward
mode of CAR, or Backward-CAR (refer [19] for Forward-CAR)

2.1 High-Level Description of Backward-CAR

Table 1. Sequences in Backward-CAR.

F-sequence
(under)

B-sequence
(over)

Init F0 = I B0 = ¬P

Constraint Fi+1 ⊆ R(Fi) Bi+1 ⊇ R−1(Bi)
Safety check - ∃i · Bi+1 ⊆ ⋃

0≤j≤i Bj

Unsafety check ∃i · Fi ∩ ¬P �= ∅ -

A frame Fi in the F-sequence
denotes the set of states that
are reachable from the initial
states (I) in i steps. Similarly,
a frame Bi in the B-sequence
denotes the set of states that
can reach the bad states (¬P ) in i steps. Let R(Fi) represent the set of successor
states of Fi, and R−1(Bi) represent the set of predecessor states of Bi. Table 1
shows the constraints on the sequences and their usage in Backward-CAR for
safety and unsafety checking.

Alg. 1. High-level description of Backward CAR
1: F0 = I, B0 = ¬P , k = 0;
2: while true do
3: while S(B) ∧ R(S(F )) �= ∅ do
4: update F - and B- sequences.
5: if ∃i · Fi ∩ ¬P �= ∅ then return unsafe;

6: perform propagation on B-sequence (optional);
7: if ∃i · Bi+1 ⊆ ⋃

0≤j≤i Bj then return safe;

8: k = k + 1 and Bk = ¬P ;

Let S(F ) =
⋃
Fi

and S(B) =
⋃
Bi. Algo-

rithm 1 gives a descrip-
tion of Backward-CAR.
The B-sequence is exten-
ded exactly once in every
iteration of the loop in
lines 2–8, but the F-
sequence may be extended
multiple times in each
loop iteration in lines 3–5.
As a result, CAR normally returns counterexamples with longer depth compared
to the length of the B-sequence. Due to this inherent feature of the framework,
CAR is able to complement BMC and IC3/PDR on unsafety checking.

2.2 Tool Implementation

SimpleCAR is publicly available [5,6] under the GNU GPLv3 license. The tool
implementation is as follows:

– Language: C++11 compilable under gcc 4.4.7 or above.
– Input: Hardware circuit models expressed as and-inverter graphs in the aiger

1.9 format [11] containing a single safety property.
– Output: “1” (unsafe) to report the system violates the property, or “0” (safe)

to confirm that the system satisfies the property. A counterexample in the
aiger format is generated if run with the -e configuration flag.
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– Algorithms: Forward-CAR and Backward-CAR with and without the propa-
gation heuristic (enabled using the -p configuration flag).

– External Tools: Glucose 3.0 [8] (based on MiniSAT [15]) is used as the
underlying SAT solver. Aiger tools [1] are used for parsing the input aiger
files to extract the model and property information, and error checking.

– Differences with CARChecker [19]: The Minimal Unsat Core (MUC) and
Partial Assignment (PA) techniques are not utilized in SimpleCAR, which
allows the implementation to harness the power of incremental SAT solving.

3 Experimental Analysis

3.1 Strategies

Tools. We consider five model checking tools in our evaluation: ABC 1.01 [13],
IIMC 2.01, Simplic3 [17] (IC3 algorithms used by nuXmv for finite-state systems2),
IC3Ref [4], CARChecker [19], and SimpleCAR. For ABC, we evaluate BMC (bmc2),
IMC (int), and PDR (pdr). There are three different versions of BMC in ABC:
bmc, bmc2, and bmc3. We choose bmc2 based on our preliminary analysis since
it outperforms other versions. Simplic3 proposes different configuration options
for IC3. We use the three best candidate configurations for IC3 reported in [17],
and the Avy algorithm [22] in Simplic3. We consider CARChecker as the original
implementation of the CAR framework and use it as a reference implementation
for SimpleCAR. A summary of the tools and their arguments used for exper-
iments is shown in Table 2. Overall, we consider four categories of algorithms
implemented in the tools: BMC, IMC, IC3/PDR, and CAR.

Benchmarks. We evaluate all tools against 748 benchmarks in the aiger format
[11] from the SINGLE safety property track of the HWMCC in 2015 and 2017.

Error Checking. We check correctness of results from the tools in two ways:

1. We use the aigsim [1] tool to check whether the counterexample generated
for unsafe instances is a real counterexample by simulation.

2. For inconsistent results (safe and unsafe for the same benchmark by at least
two different tools) we attempt to simulate the unsafe counterexample, and
if successful, report an error for the tool that returns safe (surprisingly, we
do not encounter cases when the simulation check fails).

Platform. Experiments were performed on Rice University’s DavinCI cluster,
which comprises of 192 nodes running at 2.83 GHz, 48 GB of memory and running
RedHat 6.0. We set the memory limit to 8 GB with a wall-time limit of an hour.
Each model checking run has exclusive access to a node. A time penalty of one
hour is set for benchmarks that cannot be solved within the time/memory limits.

1 We use version 2.0 available at https://ryanmb.bitbucket.io/truss/ – similar to the
version available at https://github.com/mgudemann/iimc with addition of Quip [18].

2 Personal communication with Alberto Griggio.

https://ryanmb.bitbucket.io/truss/
https://github.com/mgudemann/iimc
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Table 2. Tools and algorithms (with category) evaluated in the experiments.

Tool Algorithm Configuration Flags

ABC
BMC (abc-bmc) -c ‘bmc2’

IMC (abc-int) -c ‘int’

PDR (abc-pdr) -c ‘pdr’

IIMC
IC3 (iimc-ic3) -t ic3 --ic3 stats --print cex --cex aiger

Quip [18] (iimc-quip) -t quip --quip stats --print cex --cex aiger

IC3Ref IC3 (ic3-ref) -b

Simplic3

IC3 (simplic3-best1) -s minisat -m 1 -u 4 -I 0 -O 1 -c 1 -p 1 -d 2

-G 1 -P 1 -A 100

IC3 (simplic3-best2)
-s minisat -m 1 -u 4 -I 1 -D 0 -g 1 -X 0 -O 1

-c 0 -p 1 -d 2 -G 1 -P 1 -A 100

IC3 (simplic3-best3) -s minisat -m 1 -u 4 -I 0 -O 1 -c 0 -p 1 -d 2

-G 1 -P 1 -A 100 -a aic3

Avy [22] (simplic3-avy) -a avy

CARChecker
Forward CAR� (carchk-f) -f

Backward CAR� (carchk-b) -b

SimpleCAR

Forward CAR† (simpcar-f) -f -e

Backward CAR† (simpcar-b) -b -e

Forward CAR‡ (simpcar-fp) -f -p -e

Backward CAR‡ (simpcar-bp) -b -p -e

IC3/
PDR

CAR

� with heuristics for minimal unsat core (MUC) [20], partial assignment [23], and propagation.
† no heuristics
‡ with heuristic for PDR-like clause propagation

3.2 Results

Error Report. We identify one bug in simplic3-best3: reports safe instead of
unsafe, and 48 errors with respect to counterexample generation in iimc-quip
algorithm (26) and all algorithms in the Simplic3 tool (22). At the time of writing,
the bug report sent to the developers of Simplic3 has been confirmed. In our
analysis, we assume the results from these tools to be correct.
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Fig. 1. Number of benchmarks solved
by each algorithm category (run as a
portfolio). Uniquely solved benchmarks
are not solved by any other category.

Coarse Analysis. We focus our analysis
to unsafety checking. Figure 1 shows the
total number of unsafe benchmarks solved
by each category (assuming portfolio-run
of all algorithms in a category). CAR
complements BMC and IC3/PDR by
solving 128 benchmarks of which 8
are not solved by any other category.
Although CAR solves the least amount
of total benchmarks, the count of the
uniquely solved benchmarks is compara-
ble to other categories. When the wall-
time limit (memory limit does not change)
is increased to 8 h, BMC and IC3/PDR can
only solve one of the 8 uniquely solved
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Fig. 2. Number of benchmarks solved by every algorithm in a category. Distinctly
solved benchmarks by an algorithm are not solved by any algorithm in other categories.
The set union of distinctly solved benchmarks for all algorithms in a category equals
the count of uniquely solved for that category in Fig. 1.

benchmarks by CAR. The analysis supports our claim that CAR complements
BMC/IC3/PDR on unsafety checking.

Granular Analysis. Figure 2 shows how each algorithm in the IC3/PDR
(Fig. 2a) and CAR (Fig. 2b) categories performs on the benchmarks. simpcar-bp
distinctly solves all 8 benchmarks uniquely solved by the CAR cate-
gory (Fig. 1), while no single IC3/PDR algorithm distinctly solves all
uniquely solved benchmarks in the IC3/PDR category. In fact, a portfo-
lio including at least abc-pdr, simplic3-best1, and simplic3-best2 solves all
8 instances uniquely solved by the IC3/PDR category. It is important to note
that SimpleCAR is a very basic implementation of the CAR framework compared
to the highly optimized implementations of IC3/PDR in other tools. Even then
simpcar-b outperforms four IC3/PDR implementations. Our results show
that Backward-CAR is a favorable algorithm for unsafety checking.

Analysis Conclusions. Backward-CAR presents a more promising research
direction than Forward-CAR for unsafety checking. We conjecture that the per-
formance of Forward- and Backward- CAR varies with the structure of the aiger
model. Heuristics and performance-gain present a trade-off. simpcar-bp has a
better performance compared to the heuristic-heavy carchk-b. On the other
hand, simpcar-bp solves the most unsafe benchmarks in the CAR category,
however, adding the “propagation” heuristic effects its performance: there are
several benchmarks solved by simpcar-b but not by simpcar-bp.

4 Summary

We present SimpleCAR, a safety model checker based on the CAR framework for
reachability analysis. Our tool is a lightweight and extensible implementation
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of CAR with comparable performance to other state-of-the-art tool implementa-
tions of highly-optimized unsafety checking algorithms, and complements exist-
ing algorithm portfolios. Our empirical evaluation reveals that adding heuristics
does not always improve performance. We conclude that Backward-CAR is a more
promising research direction than Forward-CAR for unsafety checking, and our
tool serves as the “bottom-line” for all future extensions to the CAR framework.
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Abstract. In this paper, we introduce StringFuzz: a modular SMT-
LIB problem instance transformer and generator for string solvers. We
supply a repository of instances generated by StringFuzz in SMT-LIB
2.0/2.5 format. We systematically compare Z3str3, CVC4, Z3str2, and
Norn on groups of such instances, and identify those that are particularly
challenging for some solvers. We briefly explain our observations and
show how StringFuzz helped discover causes of performance degradations
in Z3str3.

1 Introduction

In recent years, many algorithms for solving string constraints have been devel-
oped and implemented in SMT solvers such as Norn [6], CVC4 [12], and Z3
(e.g., Z3str2 [13] and Z3str3 [7]). To validate and benchmark these solvers, their
developers have relied on hand-crafted input suites [1,4,5] or real-world examples
from a limited set of industrial applications [2,11]. These test suites have helped
developers identify implementation defects and develop more sophisticated solv-
ing heuristics. Unfortunately, as more features are added to solvers, these bench-
marks often remain stagnant, leaving increasing functionality untested. As such,
there is an acute need for a more robust, inexpensive, and automatic way of
generating benchmarks to test the correctness and performance of SMT solvers.

Fuzzing has been used to test all kinds of software including SAT solvers
[10]. Inspired by the utility of fuzzers, we introduce StringFuzz and describe its
value as an exploratory testing tool. We demonstrate its efficacy by present-
ing limitations it helped discover in leading string solvers. To the best of our
knowledge, StringFuzz is the only tool aimed at automatic generation of string
constraints. StringFuzz can be used to mutate or transform existing benchmarks,
as well as randomly generate structured instances. These instances can be scaled
with respect to a variety of parameters, e.g., length of string constants, depth of
concatenations (concats) and regular expressions (regexes), number of variables,
number of length constraints, and many more.

c© The Author(s) 2018
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Contributions

1. 1 The StringFuzz tool: In Sect. 2, we describe a modular fuzzer that can
transform and generate SMT-LIB 2.0/2.5 string and regex instances. Scaling
inputs (e.g., long string constants, deep concatenations) are particularly use-
ful in identifying asymptotic behaviors in solvers, and StringFuzz has many
options to generate them. We briefly document StringFuzz’s components and
modular architecture. We provide example use cases to demonstrate its utility
as an exploratory solver testing tool.

2. A repository of SMT-LIB 2.0/2.5 instances: We present a reposi-
tory of SMT-LIB 2.0/2.5 string and regex instance suites that we generated
using StringFuzz in Sect. 3. This repository consists of two categories: one
with new instances generated by StringFuzz (generated); and another with
transformed instances generated from a small suite of industrial benchmarks
(transformed).

3. Experimental Results and Analysis: We compare the performance of
Z3str3, CVC4, Z3str2, and Norn on the StringFuzz suites Concats-Balanced,
Concats-Big, Concats-Extracts-Small, and Different-Prefix in Sect. 4. We
highlight these suites because they make some solvers perform poorly, but
not others. We analyze our experimental results, and pinpoint algorithmic
limitations in Z3str3 that cause poor performance.

2 StringFuzz

Implementation and Architecture. StringFuzz is implemented as a Python
package, and comes with several executables to generate, transform, and analyze
SMT-LIB 2.0/2.5 string and regex instances. Its components are implemented as
UNIX “filters” to enable easy integration with other tools (including themselves).
For example, the outputs of generators can be piped into transformers, and
transformers can be chained to produce a stream of tuned inputs to a solver.
StringFuzz is composed of the following tools:

stringfuzzg
This tool generates SMT-LIB instances. It supports several generators and
options that specify its output. Details can be found in Table 1a.

stringfuzzx
This tool transforms SMT-LIB instances. It supports several transform-
ers and options that specify its output and input, which are explained in
Table 1b. Note that transformers Translate and Reverse also preserve satis-
fiability under certain conditions.

stringstats
This tool takes an SMT-LIB instance as input and outputs its properties: the
number of variables/literals, the max/median syntactic depth of expressions,
the max/median literal length, etc.

1 All source code, problem suites, and supplementary material referenced in this paper
are available at the StringFuzz website [3].
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Table 1. StringFuzz built-in (a) generators and (b) transformers.

(a) stringfuzzg built-in generators.

Name Generates instances that have ...

Concats Long concats and optional random extracts.
Lengths Many variables (and their concats) with length constraints.
Overlaps An expression of the form A.X = X.B.
Equality An equality among concats, each with variables or constants.
Regex Regexes of varying complexity.
Random-Text Totally random ASCII text.
Random-AST Random string and regex constraints.

(b) stringfuzzx built-in transformers.

Name The transformer ...

Fuzz Replaces literals and operators with similar ones.
Graft Randomly swaps non-leaf nodes with leaf nodes.
Multiplya Multiplies integers and repeats strings by N.
Nop Does nothing (can translate between SMT-LIB 2.0/2.5).
Reverseb Reverses all string literals and concat arguments.
Rotate Rotates compatible nodes in syntax tree.
Translateb Permutes the alphabet.
Unprintable Replaces characters in literals with unprintable ones.

aCan guarantee satisfiable output instances from satisfiable input instances [3].
bCan guarantee input and output instances will be equisatisfiable [3].

We organized StringFuzz to be easily extended. To show this, we note that
while the whole project contains 3,183 lines of code, it takes an average of 45
lines of code to create a transformer. StringFuzz can be installed from source,
or from the Python PIP package repository.

Regex Generating Capabilities. StringFuzz can generate and transform
instances with regex constraints. For example, the command “stringfuzzg
regex -r 2 -d 1 -t 1 -M 3 -X 10” produces this instance:

(set-logic QF_S)

(declare-fun var0 () String)

(assert (str.in.re var0 (re.+ (str.to.re "R5"))))

(assert (str.in.re var0 (re.+ (str.to.re "!PC"))))

(assert (<= 3 (str.len var0)))

(assert (<= (str.len var0) 10))

(check-sat)

Each instance is a set of one or more regex constraints on a single variable,
with optional maximum and minimum length constraints. Each regex constraint
is a concatenation (re.++ in SMT-LIB string syntax) of regex terms:

(re.++ T1 (re.++ T2 ... (re.++ Tn-1 Tn )))
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and each term Ti is recursively defined as any one of: repetition (re.*), Kleene
star (re.+), union (re.union), or a character literal. Nested operators are nested
up to a specified (using the --depth flag) depth of recursion. Terms at depth
0 are regex constants. Below are 3 example regexes (in regex, not SMT-LIB,
syntax) of depth 2 that can be produced this way:

((a|b)|(cc)+) ((ddd)∗) + ((ee) + |(fff)∗)

Equisatisfiable String Transformations. StringFuzz can also transform
problem instances. This is done by manipulating parsed syntax trees. By default
most of the built-in transformers only guarantee well-formedness, however, some
can even guarantee equisatisfiability. Table 1b lists the built-in transformers and
notes these guarantees.

Example Use Case. In Sect. 3 we use StringFuzz to generate benchmark suites
in a batch mode. We can also use StringFuzz for on-line exploratory debugging.
For example, the script below repeatedly feeds random StringFuzz instances to
CVC4 until the solver produces an error:

while stringfuzzg -r random-ast -m \
| tee instance.smt25 | cvc4 --lang smt2.5 --tlimit=5000 --strings-exp; do
sleep 0

done

3 Instance Suites

In this section, we describe the benchmark suites we generated with String-
Fuzz, and on which we conducted our experimental evaluation. Table 2a lists
instances that were generated by stringfuzzg. Table 2b lists instances derived
from existing seed instances by iteratively applying stringfuzzx. Every trans-
formed instance is named according to its seed and the transformations it under-
took. For example, z3-regex-1-fuzz-graft.smt2 was transformed by applying
Fuzz and then Graft to z3-regex-1.smt2.

The Amazon category contains 472 instances derived from two seeds supplied
by our industrial collaborators. The Regex category is seeded by the Z3str2 regex
test suite [4], which contains 42 instances. Through cumulative transformations
we expanded the 42 seeds to 7,551 unique instances. Finally, the Sanitizer cat-
egory is obtained from five industrial e-mail address and IPv4 sanitizers.

4 Experimental Results and Analysis

We generated several problem instance suites with StringFuzz that made one
solver perform poorly, but not others.2 They are Concats-Balanced, Concats-
Big, Concats-Extracts-Small, and Different-Prefix . Figure 1 shows the suites that
2 Only the results that made one solver perform poorly and not others are presented,
but results for all StringFuzz suites are available on the StringFuzz website [3].
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Table 2. Repository of 10,258 SMT-LIB 2.0/2.5 instances.

(a) stringfuzzg-generated instances.

...aevahsecnatsnIemaN Quantity

Concats-{Small,Big} Right-heavy, deep tree of concats. 120
Concats-Balanced Balanced, deep tree of concats. 100
Concats-Extracts-{Small,Big} Single concat tree, with character extractions. 120
Lengths-{Long,Short} Single, large length constraint on a variable. 200
Lengths-Concats Tree of fixed-length concats of variables. 100
Overlaps-{Small,Big} Formula of the form A.X = X.B. 80
Regex-{Small,Big} Complex regex membership test. 120
Many-Regexes Multiple random regex membership tests. 40
Regex-Deep Regex membership test with many nested operators. 45
Regex-Pair Test for membership in one regex, but not another. 40
Regex-Lengths Regex membership test, and a length constraint. 40
Different-Prefix Equality of two deep concats with different prefixes. 60

(b) stringfuzzx-generated instances.

ytitnauQdeeSemaN

Amazon Two industrial regex membership instances. 472
Regex Z3str2 regular expression test suite. 7,551
Sanitizer Five e-mail and IPv4 sanitiser examples. 1,170

(a) Performance on Concats-Extracts-Small (b) Performance on Different-Prefix

Fig. 1. Instances hard for CVC4

were uniquely difficult for CVC4. Figure 2 shows the suites that were uniquely
difficult for Z3str3. All experiments were conducted in series, each with a timeout
of 15 s, on an Ubuntu Linux 16.04 computer with 32 GB of RAM and an Intel R©
CoreTM i7-6700 CPU (3.40 GHz).

Usefulness to Z3str3: A Case Study. StringFuzz’s ability to produce scaling
instances helped uncover several implementation issues and performance limita-
tions in Z3str3. Scaling inputs can reveal issues that would normally be out of
scope for unit tests or industrial benchmarks. Three different performance and
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(a) Performance on Concats-Balanced (b) Performance on Concats-Big

Fig. 2. Instances hard for Z3str3

implementation bugs were identified and fixed in Z3str3 as a result of testing
with the StringFuzz scaling suites Lengths-Long and Concats-Big.

StringFuzz also helped identify a number of performance-related issues and
opportunities for new heuristics in Z3str3. For example, by examining Z3str3’s
execution traces on the instances in the Concats-Big suite we discovered a poten-
tial new heuristic. In particular, Z3str3 does not make full use of the solving con-
text (e.g. some terms are empty strings) to simplify the concatenations of a long
list of string terms before trying to reason about the equivalences among sub-
terms. Z3str3 therefore introduces a large number of unnecessary intermediate
variables and propagations.

5 Related Work

Many solver developers create their own test suites to validate their solvers [1,
4,5]. Several popular instance suites are also publicly available for solver testing
and benchmarking, such as the Kaluza [2] and Kausler [11] suites. There are
likewise several fuzzers and instance generators currently available, but none of
them can generate or transform string and regex instances. For example, the
FuzzSMT [9] tool generates SMT-LIB instances with bit-vectors and arrays,
but does not support strings or regexes. The SMTpp [8] tool pre-processes and
simplifies instances, but does not generate new ones or fuzz existing ones.
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Abstract. Information about the memory locations accessed by a pro-
gram is, for instance, required for program parallelisation and program
verification. Existing inference techniques for this information provide
only partial solutions for the important class of array-manipulating pro-
grams. In this paper, we present a static analysis that infers the memory
footprint of an array program in terms of permission pre- and postcon-
ditions as used, for example, in separation logic. This formulation allows
our analysis to handle concurrent programs and produces specifications
that can be used by verification tools. Our analysis expresses the permis-
sions required by a loop via maximum expressions over the individual
loop iterations. These maximum expressions are then solved by a novel
maximum elimination algorithm, in the spirit of quantifier elimination.
Our approach is sound and is implemented; an evaluation on existing
benchmarks for memory safety of array programs demonstrates accurate
results, even for programs with complex access patterns and nested loops.

1 Introduction

Information about the memory locations accessed by a program is crucial for
many applications such as static data race detection [45], code optimisation
[16,26,33], program parallelisation [5,17], and program verification [23,30,38,39].
The problem of inferring this information statically has been addressed by a
variety of static analyses, e.g., [9,42]. However, prior works provide only partial
solutions for the important class of array-manipulating programs for at least
one of the following reasons. (1) They approximate the entire array as one single
memory location [4] which leads to imprecise results; (2) they do not produce
specifications, which are useful for several important applications such as human
inspection, test case generation, and especially deductive program verification;
(3) they are limited to sequential programs.

In this paper, we present a novel analysis for array programs that addresses
these shortcomings. Our analysis employs the notion of access permission from
separation logic and similar program logics [40,43]. These logics associate a per-
mission with each memory location and enforce that a program part accesses a
c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 55–74, 2018.
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location only if it holds the associated permission. In this setting, determining
the accessed locations means to infer a sufficient precondition that specifies the
permissions required by a program part.

Phrasing the problem as one of permission inference allows us to address
the three problems mentioned above. (1) We distinguish different array elements
by tracking the permission for each element separately. (2) Our analysis infers
pre- and postconditions for both methods and loops and emits them in a form
that can be used by verification tools. The inferred specifications can easily be
complemented with permission specifications for non-array data structures and
with functional specifications. (3) We support concurrency in three important
ways. First, our analysis is sound for concurrent program executions because
permissions guarantee that program executions are data race free and reduce
thread interactions to specific points in the program such as forking or joining
a thread, or acquiring or releasing a lock. Second, we develop our analysis for a
programming language with primitives that represent the ownership transfer that
happens at these thread interaction points. These primitives, inhale and exhale
[31,38], express that a thread obtains permissions (for instance, by acquiring a
lock) or loses permissions (for instance, by passing them to another thread along
with a message) and can thereby represent a wide range of thread interactions
in a uniform way [32,44]. Third, our analysis distinguishes read and write access
and, thus, ensures exclusive writes while permitting concurrent read accesses.
As is standard, we employ fractional permissions [6] for this purpose; a full
permission is required to write to a location, but any positive fraction permits
read access.

Approach. Our analysis reduces the problem of reasoning about permissions for
array elements to reasoning about numerical values for permission fractions. To
achieve this, we represent permission fractions for all array elements qa[qi] using
a single numerical expression t(qa, qi) parameterised by qa and qi. For instance,
the conditional term (qa=a ∧ qi=j ? 1 : 0) represents full permission (denoted by
1) for array element a[j] and no permission for all other array elements.

Our analysis employs a precise backwards analysis for loop-free code: a varia-
tion on the standard notion of weakest preconditions. We apply this analysis to
loop bodies to obtain a permission precondition for a single loop iteration. Per
array element, the whole loop requires the maximum fraction over all loop iter-
ations, adjusted by permissions gained and lost during loop execution. Rather
than computing permissions via a fixpoint iteration (for which a precise widen-
ing operator is difficult to design), we express them as a maximum over the
variables changed by the loop execution. We then use inferred numerical invari-
ants on these variables and a novel maximum elimination algorithm to infer a
specification for the entire loop. Permission postconditions are obtained analo-
gously.

For the method copyEven in Fig. 1, the analysis determines that the permission
amount required by a single loop iteration is (j%2=0?(qa=a ∧ qi=j?rd:0):(qa=a ∧
qi=j?1 :0)). The symbol rd represents a fractional read permission. Using a suit-
able integer invariant for the loop counter j, we obtain the loop precondition
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Fig. 1. Program copyEven. Fig. 2. Program parCopyEven.

Fig. 3. Programming Language. n ranges over integer constants, x over integer vari-
ables, a over array variables, q over non-negative fractional (permission-typed) con-
stants. e stands for integer expressions, and b for boolean. Permission expressions p are
a separate syntactic category.

maxj|0≤j<len(a) ((j%2=0 ? (qa=a ∧ qi=j ? rd : 0) : (qa=a ∧ qi=j ? 1 : 0))). Our
maximum elimination algorithm obtains (qa=a ∧ 0≤qi<len(a)? (qi%2=0? rd : 1) :
0). By ranging over all qa and qi, this can be read as read permission for even
indices and write permission for odd indices within the array a’s bounds.

Contributions. The contributions of our paper are:

1. A novel permission inference that uses maximum expressions over parame-
terised arithmetic expressions to summarise loops (Sects. 3 and 4)

2. An algorithm for eliminating maximum (and minimum) expressions over an
unbounded number of cases (Sect. 5)

3. An implementation of our analysis, which will be made available as an artifact
4. An evaluation on benchmark examples from existing papers and competitions,

demonstrating that we obtain sound, precise, and compact specifications, even
for challenging array access patterns and parallel loops (Sect. 6)

5. Proof sketches for the soundness of our permission inference and correctness
of our maximum elimination algorithm (in the technical report (TR) [15])

2 Programming Language

We define our inference technique over the programming language in Fig. 3. Pro-
grams operate on integers (expressions e), booleans (expressions b), and one-
dimensional integer arrays (variables a); a generalisation to other forms of arrays
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is straightforward and supported by our implementation. Arrays are read and
updated via the statements x := a[e] and a[e] := x; array lookups in expressions
are not part of the surface syntax, but are used internally by our analysis. Per-
mission expressions p evaluate to rational numbers; rd, min, and max are for
internal use.

A full-fledged programming language contains many statements that affect
the ownership of memory locations, expressed via permissions [32,44]. For exam-
ple in a concurrent setting, a fork operation may transfer permissions to the new
thread, acquiring a lock obtains permission to access certain memory locations,
and messages may transfer permissions between sender and receiver. Even in
a sequential setting, the concept is useful: in procedure-modular reasoning, a
method call transfers permissions from the caller to the callee, and back when
the callee terminates. Allocation can be represented as obtaining a fresh object
and then obtaining permission to its locations.

For the purpose of our permission inference, we can reduce all of these oper-
ations to two basic statements that directly manipulate the permissions cur-
rently held [31,38]. An inhale(a, e, p) statement adds the amount p of per-
mission for the array location a[e] to the currently held permissions. Dually,
an exhale(a, e, p) statement requires that this amount of permission is already
held, and then removes it. We assume that for any inhale or exhale statements,
the permission expression p denotes a non-negative fraction. For simplicity, we
restrict inhale and exhale statements to a single array location, but the exten-
sion to unboundedly-many locations from the same array is straightforward [37].

Semantics. The operational semantics of our language is mostly standard, but
is instrumented with additional state to track how much permission is held to
each heap location; a program state therefore consists of a triple of heap H
(mapping pairs of array identifier and integer index to integer values), a permis-
sion map P , mapping such pairs to permission amounts, and an environment σ
mapping variables to values (integers or array identifiers).

The execution of inhale or exhale statements causes modifications to the
permission map, and all array accesses are guarded with checks that at least
some permission is held when reading and that full (1) permission is held when
writing [6]. If these checks (or an exhale statement) fail, the execution terminates
with a permission failure. Permission amounts greater than 1 indicate invalid
states that cannot be reached by a program execution. We model run-time errors
other than permission failures (in particular, out-of-bounds accesses) as stuck
configurations.

3 Permission Inference for Loop-Free Code

Our analysis infers a sufficient permission precondition and a guaranteed permis-
sion postcondition for each method of a program. Both conditions are mappings
from array elements to permission amounts. Executing a statement s in a state
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Fig. 4. The backwards analysis rules for permission preconditions and relative permis-
sion differences. The notation αa,e(p) is a shorthand for (qa=a ∧ qi=e ? p : 0) and
denotes p permission for the array location a[e]. Moreover, p[a′[e′] �→ e] matches all
array accesses in p and replaces them with the expression obtained from e by substi-
tuting all occurrences of a′ and e′ with the matched array and index, respectively. The
cases for inhale statements are slightly simplified; the full rules are given in Fig. 6 of
the TR [15].

whose permission map P contains at least the permissions required by a suffi-
cient permission precondition for s is guaranteed to not result in a permission
failure. A guaranteed permission postcondition expresses the permissions that
will at least be held when s terminates (see Sect. A of the TR [15] for formal
definitions).

In this section, we define inference rules to compute sufficient permission
preconditions for loop-free code. For programs which do not add or remove per-
missions via inhale and exhale statements, the same permissions will still be
held after executing the code; however, to infer guaranteed permission postcon-
ditions in the general case, we also infer the difference in permissions between
the state before and after the execution. We will discuss loops in the next section.
Non-recursive method calls can be handled by applying our analysis bottom-up
in the call graph and using inhale and exhale statements to model the permis-
sion effect of calls. Recursion can be handled similarly to loops, but is omitted
here.

We define our permission analysis to track and generate permission expres-
sions parameterised by two distinguished variables qa and qi; by parameterising
our expressions in this way, we can use a single expression to represent a permis-
sion amount for each pair of qa and qi values.

Preconditions. The permission precondition of a loop-free statement s and a
postcondition permission p (in which qa and qi potentially occur) is denoted by
pre(s, p), and is defined in Fig. 4. Most rules are straightforward adaptations of a
classical weakest-precondition computation. Array lookups require some permis-
sion to the accessed array location; we use the internal expression rd to denote
a non-zero permission amount; a post-processing step can later replace rd by
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a concrete rational. Since downstream code may require further permission for
this location, represented by the permission expression p, we take the maximum
of both amounts. Array updates require full permission and need to take alias-
ing into account. The case for inhale subtracts the inhaled permission amount
from the permissions required by downstream code; the case for exhale adds the
permissions to be exhaled. Note that this addition may lead to a required per-
mission amount exceeding the full permission. This indicates that the statement
is not feasible, that is, all executions will lead to a permission failure.

To illustrate our pre definition, let s be the body of the loop in the parCopyEven

method in Fig. 2. The precondition pre(s, 0) = (qa=a ∧ qi=2∗j ? 1/2 : 0) + (qa=a

∧ qi=2∗j+1 ? 1 : 0) expresses that a loop iteration requires a half permission for
the even elements of array a and full permission for the odd elements.

Postconditions. The final state of a method execution includes the permissions
held in the method pre-state, adjusted by the permissions that are inhaled or
exhaled during the method execution. To perform this adjustment, we compute
the difference in permissions before and after executing a statement. The rela-
tive permission difference for a loop-free statement s and a permission expression
p (in which qa and qi potentially occur) is denoted by Δ(s, p), and is defined
backward, analogously to pre in Fig. 4. The second parameter p acts as an accu-
mulator; the difference in permission is represented by evaluating Δ(s, 0).

For a statement s with precondition pre(s, 0), we obtain the postcondition
pre(s, 0)+Δ(s, 0). Let s again be the loop body from parCopyEven. Since s contains
exhale statements, we obtain Δ(s, 0) = 0 − (qa=a ∧ qi=2∗j ? 1/2 : 0) − (qa=a ∧
qi=2∗j+1 ? 1 : 0). Thus, the postcondition pre(s, 0) + Δ(s, 0) can be simplified to
0. This reflects the fact that all required permissions for a single loop iteration
are lost by the end of its execution.

Since our Δ operator performs a backward analysis, our permission post-
conditions are expressed in terms of the pre-state of the execution of s. To
obtain classical postconditions, any heap accesses need to refer to the pre-state
heap, which can be achieved in program logics by using old expressions or log-
ical variables. Formalizing the postcondition inference as a backward analysis
simplifies our treatment of loops and has technical advantages over classical
strongest-postconditions, which introduce existential quantifiers for assignment
statements. A limitation of our approach is that our postconditions cannot cap-
ture situations in which a statement obtains permissions to locations for which
no pre-state expression exists, e.g. allocation of new arrays. Our postconditions
are sound; to make them precise for such cases, our inference needs to be com-
bined with an additional forward analysis, which we leave as future work.

4 Handling Loops via Maximum Expressions
In this section, we first focus on obtaining a sufficient permission precondition
for the execution of a loop in isolation (independently of the code after it) and
then combine the inference for loops with the one for loop-free code described
above.
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4.1 Sufficient Permission Preconditions for Loops

A sufficient permission precondition for a loop guarantees the absence of permis-
sion failures for a potentially unbounded number of executions of the loop body.
This concept is different from a loop invariant: we require a precondition for
all executions of a particular loop, but it need not be inductive. Our technique
obtains such a loop precondition by projecting a permission precondition for a
single loop iteration over all possible initial states for the loop executions.

Exhale-Free Loop Bodies. We consider first the simpler (but common) case
of a loop that does not contain exhale statements, e.g., does not transfer permis-
sions to a forked thread. The solution for this case is also sound for loop bodies
where each exhale is followed by an inhale for the same array location and at
least the same permission amount, as in the encoding of most method calls.

Consider a sufficient permission precondition p for the body of a loop
while (b) { s }. By definition, p will denote sufficient permissions to execute
s once; the precise locations to which p requires permission depend on the initial
state of the loop iteration. For example, the sufficient permission precondition for
the body of the copyEven method in Fig. 1, (j%2=0?(qa=a ∧ qi=j?rd :0):(qa=a ∧
qi=j ? 1 : 0)), requires permissions to different array locations, depending on the
value of j. To obtain a sufficient permission precondition for the entire loop, we
leverage an over-approximating loop invariant I+ from an off-the-shelf numeri-
cal analysis (e.g., [13]) to over-approximate all possible values of the numerical
variables that get assigned in the loop body, here, j. We can then express the
loop precondition using the pointwise maximum maxj|I+∧b (p), over the values
of j that satisfy the condition I+ ∧ b. (The maximum over an empty range is
defined to be 0.) For the copyEven method, given the invariant 0 ≤ j ≤ len(a),
the loop precondition is maxj|0≤j<len(a) (p).

In general, a permission precondition for a loop body may also depend on
array values, e.g., if those values are used in branch conditions. To avoid the
need for an expensive array value analysis, we define both an over- and an under-
approximation of permission expressions, denoted p↑ and p↓ (cf. Sect. A.1 of the
TR [15]), with the guarantees that p ≤ p↑ and p↓ ≤ p. These approximations
abstract away array-dependent conditions, and have an impact on precision only
when array values are used to determine a location to be accessed. For exam-
ple, a linear array search for a particular value accesses the array only up to
the (a-priori unknown) point at which the value is found, but our permission
precondition conservatively requires access to the full array.

Theorem 1. Let while (b) { s } be an exhale-free loop, let x be the integer
variables modified by s, and let I+ be a sound over-approximating numerical
loop invariant (over the integer variables in s). Then maxx|I+∧b (pre(s, 0)↑) is a
sufficient permission precondition for while (b) { s }.

Loops with Exhale Statements. For loops that contain exhale statements,
the approach described above does not always guarantee a sufficient permission
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precondition. For example, if a loop gives away full permission to the same
array location in every iteration, our pointwise maximum construction yields a
precondition requiring the full permission once, as opposed to the unsatisfiable
precondition (since the loop is guaranteed to cause a permission failure).

As explained above, our inference is sound if each exhale statement is fol-
lowed by a corresponding inhale, which can often be checked syntactically. In
the following, we present another decidable condition that guarantees soundness
and that can be checked efficiently by an SMT solver. If neither condition holds,
we preserve soundness by inferring an unsatisfiable precondition; we did not
encounter any such examples in our evaluation.

Our soundness condition checks that the maximum of the permissions
required by two loop iterations is not less than the permissions required by exe-
cuting the two iterations in sequence. Intuitively, that is the case when neither
iteration removes permissions that are required by the other iteration.

Theorem 2 (Soundness Condition for Loop Preconditions). Given a
loop while (b) { s }, let x be the integer variables modified in s and let v and v′
be two fresh sets of variables, one for each of x. Then maxx|I+∧b (pre(s, 0)↑) is a
sufficient permission precondition for while (b) { s } if the following implication
is valid in all states:

(I+ ∧ b)[v/x] ∧ (I+ ∧ b)[v′/x] ∧ (
∨

v �= v′) ⇒
max(pre(s, 0)↑[v/x], pre(s, 0)↑[v′/x]) ≥ pre(s, pre(s, 0)↑[v′/x])↑[v/x]

The additional variables v and v′ are used to model two arbitrary valuations of x;
we constrain these to represent two initial states allowed by I+ ∧ b and different
from each other for at least one program variable. We then require that the effect
of analysing each loop iteration independently and taking the maximum is not
smaller than the effect of sequentially composing the two loop iterations.

The theorem requires implicitly that no two different iterations of a loop
observe exactly the same values for all integer variables. If that could be the
case, the condition

∨
v �= v′ would cause us to ignore a potential pair of initial

states for two different loop iterations. To avoid this problem, we assume that all
loops satisfy this requirement; it can easily be enforced by adding an additional
variable as loop iteration counter [21].

For the parCopyEven method (Fig. 2), the soundness condition holds since,
due to the v �= v′ condition, the two terms on the right of the implication
are equal for all values of qi. We can thus infer a sufficient precondition as
maxj|0≤j<len(a)/2 ((qa=a ∧ qi=2∗j ? 1/2 : 0) + (qa=a ∧ qi=2∗j+1 ? 1 : 0)).

4.2 Permission Inference for Loops

We can now extend the pre- and postcondition inference from Sect. 3 with loops.
pre(while (b) { s }, p) must require permissions such that (1) the loop executes
without permission failure and (2) at least the permissions described by p are held
when the loop terminates. While the former is provided by the loop precondition
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as defined in the previous subsection, the latter also depends on the permissions
gained or lost during the execution of the loop. To characterise these permissions,
we extend the Δ operator from Sect. 3 to handle loops.

Under the soundness condition from Theorem 2, we can mimic the approach
from the previous subsection and use over-approximating invariants to project
out the permissions lost in a single loop iteration (where Δ(s, 0) is negative)
to those lost by the entire loop, using a maximum expression. This projection
conservatively assumes that the permissions lost in a single iteration are lost
by all iterations whose initial state is allowed by the loop invariant and loop
condition. This approach is a sound over-approximation of the permissions lost.

However, for the permissions gained by a loop iteration (where Δ(s, 0) is pos-
itive), this approach would be unsound because the over-approximation includes
iterations that may not actually happen and, thus, permissions that are not
actually gained. For this reason, our technique handles gained permissions via
an under-approximate1 numerical loop invariant I− (e.g., [35]) and thus projects
the gained permissions only over iterations that will surely happen.

This approach is reflected in the definition of our Δ operator below via d,
which represents the permissions possibly lost or definitely gained over all iter-
ations of the loop. In the former case, we have Δ(s, 0) < 0 and, thus, the first
summand is 0 and the computation based on the over-approximate invariant
applies (note that the negated maximum of negated values is the minimum; we
take the minimum over negative values). In the latter case (Δ(s, 0) > 0), the
second summand is 0 and the computation based on the under-approximate
invariant applies (we take the maximum over positive values).

Δ(while (b) { s }, p) = (b ? d + p′ : p), where:
d = max

x|I−∧b
max(0, Δ(s, 0))↓ − max

x|I+∧b
max(0, − Δ(s, 0))↑

p′ = max
x|I−∧¬b

max(0, p)↓ − max
x|I+∧¬b

max(0, −p)↑

x denotes again the integer variables modified in s. The role of p′ is to carry over
the permissions p that are gained or lost by the code following the loop, taking
into account any state changes performed by the loop. Intuitively, the maximum
expressions replace the variables x in p with expressions that do not depend
on these variables but nonetheless reflect properties of their values right after
the execution of the loop. For permissions gained, these properties are based
on the under-approximate loop invariant to ensure that they hold for any possi-
ble loop execution. For permissions lost, we use the over-approximate invariant.
For the loop in parCopyEven we use the invariant 0 ≤ j ≤ len(a)/2 to obtain
d = −maxj|0≤j<len(a)/2 ((qa=a ∧ qi=2∗j ? 1/2 : 0) + (qa=a ∧ qi=2∗j+1 ? 1 : 0)).
Since there are no statements following the loop, p and therefore p′ are 0.

Using the same d term, we can now define the general case of pre for loops,
combining (1) the loop precondition and (2) the permissions required by the code
after the loop, adjusted by the permissions gained or lost during loop execution:

1 An under-approximate loop invariant must be true only for states that will actually
be encountered when executing the loop.
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pre(while (b) { s }, p) = (b ? max( max
x|I+∧b

pre(s, 0)↑, max
x|I+∧¬b

(p↑) − d) : p)

Similarly to p′ in the rule for Δ, the expression maxx|I+∧¬b (p↑) conservatively
over-approximates the permissions required to execute the code after the loop.
For method parCopyEven, we obtain a sufficient precondition that is the negation
of the Δ. Consequently, the postcondition is 0.

Soundness. Our pre and Δ definitions yield a sound method for computing
sufficient permission preconditions and guaranteed postconditions:

Theorem 3 (Soundness of Permission Inference). For any statement s, if
every while loop in s either is exhale-free or satisfies the condition of Theorem 2
then pre(s, 0) is a sufficient permission precondition for s, and pre(s, 0)+Δ(s, 0)
is a corresponding guaranteed permission postcondition.

Our inference expresses pre and postconditions using a maximum operator
over an unbounded set of values. However, this operator is not supported by SMT
solvers. To be able to use the inferred conditions for SMT-based verification, we
provide an algorithm for eliminating these operators, as we discuss next.

5 A Maximum Elimination Algorithm

We now present a new algorithm for replacing maximum expressions over an
unbounded set of values (called pointwise maximum expressions in the follow-
ing) with equivalent expressions containing no pointwise maximum expressions.
Note that, technically our algorithm computes solutions to maxx|b∧p≥0(p) since
some optimisations exploit the fact that the permission expressions our analysis
generates always denote non-negative values.

5.1 Background: Quantifier Elimination

Our algorithm builds upon ideas from Cooper’s classic quantifier elimination
algorithm [11] which, given a formula ∃x.b (where b is a quantifier-free Presburger
formula), computes an equivalent quantifier-free formula b′. Below, we give a brief
summary of Cooper’s approach.

The problem is first reduced via boolean and arithmetic manipulations to a
formula ∃x.b in which x occurs at most once per literal and with no coefficient.
The key idea is then to reduce ∃x.b to a disjunction of two cases: (1) there
is a smallest value of x making b true, or (2) b is true for arbitrarily small
values of x.

In case (1), one computes a finite set of expressions S (the bi in [11]) guar-
anteed to include the smallest value of x. For each (in/dis-)equality literal con-
taining x in b, one collects a boundary expression e which denotes a value for x
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making the literal true, while the value e − 1 would make it false. For example,
for the literal y < x one generates the expression y + 1. If there are no (non-)
divisibility constraints in b, by definition, S will include the smallest value of x
making b true. To account for (non-)divisibility constraints such as x%2=0, the
lowest-common-multiple δ of the divisors (and 1) is returned along with S; the
guarantee is then that the smallest value of x making b true will be e + d for
some e ∈ S and d ∈ [0, δ − 1]. We use 〈〈b〉〉small(x) to denote the function handling
this computation. Then, ∃x.b can be reduced to

∨
e∈S,d∈[0,δ−1] b[e + d/x], where

(S, δ) = 〈〈b〉〉small(x).
In case (2), one can observe that the (in/dis-)equality literals in b will flip

value at finitely many values of x, and so for sufficiently small values of x, each
(in/dis-)equality literal in b will have a constant value (e.g., y > x will be true). By
replacing these literals with these constant values, one obtains a new expression b′

equal to b for small enough x, and which depends on x only via (non-)divisibility
constraints. The value of b′ will therefore actually be determined by x mod δ,
where δ is the lowest-common-multiple of the (non-)divisibility constraints. We
use 〈〈b〉〉−∞(x) to denote the function handling this computation. Then, ∃x.b can
be reduced to

∨
d∈[0,δ−1] b′[d/x], where (b′, δ) = 〈〈b〉〉−∞(x).

In principle, the maximum of a function y = maxx f(x) can be defined using
two first-order quantifiers ∀x.f(x) ≤ y and ∃x.f(x) = y. One might therefore
be tempted to tackle our maximum elimination problem using quantifier elim-
ination directly. We explored this possibility and found two serious drawbacks.
First, the resulting formula does not yield a permission-typed expression that
we can plug back into our analysis. Second, the resulting formulas are extremely
large (e.g., for the copyEven example it yields several pages of specifications), and
hard to simplify since relevant information is often spread across many terms due
to the two separate quantifiers. Our maximum elimination algorithm addresses
these drawbacks by natively working with arithmetic expression, while mim-
icking the basic ideas of Cooper’s algorithm and incorporating domain-specific
optimisations.

5.2 Maximum Elimination

The first step is to reduce the problem of eliminating general maxx|b (p) terms to
those in which b and p come from a simpler restricted grammar. These simple per-
mission expressions p do not contain general conditional expressions (b′ ?p1 :p2),
but instead only those of the form (b′ ?r :0) (where r is a constant or rd). Further-
more, simple permission expressions only contain subtractions of the form p −
(b′ ?r :0). This is achieved in a precursory rewriting of the input expression by, for
instance, distributing pointwise maxima over conditional expressions and binary
maxima. For example, the pointwise maximum term (part of the copyEven exam-
ple): maxj|0≤j<len(a) ((j%2=0 ? (qa=a ∧ qi=j ? rd : 0) : (qa=a ∧ qi=j ? 1 : 0))) will
be reduced to:

max( maxj|0≤j<len(a)∧j%2=0 ((qa=a ∧ qi=j ? rd : 0)),
maxj|0≤j<len(a)∧j%2�=0 ((qa=a ∧ qi=j ? 1 : 0)))
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Fig. 5. Filtered boundary expression computation.

Arbitrarily-Small Values. We exploit a high-level case-split in our algorithm
design analogous to Cooper’s: given a pointwise maximum expression maxx|b (p),
either a smallest value of x exists such that p has its maximal value (and b is
true), or there are arbitrarily small values of x defining this maximal value. To
handle the latter case, we define a completely analogous 〈〈p〉〉−∞(x) function, which
recursively replaces all boolean expressions b′ in p with 〈〈b′〉〉−∞(x) as computed by
Cooper; we relegate the definition to Sect. B.3 of the TR [15]. We then use (b′ ?
p′ :0), where (b′, δ1) = 〈〈b〉〉−∞(x) and (p′, δ2) = 〈〈p〉〉−∞(x), as our expression in this
case. Note that this expression still depends on x if it contains (non-)divisibility
constraints; Theorem 4 shows how x can be eliminated using δ1 and δ2.

Selecting Boundary Expressions for Maximum Elimination. Next, we
consider the case of selecting an appropriate set of boundary expressions, given a
maxx|b (p) term. We define this first for p in isolation, and then give an extended
definition accounting for the b. Just as for Cooper’s algorithm, the boundary
expressions must be a set guaranteed to include the smallest value of x defining
the maximum value in question. The set must be finite, and be as small as
possible for efficiency of our overall algorithm. We refine the notion of boundary
expression, and compute a set of pairs (e, b′) of integer expression e and its
filter condition b′: the filter condition represents an additional condition under
which e must be included as a boundary expression. In particular, in contexts
where b′ is false, e can be ignored; this gives us a way to symbolically define
an ultimately-smaller set of boundary expressions, particularly in the absence of
contextual information which might later show b′ to be false. We call these pairs
filtered boundary expressions.

Definition 1 (Filtered Boundary Expressions). The filtered boundary
expression computation for x in p, written 〈〈p〉〉smallmax(x), returns a pair of a set
T of pairs (e, b′), and an integer constant δ, as defined in Fig. 5. This definition
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is also overloaded with a definition of filtered boundary expression computation
for (x | b) in p, written 〈〈(p, b)〉〉smallmax(x).

Just as for Cooper’s 〈〈b〉〉small(x) computation, our function 〈〈p〉〉smallmax(x) com-
putes the set T of (e, b′) pairs along with a single integer constant δ, which is
the least common multiple of the divisors occurring in p; the desired smallest
value of x may actually be some e + d where d ∈ [0, δ − 1]. There are three key
points to Definition 1 which ultimately make our algorithm efficient:

First, the case for 〈〈(b ? p : 0)〉〉smallmax(x) only includes boundary expressions
for making b true. The case of b being false (from the structure of the permission
expression) is not relevant for trying to maximise the permission expression’s
value (note that this case will never apply under a subtraction operator, due
to our simplified grammar, and the case for subtraction not recursing into the
right-hand operand).

Second, the case for 〈〈p1 − (b ? p : 0)〉〉smallmax(x) dually only considers bound-
ary expressions for making b false (along with the boundary expressions for max-
imising p1). The filter condition p1 > 0 is used to drop the boundary expressions
for making b false; in case p1 is not strictly positive we know that the evaluation
of the whole permission expression will not yield a strictly-positive value, and
hence is not an interesting boundary value for a non-negative maximum.

Third, in the overloaded definition of 〈〈(p, b)〉〉smallmax(x), we combine boundary
expressions for p with those for b. The boundary expressions for b are, however,
superfluous if, in analysing p we have already determined a value for x which
maximises p and happens to satisfy b. If all boundary expressions for p (whose
filter conditions are true) make b true, and all non-trivial (i.e. strictly positive)
evaluations of 〈〈p〉〉−∞(x) used for potentially defining p’s maximum value also
satisfy b, then we can safely discard the boundary expressions for b.

We are now ready to reduce pointwise maximum expressions to equivalent
maximum expressions over finitely-many cases:

Theorem 4 (Simple Maximum Expression Elimination). For any pair
(p, b), if |= p ≥ 0, then we have:

|= max
x|b

p = max
(

max
(e,b′′)∈T
d∈[0,δ−1]

(b′′ ∧ b[e + d/x] ? p[e + d/x] : 0)),

max
d∈[0,lcm(δ1,δ2)−1]

(b′[d/x] ? p′[d/x] : 0)
)

where (T, δ) = 〈〈(p, b)〉〉smallmax(x), (b′, δ1) = 〈〈b〉〉−∞(x) and (p′, δ2) = 〈〈p〉〉−∞(x).

To see how our filter conditions help to keep the set T (and therefore, the
first iterated maximum on the right of the equality in the above theorem) small,
consider the example: maxx|x≥0 ((x=i ? 1 : 0)) (so p is (x=i ? 1 : 0), while b is
x ≥ 0). In this case, evaluating 〈〈(p, b)〉〉smallmax(x) yields the set T =
{(i, true), (0, i < 0)} with the meaning that the boundary expression i is con-
sidered in all cases, while the boundary expression 0 is only of interest if i < 0.
The first iterated maximum term would be max((true∧ i≥0?(i=i?1 :0) :0), (i<0
∧0≥0?(0=i?1:0):0)). We observe that the term corresponding to the boundary
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Table 1. Experimental results. For each program, we list the lines of code and the num-
ber of loops (in brackets the nesting depth). We report the relative size of the inferred
specifications compared to hand-written specifications, and whether the inferred spec-
ifications are precise (a star next to the tick indicates slightly more precise than hand-
written specifications). Inference times are given in ms.

value 0 can be simplified to 0 since it contains the two contradictory conditions
i < 0 and 0 = i. Thus, the entire maximum can be simplified to (i≥0 ? 1 : 0).
Without the filter conditions the result would instead be max((i≥0 ? 1 : 0),
(0=i ? 1 : 0)). In the context of our permission analysis, the filter conditions
allow us to avoid generating boundary expressions corresponding e.g. to the
integer loop invariants, provided that the expressions generated by analysing
the permission expression in question already suffice. We employ aggressive syn-
tactic simplification of the resulting expressions, in order to exploit these filter
conditions to produce succinct final answers.

6 Implementation and Experimental Evaluation

We have developed a prototype implementation of our permission inference. The
tool is written in Scala and accepts programs written in the Viper language [38],
which provides all the features needed for our purposes.
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Given a Viper program, the tool first performs a forward numerical anal-
ysis to infer the over-approximate loop invariants needed for our handling of
loops. The implementation is parametric in the numerical abstract domain used
for the analysis; we currently support the abstract domains provided by the
Apron library [24]. As we have yet to integrate the implementation of under-
approximate invariants (e.g., [35]), we rely on user-provided invariants, or assume
them to be false if none are provided. In a second step, our tool performs the
inference and maximum elimination. Finally, it annotates the input program
with the inferred specification.

We evaluated our implementation on 43 programs taken from various sources;
included are all programs that do not contain strings from the array memory
safety category of SV-COMP 2017, all programs from Dillig et al. [14] (except
three examples involving arrays of arrays), loop parallelisation examples from
VerCors [5], and a few programs that we crafted ourselves. We manually checked
that our soundness condition holds for all considered programs. The parallel loop
examples were encoded as two consecutive loops where the first one models the
forking of one thread per loop iteration (by iteratively exhaling the permissions
required for all loop iterations), and the second one models the joining of all
these threads (by inhaling the permissions that are left after each loop iteration).
For the numerical analysis we used the polyhedra abstract domain provided by
Apron. The experiments were performed on a dual core machine with a 2.60 GHz
Intel Core i7-6600U CPU, running Ubuntu 16.04.

An overview of the results is given in Table 1. For each program, we compared
the size and precision of the inferred specification with respect to hand-written
ones. The running times were measured by first running the analysis 50 times
to warm up the JVM and then computing the average time needed over the
next 100 runs. The results show that the inference is very efficient. The inferred
specifications are concise for the vast majority of the examples. In 35 out of 48
cases, our inference inferred precise specifications. Most of the imprecisions are
due to the inferred numerical loop invariants. In all cases, manually strengthen-
ing the invariants yields a precise specification. In one example, the source of
imprecision is our abstraction of array-dependent conditions (see Sect. 4).

7 Related Work

Much work is dedicated to the analysis of array programs, but most of it focuses
on array content, whereas we infer permission specifications. The simplest app-
roach consists of “smashing” all array elements into a single memory location [4].
This is generally quite imprecise, as only weak updates can be performed on the
smashed array. A simple alternative is to consider array elements as distinct vari-
ables [4], which is feasible only when the length of the array is statically-known.
More-advanced approaches perform syntax-based [18,22,25] or semantics-based
[12,34] partitions of an array into symbolic segments. These require segments
to be contiguous (with the exception of [34]), and do not easily generalise to
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multidimensional arrays, unlike our approach. Gulwani et al. [20] propose an
approach for inferring quantified invariants for arrays by lifting quantifier-free
abstract domains. Their technique requires templates for the invariants.

Dillig et al. [14] avoid an explicit array partitioning by maintaining con-
straints that over- and under-approximate the array elements being updated by
a program statement. Their work employs a technique for directly generalising
the analysis of a single loop iteration (based on quantifier elimination), which
works well when different loop iterations write to disjoint array locations. Gedell
and Hähnle [17] provide an analysis which uses a similar criterion to determine
that it is safe to parallelise a loop, and treat its heap updates as one bulk effect.
The condition for our projection over loop iterations is weaker, since it allows
the same array location to be updated in multiple loop iterations (like for exam-
ple in sorting algorithms). Blom et al. [5] provide a specification technique for
a variety of parallel loop constructs; our work can infer the specifications which
their technique requires to be provided.

Another alternative for generalising the effect of a loop iteration is to use a
first order theorem prover as proposed by Kovács and Voronkov [28]. In their
work, however, they did not consider nested loops or multidimensional arrays.
Other works rely on loop acceleration techniques [1,7]. In particular, like ours,
the work of Bozga et al. [7] does not synthesise loop invariants; they directly
infer post-conditions of loops with respect to given preconditions, while we addi-
tionally infer the preconditions. The acceleration technique proposed in [1] is
used for the verification of array programs in the tool Booster [2].

Monniaux and Gonnord [36] describe an approach for the verification of array
programs via a transformation to array-free Horn clauses. Chakraborty et al. [10]
use heuristics to determine the array accesses performed by a loop iteration and
split the verification of an array invariant accordingly. Their non-interference
condition between loop iterations is similar to, but stronger than our soundness
condition (cf. Sect. 4). Neither work is concerned with specification inference.

A wide range of static/shape analyses employ tailored separation logics as
abstract domain (e.g., [3,9,19,29,41]); these works handle recursively-defined
data structures such as linked lists and trees, but not random-access data struc-
tures such as arrays and matrices. Of these, Gulavani et al. [19] is perhaps
closest to our work: they employ an integer-indexed domain for describing recur-
sive data structures. It would be interesting to combine our work with such
separation logic shape analyses. The problems of automating biabduction and
entailment checking for array-based separation logics have been recently studied
by Brotherston et al. [8] and Kimura and Tatsuta [27], but have not yet been
extended to handle loop-based or recursive programs.

8 Conclusion and Future Work

We presented a precise and efficient permission inference for array programs.
Although our inferred specifications contain redundancies in some cases, they are
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human readable. Our approach integrates well with permission-based inference
for other data structures and with permission-based program verification.

As future work, we plan to use SMT solving to further simplify our inferred
specifications, to support arrays of arrays, and to extend our work to an inter-
procedural analysis and explore its combination with biabduction techniques.
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Abstract. We study from a computability perspective static program
analysis, namely detecting sound program assertions, and verification,
namely sound checking of program assertions. We first design a general
computability model for domains of program assertions and correspond-
ing program analysers and verifiers. Next, we formalize and prove an
instantiation of Rice’s theorem for static program analysis and verifica-
tion. Then, within this general model, we provide and show a precise
statement of the popular belief that program analysis is a harder prob-
lem than program verification: we prove that for finite domains of pro-
gram assertions, program analysis and verification are equivalent prob-
lems, while for infinite domains, program analysis is strictly harder than
verification.

1 Introduction

It is common to assume that program analysis is harder than program verifi-
cation (e.g. [1,17,22]). The intuition is that this happens because in program
analysis we need to synthesize a correct program invariant while in program ver-
ification we have just to check whether a given program invariant is correct. The
distinction between checking a proof and computing a witness for that proof can
be traced back to Leibniz [18] in his ars iudicandi and ars inveniendi , respec-
tively representing the analytic and synthetic method. In Leibniz’s ars combina-
toria, the ars inveniendi is defined as the art of discovering “correct” questions
while ars iudicandi is defined as the art of discovering “correct” answers. These
foundational aspects of mathematical reasoning have a peculiar meaning when
dealing with questions and answers concerning the behaviour of computer pro-
grams as objects of our investigation.

Our main goal is to define a general and precise model for reasoning on the
computability aspects of the notions of (sound or complete) static analyser and
verifier for generic programs (viz. Turing machines). Both static analysers and
verifiers assume a given domain A of abstract program assertions, that may range
from synctatic program properties (e.g., program sizes or LOCs) to complexity
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properties (e.g., number of execution steps in some abstract machine) and all the
semantic properties of the program behaviour (e.g., value range of program vari-
ables or shape of program memories). A program analyser is defined to be any
total computable (i.e., total recursive) function that for any program P returns
an assertion aP in A, which is sound when the concrete meaning of the assertion
aP includes P . Instead, a program verifier is a (total) decision procedure which
is capable of checking whether a given program P satisfies a given assertion a
ranging in A, answering “true” or “don’t know”, which is sound when a positive
check of a for P means that the concrete meaning of the assertion a includes
P . Completeness, which coupled with soundness is here called precision, for a
program analyser holds when, for any program P , it returns the strongest asser-
tion in A for P , while a program verifier is called precise if it is able to prove
any true assertion in A for a program P . This general and minimal model allows
us to extend to static program analysis and verification some standard results
and methods of computability theory. We provide an instance of the well-known
Rice’s Theorem [29] for generic analysers and verifiers, by proving that sound
and precise analysers (resp. verifiers) exist only for trivial domains of assertions.
This allows us to generalise known results about undecidability of program anal-
ysis, such as the undecidability of the meet over all paths (MOP) solution for
monotone dataflow analysis frameworks [15], making them independent from the
structure of the domain of assertions. Then, we define a model for comparing the
relative “verification power” of program analysers and verifiers. In this model,
a verifier V on a domain A of assertions is more precise than an analyser A on
the same domain A when any assertion a in A which can be proved by A for a
program P—this means that the output of the analyser A(P ) is stronger than
the assertion a—can be also proved by V. Conversely, A is more precise than
V when any assertion a proved by V can be also proved by A. We prove that
while it is always possible to constructively transform a program analyser into
an equivalent verifier (i.e., with the same verification power), the converse does
not hold in general. In fact, we first show that for finite domains of assertions,
any “reasonable” verifier can be constructively transformed into an equivalent
analyser, where reasonable means that the verifier V is: (i) nontrivial: for any
program, V is capable to prove some assertion, possibly a trivially true asser-
tion; (ii) monotone: if V proves an assertion a and a is stronger than a′ then
V is also capable of proving a′; (iii) logically meet-closed: if V proves both a1

and a2 and the logical conjunction a1 ∧ a2 is a representable assertion then V
is also capable of proving it. Next, we prove the following impossibility result:
for any infinite abstract domain of assertions A, no constructive reduction from
reasonable verifiers on A to equivalent analysers on A is possible. This provides,
to the best of our knowledge, the first formalization of the common folklore that
program analysis is harder than program verification.

2 Background

We follow the standard terminology and notation for sets and computable func-
tions in recursion theory (e.g., [12,26,30]). If X and Y are sets then X → Y
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and X �→ Y denote, respectively, the set of all total and partial functions from
X to Y . If f : X �→ Y then f(x)↓ and f(x)↑ mean that f is defined/undefined
on x ∈ X. Hence dom(f) = {x ∈ X | f(x)↓ }. If S ⊆ Y then f(x) ∈ S denotes
the implification f(x)↓ ⇒ f(x) ∈ S. If f, g : X �→ Y then f = g means that
dom(f) = dom(g) and for any x ∈ dom(f) = dom(g), f(x) = g(x). The set of
all partial (total) recursive functions on natural numbers is denoted by N

r�→ N

(N r→ N). Recall that A ⊆ N is a recursively enumerable (r.e., or semidecidable)
set if A = dom(f) for some f ∈ N

r�→ N, while A ⊆ N is a recursive (or decidable)
set if both A and its complement Ā = N � A are recursively enumerable, and
this happens when there exists f ∈ N

r→ N such that f = λn. n ∈ A ? 1 : 0.
Let Prog denote some deterministic programming language which is Turing

complete. More precisely, this means that for any partial recursive function f :
N

r�→ N there exists a program P ∈ Prog such that �P � ∼= f , where �P � : D �→ D
is a denotational input/output semantics of P on a domain D of input/output
values for Prog, where: undefinedness encodes nontermination and ∼= means
equality up to some recursive encoding enc : D

r→ N and decoding dec : N
r→ D

functions, i.e., f = enc ◦�P �◦dec. We also assume a small-step transition relation
⇒ ⊆ (Prog ×D) × ((Prog ×D) ∪ D) for Prog defining an operational semantics
which is functionally equivalent to the denotational semantics: 〈P, i〉 ⇒∗ o iff
�P �i = o. By an abuse of notation, we will identify the input/output semantics
of a program P with the partial recursive function computed by P , i.e., we will
consider programs P ∈ Prog whose input/output semantics is a partial recursive
function �P � : N

r�→ N, so that, by Turing completeness, {�P � : N
r�→ N | P ∈

Prog} = N
r�→ N.

3 Abstract Domains

Static program analysis and verification are always defined with respect to a
given (denumerable) domain of program assertions, that we call here abstract
domain [7], where the meaning of assertions is formalized by a function which
induces a logical implication relation between assertions.

Definition 3.1 (Abstract Domain). An abstract domain is a tuple 〈A, γ,≤γ〉
such that:

(1) A is any denumerable set;
(2) γ : A → ℘(Prog) is any function;
(3) ≤γ � {(a1, a2) ∈ A × A | γ(a1) ⊆ γ(a2)} is a decidable relation.

An abstract element a ∈ A such that γ(a) = Prog is called an abstract top, while
a is called an abstract bottom when γ(a) = ∅. ��

The elements of A are called assertions or abstract values, γ is called con-
cretization function (this may also be a nonrecursive function, which is typical
of abstract domains representing semantic program properties), and ≤γ is called
the implication or approximation relation of A. Thus, in this general model,
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a program assertion a ∈ A plays the role of some abstract representation of any
program property γ(a) ∈ ℘(Prog), while the comparison relation a1 ≤γ a2 holds
when a1 is a stronger (or more precise) property than a2. Let us also observe
that, as a limit case, Definition 3.1 allows an abstract domain to be empty, that
is, the tuple 〈∅, ∅, ∅〉 satisfies the definition of abstract domain, where ∅ denotes
both the empty set, the empty function (i.e., the unique subset of ∅ × ∅) and
the empty relation.

Example 3.2. Let us give some simple examples of abstract domains.

(1) Consider A = N with γ(n) � {P ∈ Prog | size(P ) ≤ n}, where
size : Prog → N is some computable program size function. Here, ≤γ is
clearly decidable and coincides with the partial order ≤N on numbers.

(2) Consider A = N with γ(n) � {P ∈ Prog | ∀i.∃o, k.(〈P, i〉 ⇒k o) & k ≤ n},
i.e., n represents all the programs which, given any input, terminate in at
most n steps. Here again, n ≤γ m iff n ≤N m, so that ≤γ is decidable.

(3) Consider A = N with γ(n) � {P ∈ Prog | ∀i ∈ [0, n].∃o. 〈P, i〉 ⇒∗ o}, that
is, n represents all the programs which terminate for any input i ≤ n. Once
again, n ≤γ m iff n ≤N m.

(4) Consider A = N with γ(n) � {P ∈ Prog | ∀i ∈ N. �P �(i) = o ⇒ o ≤ n},
that is, n represents those programs which, in case of termination, give an
output o bounded by n. Again, n ≤γ m iff n ≤N m.

(5) Consider A = N
r�→ N with γ(g) � {P ∈ Prog | ∀i.

(
g(i)↓ ⇒ (∃o, k.〈P, i〉 ⇒k

o, k ≤ g(i))
) ∧ (

(∃o, k.〈P, i〉 ⇒k o) ⇒ g(i)↓ , k ≤ g(i)
)}, that is, g represents

those programs whose time complexity is bounded by the function g. Here,
g ≤γ g′ iff ∀i. g(i)↓ ⇒ (g′(i)↓ ∧ g(i) ≤ g′(i)). ��
Definition 3.1 does not require injectivity of the concretization function γ,

thus multiple assertions could have the same meaning. Two abstract values
a1, a2 ∈ A are called equivalent when γ(a1) = γ(a2). Let us observe that since
≤γ is required to be decidable, the equivalence γ(a1) = γ(a2) is decidable as well.
For example, for the well-known numerical abstract domain of convex polyhe-
dra [11] represented through linear constraints between program variables, we
may well have multiple representations P1 and P2 for the same polyhedron,
e.g., P1 = {x = z, z ≤ y} and P2 = {x = z, x ≤ y} both represent the
same polyhedron. Thus, in general, an abstract domain A is not required to
be partially ordered by ≤γ . On the other hand, the relation ≤γ is clearly a
preorder on A. The only basic requirement is that for any pair of abstract val-
ues a1, a2 ∈ A, one can decide if a1 is a more precise program assertion than
a2, i.e., if γ(a1) ⊆ γ(a2) holds. In this sense we do not require that a partial
order ≤ is defined a priori on A and that γ is monotone w.r.t. ≤, since for our
purposes it is enough to consider the preorder ≤γ induced by γ. If instead A is
endowed with a partial order ≤A and A is defined in abstract interpretation [7,8]
through a Galois insertion based on the concretization map γ, then it turns out
that γ(a1) ⊆ γ(a2) ⇔ a1 ≤A a2 holds, so that the decidability of the relation
≤γ = {(a1, a2) ∈ A×A | γ(a1) ⊆ γ(a2)} boils down to the decidability of the par-
tial order relation ≤A. As an example, it is well known that the abstract domain
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of polyhedra does not admit a Galois insertion [11], nevertheless its induced pre-
order relation ≤γ is decidable: for example, for polyhedra represented by linear
constraints, there exist algorithms for deciding if γ(P1) ⊆ γ(P2) for any pair of
convex polyhedra representations P1 and P2 (see e.g. [23, Sect. 5.3]).

3.1 Abstract Domains in Abstract Interpretation

An abstract domain in standard abstract interpretation [7–9] is usually defined
by a poset 〈A,≤A〉 containing a top element � ∈ A and a concretization map γA :
A → ℘(Dom), where Dom denotes some concrete semantic domain (e.g., program
stores or program traces), such that: (a) A is machine representable, namely the
abstract elements of A are encoded by some data structures (e.g., tuples, vectors,
lists, matrices, etc.), and some algorithms are available for deciding if a1 ≤A a2

holds; (b) a1 ≤A a2 ⇔ γA(a1) ⊆ γA(a2) holds (this equivalence always holds
for Galois insertions); (c) γA(�) = Dom. Let us point out that Definition 3.1 is
very general since the concretization of an abstract value can be any program
property, possibly a purely syntactic property or some space or time complexity
property, as in the simple cases of Example 3.2 (1)-(2)-(5).

Let γA : A → ℘(Dom) and assume that Dom is defined by program stores,
namely Dom � Var → Val, where Var is a finite set of program variables and Val
is a corresponding denumerable set of values. Since Var → Val has a finite domain
and a denumerable range, we can assume a recursive encoding of finite tuples of
values into natural numbers N, i.e. Var → Val ∼= N, and define γA : A → ℘(N).
This is equivalent assuming that programs have one single variable, say x, which
may assume tuples of values in Val. A set of numbers γA(a) ∈ ℘(N) is meant to
represent a property of the values stored in the program variable x at the end
of the program execution, that is, if the program terminates its execution then
the variable x stores a value in γA(a). Hence, as usual, the property ∅ ∈ ℘(N)
means that the program does not correctly terminate its execution either by true
nontermination or by some run-time error, namely, that the exit program point
is not reachable. For simplicity, we do not consider intermediate program points
and assertions in our semantics.

For an abstract domain 〈A, γA,≤A〉 in standard abstract interpretation, the
corresponding concretization function γ : A → ℘(Prog) of Definition 3.1 is
defined as:

γ(a) � {P ∈ Prog | ∀i ∈ N. �P �(i) ∈ γA(a)}
where we recall that �P �(i) ∈ γA(a) means �P �(i) = o ⇒ o ∈ γA(a). Hence, if
A contains top �A and bottom ⊥A such that γA(�A) = N and γA(⊥A) = ∅

then γ(�A) = Prog and γ(⊥A) = {P ∈ Prog | P never terminates}. Moreover,
since γA is monotonic, we have that γ is monotonic as well. The fact that all
the elements in A are machine representable boils down to the requirement that
A is a recursive set, while the binary preorder relation ≤γ is decidable because
a1 ≤A a2 ⇔ γ(a1) ⊆ γ(a2) holds and ≤A is decidable. This therefore defines an
abstract domain according to Definition 3.1.



80 P. Cousot et al.

In this simple view of the abstract domain A, there is no input property for
the variable x, meaning that at the beginning x may store any value. It is easy
to generalize the above definition by requiring an input abstract property in A
for x, so that the abstract domain is a Cartesian product A × A together with
a concretization γi/o : A × A → ℘(Prog) defined as follows:

γi/o(〈ai, ao〉) � {P ∈ Prog | ∀i ∈ N. i ∈ γA(ai) ⇒ �P �(i) ∈ γA(ao)}.

This is a generalization since, for any a ∈ A, we have that γ(a) = γi/o(〈�A, a〉).
Example 3.3 (Interval Abstract Domain). Let Int be the standard interval
domain [7] restricted to natural numbers in N, endowed with the standard subset
ordering:

Int � {[a, b] | a, b ∈ N, a ≤ b} ∪ {⊥Int} ∪ {[a,+∞) | a ∈ N}
with concretization γInt : Int → ℘(N), where γInt(⊥Int) = ∅, γInt([a, b]) = [a, b]
and γInt([0,+∞)) = N, so that [0,+∞) is also denoted by �Int. Thus, here,
for the concretization function γ : Int → ℘(Prog) we have that: γ(�Int) =
Prog, γ(⊥Int) = {P ∈ Prog | ∀i. �P �(i)↑ }, γ([a,+∞)) = {P ∈ Prog | ∀i ∈
N. �P �(i)↓ ⇒ �P �(i) ≥ a}. We also have the input/output concretization γi/o :
Int × Int → ℘(Prog), where

γi/o(〈I, J〉) � {P ∈ Prog | ∀i ∈ N. i ∈ γInt(I) ⇒ �P �(i) ∈ γInt(J)}. ��

4 Program Analysers and Verifiers

In our model, the notions of program analyser and verifier are as general as
possible.

Definition 4.1 (Program Analyser). Given an abstract domain 〈A, γ,≤γ〉,
a program analyser on A is any total recursive function A : Prog → A.
The set of analysers on a given abstract domain A will be denoted by AA.
An analyser A ∈ AA is sound if for any P ∈ Prog and a ∈ A,

A(P ) ≤γ a ⇒ P ∈ γ(a)

while A is precise if it is also complete, i.e., if the reverse implication also holds:

P ∈ γ(a) ⇒ A(P ) ≤γ a. ��
Notice that this definition of soundness is equivalent to the standard notion

of sound static analysis, namely, for any program P , A(P ) always outputs a
program assertion which is satisfied by P , i.e., P ∈ γ(A(P )). Let us also note
that on the empty abstract domain ∅, no analyser can be defined simply because
there exists no function in Prog → ∅. Instead, for a singleton abstract domain
A• � {•}, if A ∈ AA• is sound then γ(•) = Prog, so that • is necessarily
an abstract top. Also, if the abstract domain A contains a top abstract value
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�A ∈ A then, as expected, λP.�A is a trivially sound analyser on A. Finally, we
observe that if A1 and A2 are both precise on the same abstract domain then
we have A1 =γ A2, meaning that A1 and A2 coincide up to equivalent abstract
values, i.e., γ◦A1 = γ◦A2. In fact, for any P ∈ Prog, we have that P ∈ γ(A2(P ))
implies γ(A1(P )) ⊆ γ(A2(P )) and P ∈ γ(A1(P )) implies γ(A2(P )) ⊆ γ(A1(P )),
so that A1 =γ A2.

Example 4.2. Software metrics static analysers [35] deal with nonsemantic pro-
gram properties, such as the domain in Example 3.2 (1). Bounded model check-
ing [4,34] handles program properties such as those encoded by the domains
of Example 3.2 (2)-(3). Complexity bound analysers such as [32,36] cope with
domains of properties such as those in Example 3.2 (4)-(5). Numerical abstract
domains used in program analysis (see [23]) include the interval abstraction
described in Example 3.3. ��
Definition 4.3 (Program Verifier). Given an abstract domain 〈A, γ,≤γ〉, a
program verifier on A is any total recursive function V : Prog ×A → {t, ?}.
The set of verifiers on a given abstract domain A will be denoted by VA.
A verifier V ∈ VA is sound if for any P ∈ Prog and a ∈ A,

V(P, a) = t ⇒ P ∈ γ(a)

while V is precise if it is also complete, i.e., if the reverse implication also holds:

P ∈ γ(a) ⇒ V(P, a) = t.

A verifier V ∈ VA is nontrivial if for any program there exists at least one
assertion which V is able to prove, i.e., for any P ∈ Prog there exists some a ∈ A
such that V(P, a) = t. Also, a verifier is defined to be trivial when it is not
nontrivial.
A verifier V ∈ VA is monotone when the verification algorithm is monotone w.r.t.
≤γ , i.e., (V(P, a) = t ∧ a ≤γ a′) ⇒ V(P, a′) = t. ��
Remark 4.4. Let us observe some straight consequences of Definition 4.3.
(1) Notice that for all nonempty abstract domains A, λ(P, a). ? is a legal and
vacuously sound verifier. Also, if A = ∅ is the empty abstract domain then the
empty verifier V : Prog ×∅ → {t, ?} (namely, the function with empty graph) is
trivially precise.
(2) Let us observe that if V is nontrivial and monotone then V is able to prove
any abstract top: in fact, if � ∈ A and γ(�) = Prog then, for any P ∈ Prog,
since there exists some a ∈ A such that V(P, a) = t and a ≤γ �, then, by
monotonicity, V(P,�) = t.
(3) Note that if a verifier V is precise then V(P, a) = ? ⇔ P �∈ γ(a), so that
in this case an output V(P, a) = ? always means that P does not satisfy the
property a.
(4) Finally, if V1 and V2 are precise on the same abstract domain then V1(P, a) =
t ⇔ P ∈ γ(a) ⇔ V2(P, a) = t, so that V1 = V2. ��
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Example 4.5. Program verifiers abund in literature, e.g., [3,21,27]. For exam-
ple, [13] aims at complexity verification on domains like that in Example 3.2 (5)
while reachability verifiers like [33] can check numerical properties of program
variables such as those of Example 3.3. ��

5 Rice’s Theorem for Static Program Analysis and
Verification

Classical Rice’s Theorem in computability theory [26,29,30] states that an exten-
sional property Π ⊆ N of an effective numbering {ϕn | n ∈ N} = N

r�→ N of
partial recursive functions is a recursive set if and only if Π = ∅ or Π = N,
i.e., Π is trivial. Let us recall that Π ⊆ N is extensional when ϕn = ϕm implies
n ∈ Π ⇔ m ∈ Π. When dealing with program properties rather than indices of
partial recursive functions, i.e., when Π ⊆ Prog, Rice’s Theorem states that any
nontrivial semantic program property is undecidable (see [28] for a statement
of Rice’s Theorem tailored for program properties). It is worth recalling that
Rice’s Theorem has been extended by Asperti [2] through an interesting gen-
eralization to so-called “complexity cliques”, namely nonextensional program
properties which may take into account the space or time complexity of pro-
grams: for example, the abstract domain of Example 3.2 (5) is not extensional
but when logically “intersected” with an extensional domain (i.e., it is a prod-
uct domain A1 × A2 where the concretization function is the set intersection
λ〈a1, a2〉.γ1(a1) ∩ γ2(a2)) falls into this generalized version of Rice’s Theorem.

In the following, we provide an instantiation of Rice’s Theorem to sound
static program analysis and verification by introducing a notion of extension-
ality for abstract domains. Abstract domains commonly used in abstract inter-
pretation turn out to be extensional, when they are used for approximating the
input/output behaviour of programs. For example, if a sound abstract interpreta-
tion of a program P in the interval abstract domain computes as abstract output
a program assertion such as x ∈ [1, 5] and y ∈ [2,+∞) then this assertion is a
sound abstract output for any other program Q having the same input/output
behaviour of P .

Definition 5.1 (Extensional Abstract Domain). An abstract domain
〈A, γ,≤γ〉 is extensional when for any a ∈ A, γ(a) ⊆ Prog is an extensional
program property, namely, if �P � = �Q� then P ∈ γ(a) ⇔ Q ∈ γ(a). ��

As usual, the intuition is that an extensional program property depends
exclusively on the input/output program semantics �·�. As a simple example,
the domains of Example 3.2 (3)-(4) are extensional while the domains of Exam-
ple 3.2 (1)-(2)-(5) are not.

Definition 5.2 (Trivial Abstract Domain). An abstract domain 〈A, γ,≤γ〉
is trivial when A contains abstract bottom or top elements only, i.e., for any
a ∈ A, γ(a) ∈ {∅,Prog}. ��
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Definition 5.2 allows 4 possible types for a trivial abstract domain A: (1)
A = ∅; (2) A is nonempty and consists of bottom elements only, i.e., A �= ∅ and
for all a ∈ A, γ(a) = ∅; (3) A is nonempty and consists of top elements only,
i.e., A �= ∅ and for all a ∈ A, γ(a) = Prog; (4) A satisfies (2) and (3), i.e., A
contains both bottom and top elements.

Theorem 5.3 (Rice’s Theorem for Program Analysis). Let 〈A, γ,≤γ〉 be
an extensional abstract domain and let A ∈ AA be a sound analyser. Then, A is
precise iff A is trivial.

Proof. Since we assume the existence of a sound analyser A ∈ AA on the exten-
sional abstract domain A, observe that necessarily A �= ∅.

Assume that A is trivial. We have to show that for any a ∈ A and P ∈ Prog,
A(P ) ≤γ a ⇔ P ∈ γ(a). Assume that P ∈ γ(a) for some a ∈ A. Then, we have
that γ(a) �= ∅, so that, since A is trivial, it must necessarily be that γ(a) = Prog.
By soundness of A, P ∈ γ(A(P )), so that, since A is trivial, γ(A(P )) = Prog.
Hence, we have that γ(A(P )) = γ(a), thus implying A(P ) ≤γ a. On the other
hand, if A(P ) ≤γ a then γ(A(P )) ⊆ γ(a), so that, since, by soundness of A,
P ∈ γ(A(P )), we also have that P ∈ γ(a).

Conversely, assume now that A is precise, namely, P ∈ γ(a) iff A(P ) ≤γ a.
Thus, since A is a total recursive function and ≤γ is decidable, we have that, for
any a ∈ A, P ∈? γ(a) is decidable. Since γ(a) is an extensional program property,
by Rice’s Theorem, γ(a) must necessarily be trivial, i.e., γ(a) ∈ {∅,Prog}. This
means that the abstract domain A is trivial. ��

Rice’s Theorem for program analysis can be applied to several abstract
domains. Due to lack of space, we just mention that the well-known undecid-
ability of computing the meet over all paths (MOP) solution for a monotone
dataflow analysis problem, proved by Kam and Ullman [15, Sect. 6] by resorting
to undecidability of Post’s Correspondence Problem, can be derived as a simple
consequence of Theorem 5.3.

Along the same lines of Theorem 5.3, Rice’s Theorem can be instantiated to
program verification as follows.

Theorem 5.4 (Rice’s Theorem for Program Verification). Let 〈A, γ,≤γ〉
be an extensional abstract domain and let V ∈ VA be a sound, nontrivial and
monotone verifier. Then, V is precise iff A is trivial.

Proof. Let A be an extensional abstract domain and V ∈ VA be sound and non-
trivial. If A = ∅ then A is trivial while the only possible verifier V : Prog ×∅ →
{t, ?} is the empty verifier, which is vacuously precise but it is not nontrivial.
Thus, A �= ∅ holds.

Assume that V is precise, that is, P ∈ γ(a) iff V(P, a) = t. Hence, since V is a
total recursive function, V(P, a) =? t is decidable, so that P ∈? γ(a) is decidable
as well. As in the proof of Theorem5.3, since γ(a) is an extensional program
property, by Rice’s Theorem, γ(a) ∈ {∅,Prog}. Thus, the abstract domain A is
trivial.
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Conversely, let A �= ∅ be a trivial abstract domain. We have to prove that
for any a ∈ A and P ∈ Prog, V(P, a) = t ⇔ P ∈ γ(a). Consider any a ∈ A.
Since A is trivial, γ(a) ∈ {∅,Prog}. If γ(a) = ∅ then, by soundness of V, for
any P ∈ Prog, V(P, a) = ?, so that V(P, a) = t ⇔ P ∈ γ(a) holds. If, instead,
γ(a) = Prog, i.e. a is an abstract top, then, since V is assumed to be nontrivial
and monotone, by Remark 4.4 (2), V is able to prove the abstract top a for any
program, namely, for any P ∈ Prog, V(P, a) = t, so that V(P, a) = t ⇔ P ∈ γ(a)
holds. ��

Let us remark a noteworthy difference of Theorem 5.4 w.r.t. Rice’s theorem
for static analysis. Let us consider a trivial abstract domain A � {�} with
γ(�) = Prog. Here, the trivially sound analyser λP.� is also precise, in accor-
dance with Theorem 5.3. Instead, the trivially sound verifier V? � λ(P, a).? is
not precise, because P ∈ γ(�) ⇔ V?(P,�) = t does not hold. The point here is
that V? lacks the property of being nontrivial, and therefore Theorem5.4 cannot
be applied. On the other hand, Vt � λ(P, a).t is nontrivial and precise, because,
in this case, P ∈ γ(�) ⇔ Vt(P,�) = t holds. Similarly, if we consider the trivial
abstract domain A′ � {�,�′}, with γ(�) = Prog = γ(�′), then the verifier

V ′(P, a) �
{
t if a = �
? if a = �′

is sound and nontrivial, but still V ′ is not precise, because P ∈ γ(�′) ⇔
V ′(P,�′) = t does not hold. The point here is that V ′ is not monotone, because
V ′(P,�) = t and � ≤γ �′ but V ′(P,�′) �= t, so that Theorem 5.4 cannot be
applied.

6 Comparing Analysers and Verifiers

Let us now focus on a model for comparing the relative precision of program
analysers and verifiers w.r.t. a common abstract domain 〈A, γ,≤γ〉.
Definition 6.1 (Comparison Relations). Let V,V ′ ∈ VA, A,A′ ∈ AA, and
X ,Y ∈ VA ∪ AA.

(1) V � V ′ iff ∀P ∈ Prog .∀a ∈ A. V ′(P, a) = t ⇒ V(P, a) = t
(2) A � A′ iff ∀P ∈ Prog . A(P ) ≤γ A′(P )
(3) V � A iff ∀P ∈ Prog .∀a ∈ A. A(P ) ≤γ a ⇒ V(P, a) = t
(4) A � V iff ∀P ∈ Prog .∀a ∈ A. V(P, a) = t ⇒ A(P ) ≤γ a
(5) X ∼= Y when X � Y and Y � X ��

Let us comment on the previous definitions, which intuitively take into
account the relative “verification powers” of verifiers and analysers. The rela-
tion V � V ′ holds when every assertion proved by V ′ can be also proved by V,
while A � A′ means that the output assertion provided by A is more precise
than that produced by A′. Also, a verifier V is more precise than an analyser
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A when the verification power of V is not less than the verification power of
A, namely, any assertion a which can be proved by A for a program P , i.e.
A(P ) ≤γ a holds, can be also proved by V. Likewise, A is more precise than
V when any assertion a proved by V can be also proved by A, i.e., V(P, a) = t
implies A(P ) ≤γ a.

Let us observe that 〈VA,�〉 turns out to be a poset, while 〈AA,�〉 is just a
preordered set (cf. the lattice of abstract interpretations in [8]). We have that
〈VA,�〉 has a greatest element V? � λ(P, a).?, which, in particular, is always
sound although it is trivial. On the other hand, if A includes a top element �
then A� � λP.� is a sound analyser which is a maximal element in 〈AA,�〉.
Also, V ∼= V ′ means that V = V ′ as total functions, while A ∼= A′ means that
γ ◦ A = γ ◦ A′. Moreover, the comparison relation � is transitive even when
considering analysers and verifiers together: if V � A and A � V ′ then V � V ′,
and if A � V and V � A′ then A � A′. Also, the relation � shifts soundness
from verifiers to analysers, and from analysers to verifiers as follows (due to lack
of space the proof is omitted).

Lemma 6.2. Let V ∈ VA and A ∈ AA. If V is sound and V � A then A is
sound; if A is sound and A � V then V is sound.

As expected, any sound analyser can be used to refine a given sound verifier
(cf. [19,20,24,25]) and this can be formalized and proved in our framework as
follows.

Lemma 6.3. Given A ∈ AA and V ∈ VA which are both sound, let

τA(V)(P, a) �
{
t if A(P ) ≤γ a

V(P, a) if A(P ) �≤γ a

Then, τA(V) ∈ VA is sound, τA(V) � V and τA(V) = V ⇔ V � A.

Proof. τA(V) ∈ VA is sound because both A and V are sound. If V(P, a) = t
then τA(V)(P, a) = t, i.e., τA(V) � V. Moreover, τA(V) = V iff A(P ) ≤γ a ⇒
V(P, a) = t iff V � A. ��

6.1 Optimal and Best Analysers and Verifiers

It makes sense to define optimality by restricting to sound analysers and verifiers
only. Optimality is defined as minimality w.r.t. the precision relation �, while
being the best analyser/verifier means to be the most precise.

Definition 6.4 (Optimal and Best Analysers and Verifiers). A sound
analyser A ∈ AA is optimal if for any sound A′ ∈ AA, A′ � A ⇒ A′ ∼= A, while
A is a best analyser if for any sound A′ ∈ AA, A � A′.

A sound verifier V ∈ VA is optimal if for any V ′ ∈ VA, V ′ � V ⇒ V ′ ∼= V,
while V is the best verifier if for any V ′ ∈ VA, V � V ′. ��
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Let us first observe that if a best analyser or verifier exists then this is unique,
while for analysers if A1 and A2 are two best analysers on A then A1

∼= A2 holds.
Of course, the possibility of defining an optimal/best analyser or verifier depends
on the abstract domain A. For example, for a variable sign domain such as
{Z≤0, Z≥0, Z} just optimal analysers and verifiers could be defined, because for
approximating the set {0} two optimal sound abstract values are available rather
than a best sound abstract value. Here, the expected but interesting property
to remark is that the notion of precise (i.e., sound and complete) analyser turns
out to coincide with the notion of being the best analyser.

Lemma 6.5. Let A ∈ AA be sound. Then, A is precise iff A is a best analyser.

Proof. (⇒) Consider any sound A′ ∈ AA. Assume, by contradiction, that
A �� A′, namely, there exists some P ∈ Prog such that γ(A(P )) �⊆ γ(A′(P )).
By soundness of A′, �P � ∈ γ(A′(P )), so that, by precision of A, γ(A(P )) ⊆
γ(A′(P )), which is a contradiction. Thus, A � A′ holds. This means that A is a
best analyser on A.

(⇐) We have to prove that for any P ∈ Prog and a ∈ A, �P � ∈ γ(a) ⇒
γ(A(P )) ⊆ γ(a). Assume, by contradiction, that there exist Q ∈ Prog and b ∈ A
such that �Q� ∈ γ(b) and γ(A(Q)) �⊆ γ(b). Then, we define A′ : Prog → A as
follows:

A′(P ) �
{

A(P ) if P �≡ Q

b if P ≡ Q

It turns out that A′ is a total recursive function because P ≡ Q is decidable.
Moreover, A′ is sound: assume that γ(A′(P )) ⊆ γ(a); if P �≡ Q then A′(P ) =
A(P ) so that γ(A(P )) ⊆ γ(a), and, by soundness of A, �P � ∈ γ(a); if P ≡ Q
then A′(Q) = b so that γ(b) = γ(A′(Q)) = γ(A′(P )) ⊆ γ(a), hence, �Q� ∈ γ(b)
implies �Q� ∈ γ(a). Since A is a best analyser on A, we have that A � A′, so
that γ(A(Q)) ⊆ γ(A′(Q)) = γ(b), which is a contradiction. ��

We therefore derive the following consequence of Rice’s Theorem 5.3 for static
analysis: the best analyser on an extensional abstract domain A exists if and only
if A is trivial. This fact formalizes in our model the common intuition that, given
any abstract domain, the best static analyser (where best means for any input
program) cannot be defined due to Rice’s Theorem. An analogous result can be
given for verifiers.

Lemma 6.6. Let V ∈ VA be sound. Then V is precise iff V is the best verifier
on A.

Proof. Assume that V is precise and V ′ ∈ VA be sound. If V ′(P, a) = t then, by
soundness of V ′, �P � ∈ γ(a), and in turn, by completeness of V, V(P, a) = t,
thus proving that V � V ′. On the other hand, assume that V is the best verifier
on A. Assume, by contradiction, that V is not complete, namely that there exist
some Q ∈ Prog and b ∈ A such that �Q� ∈ γ(b) and V(Q, b) = ?. We then define
V ′ : Prog ×A → {t, ?} as follows:
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V ′(P, a) �
{
t if P ≡ Q ∧ a = b

V(P, a) otherwise

Then, V ′ is a total recursive function because P ≡ Q and a = b are decidable.
Also, V ′ is sound because �Q� ∈ γ(b) and V is sound. Since V is the best verifier,
we have that V � V ′, so that V ′(Q, b) = t implies V(Q, b) = t, which is a
contradiction. ��

Thus, similarly to static analysis, as a consequence of Rice’s Theorem 5.4 for
verification, the best nontrivial and monotone verifier on an extensional abstract
domain A exists if and only if A is trivial, which is a common belief in program
verification. Let us also remark that best abstract program semantics, rather
than program analysers, do exist for nontrivial domains (see e.g. [6]). Clearly, this
is not in contradiction with Theorem5.3 since these abstract program semantics
are not total recursive functions, i.e., they are not program analysers.

7 Reducing Verification to Analysis and Back

As usual in computability and complexity, our comparison between verification
and analysis is made through a many-one reduction, namely by reducing a ver-
ification problem into an analysis problem and vice versa. The minimal require-
ment is that these reduction functions are total recursive. Moreover, we require
that the reduction function does not depend upon a fixed abstract domain. This
allows us to be problem agnostic and to prove a reduction for all possible ver-
ifiers and analysers. Program verification and analysis are therefore equivalent
problems whenever we can reduce one to the other. In the following, we prove
that while it is always possible to transform a program analyser into an equiv-
alent program verifier, the converse does not hold in general, but it can always
be done for finite abstract domains.

7.1 Reducing Verification to Analysis

Theorem 7.1. Let 〈A, γ,≤γ〉 be any given abstract domain. There exists a
transform σ : AA → VA such that:

(1) σ is a total recursive function such that for all A ∈ AA, σ(A) ∼= A;
(2) if A ∈ AA is sound then σ(A) is sound;
(3) σ is monotonic;
(4) σ(A) ∼= σ(A′) ⇒ A ∼= A′.

Proof. Given A ∈ AA, we define σ(A) : Prog ×A → {t, ?} as follows:

σ(A)(P, a) �
{
t if A(P ) ≤γ a

? if A(P ) �≤γ a

(1) Since A is a total recursive function and ≤γ is decidable, we have that
σ(A) is a total recursive function, namely σ(A) ∈ VA, and σ is a total recursive
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function as well. Since, by definition, σ(A)(P, a) = t ⇔ A(P ) ≤γ a, we have
that σ(A) ∼= A. (2) By Lemma 6.2, if A is sound then the equivalent verifier
σ(A) is sound as well. (3) It turns out that σ is monotonic: if A � A′ then
σ(A′)(P, a) = t ⇔ A′(P ) ≤γ a ⇒ A(P ) ≤γ A′(P ) ≤γ a ⇔ σ(A)(P, a) = t, so
that σ(A) � σ(A′) holds. (4) Assume that σ(A) ∼= σ(A′), hence, for any P ∈
Prog, σ(A)(P,A(P )) = σ(A′)(P,A(P )), namely, A(P ) ≤γ A(P ) ⇔ A′(P ) ≤γ

A(P ), so that A′(P ) ≤γ A(P ) holds. On the other hand, A(P ) ≤γ A′(P ) can
be dually obtained, therefore γ(A(P )) = γ(A′(P )) holds, namely A ∼= A′. ��

Intuitively, Theorem 7.1 shows that program verification on a given abstract
domain A can always and unconditionally be reduced to program analysis on
A. This means that a solution to the program analysis problem on A, i.e. the
definition of an analyser A, can constructively be transformed into a solution
to the program verification problem on the same domain A, i.e. the design of a
verifier σ(A) which is equivalent to A. The proof of Theorem7.1 provides this
constructive transform σ, which is defined as expected: an analyser A on any
(possibly infinite) abstract domain A can be used as a verifier for any assertion
a ∈ A simply by checking whether A(P ) ≤γ a holds or not.

7.2 Reducing Analysis to Verification

It turns out that the converse of Theorem 7.1 does not hold, namely a program
analysis problem in general cannot be reduced to a verification problem. Instead,
this reduction can be always done for finite abstract domains. Given a verifier
V ∈ VA, for any program P ∈ Prog, let us define Vt(P ) � {a ∈ A | V(P, a) = t},
namely, Vt(P ) is the set of assertions proved by V for P . Also, given an assertion
a ∈ A, we define ↑a � {a′ ∈ A | a ≤γ a′} as the set of assertions weaker than a.
The following result provides a useful characterization of the equivalence between
verifiers and analysers.

Lemma 7.2. Let 〈A, γ,≤γ〉 be an abstract domain, A ∈ AA and V ∈ VA. Then,
A ∼= V if and only if for any P ∈ Prog, Vt(P ) = ↑A(P ).

Proof. By Definition 6.1, it turns out that A � V iff for any P , Vt(P ) ⊆ ↑A(P ),
while we have that V � A iff for any P , ↑A(P ) ⊆ Vt(P ). Thus, A ∼= V if and
only if for any P ∈ Prog, Vt(P ) = ↑A(P ). ��

A consequence of Lemma 7.2 is that, given V ∈ VA, V can be transformed
into an equivalent analyser τ(V) ∈ AA if and only if for any program P , an
assertion aP ∈ A exists such that Vt(P ) = ↑aP . In this case, one can then define
τ(V)(P ) � aP .

Lemma 7.3. Let 〈A, γ,≤γ〉 be an abstract domain and V ∈ VA. If A ∈ AA is
such that A ∼= V then: (1) A �= ∅; (2) V is not trivial; (3) V is monotone.

Proof. (1) We observed just after Definition 4.1 that no analyser can be defined
on the empty abstract domain. (2) If V is trivial then there exists a program
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Q ∈ Prog such that for any a ∈ A, V(Q, a) = ?, so that if V ∼= A for some A ∈ AA

then, from V � A we would derive V(Q,A(Q)) = t, which is a contradiction.
(3) Assume that V is not monotone. Then, there exist Q ∈ Prog and a, a′ ∈ A
such that a ∈ Vt(Q), a ≤γ a′ but a′ �∈ Vt(Q). If V ∼= A, for some A ∈ AA,
then, by Lemma 7.2, Vt(Q) = ↑A(Q), so that we would have that a ∈↑A(Q) but
a′ �∈ ↑A(Q), which is a contradiction. ��

We also observe that even for a nontrivial and monotone verifier V ∈ VA on a
finite abstract domain A, it is not guaranteed that an equivalent analyser exists.
In fact, if an equivalent analyser A exists then, by Lemma 7.2, for any program
P , Vt(P ) must contain the least element, namely for any program P it must be
the case that there exists a strongest assertion proved by V for P .

Example 7.4. Consider a sign domain such as S � {Z≤0, Z≥0, Z} where
Z≤0 ≤γ Z and Z≥0 ≤γ Z. For a program such as Q ≡ x := 0, a sound veri-
fier V ∈ VS could be able to prove all the assertions in S, namely Vt(Q) = S.
However, there exists no assertion aQ ∈ S such that Vt(Q) = ↑aQ. Hence, by
Lemma 7.2, there exists no analyser in AS which is equivalent to V. Also, if
S′ � {Z=0, Z≤0, Z≥0, Z}, so that S′ is a meet-semilattice, and V ′ ∈ VS′ is a
sound verifier such that V ′

t(Q) = S′
� {Z=0}, still, by Lemma 7.2, there exists

no analyser in AS′ which is equivalent to V ′. ��
Definition 7.5. A verifier V ∈ VA is finitely meet-closed when for any P ∈ Prog
and a, a1, a2 ∈ A, if V(P, a1) = t = V(P, a2) and γ(a) = γ(a1) ∩ γ(a2) then
V(P, a) = t. The following notation will be used: for any domain A,

V
+
A � {V ∈ VA | V is nontrivial, monotone and finitely meet-closed}. ��

Thus, finitely meet-closed verifiers can prove logical conjunctions of provable
assertions.

Theorem 7.6 (Reduction for Finite Domains). Let 〈A, γ,≤γ〉 be a
nonempty finite abstract domain. There exists a transform τ : V

+
A → AA such

that:

(1) τ is a total recursive function such that for all V ∈ V
+
A, τ(V) ∼= V;

(2) if V ∈ V
+
A is sound then τ(V) is sound;

(3) τ is monotonic;
(4) τ(V) ∼= τ(V ′) ⇒ V ∼= V ′.

Proof. (1) Let A = {a1, ..., an} be any enumeration of A, with n ≥ 1. Given
V ∈ V

+
A , we define τ(V) : Prog → A as follows:

τ(V)(P ) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r := undef;
forall i ∈ 1..n do

if
(
ai ∈ Vt(P ) ∧ (r = undef ∨ ai ≤γ r)

)
then r := ai;

output r



90 P. Cousot et al.

Then, it turns out that τ is a total recursive function. Since V is a total recursive
function, A is finite and ≤γ is decidable, we have that τ(V) is a total recursive
function, so that τ(V) ∈ AA. Since V is not trivial, for any P ∈ Prog, Vt(P ) �= ∅.
Also, since A is finite and V is finitely meet-closed there exists some ak ∈ Vt(P )
such that Vt(P ) ⊆ ↑ak, so that τ(V)(P ) outputs some value in A. Moreover,
since V is monotone, ↑ak ⊆ Vt(P ), so that ↑ak = Vt(P ). Thus, the above pro-
cedure defining τ(V)(P ) finds and outputs ak. Hence, for any P ∈ Prog and
a ∈ A, V(P, a) = t ⇔ a ∈ Vt(P ) ⇔ a ∈ ↑ak ⇔ ak ≤γ a ⇔ τ(V)(P ) ≤γ a, that
is, τ(V) ∼= V holds.
(2) By Lemma 6.2, if V is sound then the equivalent analyser τ(V) is sound as
well.
(3) It turns out that τ is monotonic: if V � V ′ then, by definition, V ′

t(P ) ⊆
Vt(P ), so that, since Vt(P ) = ↑ τ(V)(P ) and V ′

t(P ) = ↑ τ(V ′)(P ), we obtain
τ(V)(P ) ≤γ τ(V ′)(P ), namely τ(V) � τ(V ′) holds.
(4) Assume that τ(V) ∼= τ(V ′). Hence, for any P ∈ Prog, γ(τ(V)(P )) =
γ(τ(V ′)(P )), so that, since Vt(P ) = ↑ τ(V)(P ) and V ′

t(P ) = ↑ τ(V ′)(P ), we
obtain Vt(P ) = V ′

t(P ), namely V = V ′. ��
An example of this reduction of verification to static analysis for finite

domains is dataflow analysis as model checking shown in [31] (excluding Kil-
dall’s constant propagation domain [16]). Let us now focus on infinite domains
of assertions.

Lemma 7.7. There exists a denumerable infinite abstract domain 〈A, γ,≤γ〉
and a verifier V ∈ V

+
A such that for any analyser A ∈ AA, A �∼= V.

Proof. Let us consider the infinite domain T � N ∪ {�} together with the fol-
lowing concretization function: γ(�) � Prog and, for any n ∈ N,

γ(n) � {P ∈ Prog | P on input 0 converges in n or fewer steps}
where the number of steps is determined by a small-step operational semantics
⇒, as recalled in Sect. 2. Thus, we have that if n,m ∈ N then n ≤γ m iff n ≤N m,
while n ≤γ �. We define a function V : Prog ×T → {t, ?} as follows:

V(P, a) �

⎧
⎪⎨

⎪⎩

t if a = �
t if a = n and P on input 0 converges in n or fewer steps
? if a = n and P on input 0 does not converge in n or fewer steps

Clearly, for any number n ∈ N, the predicate “P on input 0 converges in n or
fewer steps” is decidable, where the input 0 could be replaced by any other (finite
set of) input value(s). Hence, V turns out to be a total recursive function, that is,
a verifier on the abstract domain T. In particular, let us remark that V is a sound
verifier. Moreover, V is nontrivial, since, for any P ∈ Prog, V(P,�) = t, and
monotone because if V(P, n) = t and n ≤γ a then either a = � and V(P,�) = t
or a = m, so that n ≤N m and therefore V(P,m) = t. Clearly, V is also finitely
meet-closed, because if V(P, a1) = t = V(P, a2) and γ(a) = γ(a1) ∩ γ(a2) then
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either a = a1 or a = a2, so that V(P, a) = t. Summing up, it turns out that
V ∈ V

+
T . Assume now, by contradiction, that there exists an analyser A ∈ AT

such that A ∼= V. By Lemma 7.2, for any P ∈ Prog, we have that Vt(P ) = ↑A(P ).
Hence, if P on input 0 diverges then Vt(P ) = {�} so that A(P ) = �, while if P
on input 0 converges in exactly n steps then Vt(P ) = {m ∈ N | m ≥ n} ∪ {�},
so A(P ) = n, namely A goes as follows:

A(P ) =

{
� if P on input 0 diverges
n if P on input 0 converges in exactly n steps

Since A is a total recursive function, we would have defined an algorithm A for
deciding if a program P ∈ Prog on input 0 terminates or not. Since Prog is
assumed to be Turing complete with respect to the operational semantics ⇒,
this leads to a contradiction. ��

As a straight consequence of Lemma 7.7, the following theorem proves that
for any infinite abstract domain A, no reduction from verifiers in V

+
A to equivalent

analysers in AA is possible.

Theorem 7.8 (Impossibility of the Reduction for Infinite Domains).
For any denumerable infinite abstract domain 〈A, γ,≤γ〉, there exists no function
τ : V

+
A → AA such that τ is a total recursive function and for all V ∈ V

+
A,

τ(V) ∼= V.

Proof. Assume, by contradiction, that τ : V
+
A → AA is a total recursive function

such that for all V ∈ V
+
A, τ(V) ∈ AA and τ(V) ∼= V. Then, for the infinite domain

A and verifier V ∈ V
+
A provided by Lemma 7.7, we would be able to construct an

analyser τ(V) ∈ AA such that τ(V) ∼= V, which would be in contradiction with
Lemma 7.7. ��

Intuitively, this result states that given any infinite abstract domain A, no
general algorithm exists for constructively designing out of a reasonable (i.e.,
nontrivial, monotone and finitely meet-closed) verifier V on A an equivalent
analyser on the same domain A. This can be read as a precise statement proving
the folklore belief that “program analysis is harder than verification”, at least
for infinite domains of program assertions. It is important to remark that the
verifier V ∈ V

+
A on the infinite domain A defined by the proof of Lemma7.7 is

sound. Thus, even if we restrict the reduction transform τ : V
+,sound
A → A

sound
A

of Theorem 7.8 to be applied to sound verifiers—so that by Lemma6.2 the range
would be the sound analysers in AA—the same proof of Lemma 7.7 could still
be used for proving that such transform τ cannot exist.

A further consequence of Theorem 7.8 is the fact proved in [10] that
abstract interpretation-based program analysis with infinite domains and widen-
ing/narrowing operators is strictly more powerful than with finite domains.



92 P. Cousot et al.

8 Conclusion and Future Work

We put forward a general model for studying static program analysers and veri-
fiers from a computability perspective. This allowed us to state and prove, with
simple arguments borrowed from standard computability theory, that for infi-
nite abstract domains of program assertions, program analysis is a harder prob-
lem than program verification. This is, to the best of our knowledge, the first
formalization and proof of this popular belief, which also includes the relation-
ship between type inference and type checking. We think that this foundational
model can be extended to study further properties of program analysers and
verifiers. In particular, this opens interesting perspectives in reasoning about
program analysis and verification in a more abstract way towards a theory of
computation that may include approximate methods, such as program analysers
and verifiers, as objects of investigation, as suggested in [5,14]. For instance, the
precision of program analysis and program verification, as well as their computa-
tional complexity, are intensional program properties. Intensionally different but
extensionally equivalent programs may exhibit completely different behaviours
when analysed or verified. In this perspective, new intensional versions of Rice’s
Theorem can be stated for program analysis, similarly to what is known for
Blum’s complexity in [2]. Also, new models for reasoning about the space and
time complexities of program analysis and verification algorithms can be stud-
ied, especially for defining a notion of complexity class of program analysers and
verifiers.
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Abstract. The problem of quantitative inclusion formalizes the goal of
comparing quantitative dimensions between systems such as worst-case
execution time, resource consumption, and the like. Such systems are
typically represented by formalisms such as weighted logics or weighted
automata. Despite its significance in analyzing the quality of computing
systems, the study of quantitative inclusion has mostly been conducted
from a theoretical standpoint. In this work, we conduct the first empiri-
cal study of quantitative inclusion for discounted-sum weighted automata
(DS-inclusion, in short).

Currently, two contrasting approaches for DS-inclusion exist: the
linear-programming based DetLP and the purely automata-theoretic
BCV. Theoretical complexity of DetLP is exponential in time and space
while of BCV is PSPACE-complete. All practical implementations of BCV,
however, are also exponential in time and space. Hence, it is not clear
which of the two algorithms renders a superior implementation.

In this work we present the first implementations of these algorithms,
and perform extensive experimentation to compare between the two
approaches. Our empirical analysis shows how the two approaches com-
plement each other. This is a nuanced picture that is much richer than
the one obtained from the theoretical study alone.

1 Introduction

The analysis of quantitative dimensions of systems, such as worst-case execution
time, energy consumption, and the like, has been studied thoroughly in recent
times. By and large, these investigations have tended to be purely theoretical.
While some efforts in this space [12,13] do deliver prototype tools, the area
lacks a thorough empirical understanding of the relative performance of different
but related algorithmic solutions. In this paper, we further such an empirical
understanding for quantitative inclusion for discounted-sum weighted automata.

Weighted automata [17] are a popular choice for system models in quantita-
tive analysis. The problem of quantitative language inclusion [15] formalizes the
goal of determining which of any two given systems is more efficient under such
a system model. In a discounted-sum weighted automata the value of quanti-
tative dimensions are computed by aggregating the costs incurred during each
step of a system execution with discounted-sum aggregation. The discounted-
sum (DS) function relies on the intuition that costs incurred in the near future
c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 99–116, 2018.
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are more “expensive” than costs incurred later on. Naturally, it is the choice for
aggregation for applications in economics and game-theory [20], Markov Decision
Processes with discounted rewards [16], quantitative safety [13], and more.

The hardness of quantitative inclusion for nondeterministic DS-automata,
or DS-inclusion, is evident from PSPACE-hardness of language-inclusion (LI)
problem for nondeterministic Büchi automata [23]. Decision procedures for
DS-inclusion were first investigated in [15], and subsequently through target
discounted-sum [11], DS-determinization [10]. A comparator-based argument [9]
finally established its PSPACE-completeness. However, these theoretical advances
in DS-inclusion have not been accompanied with the development of efficient
and scalable tools and algorithms. This is the focus of this paper; our goal is to
develop practical algorithms and tools for DS-inclusion.

Theoretical advances have lead to two algorithmic approaches for DS-
inclusion. The first approach, referred to as DetLP, combines automata-theoretic
reasoning with linear-programming (LP). This method first determinizes the
DS-automata [10], and reduces the problem of DS-inclusion for determinis-
tic DS-automata to LP [7,8]. Since determinization of DS-automata causes an
exponential blow-up, DetLP yields an exponential time algorithm. An essen-
tial feature of this approach is the separation of automata-theoretic reasoning–
determinization–and numerical reasoning, performed by an LP-solver. Because of
this separation, it does not seem easy to apply on-the-fly techniques to this app-
roach and perform it using polynomial space, so this approach uses exponential
time and space.

In contrast, the second algorithm for DS-inclusion, referred to as BCV (after
name of authors) is purely automata-theoretic [9]. The component of numerical
reasoning between costs of executions is handled by a special Büchi automaton,
called the comparator, that enables an on-line comparison of the discounted-
sum of a pair of weight-sequences. Aided by the comparator, BCV reduces
DS-inclusion to language-equivalence between Büchi automata. Since language-
equivalence is in PSPACE, BCV is a polynomial-space algorithm.

While the complexity-theoretic argument may seem to suggest a clear advan-
tage for the pure automata-theoretic approach of BCV, the perspective from an
implementation point of view is more nuanced. BCV relies on LI-solvers as its
key algorithmic component. The polynomial-space approach for LI relies on Sav-
itch’s Theorem, which proves the equivalence between deterministic and non-
deterministic space complexity [21]. This theorem, however, does not yield a
practical algorithm. Existing efficient LI-solvers [3,4] are based on Ramsey-based
inclusion testing [6] or rank-based approaches [18]. These tools actually use expo-
nential time and space. In fact, the exponential blow-up of Ramsey-based app-
roach seems to be worse than that of DS-determinization. Thus, the theoretical
advantage BCV seems to evaporate upon close examination. Thus, it is far from
clear which algorithmic approach is superior. To resolve this issue, we provide in
this paper the first implementations for both algorithms and perform exhaustive
empirical analysis to compare their performance.
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Our first tool, also called DetLP, implements its namesake algorithm as it is.
We rely on existing LP-solver GLPSOL to perform numerical reasoning. Our sec-
ond tool, called QuIP, starts from BCV, but improves on it. The key improvement
arises from the construction of an improved comparator with fewer states. We
revisit the reduction to language inclusion in [9] accordingly. The new reduction
reduces the transition-density of the inputs to the LI-solver (Transition density
is the ratio of transitions to states), improving the overall performance of QuIP
since LI-solvers are known to scale better at lower transition-density inputs [19].

Our empirical analysis reveals that theoretical complexity does not provide a
full picture. Despite its poorer complexity, QuIP scales significantly better than
DetLP, although DetLP solves more benchmarks. Based on these observations, we
propose a method for DS-inclusion that leverages the complementary strengths of
these tools to offer a scalable tool for DS-inclusion. Our evaluation also highlights
the limitations of both approaches, and opens directions for further research in
improving tools for DS-inclusion.

2 Preliminaries

Büchi Automata. A Büchi automaton [23] is a tuple A = (S , Σ, δ, Init ,F),
where S is a finite set of states, Σ is a finite input alphabet, δ ⊆ (S × Σ × S )
is the transition relation, Init ⊆ S is the set of initial states, and F ⊆ S is the
set of accepting states. A Büchi automaton is deterministic if for all states s and
inputs a, |{s′|(s, a, s′) ∈ δ}| ≤ 1. Otherwise, it is nondeterministic. For a word
w = w0w1 . . . ∈ Σω, a run ρ of w is a sequence of states s0s1 . . . satisfying:
(1) s0 ∈ Init , and (2) τi = (si, wi, si+1) ∈ δ for all i. Let inf (ρ) denote the
set of states that occur infinitely often in run ρ. A run ρ is an accepting run if
inf (ρ) ∩ F �= ∅. A word w is an accepting word if it has an accepting run.

The language L(A) of Büchi automaton A is the set of all words accepted by
it. Büchi automata are known to be closed under set-theoretic union, intersection,
and complementation. For Büchi automata A and B, the language-equivalence
and language-inclusion are whether L(A) ≡ L(B) and L(A) ⊆ L(B), resp.

Let A = A[0], A[1], . . . be a natural-number sequence, d > 1 be a rational
number. The discounted-sum of A with discount-factor d is DS (A, d) = Σ∞

i=0
A[i]
di .

For number sequences A and B, (A,B) and (A−B) denote the sequences where
the i-th element is (A[i], B[i]) and A[i] − B[i], respectively.

Discounted-Sum Automata. A discounted-sum automaton with discount-
factor d > 1, DS-automaton in short, is a tuple A = (M, γ), where M =
(S , Σ, δ, Init ,S ) is a Büchi automaton, and γ : δ → N is the weight function that
assigns a weight to each transition of automaton M. Words and runs in weighted
ω-automata are defined as they are in Büchi automata. Note that all states are
accepting states in this definition. The weight sequence of run ρ = s0s1 . . . of
word w = w0w1 . . . is given by wtρ = n0n1n2 . . . where ni = γ(si, wi, si+1) for
all i. The weight of a run ρ is given by DS (wtρ, d). For simplicity, we denote
this by DS (ρ, d). The weight of a word in DS-automata is defined as wtA(w) =
sup{DS (ρ, d)|ρ is a run of w in A}. By convention, if a word w �∈ L(A), then
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OFFstart
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Fig. 1. System S

OFFstart ON

off, 0

on, slow, 10

on,2

off, slow, 10

Fig. 2. Specification P

wtA(w) = 0 [15]. A DS-automata is said to be complete if from every state there
is at least one transition on every alphabet. Formally, for all p ∈ S and for all
a ∈ Σ, there exists q ∈ S s.t (p, a, q) ∈ δ. A run ρ ∈ P of word w ∈ L(P ) is a
diminished run if there exists a run σ ∈ Q over the same word w s.t. DS (ρ, d) <
DS (σ, d). We abuse notation, and use w ∈ A to mean w ∈ L(A) for Büchi
automaton or DS-automaton A. We limit ourselves to integer discount-factors
only. Given DS-automata P and Q and discount-factor d > 1, the discounted-
sum inclusion problem, denoted by P ⊆d Q, determines whether for all words
w ∈ Σω, wtP (w) ≤ wtQ(w).

Comparator Automata. For natural number μ, integer discount-factor d > 1
and inequality relation ≤, the discounted-sum comparator Aμ,d

≤ , comparator, in
short, is a Büchi automaton that accepts (infinite) words over the alphabet
{0, 1 . . . , μ − 1} × {0, 1 . . . , μ − 1} such that a pair (A,B) of sequences is in
L(Aμ

d ) iff DS (A, d) ≤ DS (B, d). Closure properties of Büchi automata ensure
that comparator exists for all inequality relations [9].

Motivating Example. As an example of such a problem formulation, con-
sider the system and specification in Figs. 1 and 2, respectively [15]. Here, the
specification P depicts the worst-case energy-consumption model for a motor,
and the system S is a candidate implementation of the motor. Transitions in S
and P are labeled by transition-action and transition-cost. The cost of an exe-
cution (a sequence of actions) is given by an aggregate of the costs of transitions
along its run (a sequence of automaton states). In non-deterministic automata,
where each execution may have multiple runs, cost of the execution is the cost of
the run with maximum cost. A critical question here is to check whether imple-
mentation S is more energy-efficient than specification P . This problem can be
framed as a problem of quantitative inclusion between S and P .

3 Prior Work

We discuss existing algorithms for DS-inclusion i.e. DetLP and BCV in detail.

3.1 DetLP: DS-determinization and LP-based

Böker and Henzinger studied complexity and decision-procedures for deter-
minization of DS-automata in detail [10]. They proved that a DS-automata can
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be determinized if it is complete, all its states are accepting states and the
discount-factor is an integer. Under all other circumstances, DS-determinization
may not be guaranteed. DS-determinization extends subset-construction for
automata over finite words. Every state of the determinized DS-automata is
represented by an |S|-tuple of numbers, where S = {q1, . . . q|S|} denotes the set
of states of the original DS-automaton. The value stored in the i-th place in the
|S|-tuple represents the “gap” or extra-cost of reaching state qi over a finite-word
w compared to its best value so far. The crux of the argument lies in proving
that when the DS-automata is complete and the discount-factor is an integer, the
“gap” can take only finitely-many values, yielding finiteness of the determinized
DS-automata, albeit exponentially larger than the original.

Theorem 1 [10] [DS-determinization analysis]. Let A be a complete DS-
automata with maximum weight μ over transitions and s number of states. DS-
determinization of A generates a DS-automaton with at most μs states.

Chatterjee et al. reduced P ⊆d Q between non-deterministic DS-automata P and
deterministic DS-automata Q to linear-programming [7,8,15]. First, the product
DS-automata P × Q is constructed so that (sP , sQ) a−→ (tP , tQ) is a transition
with weight wP −wQ if transition sM

a−→ tM with weight wM is present in M , for
M ∈ {P,Q}. P ⊆q Q is False iff the weight of any word in P × Q is greater than
0. Since Q is deterministic, it is sufficient to check if the maximum weight of all
infinite paths from the initial state in P × Q is greater than 0. For discounted-
sum, the maximum weight of paths from a given state can be determined by
a linear-program: Each variable (one for each state) corresponds to the weight
of paths originating in this state, and transitions decide the constraints which
relate the values of variables (or states) on them. The objective is to maximize
weight of variable corresponding to the initial state.

Therefore, the DetLP method for P ⊆d Q is as follows: Determinize Q to
QD via DS-determinization method from [10], and reduce P ⊆d QD to linear
programming following [15]. Note that since determinization is possible only if
the DS-automaton is complete, DetLP can be applied only if Q is complete.

Lemma 1. Let P and Q be non-deterministic DS-automata with sP and sQ

number of states respectively, τP states in P . Let the alphabet be Σ and maximum
weight on transitions be μ. Then P ⊆d Q is reduced to linear programming with
O(sP · μsQ) variables and O(τP · μsQ · |Σ|) constraints.

Anderson and Conitzer [7] proved that this system of linear equations can be
solved in O(m · n2) for m constraints and n variables. Therefore,

Theorem 2 [7,15] [Complexity of DetLP]. Let P and Q be DS-automata with sP

and sQ number of states respectively, τP states in P . Let the alphabet be Σ and
maximum weight on transitions be μ. Complexity of DetLP is O(s2P ·τP ·μsQ ·|Σ|).
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1: Input: Weighted automata P , Q, and discount-factor d
2: Output: True if P ⊆d Q, False otherwise
3: P̂ ← AugmentWtAndLabel(P )
4: Q̂ ← AugmentWtAndLabel(Q)
5: P̂ × Q̂ ← MakeProductSameAlpha(P̂ , Q̂)
6: μ ← MaxWeight(P, Q)
7: Aµ,d

≤ ← MakeComparator(μ, d)

8: DimWithWitness ← Intersect(P̂ × Q̂, Aµ,d
≤ )

9: Dim ← FirstProject(DimWithWitness)
10: return P̂ ≡ Dim

Algorithm 1. BCV(P,Q, d), Is P ⊆d Q?

3.2 BCV: Comparator-based approach

The key idea behind BCV is that P ⊆d Q holds iff every run of P is a diminished
run. As a result, BCV constructs an intermediate Büchi automaton Dim that
consists of all diminished runs of P . It then checks whether Dim consists of all
runs of P , by determining language-equivalence between Dim and an automa-
ton P̂ that consists of all runs of P . The comparator Aμ,d

≤ is utilized in the
construction of Dim to compare weight of runs in P and Q.

Strictly speaking, BCV as presented in [9], is a generic algorithm for inclu-
sion under a general class of aggregate functions, called ω-regular aggregate
functions. Here, BCV (Algorithm 1) refers to its adaptation to DS. Procedure
AugmentWtAndLabel separates between runs of the same word in DS-automata
by assigning a unique transition-identity to each transition. It also appends the
transition weight, to enable weight comparison afterwards. Specifically, it trans-
forms DS-automaton A into Büchi automaton Â, with all states as accepting, by
converting transition τ = s

a−→ t with weight wt and unique transition-identity

l to transition τ̂ = s
(a,wt,l)−−−−−→ t in Â. Procedure MakeProductSameAlpha(P̂ , Q̂)

takes the product of P̂ and Q̂ over the same word i.e., transitions sA
(a,nA,lA)−−−−−−→ tA

in A, for A ∈ {P̂ , Q̂}, generates transition (sP , sQ)
(a,nP ,lP ,nQ,lQ)−−−−−−−−−−→ (tP , tQ)

in P̂ × Q̂. The comparator Aμ,d
≤ is constructed with upper-bound μ that

equals the maximum weight of transitions in P and Q, and discount-factor d.
Intersect matches the alphabet of P̂ × Q̂ with Aμ,d

≤ , and intersects them. The
resulting automaton DimWithWitness accepts word (w,wtP , idP , wtQ, idQ) iff
DS (wtP , d) ≤ DS (wtQ, d). The projection of DimWithWitness on the first three
components of P̂ returns Dim which contains the word (w,wtP , idP ) iff it is a
diminished run in P . Finally, language-equivalence between Dim and P̂ returns
the answer.

Unlike DetLP, BCV operates on incomplete DS-automata as well, and can be
extended to DS-automata in which not all states are accepting.
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4 QuIP: BCV-based Solver for DS-inclusion

We investigate more closely why BCV does not lend itself to a practical imple-
mentation for DS-inclusion (Sect. 4.1). We identify its drawbacks, and propose
an improved algorithm QuIP as is described in Sect. 4.3. QuIP improves upon
BCV by means of a new optimized comparator that we describe in Sect. 4.2.

4.1 Analysis of BCV

The proof for PSPACE-complexity of BCV relies on LI to be PSPACE. In practice,
though, implementations of LI apply Ramsey-based inclusion testing [6], rank-
based methods [18] etc. All of these algorithms are exponential in time and space
in the worst case. Any implementation of BCV will have to rely on an LI-solver.
Therefore, in practice BCV is also exponential in time and space. In fact, we
show that its worst-case complexity (in practice) is poorer than DetLP.

Another reason that prevents BCV from practical implementations is that
it does not optimize the size of intermediate automata. Specifically, we show
that the size and transition-density of Dim, which is one of the inputs to LI-
solver, is very high (Transition density is the ratio of transitions to states). Both
of these parameters are known to be deterrents to the performance of existing
LI-solvers [5], subsequently to BCV as well:

Lemma 2. Let sP , sQ, sd and τP , τQ, τd denote the number of states and
transitions in P , Q, and Aμ,d

≤ , respectively. Number of states and transitions in
Dim are O(sP sQsd) and O(τ2

P τ2
Qτd|Σ|), respectively.

Proof. It is easy to see that the number of states and transitions of P̂ Q̂ are
the same as those of P and Q, respectively. Therefore, the number of states and
transitions in P̂ ×Q̂ are O(sP sQ) and O(τP τQ), respectively. The alphabet of P̂ ×
Q̂ is of the form (a,wt1, id1, wt2, id2) for a ∈ Σ, wt1, wt2 are non-negative weights
bounded by μ and idi are unique transition-ids in P and Q respectively. The
alphabet of comparator Aμ,d

≤ is of the form (wt1, wt2). To perform intersection
of these two, the alphabet of comparator needs to be matched to that of the
product, causing a blow-up in number of transitions in the comparator by a factor
of |Σ|·τP ·τQ. Therefore, the number of states and transitions in DimWithWitness
and Dim is given by O(sP sQsd) and O(τ2

P τ2
Qτd|Σ|).

The comparator is a non-deterministic Büchi automata with O(μ2) states
over an alphabet of size μ2 [9]. Since transition-density δ = |S| · |Σ| for non-
deterministic Büchi automata, the transition-density of the comparator is O(μ4).
Therefore,

Corollary 1. Let sP , sQ, sd denote the number of states in P , Q, Aμ,d
≤ , respec-

tively, and δP , δQ and δd be their transition-densities. Number of states and
transition-density of Dim are O(sP sQμ2) and O(δP δQτP τQ · μ4 · |Σ|), respec-
tively.
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The corollary illustrates that the transition-density of Dim is very high even for
small inputs. The blow-up in number of transitions of DimWithWitness (hence
Dim) occurs during alphabet-matching for Büchi automata intersection (Algo-
rithm 1, Line 8). However, the blow-up can be avoided by performing intersection

over a substring of the alphabet of P̂ × Q̂. Specifically, if s1
(a,nP ,idP ,nQ,idQ)−−−−−−−−−−−−→ s2

and t1
(wt1,wt2)−−−−−−→ t2 are transitions in P̂ × Q̂ and comparator Aμ,d

≤ respectively,

then (s1, t1, i)
(a,nP ,idP ,nQ,idQ)−−−−−−−−−−−−→ (s2, t2, j) is a transition in the intersection iff

nP = wt1 and nQ = wt2, where j = (i+1) mod 2 if either s1 or t1 is an accept-
ing state, and j = i otherwise. We call intersection over substring of alphabet
IntersectSelectAlpha. The following is easy to prove:

Lemma 3. Let A1 = Intersect(P̂ ×Q̂,Aμ,d
≤ ), and A2 = IntersectSelectAlpha(P̂ ×

Q̂,Aμ,d
≤ ). Intersect extends alphabet of Aμ,d

≤ to match the alphabet of P̂ × Q̂ and
IntersectSelectAlpha selects a substring of the alphabet of P̂ × Q̂ as defined above.
Then, L(A1) ≡ L(A2).

IntersectSelectAlpha prevents the blow-up by |Σ| · τP · τQ, resulting in only
O(τP τQτd) transitions in Dim Therefore,

Lemma 4 [Trans. Den. in BCV]. Let δP , δQ denote transition-densities of P

and Q, resp., and μ be the upper bound for comparator Aμ,d
≤ . Number of states

and transition-density of Dim are O(sP sQμ2) and O(δP δQ · μ4), respectively.

Language-equivalence is performed via tools for language-inclusion. The most
effective tool for language-inclusion RABIT [1] is based on Ramsay-based inclu-
sion testing [6]. The worst-case complexity for A ⊆ B via Ramsay-based inclusion
testing is known to be 2O(n2), when B has n states. Therefore,

Theorem 3 [Practical complexity of BCV]. Let P and Q be DS-automata with
sP , sQ number of states respectively, and maximum weight on transitions be μ.
Worst-case complexity for BCV for integer discount-factor d > 1 when language-
equivalence is performed via Ramsay-based inclusion testing is 2O(s2

P ·s2
Q·μ4).

Recall that language-inclusion queries are P̂ ⊆ Dim and Dim ⊆ P̂ . Since Dim
has many more states than P̂ , the complexity of P̂ ⊆ Dim dominates.

Theorems 2 and 3 demonstrate that the complexity of BCV (in practice) is
worse than DetLP.

4.2 Baseline Automata: An Optimized Comparator

The 2O(s2) dependence of BCV on the number of states s of the comparator
motivates us to construct a more compact comparator. Currently a comparator
consists of O(μ2) number of states for upper bound μ [9]. In this section, we
introduce the related concept of baseline automata which consists of only O(μ)-
many states and has transition density of O(μ2).
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Definition 1 (Baseline automata). For natural number μ, integer discount-
factor d > 1 and relation R, for R ∈ {≤,≥, <,>,=}, the DSbaseline automata
Bμ,d

R , baseline in short, is a Büchi automaton that accepts (infinite) words over
the alphabet {−(μ − 1), . . . , μ − 1} s.t. sequences V ∈ L(Bμ,d

R ) iff DS (V, d) R 0.

Semantically, a baseline automata with upper bound μ, discount-factor d and
inequality relation R is the language of all integer sequences bounded by μ for
which their discounted-sum is related to 0 by the relation R. Baseline automata
can also be said to be related to cut-point languages [14].

Since DS (A, d) ≤ DS (B, d) = DS (A − B, d) ≤ 0, Aμ,d
≤ accepts (A,B) iff Bμ,d

≤
accepts (A − B), regularity of baseline automata follows straight-away from the
regularity of comparator. In fact, the automaton for Bμ,d

≤ can be derived from
Aμ,d

≤ by transforming the alphabet from (a, b) to (a − b) along every transition.
The first benefit of the modified alphabet is that its size is reduced from μ2 to
2 · μ − 1. In addition, it coalesces all transitions between any two states over
alphabet (a, a + v), for all a, into one single transition over v, thereby also
reducing transitions. However, this direct transformation results in a baseline
with O(μ2) states. We provide a construction of baseline with O(μ) states only.

The key idea behind the construction of the baseline is that the discounted-
sum of sequence V can be treated as a number in base d i.e. DS (V, d) =
Σ∞

i=0
V [i]
di = (V [0].V [1]V [2] . . . )d. So, there exists a non-negative value C in base

d s.t. V + C = 0 for arithmetic operations in base d. This value C can be repre-
sented by a non-negative sequence C s.t. DS (C, d) + DS (V, d) = 0. Arithmetic
in base d over sequences C and V result in a sequence of carry-on X such that:

Lemma 5. Let V,C,X be the number sequences, d > 1 be a positive integer
such that following equations holds true:

1. When i = 0, V [0] + C[0] + X[0] = 0
2. When i ≥ 1, V [i] + C[i] + X[i] = d · X[i − 1]

Then DS (V, d) + DS (C, d) = 0.

In the construction of the comparator, it has been proven that when A and
B are bounded non-negative integer sequences s.t. DS (A, d) ≤ DS (B, d), the
corresponding sequences C and X are also bounded integer-sequences [9]. The
same argument transcends here: When V is a bounded integer sequence s.t.
DS (V, d) ≤ 0, there exists a corresponding pair of bounded integer sequence C
and X. In fact, the bounds used for the comparator carry over to this case as
well. Sequence C is non-negative and is bounded by μC = μ · d

d−1 since −μC is
the minimum value of discounted-sum of V , and integer-sequence X is bounded
by μX = 1+ μ

d−1 . On combining Lemma 5 with the bounds on X and C we get:

Lemma 6. Let V and be an integer-sequence bounded by μ s.t. DS (V, d) ≤ 0,
and X be an integer sequence bounded by (1 + μ

d−1 ), then there exists an X s.t.
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1. When i = 0, 0 ≤ −(X[0] + V [0]) ≤ μ · d
d−1

2. When i ≥ 1, 0 ≤ (d · X[i − 1] − V [i] − X[i]) ≤ μ · d
d−1

Equations 1–2 from Lemma 6 have been obtained by expressing C[i] in terms of
X[i], X[i−1], V [i] and d, and imposing the non-negative bound of μC = μ· d

d−1 on
the resulting expression. Therefore, Lemma 6 implicitly captures the conditions
on C by expressing it only in terms of V , X and d for DS (V, d) ≤ 0 to hold.

In construction of the baseline automata, the values of V [i] is part of the
alphabet, upper bound μ and discount-factor d are the input parameters. The
only unknowns are the value of X[i]. However, we know that it can take only
finitely many values i.e. integer values |X[i]| ≤ μX . So, we store all possible values
of X[i] in the states. Hence, the state-space S comprises of {(x)||x| ≤ μX} and a
start state s. Transitions between these states are possible iff the corresponding
x-values and alphabet v satisfy the conditions of Eqs. 1–2 from Lemma 6. There is
a transition from start state s to state (x) on alphabet v if 0 ≤ −(x+v) ≤ μ· d

d−1 ,
and from state (x) to state (x′) on alphabet v if 0 ≤ (d ·x−v −x′) ≤ μ · d

d−1 . All
(x)-states are accepting. This completes the construction for baseline automaton
Bμ,d

≤ . Clearly Bμ,d
≤ has only O(μ) states.

Since Büchi automata are closed under set-theoretic operations, baseline
automata is ω-regular for all other inequalities too. Moreover, baseline automata
for all other inequalities also have O(μ) states. Therefore for sake of completion,
we extend Bμ,d

≤ to construct Bμ,d
< . For DS (V, d) < 0, DS (C, d) > 0 (implic-

itly generated C). Since C is a non-negative sequence it is sufficient if at least
one value of C is non-zero. Therefore, all runs are diverted to non-accepting
states (x,⊥) using the same transitions until the value of c is zero, and moves
to accepting states (x) only if it witnesses a non-zero value for c. Formally,

Construction. Let μC = μ · d
d−1 ≤ 2 · μ and μX = 1 + μ

d−1 . Bμ,d
< =

(S , Σ, δd, Init ,F)

– S = Init ∪ F ∪ S⊥ where
Init = {s}, F = {x||x| ≤ μX}, and
S⊥ = {(x,⊥)||x| ≤ μX} where ⊥ is a special character, and x ∈ Z.

– Σ = {v : |v| ≤ μ} where v is an integer.
– δd ⊂ S × Σ × S is defined as follows:

1. Transitions from start state s:
i. (s, v, x) for all x ∈ F s.t. 0 < −(x + v) ≤ μC

ii. (s, v, (x,⊥)) for all (x,⊥) ∈ S⊥ s.t. x + v = 0
2. Transitions within S⊥: ((x,⊥), v, (x′,⊥)) for all (x,⊥), (x′,⊥) ∈ S⊥, if

d · x = v + x′
3. Transitions within F : (x, v, x′) for all x, x′ ∈ F if 0 ≤ d · x − v − x′ < d
4. Transition between S⊥ and F : ((x,⊥), v, x′) for (x,⊥) ∈ S⊥, x′ ∈ F if

0 < d · x − v − x′ < d

Theorem 4 [Baseline]. The Büchi automaton constructed above is the baseline
Bμ,d

< with upper bound μ, integer discount-factor d > 1 and relation <.

The baseline automata for all inequality relations will have O(μ) states, alphabet
size of 2 · μ − 1, and transition-density of O(μ2).
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1: Input: Weighted automata P , Q, and discount-factor d
2: Output: True if P ⊆d Q, False otherwise
3: P̂ ← AugmentWtAndLabel(P )
4: Q̂ ← AugmentWt(Q)
5: P̂ × Q̂ ← MakeProductSameAlpha(P̂ , Q̂)
6: A ← MakeBaseline(μ, d, ≤)
7: DimWithWitness ← IntersectSelectAlpha(P̂ × Q̂, A)
8: Dim ← ProjectOutWt(DimWithWitness)
9: P̂−wt ← ProjectOutWt(P̂ )

10: return P̂−wt ⊆ Dim

Algorithm 2. QuIP(P,Q, d), Is P ⊆d Q?

4.3 QuIP: Algorithm Description

The construction of the universal leads to an implementation-friendly QuIP from
BCV. The core focus of QuIP is to ensure that the size of intermediate automata is
small and they have fewer transitions to assist the LI-solvers. Technically, QuIP
differs from BCV by incorporating the baseline automata and an appropriate
IntersectSelectAlpha function, rendering QuIP theoretical improvement over BCV.
Like BCV, QuIP also determines all diminished runs of P . So, it disambiguates
P by appending weight and a unique label to each of its transitions. Since,
the identity of runs of Q is not important, we do not disambiguate between
runs of Q, we only append the weight to each transition (Algorithm 2, Line 4).
The baseline automaton is constructed for discount-factor d, maximum weight
μ along transitions in P and Q, and the inequality ≤. Since the alphabet of the
baseline automata are integers between −μ to μ, the alphabet of the product
P̂ × Q̂ is adjusted accordingly. Specifically, the weight recorded along transitions
in the product is taken to be the difference of weight in P̂ to that in Q̂ i.e. if τP :
s1

a1,wt1,l−−−−−→ s2 and τQ : t1
a2,wt2−−−−→ t2 are transitions in P̂ and Q̂ respectively, then

τ = (s1, t1)
a1,wt1−wt2,l−−−−−−−−→ (s2, t2) is a transition in P̂ ×Q̂ iff a1 = a2 (Algorithm 2,

Line 5). In this case, IntersectSelectAlpha intersects baseline automata A and
product P̂ × Q̂ only on the weight-component of alphabet in P̂ × Q̂. Specifically,

if s1
(a,wt1,l)−−−−−→ s2 and t1

wt2−−→ t2 are transitions in P̂ × Q̂ and comparator Aμ,d
≤

respectively, then (s1, t1, i)
a,wt1,l−−−−→ (s2, t2, j) is a transition in the intersection

iff wt1 = wt2, where j = (i + 1) mod 2 if either s1 or t1 is an accepting state,
and j = i otherwise. Automaton Dim and P̂−wt are obtained by project out the
weight-component from the alphabet of P̂ × Q̂ and P̂ respectively. The alphabet
of P̂ × Q̂ and P̂ are converted from (a,wt, l) to only (a, l). It is necessary to
project out the weight component since in P̂ × Q̂ they represent the difference
of weights and in P̂ they represent the absolute value of weight.

Finally, the language of Dim is equated with that of P̂−wt which is the
automaton generated from P̂ after discarding weights from transitions. However,
it is easy to prove that Dim ⊆ P̂−wt. Therefore, instead of language-equivalence
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between Dim and P̂−wt and, it is sufficient to check whether P̂−wt ⊆ Dim. As a
result, QuIP utilizes LI-solvers as a black-box to perform this final step.

Lemma 7 [Trans. Den. in QuIP]. Let δP , δQ denote transition-densities of P

and Q, resp., and μ be the upper bound for baseline Bμ,d
≤ . Number of states and

transition-density of Dim are O(sP sQμ) and O(δP δQ · μ2), respectively.

Theorem 5 [Practical complexity of QuIP]. Let P and Q be DS-automata with
sP , sQ number of states, respectively, and maximum weight on transitions be μ.
Worst-case complexity for QuIP for integer discount-factor d > 1 when language-
equivalence is performed via Ramsay-based inclusion testing is 2O(s2

P ·s2
Q·μ2).

Theorem 5 demonstrates that while complexity of QuIP (in practice) improves
upon BCV (in practice), it is still worse than DetLP.

5 Experimental Evaluation

We provide implementations of our tools QuIP and DetLP and conduct experi-
ments on a large number of synthetically-generated benchmarks to compare their
performance. We seek to find answers to the following questions: (1). Which tool
has better performance, as measured by runtime, and number of benchmarks
solved? (2). How does change in transition-density affect performance of the
tools? (3). How dependent are our tools on their underlying solvers?

5.1 Implementation Details

We implement our tools QuIP and DetLP in C++, with compiler optimization
o3 enabled. We implement our own library for all Büchi-automata and DS-
automata operations, except for language-inclusion for which we use the state-
of-the-art LI-solver RABIT [4] as a black-box. We enable the -fast flag in RABIT,
and tune its JAVA-threads with Xss, Xms, Xmx set to 1 GB, 1 GB and 8 GB
respectively. We use the large-scale LP-solver GLPSOL provided by GLPK (GNU
Linear Programming Kit) [2] inside DetLP. We did not tune GLPSOL since it
consumes a very small percentage of total time in DetLP, as we see later in Fig. 4.

We also employ some implementation-level optimizations. Various steps of
QuIP and DetLP such as product, DS-determinization, baseline construction,
involve the creation of new automaton states and transitions. We reduce their
size by adding a new state only if it is reachable from the initial state, and a
new transition only if it originates from such a state.

The universal automata is constructed on the restricted alphabet of only
those weights that appear in the product P̂ × Q̂ to include only necessary tran-
sitions. We also reduce its size with Büchi minimization tool Reduce [4].

Since all states of P̂ × Q̂ are accepting, we conduct the intersection so that
it avoids doubling the number of product states. This can be done, since it is
sufficient to keep track of whether words visit accepting states in the universal.
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5.2 Benchmarks

To the best of our knowledge, there are no standardized benchmarks for DS-
automata. We attempted to experimented with examples that appear in research
papers. However, these examples are too few and too small, and do not render
an informative view of performance of the tools. Following a standard approach
to performance evaluation of automata-theoretic tools [5,19,22], we experiment
with our tools on randomly generated benchmarks.

Random Weighted-Automata Generation. The parameters for our ran-
dom weighted-automata generation procedure are the number of states N ,
transition-density δ and upper-bound μ for weight on transitions. The states are
represented by the set {0, 1, . . . , N −1}. All states of the weighted-automata are
accepting, and they have a unique initial state 0. The alphabet for all weighted-
automata is fixed to Σ = {a, b}. Weight on transitions ranges from 0 to μ−1. For
our experiments we only generate complete weighted-automata. These weighted
automata are generated only if the number of transitions �N · δ� is greater than
N · |Σ|, since there must be at least one transition on each alphabet from every
state. We first complete the weighted-automata by creating a transition from
each state on every alphabet. In this case the destination state and weight are
chosen randomly. The remaining (N ·|Σ|−�N ·δ�)-many transitions are generated
by selecting all parameters randomly i.e. the source and destination states from
{0, . . . N − 1}, the alphabet from Σ, and weight on transition from {0, μ − 1}.

5.3 Design and Setup for Experimental Evaluation

Our experiments were designed with the objective to compare DetLP and QuIP.
Due to the lack of standardized benchmarks, we conduct our experiments on
randomly-generated benchmarks. Therefore, the parameters for P ⊆d Q are the
number of states sP and sQ, transition density δ, and maximum weight wt. We
seek to find answers to the questions described at the beginning of Sect. 5.

Each instantiation of the parameter-tuple (sP , sQ, δ, wt) and a choice of tool
between QuIP and DetLP corresponds to one experiment. In each experiment,
the weighted-automata P and Q are randomly-generated with the parameters
(sP , δ, wt) and (sQ, δ, wt), respectively, and language-inclusion is performed by
the chosen tool. Since all inputs are randomly-generated, each experiment is
repeated for 50 times to obtain statistically significant data. Each experiment is
run for a total of 1000 sec on for a single node of a high-performance cluster.
Each node of the cluster consists of two quad-core Intel-Xeon processor running
at 2.83 GHz, with 8 GB of memory per node. The runtime of experiments that do
not terminate within the given time limit is assigned a runtime of ∞. We report
the median of the runtime-data collected from all iterations of the experiment.

These experiments are scaled-up by increasing the size of inputs. The worst-
case analysis of QuIP demonstrates that it is symmetric in sP and sQ, making
the algorithm impartial to which of the two inputs is scaled (Theorem 5). On the
other hand, complexity of DetLP is dominated by sQ (Theorem 2). Therefore,
we scale-up our experiments by increasing sQ only.
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Since DetLP is restricted to complete automata, these experiments are con-
ducted on complete weighted automata only. We collect data on total runtime
of each tool, the time consumed by the underlying solver, and the number of
times each experiment terminates with the given resources. We experiment with
sP = 10, δ ranges between 2.5–4 in increments of 0.5 (we take lower-bound of
2.5 since |Σ| = 2), wt ∈ {4, 5}, and sQ ranges from 0–1500 in increments of 25,
d = 3. These sets of experiments also suffice for testing scalability of both tools.

5.4 Observations

We first compare the tools based on the number of benchmarks each can solve.
We also attempt to unravel the main cause of failure of each tool. Out of
the 50 experiments for each parameter-value, DetLP consistently solves more
benchmarks than QuIP for the same parameter-values (Fig. 3a–b)1. The figures
also reveal that both tools solve more benchmarks at lower transition-density.
The most common, in fact almost always, reason for QuIP to fail before its
timeout was reported to be memory-overflow inside RABIT during language-
inclusion between P̂−wt and Dim. On the other hand, the main cause of fail-
ure of DetLP was reported to be memory overflow during DS-determinization
and preprocessing of the determinized DS-automata before GLPSOL is invoked.
This occurs due to the sheer size of the determinized DS-automata, which
can very quickly become very large. These empirical observations indicate that
the bottleneck in QuIP and DetLP may be language-inclusion and explicit DS-
determinization, respectively.

We investigate the above intuition by analyzing the runtime trends for both
tools. Figure 4a plots the runtime for both tools. The plot shows that QuIP fares
significantly better than DetLP in runtime at δ = 2.5. The plots for both the tools
on logscale seem curved (Fig. 4a), suggesting a sub-exponential runtime complex-
ity. These were observed at higher δ as well. However, at higher δ we observe very
few outliers on the runtime-trend graphs of QuIP at larger inputs when just a few
more than 50% of the runs are successful. This is expected since effectively, the
median reports the runtime of the slower runs in these cases. Figure 4b records
the ratio of total time spent inside RABIT and GLPSOL. The plot reveals that
QuIP spends most of its time inside RABIT. We also observe that most memory
consumptions in QuIP occurs inside RABIT. In contrast, GLPSOL consumes a
negligible amount of time and memory in DetLP. Clearly, performance of QuIP
and DetLP is dominated by RABIT and explicit DS-determinization, respectively.
We also determined how runtime performance of tools changes with increasing
discount-factor d. Both tools consume lesser time as d increases.

Finally, we test for scalability of both tools. In Fig. 5a, we plot the median of
total runtime as sQ increases at δ = 2.5, 3 (sP = 10, μ = 4) for QuIP. We attempt
to best-fit the data-points for each δ with functions that are linear, quadratic
and cubic in sQ using squares of residuals method. Figure 5b does the same for

1 Figures are best viewed online and in color.
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Fig. 3. Number of benchmarks solved out of 50 as sQ increases with sP = 10, μ = 4.
δ = 2.5 and δ = 4 in Fig. 3a and b, respectively.

Fig. 4. Time trends: Fig. 4a plots total runtime as sQ increases sP = 10,μ = 4, δ = 2.5.
Figure shows median-time for each parameter-value. Figure 4b plots the ratio of time
spent by tool inside its solver at the same parameter values.

DetLP. We observe that QuIP and DetLP are best fit by functions that are linear
and quadratic in sQ, respectively.

Inferences and Discussion. Our empirical analysis arrives at conclusions
that a purely theoretical exploration would not have. First of all, we observe that
despite having a the worse theoretical complexity, the median-time complexity of
QuIP is better than DetLP by an order of n. In theory, QuIP scales exponentially
in sQ, but only linearly in sQ in runtime. Similarly, runtime of DetLP scales
quadratically in sQ. The huge margin of complexity difference emphasizes why
solely theoretical analysis of algorithms is not sufficient.

Earlier empirical analysis of LI-solvers had made us aware of their dependence
on transition-density δ. As a result, we were able to design QuIP cognizant of
parameter δ. Therefore, its runtime dependence on δ is not surprising. How-
ever, our empirical analysis reveals runtime dependence of DetLP on δ. This
is unexpected since δ does not appear in any complexity-theoretic analysis of
DetLP (Theorem 1). We suspect this behavior occurs because the creation of
each transition, say on alphabet a, during DS-determinization requires the pro-
cedure to analyze every transition on alphabet a in the original DS-automata.
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Fig. 5. Scalability of QuIP (Fig. 5a) and DetLP (Fig. 5b) at δ = 2.5, 3. Figures show
median-time for each parameter-value.

Higher the transition-density, more the transitions in the original DS-automata,
hence more expensive is the creation of transitions during DS-determinization.

We have already noted that the performance of QuIP is dominated by
RABIT in space and time. Currently, RABIT is implemented in Java. Although
RABIT surpasses all other LI-solvers in overall performance, we believe it can
be improved significantly via a more space-efficient implementation in a more
performance-oriented language like C++. This would, in-turn, enhance QuIP.

The current implementation of DetLP utilizes the vanilla algorithm for DS-
determinization. Since DS-determinization dominates DetLP, there is certainly
merit in designing efficient algorithms for DS-determinization. However, we sus-
pect this will be of limited advantage to DetLP since it will persist to incur the
complete cost of explicit DS-determinization due to the separation of automata-
theoretic and numeric reasoning.

Based on our observations, we propose to extract the complementary
strengths of both tools: First, apply QuIP with a small timeout; Since
DetLP solves more benchmarks, apply DetLP only if QuIP fails.

6 Concluding Remarks and Future Directions

This paper presents the first empirical evaluation of algorithms and tools for DS-
inclusion. We present two tools DetLP and QuIP. Our first tool DetLP is based
on explicit DS-determinization and linear programming, and renders an expo-
nential time and space algorithm. Our second tool QuIP improves upon a pre-
viously known comparator-based automata-theoretic algorithm BCV by means
of an optimized comparator construction, called universal automata. Despite its
PSPACE-complete theoretical complexity, we note that all practical implemen-
tations of QuIP are also exponential in time and space.

The focus of this work is to investigate these tools in practice. In theory,
the exponential complexity of QuIP is worse than DetLP. Our empirical evalu-
ation reveals the opposite: The median-time complexity of QuIP is better than
DetLP by an order of n. Specifically, QuIP scales linearly while DetLP scales
quadratically in the size of inputs. This re-asserts the gap between theory and
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practice, and aserts the need of better metrics for practical algorithms. Further
emprirical analysis by scaling the right-hand side automaton will be beneficial.

Nevertheless, DetLP consistently solves more benchmarks than QuIP. Most
of QuIP’s experiments fail due to memory-overflow within the LI-solver, indicat-
ing that more space-efficient implementations of LI-solvers would boost QuIP’s
performance. We are less optimistic about DetLP though. Our evaluation high-
lights the impediment of explicit DS-determinization, a cost that is unavoidable
in DetLP’s separation-of-concerns approach. This motivates future research that
integrates automata-theoretic and numerical reasoning by perhaps combining
implicit DS-determinzation with baseline automata-like reasoning to design an
on-the-fly algorithm for DS-inclusion.

Last but not the least, our empirical evaluations lead to discovering depen-
dence of runtime of algorithms on parameters that had not featured in their
worst-case theoretical analysis, such as the dependence of DetLP on transition-
density. Such evaluations build deeper understanding of algorithms, and will
hopefully serve a guiding light for theoretical and empirical investigation in-
tandem of algorithms for quantitative analysis
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1. RABIT: Ramsey-based Büchi automata inclusion testing
2. GLPK. https://www.gnu.org/software/glpk/
3. GOAL. http://goal.im.ntu.edu.tw/wiki/
4. Rabit-Reduce. http://www.languageinclusion.org/
5. Abdulla, P.A., et al.: Simulation subsumption in Ramsey-based Büchi automata
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Abstract. The design of security protocols is extremely subtle and vul-
nerable to potentially devastating flaws. As a result, many tools and
techniques for the automated verification of protocol designs have been
developed. Unfortunately, these tools don’t have the ability to model and
reason about protocols with randomization, which are becoming increas-
ingly prevalent in systems providing privacy and anonymity guarantees.
The security guarantees of these systems are often formulated by means
of the indistinguishability of two protocols. In this paper, we give the
first practical algorithms for model checking indistinguishability proper-
ties of randomized security protocols against the powerful threat model of
a bounded Dolev-Yao adversary. Our techniques are implemented in the
Stochastic Protocol ANalayzer (Span) and evaluated on several exam-
ples. As part of our evaluation, we conduct the first automated analysis
of an electronic voting protocol based on the 3-ballot design.

1 Introduction

Security protocols are highly intricate and vulnerable to design flaws. This
has led to a significant effort in the construction of tools for the auto-
mated verification of protocol designs. In order to make automation feasi-
ble [8,12,15,23,34,48,55], the analysis is often carried out in the Dolev-Yao
threat model [30], where the assumption of perfect cryptography is made. In the
Dolev-Yao model, the omnipotent adversary has the ability to read, intercept,
modify and replay all messages on public channels, remember the communication
history as well as non-deterministically inject its own messages into the network
while remaining anonymous. In this model, messages are symbolic terms modulo
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an equational theory (as opposed to bit-strings) and cryptographic operations
are modeled via equations in the theory.

A growing number of security protocols employ randomization to achieve pri-
vacy and anonymity guarantees. Randomization is essential in protocols/systems
for anonymous communication and web browsing such as Crowds [49], mix-
networks [21], onion routers [37] and Tor [29]. It is also used in fair exchange [11,
35], vote privacy in electronic voting [6,20,52,54] and denial of service preven-
tion [40]. In the example below, we demonstrate how randomization is used to
achieve privacy in electronic voting systems.

Example 1. Consider a simple electronic voting protocol for 2 voters Alice and
Bob, two candidates and an election authority. The protocol is as follows. Ini-
tially, the election authority will generate two private tokens tA and tB and
send them to Alice and Bob encrypted under their respective public keys. These
tokens will be used by the voters as proofs of their eligibility. After receiving
a token, each voter sends his/her choice to the election authority along with
the proof of eligibility encrypted under the public key of the election authority.
Once all votes have been collected, the election authority tosses a fair private
coin. The order in which Alice and Bob’s votes are published depends on the
result of this coin toss. Vote privacy demands that an adversary not be able to
deduce how each voter voted.

All the existing Dolev-Yao analysis tools are fundamentally limited to proto-
cols that are purely non-deterministic, where non-determinism models concur-
rency as well as the interaction between protocol participants and their envi-
ronment. There are currently no analysis tools that can faithfully reason about
protocols like those in Example 1, a limitation that has long been identified by
the verification community. In the context of electronic voting protocols, [28]
identifies three main classes of techniques for achieving vote privacy; blind sig-
nature schemes, homomorphic encryption and randomization. There the authors
concede that protocols based on the latter technique are “hard to address with
our methods that are purely non-deterministic.” Catherine Meadows, in her
summary of the over 30 year history of formal techniques in cryptographic pro-
tocol analysis [46,47], identified the development of formal analysis techniques
for anonymous communication systems, almost exclusively built using primitives
with randomization, as a fundamental and still largely unsolved challenge. She
writes, “it turned out to be difficult to develop formal models and analyses of
large-scale anonymous communication. The main stumbling block is the threat
model”.

In this work, we take a major step towards overcoming this long-standing
challenge and introduce the first techniques for automated Dolev-Yao anal-
ysis of randomized security protocols. In particular, we propose two algo-
rithms for determining indistinguishability of randomized security protocols and
implemented them in the Stochastic Protocol ANalyzer (Span). Several works
[7,9,28,32,41] have identified indistinguishability as the natural mechanism to
model security guarantees such as anonymity, unlinkability, and privacy. Con-
sider the protocol from Example 1, designed to preserve vote privacy. Such a
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property holds if the executions of the protocol in which Alice votes for candidate
1 and Bob votes for candidate 2 cannot be distinguished from the executions of
the protocol in which Alice votes for candidate 2 and Bob votes for candidate 1.

Observe that in Example 1, it is crucial that the result of the election author-
ity’s coin toss is not visible to the adversary. Indeed if the adversary is allowed to
“observe” the results of private coin tosses, then the analysis may reveal “secu-
rity flaws” in correct security protocols (see examples in [13,17,19,22,36]). Thus,
many authors [10,13,17–19,22,26,36] have proposed that randomized protocols
be analyzed with respect to adversaries that are forced to schedule the same
action in any two protocol executions that are indistinguishable to them.

For randomized security protocols, [10,18,53] have proposed that trace equiv-
alence from the applied π-calculus [5] serve as the indistinguishability relation
on traces. In this framework, the protocol semantics are described by partially
observable Markov decision processes (POMDPs) where the adversary’s actions
are modeled non-deterministically. The adversary is required to choose its next
action based on the partial information that it can observe about the execution
thus far. This allows us to model the privacy of coin tosses. Two security pro-
tocols are said to be indistinguishable [18,53] if their semantic descriptions as
POMDPs are indistinguishable. Two POMDPs M and M′ are said to be indis-
tinguishable if for any adversary A and trace o, the probability of the executions
that generate the trace o with respect to A are the same for both M and M′.

Our algorithms for indistinguishability in randomized security protocols are
built on top of techniques for solving indistinguishability in finite POMDPs.
Our first result shows that indistinguishability of finite POMDPs is P-complete.
Membership in P is established by a reduction of POMDP indistinguishability
to equivalence in probabilistic finite automata (PFAs), which is known to be P-
complete [31,45,57]. Further, we show that the hardness result continues to hold
for acyclic POMDPs. An acyclic POMDP is a POMDP that has a set of “final”
absorbing states and the only cycles in the underlying graph are self-loops on
these states.

For acyclic finite POMDPs, we present another algorithm for checking indis-
tinguishability based on the technique of translating a POMDP M into a fully
observable Markov decision process (MDP), known as the belief MDP B(M) of
M. It was shown in [14] that two POMDPs are indistinguishable if and only if
the belief MDPs they induce are bisimilar as labeled Markov decision processes.
When M is acylic and finite then its belief MDP B(M) is finite and acyclic and
its bisimulation relation can be checked recursively.

Protocols in Span are described by a finite set of roles (agents) that interact
asynchronously by passing messages. Each role models an agent in a protocol
session and hence we only consider bounded number of sessions. An action in
a role performs either a message input, or a message output or a test on mes-
sages. The adversary schedules the order in which these actions are executed and
generates input recipes comprised of public information and messages previously
output by the agents. In general, there are an unbounded number of input recipes
available at each input step, resulting in POMDPs that are infinitely branching.
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Span, however, searches for bounded attacks by bounding the size of attacker
messages. Under this assumption, protocols give rise to finite acyclic POMDPs.
Even with this assumption, protocols specified in Span describe POMDPs that
are exponentially larger than their description. Nevertheless, we show that when
considering protocols defined over subterm convergent equational theories, indis-
tinguishability of randomized security protocols is in PSPACE for bounded
Dolev-Yao adversaries. We further show that the problem is harder than #SATD

and hence it is both NP-hard and coNP-hard.
The main engine of Span translates a randomized security protocol into

an acyclic finite POMDP by recursively unrolling all protocol executions and
grouping states according to those that are indistinguishable. We implemented
two algorithms for checking indistinguishability in Span. The first algorithm,
called the PFA algorithm, checks indistinguishability of P and P ′ by converting
them to corresponding PFAs A and A′ as in the proof of decidability of indis-
tinguishability of finite POMDPs. PFA equivalence can then be solved through
a reduction to linear programming [31]. The second algorithm, called the on-
the-fly (OTF) algorithm, is based on the technique of checking bisimulation of
belief MDPs. Although asymptotically less efficient than the PFA algorithm,
the recursive procedure for checking bisimulation in belief MDPs can be embed-
ded into the main engine of Span with little overhead, allowing one to analyze
indistinguishability on-the-fly as the POMDP models are constructed.

In our evaluation of the indistinguishability algorithms in Span, we conduct
the first automated Dolev-Yao analysis for several new classes of security pro-
tocols including dinning cryptographers networks [38], mix networks [21] and a
3-ballot electronic voting protocol [54]. The analysis of the 3-ballot protocol, in
particular, demonstrates that our techniques can push symbolic protocol verifi-
cation to new frontiers. The protocol is a full scale, real world example, which to
the best of our knowledge, hasn’t been analyzed using any existing probabilistic
model checker or protocol analysis tool.

Summary of Contributions. We showed that the problem of checking indis-
tinguishability of POMDPs is P-complete. The indistinguishability problem for
bounded instances of randomized security protocols over subterm convergent
equational theories (bounded number of sessions and bounded adversarial non-
determinism) is shown to be in PSPACE and #SATD-hard. We proposed and
implemented two algorithms in the Span protocol analysis tool for deciding
indistinguishability in bounded instances of randomized security protocols and
compare their performance on several examples. Using Span, we conducted the
first automated verification of a 3-ballot electronic voting protocol.

Related Work. As alluded to above, techniques for analyzing security protocols
have remained largely disjoint from techniques for analyzing systems with ran-
domization. Using probabilistic model checkers such as PRISM [44], STORM
[27] and APEX [42] some have attempted to verify protocols that explicitly
employ randomization [56]. These ad-hoc techniques fail to capture powerful
threat models, such as a Dolev-Yao adversary, and don’t provide a general ver-
ification framework. Other works in the Dolev-Yao framework [28,43] simply
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abstract away essential protocol components that utilize randomization, such as
anonymous channels. The first formal framework combining Dolev-Yao analysis
with randomization appeared in [10], where the authors studied the conditions
under which security properties of randomized protocols are preserved by pro-
tocol composition. In [53], the results were extended to indistinguishability.

Complexity-theoretic results on verifying secrecy and indistinguishabil-
ity properties of bounded sessions of randomized security protocols against
unbounded Dolev-Yao adverasries were studied in [18]. There the authors con-
sidered protocols with a fixed equational theory1 and no negative tests (else
branches). Both secrecy and indistinguishability were shown to be in coNEXP-
TIME, with secrecy being coNEXPTIME-hard. The analogous problems for
purely non-deterministic protocols are known to be coNP-complete [25,33,51].
When one fixes, a priori, the number of coin tosses, secrecy and indistinguisha-
bility in randomized protocols again become coNP-complete. In our asymptotic
complexity results and in the Span tool, we consider a general class of equational
theories and protocols that allow negative tests.

2 Preliminaries

We assume that the reader is familiar with probability distributions. For a set
X, Dist(X) shall denote the set of all discrete distributions μ on X such that
μ(x) is a rational number for each x ∈ X. For x ∈ X, δx will denote the Dirac
distribution, i.e., the measure μ such that μ(x) = 1. The support of a discrete
distribution μ, denoted support(μ), is the set of all elements x such that μ(x) �= 0.

Markov Decision Processes (MDPs). MDPs are used to model processes
that exhibit both probabilistic and non-deterministic behavior. An MDP M
is a tuple (Z, zs,Act,Δ) where Z is a countable set of states, zs ∈ Z is the
initial state, Act is a countable set of actions and Δ : Z × Act → Dist(Z) is the
probabilistic transition function. M is said to be finite if the sets Z and Act are
finite. An execution of an MDP is a sequence ρ = z0

α1−→ z1
α2−→ · · · αm−−→ zm

such that z0 = zs and zi+1 ∈ support(Δ(zi, αi+1)) for all i ∈ {0, . . . , m−1}. The
measure of ρ, denoted probM(ρ), is

∏m−1
i=0 Δ(zi, αi+1)(zi+1). For the execution

ρ, we write last(ρ) = zm and say that the length of ρ, denoted |ρ|, is m. The set
of all executions of M is denoted as Exec(M).

Partially Observable Markov Decision Processes (POMDPs). A
POMDP M is a tuple (Z, zs,Act,Δ,O, obs) where M0 = (Z, zs,Act,Δ) is an
MDP, O is a countable set of observations and obs : Z → O is a labeling of states
with observations. M is said to be finite if M0 is finite. The set of executions of
M0 is taken to be the set of executions of M, i.e., we define Exec(M) as the set
Exec(M0). Given an execution ρ = z0

α1−→ z1
α2−→ · · · αm−−→ zm of M, the trace of

1 The operations considered are pairing, hashing, encryption and decryption.



122 M. S. Bauer et al.

ρ is tr(ρ) = obs(z0)α1obs(z1)α2 · · · αmobs(zm). For a POMDP M and a sequence
o ∈ O · (Act ·O)∗, the probability of o in M, written probM(o), is the sum of the
measures of executions in Exec(M) with trace o. Given two POMDPs M0 and
M1 with the same set of actions Act and the same set of observations O, we say
that M0 and M1 are distinguishable if there exists o ∈ O · (Act · O)∗ such that
probM0

(o) �= probM1
(o). If M0 and M1 cannot be distinguished, they are said

to be indistinguishable. We write M0 ≈ M1 if M0 and M1 are indistinguish-
able. As is the case in [18,53], indistinguishability can also be defined through a
notion of an adversary. Our formulation is equivalent, even when the adversary
is allowed to toss coins [18].

Probabilistic Finite Automata (PFAs). A PFA is like a finite-state deter-
ministic automaton except that the transition function from a state on a given
input is described as a probability distribution. Formally, a PFA A is a tuple
(Q,Σ, qs,Δ, F ) where Q is a finite set of states, Σ is a finite input alphabet,
qs ∈ Q is the initial state, Δ : Q × Σ → Dist(Q) is the transition relation
and F ⊆ Q is the set of accepting states. A run ρ of A on an input word
u ∈ Σ∗ = a1a2 · · · am is a sequence q0q1 · · · qm ∈ Q∗ such that q0 = qs and
qi ∈ support(Δ(qi−1, ai)) for each 1 ≤ i ≤ m. For the run ρ on word u, its
measure, denoted probA,u(ρ), is

∏m
i=1 Δ(qi−1, ai)(qi). The run ρ is called accept-

ing if qm ∈ F . The probability of accepting a word u ∈ Σ, written probA(u),
is the sum of the measures of the accepting runs on u. Two PFAs A0 and A1

with the same input alphabet Σ are said to be equivalent, denoted A0 ≡ A1, if
probA0

(u) = probA1
(u) for all input words u ∈ Σ∗.

3 POMDP Indistinguishability

In this section, we study the underlying semantic objects of randomized security
protocols, POMDPs. The techniques we develop for analyzing POMDPs provide
the foundation for the indistinguishability algorithms we implement in the Span
protocol analysis tool. Our first result shows that indistinguishability of finite
POMDPs is decidable in polynomial time by a reduction to PFA equivalence,
which is known to be decidable in polynomial time [31,57].

Proposition 1. Indistinguishability of finite POMDPs is in P.

Proof (sketch). Consider two POMDPs Mi = (Zi, z
i
s,Act,Δi,O, obsi) for i ∈

{0, 1} with the same set of actions Act and the set of observations O. We shall
construct PFAs A0 and A1 such that M0 ≈ M1 iff A0 ≡ A1 as follows. For
i ∈ {0, 1}, let “badi” be a new state and define the PFA Ai = (Qi, Σ, qi

s,Δ
′
i, Fi)

where Qi = Zi ∪ {badi}, Σ = Act × O, qi
s = zi

s, Fi = Zi and Δ′
i is defined as

follows.

Δ′
i(q, (α, o))(q′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δi(q, α)(q′) if q, q′ ∈ Zi and obs(q) = o

1 if q ∈ Zi, obs(q) �= o and q′ = badi

1 if q, q′ = badi

0 otherwise

.
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Let u = (α1, o0) . . . (αk, ok−1) be a non-empty word on Σ. For the word u,
let ou be the trace o0α1o1α2· · ·αk−1ok−1. The proposition follows immediately
from the observation that probAi

(u) = probMi
(ou). 
�

An MDP M = (Z, zs,Act,Δ) is said to be acyclic if there is a set of absorbing
states Zabs ⊆ Z such that for all α ∈ Act and z ∈ Zabs, Δ(z, α)(z) = 1 and for all
ρ = z0

α1−→ · · · αm−−→ zm ∈ Exec(M) if zi = zj for i �= j then zi ∈ Zabs. Intuitively,
acyclic MDPs are MDPs that have a set of “final” absorbing states and the
only cycles in the underlying graph are self-loops on these states. A POMDP
M = (Z, zs,Act,Δ,O, obs) is acyclic if the MDP M0 = (Z, zs,Act,Δ) is acyclic.
We have the following result, which can be shown from the P-hardness of the
PFA equivalence problem [45].

Proposition 2. Indistinguishability of finite acyclic POMDPs is P-hard. Hence
Indistinguishability of finite POMDPs is P-complete.

Thanks to Proposition 1, we can check indistinguishability for finite POMDPs
by reducing it to PFA equivalence. We now present a new algorithm for indis-
tinguishability of finite acyclic POMDPs. A well-known POMDP analysis tech-
nique is to translate a POMDP M into a fully observable belief MDP B(M)
that emulates it. One can then analyze B(M) to infer properties of M. The
states of B(M) are probability distributions over the states of M. Further,
given a state b ∈ B(M), if states z1, z2 of M are such that b(z1), b(z2) are
non-zero then z1 and z2 must have the same observation. Hence, by abuse of
notation, we can define obs(b) to be obs(z) if b(z) �= 0. Intuitively, an execution
ρ = b0

α1−→ b1
α2−→ · · · αm−−→ bm of B(M) corresponds to the set of all executions

ρ′ of M such that tr(ρ′) = obs(b0)α1obs(b1)α2 · · · αmobs(bm). The measure of
execution ρ in B(M) is exactly probM(obs(b0)α1obs(b1)α2 · · · αmobs(bm)).

The initial state of B(M) is the distribution that assigns 1 to the initial
state of M. Intuitively, on a given state b ∈ Dist(M) and an action α, there
is at most one successor state bα,o for each observation o. The probability of
transitioning from b to bα,o is the probability that o is observed given that the
distribution on the states of M is b and action α is performed; bα,o(z) is the
conditional probability that the actual state of the POMDP is z. The formal
definition follows.

Definition 1. Let M = (Z, zs,Act,Δ,O, obs) be a POMDP. The belief MDP
of M, denoted B(M), is the tuple (Dist(Z), δzs

,Act,ΔB) where ΔB is defined as
follows. For b ∈ Dist(Z), action α ∈ Act and o ∈ O, let

pb,α,o =
∑

z∈Z

b(z) ·
( ∑

z′∈Z∧obs(z′)=o

Δ(z, α)(z′)
)

.

ΔB(b, α) is the unique distribution such that for each o ∈ O, if pb,α,o �= 0 then
ΔB(b, α)(bα,o) = pb,α,o where for all z′ ∈ Z,

bα,o(z′) =

{∑
z∈Z b(z)·Δ(z,α)(z′)

pb,α,o
if obs(z′) = o

0 otherwise
.



124 M. S. Bauer et al.

Let Mi = (Zi, z
i
s,Act,Δi,O, obsi) for i ∈ {0, 1} be POMDPs with the same

set of actions and observations. In [14] the authors show that M0 and M1

are indistinguishable if and only if the beliefs δz0
s

and δz1
s

are strongly belief
bisimilar. Strong belief bisimilarity coincides with the notion of bisimilarity of
labeled MDPs: a pair of states (b0, b1) ∈ Dist(Z0)×Dist(Z1) is said to be strongly
belief bisimilar if (i) obs(b0) = obs(b1), (ii) for all α ∈ Act, o ∈ O, pb0,α,o = pb1,α,o

and (iii) the pair (bα,o
0 , bα,o

1 ) is strongly belief bisimilar if pb0,α,o = pb1,α,o > 0.
Observe that, in general, belief MDPs are defined over an infinite state space. It
is easy to see that, for a finite acyclic POMDP M, B(M) is acyclic and has a
finite number of reachable belief states. Let M0 and M1 be as above and assume
further that M0,M1 are finite and acyclic with absorbing states Zabs ⊆ Z0∪Z1.
As a consequence of the result from [14] and the observations above, we can
determine if two states (b0, b1) ∈ Dist(Z0)×Dist(Z1) are strongly belief bisimilar
using the on-the-fly procedure from Algorithm 1.

Algorithm 1. On-the-fly bisimulation for finite acyclic POMDPs

1: function Bisimilar(beliefState b0, beliefState b1)
2: if obs(b0) �= obs(b1) then return false

3: if support(b0) ∪ support(b1) ⊆ Zabs then return true

4: for α ∈ Act do
5: for o ∈ O do
6: if pb0,α,o �= pb1,α,o then return false

7: if pb0,α,o > 0 and !Bisimilar(bα,o
0 , bα,o

1 ) then return false

8: return true

4 Randomized Security Protocols

We now present our core process calculus for modeling security protocols with
coin tosses. The calculus closely resembles the ones from [10,53]. First proposed
in [39], it extends the applied π-calculus [5] by the inclusion of a new opera-
tor for probabilistic choice. As in the applied π-calculus, the calculus assumes
that messages are terms in a first-order signature identified up-to an equational
theory.

4.1 Terms, Equational Theories and Frames

A signature F contains a finite set of function symbols, each with an associated
arity. We assume F contains two special disjoint sets, Npub and Npriv, of 0-ary
symbols.2 The elements of Npub are called public names and represent public
nonces that can be used by the Dolev-Yao adversary. The elements of Npriv are

2 As we assume F is finite, we allow only a fixed number of public nonces are available
to the adversary.
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called names and represent secret nonces and secret keys. We also assume a set
of variables that are partitioned into two disjoint sets X and Xw. The variables
in X are called protocol variables and are used as placeholders for messages input
by protocol participants. The variables in Xw are called frame variables and are
used to point to messages received by the Dolev-Yao adversary. Terms are built
by the application of function symbols to variables and terms in the standard
way. Given a signature F and Y ⊆ X ∪ Xw, we use T (F ,Y) to denote the set of
terms built over F and Y. The set of variables occurring in a term u is denoted
by vars(u). A ground term is a term that contains no free variables.

A substitution σ is a partial function with a finite domain that maps vari-
ables to terms. dom(σ) will denote the domain and ran(σ) will denote the
range. For a substitution σ with dom(σ) = {x1, . . . , xk}, we denote σ as
{x1 �→ σ(x1), . . . , xk �→ σ(xk)}. A substitution σ is said to be ground if every
term in ran(σ) is ground and a substitution with an empty domain will be
denoted as ∅. Substitutions can be applied to terms in the usual way and we
write uσ for the term obtained by applying the substitution σ to the term u.

Our process algebra is parameterized by an equational theory (F , E), where
E is a set of F-Equations. By an F-Equation, we mean a pair u = v where
u, v ∈ T (F \ Npriv,X ) are terms that do not contain private names. We will
assume that the equations of (F , E) can be oriented to produce a convergent
rewrite system. Two terms u and v are said to be equal with respect to an
equational theory (F , E), denoted u =E v, if E � u = v in the first order
theory of equality. We often identify an equational theory (F , E) by E when the
signature is clear from the context.

In the calculus, all communication is mediated through an adversary: all
outputs first go to an adversary and all inputs are provided by the adver-
sary. Hence, processes are executed in an environment that consists of a frame
ϕ : Xw → T (F , ∅) and a ground substitution σ : X → T (F , ∅). Intuitively,
ϕ represents the sequence of messages an adversary has received from protocol
participants and σ records the binding of the protocol variables to actual input
messages. An adversary is limited to sending only those messages that it can
deduce from the messages it has received thus far. Formally, a term u ∈ T (F , ∅)
is deducible from a frame ϕ with recipe r ∈ T (F \ Npriv, dom(ϕ)) in equational
theory E, denoted ϕ �r

E u, if rϕ =E u. We will often omit r and E and write
ϕ � u if they are clear from the context.

We now recall an equivalence on frames, called static equivalence [5]. Intu-
itively, two frames are statically equivalent if the adversary cannot distinguish
them by performing tests. The tests consists of checking whether two recipes
deduce the same term. Formally, two frames ϕ1 and ϕ2 are said to be statically
equivalent in equational theory E, denoted ϕ1 ≡E ϕ2, if dom(ϕ1) = dom(ϕ2)
and for all r1, r2 ∈ T (F \ Npriv,Xw) we have r1ϕ1 =E r2ϕ1 iff r1ϕ2 =E r2ϕ2.

4.2 Process Syntax

Processes in our calculus are the parallel composition of roles. Intuitively, a role
models a single actor in a single session of the protocol. Syntactically, a role is
derived from the grammar:
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R ::= 0
∣
∣ in(x)�

∣
∣ out(u0 · R +p u1 · R)�

∣
∣ ite([c1 ∧ . . . ∧ ck], R,R)�

∣
∣ (R · R)

where p is a rational number in the unit interval [0, 1], 
 ∈ N, x ∈ X , u0, u1 ∈
T (F ,X ) and ci is ui = vi with ui, vi ∈ T (F ,X ) for all i ∈ {1, . . . , k}. The
constructs in(x)�, out(u0 · R +p u1 · R)� and ite([c1 ∧ . . . ∧ ck], R,R)� are said
to be labeled operations and 
 ∈ N is said to be their label. The role 0 does
nothing. The role in(x)� reads a term u from the public channel and binds it to
x. The role out(u0 · R +p u1 · R′)� outputs the term u0 on the public channel
and becomes R with probability p and it outputs the term u1 and becomes R′

with probability 1 − p. A test [c1 ∧ . . . ∧ ck] is said to pass if for all 1 ≤ i ≤ k,
the equality ci holds. The conditional role ite([c1 ∧ . . .∧ ck], R,R′)� becomes R if
[c1∧ . . .∧ck] passes and otherwise it becomes R′. The role R ·R′ is the sequential
composition of role R followed by role R′. The set of variables of a role R is the
set of variables occurring in R. The construct in(x)� · R binds variable x in R.
The set of free and bound variables in a role can be defined in the standard way.
We will assume that the set of free variables and bound variables of a role are
disjoint and that a bound variable is bound only once in a role. A role R is said
to be well-formed if every labeled operation occurring in R has the same label

; the label 
 is said to be the label of the well-formed role R.

A process is the parallel composition of a finite set of roles R1, . . . , Rn,
denoted R1 | . . . | Rn. We will use P and Q to denote processes. A process
R1 | . . . | Rn is said to be well-formed if each role is well-formed, the sets of
variables of Ri and Rj are disjoint for i �= j, and the labels of roles Ri and Rj

are different for i �= j. For the remainder of this paper, processes are assumed to
be well-formed. The set of free (resp. bound) variables of P is the union of the
sets of free (resp. bound) variables of its roles. P is said to be ground if the set
of its free variables is empty. We shall omit labels when they are not relevant in
a particular context.

Example 2. We model the electronic voting protocol from Example 1 in our
formalism. The protocol is built over the equational theory with signature
F = {sk/1, pk/1, aenc/3, adec/2, pair/2, fst/1, snd/1} and the equations

E = {adec(aenc(m, r, pk(k)), sk(k)) = m,

fst(pair(m1,m2)) = m1, snd(pair(m1,m2)) = m2}.

The function sk (resp. pk) is used to generate a secret (resp. public) key from
a nonce. For generation of their pubic key pairs, Alice, Bob and the election
authority hold private names kA, kB and kEA, respectively. The candidates will
be modeled using public names c0 and c1 and the tokens will be modeled using
private names tA and tB . Additionally, we will write yi and ri for i ∈ N to denote
fresh input variables and private names, respectively. The roles of Alice, Bob and
the election authority are as follows.
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A(cA) := in(y0) · out(aenc(pair(adec(y0, sk(kA)), cA), r0, pk(kEA)))
B(cB) := in(y1) · out(aenc(pair(adec(y1, sk(kB)), cB), r1, pk(kEA)))
EA := out(aenc(tA, r2, pk(kA))) · out(aenc(tB , r3, pk(kB))) · in(y3) · in(y4) ·

ite([fst(adec(y3, sk(kEA))) = tA ∧ fst(adec(y4, sk(kEA))) = tB],
out(pair(snd(adec(y3, sk(kEA))), snd(adec(y4, sk(kEA)))) + 1

2

pair(snd(adec(y4, sk(kEA))), snd(adec(y3, sk(kEA))))), 0)

In roles above, we write out(u0) as shorthand for out(u0 · 0 +1 u0 · 0). The
entire protocol is evote(cA, cB) = A(cA) | B(cB) | EA.

4.3 Process Semantics

An extended process is a 3-tuple (P,ϕ, σ) where P is a process, ϕ is a frame
and σ is a ground substitution whose domain contains the free variables of P .
We will write E to denote the set of all extended processes. Semantically, a
ground process P with n roles is a POMDP [[P ]] = (Z, zs,Act,Δ,O, obs), where
Z = E ∪ {error}, zs is (P, ∅, ∅), Act = (T (F \ Npriv,Xw) ∪ {τ, } × {1, . . . , n}),
Δ is a function that maps an extended process and an action to a distribution
on E , O is the set of equivalence classes on frames over the static equivalence
relation ≡E and obs is as follows. Let [ϕ] denote the equivalence class of ϕ with
respect to ≡E . Define obs to be the function such that for any extended process
η = (P,ϕ, σ), obs(η) = [ϕ]. We now give some additional notation needed for
the definition of Δ. Given a measure μ on E and role R we define μ · R to be
the distribution μ1 on E such that μ1(P ′, ϕ, σ) = μ(P,ϕ, σ) if μ(P,ϕ, σ) > 0
and P ′ is P · R and 0 otherwise. Given a measure μ on E and a process Q, we
define μ | Q to be the distribution μ1 on E such that μ1(P ′, ϕ, σ) = μ(P,ϕ, σ)
if μ(P,ϕ, σ) > 0 and P ′ is P | Q and 0 otherwise. The distribution Q | μ
is defined analogously. For distributions μ1, μ2 over E and a rational number
p ∈ [0, 1], the convex combination μ1 +E

p μ2 is the distribution μ on E such that
μ(η) = p · μ1(η) + (1 − p) · μ2(η) for all η ∈ E . The definition of Δ is given in
Fig. 1, where we write (P,ϕ, σ) α−→ μ if Δ((P,ϕ, σ), α) = μ. If Δ((P,ϕ, σ), α) is
undefined in Fig. 1 then Δ((P,ϕ, σ), α) = δerror. Note that Δ is well-defined, as
roles are deterministic.

4.4 Indistinguishability in Randomized Cryptographic Protocols

Protocols P and P ′ are said to indistinguishable if [[P ]] ≈ [[P ′]]. Many interesting
properties of randomized security protocols can be specified using indistinguisha-
bility. For example, consider the simple electronic voting protocol from Exam-
ple 2. We say that the protocol satisfies the vote privacy property if evote(c0, c1)
and evote(c1, c0) are indistinguishable.

In the remainder of this section, we study the problem of deciding when
two protocols are indistinguishable by a bounded Dolev-Yao adversary. We
restrict our attention to indistinguishability of protocols over subterm conver-
gent equational theories [4]. Before presenting our results, we give some rele-
vant definitions. (F , E) is said to be subterm convergent if for every equation
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r ∈ T (F \ Npriv, Xw) ϕ �r u x �∈ dom(σ)

(in(x)�, ϕ, σ)
(r,�)−−−→ δ(0,ϕ,σ∪{x�→u})

in

i = |dom(ϕ)| + 1 ϕj = ϕ ∪ {w(i,�) �→ ujσ} for j ∈ {0, 1}
(out(u0 · R0 +p u1 · R1)�, ϕ, σ)

(τ,�)−−−→ δ(R0,ϕ0,σ) +E
p δ(R1,ϕ1,σ)

out

∀i ∈ {1, . . . , k}, ci is ui = vi and uiσ =E viσ

(ite([c1 ∧ . . . ∧ ck], R, R′)�, ϕ, σ)
(τ,�)−−−→ δ(R,ϕ,σ)

condIF

∃i ∈ {1, . . . , k}, ci is ui = vi and uiσ �=E viσ

(ite([c1 ∧ . . . ∧ ck], R, R′)�, ϕ, σ)
(τ,�)−−−→ δ(R′,ϕ,σ)

condELSE

R �= 0 (R, ϕ, σ) α−→ μ

(R · R′, ϕ, σ) α−→ μ · R′
seq

(R, ϕ, σ) α−→ μ

(0 · R, ϕ, σ) α−→ μ
null

(Q, ϕ, σ) α−→ μ

(Q | Q′, ϕ, σ) α−→ μ | Q′ parl
(Q′, ϕ, σ) α−→ μ

(Q | Q′, ϕ, σ) α−→ Q | μ
parr

Fig. 1. Process semantics

u = v ∈ E oriented as a rewrite rule u → v, either v is a proper subterm of u
or v is a public name. A term u can be represented as a directed acyclic graph
(dag), denoted dag(u) [4,51]. Every node in dag(u) is a function symbol, name
or a variable. Nodes labeled by names and variables have out-degree 0. A node
labeled with a function symbol f has out-degree equal to the arity of f where
outgoing edges of the node are labeled from 1 to the arity of f . Every node
of dag(u) represents a unique sub-term of u. The depth of a term u, denoted
depth(u), is the length of the longest simple path from the root in dag(u). Given
an action α, depth(α) = 0 if α = (τ, j) and depth(α) = m if α = (r, j) and
depth(r) = m.

Let P be a protocol such that [[P ]] = (Z, zs,Act,Δ,O, obs). Define [[P ]]d to be
the POMDP (Z, zs,Actd,Δ,O, obs) where Actd ⊆ Act is such that every α ∈ Act
has depth(α) ≤ d. For a constant d ∈ N, we define InDist(d) to be the decision
problem that, given a subterm convergent theory (F , E) and protocols P and P ′

over (F , E), determines if [[P ]]d and [[P ′]]d are indistinguishable. We assume that
the arity of the function symbols in F is given in unary. We have the following.

Theorem 1. For any constant d ∈ N, InDist(d) is in PSPACE.

We now show InDist(d) is both NP-hard and coNP-hard by showing a reduc-
tion from #SATD to InDist(d). #SATD is the decision problem that, given a 3CNF
formula φ and a constant k ∈ N, checks if the number of satisfying assignments
of φ is equal to k.
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Theorem 2. There is a d0 ∈ N such that #SATD reduces to InDist(d) in logspace
for every d > d0. Thus, InDist(d) is NP-hard and coNP-hard for every d > d0.

5 Implementation and Evaluation

Using (the proof of) Proposition 1, we can solve the indistinguishability prob-
lem for randomized security protocols as follows. For protocols P, P ′, translate
[[P ]], [[P ′]] into PFAs A,A′ and determine if A ≡ A′ using the linear program-
ming algorithm from [31]. We will henceforth refer to this approach as the PFA
algorithm and the approach from Algorithm1 as the OTF algorithm. We have
implemented both the PFA and OTF algorithms as part of Stochastic Protocol
ANalayzer (Span), which is a Java based tool for analyzing randomized security
protocols. The tool is available for download at [1]. The main engine of Span
translates a protocol into a POMDP, belief MDP or PFA by exploring all proto-
col executions and grouping equivalent states using an engine, Kiss [4] or Akiss
[16], for static equivalence. Kiss is guaranteed to terminate for subterm conver-
gent theories and Akiss provides support for XOR while considering a slighly
larger class of equational theories called optimally reducing. Operations from
rewriting logic are provided by queries to Maude [24] and support for arbitrary
precision numbers is given by Apfloat [2]. Our experiments were conducted on
an Intel core i7 dual quad core processor at 2.67 GHz with 12Gb of RAM. The
host operating system was 64 bit Ubuntu 16.04.3 LTS.

Our comparison of the PFA and OTF algorithms began by examining how
each approach scaled on a variety of examples (detailed at the end of this section).
The results of the analysis are given in Fig. 2. For each example, we consider a
fixed recipe depth and report the running times for 2 parties as well as the
maximum number of parties for which one of the algorithms terminates within
the timeout bound of 60 min. On small examples for which the protocols were
indistinguishable, we found that the OTF and PFA algorithms were roughly
equivalent. On large examples where the protocols were indistinguishable, such
as the 3 ballot protocol, the PFA algorithm did not scale as well as the OTF
algorithm. In particular, an out-of-memory exception often occurred during con-
struction of the automata or the linear programming constraints. On examples
for which the protocols were distinguishable, the OTF algorithm demonstrated a
significant advantage. This was a result of the fact that the OTF approach ana-
lyzed the model as it was constructed. If at any point during model construction
the bisimulation relation was determined not to hold, model construction was
halted. By contrast, the PFA algorithm required the entire model to be con-
structed and stored before any analysis could take place.

In addition to stress-testing the tool, we also examined how each algorithm
performed under various parameters of the mix-network example. The results are
given in Fig. 3, where we examine how running times are affected by scaling the
number of protocol participants and the recipe depth. Our results coincided with
the observations from above. One interesting observation is that the number of
beliefs explored on the 5 party example was identical for recipe depth 4 and recipe
depth 10. The reason is that, for a given protocol input step, Span generates a
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1 2 3 4 5 6 7 8 9 10

Protocol Parties Depth Equiv Time (s) States Beliefs

PFA OTF

Kiss AKiSs Kiss Akiss

DC-net 2 10 true n/s 5.5 n/s 4 58 24

DC-net 3 10 true n/s OOM n/s 3013 n/a 286

mix-net 2 10 false TO TO .3 .4 n/a 7

mix-net 5 10 false OOM OOM 582 1586 n/a 79654

Evote 2 10 true 1 1 .5 1 34 33

Evote 8 10 true 105 105 131 124 94 93

3 Ballot 2 10 true n/s OOM n/s 1444 n/a 408

Fig. 2. Experimental Results: Columns 1 and 2 describe the example being analyzed.
Column 3 gives the maximum recipe depth and column 4 indicates when the example
protocols were indistinguishable. Columns 5–8 give the running time (in seconds) for
the respective algorithms and static equivalence engines. We report OOM for an out
of memory exception and TO for a timeout - which occurs if no solution is generated
in 60min. Column 9 gives the number of states in the protocol’s POMDP and Column
10 gives the number of belief states explored in the OTF algorithm. When information
could not be determined due to a failure of the tool to terminate, we report n/a. For
protocols using equational theories that were not subterm convergent, we write n/s
(not supported) for the Kiss engine.

minimal set of recipes. This is in the sense that if recipes r0, r1 are generated at
an input step with frame ϕ, then r0ϕ �=E r1ϕ. For the given number of public
names available to the protocol, changing the recipe depth from 4 to 10 did not
alter the number of unique terms that could be constructed by the attacker. We
conclude this section by describing our benchmark examples, which are available
at [3]. Evote is the simple electronic voting protocol derived from Example 2 and
the DC-net, mix-net and 3 ballot protocols are described below.

Dinning Cryptographers Networks. In a simple DC-net protocol [38], two parties
Alice and Bob want to anonymously publish two confidential bits mA and mB ,
respectively. To achieve this, Alice and Bob agree on three private random bits
b0, b1 and b2 and output a pair of messages according to the following scheme.
In our modeling the protocol, the private bits are generated by a trusted third
party who communicates them with Alice and Bob using symmetric encryption.

If b0 = 0 Alice: MA,0 = b1 ⊕ mA, MA,1 = b2
Bob: MB,0 = b1, MB,1 = b2 ⊕ mB

If b0 = 1 Alice: MA,0 = b1, MA,1 = b2 ⊕ mA

Bob: MB,0 = b1 ⊕ mB , MB,1 = b2
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From the protocol output, the messages mA and mB can be retrieved as
MA,0⊕MB,0 and MA,1⊕MB,1. The party to which the messages belong, however,
remains unconditionally private, provided the exchanged secrets are not revealed.

1 2 3 4 5 6 7 8 9

Parties Depth Equiv Time (s) States Beliefs

PFA OTF

Kiss Akiss Kiss Akiss

2 1 true .3 .3 .2 .3 15 12

3 1 true 1 1.2 .4 .9 81 50

4 1 true 47 47 2 6 2075 656

5 1 true OOM OOM 34 79 n/a 4032

5 2 false OOM OOM 13 33 n/a 1382

5 3 false OOM OOM 124 354 n/a 6934

5 4 false OOM OOM 580 1578 n/a 79654

Fig. 3. Detailed Experimental Results for Mix Networks: The columns have an identical
meaning to the ones from Fig. 2. We report OOM for an out of memory exception and
when information could not be determined due to a failure of the tool to terminate,
we report n/a.

Mix Networks. A mix-network [21], is a routing protocol used to break the link
between a message’s sender and the message. This is achieved by routing mes-
sages through a series of proxy servers, called mixes. Each mix collects a batch of
encrypted messages, privately decrypts each message and forwards the resulting
messages in random order. More formally, consider a sender Alice (A) who wishes
to send a message m to Bob (B) through Mix (M). Alice prepares a cipher-text of
the form aenc(aenc(m,n1, pk(B)), n0, pk(M)) where aenc is asymmetric encryp-
tion, n0, n1 are nonces and pk(M), pk(B) are the public keys of the Mix and Bob,
respectively. Upon receiving a batch of N such cipher-texts, the Mix unwraps
the outer layer of encryption on each message using its secret key, randomly
permutes and forwards the messages. A passive attacker, who observes all the
traffic but does not otherwise modify the network, cannot (with high probabil-
ity) correlate messages entering and exiting the Mix. Unfortunately, this simple
design, known as a threshold mix, is vulnerable to a very simple active attack.
To expose Alice as the sender of the message aenc(m,n1, pk(B)), an attacker
simply forwards Alice’s message along with N−1 dummy messages to the Mix.
In this way, the attacker can distinguish which of the Mix’s N output messages
is not a dummy message and hence must have originated from Alice.

3-Ballot Electronic Voting. We have modeled and analyzed the 3-ballot voting
system from [54]. To simplify the presentation of this model, we first describe
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the major concepts behind 3-ballot voting schemes, as originally introduced by
[50]. At the polling station, each voter is given 3 ballots at random. A ballot is
comprised of a list of candidates and a ballot ID. When casting a vote, a voter
begins by placing exactly one mark next to each candidate on one of the three
ballots chosen a random. An additional mark is then placed next to the desired
candidate on one of the ballots, again chosen at random. At the completion of
the procedure, at least one mark should have been placed on each ballot and two
ballots should have marks corresponding to the desired candidate. Once all of
the votes have been cast, ballots are collected and released to a public bulletin
board. Each voter retains a copy of one of the three ballots as a receipt, which
can be used to verify his/her vote was counted.

In the full protocol, a registration agent is responsible for authenticating
voters and receiving ballots and ballot ids generated by a vote manager. Once a
voter marks his/her set of three ballots, they are returned to the vote manager
who forwards them to one of three vote repositories. The vote repositories store
the ballots they receive in a random position. After all votes have been collected
in the repositories, they are released to a bulletin board by a vote collector.
Communication between the registration agent, vote manager, vote repositories
and vote collector is encrypted using asymmetric encryption and authenticated
using digital signatures. In our modeling, we assume all parties behave honestly.

6 Conclusion

In this paper, we have considered the problem of model checking indistinguisha-
bility in randomized security protocols that are executed with respect to a Dolev-
Yao adversary. We have presented two different algorithms for the indistinguisha-
bility problem assuming bounded recipe sizes. The algorithms have been imple-
mented in the Span protocol analysis tool, which has been used to verify some
well known randomized security protocols. We propose the following as part of
future work: (i) extension of the current algorithms as well the tool to the case of
unbounded recipe sizes; (ii) application of the tool for checking other randomized
protocols; (iii) giving tight upper and lower bounds for the indistinguishability
problem for the randomized protocols.
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(eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 475–492. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23165-5 22

48. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

49. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans.
Inf. Syst. Secur. 1(1), 66–92 (1998)

50. Rivest, R.L.: The threeballot voting system (2006)
51. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions

is NP-complete. Ph.D. thesis, INRIA (2001)
52. Ryan, P.Y.A., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à voter: a
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Abstract. The secure information flow problem, which checks whether
low-security outputs of a program are influenced by high-security inputs,
has many applications in verifying security properties in programs. In
this paper we present lazy self-composition, an approach for verifying
secure information flow. It is based on self-composition, where two copies
of a program are created on which a safety property is checked. However,
rather than an eager duplication of the given program, it uses duplication
lazily to reduce the cost of verification. This lazy self-composition is
guided by an interplay between symbolic taint analysis on an abstract
(single copy) model and safety verification on a refined (two copy) model.
We propose two verification methods based on lazy self-composition. The
first is a CEGAR-style procedure, where the abstract model associated
with taint analysis is refined, on demand, by using a model generated
by lazy self-composition. The second is a method based on bounded
model checking, where taint queries are generated dynamically during
program unrolling to guide lazy self-composition and to conclude an
adequate bound for correctness. We have implemented these methods on
top of the SeaHorn verification platform and our evaluations show the
effectiveness of lazy self-composition.

1 Introduction

Many security properties can be cast as the problem of verifying secure informa-
tion flow. A standard approach to verifying secure information flow is to reduce it
to a safety verification problem on a “self-composition” of the program, i.e., two
“copies” of the program are created [5] and analyzed. For example, to check for
information leaks or non-interference [17], low-security (public) inputs are ini-
tialized to identical values in the two copies of the program, while high-security
(confidential) inputs are unconstrained and can take different values. The safety
check ensures that in all executions of the two-copy program, the values of the
low-security (public) outputs are identical, i.e., there is no information leak from
confidential inputs to public outputs. The self-composition approach is useful for
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checking general hyper-properties [11], and has been used in other applications,
such as verifying constant-time code for security [1] and k-safety properties of
functions like injectivity and monotonicity [32].

Although the self-composition reduction is sound and complete, it is chal-
lenging in practice to check safety properties on two copies of a program. There
have been many efforts to reduce the cost of verification on self-composed pro-
grams, e.g., by use of type-based analysis [33], constructing product programs
with aligned fragments [4], lockstep execution of loops [32], transforming Horn
clause rules [14,24], etc. The underlying theme in these efforts is to make it
easier to derive relational invariants between the two copies, e.g., by keeping
corresponding variables in the two copies near each other.

In this paper, we aim to improve the self-composition approach by making it
lazier in contrast to eager duplication into two copies of a program. Specifically,
we use symbolic taint analysis to track flow of information from high-security
inputs to other program variables. (This is similar to dynamic taint analysis [30],
but covers all possible inputs due to static verification.) This analysis works
on an abstract model of a single copy of the program and employs standard
model checking techniques for achieving precision and path sensitivity. When this
abstraction shows a counterexample, we refine it using on-demand duplication
of relevant parts of the program. Thus, our lazy self-composition1 approach is
guided by an interplay between symbolic taint analysis on an abstract (single
copy) model and safety verification on a refined (two copy) model.

We describe two distinct verification methods based on lazy self-composition.
The first is an iterative procedure for unbounded verification based on coun-
terexample guided abstraction refinement (CEGAR) [9]. Here, the taint analysis
provides a sound over-approximation for secure information flow, i.e., if a low-
security output is proved to be untainted, then it is guaranteed to not leak any
information. However, even a path-sensitive taint analysis can sometimes lead to
“false alarms”, i.e., a low-security output is tainted, but its value is unaffected
by high-security inputs. For example, this can occur when a branch depends on
a tainted variable, but the same (semantic, and not necessarily syntactic) value
is assigned to a low-security output on both branches. Such false alarms for secu-
rity due to taint analysis are then refined by lazily duplicating relevant parts of
a program, and performing a safety check on the composed two-copy program.
Furthermore, we use relational invariants derived on the latter to strengthen the
abstraction within the iterative procedure.

Our second method also takes a similar abstraction-refinement view, but in
the framework of bounded model checking (BMC) [6]. Here, we dynamically gen-
erate taint queries (in the abstract single copy model) during program unrolling,
and use their result to simplify the duplication for self-composition (in the two
copy model). Specifically, the second copy duplicates the statements (update
logic) only if the taint query shows that the updated variable is possibly tainted.
Furthermore, we propose a specialized early termination check for the BMC-

1 This name is inspired by the lazy abstraction approach [20] for software model check-
ing.
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based method. In many secure programs, sensitive information is propagated in
a localized context, but conditions exist that squash its propagation any further.
We formulate the early termination check as a taint check on all live variables
at the end of a loop body, i.e., if no live variable is tainted, then we can con-
clude that the program is secure without further loop unrolling. (This is under
the standard assumption that inputs are tainted in the initial state. The early
termination check can be suitably modified if tainted inputs are allowed to occur
later.) Since our taint analysis is precise and path-sensitive, this approach can
be beneficial in practice by unrolling the loops past the point where all taint has
been squashed.

We have implemented these methods in the SeaHorn verification plat-
form [18], which represents programs as CHC (Constrained Horn Clause) rules.
Our prototype for taint analysis is flexible, with a fully symbolic encoding of the
taint policy (i.e., rules for taint generation, propagation, and removal). It fully
leverages SMT-based model checking techniques for precise taint analysis. Our
prototypes allow rich security specifications in terms of annotations on low/high-
security variables and locations in arrays, and predicates that allow information
downgrading in specified contexts.

We present an experimental evaluation on benchmark examples. Our results
clearly show the benefits of lazy self-composition vs. eager self-composition,
where the former is much faster and allows verification to complete in larger
examples. Our initial motivation in proposing the two verification methods was
that we would find examples where one or the other method is better. We expect
that easier proofs are likely to be found by the CEGAR-based method, and eas-
ier bugs by the BMC-based method. As it turns out, most of our benchmark
examples are easy to handle by both methods so far. We believe that our gen-
eral approach of lazy self-composition would be beneficial in other verification
methods, and both our methods show its effectiveness in practice.

To summarize, this paper makes the following contributions.

– We present lazy self-composition, an approach to verifying secure informa-
tion flow that reduces verification cost by exploiting the interplay between a
path-sensitive symbolic taint analysis and safety checking on a self-composed
program.

– We present Ifc-CEGAR, a procedure for unbounded verification of secure
information flow based on lazy self-composition using the CEGAR paradigm.
Ifc-CEGAR starts with a taint analysis abstraction of information flow and
iteratively refines this abstraction using self-composition. It is tailored toward
proving that programs have secure information flow.

– We present Ifc-BMC, a procedure for bounded verification of secure informa-
tion flow. As the program is being unrolled, Ifc-BMC uses dynamic symbolic
taint checks to determine which parts of the program need to be duplicated.
This method is tailored toward bug-finding.

– We develop prototype implementations of Ifc-CEGAR and Ifc-BMC and
present an experimental evaluation of these methods on a set of benchmark-
s/microbenchmarks. Our results demonstrate that Ifc-CEGAR and Ifc-
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1 int steps = 0;

2 for (i = 0; i < N; i++) { zero[i] = product[i] = 0; }

3 for (i = 0; i < N*W; i++) {

4 int bi = bigint_extract_bit(a, i);

5 if (bi == 1) {

6 bigint_shiftleft (b, i, shifted_b , &steps);

7 bigint_add(product , shifted_b , product , &steps);

8 } else {

9 bigint_shiftleft (zero , i, shifted_zero , &steps);

10 bigint_add(product , shifted_zero , product , &steps);

11 }

12 }

Listing 1. “BigInt” Multiplication

BMC easily outperform an eager self-composition that uses the same backend
verification engines.

2 Motivating Example

Listing 1 shows a snippet from a function that performs multiword multiplica-
tion. The code snippet is instrumented to count the number of iterations of the
inner loop that are executed in bigint shiftleft and bigint add (not shown
for brevity). These iterations are counted in the variable steps. The security
requirement is that steps must not depend on the secret values in the array a;
array b is assumed to be public.

Static analyses, including those based on security types, will conclude that
the variable steps is “high-security.” This is because steps is assigned in a
conditional branch that depends on the high-security variable bi. However, this
code is in fact safe because steps is incremented by the same value in both
branches of the conditional statement.

Our lazy self-composition will handle this example by first using a symbolic
taint analysis to conclude that the variable steps is tainted. It will then self-
compose only those parts of the program related to computation of steps, and
discover that it is set to identical values in both copies, thus proving the program
is secure.

Now consider the case when the code in Listing 1 is used to multiply two “big-
ints” of differing widths, e.g., a 512b integer is multiplied with 2048b integer.
If this occurs, the upper 1536 bits of a will all be zeros, and bi will not be a
high-security variable for these iterations of the loop. Such a scenario can benefit
from early-termination in our BMC-based method: our analysis will determine
that no tainted value flows to the low security variable steps after iteration 512
and will immediately terminate the analysis.

3 Preliminaries

We consider First Order Logic modulo a theory T and denote it by FOL(T ).
Given a program P , we define a safety verification problem w.r.t. P as a tran-
sition system M = 〈X, Init(X),Tr(X,X ′),Bad(X)〉 where X denotes a set of
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(uninterpreted) constants, representing program variables; Init ,Tr and Bad are
(quantifier-free) formulas in FOL(T ) representing the initial states, transition
relation and bad states, respectively. The states of a transition system correspond
to structures over a signature Σ = ΣT ∪ X. We write Tr(X,X ′) to denote that
Tr is defined over the signature ΣT ∪ X ∪ X ′, where X is used to represent the
pre-state of a transition, and X ′ = {a′|a ∈ X} is used to represent the post-state.

A safety verification problem is to decide whether a transition system M is
SAFE or UNSAFE. We say that M is UNSAFE iff there exists a number N such
that the following formula is satisfiable:

Init(X0) ∧
(

N−1∧
i=0

Tr(Xi,Xi+1)

)
∧ Bad(XN ) (1)

where Xi = {ai|a ∈ X} is a copy of the program variables (uninterpreted con-
stants) used to represent the state of the system after the execution of i steps.

When M is UNSAFE and sN ∈ Bad is reachable, the path from s0 ∈ Init to
sN is called a counterexample (CEX).

A transition system M is SAFE iff the transition system has no counterex-
ample, of any length. Equivalently, M is SAFE iff there exists a formula Inv ,
called a safe inductive invariant, that satisfies: (i) Init(X) → Inv(X), (ii)
Inv(X) ∧ Tr(X,X ′) → Inv(X ′), and (iii) Inv(X) → ¬Bad(X).

In SAT-based model checking (e.g., based on IC3 [7] or interpolants [23,
34]), the verification procedure maintains an inductive trace of formulas
[F0(X), . . . , FN (X)] that satisfy: (i) Init(X) → F0(X), (ii) Fi(X)∧Tr(X,X ′) →
Fi+1(X ′) for every 0 ≤ i < N , and (iii) Fi(X) → ¬Bad(X) for every 0 ≤ i ≤ N .
A trace [F0, . . . , FN ] is closed if ∃1 ≤ i ≤ N · Fi ⇒

(∨i−1
j=0 Fj

)
. There is an

obvious relationship between existence of closed traces and safety of a transition
system: A transition system T is SAFE iff it admits a safe closed trace. Thus,
safety verification is reduced to searching for a safe closed trace or finding a
CEX.

4 Information Flow Analysis

Let P be a program over a set of program variables X. Recall that Init(X) is
a formula describing the initial states and Tr(X,X ′) a transition relation. We
assume a “stuttering” transition relation, namely, Tr is reflexive and therefore it
can non-deterministically either move to the next state or stay in the same state.
Let us assume that H ⊂ X is a set of high-security variables and L := X\H is
a set of low-security variables.

For each x ∈ L, let Obsx(X) be a predicate over program variables X that
determines when variable x is adversary-observable. The precise definition of
Obsx(X) depends on the threat model being considered. A simple model would
be that for each low variable x ∈ L, Obsx(X) holds only at program completion
– this corresponds to a threat model where the adversary can run a program that
operates on some confidential data and observe its public (low-security) outputs
after completion. A more sophisticated definition of Obsx(X) could consider, for
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example, a concurrently executing adversary. Appropriate definitions of Obsx(X)
can also model declassification [29], by setting Obsx(X) to be false in program
states where the declassification of x is allowed.

The information flow problem checks whether there exists an execution of
P such that the value of variables in H affects a variable in x ∈ L in some state
where the predicate Obsx(X) holds. Intuitively, information flow analysis checks
if low-security variables “leak” information about high-security variables.

We now describe our formulations of two standard techniques that have been
used to perform information flow analysis. The first is based on taint analy-
sis [30], but we use a symbolic (rather than a dynamic) analysis that tracks
taint in a path-sensitive manner over the program. The second is based on self-
composition [5], where two copies of the program are created and a safety prop-
erty is checked over the composed program.

4.1 Symbolic Taint Analysis

When using taint analysis for checking information flow, we mark high-security
variables with a “taint” and check if this taint can propagate to low-security
variables. The propagation of taint through program variables of P is determined
by both assignments and the control structure of P . In order to perform precise
taint analysis, we formulate it as a safety verification problem. For this purpose,
for each program variable x ∈ X, we introduce a new “taint” variable xt. Let
Xt := {xt|x ∈ X} be the set of taint variables where xt ∈ Xt is of sort Boolean.
Let us define a transition system Mt := 〈Y, Init t,Tr t,Bad t〉 where Y := X ∪ Xt

and

Init t(Y ) := Init(X) ∧
( ∧

x∈H

xt

)
∧

( ∧
x∈L

¬xt

)
(2)

Tr t(Y, Y ′) := Tr(X,X ′) ∧ T̂r(Y,X ′
t) (3)

Bad t(Y ) :=

( ∨
x∈L

Obsx(X) ∧ xt

)
(4)

Since taint analysis tracks information flow from high-security to low-security
variables, variables in Ht are initialized to true while variables in Lt are initialized
to false. W.l.o.g., let us denote the state update for a program variable x ∈ X
as: x′ = cond(X) ? ϕ1(X) : ϕ2(X). Let ϕ be a formula over Σ. We capture the
taint of ϕ by:

Θ(ϕ) =

⎧⎨
⎩

false if ϕ ∩ X = ∅∨
x∈ϕ

xt otherwise

Thus, T̂r(Xt,X
′
t) is defined as:

∧
xt∈Xt

x′
t = Θ(cond)∨(cond ? Θ(ϕ1) : Θ(ϕ2))

Intuitively, taint may propagate from x1 to x2 either when x1 is assigned
an expression that involves x2 or when an assignment to x1 is controlled by x2.
The bad states (Bad t) are all states where a low-security variable is tainted and
observable.
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4.2 Self-composition

When using self-composition, information flow is tracked over an execution of
two copies of the program, P and Pd. Let us denote Xd := {xd|x ∈ X} as
the set of program variables of Pd. Similarly, let Initd(Xd) and Trd(Xd,X

′
d)

denote the initial states and transition relation of Pd. Note that Initd and Trd

are computed from Init and Tr by means of substitutions. Namely, substituting
every occurrence of x ∈ X or x′ ∈ X ′ with xd ∈ Xd and x′

d ∈ X ′
d, respectively.

Similarly to taint analysis, we formulate information flow over a self-composed
program as a safety verification problem: Md := 〈Z, Initd,Trd,Badd〉 where
Z := X ∪ Xd and

Initd(Z) := Init(X) ∧ Init(Xd) ∧
( ∧

x∈L

x = xd

)
(5)

Trd(Z,Z ′) := Tr(X,X ′) ∧ Tr(Xd,X
′
d) (6)

Badd(Z) :=

( ∨
x∈L

Obsx(X) ∧ Obsx(Xd) ∧ ¬(x = xd)

)
(7)

In order to track information flow, variables in Ld are initialized to be equal
to their counterpart in L, while variables in Hd remain unconstrained. A leak
is captured by the bad states (i.e. Badd). More precisely, there exists a leak iff
there exists an execution of Md that results in a state where Obsx(X), Obsx(Xd)
hold and x �= xd for a low-security variable x ∈ L.

5 Lazy Self-composition for Information Flow Analysis

In this section, we introduce lazy self-composition for information flow analysis.
It is based on an interplay between symbolic taint analysis on a single copy
and safety verification on a self-composition, which were both described in the
previous section.

Recall that taint analysis is imprecise for determining secure information
flow in the sense that it may report spurious counterexamples, namely, spurious
leaks. In contrast, self-composition is precise, but less efficient. The fact that self
composition requires a duplication of the program often hinders its performance.
The main motivation for lazy self-composition is to target both efficiency and
precision.

Intuitively, the model for symbolic taint analysis Mt can be viewed as an
abstraction of the self-composed model Md, where the Boolean variables in Mt

are predicates tracking the states where x �= xd for some x ∈ X. This intuition
is captured by the following statement: Mt over-approximatesMd.
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Corollary 1. If there exists a path in Md from Initd to Badd then there exists
a path in Mt from Init t to Bad t.

Corollary 2. If there exists no path in Mt from Init t to Bad t then there exists
no path in Md from Initd to Badd.

This abstraction-based view relating symbolic taint analysis and self-
composition can be exploited in different verification methods for checking secure
information flow. In this paper, we focus on two – a CEGAR-based method
(Ifc-CEGAR) and a BMC-based method (Ifc-BMC). These methods using
lazy self-composition are now described in detail.

5.1 IFC-CEGAR

We make use of the fact that Mt can be viewed as an abstraction w.r.t. to Md, and
propose an abstraction-refinement paradigm for secure information flow analysis.
In this setting, Mt is used to find a possible counterexample, i.e., a path that
leaks information. Then, Md is used to check if this counterexample is spurious
or real. In case the counterexample is found to be spurious, Ifc-CEGAR uses
the proof that shows why the counterexample is not possible in Md to refine Mt.

A sketch of Ifc-CEGAR appears in Algorithm 1. Recall that we assume that
solving a safety verification problem is done by maintaining an inductive trace.
We denote the traces for Mt and Md by G = [G0, . . . , Gk] and H = [H0, . . . , Hk],
respectively. Ifc-CEGAR starts by initializing Mt, Md and their respective
traces G and H (lines 1–4). The main loop of Ifc-CEGAR (lines 5–18) starts
by looking for a counterexample over Mt (line 6). In case no counterexample is
found, Ifc-CEGAR declares there are no leaks and returns SAFE.

If a counterexample π is found in Mt, Ifc-CEGAR first updates the trace
of Md, i.e. H, by rewriting G (line 10). In order to check if π is spurious,
Ifc-CEGAR creates a new safety verification problem Mc, a version of Md

constrained by π (line 11) and solves it (line 12). If Mc has a counterexample,
Ifc-CEGAR returns UNSAFE. Otherwise, G is updated by H (line 16) and
Mt is refined such that π is ruled out (line 17).

The above gives a high-level overview of how Ifc-CEGAR operates. We
now go into more detail. More specifically, we describe the functions ReWrite,
Constraint and Refine. We note that these functions can be designed and
implemented in several different ways. In what follows we describe some possible
choices.

Proof-Based Abstraction. Let us assume that when solving Mt a counterex-
ample π of length k is found and an inductive trace G is computed. Following a
proof-based abstraction approach, Constraint() uses the length of π to bound
the length of possible executions in Md by k. Intuitively, this is similar to bound-
ing the length of the computed inductive trace over Md.

In case Mc has a counterexample, a real leak (of length k) is found. Other-
wise, since Mc considers all possible executions of Md of length k, Ifc-CEGAR



144 W. Yang et al.

Algorithm 1. Ifc-CEGAR (P,H)

Input: A program P and a set of high-security variables H
Output: SAFE, UNSAFE or UNKNOWN.

1 Mt ← ConstructTaintModel(P, H)
2 Md ← ConstructSCModel(P, H)
3 G ← [G0 = Initt]
4 H ← [H0 = Initd]
5 repeat
6 (G, Rtaint, π) ← MC.Solve(Mt,G)
7 if Rtaint = SAFE then
8 return SAFE

9 else
10 H ← ReWrite(G,H)
11 Mc ← Constraint(Md, π)
12 (H , Rs, π) ← MC.Solve(Mc,H)
13 if Rs = UNSAFE then
14 return UNSAFE

15 else
16 G ← ReWrite(H ,G)
17 Mt ← Refine(Mt,G)

18 until ∞
19 return UNKNOWN

deduces that there are no counterexamples of length k. In particular, the coun-
terexample π is ruled out. Ifc-CEGAR therefore uses this fact to refine Mt

and G.

Inductive Trace Rewriting. Consider the set of program variables X, taint
variables Xt, and self compositions variables Xd. As noted above, Mt over-
approximates Md. Intuitively, it may mark a variable x as tainted when x does
not leak information. Equivalently, if a variable x is found to be untainted in Mt

then it is known to also not leak information in Md. More formally, the following
relation holds: ¬xt → (x = xd).

This gives us a procedure for rewriting a trace over Mt to a trace over Md. Let
G = [G0, . . . , Gk] be an inductive trace over Mt. Considering the definition of
Mt, G can be decomposed and rewritten as: Gi(Y ) := Ḡi(X)∧Ḡt

i(Xt)∧ψ(X,Xt).
Namely, Ḡi(X) and Ḡt

i(Xt) are sub-formulas of Gi over only X and Xt variables,
respectively, and ψ(X,Xt) is the part connecting X and Xt.

Since G is an inductive trace Gi(Y )∧Tr t(Y, Y ′) → Gi+1(Y ′) holds. Following
the definition of Tr t and the above decomposition of Gi, the following holds:

Ḡi(X) ∧ Tr(X,X ′) → Ḡi+1(X ′)
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Let H = [H0, . . . , Hk] be a trace w.r.t. Md. We define the update of H by
G as the trace H∗ = [H∗

0 , . . . , H∗
k ], which is defined as follows:

H∗
0 := Initd (8)

H∗
i (Z) := Hi(Z) ∧ Ḡi(X) ∧ Ḡi(Xd) ∧

(∧
{x = xd|Gi(Y ) → ¬xt}

)
(9)

Intuitively, if a variable x ∈ X is known to be untainted in Mt, using Corol-
lary 2 we conclude that x = xd in Md.

A similar update can be defined when updating a trace G w.r.t. Mt by a trace
H w.r.t. Md. In this case, we use the following relation: ¬(x = xd) → xt. Let
H = [H0(Z), . . . , Hk(Z)] be the inductive trace w.r.t. Md. H can be decomposed
and written as Hi(Z) := H̄i(X) ∧ H̄d

i (Xd) ∧ φ(X,Xd).
Due to the definition of Md and an inductive trace, the following holds:

H̄i(X) ∧ Tr(X,X ′) → H̄i(X ′)

H̄d
i (Xd) ∧ Tr(Xd,X

′
d) → H̄d

i (X ′
d)

We can therefore update a trace G = [G0, . . . , Gk] w.r.t. Mt by defining the
trace G∗ = [G∗

0, . . . , G
∗
k], where:

G∗
0 := Initd (10)

G∗
i (Y ) := Gi(Y ) ∧ H̄i(X) ∧ H̄d

i (X) ∧
(∧

{xt|Hi(Z) → ¬(x = xd)}
)

(11)

Updating G by H, and vice-versa, as described above is based on the fact
that Mt over-approximates Md w.r.t. tainted variables (namely, Corollaries 1 and
2). It is therefore important to note that G∗ in particular, does not “gain” more
precision due to this process.

Lemma 1. Let G be an inductive trace w.r.t. Mt and H an inductive trace
w.r.t. Md. Then, the updated H∗ and G∗ are inductive traces w.r.t. Md and
Mt, respectively.

Refinement. Recall that in the current scenario, a counterexample was found
in Mt, and was shown to be spurious in Md. This fact can be used to refine both
Mt and G.

As a first step, we observe that if x = xd in Md, then ¬xt should hold in
Mt. However, since Mt is an over-approximation it may allow x to be tainted,
namely, allow xt to be evaluated to true.

In order to refine Mt and G, we define a strengthening procedure for G,
which resembles the updating procedure that appears in the previous section.
Let H = [H0, . . . , Hk] be a trace w.r.t. Md and G = [G0, . . . , Gk] be a trace
w.r.t. Mt, then the strengthening of G is denoted as Gr = [Gr

0, . . . , G
r
k] such

that:



146 W. Yang et al.

Gr
0 :=Initd (12)

Gr
i (Y ) :=Gi(Y ) ∧ H̄i(X) ∧ H̄s

i (X) ∧
(∧

{xt|Hi(Z) → ¬(x = xd)}
)

∧(∧
{¬xt|Hi(Z) → (x = xd)}

)
(13)

The above gives us a procedure for strengthening G by using H. Note that
since Mt is an over-approximation of Md, it may allow a variable x ∈ X to be
tainted, while in Md (and therefore in H), x = xd. As a result, after strengthen-
ing Gr is not necessarily an inductive trace w.r.t. Mt, namely, Gr

i ∧Tr t → Gr
i+1

′

does not necessarily hold. In order to make Gr an inductive trace, Mt must be
refined.

Let us assume that Gr
i ∧ Tr t → Gr

i+1
′ does not hold. By that, Gr

i ∧ Tr t ∧
¬Gr

i+1
′ is satisfiable. Considering the way Gr is strengthened, three exists x ∈ X

such that Gr
i ∧ Tr t ∧ x′

t is satisfiable and Gr
i+1 ⇒ ¬xt. The refinement step is

defined by:

x′
t = Gr

i ? false : (Θ(cond) ∨ (cond ? Θ(ϕ1) : Θ(ϕ2)))

This refinement step changes the next state function of xt such that whenever
Gi holds, xt is forced to be false at the next time frame.

Lemma 2. Let Gr be a strengthened trace, and let Mr
t be the result of refine-

ment as defined above. Then, Gr is an inductive trace w.r.t Mr
t .

Theorem 1. Let A be a sound and complete model checking algorithm w.r.t.
FOL(T ) for some T , such that A maintains an inductive trace. Assuming Ifc-
CEGAR uses A, then Ifc-CEGAR is both sound and complete.

Proof (Sketch). Soundness follows directly from the soundness of taint analysis.
For completeness, assume Md is SAFE. Due to our assumption that A is sound
and complete, A emits a closed inductive trace H. Intuitively, assuming H is of
size k, then the next state function of every taint variable in Mt can be refined to
be a constant false after a specific number of steps. Then, H can be translated to
a closed inductive trace G over Mt by following the above presented formalism.
Using Lemma 2 we can show that a closed inductive trace exists for the refined
taint model.

5.2 IFC-BMC

In this section we introduce a different method based on Bounded Model Check-
ing (BMC) [6] that uses lazy self-composition for solving the information flow
security problem. This approach is described in Algorithm 2. In addition to the
program P , and the specification of high-security variables H, it uses an extra
parameter BND that limits the maximum number of loop unrolls performed on
the program P . (Alternatively, one can fall back to an unbounded verification
method after BND is reached in BMC).
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Algorithm 2. Ifc-BMC (P,H,BND)

Input: A program P , a set of high-security variables H, max unroll bound
BND

Output: SAFE, UNSAFE or UNKNOWN.
1 i ← 0
2 repeat
3 M(i) ← LoopUnroll(P, i)
4 Mt(i) ← EncodeTaint(M(i))
5 TR of Ms(i) ← LazySC(M(i), Mt(i))
6 Bad of Ms(i) ← ∨

y∈L

¬(y = y′)

7 result ← SolveSMT(Ms(i))
8 if result = counterexample then
9 return UNSAFE

10 live taint ← CheckLiveTaint(Mt(i))
11 if live taint = false then
12 return SAFE

13 i ← i + 1

14 until i = BND
15 return UNKNOWN

Algorithm 3. LazySC(Mt,M)
Input: A program model M and the corresponding taint program model Mt

Output: Transition relation of the self-composed program Trs
1 for each state update x ← ϕ in transition relation of M do
2 add state update x ← ϕ to Trs
3 tainted ← SolveSMT(query on xt in Mt)
4 if tainted = false then
5 add state update x′ ← x to Trs
6 else
7 add state update x′ ← duplicate(ϕ) to Trs

8 return Trs

In each iteration of the algorithm (line 2), loops in the program P are unrolled
(line 3) to produce a loop-free program, encoded as a transition system M(i). A
new transition system Mt(i) is created (line 4) following the method described
in Sect. 4.1, to capture precise taint propagation in the unrolled program M(i).
Then lazy self-composition is applied (line 5), as shown in detail in Algorithm 3,
based on the interplay between the taint model Mt(i) and the transition system
M(i). In detail, for each variable x updated in M(i), where the state update is
denoted x := ϕ, we use xt in Mt(i) to encode whether x is possibly tainted. We
generate an SMT query to determine if xt is satisfiable. If it is unsatisfiable, i.e.,
xt evaluates to False, we can conclude that high security variables cannot affect
the value of x. In this case, its duplicate variable x′ in the self-composed program
Ms(i) is set equal to x, eliminating the need to duplicate the computation that
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will produce x′. Otherwise if xt is satisfiable (or unknown), we duplicate ϕ and
update x′ accordingly.

The self-composed program Ms(i) created by LazySC (Algorithm 3) is then
checked by a bounded model checker, where a bad state is a state where any
low-security output y (y ∈ L, where L denotes the set of low-security vari-
ables) has a different value than its duplicate variable y′ (line 6). (For ease of
exposition, a simple definition of bad states is shown here. This can be suit-
ably modified to account for Obsx(X) predicates described in Sect. 4.) A coun-
terexample produced by the solver indicates a leak in the original program P .
We also use an early termination check for BMC encoded as an SMT-based
query CheckLiveTaint, which essentially checks whether any live variable is
tainted (line 10). If none of the live variables is tainted, i.e., any initial taint
from high-security inputs has been squashed, then Ifc-BMC can stop unrolling
the program any further. If no conclusive result is obtained, Ifc-BMC will return
UNKNOWN .

6 Implementation and Experiments

We have implemented prototypes of Ifc-CEGAR and Ifc-BMC for informa-
tion flow checking. Both are implemented on top of SeaHorn [18], a software
verification platform that encodes programs as CHC (Constrained Horn Clause)
rules. It has a frontend based on LLVM [22] and backends to Z3 [15] and other
solvers. Our prototype has a few limitations. First, it does not support bit-
precise reasoning and does not support complex data structures such as lists.
Our implementation of symbolic taint analysis is flexible in supporting any given
taint policy (i.e., rules for taint generation, propagation, and removal). It uses
an encoding that fully leverages SMT-based model checking techniques for pre-
cise taint analysis. We believe this module can be independently used in other
applications for security verification.

6.1 Implementation Details

Ifc-CEGAR Implementation. As discussed in Sect. 5.1, the Ifc-CEGAR imple-
mentation uses taint analysis and self-composition synergistically and is tai-
lored toward proving that programs are secure. Both taint analysis and self-
composition are implemented as LLVM-passes that instrument the program.
Our prototype implementation executes these two passes interchangeably as the
problem is being solved. The Ifc-CEGAR implementation uses Z3’s CHC solver
engine called Spacer. Spacer, and therefore our Ifc-CEGAR implementation,
does not handle the bitvector theory, limiting the set of programs that can be
verified using this prototype. Extending the prototype to support this theory
will be the subject of future work.

Ifc-BMC Implementation. In the Ifc-BMC implementation, the loop unroller,
taint analysis, and lazy self-composition are implemented as passes that work on
CHC, to generate SMT queries that are passed to the backend Z3 solver. Since
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the Ifc-BMC implementation uses Z3, and not Spacer, it can handle all the
programs in our evaluation, unlike the Ifc-CEGAR implementation.

Input Format. The input to our tools is a C-program with annotations indicating
which variables are secret and the locations at which leaks should be checked.
In addition, variables can be marked as untainted at specific locations.

6.2 Evaluation Benchmarks

For experiments we used a machine running Intel Core i7-4578U with 8GB of
RAM. We tested our prototypes on several micro-benchmarks2 in addition to
benchmarks inspired by real-world programs. For comparison against eager self-
composition, we used the SeaHorn backend solvers on a 2-copy version of the
benchmark. fibonacci is a micro-benchmark that computes the N-th Fibonacci
number. There are no secrets in the micro-benchmark, and this is a sanity check
taken from [33]. list 4/8/16 are programs working with linked lists, the trailing
number indicates the maximum number of nodes being used. Some linked list
nodes contain secrets while others have public data, and the verification problem
is to ensure that a particular function that operates on the linked list does not
leak the secret data. modadd safe is program that performs multi-word addition;
modexp safe/unsafe are variants of a program performing modular exponen-
tiation; and pwdcheck safe/unsafe are variants of program that compares an
input string with a secret password. The verification problem in these examples
is to ensure that an iterator in a loop does not leak secret information, which
could allow a timing attack. Among these benchmarks, the list 4/8/16 use
structs while modexp safe/unsafe involve bitvector operations, both of which
are not supported by Spacer, and thus not by our Ifc-CEGAR prototype.

6.3 IFC-CEGAR Results

Table 1 shows the Ifc-CEGAR results on benchmark examples with varying
parameter values. The columns show the time taken by eager self-composition
(Eager SC) and Ifc-CEGAR, and the number of refinements in Ifc-CEGAR.
“TO” denotes a timeout of 300 s.

We note that all examples are secure and do not leak information. Since
our path-sensitive symbolic taint analysis is more precise than a type-based
taint analysis, there are few counterexamples and refinements. In particular,
for our first example pwdcheck safe, self-composition is not required as our
path-sensitive taint analysis is able to prove that no taint propagates to the
variables of interest. It is important to note that type-based taint analysis cannot
prove that this example is secure. For our second example, pwdcheck2 safe, our
path-sensitive taint analysis is not enough. Namely, it finds a counterexample,
due to an implicit flow where a for-loop is conditioned on a tainted value, but
there is no real leak because the loop executes a constant number of times.

2 http://www.cs.princeton.edu/∼aartig/benchmarks/ifc bench.zip.

http://www.cs.princeton.edu/~aartig/benchmarks/ifc_bench.zip
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Table 1. Ifc-CEGAR results (time in seconds)

Benchmark Parameter Eager SC Ifc-CEGAR

Time (s) Time (s) #Refinements

pwdcheck safe 4 8.8 0.2 0

8 TO 0.2 0

16 TO 0.2 0

32 TO 0.2 0

pwdcheck2 safe N > 8 TO 61 1

modadd safe 2048b 180 0.2 0

4096b TO 0.3 0

Our refinement-based approach can easily handle this case, where Ifc-CEGAR
uses self-composition to find that the counterexample is spurious. It then refines
the taint analysis model, and after one refinement step, it is able to prove that
pwdcheck2 safe is secure. While these examples are fairly small, they clearly
show that Ifc-CEGAR is superior to eager self-composition.

6.4 IFC-BMC Results

The experimental results for Ifc-BMC are shown in Table 2, where we use some
unsafe versions of benchmark examples as well. Results are shown for total time
taken by eager self-composition (Eager SC) and the Ifc-BMC algorithm. (As
before, “TO” denotes a timeout of 300 s.) Ifc-BMC is able to produce an answer
significantly faster than eager self-composition for all examples. The last two
columns show the time spent in taint checks in Ifc-BMC, and the number of
taint checks performed.

Table 2. Ifc-BMC results (time in seconds)

Benchmark Result Eager SC Ifc-BMC Taint checks #Taint checks

Time (s) Time (s) Time (s)

fibonacci SAFE 0.55 0.1 0.07 85

list 4 SAFE 2.9 0.15 0.007 72

list 8 SAFE 3.1 0.6 0.02 144

list 16 SAFE 3.2 1.83 0.08 288

modexp safe SAFE TO 0.05 0.01 342

modexp unsafe UNSAFE TO 1.63 1.5 364

pwdcheck safe SAFE TO 0.05 0.01 1222

pwdcheck unsafe UNSAFE TO 1.63 1.5 809
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To study the scalability of our prototype, we tested Ifc-BMC on the modular
exponentiation program with different values for the maximum size of the integer
array in the program. These results are shown in Table 3. Although the Ifc-BMC
runtime grows exponentially, it is reasonably fast – less than 2 min for an array
of size 64.

7 Related Work

A rich body of literature has studied the verification of secure information flow
in programs. Initial work dates back to Denning and Denning [16], who intro-
duced a program analysis to ensure that confidential data does not flow to
non-confidential outputs. This notion of confidentiality relates closely to: (i)
non-interference introduced by Goguen and Meseguer [17], and (ii) separability
introduced by Rushby [27]. Each of these study a notion of secure information
flow where confidential data is strictly not allowed to flow to any non-confidential
output. These definitions are often too restrictive for practical programs, where
secret data might sometimes be allowed to flow to some non-secret output (e.g.,
if the data is encrypted before output), i.e. they require declassification [29]. Our
approach allows easy and fine-grained de-classification.

A large body of work has also studied the use of type systems that ensure
secure information flow. Due to a lack of space, we review a few exemplars and
refer the reader to Sabelfeld and Myers [28] for a detailed survey. Early work in
this area dates back to Volpano et al. [35] who introduced a type system that
maintains secure information based on the work of Denning and Denning [16].
Myers introduced the JFlow programming language (later known as Jif: Java
information flow) [25] which extended Java with security types. Jif has been
used to build clean slate, secure implementations of complex end-to-end sys-
tems, e.g. the Civitas [10] electronic voting system. More recently, Patrigiani et
al. [26] introduced the Java Jr. language which extends Java with a security type
system, automatically partitions the program into secure and non-secure parts
and executes the secure parts inside so-called protected module architectures. In

Table 3. Ifc-BMC results on modexp (time in seconds)

Benchmark Parameter Time (s) #Taint checks

modexp 8 0.19 180

16 1.6 364

24 3.11 548

32 8.35 732

40 11.5 916

48 21.6 1123

56 35.6 1284

64 85.44 1468
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contrast to these approaches, our work can be applied to existing security-critical
code in languages like C with the addition of only a few annotations.

A different approach to verifying secure information flow is the use of dynamic
taint analysis (DTA) [3,12,13,21,30,31] which instruments a program with taint
variables and taint tracking code. Advantages of DTA are that it is scalable to
very large applications [21], can be accelerated using hardware support [13],
and tracks information flow across processes, applications and even over the
network [12]. However, taint analysis necessarily involves imprecision and in
practice leads to both false positives and false negatives. False positives arise
because taint analysis is an overapproximation. Somewhat surprisingly, false
negatives are also introduced because tracking implicit flows using taint analysis
leads to a deluge of false-positives [30], thus causing practical taint tracking
systems to ignore implicit flows. Our approach does not have this imprecision.

Our formulation of secure information flow is based on the self-composition
construction proposed by Barthe et al. [5]. A specific type of self-composition
called product programs was considered by Barthe et al. [4], which does not allow
control flow divergence between the two programs. In general this might miss
certain bugs as it ignores implicit flows. However, it is useful in verifying crypto-
graphic code which typically has very structured control flow. Almeida et al. [1]
used the product construction to verify that certain functions in cryptographic
libraries execute in constant-time.

Terauchi and Aiken [33] generalized self-composition to consider k-safety,
which uses k − 1 compositions of a program with itself. Note that self-
composition is a 2-safety property. An automated verifier for k-safety properties
of Java programs based on Cartesian Hoare Logic was proposed by Sousa and
Dillig [32]. A generalization of Cartesian Hoare Logic, called Quantitative Carte-
sian Hoare Logic was introduced by Chen et al. [8]; the latter can also be used to
reason about the execution time of cryptographic implementations. Among these
efforts, our work is mostly closely related to that of Terauchi and Aiken [33], who
used a type-based analysis as a preprocessing step to self-composition. We use a
similar idea, but our taint analysis is more precise due to being path-sensitive,
and it is used within an iterative CEGAR loop. Our path-sensitive taint analysis
leads to fewer counterexamples and thereby cheaper self-composition, and our
refinement approach can easily handle examples with benign branches. In con-
trast to the other efforts, our work uses lazy instead of eager self-composition,
and is thus more scalable, as demonstrated in our evaluation. A recent work [2]
also employs trace-based refinement in security verification, but it does not use
self-composition.

Our approach has some similarities to other problems related to tainting [19].
In particular, Change-Impact Analysis is the problem of determining what parts
of a program are affected due to a change. Intuitively, it can be seen as a form
of taint analysis, where the change is treated as taint. To solve this, Gyori et
al. [19] propose a combination of an imprecise type-based approach with a pre-
cise semantics-preserving approach. The latter considers the program before
and after the change and finds relational equivalences between the two ver-
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sions. These are then used to strengthen the type-based approach. While our
work has some similarities, there are crucial differences as well. First, our taint
analysis is not type-based, but is path-sensitive and preserves the correctness
of the defined abstraction. Second, our lazy self-composition is a form of an
abstraction-refinement framework, and allows a tighter integration between the
imprecise (taint) and precise (self-composition) models.

8 Conclusions and Future Work

A well-known approach for verifying secure information flow is based on the
notion of self-composition. In this paper, we have introduced a new approach
for this verification problem based on lazy self-composition. Instead of eagerly
duplicating the program, lazy self-composition uses a synergistic combination
of symbolic taint analysis (on a single copy program) and self-composition by
duplicating relevant parts of the program, depending on the result of the taint
analysis. We presented two instances of lazy self-composition: the first uses taint
analysis and self-composition in a CEGAR loop; the second uses bounded model
checking to dynamically query taint checks and self-composition based on the
results of these dynamic checks. Our algorithms have been implemented in the
SeaHorn verification platform and results show that lazy self-composition is
able to verify many instances not verified by eager self-composition.

In future work, we are interested in extending lazy self-composition to sup-
port learning of quantified relational invariants. These invariants are often
required when reasoning about information flow in shared data structures of
unbounded size (e.g., unbounded arrays, linked lists) that contain both high-
and low-security data. We are also interested in generalizing lazy self-composition
beyond information-flow to handle other k-safety properties like injectivity, asso-
ciativity and monotonicity.
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Abstract. Power side-channel attacks, capable of deducing secret using statisti-
cal analysis techniques, have become a serious threat to devices in cyber-physical
systems and the Internet of things. Random masking is a widely used counter-
measure for removing the statistical dependence between secret data and side-
channel leaks. Although there are techniques for verifying whether software code
has been perfectly masked, they are limited in accuracy and scalability. To bridge
this gap, we propose a refinement-based method for verifying masking counter-
measures. Our method is more accurate than prior syntactic type inference based
approaches and more scalable than prior model-counting based approaches using
SAT or SMT solvers. Indeed, it can be viewed as a gradual refinement of a set
of semantic type inference rules for reasoning about distribution types. These
rules are kept abstract initially to allow fast deduction, and then made concrete
when the abstract version is not able to resolve the verification problem. We have
implemented our method in a tool and evaluated it on cryptographic benchmarks
including AES and MAC-Keccak. The results show that our method significantly
outperforms state-of-the-art techniques in terms of both accuracy and scalability.

1 Introduction

Cryptographic algorithms are widely used in embedded computing devices, including
SmartCards, to form the backbone of their security mechanisms. In general, security is
established by assuming that the adversary has access to the input and output, but not
internals, of the implementation. Unfortunately, in practice, attackers may recover cryp-
tographic keys by analyzing physical information leaked through side channels. These
so-called side-channel attacks exploit the statistical dependence between secret data
and non-functional properties of a computing device such as the execution time [38],
power consumption [39] and electromagnetic radiation [49]. Among them, differential
power analysis (DPA) is an extremely popular and effective class of attacks [30,42].
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Fig. 1. Overview of SCInfer, where “ICR” denotes the intermediate computation result.

To thwart DPA attacks, masking has been proposed to break the statistical depen-
dence between secret data and side-channel leaks through randomization. Although
various masked implementations have been proposed, e.g., for AES or its non-linear
components (S-boxes) [15,37,51,52], checking if they are correct is always tedious
and error-prone. Indeed, there are published implementations [51,52] later shown to be
incorrect [21,22]. Therefore, formally verifying these countermeasures is important.

Previously, there are two types of verification methods for masking countermea-
sures [54]: one is type inference based [10,44] and the other is model counting
based [26,27]. Type inference based methods [10,44] are fast and sound, meaning they
can quickly prove the computation is leakage free, e.g., if the result is syntactically inde-
pendent of the secret data or has been masked by random variables not used elsewhere.
However, syntactic type inference is not complete in that it may report false positives.
In contrast, model counting based methods [26,27] are sound and complete: they check
if the computation is statistically independent of the secret [15]. However, due to the
inherent complexity of model counting, they can be extremely slow in practice.

The aforementioned gap, in terms of both accuracy and scalability, has not been
bridged by more recent approaches [6,13,47]. For example, Barthe et al. [6] proposed
some inference rules to prove masking countermeasures based on the observation that
certain operators (e.g., XOR) are invertible: in the absence of such operators, purely
algebraic laws can be used to normalize expressions of computation results to apply the
rules of invertible functions. This normalization is applied to each expression once, as it
is costly. Ouahma et al. [47] introduced a linear-time algorithm based on finer-grained
syntactical inference rules. A similar idea was explored by Bisi et al. [13] for analyzing
higher-order masking: like in [6,47], however, the method is not complete, and does not
consider non-linear operators which are common in cryptographic software.

Our Contribution.We propose a refinement based approach, named SCInfer, to bridge
the gap between prior techniques which are either fast but inaccurate or accurate but
slow. Figure 1 depicts the overall flow, where the input consists of the program and a
set of variables marked as public, private, or random. We first transform the program
to an intermediate representation: the data dependency graph (DDG). Then, we tra-
verse the DDG in a topological order to infer a distribution type for each intermediate
computation result. Next, we check if all intermediate computation results are perfectly
masked according to their types. If any of them cannot be resolved in this way, we
invoke an SMT solver based refinement procedure, which leverages either satisfiabil-
ity (SAT) solving or model counting (SAT#) to prove leakage freedom. In both cases,
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the result is fed back to improve the type system. Finally, based on the refined type
inference rules, we continue to analyze other intermediate computation results.

Thus, SCInfer can be viewed as a synergistic integration of a semantic rule based
approach for inferring distribution types and an SMT solver based approach for refining
these inference rules. Our type inference rules (Sect. 3) are inspired by Barthe et al. [6]
and Ouahma et al. [47] in that they are designed to infer distribution types of interme-
diate computation results. However, there is a crucial difference: their inference rules
are syntactic with fixed accuracy, i.e., relying solely on structural information of the
program, whereas ours are semantic and the accuracy can be gradually improved with
the aid of our SMT solver based analysis. At a high level, our semantic type inference
rules subsume their syntactic type inference rules.

The main advantage of using type inference is the ability to quickly obtain sound
proofs: when there is no leak in the computation, often times, the type system can pro-
duce a proof quickly; furthermore, the result is always conclusive. However, if type
inference fails to produce a proof, the verification problem remains unresolved. Thus,
to be complete, we propose to leverage SMT solvers to resolve these left-over verifica-
tion problems. Here, solvers are used to check either the satisfiability (SAT) of a logical
formula or counting its satisfying solutions (SAT#), the later of which, although expen-
sive, is powerful enough to completely decide if the computation is perfectly masked.
Finally, by feeding solver results back to the type inference system, we can gradually
improve its accuracy. Thus, overall, the method is both sound and complete.

We have implemented our method in a software tool named SCInfer and evaluated
it on publicly available benchmarks [26,27], which implement various cryptographic
algorithms such as AES and MAC-Keccak. Our experiments show SCInfer is both
effective in obtaining proofs quickly and scalable for handling realistic applications.
Specifically, it can resolve most of the verification subproblems using type inference
and, as a result, satisfiability (SAT) based analysis needs to be applied to few left-over
cases. Only in rare cases, the most heavyweight analysis (SAT#) needs to be invoked.

To sum up, the main contributions of this work are as follows:

– We propose a new semantic type inference approach for verifying masking counter-
measures. It is sound and efficient for obtaining proofs.

– We propose a method for gradually refining the type inference system using SMT
solver based analysis, to ensure the overall method is complete.

– We implement the proposed techniques in a tool named SCInfer and demonstrate
its efficiency and effectiveness on cryptographic benchmarks.

The remainder of this paper is organized as follows. After reviewing the basics in
Sect. 2, we present our semantic type inference system in Sect. 3 and our refinement
method in Sect. 4. Then, we present our experimental results in Sect. 5 and comparison
with related work in Sect. 6. We give our conclusions in Sect. 7.

2 Preliminaries

In this section, we define the type of programs considered in this work and then review
the basics of side-channel attacks and masking countermeasures.
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2.1 Probabilistic Boolean Programs

Following the notation used in [15,26,27], we assume that the program P implements
a cryptographic function, e.g., c ← P(p, k) where p is the plaintext, k is the secret key
and c is the ciphertext. Inside P, random variable r may be used to mask the secret
key while maintaining the input-output behavior of P. Therefore, P may be viewed
as a probabilistic program. Since loops, function calls, and branches may be removed
via automated rewriting [26,27] and integer variables may be converted to bits, for
verification purposes, we assume that P is a straight-line probabilistic Boolean program,
where each instruction has a unique label and at most two operands.

1 bool compute (bool r1 ,bool r2 ,
2 bool r3 ,bool k )
3 {
4 bool c1, c2, c3, c4, c5, c6 ;
5 c1 = k ⊕ r2 ;
6 c2 = r1 ⊕ r2 ;
7 c3 = c2 ⊕ c1 ;
8 c4 = c3 ⊕ c2 ;
9 c5 = c4 ⊕ r1 ;

10 c6 = c5 ∧ r3 ;
11 return c6 ;
12 }

kr2r1r3

⊕⊕

⊕

⊕

⊕
∧

c1
c2

c3

c4

c5

c6

Fig. 2. An example for masking countermeasure.

Let k (resp. r) be the set
of secret (resp. random) bits,
p the public bits, and c the
variables storing intermediate
results. Thus, the set of vari-
ables is V = k ∪ r ∪ p ∪ c.
In addition, the program uses
a set op of operators including
negation (¬), and (∧), or (∨),
and exclusive-or (⊕). A compu-
tation of P is a sequence c1 ←
i1(p, k, r); · · · ; cn ← in(p, k, r)
where, for each 1 ≤ i ≤ n, the value of ii is expressed in terms of p, k and r. Each
random bit in r is uniformly distributed in {0, 1}; the sole purpose of using them in P is
to ensure that c1, · · · cn are statistically independent of the secret k.

Data Dependency Graph (DDG). Our internal representation of P is a graph GP =

(N, E, λ), where N is the set of nodes, E is the set of edges, and λ is a labeling function.

– N = L 	 LV , where L is the set of instructions in P and LV is the set of terminal
nodes: lv ∈ LV corresponds to a variable or constant v ∈ k ∪ r ∪ p∪ {0, 1}.

– E ⊆ N × N contains edge (l, l′) if and only if l : c = x ◦ y, where either x or y is
defined by l′; or l : c = ¬x, where x is defined by l′;

– λ maps each l ∈ N to a pair (val, op): λ(l) = (c, ◦) for l : c = x ◦ y; λ(l) = (c,¬) for
l : c = ¬x; and λ(l) = (v,⊥) for each terminal node lv.

We may use λ1(l) = c and λ2(l) = ◦ to denote the first and second elements of the pair
λ(l) = (c, ◦), respectively. We may also use l.lft to denote the left child of l, and l.rgt
to denote the right child if it exists. A subtree rooted at node l corresponds to an inter-
mediate computation result. When the context is clear, we may use the following terms
exchangeably: a node l, the subtree T rooted at l, and the intermediate computation
result c = λ1(l). Let |P| denote the total number of nodes in the DDG.

Figure 2 shows an example where k = {k}, r = {r1, r2, r3}, c = {c1, c2, c3, c4, c5, c6}
and p = ∅. On the left is a program written in a C-like language except that ⊕ denotes
XOR and ∧ denotes AND. On the right is the DDG, where
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c3 = c2 ⊕ c1 = (r1 ⊕ r2) ⊕ (k ⊕ r2) = k ⊕ r1
c4 = c3 ⊕ c2 = ((r1 ⊕ r2) ⊕ (k ⊕ r2)) ⊕ (r1 ⊕ r2) = k ⊕ r2
c5 = c4 ⊕ r1 = (((r1 ⊕ r2) ⊕ (k ⊕ r2)) ⊕ (r1 ⊕ r2)) ⊕ r1 = k ⊕ r1 ⊕ r2
c6 = c5 ∧ r3 = ((((r1 ⊕ r2) ⊕ (k ⊕ r2)) ⊕ (r1 ⊕ r2)) ⊕ r1) ∧ r3 = (k ⊕ r1 ⊕ r2) ∧ r3

Let supp : N → k ∪ r ∪ p be a function mapping each node l to its support variables.
That is, supp(l) = ∅ if λ1(l) ∈ {0, 1}; supp(l) = {x} if λ1(l) = x ∈ k ∪ r ∪ p; and
supp(l) = supp(l.lft) ∪ supp(l.rgt) otherwise. Thus, the function returns a set of
variables that λ1(l) depends upon structurally.

Given a node l whose corresponding expression e is defined in terms of variables
in V , we say that e is semantically dependent on a variable r ∈ V if and only if there
exist two assignments, π1 and π2, such that π1(r) � π2(r) and π1(x) = π2(x) for every
x ∈ V \ {r}, and the values of e differ under π1 and π2.

Let semd : N → r be a function such that semd(l) denotes the set of random vari-
ables upon which the expression e of l semantically depends. Thus, semd(l) ⊆ supp(l);
and for each r ∈ supp(l) \ semd(l), we know λ1(l) is semantically independent of
r. More importantly, there is often a gap between supp(l) ∩ r and semd(l), namely
semd(l) ⊆ supp(l)∩ r, which is why our gradual refinement of semantic type inference
rules can outperform methods based solely on syntactic type inference.

Consider the node lc4 in Fig. 2: we have supp(lc4 ) = {r1, r2, k}, semd(lc4 ) = {r2}, and
supp(lc4 ) ∩ r = {r1, r2}. Furthermore, if the random bits are uniformly distributed in
{0, 1}, then c4 is both uniformly distributed and secret independent (Sect. 2.2).

2.2 Side-Channel Attacks and Masking

We assume the adversary has access to the public input p and output c, but not the
secret k and random variable r, of the program c ← P(p, k). However, the adversary
may have access to side-channel leaks that reveal the joint distribution of at most d
intermediate computation results c1, · · · cd (e.g., via differential power analysis [39]).
Under these assumptions, the goal of the adversary is to deduce information of k. To
model the leakage of each instruction, we consider a widely-used, value-based model,
called the Hamming Weight (HW) model; other power leakage models such as the
transition-based model [5] can be used similarly [6].

Let [n] denote the set {1, · · · , n} of natural numbers where n ≥ 1. We call a set with
d elements a d-set. Given values (p, k) for (p, k) and a d-set {c1, · · · , cd} of intermediate
computation results, we use Dp,k(c1, · · · cd) to denote their joint distribution induced by
instantiating p and k with p and k, respectively. Formally, for each vector of values
v1, · · · , vd in the probability space {0, 1}d, we have Dp,k(c1, · · · cd)(v1, · · · , vd) =

|{r ∈ {0, 1}|r| | v1 = i1(p = p, k = k, r = r), · · · , vd = id(p = p, k = k, r = r)}|
2|r|

.

Definition 1. We say a d-set {c1, · · · , cd} of intermediate computation results is

– uniformly distributed if Dp,k(c1, · · · , cd) is a uniform distribution for any p and k.
– secret independent if Dp,k(c1, · · · , cd) = Dp,k′ (c1, · · · , cd) for any (p, k) and (p, k′).
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Note that there is a difference between them: an uniformly distributed d-set is always
secret independent, but a secret independent d-set is not always uniformly distributed.

Definition 2. A program P is order-d perfectly masked if every k-set {c1, · · · , ck} of P
such that k ≤ d is secret independent. When P is (order-1) perfectly masked, we may
simply say it is perfectly masked.

To decide if P is order-d perfectly masked, it suffices to check if there exist a d-set and
two pairs (p, k) and (p, k′) such that Dp,k(c1, · · · , cd) � Dp,k′ (c1, · · · , cd). In this context,
the main challenge is computing Dp,k(c1, · · · , cd) which is essentially a model-counting
(SAT#) problem. In the remainder of this paper, we focus on developing an efficient
method for verifying (order-1) perfect masking, although our method can be extended
to higher-order masking as well.

Gap in Current State of Knowledge. Existing methods for verifying masking coun-
termeasures are either fast but inaccurate, e.g., when they rely solely on syntactic type
inference (structural information provided by supp in Sect. 2.1) or accurate but slow,
e.g., when they rely solely on model-counting. In contrast, our method gradually refines
a set of semantic type-inference rules (i.e., using semd instead of supp as defined in
Sect. 2.1) where constraint solvers (SAT and SAT#) are used on demand to resolve
ambiguity and improve the accuracy of type inference. As a result, it can achieve the
best of both worlds.

3 The Semantic Type Inference System

We first introduce our distribution types, which are inspired by prior work in [6,13,47],
together with some auxiliary data structures; then, we present our inference rules.

3.1 The Type System

Let T = {CST, RUD, SID, NPM, UKD} be the set of distribution types for intermediate com-
putation results, where �c� denotes the type of c← i(p, k, r). Specifically,

– �c� = CST means c is a constant, which implies that it is side-channel leak-free;
– �c� = RUD means c is randomized to uniform distribution, and hence leak-free;
– �c� = SID means c is secret independent, i.e., perfectly masked;
– �c� = NPM means c is not perfectly masked and thus has leaks; and
– �c� = UKD means c has an unknown distribution.

Definition 3. Let unq : N → r and dom : N → r be two functions such that (i)
for each terminal node l ∈ LV, if λ1(l) ∈ r, then unq(l) = dom(l) = λ1(l); otherwise
unq(l) = dom(l) = supp(l) = ∅; and (ii) for each internal node l ∈ L, we have

– unq(l) = (unq(l.lft) ∪ unq(l.rgt)) \ (supp(l.lft) ∩ supp(l.rgt));
– dom(l) = (dom(l.lft) ∪ dom(l.rgt)) ∩ unq(l) if λ2(l) = ⊕; but dom(l) = ∅ otherwise.
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Fig. 3. Our semantic type-inference rules. The NPM type is not yet used here; its inference rules
will be added in Fig. 4 since they rely on the SMT solver based analyses.

Both unq(l) and dom(l) are computable in time that is linear in |P| [47]. Following the
proofs in [6,47], it is easy to reach this observation: Given an intermediate computation
result c← i(p, k, r) labeled by l, the following statements hold:

1. if |dom(l)| � ∅, then �c� = RUD;
2. if �c� = RUD, then �¬c� = RUD; if �c� = SID, then �¬c� = SID.
3. if r � semd(l) for a random bit r ∈ r, then �r ⊕ c� = RUD;
4. for every c′ ← i′(p, k, r) labeled by l′, if semd(l) ∩ semd(l′) = ∅ and �c� = �c′� =

SID, then �c ◦ c′� = SID.

Figure 3 shows our type inference rules that concretize these observations. When mul-
tiple rules could be applied to a node l ∈ N, we always choose the rules that can lead
to �l� = RUD. If no rule is applicable at l, we set �l� = UKD. When the context is clear,
we may use �l� and �c� exchangeably for λ1(l) = c. The correctness of these inference
rules is obvious by definition.

Theorem 1. For every intermediate computation result c← i(p, k, r) labeled by l,

– if �c� = RUD, then c is uniformly distributed, and hence perfectly masked;
– if �c� = SID, then c is guaranteed to be perfectly masked.

To improve efficiency, our inference rules may be applied twice, first using the supp
function, which extracts structural information from the program (cf. Sect. 2.1) and then
using the semd function, which is slower to compute but also significantly more accu-
rate. Since semd(l) ⊆ supp(l) for all l ∈ N, this is always sound. Moreover, type infer-
ence is invoked for the second time only if, after the first time, �l� remains UKD.

Example 1. When using type inference with supp on the running example, we have

�r1� = �r2� = �r3� = �c1� = �c2� = �c3� = RUD, �k� = �c4� = �c5� = �c6� = UKD

When using type inference with semd (for the second time), we have

�r1� = �r2� = �r3� = �c1� = �c2� = �c3� = �c4� = �c5� = RUD, �k� = UKD, �c6� = SID
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3.2 Checking Semantic Independence

Unlike supp(l), which only extracts structural information from the program and hence
may be computed syntactically, semd(l) is more expensive to compute. In this subsec-
tion, we present a method that leverages the SMT solver to check, for any intermediate
computation result c ← i(p, k, r) and any random bit r ∈ r, whether c is semantically
dependent of r. Specifically, we formulate it as a satisfiability (SAT) problem (formula
Φs) defined as follows:

Θr=0
s (c0, p, k, r \ {r}) ∧ Θr=1

s (c1, p, k, r \ {r}) ∧ Θ�s (c0, c1),
where Θr=0

s (resp. Θr=1
s ) encodes the relation i(p, k, r) with r replaced by 0 (resp. 1), c0

and c1 are copies of c and Θ�s asserts that the outputs differ even under the same inputs.
In logic synthesis and optimization, when r � semd(l), r will be called the don’t

care variable [36]. Therefore, it is easy to see why the following theorem holds.

Theorem 2. Φs is unsatisfiable iff the value of r does not affect the value of c, i.e., c is
semantically independent of r. Moreover, the formula size of Φs is linear in |P|.

Fig. 4. Our composition rules for handling sets of intermediate computation results.

3.3 Verifying Higher-Order Masking

The type system so far targets first-order masking. We now outline how it extends
to verify higher-order masking. Generally speaking, we have to check, for any k-set
{c1, · · · , ck} of intermediate computation results such that k ≤ d, the joint distribution is
either randomized to uniform distribution (RUD) or secret independent (SID).

To tackle this problem, we lift supp, semd, unq, and dom to sets of computation
results as follows: for each k-set {c1, · · · , ck},
– supp(c1, · · · , ck) =

⋃
i∈[k] supp(ci);

– semd(c1, · · · , ck) =
⋃

i∈[k] semd(ci);
– unq(c1, · · · , ck) =

(⋃
i∈[k] unq(ci)

) \⋃i, j∈[k]
(
supp(ci) ∩ supp(c j)

)
; and

– dom(c1, · · · , ck) =
(⋃

i∈[k] dom(ci)
) ∩ unq(c1, · · · , ck).

Our inference rules are extended by adding the composition rules shown in Fig. 4.
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Theorem 3. For every k-set {c1, · · · , ck} of intermediate computations results,

– if �c1, · · · , ck� = RUD, then {c1, · · · , ck} is guaranteed to be uniformly distributed,
and hence perfectly masked;

– if �c1, · · · , ck� = SID, then {c1, · · · , ck} is guaranteed to be perfectly masked.

We remark that the semd function in these composition rules could also be safely
replaced by the supp function, just as before. Furthermore, to more efficiently verify
that program P is perfect masked against order-d attacks, we can incrementally apply
the type inference for each k-set, where k = 1, 2, . . . , d.

4 The Gradual Refinement Approach

In this section, we present our method for gradually refining the type inference system
by leveraging SMT solver based techniques. Adding solvers to the sound type system
makes it complete as well, thus allowing it to detect side-channel leaks whenever they
exist, in addition to proving the absence of such leaks.

4.1 SMT-Based Approach

For a given computation c← i(p, k, r), the verification of perfect masking (Definition 2)
can be reduced to the satisfiability of the logical formula (Ψ ) defined as follows:

∃p.∃k.∃k′.(
∑

vr∈{0,1}|r|
i(p, k, vr) �

∑

vr∈{0,1}|r|
i(p, k′, vr)

)
.

Intuitively, given values (vp, vk) of (p, k), count =
∑

vr∈{0,1}|r| i(vp, vk, vr) denotes the
number of assignments of the random variable r under which i(vp, vk, r) is evaluated to
logical 1. When random bits in r are uniformly distributed in the domain {0, 1}, count

2|r| is
the probability of i(vp, vk, r) being logical 1 for the given pair (vp, vk). Therefore, Ψ is
unsatisfiable if and only if c is perfectly masked.

Following Eldib et al. [26,27], we encode the formula Ψ as a quantifier-free first-
order logic formula to be solved by an off-the-shelf SMT solver (e.g., Z3):

(
∧2|r|−1

r=0
Θr

k) ∧ (
∧2|r|−1

r=0
Θr

k′ ) ∧ Θb2i ∧ Θ�

– Θv
k (resp. Θ

v
k′ ) for each r ∈ {0, · · · , 2|r|−1}: encodes a copy of the input-output relation

of i(p, k, r) (resp. i(p, k′, r)) by replacing r with concrete values r. There are 2|r|
distinct copies, but share the same plaintext p.

– Θb2i: converts Boolean outputs of these copies to integers (true becomes 1 and false
becomes 0) so that the number of assignments can be counted.

– Θ�: asserts the two summations, for k and k′, differ.

Example 2. In the running example, for instance, verifying whether node c4 is perfectly
masked requires the SMT-based analysis. For brevity, we omit the detailed logical for-
mula while pointing out that, by invoking the SMT solver six times, one can get the
following result: �c1� = �c2� = �c3� = �c4� = �c5� = �c6� = SID.
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Fig. 5. Complementary rules used during refinement of the type inference (Fig. 3).

Although the SMT formula size is linear in |P|, the number of distinct copies is expo-
nential of the number of random bits used in the computation. Thus, the approach cannot
be applied to large programs. To overcome the problem, incremental algorithms [26,27]
were proposed to reduce the formula size using partitioning and heuristic reduction.

Incremental SMT-Based Algorithm. Given a computation c ← i(p, k, r) that corre-
sponds to a subtree T rooted at l in the DDG, we search for an internal node ls in T (a
cut-point) such that dom(ls) ∩ unq(l) � ∅. A cut-point is maximal if there is no other
cut-point from l to ls. Let T̂ be the simplified tree obtained from T by replacing every
subtree rooted by a maximal cut-point with a random variable from dom(ls) ∩ unq(l).
Then, T̂ is SID iff T is SID.

The main observation is that: if ls is a cut-point, there is a random variable r ∈
dom(ls) ∩ unq(l), which implies λ1(ls) is RUD. Here, r ∈ unq(l) implies λ1(ls) can be
seen as a fresh random variable when we evaluate l. Consider the node c3 in our running
example: it is easy to see r1 ∈ dom(c2)∩unq(c3). Therefore, for the purpose of verifying
c3, the entire subtree rooted at c2 can be replaced by the random variable r1.

In addition to partitioning, heuristics rules [26,27] can be used to simplify SMT
solving. (1)When constructing formulaΦ of c, all random variables in supp(l)\semd(l),
which are don’t cares, can be replaced by constant 1 or 0. (2) The No-Key and Sid rules
in Fig. 3 with the supp function are used to skip some checks by SMT.

Example 3. When applying incremental SMT-based approach to our running example,
c1 has to be decided by SMT, but c2 is skipped due to No-Key rule.

As for c3, since r1 ∈ dom(c2)∩ unq(c3), c2 is a cut-point and the subtree rooted at c2
can be replaced by r1, leading to the simplified computation r1 ⊕ (r2 ⊕ k) – subsequently
it is skipped by the Sid rule with supp. Note that the above Sid rule is not applicable to
the original subtree, because r2 occurs in the support of both children of c3.

There is no cut-point for c4, so it is checked using the SMT solver. But since c4 is
semantically independent of r1 (a don’t care variable), to reduce the SMT formula size,
we replace r1 by 1 (or 0) when constructing the formula Φ.
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4.2 Feeding SMT-Based Analysis Results Back to Type System

Fig. 6. Example for feeding back.

Consider a scenario where initially the type system
(cf. Sect. 3) failed to resolve a node l, i.e., �l� = UKD,
but the SMT-based approach resolved it as either NPM
or SID. Such results should be fed back to improve
the type system, which may lead to the following two
favorable outcomes: (1) marking more nodes as per-
fectly masked (RUD or SID) and (2) marking more
nodes as leaky (NPM), which means we can avoid
expensive SMT calls for these nodes. More specifi-
cally, if SMT-based analysis shows that l is perfectly
masked, the type of l can be refined to �l� = SID; feeding it back to the type system
allows us to infer more types for nodes that structurally depend on l.

On the other hand, if SMT-based analysis shows l is not perfectly masked, the type
of l can be refined to �l� = NPM; feeding it back allows the type system to infer that
other nodes may be NPM as well. To achieve what is outlined in the second case above,
we add the NPM-related type inference rules shown in Fig. 5. When they are added to
the type system outlined in Fig. 3, more NPM type nodes will be deduced, which allows
our method to skip the (more expensive) checking of NPM using SMT.

Example 4. Consider the example DDG in Fig. 6. By applying the original type infer-
ence approach with either supp or semd, we have

�c1� = �c4� = RUD, �c2� = �c3� = �c6� = SID, �c5� = �c7� = UKD.

In contrast, by applying SMT-based analysis to c5, we can deduce �c5� = SID. Feeding
�c5� = SID back to the original type system, and then applying the Sid rule to c7 =
c5 ⊕ c6, we are able to deduce �c7� = SID. Without refinement, this was not possible.

4.3 The Overall Algorithm

Having presented all the components, we now present the overall procedure, which
integrates the semantic type system and SMT-based method for gradual refinement.
Algorithm 1 shows the pseudo code. Given the program P, the sets of public (p), secret
(k), random (r) variables and an empty map π, it invokes SCInfer(P, p, k, r, π) to tra-
verse the DDG in a topological order and annotate every node l with a distribution
type from T. The subroutine TypeInfer implements the type inference rules outlined in
Figs. 3 and 5, where the parameter f can be either supp or semd.

SCInfer first deduces the type of each node l ∈ N by invoking TypeInfer with
f = supp. Once a node l is annotated as UKD, a simplified subtree P̂ of the subtree
rooted at l is constructed. Next, TypeInfer with f = semd is invoked to resolve the UKD
node in P̂. If π(l) becomes non-UKD afterward, TypeInfer with f = supp is invoked
again to quickly deduce the types of the fan-out nodes in P. But if π(l) remains UKD,
SCInfer invokes the incremental SMT-based approach to decide whether l is either SID
or NPM. This is sound and complete, unless the SMT solver runs out of time/memory, in
which case UKD is assigned to l.
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Algorithm 1. Function SCInfer(P, p, k, r, π)

1 Function SCInfer(P, p, k, r, π)
2 foreach l ∈ N in a topological order do
3 if l is a leaf then π(l) := �l�;
4 else
5 TypeInfer(l, P, p, k, r, π, supp);
6 if π(l) = UKD then
7 let P̂ be the simplified tree of the subtree rooted by l in P;

8 TypeInfer(l, P̂, p, k, r, π, semd);
9 if π(l) = UKD then

10 res:=CheckBySMT(P̂, p, k, r);
11 if res=Not-Perfectly-Masked then π(l) := NPM;
12 else if res=Perfectly-Masked then π(l) := SID;
13 else π(l) := UKD;

Theorem 4. For every intermediate computation result c ← i(p, k, r) labeled by l, our
method in SCInfer guarantees to return sound and complete results:

– π(l) = RUD iff c is uniformly distributed, and hence perfectly masked;
– π(l) = SID iff c is secret independent, i.e., perfectly masked;
– π(l) = NPM iff c is not perfectly masked (leaky);

If timeout or memory out is used to bound the execution of the SMT solver, it is also
possible that π(l) = UKD, meaning c has an unknown distribution (it may or may not be
perfectly masked). It is interesting to note that, if we regard UKD as potential leak and at
the same time. bound (or even disable) SMT-based analysis, Algorithm 1 degenerates
to a sound type system that is both fast and potentially accurate.

5 Experiments

We have implemented our method in a verification tool named SCInfer, which uses
Z3 [23] as the underlying SMT solver. We also implemented the syntactic type infer-
ence approach [47] and the incremental SMT-based approach [26,27] in the same tool
for experimental comparison purposes. We conducted experiments on publicly avail-
able cryptographic software implementations, including fragments of AES and MAC-
Keccak [26,27]. Our experiments were conducted on a machine with 64-bit Ubuntu
12.04 LTS, Intel Xeon(R) CPU E5-2603 v4, and 32GB RAM.

Overall, results of our experiments show that (1) SCInfer is significantly more accu-
rate than prior syntactic type inference method [47]; indeed, it solved tens of thousand
of UKD cases reported by the prior technique; (2) SCInfer is at least twice faster than
prior SMT-based verification method [26,27] on the large programs while maintaining
the same accuracy; for example, SCInfer verified the benchmark named P12 in a few
seconds whereas the prior SMT-based method took more than an hour.
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Algorithm 2. Procedure TypeInfer(l, P, p, k, r, π, f )

1 Procedure TypeInfer(l, P, p, k, r, π, f)
2 if λ2(l) = ¬ then π(l) := π(l.lft) ;
3 else if λ2(l) = ⊕ then
4 if π(l.lft) = RUD ∧ dom(l.lft) \ f (l.rgt) � ∅ then π(l) := RUD;
5 else if π(l.rgt) = RUD ∧ dom(l.rgt) \ f (l.lft) � ∅ then π(l) := RUD;
6 else if π(l.rgt) = π(l.lft) = SID ∧ f (l.lft) ∩ f (l.rgt) ∩ r = ∅ then
7 π(l) := SID
8 else if supp(l) ∩ k = ∅ then π(l) := SID;
9 else π(l) := UKD;

10 else

11 if

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
(π(l.lft) = RUD ∧ π(l.rgt) � {UKD, NPM})∨
(π(l.rgt) = RUD ∧ π(l.lft) � {UKD, NPM})

)

∧ f (l.lft) ∩ f (l.rgt) ∩ r = ∅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
then π(l) := SID;

12 else if
(
(dom(l.rgt) \ f (l.lft)) ∪ (dom(l.lft) \ f (l.rgt)) � ∅

∧π(l.lft) = RUD ∧ π(l.rgt) = RUD

)

then

13 π(l) := SID

14 else if

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
(π(l.lft) = RUD ∧ π(l.rgt) = NPM)∨
(π(l.rgt) = RUD ∧ π(l.lft) = NPM)

)

∧ f (l.lft) ∩ f (l.rgt) ∩ r = ∅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
then π(l) := NPM;

15 else if
(
(π(l.lft) = RUD ∧ π(l.rgt) = NPM ∧ dom(l.lft) \ f (l.rgt) � ∅)∨
(π(l.rgt) = RUD ∧ π(l.lft) = NPM ∧ dom(l.rgt) \ f (l.lft) � ∅)

)

then

16 π(l) := NPM
17 else if (π(l.lft) = π(l.rgt) = SID) ∧ f (l.lft) ∩ f (l.rgt) ∩ r = ∅ then
18 π(l) := SID
19 else if supp(l) ∩ k = ∅ then π(l) := SID;
20 else π(l) := UKD;

5.1 Benchmarks

Table 1 shows the detailed statistics of the benchmarks, including seventeen examples
(P1–P17), all of which have nonlinear operations. Columns 1 and 2 show the name of
the program and a short description. Column 3 shows the number of instructions in the
probabilistic Boolean program. Column 4 shows the number of DDG nodes denoting
intermediate computation results. The remaining columns show the number of bits in
the secret, public, and random variables, respectively. Remark that the number of ran-
dom variables in each computation is far less than the one of the program. All these
programs are transformed into Boolean programs where each instruction has at most
two operands. Since the statistics were collected from the transformed code, they may
have minor differences from statistics reported in prior work [26,27].

In particular, P1–P5 are masking examples originated from [10], P6–P7 are orig-
inated from [15], P8–P9 are the MAC-Keccak computation reordered examples orig-
inated from [11], P10–P11 are two experimental masking schemes for the Chi func-
tion in MAC-Keccak. Among the larger programs, P12–P17 are the regenerations of



170 J. Zhang et al.

Table 1. Benchmark statistics.

Name Description �Loc �Nodes |k| |p| |r|
P1 CHES13 Masked Key Whitening 79 32 16 16 16

P2 CHES13 De-mask and then Mask 67 38 8 0 16

P3 CHES13 AES Shift Rows 21 6 2 0 2

P4 CHES13 Messerges Boolean to Arithmetic (bit0) 23 6 2 0 2

P5 CHES13 Goubin Boolean to Arithmetic (bit0) 27 8 1 0 2

P6 Logic Design for AES S-Box (1st implementation) 32 9 2 0 2

P7 Logic Design for AES S-Box (2nd implementation) 40 11 2 0 3

P8 Masked Chi function MAC-Keccak (1st implementation) 59 18 3 0 4

P9 Masked Chi function MAC-Keccak (2nd implementation) 60 18 3 0 4

P10 Syn. Masked Chi func MAC-Keccak (1st implementation) 66 28 3 0 4

P11 Syn. Masked Chi func MAC-Keccak (2nd implementation) 66 28 3 0 4

P12 MAC-Keccak 512b Perfect masked 426k 197k 288 288 3205

P13 MAC-Keccak 512b De-mask and then mask (compiler error) 426k 197k 288 288 3205

P14 MAC-Keccak 512b Not-perfect Masking of Chi function (v1) 426k 197k 288 288 3205

P15 MAC-Keccak 512b Not-perfect Masking of Chi function (v2) 429k 198k 288 288 3205

P16 MAC-Keccak 512b Not-perfect Masking of Chi function (v3) 426k 197k 288 288 3205

P17 MAC-Keccak 512b Unmasking of Pi function 442k 205k 288 288 3205

MAC-Keccak reference code submitted to the SHA-3 competition held by NIST, where
P13–P16 implement the masking of Chi functions using different masking schemes and
P17 implements the de-masking of Pi function.

5.2 Experimental Results

We compared the performance of SCInfer, the purely syntactic type inference method
(denoted Syn. Infer) and the incremental SMT-based method (denoted by SMT App).
Table 2 shows the results. Column 1 shows the name of each benchmark. Column 2
shows whether it is perfectly masked (ground truth). Columns 3–4 show the results
of the purely syntactic type inference method, including the number of nodes inferred
as UKD type and the time in seconds. Columns 5–7 (resp. Columns 8–10) show the
results of the incremental SMT-based method (resp. our method SCInfer), including
the number of leaky nodes (NPM type), the number of nodes actually checked by SMT,
and the time.

Compared with syntactic type inference method, our approach is significantly more
accurate (e.g., see P4, P5 and P15). Furthermore, the time taken by both methods are
comparable on small programs. On the large programs that are not perfectly masked
(i.e., P13–P17), our method is slower since SCInfer has to resolve the UKD nodes
reported by syntactic inference by SMT. However, it is interesting to note that, on the
perfectly masked large program (P12), our method is faster.

Moreover, the UKD type nodes in P4, reported by the purely syntactic type inference
method, are all proved to be perfectly masked by our semantic type inference system,
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Table 2. Experimental results: comparison of three approaches.

Name Masked Syn. Infer [47] SMT App [26,27] SCInfer

UKD Time NPM By SMT Time NPM By SMT Time

P1 No 16 ≈0 s 16 16 0.39 s 16 16 0.39 s

P2 No 8 ≈0 s 8 8 0.28 s 8 8 0.57 s

P3 Yes 0 ≈0 s 0 0 ≈0 s 0 0 ≈0 s
P4 Yes 3 ≈0 s 0 3 0.16 s 0 0 0.06 s

P5 Yes 3 ≈0 s 0 3 0.15 s 0 2 0.25 s

P6 No 2 ≈0 s 2 2 0.11 s 2 2 0.16 s

P7 No 2 0.01 s 1 2 0.11 s 1 1 0.26 s

P8 No 3 ≈0 s 3 3 0.15 s 3 3 0.29 s

P9 No 2 ≈0 s 2 2 0.11 s 2 2 0.23 s

P10 No 3 ≈0 s 1 2 0.15 s 1 2 0.34 s

P11 No 4 ≈0 s 1 3 0.2 s 1 3 0.5 s

P12 Yes 0 1min 5 s 0 0 92min 8 s 0 0 3.8 s

P13 No 4800 1min 11 s 4800 4800 95min 30 s 4800 4800 47min 8 s

P14 No 3200 1min 11 s 3200 3200 118min 1 s 3200 3200 53min 40 s

P15 No 3200 1min 21 s 1600 3200 127min 45 s 1600 3200 69min 6 s

P16 No 4800 1min 13 s 4800 4800 123min 54 s 4800 4800 61min 15 s

P17 No 17600 1min 14 s 17600 16000 336min 51 s 17600 12800 121min 28 s

without calling the SMT solver at all. As for the three UKD type nodes in P5, our method
proves them all by invoking the SMT solver only twice; it means that the feedback of
the new SID types (discovered by SMT) allows our type system to improve its accuracy,
which turns the third UKD node to SID.

Finally, compared with the original SMT-based approach, our method is at least
twice faster on the large programs (e.g., P12–P17). Furthermore, the number of nodes
actually checked by invoking the SMT solver is also lower than in the original SMT-
based approach (e.g., P4–P5, and P17). In particular, there are 3200 UKD type nodes in
P17, which are refined into NPM type by our new inference rules (cf. Fig. 5), and thus
avoid the more expensive SMT calls.

To sum up, results of our experiments show that: SCInfer is fast in obtaining proofs
in perfectly-masked programs, while retaining the ability to detect real leaks in not-
perfectly-masked programs, and is scalable for handling realistic applications.

5.3 Detailed Statistics

Table 3 shows the more detailed statistics of our approach. Specifically, Columns 2–5
show the number of nodes in each distribution type deduced by our method. Column
6 shows the number of nodes actually checked by SMT, together with the time shown
in Column 9. Column 7 shows the time spent on computing the semd function, which
solves the SAT problem. Column 8 shows the time spent on computing the don’t care
variables. The last column shows the total time taken by SCInfer.
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Table 3. Detailed statistics of our new method.

Name SCInfer

Nodes Time

RUD SID CST NPM SMT semd Don’t care SMT Total

P1 16 0 0 16 16 ≈0 s ≈0 s 0.39 s 0.39 s

P2 16 0 0 8 8 0.27 s 0.14 s 0.16 s 0.57 s

P3 6 0 0 0 0 ≈0 s ≈0 s ≈0 s ≈0 s
P4 6 0 0 0 0 ≈0 s ≈0 s ≈0 s 0.06 s

P5 6 2 0 0 2 0.08 s 0.05 s 0.05 s 0.25 s

P6 4 3 0 2 2 0.05 s 0.07 s 0.04 s 0.16 s

P7 5 5 0 1 1 0.14 s 0.09 s 0.03 s 0.26 s

P8 11 4 0 3 3 0.14 s 0.09 s 0.06 s 0.29 s

P9 12 4 0 2 2 0.13 s 0.07 s 0.03 s 0.23 s

P10 20 6 1 1 2 0.15 s 0.14 s 0.05 s 0.34 s

P11 19 7 1 1 3 0.23 s 0.2 s 0.07 s 0.5 s

P12 190400 6400 0 0 0 ≈0 s ≈0 s ≈0 s 3.8 s

P13 185600 6400 0 4800 4800 29min 33 s 16min 5 s 1min 25 s 47min 8 s

P14 187200 6400 0 3200 3200 26min 58 s 25min 26 s 11min 53 s 53min 40 s

P15 188800 8000 0 1600 3200 33min 30 s 33min 55 s 1min 35 s 69min 6 s

P16 185600 6400 0 4800 4800 26min 41 s 32min 55 s 1min 32 s 61min 15 s

P17 185600 1600 0 17600 12800 33min 25 s 83min 59 s 3min 57 s 121min 28 s

Results in Table 3 indicate that most of the DDG nodes in these benchmark pro-
grams are either RUD or SID, and almost all of them can be quickly deduced by our type
system. It explains why our new method is more efficient than the original SMT-based
approach. Indeed, the original SMT-based approach spent a large amount of time on
the static analysis part, which does code partitioning and applies the heuristic rules (cf.
Sect. 4.1), whereas our method spent more time on computing the semd function.

Column 4 shows that, at least in these benchmark programs, Boolean constants are
rare. Columns 5–6 show that, if our refined type system fails to prove perfect masking,
it is usually not perfectly masked. Columns 7–9 show that, in our integrated method,
most of the time is actually used to compute semd and don’t care variables (SAT), while
the time taken by the SMT solver to conduct model counting (SAT#) is relatively small.

6 Related Work

Many masking countermeasures [15,17,34,37,41,43,46,48,50–52] have been pub-
lished over the years: although they differ in adversary models, cryptographic algo-
rithms and compactness, a common problem is the lack of efficient tools to formally
prove their correctness [21,22]. Our work aims to bridge the gap. It differs from
simulation-based techniques [3,33,53] which aim to detect leaks only as opposed to
prove their absence. It also differs from techniques designed for other types of side
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channels such as timing [2,38], fault [12,29] and cache [24,35,40], or computing secu-
rity bounds for probabilistic countermeasures against remote attacks [45].

Although some verification tools have been developed for this application [6,7,10,
13,14,20,26,27,47], they are either fast but inaccurate (e.g., type-inference techniques)
or accurate but slow (e.g., model-counting techniques). For example, Bayrak et al. [10]
developed a leak detector that checks if a computation result is logically dependent of
the secret and, at the same time, logically independent of any random variable. It is
fast but not accurate in that many leaky nodes could be incorrectly proved [26,27]. In
contrast, the model-counting based method proposed by Eldib et al. [26–28] is accurate,
but also significantly less scalable because the size of logical formulas they need to
build are exponential in the number of random variables. Moreover, for higher-order
masking, their method is still not complete.

Our gradual refinement of a set of semantic type inference rules were inspired by
recent work on proving probabilistic non-interference [6,47], which exploit the unique
characteristics of invertible operations. Similar ideas were explored in [7,14,20] as
well. However, these prior techniques differ significantly from our method because
their type-inference rules are syntactic and fixed, whereas ours are semantic and refined
based on SMT solver based analysis (SAT and SAT#). In terms of accuracy, numerous
unknowns occurred in the experimental results of [47] and two obviously perfect mask-
ing cases were not proved in [6]. Finally, although higher-order masking were addressed
by prior techniques [13], they were limited to linear operations, whereas our method can
handle both first-order and higher-order masking with non-linear operations.

An alternative way to address the model-counting problem [4,18,19,32] is to use
satisfiability modulo counting, which is a generalization of the satisfiability problem of
SMT extended with counting constraints [31]. Toward this end, Fredrikson and Jha [31]
have developed an efficient decision procedure for linear integer arithmetic (LIA) based
on Barvinok’s algorithm [8] and also applied their approach to differential privacy.

Another related line of research is automatically synthesizing countermeasures [1,
7,9,16,25,44,54] as opposed to verifying them. While methods in [1,7,9,44] rely on
compiler-like pattern matching, the ones in [16,25,54] use inductive program synthesis
based on the SMT approach. These emerging techniques, however, are orthogonal to our
work reported in this paper. It would be interesting to investigate whether our approach
could aid in the synthesis of masking countermeasures.

7 Conclusions and Future Work

We have presented a refinement based method for proving that a piece of crypto-
graphic software code is free of power side-channel leaks. Our method relies on a set of
semantic inference rules to reason about distribution types of intermediate computation
results, coupled with an SMT solver based procedure for gradually refining these types
to increase accuracy. We have implemented our method and demonstrated its efficiency
and effectiveness on cryptographic benchmarks. Our results show that it outperforms
state-of-the-art techniques in terms of both efficiency and accuracy.

For future work, we plan to evaluate our type inference systems for higher-order
masking, extend it to handle integer programs as opposed to bit-blasting them to
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Boolean programs, e.g., using satisfiability modulo counting [31], and investigate the
synthesis of masking countermeasures based on our new verification method.
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Abstract. Given a model and a specification, the fundamental model-
checking problem asks for algorithmic verification of whether the model
satisfies the specification. We consider graphs and Markov decision pro-
cesses (MDPs), which are fundamental models for reactive systems. One
of the very basic specifications that arise in verification of reactive sys-
tems is the strong fairness (aka Streett) objective. Given different types
of requests and corresponding grants, the objective requires that for each
type, if the request event happens infinitely often, then the corresponding
grant event must also happen infinitely often. All ω-regular objectives
can be expressed as Streett objectives and hence they are canonical in
verification. To handle the state-space explosion, symbolic algorithms are
required that operate on a succinct implicit representation of the system
rather than explicitly accessing the system. While explicit algorithms for
graphs and MDPs with Streett objectives have been widely studied, there
has been no improvement of the basic symbolic algorithms. The worst-
case numbers of symbolic steps required for the basic symbolic algorithms
are as follows: quadratic for graphs and cubic for MDPs. In this work
we present the first sub-quadratic symbolic algorithm for graphs with
Streett objectives, and our algorithm is sub-quadratic even for MDPs.
Based on our algorithmic insights we present an implementation of the
new symbolic approach and show that it improves the existing approach
on several academic benchmark examples.

1 Introduction

In this work we present faster symbolic algorithms for graphs and Markov deci-
sion processes (MDPs) with strong fairness objectives. For the fundamental
model-checking problem, the input consists of a model and a specification, and
the algorithmic verification problem is to check whether the model satisfies the
specification. We first describe the specific model-checking problem we consider
and then our contributions.
c© The Author(s) 2018
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Models: Graphs and MDPs. Two standard models for reactive systems are graphs
and Markov decision processes (MDPs). Vertices of a graph represent states
of a reactive system, edges represent transitions of the system, and infinite
paths of the graph represent non-terminating trajectories of the reactive sys-
tem. MDPs extend graphs with probabilistic transitions that represent reactive
systems with uncertainty. Thus graphs and MDPs are the de-facto model of reac-
tive systems with nondeterminism, and nondeterminism with stochastic aspects,
respectively [3,19].

Specification: Strong Fairness (aka Streett) Objectives. A basic and fundamental
property in the analysis of reactive systems is the strong fairness condition,
which informally requires that if events are enabled infinitely often, then they
must be executed infinitely often. More precisely, the strong fairness conditions
(aka Streett objectives) consist of k types of requests and corresponding grants,
and the objective requires that for each type if the request happens infinitely
often, then the corresponding grant must also happen infinitely often. After
safety, reachability, and liveness, the strong fairness condition is one of the most
standard properties that arise in the analysis of reactive systems, and chapters
of standard textbooks in verification are devoted to it (e.g., [19, Chap. 3.3], [32,
Chap. 3], [2, Chaps. 8, 10]). Moreover, all ω-regular objectives can be described
by Streett objectives, e.g., LTL formulas and non-deterministic ω-automata can
be translated to deterministic Streett automata [34] and efficient translation has
been an active research area [16,23,28]. Thus Streett objectives are a canonical
class of objectives that arise in verification.

Satisfaction. The basic notions of satisfaction for graphs and MDPs are as follows:
For graphs the notion of satisfaction requires that there is a trajectory (infinite
path) that belongs to the set of paths described by the Streett objective. For
MDPs the satisfaction requires that there is a policy to resolve the nondetermin-
ism such that the Streett objective is ensured almost-surely (with probability 1).
Thus the algorithmic model-checking problem of graphs and MDPs with Streett
objectives is a core problem in verification.

Explicit vs Symbolic Algorithms. The traditional algorithmic studies consider
explicit algorithms that operate on the explicit representation of the system. In
contrast, implicit or symbolic algorithms only use a set of predefined operations
and do not explicitly access the system [20]. The significance of symbolic algo-
rithms in verification is as follows: to combat the state-space explosion, large
systems must be succinctly represented implicitly and then symbolic algorithms
are scalable, whereas explicit algorithms do not scale as it is computationally
too expensive to even explicitly construct the system.

Relevance. In this work we study symbolic algorithms for graphs and MDPs
with Streett objectives. Symbolic algorithms for the analysis of graphs and
MDPs are at the heart of many state-of-the-art tools such as SPIN, NuSMV
for graphs [18,27] and PRISM, LiQuor, Storm for MDPs [17,22,29]. Our con-
tributions are related to the algorithmic complexity of graphs and MDPs with
Streett objectives for symbolic algorithms. We first present previous results and
then our contributions.
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Previous Results. The most basic algorithm for the problem for graphs is based
on repeated SCC (strongly connected component) computation, and informally
can be described as follows: for a given SCC, (a) if for every request type that
is present in the SCC the corresponding grant type is also present in the SCC,
then the SCC is identified as “good”, (b) else vertices of each request type that
has no corresponding grant type in the SCC are removed, and the algorithm
recursively proceeds on the remaining graph. Finally, reachability to good SCCs
is computed. The current best-known symbolic algorithm for SCC computation
requires O(n) symbolic steps, for graphs with n vertices [25], and moreover, the
algorithm is optimal [15]. For MDPs, the SCC computation has to be replaced
by MEC (maximal end-component) computation, and the current best-known
symbolic algorithm for MEC computation requires O(n2) symbolic steps. While
there have been several explicit algorithms for graphs with Streett objectives [12,
26], MEC computation [8–10], and MDPs with Streett objectives [7], as well
as symbolic algorithms for MDPs with Büchi objectives [11], the current best-
known bounds for symbolic algorithms with Streett objectives are obtained from
the basic algorithms, which are O(n ·min(n, k)) for graphs and O(n2 ·min(n, k))
for MDPs, where k is the number of types of request-grant pairs.

Our Contributions. In this work our main contributions are as follows:

– We present a symbolic algorithm that requires O(n ·√m log n) symbolic steps,
both for graphs and MDPs, where m is the number of edges. In the case
k = O(n), the previous worst-case bounds are quadratic (O(n2)) for graphs
and cubic (O(n3)) for MDPs. In contrast, we present the first sub-quadratic
symbolic algorithm both for graphs as well as MDPs. Moreover, in practice,
since most graphs are sparse (with m = O(n)), the worst-case bounds of our
symbolic algorithm in these cases are O(n · √

n log n). Another interesting
contribution of our work is that we also present an O(n · √m) symbolic steps
algorithm for MEC decomposition, which is relevant for our results as well
as of independent interest, as MEC decomposition is used in many other
algorithmic problems related to MDPs. Our results are summarized in Table 1.

– While our main contribution is theoretical, based on the algorithmic insights
we also present a new symbolic algorithm implementation for graphs and
MDPs with Streett objectives. We show that the new algorithm improves (by
around 30%) the basic algorithm on several academic benchmark examples
from the VLTS benchmark suite [21].

Technical Contributions. The two key technical contributions of our work are as
follows:

– Symbolic Lock Step Search: We search for newly emerged SCCs by a local
graph exploration around vertices that lost adjacent edges. In order to find
small new SCCs first, all searches are conducted “in parallel”, i.e., in lock-
step, and the searches stop as soon as the first one finishes successfully. This
approach has successfully been used to improve explicit algorithms [7,9,14,26].
Our contribution is a non-trivial symbolic variant (Sect. 3) which lies at the
core of the theoretical improvements.
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Table 1. Symbolic algorithms for Streett objectives and MEC decomposition.

Problem Symbolic operations

Basic algorithm Improved algorithm Reference

Graphs with Streett O(n · min(n, k)) O(n
√
m logn) Theorem 2

MDPs with Streett O(n2 · min(n, k)) O(n
√
m logn) Theorem 4

MEC decomposition O(n2) O(n
√
m) Theorem 3

– Symbolic Interleaved MEC Computation: For MDPs the identification of ver-
tices that have to be removed can be interleaved with the computation of
MECs such that in each iteration the computation of SCCs instead of MECs
is sufficient to make progress [7]. We present a symbolic variant of this inter-
leaved computation. This interleaved MEC computation is the basis for apply-
ing the lock-step search to MDPs.

2 Definitions

2.1 Basic Problem Definitions

Markov Decision Processes (MDPs) and Graphs. An MDP P = ((V,E), (V1, VR),
δ) consists of a finite directed graph G = (V,E) with a set of n vertices V and a
set of m edges E, a partition of the vertices into player 1 vertices V1 and random
vertices VR, and a probabilistic transition function δ. We call an edge (u, v) with
u ∈ V1 a player 1 edge and an edge (v, w) with v ∈ VR a random edge. For v ∈ V
we define In(v) = {w ∈ V | (w, v) ∈ E} and Out(v) = {w ∈ V | (v, w) ∈ E}. The
probabilistic transition function is a function from VR to D(V ), where D(V ) is
the set of probability distributions over V and a random edge (v, w) ∈ E if and
only if δ(v)[w] > 0. Graphs are a special case of MDPs with VR = ∅.

Plays and Strategies. A play or infinite path in P is an infinite sequence ω =
〈v0, v1, v2, . . .〉 such that (vi, vi+1) ∈ E for all i ∈ N; we denote by Ω the set
of all plays. A player 1 strategy σ : V ∗ · V1 → V is a function that assigns
to every finite prefix ω ∈ V ∗ · V1 of a play that ends in a player 1 vertex v a
successor vertex σ(ω) ∈ V such that (v, σ(ω)) ∈ E; we denote by Σ the set of
all player 1 strategies. A strategy is memoryless if we have σ(ω) = σ(ω′) for any
ω, ω′ ∈ V ∗ · V1 that end in the same vertex v ∈ V1.

Objectives. An objective φ is a subset of Ω said to be winning for player 1. We
say that a play ω ∈ Ω satisfies the objective if ω ∈ φ. For a vertex set T ⊆ V
the reachability objective is the set of infinite paths that contain a vertex of T ,
i.e., Reach(T ) = {〈v0, v1, v2, . . .〉 ∈ Ω | ∃j ≥ 0 : vj ∈ T}. Let Inf(ω) for ω ∈ Ω
denote the set of vertices that occur infinitely often in ω. Given a set TP of k
pairs (Li, Ui) of vertex sets Li, Ui ⊆ V with 1 ≤ i ≤ k, the Streett objective is
the set of infinite paths for which it holds for each 1 ≤ i ≤ k that whenever a
vertex of Li occurs infinitely often, then a vertex of Ui occurs infinitely often, i.e.,
Streett(TP) = {ω ∈ Ω | Li ∩ Inf(ω) = ∅ or Ui ∩ Inf(ω) 
= ∅ for all 1 ≤ i ≤ k}.
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Almost-Sure Winning Sets. For any measurable set of plays A ⊆ Ω we denote
by Prσ

v (A) the probability that a play starting at v ∈ V belongs to A when
player 1 plays strategy σ. A strategy σ is almost-sure (a.s.) winning from a
vertex v ∈ V for an objective φ if Prσ

v (φ) = 1. The almost-sure winning set
〈〈1〉〉as (P, φ) of player 1 is the set of vertices for which player 1 has an almost-
sure winning strategy. In graphs the existence of an almost-sure winning strategy
corresponds to the existence of a play in the objective, and the set of vertices
for which player 1 has an (almost-sure) winning strategy is called the winning
set 〈〈1〉〉 (P, φ) of player 1.

Symbolic Encoding of MDPs. Symbolic algorithms operate on sets of vertices,
which are usually described by Binary Decision Diagrams (bdds) [1,30]. In par-
ticular Ordered Binary Decision Diagrams [6] (Obdds) provide a canonical sym-
bolic representation of Boolean functions. For the computation of almost-sure
winning sets of MDPs it is sufficient to encode MDPs with Obdds and one
additional bit that denotes whether a vertex is in V1 or VR.

Symbolic Steps. One symbolic step corresponds to one primitive operation as
supported by standard symbolic packages like CuDD [35]. In this paper we only
allow the same basic set-based symbolic operations as in [5,11,24,33], namely set
operations and the following one-step symbolic operations for a set of vertices Z:
(a) the one-step predecessor operator Pre(Z) = {v ∈ V | Out(v)∩Z 
= ∅}; (b) the
one-step successor operator Post(Z) = {v ∈ V | In(v) ∩ Z 
= ∅}; and (c) the
one-step controllable predecessor operator CPreR(Z) = {v ∈ V1 | Out(v) ⊆ Z} ∪
{v ∈ VR | Out(v) ∩ Z 
= ∅} ; i.e., the CPreR operator computes all vertices such
that the successor belongs to Z with positive probability. This operator can be
defined using the Pre operator and basic set operations as follows: CPreR(Z) =
Pre(Z)\(V1 ∩ Pre(V \Z)) . We additionally allow cardinality computation and
picking an arbitrary vertex from a set as in [11].

Symbolic Model. Informally, a symbolic algorithm does not operate on explicit
representation of the transition function of a graph, but instead accesses it
through Pre and Post operations. For explicit algorithms, a Pre/Post operation
on a set of vertices (resp., a single vertex) requires O(m) (resp., the order of inde-
gree/outdegree of the vertex) time. In contrast, for symbolic algorithms Pre/Post
operations are considered unit-cost. Thus an interesting algorithmic question is
whether better algorithmic bounds can be obtained considering Pre/Post as unit
operations. Moreover, the basic set operations are computationally less expen-
sive (as they encode the relationship between the state variables) compared to
the Pre/Post symbolic operations (as they encode the transitions and thus the
relationship between the present and the next-state variables). In all presented
algorithms, the number of set operations is asymptotically at most the number
of Pre/Post operations. Hence in the sequel we focus on the number of Pre/Post
operations of algorithms.

Algorithmic Problem. Given an MDP P (resp. a graph G) and a set of
Streett pairs TP, the problem we consider asks for a symbolic algorithm to
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compute the almost-sure winning set 〈〈1〉〉as (P,Streett(TP)) (resp. the winning
set 〈〈1〉〉 (G,Streett(TP))), which is also called the qualitative analysis of MDPs
(resp. graphs).

2.2 Basic Concepts Related to Algorithmic Solution

Reachability. For a graph G = (V,E) and a set of vertices S ⊆ V the set
GraphReach(G,S) is the set of vertices of V that can reach a vertex of S
within G, and it can be identified with at most |GraphReach(G,S)\S| + 1
many Pre operations.

Strongly Connected Components. For a set of vertices S ⊆ V we denote by
G[S] = (S,E∩(S×S)) the subgraph of the graph G induced by the vertices of S.
An induced subgraph G[S] is strongly connected if there exists a path in G[S]
between every pair of vertices of S. A strongly connected component (SCC ) of G
is a set of vertices C ⊆ V such that the induced subgraph G[C] is strongly
connected and C is a maximal set in V with this property. We call an SCC
trivial if it only contains a single vertex and no edges; and non-trivial otherwise.
The SCCs of G partition its vertices and can be found in O(n) symbolic steps [25].
A bottom SCC C in a directed graph G is an SCC with no edges from vertices
of C to vertices of V \C, i.e., an SCC without outgoing edges. Analogously, a
top SCC C is an SCC with no incoming edges from V \C. For more intuition for
bottom and top SCCs, consider the graph in which each SCC is contracted into
a single vertex (ignoring edges within an SCC). In the resulting directed acyclic
graph the sinks represent the bottom SCCs and the sources represent the top
SCCs. Note that every graph has at least one bottom and at least one top SCC.
If the graph is not strongly connected, then there exist at least one top and at
least one bottom SCC that are disjoint and thus one of them contains at most
half of the vertices of G.

Random Attractors. In an MDP P the random attractor AttrR(P,W ) of a set
of vertices W is defined as AttrR(P,W ) =

⋃
j≥0 Zj where Z0 = W and Zj+1 =

Zj ∪ CPreR(Zj) for all j > 0. The attractor can be computed with at most
|AttrR(P,W )\W | + 1 many CPreR operations.

Maximal End-Components. Let X be a vertex set without outgoing random
edges, i.e., with Out(v) ⊆ X for all v ∈ X ∩ VR. A sub-MDP of an MDP P
induced by a vertex set X ⊆ V without outgoing random edges is defined as
P [X] = ((X,E∩(X ×X), (V1∩X,VR ∩X), δ). Note that the requirement that X
has no outgoing random edges is necessary in order to use the same probabilistic
transition function δ. An end-component (EC) of an MDP P is a set of vertices
X ⊆ V such that (a) X has no outgoing random edges, i.e., P [X] is a valid sub-
MDP, (b) the induced sub-MDP P [X] is strongly connected, and (c) P [X] con-
tains at least one edge. Intuitively, an end-component is a set of vertices for which
player 1 can ensure that the play stays within the set and almost-surely reaches
all the vertices in the set (infinitely often). An end-component is a maximal
end-component (MEC) if it is maximal under set inclusion. An end-component
is trivial if it consists of a single vertex (with a self-loop), otherwise it is non-
trivial. The MEC decomposition of an MDP consists of all MECs of the MDP.
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Good End-Components. All algorithms for MDPs with Streett objectives are
based on finding good end-components, defined below. Given the union of all
good end-components, the almost-sure winning set is obtained by computing the
almost-sure winning set for the reachability objective with the union of all good
end-components as the target set. The correctness of this approach is shown in
[7,31] (see also [3, Chap. 10.6.3]). For Streett objectives a good end-component is
defined as follows. In the special case of graphs they are called good components.

Definition 1 (Good end-component). Given an MDP P and a set TP =
{(Lj , Uj) | 1 ≤ j ≤ k} of target pairs, a good end-component is an end-
component X of P such that for each 1 ≤ j ≤ k either Lj ∩X = ∅ or Uj ∩X 
= ∅.
A maximal good end-component is a good end-component that is maximal with
respect to set inclusion.

Lemma 1 (Correctness of Computing Good End-Components [31,
Corollary 2.6.5, Proposition 2.6.9]). For an MDP P and a set TP of
target pairs, let X be the set of all maximal good end-components. Then
〈〈1〉〉as

(
P,Reach(

⋃
X∈X X)

)
is equal to 〈〈1〉〉as (P,Streett(TP)).

Iterative Vertex Removal. All the algorithms for Streett objectives maintain ver-
tex sets that are candidates for good end-components. For such a vertex set S
we (a) refine the maintained sets according to the SCC decomposition of P [S]
and (b) for a set of vertices W for which we know that it cannot be contained in
a good end-component, we remove its random attractor from S. The following
lemma shows the correctness of these operations.

Lemma 2 (Correctness of Vertex Removal [31, Lemma 2.6.10]). Given
an MDP P = ((V,E), (V1, VR), δ), let X be an end-component with X ⊆ S for
some S ⊆ V . Then

(a) X ⊆ C for one SCC C of P [S] and
(b) X ⊆ S\AttrR(P ′,W ) for each W ⊆ V \X and each sub-MDP P ′ contain-

ing X.

Let X be a good end-component. Then X is an end-component and for each
index j, X ∩Uj = ∅ implies X ∩Lj = ∅. Hence we obtain the following corollary.

Corollary 1 ([31, Corollary 4.2.2]). Given an MDP P , let X be a good end-
component with X ⊆ S for some S ⊆ V . For each i with S ∩Ui = ∅ it holds that
X ⊆ S\AttrR(P [S], Li ∩ S).

For an index j with S ∩ Uj = ∅ we call the vertices of S ∩ Lj bad vertices.
The set of all bad vertices Bad(S) =

⋃
1≤i≤k{v ∈ Li ∩ S | Ui ∩ S = ∅} can be

computed with 2k set operations.

3 Symbolic Divide-and-Conquer with Lock-Step Search

In this section we present a symbolic version of the lock-step search for strongly
connected subgraphs [26]. This symbolic version is used in all subsequent results,
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i.e., the sub-quadratic symbolic algorithms for graphs and MDPs with Streett
objectives, and for MEC decomposition.

Divide-and-Conquer. The common property of the algorithmic problems we con-
sider in this work is that the goal is to identify subgraphs of the input graph
G = (V,E) that are strongly connected and satisfy some additional proper-
ties. The difference between the problems lies in the required additional proper-
ties. We describe and analyze the Procedure Lock-Step-Search that we use
in all our improved algorithms to efficiently implement a divide-and-conquer
approach based on the requirement of strong connectivity, that is, we divide
a subgraph G[S], induced by a set of vertices S, into two parts that are not
strongly connected within G[S] or detect that G[S] is strongly connected.

Start Vertices of Searches. The input to Procedure Lock-Step-Search is a
set of vertices S ⊆ V and two subsets of S denoted by HS and TS . In the
algorithms that call the procedure as a subroutine, vertices contained in HS

have lost incoming edges (i.e., they were a “head” of a lost edge) and vertices
contained in TS have lost outgoing edges (i.e., they were a “tail” of a lost edge)
since the last time a superset of S was identified as being strongly connected. For
each vertex h of HS the procedure conducts a backward search (i.e., a sequence
of Pre operations) within G[S] to find the vertices of S that can reach h; and
analogously a forward search (i.e., a sequence of Post operations) from each
vertex t of TS is conducted.

Intuition for the Choice of Start Vertices. If the subgraph G[S] is not strongly
connected, then it contains at least one top SCC and at least one bottom SCC
that are disjoint. Further, if for a superset S′ ⊃ S the subgraph G[S′] was
strongly connected, then each top SCC of G[S] contains a vertex that had an
additional incoming edge in G[S′] compared to G[S], and analogously each bot-
tom SCC of G[S] contains a vertex that had an additional outgoing edge. Thus by
keeping track of the vertices that lost incoming or outgoing edges, the following
invariant will be maintained by all our improved algorithms.

Invariant 1 (Start Vertices Sufficient). We have HS , TS ⊆ S. Either (a)
HS ∪ TS = ∅ and G[S] is strongly connected or (b) at least one vertex of each
top SCC of G[S] is contained in HS and at least one vertex of each bottom SCC
of G[S] is contained in TS.

Lock-Step Search. The searches from the vertices of HS ∪ TS are performed in
lock-step, that is, (a) one step is performed in each of the searches before the
next step of any search is done and (b) all searches stop as soon as the first of
the searches finishes. This is implemented in Procedure Lock-Step-Search as
follows. A step in the search from a vertex t ∈ TS (and analogously for h ∈ HS)
corresponds to the execution of the iteration of the for-each loop for t ∈ TS . In
an iteration of a for-each loop we might discover that we do not need to consider
this search further (see the paragraph on ensuring strong connectivity below)
and update the set TS (via T ′

S) for future iterations accordingly. Otherwise the
set Ct is either strictly increasing in this step of the search or the search for t
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Procedure. Lock-Step-Search(G, S, HS , TS)

/* Pre and Post defined w.r.t. to G */

1 foreach v ∈ HS ∪ TS do Cv ← {v}
2 while true do
3 H ′

S ← HS , T ′
S ← TS

4 foreach h ∈ HS do /* search for top SCC */

5 C′
h ← (Ch ∪ Pre(Ch)) ∩ S

6 if |C′
h ∩ H ′

S | > 1 then H ′
S ← H ′

S\{h}
7 else
8 if C′

h = Ch then return (Ch, H ′
S , T ′

S)
9 Ch ← C′

h

10 foreach t ∈ TS do /* search for bottom SCC */

11 C′
t ← (Ct ∪ Post(Ct)) ∩ S

12 if |C′
t ∩ T ′

S | > 1 then T ′
S ← T ′

S\{t}
13 else
14 if C′

t = Ct then return (Ct, H ′
S , T ′

S)
15 Ct ← C′

t

16 HS ← H ′
S , TS ← T ′

S

terminates and we return the set of vertices in G[S] that are reachable from t.
So the two for-each loops over the vertices of TS and HS that are executed in
an iteration of the while-loop perform one step of each of the searches and the
while-loop stops as soon as a search stops, i.e., a return statement is executed
and hence this implements properties (a) and (b) of lock-step search. Note that
the while-loop terminates, i.e., a return statement is executed eventually because
for all t ∈ TS (and resp. for all h ∈ HS) the sets Ct are monotonically increasing
over the iterations of the while-loop, we have Ct ⊆ S, and if some set Ct does
not increase in an iteration, then it is either removed from TS and thus not
considered further or a return statement is executed. Note that when a search
from a vertex t ∈ TS stops, it has discovered a maximal set of vertices C that can
be reached from t; and analogously for h ∈ HS . Figure 1 shows a small intuitive
example of a call to the procedure.

Comparison to Explicit Algorithm. In the explicit version of the algorithm [7,26]
the search from vertex t ∈ TS performs a depth-first search that terminates
exactly when every edge reachable from t is explored. Since any search that
starts outside of a bottom SCC but reaches the bottom SCC has to explore
more edges than the search started inside of the bottom SCC, the first search
from a vertex of TS that terminates has exactly explored (one of) the smallest
(in the number of edges) bottom SCC(s) of G[S]. Thus on explicit graphs the
explicit lock-step search from the vertices of HS ∪ TS finds (one of) the smallest
(in the number of edges) top or bottom SCC(s) of G[S] in time proportional
to the number of searches times the number of edges in the identified SCC. In
symbolically represented graphs it can happen (1) that a search started outside
of a bottom (resp. top) SCC terminates earlier than the search started within
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h1

t1

t2
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t1

t2

h1

t2

Fig. 1. An example of symbolic lock-step search showing the first three iterations of
the main while-loop. Note that during the second iteration, the search started from t1
is disregarded since it collides with t2. In the subsequent fourth iteration, the search
started from t2 is returned by the procedure.

the bottom (resp. top) SCC and (2) that a search started in a larger (in the
number of vertices) top or bottom SCC terminates before one in a smaller top
or bottom SCC. We discuss next how we address these two challenges.

Ensuring Strong Connectivity. First, we would like the set returned by Procedure
Lock-Step-Search to indeed be a top or bottom SCC of G[S]. For this we use
the following observation for bottom SCCs that can be applied to top SCCs
analogously. If a search starting from a vertex of t1 ∈ TS encounters another
vertex t2 ∈ TS , t1 
= t2, there are two possibilities: either (1) both vertices are in
the same SSC or (2) t1 can reach t2 but not vice versa. In Case (1) the searches
from both vertices can explore all vertices in the SCC and thus it is sufficient
to only search from one of them. In Case (2) the SCC of t1 has an outgoing
edge and thus cannot be a bottom SCC. Hence in both cases we can remove the
vertex t1 from the set TS while still maintaining Invariant 1. By Invariant 1 we
further have that each search from a vertex of TS that is not in a bottom SCC
encounters another vertex of TS in its search and therefore is removed from the
set TS during Procedure Lock-Step-Search (if no top or bottom SCC is found
earlier). This ensures that the returned set is either a top or a bottom SCC.1

Bound on Symbolic Steps. Second, observe that we can still bound the number
of symbolic steps needed for the search that terminates first by the number
of vertices in the smallest top or bottom SCC of G[S], since this is an upper
bound on the symbolic steps needed for the search started in this SCC. Thus
provided Invariant 1, we can bound the number of symbolic steps in Procedure
Lock-Step-Search to identify a vertex set C � S such that C and S\C are
not strongly connected in G[S] by O((|HS | + |TS |) · min(|C|, |S\C|)). In the
algorithms that call Procedure Lock-Step-Search we charge the number of
symbolic steps in the procedure to the vertices in the smaller set of C and S\C;
this ensures that each vertex is charged at most O(log n) times over the whole
algorithm. We obtain the following result (proof in [13, Appendix A]).
1 To improve the practical performance, we return the updated sets HS and TS . By

the above argument this preserves Invariant 1.
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Theorem 1 (Lock-Step Search). Provided Invariant 1 holds, Procedure
Lock-Step-Search (G, S, HS, TS) returns a top or bottom SCC C of
G[S]. It uses O((|HS | + |TS |) · min(|C|, |S\C|)) symbolic steps if C 
= S and
O((|HS | + |TS |) · |C|) otherwise.

4 Graphs with Streett Objectives

Basic Symbolic Algorithm. Recall that for a given graph (with n vertices)
and a Streett objective (with k target pairs) each non-trivial strongly connected
subgraph without bad vertices is a good component. The basic symbolic algo-
rithm for graphs with Streett objectives repeatedly removes bad vertices from
each SCC and then recomputes the SCCs until all good components are found.
The winning set then consists of the vertices that can reach a good component.
We refer to this algorithm as StreettGraphBasic. For the pseudocode and
more details see [13, Appendix B].

Proposition 1. AlgorithmStreettGraphBasic correctly computes the win-
ning set in graphs with Streett objectives and requires O(n · min(n, k)) symbolic
steps.

Improved Symbolic Algorithm. In our improved symbolic algorithm we
replace the recomputation of all SCCs with the search for a new top or bottom
SCC with Procedure Lock-Step-Search from vertices that have lost adjacent
edges whenever there are not too many such vertices. We present the improved
symbolic algorithm for graphs with Streett objectives in more detail as it also
conveys important intuition for the MDP case. The pseudocode is given in Algo-
rithm StreettGraphImpr.

Iterative Refinement of Candidate Sets. The improved algorithm maintains a
set goodC of already identified good components that is initially empty and a
set X of candidates for good components that is initialized with the SCCs of the
input graph G. The difference to the basic algorithm lies in the properties of the
vertex sets maintained in X and the way we identify sets that can be separated
from each other without destroying a good component. In each iteration one
vertex set S is removed from X and, after the removal of bad vertices from the
set, either identified as a good component or split into several candidate sets. By
Lemma 2 and Corollary 1 the following invariant is maintained throughout the
algorithm for the sets in goodC and X .

Invariant 2 (Maintained Sets). The sets in X ∪ goodC are pairwise disjoint
and for every good component C of G there exists a set Y ⊇ C such that either
Y ∈ X or Y ∈ goodC.

Lost Adjacent Edges. In contrast to the basic algorithm, the subgraph induced
by a set S contained in X is not necessarily strongly connected. Instead, we
remember vertices of S that have lost adjacent edges since the last time a superset
of S was determined to induce a strongly connected subgraph; vertices that lost
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Algorithm. StreettGraphImpr. Improved Alg. for Graphs with Streett
Obj.

Input : graph G = (V, E) and Streett pairs TP = {(Li, Ui) | 1 ≤ i ≤ k}
Output : 〈〈1〉〉 (G, Streett(TP))

1 X ← allSCCs(G); goodC ← ∅
2 foreach C ∈ X do HC ← ∅; TC ← ∅
3 while X �= ∅ do
4 remove some S ∈ X from X
5 B ← ⋃

1≤i≤k:Ui∩S=∅(Li ∩ S)

6 while B �= ∅ do
7 S ← S\B
8 HS ← (HS ∪ Post(B)) ∩ S
9 TS ← (TS ∪ Pre(B)) ∩ S

10 B ← ⋃
1≤i≤k:Ui∩S=∅(Li ∩ S)

11 if Post(S) ∩ S �= ∅ then /* G[S] contains at least one edge */

12 if |HS | + |TS | = 0 then goodC ← goodC ∪ {S}
13 else if |HS | + |TS | ≥ √

m/ log n then
14 delete HS and TS

15 C ← allSCCs(G[S])
16 if |C| = 1 then goodC ← goodC ∪ {S}
17 else
18 foreach C ∈ C do HC ← ∅; TC ← ∅
19 X ← X ∪ C
20 else
21 (C, HS , TS) ← Lock-Step-Search (G, S, HS , TS)
22 if C = S then goodC ← goodC ∪ {S}
23 else /* separate C and S\C */

24 S ← S\C
25 HC ← ∅; TC ← ∅
26 HS ← (HS ∪ Post(C)) ∩ S
27 TS ← (TS ∪ Pre(C)) ∩ S
28 X ← X ∪ {S} ∪ {C}

29 return GraphReach(G,
⋃

C∈goodC C)

incoming edges are contained in HS and vertices that lost outgoing edges are
contained in TS . In this way we maintain Invariant 1 throughout the algorithm,
which enables us to use Procedure Lock-Step-Search with the running time
guarantee provided by Theorem1.

Identifying SCCs. Let S be the vertex set removed from X in a fixed iteration of
Algorithm StreettGraphImpr after the removal of bad vertices in the inner
while-loop. First note that if S is strongly connected and contains at least one
edge, then it is a good component. If the set S was already identified as strongly
connected in a previous iteration, i.e., HS and TS are empty, then S is identified
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as a good component in line 12. If many vertices of S have lost adjacent edges
since the last time a super-set of S was identified as a strongly connected sub-
graph, then the SCCs of G[S] are determined as in the basic algorithm. To
achieve the optimal asymptotic upper bound, we say that many vertices of S
have lost adjacent edges when we have |HS | + |TS | ≥ √

m/ log n, while lower
thresholds are used in our experimental results. Otherwise, if not too many ver-
tices of S lost adjacent edges, then we start a symbolic lock-step search for top
SCCs from the vertices of HS and for bottom SCCs from the vertices of TS using
Procedure Lock-Step-Search. The set returned by the procedure is either a
top or a bottom SCC C of G[S] (Theorem 1). Therefore we can from now on
consider C and S\C separately, maintaining Invariants 1 and 2.

Algorithm StreettGraphImpr. A succinct description of the pseudocode is as
follows: Lines 1–2 initialize the set of candidates for good components with the
SCCs of the input graph. In each iteration of the main while-loop one candidate is
considered and the following operations are performed: (a) lines 5–10 iteratively
remove all bad vertices; if afterwards the candidate is still strongly connected
(and contains at least one edge), it is identified as a good component in the next
step; otherwise it is partitioned into new candidates in one of the following ways:
(b) if many vertices lost adjacent edges, lines 13–17 partition the candidate into
its SCCs (this corresponds to an iteration of the basic algorithm); (c) otherwise,
lines 20–28 use symbolic lock-step search to partition the candidate into one of its
SCCs and the remaining vertices. The while-loop terminates when no candidates
are left. Finally, vertices that can reach some good component are returned. We
have the following result (proof in [13, Appendix B]).

Theorem 2 (Improved Algorithm for Graphs). Algorithm Streett-
GraphImpr correctly computes the winning set in graphs with Streett objectives
and requires O(n · √

m log n) symbolic steps.

5 Symbolic MEC Decomposition

In this section we present a succinct description of the basic symbolic algo-
rithm for MEC decomposition and then present the main ideas for the improved
algorithm.

Basic symbolic algorithm for MEC decomposition. The basic symbolic algorithm
for MEC decomposition maintains a set of identified MECs and a set of candi-
dates for MECs, initialized with the SCCs of the MDP. Whenever a candidate
is considered, either (a) it is identified as a MEC or (b) it contains vertices
with outgoing random edges, which are then removed together with their ran-
dom attractor from the candidate, and the SCCs of the remaining sub-MDP are
added to the set of candidates. We refer to the algorithm as MECBasic.

Proposition 2. AlgorithmMECBasic correctly computes the MEC decomposi-
tion of MDPs and requires O(n2) symbolic steps.



Symbolic Algorithms for Graphs and MDPs with Fairness Objectives 191

Improved Symbolic Algorithm for MEC Decomposition. The improved symbolic
algorithm for MEC decomposition uses the ideas of symbolic lock-step search
presented in Sect. 3. Informally, when considering a candidate that lost a few
edges from the remaining graph, we use the symbolic lock-step search to identify
some bottom SCC. We refer to the algorithm as MECImpr. Since all the impor-
tant conceptual ideas regarding the symbolic lock-step search are described in
Sect. 3, we relegate the technical details to [13, Appendix C]. We summarize the
main result (proof in [13, Appendix C]).

Theorem 3 (Improved Algorithm for MEC). AlgorithmMECImpr cor-
rectly computes the MEC decomposition of MDPs and requires O(n · √

m) sym-
bolic steps.

6 MDPs with Streett Objectives

Basic Symbolic Algorithm. We refer to the basic symbolic algorithm for
MDPs with Streett objectives as StreettMDPbasic, which is similar to the
algorithm for graphs, with SCC computation replaced by MEC computation.
The pseudocode of Algorithm StreettMDPbasic together with its detailed
description is presented in [13, Appendix D].

Proposition 3. AlgorithmStreettMDPbasic correctly computes the almost-
sure winning set in MDPs with Streett objectives and requires O(n2 · min(n, k))
symbolic steps.

Remark. The above bound uses the basic symbolic MEC decomposition algo-
rithm. Using our improved symbolic MEC decomposition algorithm, the above
bound could be improved to O(n · √

m · min(n, k)).

Improved Symbolic Algorithm. We refer to the improved symbolic algorithm
for MDPs with Streett objectives as StreettMDPimpr. First we present the
main ideas for the improved symbolic algorithm. Then we explain the key dif-
ferences compared to the improved symbolic algorithm for graphs. A thorough
description with the technical details and proofs is presented in [13, Appendix D].

– First, we improve the algorithm by interleaving the symbolic MEC compu-
tation with the detection of bad vertices [7,31]. This allows to replace the
computation of MECs in each iteration of the while-loop with the computa-
tion of SCCs and an additional random attractor computation.

• Intuition of interleaved computation. Consider a candidate for a good end-
component S after a random attractor to some bad vertices is removed
from it. After the removal of the random attractor, the set S does not have
random vertices with outgoing edges. Consider that further Bad(S) = ∅
holds. If S is strongly connected and contains an edge, then it is a good
end-component. If S is not strongly connected, then P [S] contains at least
two SCCs and some of them might have random vertices with outgoing
edges. Since end-components are strongly connected and do not have
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random vertices with outgoing edges, we have that (1) every good end-
component is completely contained in one of the SCCs of P [S] and (2)
the random vertices of an SCC with outgoing edges and their random
attractor do not intersect with any good end-component (see Lemma 2).

• Modification from basic to improved algorithm. We use these observations
to modify the basic algorithm as follows: First, for the sets that are can-
didates for good end-components, we do not maintain the property that
they are end-components, but only that they do not have random ver-
tices with outgoing edges (it still holds that every maximal good end-
component is either already identified or contained in one of the candi-
date sets). Second, for a candidate set S, we repeat the removal of bad
vertices until Bad(S) = ∅ holds before we continue with the next step of
the algorithm. This allows us to make progress after the removal of bad
vertices by computing all SCCs (instead of MECs) of the remaining sub-
MDP. If there is only one SCC, then this is a good end-component (if it
contains at least one edge). Otherwise (a) we remove from each SCC the
set of random vertices with outgoing edges and their random attractor
and (b) add the remaining vertices of each SCC as a new candidate set.

– Second, as for the improved symbolic algorithm for graphs, we use the sym-
bolic lock-step search to quickly identify a top or bottom SCC every time a
candidate has lost a small number of edges since the last time its superset
was identified as being strongly connected. The symbolic lock-step search is
described in detail in Sect. 3.

Using interleaved MEC computation and lock-step search leads to a simi-
lar algorithmic structure for Algorithm StreettMDPimpr as for our improved
symbolic algorithm for graphs (Algorithm StreettGraphImpr). The key dif-
ferences are as follows: First, the set of candidates for good end-components
is initialized with the MECs of the input graph instead of the SCCs. Second,
whenever bad vertices are removed from a candidate, also their random attrac-
tor is removed. Further, whenever a candidate is partitioned into its SCCs, for
each SCC, the random attractor of the vertices with outgoing random edges
is removed. Finally, whenever a candidate S is separated into C and S\C via
symbolic lock-step search, the random attractor of the vertices with outgoing
random edges is removed from C, and the random attractor of C is removed
from S.

Theorem 4 (Improved Algorithm for MDPs). Algorithm Streett
MDP impr correctly computes the almost-sure winning set in MDPs with Streett
objectives and requires O(n · √

m log n) symbolic steps.

7 Experiments

We present a basic prototype implementation of our algorithm and com-
pare against the basic symbolic algorithm for graphs and MDPs with Streett
objectives.
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Models. We consider the academic benchmarks from the VLTS benchmark
suite [21], which gives representative examples of systems with nondeterminism,
and has been used in previous experimental evaluation (such as [4,11]).

Specifications. We consider random LTL formulae and use the tool Rabinizer [28]
to obtain deterministic Rabin automata. Then the negations of the formulae give
us Streett automata, which we consider as the specifications.

Graphs. For the models of the academic benchmarks, we first compute SCCs,
as all algorithms for Streett objectives compute SCCs as a preprocessing step.
For SCCs of the model benchmarks we consider products with the specification
Streett automata, to obtain graphs with Streett objectives, which are the bench-
mark examples for our experimental evaluation. The number of transitions in
the benchmarks ranges from 300K to 5Million.

MDPs. For MDPs, we consider the graphs obtained as above and consider a
fraction of the vertices of the graph as random vertices, which is chosen uniformly
at random. We consider 10%, 20%, and 50% of the vertices as random vertices
for different experimental evaluation.

Fig. 2. Results for graphs with Streett objectives.

Experimental Evaluation. In the experimental evaluation we compare the num-
ber of symbolic steps (i.e., the number of Pre/Post operations2) executed by
the algorithms, the comparison of running time yields similar results and is pro-
vided in [13, Appendix E]. As the initial preprocessing step is the same for all the
algorithms (computing all SCCs for graphs and all MECs for MDPs), the com-
parison presents the number of symbolic steps executed after the preprocessing.
The experimental results for graphs are shown in Fig. 2 and the experimental
results for MDPs are shown in Fig. 3 (in each figure the two lines represent
equality and an order-of-magnitude improvement, respectively).

Discussion. Note that the lock-step search is the key reason for theoretical
improvement, however, the improvement relies on a large number of Streett pairs.
2 Recall that the basic set operations are cheaper to compute, and asymptotically at

most the number of Pre/Post operations in all the presented algorithms.
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(a) 10% random vertices (b) 20% random vertices

(c) 50% random vertices

Fig. 3. Results for MDPs with Streett objectives.

In the experimental evaluation, the LTL formulae generate Streett automata
with small number of pairs, which after the product with the model accounts for
an even smaller fraction of pairs as compared to the size of the state space. This
has two effects:

– In the experiments the lock-step search is performed for a much smaller param-
eter value (O(log n) instead of the theoretically optimal bound of

√
m/ log n),

and leads to a small improvement.
– For large graphs, since the number of pairs is small as compared to the number

of states, the improvement over the basic algorithm is minimal.

In contrast to graphs, in MDPs even with small number of pairs as compared
to the state-space, the interleaved MEC computation has a notable effect on
practical performance, and we observe performance improvement even in large
MDPs.

8 Conclusion

In this work we consider symbolic algorithms for graphs and MDPs with Streett
objectives, as well as for MEC decomposition. Our algorithmic bounds match
for both graphs and MDPs. In contrast, while SCCs can be computed in linearly



Symbolic Algorithms for Graphs and MDPs with Fairness Objectives 195

many symbolic steps no such algorithm is known for MEC decomposition. An
interesting direction of future work would be to explore further improved sym-
bolic algorithms for MEC decomposition. Moreover, further improved symbolic
algorithms for graphs and MDPs with Streett objectives is also an interesting
direction of future work.
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Abstract. Parity games have important practical applications in formal
verification and synthesis, especially to solve the model-checking problem
of the modal mu-calculus. They are also interesting from the theory
perspective, because they are widely believed to admit a polynomial
solution, but so far no such algorithm is known.

We propose a new algorithm to solve parity games based on learning
tangles, which are strongly connected subgraphs for which one player has
a strategy to win all cycles in the subgraph. We argue that tangles play
a fundamental role in the prominent parity game solving algorithms. We
show that tangle learning is competitive in practice and the fastest solver
for large random games.

1 Introduction

Parity games are turn-based games played on a finite graph. Two players Odd
and Even play an infinite game by moving a token along the edges of the graph.
Each vertex is labeled with a natural number priority and the winner of the
game is determined by the parity of the highest priority that is encountered
infinitely often. Player Odd wins if this parity is odd; otherwise, player Even
wins.

Parity games are interesting both for their practical applications and for
complexity theoretic reasons. Their study has been motivated by their relation
to many problems in formal verification and synthesis that can be reduced to the
problem of solving parity games, as parity games capture the expressive power
of nested least and greatest fixpoint operators [11]. In particular, deciding the
winner of a parity game is polynomial-time equivalent to checking non-emptiness
of non-deterministic parity tree automata [21], and to the explicit model-checking
problem of the modal μ-calculus [9,15,20].

Parity games are interesting in complexity theory, as the problem of deter-
mining the winner of a parity game is known to lie in UP ∩ co-UP [16], which
is contained in NP ∩ co-NP [9]. This problem is therefore unlikely to be NP-
complete and it is widely believed that a polynomial solution exists. Despite
much effort, such an algorithm has not been found yet.
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The main contribution of this paper is based on the notion of a tangle.
A tangle is a strongly connected subgraph of a parity game for which one of
the players has a strategy to win all cycles in the subgraph. We propose this
notion and its relation to dominions and cycles in a parity game. Tangles are
related to snares [10] and quasi-dominions [3], with the critical difference that
tangles are strongly connected, whereas snares and quasi-dominions may be
unconnected as well as contain vertices that are not in any cycles. We argue
that tangles play a fundamental role in various parity game algorithms, in par-
ticular in priority promotion [3,5], Zielonka’s recursive algorithm [25], strategy
improvement [10,11,24], small progress measures [17], and in the recently pro-
posed quasi-polynomial time progress measures [6,12].

The core insight of this paper is that tangles can be used to attract sets
of vertices at once, since the losing player is forced to escape a tangle. This
leads to a novel algorithm to solve parity games called tangle learning, which
is based on searching for tangles along a top-down α-maximal decomposition of
the parity game. New tangles are then attracted in the next decomposition. This
naturally leads to learning nested tangles and, eventually, finding dominions. We
prove that tangle learning solves parity games and present several extensions to
the core algorithm, including alternating tangle learning, where the two players
take turns maximally searching for tangles in their regions, and on-the-fly tangle
learning, where newly learned tangles immediately refine the decomposition.

We relate the complexity of tangle learning to the number of learned tangles
before finding a dominion, which is related to how often the solver is distracted
by paths to higher winning priorities that are not suitable strategies.

We evaluate tangle learning in a comparison based on the parity game solver
Oink [7], using the benchmarks of Keiren [19] as well as random parity games
of various sizes. We compare tangle learning to priority promotion [3,5] and to
Zielonka’s recursive algorithm [25] as implemented in Oink.

2 Preliminaries

Parity games are two-player turn-based infinite-duration games over a finite
directed graph G = (V,E), where every vertex belongs to exactly one of two
players called player Even and player Odd, and where every vertex is assigned a
natural number called the priority. Starting from some initial vertex, a play of
both players is an infinite path in G where the owner of each vertex determines
the next move. The winner of such an infinite play is determined by the parity
of the highest priority that occurs infinitely often along the play.

More formally, a parity game � is a tuple (V , V ,E, pr) where V = V ∪ V
is a set of vertices partitioned into the sets V controlled by player Even and V
controlled by player Odd, and E ⊆ V ×V is a left-total binary relation describing
all moves, i.e., every vertex has at least one successor. We also write E(u) for
all successors of u and u → v for v ∈ E(u). The function pr : V → {0, 1, . . . , d}
assigns to each vertex a priority, where d is the highest priority in the game.

We write pr(v) for the priority of a vertex v and pr(V ) for the highest priority
of vertices V and pr(�) for the highest priority in the game �. Furthermore, we
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write pr−1(i) for all vertices with the priority i. A path π = v0v1 . . . is a sequence
of vertices consistent with E, i.e., vi → vi+1 for all successive vertices. A play
is an infinite path. We denote with inf(π) the vertices in π that occur infinitely
many times in π. Player Even wins a play π if pr(inf(π)) is even; player Odd wins
if pr(inf(π)) is odd. We write Plays(v) to denote all plays starting at vertex v.

A strategy σ : V → V is a partial function that assigns to each vertex in its
domain a single successor in E, i.e., σ ⊆ E. We refer to a strategy of player
α to restrict the domain of σ to Vα. In the remainder, all strategies σ are of a
player α. We write Plays(v, σ) for the set of plays from v consistent with σ, and
Plays(V, σ) for {π ∈ Plays(v, σ) | v ∈ V }.

A fundamental result for parity games is that they are memoryless deter-
mined [8], i.e., each vertex is either winning for player Even or for player Odd,
and both players have a strategy for their winning vertices. Player α wins vertex
v if they have a strategy σ such that all plays in Plays(v, σ) are winning for
player α.

Several algorithms for solving parity games employ attractor computation.
Given a set of vertices A, the attractor of A for a player α represents those
vertices from which player α can force a play to visit A. We write Attr�

α(A) to
attract vertices in � to A as player α, i.e.,

μZ .A ∪ {v ∈ Vα | E(v) ∩ Z �= ∅} ∪ {v ∈ Vα | E(v) ⊆ Z}

Informally, we compute the α-attractor of A with a backward search from A,
initially setting Z := A and iteratively adding α-vertices with a successor in Z
and α-vertices with no successors outside Z. We also obtain a strategy σ for
player α, starting with an empty strategy, by selecting a successor in Z when we
attract vertices of player α and when the backward search finds a successor in Z
for the α-vertices in A. We call a set of vertices A α-maximal if A = Attr�

α(A).
A dominion D is a set of vertices for which player α has a strategy σ such that

all plays consistent with σ stay in D and are winning for player α. We also write a
p-dominion for a dominion where p is the highest priority encountered infinitely
often in plays consistent with σ, i.e., p := max{pr(inf(π)) | π ∈ Plays(D,σ)}.

3 Tangles

Definition 1. A p-tangle is a nonempty set of vertices U ⊆ V with p = pr(U),
for which player α ≡2 p has a strategy σ : Uα → U , such that the graph (U,E′),
with E′ := E ∩(

σ ∪ (Uα ×U)
)
, is strongly connected and player α wins all cycles

in (U,E′).

Informally, a tangle is a set of vertices for which player α has a strategy to
win all cycles inside the tangle. Thus, player α loses all plays that stay in U and
is therefore forced to escape the tangle. The highest priority by which player α
wins a play in (U,E′) is p. We make several basic observations related to tangles.
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1. A p-tangle from which player α cannot leave is a p-dominion.
2. Every p-dominion contains one or more p-tangles.
3. Tangles may contain tangles of a lower priority.

Observation 1 follows by definition. Observation 2 follows from the fact that
dominions won by player α with some strategy σ must contain strongly connected
subgraphs where all cycles are won by player α and the highest winning priority
is p. For observation 3, consider a p-tangle for which player α has a strategy
that avoids priority p while staying in the tangle. Then there is a p′-tangle with
p′ < p in which player α also loses.

Fig. 1. A 5-dominion with a
5-tangle and a 3-tangle

We can in fact find a hierarchy of tan-
gles in any dominion D with winning strategy
σ by computing the set of winning priorities
{pr(inf(π)) | π ∈ Plays(D,σ)}. There is a p-
tangle in D for every p in this set. Tangles are
thus a natural substructure of dominions.

See for example Fig. 1. Player Odd wins
this dominion with highest priority 5 and strat-
egy {d → e}. Player Even can also avoid pri-
ority 5 and then loses with priority 3. The
5-dominion {a,b, c,d, e} contains the 5-tangle
{b, c,d, e} and the 3-tangle {c, e}.

4 Solving by Learning Tangles

Since player α must escape tangles won by player α, we can treat a tangle as an
abstract vertex controlled by player α that can be attracted by player α, thus
attracting all vertices of the tangle. This section proposes the tangle learning
algorithm, which searches for tangles along a top-down α-maximal decomposi-
tion of the game. We extend the attractor to attract all vertices in a tangle when
player α is forced to play from the tangle to the attracting set. After extracting
new tangles from regions in the decomposition, we iteratively repeat the pro-
cedure until a dominion is found. We show that tangle learning solves parity
games.

4.1 Attracting Tangles

Given a tangle t, we denote its vertices simply by t and its witness strategy by
σT (t). We write ET (t) for the edges from α-vertices in the tangle to the rest of
the game: ET (t) := {v | u → v ∧ u ∈ t ∩ Vα ∧ v ∈ V \ t}. We write T for all
tangles where pr(t) is odd (won by player Odd) and T for all tangles where pr(t)
is even. We write TAttr�,T

α (A) to attract vertices in � and vertices of tangles in
T to A as player α, i.e.,

μZ .A ∪ {v ∈ Vα | E(v) ∩ Z �= ∅} ∪ {v ∈ Vα | E(v) ⊆ Z}
∪ {v ∈ t | t ∈ Tα ∧ ET (t) �= ∅ ∧ ET (t) ⊆ Z}
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1 def solve(�):
2 W ← ∅, W ← ∅, σ ← ∅, σ ← ∅, T ← ∅
3 while � �= ∅ :
4 T, d ← search(�, T)

5 α ← pr(d) mod 2

6 D, σ ← Attr�
α(d)

7 Wα ← Wα ∪ D, σα ← σα ∪ σT (d) ∪ σ
8 � ← � \ D, T ← T ∩ (� \ D)

9 return W , W , σ , σ

Algorithm 1. The solve algorithm which computes the winning regions and
winning strategies for both players of a given parity game.

This approach is not the same as the subset construction. Indeed, we do not
add the tangle itself but rather add all its vertices together. Notice that this
attractor does not guarantee arrival in A, as player α can stay in the added
tangle, but then player α loses.

To compute a witness strategy σ for player α, as with Attr�

α, we select a
successor in Z when attracting single vertices of player α and when we find a
successor in Z for the α-vertices in A. When we attract vertices of a tangle, we
update σ for each tangle t sequentially, by updating σ with the strategy in σT (t)
of those α-vertices in the tangle for which we do not yet have a strategy in σ,
i.e., {(u, v) ∈ σT (t) | u /∈ dom(σ)}. This is important since tangles can overlap.

In the following, we call a set of vertices A α-maximal if A = TAttr�,T
α (A).

Given a game � and a set of vertices U , we write �∩U for the subgame �′ where
V ′ := V ∩U and E′ := E∩(V ′×V ′). Given a set of tangles T and a set of vertices
U , we write T ∩U for all tangles with all vertices in U , i.e., {t ∈ T | t ⊆ U}, and
we extend this notation to T ∩ �′ for the tangles in the game �′, i.e., T ∩ V ′.

4.2 The solve Algorithm

We solve parity games by iteratively searching and removing a dominion of the
game, as in [3,18,22]. See Algorithm 1. The search algorithm (described below)
is given a game and a set of tangles and returns an updated set of tangles and a
tangle d that is a dominion. Since the dominion d is a tangle, we derive the winner
α from the highest priority (line 5) and use standard attractor computation to
compute a dominion D (line 6). We add the dominion to the winning region
of player α (line 7). We also update the winning strategy of player α using the
witness strategy of the tangle d plus the strategy σ obtained during attractor
computation. To solve the remainder, we remove all solved vertices from the
game and we remove all tangles that contain solved vertices (line 8). When the
entire game is solved, we return the winning regions and winning strategies of
both players (lines 9). Reusing the (pruned) set of tangles for the next search
call is optional; if search is always called with an empty set of tangles, the
“forgotten” tangles would be found again.
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1 def search(�, T):
2 while true :
3 r ← ∅, Y ← ∅
4 while � \ r �= ∅ :
5 �

′ ← � \ r, T ′ ← T ∩ (� \ r)
6 p ← pr(�′), α ← pr(�′) mod 2

7 Z, σ ← TAttr�
′,T ′

α

({v ∈ �
′ | pr(v) = p})

8 A ← extract-tangles(Z, σ)
9 if ∃ t ∈ A : ET (t) = ∅ : return T ∪ Y , t

10 r ← r ∪ (
Z 	→ p

)
, Y ← Y ∪ A

11 T ← T ∪ Y

Algorithm 2. The search algorithm which, given a game and a set of tangles,
returns the updated set of tangles and a tangle that is a dominion.

4.3 The search Algorithm

The search algorithm is given in Algorithm 2. The algorithm iteratively com-
putes a top-down decomposition of � into sets of vertices called regions such
that each region is α-maximal for the player α who wins the highest priority
in the region. Each next region in the remaining subgame �′ is obtained by
taking all vertices with the highest priority p in �′ and computing the tangle
attractor set of these vertices for the player that wins that priority, i.e., player
α ≡2 p. As every next region has a lower priority, each region is associated with
a unique priority p. We record the current region of each vertex in an auxiliary
partial function r : V → {0, 1, . . . , d} called the region function. We record the
new tangles found during each decomposition in the set Y .

In each iteration of the decomposition, we first obtain the current subgame
�′ (line 5) and the top priority p in �′ (line 6). We compute the next region by
attracting (with tangles) to the vertices of priority p in �′ (line 7). We use the
procedure extract-tangles (described below) to obtain new tangles from the
computed region (line 8). For each new tangle, we check if the set of outgoing
edges to the full game ET (t) is empty. If ET (t) is empty, then we have a dominion
and we terminate the procedure (line 9). If no dominions are found, then we add
the new tangles to Y and update r (line 10). After fully decomposing the game
into regions, we add all new tangles to T (line 11) and restart the procedure.

4.4 Extracting Tangles from a Region

To search for tangles in a given region A of player α with strategy σ, we first
remove all vertices where player α can play to lower regions (in �′) while player
α is constrained to σ, i.e.,

νZ .A ∩ ({v ∈ Vα | E′(v) ⊆ Z} ∪ {v ∈ Vα | σ(v) ∈ Z})

This procedure can be implemented efficiently with a backward search, start-
ing from all vertices of priority p that escape to lower regions. Since there can
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be multiple vertices of priority p, the reduced region may consist of multiple
unconnected tangles. We compute all nontrivial bottom SCCs of the reduced
region, restricted by the strategy σ. Every such SCC is a unique p-tangle.

4.5 Tangle Learning Solves Parity Games

We now prove properties of the proposed algorithm.

Lemma 1. All regions recorded in r in Algorithm 2 are α-maximal in their
subgame.

Proof. This is vacuously true at the beginning of the search. Every region Z is
α-maximal as Z is computed with TAttr (line 7). Therefore the lemma remains
true when r is updated at line 10. New tangles are only added to T at line 11,
after which r is reset to ∅. ��
Lemma 2. All plays consistent with σ that stay in a region are won by player
α.

Proof. Based on how the attractor computes the region, we show that all cycles
(consistent with σ) in the region are won by player α. Initially, Z only contains
vertices with priority p; therefore, any cycles in Z are won by player α. We
consider two cases: (a) When attracting a single vertex v, any new cycles must
involve vertices with priority p from the initial set A, since all other α-vertices in
Z already have a strategy in Z and all other α-vertices in Z have only successors
in Z, otherwise they would not be attracted to Z. Since p is the highest priority
in the region, every new cycle is won by player α. (b) When attracting vertices of
a tangle, we set the strategy for all attracted vertices of player α to the witness
strategy of the tangle. Any new cycles either involve vertices with priority p (as
above) or are cycles inside the tangle that are won by player α. ��
Lemma 3. Player α can reach a vertex with the highest priority p from every
vertex in the region, via a path in the region that is consistent with strategy σ.

Proof. The proof is based on how the attractor computes the region. This prop-
erty is trivially true for the initial set of vertices with priority p. We consider
again two cases: (a) When attracting a single vertex v, v is either an α-vertex
with a strategy to play to Z, or an α-vertex whose successors are all in Z.
Therefore, the property holds for v. (b) Tangles are strongly connected w.r.t.
their witness strategy. Therefore player α can reach every vertex of the tangle
and since the tangle is attracted to Z, at least one α-vertex can play to Z.
Therefore, the property holds for all attracted vertices of a tangle. ��
Lemma 4. For each new tangle t, all successors of t are in higher α-regions.

Proof. For every bottom SCC B (computed in extract-tangles), E′(v) ⊆ B
for all α-vertices v ∈ B, otherwise player α could leave B and B would not be a
bottom SCC. Recall that E′(v) is restricted to edges in the subgame �′ = � \ r.
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Therefore E(v) ⊆ dom(r) ∪ B in the full game for all α-vertices v ∈ B. Recall
that ET (t) for a tangle t refers to all successors for player α that leave the tangle.
Hence, ET (t) ⊆ dom(r) for every tangle t := B. Due to Lemma 1, no α-vertex
in B can escape to a higher α-region. Thus ET (t) only contains vertices from
higher α-regions when the new tangle is found by extract-tangles. ��
Lemma 5. Every nontrivial bottom SCC B of the reduced region restricted by
witness strategy σ is a unique p-tangle.

Proof. All α-vertices v in B have a strategy σ(v) ∈ B, since B is a bottom SCC
when restricted by σ. B is strongly connected by definition. Per Lemma 2, player
α wins all plays consistent with σ in the region and therefore also in B. Thus,
B is a tangle. Per Lemma 3, player α can always reach a vertex of priority p,
therefore any bottom SCC must include a vertex of priority p. Since p is the
highest priority in the subgame, B is a p-tangle. Furthermore, the tangle must
be unique. If the tangle was found before, then per Lemmas 1 and 4, it would
have been attracted to a higher α-region. ��
Lemma 6. The lowest region in the decomposition always contains a tangle.

Proof. The lowest region is always nonempty after reduction in extract-
tangles, as there are no lower regions. Furthermore, this region contains non-
trivial bottom SCCs, since every vertex must have a successor in the region due
to Lemma 1. ��
Lemma 7. A tangle t is a dominion if and only if ET (t) = ∅
Proof. If the tangle is a dominion, then player α cannot leave it, therefore
ET (t) = ∅. If ET (t) = ∅, then player α cannot leave the tangle and since
all plays consistent with σ in the tangle are won by player α, the tangle is a
dominion. ��
Lemma 8. ET (t) = ∅ for every tangle t found in the highest region of player α.

Proof. Per Lemma 4, ET (t) ⊆ {v ∈ dom(r) | r(v) ≡2 p} when the tangle is found.
There are no higher regions of player α, therefore ET (t) = ∅. ��
Lemma 9. The search algorithm terminates by finding a dominion.

Proof. There is always a highest region of one of the players that is not empty.
If a tangle is found in this region, then it is a dominion (Lemmas 7 and 8) and
Algorithm 2 terminates (line 9). If no tangle is found in this region, then the
opponent can escape to a lower region. Thus, if no dominion is found in a highest
region, then there is a lower region that contains a tangle (Lemma 6) that must
be unique (Lemma 5). As there are only finitely many unique tangles, eventually
a dominion must be found. ��
Lemma 10. The solve algorithm solves parity games.
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Proof. Every invocation of search returns a dominion of the game (Lemma 9).
The α-attractor of a dominion won by player α is also a dominion of player α.
Thus all vertices in D are won by player α. The winning strategy is derived as
the witness strategy of d with the strategy obtained by the attractor at line 6.
At the end of solve every vertex of the game is either in W or W . ��

4.6 Variations of Tangle Learning

We propose three different variations of tangle learning that can be combined.
The first variation is alternating tangle learning, where players take turns to

maximally learn tangles, i.e., in a turn of player Even, we only search for tangles
in regions of player Even, until no more tangles are found. Then we search only
for tangles in regions of player Odd, until no more tangles are found. When
changing players, the last decomposition can be reused.

The second variation is on-the-fly tangle learning, where new tangles immedi-
ately refine the decomposition. When new tangles are found, the decomposition
procedure is reset to the highest region that attracts one of the new tangles,
such that all regions in the top-down decomposition remain α-maximal. This is
the region with priority p := max{min{r(v) | v ∈ ET (t)} | t ∈ A}.

A third variation skips the reduction step in extract-tangles and only
extracts tangles from regions where none of the vertices of priority p can escape
to lower regions. This still terminates finding a dominion, as Lemma 6 still
applies, i.e., we always extract tangles from the lowest region. Similar variations
are also conceivable, such as only learning tangles from the lowest region.

5 Complexity

We establish a relation between the time complexity of tangle learning and the
number of learned tangles.

Lemma 11. Computing the top-down α-maximal decomposition of a parity
game runs in time O(dm + dn|T |) given a parity game with d priorities, n
vertices and m edges, and a set of tangles T .

Proof. The attractor Attr�

α runs in time O(n + m), if we record the number of
remaining outgoing edges for each vertex [23]. The attractor TAttr�,T

α runs in
time O(n + m + |T | + n|T |), if implemented in a similar style. As m ≥ n, we
simplify to O(m + n|T |). Since the decomposition computes at most d regions,
the decomposition runs in time O(dm + dn|T |). ��
Lemma 12. Searching for tangles in the decomposition runs in time O(dm).

Proof. The extract-tangles procedure consists of a backward search, which
runs in O(n + m), and an SCC search based on Tarjan’s algorithm, which also
runs in O(n+m). This procedure is performed at most d times (for each region).
As m ≥ n, we simplify to O(dm). ��
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Lemma 13. Tangle learning runs in time O(dnm|T | + dn2|T |2) for a parity
game with d priorities, n vertices, m edges, and |T | learned tangles.

Proof. Given Lemmas 11 and 12, each iteration in search runs in time O(dm +
dn|T |). The number of iterations is at most |T |, since we learn at least 1 tangle
per iteration. Then search runs in time O(dm|T | + dn|T |2). Since each found
dominion is then removed from the game, there are at most n calls to search.
Thus tangle learning runs in time O(dnm|T | + dn2|T |2). ��

Fig. 2. A parity game that requires several turns to find a dominion.

The complexity of tangle learning follows from the number of tangles that
are learned before each dominion is found. Often not all tangles in a game need
to be learned to solve the game, only certain tangles. Whether this number can
be exponential in the worst case is an open question. These tangles often serve
to remove distractions that prevent the other player from finding better tangles.
This concept is illustrated by the example in Fig. 2, which requires multiple turns
before a dominion is found. The game contains 4 tangles: {c}, {g} (a dominion),
{a,b, c,d} and {a, e}. The vertices {e, f,g,h} do not form a tangle, since the
opponent wins the loop of vertex g. The tangle {a,b, c,d} is a dominion in the
remaining game after Attr�({g}) has been removed.

The tangle {g} is not found at first, as player Odd is distracted by h, i.e.,
prefers to play from g to h. Thus vertex h must first be attracted by the oppo-
nent. This occurs when player Even learns the tangle {a, e}, which is then
attracted to f, which then attracts h. However, the tangle {a, e} is blocked,
as player Even is distracted by b. Vertex b is attracted by player Odd when
they learn the tangle {c}, which is attracted to d, which then attracts b. So
player Odd must learn tangle {c} so player Even can learn tangle {a, e}, which
player Even must learn so player Odd can learn tangle {g} and win the dominion
{e, f,g,h}, after which player Odd also learns {a,b, c,d} and wins the entire
game.

One can also understand the algorithm as the players learning that their
opponent can now play from some vertex v via the learned tangle to a higher
vertex w that is won by the opponent. In the example, we first learn that b
actually leads to d via the learned tangle {c}. Now b is no longer safe for player
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Even. However, player Even can now play from both d and h via the learned
0-tangle {a, e} to f, so d and h are no longer interesting for player Odd and
vertex b is again safe for player Even.

6 Implementation

We implement four variations of tangle learning in the parity game solver
Oink [7]. Oink is a modern implementation of parity game algorithms writ-
ten in C++. Oink implements priority promotion [3], Zielonka’s recursive algo-
rithm [25], strategy improvement [11], small progress measures [17], and quasi-
polynomial time progress measures [12]. Oink also implements self-loop solving
and winner-controlled winning cycle detection, as proposed in [23]. The imple-
mentation is publicly available via https://www.github.com/trolando/oink.

We implement the following variations of tangle learning: standard tan-
gle learning (tl), alternating tangle learning (atl), on-the-fly tangle learning
(otftl) and on-the-fly alternating tangle learning (otfatl). The implementa-
tion mainly differs from the presented algorithm in the following ways. We com-
bine the solve and search algorithms in one loop. We remember the highest
region that attracts a new tangle and reset the decomposition to that region
instead of recomputing the full decomposition. In extract-tangles, we do not
compute bottom SCCs for the highest region of a player, instead we return the
entire reduced region as a single dominion (see also Lemma 8).

7 Empirical Evaluation

The goal of the empirical evaluation is to study tangle learning and its variations
on real-world examples and random games. Due to space limitations, we do not
report in detail on crafted benchmark families (generated by PGSolver [13]),
except that none of these games is difficult in runtime or number of tangles.

We use the parity game benchmarks from model checking and equivalence
checking proposed by Keiren [19] that are publicly available online. These are 313
model checking and 216 equivalence checking games. We also consider random
games, in part because the literature on parity games tends to favor studying the
behavior of algorithms on random games. We include two classes of self-loop-free
random games generated by PGSolver [13] with a fixed number of vertices:

– fully random games (randomgame N N 1 N x)
N ∈ {1000, 2000, 4000, 7000}

– large low out-degree random games (randomgame N N 1 2 x)
N ∈ {10000, 20000, 40000, 70000, 100000, 200000, 400000, 700000, 1000000}
We generate 20 games for each parameter N , in total 80 fully random games

and 180 low out-degree games. All random games have N vertices and up to
N distinct priorities. We include low out-degree games, since algorithms may
behave differently on games where all vertices have few available moves, as also

https://www.github.com/trolando/oink
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suggested in [3]. In fact, as we see in the evaluation, fully random games appear
trivial to solve, whereas games with few moves per vertex are more challenging.
Furthermore, the fully random games have fewer vertices but require more disk
space (40 MB per compressed file for N = 7000) than large low out-degree games
(11 MB per compressed file for N = 1000000).

We compare four variations of tangle learning to the implementations of
Zielonka’s recursive algorithm (optimized version of Oink) and of priority pro-
motion (implemented in Oink by the authors of [3]). The motivation for this
choice is that [7] shows that these are the fastest parity game solving algorithms.

In the following, we also use cactus plots to compare the algorithms. Cac-
tus plots show that an algorithm solved X input games within Y seconds
individually.

Table 1. Runtimes in sec. and number of timeouts (20 min) of the solvers Zielonka
(zlk), priority promotion (pp), and tangle learning (tl, atl, otftl, otfatl).

Solver MC&EC Random Random (large)

Time Time Time Timeouts

pp 503 21 12770 6

zlk 576 21 23119 13

otfatl 808 21 2281 0

atl 817 21 2404 0

otftl 825 21 2238 0

tl 825 21 2312 0

All experimental scripts and log files are available online via https://www.
github.com/trolando/tl-experiments. The experiments were performed on a clus-
ter of Dell PowerEdge M610 servers with two Xeon E5520 processors and 24 GB
internal memory each. The tools were compiled with gcc 5.4.0.

7.1 Overall Results

Table 1 shows the cumulative runtimes of the six algorithms. For the runs that
timed out, we simply used the timeout value of 1200 s, but this underestimates
the actual runtime.

7.2 Model Checking and Equivalence Checking Games

See Fig. 3 for the cactus plot of the six solvers on model checking and equivalence
checking games. This graph suggests that for most games, tangle learning is only
slightly slower than the other algorithms. The tangle learning algorithms require
at most 2× as much time for 12 of the 529 games. There is no significant difference
between the four variations of tangle learning.

https://www.github.com/trolando/tl-experiments
https://www.github.com/trolando/tl-experiments
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Fig. 3. Cactus plots of the solvers Zielonka (zlk), priority promotion (pp) and tangle
learning (tl, atl, otftl, otfatl). The plot shows how many MC&EC games (top) or
large random games (bottom) are (individually) solved within the given time.

The 529 games have on average 1.86 million vertices and 5.85 million edges,
and at most 40.6 million vertices and 167.5 million edges. All equivalence check-
ing games have 2 priorities, so every tangle is a dominion. The model checking
games have 2 to 4 priorities. Tangle learning learns non-dominion tangles for
only 30 games, and more than 1 tangle only for the 22 games that check the
infinitely often read write property. The most extreme case is 1,572,864
tangles for a game with 19,550,209 vertices. These are all 0-tangles that are then
attracted to become part of 2-dominions.

That priority promotion and Zielonka’s algorithm perform well is no surprise.
See also Sect. 8.4. Solving these parity games requires few iterations for all algo-
rithms, but tangle learning spends more time learning and attracting individual
tangles, which the other algorithms do not do. Zielonka requires at most 27
iterations, priority promotion at most 28 queries and 9 promotions. Alternating
tangle learning requires at most 2 turns. We conclude that these games are not
complex and that their difficulty is related to their sheer size.

7.3 Random Games

Table 1 shows no differences between the algorithms for the fully random games.
Tangle learning learns no tangles except dominions for any of these games. This
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agrees with the intuition that the vast number of edges in these games lets
attractor-based algorithms quickly attract large portions of the game.

See Fig. 3 for a cactus plot of the solvers on the larger random games. Only
167 games were solved within 20 min each by Zielonka’s algorithm and only 174
games by priority promotion. See Table 2 for details of the slowest 10 random
games for alternating tangle learning. There is a clear correlation between the
runtime, the number of tangles and the number of turns. One game is particularly
interesting, as it requires significantly more time than the other games.

The presence of one game that is much more difficult is a feature of using
random games. It is likely that if we generated a new set of random games, we
would obtain different results. This could be ameliorated by experimenting on
thousands of random games and even then it is still a game of chance whether
some of these random games are significantly more difficult than the others.

Table 2. The 10 hardest random games for the atl algorithm, with time in seconds
and size in number of vertices.

Time 543 148 121 118 110 83 81 73 68 52

Tangles 4,018 1,219 737 560 939 337 493 309 229 384

Turns 91 56 23 25 30 12 18 10 10 18

Size 1M 1M 700K 1M 700K 1M 1M 1M 1M 1M

8 Tangles in Other Algorithms

We argue that tangles play a fundamental role in various other parity game
solving algorithms. We refer to [7] for descriptions of these algorithms.

8.1 Small Progress Measures

The small progress measures algorithm [17] iteratively performs local updates
to vertices until a fixed point is reached. Each vertex is equipped with some
measure that records a statistic of the best game either player knows that they
can play from that vertex so far. By updating measures based on the successors,
they essentially play the game backwards. When they can no longer perform
updates, the final measures indicate the winning player of each vertex.

The measures in small progress measures record how often each even priority
is encountered along the most optimal play (so far) until a higher priority is
encountered. As argued in [7,14], player Even tries to visit vertices with even
priorities as often as possible, while prioritizing plays with more higher even
priorities. This often resets progress for lower priorities. Player Odd has the
opposite goal, i.e., player Odd prefers to play to a lower even priority to avoid
a higher even priority, even if the lower priority is visited infinitely often. When
the measures record a play from some vertex that visits more vertices with some
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even priority than exist in the game, this indicates that player Even can force
player Odd into a cycle, unless they concede and play to a higher even priority. A
mechanism called cap-and-carryover [7] ensures via slowly rising measures that
the opponent is forced to play to a higher even priority.

We argue that when small progress measures finds cycles of some priority p,
this is due to the presence of a p-tangle, namely precisely those vertices whose
measures increase beyond the number of vertices with priority p, since these
measures can only increase so far in the presence of cycles out of which the
opponent cannot escape except by playing to vertices with a higher even priority.

One can now understand small progress measures as follows. The algorithm
indirectly searches for tangles of player Even, and then searches for the best
escape for player Odd by playing to the lowest higher even priority. If no such
escape exists for a tangle, then the measures eventually rise to �, indicating that
player Even has a dominion. Whereas tangle learning is affected by distractions,
small progress measures is driven by the dual notion of aversions, i.e., high even
vertices that player Odd initially tries to avoid. The small progress measures
algorithm tends to find tangles repeatedly, especially when they are nested.

8.2 Quasi-polynomial Time Progress Measures

The quasi-polynomial time progress measures algorithm [12] is similar to small
progress measures. This algorithm records the number of dominating even ver-
tices along a play, i.e., such that every two such vertices are higher than all
intermediate vertices. For example, in the path 1213142321563212, all vertices
are dominated by each pair of underlined vertices of even priority. Higher even
vertices are preferred, even if this (partially) resets progress on lower priorities.

Tangles play a similar role as with small progress measures. The presence of
a tangle lets the value iteration procedure increase the measure up to the point
where the other player “escapes” the tangle via a vertex outside of the tangle.
This algorithm has a similar weakness to nested tangles, but it is less severe
as progress on lower priorities is often retained. In fact, the lower bound game
in [12], for which the quasi-polynomial time algorithm is slow, is precisely based
on nested tangles and is easily solved by tangle learning.

8.3 Strategy Improvement

As argued by Fearnley [10], tangles play a fundamental role in the behavior of
strategy improvement. Fearnley writes that instead of viewing strategy improve-
ment as a process that tries to increase valuations, one can view it as a process
that tries to force “consistency with snares” [10, Sect. 6], i.e., as a process that
searches for escapes from tangles.

8.4 Priority Promotion

Priority promotion [3,5] computes a top-down α-maximal decomposition and
identifies “closed α-regions”, i.e., regions where the losing player cannot escape to
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lower regions. A closed α-region is essentially a collection of possibly unconnected
tangles and vertices that are attracted to these tangles. Priority promotion then
promotes the closed region to the lowest higher region that the losing player can
play to, i.e., the lowest region that would attract one of the tangles in the region.
Promoting is different from attracting, as tangles in a region can be promoted
to a priority that they are not attracted to. Furthermore, priority promotion has
no mechanism to remember tangles, so the same tangle can be discovered many
times. This is somewhat ameliorated in extensions such as region recovery [2] and
delayed promotion [1], which aim to decrease how often regions are recomputed.

Priority promotion has a good practical performance for games where com-
puting and attracting individual tangles is not necessary, e.g., when tangles are
only attracted once and all tangles in a closed region are attracted to the same
higher region, as is the case with the benchmark games of [19].

8.5 Zielonka’s Recursive Algorithm

Zielonka’s recursive algorithm [25] also computes a top-down α-maximal decom-
position, but instead of attracting from lower regions to higher regions, the algo-
rithm attracts from higher regions to tangles in the subgame. Essentially, the
algorithm starts with the tangles in the lowest region and attracts from higher
regions to these tangles. When vertices from a higher α-region are attracted to
tangles of player α, progress for player α is reset. Zielonka’s algorithm also has
no mechanism to store tangles and games that are exponential for Zielonka’s
algorithm, such as in [4], are trivially solved by tangle learning.

9 Conclusions

We introduced the notion of a tangle as a subgraph of the game where one
player knows how to win all cycles. We showed how tangles and nested tangles
play a fundamental role in various parity game algorithms. These algorithms
are not explicitly aware of tangles and can thus repeatedly explore the same
tangles. We proposed a novel algorithm called tangle learning, which identifies
tangles in a parity game and then uses these tangles to attract sets of vertices
at once. The key insight is that tangles can be used with the attractor to form
bigger (nested) tangles and, eventually, dominions. We evaluated tangle learning
in a comparison with priority promotion and Zielonka’s recursive algorithm and
showed that tangle learning is competitive for model checking and equivalence
checking games, and outperforms other solvers for large random games.

We repeat Fearnley’s assertion [10] that “a thorough and complete under-
standing of how snares arise in a game is a necessary condition for devising a
polynomial time algorithm for these games”. Fearnley also formulated the chal-
lenge to give a clear formulation of how the structure of tangles in a given game
affects the difficulty of solving it. We propose that a difficult game for tangle
learning must be one that causes alternating tangle learning to have many turns
before a dominion is found.
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Abstract. We propose δ-complete decision procedures for solving sat-
isfiability of nonlinear SMT problems over real numbers that con-
tain universal quantification and a wide range of nonlinear functions.
The methods combine interval constraint propagation, counterexample-
guided synthesis, and numerical optimization. In particular, we show
how to handle the interleaving of numerical and symbolic computation
to ensure delta-completeness in quantified reasoning. We demonstrate
that the proposed algorithms can handle various challenging global opti-
mization and control synthesis problems that are beyond the reach of
existing solvers.

1 Introduction

Much progress has been made in the framework of delta-decision procedures for
solving nonlinear Satisfiability Modulo Theories (SMT) problems over real num-
bers [1,2]. Delta-decision procedures allow one-sided bounded numerical errors,
which is a practically useful relaxation that significantly reduces the computa-
tional complexity of the problems. With such relaxation, SMT problems with
hundreds of variables and highly nonlinear constraints (such as differential equa-
tions) have been solved in practical applications [3]. Existing work in this direc-
tion has focused on satisfiability of quantifier-free SMT problems. Going one
level up, SMT problems with both free and universally quantified variables,
which correspond to ∃∀-formulas over the reals, are much more expressive.
For instance, such formulas can encode the search for robust control laws in
highly nonlinear dynamical systems, a central problem in robotics. Non-convex,
multi-objective, and disjunctive optimization problems can all be encoded as
∃∀-formulas, through the natural definition of “finding some x such that for all
other x′, x is better than x′ with respect to certain constraints.” Many other
examples from various areas are listed in [4].

Counterexample-Guided Inductive Synthesis (CEGIS) [5] is a framework for
program synthesis that can be applied to solve generic exists-forall problems. The
c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 219–235, 2018.
https://doi.org/10.1007/978-3-319-96142-2_15
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idea is to break the process of solving ∃∀-formulas into a loop between synthe-
sis and verification. The synthesis procedure finds solutions to the existentially
quantified variables and gives the solutions to the verifier to see if they can be
validated, or falsified by counterexamples. The counterexamples are then used
as learned constraints for the synthesis procedure to find new solutions. This
method has been shown effective for many challenging problems, frequently gen-
erating more optimized programs than the best manual implementations [5].

A direct application of CEGIS to decision problems over real numbers, how-
ever, suffers from several problems. CEGIS is complete in finite domains because
it can explicitly enumerate solutions, which can not be done in continuous
domains. Also, CEGIS ensures progress by avoiding duplication of solutions,
while due to numerical sensitivity, precise control over real numbers is difficult.
In this paper we propose methods that bypass such difficulties.

We propose an integration of the CEGIS method in the branch-and-prune
framework as a generic algorithm for solving nonlinear ∃∀-formulas over real
numbers and prove that the algorithm is δ-complete. We achieve this goal by
using CEGIS-based methods for turning universally-quantified constraints into
pruning operators, which is then used in the branch-and-prune framework for the
search for solutions on the existentially-quantified variables. In doing so, we take
special care to ensure correct handling of numerical errors in the computation,
so that δ-completeness can be established for the whole procedure.

The paper is organized as follows. We first review the background, and then
present the details of the main algorithm in Sect. 3. We then give a rigorous
proof of the δ-completeness of the procedure in Sect. 4. We demonstrated the
effectiveness of the procedures on various global optimization and Lyapunov
function synthesis problems in Sect. 5.

Related Work. Quantified formulas in real arithmetic can be solved using sym-
bolic quantifier elimination (using cylindrical decomposition [6]), which is known
to have impractically high complexity (double exponential [7]), and can not han-
dle problems with transcendental functions. State-of-the-art SMT solvers such
as CVC4 [8] and Z3 [9] provide quantifier support [10–13] but they are lim-
ited to decidable fragments of first-order logic. Optimization Modulo Theories
(OMT) is a new field that focuses on solving a restricted form of quantified
reasoning [14–16], focusing on linear formulas. Generic approaches to solving
exists-forall problems such as [17] are generally based on CEGIS framework,
and not intended to achieve completeness. Solving quantified constraints has
been explored in the constraint solving community [18]. In general, existing work
has not proposed algorithms that intend to achieve any notion of completeness
for quantified problems in nonlinear theories over the reals.

2 Preliminaries

2.1 Delta-Decisions and CNF∀-Formulas

We consider first-order formulas over real numbers that can contain arbitrary
nonlinear functions that can be numerically approximated, such as polynomials,
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exponential, and trignometric functions. Theoretically, such functions are called
Type-2 computable functions [19]. We write this language as LRF , formally
defined as:

Definition 1 (The LRF Language). Let F be the set of Type-2 computable
functions. We define LRF to be the following first-order language:

t := x | f(t), where f ∈ F , possibly 0-ary (constant);
ϕ := t(x) > 0 | t(x) ≥ 0 | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xiϕ | ∀xiϕ.

Remark 1. Negations are not needed as part of the base syntax, as it can be
defined through arithmetic: ¬(t > 0) is simply −t ≥ 0. Similarly, an equality
t = 0 is just t ≥ 0∧−t ≥ 0. In this way we can put the formulas in normal forms
that are easy to manipulate.

We will focus on the ∃∀-formulas in LRF in this paper. Decision problems for
such formulas are equivalent to satisfiability of SMT with universally quantified
variables, whose free variables are implicitly existentially quantified.

It is clear that, when the quantifier-free part of an ∃∀ formula is in Conjunc-
tive Normal Form (CNF), we can always push the universal quantifiers inside
each conjunct, since universal quantification commute with conjunctions. Thus
the decision problem for any ∃∀-formula is equivalent to the satisfiability of
formulas in the following normal form:

Definition 2 (CNF∀ Formulas in LRF ). We say an LRF -formula ϕ is in the
CNF∀, if it is of the form

ϕ(x) :=
m∧

i=0

(
∀y(

ki∨

j=0

cij(x,y))
)

(1)

where cij are atomic constraints. Each universally quantified conjunct of the
formula, i.e.,

∀y(
ki∨

j=0

cij(x,y))

is called as a ∀-clause. Note that ∀-clauses only contain disjunctions and no
nested conjunctions. If all the ∀-clauses are vacuous, we say ϕ(x) is a ground
SMT formula.

The algorithms described in this paper will assume that an input formula is in
CNF∀ form. We can now define the δ-satisfiability problems for CNF∀-formulas.

Definition 3 (Delta-Weakening/Strengthening). Let δ ∈ Q
+ be arbitrary.

Consider an arbitrary CNF∀-formula of the form

ϕ(x) :=
m∧

i=0

(
∀y(

ki∨

j=0

fij(x,y) ◦ 0)
)
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where ◦ ∈ {>,≥}. We define the δ-weakening of ϕ(x) to be:

ϕ−δ(x) :=
m∧

i=0

(
∀y(

ki∨

j=0

fij(x,y) ≥ −δ)
)
.

Namely, we weaken the right-hand sides of all atomic formulas from 0 to −δ.
Note how the difference between strict and nonstrict inequality becomes unim-
portant in the δ-weakening. We also define its dual, the δ-strengthening of ϕ(x):

ϕ+δ(x) :=
m∧

i=0

(
∀y(

ki∨

j=0

fij(x,y) ≥ +δ)
)
.

Since the formulas in the normal form no longer contain negations, the relaxation
on the atomic formulas is implied by the original formula (and thus weaker), as
was easily shown in [1].

Proposition 1. For any ϕ and δ ∈ Q
+, ϕ−δ is logically weaker, in the sense

that ϕ → ϕ−δ is always true, but not vice versa.

Example 1. Consider the formula

∀y f(x, y) = 0.

It is equivalent to the CNF∀-formula

(∀y(−f(x, y) ≥ 0) ∧ ∀y(f(x, y) ≥ 0))

whose δ-weakening is of the form

(∀y(−f(x, y) ≥ −δ) ∧ ∀y(f(x, y) ≥ −δ))

which is logically equivalent to

∀y(‖f(x, y)‖ ≤ δ).

We see that the weakening of f(x, y) = 0 by ‖f(x, y)‖ ≤ δ defines a natural
relaxation.

Definition 4 (Delta-Completeness). Let δ ∈ Q
+ be arbitrary. We say an

algorithm is δ-complete for ∃∀-formulas in LRF , if for any input CNF∀-formula
ϕ, it always terminates and returns one of the following answers correctly:

– unsat: ϕ is unsatisfiable.
– δ-sat: ϕ−δ is satisfiable.

When the two cases overlap, it can return either answer.
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Algorithm 1. Branch-and-Prune
1: function Solve(f(x) = 0, Bx, δ)
2: S ← {Bx}
3: while S �= ∅ do
4: B ← S.pop()

5: B′ ← FixedPoint
(
λB.B ∩ Prune(B, f(x) = 0), B

)

6: if B′ �= ∅ then
7: if ‖f(B′)‖ > δ then
8: {B1, B2} ← Branch(B′)
9: S.push({B1, B2})

10: else
11: return δ-sat
12: end if
13: end if
14: end while
15: return unsat
16: end function

2.2 The Branch-and-Prune Framework

A practical algorithm that has been shown to be δ-complete for ground SMT
formulas is the branch-and-prune method developed for interval constraint prop-
agation [20]. A description of the algorithm in the simple case of an equality
constraint is in Algorithm 1.

The procedure combines pruning and branching operations. Let B be the set
of all boxes (each variable assigned to an interval), and C a set of constraints in
the language. FixedPoint(g, B) is a procedure computing a fixedpoint of a function
g : B → B with an initial input B. A pruning operation Prune : B ×C → B takes
a box B ∈ B and a constraint as input, and returns an ideally smaller box B′ ∈ B
(Line 5) that is guaranteed to still keep all solutions for all constraints if there is
any. When such pruning operations do not make progress, the Branch procedure
picks a variable, divides its interval by halves, and creates two sub-problems B1

and B2 (Line 8). The procedure terminates if either all boxes have been pruned
to be empty (Line 15), or if a small box whose maximum width is smaller than
a given threshold δ has been found (Line 11). In [2], it has been proved that
Algorithm 1 is δ-complete iff the pruning operators satisfy certain conditions for
being well-defined (Definition 5).

3 Algorithm

The core idea of our algorithm for solving CNF∀-formulas is as follows. We
view the universally quantified constraints as a special type of pruning opera-
tors, which can be used to reduce possible values for the free variables based
on their consistency with the universally-quantified variables. We then use these
special ∀-pruning operators in an overall branch-and-prune framework to solve
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the full formula in a δ-complete way. A special technical difficulty for ensuring
δ-completeness is to control numerical errors in the recursive search for coun-
terexamples, which we solve using double-sided error control. We also improve
quality of counterexamples using local-optimization algorithms in the ∀-pruning
operations, which we call locally-optimized counterexamples.

In the following sections we describe these steps in detail. For notational
simplicity we will omit vector symbols and assume all variable names can directly
refer to vectors of variables.

3.1 ∀-Clauses as Pruning Operators

Consider an arbitrary CNF∀-formula1

ϕ(x) :=
m∧

i=0

(
∀y(

ki∨

j=0

fij(x, y) ≥ 0)
)
.

It is a conjunction of ∀-clauses as defined in Definition 2. Consequently, we
only need to define pruning operators for ∀-clauses so that they can be used in
a standard branch-and-prune framework. The full algorithm for such pruning
operation is described in Algorithm 2.

Algorithm 2. ∀-Clause Pruning

1: function Prune(Bx, By, ∀y
∨k

i=0 fi(x, y) ≥ 0, δ′, ε, δ)
2: repeat
3: Bprev

x ← Bx

4: ψ ← ∧
i fi(x, y) < 0

5: ψ+ε ← Strengthen(ψ, ε)
6: b ← Solve(y, ψ+ε, δ′) � 0 < δ′ < ε < δ should hold.
7: if b = ∅ then
8: return Bx � No counterexample found, stop pruning.
9: end if

10: for i ∈ {0, ..., k} do

11: Bi ← Bx ∩ Prune
(
Bx, fi(x, b) ≥ 0

)

12: end for
13: Bx ← ⊔k

i=0 Bi

14: until Bx �= Bprev
x

15: return Bx

16: end function

In Algorithm 2, the basic idea is to use special y values that witness the
negation of the original constraint to prune the box assignment on x. The two
core steps are as follows.
1 Note that without loss of generality we only use nonstrict inequality here, since in

the context of δ-decisions the distinction between strict and nonstrict inequalities as
not important, as explained in Definition 3.
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1. Counterexample generation (Line 4 to 9). The query for a counterexample ψ
is defined as the negation of the quantifier-free part of the constraint (Line 4).
The method Solve(y, ψ, δ) means to obtain a solution for the variables y
δ-satisfying the logic formula ψ. When such a solution is found, we have
a counterexample that can falsify the ∀-clause on some choice of x. Then we
use this counterexample to prune on the domain of x, which is currently Bx.
The strengthening operation on ψ (Line 5), as well as the choices of ε and δ′,
will be explained in the next subsection.

2. Pruning on x (Line 10 to 13). In the counterexample generation step, we have
obtained a counterexample b. The pruning operation then uses this value to
prune on the current box domain Bx. Here we need to be careful about the
logical operations. For each constraint, we need to take the intersection of the
pruned results on the counterexample point (Line 11). Then since the original
clause contains the disjunction of all constraints, we need to take the box-hull
(
⊔

) of the pruned results (Line 13).

We can now put the pruning operators defined for all ∀-clauses in the overall
branch-and-prune framework shown in Algorithm 1.

The pruning algorithms are inspired by the CEGIS loop, but are different
in multiple ways. First, we never explicitly compute any candidate solution for
the free variables. Instead, we only prune on their domain boxes. This ensures
that the size of domain box decreases (together with branching operations), and
the algorithm terminates. Secondly, we do not explicitly maintain a collection
of constraints. Each time the pruning operation works on previous box – i.e.,
the learning is done on the model level instead of constraint level. On the other
hand, being unable to maintain arbitrary Boolean combinations of constraints
requires us to be more sensitive to the type of Boolean operations needed in the
pruning results, which is different from the CEGIS approach that treats solvers
as black boxes.

3.2 Double-Sided Error Control

To ensure the correctness of Algorithm 2, it is necessary to avoid spurious coun-
terexamples which do not satisfy the negation of the quantified part in a ∀-clause.
We illustrate this condition by consider a wrong derivation of Algorithm 2 where
we do not have the strengthening operation on Line 5 and try to find a coun-
terexample by directly executing b ← Solve(y, ψ =

∧k
i=0 fi(x, y) < 0, δ). Note

that the counterexample query ψ can be highly nonlinear in general and not
included in a decidable fragment. As a result, it must employ a delta-decision
procedure (i.e. Solve with δ′ ∈ Q

+) to find a counterexample. A consequence of
relying on a delta-decision procedure in the counterexample generation step is
that we may obtain a spurious counterexample b such that for some x = a:

k∧

i=0

fi(a, b) ≤ δ instead of
k∧

i=0

fi(a, b) < 0.
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Consequently the following pruning operations fail to reduce their input boxes
because a spurious counterexample does not witness any inconsistencies between
x and y. As a result, the fixedpoint loop in this ∀-Clause pruning algorithm
will be terminated immediately after the first iteration. This makes the outer-
most branch-and-prune framework (Algorithm 1), which employs this pruning
algorithm, solely rely on branching operations. It can claim that the problem
is δ-satisfiable while providing an arbitrary box B as a model which is small
enough (‖B‖ ≤ δ) but does not include a δ-solution.

To avoid spurious counterexamples, we directly strengthen the counterexam-
ple query with ε ∈ Q

+ to have

ψ+ε :=
k∧

i=0

fi(a, b) ≤ −ε.

Then we choose a weakening parameter δ′ ∈ Q in solving the strengthened for-
mula. By analyzing the two possible outcomes of this counterexample search, we
show the constraints on δ′, ε, and δ which guarantee the correctness of Algo-
rithm 2:

– δ′-sat case: We have a and b such that
∧k

i=0 fi(a, b) ≤ −ε + δ′. For y = b to
be a valid counterexample, we need −ε + δ′ < 0. That is, we have

δ′ < ε. (2)

In other words, the strengthening factor ε should be greater than the weak-
ening parameter δ′ in the counterexample search step.

– unsat case: By checking the absence of counterexamples, it proved that
∀y

∨k
i=0 fi(x, y) ≥ −ε for all x ∈ Bx. Recall that we want to show that

∀y
∨k

i=0 fi(x, y) ≥ −δ holds for some x = a when Algorithm 1 uses this
pruning algorithm and returns δ-sat. To ensure this property, we need the
following constraint on ε and δ:

ε < δ. (3)

3.3 Locally-Optimized Counterexamples

The performance of the pruning algorithm for CNF∀-formulas depends on the
quality of the counterexamples found during the search.

Figure 1a illustrates this point by visualizing a pruning process for an uncon-
strained minimization problem, ∃x ∈ X0∀y ∈ X0f(x) ≤ f(y). As it finds a series
of counterexamples CE1, CE2, CE3, and CE4, the pruning algorithms uses those
counterexamples to contract the interval assignment on X from X0 to X1, X2,
X3, and X4 in sequence. In the search for a counterexample (Line 6 of Algo-
rithm 2), it solves the strengthened query, f(x) > f(y) + δ. Note that the query
only requires a counterexample y = b to be δ-away from a candidate x while
it is clear that the further a counterexample is away from candidates, the more
effective the pruning algorithm is.
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Fig. 1. Illustrations of the pruning algorithm for CNF∀-formula with and without using
local optimization.

Based on this observation, we present a way to improve the performance
of the pruning algorithm for CNF∀-formulas. After we obtain a counterexam-
ple b, we locally-optimize it with the counterexample query ψ so that it “fur-
ther violates” the constraints. Figure 1b illustrates this idea. The algorithm first
finds a counterexample CE1 then refines it to CE′

1 by using a local-optimization
algorithm (similarly, CE2 → CE′

2). Clearly, this refined counterexample gives a
stronger pruning power than the original one. This refinement process can also
help the performance of the algorithm by reducing the number of total iterations
in the fixedpoint loop.

The suggested method is based on the assumption that local-optimization
techniques are cheaper than finding a global counterexample using interval prop-
agation techniques. In our experiments, we observed that this assumption holds
practically. We will report the details in Sect. 5.

4 δ-Completeness

We now prove that the proposed algorithm is δ-complete for arbitrary CNF∀

formulas in LRF . In the work of [2], δ-completeness has been proved for branch-
and-prune for ground SMT problems, under the assumption that the pruning
operators are well-defined. Thus, the key for our proof here is to show that the
∀-pruning operators satisfy the conditions of well-definedness.

The notion of a well-defined pruning operator is defined in [2] as follows.

Definition 5. Let φ be a constraint, and B be the set of all boxes in R
n. A

pruning operator is a function Prune : B × C → B. We say such a pruning
operator is well-defined, if for any B ∈ B, the following conditions are true:

1. Prune(B,φ) ⊆ B.
2. B ∩ {a ∈ R

n : φ(a) is true.} ⊆ Prune(B,φ).
3. Write Prune(B,φ) = B′. There exists a constant c ∈ Q

+, such that, if B′ �= ∅
and ‖B′‖ < ε for some ε ∈ Q

+, then for all a ∈ B′, φ−cε(a) is true.
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We will explain the intuition behind these requirements in the next proof, which
aims to establish that Algorithm 2 defines a well-defined pruning operator.

Lemma 1 (Well-Definedness of ∀-Pruning). Consider an arbitrary ∀-
clause in the generic form

c(x) := ∀y
(
f1(x, y) ≥ 0 ∨ ... ∨ fk(x, y) ≥ 0

)
.

Suppose the pruning operators for f1 ≥ 0, ..., fk ≥ 0 are well-defined, then the
∀-pruning operation for c(x) as described in Algorithm 2 is well-defined.

Proof. We prove that the pruning operator defined by Algorithm 2 satisfies the
three conditions in Definition 5. Let B0, ..., Bk be a sequence of boxes, where B0

is the input box Bx and Bk is the returned box B, which is possibly empty.
The first condition requires that the pruning operation for c(x) is reductive.

That is, we want to show that Bx ⊆ Bprev
x holds in Algorithm 2. If it does not

find a counterexample (Line 8), we have Bx = Bprev
x . So the condition holds

trivially. Consider the case where it finds a counterexample b. The pruned box
Bx is obtained through box-hull of all the Bi boxes (Line 13), which are results
of pruning on Bprev

x using ordinary constraints of the form fi(x, b) ≥ 0 (Line 11),
for a counterexample b. Following the assumption that the pruning operators are
well-defined for each ordinary constraint fi used in the algorithm, we know that
Bi ⊆ Bprev

x holds as a loop invariant for the loop from Line 10 to Line 12. Thus,
taking the box-hull of all the Bi, we obtain Bx that is still a subset of Bprev

x .
The second condition requires that the pruning operation does not eliminate

real solutions. Again, by the assumption that the pruning operation on Line 11
does not lose any valid assignment on x that makes the ∀-clause true. In fact,
since y is universally quantified, any choice of assignment y = b will preserve
solution on x as long as the ordinary pruning operator is well-defined. Thus, this
condition is easily satisfied.

The third condition is the most nontrivial to establish. It ensures that when
the pruning operator does not prune a box to the empty set, then the box should
not be “way off”, and in fact, should contain points that satisfy an appropriate
relaxation of the constraint. We can say this is a notion of “faithfulness” of
the pruning operator. For constraints defined by simple continuous functions,
this can be typically guaranteed by the modulus of continuity of the function
(Lipschitz constants as a special case). Now, in the case of ∀-clause pruning, we
need to prove that the faithfulness of the ordinary pruning operators that are
used translates to the faithfulness of the ∀-clause pruning results. First of all, this
condition would not hold, if we do not have the strengthening operation when
searching for counterexamples (Line 5). As is shown in Example 1, because of
the weakening that δ-decisions introduce when searching for a counterexample,
we may obtain a spurious counterexample that does not have pruning power. In
other words, if we keep using a wrong counterexample that already satisfies the
condition, then we are not able to rule out wrong assignments on x. Now, since
we have introduced ε-strengthening at the counterexample search, we know that
b obtained on Line 6 is a true counterexample. Thus, for some x = a, fi(a, b) < 0
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for every i. By assumption, the ordinary pruning operation using b on Line 11
guarantees faithfulness. That is, suppose the pruned result Bi is not empty and
‖Bi‖ ≤ ε, then there exists constant ci such that fi(x, b) ≥ −ciε is true. Thus,
we can take the c = mini ci as the constant for the pruning operator defined by
the full clause, and conclude that the disjunction

∨k
i=0 fi(x, y) < −cε holds for

‖Bx‖ ≤ ε.

Using the lemma, we follow the results in [2], and conclude that the branch-and-
prune method in Algorithm 1 is delta-complete:

Theorem 1 (δ-Completeness). For any δ ∈ Q
+, using the proposed ∀-

pruning operators defined in Algorithm 2 in the branch-and-prune framework
described in Algorithm 1 is δ-complete for the class of CNF∀-formulas in LRF ,
assuming that the pruning operators for all the base functions are well-defined.

Proof. Following Theorem 4.2 (δ-Completeness of ICPε) in [2], a branch-and-
prune algorithm is δ-complete iff the pruning operators in the algorithm are
all well-defined. Following Lemma 1, Algorithm 2 always defines well-defined
pruning operators, assuming the pruning operators for the base functions are
well-defined. Consequently, Algorithms 2 and 1 together define a delta-complete
decision procedure for CNF∀-problems in LRF .

5 Evaluation

Implementation. We implemented the algorithms on top of dReal [21], an open-
source delta-SMT framework. We used IBEX-lib [22] for interval constraints
pruning and CLP [23] for linear programming. For local optimization, we used
NLopt [24]. In particular, we used SLSQP (Sequential Least-Squares Quadratic
Programming) local-optimization algorithm [25] for differentiable constraints
and COBYLA (Constrained Optimization BY Linear Approximations) local-
optimization algorithm [26] for non-differentiable constraints. The prototype
solver is able to handle ∃∀-formulas that involve most standard elementary
functions, including power, exp, log,

√·, trigonometric functions (sin, cos, tan),
inverse trigonometric functions (arcsin, arccos, arctan), hyperbolic functions
(sinh, cosh, tanh), etc.

Experiment environment. All experiments were ran on a 2017 Macbook Pro
with 2.9 GHz Intel Core i7 and 16 GB RAM running MacOS 10.13.4. All code
and benchmarks are available at https://github.com/dreal/CAV18.

Parameters. In the experiments, we chose the strengthening parameter ε =
0.99δ and the weakening parameter in the counterexample search δ′ = 0.98δ. In
each call to NLopt, we used 1e–6 for both of absolute and relative tolerances
on function value, 1e–3 s for a timeout, and 100 for the maximum number of
evaluations. These values are used as stopping criteria in NLopt.

https://github.com/dreal/CAV18
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Table 1. Experimental results for nonlinear global optimization problems: The first
19 problems (Ackley 2D – Zettl) are unconstrained optimization problems and the last
five problems (Rosenbrock Cubic – Simionescu) are constrained optimization problems.
We ran our prototype solver over those instances with and without local-optimization
option (“L-Opt.” and “No L-Opt.” columns) and compared the results. We chose δ =
0.0001 for all instances.

Name Solution Time (sec)

Global No L-Opt. L-Opt. No L-Opt. L-Opt. Speed up

Ackley 2D 0.00000 0.00000 0.00000 0.0579 0.0047 12.32

Ackley 4D 0.00000 0.00005 0.00000 8.2256 0.1930 42.62

Aluffi Pentini −0.35230 −0.35231 −0.35239 0.0321 0.1868 0.17

Beale 0.00000 0.00003 0.00000 0.0317 0.0615 0.52

Bohachevsky1 0.00000 0.00006 0.00000 0.0094 0.0020 4.70

Booth 0.00000 0.00006 0.00000 0.5035 0.0020 251.75

Brent 0.00000 0.00006 0.00000 0.0095 0.0017 5.59

Bukin6 0.00000 0.00003 0.00003 0.0093 0.0083 1.12

Cross in tray −2.06261 −2.06254 −2.06260 0.5669 0.1623 3.49

Easom −1.00000 −1.00000 −1.00000 0.0061 0.0030 2.03

EggHolder −959.64070 −959.64030 −959.64031 0.0446 0.0211 2.11

Holder Table 2 −19.20850 −19.20846 −19.20845 52.9152 41.7004 1.27

Levi N13 0.00000 0.00000 0.00000 0.1383 0.0034 40.68

Ripple 1 −2.20000 −2.20000 −2.20000 0.0059 0.0065 0.91

Schaffer F6 0.00000 0.00004 0.00000 0.0531 0.0056 9.48

Testtube holder −10.87230 −10.87227 −10.87230 0.0636 0.0035 18.17

Trefethen −3.30687 −3.30681 −3.30685 3.0689 1.4916 2.06

W Wavy 0.00000 0.00000 0.00000 0.1234 0.0138 8.94

Zettl −0.00379 −0.00375 −0.00379 0.0070 0.0069 1.01

Rosenbrock Cubic 0.00000 0.00005 0.00002 0.0045 0.0036 1.25

Rosenbrock Disk 0.00000 0.00002 0.00000 0.0036 0.0028 1.29

Mishra Bird −106.76454 −106.76449 −106.76451 1.8496 0.9122 2.03

Townsend −2.02399 −2.02385 −2.02390 2.6216 0.5817 4.51

Simionescu −0.07262 −0.07199 −0.07200 0.0064 0.0048 1.33

5.1 Nonlinear Global Optimization

We encoded a range of highly nonlinear ∃∀-problems from constrained and
unconstrained optimization literature [27,28]. Note that the standard optimiza-
tion problem

min f(x) s.t. ϕ(x), x ∈ R
n,

can be encoded as the logic formula:

ϕ(x) ∧ ∀y
(
ϕ(y) → f(x) ≤ f(y)

)
.
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Fig. 2. Nonlinear global optimization examples.

As plotted in Fig. 2, these optimization problems are non-trivial: they are
highly non-convex problems that are designed to test global optimization or
genetic programming algorithms. Many such functions have a large number of
local minima. For example, Ripple 1 Function [27].

f(x1, x2) =
2∑

i=1

−e−2(log 2)( x1−0.1
0.8 )2(sin6(5πxi) + 0.1 cos2(500πxi))

defined in xi ∈ [0, 1] has 252004 local minima with the global minima
f(0.1, 0.1) = −2.2. As a result, local-optimization algorithms such as gradient-
descent would not work for these problems for itself. By encoding them as ∃∀-
problems, we can perform guaranteed global optimization on these problems.
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Table 1 provides a summary of the experiment results. First, it shows that we
can find minimum values which are close to the known global solutions. Second,
it shows that enabling the local-optimization technique speeds up the solving
process significantly for 20 instances out of 23 instances.

5.2 Synthesizing Lyapunov Function for Dynamical System

We show that the proposed algorithm is able to synthesize Lyapunov functions
for nonlinear dynamic systems described by a set of ODEs:

ẋ (t) = fi(x (t)), ∀x (t) ∈ Xi.

Our approach is different from a recent related-work [29] where they used
dReal only to verify a candidate function which was found by a simulation-
guided algorithm. In contrast, we want to do both of search and verify steps by
solving a single ∃∀-formula. Note that to verify a Lyapunov candidate function
v : X → R

+, v satisfies the following conditions:

∀x ∈ X \ 0 v(x )(0) = 0

∀x ∈ X ∇v(x (t))T · fi(x (t)) ≤ 0.

We assume that a Lyapunov function is a polynomial of some fixed degrees
over x , that is, v(x ) = zTPz where z is a vector of monomials over x and
P is a symmetric matrix. Then, we can encode this synthesis problem into the
∃∀-formula:

∃P [(v(x ) = (zTPz ))∧
(∀x ∈ X \ 0 v(x )(0) = 0)∧
(∀x ∈ X ∇v(x (t))T · fi(x (t)) ≤ 0)]

In the following sections, we show that we can handle two examples in [29].

Normalized Pendulum. Given a standard pendulum system with normalized
parameters [

ẋ1

ẋ2

]
=

[
x2

− sin(x1) − x2

]

and a quadratic template for a Lyapunov function v(x ) = xTPx = c1x1x2 +
c2x

2
1 +c3x

2
2, we can encode this synthesis problem into the following ∃∀-formula:

∃c1c2c3 ∀x1x2 [((50c3x1x2 + 50x2
1c1 + 50x2

2c2 > 0.5)∧
(100c1x1x2 + 50x2c3 + (−x2 − sin(x1)(50x1c3 + 100x2c2)) < −0.5))∨
¬((0.01 ≤ x2

1 + x2
2) ∧ (x2

1 + x2
2 ≤ 1))]

Our prototype solver takes 44.184 s to synthesize the following function as a
solution to the problem for the bound ‖x‖ ∈ [0.1, 1.0] and ci ∈ [0.1, 100] using
δ = 0.05:

v = 40.6843x1x2 + 35.6870x2
1 + 84.3906x2

2.
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Damped Mathieu System. Mathieu dynamics are time-varying and defined
by the following ODEs:

[
ẋ1

ẋ2

]
=

[
x2

−x2 − (2 + sin(t))x1

]
.

Using a quadratic template for a Lyapunov function v(x ) = xTPx =
c1x1x2 + c2x

2
1 + c3x

2
2, we can encode this synthesis problem into the following

∃∀-formula:

∃c1c2c3 ∀x1x2t [(50x1x2c2 + 50x2
1c1 + 50x2

2c3 > 0)∧
(100c1x1x2 + 50x2c2 + (−x2 − x1(2 + sin(t)))(50x1c2 + 100x2c3) < 0)

∨ ¬((0.01 ≤ x2
1 + x2

2) ∧ (0.1 ≤ t) ∧ (t ≤ 1) ∧ (x2
1 + x2

2 ≤ 1))]

Our prototype solver takes 26.533 s to synthesize the following function as a
solution to the problem for the bound ‖x‖ ∈ [0.1, 1.0], t ∈ [0.1, 1.0], and ci ∈
[45, 98] using δ = 0.05:

V = 54.6950x1x2 + 90.2849x2
1 + 50.5376x2

2.

6 Conclusion

We have described delta-decision procedures for solving exists-forall formulas
in the first-order theory over the reals with computable real functions. These
formulas can encode a wide range of hard practical problems such as general
constrained optimization and nonlinear control synthesis. We use a branch-and-
prune framework, and design special pruning operators for universally-quantified
constraints such that the procedures can be proved to be delta-complete, where
suitable control of numerical errors is crucial. We demonstrated the effective-
ness of the procedures on various global optimization and Lyapunov function
synthesis problems.
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Abstract. We present a novel approach for solving quantified bit-vector
formulas in Satisfiability Modulo Theories (SMT) based on computing
symbolic inverses of bit-vector operators. We derive conditions that pre-
cisely characterize when bit-vector constraints are invertible for a rep-
resentative set of bit-vector operators commonly supported by SMT
solvers. We utilize syntax-guided synthesis techniques to aid in estab-
lishing these conditions and verify them independently by using several
SMT solvers. We show that invertibility conditions can be embedded into
quantifier instantiations using Hilbert choice expressions, and give exper-
imental evidence that a counterexample-guided approach for quantifier
instantiation utilizing these techniques leads to performance improve-
ments with respect to state-of-the-art solvers for quantified bit-vector
constraints.

1 Introduction

Many applications in hardware and software verification rely on Satisfiability
Modulo Theories (SMT) solvers for bit-precise reasoning. In recent years, the
quantifier-free fragment of the theory of fixed-size bit-vectors has received a lot
of interest, as witnessed by the number of applications that generate problems
in that fragment and by the high, and increasing, number of solvers that par-
ticipate in the corresponding division of the annual SMT competition. Modeling
properties of programs and circuits, e.g., universal safety properties and pro-
gram invariants, however, often requires the use of quantified bit-vector formulas.
Despite a multitude of applications, reasoning efficiently about such formulas is
still a challenge in the automated reasoning community.

The majority of solvers that support quantified bit-vector logics employ
instantiation-based techniques [8,21,22,25], which aim to find conflicting ground
instances of quantified formulas. For that, it is crucial to select good instantia-
tions for the universal variables, or else the solver may be overwhelmed by the
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number of ground instances generated. For example, consider a quantified for-
mula ψ = ∀x. (x + s �≈ t) where x, s and t denote bit-vectors of size 32. To
prove that ψ is unsatisfiable we can instantiate x with all 232 possible bit-vector
values. However, ideally, we would like to find a proof that requires much fewer
instantiations. In this example, if we instantiate x with the symbolic term t − s
(the inverse of x + s ≈ t when solved for x), we can immediately conclude that
ψ is unsatisfiable since (t − s) + s �≈ t simplifies to false.

Operators in the theory of bit-vectors are not always invertible. However, we
observe it is possible to identify quantifier-free conditions that precisely char-
acterize when they are. We do that for a representative set of operators in the
standard theory of bit-vectors supported by SMT solvers. For example, we have
proven that the constraint x ·s ≈ t is solvable for x if and only if (−s | s) & t ≈ t
is satisfiable. Using this observation, we develop a novel approach for solving
quantified bit-vector formulas that utilizes invertibility conditions to generate
symbolic instantiations. We show that invertibility conditions can be embedded
into quantifier instantiations using Hilbert choice functions in a sound manner.
This approach has compelling advantages with respect to previous approaches,
which we demonstrate in our experiments.

More specifically, this paper makes the following contributions.

– We derive and present invertibility conditions for a representative set of bit-
vector operators that allow us to model all bit-vector constraints in SMT-
LIB [3].

– We provide details on how invertibility conditions can be automatically syn-
thesized using syntax-guided synthesis (SyGuS) [1] techniques, and make pub-
lic 162 available challenge problems for SyGuS solvers that are encodings of
this task.

– We prove that our approach can efficiently reduce a class of quantified for-
mulas, which we call unit linear invertible, to quantifier-free constraints.

– Leveraging invertibility conditions, we implement a novel quantifier instan-
tiation scheme as an extension of the SMT solver CVC4 [2], which shows
improvements with respect to state-of-the-art solvers for quantified bit-vector
constraints.

Related Work. Quantified bit-vector logics are currently supported by the SMT
solvers Boolector [16], CVC4 [2], Yices [7], and Z3 [6] and a Binary Decision Dia-
gram (BDD)-based tool called Q3B [14]. Out of these, only CVC4 and Z3 provide
support for combining quantified bit-vectors with other theories, e.g., the theories
of arrays or real arithmetic. Arbitrarily nested quantifiers are handled by all but
Yices, which only supports bit-vector formulas of the form ∃x∀y. Q[x,y] [8]. For
quantified bit-vectors, CVC4 employs counterexample-guided quantifier instan-
tiation (CEGQI) [22], where concrete models of a set of ground instances and the
negation of the input formula (the counterexamples) serve as instantiations for
the universal variables. In Z3, model-based quantifier instantiation (MBQI) [10]
is combined with a template-based model finding procedure [25]. In contrast to
CVC4, Z3 not only relies on concrete counterexamples as candidates for quan-
tifier instantiation but generalizes these counterexamples to generate symbolic
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instantiations by selecting ground terms with the same model value. Boolec-
tor employs a syntax-guided synthesis approach to synthesize interpretations for
Skolem functions based on a set of ground instances of the formula, and uses a
counterexample refinement loop similar to MBQI [21]. Other counterexample-
guided approaches for quantified formulas in SMT solvers have been considered
by Bjørner and Janota [4] and by Reynolds et al. [23], but they have mostly
targeted quantified linear arithmetic and do not specifically address bit-vectors.
Quantifier elimination for a fragment of bit-vectors that covers modular linear
arithmetic has been recently addressed by John and Chakraborty [13], although
we do not explore that direction in this paper.

2 Preliminaries

We assume the usual notions and terminology of many-sorted first-order logic
with equality (denoted by ≈). Let S be a set of sort symbols, and for every
sort σ ∈ S let Xσ be an infinite set of variables of sort σ. We assume that sets
Xσ are pairwise disjoint and define X as the union of sets Xσ. Let Σ be a
signature consisting of a set Σs ⊆ S of sort symbols and a set Σf of interpreted
(and sorted) function symbols fσ1···σnσ with arity n ≥ 0 and σ1, ..., σn, σ ∈ Σs.
We assume that a signature Σ includes a Boolean sort Bool and the Boolean
constants 	 (true) and ⊥ (false). Let I be a Σ -interpretation that maps: each
σ ∈ Σs to a non-empty set σI (the domain of I), with BoolI = {	,⊥}; each
x ∈ Xσ to an element xI ∈ σI ; and each fσ1···σnσ ∈ Σf to a total function
fI : σI

1 × ... × σI
n → σI if n > 0, and to an element in σI if n = 0. If x ∈ Xσ

and v ∈ σI , we denote by I[x �→ v] the interpretation that maps x to v and is
otherwise identical to I. We use the usual inductive definition of a satisfiability
relation |= between Σ-interpretations and Σ-formulas.

We assume the usual definition of well-sorted terms, literals, and formulas
as Bool terms with variables in X and symbols in Σ, and refer to them as Σ-
terms, Σ-atoms, and so on. A ground term/formula is a Σ-term/formula without
variables. We define x = (x1, ..., xn) as a tuple of variables and write Qxϕ with
Q ∈ {∀,∃} for a quantified formula Qx1 · · · Qxnϕ. We use Lit(ϕ) to denote the
set of Σ-literals of Σ-formula ϕ. For a Σ-term or Σ-formula e, we denote the
free variables of e (defined as usual) as FV(e) and use e[x] to denote that the
variables in x occur free in e. For a tuple of Σ-terms t = (t1, ..., tn), we write
e[t] for the term or formula obtained from e by simultaneously replacing each
occurrence of xi in e by ti. Given a Σ-formula ϕ[x] with x ∈ Xσ, we use Hilbert’s
choice operator ε [12] to describe properties of x. We define a choice function
εx. ϕ[x] as a term where x is bound by ε. In every interpretation I, εx. ϕ[x]
denotes some value v ∈ σI such that I[x �→ v] satisfies ϕ[x] if such values exist,
and denotes an arbitrary element of σI otherwise. This means that the formula
∃x. ϕ[x] ⇔ ϕ[εx. ϕ[x]] is satisfied by every interpretation.

A theory T is a pair (Σ, I), where Σ is a signature and I is a non-empty class
of Σ-interpretations (the models of T ) that is closed under variable reassignment,
i.e., every Σ-interpretation that only differs from an I ∈ I in how it interprets
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Table 1. Set of considered bit-vector operators with corresponding SMT-LIB 2 syntax.

Symbol SMT-LIB syntax Sort

≈, <u, >u, <s, >s =, bvult, bvugt, bvslt, bvsgt σ[n] × σ[n] → Bool

∼ , − bvnot, bvneg σ[n] → σ[n]

&, |, <<, >>, >>a bvand, bvor, bvshl, bvlshr, bvashr σ[n] × σ[n] → σ[n]

+, ·, mod, ÷ bvadd, bvmul, bvurem, bvudiv σ[n] × σ[n] → σ[n]

◦ concat σ[n] × σ[m] → σ[n+m]

[u : l] extract σ[n] → σ[u−l+1], 0 ≤ l ≤ u < n

variables is also in I. A Σ-formula ϕ is T -satisfiable (resp. T -unsatisfiable) if it
is satisfied by some (resp. no) interpretation in I; it is T -valid if it is satisfied by
all interpretations in I. A choice function εx. ϕ[x] is (T -)valid if ∃x. ϕ[x] is (T -)
valid. We refer to a term t as ε -(T -)valid if all occurrences of choice functions in
t are (T -)valid. We will sometimes omit T when the theory is understood from
context.

We will focus on the theory TBV = (ΣBV , IBV ) of fixed-size bit-vectors as
defined by the SMT-LIB 2 standard [3]. The signature ΣBV includes a unique
sort for each positive bit-vector width n, denoted here as σ[n]. Similarly, X[n] is
the set of bit-vector variables of sort σ[n], and XBV is the union of all sets X[n].
We assume that ΣBV includes all bit-vector constants of sort σ[n] for each n,
represented as bit-strings. However, to simplify the notation we will sometimes
denote them by the corresponding natural number in {0, . . . , 2n−1}. All inter-
pretations I ∈ IBV are identical except for the value they assign to variables.
They interpret sort and function symbols as specified in SMT-LIB 2. All function
symbols in Σf

BV are overloaded for every σ[n] ∈ Σs
BV . We denote a ΣBV -term

(or bit-vector term) t of width n as t[n] when we want to specify its bit-width
explicitly. We use maxs[n] or mins[n] for the maximum or minimum signed value
of width n, e.g., maxs[4] = 0111 and mins[4] = 1000. The width of a bit-vector
sort or term is given by the function κ, e.g., κ(σ[n]) = n and κ(t[n]) = n.

Without loss of generality, we consider a restricted set of bit-vector function
symbols (or bit-vector operators) Σf

BV as listed in Table 1. The selection of oper-
ators in this set is arbitrary but complete in the sense that it suffices to express
all bit-vector operators defined in SMT-LIB 2.

3 Invertibility Conditions for Bit-Vector Constraints

This section formally introduces the concept of an invertibility condition and
shows that such conditions can be used to construct symbolic solutions for a
class of quantifier-free bit-vector constraints that have a linear shape.

Consider a bit-vector literal x + s ≈ t and assume that we want to solve for
x. If the literal is linear in x, that is, has only one occurrence of x, a general
solution for x is given by the inverse of bit-vector addition over equality: x = t−s.
Computing the inverse of a bit-vector operation, however, is not always possible.
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For example, for x · s ≈ t, an inverse always exists only if s always evaluates
to an odd bit-vector. Otherwise, there are values for s and t where no such
inverse exists, e.g., x · 2 ≈ 3. However, even if there is no unconditional inverse
for the general case, we can identify the condition under which a bit-vector
operation is invertible. For the bit-vector multiplication constraint x · s ≈ t with
x /∈ FV(s) ∪ FV(t), the invertibility condition for x can be expressed by the
formula (−s | s) & t ≈ t.

Definition 1 (Invertibility Condition). Let �[x] be a ΣBV -literal. A quantifier-
free ΣBV -formula φc is an invertibility condition for x in �[x] if x �∈ FV(φc)
and φc ⇔ ∃x. �[x] is TBV -valid.

An invertibility condition for a literal �[x] provides the exact conditions under
which �[x] is solvable for x. We call it an “invertibility” condition because we can
use Hilbert choice functions to express all such conditional solutions with a single
symbolic term, that is, a term whose possible values are exactly the solutions
for x in �[x]. Recall that a choice function εy. ϕ[y] represents a solution for a
formula ϕ[x] if there exists one, and represents an arbitrary value otherwise.
We may use a choice function to describe inverse solutions for a literal �[x]
with invertibility condition φc as εy. (φc ⇒ �[y]). For example, for the general
case of bit-vector multiplication over equality the choice function is defined as
εy. ((−s | s) & t ≈ t ⇒ y · s ≈ t).

Lemma 2. If φc is an invertibility condition for an ε-valid ΣBV -literal �[x] and
r is the term εy. (φc ⇒ �[y]), then r is ε-valid and �[r] ⇔ ∃x. �[x] is TBV -valid.1

Intuitively, the lemma states that when �[x] is satisfiable (under condition
φc), any value returned by the choice function εy. (φc ⇒ �[y]) is a solution of �[x]
(and thus ∃x. �[x] holds). Conversely, if there exists a value v for x that makes
�[x] true, then there is a model of TBV that interprets εy. (φc ⇒ �[y]) as v.

Now, suppose that ΣBV -literal � is again linear in x but that x occurs arbi-
trarily deep in �. Consider, for example, a literal s1 ·(s2+x) ≈ t where x does not
occur in s1, s2 or t. We can solve this literal for x by recursively computing the
(possibly conditional) inverses of all bit-vector operations that involve x. That
is, first we solve s1 · x′ ≈ t for x′, where x′ is a fresh variable abstracting s2 + x,
which yields the choice function x′ = εy. ((−s1 | s1) & t ≈ t ⇒ s1 · y ≈ t). Then,
we solve s2 + x ≈ x′ for x, which yields the solution x = x′ − s2 = εy. ((−s1 |
s1) & t ≈ t ⇒ s1 · y ≈ t) − s2.

Figure 1 describes in pseudo code the procedure to solve for x in an arbitrary
literal �[x] = e[x] 
� t that is linear in x. We assume that e[x] is built over the
set of bit-vector operators listed in Table 1. Function solve recursively constructs
a symbolic solution by computing (conditional) inverses as follows. Let function
getInverse(x, �[x]) return a term t′ that is the inverse of x in �[x], i.e., such that
�[x] ⇔ x ≈ t′. Furthermore, let function getIC(x, �[x]) return the invertibility
condition φc for x in �[x]. If e[x] has the form �(e1, . . . , en) with n > 0, x must

1 All proofs can be found in an extended version of this paper [19].
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solve(x, e[x] �� t):

If e = x

If �� ∈ {≈} then return t
else return εy. (getIC(x, x �� t) ⇒ y �� t).

else e = �(e1, . . . , ei[x], . . . , en) with n > 0 and x �∈ FV(ej) for all j �= i.

Let d[x′] = �(e1, . . . , ei−1, x
′, ei+1, . . . , en) where x′ is a fresh variable.

If �� ∈ {≈, }≈� and � ∈ {∼ , −,+}
then let t′ = getInverse(x′, d[x′] ≈ t) and return solve(x, ei �� t′)
else let φc = getIC(x′, d[x′] �� t) and return solve(x, ei ≈ εy. (φc ⇒ d[y] �� t)).

Fig. 1. Function solve for constructing a symbolic solution for x given a linear literal
e[x] �� t.

occur in exactly one of the subterms e1, . . . , en given that e is linear in x. Let
d be the term obtained from e by replacing ei (the subterm containing x) with
a fresh variable x′. We solve for subterm ei[x] (treating it as a variable x′)
and compute an inverse getInverse(x′, d[x′] ≈ t), if it exists. Note that for a
disequality e[x] �≈ t, it suffices to compute the inverse over equality and propagate
the disequality down. (For example, for ei[x] + s �≈ t, we compute the inverse
t′ = getInverse(x′, x′ + s ≈ t) = t − s and recurse on ei[x] �≈ t′.) If no inverse
for e[x] 
� t exists, we first determine the invertibility condition φc for d[x′] via
getIC(x′, d[x′] 
� t), construct the choice function εy. (φc ⇒ d[y] 
� t), and set it
equal to ei[x], before recursively solving for x. If e[x] = x and the given literal
is an equality, we have reached the base case and return t as the solution for x.
Note that in Fig. 1, for simplicity we omitted one case for which an inverse can
be determined, namely x · c ≈ t where c is an odd constant.

Theorem 3. Let �[x] be an ε-valid ΣBV -literal linear in x, and let r =
solve(x, �[x]). Then r is ε-valid, FV(r) ⊆ FV(�) \ {x} and �[r] ⇔ ∃x. �[x] is
TBV -valid.

Tables 2 and 3 list the invertibility conditions for bit-vector operators {·, mod
, ÷, &, |, >>, >>a, <<, ◦} over relations {≈, �≈, <u, >u}. Due to space restrictions
we omit the conditions for signed inequalities since they can be expressed in
terms of unsigned inequality. We omit the invertibility conditions over {≤u,
≥u} since they can generally be constructed by combining the corresponding
conditions for equality and inequality—although there might be more succinct
equivalent conditions. Finally, we omit the invertibility conditions for operators
{∼ , −, +} and literals x 
� t over inequality since they are basic bounds checks,
e.g., for x <s t we have t �≈ min. The invertibility condition for x �≈ t and for
the extract operator is 	.2

2 All the omitted invertibility conditions can be found in the extended version of this
paper [19].
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The idea of computing the inverse of bit-vector operators has been used
successfully in a recent local search approach for solving quantifier-free bit-vector
constraints by Niemetz et al. [17]. There, target values are propagated via inverse
value computation. In contrast, our approach does not determine single inverse
values based on concrete assignments but aims at finding symbolic solutions
through the generation of conditional inverses. In an extended version of that
work [18], the same authors present rules for inverse value computation over
equality but they provide no proof of correctness for them. We define invertibility
conditions not only over equality but also disequality and (un)signed inequality,
and verify their correctness up to a certain bit-width.

3.1 Synthesizing Invertibility Conditions

We have defined invertibility conditions for all bit-vector operators in ΣBV where
no general inverse exists (162 in total). A noteworthy aspect of this work is that
we were able to leverage syntax-guided synthesis (SyGuS) technology [1] to help
identify these conditions. The problem of finding invertibility conditions for a
literal of the form x � s 
� t (or, dually, s � x 
� t) linear in x can be recast
as a SyGuS problem by asking whether there exists a binary Boolean function
C such that the (second-order) formula ∃C∀s∀t. ((∃x. x � s 
� t) ⇔ C(s, t)) is
satisfiable. If a SyGuS solver is able to synthesize the function C, then C can be
used as the invertibility condition for x � s 
� t. To simplify the SyGuS problem
we chose a bit-width of 4 for x, s, and t and eliminated the quantification over
x in the formula above by expanding it to

∃C∀s∀t. (
15∨

i=0

i � s 
� t) ⇔ C(s, t)

Since the search space for SyGuS solvers heavily depends on the input gram-
mar (which defines the solution space for C), we decided to use two gram-
mars with the same set of Boolean connectives but different sets of bit-vector
operators:

Or = {¬,∧,≈, <u, <s, 0,mins,maxs, s, t,∼ ,−,&, |}
Og = {¬,∧,∨,≈, <u, <s,≥u,≥s, 0,mins,maxs, s, t,∼ ,+,−,&, |, >>,<<}
The selection of constants in the grammar turned out to be crucial for finding

solutions, e.g., by adding mins and maxs we were able to synthesize substantially
more invertibility conditions for signed inequalities. For each of the two sets of
operators, we generated 140 SyGuS problems3, one for each combination of bit-
vector operator � ∈ {·, mod, ÷, &, |, >>, >>a, <<} over relation 
� ∈ {≈, �≈,
<u, ≤u, >u, ≥u, <s, ≤s, >s, ≥s}, and used the SyGuS extension of the CVC4
solver [22] to solve these problems.

Using operators Or (Og) we were able to synthesize 98 (116) out of 140
invertibility conditions, with 118 unique solutions overall. When we found more
3 Available at https://cvc4.cs.stanford.edu/papers/CAV2018-QBV/.

https://cvc4.cs.stanford.edu/papers/CAV2018-QBV/
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Table 2. Conditions for the invertibility of bit-vector operators over (dis)equality.
Those for ·, & and | are given modulo commutativity of those operators.

�[x] ≈ �≈
x · s �� t (−s | s) & t ≈ t s �≈ 0 ∨ t �≈ 0

x mod s �� t ∼(−s) ≥u t s �≈ 1 ∨ t �≈ 0

s mod x �� t (t + t − s) & s ≥u t s �≈ 0 ∨ t �≈ 0

x ÷ s �� t (s · t) ÷ s ≈ t s �≈ 0 ∨ t �≈ ∼0

s ÷ x �� t s ÷ (s ÷ t) ≈ t

{
s & t ≈ 0 for κ(s) = 1

� otherwise

x & s �� t t & s ≈ t s �≈ 0 ∨ t �≈ 0

x | s �� t t | s ≈ t s �≈ ∼0 ∨ t �≈ ∼0

x >> s �� t (t << s) >> s ≈ t t �≈ 0 ∨ s <u κ(s)

s >> x �� t
κ(s)∨
i=0

s >> i ≈ t s �≈ 0 ∨ t �≈ 0

x >>a s �� t
(s <u κ(s) ⇒ (t << s) >>a s ≈ t) ∧
(s ≥u κ(s) ⇒ (t ≈ ∼0 ∨ t ≈ 0))

�

s >>a x �� t
κ(s)∨
i=0

s >>a i ≈ t
(t �≈ 0 ∨ s �≈ 0) ∧
(t �≈ ∼0 ∨ s �≈ ∼0)

x << s �� t (t >> s) << s ≈ t t �≈ 0 ∨ s <u κ(s)

s << x �� t
κ(s)∨
i=0

s << i ≈ t s �≈ 0 ∨ t �≈ 0

x ◦ s �� t s ≈ t[κ(s) − 1 : 0] �
s ◦ x �� t s ≈ t[κ(t) − 1 : κ(t) − κ(s)] �

than one solution for a condition (either with operators Or and Og, or manually)
we chose the one that involved the smallest number of bit-vector operators. Thus,
we ended up using 79 out of 118 synthesized conditions and 83 manually crafted
conditions.

In some cases, the SyGuS approach was able to synthesize invertibility con-
ditions that were smaller than those we had manually crafted. For example, we
manually defined the invertibility condition for x · s ≈ t as (t ≈ 0) ∨ ((t &
−t) ≥u (s & −s) ∧ (s �≈ 0)). With SyGuS we obtained ((−s | s) & t) ≈ t.
For some other cases, however, the synthesized solution involved more bit-vector
operators than needed. For example, for x mod s �≈ t we manually defined the
invertibility condition (s �≈ 1) ∨ (t �≈ 0), whereas SyGuS produced the solution
∼(−s) | t �≈ 0. For the majority of invertibility conditions, finding a solution
did not require more than one hour of CPU time on an Intel Xeon E5-2637
with 3.5 GHz. Interestingly, the most time-consuming synthesis task (over 107 h
of CPU time) was finding condition ((t + t) − s) & s ≥u t for s mod x ≈ t.
A small number of synthesized solutions were only correct for a bit-width of 4,
e.g., solution (∼s << s)<< s <s t for x ÷ s <s t. In total, we found 6 width-
dependent synthesized solutions, all of them for bit-vector operators ÷ and
mod. For those, we used the manually crafted invertibility conditions instead.
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Table 3. Conditions for the invertibility of bit-vector operators over unsigned inequal-
ity. Those for ·, & and | are given modulo commutativity of those operators.

�[x] <u >u

x · s �� t t �≈ 0 t <u −s | s

x mod s �� t t �≈ 0 t <u ∼(−s)

s mod x �� t t �≈ 0 t <u s

x ÷ s �� t 0 <u s ∧ 0 <u t ∼0 ÷ s >u t

s ÷ x �� t 0 <u ∼(−t & s) ∧ 0 <u t t <u ∼0

x & s �� t t �≈ 0 t <u s

x | s �� t s <u t t <u ∼0

x >> s �� t t �≈ 0 t <u ∼s >> s

s >> x �� t t �≈ 0 t <u s

x >>a s �� t t �≈ 0 t <u ∼0

s >>a x �� t (s <u t ∨ s ≥s 0) ∧ t �≈ 0 s <s (s >>∼t) ∨ t <u s

x << s �� t t �≈ 0 t <u ∼0 << s

s << x �� t t �≈ 0
κ(s)∨
i=0

(s << i) >u t

x ◦ s �� t tx ≈ 0 ⇒ s <u ts tx ≈ ∼0 ⇒ s >u ts

where tx = t[κ(t) − 1 : κ(t) − κ(x)], ts = t[κ(s) − 1 : 0]

s ◦ x �� t s ≤u ts ∧ (s ≈ ts ⇒ tx �≈ 0) s ≥u ts ∧ s ≈ ts ⇒ tx �≈ ∼0

where tx = t[κ(x) − 1 : 0], ts = t[κ(t) − 1 : κ(t) − κ(s)]

3.2 Verifying Invertibility Conditions

We verified the correctness of all 162 invertibility conditions for bit-widths from 1
to 65 by checking for each bit-width the TBV -unsatisfiability of the formula
¬(φc ⇔ ∃x. �[x]) where � ranges over the literals in Tables 2 and 3 with s and t
replaced by fresh constants, and φc is the corresponding invertibility condition.

In total, we generated 12,980 verification problems and used all participating
solvers of the quantified bit-vector division of SMT-competition 2017 to verify
them. For each solver/benchmark pair we used a CPU time limit of one hour
and a memory limit of 8 GB on the same machines as those mentioned in the
previous section. We consider an invertibility condition to be verified for a certain
bit-width if at least one of the solvers was able to report unsatisfiable for the
corresponding formula within the given time limit. Out of the 12,980 instances,
we were able to verify 12,277 (94.6%).

Overall, all verification tasks (including timeouts) required a total of 275 days
of CPU time. The success rate of each individual solver was 91.4% for Boolector,
85.0% for CVC4, 50.8% for Q3B, and 92% for Z3. We observed that on 30.6% of
the problems, Q3B exited with a Python exception without returning any result.
For bit-vector operators {∼ , −, +, &, |, >>, >>a, <<, ◦}, over all relations, and
for operators {·, ÷, mod} over relations {�≈,≤u,≤s}, we were able to verify
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all invertibility conditions for all bit-widths in the range 1–65. Interestingly, no
solver was able to verify the invertibility conditions for x mod s <s t with a
bit-width of 54 and s mod x <u t with bit-widths 35–37 within the allotted
time. We attribute this to the underlying heuristics used by the SAT solvers
in these systems. All other conditions for <s and <u were verified for all bit-
vector operators up to bit-width 65. The remaining conditions for operators {·,
÷, mod} over relations {≈, >u, ≥u, >s, ≥s} were verified up to at least a bit-
width of 14. We discovered 3 conditions for s ÷ x 
� t with 
� ∈ {�≈, >s,≥s}
that were not correct for a bit-width of 1. For each of these cases, we added an
additional invertibility condition that correctly handles that case.

We leave to future work the task of formally proving that our invertibility
conditions are correct for all bit-widths. Since this will most likely require the
development of an interactive proof, we could leverage some recent work by Ekici
et al. [9] that includes a formalization in the Coq proof assistant of the SMT-LIB
theory of bit-vectors.

4 Counterexample-Guided Instantiation for Bit-Vectors

In this section, we leverage techniques from the previous section for constructing
symbolic solutions to bit-vector constraints to define a novel instantiation-based
technique for quantified bit-vector formulas. We first briefly present the overall
theory-independent procedure we use for quantifier instantiation and then show
how it can be specialized to quantified bit-vectors using invertibility conditions.

We use a counterexample-guided approach for quantifier instantiation, as
given by procedure CEGQIS in Fig. 2. To simplify the exposition here, we focus
on input problems expressed as a single formula in prenex normal form and with
up to one quantifier alternation. We stress, though, that the approach applies
in general to arbitrary sets of quantified formulas in some Σ-theory T with a
decidable quantifier-free fragment. The procedure checks via instantiation the
T -satisfiability of a quantified input formula ϕ of the form ∃y∀x. ψ[x,y] where
ψ is quantifier-free and x and y are possibly empty sequences of variables. It
maintains an evolving set Γ , initially empty, of quantifier-free instances of the
input formula. During each iteration of the procedure’s loop, there are three pos-
sible cases: (1) if Γ is T -unsatisfiable, the input formula ϕ is also T -unsatisfiable
and “unsat” is returned; (2) if Γ is T -satisfiable but not together with ¬ψ[y,x],
the negated body of ϕ, then Γ entails ϕ in T , hence ϕ is T -satisfiable and “sat”
is returned. (3) If neither of previous cases holds, the procedure adds to Γ an
instance of ψ obtained by replacing the variables x with some terms t, and
continues. The procedure CEGQI is parametrized by a selection function S that
generates the terms t.

Definition 4 (Selection Function). A selection function takes as input a tuple
of variables x, a model I of T , a quantifier-free Σ-formula ψ[x], and a set Γ of
Σ-formulas such that x �∈ FV(Γ ) and I |= Γ ∪{¬ψ}. It returns a tuple of ε-valid
terms t of the same type as x such that FV(t) ⊆ FV(ψ) \ x.
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CEGQIS(∃y∀x. ψ[y,x])

Γ := ∅
Repeat:
1. If Γ is T -unsatisfiable, then return “unsat”.
2. Otherwise, if Γ ′ = Γ ∪ {¬ψ[y,x]} is T -unsatisfiable, then return “sat”.
3. Otherwise, let I be a model of T and Γ ′ and t = S(x, ψ, I, Γ ). Γ := Γ ∪{ψ[y, t]}.

Fig. 2. A counterexample-guided quantifier instantiation procedure CEGQIS , parame-
terized by a selection function S, for determining the T -satisfiability of ∃y∀x. ψ[y,x]
with ψ quantifier-free and FV(ψ) = y ∪ x.

Definition 5. Let ψ[x] be a quantifier-free Σ-formula. A selection function is:

1. Finite for x and ψ if there is a finite set S∗ such that S(x, ψ, I, Γ ) ∈ S∗ for
all legal inputs I and Γ .

2. Monotonic for x and ψ if for all legal inputs I and Γ , S(x, ψ, I, Γ ) = t only
if ψ[t] �∈ Γ .

Procedure CEGQIS is refutation-sound and model-sound for any selection
function S, and terminating for selection functions that are finite and monotonic.

Theorem 6 (Correctness of CEGQIS). Let S be a selection function and let
ϕ = ∃y∀x. ψ[y,x] be a legal input for CEGQIS . Then the following hold.

1. If CEGQIS(ϕ) returns “unsat”, then ϕ is T -unsatisfiable.
2. If CEGQIS(ϕ) returns “sat” for some final Γ , then ϕ is T -equivalent to

∃y.
∧

γ∈Γ γ.
3. If S is finite and monotonic for x and ψ, then CEGQIS(ϕ) terminates.

Thanks to this theorem, to define a T -satisfiability procedure for quantified
Σ-formulas, it suffices to define a selection function satisfying the criteria of
Definition 4. We do that in the following section for TBV .

4.1 Selection Functions for Bit-Vectors

In Fig. 3, we define a (class of) selection functions SBV
c for quantifier-free bit-

vector formulas, which is parameterized by a configuration c, a value of the
enumeration type {m, k, s, b}. The selection function collects in the set M
all the literals occurring in Γ ′ that are satisfied by I. Then, it collects in the
set N a projected form of each literal in M . This form is computed by the
function projectc parameterized by configuration c. That function transforms its
input literal into a form suitable for function solve from Fig. 1. We discuss the
intuition for projection operations in more detail below.

After constructing set N , the selection function computes a term ti for each
variable xi in tuple x, which we call the solved form of xi. To do that, it first
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SBV
c (x, ψ, I, Γ ) where c ∈ {m,k, s,b}
Let M = {� | I |= �, � ∈ Lit(ψ)}, N = {projectc(I, �) | � ∈ M}.
For i = 1, . . . , n where x = (x1, . . . , xn):

Let Ni =
⋃

�[x1,...,xi−1]∈N linearize(xi, I, �[t1, . . . , ti−1]).

Let ti =

{
solve(xi, choose(Ni)) if Ni is non-empty

xI
i otherwise

tj := tj{xi �→ ti} for each j < i.
Return (t1, . . . , tn).

projectm(I, s �� t) : return � projects(I, s �� t) : return s ≈ t + (s − t)I

projectk(I, s �� t) : return s �� t projectb(I, s �� t) : return

⎧
⎪⎨

⎪⎩

s ≈ t if sI = tI

s ≈ t + 1 if sI > tI

s ≈ t − 1 if sI < tI

Fig. 3. Selection functions SBV
c for quantifier-free bit-vector formulas. The procedure

is parameterized by a configuration c, one of either m (model value), k (keep), s (slack),
or b (boundary).

constructs a set of literals Ni all linear in xi. It considers literals � from N and
replaces all previously solved variables x1, . . . , xi−1 by their respective solved
forms to obtain the literal �′ = �[t1, . . . , ti−1]. It then calls function linearize on
literal �′ which returns a set of literals, each obtained by replacing all but one
occurrence of xi in � with the value of xi in I.4

Example 7. Consider an interpretation I where xI = 1, and ΣBV -terms a and b
with x �∈ FV(a) ∪ FV(b). We have that linearize(x, I, x · (x + a) ≈ b) returns the
set {1 · (x + a) ≈ b, x · (1 + a) ≈ b}; linearize(x, I, x ≥u a) returns the singleton
set {x ≥u a}; linearize(x, I, a �≈ b) returns the empty set. �
If the set Ni is non-empty, the selection function heuristically chooses a literal
from Ni (indicated in Fig. 3 with choose(Ni)). It then computes a solved form ti
for xi by solving the chosen literal for xi with the function solve described in the
previous section. If Ni is empty, we let ti is simply the value of xi in the given
model I. After that, xi is eliminated from all the previous terms t1, . . . , ti−1 by
replacing it with ti. After processing all n variables of x, the tuple (t1, . . . , tn)
is returned.

The configurations of selection function SBV
c determine how literals in M

are modified by the projectc function prior to computing solved forms, based
on the current model I. With the model value configuration m, the selection
function effective ignores the structure of all literals in M and (because the
set Ni is empty) ends up choosing the value xI

i as the solved form variable

4 This is a simple heuristic to generate literals that can be solved for xi. More elaborate
heuristics could be used in practice.
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xi, for each i. On the other end of the spectrum, the configuration k keeps all
literals in M unchanged. The remaining two configurations have an effect on
how disequalities and inequalities are handled by projectc. With configuration s
projectc normalizes any kind of literal (equality, inequality or disequality) s 
� t
to an equality by adding the slack value (s − t)I to t. With configuration b it
maps equalities to themselves and inequalities and disequalities to an equality
corresponding to a boundary point of the relation between s and t based on
the current model. Specifically, it adds one to t if s is greater than t in I, it
subtracts one if s is smaller than t, and returns s ≈ t if their value is the same.
These two configurations are inspired by quantifier elimination techniques for
linear arithmetic [5,15]. In the following, we provide an end-to-end example of
our technique for quantifier instantiation that makes use of selection function
SBV

c .

Example 8. Consider formula ϕ = ∃y.∀x1. (x1 ·a ≤u b) where a and b are terms
with no free occurrences of x1. To determine the satisfiability of ϕ, we invoke
CEGQISBV

c
on ϕ for some configuration c. Say that in the first iteration of the

loop, we find that Γ ′ = Γ ∪ {x1 · a >u b} is satisfied by some model I of TBV

such that xI
1 = 1, aI = 1, and bI = 0. We invoke SBV

c ((x1), I, Γ ′) and first
compute M = {x1 · a >u b}, the set of literals of Γ ′ that are satisfied by I.
The table below summarizes the values of the internal variables of SBV

c for the
various configurations:

Config N1 t1

m ∅ 1

k {x1 · a >u b} εz. (a <u −b | b) ⇒ z · a >u b

s, b {x1 · a ≈ b + 1} εz. ((−a | a) & b + 1 ≈ b + 1) ⇒ z · a ≈ b + 1

In each case, SBV
c returns the tuple (t1), and we add the instance t1 · a ≤u b

to Γ . Consider configuration k where t1 is the choice expression εz. ((a <u −b |
b) ⇒ z · a >u b). Since t1 is ε-valid, due to the semantics of ε, this instance is
equivalent to:

((a <u −b | b) ⇒ k · a >u b) ∧ k · a ≤u b (1)

for fresh variable k. This formula is TBV -satisfiable if and only if ¬(a <u −b | b) is
TBV -satisfiable. In the second iteration of the loop in CEGQISBV

c
, set Γ contains

formula (1) above. We have two possible outcomes:

(i) ¬(a <u −b | b) is TBV -unsatisfiable. Then (1) and hence Γ are TBV -
unsatisfiable, and the procedure terminates with “unsat”.

(ii) ¬(a <u −b | b) is satisfied by some model J of TBV . Then ∃z.z · a ≤u b is
false in J since the invertibility condition of z · a ≤u b is false in J . Hence,
Γ ′ = Γ ∪ {x1 · a >u b} is unsatisfiable, and the algorithm terminates with
“sat”.
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In fact, we argue later that quantified bit-vector formulas like ϕ above, which
contain only one occurrence of a universal variable, require at most one instanti-
ation before CEGQISBV

k
terminates. The same guarantee does not hold with the

other configurations. In particular, configuration m generates the instantiation
where t1 is 1, which simplifies to a ≤u b. This may not be sufficient to show
that Γ or Γ ′ is unsatisfiable in the second iteration of the loop and the algo-
rithm may resort to enumerating a repeating pattern of instantiations, such as
x1 �→ 1, 2, 3, . . . and so on. This obviously does not scale for problems with large
bit-widths. �
More generally, we note that CEGQISBV

k
terminates with at most one instance

for input formulas whose body has just one literal and a single occurrence of each
universal variable. The same guarantee does not hold for instance for quantified
formulas whose body has multiple disjuncts. For some intuition, consider extend-
ing the second conjunct of (1) with an additional disjunct, i.e. (k ·a ≤u b∨ �[k]).
A model can be found for this formula in which the invertibility condition
(a <u −b | b) is still satisfied, and hence we are not guaranteed to terminate
on the second iteration of the loop. Similarly, if the literals of the input formula
have multiple occurrences of x1, then multiple instances may be returned by the
selection function since the literals returned by linearize in Fig. 3 depend on the
model value of x1, and hence more than one possible instance may be considered
in loop in Fig. 2.

The following theorem summarizes the properties of our selection functions.
In the following, we say a quantified formula is unit linear invertible if it is of
the form ∀x.�[x] where � is linear in x and has an invertibility condition for x.
We say a selection function is n-finite for a quantified formula ψ if the number
of possible instantiations it returns is at most n for some positive integer n.

Theorem 9. Let ψ[x] be a quantifier-free formula in the signature of TBV .

1. SBV
c is a finite selection function for x and ψ for all c ∈ {m,k, s,b}.

2. SBV
m is monotonic.

3. SBV
k is 1-finite if ψ is unit linear invertible.

4. SBV
k is monotonic if ψ is unit linear invertible.

This theorem implies that counterexample-guided instantiation using configura-
tion SBV

m is a decision procedure for quantified bit-vectors. However, in practice
the worst-case number of instances considered by this configuration for a variable
x[n] is proportional to the number of its possible values (2n), which is practi-
cally infeasible for sufficiently large n. More interestingly, counterexample-guided
instantiation using SBV

k is a decision procedure for quantified formulas that are
unit linear invertible, and moreover has the guarantee that at most one instan-
tiation is returned by this selection function. Hence, formulas in this fragment
can be effectively reduced to quantifier-free bit-vector constraints in at most two
iterations of the loop of procedure CEGQIS in Fig. 2.
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4.2 Implementation

We implemented the new instantiation techniques described in this section as an
extension of CVC4, which is a DPLL(T )-based SMT solver [20] that supports
quantifier-free bit-vector constraints, (arbitrarily nested) quantified formulas,
and support for choice expressions. For the latter, all choice expressions εx. ϕ[x]
are eliminated from assertions by replacing them with a fresh variable k of the
same type and adding ϕ[k] as a new assertion, which notice is sound since all
choice expressions we consider are ε-valid. In the remainder of the paper, we
will refer to our extension of the solver as cegqi. In the following, we discuss
important implementation details of the extension.

Handling Duplicate Instantiations. The selection functions SBV
s and SBV

b are
not guaranteed to be monotonic, neither is SBV

k for quantified formulas that
contain more than one occurrence of universal variables. Hence, when applying
these strategies to arbitrary quantified formulas, we use a two-tiered strategy
that invokes SBV

m as a second resort if the instance for the terms returned by a
selection function already exists in Γ .

Linearizing Rewrites. Our selection function in Fig. 3 uses the function linearize
to compute literals that are linear in the variable xi to solve for. The way we
presently implement linearize makes those literals dependent on the value of xi

in the current model I, with the risk of overfitting to that model. To address
this limitation, we use a set of equivalence-preserving rewrite rules whose goal
is to reduce the number of occurrences of xi to one when possible, by applying
basic algebraic manipulations. As a trivial example, a literal like xi + xi ≈ a
is rewritten first to 2 · xi ≈ a which is linear in xi if a does not contain xi. In
that case, this literal, and so the original one, has an invertibility condition as
discussed in Sect. 3.

Variable Elimination. We use procedure solve from Sect. 3 not only for selecting
quantifier instantiations, but also for eliminating variables from quantified for-
mulas. In particular, for a quantified formula of the form ∀xy. � ⇒ ϕ[x,y], if � is
linear in x and solve(x, �) returns a term s containing no ε-expressions, we can
replace this formula by ∀y. ϕ[s,y]. When � is an equality, this is sometimes called
destructive equality resolution (DER) and is an important implementation-level
optimization in state-of-the-art bit-vector solvers [25]. As shown in Fig. 1, we use
the getInverse function to increase the likelihood that solve returns a term that
contains no ε-expressions.

Handling Extract. Consider formula ∀x[32]. (x[31 : 16] �≈ a[16] ∨ x[15 : 0] �≈
b[16]). Since all invertibility conditions for the extract operator are 	, rather
than producing choice expressions we have found it more effective to eliminate
extracts via rewriting. As a consequence, we independently solve constraints
for regions of quantified variables when they appear underneath applications of
extract operations. In this example, we let the solved form of x be y[16] ◦ z[16]
where y and z are fresh variables, and subsequently solve for these variables in
y ≈ a and z ≈ b. Hence, we may instantiate x with a ◦ b, a term that we would
not have found by considering the two literals independently in the negated body
of the formula above.



Solving Quantified Bit-Vectors Using Invertibility Conditions 251

5 Evaluation

We implemented our techniques in the solver cegqi and considered four configu-
rations cegqic, where c is one of {m, k, s, b}, corresponding to the four selection
function configurations described in Sect. 4. Out of these four configurations,
cegqim is the only one that does not employ our new techniques but uses only
model values for instantiation. It can thus be considered our base configuration.
All configurations enable the optimizations described in Sect. 4.2 when applica-
ble. We compared them against all entrants of the quantified bit-vector division
of the 2017 SMT competition SMT-COMP: Boolector [16], CVC4 [2], Q3B [14]
and Z3 [6]. With the exception of Q3B, all solvers are related to our approach
since they are instantiation-based. However, none of these solvers utilizes invert-
ibility conditions when constructing instantiations. We ran all experiments on
the StarExec logic solving service [24] with a 300 s CPU and wall clock time
limit and 100 GB memory limit.

We evaluated our approach on all 5,151 benchmarks from the quantified bit-
vector logic (BV) of SMT-LIB [3]. The results are summarized in Table 4. Config-
uration cegqib solves the highest number of unsatisfiable benchmarks (4, 399),
which is 30 more than the next best configuration cegqis and 37 more than

Table 4. Results on satisfiable and unsatisfiable benchmarks with a 300 s timeout.

unsat Boolector CVC4 Q3B Z3 cegqim cegqik cegqis cegqib

h-uauto 14 12 93 24 10 103 105 106

keymaera 3917 3790 3781 3923 3803 3798 3888 3918

psyco 62 62 49 62 62 39 62 61

scholl 57 36 13 67 36 27 36 35

tptp 55 52 56 56 56 56 56 56

uauto 137 72 131 137 72 72 135 137

ws-fixpoint 74 71 75 74 75 74 75 75

ws-ranking 16 8 18 19 15 11 12 11

Total unsat 4332 4103 4216 4362 4129 4180 4369 4399

sat Boolector CVC4 Q3B Z3 cegqim cegqik cegqis cegqib

h-uauto 15 10 17 13 16 17 16 17

keymaera 108 21 24 108 20 13 36 75

psyco 131 132 50 131 132 60 132 129

scholl 232 160 201 204 203 188 208 211

tptp 17 17 17 17 17 17 17 17

uauto 14 14 15 16 14 14 14 14

ws-fixpoint 45 49 54 36 45 51 49 50

ws-ranking 19 15 37 33 33 31 31 32

Total sat 581 418 415 558 480 391 503 545

Total (5151) 4913 4521 4631 4920 4609 4571 4872 4944
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the next best external solver, Z3. Compared to the instantiation-based solvers
Boolector, CVC4 and Z3, the performance of cegqib is particularly strong on the
h-uauto family, which are verification conditions from the Ultimate Automizer
tool [11]. For satisfiable benchmarks, Boolector solves the most (581), which is
36 more than our best configuration cegqib.

Overall, our best configuration cegqib solved 335 more benchmarks than
our base configuration cegqim. A more detailed runtime comparison between
the two is provided by the scatter plot in Fig. 4. Moreover, cegqib solved 24
more benchmarks than the best external solver, Z3. In terms of uniquely solved
instances, cegqib was able to solve 139 benchmarks that were not solved by
Z3, whereas Z3 solved 115 benchmarks that cegqib did not. Overall, cegqib
was able to solve 21 of the 79 benchmarks (26.6%) not solved by any of the
other solvers. For 18 of these 21 benchmarks, it terminated after considering
no more than 4 instantiations. These cases indicate that using symbolic terms
for instantiation solves problems for which other techniques, such as those that
enumerate instantiations based on model values, do not scale.

Interestingly, configuration cegqik, despite having the strong guarantees
given by Theorem 9, performed relatively poorly on this set (with 4, 571 solved
instances overall). We attribute this to the fact that most of the quantified for-
mulas in this set are not unit linear invertible. In total, we found that only 25.6%
of the formulas considered during solving were unit linear invertible. However,
only a handful of benchmarks were such that all quantified formulas in the prob-
lem were unit linear invertible. This might explain the superior performance of
cegqis and cegqib which use invertibility conditions but in a less monolithic way.
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Fig. 4. Configuration cegqim vs. cegqib.

For some intuition on this, consider the
problem ∀x. (x > a ∨ x < b) where
a and b are such that a > b is TBV -
valid. Intuitively, to show that this for-
mula is unsatisfiable requires the solver
to find an x between b and a. This
is apparent when considering the dual
problem ∃x. (x ≤ a ∧ x ≥ b). Con-
figuration cegqib is capable of finding
such an x, for instance, by consider-
ing the instantiation x �→ a when solv-
ing for the boundary point of the first
disjunct. Configuration cegqik, on the
other hand, would instead consider the
instantiation of x for two terms that
witness ε-expressions: some k1 that is
never smaller than a, and some k2 that is never greater that b. Neither of these
terms necessarily resides in between a and b since the solver may subsequently
consider models where k1 > b and k2 < a. This points to a potential use for
invertibility conditions that solve multiple literals simultaneously, something we
are currently investigating.
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6 Conclusion

We have presented a new class of strategies for solving quantified bit-vector for-
mulas based on invertibility conditions. We have derived invertibility conditions
for the majority of operators in a standard theory of fixed-width bit-vectors. An
implementation based on this approach solves over 25% of previously unsolved
verification benchmarks from SMT LIB, and outperforms all other state-of-the-
art bit-vector solvers overall.

In future work, we plan to develop a framework in which the correctness of
invertibility conditions can be formally established independently of bit-width.
We are working on deriving invertibility conditions that are optimal for linear
constraints, in the sense of admitting the simplest propositional encoding. We
also are investigating conditions that cover additional bit-vector operators, some
cases of non-linear literals, as well as those that cover multiple constraints. While
this is a challenging task, we believe efficient syntax-guided synthesis solvers can
continue to help push progress in this direction. Finally, we plan to investigate
the use of invertibility conditions for performing quantifier elimination on bit-
vector constraints. This will require a procedure for deriving concrete witnesses
from choice expressions.
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Abstract. Incremental determinization is a recently proposed algorithm
for solving quantified Boolean formulas with one quantifier alterna-
tion. In this paper, we formalize incremental determinization as a set
of inference rules to help understand the design space of similar algo-
rithms. We then present additional inference rules that extend incre-
mental determinization in two ways. The first extension integrates the
popular CEGAR principle and the second extension allows us to analyze
different cases in isolation. The experimental evaluation demonstrates
that the extensions significantly improve the performance.

1 Introduction

Solving quantified Boolean formulas (QBFs) is one of the core challenges in
automated reasoning and is particularly important for applications in verification
and synthesis. For example, program synthesis with syntax guidance [1,2] and
the synthesis of reactive controllers from LTL specifications has been encoded
in QBF [3,4]. Many of these problems require only formulas with one quantifier
alternation (2QBF), which are the focus of this paper.

Algorithms for QBF and program synthesis largely rely on the
counterexample-guided inductive synthesis principle (CEGIS) [5], originating
in abstraction refinement (CEGAR) [6,7]. For example, for program synthe-
sis, CEGIS-style algorithms alternate between generating candidate programs
and checking them for counter-examples, which allows us to lift arbitrary veri-
fication approaches to synthesis algorithms. Unfortunately, this approach often
degenerates into a plain guess-and-check loop when counter-examples cannot
be generalized effectively. This carries over to the simpler setting of 2QBF. For
example, even for a simple formula such as ∀x.∃y. x = y, where x and y are 32-bit
numbers, most QBF algorithms simply enumerate all 232 pairs of assignments. In
fact, even the modern QBF solvers diverge on this formula when preprocessing
is deactivated.

Recently, Incremental Determinization (ID) has been suggested to overcome
this problem [8]. ID represents a departure from the CEGIS approach in that it
c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 256–274, 2018.
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is structured around identifying which variables have unique Skolem functions.
(To prove the truth of a 2QBF ∀x.∃y. ϕ we have to find Skolem functions f
mapping x to y such that ϕ[f/y] is valid.) After assigning Skolem functions to
a few of the existential variables, the propagation procedure determines Skolem
functions for other variables that are uniquely implied by that assignment. When
the assignment of Skolem functions turns out to be incorrect, ID analyzes the
conflict, derives a conflict clause, and backtracks some of the assignments. In
other words, ID lifts CDCL to the space of Skolem functions.

ID can solve the simple example given above and shows good performance on
various application benchmarks. Yet, the QBF competitions have shown that the
relative performance of ID and CEGIS still varies a lot between benchmarks [9].
A third family of QBF solvers, based on the expansion of universal variables [10–
12], shows yet again different performance characteristics and outperforms both
ID and CEGIS on some (few) benchmarks. This variety of performance char-
acteristics of different approaches indicates that current QBF solvers could be
significantly improved by integrating the different reasoning principles.

In this paper, we first formalize and generalize ID [8] (Sect. 3). This helps us
to disentangle the working principles of the algorithm from implementation-level
design choices. Thereby our analysis of ID enables a systematic and principled
search for better algorithms for quantified reasoning. To demonstrate the value
and flexibility of the formalization, we present two extensions of ID that integrate
CEGIS-style inductive reasoning (Sect. 4) and expansion (Sect. 5). In the exper-
imental evaluation we demonstrate that both extensions significantly improve
the performance compared to plain ID (Sect. 6).

Related Work. This work is written in the tradition of works such as the Model
Evolution Calculus [13], AbstractDPLL [14], MCSAT [15], and recent calculi for
QBF [16], which present search algorithms as inference rules to enable the study
and extension of these algorithms. ID and the inference rules presented in this
paper can be seen as an instantiation of the more general frameworks, such as
MCSAT [15] or Abstract Conflict Driven Learning [17].

Like ID, quantified conflict-driven clause learning (QCDCL) lifts CDCL to
QBF [18,19]. The approaches differ in that QCDCL does not reason about func-
tions, but only about values of variables. Fazekas et al. have formalized QCDCL
as inference rules [16].

2QBF solvers based on CEGAR/CEGIS search for universal assignments
and matching existential assignments using two SAT solvers [5,20,21]. There are
several generalizations of this approach to QBF with more than one quantifier
alternation [22–26].

2 Preliminaries

Quantified Boolean formulas over a finite set of variables x ∈ X with domain
B = {0,1} are generated by the following grammar:

ϕ := 0 | 1 | x | ¬ϕ | (ϕ) | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x. ϕ | ∀x. ϕ
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We consider all other logical operations, including implication, XOR, and
equality as syntactic sugar with the usual definitions. We abbreviate multiple
quantifications Qx1.Qx2. . . . Qxn.ϕ using the same quantifier Q ∈ {∀,∃} by the
quantification over the set of variables X = {x1, . . . , xn}, denoted as QX.ϕ.

An assignment x to a set of variables X is a function x : X → B that maps
each variable x ∈ X to either 1 or 0. Given a propositional formula ϕ over
variables X and an assignment x ′ to X ′ ⊆ X, we define ϕ(x ′) to be the formula
obtained by replacing the variables X ′ by their truth value in x ′. By ϕ(x ′,x ′′)
we denote the replacement by multiple assignments for disjoint sets X ′,X ′′ ⊆ X.

A quantifier Qx.ϕ for Q ∈ {∃,∀} binds the variable x in its subformula
ϕ and we assume w.l.o.g. that every variable is bound at most once in any
formula. A closed QBF is a formula in which all variables are bound. We define
the dependency set of an existentially quantified variable y in a formula ϕ as the
set dep(y) of universally quantified variables x such that ϕ’s subformula ∃y. ψ is
a subformula of ϕ’s subformula ∀x.ψ′. A Skolem function fy maps assignments
to dep(y) to a truth value. We define the truth of a QBF ϕ as the existence of
Skolem functions fY = {fy1 , . . . , fyn

} for the existentially quantified variables
Y = {y1, . . . , yn}, such that ϕ(x , fY (x )) holds for every x , where fY (x ) is the
assignment to Y that the Skolem functions fY provide for x .

A formula is in prenex normal form, if the formula is closed and starts with
a sequence of quantifiers followed by a propositional subformula. A formula ϕ is
in the kQBF fragment for k ∈ N

+ if it is closed, in prenex normal form, and has
exactly k − 1 alternations between ∃ and ∀ quantifiers.

A literal l is either a variable x ∈ X, or its negation ¬x. Given a set of
literals {l1, . . . , ln}, their disjunction (l1 ∨ . . . ∨ ln) is called a clause and their
conjunction (l1 ∧ . . . ∧ ln) is called a cube. We use l to denote the literal that is
the logical negation of l. We denote the variable of a literal by var(l) and lift
the notion to clauses var(l1 ∨ · · · ∨ ln) = {var(l1), . . . , var(ln)}.

A propositional formula is in conjunctive normal form (CNF), if it is a con-
junction of clauses. A prenex QBF is in prenex conjunctive normal form (PCNF)
if its propositional subformula is in CNF. Every QBF ϕ can be transformed into
an equivalent PCNF with size O(|ϕ|) [27].

Resolution is a well-known proof rule that allows us to merge two clauses as
follows. Given two clauses C1 ∨ v and C2 ∨ ¬v, we call C1 ⊗v C2 = C1 ∨ C2 their
resolvent with pivot v. The resolution rule states that C1 ∨ v and C2 ∨ ¬v imply
their resolvent. Resolution is refutationally complete for propositional Boolean
formulas, i.e. for every propositional Boolean formula that is equivalent to false
we can derive the empty clause.

For quantified Boolean formulas, however, we need additional proof rules.
The two most prominent ways to make resolution complete for QBF are to add
either universal reduction or universal expansion, leading to the proof systems
Q-resolution [28] and ∀Exp-Res [10,29], respectively.

Universal expansion eliminates a single universal variable by creating two copies
of the subformulas of its quantifier. Let Q1.∀x.Q2. ϕ be a QBF in PCNF, where
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Q1 and Q2 each are a sequence of quantifiers, and let Q2 quantify over variables
X. Universal expansion yields the equivalent formula Q1.Q2.Q

′
2. ϕ[1/x,X ′/X]∧

ϕ[0/x], where Q′
2 is a copy of Q2 but quantifying over a fresh set of variables X ′

instead of X. The term ϕ[1/x, X ′/X] denotes the ϕ where x is replaced by 1
and the variables X are replaced by their counterparts in X ′.

Universal reduction allows us to drop universal variables from clauses when none
of the existential variables in that clause may depend on them. Let C a clause
of a QBF and let l be a literal of a universally quantified variable in C. Let us
further assume that l does not occur in C. If all existential variables v in C we
have var(l) /∈ dep(v), universal reduction allows us to remove l from C. The
resulting formula is equivalent to the original formula.

Stack. For convenience, we use a stack data structure to describe the algorithm.
Formally, a stack is a finite sequence. Given a stack S, we use S(i) to denote
the i-th element of the stack, starting with index 0, and we use S.S′ to denote
concatenation. We use S[0, i] to denote the prefix up to element i of S. All stacks
we consider are stacks of sets. In a slight abuse of notation, we also use stacks as
the union of their elements when it is clear from the context. We also introduce
an operation specific to stacks of sets S: We define add(S, i, x) to be the stack
that results from extending the set on level i by element x.

2.1 Unique Skolem Functions

Incremental determinization builds on the notion of unique Skolem functions.
Let ∀X.∃Y. ϕ be a 2QBF in PCNF and let χ be a formula over X characterizing
the domain of the Skolem functions we are currently interested in. We say that a
variable v ∈ Y has a unique Skolem function for domain χ, if for each assignment
x with χ(x ) there is a unique assignment v to v such that ϕ(x , v) is satisfiable.
In particular, a unique Skolem function is a Skolem function:

Lemma 1. If all existential variables have a unique Skolem function for the full
domain χ = 1, the formula is true.

The semantic characterization of unique Skolem functions above does not
help us with the computation of Skolem functions directly. We now introduce a
local approximation of unique Skolem functions and show how it can be used as
a propagation procedure.

We consider a set of variables D ⊆ X ∪ Y with D ⊇ X and focus on the
subset ϕ|D of clauses that only contain variables in D. We further assume that
the existential variables in D already have unique Skolem functions for χ in the
formula ϕ|D. We now define how to extend D by an existential variable v /∈ D.
To define a Skolem function for v we only consider the clauses with unique
consequence v, denoted Uv, that contain a literal of v and otherwise only literals
of variables in D. (Note that ϕ|D ∪ Uv = ϕ|D∪{v}). We define that variable v
has a unique Skolem function relative to D for χ, if for all assignments to D
satisfying χ and ϕ there is a unique assignment to v satisfying Uv.
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In order to determine unique Skolem functions relative to a set D in practice,
we split the definition into the two statements deterministic and unconflicted.
Each statement can be checked by a SAT solver and together they imply that
variable v has a unique Skolem function relative to D.

Given a clause C with unique consequence v, let us call ¬(C \ {v,¬v}) the
antecedent of C. Further, let Al =

∨
C∈Uv,l∈C ¬(C \ {v,¬v}) be the disjunction

of antecedents for the unique consequences containing the literal l of v. It is clear
that whenever Av is satisfied, v needs to be true, and whenever A¬v is satisfied,
v need to be false. We define:

deterministic(v, ϕ, χ,D) := ∀D. ϕ|D ∧ χ ⇒ Av ∨ A¬v

unconflicted(v, ϕ, χ,D) := ∀D. ϕ|D ∧ χ ⇒ ¬( Av ∧ A¬v )

deterministic states that v needs to be assigned either true or false for every
assignment to D in the domain χ that is consistent with the existing Skolem
function definitions ϕ|D. Accordingly, unconflicted states that v does not have to
be true and false at the same time (which would indicate a conflict) for any such
assignment. Unique Skolem functions relative to a set D approximate unique
Skolem functions as follows:

Lemma 2. Let the existential variables in D have unique Skolem functions
for domain χ and let v ∈ Y have a unique Skolem function relative to D for
domain χ. Then v has a unique Skolem function for domain χ.

3 Inference Rules for Incremental Determinization

In this section, we develop a nondeterministic algorithm that formalizes and
generalizes ID. We describe the algorithm in terms of inference rules that specify
how the state of the algorithm can be developed. The state of the algorithm
consists of the following elements:

– The solver status S ∈ {Ready,Conflict(L,x ),SAT,UNSAT}. The conflict sta-
tus has two parameters: a clause L that is used to compute the learnt clause
and the assignment x to the universals witnessing the conflict.

– A stack C of sets of clauses. C(0) contains the original and the learnt clauses.
C(i) for i > 0 contain temporary clauses introduced by decisions.

– A stack D of sets of variables. The union of all levels in the stack represent the
set of variables that currently have unique Skolem functions and the clauses
in C|D represent these Skolem functions. D(0) contains the universals and
the existentials whose Skolem functions do not depend on decisions.

– A formula χ over D(0) characterizing the set of assignments to the universals
for which we still need to find a Skolem function.

– A formula α over variables D(0) representing a temporary restriction on the
domain of the Skolem functions.

We assume that we are given a 2QBF in PCNF ∀X.∃Y. ϕ and that all clauses
in ϕ contain an existential variable. (If ϕ contains a non-tautological clause
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Propagate

(Ready, C, D, χ, α) v /∈ D
deterministic(v, C, χ ∧ α, D) unconflicted(v, C, χ ∧ α, D)

(Ready, C, add(D, |D| − 1, v), χ, α)

Decide
(Ready, C, D, χ, α) v /∈ D all c ∈ δ have unique consequence v

(Ready, C.δ, D.∅, χ, α)

Sat
(Ready, C, D, χ,1) D = X ∪ Y

(SAT, C, D, χ,1)

Fig. 1. Inference rules needed to prove true QBF

without existential variables, the formula is trivially false by universal reduction.)
We define (Ready, ϕ,X,1,1) to be the initial state of the algorithm. That is, the
clause stack C initially has height 1 and contains the clauses of the formula ϕ.
We initialize D as the stack of height 1 containing the universals.

Before we dive into the inference rules, we want to point out that some of the
rules in this calculus are not computable in polynomial time. The judgements
deterministic and unconflicted require us to solve a SAT problem and are, in
general, NP-complete. This is still easier than the 2QBF problem itself (unless
NP includes ΠP

2 ) and in practice they can be discharged quickly by SAT solvers.

3.1 True QBF

We continue with describing the basic version of ID, consisting of the rules in
Figs. 1 and 2, and first focus on the rules in Fig. 1, which suffice to prove true
2QBFs. Propagate allows us to add a variable to D, if it has a unique Skolem
function relative to D. (The notation add(D, |D| − 1, v) means that we add v to
the last level of the stack.) The judgements deterministic and unconflicted involve
the current set of clauses C (i.e. the union of all sets of clauses in the sequence
C). These checks are restricted to the domain χ ∧ α. Both χ and α are true
throughout this section; we discuss their use in Sects. 4 and 5.

Invariant 1. All existential variables in D have a unique Skolem function for
the domain χ ∧ α in the formula ∀X.∃Y. C|D, where C|D are the clauses in C
that contain only variables in D.

If Propagate identifies all variables to have unique Skolem functions relative
to the growing set D, we know that they also have unique Skolem functions
(Lemma 2). We can then apply Sat to reach the SAT state, representing that
the formula has been proven true (Lemma 1).

Lemma 3. ID cannot reach the SAT state for false QBF.
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Proof. Let us assume we reached the SAT state for a false 2QBF and prove the
statement by way of contradiction. The SAT state can only be reached by the
rule Sat and requires D = X ∪ Y . By Invariant 1 all variables have a Skolem
function in ∀X.∃Y. C. Since C includes ϕ, this Skolem function does not violate
any clause in ϕ, which means it is indeed a proof. 
�

When Propagate is unable to determine the existence of a unique Skolem
function (i.e. for variables where the judgement deterministic does not hold) we
can use the rule Decide to introduce additional clauses such that deterministic
holds and propagation can continue. Note that additional clauses make it easier
to satisfy deterministic and adding the clause v (i.e. a unit clause) even ensures
that deterministic holds for v.

Assuming we consider a true 2QBF, we can pick a Skolem function fy for each
existential variable y and encode it using Decide. We can simply consider the
truth table of fy in terms of the universal variables and define δ to be the set of
clauses {¬x ∨v | fy(x )}∪{¬x ∨¬v | ¬fy(x )}. (Here we interpret the assignment
x as a conjunction of literals.) These clauses have unique consequence v and they
guarantee that v is deterministic. Further, they guarantee that v is unconflicted,
as otherwise fy would not be a Skolem function, so we can apply Propagate
to add v to D. Repeating this process for every variable let us reach the point
where Y ⊆ D and we can apply Sat to reach the SAT state.

Lemma 4. ID can reach the SAT state for true QBF.

Note that proving the truth of a QBF in this way requires guessing correct
Skolem functions for all existentials. In Subsect. 3.4 we discuss how termination
is guaranteed with a simpler type of decisions.

Conflict
(Ready, C, D, χ, α) refutes unconflicted(v, C, χ ∧ α, D)

(Conflict({v, ¬v}, ), C, D, χ, α)

Analyze
(Conflict(L, ), C, D, χ, α) c ∈ C(0) l ∈ L l ∈ c

(Conflict(L ⊗var(l) c, ), C, D, χ, α)

Learn
(Conflict(L, ), C, D, χ, α) var(L) �⊆ D

(Ready, add(C, 0, L), D, χ, α)

Unsat
(Conflict(L, ), C, D, χ, α) var(L) ⊆ D(0) �|= L

(UNSAT, C, D, χ, α)

Backtrack
(S, C, D, χ, α) 0 < dlvl ≤ |C|
(S, C[0, dlvl ], D[0, dlvl ], χ, α)

Fig. 2. Additional inference rules needed to disprove false QBF
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3.2 False QBF

To disprove false 2QBFs, i.e. formulas that do not have a Skolem function, we
need the rules in Fig. 2 in addition to Propagate and Decide from Fig. 1.
The conflict state can only be reached via the rule Conflict, which requires
that a variable v is conflicted, i.e. unconflicted fails. The Conflict rule stores
the assignment x to D that proves the conflict and it creates the nucleus of
the learnt clause {v,¬v}. Via Analyze we can then resolve that nucleus with
clauses in C(0), which consists of the original clauses and the clauses learnt so
far. We are allowed to add the learnt clause back to C(0) by applying Learn.

Invariant 2. C(0) is equivalent to ϕ.

Note that C(0) and ϕ are propositional formulas over X ∪ Y . Their equiv-
alence means that they have the same set of satisfying assignments. We prove
Invariant 2 together with the next invariant.

Invariant 3. Clause L in conflict state Conflict(L,x ) is implied by ϕ.

Proof. C(0) contains ϕ initially and is only ever changed by adding clauses
through the Learn rule, so C(0) ⇒ ϕ holds throughout the computation.

We prove the other direction of Invariants 2 and 3 by mutual induction. Ini-
tially, C(0) consists exactly of the clauses ϕ, satisfying Invariant 2. The nucleus
of the learnt clause v ∨¬v is trivially true, so it is implied by any formula, which
gives us the base case of Invariant 3. Analyze is the only rule modifying L,
and hence soundness of resolution together with Invariant 2 already gives us the
induction step for Invariant 3 [30]. Since Learn is the only rule changing C(0),
Invariant 3 implies the induction step of Invariant 2. 
�

When adding the learnt clause to C(0) we have to make sure that Invariant 1
is preserved. Learn hence requires that we have backtracked far enough with
Backtrack, such that at least one of the variables in L is not in D anymore.
In this way, L may become part of future Skolem function definitions, but will
first have to be checked for causing conflicts by Propagate.

If all variables in L are in D(0) and the assignment x from the conflict violates
L, we can conclude the formula to be false using Unsat. The soundness of this
step follows from the fact that x includes an assignment satisfying C(0)|D(0)

(i.e. the clauses defining the Skolem functions for D(0)), Invariants 1 and 3.

Lemma 5. ID cannot reach the UNSAT state for true QBF.

We will now show that we can disprove any false QBF. The main difficulty
in this proof is to show that from any Ready state we can learn a new clause, i.e.
a clause that is semantically different to any clause in C(0), and then return to
the Ready state. Since there are only finitely many semantically different clauses
over variables X ∪Y , and we cannot terminate in any other way (Lemma 5), we
eventually have to find a clause L with var(L) ⊆ D(0), which enables us to go
to the UNSAT state.
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From the Ready state, we can always add more variables to D with Decide
and Propagate, until we reach a conflict. (Otherwise we would reach a state
where D = Y we were able to prove SAT, contradicting Lemma 5.) We only enter
a Conflict state for a variable v, if there are two clauses (c1∨v) and (c2∨¬v) with
unique consequence v such that x |= ¬c1 ∧ ¬c2 (see definition of unconflicted).

In order to apply Analyze, we need to make sure that (c1 ∨ v) and (c2 ∨¬v)
are in C(0). We can guarantee this by restricting Decide as follows: We say
a decision for a variable v′ is consistent with the unique consequences in state
(Ready, C,D, χ, α), if unconflicted(v, C.δ, χ∧α,D). We can construct such a deci-
sion easily by applying Decide only on variables that are not conflicted already
(i.e. unconflicted(v, C, χ∧α,D)) and by defining δ to be the CNF representation
of ¬Av ⇒ ¬v (i.e. require v to be false, unless a unique consequence containing
literal v applies). It is clear that for this δ no new conflict for v is introduced
and hence unconflicted(v, C.δ, χ ∧ α,D).

Assuming that all decisions are taken consistent with the unique conse-
quences, we know that when we encounter a conflict for variable v, we did not
apply Decide for v, and hence the clauses (c1∨v) and (c2∨¬v) causing the con-
flict must be in C(0). We can hence apply Analyze twice with clauses (c1 ∨ v)
and (c2 ∨ ¬v) and obtain the learnt clause L = c1 ∨ c2. Since x |= ¬c1 ∧ ¬c2,
the learnt clause is violated by x . As x refutes unconflicted(v, C, χ ∧ α,D) by
construction, it must satisfy the clauses C|D and learnt clause L hence cannot
be in C|D. Further, L only contains variables that are in D, as (c1 ∨ v) and
(c2 ∨ ¬v) were clauses with unique consequence v. So, L would have been in
C|D, if it existed in C already, and hence L is new. We can either add the new
clause to C(0) after backtracking, or we can conclude UNSAT.

Lemma 6. ID can reach the UNSAT state for false QBF.

The clause learning process considered here only applies one actual resolu-
tion step per conflict (L1 ⊗v L2). In practice, we probably want to apply multi-
ple resolution steps before applying Learn. It is possible to use the conflicting
assignment x to (implicitly) construct an implication graph and mimic the clause
learning of SAT solvers [8,31].

3.3 Example

We now discuss the application of the inference rules along the following formula:

∀x1, x2. ∃y1, . . . , y4. (x1 ∨ ¬y1) ∧ (x2 ∨ ¬y1) ∧ (¬x1 ∨ ¬x2 ∨ y1) ∧ (1)
(¬x2 ∨ y2) ∧ (¬y1 ∨ y2) ∧ (x2 ∨ y1 ∨ ¬y2) ∧ (2)
(y1 ∨ ¬y3) ∧ (y2 ∨ ¬y3) ∧ (3)
(¬y1 ∨ y4) ∧ (¬y3 ∨ ¬y4) (4)

Initially, the state of the algorithm is the tuple (Ready, ϕ,X,1,1). The rule
Propagate can be applied to y1 in the initial state, as we are in the Ready
state, y1 /∈ X, and because y1 satisfies the checks deterministic and unconflicted:
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The antecedents of y1 are Ay1 = x1 ∧ x2 and A¬y1 = ¬x1 ∨ ¬x2 (see clauses
in line (1)). It is easy to check that both Ay1 ∨ A¬y1 nor ¬(Ay1 ∧ A¬y1) hold
for all assignments to x1 and x2. The state resulting from the application of
Propagate is (Ready, ϕ,X ∪{y1},1,1). (Alternatively, we could apply Decide
in the initial state, but deriving unique Skolem functions is generally preferable.)

While Propagate was not applicable to y2 before, it now is, as the increased
set D made y2 deterministic (see clauses in line (2)). We can thus derive the state
(Ready, ϕ,X ∪ {y1, y2},1,1).

Now, we ran out of variables to propagate and the only applicable rule
is Decide. We arbitrarily choose y3 as our decision variable and arbitrar-
ily introduce a single clause δ = {(¬y1 ∨ ¬y2 ∨ y3)}, arriving in the state
(Ready, ϕ.δ,X∪{y1, y2},1,1). In this step we can immediately apply Propagate
(consider δ and the clauses in line (3)) to add the decision variable to the set D
and arrive at (Ready, ϕ.δ,X ∪ {y1, y2, y3},1,1).

We can now apply Backtrack to undo the last decision, but this would not
be productive. Instead identify y4 to be conflicted and we enter a conflict state
with Conflict: (Conflict({y4,¬y4}, x1∧x2), ϕ.δ,X∪{y1, y2, y3},1,1). To resolve
the conflict we apply Analyze twice - once with each of the clauses in line (4)
- bringing us into state (Conflict({¬y1,¬y3}, x1 ∧ x2), ϕ.δ,X ∪ {y1, y2, y3},1,1).
We can backtrack one level such that D = X ∪ {y1, y2} and then apply Learn
to enter state (Ready, ϕ ∪ {(¬y1 ∨ ¬y3)},X ∪ {y1, y2},1,1).

The rest is simple: we apply Propagate on y3 and take a decision for y4. As
no other variable can depend on y4 we can take an arbitrary decision for y4 that
makes y4 deterministic, as long as this does not make y4 conflicted. Finally, we
can propagate y4 and then apply SAT to conclude that we have found Skolem
functions for all existential variables.

3.4 Termination

So far, we have described sound and nondeterministic algorithms that allow us
to prove or disprove any 2QBF. We can easily turn the algorithm in the proof
of Lemma 6 into a deterministic algorithm that terminates for both true and
false QBF by introducing an arbitrary ordering of variables and assignments:
Whenever there is nondeterminism in the application of one of the rules as
described in Lemma 6, pick the smallest variable for which one of the rules is
applicable. When multiple rules are applicable for that variable, pick them in
the order they appear in the figures. When the inference rule allows multiple
assignments, pick the smallest. In particular, this guarantees that the existential
variables are added to D in the arbitrarily picked order, as for any existential
not in D we can either apply Propagate, Decide, or Conflict.

Restricting Decide to decisions that are consistent with the unique con-
sequences may be unintuitive for true QBF, where we try to find a Skolem
function. However, whenever we make the 2QBF false by introducing clauses
with Decide, we will eventually go to a conflict state and learn a new clause.
Deriving the learnt clause for conflicted variable v from two clauses with unique
consequence v (as described for Lemma 6) means that we push the constraints
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SAT ∃Y. ϕ 2QBF ∀X. ∃Y. ϕ

State Partial assignment of values Partial assignment of functions
Propagation unit propagation unique Skolem function w.r.t. D
Decision unit clause clause with unique consequence
Conflict unit clauses y and ¬y ∃X that implies y and ¬y
Learning clause clause

Fig. 3. Concepts in ID and their counterparts in CDCL

towards smaller variables in the variable ordering. The learnt clause will thus
improve the Skolem function for a smaller variable or cause another conflict for
a smaller variable. In the extreme case, we will eventually learn clauses that look
like function table entries, as used in Lemma 4, i.e. clauses containing exactly
one existential variable. At some point, even with our restriction for Decide, we
cannot make a “wrong” decision: The cases for which a variable does not have
a clause with unique consequence are either irrelevant for the satisfaction of the
2QBF or our restricted decisions happen to make the right assignment.

In cases where no static ordering of variables is used - as it will be the case in
any practical approach - the termination for true QBF is less obvious but follows
the same argument: Given enough learnt clauses, the relationships between the
variables are dense enough such that even naive decisions suffice.

3.5 Pure Literals

The original paper on ID introduces the notion of pure literals for QBF that
allows us to propagate a variable v even if it is not deterministic, if for a literal l
of v, all clauses c that l occurs in are either satisfied or l is the unique consequence
of c. The formalization presented in this section allows us to conclude that pure
literals are a special case of Decide: We can introduce clauses defining v to be
of polarity l whenever all clauses containing l are satisfied by another literal.

That is, we can precisely characterize the minimal set of cases in which v has
to be of polarity l and the decision is guaranteed to never introduce unnecessary
conflicts. The same definition cannot be made when l occurs in clauses where it
is not a unique consequence, as then the clause contains another variable that
is not deterministic yet.

3.6 Relation of ID and CDCL

There are some obvious similarities between ID and conflict-driven clause learn-
ing (CDCL) for SAT. Both algorithms modify their partial assignments by propa-
gation, decisions, clause learning, and backtracking. The main difference between
the algorithms is that, while CDCL solvers maintain a partial assignment of
Boolean values to variables, ID maintains a partial assignment of functions to
variables (which is represented by the clauses C|D). We summarized our obser-
vations in Fig. 3.
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InductiveRefinement
(Conflict(L, ), C, D, χ, α) ϕ( |X , )

(Conflict(L, ), C, D, χ ∧ ¬ϕ( ), α)

Failed
(Conflict(L, ), C, D, χ, α) ϕ( |X) is unsatisfiable

(UNSAT, C, D, χ, α)

Fig. 4. Inference rules adding inductive reasoning to ID

4 Inductive Reasoning

The CEGIS approach to solving a 2QBF ∀X. ∃Y. ϕ is to iterate over X assign-
ments x and check if there is an assignment y such that ϕ(x ,y) is valid. Upon
every successful iteration we exclude all assignments to X for which y is a
matching assignment. If the space of X assignments is exhausted we conclude
the formula is true, and if we find an assignment to X for which there is no
matching Y assignment, the formula is false [21].

While this approach shows poor performance on some problems, as discussed
in the introduction, it is widely popular and has been successfully applied in
many cases. In this section we present a way how it can be integrated in ID
in an elegant way. The simplicity of the CEGIS approach carries over to our
extension of ID - we only need the two additional inference rules in Fig. 4.

We exploit the fact that ID already generates assignments x to X in its
conflict check. Whenever ID is in a conflict state, the rules in Fig. 4 allow us to
check if there is an assignment y to Y that together with |X , which is the part
of x defining variables in X, satisfies ϕ. If there is such an assignment y , we can
let the Skolem functions output y for the input x . But the output y may work
for other assignments to X, too. The set of all assignments to X for which y
works as an output, is easily characterized by ϕ(y).1 InductiveRefinement
allows us to exclude the assignments ϕ(0) from χ, which represents the domain
(i.e. assignments to X) for which we still need to find a Skolem function.

This gives rise to a new invariant, stating that ¬χ only includes assignments
to X for which we know that there is an assignment to Y satisfying ϕ. With this
invariant it is clear that Lemma 3 also holds for arbitrary χ.

Invariant 4. ∀X.∃Y. ¬χ ⇒ ϕ

It is easy to check that Propagate preserves Invariant 1 also if χ and α are
not 1. Invariants 2 and 3 are unaffected by the rules in this section. To make
sure that Lemma 5 is preserved as well, we thus only have to inspect Failed,
which is trivially sound.

1 We can actually exploit the Skolem functions that do not depend on decisions and
exclude C(0)(yD(0)) from χ instead, i.e. the set of assignments to D(0) to which the

part of y that is not in D(0) is a solution.
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Assume
(Ready, C, D, χ, α) var(l) ∈ D(0)

(Ready, C, D, χ, α ∧ l)

Close
(Ready, C, D, χ, α) D = X ∪ Y

(Ready, C(0), D(0), χ ∧ ¬α,1)

Fig. 5. Inference rules adding case distinctions to ID

A Portfolio Approach? In principle, we could generate assignments x inde-
pendently from the conflict check of ID. The result would be a portfolio app-
roach that simply executes ID and CEGIS in parallel and takes the result from
whichever method terminates first. The idea behind our extension is that con-
flict assignments are more selective and may thus increase the probability that
we hit a refuting assignment to X. Also ID may profit from excluding groups
of assignments for which frequently cause conflicts. We revisit this question in
Sect. 6.

Example. We extend the example from Subsect. 3.3 from the point where we
entered the conflict state (Conflict({y4,¬y4}, x1 ∧ x2), ϕ.δ,X ∪ {y1, y2, y3},1,1).
We can apply InductiveRefinement, checking that there is indeed a solution
to ϕ for the assignment x1, x2 to the universals (e.g. y1, y2,¬y3, y4). Instead of
doing the standard conflict analysis as in our previous example, we can apply
Learn to add the (useless) clause y4 ∨ ¬y4 to C(0) without any backtracking.
That is, we effectively ignore the conflict and go to state (Ready, ϕ ∪ {(y4 ∨
¬y4)}.δ,X ∪ {y1, y2, y3},¬x1 ∨ ¬x2,1).

There is no assignment to X that provokes a conflict for y4, other than the
one we excluded through InductiveRefinement. We can thus take an arbitrary
decision for y4 that is consistent with the unique consequences (see Subsect. 3.2),
Propagate y4, and then conclude the formula to be true.

5 Expansion

Universal expansion (defined in Sect. 2) is another fundamental proof rule that
deals with universal variables. It has been used in early QBF solvers [10] and
has later been integrated in CEGAR-style QBF solvers [26,32].

One way to look at the expansion of a universal variable x is that it introduces
a case distinction over the possible values of x in the Skolem functions. However,
instead of creating a copy of the formula explicitly, which often caused a blowup
in required memory, we can reason about the two cases sequentially. The rules
in Fig. 5 extend ID by universal expansion in this spirit.

Using Assume we can, at any point, assume that a variable v in D(0), i.e.
a variable that has a unique Skolem function without any decisions, has a par-
ticular value. This is represented by extending α by the corresponding literal
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of v, which restricts the domain of the Skolem function that we try to construct
for subsequent deterministic and unconflicted checks. Invariant 1 and Lemma 5
already accommodate the case that α is not 1.

When we reach a point where D contains all variables, we cannot apply Sat,
as that requires α to be true. In this case, Invariant 1 only guarantees us that the
function we constructed is correct on the domain χ ∧ α. We can hence restrict
the domain for which we still need to find a Skolem function and strengthen
χ by ¬α. In particular, Close maintains Invariant 4. When χ ends up being
equivalent to 0, Invariant 4 guarantees that the original formula is true. (In this
case we can reach the SAT state easily, as we know that from now on every
application of Propagate must succeed.2)

Note that Assume does not restrict us to assumptions on single variables.
Together with Decide and Propagate it is possible to introduce variables with
arbitrary definitions, add them to D(0), and then assume an outcome with the
rule Assume.

Example. Again, we consider the formula from Subsect. 3.3. Instead of the rea-
soning steps described in Subsect. 3.3, we start using Assume with literal x2.
Whenever checking deterministic or unconflicted in the following, we will thus
restrict ourselves to universal assignments that set x2 to true. It is easy to check
that this allows us to propagate not only y1 and y2, but also y3. A decision (e.g.
δ′ = {(y4)}) for y4 allows us to also propagate y4 (this time without potential
for conflicts), arriving in state (Ready, ϕ.δ′,X ∪ {y1, y2, y3, y4},1, x2).

We can Close this case concluding that under the assumption x2 we have
found a Skolem function. We enter the state (Ready, ϕ,X,¬x2,1) which indicates
that in the future we only have to consider universal assignments with ¬x2. Also
for the case ¬x2, we cannot encounter conflicts for this formula. Expansion hence
allows us to prove this formula without any conflicts.

6 Experimental Evaluation

We extended the QBF solver CADET [8] by the extensions described in Sects. 4
and 5. We use the CADET-IR and CADET-E to denote the extensions of
CADET by inductive reasoning (Sect. 4) and universal expansion (Sect. 5),
respectively. We also combined both extensions and refer to this version as
CADET-IR-E. The experiments in this section evaluate these extensions against
the basic version of CADET and against other successful QBF solvers of the
recent years, in particular GhostQ [33], RAReQS [32], Qesto [23], DepQBF [19]
in version 6, and CAQE [24,26]. For every solver except CADET and GhostQ,
we use Bloqqer [34] in version 031 as preprocessor. For our experiments, we used
a machine with a 3.6GHz quad-core Intel Xeon processor and 32GB of mem-
ory. The timeout and memout were set to 600 s and 8GB. We evaluated the
2 Technically, we could replace Sat by a rule that allows us to enter the SAT state

whenever χ is 0, which arguably would be more elegant. But that would require us
to introduce the Close rule already for the basic ID inference system.
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Fig. 6. Cactus plot comparing solvers on the QBFEval-2017 2QBF benchmark.

solvers on the benchmark sets of the last competitive evaluation of QBF solvers,
QBFEval-2017 [9].

How Does Inductive Reasoning Affect the Performance? In Fig. 6 we see that
CADET-IR clearly dominates plain CADET. It also dominates all solvers that
relied on clause-level CEGAR and Bloqqer (CAQE, Qesto, RAReQS).

Only GhostQ beats CADET-IR and solves 5 more formulas (of 384). A closer
look revealed that there are many formulas for which CADET-IR and GhostQ
show widely different runtimes hinting at potential for future improvement.

GhostQ is based on the CEGAR principle, but reconstructs a circuit rep-
resentation from the clauses instead of operating on the clauses directly [33].
This makes GhostQ a representative of QBF solvers working with so called
“structured” formulas (i.e. not CNF). CADET, on the other hand, refrains from
identifying logic gates in CNF formulas and directly operates with the “unstruc-
tured” CNF representation. In the ongoing debate in the QBF community on the
best representation of formulas for solving quantified formulas, our experimental
findings can thus be interpreted as a tie between the two philosophies.

Is the Inductive Reasoning Extension Just a Portfolio-Approach? To settle this
question, we created a version of CADET-IR, called IR-only, that exclusively
applies inductive reasoning by generating assignments to the universals and
applying InductiveReasoning. This version of CADET does not learn any
clauses, but otherwise uses the same code as CADET-IR. On the QBFEval-2017
benchmark, IR-only and CADET together solved 235 problems within the time
limit, while CADET-IR solved 243 problems. That is, even though the com-
bined runtime of CADET and IR-only was twice the runtime of CADET-IR,
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Fig. 7. Cactus plot comparing solver performance on the Hardware Fixpoint formulas.
Some but not all of these formulas are part of QBFEval-2017. The formulas encode
diameter problems that are known to be hard for classical QBF search algorithms [35].

they solved fewer problems. CADET-IR also uniquely solved 22 problems. This
indicates that CADET-IR improves over the portfolio approach.

How Does Universal Expansion Affect the Performance? CADET-E clearly dom-
inates plain CADET on QBFEval-2017, but compared to CADET-IR and some
of the other QBF solvers, CADET-E shows mediocre performance overall. How-
ever, for some subsets of formulas, such as the Hardware Fixpoint formulas shown
in Fig. 7, CADET-E dominated CADET, CADET-IR, and all other solvers. We
also combined the two extensions of CADET to obtain CADET-IR-E. While this
helped to improve the performance on the Hardware Fixpoint formulas even fur-
ther, it did not change the overall picture on QBFEval-2017.

7 Conclusion

Reasoning in quantified logics is one of the major challenges in computer-aided
verification. Incremental Determinization (ID) introduced a new algorithmic
principle for reasoning in 2QBF and delivered first promising results [8]. In this
work, we formalized and generalized ID to improve the understanding of the
algorithm and to enable future research on the topic. The presentation of the
algorithm as a set of inference rules has allowed us to disentangle the design
choices from the principles of the algorithm (Sect. 3). Additionally, we have
explored two extensions of ID that both significantly improve the performance:
The first one integrates the popular CEGAR-style algorithms and Incremental
Determinization (Sect. 4). The second extension integrates a different type of
reasoning termed universal expansion (Sect. 5).
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Abstract. The resolution proof system has been enormously helpful in
deepening our understanding of conflict-driven clause-learning (CDCL)
SAT solvers. In the interest of providing a similar proof complexity-
theoretic analysis of satisfiability modulo theories (SMT) solvers, we
introduce a generalization of resolution called Res(T). We show that
many of the known results comparing resolution and CDCL solvers lift
to the SMT setting, such as the result of Pipatsrisawat and Darwiche
showing that CDCL solvers with “perfect” non-deterministic branching
and an asserting clause-learning scheme can polynomially simulate gen-
eral resolution. We also describe a stronger version of Res(T), Res∗(T),
capturing SMT solvers allowing introduction of new literals. We analyze
the theory EUF of equality with uninterpreted functions, and show that
the Res∗(EUF) system is able to simulate an earlier calculus introduced
by Bjørner and de Moura for the purpose of analyzing DPLL(EUF). Fur-
ther, we show that Res∗(EUF) (and thus SMT algorithms with clause
learning over EUF, new literal introduction rules and perfect branching)
can simulate the Frege proof system, which is well-known to be far more
powerful than resolution. Finally, we prove under the Exponential Time
Hypothesis (ETH) that any reduction from EUF to SAT (such as the
Ackermann reduction) must, in the worst case, produce an instance of
size Ω(n log n) from an instance of size n.

1 Introduction

It is common practice in formal verification literature to view SAT/SMT solver
algorithms as proof systems and study their properties, such as soundness, com-
pleteness and termination, using proof-theoretic tools [GHN+04,ORC09,Tin12].
However, much work remains in applying the powerful lens of proof complexity
theory in understanding the relative power of these solvers. All too often, the
power of SAT and SMT (satisfiability modulo theories) solving algorithms is
determined by how they perform at the annual SAT or SMTCOMP competi-
tions [BHJ17,smt]. While such competitions are an extremely useful practical
test of the power of solving methods, they do not address fundamental questions
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such as which heuristics are truly responsible for the power of these solvers or
what are the lower bounds for these methods when viewed as proof systems.

Solvers, by their very nature, are a tangled jumble of heuristics that interact
with each other in complicated ways. Many SMT solvers run into hundreds of
thousands of lines of code, making them very hard to analyze. It is often difficult
to discern which sets of heuristics are universally useful, which sets are tailored
to a class of instances, and how their interactions actually help solver perfor-
mance. A purely empirical approach, while necessary, is far from sufficient in
deepening our understanding of solver algorithms. What is needed is an appro-
priate combination of empirical and theoretical approaches to understanding the
power of solvers. Fortunately, proof complexity theory provides a powerful lens
through which to mathematically analyze solver algorithms as proof systems and
to understand their relative power via lower bounds. The value of using proof
complexity theory to better understand solving algorithms as proof systems is
three-fold: first, it allows us to identify key ingredients of a solving algorithm and
prove lower bounds to non-deterministic combinations of such ingredients. That
is, we can analyze the countably many variants of a solving algorithm in a unified
manner via a single analysis, rather than analyzing different configurations of
the same set of proof-theoretic ingredients; second, proof complexity-theoretic
tools allow us to recognize the relative power of two proof systems, via appro-
priate lower bounds, even if both have worst-case exponential time complexity;
finally, proof complexity theory brings with it a rich literature and connections
to other sub-fields of complexity theory (e.g., circuit complexity) that we may be
able to leverage in analyzing solver algorithms. Many proof complexity theorists
and logicians have long recognized this, and there is rich literature on the anal-
ysis of SAT solving algorithms such as DPLL and conflict-driven clause-learning
(CDCL) solvers [PD11,BKS04,BBJ14,AFT11]. In this paper, we lift some of
these results to the setting of SMT solvers, following the work of Bjørner and de
Moura [BM14].

Our focus is primarily the proof complexity-theoretic analysis of the
“DPLL(T ) method”1, the prime engine behind many modern SMT solvers
[GHN+04,Tin12]. (While other approaches to solving first-order formulas have
been studied, DPLL(T) remains a fundamental and dominant approach.) A
DPLL(T)-based SMT solver takes as input a Boolean combination of first-order
theory T atoms or their negation (aka, theory literals), and decides whether
such an input is satisfiable. Informally, a typical DPLL(T)-based SMT solver S

1 Prior to mid 2000’s, SAT researchers and complexity theorists confusingly used the
term DPLL to refer to both the original algorithm proposed by Davis, Putnam,
Loveland, and Loeggemann in 1960, as well as the newer algorithm by Joao Marques-
Silva and Karem Sakallah that added clause learning to DPLL (proposed in 1996),
even though they are vastly different in power as proof systems. We will follow the
literature and use DPLL(T ) to indicate a “modern” SMT solver with clause learning
and restarts, but, we urge SMT solver researchers to use the more appropriate term
CDCL(T ) rather than DPLL(T ) to refer to the lazy approach to SMT.
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is essentially a CDCL Boolean SAT solver that calls out a theory solver Ts dur-
ing its search to perform theory propagations and theory conflict-clause learning.
The typical theory solver Ts is designed to accept only quantifier-free conjunc-
tion of theory T literals (the T in the term DPLL(T)), while the SAT solver
“handles” the Boolean structure of input formulas. Roughly speaking, the SMT
solver S works as follows: First, it constructs a Boolean abstraction BF of the
input formula F , by replacing theory literals by Boolean variables. If BF is
UNSAT, S returns UNSAT. Otherwise, satisfying assignments to the Boolean
abstraction BF are found, which in turn correspond to conjunctions of theory
literals. Such conjunctions are then input to the theory solver Ts, which may
deduce new implied formulas (via theory propagation and conflict clause learn-
ing) that are then used to help prune the search space of assignments to F . The
solver S returns SAT upon finding a satisfying theory assignment to the input F ,
and UNSAT otherwise. (For further details, we refer the reader to the excellent
exposition on this topic by Tinelli [Tin12].)

A Brief Description of the Res(T ) Proof System: To abstractly model a
DPLL(T)-based SMT solver S, we define a proof system Res(T ) below for a given
first-order theory T . The Res in Res(T ) refers to the general resolution proof
system for Boolean logic. Without loss of generality, we assume that Res(T )
accepts theory formulas in conjunctive normal form (CNF). Let F denote a
CNF with propositional variables representing atoms from an underlying theory
T , and for any clause C in FF let vars(F ) denote the set of propositional atoms
occurring in F . The proof rules of Res(T ) augment the resolution proof rule as
follows: A proof in Res(T ) is a general resolution refutation of F , where at any
step the theory T -solver can add to the set of clauses an arbitrary clause C
such that T � C and every propositional atom in vars(C) occurs in the original
formula. That is, each line of a Res(T ) proof is deduced by one of the following
rules:

Resolution. C ∨ �,D ∨ � � C ∨ D, for previously derived clauses C and D.
Theory Derivation. � C for any clause C such that T � C and for which every

theory literal in C occurs in the input formula.

For example, a theory of linear arithmetic may introduce a clause (x ≥ 5∨y ≥
7 ∨ x + y < 12), which can then be used in the subsequent steps of a resolution
proof, provided each of those literals occurred in the original CNF formula F .
The filter on the theory rule of Res(T ) models the fact that in many modern
SMT solvers, the “theory solver” is only allowed to reason about literals which
already occur in the formula. Recent solvers such as Z3, Yices [Z3,Yic] break this
rule and allow the theory solver to introduce new propositional atoms; to model
this we introduce the stronger variant Res∗(T ) with a strengthened theory rule:

Strong Theory Derivation: � C for any clause C such that T � C.
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1.1 Our Contributions

We prove the following results about the two systems Res(T ), Res∗(T ) and the
complexity of SMT solving.

1. We show that DPLL(T ) with an arbitrary asserting clause learning scheme
and non-deterministic branching and theory propagation is equivalent (as a
proof system) to Res(T ) for any theory T . More precisely: if the theory solver
in DPLL(T ) can only reason about literals in the input, then it is equivalent
to Res(T ); if it can reason about arbitrary literals then it is equivalent to
Res∗(T ). (See Sect. 3)

2. When the theory T is E, the theory of pure equalities, Res∗(E) is equivalent
to the SP (E) system of Bjørner et al. [BDdM08], which seems to have no
efficient proofs of the PHP. (See Sect. 5.1)

3. When the theory T is EUF (equality with uninterpreted function symbols),
the proof system Res∗(EUF) can simulate E-Res, a different generalization of
resolution introduced by Bjorner and de Moura [BM14] for the purpose of sim-
ulating standard implementations of DPLL(EUF). Furthermore, Res∗(EUF)
can simulate the powerful Frege proof system. (See Sect. 5.2)

4. When T is LA, a theory of linear arithmetic over a set of numbers contain-
ing integers, Res(LA) can polynomially simulate the system R(lin) of Raz and
Tzameret [RT08], and thus has polynomial size proofs of several hard tautolo-
gies such as the pigeonhole principle and Tseitin tautologies. (See Sect. 5.3)

5. Finally, we prove under the Exponential Time Hypothesis (ETH) that any
reduction from EUF to SAT (such as the Ackermann reduction) must, in the
worst case, produce an instance of size Ω(n log n) from an instance of size n.
(See Sect. 6)

These results seem to suggest that our generalization is the “right” proof sys-
tem corresponding to DPLL(T ), as it characterizes proofs produced by DPLL(T )
and it can simulate other proof systems introduced in the literature to capture
DPLL(T ) for particular theories T .

1.2 Previous Work

Among the previous proof systems combining resolution with non-propositional
reasoning are R(CP) proof system of [Kra98], where propositional variables are
replaced with linear inequalities, and R(lin) introduced by Raz and Tzameret
[RT08], which reasons with linear equalities, modifying the resolution rule. R(lin)
polynomially simulates R(CP) when all coefficients in an R(CP) proof are polyno-
mially bounded. In the SMT community, Bjørner et al. [BDdM08,BM14] intro-
duced calculi capturing the power of resolution over the theory of equality and
equality with uninterpreted functions. They show that these systems capture
the power of resolution over the corresponding theories, extended with rules for
introducing new atoms. Our results supersede previous work since our simula-
tions hold for any first-order theory T .
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2 Preliminaries

2.1 Propositional Proof Systems

In this paper, all proof systems are defined by a set of “allowed lines” equipped
with a list of deduction rules that allow us to deduce new lines from old ones. We
first recall the resolution system, which is a refutation system for propositional
formulas in CNF (product of sums) form. The lines of a resolution proof are
disjunctions of boolean literals called clauses, and these lines are equipped with
a single deduction rule called the resolution rule: given two clauses of the form
C ∨ �, D ∨ � we deduce the clause C ∨ D. If φ = C1 ∧ C2 ∧ · · · ∧ Cm is an
unsatisfiable CNF formula then a resolution refutation of φ is a sequence of
clauses C1, C2, . . . , Cm, Cm+1, . . . , Ct where Ct is the empty clause and all clauses
Ci with i > m are deduced from earlier clauses by applying the resolution rule.

Observe that clauses satisfy a subsumption principle: if C, D are clauses
such that C ⊆ D then every assignment satisfying C also satisfies D. This
implies that we can safely add a weakening rule to resolution which, from a
clause C, derives the clause C ∨ x for any literal x not already occurring in C.
The subsumption principle implies that this weakening rule does not change the
power of resolution, as any use of a clause D ⊇ C can be eliminated or replaced
with C.

We also consider the Frege proof system, which captures standard “textbook-
style” proofs. The lines of a Frege system are given by arbitrary boolean formulas,
and from two boolean formulas we can deduce any new boolean formula which
follows under typical boolean reasoning (e.g. deducing the conjunction of two for-
mulas, the disjunction of their negation, and so on). Crucially, Frege proofs allow
applying a generalized “resolution rule” to arbitrary polynomial-size formulas.

The power of different propositional proof systems are compared using the
notion of an polynomial simulation (p-simulation). Proof system A polynomi-
ally simulates (or p-simulates) proof system B if, for every unsatisfiable formula
F , the shortest refutation proof of F in A is at most polynomially longer than
the shortest refutation proof of a formula F in B. For example, the Frege proof
system p-simulates the Resolution proof system, but the converse is widely con-
jectured not to hold.

2.2 First-Order Theories

In this paper we study proof systems for first-order theories. For the sake of com-
pleteness we recall some relevant definitions from first-order logic, but remark
that this is essentially standard fare.

Let L be a first-order signature (a list of constant symbols, function symbols,
and predicate symbols). Given a set of L-sentences A and an L-sentence B we
write A � B if every model of A is also a model of B. A first order theory (or
simply a theory) is a set of L-sentences that is consistent (that is, it has a model)
and is closed under �. The decision problem for a theory T is the following: given
a set S of literals over L, decide if there is a model M of T such that M � S.
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The satisfiability problem for T , also denoted T -SAT, is the following: given a
quantifier-free formula F in T in conjunctive normal form (CNF), decide if there
is a model M of T such that M � F .

A simple example of a theory is E, the conjunctive theory of equality. The
signature of E contains a single predicate symbol = and an infinite list of con-
stant symbols. It is axiomatized by the standard axioms of equality (reflexivity,
symmetry, and transitivity), and a sample sentence in E would be the formula
a �= b ∨ b �= c ∨ a = c, which encodes the transitivity of equality between the
constant symbols a, b, and c. Following the SMT literature, we will call terms
from the theory (such as a and b) theory variables, and the atoms derived from
these terms (such as a �= b or a = c) will be called theory literals or just literals.
We note that the decision problem for E can be decided very efficiently [DST80];
in contrast, the satisfiability problem for E is easily seen to be NP-complete.

3 Res(T ): Resolution Modulo Theories

We now define a generalization of resolution which captures the type of reasoning
modulo a first-order theory that is common in SMT solvers. We give two variants:
the first, denoted Res(T ), allows the deduction of any clause C of theory literals
such that T � C and for which every literal in C already occurs in the input
formula. This is intended to model “standard” lazy SMT solvers [NOT06] which
only reason about literals in the input formula.

The second, more powerful variant is denoted Res∗(T ), and allows the deduc-
tion of any clause of literals C such that T � C, even if the new clause contains
literals which do not occur in the input formula. We introduce this to explore
the power of lazy SMT solvers that are allowed to introduce new literals from
the theory, and note that there are well-known examples in the SMT literature
which show that introducing new literals can drastically decrease the length of
refutations (e.g. the diamond equalities [BDdM08]). Indeed, in Sect. 5.2 we show
that this power can drastically increase the proof theoretic strength of SMT
solvers.

Definition 1 (Res(T ),Res∗(T )). Let T be a theory and let F be an quantifier-
free CNF formula over T . The lines of a Res(T ) (Res∗(T )) proof are quantifier-
free clauses of theory literals deduced from F and T by the following derivation
rules.

Resolution. C ∨ �,D ∨ � � C ∨ D.

Weakening. C � C ∨ � for any theory literal � occurring in the input formula.

Theory Derivation (Res(T )). � C for any clause C satisfying T � C and for
which every literal in C occurs in the input formula.

Strong Theory Derivation (Res∗(T )). � C for any clause C satisfying T � C.
A refutation of F is a proof in which the final line is the empty clause.
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It is easy to see that both Res(T ) and Res∗(T ) are sound since all rules are
sound, and completeness follows from a straightforward modification of the usual
proof of resolution completeness (see, e.g. Jukna [Juk12]).

Technically speaking, Res(T ) is not a (formal) propositional proof system as
defined by Cook and Reckhow [CR79] since the proofs may not be efficiently
verifiable if deductions from the theory T are computationally difficult to verify.
However, all theories considered in this paper (cf. Sect. 5) are very efficiently
decidable, and thus the corresponding Res(T ) proofs are efficiently verifiable.

Note that the clauses introduced by the theory derivations are arbitrary the-
orems of T ; this means there is no direct information exchange between the
resolution proof and the theory. It is enough to derive clauses in the theory
derivation rules rather than arbitrary formulas since every axiom can be written
in CNF form, and introduced as a sequence of clauses. The strong theory deriva-
tion rule can introduce new theory literals which might not have been present in
the initial formula—we emphasize that the new theory literals can even contain
theory variables (i.e. first-order terms) that did not occur in the original formula.
We will see that this ability to introduce new literals seems to give Res∗(T ) extra
power over general resolution.

4 Lazy SMT Solvers and Res(T )

In this section we show that lazy SMT solvers and resolution modulo theories
are polynomially-equivalent as proof systems, provided that the SMT solvers are
given a set of branching and restart decisions a priori.

We model SMT solvers by the algorithm schema2 DPLL(T ), which is given
in Algorithm 1. Using this schema we prove two results: first, if the theory
solver in DPLL(T ) can only reason about literals occurring in its input formula,
then DPLL(T ) is polynomially equivalent to Res(T ). Second, if the theory solver
is strengthened so that it is allowed to introduce new literals then the result-
ing solver can polynomially simulate Res∗(T ). The proofs of these results use
techniques developed for comparing Boolean CDCL solvers and resolution by
Pipatsrisawat and Darwiche [PD11].

2 In the literature, SMT solvers are typically defined as abstract state-transition sys-
tems (see, for instance, [GHN+04,BM14]); we have chosen to define it instead as an
algorithm schema (cf. Algorithm 1) inspired by the abstract definition of a CDCL
solver by Pipatsrisawat and Darwiche [PD11].
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Algorithm 1. DPLL(T )

Input: CNF formula F over T -literals;
Output: SAT or UNSAT
Let σ = ∅ be an initially empty partial assignment of T -literals;
Let Γ be an initially empty collection of learned clauses;
while true do

if F ∧ Γ ∧ σ �1 ∅ then
if σ = ∅ then

return UNSAT;
Apply the clause learning scheme to learn a conflict clause C,
add it to Γ ;
Backjump σ to the second highest decision level in C;

else if σ �T ∅ then
Apply the T -conflict scheme to learn a conflict clause C, add it
to Γ ;
Backjump σ to the second highest decision level in C;

else
if σ satisfies F then

return SAT;
Apply the restart scheme to decide whether or not to restart;
if restart then

Set σ = ∅;
Restart loop;

Apply the T -propagate scheme;
Unit propagate literals to completion and update σ accordingly;
Apply the branching scheme to choose a decision literal �, set
σ = σ ∪ {�};

If T is a theory and A,B are formulas over T then we write A �T B as a
shorthand for T ∪ {A} � B (i.e. every model of the theory T that satisfies A
also satisfies B). We also define unit resolution, which describes the action of
the unit propagator.

Definition 2 (Unit Resolution). Let F be a collection of clauses over an
arbitrary theory T . A clause C is derivable from F by unit resolution if there
exists a resolution proof from F of C such that in each application of the reso-
lution rule, one of the clauses is a unit clause. If C is derivable from F by unit
resolution then we write F �1 C. If F �1 ∅ then we say F is unit refutable,
otherwise it is unit consistent.

A DPLL(T ) algorithm is defined by specifying algorithms for each of the
bolded “schemes” in Algorithm 1:

Clause Learning Scheme. When a clause in the database is falsified by the
current partial assignment, the Clause Learning Scheme is applied to learn
a new clause C which is added to the database of stored clauses.
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Restart Scheme. The solver applies the Restart Scheme to decide whether
or not to restart its search, discarding the current partial assignment σ and
saving the list of learned clauses.

Branching Scheme. The Branching Scheme is applied to choose an unas-
signed variable from the formula F or from the learned clauses Γ and assign the
variable a Boolean value.

T -Propagate Scheme. During search, the DPLL(T ) solver can hand the theory
solver the current partial assignment σ and ask whether or not it should unit-
propagate a literal; if a unit propagation is possible the theory solver will return
a clause C from the theory witnessing this unit propagation.

T -Conflict Scheme. When the theory solver detects that the current partial
assignment σ contradicts the theory, the T -Conflict Scheme is applied to learn
a new clause of literals C, ¬C ⊆ σ, which is added to the clause database.

We pay particular interest to the specification of the T -propagate scheme.
The next definition describes two types of propagation schemes: a weak propa-
gation scheme is only allowed to return clauses which propagate literals in the
formula, while the more powerful strong propagation scheme returns a clause of
literals from the theory that may contain new literals.

Definition 3. A weak T -propagate scheme is an algorithm which takes as input
a conjunction of theory literals σ over T and returns (if possible) a clause C =
¬σ ∨ � where T � C and the literal � occurs in the input formula of the DPLL(T )
algorithm.

A strong T -propagate scheme is an algorithm which takes as input a con-
junction of literals σ over T , and if possible returns a clause C of literals from T
such that T � C and ¬σ ⊆ C. An algorithm equipped with a strong T -propagate
scheme will be called a DPLL∗(T ) solver.

A DPLL(T ) algorithm equipped with a weak T -propagation scheme is equiv-
alent to the basic theory propagation rules found in SMT solvers (see, for
example, [BM14,NOT06]). For technical convenience we assume that the weak
T -propagate scheme adds a clause to the database “certifying” the unit prop-
agation, while in actual implementations the clause would likely not be added
and the literal would simply be propagated. Recent SMT solvers [Yic,Z3] have
strengthened the interaction between the SAT solver and the theory solver, allow-
ing the theory solver to return constraints over new variables; this is modelled
very generally by strong T -propagate schemes.

4.1 DPLL(T ) and Res(T )

We now prove the main result of this section, after introducing some preliminaries
from [PD11] that are suitably modified for our setting. Fix a theory T . An
assignment trail is a sequence of pairs σ = {(�i, di)}ti=1 where each literal �i is
a literal from the theory and each di ∈ {d, p}, indicating that the literal was
set by a decision or a unit propagation. The decision level of a literal �i in σ
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is the number of decision literals occurring in σ up to and including �i. Given
an assignment trail σ and a clause C we say that C is asserting if it contains
exactly one literal occurring in σ at the highest decision level. A clause learning
scheme is asserting if all conflict clauses produced by the scheme are asserting
with respect to the assignment trail at the time of conflict.

An extended branching sequence is an ordered sequence B = {β1, β2, . . . , βt}
where each βi is either (1) a literal from the theory, (2) a symbol x ∈ {R,NR},
to denote a restart or no-restart, respectively, or (3) a clause C such that T � C.
Intuitively, extended branching sequences are used to provide a DPLL(T ) solver
with a list of instructions for how to proceed in its execution. For instance,
whenever the solver calls the Branching Scheme, we consume the next βi from
the sequence, and if it is a literal from the theory then the solver assigns that
literal. Similarly, when the DPLL(T ) solver calls the Restart Scheme it uses the
branching sequence to dictate whether or not to restart, and when the solver
calls the T -propagate scheme it uses the sequence to dictate which clause to
learn. If the symbol does not correctly match the current scheme being called
then the solver halts in error, and if the branching sequence is empty, then the
algorithm proceeds using the heuristics defined by the algorithm.

We now introduce absorbed clauses (and their duals, empowering clauses),
which were originally defined by Pipatsrisawat and Darwiche [PD11] and inde-
pendently by Atserias et al. [AFT11]. One should think of the absorbed clauses
as being learned “implicitly”—they may not necessarily appear in F , but, if we
assign all but one of the literals in the clause to false then unit propagation in
DPLL(T ) will set the final literal to true.

Definition 4 (Empowering Clauses). Let F be a collection of clauses over
an arbitrary theory T and let A be a DPLL(T ) solver. Let α be a conjunction
of literals, and let C = (¬α ⇒ �) be a clause. We say that C is empowering
with respect to F at � if the following holds: (1) F ∪ T � C, (2) F ∧ α is unit
consistent, and (3) any execution of A on F that satisfies α without setting �
does not unit-propagate �. The literal � is said to be empowering. If item (1), (2)
are satisfied but (3) is false then we say that the solver A and F absorbs C at
�; if A and F absorbs C at at every literal then the clause is simply absorbed.

For an example, consider the set of clauses (x ∨ y ∨ z), (¬z ∨ a), (¬a ∨ b).
The clause (x ∨ y ∨ b) is absorbed by this set of clauses as, for instance, if we
falsify x and y then the unit-propagator will force b to be set to true. Thus in
the DPLL(T ) algorithm the unit propagator will behave as though this clause is
learned even though it is not (if we remove the final clause ¬a∨b, then (x∨y∨b)
is empowering but not absorbed).

The next lemma shows that for any theory clause C, there is an extended
branching sequence which can be applied to absorb that clause.

Lemma 5. Let F be an unsatisfiable CNF over a theory T and let Π be any
Res(T ) proof from F . Let ΠT ⊆ Π be the set of clauses in Π derived using
the theory rule. For any DPLL(T ) algorithm A there is an extended branching
sequence B such that after applying B to the solver A every clause in ΠT will
be absorbed.
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Proof. Order ΠT arbitrarily as C1, C2, . . . , Ct and remove any clause that is
absorbed or already in F , as these are clearly already absorbed. We construct
B directly: add the negations of literals in C1 to B until one literal remains,
and then add the clause C1 to the extended branching sequence. By definition
the weak T -propagator will be called and will return C1, adding it to the clause
database. Restart and continue to the next theory clause in order.

Our proof of mutual simulations between Res(T ) and DPLL(T ) crucially relies
on the following technical lemma (which is a modified version of a lemma from
[PD11]).

Lemma 6. Let F be an unsatisfiable, unit-consistent CNF over literals from a
theory T and let Π be any Res(T ) proof from F . Let ΠT be the set of clauses in
Π derived using the theory rule. Then there exists a clause C in Π that is both
empowering and unit-refutable with respect to F ∪ ΠT .

Proof. Let Π denote a Res(T )-refutation of F and assume without loss of gen-
erality (by applying Lemma 5) that the first derived clauses in Π are in ΠT .
If every clause in Π is unit-refutable from F , then the empty clause is unit-
refutable and thus F is not unit-consistent, which is a contradiction. So, assume
that there exists a clause Ci which is the first clause in Π by this ordering such
that it is not unit-refutable. Since Π is a Res(T )-proof, Ci is one of three types:
either it is a clause in F , it is a clause derived from the theory rule, or Ci was
derived by applying the resolution rule to two clauses Cj , Ck. If Ci ∈ F then
it is clearly unit-refutable, which is a contradiction. If Ci was derived from the
theory rule then it is unit-refutable with respect to ΠT , which is again a con-
tradiction. Finally, suppose that Ci was derived by applying the resolution rule
to clauses Cj and Ck, and write Cj = (α ⇒ �), Ck = (β ⇒ �) where � is the
resolved literal and j, k < i in the ordering of clauses in Π. Since Cj and Ck

are both unit-refutable, assume by way of contradiction that neither Cj nor Ck

are empowering. It follows by definition that both clauses are absorbed at every
literal. Thus, if we consider F ∧α∧β, it follows by the absorption property that
F ∧ α ∧ β �1 �,F ∧ α ∧ β �1 ¬� which implies that F ∧ α ∧ β �T

1 ∅. However,
Ci = α ∧ β, and thus we have concluded Ci is unit-refutable, which is a contra-
diction! Thus at least one of Cj or Ck is both empowering and unit-refutable.

The gist of the Lemma 6 is simple: if clauses C∨� and D∨� are both absorbed
by a collection of clauses C, then asserting C ∧ D in the DPLL solver will hit a
conflict since it will unit-imply both � and �. In the main theorem, proved next,
we show that empowering and unit-refutable clauses will be absorbed by the
solver after sufficiently many restarts.

Theorem 7. The DPLL(T ) system with an asserting clause learning scheme,
non-deterministic branching and T -propagation polynomially simulates Res(T ).
Equivalently: for any unsatisfiable CNF F over a theory T , and any Res(T ) refu-
tation Π of F there exists an extended branching sequence B such that running
a DPLL(T ) algorithm on input F using B will refute F in time polynomial in
the length of |Π|.
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Proof. Let F be an unsatisfiable CNF over the theory T , and let Π be a Res(T )
refutation of F . Let ΠT ⊆ Π be the set of clauses in Π derived using the
theory rule, and write Π = C1, C2, . . . , Cm. As a first step, apply Lemma 5 and
construct an extended branching sequence B′ which leads to the absorbtion of
all clauses in ΠT . We prove the following claim, from which the theorem directly
follows.

Claim. Let C be any unit-refutable and empowering clause with respect to F .
Then there exists an extended branching sequence B of polynomial size such
that after applying B the clause C will be absorbed.

Let � be any empowering literal of C, and write C = (α ⇒ �). Let B be
any extended branching sequence in which all literals in α are assigned. Since
C is empowering, it follows that F ∧ α is unit-consistent. Extending B with the
decision literal ¬� will therefore cause a conflict since C is unit-refutable. Let
C ′ be the asserting clause obtained by applying the clause learning scheme to
B∪{¬�}. If F ∧C ′ absorbs C at �, then we are done and we continue to the next
empowering literal. Otherwise, we resolve whatever conflicts the solver needs to
resolve (possibly adding more learned clauses along the way) until the branching
sequence is unit-consistent.

Observe that after this process we must have that F ∧ C ′ �1 �′ where �′

is some literal at the same decision level as �, since the clause learning scheme
is asserting. Thus the number of literals at the maximum decision level has
reduced by one. At this point, we restart and do exactly the same sequence of
branchings—each time, as argued above, we reduce the number of literals at the
maximum decision level by 1. Since � is a literal at the maximum decision level,
it implies that after at most O(n) restarts (and O(n2) learned clauses) we will
have absorbed the clause C at �. Repeating this process at most n times for
each empowering literal in C we can absorb C, and it is clear that the number
of learned clauses is polynomial from the analysis.

We are now ready to finish the proof. Apply the claim repeatedly to the first
empowering and unit-refutable clause in Π to absorb that clause—by Lemma 6,
such a clause will exist as long as the CNF F is not unit-refutable; a DPLL(T )
solver can obtain an arbitrary theory clause by setting relevant literals in the
branching sequence and using theory propagation. Since the length of the proof
Π is finite (length m), it follows that this process must terminate after at most m
iterations. At this point, there can not be such an empowering and unit-refutable
clause, and so by Lemma 6 it follows that F (with its learned clauses) is now
unit-refutable, and so the DPLL(T ) algorithm halts and outputs UNSAT.

The reverse direction of the theorem is straightforward, and thus we have
the following corollary:

Corollary 8. The DPLL(T ) system with an asserting clause learning scheme,
non-deterministic branching and T -propagation is polynomially equivalent to
Res(T ).

A key point of the above simulation is that it does not depend on whether
or not the T -propagation scheme is weak or strong—since the clauses learned
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by the scheme are specified in advance by the extended branching sequence the
same proof will apply if we began with a Res∗(T ) proof instead. Of course, if we
begin with a Res∗(T ) proof instead of a Res(T ) proof we may use the full power
of the theory derivation rule, requiring that we use a DPLL∗(T ) algorithm with
a strong T -propagation scheme instead. We record this observation as a second
theorem.

Theorem 9. The DPLL∗(T ) system with an asserting clause learning scheme,
non-deterministic branching and T -propagation is polynomially equivalent to
Res∗(T ).

5 Case Studies: Resolution Modulo Common Theories

In this section, we study the power of Res(T ) over theories that are common in
the SMT context—namely, we focus on the theory of equality E, the theory of
uninterpreted function symbols EUF, and the theory of linear arithmetic LA.

5.1 Resolution over E: A Theory of Equality

We first consider E, the theory of equality. Bjørner et al. [BDdM08] introduced a
proof-theoretic calculus called SP(E) for reasoning over the theory of equality—
in a prototype of our main result, they showed that proofs in SP(E) exactly
characterized proofs produced by a simple model SMT solver. In this section
we show that the theory Res∗(E) is polynomially-equivalent to SP(E), which is
evidence that our general framework is the correct way of capturing the power
of SMT solvers.

Let us first reproduce the rules of SP(E) from [BDdM08]: Cut. C∨�, D∨¬� �
C ∨ D, E-Dis. C ∨ a �= a � C, E-Eqs. C ∨ a = b ∨ a = c � C ∨ a = b ∨ b �= c,
Sup. C ∨ a = b, D[a] � C ∨ D[b]. Observe that the Sup rule allows replacing
some occurrences of a term a in atoms of a clause D with b (not necessarily for
all occurrences of a). Both the Sup rule and the E-Eqs rule can introduce literals
that did not occur in the initial formula.

Proposition 10. Res∗(E) and SP(E) are polynomially equivalent.

Proof (Sketch). Bjørner et al. show that SP(E) exactly characterizes the proofs
produced by a simple theoretical model of an SMT solver, which we will denote
by DPLL(e + Δ) [BDdM08, Theorem 4.1]. Examining the solver DPLL(e + Δ)
from [BDdM08], it is not hard to see it is equivalent to the algorithm DPLL∗(E)
(that is, DPLL(T ) with a strong T -propagation rule). The equivalence between
Res∗(E) and DPLL∗(E) follows by the Corollary of Theorem 9.

In the conclusion of [BDdM08] it is stated that there are no short SP(E)
proofs of the following encoding of the pigeonhole principle (PHP): there are
clauses of the form (di = r1 ∨ . . . di = rn), for i ∈ [1, n + 1], enforcing that
the ith pigeon must travel to some hole, and clauses of the form (di �= dj) for
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i, j ∈ [1, n + 1] which, when combined with the first family of clauses and the
transitivity axioms of E, imply that no two pigeons can travel to the same hole.
Since their SP(E) system is equivalent to Res∗(E) it follows that the lower bounds
on SP(E) carry over:

Corollary 11. If SP(E) does not have polynomial-size refutations of the pigeon-
hole principle, then neither does Res∗(E).

5.2 Resolution over EUF: Equality with Uninterpreted Functions

Next, we study the theory EUF, which is an extension of the theory of equality
to contain uninterpreted function symbols. The signature of EUF consists of
an unlimited set of uninterpreted function symbols and constant symbols; a
term in the theory is thus inductively defined as either a constant symbol or an
application of a function symbol to a sequence of terms: f(t1, . . . , tk). There is
one relational symbol = interpreted as equality between terms, so theory literals
of EUF are of the form t = t′ for terms t, t′.

The axioms of EUF state that = is an equivalence relation, together with
a family of congruence axioms for the function symbols stating, for any k-
ary function symbol f and any sequences of terms t1, t2, . . . , tk, t′1, t

′
2, . . . , t

′
k,

if t1 = t′1, . . . , tk = t′k, then f(t1, . . . , tk) = f(t′1, . . . , t
′
k). The decision problem

for EUF can be decided in time O(n log n) by the Downey-Sethi-Tarjan congru-
ence closure algorithm [DST80].

Using EUF as a central example, Bjorner and de Moura [BM14] observed that
DPLL(T ) suffers some serious limitations in terms of access to the underlying
theory. To resolve this, they modified DPLL(EUF) with a set of non-deterministic
rules that allowed it to dynamically introduce clauses corresponding to the con-
gruence and transitivity axioms. To characterize the strength of this new algo-
rithm, they introduced a variant of resolution called E-Res, extending SP(E)
from [BDdM08] to reasoning over uninterpreted functions. We show that the
Res∗(EUF) proof system can polynomially-simulate the E-Res system, which
again suggests that we have the “correct” proof system for capturing SMT rea-
soning. Due to space considerations, we leave the proof to the full version of the
paper.

Theorem 12. The system E-Res is polynomially simulated by Res∗(EUF).

However, unlike the case of SP(E) the converse direction is not so clear. The
theory rule in Res∗(EUF) is fundamentally semantic: it allows one to derive any
clause which follows from the theory EUF semantically; this is in contrast to
the E-Res system which is fundamentally syntactic. Thus, to show that E-Res
polynomially simulates EUF, one would need to show that any use of the theory
rule in a Res∗(EUF) proof could be somehow replaced with a short proof in
E-Res. We leave this as an open problem.

Next, we show that Res∗(EUF) and E-Res can efficiently simulate the Frege
proof system, which is a very powerful propositional proof system studied in
proof complexity. We note that the simulation crucially relies on the introduction
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of new theory literals; this suggests that an SMT solver which can intelligently
introduce new theory literals has the potential to be extremely powerful.

Theorem 13. Res∗(EUF) (and, in fact, E-Res) can efficiently simulate the
Frege proof system.

Proof Sketch. We show the stronger statement that E-Res simulates Frege. The
idea of the proof is to introduce constants e0 �= e1 corresponding to False and
True; every positive literal x in the original formula is replaced by x = e1, and
negative literal ¬x by x = e0. Then introduce uninterpreted function symbols
N,O,A, together with constraints that make N,O,A behave as NOT, OR and
AND, respectively (such as N(e0) = e1 ∧ N(e1) = e0). So formulas in the Frege
refutation are iteratively transformed into expressions of the form tF = e0 or
tF = e1, where tF is a term obtained by replacing Boolean connectives in a
formula F by N,O,A. As the Frege proof ends with an empty sequent, the
corresponding E-Res proof ends with an empty clause. See the full version for
details.

5.3 Resolution over LA: A Theory of Linear Arithmetic

Finally, we study the theory of linear arithmetic LA. A formula in the theory LA
over a domain D is a conjunction of expressions of the form Σn

i=1aixi ◦ b, where
◦ ∈ {=,≤, <, �=,≥, >}, and ai, xi ∈ D — usually, D is integers or reals3. We
show that Res(LA) polynomially simulates the proof system R(lin) introduced
by Raz and Tzameret [RT08]. This is interesting, as R(lin) has polynomial-size
proofs of several difficult tautologies considered in proof complexity, such as the
pigeonhole principle, Tseitin tautologies and the clique-colouring principle.

In the proof system R(lin) propositional variables are linear equations over
integers. The input formula is a CNF over such equations, together with∧n

i=1(xi = 0 ∨ xi = 1) clauses ensuring 0/1 assignment. The rules of infer-
ence consist of a modified resolution rule, together with two structural rules,
weakening and simplification:

R(lin)-cut. Let (A ∨ L1), (B ∨ L2) be two clauses containing linear equalities
L1 and L2, respectively. From these two clauses, derive a clause (A ∨ B ∨
(L1 − L2)).

Weakening. From a (possibly empty) clause A derive (A∨L) for any equation L.
Simplification. From (A ∨ k = 0), where k �= 0 is a constant, derive A.

Proposition 14. Res(LA) polynomially simulates R(lin).

3 Some definitions of linear arithmetic do not include disequalities; however, as dise-
qualities and strict inequalities occur naturally in SMT context, SMT-oriented linear
arithmetic solvers do incorporate mechanisms for dealing with them.
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Proof. We show how to simulate rules of R(lin) in Res(LA). We can assume,
without loss of generality, that Res(LA) has a weakening rule which simulates
weakening of R(lin) directly. For the simplification rule, note that LA � k �= 0
for any k �= 0; one application of the resolution rule on (k �= 0) and (A ∨ k = 0)
results in A.

Finally, let L1 be Σn
i=1aixi = b and L2 be Σn

i=1cixi = d. From (A ∨ L1),
(B ∨ L2) we want to derive (A ∨ B ∨ L1 − L2). First derive in LA a clause
C = (Σn

i=1aixi �= b∨Σn
i=1cixi �= d∨Σn

i=1(ai − ci)xi = b−d). Resolving (A∨L1)
with C, and then resolving the resulting clause with (B ∨ L2) gives the desired
(A ∨ B ∨ (L1 − L2)).

Note that we didn’t need to specify whether LA is over the integers, rationals
or reals, and hence the proof works for any of them. Also, in order to establish
our simulations it is sufficient to consider a fragment of LA with only equalities
and inequalities, and produce only unit clauses and width-3 clauses of a fixed
form.

Corollary 15. Res(LA) has polynomial-size proofs of the pigeonhole principle,
Tseitin tautologies and a clique-colouring principle for k =

√
(n) size clique and

k′ = (log n)2/8 log log n size colouring.

6 Lazy vs. Eager Reductions and the Exponential Time
Hypothesis

Throughout this paper we have primarily discussed the Lazy approach to SMT.
In this section, we consider the Eager approach, in which an input formula F
over a theory T is reduced to an equisatisfiable propositional formula G, which
is then solved using a suitable (Boolean) solver.

The Eager approach is still used in several modern SMT solvers such as the
STP solver for bit-vectors and arrays [GD07]. A common eager reduction used
when solving equations over the theory of equality, E (or its generalization to
uninterpreted function symbols EUF), is the Ackermann reduction. Let us first
describe a simple version of the Ackermann reduction over the theory E.

Let F denote a CNF over literals from the theory E—so, each literal is of
the form a = b for constant terms a, b—which we will ultimately transform into
a Boolean SAT instance. Let n denote the number of constant terms occurring
in F , let m denote the number of distinct literals occurring in F , and consider
the literal a = b and the literal b = a to be the same. For each literal a = b
introduce a Boolean variable xa=b, and for each clause of literals

∨
i ai = bi create

a clause
∨

i xai=bi . To encode the transitivity of equality, for each triple of terms
(a, b, c) occurring in the initial CNF F introduce a clause of the form ¬xa=b ∨
¬xb=c ∨ xa=c. Note that the final formula will have O(n2) Boolean variables
corresponding to each possible term a = b—a potential quadratic blow-up—
which is unavoidable using this encoding due to the transitivity axioms. Observe
that this blow-up only occurs in the eager approach—in the lazy approach to
solving we only need to consider the literals a = b which occur in the original
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formula F . It is therefore natural to wonder if this blow-up in the number of
input variables can somehow be avoided.

In fact, one can construct a more clever Eager reduction from E-SAT to SAT
which only introduces O(n log n) boolean variables; however, this more clever
encoding does not represent the literals a = b as Boolean variables xa=b and
instead uses a more complicated pointer construction. This improved reduction
turns out to be the best possible under the well-known (and widely believed)
Exponential Time Hypothesis, which is a strengthening of P �= NP.

Exponential Time Hypothesis (ETH). There is no deterministic or ran-
domized algorithm for SAT running in time 2o(n), where n is the number of
input variables.

Theorem 16. Let F be an instance of E-SAT with n distinct terms. For any
polynomial-time reduction R from E-SAT to SAT, the boolean formula R(F)
must have Ω(n log n) variables unless ETH fails.

Proof. By way of contradiction, suppose that ETH holds and let R be a reduction
from E-SAT to SAT which introduces o(n log n) variables. Let 2-CSP denote a
constraint satisfaction problem with two variables per constraint. The theorem
follows almost immediately from the following result of Traxler [Tra08].

Theorem 17 (Theorem 1 in [Tra08], Rephrased). Consider any 2-CSP C1∧
C2 ∧ · · · ∧ Cm over an alphabet Σ of size d, where each constraint is of the form
x �= a ∨ y �= b for variables x, y and constants a, b ∈ Σ. Unless ETH fails, every
algorithm for this problem requires time dcn for some universal constant c > 0.

There is a simple reduction from the restriction of 2-CSP described in the
above theorem to E-SAT. Introduce terms e1, e2, . . . , ed, each intended to rep-
resent a symbol from the universe Σ, and also terms x1, x2, . . . , xn for each
variable x occurring in the original CSP instance. Now, for each i �= j introduce
unit clauses ei �= ej , and similarly for each i ∈ [n] add a clause of the form
xi = e1 ∨ xi = e2 ∨ · · · ∨ xi = ed. Finally, for each constraint in the 2-CSP of
the form xi �= a ∨ xj �= b introduce a clause xi �= ea ∨ xj �= eb, where ea, eb
are the terms corresponding to the symbols a, b. Let F ′ denote the final E-SAT
instance, and it is clear that F ′ is satisfiable if and only if the original 2-CSP is
satisfiable, and also that F ′ has n + d constant terms.

Now, apply the Ackermann reduction R to F ′, obtaining a SAT instance
R(F ′). By assumption the final SAT instance has o((n+d) log(n+d)) variables;
running the standard brute-force algorithm for SAT gives an algorithm running
in 2o((n+d) log(n+d)) time for the 2-CSP variant described above. However, by the
above theorem, every algorithm for this 2-CSP variant requires time at least
dcn = 2cn log d, which violates ETH if d ≈ n.

7 Conclusion

In this paper, we studied SMT solvers through the lens of proof complexity,
introducing a generalization of the resolution proof system and arguing that it
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correctly models the “lazy” SMT framework DPLL(T ) [NOT06]. We further pre-
sented and analyzed a stronger version Res∗(T ) that allows for the introduction
of new literals, and showed that it models DPLL∗(T ), which is a modification
of an SMT solver that can introduce new theory literals; this captures the new
literal introduction in solvers such as Yices and Z3 [Z3,Yic].

There are many natural directions to pursue. First, although we have not con-
sidered it here, it is natural to introduce an intermediate proof system between
Res(T ) and Res∗(T ) which is allowed to introduce new theory literals but not
new theory variables. For instance, if we have the formula a = f(b) ∧ a = c
in EUF, then this intermediate proof system could introduce the theory literal
c = f(b) but not the theory literal f(c) = f(a), whereas both are allowed to
be introduced by Res∗(T ). It is not clear to us if this intermediate system can
simulate Frege, and we suggest studying it in its own right.

A second direction that we believe is quite interesting is extending our results
on EUF to capture the extended Frege system, which is the most powerful proof
system typically studied in proposition proof complexity. Intuitively, it seems
that EUF by itself is not strong enough to capture extended Frege; we consider
finding a new theory T which can capture it an interesting open problem.
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Abstract. We focus in this paper on generating models of quantified
first-order formulas over built-in theories, which is paramount in software
verification and bug finding. While standard methods are either geared
toward proving the absence of a solution or targeted to specific theories,
we propose a generic and radically new approach based on a reduction to
the quantifier-free case. Our technique thus allows to reuse all the efficient
machinery developed for that context. Experiments show a substantial
improvement over state-of-the-art methods.

1 Introduction

Context. Software verification methods have come to rely increasingly on rea-
soning over logical formulas modulo theory. In particular, the ability to generate
models (i.e., find solutions) of a formula is of utmost importance, typically in the
context of bug finding or intensive testing—symbolic execution [21] or bounded
model checking [7]. Since quantifier-free first-order formulas on well-suited theo-
ries are sufficient to represent many reachability properties of interest, the Satis-
fiability Modulo Theory (SMT) [6,25] community has primarily dedicated itself
to designing solvers able to efficiently handle such problems.

Yet, universal quantifiers are sometimes needed, typically when consider-
ing preconditions or code abstraction. Unfortunately, most theories handled by
SMT-solvers are undecidable in the presence of universal quantifiers. There exist
dedicated methods for a few decidable quantified theories, such as Presburger
arithmetic [9] or the array property fragment [8], but there is no general and
effective enough approach for the model generation problem over universally
quantified formulas. Indeed, generic solutions for quantified formulas involving

c© The Author(s) 2018
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heuristic instantiation and refutation are best geared to proving the unsatis-
fiability of a formula (i.e., absence of solution) [13,20], while recent proposals
such as local theory extensions [2], finite instantiation [31,32] or model-based
instantiation [20,29] either are too narrow in scope, or handle quantifiers on free
sorts only, or restrict themselves to finite models, or may get stuck in infinite
refinement loops.

Goal and Challenge. Our goal is to propose a generic and efficient approach to
the model generation problem over arbitrary quantified formulas with support
for theories commonly found in software verification. Due to the huge effort
made by the community to produce state-of-the-art solvers for quantifier-free
theories (QF-solvers), it is highly desirable for this solution to be compatible
with current leading decision procedures, namely SMT approaches.

Proposal. Our approach turns a quantified formula into a quantifier-free for-
mula with the guarantee that any model of the latter contains a model of the
former. The benefits are threefold: the transformed formula is easier to solve,
it can be sent to standard QF-solvers, and a model for the initial formula is
deducible from a model of the transformed one. The idea is to ignore quanti-
fiers but strengthen the quantifier-free part of the formula with an independence
condition constraining models to be independent from the (initially) quantified
variables.

Contributions. This paper makes the following contributions:

We propose a novel and generic framework for model generation of quantified
formula (Sect. 5, Algorithm 1) relying on the inference of sufficient indepen-
dence condition (Sect. 4). We prove its correctness (Theorem 1, mechanized in
Coq) and its efficiency under reasonable assumptions (Propositions 4 and 5).
Especially our approach implies only a linear overhead in the formula size.
We also briefly study its completeness, related to the notion of weakest inde-
pendence condition.

We define a taint-based procedure for the inference of independence conditions
(Sect. 5.2), composed of a theory-independent core (Algorithm2) together
with theory-dependent refinements. We propose such refinements for a large
class of operators (Sect. 6.2), encompassing notably arrays and bitvectors.

Finally, we present a concrete implementation of our method specialized on
arrays and bitvectors (Sect. 7). Experiments on SMT-LIB benchmarks and
software verification problems notably demonstrate that we are able not only
to very effectively lift quantifier-free decision procedures to the quantified
case, but also to supplement recent advances, such as finite or model-based
quantifier instantiation [20,29,31,32]. Indeed, we concretely supply SMT
solvers with the ability to efficiently address an extended set of software ver-
ification questions.

Discussions. Our approach supplements state-of-the-art model generation on
quantified formulas by providing a more generic handling of satisfiable problems.
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We can deal with quantifiers on any sort and we are not restricted to finite mod-
els. Moreover, this is a lightweight preprocessing approach requiring a single call
to the underlying quantifier-free solver. The method also extends to partial elim-
ination of universal quantifiers, or reduction to quantified-but-decidable formulas
(Sect. 5.4).

While techniques a la E-matching allow to lift quantifier-free solvers to the
unsatisfiability checking of quantified formulas, this works provides a mechanism
to lift them to the satisfiability checking and model generation of quantified
formulas, yielding a more symmetric handling of quantified formulas in SMT.
This new approach paves the way to future developments such as the definition of
more precise inference mechanisms of independence conditions, the identification
of interesting subclasses for which inferring weakest independence conditions is
feasible, and the combination with other quantifier instantiation techniques.

2 Motivation

Let us take the code sample in Fig. 1 and suppose we want to reach function
analyze me. For this purpose, we need a model (a.k.a., solution) of the reachabil-
ity condition φ � ax + b > 0, where a, b and x are symbolic variables associated
to the program variables a, b and x. However, while the values of a and b are
user-controlled, the value of x is not. Therefore if we want to reach analyze me in
a reproducible manner, we actually need a model of φ∀ � ∀x.ax + b > 0, which
involves universal quantification. While this specific formula is simple, model
generation for quantified formulas is notoriously difficult: PSPACE-complete for
booleans, undecidable for uninterpreted functions or arrays.

Fig. 1. Motivating example

Reduction to the Quantifier-Free Case Through Independence. We pro-
pose to ignore the universal quantification over x, but restrict models to those
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which do not depend on x. For example, model {a = 1, x = 1, b = 0} does depend
on x, as taking x = 0 invalidates the formula, while model {a = 0, x = 1, b = 1}
is independent of x. We call constraint ψ � (a = 0) an independence condition:
any interpretation of φ satisfying ψ will be independent of x, and therefore a
model of φ ∧ ψ will give us a model of φ∀.

Inference of Independence Conditions Through Tainting. Figure 1
details in its right part a way to infer such independence conditions. Given a
quantified reachability condition (1), we first associate to every variable v a
(boolean) taint variable v• indicating whether the solution may depend on v
(value �) or not (value ⊥). Here, x• is set to ⊥, a• and b• are set to � (2).
An independence condition (3)—a formula modulo theory—is then constructed
using both initial and taint variables. We extend taint constraints to terms, t•

indicating here whether t may depend on x or not, and we require the top-level
term (i.e., the formula) to be tainted to � (i.e., to be indep. from x). Condition
(3) reads as follows: in order to enforce that (ax + b > 0)• holds, we enforce
that (ax)• and b• hold, and for (ax)• we require that either a• and x• hold, or
a• holds and a = 0 (absorbing the value of x), or the symmetric case. We see
that ·• is defined recursively and combines a systematic part (if t• holds then
f(t)• holds, for any f) with a theory-dependent part (here, based on ×). After
simplifications (4), we obtain a = 0 as an independence condition (5) which is
adjoined to the reachability condition freed of its universal quantification (6).
A QF-solver provides a model of (6) (e.g., {a = 0, b = 1, x = 5}), lifted into a
model of (1) by discarding the valuation of x (e.g., {a = 0, b = 1}).

In this specific example the inferred independence condition (5) is the most
generic one and (1) and (6) are equisatisfiable. Yet, in general it may be an
under-approximation, constraining the variables more than needed and yielding
a correct but incomplete decision method: a model of (6) can still be turned into
a model of (1), but (6) might not have a model while (1) has.

3 Notations

We consider the framework of many-sorted first-order logic with equality, and
we assume standard definitions of sorts, signatures and terms. Given a tuple of
variables x � (x1, . . . , xn) and a quantifier Q (∀ or ∃), we shorten Qx1 . . . Qxn.Φ
as Qx.Φ. A formula is in prenex normal form if it is written as Q1x1 . . . Qnxn.Φ
with Φ a quantifier-free formula. A formula is in Skolem normal form if it is in
prenex normal form with only universal quantifiers. We write Φ (x) to denote
that the free variables of Φ are in x. Let t � (t1, . . . , tn) be a term tuple, we
write Φ (t) for the formula obtained from Φ by replacing each occurrence of xi

in Φ by ti. An interpretation I associates a domain to each sort of a signature
and a value to each symbol of a formula, and �Δ�I denotes the evaluation of
term Δ over I. A satisfiability relation |= between interpretations and formulas
is defined inductively as usual. A model of Φ is an interpretation I satisfying
I |= Φ. We sometimes refer to models as “solutions”. Formula Ψ entails formula
Φ, written Ψ |= Φ, if every interpretation satisfying Ψ satisfies Φ as well. Two
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formulas are equivalent, denoted Ψ ≡ Φ, if they have the same models. A theory
T � (Σ,I) restricts symbols in Σ to be interpreted in I. The quantifier-free
fragment of T is denoted QF-T .

Convention. Letters a, b, c . . . denote uninterpreted symbols and variables. Let-
ters x, y, z . . . denote quantified variables. a, b, c denote sets of uninterpreted
symbols. x,y,z . . . denote sets of quantified variables. Finally, a, b, c . . . denote
valuations of associated (sets of) symbols.

In the rest of this paper, we assume w.l.o.g. that all formulas are in Skolem
normal form. Recall that any formula φ in classical logic can be normalized into
a formula ψ in Skolem normal form such that any model of φ can be lifted
into a model of ψ, and vice versa. This strong relation, much closer to formula
equivalence than to formula equisatisfiability, ensures that our correctness and
completeness results all along the paper hold for arbitrarily quantified formula.

Companion Technical Report. Additional technical details (proofs, experi-
ments, etc.) are available online at http://benjamin.farinier.org/cav2018/.

4 Musing with Independence

4.1 Independent Interpretations, Terms and Formulas

A solution (x, a) of Φ does not depend on x if Φ(x,a) is always true or always
false, for all possible valuations of x as long as a is set to a. More formally, we
define the independence of an interpretation of Φ w.r.t. x as follows:

Definition 1 (Independent interpretation)

– Let Φ (x,a) a formula with free variables x and a. Then an interpretation I
of Φ (x,a) is independent of x if for all interpretations J equal to I except
on x, I |= Φ if and only if J |= Φ.

– Let Δ (x,a) a term with free variables x and a. Then an interpretation I of
Δ (x,a) is independent of x if for all interpretations J equal to I except on
x, �Δ (x,a)�I = �Δ (x,a)�J .

Regarding formula ax + b > 0 from Fig. 1, {a = 0, b = 1, x = 1} is indepen-
dent of x while {a = 1, b = 0, x = 1} is not. Considering term (t [a ← b]) [c], with
t an array written at index a then read at index c, {a = 0, b = 42, c = 0, t = [. . . ]}
is independent of t (evaluates to 42) while {a = 0, b = 1, c = 2, t = [. . . ]} is not
(evaluates to t [2]). We now define independence for formulas and terms.

Definition 2 (Independent formula and term)

– Let Φ (x,a) a formula with free variables x and a. Then Φ (x,a) is indepen-
dent of x if ∀x.∀y. (Φ (x,a) ⇔ Φ (y,a)) is true for any value of a.

– Let Δ (x,a) a term with free variables x and a. Then Δ (x,a) is independent
of x if ∀x.∀y. (Δ (x,a) = Δ (y,a)) is true for any value of a.

http://benjamin.farinier.org/cav2018/
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Definition 2 of formula and term independence is far stronger than Defini-
tion 1 of interpretation independence. Indeed, it can easily be checked that if a
formula Φ (resp. a term Δ) is independent of x, then any interpretation of Φ
(resp. Δ) is independent of x. However, the converse is false as formula ax+b > 0
is not independent of x, but has an interpretation {a = 0, b = 1, x = 1} which is.

4.2 Independence Conditions

Since it is rarely the case that a formula (resp. term) is independent from a set
of variables x, we are interested in Sufficient Independence Conditions. These
conditions are additional constraints that can be added to a formula (resp. term)
in such a way that they make the formula (resp. term) independent of x.

Definition 3 (Sufficient Independence Condition (SIC))

– A Sufficient Independence Condition for a formula Φ (x,a) with regard to x
is a formula Ψ (a) such that Ψ (a) |= (∀x.∀y.Φ (x,a) ⇔ Φ (y,a)).

– A Sufficient Independence Condition for a term Δ (x,a) with regard to x, is
a formula Ψ (a) such that Ψ (a) |= (∀x.∀y.Δ (x,a) = Δ (y,a)).

We denote by sicΦ,x (resp. sicΔ,x) a Sufficient Independence Condition for
a formula Φ (x,a) (resp. for a term Δ (x,a)) with regard to x. For example,
a = 0 is a sicΦ,x for formula Φ � ax + b > 0, and a = c is a sicΔ,t for term
Δ � (t [a ← b]) [c]. Note that ⊥ is always a sic, and that sic are closed under ∧
and ∨. Proposition 1 clarifies the interest of sic for model generation.

Proposition 1 (Model generalization). Let Φ (x,a) a formula and Ψ a
sicΦ,x . If there exists an interpretation {x, a} such that {x, a} |= Ψ (a)∧Φ (x,a),
then {a} |= ∀x.Φ (x,a).

Proof (sketch of). Appendix C.1 of the companion technical report.

For the sake of completeness, we introduce now the notion of Weakest
Independence Condition for a formula Φ (x,a) with regard to x (resp. a term
Δ (x,a)). We will denote such conditions wicΦ,x (resp. wicΔ,x).

Definition 4 (Weakest Independence Condition (WIC))

– A Weakest Independence Condition for a formula Φ (x,a) with regard to x is
a sicΦ,x Π such that, for any other sicΦ,x Ψ , Ψ |= Π.

– A Weakest Independence Condition for a term Δ (x,a) with regard to x is a
sicΔ,x Π such that, for any other sicΔ,x Ψ , Ψ |= Π.

Note that Ω � ∀x.∀y. (Φ (x,a) ⇔ Φ (y,a)) is always a wicΦ,x , and any for-
mula Π is a wicΦ,x if and only if Π ≡ Ω. Therefore all syntactically different
wic have the same semantics. As an example, both sic a = 0 and a = c pre-
sented earlier are wic. Proposition 2 emphasizes the interest of wic for model
generation.
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Proposition 2 (Model specialization). Let Φ (x,a) a formula and Π(a) a
wicΦ,x . If there exists an interpretation {a} such that {a} |= ∀x.Φ (x,a), then
{x, a} |= Π (a) ∧ Φ (x,a) for any valuation x of x.

Proof (sketch of). Appendix C.2 of the companion technical report.

From now on, our goal is to infer from a formula ∀x.Φ (x,a) a sicΦ,x Ψ (a),
find a model for Ψ (a) ∧ Φ (x,a) and generalize it. This sicΦ,x should be as
weak—in the sense “less coercive”—as possible, as otherwise ⊥ could always be
used, which would not be very interesting for our overall purpose.

For the sake of simplicity, previous definitions omit to mention the theory
to which the sic belongs. If the theory T of the quantified formula is decidable
we can always choose ∀x.∀y. (Φ (x,a) ⇔ Φ (y,a)) as a sic, but it is simpler to
directly use a T -solver. The challenge is, for formulas in an undecidable theory
T , to find a non-trivial sic in its quantifier-free fragment QF-T .

Under this constraint, we cannot expect a systematic construction of wic,
as it would allow to decide the satisfiability of any quantified theory with a
decidable quantifier-free fragment. Yet informally, the closer a sic is to be a
wic, the closer our approach is to completeness. Therefore this notion might be
seen as a fair gauge of the quality of a sic. Having said that, we leave a deeper
study on the inference of wic as future work.

5 Generic Framework for SIC-Based Model Generation

We describe now our overall approach. Algorithm1 presents our sic-based
generic framework for model generation (Sect. 5.1). Then, Algorithm 2 proposes a
taint-based approach for sic inference (Sect. 5.2). Finally, we discuss complexity
and efficiency issues (Sect. 5.3) and detail extensions (Sect. 5.4), such as partial
elimination.

From now on, we do not distinguish anymore between terms and formulas,
their treatment being symmetric, and we call targeted variables the variables we
want to be independent of.

5.1 SIC-Based Model Generation

Our model generation technique is described in Algorithm1. Function solveQ
takes as input a formula ∀x.Φ (x,a) over a theory T . It first calculates a sicΦ,x

Ψ (a) in QF-T . Then it solves Φ (x,a) ∧ Ψ (a). Finally, depending on the result
and whether Ψ (a) is a wicΦ,x or not, it answers sat, unsat or unknown.
solveQ is parametrized by two functions solveQF and inferSIC:

solveQF is a decision procedure (typically a SMT solver) for QF-T . solveQF is
said to be correct if each time it answers sat (resp. unsat) the formula is
satisfiable (resp. unsatisfiable); it is said to be complete if it always answers
sat or unsat, never unknown.
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Algorithm 1. SIC-based model generation for quantified formulas
Parameter: solveQF

Input: Φ(v) a formula in QF-T
Output: sat (v) with v |= Φ, unsat or unknown

Parameter: inferSIC
Input: Φ a formula in QF-T , and x a set of targeted variables
Output: Ψ a sicΦ,x in QF-T

Function solveQ:
Input: ∀x.Φ (x,a) a universally quantified formula over theory T
Output: sat (a) with a |= ∀x.Φ (x,a), unsat or unknown

Let Ψ (a) � inferSIC (Φ (x,a) ,x)
match solveQF (Φ (x,a) ∧ Ψ (a))

with sat (x, a) return sat (a)
with unsat

if Ψ is a wicΦ,x then return unsat
else return unknown

with unknown return unknown

inferSIC takes as input a formula Φ in QF-T and a set of targeted variables x,
and produces a sicΦ,x in QF-T . It is said to be correct if it always returns a
sic, and complete if all the sic it returns are wic. A possible implementation
of inferSIC is described in Algorithm 2 (Sect. 5.2).

Function solveQ enjoys the two following properties, where correctness and com-
pleteness are defined as for solveQF.

Theorem 1 (Correctness and completeness)

– If solveQF and inferSIC are correct, then solveQ is correct.
– If solveQF and inferSIC are complete, then solveQ is complete.

Proof (sketch of). Follow directly from Propositions 1 and 2 (Sect. 4.2).

5.2 Taint-Based SIC Inference

Algorithm 2 presents a taint-based implementation of function inferSIC. It con-
sists of a (syntactic) core calculus described here, refined by a (semantic) theory-
dependent calculus theorySIC described in Sect. 6. From formula Φ (x,a) and
targeted variables x, inferSIC is defined recursively as follow.

If Φ is a constant it returns � as constants are independent of any variable. If
Φ is a variable v, it returns � if we may depend on v (i.e., v �∈ x), ⊥ otherwise. If
Φ is a function f (φ1, . . . , φn), it first recursively computes for every sub-term φi

a sicφi,x ψi. Then these results are sent with Φ to theorySIC which computes a
sicΦ,x Ψ . The procedure returns the disjunction between Ψ and the conjunction
of the ψi’s. Note that theorySIC default value ⊥ is absorbed by the disjunction.
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Algorithm 2. Taint-based sic inference
Parameter: theorySIC

Input: f a function symbol, its parameters φi, x a set of targeted variables
and ψi their associated sicφi,x

Output: Ψ a sicf(φi),x

Default: Return ⊥
Function inferSIC(Φ,x):

Input: Φ a formula and x a set of targeted variables
Output: Ψ a sicΦ,x

either Φ is a constant return �
either Φ is a variable v return v /∈ x
either Φ is a function f (φ1, . , φn)

Let ψi � inferSIC (φi,x) for all i ∈ {1, . , n}
Let Ψ � theorySIC (f, (φ1,., φn) , (ψ1,., ψn) ,x)
return Ψ ∨

∧
i ψi

The intuition is that if the φi’s are independent of x, then f (φ1, . . . , φn) is.
Therefore Algorithm 2 is said to be taint-based as, when theorySIC is left to its
default value, it acts as a form of taint tracking [15,27] inside the formula.

Proposition 3 (Correctness). Given a formula Φ (x,a) and assuming that
theorySIC is correct, then inferSIC (Φ,x) indeed computes a sicΦ,x .

Proof (sketch of). This proof has been mechanized in Coq1.

Note that on the other hand, completeness does not hold: in general inferSIC
does not compute a wic, cf. discussion in Sect. 5.4.

5.3 Complexity and Efficiency

We now evaluate the overhead induced by Algorithm 1 in terms of formula size
and complexity of the resolution—the running time of Algorithm1 itself being
expected to be negligible (preprocessing).

Definition 5. The size of a term is inductively defined as size (x) � 1 for x
a variable, and size (f (t1, . . . , tn)) � 1 + Σi size (ti) otherwise. We say that
theorySIC is bounded in size if there exists K such that, for all terms Δ,
size (theorySIC (Δ, ·)) ≤ K.

Proposition 4 (Size bound). Let N be the maximal arity of symbols defined
by theory T . If theorySIC is bounded in size by K, then for all formula Φ in T ,
size (inferSIC (Φ, ·)) ≤ (K + N) · size (Φ).

1 http://benjamin.farinier.org/cav2018/.

http://benjamin.farinier.org/cav2018/
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Proposition 5 (Complexity bound). Let us suppose theorySIC bounded in
size, and let Φ be a formula belonging to a theory T with polynomial-time check-
able solutions. If Ψ is a sicΦ,· produced by inferSIC, then a solution for Φ ∧ Ψ
is checkable in time polynomial in size of Φ.

Proof (sketch of). Appendices C.3 and C.4 of the companion technical report.

These propositions demonstrate that, for formula landing in complex enough
theories, our method lifts QF-solvers to the quantified case (in an approximated
way) without any significant overhead, as long as theorySIC is bounded in size.
This latter constraint can be achieved by systematically binding sub-terms to
(constant-size) fresh names and having theorySIC manipulates these binders.

5.4 Discussions

Extension. Let us remark that our framework encompasses partial quantifier
elimination as long as the remaining quantifiers are handled by solveQF. For
example, we may want to remove quantifications over arrays but keep those on
bitvectors. In this setting, inferSIC can also allow some level of quantification,
providing that solveQF handles them.

About WIC. As already stated, inferSIC does not propagate wic in general.
For example, considering formulas t1 � (x < 0) and t2 � (x ≥ 0), then wict1,x =
⊥ and wict2,x = ⊥. Hence inferSIC returns ⊥ as sic for t1 ∨ t2, while actually
wict1∨t2,x = �.

Nevertheless, we can already highlight a few cases where wic can be com-
puted. (1) inferSIC does propagate wic on one-to-one uninterpreted functions.
(2) If no variable of x appears in any sub-term of f(t, t′), then the associated
wic is �. While a priori naive, this case becomes interesting when combined
with simplifications (Sect. 7.1) that may eliminate x. (3) If a sub-term falls in
a sub-theory admitting quantifier elimination, then the associated wic is com-
puted by eliminating quantifiers in (∀.x.y.Φ(x,a) ⇔ Φ(y,a)). (4) We may also
think of dedicated patterns: regarding bitvectors, the wic for x ≤ a ⇒ x ≤ x+k
is a ≤ Max − k. Identifying under which condition wic propagation holds is a
strong direction for future work.

6 Theory-Dependent SIC Refinements

We now present theory-dependent sic refinements for theories relevant to pro-
gram analysis: booleans, fixed-size bitvectors and arrays—recall that uninter-
preted functions are already handled by Algorithm2. We then propose a gener-
alization of these refinements together with a correctness proof for a larger class
of operators.
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6.1 Refinement on Theories

We recall theorySIC takes four parameters: a function symbol f , its arguments
(t1, . . . , tn), their associated sic (t•1, . . . , t

•
n), and targeted variables x. theorySIC

pattern-matches the function symbol and returns the associated sic according to
rules in Fig. 2. If a function symbol is not supported, we return the default value
⊥. Constants and variables are handled by inferSIC. For the sake of simplicity,
rules in Fig. 2 are defined recursively, but can easily fit the interface required for
theorySIC in Algorithm 2 by turning recursive calls into parameters.

Booleans and Ite. Rules for the boolean theory (Fig. 2a) handles ⇒, ∧, ∨
and ite (if-then-else). For binary operators, the sic is the conjunction of the
sic associated to one of the two sub-terms and a constraint on this sub-term
that forces the result of the operator to be constant—e.g., to be equal to ⊥
(resp. �) for the antecedent (resp. consequent) of an implication. These equality
constraints are based on absorbing elements of operators.

Inference for the ite operator is more subtle. Intuitively, if its condition is
independent of some x, we use it to select the sicx of the sub-term that will be
selected by the ite operator. If the condition is dependent of x, then we cannot
use it anymore to select a sicx . In this case, we return the conjunction of the
sicx of both sub-terms and the constraint that the two sub-terms are equal.

Fig. 2. Examples of refinements for theorySIC

Bitvectors and Arrays. Rules for bitvectors (Fig. 2b) follow similar ideas, with
constant � (resp. ⊥) substituted by 1n (resp. 0n), the bitvector of size n full of
ones (resp. zeros). Rules for arrays (Fig. 2c) are derived from the theory axioms.
The definition is recursive: rules need be applied until reaching either a store at
the position where the select occurs, or the initial array variable.

As a rule of thumb, good sic can be derived from function axioms in the form
of rewriting rules, as done for arrays. Similar constructions can be obtained for
example for stacks or queues.

6.2 R-Absorbing Functions

We propose a generalization of the previous theory-dependent sic refinements
to a larger class of functions, and prove its correctness.
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Intuitively, if a function has an absorbing element, constraining one of its
operands to be equal to this element will ensure that the result of the function
is independent of the other operands. However, it is not enough when a relation
between some elements is needed, such as with (t[a ← b]) [c] where constraint
a = c ensures the independence with regards to t. We thus generalize the notion
of absorption to R-absorption, where R is a relation between function arguments.

Definition 6. Let f : τ1 × · · · × τn → τ a function. f is R-absorbing if there
exists IR ⊂ {1, · · · , n} and R a relation between αi : τi, i ∈ IR such that, for all
b � (b1, . . . , bn) and c � (c1, . . . , cn) ∈ τ1 × · · · × τn, if R(b|IR) and b|IR = c|IR
where ·|IR is the projection on IR, then f(b) = f(c).

IR is called the support of the relation of absorption R.

For example, (a, b) �→ a ∨ b has two pairs 〈R, IR〉 coinciding with the usual
notion of absorption, 〈a=�, {1a}〉 and 〈b=�, {2b}〉. Function (x, y, z) �→ xy + z
has among others the pair 〈x=0, {1x, 3z}〉, while (a, b, c, t) �→ (t[a ← b]) [c] has
the pair 〈a=c, {1a, 3c}〉. We can now state the following proposition:

Proposition 6. Let f (t1, . . . , tn) be a R-absorbing function of support IR, and
let t•i be a sicti,x for some x. Then R (ti∈IR)

∧
i∈IR t•i is a sicf,x .

Proof (sketch of). Appendix C.5 of the companion technical report.

Previous examples (Sect. 6.1) can be recast in term of R-absorbing function,
proving their correctness (cf. companion technical report). Note that regarding
our end-goal, we should accept only R-absorbing functions in QF-T .

7 Experimental Evaluation

This section describes the implementation of our method (Sect. 7.1) for bitvectors
and arrays (ABV), together with experimental evaluation (Sect. 7.2).

7.1 Implementation

Our prototype Tfml (Taint engine for ForMuLa)2 comprises 7 klocs of OCaml.
Given an input formula in the SMT-LIB format [5] (ABV theory), Tfml per-
forms several normalizations before adding taint information following Algo-
rithm1. The process ends with simplifications as taint usually introduces many
constant values, and a new SMT-LIB formula is output.

Sharing with Let-Binding. This stage is crucial as it allows to avoid term
duplication in theorySIC (Algorithm 2, Sect. 5.3, and Proposition 4). We intro-
duce new names for relevant sub-terms in order to easily share them.

Simplifications. We perform constant propagation and rewriting (standard
rules, e.g. x − x �→ 0 or x × 1 �→ x) on both initial and transformed formulas –
equality is soundly approximated by syntactic equality.
2 http://benjamin.farinier.org/cav2018/.

http://benjamin.farinier.org/cav2018/


306 B. Farinier et al.

Shadow Arrays. We encode taint constraints over arrays through shadow
arrays. For each array declared in the formula, we declare a (taint) shadow
array. The default value for all cells of the shadow array is the taint of the
original array, and for each value stored (resp. read) in the original array, we
store (resp. read) the taint of the value in the shadow array. As logical arrays
are infinite, we cannot constrain all the values contained in the initial shadow
array. Instead, we rely on a common trick in array theory: we constrain only
cells corresponding to a relevant read index in the formula.

Iterative Skolemization. While we have supposed along the paper to work on
skolemized formulas, we have to be more careful in practice. Indeed, skolemiza-
tion introduce dependencies between a skolemized variable and all its preceding
universally quantified variables, blurring our analysis and likely resulting in con-
sidering the whole formula as dependent. Instead, we follow an iterative process:
1. Skolemize the first block of existentially quantified variables; 2. Compute the
independence condition for any targeted variable in the first block of universal
quantifiers and remove these quantifiers; 3. Repeat. This results in full Skolemiza-
tion together with the construction of an independence condition, while avoiding
many unnecessary dependencies.

7.2 Evaluation

Objective. We experimentally evaluate the following research questions: RQ1
How does our approach perform with regard to state-of-the-art approaches for
model generation of quantified formulas? RQ2 How effective is it at lifting
quantifier-free solvers into (sat-only) quantified solvers? RQ3 How efficient is
it in terms of preprocessing time and formula size overhead? We evaluate our
method on a set of formulas combining arrays and bitvectors (paramount in
software verification), against state-of-the-art solvers for these theories.

Protocol. The experimental setup below runs on an Intel(R) Xeon(R) E5-2660
v3 @ 2.60 GHz, 4 GB RAM per process, and a timeout of 1000 s per formula.

Table 1. Answers and resolution time (in seconds, include timeout)

Boolector• CVC4 CVC4• CVC4E CVC4E• Z3 Z3• Z3E Z3E•
SMT-LIB # sat 399 84 242 84 242 261 366 87 366

unsat N/A 0 N/A 0 N/A 165 N/A 0 N/A

unknown 870 1185 1027 1185 1027 843 903 1182 903

Total time 349 165 194 667 165 196 934 270 150 36 480 192 41 935

Binsec # sat 1042 951 954 951 954 953 1042 953 1042

unsat N/A 62 N/A 62 N/A 319 N/A 62 N/A

unknown 379 408 467 408 467 149 379 406 379

Total time 1152 64 761 76 811 64 772 77 009 30 235 11 415 135 11 604

Solver•: solver enhanced with our method. Z3E , CVC4E : essentially E-matching
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Metrics. For RQ1 we compare the number of sat and unknown answers
between solvers supporting quantification, with and without our approach.
For RQ2, we compare the number of sat and unknown answers between
quantifier-free solvers enhanced by our approach and solvers supporting quan-
tification. For RQ3, we measure preprocessing time and formulas size over-
head.

Benchmarks. We consider two sets of ABV formulas. First, a set of 1421 for-
mulas from (a modified version of) the symbolic execution tool Binsec [12]
representing quantified reachability queries (cf. Sect. 2) over Binsec bench-
mark programs (security challenges, e.g. crackme or vulnerability finding).
The initial (array) memory is quantified so that models depend only on user
input. Second, a set of 1269 ABV formulas generated from formulas of the
QF-ABV category of SMT-LIB [5] – sub-categories brummayerbiere, dwp
formulas and klee selected. The generation process consists in universally
quantifying some of the initial array variables, mimicking quantified reacha-
bility problems.

Competitors. For RQ1, we compete against the two state-of-the-art SMT
solvers for quantified formulas CVC4 [4] (finite model instantiation [31]) and
Z3 [14] (model-based instantiation [20]). We also consider degraded versions
CVC4E and Z3E that roughly represent standard E-matching [16]. For RQ2
we use Boolector [10], one of the very best QF-ABV solvers.

Table 2. Complementarity of our approach with existing solvers (sat instances)

CVC4• Z3• Boolector•
SMT-LIB CVC4 −10 +168 [252] −10 +325 [409]

Z3 −119 +224 [485] −86 +224 [485]

Binsec CVC4 −25 +28 [979] −25 +116 [1067]

Z3 −25 +114 [1067] −25 +114 [1067]

Results. Tables 1 and 2 and Fig. 3 sum up our experimental results, which have
all been cross-checked for consistency. Table 1 reports the number of successes
(sat or unsat) and failures (unknown), plus total solving times. The • sign
indicates formulas preprocessed with our approach. In that case it is impossible
to correctly answer unsat (no wic checking), the unsat line is thus N/A. Since
Boolector does not support quantified ABV formulas, we only give results with
our approach enabled. Table 1 reads as follow: of the 1269 SMT-LIB formulas,
standalone Z3 solves 426 formulas (261 sat, 165 unsat), and 366 (all sat) if
preprocessed. Interestingly, our approach always improves the underlying solver
in terms of solved (sat) instances, either in a significant way (SMT-LIB) or in
a modest way (Binsec). Yet, recall that in a software verification setting every
win matters (possibly new bug found or new assertion proved). For Z3•, it also
strongly reduces computation time. Last but not least, Boolector• (a pure QF-
solver) turns out to have the best performance on sat-instances, beating state-
of-the-art approaches both in terms of solved instances and computation time.
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Fig. 3. Overhead in formula size

Table 2 substantiates the comple-
mentarity of the different methods,
and reads as follow: for SMT-LIB,
Boolector• solves 224 (sat) formu-
las missed by Z3, while Z3 solves 86
(sat) formulas missed by Boolector•,
and 485 (sat) formulas are solved by
either one of them.

Figure 3 shows formula size aver-
aging a 9-fold increase (min 3, max
12): yet they are easier to solve
because they are more constrained.
Regarding performance and overhead
of the tainting process, taint time is
almost always less than 1s in our
experiments (not shown here), 4 min
for worst case, clearly dominated by
resolution time. The worst case is due
to a pass of linearithmic complexity which can be optimized to be logarithmic.

Pearls. We show hereafter two particular applications of our method. Table 3
reports results of another symbolic execution experiment, on the grub example.

Table 3. GRUB example

Boolector• Z3

# sat 540 1

unsat N/A 42

unknown 355 852

Total time 16 732 159 765

On this example, Boolector• completely out-
performs existing approaches. As a second
application, while the main drawback of our
method is that it precludes proving unsat,
this is easily mitigated by complementing
the approach with another one geared (or
able) to proving unsat, yielding efficient
solvers for quantified formulas, as shown in
Table 4.

Table 4. Best approaches

Former New

Z3 B• B• � Z3

SMT-LIB sat 261 399 485

unsat 165 N/A 165

unknown 843 870 619

Time 270 150 350 94 610

Binsec sat 953 1042 1067

unsat 319 N/A 319

unknown 149 379 35

Time 64 761 1 152 1 169

Conclusion. Experiments demonstrate the
relevance of our taint-based technique for
model generation. (RQ1) Results in Table 1
shows that our approach greatly facilitates
the resolution process. On these examples,
our method performs better than state-of-
the-art solvers but also strongly complements
them (Table 2). (RQ2) Moreover, Table 1
demonstrates that our technique is highly
effective at lifting quantifier-free solvers to
quantified formulas, in both number of sat
answers and computation time. Indeed, once
lifted, Boolector performs better (for sat-only) than Z3 or CVC4 with full quan-
tifier support. Finally (RQ3) our tainting method itself is very efficient both in
time and space, making it perfect either for a preprocessing step or for a deeper
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integration into a solver. In our current prototype implementation, we consider
the cost to be low. The companion technical report contains a few additional
experiments on bitvectors and integer arithmetic, including the example from
Fig. 1.

8 Related Work

Traditional approaches to solving quantified formulas essentially involve either
generic methods geared to proving unsatisfiability and validity [16], or complete
but dedicated approaches for particular theories [8,36]. Besides, some recent
methods [20,22,31] aim to be correct and complete for larger classes of theories.

Generic Method for Unsatisfiability. Broadly speaking, these methods
iteratively instantiate axioms until a contradiction is found. They are generic
w.r.t. the underlying theory and allow to reuse standard theory solvers, but
termination is not guaranteed. Also, they are more suited to prove unsatisfia-
bility than to find models. In this family, E-matching [13,16] shows reasonable
cost when combined with conflict-based instantiation [30] or semantic triggers
[17,18]. In pure first-order logic (without theories), quantifiers are mainly han-
dled through resolution and superposition [1,26] as done in Vampire [24,33] and
E [34].

Complete Methods for Specific Theories. Much work has been done on
designing complete decision procedures for quantified theories of interest, notably
array properties [8], quantified theory of bitvectors [23,36], Presburger arithmetic
or Real Linear Arithmetic [9,19]. Yet, they usually come at a high cost.

Generic Methods for Model Generation. Some recent works detail
attempts at more general approaches to model generation.

Local theory extensions [2,22] provide means to extend some decidable theo-
ries with free symbols and quantifications, retaining decidability. The approach
identifies specific forms of formulas and quantifications (bounded), such that
these theory extensions can be solved using finite instantiation of quantifiers
together with a decision procedure for the original theory. The main drawback
is that the formula size can increase a lot.

Model-based quantifier instantiation is an active area of research notably
developed in Z3 and CVC4. The basic line is to consider the partial model under
construction in order to find the right quantifier instantiations, typically in a try-
and-refine manner. Depending on the variants, these methods favors either sat-
isfiability or unsatisfiability. They build on the underlying quantifier-free solver
and can be mixed with E-matching techniques, yet each refinement yields a
solver call and the refinement process may not terminate. Ge and de Moura [20]
study decidable fragments of first-order logic modulo theories for which model-
based quantifier instantiation yields soundness and refutational completeness.
Reynolds et al. [30], Barbosa [3] and Preiner et al. [28] use models to guide the
instantiation process towards instances refuting the current model. Finite model
quantifier instantiation [31,32] reduces the search to finite models, and is indeed
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geared toward model generation rather than unsatisfiability. Similar techniques
have been used in program synthesis [29].

We drop support for the unsatisfiable case but get more flexibility: we deal
with quantifiers on any sort, the approach terminates and is lightweight, in the
sense that it requires a single call to the underlying quantifier-free solver.

Other. Our method can be seen as taking inspiration from program taint anal-
ysis [15,27] developed for checking the non-interference [35] of public and secrete
input in security-sensitive programs. As far as the analogy goes, our approach
should not be seen as checking non-interference, but rather as inferring precon-
ditions of non-interference. Moreover, our formula-tainting technique is closer
to dynamic program-tainting than to static program-tainting, in the sense that
precise dependency conditions are statically inserted at preprocess-time, then
precisely explored at solving-time.

Finally, Darvas et al. [11] presents a bottom-up formula strengthening
method. Their goal differ from ours, as they are interested in formula well-
definedness (rather than independence) and validity (rather than model genera-
tion).

9 Conclusion

This paper addresses the problem of generating models of quantified first-order
formulas over built-in theories. We propose a correct and generic approach based
on a reduction to the quantifier-free case through the inference of independence
conditions. The technique is applicable to any theory with a decidable quantifier-
free case and allows to reuse all the work done on quantifier-free solvers. The
method significantly enhances the performances of state-of-the-art SMT solvers
for the quantified case, and supplements the latest advances in the field.

Future developments aim to tackle the definition of more precise inference
mechanisms of independence conditions, the identification of interesting sub-
classes for which inferring weakest independence conditions is feasible, and the
combination with other quantifier instantiation techniques.
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Abstract. We present POS, a concurrency testing approach that sam-
ples the partial order of concurrent programs. POS uses a novel priority-
based scheduling algorithm that dynamically reassigns priorities regard-
ing the partial order information and formally ensures that each par-
tial order will be explored with significant probability. POS is simple
to implement and provides a probabilistic guarantee of error detection
better than state-of-the-art sampling approaches. Evaluations show that
POS is effective in covering the partial-order space of micro-benchmarks
and finding concurrency bugs in real-world programs, such as Firefox’s
JavaScript engine SpiderMonkey.

1 Introduction

Concurrent programs are notoriously difficult to test. Executions of different
threads can interleave arbitrarily, and any such interleaving may trigger unex-
pected errors and lead to serious production failures [13]. Traditional testing over
concurrent programs relies on the system scheduler to interleave executions (or
events) and is limited to detect bugs because some interleavings are repeatedly
tested while missing many others.

Systematic testing [9,16,18,28–30], instead of relying on the system sched-
uler, utilizes formal methods to systematically schedule concurrent events and
attempt to cover all possible interleavings. However, the interleaving space of
concurrent programs is exponential to the execution length and often far exceeds
the testing budget, leading to the so-called state-space explosion problem. Tech-
niques such as partial order reduction (POR) [1,2,8,10] and dynamic interface
reduction [11] have been introduced to reduce the interleaving space. But, in most
cases, the reduced space of a complex concurrent program is still too large to
test exhaustively. Moreover, systematic testing often uses a deterministic search
algorithm (e.g., the depth-first search) that only slightly adjusts the interleaving
at each iteration, e.g., flip the order of two events. Such a search may very well
get stuck in a homogeneous interleaving subspace and waste the testing budget
by exploring mostly equivalent interleavings.

To mitigate the state-space explosion problem, randomized scheduling algo-
rithms are proposed to sample, rather than enumerating, the interleaving space
c© The Author(s) 2018
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Fig. 1. (a) An example illustrating random walk’s weakness in probabilistic guarantee
of error detection, where variable x is initially 0; (b) An example illustrating PCT’s
redundancy in exploring the partial order.

while still keeping the diversity of the interleavings explored [28]. The most
straightforward sampling algorithm is random walk : at each step, randomly pick
an enabled event to execute. Previous work showed that even such a sampling
outperformed the exhaustive search at finding errors in real-world concurrent
programs [24]. This can be explained by applying the small-scope hypothesis [12,
Sect. 5.1.3] to the domain of concurrency error detection [17]: errors in real-world
concurrent programs are non-adversarial and can often be triggered if a small
number of events happen in the right order, which sampling has a good proba-
bility to achieve.

Random walk, however, has a unsurprisingly poor probabilistic guarantee
of error detection. Consider the program in Fig. 1a. The assertion of thread A
fails if, and only if, the statement “x = 1” of thread B is executed before this
assertion. Without knowing which order (between the assertion and “x = 1”)
triggers this failure as a priori, we should sample both orders uniformly because
the probabilistic guarantee of detecting this error is the minimum sampling
probability of these two orders. Unfortunately, random walk may yield extremely
non-uniform sampling probabilities for different orders when only a small number
of events matter. In this example, to trigger the failure, the assertion of thread
A has to be delayed (or not picked) by m times in random walk, making its
probabilistic guarantee as low as 1/2m.

To sample different orders more uniformly, Probabilistic Concurrency Testing
(PCT) [4] depends on a user-provided parameter d, the number of events to
delay, to randomly pick d events within the execution, and inserts a preemption
before each of the d events. Since the events are picked randomly by PCT, the
corresponding interleaving space is sampled more uniformly, resulting in a much
stronger probabilistic guarantee than random walk. Consider the program in
Fig. 1a again. To trigger the failure, there is no event needed to be delayed, other
than having the right thread (i.e. thread B) to run first. Thus, the probability
trigger (or avoid) the failure is 1/2, which is much higher than 1/2m.

However, PCT does not consider the partial order of events entailed by a con-
current program, such that the explored interleavings are still quite redundant.
Consider the example in Fig. 1b. Both A1 and B1 are executed before the barrier
and do not race with any statement. Statements A2 and B2 form a race, and so
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do statements A3 and B3. Depending on how each race is resolved, the program
events have total four different partial orders. However, without considering the
effects of barriers, PCT will attempt to delay A1 or B1 in vain. Furthermore,
without considering the race condition, PCT may first test an interleaving A2 →
A3 → B2 → B3 (by delaying A3 and B2), and then test a partial-order equivalent
and thus completely redundant interleaving A2 → B2 → A3 → B3 (by delaying
A3 and B3). Such redundancies in PCT waste testing resources and weaken the
probabilistic guarantee.

Towards addressing the above challenges, this paper makes three main con-
tributions. First, we present a concurrency testing approach, named partial order
sampling (POS), that samples the concurrent program execution based on the
partial orders and provides strong probabilistic guarantees of error detection. In
contrast to the sophisticated algorithms and heavy bookkeeping used in prior
POR work, the core algorithm of POS is much more straightforward. In POS,
each event is assigned with a random priority and, at each step, the event with
the highest priority is executed. After each execution, all events that race with
the executed event will be reassigned with a fresh random priority. Since each
event has its own priority, POS (1) samples the orders of a group of dependent
events uniformly and (2) uses one execution to sample independent event groups
in parallel, both benefiting its probabilistic guarantee. The priority reassignment
is also critical. Consider racing events e1 and e2, and an initial priority assign-
ment that runs e1 first. Without the priority reassignment, e2 may very well be
delayed again when a new racing event e3 occurs because e2’s priority is more
likely to be small (the reason that e2 is delayed after e1 at the first place). Such
priority reassignments ensure that POS samples the two orders of e2 and e3
uniformly.

Secondly, the probabilistic guarantee of POS has been formally analyzed and
shown to be exponentially stronger than random walk and PCT for general pro-
grams. The probability for POS to execute any partial order can be calculated
by modeling the ordering constraints as a bipartite graph and computing the
probability that these constraints can be satisfied by a random priority assign-
ment. Although prior POR work typically have soundness proofs of the space
reduction [1,8], those proofs depend on an exhaustive searching strategy and it
is unclear how they can be adapted to randomized algorithms. Some random-
ized algorithms leverage POR to heuristically avoid redundant exploration, but
no formal analysis of their probabilistic guarantee is given [22,28]. To the best
of our knowledge, POS is the first work to sample partial orders with formal
probabilistic guarantee of error detection.

Lastly, POS has been implemented and evaluated using both randomly gen-
erated programs and real-world concurrent software such as Firefox’s JavaScript
engine SpiderMonkey in SCTBench [24]. Our POS implementation supports
shared-memory multithreaded programs using Pthreads. The evaluation results
show that POS provided 134.1× stronger overall guarantees than random walk
and PCT on randomly generated programs, and the error detection is 2.6× faster
than random walk and PCT on SCTBench. POS managed to find the six most
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difficult bugs in SCTBench with the highest probability among all algorithms
evaluated and performed the best among 20 of the total 32 non-trivial bugs in
our evaluation.

Related Work. There is a rich literature of concurrency testing. Systematic
testing [9,14,18,28] exhaustively enumerates all possible schedules of a program,
which suffers from the state-space explosion problem. Partial order reduction
techniques [1,2,8,10] alleviate this problem by avoiding exploring schedules that
are redundant under partial order equivalence but rely on bookkeeping the mas-
sive exploration history to identify redundancy and it is unclear how they can
be applied to the sampling methods.

PCT [4] explores schedules containing orderings of small sets of events and
guarantees probabilistic coverage of finding bugs involving rare orders of a small
number of events. PCT, however, does not take partial orders into account and
becomes ineffective when dealing with a large number of ordering events. Also,
the need of user-provided parameters diminishes the coverage guarantee, as the
parameters are often provided imprecisely. Chistikov et al. [5] introduced hit-
ting families to cover all admissible total orders of a set of events. However, this
approach may cover redundant total orders that correspond to the same partial
order. RAPOS [22] leverages the ideas from the partial order reduction, resem-
bling our work in its goal, but does not provide a formal proof for its probabilistic
guarantee. Our micro-benchmarks show that POS has a 5.0× overall advantage
over RAPOS (see Sect. 6.1).

Coverage-driven concurrency testing [26,32] leverages relaxed coverage met-
rics to discover rarely explored interleavings. Directed testing [21,23] focuses on
exploring specific types of interleavings, such as data races and atomicity viola-
tions, to reveal bugs. There is a large body of other work showing how to detect
concurrency bugs using static analysis [19,25] or dynamic analysis [7,15,20]. But
none of them can be effectively applied to real-world software systems, while still
have formal probabilistic guarantees.

2 Running Example

Figure 2 shows the running example of this paper. In this example, we assume
that memory accesses are sequentially consistent and all shared variables (e.g.,
x, w, etc.) are initialized to be 0. The program consists of two threads, i.e., A and
B. Thread B will be blocked at B4 by wait(w) until w > 0. Thread A will set w
to be 1 at A3 via signal(w) and unblock thread B. The assertion at A4 will fail
if, and only if, the program is executed in the following total order:

B1 → A1 → B2 → B3 → A2 → A3 → B4 → B5 → B6 → A4

To detect this bug, random walk has to make the correct choice at every step.
Among all ten steps, three of them only have a single option: A2 and A3 must
be executed first to enable B4, and A4 is the only statement left at the last step.
Thus, the probability of reaching the bug is 1/27 = 1/128. As for PCT, we have
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Fig. 2. The running example involving two threads.

to insert two preemption points just before statements B2 and A2 among ten
statements, thus the probability for PCT is 1/10 × 1/10 × 1/2 = 1/200, where
this 1/2 comes from the requirement that thread B has to be executed first.

In POS, this bug can be detected with a substantial probability of 1/48,
much higher than other approaches. Indeed, our formal guarantees ensure that
any behavior of this program can be covered with a probability of at least 1/60.

3 Preliminary

Concurrent Machine Model. Our concurrent abstract machine models a
finite set of processes and a set of shared objects. The machine state is denoted
as s, which consists of the local state of each process and the state of shared
objects. The abstract machine assumes the sequential consistency and allows
the arbitrary interleaving among all processes. At each step, starting from s,
any running process can be randomly selected to make a move to update the
state to s′ and generate an event e, denoted as s

e−→ s′.
An event e is a tuple e := (pid, intr, obj, ind), where pid is the process ID,

intr is the statement (or instruction) pointer, obj is the shared object accessed
by this step (we assume each statement only access at most a single shared
object), and ind indicates how many times this intr has been executed and is
used to distinguish different runs of the same instruction. For example, the exe-
cution of the statement “A2: y++” in Fig. 2 will generate the event (A, A2, y, 0).
Such an event captures the information of the corresponding step and can be
used to replay the execution. In other words, given the starting state s and the
event e, the resulting state s′ of a step “ e−→” is determined.

A trace t is a list of events generated by a sequence of program transitions
(or steps) starting from the initial machine state (denoted as s0). For example,
the following program execution:

s0
e0−→ s1

e1−→ · · · en−→ sn+1

generates the trace t := e0 • e1 • · · · • en, where the symbol “ • ” means“cons-ing”
an event to the trace. Trace events can be accessed by index (e.g., t[1] = e1).
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A trace can be used to replay a sequence of executions. In other words, given
the initial machine state s0 and the trace t, the resulting state of running t
(denoted as “State(t)”) is determined.

We write En(s) := {e | ∃s′, s e−→ s′} as the set of events enabled (or allowed to
be executed) at state s. Take the program in Fig. 2 as an example. Initially, both
A1 and B1 can be executed, and the corresponding two events form the enabled
set En(s0). The blocking wait at B4, however, can be enabled only after being
signaled at A3. A state s is called a terminating state if, and only if, En(s) = ∅.
We assume that any disabled event will eventually become enabled and every
process must end with either a terminating state or an error state. This indicates
that all traces are finite. For readability, we often abbreviate En(State(t)), i.e.,
the enabled event set after executing trace t, as En(t).

Partial Order of Traces. Two events e0 and e1 are called independent events
(denoted as e0⊥e1) if, and only if, they neither belong to the same process nor
access the same object:

e0⊥e1 := (e0.pid �= e1.pid) ∧ (e0.obj �= e1.obj)

The execution order of independent events does not affect the resulting state. If a
trace t can be generated by swapping adjacent and independent events of another
trace t′, then these two traces t and t′ are partial order equivalent. Intuitively,
partial order equivalent traces are guaranteed to lead the program to the same
state. The partial order of a trace is characterized by the orders between all
dependent events plus their transitive closure. Given a trace t, its partial order
relation “�t” is defined as the minimal relation over its events that satisfies:

(1) ∀i j, i < j ∧ t[i] �⊥ t[j] =⇒ t[i] �t t[j]
(2) ∀i j k, t[i] �t t[j] ∧ t[j] �t t[k] =⇒ t[i] �t t[k]

Two traces with the same partial order relation and the same event set must be
partial order equivalent.

Given an event order E and its order relation �E , we say a trace t follows E
and write “t 
 E” if, and only if,

∀e0 e1, e0 �t e1 =⇒ e0 �E e1

We write “t |= E” to denote that E is exactly the partial order of trace t:

t |= E := ∀e0 e1, e0 �t e1 ⇐⇒ e0 �E e1

Probabilistic Error-Detection Guarantees. Each partial order of a concur-
rent program may lead to a different and potentially incorrect outcome. There-
fore, any possible partial order has to be explored. The minimum probability
of these explorations are called the probabilistic error-detection guarantee of a
randomized scheduler.

Algorithm 1 presents a framework to formally reason about this guarantee. A
sampling procedure Sample samples a terminating trace t of a program. It starts
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Algorithm 1. Sample a trace using scheduler Sch and random variable R

1: procedure Sample(Sch, R)
2: t ← [ ]
3: while En(t) �= ∅ do
4: e ← Sch(En(t), R)
5: t ← t • e
6: end while
7: return t
8: end procedure

with the empty trace and repeatedly invokes a randomized scheduler (denoted
as Sch) to append an event to the trace until the program terminates. The ran-
domized scheduler Sch selects an enabled event from En(t) and the randomness
comes from the random variable parameter, i.e., R.

A naive scheduler can be purely random without any strategy. A sophisti-
cated scheduler may utilize additional information, such as the properties of the
current trace and the enabled event set.

Given the randomized scheduler Sch on R and any partial order E of a pro-
gram, we write “P (Sample(Sch, R) |= E)” to denote the probability of covering
E , i.e., generating a trace whose partial order is exactly E using Algorithm 1. The
probabilistic error-detection guarantee of the scheduler Sch on R is then defined
as the minimum probability of covering the partial order E of any terminating
trace of the program:

min
E

P (Sample(Sch, R) |= E)

4 POS - Algorithm and Analysis

In this section, we first present BasicPOS, a priority-based scheduler and ana-
lyze its probability of covering a given partial order (see Sect. 4.1). Based on the
analysis of BasicPOS, we then show that such a priority-based algorithm can
be dramatically improved by introducing the priority reassignment, resulting in
our POS algorithm (see Sect. 4.2). Finally, we present how to calculate the prob-
abilistic error-detection guarantee of POS on general programs (see Sect. 4.3).

4.1 BasicPOS

In BasicPOS, each event is associated with a random and immutable priority,
and, at each step, the enabled event with the highest priority will be picked to
execute. We use Pri to denote the map from events to priorities and describe
BasicPOS in Algorithm 2, which instantiates the random variable R in Algo-
rithm1 with Pri. The priority Pri(e) of every event e is independent with each
other and follows the uniform distribution U(0, 1).

We now consider in what condition would BasicPOS sample a trace that
follows a given partial order E of a program. It means that the generated trace t,
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Algorithm 2. Sample a trace with BasicPOS under the priority map Pri

1: procedure SampleBasicPOS(Pri) � Pri ∼ U(0, 1)
2: t ← [ ]
3: while En(t) �= ∅ do
4: e∗ ← arg maxe∈En(t) Pri(e)
5: t ← t • e∗

6: end while
7: return t
8: end procedure

at the end of each loop iteration (line 5 in Algorithm2), must satisfy the invariant
“t 
 E”. Thus, the event priorities have to be properly ordered such that, given
a trace t satisfies “t 
 E”, the enabled event e∗ with the highest priority must
satisfies “t • e∗ 
 E”. In other words, given “t 
 E”, for any e ∈ En(t) and
“t • e �
 E”, there must be some e′ ∈ En(t) satisfying “t • e′ 
 E” and a proper
priority map where e′ has a higher priority, i.e., Pri(e′) > Pri(e). Thus, e will
not be selected as the event e∗ at line 4 in Algorithm 2. The following Lemma 1
indicates that such an event e′ always exists:

Lemma 1

∀t e, t 
 E ∧ e ∈ En(t) ∧ t • e �
 E
=⇒ ∃e′, e′ ∈ En(t) ∧ t • e′ 
 E ∧ e′ �E e

Proof. We can prove it by contradiction. Since traces are finite, we assume that
some traces are counterexamples to the lemma and t is the longest such trace.
In other words, we have t 
 E and there exists e ∈ En(t) ∧ t • e �
 E such that:

∀e′, e′ ∈ En(t) ∧ t • e′ 
 E =⇒ ¬(e′ �E e) (1)

Since E is the partial order of a terminating trace and the traces t has not
terminated yet, we know that there must exist an event e′ ∈ En(t) such that
t • e′ 
 E . Let t′ := t • e′, by (1), we have that ¬(e′ �E e) and

e ∈ En(t′)
∧ t′ • e �
 E
∧ ∀e′′, e′′ ∈ En(t′) ∧ t′ • e′′ 
 E =⇒ ¬(e′′ �E e)

First two statements are intuitive. The third one also holds, otherwise, e′ �E e
can be implied by the transitivity of partial orders using e′′. Thus, t′ is a coun-
terexample that is longer than t, contradicting to our assumption. 
�

Thanks to Lemma 1, we then only need to construct a priority map such that
this e′ has a higher priority. Let “e ��E e′ := ∃t, t 
 E ∧ {e, e′} ⊆ En(t)” denote
that e and e′ can be simultaneously enabled under E . We write

PSE(e) := {e′ | e′ �E e ∧ e ��E e′}
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as the set of events that can be simultaneously enabled with but have to be
selected prior to e in order to follow E . We have that any e′ specified by Lemma 1
must belong to PSE(e). Let VE be the event set ordered by E . The priority map
Pri can be constructed as below:

∧

e∈VE , e′∈PSE(e)

Pri(e) < Pri(e′) (Cond-BasicPOS)

The traces sampled by BasicPOS using this Pri will always follow E .
Although (Cond-BasicPOS) is not the necessary condition to sample a trace

following a desired partial order, from our observation, it gives a good estimation
for the worst cases. This leads us to locate the major weakness of BasicPOS:
the constraint propagation of priorities. An event e with a large PSE(e) set may
have a relatively low priority since its priority has to be lower than all the events
in PSE(e). Thus, for any simultaneously enabled event e′ that has to be delayed
after e, Pri(e′) must be even smaller than Pri(e), which is unnecessarily hard to
satisfy for a random Pri(e′). Due to this constraints propagation, the probability
that a priority map Pri satisfies (Cond-BasicPOS) can be as low as 1/|VE |!.

Here, we explain how BasicPOS samples the following trace that triggers
the bug described in Sect. 2:

tbug := (B, B1, x, 0) • (A, A1, x, 0) • (B, B2, x, 0) • (B, B3, y, 0) • (A, A2, y, 0)
• (A, A3, w, 0) • (B, B4, w, 0) • (B, B5, y, 0) • (B, B6, z, 0) • (A, A4, z, 0)

To sample trace tbug , according to (Cond-BasicPOS), the priority map has
to satisfy the following constraints:

Pri(tbug [0] = (B, B1, x, 0)) > Pri(tbug [1] = (A, A1, x, 0))
Pri(tbug [1]) > Pri(tbug [2] = (B, B2, x, 0))
Pri(tbug [2]) > Pri(tbug [4] = (A, A2, y, 0))
Pri(tbug [3] = (B, B3, y, 0)) > Pri(tbug [4])
Pri(tbug [6] = (B, B4, w, 0)) > Pri(tbug [9] = (A, A4, z, 0))
Pri(tbug [7] = (B, B5, y, 0)) > Pri(tbug [9])
Pri(tbug [8] = (B, B6, z, 0)) > Pri(tbug [9])

Note that these are also the necessary constraints for BasicPOS to follow
the partial order of tbug . The probability that a random Pri satisfies the
constraints is 1/120. The propagation of the constraints can be illustrated
by the first three steps:

Pri(tbug [0]) > Pri(tbug [1]) > Pri(tbug [2]) > Pri(tbug [4])

that happens in the probability of 1/24. However, on the other hand, ran-
dom walk can sample these three steps in the probability of 1/8.
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4.2 POS

We will now show how to improve BasicPOS by eliminating the propagation of
priority constraints. Consider the situation when an event e (delayed at some
trace t) becomes eligible to schedule right after scheduling some e′, i.e.,

t 
 E ∧ {e, e′} ⊆ En(t) ∧ t • e �
 E ∧ t • e′ • e 
 E
If we reset the priority of e right after scheduling e′, all the constraints causing
the delay of e will not be propagated to the event e′′ such that e ∈ PSE(e′′).
However, there is no way for us to know which e should be reset after e′ during
the sampling, since E is unknown and not provided. Notice that

t 
 E ∧ {e, e′} ⊆ En(t) ∧ t • e �
 E ∧ t • e′ • e 
 E =⇒ e.obj = e′.obj

If we reset the priority of all the events that access the same object with e′, the
propagation of priority constraints will also be eliminated.

To analyze how POS works to follow E under the reassignment scheme, we
have to model how many priorities need to be reset at each step. Note that
blindly reassigning priorities of all delayed events at each step would be sub-
optimal, which degenerates the algorithm to random walk. To give a formal and
more precise analysis, we introduce the object index functions for trace t and
partial order E :

I(t, e) := | {e′ | e′ ∈ t ∧ e.obj = e′.obj} |
IE(e) := | {e′ | e′ �E e ∧ e.obj = e′.obj} |

Intuitively, when e ∈ En(t), scheduling e on t will operate e.obj after I(t, e)
previous events. A trace t follows E if every step (indicated by t[i]) operates the
object t[i].obj after IE(t[i]) previous events in the trace.

We then index (or version) the priority of event e using the index function
as Pri(e, I(t, e)) and introduce POS shown in Algorithm3. By proving that

∀e′, I(t, e) ≤ I(t • e′, e) ∧ (I(t, e) = I(t • e′, e) ⇐⇒ e.obj �= e′.obj)

we have that scheduling an event e will increase the priority version of all the
events accessing e.obj, resulting in the priority reassignment.

We can then prove that the following statements hold:

∀t e, t 
 E ∧ e ∈ En(t) =⇒ (t • e 
 E ⇐⇒ I(t, e) = IE(e))
∀t e, t 
 E ∧ e ∈ En(t) ∧ t • e �
 E =⇒ I(t, e) < IE(e)

To ensure that the selection of e∗ on trace t follows E at the line 4 of Algorithm 3,
any e satisfying I(t, e) < IE(e) has to have a smaller priority than some e′

satisfying I(t, e′) = IE(e) and such e′ must exist by Lemma 1. In this way, the
priority constraints for POS to sample E are as below:

∧
Pri(e, i) < Pri(e′, IE(e′)) for some i < IE(e)

which is bipartite and the propagation of priority constraints is eliminated. The
effectiveness of POS is guaranteed by Theorem 1.
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Algorithm 3. Sample a trace with POS under versioned priority map Pri

1: procedure SamplePOS(Pri) � Pri ∼ U(0, 1)
2: t ← [ ]
3: while En(t) �= ∅ do
4: e∗ ← arg maxe∈En(t) Pri(e, I(t, e))
5: t ← t.e∗

6: end while
7: return t
8: end procedure

Theorem 1. Given any partial order E of a program with P > 1 processes. Let

DE := | {(e, e′) | e �E e′ ∧ e �⊥ e′ ∧ e ��E e′} |
be the number of races in E, we have that

1. DE ≤ |VE | × (P − 1), and
2. POS has at least the following probability to sample a trace t 
 E:

(
1
P

)|VE |
RU

where R = P × |VE |/(|VE | + DE) ≥ 1 and U = (|VE | − �DE/(P − 1)�)/2 ≥ 0

Please refer to the technical report [33] for the detailed proof and the construction
of priority constraints.

Here, we show how POS improves BasicPOS over the example in Sect. 2.
The priority constraints for POS to sample the partial order of tbug are as
below:

Pri(tbug [0] , 0) > Pri(tbug [1] , 0)
Pri(tbug [1] , 1) > Pri(tbug [2] , 1)
Pri(tbug [2] , 2) > Pri(tbug [4] , 0)
Pri(tbug [3] , 0) > Pri(tbug [4] , 0)
Pri(tbug [6] , 1) > Pri(tbug [9] , 0)
Pri(tbug [7] , 2) > Pri(tbug [9] , 0)
Pri(tbug [8] , 0) > Pri(tbug [9] , 0)

Since each Pri(e, i) is independently random following U(0, 1), the proba-
bility of Pri satisfying the constraints is 1/2 × 1/2 × 1/3 × 1/4 = 1/48.

4.3 Probability Guarantee of POS on General Programs

We now analyze how POS performs on general programs compared to random
walk and PCT. Consider a program with P processes and N total events. It is
generally common for a program have substantial non-racing events, for exam-
ple, accessing shared variables protected by locks, semaphores, and condition



328 X. Yuan et al.

variables, etc. We assume that there exists a ratio 0 ≤ α ≤ 1 such that in any
partial order there are at least αN non-racing events.

Under this assumption, for random walk, we can construct an adversary
program with the worst case probability as 1/PN for almost any α [33]. For
PCT, since only the order of the (1 − α)N events may affect the partial order,
the number of preemptions needed for a partial order in the worst case becomes
(1 − α)N , and thus the worst case probability bound is 1/N (1−α)N . For POS,
the number of races DE is reduced to (1 − α)N × (P − 1) in the worst case,
Theorem 1 guarantees the probability lower bound as

1
PN

(
1

1 − (1 − 1/P )α

)αN/2

Thus, POS advantages random walk when α > 0 and degenerates to random
walk when α = 0. Also, POS advantages PCT if N > P (when α = 0) or
N 1/α−1 > P1/α

√
1 + α/P − α (when 0 < α < 1). For example, when P = 2

and α = 1/2, POS advantages PCT if N > 2
√

3. In other words, in this case,
POS is better than PCT if there are at least four total events.

5 Implementation

The algorithm of POS requires a pre-determined priority map, while the imple-
mentation could decide the event priority on demand when new events appear.
The implementation of POS is shown in Algorithm4, where lines 14–18 are for
the priority reassignment. Variable s represents the current program state with
the following interfaces:

– s.Enabled() returns the current set of enabled events.
– s.Execute(e) returns the resulting state after executing e in the state of s.
– s.IsRacing(e, e′) returns if there is a race between e and e′.

In the algorithm, if a race is detected during the scheduling, the priority of the
delayed event in the race will be removed and then be reassigned at lines 6–9.

Relaxation for Read-Only Events. The abstract interface s.IsRacing(. . .) allows
us to relax our model for read-only events. When both e and e′ are read-only
events, s.IsRacing(e, e′) returns false even if they are accessing the same object.
Our evaluations show that this relaxation improves the execution time of POS.

Fairness Workaround. POS is probabilistically fair. For an enabled event e with
priority p > 0, the cumulative probability for e to delay by k → ∞ steps without
racing is at most (1−pP)k → 0. However, it is possible that POS delays events for
prolonged time, slowing down the test. To alleviate this, the current implemen-
tation resets all event priorities for every 103 voluntary context switch events,
e.g., sched yield() calls. This is only useful for speeding up few benchmark
programs that have busy loops (sched yield() calls were added by SCTBench
creators) and has minimal impact on the probability of hitting bugs.
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Algorithm 4. Testing a program with POS
1: procedure POS(s) � s: the initial state of the program
2: pri ← [ε �→ −∞] � Initially, no priority is assigned except the special symbol ε
3: while s.Enabled() �= ∅ do
4: e∗ ← ε � Assume ε /∈ s.Enabled()
5: for each e ∈ s.Enabled() do
6: if e /∈ pri then
7: newPriority ← U(0, 1)
8: pri ← pri[e �→ newPriority]
9: end if

10: if pri(e∗) < pri(e) then
11: e∗ ← e
12: end if
13: end for
14: for each e ∈ s.Enabled() do � Update priorities
15: if e �= e∗ ∧ s.IsRacing(e, e∗) then
16: pri ← pri \ {e} � The priority will be reassigned in the next step
17: end if
18: end for
19: s ← s.Execute(e∗)
20: end while
21: return s
22: end procedure

6 Evaluation

To understand the performance of POS and compare with other sampling meth-
ods, we conducted experiments on both micro benchmarks (automatically gen-
erated) and macro benchmarks (including real-world programs).

6.1 Micro Benchmark

We generated programs with a small number of static events as the micro bench-
marks. We assumed multi-threaded programs with t threads and each thread
executes m events accessing o objects. To make the program space tractable,
we chose t = m = o = 4, resulting 16 total events. To simulate different object
access patterns in real programs, we chose to randomly distribute events access-
ing different objects with the following configurations:

– Each object has respectively {4,4,4,4} accessing events. (Uniform)
– Each object has respectively {2,2,6,6} accessing events. (Skewed)

The results are shown in Table 1. The benchmark columns show the char-
acteristics of each generated program, including (1) the configuration used for
generating the program; (2) the number of distinct partial orders in the program;
(3) the maximum number of preemptions needed for covering all partial orders;
and (4) the maximum number of races in any partial order. We measured the
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Table 1. Coverage on the micro benchmark programs. Columns under “benchmark”
are program characteristics explained in Sect. 6.1. “0(x)” represents incomplete cover-
age.

Benchmark Coverage

Conf. PO.
count

Max
prempt.

Max
races

RW PCT RAPOS BasicPOS POS

Uniform 4478 6 19 2.65e−08 0(4390) 1.84e−06 0(4475) 7.94e−06

7413 6 20 3.97e−08 0(7257) 3.00e−07 2.00e−08 5.62e−06

1554 5 19 8.37e−08 0(1540) 1.78e−06 4.00e−08 8.54e−06

6289 6 20 1.99e−08 0(6077) 1.34e−06 0(6288) 6.62e−06

1416 6 21 1.88e−07 0(1364) 1.99e−05 1.80e−07 4.21e−05

Skewed 39078 7 27 5.89e−09 0(33074) 0(39044) 0(38857) 1.20e−07

19706 7 24 4.97e−09 0(18570) 0(19703) 0(19634) 5.00e−07

19512 6 27 2.35e−08 0(16749) 1.00e−07 0(19502) 1.36e−06

8820 6 23 6.62e−09 0(8208) 1.00e−07 0(8816) 1.20e−06

7548 7 25 1.32e−08 0(7438) 1.30e−06 2.00e−08 3.68e−06

Geo-mean* 2.14e−08 2.00e−08 4.11e−07 2.67e−08 2.87e−06

Table 2. Coverage on the micro benchmark programs - 50% read

Benchmark Coverage

Conf. PO.

count

Max

prempt.

Max

races

RW PCT RAPOS BasicPOS POS POS∗

Uniform 896 6 16 7.06e−08 0(883) 9.42e−06 2.00e−08 9.32e−06 1.41e−05

1215 6 18 3.53e−08 0(1204) 8.70e−06 6.00e−08 1.22e−05 1.51e−05

1571 7 17 8.83e−09 0(1523) 4.22e−06 0(1566) 7.66e−06 1.09e−05

3079 6 15 1.99e−08 0(3064) 8.20e−07 1.20e−07 7.08e−06 7.68e−06

1041 4 18 2.51e−07 0(1032) 3.05e−05 2.20e−06 3.32e−05 4.85e−05

Skewed 3867 6 19 6.62e−09 0(3733) 1.24e−06 8.00e−08 4.04e−06 4.24e−06

1057 6 20 2.12e−07 0(1055) 4.68e−06 2.08e−06 2.79e−05 2.80e−05

1919 6 20 2.09e−07 0(1917) 2.02e−06 3.80e−07 1.48e−05 1.48e−05

11148 7 21 4.71e−08 0(10748) 4.00e−08 0(11128) 1.58e−06 3.02e−06

4800 7 19 3.97e−08 0(4421) 5.00e−07 0(4778) 1.58e−06 4.80e−06

Geo-mean* 4.77e−08 2.00e−08 2.14e−06 1.05e−07 7.82e−06 1.08e−05

coverage of each sampling method on each program by the minimum hit ratio on
any partial order of the program. On every program, we ran each sampling meth-
ods for 5×107 times (except for random walk, for which we calculated the exact
probabilities). If a program was not fully covered by an algorithm within the sam-
ple limit, the coverage is denoted as “0(x)”, where x is the number of covered
partial orders. We let PCT sample the exact number of the preemptions needed
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for each case. We tweaked PCT to improve its coverage by adding a dummy
event at the beginning of each thread, as otherwise PCT cannot preempt the
actual first event of each thread. The results show that POS performed the best
among all algorithms. For each algorithm, we calculated the overall performance
as the geometric mean of the coverage.1 POS overall performed ∼7.0× better
compared to other algorithms (∼134.1× excluding RAPOS and BasicPOS).

To understand our relaxation of read-only events, we generated another set of
programs with the same configurations, but with half of the events read-only. The
results are shown in Table 2, where the relaxed algorithm is denoted as POS∗.
Overall, POS∗ performed roughly ∼1.4× as good as POS and ∼5.0× better
compared to other algorithms (∼226.4× excluding RAPOS and BasicPOS).

6.2 Macro Benchmark

We used SCTBench [24], a collection of concurrency bugs on multi-threaded
programs, to evaluate POS on practical programs. SCTBench collected 49 con-
currency bugs from previous parallel workloads [3,27] and concurrency test-
ing/verification work [4,6,18,21,31]. SCTBench comes with a concurrency test-
ing tool, Maple [32], which intercepts pthread primitives and shared memory
accesses, as well as controls their interleaving. When a bug is triggered, it will be
caught by Maple and reported back. We implemented POS with the relaxation
of read-only events in Maple. Each sampling method was evaluated in SCTBench
by the ratio of tries and hits of the bug in each case. For each case, we ran each
sampling method on it until the number of tries reaches 104. We recorded the
bug hit count h and the total runs count t, and calculated the ratio as h/t.

Two cases in SCTBench are not adopted: parsec-2.0-streamcluster2 and
radbench-bug1. Because neither of the algorithms can hit their bugs once, which
conflicts with previous results. We strengthened the case safestack-bug1 by
internally repeating the case for 104 times (and shrunk the run limit to 500). This
amortizes the per-run overhead of Maple, which could take up to a few seconds.
We modified PCT to reset for every internal loop. We evaluated variants of PCT
algorithms of PCT-d, representing PCT with d−1 preemption points, to reduce
the disadvantage of a sub-optimal d. The results are shown in Table 3. We ignore
cases in which all algorithms can hit the bugs with more than half of their tries.
The cases are sorted based on the minimum hit ratio across algorithms. The
performance of each algorithm is aggregated by calculating the geometric mean
of hit ratios2 on every case. The best hit ratio for each case is marked as blue.

The results of macro benchmark experiments can be highlighted as below:

– Overall, POS performed the best in hitting bugs in SCTBench. The geometric
mean of POS is ∼2.6× better than PCT and ∼4.7× better than random walk.
Because the buggy interleavings in each case are not necessarily the most

1 For each case that an algorithm does not have the full coverage, we conservatively
account the coverage as 1

5×107
into the geometric mean.

2 For each case that an algorithm cannot hit once within the limit, we conservatively
account the hit ratio as 1/t in the calculation of the geometric mean.
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difficult ones to sample, POS may not perform overwhelmingly better than
others, as in micro benchmarks.

– Among all 32 cases shown in the table, POS performed the best among all
algorithms in 20 cases, while PCT variants were the best in 10 cases and
random walk was the best in three cases.

– POS is able to hit all bugs in SCTBench, while all PCT variants missed one
case within the limit (and one case with hit ratio of 0.0002), and random walk
missed three cases (and one case with hit ratio of 0.0003).

Table 3. Bug hit ratios on macro benchmark programs
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7 Conclusion

We have presented POS, a concurrency testing approach to sample the partial
order of concurrent programs. POS’s core algorithm is simple and lightweight:
(1) assign a random priority to each event in a program; (2) repeatedly execute
the event with the highest priority; and (3) after executing an event, reassign
its racing events with random priorities. We have formally shown that POS has
an exponentially stronger probabilistic error-detection guarantee than existing
randomized scheduling algorithms. Evaluations have shown that POS is effective
in covering the partial-order space of micro-benchmarks and finding concurrency
bugs in real-world programs such as Firefox’s JavaScript engine SpiderMonkey.
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Abstract. We present a method for proving that a program running
under the Total Store Ordering (TSO) memory model is robust, i.e., all
its TSO computations are equivalent to computations under the Sequen-
tial Consistency (SC) semantics. This method is inspired by Lipton’s
reduction theory for proving atomicity of concurrent programs. For pro-
grams which are not robust, we introduce an abstraction mechanism
that allows to construct robust programs over-approximating their TSO
semantics. This enables the use of proof methods designed for the SC
semantics in proving invariants that hold on the TSO semantics of a
non-robust program. These techniques have been evaluated on a large
set of benchmarks using the infrastructure provided by CIVL, a generic
tool for reasoning about concurrent programs under the SC semantics.

1 Introduction

A classical memory model for shared-memory concurrency is Sequential Con-
sistency (SC) [16], where the actions of different threads are interleaved while
the program order between actions of each thread is preserved. For performance
reasons, modern multiprocessors implement weaker memory models, e.g., Total
Store Ordering (TSO) [19] in x86 machines, which relax the program order. For
instance, the main feature of TSO is the write-to-read relaxation, which allows
reads to overtake writes. This relaxation reflects the fact that writes are buffered
before being flushed non-deterministically to the main memory.

Nevertheless, most programmers usually assume that memory accesses hap-
pen instantaneously and atomically like in the SC memory model. This assump-
tion is safe for data-race free programs [3]. However, many programs employing
lock-free synchronization are not data-race free, e.g., programs implementing
synchronization operations and libraries implementing concurrent objects. In
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most cases, these programs are designed to be robust against relaxations, i.e.,
they admit the same behaviors as if they were run under SC. Memory fences
must be included appropriately in programs in order to prevent non-SC behav-
iors. Getting such programs right is a notoriously difficult and error-prone task.
Robustness can also be used as a proof method, that allows to reuse the existing
SC verification technology. Invariants of a robust program running under SC are
also valid for the TSO executions. Therefore, the problem of checking robustness
of a program against relaxations of a memory model is important.

In this paper, we address the problem of checking robustness in the case
of TSO. We present a methodology for proving robustness which uses the con-
cepts of left/right mover in Lipton’s reduction theory [17]. Intuitively, a program
statement is a left (resp., right) mover if it commutes to the left (resp., right)
with respect to the statements in the other threads. These concepts have been
used by Lipton [17] to define a program rewriting technique which enlarges the
atomic blocks in a given program while preserving the same set of behaviors. In
essence, robustness can also be seen as an atomicity problem: every write state-
ment corresponds to two events, inserting the write into the buffer and flushing
the write from the buffer to the main memory, which must be proved to happen
atomically, one after the other. However, differently from Lipton’s reduction the-
ory, the events that must be proved atomic do not correspond syntactically to
different statements in the program. This leads to different uses of these concepts
which cannot be seen as a direct instantiation of this theory.

In case programs are not robust, or they cannot be proven robust using our
method, we define a program abstraction technique that roughly, makes reads
non-deterministic (this follows the idea of combining reduction and abstraction
introduced in [12]). The non-determinism added by this abstraction can lead to
programs which can be proven robust using our method. Then, any invariant
(safety property) of the abstraction, which is valid under the SC semantics, is
also valid for the TSO semantics of the original program. As shown in our exper-
iments, this abstraction leads in some cases to programs which reach exactly the
same set of configurations as the original program (but these configurations can
be reached in different orders), which implies no loss of precision.

We tested the applicability of the proposed reduction and abstraction based
techniques on an exhaustive benchmark suite containing 34 challenging programs
(from [2,7]). These techniques were precise enough for proving robustness of 32
of these programs. One program (presented in Fig. 3) is not robust, and required
abstraction in order to derive a robust over-approximation. There is only one
program which cannot be proved robust using our techniques (although it is
robust). We believe however that an extension of our abstraction mechanism to
atomic read-write instructions will be able to deal with this case. We leave this
question for future work.

An extended version of this paper with missing proofs can be found at [8].

2 Overview

The TSO memory model allows strictly more behaviors than the clas-
sic SC memory model: writes are first stored in a thread-local buffer and
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Fig. 1. An example message passing program and a sample trace. Edges of the trace
shows the happens before order of global accesses and they are simplified by applying
transitive reduction.

non-deterministically flushed into the shared memory at a later time (also, the
write buffers are accessed first when reading a shared variable). However, in prac-
tice, many programs are robust, i.e., they have exactly the same behaviors under
TSO and SC. Robustness implies for instance, that any invariant proved under
the SC semantics is also an invariant under the TSO semantics. We describe
in the following a sound methodology for checking that a program is robust,
which avoids modeling and verifying TSO behaviors. Moreover, for non-robust
programs, we show an abstraction mechanism that allows to obtain robust pro-
grams over-approximating the behaviors of the original program.

As a first example, consider the simple “message passing” program in Fig. 1.
The send method sets the value of the “communication” variable y to some
predefined value from register r1. Then, it raises a flag by setting the variable
x to 1. Another thread executes the method recv which waits until the flag is
set and then, it reads y (and stores the value to register r2). This program is
robust, TSO doesn’t enable new behaviors although the writes may be delayed.
For instance, consider the following TSO execution (we assume that r1 = 42):

(t1, isu) (t1, isu)(t1, com, y, 42) (t1, com, x, 1)

(t2, rd, x, 0) (t2, rd, x, 0) (t2, rd, x, 1)(t2, rd, y, 42)

The actions of each thread (t1 or t2) are aligned horizontally, they are either issue
actions (isu) for writes being inserted into the local buffer (e.g., the first (t1, isu)
represents the write of y being inserted to the buffer), commit actions (com) for
writes being flushed to the main memory (e.g., (t1, com, y, 42) represents the
write y := 42 being flushed and executed on the shared memory), and read
actions for reading values of shared variables. Every assignment generates two
actions, an issue and a commit. The issue action is “local”, it doesn’t enable or
disable actions of other threads.

The above execution can be “mimicked” by an SC execution. If we had not
performed the isu actions of t1 that early but delayed them until just before
their corresponding com actions, we would obtain a valid SC execution of the
same program with no need to use store buffers:
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(t1, wr, y, 42) (t1, wr, x, 1)

(t2, rd, x, 0) (t2, rd, x, 0) (t2, rd, x, 1)(t2, rd, y, 42)

Above, consecutive isu and com actions are combined into a single write action
(wr). This intuition corresponds to an equivalence relation between TSO exe-
cutions and SC executions: if both executions contain the same actions on the
shared variables (performing the same accesses on the same variables with the
same values) and the order of actions on the same variable are the same for
both executions, we say that these executions have the same trace [20], or that
they are trace-equivalent. For instance, both the SC and TSO executions given
above have the same trace given in Fig. 1. The notion of trace is used to formal-
ize robustness for programs running under TSO [7]: a program is called robust
when every TSO execution has the same trace as an SC execution.

Our method for showing robustness is based on proving that every TSO exe-
cution can be permuted to a trace-equivalent SC execution (where issue actions
are immediately followed by the corresponding commit actions). We say that an
action α moves right until another action β in an execution if we can swap α
with every later action until β while preserving the feasibility of the execution
(e.g., not invalidating reads and keeping the actions enabled). We observe that
if α moves right until β then the execution obtained by moving α just before
β has the same trace with the initial execution. We also have the dual notion
of moves-left with a similar property. As a corollary, if every issue action moves
right until the corresponding commit action or every commit action moves left
until the corresponding issue action, we can find an equivalent SC execution. For
our execution above, the issue actions of the first thread move right until their
corresponding com actions. Note that there is a commit action which doesn’t
move left: moving (t1, com, x, 1) to the left of (t2, rd, x, 0) is not possible since it
would disable this read.

In general, issue actions and other thread local actions (e.g. statements using
local registers only) move right of other threads’ actions. Moreover, issue actions
(t, isu) move right of commit actions of the same thread that correspond to writes
issued before (t, isu). For the message passing program, the issue actions move
right until their corresponding commits in all TSO executions since commits
cannot be delayed beyond actions of the same thread (for instance reads). Hence,
we can safely deduce that the message passing program is robust. However, this
reasoning may fail when an assignment is followed by a read of a shared variable
in the same thread.

Fig. 2. An example store buffering program.

Consider the “store-buffering”
like program in Fig. 2. This pro-
gram is also robust. However, the
issue action generated by x := 1
might not always move right until
the corresponding commit. Consider
the following execution (we assume
that initially, z = 5):



340 A. Bouajjani et al.

(t1, isu) (t1, rd, z, 5) (t1, com, x, 1) . . .

(t2, isu) (t2, com, y, 1)(t2, τ)(t2, rd, x, 0) . . .

Here, we assumed that t1 executes foo and t2 executes bar. The fence instruc-
tion generates an action τ . The first issue action of t1 cannot be moved to the
right until the corresponding commit action since this would violate the program
order. Moreover, the corresponding commit action does not move left due to the
read action of t2 on x (which would become infeasible).

The key point here is that a later read action by the same thread, (t1, rd, z, 5),
doesn’t allow to move the issue action to the right (until the commit). However,
this read action moves to the right of other threads actions. So, we can construct
an equivalent SC execution by first moving the read action right after the commit
(t1, com, x, 1) and then move the issue action right until the commit action.

In general, we say that an issue (t, isu) of a thread t moves right until the
corresponding commit if each read action of t after (t, isu) can move right until
the next action of t that follows both the read and the commit. Actually, this
property is not required for all such reads. The read actions that follow a fence
cannot happen between the issue and the corresponding commit actions. For
instance, the last read action of foo cannot happen between the first issue of
foo and its corresponding commit action. Such reads that follow a fence are not
required to move right. In addition, we can omit the right-moves check for read
actions that read from the thread local buffer (see Sect. 3 for more details).

In brief, our method for checking robustness does the following for every write
instruction (assignment to a shared variable): either the commit action of this
write moves left or the actions of later read instructions that come before a fence
move right in all executions. This semantic condition can be checked using the
concept of movers [17] as follows: every write instruction is either a left-mover
or all the read instructions that come before a fence and can be executed later
than the write (in an SC execution) are right-movers. Note that this requires no
modeling and verification of TSO executions.

For non-robust programs that might reach different configurations under
TSO than under SC, we define an abstraction mechanism that replaces read
instructions with “non-deterministic” reads that can read more values than the
original instructions. The abstracted program has more behaviors than the orig-
inal one (under both SC and TSO), but it may turn to be robust. When it is
robust, we get that any property of its SC semantics holds also for the TSO
semantics of the original program.

Consider the work stealing queue implementation in Fig. 3. A queue is rep-
resented with an array items. Its head and tail indices are stored in the shared
variables H and T, respectively. There are three procedures that can operate on
this queue: any number of threads may execute the steal method and remove
an element from the head of the queue, and a single unique thread may execute
put or take methods nondeterministically. The put method inserts an element
at the tail index and the take method removes an element from the tail index.
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Fig. 3. Work stealing queue.

This program is not robust. If there is a single element in the queue and the
take method takes it by delaying its writes after some concurrent steals, one
of the concurrent steals might also remove this last element. Popping the same
element twice is not possible under SC, but it is possible under TSO semantics.
However, we can still prove some properties of this program under TSO. Our
robustness check fails on this program because the writes of the worker thread
(executing the put and take methods) are not left movers and the read from
the variable H in the take method is not a right mover. This read is not a right
mover w.r.t. successful CAS actions of the steal procedure that increment H.

We apply an abstraction on the instruction of the take method that reads
from H such that instead of reading the exact value of H, it can read any value
less than or equal to the value of H. We write this instruction as havoc(h, h ≤ H)
(it assigns to h a nondeterministic value satisfying the constraint h ≤ H). Note
that this abstraction is sound in the sense that it reaches more states under
SC/TSO than the original program.

The resulting program is robust. The statement havoc(h, h ≤ H) is a right
mover w.r.t. successful CAS actions of the stealer threads. Hence, for all the
write instructions, the reachable read instructions become right movers and our
check succeeds. The abstract program satisfies the specification of an idempotent
work stealing queue (elements can be dequeued multiple times) which implies
that the original program satisfies this specification as well.

3 TSO Robustness

We present the syntax and the semantics of a simple programming language
used to state our results. We define both the TSO and the SC semantics, an
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Fig. 4. Syntax of the programs. The star (∗) indicates zero or more occurrences of
the preceding element. 〈pid〉, 〈tid〉, 〈var〉, 〈reg〉 and 〈label〉 are elements of their given
domains representing the program identifiers, thread identifiers, shared variables, regis-
ters and instruction labels, respectively. 〈expr〉 is an arithmetic expression over 〈reg〉∗.
Similarly, 〈bexpr〉 is a boolean expression over 〈reg〉∗.

abstraction of executions called trace [20] that intuitively, captures the happens-
before relation between actions in an execution, and the notion of robustness.

Syntax. We consider a simple programming language which is defined in Fig. 4.
Each program P has a finite number of shared variables −→x and a finite num-
ber of threads (

−→
t ). Also, each thread ti has a finite set of local registers (−→ri )

and a start label l0i . Bodies of the threads are defined as finite sequences of
labelled instructions. Each instruction is followed by a goto statement which
defines the evolution of the program counter. Note that multiple instructions
can be assigned to the same label which allows us to write non-deterministic
programs and multiple goto statements can direct the control to the same label
which allows us to mimic imperative constructs like loops and conditionals. An
assignment to a shared variable 〈var〉 := 〈expr〉 is called a write instruction.
Also, an instruction of the form 〈reg〉 := 〈var〉 is called a read instruction.

Instructions can read from or write to shared variables or registers. Each
instruction accesses at most one shared variable. We assume that the program
P comes with a domain D of values that are stored in variables and registers,
and a set of functions F used to calculate arithmetic and boolean expressions.

The fence statement empties the buffer of the executing thread. The cas
(compare-and-swap) instruction checks whether the value of its input variable
is equal to its second argument. If so, it writes sets third argument as the value
of the variable and returns true. Otherwise, it returns false. In either case, cas
empties the buffer immediately after it executes. The assume statement allows
us to check conditions. If the boolean expression it contains holds at that state,
it behaves like a skip. Otherwise, the execution blocks. Formal description of
the instructions are given in Fig. 5.
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Fig. 5. The TSO transition relation. The function ins takes a label l and returns the set
of instructions labelled by l. We always assume that x ∈ −→x , r ∈ −→rt and pc′ = pc[t → l′]
where pc(t) : inst goto l′; is a labelled instruction of t and inst is the instruction
described at the beginning of the rule. The evaluation function eval calculates the
value of an arithmetic or boolean expression based on mem (ae stands for arithmetic
expression). Sequence concatenation is denoted by ◦. The function varsOfBuf takes
a sequence of pairs and returns the set consisting of the first fields of these pairs.

TSO Semantics. Under the TSO memory model, each thread maintains a local
queue to buffer write instructions. A state s of the program is a triple of the
form (pc,mem, buf). Let L be the set of available labels in the program P.
Then, pc :

−→
t → L shows the next instruction to be executed for each thread,

mem :
⋃

ti∈−→
t

−→ri ∪ −→x → D represents the current values in shared variables and

registers and buf :
−→
t → (−→x × D)∗ represents the contents of the buffers.

There is a special initial state s0 = (pc0,mem0, buf0). At the beginning, each
thread ti points to its initial label l0i i.e., pc0(ti) = l0i . We assume that there is a
special default value 0 ∈ D. All the shared variables and registers are initiated as
0 i.e., mem0(x) = 0 for all x ∈ ⋃

ti∈−→
t

−→ri ∪ −→x . Lastly, all the buffers are initially

empty i.e., buf0(ti) = ε for all ti ∈ −→
t .
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The transition relation →TSO between program states is defined in Fig. 5.
Transitions are labelled by actions. Each action is an element from

−→
t ×({τ, isu}∪

({com, rd}×−→x ×D)). Actions keep the information about the thread performing
the transition and the actual parameters of the reads and the writes to shared
variables. We are only interested in accesses to shared variables, therefore, other
transitions are labelled with τ as thread local actions.

A TSO execution of a program P is a sequence of actions π = π1, π2, . . . , πn

such that there exists a sequence of states σ = σ0, σ1, . . . , σn, σ0 = s0 is the
initial state of P and σi−1

πi−→ σi is a valid transition for any i ∈ {1, . . . , n}. We
assume that buffers are empty at the end of the execution.

SC Semantics. Under SC, a program state is a pair of the form (pc,mem)
where pc and mem are defined as above. Shared variables are read directly
from the memory mem and every write updates directly the memory mem.
To make the relationship between SC and TSO executions more obvious, every
write instruction generates isu and com actions which follow one another in the
execution (each isu is immediately followed by the corresponding com). Since
there are no write buffers, fence instructions have no effect under SC.

Traces and TSO Robustness. Consider a (TSO or SC) execution π of P. The
trace of π is a graph, denoted by Tr(π): Nodes of Tr(π) are actions of π except
the τ actions. In addition, isu and com actions are unified in a single node.
The isu action that puts an element into the buffer and the corresponding com
action that drains that element from the buffer correspond to the same node
in the trace. Edges of Tr(π) represent the happens before order (hb) between
these actions. The hb is union of four relations. The program order po keeps the
order of actions performed by the same thread excluding the com actions. The
store order so keeps the order of com actions on the same variable that write
different values1. The read-from relation, denoted by rf , relates a com action to
a rd action that reads its value. Lastly, the from-reads relation fr relates a rd
action to a com action that overwrites the value read by rd; it is defined as the
composition of rf and so.

We say that the program P is TSO robust if for any TSO execution π of P,
there exists an SC execution π′ such that Tr(π) = Tr(π′). It has been proven
that robustness implies that the program reaches the same valuations of the
shared memory under both TSO and SC [7].

4 A Reduction Theory for Checking Robustness

We present a methodology for checking robustness which builds on concepts
introduced in Lipton’s reduction theory [17]. This theory allows to rewrite a
1 Our definition of store order deviates slightly from the standard definition which

relates any two writes writing on the same variable, independently of values. The
notion of TSO trace robustness induced by this change is slightly weaker than the
original definition, but still implies preservation of any safety property from the SC
semantics to the TSO semantics. The results concerning TSO robustness used in
this paper (Lemma 1) are also not affected by this change. See [8] for more details.
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given concurrent program (running under SC) into an equivalent one that has
larger atomic blocks. Proving robustness is similar in spirit in the sense that
one has to prove that issue and commit actions can happen together atomically.
However, differently from the original theory, these actions do not correspond
to different statements in the program (they are generated by the same write
instruction). Nevertheless, we show that the concepts of left/right movers can
be also used to prove robustness.

Movers. Let π = π1, . . . , πn be an SC execution. We say that the action πi moves
right (resp., left) in π if the sequence π1, . . . , πi−1, πi+1, πi, πi+2, . . . , πn (resp.,
π1, . . . , πi−2, πi, πi−1, πi+1 . . . , πn) is also a valid execution of P, the thread of πi

is different than the thread of πi+1 (resp., πi−1), and both executions reach to
the same end state σn. Since every issue action is followed immediately by the
corresponding commit action, an issue action moves right, resp., left, when the
commit action also moves right, resp., left, and vice-versa.

Let instOfπ be a function, depending on an execution π, which given an
action πi ∈ π, gives the labelled instruction that generated πi. Then, a labelled
instruction � is a right (resp., left) mover if for all SC executions π of P and for
all actions πi of π such that instOf(πi) = �, πi moves right (resp., left) in π.

A labelled instruction is a non-mover if it is neither left nor right mover, and
it is a both mover if it is both left and right mover.

Reachability Between Instructions. An instruction �′ is reachable from the
instruction � if � and �′ both belong to the same thread and there exists an
SC execution π and indices 1 ≤ i < j ≤ |π| such that instOfπ(πi) = � and
instOfπ(πj) = �′. We say that �′ is reachable from � before a fence if πk is not an
action generated by a fence instruction in the same thread as �, for all i < k < j.
When � is a write instruction and �′ a read instruction, we say that �′ is buffer-
free reachable from � if πk is not an action generated by a fence instruction in
the same thread as � or a write action on the same variable that �′ reads-from,
for all i < k < j.

Definition 1. We say that a write instruction �w is atomic if it is a left mover
or every read instruction �r buffer-free reachable from �w is a right mover. We
say that P is write atomic if every write instruction �w in P is atomic.

Note that all of the notions used to define write atomicity (movers and
instruction reachability) are based on SC executions of the programs. The fol-
lowing result shows that write atomicity implies robustness.

Theorem 1 (Soundness). If P is write atomic, then it is robust.

We will prove the contrapositive of the statement. For the proof, we need
the notion of minimal violation defined in [7]. A minimal violation is a TSO
execution in which the sum of the number of same thread actions between isu
and corresponding com actions for all writes is minimal. A minimal violation
is of the form π = π1, (t, isu), π2, (t, rd, y, ∗), π3, (t, com, x, ∗), π4 such that π1

is an SC execution, only t can delay com actions, the first delayed action is
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the (t, com, x, ∗) action after π3 and it corresponds to (t, isu) after π1, π2 does
not contain any com or fence actions by t (writes of t are delayed until after
(t, rd, y, ∗)), (t, rd, y, ∗) →hb+ act for all act ∈ π3 ◦ {(t, com, x, ∗)} (isu and com
actions of other threads are counted as one action for this case), π3 doesn’t
contain any action of t, π4 contains only and all of the com actions of t that are
delayed in (t, isu) ◦ π2 and no com action in (t, com, x, ∗) ◦ π4 touches y.

Minimal violations are important for us because of the following property:

Lemma 1 (Completeness of Minimal Violations [7]). The program P is
robust iff it does not have a minimal violation.

Before going into the proof of Theorem1, we define some notations. Let π
be a sequence representing an execution or a fragment of it. Let Q be a set of
thread identifiers. Then, π|Q is the projection of π on actions from the threads
in Q. Similarly, π|n is the projection of π on first n elements for some number
n. sz(π) gives the length of the sequence π. We also define a product operator
⊗. Let π and ρ be some execution fragments. Then, π ⊗ ρ is same as π except
that if the ith isu action of π is not immediately followed by a com action by
the same thread, then ith com action of ρ is inserted after this isu. The product
operator helps us to fill unfinished writes in one execution fragment by inserting
commit actions from another fragment immediately after the issue actions.

Proof (Theorem 1). Assume P is not robust. Then, there exists a minimal vio-
lation π = π1, α, π2, θ, π3, β, π4 satisfying the conditions described before, where
α = (t, isu), θ = (t, rd, y, ∗) and β = (t, com, x, ∗). Below, we show that the
write instruction w = instOf(α) is not atomic.

1. w is not a left mover.
1.1. ρ = π1, π2|−→t \{t}, π3|−→t \{t}|sz(π3|−→

t \{t})−1, γ, (α, β) is an SC execution of P
where γ is the last action of π3. γ is a read or write action on x performed
by a thread t′ other than t and value of γ is different from what is written
by β.

1.1.1. ρ is an SC execution because t never changes value of a shared variable
in π2 and π3. So, even we remove actions of t in those parts, actions
of other threads are still enabled. Since other threads perform only
SC operations in π, π1, π2|−→t \{t}, π3|−→t \{t} is an SC execution. From
π, we also know that the first enabled action of t is α if we delay the
actions of t in π2 and π3.

1.1.2. The last action of π3 is γ. By definition of a minimal violation, we
know that θ →hb+ α and π3 does not contain any action of t. So,
there must exist an action γ ∈ π3 such that either γ reads from x
and γ →fr β in π or γ writes to x and γ →st β in π. Moreover, γ
is the last action of π3 because if there are other actions after γ, we
can delete them and can obtain another minimal violation which is
shorter than π and hence contradict the minimality of π.

1.2. ρ′ = π1, π2|−→t \{t}, π3|−→t \{t}|sz(π3|−→
t \{t})−1, (α, β), γ is an SC execution with

a different end state than ρ defined in 1.1 has or it is not an SC execution,
where instOf(γ′) = instOf(γ).
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1.2.1. In the last state of ρ, x has the value written by β. If γ is a write
action on x, then x has a different value at the end of ρ′ due to the
definition of a minimal violation. If γ is a read action on x, then it
does not read the value written by β in ρ. However, γ reads this value
in ρ′. Hence, ρ′ is not a valid SC execution.

2. There exists a read instruction r buffer-free reachable from w such that r is
not a right mover. We will consider two cases: Either there exists a rd action
of t on variable z in π2 such that there is a later write action by another
thread t′ on z in π2 that writes a different value or not. Moreover, z is not a
variable that is touched by the delayed commits in π4 i.e., it does not read
its value from the buffer.

2.1. We first evaluate the negation of above condition. Assume that for all
actions γ and γ′ such that γ occurs before γ′ in π2, either γ �= (t, rd, z, vz)
or γ′ �= (t′, isu)(t′, com, z, v′

z). Then, r = instOf(θ) is not a right mover
and it is buffer-free reachable from w.

2.1.1. ρ = π1, π2|−→t \{t}, π2|{t} ⊗ π4, θ, θ
′ is a valid SC execution of P where

θ′ = (t′, isu)(t′, com, y, ∗) for some t �= t′.
2.1.1.1. ρ is an SC execution. π1, π2|−→t \{t} is a valid SC execution since t

does not update value of a shared variable in π2. Moreover, all of
the actions of t become enabled after this sequence since t never
reads value of a variable updated by another thread in π2. Lastly,
the first action of π3 is enabled after this sequence.

2.1.1.2. The first action of π3 is θ′ = (t′, isu)(t′, com, y, ∗). Let θ′ be the
first action of π3. Since θ →hb θ′ in π and θ′ is not an action
of t by definition of minimal violation, the only case we have is
θ →fr θ′. Hence, θ′ is a write action on y that writes a different
value than θ reads.

2.1.1.3. r is buffer-free reachable from w. ρ is a SC execution, first action
of ρ after π1, π2|−→t \{t} is α, β; w = instOf((α, β)), r = instOf(θ)
and actions of t in ρ between α, β and θ are not instances of a
fence instruction or write to y.

2.1.2. ρ′ = π1, π2|−→t \{t}, π2|{t} ⊗ π4, θ
′, θ is not a valid SC execution.

2.1.2.1. In the last state of ρ, the value of y seen by t is the value read
in θ. It is different than the value written by θ′. However, at the
last state of ρ′, the value of y t sees must be the value θ′ writes.
Hence, ρ′ is not a valid SC execution.

2.2. Assume that there exists γ = (t, rd, z, vz) and γ′ = (t′, isu)(t′, com, z, v′
z)

in π2. Then, r = instOf(γ) is not a right mover and r is buffer-free reach-
able from w.

2.2.1. Let i be the index of γ and j be the index of γ′ in π2. Then, define
ρ = π1, π2|j−1|−→t \{t}, π2|i|{t} ⊗ π4, γ

′. ρ is an SC execution of P.
2.2.1.1. ρ is an SC execution. π1, π2|j−1|−→t \{t} prefix is a valid SC execu-

tion because t does not update any shared variable in π2. More-
over, all of the actions of t in π2|i|{t} ⊗ π4 become enabled after
this sequence since t never reads a value of a variable updated by
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another thread in π2 and γ′ is the next enabled in π2 after this
sequence since it is a write action.

2.2.2. Let i and j be indices of γ and γ′ in π2 respectively. Define ρ′ =
π1, π2|j−1|−→t \{t}, π2|i−1|{t} ⊗ π4, γ

′, γ. Then, ρ′ is not a valid SC exe-
cution.

2.2.2.1. In the last state of ρ, value of z seen by t is vz. It is different than
the v′

z, value written by γ′. However, in the last state of ρ′, the
value of z t sees must be v′

z. Hence, ρ′ is not a valid SC execution.
2.2.3. r is buffer-free reachable from w because ρ defined in 2.2.1 is

an SC execution, first action after π1, π2|j−1|−→t \{t} is α, β, w =
instOf((α, β)), r = instOf(γ) and actions of t in ρ between α, β and θ
are not instances of a fence instruction or a write to z by t.

5 Abstractions and Verifying Non-robust Programs

In this section, we introduce program abstractions which are useful for verifying
non-robust TSO programs (or even robust programs – see an example at the end
of this section). In general, a program P ′ abstracts another program P for some
semantic model M ∈ {SC,TSO} if every shared variable valuation σ reachable
from the initial state in an M execution of P is also reachable in an M execution
of P ′. We denote this abstraction relation as P �M P ′.

In particular, we are interested in read instruction abstractions, which replace
instructions that read from a shared variable with more “liberal” read instruc-
tions that can read more values (this way, the program may reach more shared
variable valuations). We extend the program syntax in Sect. 3 with havoc instruc-
tions of the form havoc(〈reg〉, 〈varbexpr〉), where 〈varbexpr〉 is a boolean expres-
sion over a set of registers and a single shared variable 〈var〉. The meaning
of this instruction is that the register reg is assigned with any value that
satisfies varbexpr (where the other registers and the variable var are inter-
preted with their current values). The program abstraction we consider will
replace read instructions of the form 〈reg〉 := 〈var〉 with havoc instructions
havoc(〈reg〉, 〈varbexpr〉).

While replacing read instructions with havoc instructions, we must guarantee
that the new program reaches at least the same set of shared variable valuations
after executing the havoc as the original program after the read. Hence, we
allow such a rewriting only when the boolean expression varbexpr is weaker (in
a logical sense) than the equality reg = var (hence, there exists an execution of
the havoc instruction where reg = var).

Lemma 2. Let P be a program and P ′ be obtained from P by replacing an
instruction l1 : x := r; goto l2 of a thread t with l1 : havoc(r, φ(x,−→r )); goto l2
such that ∀x, r. x = r =⇒ φ(x,−→r ) is valid. Then, P �SC P ′ and P �TSO P ′.

The notion of trace extends to programs that contain havoc instructions as
follows. Assume that (t, hvc, x, φ(x)) is the action generated by an instruction
havoc(r, φ(x,−→r )), where x is a shared variable and −→r a set of registers (the
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Fig. 6. An example program that needs a read abstraction to pass our robustness
checks. The havoc statement in comments reads as follows: if value of x is not 0 then
r1 gets either the value of x or 0. Otherwise, it is 0.

action stores the constraint φ where the values of the registers are instantiated
with their current values – the shared variable x is the only free variable in φ(x)).
Roughly, the hvc actions are special cases of rd actions. Consider an execution
π where an action α = (t, hvc, x, φ(x)) is generated by reading the value of a
write action β = (com, x, v) (i.e., the value v was the current value of x when the
havoc instruction was executed). Then, the trace of π contains a read-from edge
β →rf α as for regular read actions. However, fr edges are created differently. If
α was a rd action we would say that we have α →fr γ if β →rf α and β →st γ.
For the havoc case, the situation is a little bit different. Let γ = (com, x, v′) be
an action. We have α →fr γ if and only if either β →rf α, β →st γ and φ(v′)
is false or α →fr γ′ and γ′ →st γ where γ′ is an action. Intuitively, there is a
from-read dependency from an havoc action to a commit action, only when the
commit action invalidates the constraint φ(x) of the havoc (or if it follows such
a commit in store order).

The notion of write-atomicity (Definition 1) extends to programs with havoc
instructions by interpreting havoc instructions havoc(r, φ(x,−→r )) as regular read
instructions r := x. Theorem 1 which states that write-atomicity implies robust-
ness can also be easily extended to this case.

Read abstractions are useful in two ways. First, they allow us to prove prop-
erties of non-robust program as the work stealing queue example in Fig. 3. We
can apply appropriate read abstractions to relax the original program so that it
becomes robust in the end. Then, we can use SC reasoning tools on the robust
program to prove invariants of the program.

Second, read abstractions could be helpful for proving robustness directly.
The method based on write-atomicity we propose for verifying robustness is
sound but not complete. Some incompleteness scenarios can be avoided using
read abstractions. If we can abstract read instructions such that the new program
reaches exactly the same states (in terms of shared variables) as the original one,
it may help to avoid executions that violate mover checks.

Consider the program in Fig. 6. The write statement x := 1 in procedure
foo is not atomic. It is not a left mover due to the read of x in the do-while loop
of bar. Moreover, the later read from y is buffer-free reachable from this write
and it is not a right mover because of the write to y in bar. To make it atomic, we
apply read abstraction to the read instruction of bar that reads from x. In the
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new relaxed read, r1 can read 0 along with the value of x when x is not zero as
shown in the comments below the instruction. With this abstraction, the write
to x becomes a left mover because reads from x after the write can now read the
old value which was 0. Thus, the program becomes write-atomic. If we think of
TSO traces of the abstract program and replace hvc nodes with rd nodes, we
get exactly the TSO traces of the original program. However, the abstraction
adds more SC traces to the program and the program becomes robust.

6 Experimental Evaluation

To test the practical value of our method, we have considered the benchmark
for checking TSO robustness described in [2], which consists of 34 programs.
This benchmark is quite exhaustive, it includes examples introduced in previous
works on this subject. Many of the programs in this benchmark are easy to prove
being write-atomic. Every write is followed by no buffer-free read instruction
which makes them trivially atomic (like the message passing program in Fig. 1).
This holds for 20 out of the 34 programs. Out of the remaining programs, 13
required mover checks and 4 required read abstractions to show robustness (our
method didn’t succeed on one of the programs in the benchmark, explained at
the end of this section). Except Chase-Lev, the initial versions of all the 12
examples are trace robust2. Besides Chase-Lev, read-abstractions are equivalent
to the original programs in terms of reachable shared variable configurations.
Detailed information for these examples can be found in Table 1.

To check whether writes/reads are left/right movers and the soundness of
abstractions, we have used the tool Civl [13]. This tool allows to prove asser-
tions about concurrent programs (Owicki-Gries annotations) and also to check
whether an instruction is a left/right mover. The buffer-free read instructions
reachable from a write before a fence were obtained using a trivial analysis of the
control-flow graph (CFG) of the program. This method is a sound approximation
of the definition in Sect. 4 but it was sufficient for all the examples.

Our method was not precise enough to prove robustness for only one example,
named as nbw-w-lr-rl in [7]. This program contains a method with explicit calls
to the lock and unlock methods of a spinlock. The instruction that writes to
the lock variable inside the unlock method is not atomic, because of the reads
from the lock variable and the calls to the getAndSet primitive inside the lock
method. Abstracting the reads from the lock variable is not sufficient in this
case due to the conflicts with getAndSet actions. However, we believe that read
abstractions could be extended to getAndSet instructions (which both read and
write to a shared variable atomically) in order to deal with this example.

2 If we consider the standard notion of so (that relates any two writes on the same
variable independent of their values), all examples except MCSLock and dc-locking

become non trace robust.
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Table 1. Benchmark results. The second column (RB) stands for the robustness status
of the original program according to our extended hb definition. RA column shows the
number of read abstractions performed. RM column represents the number of read
instructions that are checked to be right movers and the LM column represents the
write instructions that are shown to be left movers. PO shows the total number of
proof obligations generated and VT stands for the total verification time in seconds.

Name RB RA RM LM PO VT

Chase-Lev − 1 2 - 149 0.332

FIFO-iWSQ + - 2 - 124 0.323

LIFO-iWSQ + - 1 - 109 0.305

Anchor-iWSQ + - 1 - 109 0.309

MCSLock + 2 2 - 233 0.499

r+detour + - 1 - 53 0.266

r+detours + - 1 - 64 0.273

sb+detours+coh + - 2 - 108 0.322

sb+detours + - 1 1 125 0.316

write+r+coh + - 1 - 78 0.289

write+r + - 1 - 48 0.261

dc-locking + 1 4 1 52 0.284

inline pgsql + 2 2 - 90 0.286

7 Related Work

The weakest correctness criterion that enables SC reasoning for proving invari-
ants of programs running under TSO is state-robustness i.e., the reachable set
of states is the same under both SC and TSO. However, this problem has high
complexity (non-primitive recursive for programs with a finite number of threads
and a finite data domain [6]). Therefore, it is difficult to come up with an effi-
cient and precise solution. A symbolic decision procedure is presented in [1] and
over-approximate analyses are proposed in [14,15].

Due to the high complexity of state-robustness, stronger correctness crite-
ria with lower complexity have been proposed. Trace-robustness (that we call
simply robustness in our paper) is one of the most studied criteria in the litera-
ture. Bouajjani et al. [9] have proved that deciding trace-robustness is PSpace-
complete, resp., EXPSpace-complete, for a finite, resp., unbounded, number of
threads and a finite data domain.

There are various tools for checking trace-robustness. Trencher [7] applies
to bounded-thread programs with finite data. In theory, the approach in Trencher
can be applied to infinite-state programs, but implementing it is not obvious
because it requires solving non-trivial reachability queries in such programs. In
comparison, our approach (and our implementation based on Civl) applies to
infinite state programs. All our examples consider infinite data domains, while
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Chase-Lev, FIFO-iWSQ, LIFO-iWSQ, Anchor-iWSQ, MCSLock, dc-locking and
inline pgsql have an unbounded number of threads. Musketeer [4] provides an
approximate solution by checking existence of critical cycles on the control-flow
graph. While Musketeer can deal with infinite data (since data is abstracted
away), it is restricted to bounded-thread programs. Thus, it cannot deal with the
unbounded thread examples mentioned above. Furthermore, Musketeer cannot
prove robust even some examples with finitely many threads, e.g., nbw w wr,
write+r, r+detours, sb+detours+coh. Other tools for approximate robustness
checking, to which we compare in similar ways, have been proposed in [5,10,11].

Besides trace-robustness, there are other correctness criteria like triangular
race freedom (Trf) and persistence that are stronger than state-robustness.
Persistence [2] is incomparable to trace-robustness, and Trf [18] is stronger
than both trace-robustness and persistence. Our method can verify examples
that are state-robust but neither persistent nor Trf.

Reduction and abstraction techniques were used for reasoning on SC pro-
grams. Qed [12] is a tool that supports statement transformations as a way of
abstracting programs combined with a mover analysis. Also, Civl [13] allows
proving location assertions in the context of the Owicki-Gries logic which is
enhanced with Lipton’s reduction theory [17]. Our work enables the use of such
tools for reasoning about the TSO semantics of a program.
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Abstract. A dynamic partial order reduction (DPOR) algorithm
is optimal when it always explores at most one representative per
Mazurkiewicz trace. Existing literature suggests that the reduction
obtained by the non-optimal, state-of-the-art Source-DPOR (SDPOR)
algorithm is comparable to optimal DPOR. We show the first program
with O(n) Mazurkiewicz traces where SDPOR explores O(2n) redundant
schedules (as this paper was under review, we were made aware of the
recent publication of another paper [3] which contains an independently-
discovered example program with the same characteristics). We further-
more identify the cause of this blow-up as an NP-hard problem. Our
main contribution is a new approach, called Quasi-Optimal POR, that
can arbitrarily approximate an optimal exploration using a provided con-
stant k. We present an implementation of our method in a new tool
called Dpu using specialised data structures. Experiments with Dpu,
including Debian packages, show that optimality is achieved with low
values of k, outperforming state-of-the-art tools.

1 Introduction

Dynamic partial-order reduction (DPOR) [1,10,19] is a mature approach to
mitigate the state explosion problem in stateless model checking of multi-
threaded programs. DPORs are based on Mazurkiewicz trace theory [13], a true-
concurrency semantics where the set of executions of the program is partitioned
into equivalence classes known as Mazurkiewicz traces (M-traces). In a DPOR,
this partitioning is defined by an independence relation over concurrent actions
that is computed dynamically and the method explores executions which are rep-
resentatives of M-traces. The exploration is sound when it explores all M-traces,
and it is considered optimal [1] when it explores each M-trace only once.

Since two independent actions might have to be explored from the same
state in order to explore all M-traces, a DPOR algorithm uses independence to
compute a provably-sufficient subset of the enabled transitions to explore for each
state encountered. Typically this involves the combination of forward reasoning
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Fig. 1. (a) Programs; (b) partially-ordered executions;

(persistent sets [11] or source sets [1,4]) with backward reasoning (sleep sets [11])
to obtain a more efficient exploration. However, in order to obtain optimality, a
DPOR needs to compute sequences of transitions (as opposed to sets of enabled
transitions) that avoid visiting a previously visited M-trace. These sequences are
stored in a data structure called wakeup trees in [1] and known as alternatives
in [19]. Computing these sequences thus amounts to deciding whether the DPOR
needs to visit yet another M-trace (or all have already been seen).

In this paper, we prove that computing alternatives in an optimal DPOR
is an NP-complete problem. To the best our knowledge this is the first formal
complexity result on this important subproblem that optimal and non-optimal
DPORs need to solve. The program shown in Fig. 1(a) illustrates a practical con-
sequence of this result: the non-optimal, state-of-the-art SDPOR algorithm [1]
can explore here O(2n) interleavings but the program has only O(n) M-traces.

The program contains n := 3 writer threads w0, w1, w2, each writing to a
different variable. The thread count increments n − 1 times a zero-initialized
counter c. Thread master reads c into variable i and writes to xi.

The statements x0 = 7 and x1 = 8 are independent because they produce the
same state regardless of their execution order. Statements i = c and any state-
ment in the count thread are dependent or interfering : their execution orders
result in different states. Similarly, xi = 0 interferes with exactly one writer
thread, depending on the value of i.

Using this independence relation, the set of executions of this program can
be partitioned into six M-traces, corresponding to the six partial orders shown
in Fig. 1(b). Thus, an optimal DPOR explores six executions (2n-executions for n
writers). We now show why SDPOR explores O(2n) in the general case. Concep-
tually, SDPOR is a loop that (1) runs the program, (2) identifies two dependent
statements that can be swapped, and (3) reverses them and re-executes the
program. It terminates when no more dependent statements can be swapped.

Consider the interference on the counter variable c between the master and
the count thread. Their execution order determines which writer thread inter-
feres with the master statement xi = 0. If c = 1 is executed just before i = c,
then xi = 0 interferes with w1. However, if i = c is executed before, then xi = 0
interferes with w0. Since SDPOR does not track relations between dependent
statements, it will naively try to reverse the race between xi = 0 and all writer
threads, which results in exploring O(2n) executions. In this program, exploring
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only six traces requires understanding the entanglement between both interfer-
ences as the order in which the first is reversed determines the second.

As a trade-off solution between solving this NP-complete problem and poten-
tially explore an exponential number of redundant schedules, we propose a hybrid
approach called Quasi-Optimal POR (QPOR) which can turn a non-optimal
DPOR into an optimal one. In particular, we provide a polynomial algorithm
to compute alternative executions that can arbitrarily approximate the optimal
solution based on a user specified constant k. The key concept is a new notion
of k-partial alternative, which can intuitively be seen as a “good enough” alter-
native: they revert two interfering statements while remembering the resolution
of the last k − 1 interferences.

The major differences between QPOR and the DPORs of [1] are that: (1)
QPOR is based on prime event structures [17], a partial-order semantics that
has been recently applied to programs [19,21], instead of a sequential view to
thread interleaving, and (2) it computes k-partial alternatives with an O(nk)
algorithm while optimal DPOR corresponds to computing ∞-partial alternatives
with an O(2n) algorithm. For the program shown in Fig. 1(a), QPOR achieves
optimality with k = 2 because races are coupled with (at most) another race.
As expected, the cost of computing k-partial alternatives and the reductions
obtained by the method increase with higher values of k.

Finding k-partial alternatives requires decision procedures for traversing the
causality and conflict relations in event structures. Our main algorithmic contri-
bution is to represent these relations as a set of trees where events are encoded as
one or two nodes in two different trees. We show that checking causality/conflict
between events amounts to an efficient traversal in one of these trees.

In summary, our main contributions are:

– Proof that computing alternatives for optimal DPOR is NP-complete
(Sect. 4).

– Efficient data structures and algorithms for (1) computing k-partial
alternatives in polynomial time, and (2) represent and traverse partial
orders (Sect. 5).

– Implementation of QPOR in a new tool called Dpu and experimental evalu-
ations against SDPOR in Nidhugg and the testing tool Maple (Sect. 6).

– Benchmarks with O(n) M-traces where SDPOR explores O(2n) executions
(Sect. 6).

Furthermore, in Sect. 6 we show that: (1) low values of k often achieve opti-
mality; (2) even with non-optimal explorations Dpu greatly outperforms Nid-
hugg; (3) Dpu copes with production code in Debian packages and achieves
much higher state space coverage and efficiency than Maple.

Proofs for all our formal results are available in the unabridged version [15].

2 Preliminaries

In this section we provide the formal background used throughout the paper.
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Concurrent Programs. We consider deterministic concurrent programs composed
of a fixed number of threads that communicate via shared memory and synchro-
nize using mutexes (Fig. 1(a) can be trivially modified to satisfy this). We also
assume that local statements can only modify shared memory within a mutex
block. Therefore, it suffices to only consider races of mutex accesses.

Formally, a concurrent program is a structure P := 〈M,L, T,m0, l0〉, where
M is the set of memory states (valuations of program variables, including
instruction pointers), L is the set of mutexes, m0 is the initial memory state,
l0 is the initial mutexes state and T is the set of thread statements. A thread
statement t := 〈i, f〉 is a pair where i ∈ N is the thread identifier associated with
the statement and f : M → (M×Λ) is a partial function that models the trans-
formation of the memory as well as the effect Λ := {loc}∪({acq, rel}×L) of the
statement with respect to thread synchronization. Statements of loc effect model
local thread code. Statements associated with 〈acq, x〉 or 〈rel, x〉 model lock
and unlock operations on a mutex x. Finally, we assume that (1) functions f are
PTIME-decidable; (2) acq/rel statements do not modify the memory; and (3)
loc statements modify thread-shared memory only within lock/unlock blocks.
When (3) is violated, then P has a datarace (undefined behavior in almost all
languages), and our technique can be used to find such statements, see Sect. 6.

We use labelled transition systems (LTS) semantics for our programs. We
associate a program P with the LTS MP := 〈S,→, A, s0〉. The set S := M ×
(L → {0, 1}) are the states of MP , i.e., pairs of the form 〈m, v〉 where m is the
state of the memory and v indicates when a mutex is locked (1) or unlocked (0).
The actions in A ⊆ N × Λ are pairs 〈i, b〉 where i is the identifier of the thread
that executes some statement and b is the effect of the statement. We use the
function p : A → N to retrieve the thread identifier. The transition relation → ⊆
S × A × S contains a triple 〈m, v〉 〈i,b〉−−−→ 〈m′, v′〉 exactly when there is some
thread statement 〈i, f〉 ∈ T such that f(m) = 〈m′, b〉 and either (1) b = loc and
v′ = v, or (2) b = 〈acq, x〉 and v(x) = 0 and v′ = v|x�→1, or (3) b = 〈rel, x〉 and
v′ = v|x�→0. Notation fx�→y denotes a function that behaves like f for all inputs
except for x, where f(x) = y. The initial state is s0 := 〈m0, l0〉.

Furthermore, if s a−→ s′ is a transition, the action a is enabled at s. Let enabl(s)
denote the set of actions enabled at s. A sequence σ := a1 . . . an ∈ A∗ is a
run when there are states s1, . . . , sn satisfying s0

a1−→ s1 . . . an−−→ sn. We define
state(σ) := sn. We let runs(MP ) denote the set of all runs and reach(MP ) :=
{state(σ) ∈ S : σ ∈ runs(MP )} the set of all reachable states.

Independence. Dynamic partial-order reduction methods use a notion called
independence to avoid exploring concurrent interleavings that lead to the same
state. We recall the standard notion of independence for actions in [11]. Two
actions a, a′ ∈ A commute at a state s ∈ S iff

– if a ∈ enabl(s) and s a−→ s′, then a′ ∈ enabl(s) iff a′ ∈ enabl(s′); and
– if a, a′ ∈ enabl(s), then there is a state s′ such that s a.a′

−−→ s′ and s a′.a−−→ s′.
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Independence between actions is an under-approximation of commutativity.
A binary relation ♦ ⊆ A × A is an independence on MP if it is symmetric,
irreflexive, and every pair 〈a, a′〉 in ♦ commutes at every state in reach(MP ).

In general MP has multiple independence relations, clearly ∅ is always one
of them. We define relation ♦P ⊆ A × A as the smallest irreflexive, symmetric
relation where 〈i, b〉 ♦P 〈i′, b′〉 holds if i �= i′ and either b = loc or b = acq x
and b′ �∈ {acq x, rel x}. By construction ♦P is always an independence.

Labelled Prime Event Structures. Prime event structures (pes) are well-known
non-interleaving, partial-order semantics [7,8,16]. Let X be a set of actions.
A pes over X is a structure E := 〈E,<,#, h〉 where E is a set of events, < ⊆
E×E is a strict partial order called causality relation, # ⊆ E×E is a symmetric,
irreflexive conflict relation, and h : E → X is a labelling function. Causality
represents the happens-before relation between events, and conflict between two
events expresses that any execution includes at most one of them. Figure 2(b)
shows a pes over N×Λ where causality is depicted by arrows, conflicts by dotted
lines, and the labelling h is shown next to the events, e.g., 1 < 5, 8 < 12, 2 # 8,
and h(1) = 〈0, loc〉. The history of an event e, �e
 := {e′ ∈ E : e′ < e}, is the
least set of events that need to happen before e.

The notion of concurrent execution in a pes is captured by the concept
of configuration. A configuration is a (partially ordered) execution of the system,
i.e., a set C ⊆ E of events that is causally closed (if e ∈ C, then �e
 ⊆ C)
and conflict-free (if e, e′ ∈ C, then ¬(e # e′)). In Fig. 2(b), the set {8, 9, 15}
is a configuration, but {3} or {1, 2, 8} are not. We let conf (E) denote the set
of all configurations of E , and [e] := �e
 ∪ {e} the local configuration of e. In
Fig. 2(b), [11] = {1, 8, 9, 10, 11}. A configuration represents a set of interleavings
over X. An interleaving is a sequence in X∗ that labels any topological sorting
of the events in C. In Fig. 2(b), inter({1, 8}) = {ab, ba} with a := 〈0, loc〉 and
b := 〈1, acq m〉.

The extensions of C are the events not in C whose histories are included in C:
ex (C) := {e ∈ E : e /∈ C ∧ �e
 ⊆ C}. The enabled events of C are the extensions
that can form a larger configuration: en(C) := {e ∈ ex (C) : C ∪ {e} ∈ conf (E)}.
Finally, the conflicting extensions of C are the extensions that are not enabled:
cex (C) := ex (C) \ en(C). In Fig. 2(b), ex ({1, 8}) = {2, 9, 15}, en({1, 8}) =
{9, 15}, and cex ({1, 8}) = {2}. See [20] for more information on pes concepts.

Parametric Unfolding Semantics. We recall the program pes semantics of [19,20]
(modulo notation differences). For a program P and any independence ♦ on MP

we define a pes UP,♦ that represents the behavior of P , i.e., such that the
interleavings of its set of configurations equals runs(MP ).

Each event in UP,♦ is defined by a canonical name of the form e := 〈a,H〉,
where a ∈ A is an action of MP and H is a configuration of UP,♦. Intuitively, e
represents the action a after the history (or the causes) H. Figure 2(b) shows an
example. Event 11 is 〈〈0, acq m〉, {1, 8, 9, 10}〉 and event 1 is 〈〈0, loc〉, ∅〉. Note
the inductive nature of the name, and how it allows to uniquely identify each
event. We define the state of a configuration as the state reached by any of its
interleavings. Formally, for C ∈ conf (UP,♦) we define state(C) as s0 if C = ∅
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Fig. 2. (a) A program P ; (b) its unfolding semantics UP,♦P .

and as state(σ) for some σ ∈ inter(C) if C �= ∅. Despite its appearance state(C)
is well-defined because all sequences in inter(C) reach the same state, see [20]
for a proof.

Definition 1 (Unfolding). Given a program P and some independence rela-
tion ♦ on MP := 〈S,→, A, s0〉, the unfolding of P under ♦, denoted UP,♦, is
the pes over A constructed by the following fixpoint rules:

1. Start with a pes E := 〈E,<,#, h〉 equal to 〈∅, ∅, ∅, ∅〉.
2. Add a new event e := 〈a,C〉 to E for any configuration C ∈ conf (E) and any

action a ∈ A if a is enabled at state(C) and ¬(a ♦ h(e′)) holds for every
<-maximal event e′ in C.

3. For any new e in E, update <, #, and h as follows: for every e′ ∈ C, set
e′ < e; for any e′ ∈ E \C, set e′ # e if e �= e′ and ¬(a ♦ h(e′)); set h(e) := a.

4. Repeat steps 2 and 3 until no new event can be added to E; return E.

Step 1 creates an empty pes with only one (empty) configuration. Step 2 inserts
a new event 〈a,C〉 by finding a configuration C that enables an action a which is
dependent with all causality-maximal events in C. In Fig. 2, this initially creates
events 1, 8, and 15. For event 1 := 〈〈0, loc〉, ∅〉, this is because action 〈0, loc〉
is enabled at state(∅) = s0 and there is no <-maximal event in ∅ to consider.
Similarly, the state of C1 := {1, 8, 9, 10} enables action a1 := 〈0, acq m〉, and
both h(1) and h(10) are dependent with a1 in ♦P . As a result 〈a1, C1〉 is an
event (number 11). Furthermore, while a2 := 〈0, loc〉 is enabled at state(C2),
with C2 := {8, 9, 10}, a2 is independent of h(10) and 〈a2, C2〉 is not an event.

After inserting an event e := 〈a,C〉, Definition 1 declares all events in C
causal predecessors of e. For any event e′ in E but not in [e] such that h(e′)
is dependent with a, the order of execution of e and e′ yields different states.
We thus set them in conflict. In Fig. 2, we set 2 # 8 because h(2) is dependent
with h(8) and 2 /∈ [8] and 8 /∈ [2].

3 Unfolding-Based DPOR

This section presents an algorithm that exhaustively explores all deadlock states
of a given program (a deadlock is a state where no thread is enabled).
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Algorithm 1. Unfolding-based POR exploration. See text for definitions.

1 Initially, set U := ∅,
2 and call Explore(∅, ∅, ∅).
3 Procedure Explore(C,D,A)

4 Add ex (C) to U
5 if en(C) ⊆ D return
6 if A = ∅
7 Choose e from en(C) \ D
8 else
9 Choose e from A ∩ en(C)

10 Explore(C ∪ {e}, D,A \ {e})
11 if ∃J ∈ Alt(C,D ∪ {e})
12 Explore(C,D ∪ {e}, J \ C)

13 U := U ∩ QC,D

14 Function cexp(C)

15 R := ∅
16 foreach event e ∈ C of type acq

17 et := pt(e)
18 em := pm(e)
19 while ¬(em ≤ et) do
20 em := pm(em)
21 if (em < et) break
22 em := pm(em)
23 ê := 〈h(e), [et] ∪ [em]〉
24 Add ê to R

25 return R

For the rest of the paper, unless otherwise stated, we let P be a terminating
program (i.e., runs(MP ) is a finite set of finite sequences) and ♦ an independence
on MP . Consequently, UP,♦ has finitely many events and configurations.

Our POR algorithm (Algorithm1) analyzes P by exploring the configurations
of UP,♦. It visits all ⊆-maximal configurations of UP,♦, which correspond to the
deadlock states in reach(MP ), and organizes the exploration as a binary tree.

Explore(C,D,A) has a global set U that stores all events of UP,♦ discovered
so far. The three arguments are: C, the configuration to be explored; D (for
disabled), a set of events that shall never be visited (included in C) again; and
A (for add), used to direct the exploration towards a configuration that conflicts
with D. A call to Explore(C,D,A) visits all maximal configurations of UP,♦
which contain C and do not contain D, and the first one explored contains C∪A.

The algorithm first adds ex (C) to U . If C is a maximal configuration (i.e.,
there is no enabled event) then line 5 returns. If C is not maximal but en(C) ⊆ D,
then all possible events that could be added to C have already been explored
and this call was redundant work. In this case the algorithm also returns and
we say that it has explored a sleep-set blocked (SSB) execution [1]. Algorithm 1
next selects an event enabled at C, if possible from A (line 7 and 9) and makes a
recursive call (left subtree) that explores all configurations that contain all events
in C ∪{e} and no event from D. Since that call visits all maximal configurations
containing C and e, it remains to visit those containing C but not e. At line
11 we determine if any such configuration exists. Function Alt returns a set of
configurations, so-called clues. A clue is a witness that a ⊆-maximal configuration
exists in UP,♦ which contains C and not D ∪ {e}.

Definition 2 (Clue). Let D and U be sets of events, and C a configuration
such that C ∩ D = ∅. A clue to D after C in U is a configuration J ⊆ U such
that C ∪ J is a configuration and D ∩ J = ∅.
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Definition 3 (Alt function). Function Alt denotes any function such that
Alt(B,F) returns a set of clues to F after B in U , and the set is non-empty if
UP,♦ has at least one maximal configuration C where B ⊆ C and C ∩ F = ∅.

When Alt returns a clue J , the clue is passed in the second recursive call
(line 12) to “mark the way” (using set A) in the subsequent recursive calls at
line 10, and guide the exploration towards the maximal configuration that J
witnesses. Definition 3 does not identify a concrete implementation of Alt. It
rather indicates how to implement Alt so that Algorithm 1 terminates and is
complete (see below). Different PORs in the literature can be reframed in terms
of Algorithm 1. SDPOR [1] uses clues that mark the way with only one event
ahead (|J \ C| = 1) and can hit SSBs. Optimal DPORs [1,19] use size-varying
clues that guide the exploration provably guaranteeing that any SSB will be
avoided.

Algorithm 1 is optimal when it does not explore a SSB. To make Algorithm 1
optimal Alt needs to return clues that are alternatives [19], which satisfy stronger
constraints. When that happens, Algorithm1 is equivalent to the DPOR in [19]
and becomes optimal (see [20] for a proof).

Definition 4 (Alternative [19]). Let D and U be sets of events and C a
configuration such that C ∩D = ∅. An alternative to D after C in U is a clue J
to D after C in U such that ∀e ∈ D : ∃e′ ∈ J , e # e′.

Line 13 removes from U events that will not be necessary for Alt to find
clues in the future. The events preserved, QC,D := C ∪ D ∪ #(C ∪ D), include
all events in C ∪ D as well as every event in U that is in conflict with some
event in C ∪ D. The preserved events will suffice to compute alternatives [19],
but other non-optimal implementations of Alt could allow for more aggressive
pruning.

The ⊆-maximal configurations of Fig. 2(b) are [7] ∪ [17], [14], and [19]. Our
algorithm starts at configuration C = ∅. After 10 recursive calls it visits C =
[7]∪[17]. Then it backtracks to C = {1}, calls Alt({1}, {2}), which provides, e.g.,
J = {1, 8}, and visits C = {1, 8} with D = {2}. After 6 more recursive calls it
visits C = [14], backtracks to C = [12], calls Alt([12], {2, 13}]), which provides,
e.g., J = {15}, and after two more recursive calls it visits C = [12] ∪ {15}
with D = {2, 13}. Finally, after 4 more recursive calls it visits C = [19].

Finally, we focus on the correctness of Algorithm1, and prove termination
and soundness of the algorithm:

Theorem 1 (Termination). Regardless of its input, Algorithm1 always stops.

Theorem 2 (Completeness). Let Ĉ be a ⊆-maximal configuration of UP,♦.
Then Algorithm1 calls Explore(C,D,A) at least once with C = Ĉ.

4 Complexity

This section presents complexity results about the only non-trival steps in Algo-
rithm1: computing ex (C) and the call to Alt(·, ·). An implementation of



362 H. T. T. Nguyen et al.

Alt(B,F) that systematically returns B would satisfy Definition 3, but would
also render Algorithm 1 unusable (equivalent to a DFS in MP ). On the other
hand the algorithm becomes optimal when Alt returns alternatives. Optimality
comes at a cost:

Theorem 3. Given a finite pes E, some configuration C ∈ conf (E), and a
set D ⊆ ex (C), deciding if an alternative to D after C exists in E is NP-complete.

Theorem 3 assumes that E is an arbitrary pes. Assuming that E is the unfold-
ing of a program P under ♦P does not reduce this complexity:

Theorem 4. Let P be a program and U a causally-closed set of events from
UP,♦P

. For any configuration C ⊆ U and any D ⊆ ex (C), deciding if an alter-
native to D after C exists in U is NP-complete.

These complexity results lead us to consider (in next section) new approaches
that avoid the NP-hardness of computing alternatives while still retaining their
capacity to prune the search.

Finally, we focus on the complexity of computing ex (C), which essentially
reduces to computing cex (C), as computing en(C) is trivial. Assuming that E
is given, computing cex (C) for some C ∈ conf (E) is a linear problem. However,
for any realistic implementation of Algorithm 1, E is not available (the very
goal of Algorithm 1 is to find all of its events). So a useful complexity result
about cex (C) necessarily refers to the orignal system under analysis. When E is
the unfolding of a Petri net [14], computing cex (C) is NP-complete:

Theorem 5. Let N be a Petri net, t a transition of N , E the unfolding of N
and C a configuration of E. Deciding if h−1(t) ∩ cex (C) = ∅ is NP-complete.

Fortunately, computing cex (C) for programs is a much simpler task. Func-
tion cexp(C), shown in Algorithm1, computes and returns cex (C) when E
is the unfolding of some program. We explain cexp(C) in detail in Sect. 5.3.
But assuming that functions pt and pm can be computed in constant time,
and relation < decided in O(log |C|), as we will show, clearly cexp works in
time O(n2 log n), where n := |C|, as both loops are bounded by the size of C.

5 New Algorithm for Computing Alternatives

This section introduces a new class of clues, called k-partial alternatives. These
can arbitrarily reduce the number of redundant explorations (SSBs) performed
by Algorithm 1 and can be computed in polynomial time. Specialized data struc-
tures and algorithms for k-partial alternatives are also presented.

Definition 5 (k-partial alternative). Let U be a set of events, C ⊆ U a
configuration, D ⊆ U a set of events, and k ∈ N a number. A configuration J is
a k-partial alternative to D after C if there is some D̂ ⊆ D such that |D̂| = k
and J is an alternative to D̂ after C.
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A k-partial alternative needs to conflict with only k (instead of all) events
in D. An alternative is thus an ∞-partial alternative. If we reframe SDPOR in
terms of Algorithm 1, it becomes an algorithm using singleton 1-partial alter-
natives. While k-partial alternatives are a very simple concept, most of their
simplicity stems from the fact that they are expressed within the elegant frame-
work of pes semantics. Defining the same concept on top of sequential semantics
(often used in the POR literature [1,2,9–11,23]), would have required much more
complex device.

We compute k-partial alternatives using a comb data structure:

Definition 6 (Comb). Let A be a set. An A-comb c of size n ∈ N is an
ordered collection of spikes 〈s1, . . . , sn〉, where each spike si ∈ A∗ is a sequence
of elements over A. Furthermore, a combination over c is any tuple 〈a1, . . . , an〉
where ai ∈ si is an element of the spike.

It is possible to compute k-partial alternatives (and by extension optimal
alternatives) to D after C in U using a comb, as follows:

1. Select k (or |D|, whichever is smaller) arbitrary events e1, . . . , ek from D.
2. Build a U -comb 〈s1, . . . , sk〉 of size k, where spike si contains all events in U

in conflict with ei.
3. Remove from si any event ê such that either [ê] ∪ C is not a configuration or

[ê] ∩ D �= ∅.
4. Find combinations 〈e′

1, . . . , e
′
k〉 in the comb satisfying ¬(e′

i # e′
j) for i �= j.

5. For any such combination the set J := [e′
1]∪. . .∪[e′

k] is a k-partial alternative.

Step 3 guarantees that J is a clue. Steps 1 and 2 guarantee that it will conflict
with at least k events from D. It is straightforward to prove that the procedure
will find a k-partial alternative to D after C in U when an ∞-partial alternative
to D after C exists in U . It can thus be used to implement Definition 3.

Steps 2, 3, and 4 require to decide whether a given pair of events is in conflict.
Similarly, step 3 requires to decide if two events are causally related. Efficiently
computing k-partial alternatives thus reduces to efficiently computing causality
and conflict between events.

5.1 Computing Causality and Conflict for PES Events

In this section we introduce an efficient data structure for deciding whether two
events in the unfolding of a program are causally related or in conflict.

As in Sect. 3, let P be a program, MP its LTS semantics, and ♦P its inde-
pendence relation (defined in Sect. 2). Additionally, let E denote the pes UP,♦P

of P extended with a new event ⊥ that causally precedes every event in UP,♦P
.

The unfolding E represents the dependency of actions in MP through the
causality and conflict relations between events. By definition of ♦P we know
that for any two events e, e′ ∈ E :

– If e and e′ are events from the same thread, then they are either causally
related or in conflict.



364 H. T. T. Nguyen et al.

– If e and e′ are lock/unlock operations on the same variable, then similarly
they are either causally related or in conflict.

This means that the causality/conflict relations between all events of one
thread can be tracked using a tree. For every thread of the program we define
and maintain a so-called thread tree. Each event of the thread has a corresponding
node in the tree. A tree node n is the parent of another tree node n′ iff the event
associated with n is the immediate causal predecessor of the event associated
with n′. That is, the ancestor relation of the tree encodes the causality relations
of events in the thread, and the branching of the tree represents conflict. Given
two events e, e′ of the same thread we have that e < e′ iff ¬(e # e′) iff the tree
node of e is an ancestor of the tree node of e′.

We apply the same idea to track causality/conflict between acq and rel
events. For every lock l ∈ L we maintain a separate lock tree, containing a
node for each event labelled by either 〈acq, l〉 or 〈rel, l〉. As before, the ancestor
relation in a lock tree encodes the causality relations of all events represented in
that tree. Events of type acq/rel have tree nodes in both their lock and thread
trees. Events for loc actions are associated to only one node in the thread tree.

This idea gives a procedure to decide a causality/conflict query for two events
when they belong to the same thread or modify the same lock. But we still need
to decide causality and conflict for other events, e.g., loc events of different
threads. Again by construction of ♦P , the only source of conflict/causality for
events are the causality/conflict relations between the causal predecessors of
the two. These relations can be summarized by keeping two mappings for each
event:

Definition 7. Let e ∈ E be an event of E. We define the thread mapping
tmax : E × N → E as the only function that maps every pair 〈e, i〉 to the unique
<-maximal event from thread i in [e], or ⊥ if [e] contains no event from thread i.
Similarly, the lock mapping lmax : E × L → E maps every pair 〈e, l〉 to the
unique <-maximal event e′ ∈ [e] such that h(e′) is an action of the form 〈acq, l〉
or 〈rel, l〉, or ⊥ if no such event exists in [e].

The information stored by the thread and lock mappings enables us to decide
causality and conflict queries for arbitrary pairs of events:

Theorem 6. Let e, e′ ∈ E be two arbitrary events from resp. threads i and i′,
with i �= i′. Then e < e′ holds iff e � tmax (e′, i). And e # e′ holds iff there is
some l ∈ L such that lmax (e, l) # lmax (e′, l).

As a consequence of Theorem 6, deciding whether two events are related by
causality or conflict reduces to deciding whether two nodes from the same lock
or thread tree are ancestors.

5.2 Computing Causality and Conflict for Tree Nodes

This section presents an efficient algorithm to decide if two nodes of a tree are
ancestors. The algorithm is similar to a search in a skip list [18].
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Let 〈N, �, r〉 denote a tree, where N is a set of nodes, � ⊆ N × N is the
parent relation, and r ∈ N is the root. Let d(n) be the depth of each node in
the tree, with d(r) = 0. A node n is an ancestor of n′ if it belongs to the only
path from r to n′. Finally, for a node n ∈ N and some integer g ∈ N such that
g ≤ d(n) let q(n, g) denote the unique ancestor n′ of n such that d(n′) = g.

Given two distinct nodes n, n′ ∈ N , we need to efficiently decide whether n is
an ancestor of n′. The key idea is that if d(n) = d(n′), then the answer is clearly
negative; and if the depths are different and w.l.o.g. d(n) < d(n′), then we have
that n is an ancestor of n′ iff nodes n and n′′ := q(n′, d(n)) are the same node.

To find n′′ from n′, a linear traversal of the branch starting from n′ would
be expensive for deep trees. Instead, we propose to use a data structure similar
to a skip list. Each node stores a pointer to the parent node and also a number
of pointers to ancestor nodes at distances s1, s2, s3, . . ., where s ∈ N is a user-
defined step. The number of pointers stored at a node n is equal to the number of
trailing zeros in the s-ary representation of d(n). For instance, for s := 2 a node
at depth 4 stores 2 pointers (apart from the pointer to the parent) pointing to
the nodes at depth 4−s1 = 2 and depth 4−s2 = 0. Similarly a node at depth 12
stores a pointer to the ancestor (at depth 11) and pointers to the ancestors
at depths 10 and 8. With this algorithm computing q(n, g) requires traversing
log(d(n) − g) nodes of the tree.

5.3 Computing Conflicting Extensions

We now explain how function cexp(C) in Algorithm 1 works. A call to cexp(C)
constructs and returns all events in cex (C). The function works only when the
pes being explored is the unfolding of a program P under the independence ♦P .

Owing to the properties of UP,♦P
, all events in cex (C) are labelled by acq

actions. Broadly speaking, this is because only the actions from different threads
that are co-enabled and are dependent create conflicts in UP,♦P

. And this is
only possible for acq statements. For the same reason, an event labelled by
a := 〈i, 〈acq, l〉〉 exists in cex (C) iff there is some event e ∈ C such that h(e) = a.

Function cexp exploits these facts and the lock tree introduced in Sect. 5.1
to compute cex (C). Intuitively, it finds every event e labelled by an 〈acq, l〉
statement and tries to “execute” it before the 〈rel, l〉 that happened before e
(if there is one). If it can, it creates a new event ê with the same label as e.

Function pt(e) returns the only immediate causal predecessor of event e in
its own thread. For an acq/rel event e, function pm(e) returns the parent node
of event e in its lock tree (or ⊥ if e is the root). So for an acq event it returns
a rel event, and for a rel event it returns an acq event.

6 Experimental Evaluation

We implemented QPOR in a new tool called Dpu (Dynamic Program Unfolder,
available at https://github.com/cesaro/dpu/releases/tag/v0.5.2). Dpu is a
stateless model checker for C programs with POSIX threading. It uses the

https://github.com/cesaro/dpu/releases/tag/v0.5.2
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LLVM infrastructure to parse, instrument, and JIT-compile the program, which
is assumed to be data-deterministic. It implements k-partial alternatives (k is
an input), optimal POR, and context-switch bounding [6].

Dpu does not use data-races as a source of thread interference for POR.
It will not explore two execution orders for the two instructions that exhibit a
data-race. However, it can be instructed to detect and report data races found
during the POR exploration. When requested, this detection happens for a user-
provided percentage of the executions explored by POR.

6.1 Comparison to SDPOR

In this section we investigate the following experimental questions: (a) How
does QPOR compare against SDPOR? (b) For which values of k do k-partial
alternatives yield optimal exploration?

We use realistic programs that expose complex thread synchronization pat-
terns including a job dispatcher, a multiple-producer multiple-consumer scheme,
parallel computation of π, and a thread pool. Complex synchronizations pat-
terns are frequent in these examples, including nested and intertwined critical
sections or conditional interactions between threads based on the processed data,
and provide means to highlight the differences between POR approaches and
drive improvement. Each program contains between 2 and 8 assertions, often
ensuring invariants of the used data structures. All programs are safe and have
between 90 and 200 lines of code. We also considered the SV-COMP’17 bench-
marks, but almost all of them contain very simple synchronization patterns, not
representative of more complex concurrent algorithms. On these benchmarks
QPOR and SDPOR perform an almost identical exploration, both timeout on
exactly the same instances, and both find exactly the same bugs.

In Table 1, we present a comparison between Dpu and Nidhugg [2], an
efficient implementation of SDPOR for multithreaded C programs. We run k-
partial alternatives with k ∈ {1, 2, 3} and optimal alternatives. The number of
SSB executions dramatically decreases as k increases. With k = 3 almost no
instance produces SSBs (except MPC(4,5)) and optimality is achieved with
k = 4. Programs with simple synchronization patterns, e.g., the Pi benchmark,
are explored optimally both with k = 1 and by SDPOR, while more complex
synchronization patterns require k > 1.

Overall, if the benchmark exhibits many SSBs, the run time reduces as k
increases, and optimal exploration is the fastest option. However, when the
benchmark contains few SSBs (cf., Mpat, Pi, Poke), k-partial alternatives can
be slightly faster than optimal POR, an observation inline with previous lit-
erature [1]. Code profiling revealed that when the comb is large and contains
many solutions, both optimal and non-optimal POR will easily find them, but
optimal POR spends additional time constructing a larger comb. This suggests
that optimal POR would profit from a lazy comb construction algorithm.

Dpu is faster than Nidhugg in the majority of the benchmarks because it
can greatly reduce the number of SSBs. In the cases where both tools explore the
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Table 1. Comparing QPOR and SDPOR. Machine: Linux, Intel Xeon 2.4 GHz. TO:
timeout after 8min. Columns are: Th: nr. of threads; Confs: maximal configurations;
Time in seconds, Memory in MB; SSB: Sleep-set blocked executions. N/A: analysis
with lower k yielded 0 SSBs.

Benchmark Dpu (k=1) Dpu (k=2) Dpu (k=3) Dpu (optimal) Nidhugg

Name Th Confs Time SSB Time SSB Time SSB Time Mem Time Mem SSB

Disp(5,2) 8 137 0.8 1K 0.4 43 0.4 0 0.4 37 1.2 33 2K
Disp(5,3) 9 2K 5.4 11K 1.3 595 1.0 1 1.0 37 10.8 33 13K
Disp(5,4) 10 15K 58.5 105K 16.4 6K 10.3 213 10.3 87 109 33 115K
Disp(5,5) 11 151K TO - 476 53K 280 2K 257 729 TO 33 -
Disp(5,6) 12 ? TO - TO - TO - TO 1131 TO 33 -

Mpat(4) 9 384 0.5 0 N/A N/A 0.5 37 0.6 33 0
Mpat(5) 11 4K 2.4 0 N/A N/A 2.7 37 1.8 33 0
Mpat(6) 13 46K 50.6 0 N/A N/A 73.2 214 21.5 33 0
Mpat(7) 15 645K TO - TO - TO - TO 660 359 33 0
Mpat(8) 17 ? TO - TO - TO - TO 689 TO 33 -

MPC(2,5) 8 60 0.6 560 0.4 0 0.4 38 2.0 34 3K
MPC(3,5) 9 3K 26.5 50K 3.0 3K 1.7 0 1.7 38 70.7 34 90K
MPC(4,5) 10 314K TO - TO - 391 30K 296 239 TO 33 -
MPC(5,5) 11 ? TO - TO - TO - TO 834 TO 34 -

Pi(5) 6 120 0.4 0 N/A N/A 0.5 39 19.6 35 0
Pi(6) 7 720 0.7 0 N/A N/A 0.7 39 123 35 0
Pi(7) 8 5K 3.5 0 N/A N/A 4.0 45 TO 34 -
Pi(8) 9 40K 48.1 0 N/A N/A 42.9 246 TO 34 -

Pol(7,3) 14 3K 48.5 72K 2.9 1K 1.9 6 1.9 39 74.1 33 90K
Pol(8,3) 15 4K 153 214K 5.5 3K 3.0 10 3.0 52 251 33 274K
Pol(9,3) 16 5K 464 592K 9.5 5K 4.8 15 4.8 73 TO 33 -
Pol(10,3) 17 7K TO - 17.2 9K 6.8 21 7.1 99 TO 33 -
Pol(11,3) 18 10K TO - 27.2 12K 9.7 28 10.6 138 TO 33 -
Pol(12,3) 19 12K TO - 46.3 20K 13.5 36 16.4 184 TO 33 -

same set of executions, Dpu is in general faster than Nidhugg because it JIT-
compiles the program, while Nidhugg interprets it. All the benchmark in Table 1
are data-race free, but Nidhugg cannot be instructed to ignore data-races and
will attempt to revert them. Dpu was run with data-race detection disabled.
Enabling it will incur in approximatively 10% overhead. In contrast with previous
observations [1,2], the results in Table 1 show that SSBs can dramatically slow
down the execution of SDPOR.

6.2 Evaluation of the Tree-Based Algorithms

We now evaluate the efficiency of our tree-based algorithms from Sect. 5 answer-
ing: (a) What are the average/maximal depths of the thread/lock sequential
trees? (b) What is the average depth difference on causality/conflict queries? (c)
What is the best step for branch skip lists? We do not compare our algorithms
against others because to the best of our knowledge none is available (other than
a naive implementation of the mathematical definition of causality/conflict).

We run Dpu with an optimal exploration over 15 selected programs
from Table 1, with 380 to 204K maximal configurations in the unfolding. In
total, the 15 unfoldings contain 246 trees (150 thread trees and 96 lock trees)
with 5.2M nodes. Figure 3 shows the average depth of the nodes in each tree
(subfigure a) and the maximum depth of the trees (subfigure b), for each of the
246 trees.
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Fig. 3. (a), (b) Depths of trees; (c), (d) frequency of depth distances

While the average depth of a node is 22.7, as much as 80% of the trees have a
maximum depth of less than 8 nodes, and 90% of them less than 16 nodes. The
average of 22.7 is however larger because deeper trees contain proportionally
more nodes. The depth of the deepest node of every tree was between 3 and 77.

We next evaluate depth differences in the causality and conflict queries over
these trees. Figure 3(a) and (b) respectively show the frequency of various depth
distances associated to causality and conflict queries made by optimal POR.

Surprisingly, depth differences are very small for both causality and conflict
queries. When deciding causality between events, as much as 92% of the queries
were for tree nodes separated by a distance between 1 and 4, and 70% had a
difference of 1 or 2 nodes. This means that optimal POR, and specifically the
procedure that adds ex (C) to the unfolding (which is the main source of causality
queries), systematically performs causality queries which are trivial with the
proposed data structures. The situation is similar for checking conflicts: 82% of
the queries are about tree nodes whose depth difference is between 1 and 4.

These experiments show that most queries on the causality trees require very
short walks, which strongly drives to use the data structure proposed in Sect. 5.
Finally, we chose a (rather arbitrary) skip step of 4. We observed that other
values do not significantly impact the run time/memory consumption for most
benchmarks, since the depth difference on causality/conflict requests is very low.

6.3 Evaluation Against the State-of-the-Art on System Code

We now evaluate the scalability and applicability of Dpu on five multithreaded
programs in two Debian packages: blktrace [5], a block layer I/O tracing mech-
anism, and mafft [12], a tool for multiple alignment of amino acid or nucleotide
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sequences. The code size of these utilities ranges from 2K to 40K LOC, and mafft
is parametric in the number of threads.

Table 2. Comparing DPU with Maple (same
machine). LOC: lines of code; Execs: nr. of exe-
cutions; R: safe or unsafe. Other columns as
before. Timeout: 8min.

Benchmark Dpu Maple

Name LOC Th Time Ex R Time Ex R

Add(2) 40K 3 24.3 2 U 2.7 2 S
Add(4) 40K 5 25.5 24 U 34.5 24 U
Add(6) 40K 7 48.1 720 U TO 316 U
Add(8) 40K 9 TO 14K U TO 329 U
Add(10) 40K 11 TO 14K U TO 295 U

Blk(5) 2K 2 0.9 1 S 4.6 1 S
Blk(15) 2K 2 0.9 5 S 23.3 5 S
Blk(18) 2K 2 1.0 180 S TO 105 S
Blk(20) 2K 2 1.5 1147 S TO 106 S
Blk(22) 2K 2 2.6 5424 S TO 108 S
Blk(24) 2K 2 10.0 20K S TO 105 S

Dnd(2,4) 16K 3 11.1 80 U 122 80 U
Dnd(4,2) 16K 5 11.8 96 S 151 96 S
Dnd(4,4) 16K 5 TO 13K U TO 360 U
Dnd(6,2) 16K 7 149.3 4320 S TO 388 S

Mdl(1,4) 38K 7 26.1 1 U 1.4 1 U
Mdl(2,2) 38K 5 29.2 9 U 13.3 9 U
Mdl(2,3) 38K 5 46.2 576 U TO 304 U
Mdl(3,2) 38K 7 31.1 256 U 402 256 U
Mdl(4,3) 38K 9 TO 14K U TO 329 U

Pla(1,5) 41K 2 22.8 1 U 1.7 1 U
Pla(2,4) 41K 3 37.2 80 U 142.4 80 U
Pla(4,3) 41K 5 160.5 1368 U TO 266 U
Pla(6,3) 41K 7 TO 4580 U TO 269 U

We compared Dpu against
Maple [24], a state-of-the-art
testing tool for multithreaded
programs, as the top ranked veri-
fication tools from SV-COMP’17
are still unable to cope with
such large and complex multi-
threaded code. Unfortunately we
could not compare against Nid-
hugg because it cannot deal with
the (abundant) C-library calls in
these programs.

Table 2 presents our exper-
imental results. We use Dpu
with optimal exploration and the
modified version of Maple used
in [22]. To test the effectiveness
of both approaches in state space
coverage and bug finding, we
introduce bugs in 4 of the bench-
marks (Add,Dnd,Mdl,pla). For
the safe benchmark Blk, we
perform exhaustive state-space
exploration using Maple’s DFS
mode. On this benchmark, Dpu outperfors Maple by several orders of mag-
nitude: Dpu explores up to 20K executions covering the entire state space in
10 s, while Maple only explores up to 108 executions in 8 min.

For the remaining benchmarks, we use the random scheduler of Maple, con-
sidered to be the best baseline for bug finding [22]. First, we run Dpu to retrieve
a bound on the number of random executions to answer whether both tools are
able to find the bug within the same number of executions. Maple found bugs
in all buggy programs (except for one variant in Add) even though Dpu greatly
outperforms and is able to achieve much more state space coverage.

6.4 Profiling a Stateless POR

In order to understand the cost of each component of the algorithm, we pro-
file Dpu on a selection of 7 programs from Table 1. Dpu spends between 30%
and 90% of the run time executing the program (65% in average). The remaining
time is spent computing alternatives, distributed as follows: adding events to the
event structure (15% to 30%), building the spikes of a new comb (1% to 50%),
searching for solutions in the comb (less than 5%), and computing conflicting
extensions (less than 5%). Counterintuitively, building the comb is more expen-
sive than exploring it, even in the optimal case. Filling the spikes seems to be
more memory-intensive than exploring the comb, which exploits data locality.
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7 Conclusion

We have shown that computing alternatives in an optimal DPOR exploration is
NP-complete. To mitigate this problem, we introduced a new approach to com-
pute alternatives in polynomial time, approximating the optimal exploration
with a user-defined constant. Experiments conducted on benchmarks including
Debian packages show that our implementation outperforms current verification
tools and uses appropriate data structures. Our profiling results show that run-
ning the program is often more expensive than computing alternatives. Hence,
efforts in reducing the number of redundant executions, even if significantly
costly, are likely to reduce the overall execution time.

References

1. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order
reduction. In: The 41st Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL 2014). ACM (2014)

2. Abdulla, P.A., et al.: Stateless model checking for TSO and PSO. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 353–367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0 28

3. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.: Source sets: a foundation
for optimal dynamic partial order reduction. J. ACM 64(4), 25:1–25:49 (2017).
https://doi.org/10.1145/3073408

4. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Comparing source sets and persis-
tent sets for partial order reduction. In: Aceto, L., et al. (eds.) Models, Algorithms,
Logics and Tools. LNCS, vol. 10460, pp. 516–536. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63121-9 26

5. blktrace. http://brick.kernel.dk/snaps/
6. Coons, K.E., Musuvathi, M., McKinley, K.S.: Bounded partial-order reduction. In:

OOPSLA, pp. 833–848 (2013)
7. Esparza, J.: A false history of true concurrency: from Petri to tools. In: van de

Pol, J., Weber, M. (eds.) SPIN 2010. LNCS, vol. 6349, pp. 180–186. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16164-3 13

8. Esparza, J., Heljanko, K.: Unfoldings – A Partial-Order Approach to Model Check-
ing. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-77426-6

9. Farzan, A., Holzer, A., Razavi, N., Veith, H.: Con2colic testing. In: Proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2013, pp. 37–47. ACM, New York (2013)

10. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Principles of Programming Languages (POPL), pp. 110–121. ACM
(2005). https://doi.org/10.1145/1040305.1040315

11. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems - An Approach to the State-Explosion Problem. LNCS, vol. 1032. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-60761-7

12. MAFFT. http://mafft.cbrc.jp/alignment/software/
13. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)

ACPN 1986. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2 30

https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1145/3073408
https://doi.org/10.1007/978-3-319-63121-9_26
https://doi.org/10.1007/978-3-319-63121-9_26
http://brick.kernel.dk/snaps/
https://doi.org/10.1007/978-3-642-16164-3_13
https://doi.org/10.1007/978-3-540-77426-6
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1007/3-540-60761-7
http://mafft.cbrc.jp/alignment/software/
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/3-540-17906-2_30


Quasi-Optimal Partial Order Reduction 371

14. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the veri-
fication of asynchronous circuits. In: von Bochmann, G., Probst, D.K. (eds.) CAV
1992. LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993). https://doi.org/
10.1007/3-540-56496-9 14
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Abstract. We address the problem of verifying message passing pro-
grams, defined as a set of processes communicating through unbounded
FIFO buffers. We introduce a bounded analysis that explores a spe-
cial type of computations, called k-synchronous. These computations can
be viewed as (unbounded) sequences of interaction phases, each phase
allowing at most k send actions (by different processes), followed by a
sequence of receives corresponding to sends in the same phase. We give
a procedure for deciding k-synchronizability of a program, i.e., whether
every computation is equivalent (has the same happens-before relation)
to one of its k-synchronous computations. We show that reachability over
k-synchronous computations and checking k-synchronizability are both
PSPACE-complete.

1 Introduction

Communication with asynchronous message passing is widely used in concurrent
and distributed programs implementing various types of systems such as cache
coherence protocols, communication protocols, protocols for distributed agree-
ment, device drivers, etc. An asynchronous message passing program is built as
a collection of processes running in parallel, communicating asynchronously by
sending messages to each other via channels or message buffers. Messages sent
to a given process are stored in its entry buffer, waiting for the moment they
will be received by the process. Sending messages is not blocking for the sender
process, which means that the message buffers are supposed to be of unbounded
size.

Such programs are hard to get right. Asynchrony introduces a tremendous
amount of new possible interleavings between actions of parallel processes, and
makes it very hard to apprehend the effect of all of their computations. Due
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to this complexity, verifying properties (invariants) of such systems is hard. In
particular, when buffers are ordered (FIFO buffers), the verification of invariants
(or dually of reachability queries) is undecidable even when each process is finite-
state [10].

Therefore, an important issue is the design of verification approaches that
avoid considering the full set of computations to draw useful conclusions about
the correctness of the considered programs. Several such approaches have been
proposed including partial-order techniques, bounded analysis techniques, etc.,
e.g., [4,6,13,16,23]. Due to the hardness of the problem and its undecidability,
these techniques have different limitations: either applicable only when buffers
are bounded (e.g., partial-order techniques), or limited in scope, or do not provide
any guarantees of termination or insight about the completeness of the analysis.

In this paper, we propose a new approach for the analysis and verification of
asynchronous message-passing programs with unbounded FIFO buffers, which
provides a decision procedure for checking state reachability for a wide class of
programs, and which is also applicable for bounded-analysis in the general case.

We first define a bounding concept for prioritizing the enumeration of pro-
gram behaviors. This concept is guided by our conviction that the behaviors of
well designed programs can be seen as successions of bounded interaction phases,
each of them being a sequence of send actions (by different processes), followed
by a sequence of receive actions (again by different processes) corresponding to
send actions belonging to the same interaction phase. For instance, interaction
phases corresponding to rendezvous communications are formed of a single send
action followed immediately by its corresponding receive. More complex inter-
actions are the result of exchanges of messages between processes. For instance
two processes can send messages to each other, and therefore their interaction
starts with two send actions (in any order), followed by the two corresponding
receive actions (again in any order). This exchange schema can be generalized
to any number of processes. We say that an interaction phase is k-bounded, for a
given k > 0, if its number of send actions is less than or equal to k. For instance
rendezvous interactions are precisely 1-bounded phases. In general, we call k-
exchange any k-bounded interaction phase. Given k > 0, we consider that a
computation is k-synchronous if it is a succession of k-exchanges. It can be seen
that, in k-synchronous computations the sum of the sizes of all messages buffers
is bounded by k. However, as it will be explained later, boundedness of the mes-
sages buffers does not guarantee that there is a k such that all computations are
k-synchronous.

Then, we introduce a new bounded analysis which for a given k, consid-
ers only computations that are equivalent to k-synchronous computations. The
equivalence relation on computations is based on a notion of trace corresponding
to a happens-before relation capturing the program order (the order of actions in
the code of a process) and the precedence order between sends and their corre-
sponding receives. Two computations are equivalent if they have the same trace,
i.e., they differ only in the order of causally independent actions. We show that
this analysis is PSPACE-complete when processes have a finite number of states.
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An important feature of our bounding concept is that it is possible to
decide its completeness for systems composed of finite-state processes, but with
unbounded message buffers: For any given k, it is possible to decide whether
every computation of the program (under the asynchronous semantics) is equiv-
alent to (i.e., has the same trace as) a k-synchronous computation of that pro-
gram. When this holds, we say that the program is k-synchronizable1. Knowing
that a program is k-synchronizable allows to conclude that an invariant holds
for all computations of the program if no invariant violations have been found
by its k-bounded exchange analysis. Notice that k-synchronizability of a pro-
gram does not imply that all its behaviours use bounded buffers. Consider for
instance a program with two processes, a producer that consists of a loop of
sends, and a consumer that consists of a loop of receives. Although there are
computations where the entry buffer of the consumer is arbitrarily large, the
program is 1-synchronizable because all its computations are equivalent to com-
putations where each message sent by the producer is immediately received by
the consumer.

Importantly, we show that checking k-synchronizability of a program, with
possibly infinite-state processes, can be reduced in linear time to checking state
reachability under the k-synchronous semantics (i.e., without considering all
the program computations). Therefore, for finite-state processes, checking k-
synchronizability is PSPACE and it is possible to decide invariant properties
without dealing with unbounded message buffers when the programs are k-
synchronizable (the overall complexity being PSPACE).

Then, a method for verifying asynchronous message passing programs can
be defined, based on iterating k-bounded analyses with increasing value of k,
starting from k = 1. If for some k, a violation (i.e., reachability of an error state)
is detected, then the iteration stops and the conclusion is that the program
is not correct. On the other hand, if for some k, the program is shown to be
k-synchronizable and no violations have been found, then again the iteration
terminates and the conclusion is that the program is correct.

However, it is possible that the program is not k-synchronizable for any k. In
this case, if the program is correct then the iteration above will not terminate.
Thus, an important issue is to determine whether a program is synchronizable,
i.e., there exists a k such that the program is k-synchronizable. This problem is
hard, and we believe that it is undecidable, but we do not have a formal proof.

We have applied our theory to a set of nontrivial examples, two of them
being presented in Sect. 2. All the examples are synchronizable, which confirms
our conviction that non-synchronizability should correspond to an ill-designed
system (and therefore it should be reported as an anomaly).

An extended version of this paper with missing proofs can be found at [9].

1 A different notion of synchronizability has been defined in [4] (see Sect. 8).
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2 Motivating Examples

We provide in this section examples illustrating the relevance and the appli-
cability of our approach. Figure 1 shows a commit protocol allowing a client to
update a memory that is replicated in two processes, called nodes. The access to
the nodes is controlled by a manager. Figure 2 shows an execution of this pro-
tocol. This system is 1-synchronizable, i.e., every execution is equivalent to one
where only rendezvous communication is used. Intuitively, this holds because
mutually interacting components are never in the situation where messages sent
from one to the other are crossing messages sent in the other direction (i.e., the
components are “talking” to each other at the same time). For instance, the
execution in Fig. 2 is 1-synchronizable because its conflict graph (shown in the
same figure) is acyclic. Nodes in the conflict graph are matching send-receive
pairs (numbered from 1 to 6 in the figure), and edges correspond to the program
order between actions in these pairs. The label of an edge records whether the
actions related by program order are sends or receives, e.g., the edge from 1 to
2 labeled by RS represents the fact that the receive of the send-receive pair 1

Fig. 1. A distributed commit protocol. Each process is defined as a labeled transition
system. Transitions are labeled by send and receive actions, e.g., send(c,m, update) is
a send from the client c to the manager m with payload update. Similarly, rec(c,OK)
denotes process c receiving a message OK.

Fig. 2. An execution of the distributed commit protocol and its conflict graph.
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is before the send of the send-receive pair 2, in program order. For the moment,
these labels should be ignored, their relevance will be discussed in Sect. 5. The
conflict graph being acyclic means that matching pairs of send-receive actions
are “serializable”, which implies that this execution is equivalent to one where
every send is immediately followed by the matching receive (as in rendezvous
communication).

Although the message buffers are bounded in all the computations of the
commit protocol, this is not true for every 1-synchronizable system. There are
asynchronous computations where buffers have an arbitrarily big size, which
are equivalent to synchronous computations. This is illustrated by a (family of)
computations shown in Fig. 4a of the system modeling an elevator described in
Fig. 3 (a simplified version of the system described in [14]). This system con-
sists of three processes: User models the user of the elevator, Elevator models the
elevator’s controller, and Door models the elevator’s door which reacts to com-
mands received from the controller. The execution in Fig. 4a models an inter-
action where the user sends an unbounded number of requests for closing the
door, which generates an unbounded number of messages in the entry buffer of
Elevator. These computations are 1-synchronizable since they are equivalent to a
1-synchronous computation where Elevator receives immediately every message
sent by User. This is witnessed by the acyclicity of the conflict graph of this
computation (shown on the right of the same figure). It can be checked that the
elevator system without the dashed edge is a 1-synchronous system.

Consider now a slightly different version of the elevator system where the
transition from Stopping2 to Opening2 is moved to target Opening1 instead (see
the dashed transition in Fig. 3). It can be seen that this version reaches exactly
the same set of configurations (tuples of process local states) as the previous
one. Indeed, modifying that transition enables Elevator to send a message open
to Door, but the latter can only be at StopDoor, OpenDoor, or ResetDoor at this
point, and therefore it can (maybe after sending doorStopped and doorOpened)
receive at state ResetDoor the message open. However, receiving this message
doesn’t change Door’s state, and the set of reachable configurations of the system
remains the same. This version of the system is not 1-synchronizable as it is
shown in Fig. 4b: once the doorStopped message sent by Door is received by
Elevator2, these two processes can send messages to each other at the same time
(the two send actions happen before the corresponding receives). This mutual
interaction consisting of 2 parallel send actions is called a 2-exchange and it is
witnessed by the cycle of size 2 in the execution’s conflict graph (shown on the
right of Fig. 4b). In general, it can be shown that every execution of this version
of the elevator system has a conflict graph with cycles of size at most 2, which
implies that it is 2-synchronizable (by the results in Sect. 5).

2 Door sends the message from state StopDoor, and Elevator is at state Stopping2 before
receiving the message.
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3 Message Passing Systems

We define a message passing system as the composition of a set of processes that
exchange messages, which can be stored in FIFO buffers before being received
(we assume one buffer per process, storing incoming messages from all the other
processes). Each process is described as a state machine that evolves by execut-
ing send or receive actions. An execution of such a system can be represented
abstractly using a partially-ordered set of events, called a trace. The partial order
in a trace represents the causal relation between events. We show that these
systems satisfy causal delivery, i.e., the order in which messages are received
by a process is consistent with the causal relation between the corresponding
sendings.

Fig. 3. A system modeling an elevator.

We fix sets P and V of process ids and message payloads, and sets S =
{send(p, q, v) : p, q ∈ P, v ∈ V} and R = {rec(q, v) : q ∈ P, v ∈ V} of send actions
and receive actions. Each send send(p, q, v) combines two process ids p, q denoting
the sender and the receiver of the message, respectively, and a message payload
v. Receive actions specify the process q receiving the message, and the message
payload v. The process executing an action a ∈ S ∪ R is denoted proc(a), i.e.,
proc(a) = p for all a = send(p, q, v) or a = rec(p, v), and the destination q of
a send s = send(p, q, v) ∈ S is denoted dest(s). The set of send, resp., receive,
actions a of process p, i.e., with proc(a) = p, is denoted by Sp, resp., Rp.

A message passing system is a tuple S = ((Lp, δp, l
0
p) | p ∈ P) where Lp is the

set of local states of process p, δp ⊆ L × (Sp ∪ Rp) × L is a transition relation
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describing the evolution of process p, and l0p is the initial state of process p.
Examples of message passing systems can be found in Figs. 1 and 3.

We fix a set M of message identifiers, and the sets Sid = {si : s ∈ S, i ∈ M}
and Rid = {ri : r ∈ R, i ∈ M} of indexed actions. Message identifiers are used
to pair send and receive actions. We denote the message id of an indexed
send/receive action a by msg(a). Indexed send and receive actions s ∈ Sid and
r ∈ Rid are matching, written s �−� r, when msg(s) = msg(r).

A configuration c = 〈l, b〉 is a vector l of local states along with a vector b of
message buffers (sequences of message payloads tagged with message identifiers).
The transition relation a−→ (with label a ∈ Sid ∪ Rid) between configurations is
defined as expected. Every send action enqueues the message into the destina-
tion’s buffer, and every receive dequeues a message from the buffer. An execution
of a system S under the asynchronous semantics is a sequence of indexed actions
which corresponds to applying a sequence of transitions from the initial configu-
ration (where processes are in their initial states and the buffers are empty). Let
asEx(S) denote the set of these executions. Given an execution e, a send action
s in e is called an unmatched send when e contains no receive action r such that
s �−� r. An execution e is called matched when it contains no unmatched send.

Traces. Executions are represented using traces which are sets of indexed actions
together with a program order relating every two actions of the same process
and a source relation relating a send with the matching receive (if any).

Fig. 4. Executions of the elevator.

Formally, a trace is a tuple t = (A, po, src) where A ⊆ Sid ∪ Rid, po ⊆ A2

defines a total order between actions of the same process, and src ⊆ Sid ×Rid is
a relation s.t. src(a, a′) iff a �− �a′. The trace tr(e) of an execution e is (A, po, src)
where A is the set of all actions in e, po(a, a′) iff proc(a) = proc(a′) and a occurs
before a′ in e, and src(a, a′) iff a �−�a′. Examples of traces can be found in Figs. 2
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and 4. The union of po and src is acyclic. Let asTr(S) = {tr(e) : e ∈ asEx(S)}
be the set of traces of S under the asynchronous semantics.

Traces abstract away the order of non-causally related actions, e.g., two sends
of different processes that could be executed in any order. Two executions have
the same trace when they only differ in the order between such actions. Formally,
given an execution e = e1 ·a ·a′ ·e2 with tr(e) = (A, po, src), where e1, e2 ∈ (Sid∪
Rid)∗ and a, a′ ∈ Sid∪Rid, we say that e′ = e1 ·a′ ·a·e2 is derived from e by a valid
swap iff (a, a′) 	∈ po∪src. A permutation e′ of an execution e is conflict-preserving
when e′ can be derived from e through a sequence of valid swaps. For simplicity,
whenever we use the term permutation we mean conflict-preserving permutation.
For instance, a permutation of send1(p1, q, ) send2(p2, q, ) rec1(q, ) rec2(q, )
is send1(p1, q, ) rec1(q, ) send2(p2, q, ) rec2(q, ) and a permutation of the
execution send1(p1, q1, ) send2(p2, q2, ) rec2(q2, ) rec1(q1, ) is send1(p1, q1, )
rec1(q1, ) send2(p2, q2, ) rec2(q2, ).

Note that the set of executions having the same trace are permutations of one
another. Also, a system S cannot distinguish between permutations of executions
or equivalently, executions having the same trace.

Causal Delivery. The asynchronous semantics ensures a property known as
causal delivery, which intuitively, says that the order in which messages are
received by a process q is consistent with the “causal” relation between them.
Two messages are causally related if for instance, they were sent by the same
process p or one of the messages was sent by a process p after the other one was
received by the same process p. This property is ensured by the fact that the
message buffers have a FIFO semantics and a sent message is instantaneously
enqueued in the destination’s buffer. For instance, the trace (execution) on the
left of Fig. 5 satisfies causal delivery. In particular, the messages v1 and v3 are
causally related, and they are received in the same order by q2. On the right of
Fig. 5, we give a trace where the messages v1 and v3 are causally related, but
received in a different order by q2, thus violating causal delivery. This trace is
not valid because the message v1 would be enqueued in the buffer of q2 before
send(p, q1, v2) is executed and thus, before send(q1, q2, v3) as well.

Fig. 5. A trace satisfying causal delivery (on the left) and a trace violating causal
delivery (on the right).
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Fig. 6. An execution of the 1-synchronous semantics.

Formally, for a trace t = (A, po, src), the transitive closure of po∪src, denoted
by �t, is called the causal relation of t. For instance, for the trace t on the left of
Fig. 5, we have that send(p, q2, v1) �t send(q1, q2, v3). A trace t satisfies causal
delivery if for every two send actions s1 and s2 in A,

(s1 �t s2 ∧ dest(s1) = dest(s2)) =⇒ (	 ∃r2 ∈ A. s2 �−� r2)∨
(∃r1, r2 ∈ A. s1 �−� r1 ∧ s2 �−� r2 ∧ (r2, r1) 	∈ po)

It can be easily proved that every trace t ∈ asTr(S) satisfies causal delivery.

4 Synchronizability

We define a property of message passing systems called k-synchronizability as
the equality between the set of traces generated by the asynchronous semantics
and the set of traces generated by a particular semantics called k-synchronous.

The k-synchronous semantics uses an extended version of the standard
rendez-vous primitive where more than one process is allowed to send a mes-
sage and a process can send multiple messages, but all these messages must be
received before being allowed to send more messages. This primitive is called
k-exchange if the number of sent messages is at most k. For instance, the exe-
cution send1(p1, p2, ) send2(p2, p1, ) rec1(p2, ) rec2(p1, ) is an instance of a
2-exchange. To ensure that the k-synchronous semantics is prefix-closed (if it
admits an execution, then it admits all its prefixes), we allow messages to be
dropped during a k-exchange transition. For instance, the prefix of the previous
execution without the last receive (rec2(p1, )) is also an instance of a 2-exchange.
The presence of unmatched send actions must be constrained in order to ensure
that the set of executions admitted by the k-synchronous semantics satisfies
causal delivery. Consider for instance, the sequence of 1-exchanges in Fig. 6, a
1-exchange with one unmatched send, followed by two 1-exchanges with match-
ing pairs of send/receives. The receive action (rec(q2, v3)) pictured as an empty
box needs to be disabled in order to exclude violations of causal delivery. To
this, the semantics tracks for each process p a set of processes B(p) from which
it is forbidden to receive messages. For the sequence of 1-exchanges in Fig. 6,
the unmatched send(p, q2, v1) disables any receive by q2 of a message sent by
p (otherwise, it will be even a violation of the FIFO semantics of q2’s buffer).
Therefore, the first 1-exchange results in B(q2) = {p}. The second 1-exchange
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(the message from p to q1) forbids q2 to receive any message from q1. Otherwise,
this message will be necessarily causally related to v1, and receiving it will lead
to a violation of causal delivery. Therefore, when reaching send(q1, q2, v3) the
receive rec(q2, v3) is disabled because q1 ∈ B(q2).

Fig. 7. The synchronous semantics. Above, ε is a vector where all the components are
ε, and

e−→ is the transition relation of the asynchronous semantics.

Formally, a configuration c′ = (l, B) in the synchronous semantics is a vector
l of local states together with a function B : P → 2P. The transition relation
⇒k is defined in Fig. 7. A k-exchange transition corresponds to a sequence
of transitions of the asynchronous semantics starting from a configuration with
empty buffers. The sequence of transitions is constrained to be a sequence of
at most k sends followed by a sequence of receives. The receives are enabled
depending on previous unmatched sends as explained above, using the function
B. The semantics defined by ⇒k is called the k-synchronous semantics.

Executions and traces are defined as in the case of the asynchronous seman-
tics, using ⇒k for some fixed k instead of →. The set of executions, resp., traces,
of S under the k-synchronous semantics is denoted by sExk(S), resp., sTrk(S).
The executions in sExk(S) and the traces in sTrk(S) are called k-synchronous.

An execution e such that tr(e) is k-synchronous is called k-synchronizable.
We omit k when it is not important. The set of executions generated by a system
S under the k-synchronous semantics is prefix-closed. Therefore, the set of its
k-synchronizable executions is prefix-closed as well. Also, k-synchronizable and
k-synchronous executions are undistinguishable up to permutations.

Definition 1. A message passing system S is called k-synchronizable when
asTr(S) = sTrk(S).

It can be easily proved that k-synchronizable systems reach exactly the
same set of local state vectors under the asynchronous and the k-synchronous
semantics. Therefore, any assertion checking or invariant checking problem for
a k-synchronizable system S can be solved by considering the k-synchronous
semantics instead of the asynchronous one. This holds even for the problem of
detecting deadlocks. Therefore, all these problems become decidable for finite-
state k-synchronizable systems, whereas they are undecidable in the general case
(because of the FIFO message buffers).
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5 Characterizing Synchronous Traces

Fig. 8. A trace and its
conflict graph.

We give a characterization of the traces generated by the
k-synchronous semantics that uses a notion of conflict-
graph similar to the one used in conflict serializability [27].
The nodes of the conflict graph correspond to pairs of
matching actions (a send and a receive) or to unmatched
sends, and the edges represent the program order relation
between the actions represented by these nodes.

For instance, an execution with an acyclic conflict
graph, e.g., the execution in Fig. 2, is “equivalent” to an
execution where every receive immediately follows the
matching send. Therefore, it is an execution of the 1-
synchronous semantics. For arbitrary values of k, the con-
flict graph may contain cycles, but of a particular form.
For instance, traces of the 2-synchronous semantics may

contain a cycle of size 2 like the one in Fig. 4(b). More generally, we show that
the conflict graph of a k-synchronous trace cannot contain cycles of size strictly
bigger than k. However, this class of cycles is not sufficient to precisely charac-
terize the k-synchronous traces. Consider for instance the trace on top of Fig. 8.
Its conflict-graph contains a cycle of size 4 (shown on the bottom), but the trace
is not 4-synchronous. The reason is that the messages tagged by 1 and 4 must
be sent during the same exchange transition, but receiving message 4 needs that
the message 3 is sent after 2 is received. Therefore, it is not possible to schedule
all the send actions before all the receives. Such scenarios correspond to cycles in
the conflict graph where at least one receive is before a send in the program order
(witnessed by the edge labeled by RS). We show that excluding such cycles, in
addition to cycles of size strictly bigger than k, is a precise characterization of
k-synchronous traces.

The conflict-graph of a trace t = (A, po, src) is the labeled directed graph
CGt = 〈V,E, �E〉 where: (1) the set of nodes V includes one node for each pair of
matching send and receive actions, and each unmatched send action in t, and (2)
the set of edges E is defined by: (v, v′) ∈ E′ iff there exist actions a ∈ act(v) and
a′ ∈ act(v′) such that (a, a′) ∈ po (where act(v) is the set of actions of trace t
corresponding to the graph node v). The label of the edge (v, v′) records whether
a and a′ are send or receive actions, i.e., for all X,Y ∈ {S,R}, XY ∈ �(v, v′) iff
a ∈ Xid and a′ ∈ Yid.

A direct consequence of previous results on conflict serializability [27] is that a
trace is 1-synchronous whenever its conflict-graph is acyclic. A cycle of a conflict
graph CGt is called bad when it contains an edge labeled by RS. Otherwise, it
is called good. The following result is a characterization of k-synchronous traces.

Theorem 1. A trace t satisfying causal delivery is k-synchronous iff every cycle
in its conflict-graph is good and of size at most k.

Theorem 1 can be used to define a runtime monitoring algorithm for k-
synchronizability checking. The monitor records the conflict-graph of the trace
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produced by the system and checks whether it contains some bad cycle, or a cycle
of size bigger than k. While this approach requires dealing with unbounded mes-
sage buffers, the next section shows that this is not necessary. Synchronizability
violations, if any, can be exposed by executing the system under the synchronous
semantics.

6 Checking Synchronizability

We show that checking k-synchronizability can be reduced to a reachability prob-
lem under the k-synchronous semantics (where message buffers are bounded).
This reduction holds for arbitrary, possibly infinite-state, systems. More pre-
cisely, since the set of (asynchronous) executions of a system is prefix-closed,
if a system S admits a synchronizability violation, then it also admits a bor-
derline violation, for which every strict prefix is synchronizable. We show that
every borderline violation can be “simulated”3 by the synchronous semantics
of an instrumentation of S where the receipt of exactly one message is delayed
(during every execution). We describe a monitor that observes executions of the
instrumentation (under the synchronous semantics) and identifies synchroniz-
ability violations (there exists a run of this monitor that goes to an error state
whenever such a violation exists).

6.1 Borderline Synchronizability Violations

For a system S, a violation e to k-synchronizability is called borderline when
every strict prefix of e is k-synchronizable. Figure 9(a) gives an example of a bor-
derline violation to 1-synchronizability (it is the same execution as in Fig. 4(b)).

We show that every borderline violation e ends with a receive action and this
action is included in every cycle of CGtr(e) that is bad or exceeds the bound k.
Given a cycle c = v, v1, . . . , vn, v of a conflict graph CGt, the node v is called a
critical node of c when (v, v1) is an SX edge with X ∈ {S,R} and (vn, v) is an
Y R edge with Y ∈ {S,R}.

Lemma 1. Let e be a borderline violation to k-synchronizability of a system S.
Then, e = e′ · r for some e′ ∈ (Sid ∪ Rid)∗ and r ∈ Rid. Moreover, the node v of
CGtr(e) representing r (and the corresponding send) is a critical node of every
cycle of CGtr(e) which is bad or of size bigger than k.

6.2 Simulating Borderline Violations on the Synchronous Semantics

Let S ′ be a system obtained from S by “delaying” the reception of exactly one
nondeterministically chosen message: S ′ contains an additional process π and
exactly one message sent by a process in S is non-deterministically redirected

3 We refer to the standard notion of (stuttering) simulation where one system mimics
the transitions of the other system.
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Fig. 9. A borderline violation to 1-synchronizability.

to π4, which sends it to the original destination at a later time5. We show that
the synchronous semantics of S ′ “simulates” a permutation of every borderline
violation of S. Figure 9(b) shows the synchronous execution of S ′ that corre-
sponds to the borderline violation in Fig. 9(a). It is essentially the same except
for delaying the reception of doorOpened by sending it to π who relays it to the
elevator at a later time.

The following result shows that the k-synchronous semantics of S ′ “simu-
lates” all the borderline violations of S, modulo permutations.

Lemma 2. Let e = e1 · sendi(p, q, v) · e2 · reci(q, v) be a borderline violation to
k-synchronizability of S. Then, sExk(S ′) contains an execution e′ of the form:

e′ = e′
1 · sendi(p, π, (q, v)) · reci(π, (q, v)) · e′

2 · sendj(π, q, v) · recj(q, v)

such that e′
1 · sendi(p, q, v) · e′

2 is a permutation of e1 · sendi(p, q, v) · e2.

Checking k-synchronizability for S on the system S ′ would require that
every (synchronous) execution of S ′ can be transformed to an execution of S
by applying an homomorphism σ where the send/receive pair with destination
π is replaced with the original send action and the send/receive pair initiated
by π is replaced with the original receive action (all the other actions are left
unchanged). However, this is not true in general. For instance, S ′ may admit an
execution sendi(p, π, (q, v))·reci(π, (q, v))·sendj(p, q, v′)·recj(q, v′)·sendi′(π, q, v)·
reci′(q, v) where a message sent after the one redirected to π is received earlier,
and the two messages were sent by the same process p. This execution is possible
under the 1-synchronous semantics of S ′. Applying the homomorphism σ, we get
the execution sendi(p, q, v) · sendj(p, q, v′) · recj(q, v′) · reci(q, v) which violates
causal delivery and therefore, it is not admitted by the asynchronous semantics

4 Meaning that every transition labeled by a send action send(p, q, v) is doubled by
a transition labeled by send(p, π, (q, v)), and such a send to π is enabled only once
throughout the entire execution.

5 The process π stores the message (q, v) it receives in its state and has one transition
where it can send v to the original destination q.
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of S. Our solution to this problem is to define a monitor Mcausal , i.e., a process
which reads every transition label in the execution and advances its local state,
which excludes such executions of S ′ when run under the synchronous semantics,
i.e., it blocks the system S ′ whenever applying some transition would lead to an
execution which, modulo the homomorphism σ, is a violation of causal delivery.
This monitor is based on the same principles that we used to exclude violations
of causal delivery in the synchronous semantics in the presence of unmatched
sends (the component B from a synchronous configuration).

6.3 Detecting Synchronizability Violations

We complete the reduction of checking k-synchronizability to a reachability prob-
lem under the k-synchronous semantics by describing a monitor Mviol (k), which
observes executions in the k-synchronous semantics of S ′ ||Mcausal and checks
whether they represent violations to k-synchronizability; Mviol (k) goes to an
error state whenever such a violation exists.

Essentially, Mviol(k) observes the sequence of k-exchanges in an execu-
tion and tracks a conflict graph cycle, if any, interpreting sendi(p, π, (q, v)) ·
reci(π, (q, v)) as in the original system S, i.e., as sendi(p, q, v), and sendi(π, q, v) ·
reci(q, v) as reci(q, v). By Lemma 2, every cycle that is a witness for non k-
synchronizability includes the node representing the pair sendi(p, q, v), reci(q, v).
Moreover, the successor of this node in the cycle represents an action that is exe-
cuted by p and the predecessor an action executed by q. Therefore, the monitor
searches for a conflict-graph path from a node representing an action of p to a
node representing an action of q. Whenever it finds such a path it goes to an
error state.

Figure 10 lists the definition of Mviol (k) as an abstract state machine. By
the construction of S ′, we assume w.l.o.g., that both the send to π and the send
from π are executed in isolation as an instance of 1-exchange. When observing
the send to π, the monitor updates the variable conflict, which in general
stores the process executing the last action in the cycle, to p. Also, a variable
count, which becomes 0 when the cycle has strictly more than k nodes, is ini-
tialized to k. Then, for every k-exchange transition in the execution, Mviol(k)
non-deterministically picks pairs of matching send/receive or unmatched sends
to continue the conflict-graph path, knowing that the last node represents an
action of the process stored in conflict. The rules for choosing pairs of match-
ing send/receive to advance the conflict-graph path are pictured on the right
of Fig. 10 (advancing the conflict-graph path with an unmatched send doesn’t
modify the value of conflict, it just decrements the value of count). There are
two cases depending on whether the last node in the path conflicts with the send
or the receive of the considered pair. One of the two processes involved in this
pair of send/receive equals the current value of conflict. Therefore, conflict
can either remain unchanged or change to the value of the other process. The
variable lastIsRec records whether the current conflict-graph path ends in a
conflict due to a receive action. If it is the case, and the next conflict is between
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Fig. 10. The monitor Mviol(k). B is the set of Booleans and N is the set of natural
numbers. Initially, conflict is ⊥, while lastIsRec and sawRS are false.

this receive and a send, then sawRS is set to true to record the fact that the
path contains an RS labeled edge (leading to a potential bad cycle).

When π sends its message to q, the monitor checks whether the conflict-graph
path it discovered ends in a node representing an action of q. If this is the case,
this path together with the node representing the delayed send forms a cycle.
Then, if sawRS is true, then the cycle is bad and if count reached the value 0,
then the cycle contains more than k nodes. In both cases, the current execution
is a violation to k-synchronizability.

The set of executions in the k-synchronous semantics of S ′ composed with
Mcausal and Mviol (k), in which the latter goes to an error state, is denoted by
S ′
k ||Mcausal || ¬Mviol (k).

Theorem 2. For a given k, a system S is k-synchronizable iff the set of execu-
tions S ′

k ||Mcausal || ¬Mviol (k) is empty.

Given a system S, an integer k, and a local state l, the reachability problem
under the k-synchronous semantics asks whether there exists a k-synchronous
execution of S reaching a configuration (l, B) with l = lp for some p ∈ P. Theo-
rem 2 shows that checking k-synchronizability can be reduced to a reachability
problem under the k-synchronous semantics. This reduction holds for arbitrary
(infinite-state) systems, which implies that k-synchronizability can be checked
using the existing assertion checking technology. Moreover, for finite-state sys-
tems, where each process has a finite number of local states (message buffers can
still be unbounded), it implies that checking this property is PSPACE-complete.
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Theorem 3. For a finite-state system S, the reachability problem under the k-
synchronous semantics and the problem of checking k-synchronizability of S are
decidable and PSPACE-complete.

7 Experimental Evaluation

Fig. 11. Experimental results.

As a proof of concept, we have applied our
procedure for checking k-synchronizability
to a set of examples extracted from the
distribution of the P language6. Two-phase
commit and Elevator are presented in
Sect. 2, German is a model of the cache-
coherence protocol with the same name,
OSR is a model of a device driver, and

Replication Storage is a model of a protocol ensuring eventual consistency of a
replicated register. These examples cover common message communication pat-
terns that occur in different domains: distributed systems (Two-phase commit,
Replication storage), device drivers (Elevator, OSR), cache-coherence protocols
(German). We have rewritten these examples in the Promela language and used
the Spin model checker7 for discharging the reachability queries. For a given
program, its k-synchronous semantics and the monitors defined in Sect. 6 are
implemented as ghost code. Finding a conflict-graph cycle which witnesses non
k-synchronizability corresponds to violating an assertion.

The experimental data is listed in Fig. 11: Proc, resp., Loc, is the number of
processes, resp., the number of lines of code (loc) of the original program, k is
the minimal integer for which the program is k-synchronizable, and Time gives
the number of minutes needed for this check. The ghost code required to check
k-synchronizability takes 250 lines of code in average.

8 Related Work

Automatic verification of asynchronous message passing systems is undecidable
in general [10]. A number of decidable subclasses has been proposed. The class
of systems, called synchronizable as well, in [4], requires that a system gener-
ates the same sequence of send actions when executed under the asynchronous
semantics as when executed under a synchronous semantics based on rendezvous
communication. These systems are all 1-synchronizable, but the inclusion is
strict (the 1-synchronous semantics allows unmatched sends). The techniques
proposed in [4] to check that a system is synchronizable according to their defi-
nition cannot be extended to k-synchronizable systems. Other classes of systems
that are 1-synchronizable have been proposed in the context of session types,

6 Available at https://github.com/p-org.
7 Available at http://spinroot.com.

https://github.com/p-org
http://spinroot.com
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e.g., [12,20,21,26]. A sound but incomplete proof method for distributed algo-
rithms that is based on a similar idea of avoiding reasoning about all program
computations is introduced in [3]. Our class of synchronizable systems differs also
from classes of communicating systems that restrict the type of communication,
e.g., lossy-communication [2], half-duplex communication [11], or the topology of
the interaction, e.g., tree-based communication in concurrent pushdowns [19,23].

The question of deciding if all computations of a communicating system
are equivalent (in the language theoretic sense) to computations with bounded
buffers has been studied in, e.g., [17], where this problem is proved to be unde-
cidable. The link between that problem and our synchronizability problem is not
(yet) clear, mainly because non synchronizable computations may use bounded
buffers.

Our work proposes a solution to the question of defining adequate (in terms
of coverage and complexity) parametrized bounded analyses for message pass-
ing programs, providing the analogous of concepts such as context-bounding
or delay-bounding defined for shared-memory concurrent programs. Bounded
analyses for concurrent systems was initiated by the work on bounded-context
switch analysis [25,28,29]. For shared-memory programs, this work has been
extended to unbounded threads or larger classes of behaviors, e.g., [8,15,22,24].
Few bounded analyses incomparable to ours have been proposed for message
passing systems, e.g., [6,23]. Contrary to our work, these works on bounded
analyses in general do not propose decision procedures for checking if the anal-
ysis is complete (covers all reachable states). The only exception is [24], which
concerns shared-memory.

Partial-order reduction techniques, e.g., [1,16], allow to define equivalence
classes on behaviors, based on notions of action independence and explore (ide-
ally) only one representative of each class. This has lead to efficient algorithmic
techniques for enhanced model-checking of concurrent shared-memory programs
that consider only a subset of relevant action interleavings. In the worst case,
these techniques will still need to explore all of the interleavings. Moreover, these
techniques are not guaranteed to terminate when the buffers are unbounded.

The work in [13] defines a particular class of schedulers, that roughly, pri-
oritize receive actions over send actions, which is complete in the sense that it
allows to construct the whole set of reachable states. Defining an analysis based
on this class of schedulers has the same drawback as partial-order reductions,
in the worst case, it needs to explore all interleavings, and termination is not
guaranteed.

The approach in this work is related to robustness checking [5,7]. The gen-
eral paradigm is to decide that a program has the same behaviors under two
semantics, one being weaker than the other, by showing a polynomial reduction
to a state reachability problem under the stronger semantics. For instance, in
our case, the class of message passing programs with unbounded FIFO channels
is Turing powerful, but still, surprisingly, k-synchronizability of these programs
is decidable and PSPACE-complete. The results in [5,7] cannot be applied in
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our context: the class of programs and their semantics are different, and the cor-
responding robustness checking algorithms are based on distinct concepts and
techniques.
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Abstract. The cornerstone of dynamic partial order reduction (DPOR)
is the notion of independence that is used to decide whether each pair
of concurrent events p and t are in a race and thus both p · t and t · p
must be explored. We present constrained dynamic partial order reduc-
tion (CDPOR), an extension of the DPOR framework which is able to
avoid redundant explorations based on the notion of conditional inde-
pendence—the execution of p and t commutes only when certain inde-
pendence constraints (ICs) are satisfied. ICs can be declared by the pro-
grammer, but importantly, we present a novel SMT-based approach to
automatically synthesize ICs in a static pre-analysis. A unique feature
of our approach is that we have succeeded to exploit ICs within the
state-of-the-art DPOR algorithm, achieving exponential reductions over
existing implementations.

1 Introduction

Partial Order Reduction (POR) is based on the idea that two interleavings can
be considered equivalent if one can be obtained from the other by swapping
adjacent, non-conflicting independent execution steps. Such equivalence class is
called a Mazurkiewicz trace, and POR guarantees that it is sufficient to explore
one interleaving per equivalence class. Early POR algorithms [8,10,20] relied
on static over-approximations to detect possible future conflicts. The Dynamic-
POR (DPOR) algorithm, introduced by Godefroid [9] in 2005, was a break-
through in the area because it does not need to look at the future. It keeps
track of the independence races witnessed along its execution and uses them to
decide the required exploration dynamically, without the need of static approx-
imation. DPOR is nowadays considered one of the most scalable techniques for
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software verification. The key of DPOR algorithms is in the dynamic construc-
tion of two types of sets at each scheduling point: the sleep set that contains
processes whose exploration has been proved to be redundant (and hence should
not be selected), and the backtrack set that contains the processes that have
not been proved independent with previously explored steps (and hence need to
be explored). Source-DPOR (SDPOR) [1,2] improves the precision to compute
backtrack sets (named source sets), proving optimality of the resulting algorithm
for any number of processes w.r.t. an unconditional independence relation.

Challenge. When considering (S)DPOR with unconditional independence, if a
pair of events is not independent in all possible executions, they are treated as
potentially dependent and their interleavings explored. Unnecessary exploration
can be avoided using conditional independence. E.g., two processes executing
respectively the atomic instructions if(z≥ 0) z = x; and x = x + 1; would be
considered dependent even if z≤ −1—this is indeed an independence constraint
(IC) for these two instructions. Conditional independence was early introduced
in the context of POR [11,15]. The first algorithm that has used notions of con-
ditional independence within the state-of-the-art DPOR algorithm is Context-
Sensitive DPOR (CSDPOR) [3]. However, CSDPOR does not use ICs (it rather
checks state equivalence dynamically during the exploration) and exploits con-
ditional (context-sensitive) independence only partially to extend the sleep sets.
Our challenge is twofold: (i) extend the DPOR framework to exploit ICs dur-
ing the exploration in order to both reduce the backtrack sets and expand the
sleep sets as much as possible, (ii) statically synthesize ICs in an automatic
pre-analysis.

Contributions. The main contributions of this work can be summarized as:

1. We introduce sufficient conditions –that can be checked dynamically– to
soundly exploit ICs within the DPOR framework.

2. We extend the state-of-the-art DPOR algorithm with new forms of pruning
(by means of expanding sleep sets and reducing backtrack sets).

3. We present an SMT-based approach to automatically synthesize ICs for
atomic blocks, whose applicability goes beyond the DPOR context.

4. We experimentally show the exponential gains achieved by CDPOR on some
typical concurrency benchmarks used in the DPOR literature before.

2 Background

In this section we introduce some notations, the basic notions on the POR theory
and the state-of-the-art DPOR algorithm that we will extend in Sect. 3.

Our work is formalized for a general model of concurrent systems, in which
a program is composed of atomic blocks of code. An atomic block can contain
just one (global) statement that affects the global state, a sequence of local
statements (that only read and write the local state of the process) followed by
a global statement, or a block of code with possibly several global statements
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but whose execution cannot interleave with other processes because it has been
implemented as atomic (e.g., using locks, semaphores, etc.). Each atomic block
in the program is given a unique block identifier. We use spawn(P [ini ]) to create
a new process. Depending on the programming language, P can be the name of
a method and [ini] initial values for the parameters, or P can be the identifier of
the initial block to execute and [ini] the initialization instructions, etc., in every
case with mechanisms to continue the execution from one block to the following
one. Notice that the use of atomic blocks in our formalization generalizes the
particular case of considering atomicity at the level of single instructions.

As previous work on DPOR [1–3], we assume the state space does not contain
cycles, executions have finite unbounded length and processes are deterministic
(i.e., at a given time there is at most one event a process can execute). Let Σ
be the set of states of the system. There is a unique initial state s0 ∈ Σ. The
execution of a process p is represented as a partial function executep : Σ �→ Σ
that moves the system from one state to a subsequent state. Each application
of the function executep represents the execution of an atomic block of the code
that p is running, denoted as event (or execution step) of process p. An execution
sequence E (also called derivation) of a system is a finite sequence of events of
its processes starting from s0, and it is uniquely characterized by the sequence
of processes that perform steps of E. For instance, p · q · q denotes the execution
sequence that first performs one step in p, followed by two steps in q. We use
ε to denote the empty sequence. The state of the system after E is denoted by
s[E]. The set of processes enabled in state s (i.e., that can perform an execution
step from s) is denoted by enabled(s).

2.1 Basics of Partial Order Reduction

An event e of the form (p, i) denotes the i-th occurrence of process p in an
execution sequence, and ê denotes the process p of event e, which is extended to
sequences of events in the natural way. We write ē to refer to the identifier of
the atomic block of code the event e is executing. The set of events in execution
sequence E is denoted by dom(E). We use e <E e′ to denote that event e occurs
before event e′ in E, s.t. <E establishes a total order between events in E, and
E ≤ E′ to denote that sequence E is a prefix of sequence E′. Let dom[E](w)
denote the set of events in execution sequence E.w that are in sequence w, i.e.,
dom(E.w)\dom(E). If w is a single process p, we use next[E](p) to denote the
single event in dom[E](p). If P is a set of processes, next[E](P ) denotes the set of
next[E](p) for all p ∈ P . The core concept in POR is that of the happens-before
partial order among the events in execution sequence E, denoted by →E . This
relation defines a subset of the <E total order, such that any two sequences with
the same happens-before order are equivalent. Any linearization E′ of →E on
dom(E) is an execution sequence with exactly the same happens-before relation
→E′ as →E . Thus, →E induces a set of equivalent execution sequences, all with
the same happens-before relation. We use E � E′ to denote that E and E′ are
linearizations of the same happens-before relation. The happens-before partial
order has traditionally been defined in terms of a dependency relation between
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Algorithm 1. (Source+Context-sensitive)+Constrained DPOR algorithm
1: procedure explore(E)
2: if (∃p ∈ (enabled(s[E])\sleep(E))) then
3: back(E) := {p};
4: while (∃p ∈ (back(E)\sleep(E))) do
5: let n = next[E](p);
6: for all (e ∈ dom(E) such that e �E.p n) do
7: let E′ = pre(E, e);
8: let u = dep(E, e, n);
9: if (¬(U⇒(Iē,n̄, e, n, s[E′.û])) then
10: updateBack(E,E′, e, p);
11: if C(s[E′.û]) for some C ∈ Iē,n̄ then
12: add û.p.ê to sleep(E′);
13: else
14: updateSleepCS(E,E′, e, p);

15: sleep(E.p) := {x | x ∈ sleep(E), E |= p � x}
16: ∪ {x | p.x ∈ sleep(E)}
17: ∪ {x | x ∈ sleep(E), |x| = 1, m = next[E](x), U⇒(In̄,m̄, n,m, s[E]))};
18: explore(E.p);
19: sleep(E) := sleep(E) ∪ {p};

the execution steps associated to those events [10]. Intuitively, two steps p and
q are dependent if there is at least one execution sequence E for which they
do not commute, either because (i) one enables the other (i.e., the execution
of p leads to introducing q, or viceversa), or because (ii) s[E.p.q] �= s[E.q.p]. We
define dep(E, e, n) as the subsequence containing all events e′ in E that occur
after e and happen-before n in E.p (i.e., e<Ee′ and e′→E.pn). The unconditional
dependency relation is used for defining the concept of a race between two events.
Event e is said to be in race with event e′ in execution E, if the events belong to
different processes, e happens-before e′ in E (e →E e′), and the two events are
“concurrent”, i.e. there exists an equivalent execution sequence E′ � E where
the two events are adjacent. We write e �E e′ to denote that e is in race with
e′ and that the race can be reversed (i.e., the events can be executed in reverse
order). POR algorithms use this relation to reduce the number of equivalent
execution sequences explored, with SDPOR ensuring that only one execution
sequence in each equivalence class is explored.

2.2 State-of-the-Art DPOR with Unconditional Independence

Algorithm 1 shows the state-of-the-art DPOR algorithm –based on the SDPOR
algorithm of [1,2],1 which in turn is based on the original DPOR algorithm
of [9]. We refer to this algorithm as DPOR in what follows. The context-sensitive
extension of CSDPOR [3] (lines 14 and 16) and our extension highlighted in blue

1 The extension to support wake-up trees [2] is deliberately not included to simplify
the presentation.
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(lines 8–10, 11–13 and 17) should be ignored by now and will be described in
Sect. 3.

The algorithm carries out a depth-first exploration of the execution tree
using POR receiving as parameter a derivation E (initially empty). Essentially,
it dynamically finds reversible races and is able to backtrack at the appropriate
scheduling points to reverse them. For this purpose, it keeps two sets at every
prefix E′ of E: back(E′) with the set of processes that must be explored from E′,
and, sleep(E′) with the set of sequences of processes that previous executions
have determined do not need to be explored from E′. Note that in the original
DPOR the sleep set contained only single processes, but in later improvements
sequences of processes are added, so our description considers this general case.
The algorithm starts by selecting any process p that is enabled by the state
reached after executing E and is not already in sleep(E). If it does not find
any such process p, it stops. Otherwise, after setting back(E) = {p} to start
the search, it explores every element in back(E) that is not in sleep(E). The
backtrack set of E might grow as the loop progresses (due to later executions of
line 10). For each such p, DPOR performs two phases: race detection (lines 6, 7
and 10) and state exploration (lines 15, 18 and 19). The race detection starts by
finding all events e in dom(E) such that e �E.p n, where n is the event being
selected (see line 5). For each such e, it sets E′ to pre(E, e), i.e., to be the pre-
fix of E up to, but not including e. Procedure updateBack modifies back(E′)
in order to ensure that the race between e and n is reversed. The source-set
extension of [1,2] detects cases where there is no need to modify back(E′) –this
is done within procedure updateBack whose code is not shown because it is
not affected by our extension. After this, the algorithm continues with the state
exploration phase for E.p, by retaining in its sleep set any element x in sleep(E)
whose events in E.p are independent of the next event of p in E (denoted as
E |= p	x), i.e., any x such that next[E](p) would not happen-before any event in
dom(E.p.x)\dom(E.p). Then, the algorithm explores E.p, and finally it adds p to
sleep(E) to ensure that, when backtracking on E, p is not selected until a depen-
dent event with it is selected. All versions of the DPOR algorithm (except [3]) rely
on the unconditional (or context-insensitive) dependency relation. This relation
has to be over-approximated, usually by requiring that global variables accessed
by one execution step are not modified by the other.

Example 1. Consider the example in Fig. 1 with 3 processes p, q, r containing a
single atomic block. Since all processes have a single event, by abuse of notation,
we refer to events by their process name throughout all examples in the paper.
Relying on the usual over-approximation of dependency all three pairs of events
are dependent. Therefore, starting with one instance per process, the algorithm
has to explore 6 execution sequences, each with a different happens-before rela-
tion. The tree, including the dotted and dashed fragments, shows the exploration
from the initial state z = −2, x = −2. The value of variable z is shown in brack-
ets at each state. Essentially, in all states of the form E.e, the algorithm always
finds a reversible race between the next event of the current selected process
(p, q or r) and e, and adds it to back(E). Also, when backtracking on E, none
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of the elements in sleep(E) is propagated down, since all events are considered
dependent. In the best case, considering an exact (yet unconditional) depen-
dency relation which realizes that events p and r are independent, the algorithm
will make the following reductions. In state 6, p and r will not be in race and
hence p will not be added to back(q). This avoids exploring the sequence p.r
from 5. When backtracking on state 0 with r, where sleep(ε) = {p, q}, p will be
propagated down to sleep(r) since ε |= r 	 p, hence avoiding the exploration of
p.q from 8. Thus, the algorithm will explore 4 sequences.

Fig. 1. Left: code of working example (up) and ICs (down). Right: execution tree
starting from z = −2, x = −2. Full tree computed by SDPOR, dotted fragment not
computed by CSDPOR, and, dashed+dotted fragment not computed by CDPOR.

3 DPOR with Conditional Independence

Our aim in CDPOR is twofold: (1) provide techniques to both infer and soundly
check conditional independence, and (2) be able to exploit them at all points
of the DPOR algorithm where dependencies are used. Section 3.1 reviews the
notions of conditional independence and ICs, and introduces a first type of check
where ICs can be directly used in the DPOR algorithm. Section 3.2 illustrates
why ICs cannot be used at the remaining independence check points in the
algorithm, and introduces sufficient conditions to soundly exploit them at those
points. Finally, Sect. 3.3 presents the CDPOR algorithm that includes all types
of checks.

3.1 Using Precomputed ICs Directly Within DPOR

Conditional independence consists in checking independence at the given state.

Definition 1 (conditional independence). Two events α and β are inde-
pendent in state S, written indep(α, β, S) if (i1) none of them enables the other

from S; and, (i2) if they are both enabled in S, then S
α·β−→ S′ and S

β·α−→ S′.



398 E. Albert et al.

The use of conditional independence in the POR theory was firstly studied in [15],
and it has been partially applied within the DPOR algorithm in CSDPOR [3].
Function updateSleepCS at line 14 and the modification of sleep at 16 encapsulate
this partial application of CSDPOR (the code of updateSleepCS is not shown
because it is not affected by our extension). Intuitively, updateSleepCS works as
follows: when a reversible race is found in the current sequence being explored,
it builds an alternative sequence which corresponds to the reverse race, and then
checks whether the states reached after running the two sequences are the same.
If they are, it adds the alternative sequence to the corresponding sleep set so
that this sequence is not fully explored when backtracking. Therefore, sleep sets
can contain sequences of events which can be propagated down via the rule of
line 16 (i.e., if the event being explored is the head of a sequence in the sleep
set, then the tail of the sequence is propagated down). In essence, the technique
to check (i2) in Definition 1 in CSDPOR consists in checking state equivalence
with an alternative sequence in the current state (hence it is conditional) and, if
the check succeeds, it is exploited in the sleep set only (and not in the backtrack
set).

Example 2. Let us explain the intuition behind the reductions that CSDPOR
is able to achieve w.r.t. unconditional independence-based DPOR on the exam-
ple. In state 1, when the algorithm selects q and detects the reversible race
between q and p, it computes the alternative sequence q.p and realizes that
s[p.q] = s[q.p], and hence adds p.q to sleep(ε). Similarly, in state 2, it computes
p.r.q and realizes that s[p.q.r] = s[p.r.q] adding r.q to sleep(p). Besides these
two alternative sequences, it computes two more. Overall, CSDPOR explores 2
complete sequences (p.q.r and q.r.p) and 13 states (the 9 states shown, plus 4
additional states to compute the alternative sequences).

Instead of computing state equivalence to check (i2) as in [3], our approach
assumes precomputed independence constraints (ICs) for all pairs of atomic
blocks in the program. ICs will be evaluated at the appropriate state to deter-
mine the independence between pairs of concurrent events executing such atomic
blocks.

Definition 2 (ICs). Consider two events α and β that execute, respectively, the
atomic blocks ᾱ and β̄. The independence constraints Iᾱ,β̄ are a set of boolean
expressions (constraints) on the variables accessed by α and β (including local
and global variables) s.t., if some constraint C in Iᾱ,β̄ holds in state S, written
C(S), then condition (i2) of indep(α, β, S) holds.

Our first contribution is in lines 11–13 where ICs are used within DPOR as
follows. Before executing updateSleepCS at line 14, we check if some constraint
in Iē,n̄ holds in the state s[E′.û], by building the sequence E′.û, where u =
dep(E, e, n). Only if our check fails we proceed to execute updateSleepCS. The
advantages of our check w.r.t. updateSleepCS are: (1) the alternative execution
sequence built by updateSleepCS is strictly longer than ours and hence more
states will be explored, and (2) updateSleepCS must check state equivalence
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while we evaluate boolean expressions. Yet, because our IC is an approximation,
if we fail to prove independence we can still use updateSleepCS.

Example 3. Consider the ICs in Fig. 1 (down left), which provide the constraints
ensuring the independence of each pair of atomic blocks, and whose synthesis
is explained in Sect. 4.1. In the exploration of the example, when the algorithm
detects the reversible race between q and p in state 1, instead of computing
q.p and then comparing s[p.q] = s[q.p] as in CSDPOR, we would just check the
constraint in Ip̄,q̄ at state ε, i.e., in z = −2 (line 11), and since it succeeds, q.p is
added to sleep(ε). The same happens at states 2, again at 1 (when backtracking
with r), and 5. This way we avoid the exploration of the additional 4 states due
to the computation of the alternative sequences in Example 2 (namely q.p, r.p
and r.q from state 0, and r.q from 1). The algorithm is however still exploring
many redundant derivations, namely states 4, 5, 6, 7 and 8.

3.2 Transitive Uniformity: How to Further Exploit ICs Within
DPOR

The challenge now is to use ICs, and therefore conditional independence, at
the remaining dependency checks performed by the DPOR algorithm, and most
importantly, for the race detection (line 6). In the example, that would avoid
the addition of q and r to back(ε) and r to back(p), and hence would make the
algorithm only explore the sequence p.q.r. Although that can be done in our
example, it is unsound in general as the following counter-example illustrates.

Example 4. Consider the same example but starting from the initial state z =
−1, x = −2. During the exploration of the first sequence p.q.r, the algorithm
will not find any race since p and q are independent in z = −1, q and r are
independent in z = x = −1, and, p and r are always independent. Therefore,
no more sequences than p.q.r with final result z = 0 will be explored. There is
however a non-equivalent sequence, r.q.p, which leads to a different final state
z = −1.

The problem of using conditional independence within the POR theory was
already identified by Katz and Peled [15]. Essentially, the main idea of POR
is that the different linearizations of a partial order yield equivalent executions
that can be obtained by swapping adjacent independent events. However, this
is no longer true with conditional dependency. In Example 4, using conditional
independence, the partial order of the explored derivation p.q.r would be empty,
which means there would be 6 possible linearizations. However r.q.p is not equiv-
alent to p.q.r since q and p are dependent in s[r], i.e., when z = 0. An extra
condition, called uniformity, is proposed in [15] to allow using conditional inde-
pendence within the POR theory. Intuitively, uniform independence adds a con-
dition to Definition 1 to ensure that independence holds at all successor states
for those events that are enabled and are uniformly independent with the two
events whose independence is being proved. While this notion can be checked
a posteriori in a given exploration, it is unclear how it could be applied in a
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dynamic setting where decisions are made a priori. Here we propose a weaker
notion of uniformity, called transitive uniformity, for which we have been able
to prove that the dynamic-POR framework is sound. The difference with [15] is
that our extra condition ensures that independence holds at all successor states
for all events that are enabled, which is thus a superset of the events considered
in [15]. We notice that the general happens-before definition of [1,2] does not
capture our transitive uniform conditional independence below (namely prop-
erty seven of [1,2] does not hold), hence CDPOR cannot be seen as an instance
of SDPOR but rather as an extension.

Definition 3. The transitive uniform conditional independence relation, writ-
ten unif(α, β, S), fulfills (i1) and (i2) and, (i3) unif(α, β, Sγ) holds for all
γ /∈ {α, β} enabled in S, where Sγ is defined by S

γ−→ Sγ .

During the exploration of the sequence p.q.r in Example 4, the algorithm will now
find a reversible race between p and q, since the independence is not transitively
uniform in z = −1, x = −2. Namely, (i3) does not hold since r is enabled and
we have x = −1 and z = 0 in s[r], which implies ¬unif(p, q, s[r]) ((i2) does not
hold).

We now introduce sufficient conditions for transitive uniformity that can
be precomputed statically, and efficiently checked, in our dynamic algorithm.
Condition (i1) is computed dynamically as usual during the exploration sim-
ply storing enabling dependencies. Condition (i2) is provided by the ICs. Our
sufficient conditions to ensure (i3) are as follows. For each atomic block b, we
precompute statically (before executing DPOR) the set W (b) of the global vari-
ables that can be modified by the full execution of b, i.e., by an instruction in b
or by any other block called from, or enabled by, b (transitively). To this end, we
do a simple analysis which consists in: (1) First we build the call graph for the
program to establish the calling relationships between the blocks in the program.
Note that when we find a process creation instruction spawn(P [ini]) we have a
calling relationship between the block in which the spawn instruction appears
and P . (2) We obtain (by a fixed point computation) the largest relation ful-
filling that g belongs to W (b) if either g is modified by an instruction in b or g
belongs to W (c) for some block c called from b. This computation can be done
with different levels of precision, and it is well-studied in the static analysis field
[18]. We let G(C) be the set of global variables evaluated on constraint C in I.

Definition 4 (sufficient condition for transitive uniformity, U⇒). Let E
be a sequence, I a set of constraints, α and β be two events enabled in s[E],
and T = next[E](enabled(s[E])) \ {α, β}, we define U⇒(I, α, β, s[E]) ≡ ∃C ∈ I :
C(s[E]) ∧ ((G(C) ∩ ⋃

t∈T W (t̄)) = ∅).

Intuitively, our sufficient condition ensures transitive uniformity by checking that
the global variables involved in the constraint C of the IC used to ensure the
uniformity condition are not modified by other enabled events in the state.

Theorem 1. Given a sequence E and two events α and β enabled in s[E], we
have that U⇒(Iᾱ,β̄ , α, β, s[E]) ⇒ unif(α, β, s[E]).
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3.3 The Constrained DPOR Algorithm

The code highlighted in blue in Algorithm1 provides the extension to apply
conditional independence within DPOR. In addition to the pruning explained in
Sect. 3.1, it achieves two further types of pruning:

1. Back-set reduction. The race detection is strengthened with an extra condition
(line 9) so that e and n (the next event of p) are in race only if they are
not conditionally independent in state s[E′.u] (using our sufficient condition
above). Here u is the sub-sequence of events of E that occur after e and
“happen-before” n. This way the conditional independence is evaluated in
the state after the shortest subsequence so that the events are adjacent in an
equivalent execution sequence.

2. Sleep-set extension. An extra condition to propagate down elements in the
sleep set is added (line 17) s.t. a sequence x, with just one process, is propa-
gated if its corresponding event is conditionally independent of n in s[E].

It is important to note also that the inferred conditional independencies are
recorded in the happens-before relation to be later re-used for subsequent com-
putations of the � and dep definitions.

Example 5. Let us describe the exploration for the example in Fig. 1 using
our CDPOR. At state 1, the algorithm checks whether p and q are in race.
U⇒(Ip̄,q̄, p, q, S) does not hold in z = −2 since, although (z ≤ −1) ∈ Ip̄,q̄ holds,
we have that G(z ≤ −1)∩W (r) = {z} �= ∅. Process q is hence added to back(ε).
On the other hand, since (z ≤ −1) ∈ Ip̄,q̄ holds in z = −2 (line 11), q.p is added
to sleep(ε) (line 12). At state 2 the algorithm checks the possible race between
q and r after executing p. This time the transitive uniformity of the indepen-
dence of q and r holds since (z ≤ −2) ∈ Iq̄,r̄ holds, and there are no enabled
events out of {q, r}. Our algorithm therefore avoids the addition of r to back(p)
(pruning 1 above). The algorithm also checks the possible race between p and r
in z = −2. Again, true ∈ Ip̄,r̄ holds and is uniform since G(true) = ∅ (pruning
1). The algorithm finishes the exploration of sequence p.q.r and then backtracks
with q at state 0. At state 5 the algorithm selects process r (p is in the sleep
set of 5 since it is propagated down from the q.p in sleep(ε)). It then checks
the possible race between q and r, which is again discarded (pruning 1), since
transitive uniformity of the independence of q and r can be proved: we have that
(z ≤ −2) ∈ Iq̄,r̄ holds in z = −2 and W (p) ∩ G(z ≤ −2) = ∅, where p is the only
enabled event out of {q, r} and W (p) = {x}. This avoids adding r to back(ε).
Finally, at state 5, p is propagated down in the new sleep set (pruning 2), since
as before true ∈ Ip̄,r̄ ensures transitive uniformity. The exploration therefore
finishes at state 6.

Overall, on our working example, CDPOR has been able to explore only one
complete sequence p.q.r and the partial sequence q.r (a total of 6 states). The
latter one could be avoided if a more precise sufficient condition for uniformity
is provided which, in particular, is able to detect that the independence of p and
q in ε is transitive uniform, i.e., it still holds after r (even if r writes variable z).
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Theorem 2 (soundness). For each Mazurkiewicz trace T defined by the hap-
pens before relation, Explore(ε, ∅) in Algorithm1 explores a complete execution
sequence T ′ that reaches the same final state as T .

4 Automatic Generation of ICs Using SMT

Generating ICs amounts to proving (conditional) program equivalence w.r.t. the
global memory. While the problem is very hard in general, proving equivalence
of smaller blocks of code becomes more tractable. This section introduces a
novel SMT-based approach to synthesize ICs between pairs of atomic blocks of
code. Our ICs can be used within any transformation or analysis tool –beyond
DPOR– which can gain accuracy or efficiency by knowing that fragments of
code (conditionally) commute. Section 4.1 first describes the inference for basic
blocks; Sect. 4.2 extends it to handle process creation and Sect. 4.3 outlines other
extensions, like loops, method invocations and data structures.

4.1 The Basic Inference

In this section we consider blocks of code containing conditional statements and
assignments using linear integer arithmetic (LIA) expressions. The first step to
carry out the inference is to transform q and r into two respective deterministic
Transition Systems (TSs), Tq and Tr (note that q and r are assumed to be
deterministic), and compose them in both reverse orders Tq·r and Tr·q. Consider
r and q in Fig. 1 whose associated TSs are (primed variables represent the final
value of the variables):

Tq : z ≥ 0 → z′ = x; Tr : true → x′ = x + 1, z′ = z + 1;
z < 0 → z′ = z;

The code to be analyzed is the composition of Tq and Tr in both orders:

Tq·r: z ≥ 0 → x′ = x+ 1, z′ = x+ 1; Tr·q: z ≥ −1 → x′ = x+ 1, z′ = x+ 1;
z < 0 → x′ = x+ 1, z′ = z + 1; z < −1 → x′ = x+ 1, z′ = z + 1;

In what follows we denote by Ta·b the deterministic TS obtained from the con-
catenation of the blocks a and b, such that all variables are assigned in one
instruction using parallel assignment. We let A |G be the restriction to the global
memory of the assignments in A (i.e., ignoring the effect on local variables). The
following definition provides an SMT formula over LIA (a boolean formula where
the atoms are equalities and inequalities over linear integer arithmetic expres-
sions) which encodes the independence between the two blocks.

Definition 5 (IC generation). Let us consider two atomic blocks q and r and
a global memory G and let Ci → Ai (resp. C ′

j → A′
j) be the transitions in Tq·r

(resp. Tr·q). We obtain Fq,r as the SMT formula:
∨

i,j(Ci ∧ C ′
j ∧ Ai |G= A′

j |G).
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Intuitively, the SMT encoding in the above definition has as solutions all those
states where both a condition Ci of a transition in Tq·r and C ′

j of a transition in
Tr·q hold (and hence are compatible) and the final global state after executing
all instructions in the two transitions (denoted Ai and A′

j) remains the same.
Next, we generate the constraints of the independence condition Iq,r by

obtaining a compact representation of all models over linear arithmetic atoms
(computed by an allSAT SMT solver) satisfying Fq,r. In particular, we add a
constraint in Iq,r for every obtained model.

Example 6. In the example, we have the TS with conditions and assignments:

Tq·r: C1:z ≥ 0 A1:x
′ = x+ 1, z′ = x+ 1 Tr·q: C′

1:z ≥ −1 A′
1:x

′ = x+ 1, z′ = x+ 1
C2:z < 0 A2:x

′ = x+ 1, z′ = z + 1 C′
2:z < −1 A′

2:x
′ = x+ 1, z′ = z + 1

and we obtain a set with three constraints Iq,r = {(z ≥ 0), (z = x), (z < −1)}
by computing all models satisfying the following resulting formula:

(z ≥ 0 ∧ z ≥ −1 ∧ x + 1 = x + 1 ∧ x + 1 = x + 1) ∨
(z ≥ 0 ∧ z < −1 ∧ x + 1 = x + 1 ∧ x + 1 = z + 1) ∨
(z < 0 ∧ z ≥ −1 ∧ x + 1 = x + 1 ∧ z + 1 = x + 1) ∨
(z < 0 ∧ z < −1 ∧ x + 1 = x + 1 ∧ z + 1 = z + 1)

The second conjunction is unsatisfiable since there is no model with both C1 and
C ′

2. On the other hand, the equalities of the first and the last conjunctions always
hold, which give us the constraints z ≥ 0 and z ≤ −2. Finally, all equalities hold
when x = z, which give us the third constraint as a result for our SMT encoding.

Note that, as in this case Fq,r describes not only a sufficient but also a necessary
condition for independence, the obtained constraints IC are also a sufficient
and necessary conditions for independence. This allows removing line 14 in the
algorithm, since the context-sensitive check will fail if line 11 does. However, the
next extensions do not ensure that the generated ICs are necessary conditions.

4.2 IC for Blocks with Process Creation

Consider the following two methods whose body constitutes an atomic block
(e.g., the lock is taken at the method start and released at the return). They
are inspired by a highly concurrent computation for the Fibonacci used in the
experiments. Variables nr and r are global to all processes:

fib(int v) {
if (v≤1) {spawn(res(v));}
else {spawn(fib(v-1));

spawn(fib(v-2));}
}

res(int v) {
if (nr>0) {nr=0; r=v; }
else {spawn(res(r+v));

r=0;nr=1;}
}

We now want to infer Ifib(v),fib(v1), Ifib(v),res(v1), Ires(v),res(v1). The first step is to
obtain, for each block r, a TS with uninterpreted functions, denoted TSu

r , in
which transitions are of the form C → (A,S) where A are the parallel assign-
ments as in Sect. 4.1, and S is a multiset containing calls to fresh uninterpreted
functions associated to the processes spawned within the transition (i.e., a pro-
cess creation spawn(P ) is associated to an uninterpreted function spawn P ).



404 E. Albert et al.

Tu
fib: v ≤ 1 → (skip, {spawn res(v)})

v > 1 → (skip, {spawn fib(v − 1), spawn fib(v − 2)}
Tu
res: nr ≥ 0 → (nr′ = 0, r′ = v, {})

nr < 0 → (nr′ = 1, r′ = 0, {spawn res(r + v)}
The following definition extends Definition 5 to handle process creation. Intu-
itively, it associates a fresh variable to each different element in the multisets
(mapping P ′ below) and enforces equality among the multisets.

Definition 6 (IC generation with process creation). Let us consider TSu
r·q

and TSu
q·r. We define P = {∪s | s ∈ S, with C → (A,S) ∈ TSu

r·q ∪ TSu
q·r}.

Let P ′ be a mapping from the elements in P to fresh variables, and P ′(S) be
the replacement of the elements in the multiset S applying the mapping P ′. Let
Ci → (Ai, Si) (resp. C ′

j → (A′
j , S

′
j)) be the transitions in TSu

q·r (resp. TSu
r·q). We

obtain Fq,r as the SMT formula:
∨

i,j(Ci ∧C ′
j ∧Ai |G= A′

j |G ∧P ′(Si) ≡ P ′(S′
j)).

For simplicity and efficiency, we consider that ≡ corresponds to the syntactic
equality of the multisets. However, in order to improve the precision of the encod-
ing we apply P ′ to Si and Sj replacing two process creations by the same variable
if they are equal modulo associativity and commutativity (AC) of arithmetic
operators and after substituting the equalities already imposed by Ai |G= A′

j

(see example below). A more precise treatment can be achieved by using equality
with uninterpreted functions (EUF) to compare the multisets of processes.

Example 7. Let us show how we apply the above definition to infer Ires(v),res(v1).
We first build Tres(v)·res(v1) from Tres(v) by composing it with itself:

nr ≤ 0 → (nr′ = 0, r′ = v1, {spawn res(r+v)})
nr > 0 → (nr′ = 1, r′ = 0, {spawn res(v+v1)})

and Tres(v1)·res(v) which is like the one above but exchanging v and v1. Next, we
define P ′ = {spawn res(r + v) �→ x1, spawn res(v + v1) �→ x2, spawn res(r +
v1) �→ x3, spawn res(v1+v) �→ x4} and apply it with the improvement described
above

(nr ≤ 0 ∧ nr ≤ 0 ∧ 0 = 0 ∧ v = v1 ∧ {x1} = {x1}) ∨
(nr ≤ 0 ∧ nr > 0 ∧ 0 = 1 ∧ v1 = 0 ∧ {x1} = {x4}) ∨
(nr > 0 ∧ nr ≤ 0 ∧ 1 = 0 ∧ 0 = v ∧ {x2} = {x3}) ∨
(nr > 0 ∧ nr > 0 ∧ 1 = 1 ∧ 0 = 0 ∧ {x2} = {x2})

Note that the second and the third conjunction are unfeasible and hence can
be removed from the formula. In the first one spawn res(r + v1) is replaced by
x1 (instead of x3) since we can substitute v1 by v as v = v1 is imposed in the
conjunction and in the fourth one spawn res(v1 + v) is replaced by x2 (instead
of x4) since it is equal modulo AC to spawn res(v + v1). Then we finally have

(nr ≤ 0 ∧ nr ≤ 0 ∧ 0 = 0 ∧ v = v1) ∨ (nr > 0 ∧ nr > 0 ∧ 1 = 1 ∧ 0 = 0)

As before, Ires(v),res(v1) = {(nr > 0), (v = v1)} is then obtained by computing all
satisfying models. In the same way we obtain Ifib(v),res(v1) = Ifib(v),fib(v1) = {true}.



Constrained Dynamic Partial Order Reduction 405

The following theorem states the soundness of the inference of ICs, that holds
by construction of the SMT formula.

Theorem 3 (soundness of independence conditions). Given the assump-
tions in Definition 6, if ∃C ∈ Ir,q s.t. C(S) holds, then S

r·q−→ S′ and S
q·r−→ S′.

We will also get a necessary condition in those instances where the use of syn-
tactic equality modulo AC on the multisets of created processes (as described
above) is not loosing precision. This can be checked when building the encoding.

4.3 Other Extensions

We abstract loops from the code of the blocks so that we can handle them
as uninterpreted functions similarly to Definition 6. Basically, for each loop, we
generate as many uninterpreted functions as variables it modifies (excluding
local variables of the loop) plus one to express all processes created inside the
loop. The functions have as arguments the variables accessed by the loop (again
excluding local variables). This transformation allows us to represent that each
variable might be affected by the execution of the loop over some parameters,
and then check in the reverse trace whether we get to the loop over the same
parameters.

Definition 7 (loop extraction for IC generation). Let us consider a loop
L that accesses x1, . . . , xn variables and modifies y1, . . . , ym variables (excluding
local loop variables) and let l1, . . . , lm+1 be fresh function symbol names. We
replace L by the following code:

x′
1 = x1; . . . ; x′

n = xn; y1 = l1(x′
1, ..., x

′
n); . . . ; ym = lm(x′

1, ..., x
′
n);

spawn(fm+1(x′
1, ..., x

′
n)); (only if there are spawn operations inside the loop)

Existing dependency analysis can be used to infer the subset of x1, . . . , xn that
affects each yi, achieving more precision with a small pre-computation overhead.

The treatment of method invocations (or function calls) to be executed atom-
ically within the considered blocks can be done analogously to loops by intro-
ducing one fresh function for every (non-local) variable that is modified within
the method call and one more for the result. The parameters of these new func-
tions are the original ones plus one for each accessed (non-local) variable. After
the transformations for both loops and calls described above, we have TSs with
function calls that are treated as uninterpreted functions in a similar way to
Definition 6. However these functions can now occur in the conditions and the
assignments of the TS. To handle them, we use again a mapping P ′′ to remove
all function calls from the TS and replace them by fresh integer variables. After
that the encoding is like in Definition 6, and we obtain an SMT formula over
LIA, which is again sent to the allSAT SMT solver. Once we have obtained
the models we replace back the introduced fresh variables by the function calls
using the mapping P ′′. Several simplifications on equalities involving function
calls can be done before and after invoking the solver to improve the result. As a
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final remark, data structures like lists or maps have been handled by expressing
their uses as function calls, hence obtaining constraints that include conditions
on them.

5 Experiments

In this section we report on experimental results that compare the performance of
three DPOR algorithms: SDPOR [1,2], CSDPOR [3] and our proposal CDPOR.
We have implemented and experimentally evaluated our method within the
SYCO tool [3], a systematic testing tool for message-passing concurrent pro-
grams. SYCO can be used online through its web interface available at http://
costa.fdi.ucm.es/syco. To generate the ICs, SYCO calls a new feature of the
VeryMax program analyzer [6] which uses Barcelogic [5] as SMT solver. As
benchmarks, we have borrowed the examples from [3] (available online from the
previous url) that were used to compare SDPOR with CSDPOR. They are clas-
sical concurrent applications: several concurrent sorting algorithms (QS, MS,
PS), concurrent Fibonacci Fib, distributed workers Pi, a concurrent registration
system Reg and database DBP, and a consumer producer interaction BB. These
benchmarks feature the typical concurrent programming methodology in which
computations are split into smaller atomic subcomputations which concurrently
interleave their executions, and which work on the same shared data. There-
fore, the concurrent processes are highly interfering, and both inferring ICs and
applying DPOR algorithms on them becomes challenging.

We have executed each benchmark with size increasing input parameters. A
timeout of 60 s is used and, when reached, we write >X to indicate that for the
corresponding measure we encountered X units up to that point (i.e., it is at least
X). Table 1 shows the results of the executions for 6 different inputs. Column
Tr shows the number of traces, S the number of states that the algorithms
explore, and T the time in sec it takes to compute them. For CDPOR, we also
show the time T smt of inferring the ICs (since the inference is performed once
for all executions, it is only shown in the first row). Times are obtained on
an Intel(R) Core(TM) i7 CPU at 2.5 GHz with 8 GB of RAM (Linux Kernel
5.4.0). Columns Gs and Gcs show the time speedup of CDPOR over SDPOR
and CSDPOR, respectively, computed by dividing each respective T by the time
T of CDPOR. Column Gsmt shows the time speedup over CSDPOR including
T smt in the time of CDPOR. We can see from the speedups that the gains of
CDPOR increase exponentially in all examples with the size of the input. When
compared with CSDPOR, we achieve reductions up to 4 orders of magnitude for
the largest inputs on which CSDPOR terminates (e.g., Pi, QS). It is important
to highlight that the number of non-unitary sequences stored in sleep sets is 0
in every benchmark except in BB for which it remains quite low (namely for
BB(11) the peak is 22).

W.r.t. SDPOR, we achieve reductions of 4 orders of magnitude even for
smaller inputs for which SDPOR terminates (e.g., PS). Note that since most
examples reach the timeout, the gains are at least the ones we show, thus the

http://costa.fdi.ucm.es/syco
http://costa.fdi.ucm.es/syco
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Table 1. Experimental evaluation

concrete numbers shown should not be taken into account. In some examples
(e.g., BB, MS), though the gains are linear for the small inputs, when the size
of the problem increases both SDPOR and CSDPOR time out, while CDPOR
can still handle them efficiently.

Similar reductions are obtained for number of states explored. In this case,
the system times out when it has memory problems, and the computation stops
progressing (hence the number of explored states does not increase with the input
any more). As regards the time to infer the annotations T smt, we observe that in
most cases it is negligible compared to the exploration time of the other methods.
QS is the only example that needs some seconds to be solved and this is due to
the presence of several nested conditional statements combined with the use of



408 E. Albert et al.

built-in functions for lists, which makes the generated SMT encoding harder for
the solver and the subsequent simplification step. Note that the inference is a
pre-process which does not add complexity to the actual DPOR algorithm.

6 Related Work and Conclusions

The notion of conditional independence in the context of POR was first intro-
duced in [11,15]. Also [12] provides a similar strengthened dependency definition.
CSDPOR was the first approach to exploit this notion within the state-of-the-art
DPOR algorithm. We advance this line of research by fully integrating condi-
tional independence within the DPOR framework by using independence con-
straints (ICs) together with the notion of transitive uniform conditional indepen-
dence –which ensures the ICs hold along the whole execution sequence. Both ICs
and transitive uniformity can be approximated statically and checked dynam-
ically, making them effectively applicable within the dynamic framework. The
work in [14,21] generated for the first time ICs for processes with a single instruc-
tion following some predefined patterns. This is a problem strictly simpler than
our inference of ICs both in the type of IC generated (restricted to the patterns)
and on the single-instruction blocks they consider. Furthermore, our approach
using an AllSAT SMT solver is different from the CEGAR approach in [4]. The
ICs are used in [14,21] for SMT-based bounded model checking, an approach
to model checking fundamentally different from our stateless model checking
setting. As a consequence ICs are used in a different way, in our case with no
bounds on number of processes, nor derivation lengths, but requiring a unifor-
mity condition on independence in order to ensure soundness. Maximal causality
reduction [13] is technically quite different from CDPOR as it integrates SMT
solving within the dynamic algorithm.

Finally, data-centric DPOR (DCDPOR) [7] presents a new DPOR algorithm
based on a different notion of dependency according to which the equivalence
classes of derivations are based on the pairs read-write of variables. Consider the
following three simple processes {p, q, r} and the initial state x = 0:

p: write(x = 5), q: write(x = 5), r: read(x). In DCDPOR, we have only
three different observation functions: (r, x) (reading the initial value), (r, p)
(reading the value that p writes), (r, q) (reading the value that q writes). There-
fore, this notion of relational independence is finer grained than the traditional
one in DPOR. However, DCDPOR does not consider conditional dependency,
i.e., it does not realize that (r, p) and (r, q) are equivalent, and hence only two
explorations are required (and explored by CDPOR). The example in conclusion,
our approach and DCDPOR can complement each other: our approach would
benefit from using a dependency based on the read-write pairs as proposed in
DCDPOR, and DCDPOR would benefit from using conditional independence
as proposed in our work. It remains as future work to study this integration.
Related to DCDPOR, [16] extends optimal DPOR with observers. For the pre-
vious example, [16] needs to explore five executions: r.p.q and r.q.p, are equivalent
because p and q do not have any observer. Another improvement orthogonal to
ours is to inspect dependencies over chains of events, as in [17,19].
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17. Nguyen, H.T.T., Rodŕıguez, C., Sousa, M., Coti, C., Petrucci, L.: Quasi-optimal
partial order reduction. CoRR, abs/1802.03950 (2018)

18. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

https://doi.org/10.1007/978-3-319-63387-9_26
https://doi.org/10.1007/978-3-319-63387-9_26
https://doi.org/10.1007/978-3-540-70545-1_27
https://doi.org/10.1007/978-3-540-70545-1_27
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-56922-7_36
https://doi.org/10.1007/3-540-56922-7_36
https://doi.org/10.1007/978-3-319-52234-0_14
https://doi.org/10.1007/978-3-319-52234-0_14
https://doi.org/10.1007/978-3-642-02658-4_31
https://doi.org/10.1007/978-3-642-02658-4_31
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1007/978-3-662-03811-6


410 E. Albert et al.
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Abstract. Vehicle-to-Vehicle (V2V) communications is a “connected
vehicles” standard that will likely be mandated in the U.S. within the
coming decade. V2V, in which automobiles broadcast to one another,
promises improved safety by providing collision warnings, but it also
poses a security risk. At the heart of V2V is the communication messag-
ing system, specified in SAE J2735 using the Abstract Syntax Notation
One (ASN.1) data-description language. Motivated by numerous previ-
ous ASN.1 related vulnerabilities, we present the formal verification of
an ASN.1 encode/decode pair. We describe how we generate the imple-
mentation in C using our ASN.1 compiler. We define self-consistency for
encode/decode pairs that approximates functional correctness without
requiring a formal specification of ASN.1. We then verify self-consistency
and memory safety using symbolic simulation via the Software Analysis
Workbench.

Keywords: Automated verification · ASN.1 · Vehicle-to-Vehicle
LLVM · Symbolic execution · SMT solver

1 Introduction

At one time, automobiles were mostly mechanical systems. Today, a modern
automobile is a complex distributed computing system. A luxury car might con-
tain tens of millions of lines of code executing on 50–70 microcontrollers, also
known as electronic control units (ECUs). A midrange vehicle might contain at
least 25 ECUs, and that number continues to grow. In addition, various radios
such as Bluetooth, Wifi, and cellular provide remote interfaces to an automobile.

With all that code and remotely-accessible interfaces, it is no surprise that
software vulnerabilities can be exploited to gain unauthorized access to a vehi-
cle. Indeed, in a study by Checkoway et al. on a typical midrange vehicle, for
every remote interface, they found some software vulnerability that provided an
attacker access to the vehicle’s internal systems [4]. Furthermore, in each case,
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once the interface is exploited, the attackers could parlay the exploit to make
arbitrary modifications to other ECUs in the vehicle. Such modifications could
include disabling lane assist, locking/unlocking doors, and disabling the brakes.
Regardless of the interface exploited, full control can be gained.

Meanwhile, the U.S. Government is proposing a new automotive standard for
vehicle-to-vehicle (V2V) communications. The idea is for automobiles to have
dedicated short-range radios that broadcast a Basic Safety Message (BSM)—
e.g., vehicle velocity, trajectory, brake status, etc.—to other nearby vehicles
(within approximately 300 m). V2V is a crash prevention technology that can
be used to warn drivers of unsafe situations—such as a stopped vehicle in the
roadway. Other potential warning scenarios include left-turn warnings when line-
of-sight is blocked, blind spot/lane change warnings, and do-not-pass warnings.
In addition to warning drivers, such messages could have even more impact for
autonomous or vehicle-assisted driving. The U.S. Government estimates that if
applied to the full national fleet, approximately one-half million crashes and 1,000
deaths could be prevented annually [15]. We provide a more detailed overview
of V2V in Sect. 2.

While V2V communications promise to make vehicles safer, they also provide
an additional security threat vector by introducing an additional radio and more
software on the vehicle.

This paper presents initial steps in ensuring that V2V communications are
implemented securely. We mean “secure” in the sense of having no flaws that
could be a vulnerability; confidentiality and authentication are provided in other
software layers and are not in scope here. Specifically, we focus on the security
of encoding and decoding the BSM. The BSM is defined using ASN.1, a data
description language in widespread use. It is not an exaggeration to say that
ASN.1 is the backbone of digital communications; ASN.1 is used to specify
everything from the X.400 email protocol to voice over IP (VoIP) to cellular
telephony. While ASN.1 is pervasive, it is a complex language that has been
amended substantially over the past few decades. Over 100 security vulnera-
bilities have been reported for ASN.1 implementations in MITRE’s Common
Vulnerability Enumeration (CVE) [14]. We introduce ASN.1 and its security
vulnerabilities in Sect. 3.

This paper presents the first work in formally verifying a subsystem of V2V.
Moreover, despite the pervasiveness and security-critical nature of ASN.1, it is
the first work we are aware of in which any ASN.1 encoder (that translate ASN.1
messages into a byte stream) and decoder (that recovers an ASN.1 message from
a byte stream) has been formally verified. The only previous work in this direc-
tion is by Barlas et al., who developed a translator from ASN.1 into CafeOBJ,
an algebraic specification and verification system [1]. Their motivation was to
allow reasoning about broader network properties, of which an ASN.1 specifica-
tion may be one part, their work does not address ASN.1 encoding or decoding
and appears to be preliminary.

The encode/decode pair is first generated by Galois’ ASN.1 compiler, part of
the High-Assurance ASN.1 Workbench (HAAW). The resulting encode/decode
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pair is verified using Galois’ open source Software Analysis Workbench (SAW),
a state-of-the-art symbolic analysis engine [6]. Both tools are further described
in Sect. 4.

In Sect. 5 we state the properties verified: we introduce the notion of self-
consistency for encode/decode verification, which approximates functional cor-
rectness without requiring a formal specification of ASN.1 itself. Then we
describe our approach to verifying the self consistency and memory safety of
the C implementation of the encode/decode pair in Sect. 6 using compositional
symbolic simulation as implemented in SAW. In Sect. 7 we put our results into
context.

2 Vehicle-to-Vehicle Communications

As noted in the introduction, V2V is a short-range broadcast technology with
the purpose of making driving safer by providing early warnings. In the V2V
system, the BSM is the key message broadcasted, up to a frequency of 10 Hz (it
can be perhaps lower due to congestion control). The BSM must be compatible
between all vehicles, so it is standardized under SAE J2735 [7].

The BSM is divided into Part I and Part II, and both are defined with ASN.1.
Part I is called the BSM Core Data and is part of every message broadcast. Part I
includes positional data (latitude, longitude, and elevation), speed, heading, and
acceleration. Additionally it includes various vehicle state information including
transmission status (e.g., neutral, park, forward, reverse), the steering wheel
angle, braking system status (e.g., Are the brakes applied? Are anti-lock brakes
available/engaged?, etc.), and vehicle size. Our verification, described in Sect. 6,
is over Part I.

Part II is optional and extensible. Part II could include, for example,
regionally-relevant data. It can also include additional vehicle safety data, includ-
ing, for example, which of the vehicle’s exterior lights are on. It may include
information about whether a vehicle is a special vehicle or performing a critical
mission, such as a police car in an active pursuit or an ambulance with a critical
patient. It can include weather data, and obstacle detection.

3 ASN.1

Abstract Syntax Notation One (ASN.1) is a standardized data description lan-
guage in widespread usage. Our focus in this section is to give a sense of what
ASN.1 is as well as its complexity. We particularly focus on aspects that have
led to security vulnerabilities.

3.1 The ASN.1 Data Description Language and Encoding Schemes

ASN.1 was first standardized in 1984, with many revisions since. ASN.1 is a data
description language for specifying messages; although it can express relations
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between request and response messages, it was not designed to specify stateful
protocols. While ASN.1 is “just” a data description language, it is quite large
and complex. Indeed, merely parsing ASN.1 specifications is difficult. Dubuis-
son notes that the grammar of ASN.1 (1997 standard) results in nearly 400
shift/reduce errors and over 1,300 reduce/reduce errors in a LALR(1) parser
generator, while a LL(k) parser generator results in over 200 production rules
beginning with the same lexical token [8]. There is a by-hand transformation of
the grammar into an LL(1)-compliant grammar, albeit no formal proof of their
equivalence [9].

Not only is the syntax of ASN.1 complex, but so is its semantics. ASN.1
contains a rich datatype language. There are at least 26 base types, including
arbitrary integers, arbitrary-precision reals, and 13 kinds of string types. Com-
pound datatypes include sum types (e.g., CHOICE and SET), records with subtyp-
ing (e.g., SEQUENCE), and recursive types. There is a complex constraint system
(ranges, unions, intersections, etc.) on the types. Subsequent ASN.1 revisions
support open types (providing a sort of dynamic typing), versioning to support
forward/backward compatibility, user-defined constraints, parameterized speci-
fications, and so-called information objects which provide an expressive way to
describe relations between types.

So far, we have only highlighted the data description language itself. A set
of encoding rules specify how the ASN.1 messages are serialized for transmission
on the wire. Encoder and decoder pairs are always with respect to a specific
schema and encoding rule. There are at least nine standardized ASN.1 encoding
rules. Most rules describe 8-bit byte (octet) encodings, but three rule sets are
dedicated to XML encoding. Common encoding rules include the Basic Encoding
Rules (BER), Distinguished Encoding Rules (DER), and Packed Encoding Rules
(PER). The encoding rules do not specify the transport layer protocol to use (or
any lower-level protocols, such as the link or physical layer).

3.2 Example ASN.1 Specification

To get a concrete flavor of ASN.1, we present an example data schema. Let us
assume we are defining messages that are sent (TX) and received (RX) in a
query-response protocol.

MsgTx ::= SEQUENCE {
txID INTEGER(1..5),

txTag UTF8STRING

}
MsgRx ::= SEQUENCE {

rxID INTEGER(1..7),

rxTag SEQUENCE(SIZE(0..10)) OF INTEGER

}

We have defined two top-level types, each a SEQUENCE type. A SEQUENCE is an
named tuple of fields (like a C struct). The MsgTx sequence contains two fields:
txID and txTag. These are typed with built-in ASN.1 types. In the definition
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of MsgRx, the second field, rxTag, is the SEQUENCE OF structured type; it is
equivalent to an array of integers that can have a length between 0 and 10,
inclusively. Note that the txID and rxID fields are constrained integers that fall
into the given ranges.

ASN.1 allows us to write values of defined types. The following is a value of
type MsgTx:

msgTx MsgTx ::= {
txID 1,

txTag "Some msg"

}

3.3 ASN.1 Security

There are currently over 100 vulnerabilities associated with ASN.1 in the MITRE
Common Vulnerability Enumeration (CVE) database [14]. These vulnerabilities
cover many vendor implementations as well as encoders and decoders embedded
in other software libraries (e.g., OpenSSL, Firefox, Chrome, OS X, etc.). The
vulnerabilities are often manifested as low-level programming vulnerabilities.
A typical class of vulnerabilities are unallowed memory reads/writes, such as
buffer overflows and over-reads and NULL-pointer dereferences. While generally
arcane, ASN.1 was recently featured in the popular press when an ASN.1 vender
flaw was found in telecom systems, ranging from cell tower radios to cellphone
baseband chips [11]; an exploit could conceivably take down an entire mobile
phone network.

Multiple aspects of ASN.1 combine to make ASN.1 implementations a rich
source for security vulnerabilities. One reason is that many encode/decode
pairs are hand-written and ad-hoc. There are a few reasons for using ad-hoc
encoders/decoders. While ASN.1 compilers exist that can generate encoders and
decoders (we describe one in Sect. 4.1), many tools ignore portions of the ASN.1
specification or do not support all encoding standards, given the complexity and
breadth of the language. A particular protocol may depend on ASN.1 language
features or encodings unsupported by most existing tools. Tools that support
the full language are generally proprietary and expensive. Finally, generated
encoders/decoders might be too large or incompatible with the larger system
(e.g., a web browser), due to licensing or interface incompatibilities.

Even if an ASN.1 compiler is used, the compiler will include significant hand-
written libraries that deal with, e.g., serializing or deserializing base types and
memory allocation. For example, the unaligned packed encoding rules (UPER)
require tedious bit operations to encode types into a compact bit-vector repre-
sentation. Indeed, the recent vulnerability discovered in telecom systems is not
in protocol-specific generated code, but in the associated libraries [11].

Finally, because ASN.1 is regularly used in embedded and performance-
critical systems, encoders/decoders are regularly written in unsafe languages,
like C. As noted above, many of the critical security vulnerabilities in ASN.1
encoders/decoders are memory safety vulnerabilities in C.
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4 Our Tools for Generating and Verifying ASN.1 Code

We briefly introduce the two tools used in this work. First we introduce our
ASN.1 compiler for generating the encode/decode pair, then we introduce the
symbolic analysis engine used in the verification.

4.1 High-Assurance ASN.1 Workbench (HAAW)

Our High-Assurance ASN.1 Workbench (HAAW) is a suite of tools developed
by Galois that supports each stage of the ASN.1 protocol development lifecycle:
specification, design, development, and evaluation. It is composed of an inter-
preter, compiler, and validator, albeit with varying levels of maturity. HAAW is
implemented in Haskell.

The HAAW compiler is built using semi-formal design techniques and is thor-
oughly tested to help ensure correctness. The implementation of the HAAW com-
piler is structured to be as manifestly correct as feasible. It effectively imports a
(separately tested) ASN.1 interpreter which is then “partially-evaluated” on the
fly to generate code. The passes are as follows: An input ASN.1 specification is
“massaged” to a specification-like form which can be interpreted by a built-in
ASN.1 interpreter. This specification-like form is combined with the interpreter
code and is converted into a lambda-calculus representation; to this representa-
tion we apply multiple optimization rules; we finally “sequentialize” to a monadic
lambda-calculus (where we are left with the lambda calculus, sequencing oper-
ators, and encoding/decoding primitives), this last representation is then trans-
formed into C code. The generated code is linked with a library that encodes
and decodes the basic ASN.1 types.

Moreover, while the HAAW compiler improves the quality of the code gen-
erated, we verify the generated code and libraries directly, so HAAW is not part
of the trusted code-base.

4.2 The Software Analysis Workbench (SAW)

The Software Analysis Workbench (SAW)1 is Galois’ open-source, state-of-the-
art symbolic analysis engine for multiple programming languages. Here we briefly
introduce SAW, see Dockins et al. [6] for more details.

An essential goal of SAW is to generate semantic models of programs inde-
pendent of a particular analysis task and to interface with existing automated
reasoning tools. SAW is intended to be mostly automated but supports user-
guidance to improve scalability.

The high-level architecture of SAW is shown in Fig. 1. At the heart of SAW
is SAWCore. SAWCore is SAW’s intermediate representation (IR) of programs.
SAWCore is a dependently-typed functional language, providing a functional rep-
resentation of the semantics of a variety of imperative and functional languages.

1 saw.galois.com.

https://saw.galois.com
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Fig. 1. SAW architecture, reproduced from [6].

SAWCore includes common built-in rewrite rules. Additionally, users can pro-
vide domain-specific rewrite rules, and because SAWCore is a dependently-typed
language, rewrite rules can be given expressive types to prove their correctness.

SAW currently supports automated translation of both low-level virtual
machine (LLVM) and Java virtual machine (JVM) into SAWCore. Thus, pro-
gramming languages that can be compiled to these two targets are supported
by SAW. Indeed, SAW can be used to prove the equivalence between programs
written in C and Java.

SAWCore can also be generated from Cryptol. Cryptol is an open-source
language2 for the specification and formal verification of bit-precise algorithms
[10], and we use it to specify portions of our code, as we describe in Sect. 6.

A particularly interesting feature of Cryptol is that it is a typed functional
language, similar to Haskell, but includes a size-polymorphic type system that
includes linear integer constraints. To give a feeling for the language, the con-
catenate operator (#) in Cryptol has the following type:

(#) : fst, snd, a (fin fst)

=> [fst]a -> [snd]a -> [fst + snd]a

It concatenates two sequences containing elements of type a, the first of length
fst—which is constrained to be of finite (fin) length (infinite sequences are
expressible in Cryptol)—and the second of length snd. The return type is a
sequence of a’s of length fst + snd. Cryptol relies on satisfiability modulo the-
ories (SMT) solving for type-checking.

SAWCore is typically exported to various formats supported by external
third-party solvers. This includes SAT solver representations (and inverter
graphs (AIG), conjunctive normal form (CNF), and ABC’s format [3]), as well
as SMT-Lib2 [2], supported by a range of SMT solvers.

2 https://cryptol.net/.

https://cryptol.net/
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SAW allows bit-precise reasoning of programs, and has been used to prove
optimized cryptographic software is correct [6]. SAW’s bit-level reasoning is also
useful for encode/decode verification, and in particular, ASN.1’s UPER encoding
includes substantial bit-level operations.

Finally, SAW includes SAWScript, a scripting language that drives SAW and
connects specifications with code.

5 Properties: Encode/Decode Self Consistency

Ideally, we would prove full functional correctness for the encode/decode pair:
that they correctly implement the ASN.1 UPER encoding/decoding rules for
the ASN.1 types defined in SAE J2735. However, to develop a specification
that would formalize all the required ASN.1 constructs, their semantics, and the
proper UPER encoding rules would be an extremely large and tedious undertak-
ing (decades of “man-years”?). Moreover, it is not clear how one would ensure
the correctness of such a specification.

Instead of proving full functional correctness, we prove a weaker property
by proving consistency between the encoder and decoder implementations. We
call our internal consistency property self-consistency, which we define as the
conjunction of two properties, round-trip and rejection. We show that self-
consistency implies that decode is the inverse of encode, which is an intuitive
property we want for an encode/decode pair.

The round-trip property states that a valid message that is encoded and then
decoded results in the original message. This is a completeness property insofar
as the decoder can decode all valid messages.

A less obvious property is the rejection property. The rejection property infor-
mally states that any invalid byte stream is rejected by the decoder. This is a
soundness property insofar as the decoder only decodes valid messages.

In the context of general ASN.1 encoders/decoders, let us fix a schema S and
an encoding rule. Let MS be the set of all ASN.1 abstract messages that satisfy
the schema. Let B the set of all finite byte streams. Let encs : Ms → B be an
encoder, a total function on Ms. Let error be a fixed constant such that error �∈
Ms. Let the total function decs : B → (Ms ∪ {error}) be its corresponding
decoder.

The round-trip and rejection properties can respectively be stated as follows:

Definition 1 (Round-trip)

∀m ∈ Ms.decs(encs(m)) = m.

Definition 2 (Rejection)

∀b ∈ B.decs(b) = error ∨ encs(decs(b)) = b.

The two properties are independent: a decoder could properly decode valid
byte streams while mapping invalid byte streams to valid messages. Such a
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decoder would be allowed by Round-trip but not by Rejection. An encode/decode
pair that fails the Rejection property could mean that dec does not terminate
normally on some inputs (note that error is a valid return value of dec). Clearly,
undefined behavior in the decoder is a security risk.

Definition 3 (Self-consistency). An encode/decode pair encS and decS is
self-consistent if and only if it satisfies the round-trip and rejection properties.

Self-consistency does not require any reference to a specification of ASN.1
encoding rules, simplifying the verification. Indeed, they are applicable to any
encode/decode pair of functions.

However, as noted at the outset, self-consistency does not imply ful func-
tional correctness. For example, for an encoder encS and decoder decS pair,
suppose the messages MS = {m0, m1} and the byte streams B includes
{b0, b1} ⊆ B. Suppose that according to the specification, it should be the
case that encS(m0) = b0, encS(m1) = b1, decs(b0) = m0 and dec(b1) = m1, and
for all b ∈ B such that b �= b0 and b �= b1, decS(b) = error . However, suppose
that in fact encS(m0) = b1, encS(m1) = b0, decS(b0) = m1 and decS(b1) = m0,
and for all other b ∈ B, dec(b) = error . Then encS and decS satisfy both the
round-trip and rejection properties, while being incorrect.

That said, if self-consistency holds, then correctness reduces to showing that
either encoder or decoder matches its specification, but showing both hold is
unnecessary.

In our work, we formally verify self-consistency and memory safety. We also
give further, informal, evidence of correctness by both writing individual test
vectors and by comparing our test vectors to that produced by other ASN.1
compilers.

6 Verification

Figure 2 summarizes the overall approach to generating and verifying the
encode/decode pair, which we reference throughout this section.

6.1 First Steps

The given SAE J2735 ASN.1 specification (J2735.asn) is given as input to HAAW
to generate C code for the encoder and decoder. A HAAW standard library
is emitted (the dotted line from HAAW to libHAAW.c in Fig. 2 denotes that
the standard library is not specific to the SAE-J2735 specification and is not
compiled from HAAW).

We wrote the round-trip and rejection properties (Sect. 5) as two C functions.
For example, the round-trip property is encoded, approximately, as follows:

bool round_trip(BSM *msg_in) {
unsigned char str[BUF_SIZE];

enc(msg_in, str);



422 M. Tullsen et al.

Fig. 2. Code generation and verification flow.

BSM *msg_out;

dec(msg_out, str);

return equal_msg(msg_in, msg_out);

}

The actual round trip property is slightly longer as we need to deal with C
level setup, allocation, etc. This is why we chose to implement this property in
C (rather than in SAWScript).

Now all we need to do is verify, in SAWScript, that the C function round trip
returns 1 for all inputs. At this point, it would be nice to say the power of our
automated tools was sufficient to prove round trip without further programmer
intervention. This, unsurprisingly, was not the case. Most of the applications of
SAW have been to cryptographic algorithms where code typically has loops with
statically known bounds. In our encoder/coder code we have a number of loops
with unbounded iterations: given such code we need to provide some guidance
to SAW.

In the following sections we present how we were able to use SAW, as well
as our knowledge of our specific code, to change an intractable verification task
into one that could be done (by automated tools) in less than 5 h. An important
note: the rest of this section describes SAW techniques that allow us to achieve
tractability, they do not change the soundness of our results.
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6.2 Compositional Verification with SAW Overrides

SAW supports compositional verification. A function (e.g., compiled from Java or
C) could be specified in Cryptol and verified against its specification. That Cryp-
tol specification can then be used in analyzing the remainder of the program,
such that in a symbolic simulation, the function is replaced with its specification.
We call this replacement an override. Overrides can be used recursively and can
dramatically improve the scalability of a symbolic simulation. SAW’s scripting
language ensures by construction that an override has itself been verified.

Overrides are like lemmas, we prove them once, separately, and can re-use
them (without re-proof). The lemma that an override provides is an equivalence
between a C function and a declarative specification provided by the user (in
Cryptol). The effort to write a specification and add an override is often required
to manage intractability of the automated solvers used.

6.3 Overriding “copy bits” in SAW

There are two critical libHAAW functions that we found to be intractable to verify
using symbolic simulation naively. Here we describe generating overrides for one
of them:

copy_bits

( unsigned char * dst

, uint32_t *dst_i

, unsigned char const * src

, uint32_t *src_i

, uint32_t const length)

{
uint32_t src_i_bound = *src_i + length;

while (*src_i < src_i_bound) {
copy_overlapping_bits (dst, dst_i, src, src_i, src_i_bound);

}
return 0;

}

The above function copies length bits from the src array to the dst array,
starting at the bit indexed by src i in src and index dst i in dst; src i and
dst i are incremented by the number of bits copied; copy overlapping bits is
a tedious but loop-free function with bit-level computations to convert to/from
a bit-field and byte array. This library function is called by both the encoder
and decoder.

One difficulty with symbolically executing copy bits with SAW is that SAW
unrolls loops. Without a priori knowledge of the size of length and src i, there
is no upper bound on the number of iterations of the loop. Indeed, memory
safety is dependent on an invariant holding between the indices, the number of
bits to copy, and the length of the destination array: the length of the destination
array is not passed to the function, so there is no explicit check to ensure no
write-beyond-array in the destination array.



424 M. Tullsen et al.

Even if we could fix the buffer sizes and specify the relationship between
the length and indexes so that the loop could be unrolled in theory, in practice,
it would still be computationally infeasible for large buffers. In particular, we
would have to consider every valid combination of the length and start indexes,
which is cubic in the bit-length of the buffers.

To override copy bits, we write a specification of copy bits in Cryptol.
The specification does not abstract the function, other than eliding the details
of pointers, pointer arithmetic, and destructive updates in C. The specification
is given below:

copy_bits : dst_n, src_n

[dst_n][8] -> [32] -> [src_n][8] -> [32] -> [32]

-> ([dst_n][8], [32], [32])

copy_bits dst0 dst_i0 src src_i0 length = (dst1, dst_i1, src_i1)

where

dst_bits0 = join dst0

src_bits0 = join src

dst1 = split (copy dst_bits0 0)

copy dst_bits i =

if i == length

then dst_bits

else copy dst_bits’’ (i + 1)

where

dst_bits’’ = update dst_bits (dst_i0 + i)

(src_bits0 @ (src_i0 + i))

dst_i1 = dst_i0 + length

src_i1 = src_i0 + length

We refer to the Cryptol User Manual for implementation details [10], but to
provide an intuition, we describe the type signature (the first three lines above):
the type is polymorphic, parameterized by dst n and src n. A type [32] is a
bit-vector of length 32. A type [dst n][8] is an array of length dst n containing
byte values. The function takes a destination array of bytes, a 32-bit destination
index, a source array of bytes, a source index, an a length, and returns a triple
containing a new destination array, and new destination and source indices,
respectively. Because the specification is pure, the values that are destructively
updated through pointers in the C implementation are part of the return value
in the specification.

6.4 Multiple Overrides for “copy bits” in SAW

Even after providing the above override for copy bits, we are still beyond
the limits of our underlying solvers to automatically prove the equivalence of
copy bits with its Cryptol specification.

However, we realize that for the SAE J2735 encode/decode, copy bits is
called with a relatively small number of specific concrete values for the sizes of
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the dst and src arrays, the indexes dst i and src i, and the length of bits to
copy length. The only values that we need to leave symbolic are the bit values
within the dst and src arrays. Therefore, rather than creating a single override
for an arbitrary call to copy bits, we generate separate overrides for each unique
set of “specializable” arguments, i.e., dst i, src i, and length.

Thus we note another feature of SAW: SAW allows us to specify a set of con-
crete function arguments for an override; for each of these, SAW will specialize
the override. (I.e., it will prove each specialization of the override.) In our case
this turns one intractable override into 56 tractable ones. The 56 specializations
(which corresponds to the number of SEQUENCE fields in the BSM specifi-
cation) were not determined by trial and error but by running instrumented
code.

It is important to note that the consequence of a missing overrride special-
ization cannot change the soundness of SAW’s result: Overrides in SAW cannot
change the proof results, they only change the efficiency of proof finding. If we
had a missing override specialization for copy bits we would only be back where
we started: a property that takes “forever” to verify.

This approach works well for the simple BSM Part I. However, once we
begin to verify encoders/decoders for more complex ASN.1 specifications (e.g.,
containing CHOICE and OPTIONAL constructs), this method will need to be gen-
eralized.

6.5 Results

A SAW script (script.saw) ties everything together and drives the symbolic
execution in SAW and lifts LLVM variables and functions into a dependent logic
to state pre- and post-conditions and provide Cryptol specifications as needed.
Finally, SAW then generates a SMT problem; Z3 [5] is the default solver we use.

Just under 3100 lines of C code were verified, not counting blank or comment
lines. The verification required writing just under 100 lines of Cryptol specifi-
cation. There are 1200 lines of SAW script auto-generated by the test harness
in generating the override specifications. Another 400 lines of SAW script is
hand-written for the remaining overrides and to drive the overall verification.

Executed on a modern laptop with an Intel Core i7-6700HQ 2.6 GHz proces-
sor and 32 GB of memory, the verification takes 20 min to prove the round-trip
property and 275 min to prove the rejection property. The round-trip property
is less expensive to verify because symbolic simulation is sensitive to branching,
and for the round-trip property, we assert the data is valid to start, which in turn
ensures that all of the decodings succeed. In rejection, on the other hand, we have
a branch at each primitive decode, and we need to consider both possibilities
(success and failure).
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7 Discussion

7.1 LLVM and Definedness

Note that our verification has been with respect to the LLVM semantics not the
C source of our code. SAW does not model C semantics, but inputs LLVM as the
program’s semantics (we use clang to generate LLVM from the C). By verifying
LLVM, SAW is made simpler (it need only model LLVM semantics rather than
C) and we can do inter-program verification more easily. The process of proving
that a program satisfies a given specification within SAW guarantees definedness
of the program (and therefore memory safety) as a side effect. That is, the
translation from LLVM into SAWCore provides a well-defined semantics for the
program, and this process can only succeed if the program is well-defined. In
some cases, this well-definedness is assumed during translation and then proved
in the course of the specification verification. For instance, when analyzing a
memory load, SAW generates a semantic model of what the program does if
the load was within the bounds of the object it refers to, and generates a side
condition that the load was indeed in bounds.

Verifying LLVM rather than the source program is a double-edged sword. On
the one hand, the compiler front-end that generates LLVM is removed from the
trusted computing base. On the other hand, the verification may not be sound
with respect to the program’s source semantics. In particular, C’s undefined
behaviors are a superset of LLVM’s undefined behaviors; a compiler can soundly
remove undefined behaviors but not introduce them. For example, a flaw in the
GCC compiler allowed the potential for an integer overflow when multiplying
the size of a storage element by the number of elements. The result could be
insufficient memory being allocated, leading to a subsequent buffer overflow.
clang, however, introduces an implicit trap on overflow [12].

Moreover, the LLVM language reference does not rigorously specify well-
definedness, and it is possible that our formalization of LLVM diverges from a
particular compiler’s [13].

7.2 Other Assumptions

We made some memory safety assumptions about how the encode/decode rou-
tines are invoked. First, we assume that the input and output buffers provided
to the encoder and decoder, respectively, do not alias. We also assume that each
buffer is 37 bytes long (sufficient to hold a BSM with Part I only). A meta
argument shows that buffers of at least 37 bytes are safe: we verify that for all
37-byte buffers, we never read or write past their ends. So, if the buffers were
longer, we would never read the bytes above the 37th element.

For more complex data schemas (and when we extend to BSM Part II) whose
messages require a varying octet size, we would need to ensure the buffers are
sufficiently large for all message sizes.
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7.3 Proof Robustness

By “proof robustness” we mean how much effort is required to verify another
protocol or changes to the protocol. We hypothesize that for other protocols
that use UPER and a similar set of ASN.1 constructs, the verification effort
would be small. Most of our manual effort focused on the libHAAW libraries,
which is independent of the particular ASN.1 protocol verified. That said, very
large protocol specifications may require additional proof effort to make them
compositional.

In future work, we plan to remove the need to generate overrides as a separate
step (as described in Sect. 6.2) by modifying HAAW to generate overrides as it
generates the C code.

8 Conclusion

Hopefully we have motivated the security threat to V2V and the need for elimi-
nating vulnerabilities in ASN.1 code. We have presented a successful application
of automated formal methods to real C code for a real-world application domain.

There are some lessons to be learned from this work:

(1) Fully automated proofs of correctness properties are possible, but not trivial.
The encoding of properties into C and SAWScript and getting the proofs
to go through took one engineer approximately 3 months, this engineer had
some experience with SAW; we were also able to get support and bug-fixes
from the SAW developers. (It also helped that the code was bug-free so no
“verification” time was spent on finding counter-examples and fixing code.)

(2) The straightforward structure of the C used in the encode/decode routines
made them more amenable to automated analysis (see Sect. 6). It certainly
helped that the code verified was compiler-generated and was by design
intended to be, to some degree, manifestly correct. The lesson is not “choose
low-hanging fruit” but “look, low-hanging fruit in safety critical code” or
possibly even “create low-hanging fruit!” (by using simpler C).

(3) For non-trivial software, the likelihood of having a correct specification at
hand, or having the resources to create it, is quite slim! For instance, to
fully specify correct UPER encoding/decoding for arbitrary ASN.1 specifi-
cations would be a Herculean task. But in our case, we formulated two sim-
ple properties—Round-Trip and Rejection—and by proving them we have
also shown memory safety and some strong (not complete, see Sect. 5) guar-
antees of functional correctness. This technique could be applied to any
encode/decode pair.

There are many ways we hope to extend this work:

(1) We plan to extend our verification to the full BSM. This now gets us to more
challenging ASN.1 constructs (e.g., CHOICE) that involve a more complicated
control-flow in the encoders/decoders. We do not expect a proof to be found
automatically, but our plan is to generate lemmas with the generated C code
that will allow proofs to go through automatically.
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(2) Once we can automatically verify the full BSM, we expect to be able to
perform a similar fully-automatic verification on many ASN.1 specifications
(most do not use the full power of ASN.1). We would like to explore what
properties of a given ASN.1 specification might guarantee the ability to
perform such a fully-automatic verification.

(3) By necessity, parts of our SAWScript and the verification properties have
a dependence on the particular API of the HAAW compiler (how abstract
values are encoded, details of the encoding/decoding functions, memory-
management design choices, etc.). Currently the authors are working on gen-
eralizing this so that one can abstract over ASN.1-tool-specific API issues.
The goal is to be able to extend our results to other encode/decode pairs
(generated by hand or by other ASN.1 compilers).

(4) Note that the self-consistency property is generic (and has no reference to
ASN.1). As a result, we believe our work can be extended to encode/decode
pairs on non-ASN.1 data.
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1996

https://www.SMT-LIB.org
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-48869-1_5


Formal Verification of a Vehicle-to-Vehicle (V2V) Messaging System 429

10. Galois Inc.: Cryptol: the language of cryptography. Galois, Inc., portland (2016).
http://www.cryptol.net/files/ProgrammingCryptol.pdf

11. Goodin, D.: Software flaw puts mobile phones and networks at risk of complete
takeover. Ars Technica (2016)

12. Lattner, C.: What every C programmer should know about undefined behav-
ior #3/3. Online blog, May 2011. http://blog.llvm.org/2011/05/what-every-c-
programmer-should-know 21.html

13. Lee, J., Youngju Song, Y.K., Hur, C.K., Das, S., Majnemer, D., Regehr, J., Lopes,
N.P.: Taming undefined behavior in LLVM. In: Proceedings of 38th Conference on
Programming Language Design and Implementation (PLDI) (2017)

14. MITRE: Common vulnerabilities and exposures for ASN.1, February 2017. https://
cve.mitre.org/cgi-bin/cvekey.cgi?keyword=ASN.1

15. U.S. Dept. of Transportation: Fact sheet: Improving safety and mobility
through vehicle-to-vehicle communications technology (2016). https://icsw.nhtsa.
gov/safercar/v2v/pdf/V2V NPRM Fact Sheet 121316 v1.pdf

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://www.cryptol.net/files/ProgrammingCryptol.pdf
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know_21.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know_21.html
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=ASN.1
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=ASN.1
https://icsw.nhtsa.gov/safercar/v2v/pdf/V2V_NPRM_Fact_Sheet_121316_v1.pdf
https://icsw.nhtsa.gov/safercar/v2v/pdf/V2V_NPRM_Fact_Sheet_121316_v1.pdf
http://creativecommons.org/licenses/by/4.0/


Continuous Formal Verification
of Amazon s2n

Andrey Chudnov1, Nathan Collins1, Byron Cook3,4, Joey Dodds1,
Brian Huffman1, Colm MacCárthaigh3, Stephen Magill1(B), Eric Mertens1,

Eric Mullen2, Serdar Tasiran3, Aaron Tomb1, and Eddy Westbrook1

1 Galois, Inc., Portland, USA
stephen@galois.com

2 University of Washington, Seattle, USA
3 Amazon Web Services, Seattle, USA

4 University College London, London, UK

Abstract. We describe formal verification of s2n, the open source TLS
implementation used in numerous Amazon services. A key aspect of this
proof infrastructure is continuous checking, to ensure that properties
remain proven during the lifetime of the software. At each change to the
code, proofs are automatically re-established with little to no interac-
tion from the developers. We describe the proof itself and the technical
decisions that enabled integration into development.

1 Introduction

The Transport Layer Security (TLS) protocol is responsible for much of the
privacy and authentication we enjoy on the Internet today. It secures our phone
calls, our web browsing, and connections between resources in the cloud made
on our behalf. In this paper we describe an effort to prove the correctness of
s2n [3], the open source TLS implementation used by many Amazon and Amazon
Web Services (AWS) products (e.g. Amazon S3 [2]). Formal verification plays
an important role for s2n. First, many security-focused customers (e.g. financial
services, government, pharmaceutical) are moving workloads from their own data
centers to AWS. Formal verification provides customers from these industries
with concrete information about how security is established in Amazon Web
Services. Secondly, automatic and continuous formal verification facilitates rapid
and cost-efficient development by a distributed team of developers.

In order to realize the second goal, verification must continue to work with
low effort as developers change the code. While fundamental advances have been
made in recent years in the tractability of full verification, these techniques
generally either: (1) target a fixed version of the software, requiring significant re-
proof effort whenever the software changes or, (2) are designed around synthesis
of correct code from specifications. Neither of these approaches would work for
Amazon as s2n is under continuous development, and new versions of the code
would not automatically inherit correctness from proofs of previous versions.
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To address the challenge of program proving in such a development environ-
ment, we built a proof and associated infrastructure for s2n’s implementations
of DRBG, HMAC, and the TLS handshake. The proof targets an existing imple-
mentation and is updated either automatically or with low effort as the code
changes. Furthermore, the proof connects with existing proofs of security prop-
erties, providing a high level of assurance.

Our proof is now deployed in the continuous integration environment for
s2n, and provides a distributed team of developers with repeated proofs of the
correctness of s2n even as they continue to modify the code. In this paper, we
describe how we structured the proof and its supporting infrastructure, so that
the lessons we learned will be useful to others who address similar challenges.

Figure 1 gives an overview of our proof for s2n’s implementation of the HMAC
algorithm and the tooling involved. At the left is the ultimate security property
of interest, which for HMAC is that if the key is not known, then HMAC is indis-
tinguishable from a random function (given some assumptions on the underlying
hash functions). This is a fixed security property for HMAC and almost never
changes (a change would correspond to some new way of thinking about security
in the cryptographic research community). The HMAC specification is also fairly
static, having been updated only once since its publication in 20021. Beringer
et al. [6] have published a mechanized formal proof that the high-level HMAC
specification establishes the cryptographic security property of interest.

As we move to the right through Fig. 1, we find increasingly low-level arti-
facts and the rate of change of these artifacts increases. The low-level HMAC
specification includes details of the API exposed by the implementation, and
the implementation itself includes details such as memory management and per-
formance optimizations. This paper focuses on verifying these components in a
manner that uses proof automation to decrease the manual effort required for
ongoing maintenance of these verification artifacts. At the same time, we ensure
that the automated proof occurring on the right-hand side of the figure is linked
to the stable, foundational security results present at the left.

In this way, we realize the assurance benefit of the foundational security
work of Beringer et al. while producing a proof that can be integrated into the
development workflow. The proof is applied as part of the continuous integration
system for s2n (which uses Travis CI) and runs every time a code change is
pushed or a pull request is issued. In one year of code changes only three manual
updates to the proof were required.

The s2n source code, proof scripts, and access to the underlying proof tools
can all be found in the s2n GitHub [3] repository. The collection of proof runs
is logged and appears on the s2n Travis CI page [4].

In addition to the HMAC proof, we also reused the approach shown in
the right-hand side of Fig. 1 to verify the deterministic random big generator
(DRBG) algorithm and the TLS Handshake protocol. In these cases we didn’t
link to foundational cryptographic security proofs, but nonetheless had specifi-
cations that provided important benefits to developers by allowing them to (1)

1 And this update did not change the functional behavior specified in the standard.
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check their code against an independent specification and (2) check that their
code continues to adhere to this specification as it changes. Our TLS Handshake
proof revealed a bug (which was promptly fixed) in the s2n implementation [10],
providing evidence for the first point. All of our proofs have continued to be used
in development since their introduction, supporting the second point.

This PaperWork of Beringer et al.
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from random
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Monolithic API
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s2n C code

Implementation
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Increasing Automation
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(mostly automatic)

Incremental 
API

Low-Level 

Fig. 1. An overview of the structure of our HMAC proof.

Related Work. Projects such as Everest [8,12], Cao [5], and Jasmin [1], gener-
ate verified cryptographic implementations from higher level specifications, e.g.
F* models. While progress in this space continues to be promising—HACL* has
recently achieved performance on primitives that surpasses handwritten C [25]—
we have found in our experiments that the generated TLS code does not yet meet
the performance, power, and space constraints required by the broad range of
AWS products that use s2n.

Static analysis for hand-written cryptographic implementations has been pre-
viously reported in the context of Frama-C/PolarSSL [23], focusing on scaling
memory safety verification to a large body of code. Additionally, unsound but
effective bug hunting techniques such as fuzzing have been applied to TLS imple-
mentations in the past [11,18]. The work we report on goes further by proving
behavioral correctness properties of the implementation that are beyond the
capabilities of these techniques. In this we were helped because the implemen-
tation of s2n is small (less than 10k LOC), and most iteration is bounded.

The goal of our work is to verify deep properties of an existing and actively
developed open source TLS implementation that has been developed for both
high performance and low power as required by a diverse range of AWS prod-
ucts. Our approach was guided by lessons learned in several previous attempts
to prove the correctness of s2n that either (1) required too much developer
interaction during the modification of the code [17], or (2) where pushbutton
symbolic model checking tools did not scale. Similarly, proofs developed using
tools from the Verified Software Toolchain (VST) [6] are valuable for establishing
the correctness and security of specifications, but are not sufficiently resilient to
code changes, making them challenging to integrate into an ongoing develop-
ment process. Their use of a layered proof structure, however, provided us with
a specification that we could use to leverage their security proof in our work.
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O’Hearn details the industry impact of continuous reasoning about code
in [19], and describes additional instances of integration of formal methods with
developer workflows.

2 Proof of HMAC

In this section, we walk through our HMAC proof in detail, highlighting how
the proof is decomposed, the guarantees provided, the tools used, and how this
approach supports integration of verification into the development work-flow.
While HMAC serves as an example, we have also performed a similar proof of
the DRBG and TLS Handshake implementations. We do not discuss DRBG
further, as there are no proof details that differ significantly from HMAC. We
describe our TLS verification in Sect. 3.

2.1 High-Level HMAC Specification

The keyed-Hash Message Authentication Code algorithm (HMAC) is used for
authenticated integrity in TLS 1.2. Authenticated integrity guarantees that the
data originated from the sender and was not changed or duplicated in transit.
HMAC is used as the foundation of the TLS Pseudorandom Function (PRF),
from which the data transmission and data authentication shared keys are
derived. This ensures that both the sender and recipient have exchanged the
correct secrets before a TLS connection can proceed to the data transmission
phase.

HMAC is also used by some TLS cipher suites to authenticate the integrity
of TLS records in the data transmission phase. This ensures, for example, that
a third party watching the TLS connection between a user and a webmail client
is unable to change or repeat the contents of an email body during transmission.
It is also used by the HMAC-based Extract-and-Expand Key Derivation Func-
tion (HKDF) which is implemented within s2n as a utility function for general
purpose key derivation and is central to the design of the TLS1.3 PRF.

FIPS 198-1 [24] defines the HMAC algorithm as

HMAC(K,message) = H((K ⊕ opad)‖H((K ⊕ ipad)‖message))

where H is any hash function, ⊕ is bitwise xor, and ‖ is concatenation. opad and
ipad are constants defined by the specification. We will refer to this definition
as the monolithic specification.

Following Fig. 1, we use the Cryptol specification language [14] to express
HMAC in a form suitable for mechanized verification, first in a monolithic form,
and then in an incremental form. We prove high-level properties with Coq [22]
and tie these to the code using the Software Analysis Workbench (SAW) [16].
We first describe the proof of high-level properties before going into specifics
regarding the tools in Sect. 2.4.
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2.2 Security Properties of HMAC

The Cryptol version of the Monolithic HMAC specification follows.

hmac k message = H((k ^ opad) # H((k ^ ipad) # message))

where H is any hash function, ^ is bitwise xor, and # is concatenation.
The high-level Cryptol specification and the FIPS document look nearly iden-

tical, but what assurance do we have that either description of the algorithm
is cryptographically secure? We can provide this assurance by showing that the
Cryptol specification establishes one of the security properties that HMAC is
intended to provide—namely, that HMAC is indistinguishable from a function
returning random bits.

Indistinguishability from random is a property of cryptographic output that
says that there is no effective strategy by which an attacker that is viewing the
output of the cryptographic function and a true random output can distinguish
the two, where an “effective” strategy is one that has a non-negligible chance
of success given bounded computing resources. If the output of a cryptographic
function is indistinguishable from random, that implies that no information can
be learned about the inputs of that function by examining the outputs.

We prove that our Cryptol HMAC specification has this indistinguishability
property using an operational semantics of Cryptol we developed in Coq. The
semantics enable us to reuse portions of the proof by Beringer et. al [6], which
uses the Coq Foundational Cryptography Framework (FCF) library [20] to estab-
lish the security of the HMAC construction. We construct a Coq proof showing
that our Cryptol specification is equivalent (when interpreted using the formal
operational semantics) to the specification considered in the Beringer et. al work.
The Cryptol specification is a stepping stone to automated verification of the
s2n implementations, so when combined with the verification work we describe
subsequently, we eventually establish that the implementation of HMAC in s2n
also has the desired security property. The Coq code directly relating to HMAC
is all on the s2n GitHub page. These proofs are not run as part of continuous
integration, rather, they are only rerun in the unlikely event that the monolithic
specification changes.

2.3 Low-Level Specification

The formal specification of HMAC presented in the FIPS standard operates on
a single complete message. However, network communication often requires the
incremental processing of messages. Thus all modern implementations of HMAC
provide an incremental interface with the following abstract types:

init : Key -> State
update : Message -> State -> State
digest : State -> MAC

The init function creates a state from a key, the update function updates
that state incrementally with chunks of the message, and the digest function
finalizes the state, producing the MAC.
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The one-line monolithic specification is related to these incremental functions
as follows. If we can partition a message m into m = m1‖m2‖ . . . ‖mn then (in
pseudo code/logic notation)

HMAC(k,m) = digest(update(mn(. . . (update m1(init k)))) (1)

In other words, any MAC generated by partitioning a message and incrementally
sending it in order through these functions should be equal to a MAC generated
by the complete message HMAC interface used in the specification.

We prove that the incremental interface to HMAC is equivalent to the non-
incremental version using a combination of manual proof in Coq and auto-
mated proof in Cryptol. Note that this equivalence property can be stated in
an implementation-independent manner and proved outside of a program veri-
fication context. This is the approach we take—independently proving that the
incremental and monolithic message interfaces compute the same HMAC, and
then separately showing that s2n correctly implements the incremental interface.

Our Coq proof proceeds via induction over the number of partitions with
the following lemmas establishing the relationship between the monolithic and
iterative implementations. These lemmas are introduced as axioms in the Coq
proof, but subsequently checked using SAW.

update_empty : forall s, HMAC_update empty_string s = s.

equiv_one : forall m k,
HMAC_digest (HMAC_update m (HMAC_init k)) = HMAC k m.

update_concat : forall m1 m2 s,
HMAC_update (concat m1 m2) s = HMAC_update m2 (HMAC_update m1 s).

The first lemma states that processing an empty message does not change
the state. The second lemma states that applying the incremental interface to a
single message is equivalent to applying the monolithic interface. These lemmas
constitute the base cases for an inductive proof of equation (1) above. The last
lemma states that calling update twice (first with m1 and then with m2) results
in the same state as calling update once with m1 concatenated with m2. This
constitutes the inductive step in the proof of (1).

The update_empty lemma can be proved by analyzing the code with symbolic
values provided for the state s, as the state is of fixed size. The equiv_one and
update_concat lemmas require reasoning about unbounded data. SAW has lim-
ited support for such proofs. In particular, it has support for equational rewriting
of terms in its intermediate language, but not for induction. In the case of the
update_concat lemma, a few simple builtin rewrite rules are sufficient to estab-
lish the statement for all message sizes. For equiv_one , a proof of the statement
for all message sizes would require induction. Since SAW does not support induc-
tion, we prove that this statement holds for a finite number of key and message
sizes. In theory we could still obtain a complete proof by checking all message
sizes up to 16k bytes (the maximum size message permitted by the TLS stan-
dard). This may be tractable in a one-off proof, but for our continuously-applied
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proofs we instead consider a smaller set of samples, chosen to cover all branches
in the code. This yields a result that is short of full proof, but still provides much
higher state space coverage than testing methods.

Given the three lemmas above, we then use Coq to prove the following the-
orem by induction on the list of partitions, ms.

HMAC key (fold_right concat empty_string ms) =
HMAC_digest (fold_left (fun (st: state) msg =>

HMAC_update msg st)
ms

(HMAC_init key)).

The theorem establishes the equivalence of the incremental and monolithic
interfaces for any decomposition of a message into any number of fragments of
any size.

2.4 Implementation Verification

The incremental Cryptol specification is low-level enough that we were able to
connect it to the s2n HMAC implementation using automated proof techniques.
As this is the aspect of the verification effort that is critical for integration into
an active development environment, we go into some detail, first discussing the
tools that were used and then describing the structure of the proof.

Tools. We use the Software Analysis Workbench (SAW) to orchestrate this step
of the proof. SAW is effective both for manipulating the kinds of functional terms
that arise from Cryptol, and for constructing functional models from imperative
programs. It can be used to show equivalence of distinct software implemen-
tations (e.g. an implementation in C and one in Java) or equivalence of an
implementation and an executable specification.

SAW uses bounded symbolic execution to translate Cryptol, Java, and C pro-
grams into logical expressions, and proves properties about the logical expres-
sions using a combination of rewriting, SAT, and SMT. The result of the bounded
symbolic execution of the input programs is a pure functional term representing
the function’s entire semantics. These extracted semantics are then related to
the Cryptol specifications by way of precondition and postcondition assertions
on the program state.

The top-level theorems we prove have some variables that are universally
quantified (e.g. the key used in HMAC) and others that are parameters we
instantiate to a constant (e.g. the size of the key). We achieve coverage for
the latter by running the proof for several parameter instantiations. In some
cases this is sufficient to cover all cases (e.g. the standard allows only a small
finite number of key sizes). In others, the space of possible instantiations is
large enough that fully covering it would yield runtimes too long to fit into the
developer workflow (for example, messages can be up to 16k long). In such cases,
we consider a smaller set of samples, chosen to cover all branches in the code.
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This yields a result that is short of full proof, but still provides much higher
state space coverage than testing methods.

Internally SAW reasons about C programs by first translating them to LLVM.
For the remainder of the paper we will talk about the C code, although from
a soundness perspective the C code must be compiled through LLVM for the
proofs to apply to the compiled code.

Proof Structure. The functions in the low-level Cryptol specification described
above share the incremental format of the C program, and also consume argu-
ments and operate on state that matches the usage of arguments and state in the
C code. However, the Cryptol specification does not capture the layout of state
in memory. This separates concerns and allows us to reason about equivalence of
the monolithic and incremental interfaces in a more tractable purely functional
setting, while performing the implementation proof in a context in which the
specification and implementation are already structurally quite similar.

As an example of this structural similarity, the C function has type:

int s2n_hmac_update(struct s2n_hmac_state *state,
const void *in, uint32_t size);

We define a corresponding Cryptol specification with type:

hmac_update : {Size} (32 >= width Size) =>
HMAC_state -> [Size][8] -> HMAC_state

These type signatures look a bit different, but they represent the same thing.
In Cryptol, we list Size first, because it is a type, not a value. This means
that we do not need to independently check that the input buffer (in Cryptol
represented by the type [Size][8]) matches the size input—the Cryptol type
system guarantees it. The type system also sets the constraint that the size
doesn’t exceed 232, a constraint set by the C type of Size.

We use SAW’s SAWScript language to describe the expected memory layout
of the C program, and to map the inputs and outputs of the Cryptol function
to the inputs and outputs of the C program. The following code presents the
SAWScript for the hmac_update_spec function.

1 let hmac_update_spec msg_size cfg = do {
2 (msg_val, msg_pointer) <- ptr_to_fresh_array msg_size i8;
3 (initial_state, state_pointer) <- setup_hmac_state cfg
4 hmac_invariants initial_state cfg;
5

6 execute_func [state_pointer, message_pointer, msg_size];
7

8 let final_state =
9 {{ hmac_update_c_state initial_state msg_val }};

10 check_hmac_state state_pointer final_state;
11 hmac_invariants final_state cfg;
12 check_return zero;
13 };
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This SAWScript code represents a Hoare triple, with the precondition and
post condition separated by the body (the execute_func command), which per-
forms the symbolic execution of the LLVM code using the provided arguments.
Lines 2 and 3 are effectively universal quantification over the triple, setting up
the values and pointers that match the type needed by the C function. The
values msg_val and initial_state are referenced in both the C code and the
Cryptol specification, whereas the pointers exist only on the C side.

Lines 8–10 capture that the final state resulting from executing the C function
should be equivalent to the state produced by evaluating the Cryptol specifica-
tion. Specifically, Lines 8 and 9 capture the output of the Cryptol specification
(double curly braces denote Cryptol expressions within SAWScript) and Line 10
asserts that this state matches the C state present in memory at state_pointer.
This is what ultimately establishes equivalence of the implementation and spec-
ification.

The proof is aided by maintaining a collection of state invariants, which are
assumed to hold in Line 4 and are re-established in Line 11. These are manual
invariants, but they occur as function specifications rather than appearing inter-
nal to loops. They only require modification in the event that the meaning of
the HMAC state changes.

The msg_size parameter indicates how large of a message this particular
proof should cover. Because SAW performs a bounded unrolling of the program
under analysis, each proof must cover one fixed size for each unbounded data
structure or iterative construct. However, by parameterizing the proof, it can
easily be repeated for multiple sizes. Furthermore, as described in Sect. 2.3, we
also prove in Coq that calling update twice with messages m1 and m2 is equiv-
alent to calling it once with m1 concatenated with m2. As a consequence, the
fixed size proofs we perform of update can be composed to guarantee that the
update function is correct even over longer messages.

The cfg parameter contains configuration values for each of the six hashes
that can be used with HMAC. The configuration values of interest to HMAC
are the input and output sizes of the hash block function.

Given the specification of the C function above, we can now verify that the
implementation satisfies the specification:

verify m "s2n_hmac_update"
hash_ovs true (hmac_update_spec msg_size cfg) yices_hash_unint;

The "s2n_hmac_update" argument specifies the C function that we are veri-
fying. hash_ovs is a list, defined elsewhere, that contains all of the overrides that
the verification will use. An override is a specification that will be used in place
of a particular implementation function and corresponds to what other tools call
stubs or models. In this case, we’ve overridden all of the C hash functions, stat-
ing assumptions regarding their use of memory and their equivalence to Cryptol
implementations of the same hash functions. When the verifier comes across a
call to one of these hash functions in the C code, it will instead use the provided
specification. The result is that our proof assumes correct implementation of the
hash functions.
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The fact that the structure of the low-level Cryptol specification matches
the structure of the C code, coupled with SAW’s use of SMT as the primary
mechanism for discharging verification conditions, enables a proof that contin-
ues to work through a variety of code changes. In particular, changes to the
code in function bodies often requires no corresponding specification or proof
script change. Similarly, changes that add fields or change aspects of in-memory
data structures that are not referenced by the specification do not require proof
updates. Changes in the API (e.g. function arguments) do require proof script
changes, but these are typically minor. Fixing a broken proof typically involves
adding a new state field to the SAW script, updating the Cryptol specification to
use that field correctly, and then passing the value of that field into the Cryptol
program in the post-condition. If the Cryptol specification is incorrect, SAW will
generate counterexamples that can be used to trace through the code and the
spec together in order to discover the mismatch.

2.5 Integrating the Proof into Development

Integration with the s2n CI system mostly took place within the Travis config-
uration file for s2n. At the time of integration, targets for the build, integration
testing, and fuzzing on both Linux and OSX already existed. We updated the
Travis system with Bash scripts that automatically download and install the
appropriate builds of SAW, Z3, and Yices into the Travis system. These files are
in the s2n repository and can be reused by anyone under the Apache 2.0 license.

A Travis CI build can occur on any number of virtual machines, and each
virtual machine is given an hour to complete. We run our HMAC proofs on
configurations for six different hashes. For each of these configurations we check
at three key-sizes in order to test the relevant cases in the implementation (small
keys get padded, exact keys remain unchanged, and large keys are hashed). For
each of those key-sizes we check six different message sizes. These proofs run in
an average of ten minutes. We discovered that it’s best to stay well clear of the
60 min limit imposed by Travis in order to avoid false-negatives due to variations
in execution time.

The proof runs alongside the tests that are present in the s2n repository on
every build, and if the proof fails a flag is raised just as if a test case were to fail.

3 Proof of TLS Handshake

In addition to the HMAC and DRBG proofs, we have proved correctness of the
TLS state machine implemented in s2n. Specifically, we have proved that (1) it
implements a subset of TLS 1.2 as defined in IETF RFCs 5246 [21], 5077 [15] and
6066 [13] and (2) the socket corking API, which optimizes how data is split into
packets, is used correctly. Formally, we proved that the implementation refines
a specification (conversely, the specification simulates the implementation). We
obtained this Cryptol specification, called the RFC specification by examining
the RFCs and hand-compiling them into a Cryptol file complete with relevant
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excerpts from the RFCs. We assume that the TLS handshake as specified in the
RFCs is secure, and do not formalize nor verify any cryptographic properties
of the specification. In the future, we would like to take a similar approach to
that described in Sect. 2.2 to link our refinement proof with a specification-level
security proof for TLS, such as that from miTLS [9].

The s2n state machine is designed to ensure correctness and security, pre-
venting join-of-state-machines vulnerabilities like SMACK [7]. In addition, s2n
allows increased throughput via the use of TCP socket corking, which combines
several TLS records into one TCP frame where appropriate.

The states and transitions of the s2n state machine are encoded explicitly
as linearized arrays, as opposed to being intertwined with message parsing and
other logic. This is an elegant decomposition of the problem that makes most of
the assumptions explicit and enables the use of common logic for message and
error handling as well as protocol tracking.

Even with the carefully designed state machine implementation, formal spec-
ification and verification helped uncover a bug [10].

Structure of the TLS Handshake State Machine Correctness Proof.
The automated proof of correctness of the TLS state machine has two parts
(Fig. 2). First we establish an equivalence between the two functions2 that drive
the TLS handshake state machine in s2n and their respective specifications in
Cryptol. Again we utilize low-level specifications that closely mirror the shape
of the C functions. Our end goal, however, is correctness with respect to the
standards, encoded in the RFC specification in Cryptol. The library implements
only a subset of the standards, thus we can only prove a simulation relation and
not equivalence. Namely, we show that every sequence of messages generated by
the low-level specification starting from a valid initial state can be generated by
the RFC specification starting from a related state. The dashed line in Fig. 2
shows at which points the states match at the implementation and specification
levels.

CLIENT HELLO SERVER HELLO APPLICATION DATA

RFC spec

Low-lvl spec

C Code

handshakeTransition

advance message

conn set handshake type

s2n advance message

s2n conn set handshake type

Fig. 2. Structure of the TLS handshake correctness proof

2 s2n conn set handshake type and s2n advance message.
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RFC-Based Specification of the TLS Handshake. The high-level hand-
shake protocol specification that captures the TLS state machine is implemented
in Cryptol and accounts for the protocol, message type and direction, as well
as conditions for branching in terms of abstract connection parameters, but not
message contents.

We represent the set of states as unsigned 5-bit integers (Listing 1). The state
transition relation is represented by a Cryptol function handshakeTransition
(Listing 2) which, given abstract connection parameters (Listing 3) and the
current state returns the next state. If there is no valid next state, the state
machine stutters. The parameters determine the transition to take in each state
and represent configurations of the end-points as well as contents of the HELLO
message sent by the other party. We kept the latter separate from the message
specifications in order to avoid reasoning about message structure and parsing.
We can still relate the abstract parameters to the implementation because they
are captured in the connection state. Finally, the message function (Listing 4)
gives the message type, protocol and direction for every state.

type State = [5]

(helloRequestSent : State) = 0

(clientHelloSent : State) = 1

(serverHelloSent : State) = 2

// ...

(serverCertificateStatusSent : State) = 23

Listing 1: Specification of TLS handshake protocol states

handshakeTransition : Parameters -> State -> State

handshakeTransition params old =

snd (find fst (True, old) [ (old == from /\ p, to)

| (from, p, to) <- valid_transitions]) where

valid_transitions =

[(helloRequestSent, True, clientHelloSent)

,(clientHelloSent, True, serverHelloSent)

,(serverHelloSent, params.keyExchange != DH_anon

/\ ~params.sessionTicket, serverCertificateSent)

// ...

,(serverCertificateStatusSent, ~(keyExchangeNonEphemeral params)

, serverKeyExchangeSent)

]

Listing 2: Specification of the TLS handshake state transition function. Valid
transitions are encoded as triples (start, transition condition, end).
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type KeyExchange = [3]

(DH_anon : KeyExchange) = 0

// ...

(DH_RSA : KeyExchange) = 5

type Parameters =

{keyExchange : KeyExchange // Negotiated key exchange algorithm

,sessionTicket : Bit // The client had a session ticket

,renewSessionTicket : Bit // Server decides to renew a session ticket

,sendCertificateStatus : Bit // Server decides to send the certificate

// status message

,requestClientCert : Bit // Server requests a cert from the client

,includeSessionTicket : Bit} // Server includes a session ticket

// extension in SERVER_HELLO

Listing 3: Abstract connection parameters

message : State -> Message

message = lookupDefault messages (mkMessage noSender data error)

where messages =

[(helloRequestSent, mkMessage server handshake helloRequest)

,(clientHelloSent, mkMessage client handshake clientHello)

,(serverHelloSent, mkMessage server handshake serverHello)

// ...

,(serverChangeCipherSpecSent,

mkMessage server changeCipherSpec changeCipherSpecMessage)

,(serverFinishedSent, mkMessage server handshake finished)

,(applicationDataTransmission, mkMessage both data applicationData)

]

Listing 4: Expected message sent/received in each handshake state

Socket Corking. Socket corking is a mechanism for reducing packet fragmenta-
tion and increasing throughput by making sure full TCP frames are sent when-
ever possible. It is implemented in Linux and FreeBSD using the TCP CORK and
TCP NOPUSH flags respectively. When the flag is set, the socket is considered
corked, and the operating system will only send complete (filled up to the buffer
length) TCP frames. When the flag is unset, the current buffer, as well as all
future writes, are sent immediately.

Writing to an uncorked socket is possible, but undesirable as it might result
in partial packets being sent, potentially reducing throughput. On the other
hand, forgetting to uncork a socket after the last write can have more serious
consequences. According to the documentation, Linux limits the duration of
corking to 200 ms, while FreeBSD has no limit. Hence, leaving a socket corked in
FreeBSD might result in the data not being sent. We have verified that sockets
are not corked or uncorked twice in a row. In addition, the structure of the
message handling implementation in s2n helps us informally establish a stronger
corking safety property. Because explicit handshake message sequences include
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the direction the message is sent, we can establish that the socket is (un)corked
appropriately when the message direction changes. In future work we plan to
expand the scope of our proof to allow us to formally establish full corking
safety.

4 Operationalizing the Proof

We have integrated the checking of our proof into the build system of s2n, as
well as the Continuous Integration (CI) system used to check the validity of code
as it is added to the s2n repository on GitHub. For the green “build passed”
badge displayed on the s2n GitHub page to appear, all code updates now must
successfully verify with our proof scripts. Not only do the these checks run on
committed code, they are also automatically run on all pull requests to the
project. This allows the maintainers of s2n to quickly determine the correctness
of submitted changes when they touch the code that we have proved. In this
section we discuss aspects of our tooling that were important enablers of this
integration.

Proof Robustness. For this integration to work, our proofs must be robust in the
face of code change. Evolving projects like s2n should not be slowed down by
the need to update proofs every time the code changes. Too many proof updates
can lead to significantly slowed development or, in the extreme case, to proofs
being disabled or ignored in the CI environment. The automated nature of our
proofs mean that they generally need to be changed only in the event of interface
modifications—either to function declarations or state definitions.

Of these two, state changes are the most common, and can be quite complex
considering that there are usually large possibly nested C structs involved (for
example, the s2n_connection struct has around 50 fields, some of which are
structs themselves). To avoid the developer pain that would arise if such struct
updates caused the proof the break, we have structured the verification so that
proof scripts do not require updates when the modified portions of the state do
not affect the computation being proved. Recall that our proofs are focused on
functional correctness. Thus in order to affect the proof, a new or modified field
must influence the computation. Many struct changes target non-security-critical
portions of the code (e.g. to track additional data for logging) and so do not meet
this criterion. For such fields we prove that they are handled in a memory safe
manner and that they do not affect the computation being performed by the
code the proof script targets.

In the future, we intend to add the option to perform a “strict” version of
this state handling logic to SAW, which would ensure that newly added fields are
not modified at all by the portion of the code being proved. Such a check would
ensure that the computation being analyzed computes the specified function and
nothing else and would highlight cases in which new fields introduce undesirable
data flows (e.g. incorrectly storing sensitive data). However even such an option
would not replace whole program data flow analysis, which we recommend in
cases where there is concern about potential incorrect data handling.
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Negative Test Cases. Each of our proofs also includes a series of negative test
cases as evidence that the tools are functioning properly. These test cases patch
the code with a variety of mistakes that might actually occur and then run the
same proof scripts using the same build tools to check that the tool detects the
introduced error.

Examples of the negative test cases we use include an incorrect modification
to a side-channel mitigation, running our TLS proofs on a version of the code
with an extra call to cork and uncork, a version modified to allow early CCS, as
well as a version with the incomplete handshake bug that we discovered in the
process of developing the proof. Such tests are critical, both to display the value
of the proofs, by providing them with realistic bugs to catch, and as a defense
against possible bugs in the tool that may be introduced as it is updated.

Proof Metrics. We also report real-time proof metrics. Our proof scripts print
out JSON encoded statistics into the Travis logs. From there, we have developed
an in-browser tool that scrapes the Travis logs for the project, compiling the
relevant statistics into easily consumable charts and tables. The primary metrics
we track are: (1) the number of lines of code that are analyzed by the proof (which
increases as we develop proofs for more components of s2n), and (2) the number
of times the verified code has been changed and re-analyzed (which tracks the
ongoing value of the proof). This allows developers to easily track the impact of
the proofs over time.

Since deployment of the proof to the CI system in November of 2016 our
proofs have been re-played 956 times. This number does not account for proof re-
plays performed in forks of the repository. We have had to update the proof three
times. In all cases the proof update was complete before the code review process
finished. Not all of these runs involved modification to the code that our proofs
were about, however each of the runs increased the confidence of the maintainers
in the relevant code changes, and each run reestablishes the correctness of the
code to the public, who may not be aware of what code changed at each commit.

HMAC and DRBG each took roughly 3 months of engineering effort. The
TLS handshake verification took longer at 8 months, though some of that time
involved developing tool extensions to support reasoning about protocols. At
the start of each project, the proof-writers were familiar with the proof tools but
not with the algorithms or the s2n implementations of them. The effort amounts
listed above include understanding the C code, writing the specifications in Cryp-
tol, developing the code-spec proofs using SAW, the CI implementation work,
and the process of merging the proof artifacts into the upstream code-base.

5 Conclusion

In this case study we have described the development and operation in practice of
a continuously checked proof ensuring key properties of the TLS implementation
used by many Amazon and AWS services. Based on several previous attempts
to prove the correctness of s2n that either required too much developer inter-
action during modifications or where symbolic reasoning tools did not scale, we
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developed a proof structure that nearly eliminates the need for developers to
understand or modify the proof following modifications to the code.
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Oliveira, T., Pacheco, H., Schmidt, B., Strub, P.: Jasmin: high-assurance and high-
speed cryptography. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.),
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2017, Dallas, TX, USA, 30 October– 03 November 2017, pp.
1807–1823. ACM (2017)

2. Amazon.com, Inc., Amazon Simple Storage Service (s3). https://aws.amazon.com/
s3/

3. Amazon.com, Inc. s2n. https://github.com/awslabs/s2n. Accessed Dec 2017
4. awslabs/s2n - Travis CI. https://travis-ci.org/awslabs/s2n
5. Barbosa, M., Castro, D., Silva, P.F.: Compiling CAO: from cryptographic specifi-

cations to C implementations. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS,
vol. 8414, pp. 240–244. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54792-8 13

6. Beringer, L., Petcher, A., Katherine, Q.Y., Appel, A.W.: Verified correctness and
security of OpenSSL HMAC. In: USENIX Security Symposium, pp. 207–221 (2015)

7. Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M.,
Pironti, A., Strub, P.-Y., Zinzindohoue, J.K.: A messy state of the union: taming
the composite state machines of TLS. In: 2015 IEEE Symposium on Security and
Privacy (SP), pp. 535–552. IEEE (2015)

8. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.: Implementing
TLS with verified cryptographic security, pp. 445–459. IEEE, May 2013

9. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.-Y., Zanella-
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25. Zinzindohoué, J.-K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL*: a ver-
ified modern cryptographic library. In: ACM Conference on Computer and Com-
munications Security (CCS) (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1410.3735
http://arxiv.org/abs/1410.3735
https://trust-in-soft.com/polarssl-verification-kit/
https://trust-in-soft.com/polarssl-verification-kit/
http://creativecommons.org/licenses/by/4.0/


Symbolic Liveness Analysis
of Real-World Software
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Abstract. Liveness violation bugs are notoriously hard to detect, espe-
cially due to the difficulty inherent in applying formal methods to real-
world programs. We present a generic and practically useful liveness
property which defines a program as being live as long as it will eventu-
ally either consume more input or terminate. We show that this property
naturally maps to many different kinds of real-world programs.

To demonstrate the usefulness of our liveness property, we also present
an algorithm that can be efficiently implemented to dynamically find las-
sos in the target program’s state space during Symbolic Execution. This
extends Symbolic Execution, a well known dynamic testing technique,
to find a new class of program defects, namely liveness violations, while
only incurring a small runtime and memory overhead, as evidenced by
our evaluation. The implementation of our method found a total of five
previously undiscovered software defects in BusyBox and the GNU Core-
utils. All five defects have been confirmed and fixed by the respective
maintainers after shipping for years, most of them well over a decade.

Keywords: Liveness analysis · Symbolic Execution · Software testing
Non-termination bugs

1 Introduction

Advances in formal testing and verification methods, such as Symbolic Execution
[10–12,22–24,42,49] and Model Checking [5,6,13,17,21,27,29,30,43,50], have
enabled the practical analysis of real-world software. Many of these approaches
are based on the formal specification of temporal system properties using sets of
infinite sequences of states [1], which can be classified as either safety, liveness, or
properties that are neither [31]. (However, every linear-time property can be rep-
resented as the conjunction of a safety and a liveness property.) This distinction
is motivated by the different techniques employed for proving or disproving such
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properties. In practical applications, safety properties are prevalent. They con-
strain the finite behavior of a system, ensuring that “nothing bad” happens, and
can therefore be checked by reachability analysis. Hence, efficient algorithms
and tools have been devised for checking such properties that return a finite
counterexample in case of a violation [34].

Liveness properties, on the other hand, do not rule out any finite behavior
but constrain infinite behavior to eventually do “something good” [2]. Their
checking generally requires more sophisticated algorithms since they must be
able to generate (finite representations of) infinite counterexamples. Moreover,
common finite-state abstractions that are often employed for checking safety do
generally not preserve liveness properties.

While it may be easy to create a domain-specific liveness property (e.g., “a
GET/HTTP/1.1 must eventually be answered with an HTTP/1.1 {status}”), it
is much harder to formulate general liveness properties. We tackle this challenge
by proposing a liveness property based on the notion of programs as implemen-
tations of algorithms that transform input into output:

Definition 1. A program is live if and only if it always eventually consumes
input or terminates.

By relying on input instead of output as the measure of progress, we circumnavi-
gate difficulties caused by many common programming patterns such as printing
status messages or logging the current state.

Detection. We present an algorithm to detect violations of this liveness property
based on a straightforward idea: Execute the program and check after each
instruction if the whole program state has been encountered before (identical
contents of all registers and addressable memory). If a repetition is found that
does not consume input, it is deterministic and will keep recurring ad infinitum.
To facilitate checking real-world programs, we perform the search for such lassos
in the program’s state space while executing it symbolically.

Examples. Some examples that show the generality of this liveness property
are: 1. Programs that operate on input from files and streams, such as cat,
sha256sum or tail. This kind of program is intended to continue running as
long as input is available. In some cases this input may be infinite (e.g., cat -).
2. Reactive programs, such as calc.exe or nginx wait for events to occur. Once
an event occurs, a burst of activity computes an answer, before the software
goes back to waiting for the next event. Often, an event can be sent to signal a
termination request. Such events are input just as much as the contents of a file
read by the program are input.

In rare cases, a program can intuitively be considered live without satisfying
our liveness property. Most prominent is the yes utility, which will loop forever,
only printing output. According to our experience the set of useful programs
that intentionally allow for an infinite trace consuming only finite input is very
small and the violation of our liveness property can, in such cases, easily be
recognized as intentional. Our evaluation supports this claim (cf. Sect. 6).
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Bugs and Violations. The implementation of our algorithm detected a total of
five unintended and previously unknown liveness violations in the GNU Coreutils
and BusyBox, all of which have been in the respective codebases for at least
7 to 19 years. All five bugs have been confirmed and fixed within days. The
three implementations of yes we tested as part of our evaluation, were correctly
detected to not be live. We also automatically generated liveness violating input
programs for all sed interpreters.

1.1 Key Contributions

This paper presents four key contributions:

1. The definition of a generic liveness property for real-world software.
2. An algorithm to detect its violations.
3. An open-source implementation of the algorithm, available on GitHub1,

implemented as an extension to the Symbolic Execution engine KLEE [10].
4. An evaluation of the above implementation on a total of 354 tools from the

GNU Coreutils, BusyBox and toybox, which so far detects five previously
unknown defects in widely deployed real-world software.

1.2 Structure

We discuss related work (Sect. 2), before formally defining our liveness property
(Sect. 3). Then, we describe the lasso detection algorithm (Sect. 4), demonstrate
the practical applicability by implementing the algorithm for the SymEx engine
KLEE (Sect. 5) and evaluate it on three real-world software suites (Sect. 6). We
finally discuss the practical limitations (Sect. 7) and conclude (Sect. 8).

2 Related Work

General liveness properties [2] can be verified by proof-based methods [40], which
generally require heavy user support. Contrarily, our work is based upon the
state-exploration approach to verification. Another prominent approach to verify
the correctness of a system with respect to its specification is automatic Model
Checking using automata or tableau based methods [5].

In order to combat state-space explosion, many optimization techniques have
been developed. Most of these, however, are only applicable to safety properties.
For example, Bounded Model Checking (BMC) of software is a well-established
method for detecting bugs and runtime errors [7,18,19] that is implemented by
a number of tools [16,38]. These tools investigate finite paths in programs by
bounding the number of loop iterations and the depth of function calls, which is
not necessarily suited to detect the sort of liveness violations we aim to discover.
There is work trying to establish completeness thresholds of BMC for (safety
and) liveness properties [33], but these are useful only for comparatively small
1 https://github.com/COMSYS/SymbolicLivenessAnalysis.

https://github.com/COMSYS/SymbolicLivenessAnalysis
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systems. Moreover, most BMC techniques are based on boolean SAT, instead of
SMT, as required for dealing with the intricacies of real-world software.

Termination is closely related to liveness in our sense, and has been inten-
sively studied. It boils down to showing the well-foundedness of the program’s
transition relation by identifying an appropriate ranking function. In recent
works, this is accomplished by first synthesizing conditional termination proofs
for program fragments such as loops, and then combining sub-proofs using a
transformation that isolates program states for which termination has not been
proven yet [8]. A common assumption in this setting is that program variables
are mathematical integers, which eases reasoning but is generally unsound. A
notable exception is AProVE [28], an automated tool for termination and com-
plexity analysis that takes (amongst others) LLVM intermediate code and builds
a SymEx graph that combines SymEx and state-space abstraction, covering both
byte-accurate pointer arithmetic and bit-precise modeling of integers. However,
advanced liveness properties, floating point values, complex data structures and
recursive procedures are unsupported. While a termination proof is a witness for
our liveness property, an infinite program execution constitutes neither witness
nor violation. Therefore, non-termination proof generators, such as TNT [26],
while still related, are not relevant to our liveness property.

The authors of Bolt [32] present an entirely different approach, by proposing
an in-vivo analysis and correction method. Bolt does not aim to prove that a
system terminates or not, but rather provides a means to force already running
binaries out of a long-running or infinite loop. To this end, Bolt can attach to an
unprepared, running program and will detect loops through memory snapshot-
ting, comparing snapshots to a list of previous snapshots. A user may then choose
to forcefully break the loop by applying one of two strategies as a last-resort
option. Previous research into in-vivo analysis of hanging systems attempts to
prove that a given process has run into an infinite loop [9]. Similarly to Bolt,
Looper also attaches to a binary but then uses Concolic Execution (ConEx) to
gain insight into the remaining, possible memory changes for the process. This
allows for a diagnosis of whether the process is still making progress and will
eventually terminate. Both approaches are primarily aimed at understanding or
handling an apparent hang, not for proactively searching for unknown defects.

In [35], the authors argue that non-termination has been researched signifi-
cantly less than termination. Similar to [14,25], they employ static analysis to
find every Strongly Connected SubGraph (SCSG) in the Control Flow Graph
(CFG) of a given program. Here, a Max-SMT solver is used to synthesize a for-
mulaic representation of each node, which is both a quasi-invariant (i.e., always
holding after it held once) and edge-closing (i.e., not allowing a transition that
leaves the node’s SCSG to be taken). If the solver succeeds for each node in a
reachable SCSG, a non-terminating path has been found.

In summary, the applicability of efficient methods for checking liveness in
our setting is hampered by restrictions arising from the programming model, the
supported properties (e.g., only termination), scalability issues, missing support
for non-terminating behavior or false positives due to over-approximation. In the
following, we present our own solution to liveness checking of real-world software.
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3 Liveness

We begin by formally defining our liveness property following the approach by
Alpern and Schneider [1–3], which relies on the view that liveness properties do
not constrain the finite behaviors but introduce conditions on infinite behaviors.
Here, possible behaviors are given by (edge-labeled) transition systems.

Definition 2 (Transition System). A transition system T is a 4-tuple
(S ,Act ,−→, I ):

– S is a finite set of states,
– Act is a finite set of actions,
– −→ ⊆ S × Act × S is a transition relation (written s

α−→ s′), and
– I ⊆ S is the set of initial states.

For s ∈ S, the sets of outgoing actions is denoted by Out(s) = {α ∈ Act |
s

α−→ s′ for some s′ ∈ S}. Moreover, we require T to be deadlock free, i.e.,
Out(s) �= ∅ for each s ∈ S. A terminal state is indicated by a self-loop involving
the distinguished action ↓ ∈ Act: if ↓ ∈ Out(s), then Out(s) = {↓}.

The self-loops ensure that all executions of a program are infinite, which is
necessary as terminal states indicate successful completion in our setting.

Definition 3 (Executions and Traces). An (infinite) execution is a sequence
of the form s0α1s1α2s2 . . . such that s0 ∈ I and si

αi+1−−−→ si+1 for every i ∈ N.
Its trace is given by α1α2 . . . ∈ Actω.

Definition 4 (Liveness Properties)

– A linear-time property over Act is a subset of Actω.
– Let Π ⊆ Act be a set of productive actions such that ↓ ∈ Π. The Π-liveness

property is given by {α1α2 . . . ∈ Actω | αi ∈ Π for infinitely many i ∈ N}.
A liveness property is generally characterized by the requirement that each

finite trace prefix can be extended to an infinite trace that satisfies this property.
In our setting, this means that in each state of a given program it is guaranteed
that eventually a productive action will be performed. That is, infinitely many
productive actions will occur during each execution. As ↓ is considered produc-
tive, terminating computations are live. This differs from the classical setting
where terminal states are usually considered as deadlocks that violate liveness.

We assume that the target machine is deterministic w.r.t. its computations
and model the consumption of input as the only source of non-determinism. This
means that if the execution is in a state in which the program will execute a non-
input instruction, only a single outgoing (unproductive) transition exists. If the
program is to consume input on the other hand, a (productive) transition exists
for every possible value of input. We only consider functions that provide at least
one bit of input as input functions, which makes ↓ the only productive action
that is also deterministic, that is, the only productive transition which must be
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taken once the state it originates from is reached. More formally, |Out(s)| >
1 ⇔ Out(s) ⊆ Π \ {↓}. Thus if a (sub-)execution siαi+1si+1 . . . contains no
productive transitions beyond ↓, it is fully specified by its first state si, as there
will only ever be a single transition to be taken.

Similarly, we assume that the target machine has finite memory. This implies
that the number of possible states is finite: |S | ∈ N. Although we model each
possible input with its own transition, input words are finite too, therefore Act
is finite and hence Out(s) for each s ∈ S .

4 Finding Lassos

Any trace t that violates a liveness property must necessarily consist of a finite
prefix p that leads to some state s ∈ S , after which no further productive transi-
tions are taken. Therefore, t can be written as t = pq, where p is finite and may
contain productive actions, while q is infinite and does not contain productive
actions. Since S is a finite set and every state from s onward will only have
a single outgoing transition and successor, q must contain a cycle that repeats
itself infinitely often. Therefore, q in turn can be written as q = fcω where f is
finite and c non-empty. Due to its shape, we call this a lasso with pf the stem
and c the loop.

Due to the infeasible computational complexity of checking our liveness prop-
erty statically (in the absence of input functions, it becomes the finite-space
halting problem), we leverage a dynamic analysis that is capable of finding any
violation in bounded time and works incrementally to report violations as they
are encountered. We do so by searching the state space for a lasso, whose loop
does not contain any productive transitions. This is näıvely achieved in the
dynamic analysis by checking whether any other state visited since the last pro-
ductive transition is equal to the current one. In this case the current state
deterministically transitions to itself, i.e., is part of the loop.

To implement this idea without prohibitively expensive resource usage, two
main challenges must be overcome: 1. Exhaustive exploration of all possible
inputs is infeasible for nontrivial cases. 2. Comparing states requires up to 264

byte comparisons on a 64 bit computer. In the rest of this section, we discuss how
to leverage SymEx to tackle the first problem (Sect. 4.1) and how to cheapen
state comparisons with specially composed hash-based fingerprints (Sect. 4.2).

4.1 Symbolic Execution

Symbolic Execution (SymEx) has become a popular dynamic analysis technique
whose primary domain is automated test case generation and bug detection
[10–12,15,22,41,42,49]. The primary intent behind SymEx is to improve upon
exhaustive testing by symbolically constraining inputs instead of iterating over
all possible values, which makes it a natural fit.

Background. The example in Fig. 1 tests whether the variable x is in the range
from 5 to 99 by performing two tests before returning the result. As x is the



Symbolic Liveness Analysis of Real-World Software 453

Fig. 1. SymEx tree showing the execution of a snippet with two ifs. The variable x is
symbolic and one state is unreachable, as its Path Constraint is unsatisfiable.

input to this snippet, it is initially assigned an unconstrained symbolic value.
Upon branching on x < 5 in line 2, the SymEx engine needs to consider two
cases: One in which x is now constrained to be smaller than 5 and another one
in which it is constrained to not be smaller than 5. On the path on which x < 5
held, ok is then assigned false, while the other path does not execute that
instruction. Afterwards, both paths encounter the branch if(x > = 100) in line
4. Since the constraint set {x < 5, x ≥ 100} is unsatisfiable, the leftmost of the
four resulting possibilities is unreachable and therefore not explored. The three
remaining paths reach the return statement in line 6. We call the set of currently
active constraints the Path Constraint (PC). The PC is usually constructed in
such a way, as to contain constraints in the combined theories of quantifier-free
bit-vectors, finite arrays and floating point numbers2.

Symbolic Execution of the Abstract Transition System. By using sym-
bolic values, a single SymEx state can represent a large number of states in the
transition system. We require that the SymEx engine, as is commonly done,
never assigns a symbolic value (with more than one satisfying model) to the
instruction pointer. Since the productive transitions of the transition system are
derived from instructions in the program code, this means that each instruction
that the SymEx engine performs either corresponds to a number of productive,
input-consuming transitions, or a number of unproductive, not input-consuming
transitions. Therefore, any lasso in the SymEx of the program is also a lasso in
the transition system (the ↓ transition requires trivial special treatment).

To ensure that the opposite is also true, a simple and common optimization
must be implemented in the SymEx engine: Only add branch conditions to the
PC that are not already implied by it. This is the case iff exactly one of the
two branching possibilities is satisfiable, which the SymEx engine (or rather its
SMT solver) needs to check in any case. Thereby it is guaranteed that if the
SymEx state is part of a loop in the transition system, not just the concrete

2 While current SymEx engines and SMT solvers still struggle with the floating point
theory in practice [37], the SMT problem is decidable for this combination of theories.
Bitblasting [20] gives a polynomial-time reduction to the boolean SAT problem.
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values, but also the symbolic values will eventually converge towards a steady
state. Again excluding trivial special treatment for program termination, a lasso
in the transition system thus entails a lasso in the SymEx of the program.

4.2 Fingerprinting

To reduce the cost of each individual comparison between two states, we take
an idea from hash maps by computing a fingerprint ρ for each state and com-
paring those. A further significant improvement is possible by using a strong
cryptographic hash algorithm to compute the fingerprint: Being able to rely
(with very high probability) on the fingerprint comparison reduces the memory
requirements, as it becomes unnecessary to store a list of full predecessor states.
Instead, only the fingerprints of the predecessors need to be kept.

Recomputing the fingerprint after each instruction would still require a full
scan over the whole state at each instruction however. Instead, we enable effi-
cient, incremental computation of the fingerprint by not hashing everything, but
rather hashing many small fragments, and then composing the resulting hashes
using bitwise xor. Then, if an instruction attempts to modify a fragment f , it is
easy to compute the old and new fragment hashes. The new fingerprint ρnew can
then be computed as ρnew := ρold ⊕ hash(fold) ⊕ hash(fnew). Changing a single
fragment therefore requires only two computations and bitwise xors on constant
size bit strings—one to remove the old fragment from the composite and one to
insert the new one. Each incremental fingerprint update only modifies a small
number of fragments statically bounded by the types used in the program.

4.3 Algorithm Overview

The proposed algorithm explores as much of the input state as is possible within
a specified amount of time, using SymEx to cover large portions of the input
space simultaneously. Every SymEx state is efficiently checked against all its
predecessors by comparing their fingerprints.

5 Efficient Implementation of the Algorithm

To develop the algorithm presented in the previous section into a practically
useful program, we decided to build upon the KLEE SymEx engine [10], with
which many safety bugs in real-world programs have been previously found
[10,15,41]. As KLEE in turn builds upon the LLVM compiler infrastructure
[36], this section begins with a short introduction to LLVM Intermediate Rep-
resentation (IR) (Sect. 5.1), before explaining how the fragments whose hashes
make up the fingerprint can be implemented (Sect. 5.2) and how to track finger-
prints (Sect. 5.3). Finally, we detail a technique to avoid as many comparisons
as possible (Sect. 5.4).
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5.1 LLVM Intermediate Representation

LLVM Intermediate Representation (IR) was designed as a typed, low-level lan-
guage independent from both (high-level) source language and any specific tar-
get architecture, to facilitate compiler optimizations. It operates on an unlim-
ited number of typed registers of arbitrary size, as well as addressable memory.
Instructions in IR operate in Static Single Assignment (SSA) form, i.e., registers
are only ever assigned once and never modified. The language also has functions,
which have a return type and an arbitrary number of typed parameters. Apart
from global scope, there is only function scope, but IR features no block scope.

Addressable objects are either global variables, or explicitly allocated, e.g.,
using malloc (cleaned up with free) or alloca (cleaned up on return from
function).

Fig. 2. Six kinds of fragments suffice to denote all possible variants. Symbolic values
are written as serialized symbolic expressions consisting of all relevant constraints. All
other fields only ever contain concrete values, which are simply used verbatim. Fields
of dynamic size are denoted by a ragged right edge.

5.2 Fragments

When determining what is to become a fragment, i.e., an atomic portion of a
fingerprint, two major design goals should be taken into consideration:

1. Collisions between hashed fragments should not occur, as they would expunge
one another from the fingerprint. This goal can be decomposed further:
(a) The hashing algorithm should be chosen in a manner that makes collisions

so unlikely, as to be non-existent in practice.
(b) The fragments themselves need to be generated in a way that ensures that

no two different fragments have the same representation, as that would
of course cause their hashes to be equal as well.

2. Fragment sizes should be as close as possible to what will be modified by the
program in one step. Longer fragments are more expensive to compute and
hash, and shorter fragments become invalidated more frequently.

Avoiding Collisions. In order to minimize the risk of accidental collisions,
which would reduce the efficacy of our methodology, we chose the cryptographi-
cally secure checksum algorithm BLAKE2b [4] to generate 256 bit hashes, provid-
ing 128 bit collision resistance. To the best of our knowledge, there are currently
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Fig. 3. Incremental computation of a new fingerprint. Fingerprints are stored in a call
stack, with each stack frame containing a partial fingerprint of all addressable memory
allocated locally in that function, another partial fingerprint of all registers used in the
function and a list of previously encountered fingerprints. A partial fingerprint of all
dynamic and global variables is stored independently.

no relevant structural attacks on BLAKE2b, which allows us to assume that the
collision resistance is given. For comparison: The revision control system GIT
currently uses 160 bit SHA-1 hashes to create unique identifiers for its objects,
with plans underway to migrate to a stronger 256 bit hash algorithm3.

To ensure that the fragments themselves are generated in a collision-free
manner, we structure them with three fields each, as can be seen in Fig. 2.
The first field contains a tag that lets us distinguish between different types of
fragments, the middle field contains an address appropriate for that type, and the
last field is the value that the fragment represents. We distinguish between three
different address spaces: 1. main memory, 2. LLVM registers, which similarly
to actual processors hold values that do not have a main memory address, and
3. function arguments, which behave similarly to ordinary LLVM registers, but
require a certain amount of special handling in our implementation. For example,
the fragment (0x01, 0xFF3780, 0xFF) means that the memory address 0xFF3780
holds the concrete byte 0xFF. This fragment hashes to ea58...f677.

If the fragment represents a concrete value, its size is statically bounded by
the kind of write being done. For example, a write to main memory requires
1 byte + 8 byte + 1 byte = 10 byte and modifying a 64 bit register requires
1 byte + 8 byte + 64 bit

8 bit/byte = 17 byte. In the case of fragments representing
symbolic values on the other hand, such a guarantee cannot effectively be made,
as the symbolic expression may become arbitrarily large. Consider, for example,
a symbolic expression of the form λ = input1 + input2 + . . . + inputn, whose
result is directly influenced by an arbitrary amount of n input words.

In summary, fragments are created in a way that precludes structural weak-
nesses as long as the hash algorithm used (in our case 256 bit BLAKE2b) remains
unbroken and collisions are significantly less probable than transient failures of
the computer performing the analysis.

3 https://www.kernel.org/pub/software/scm/git/docs/technical/hash-function-trans
ition.html (Retrieved Jan. 2018).

https://www.kernel.org/pub/software/scm/git/docs/technical/hash-function-transition.html
https://www.kernel.org/pub/software/scm/git/docs/technical/hash-function-transition.html
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5.3 Fingerprint Tracking

When using the KLEE SymEx engine, the call stack is not explicitly mapped
into the program’s address space, but rather directly managed by KLEE itself.
This enables us to further extend the practical usefulness of our analysis by only
considering fragments that are directly addressable from each point of the exe-
cution, which in turn enables the detection of certain non-terminating recursive
function calls. It also goes well together with the implicit cleanup of all function
variables when a function returns to its caller.

To incrementally construct the current fingerprint we utilize a stack that
follows the current call stack, as is shown exemplary in Fig. 3. Each entry consists
of three different parts: 1. A (partial) fingerprint over all local registers, i.e.,
objects that are not globally addressable, 2. A (partial) fingerprint over all locally
allocated objects in main memory and 3. A list of pairs of instruction IDs and
fingerprints, that denote the states that were encountered previously.

Modifying Objects. Any instruction modifying an object without reading
input, such as an addition, is dealt with as explained previously: First, recom-
pute the hash of the old fragment(s) before the instruction is performed and
remove it from the current fingerprint. Then, perform the instruction, compute
the hash of the new fragment(s) and add it to the current fingerprint.

Similarly modify the appropriate partial fingerprint, e.g., for a load the fin-
gerprint of all local registers of the current function. Note that this requires each
memory object to be mappable to where it was allocated from.

Function Calls. To perform a function call, push a new entry onto the stack
with the register fingerprint initialized to the xor of the hashes of the argument
fragments and the main memory fingerprint set to the neutral element, zero.
Update the current fingerprint by removing the caller’s register fingerprint and
adding the callee’s register fingerprint. Add the pair of entry point and current
fingerprint to the list of previously seen fingerprints.

Function Returns. When returning from a function, first remove both the
fingerprint of the local registers, as well as the fingerprint of local, globally
addressable objects from the current fingerprint, as all of these will be implicitly
destroyed by the returning function. Then pop the topmost entry from the stack
and re-enable the fingerprint of the local registers of the caller.

Reading Input. Upon reading input all previously encountered fingerprints
must be disregarded by clearing all fingerprint lists of the current SymEx state.

5.4 Avoiding Comparisons

While it would be sufficient to simply check all previous fingerprints for a repeti-
tion every time the current fingerprint is modified, it would be rather inefficient
to do so. To gain as much performance as possible, our implementation attempts
to perform as few comparisons as possible.
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We reduce the number of fingerprints that need to be considered at any point
by exploiting the structure of the call stack: To find any non-recursive infinite
loop, it suffices to search the list of the current stack frame, while recursive
infinite loops can be identified using only the first fingerprint of each stack frame.

We also exploit static control flow information by only storing and testing
fingerprints for Basic Blocks (BBs), which are sequences of instructions with
linear control flow4. If any one instruction of a BB is executed infinitely often,
all of them are. Thus, a BB is either fully in the infinite cycle, or no part of it is.

It is not even necessary to consider every single BB, as we are looking for a
trace with a finite prefix leading into a cycle. As the abstract transition system is
an unfolding of the CFG, any cycle in the transition system must unfold from a
cycle in the CFG. Any reachable cycle in the CFG must contain a BB with more
than one predecessor, as at least one BB must be reachable from both outside
and inside the cycle. Therefore, it is sufficient to only check BBs with multiple
predecessors. As IR only provides intraprocedural CFGs, we additionally perform
a check for infinite recursion at the beginning of each function.

6 Evaluation

In this section we demonstrate the effectiveness and performance of our app-
roach on well tested and widely used real-world software. We focus on three
different groups of programs: 1. The GNU Coreutils and GNU sed (Sect. 6.1),
2. BusyBox (Sect. 6.2) and 3. Toybox (Sect. 6.3) and evaluate the performance
of our liveness analysis in comparison with baseline KLEE in the following met-
rics: 1. instructions per second and 2. peak resident set size. Additionally, we
analyze the impact of the time limit on the overhead (Sect. 6.4). We summarize
our findings in Sect. 6.5.

Setup. We used revision aa01f835 of our software, which is based on KLEE
revision 37f554d6. Both versions are invoked as suggested by the KLEE authors
and maintainers [10,47] in order to maximize reproducability and ensure realis-
tic results. However, we choose the Z3 [39] solver over STP [20] as the former
provides a native timeout feature, enabling more reliable measurements. The
solver timeout is 30 s and the memory limit is 10 000 MiB.

We run each configuration 20 times in order to gain statistical confidence in
the results. From every single run, we extract both the instructions, allowing us
to compute the instructions per second, and the peak resident set size of the pro-
cess, i.e., the maximal amount of memory used. We additionally reproduced the
detected liveness violations with 30 runs each with a time limit of 24 h, recording
the total time required for our implementation to find the first violation. For all
results we give a 99% confidence interval.

4 In IR there is an exemption for function calls, namely they do not break up BBs.
5 https://github.com/COMSYS/SymbolicLivenessAnalysis/tree/aa01f83.
6 https://github.com/klee/klee/tree/37f554d.

https://github.com/COMSYS/SymbolicLivenessAnalysis/tree/aa01f83
https://github.com/klee/klee/tree/37f554d
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6.1 GNU Utilities

We combine the GNU tools from the Coreutils 8.25 [45] with GNU sed 4.4 [46],
as the other tool suites also contain an implementation of the sed utility. We
excluded 4 tools from the experiment as their execution is not captured by
KLEE’s system model. Thereby, the experiment contains a total of 103 tools.

Violations. The expected liveness violation in yes occurred after 2.51 s ± 0.26 s.
In 26 out of 30 runs, we were also able to detect a violation in GNU sed after
a mean computation time of 8.06 h ± 3.21 h (KLEE’s timeout was set to 24 h).
With the symbolic arguments restricted to one argument of four symbolic charac-
ters, reproduction completed in all 30 runs with a mean of 5.19 min ± 0.17 min.

Fig. 4. GNU Coreutils and GNU sed, 60 min time limit. Relative change of instructions
per second (top) and peak resident set (bottom) versus the KLEE baseline. Note the
logarithmic scale and the black 99% confidence intervals.

Fig. 5. BusyBox, 60 min time limit. Relative change of instructions per second (top)
and peak resident set (bottom) versus the KLEE baseline. Note the logarithmic scale
and the black 99% confidence intervals.

We detected multiple violations in tail stemming from two previously
unknown bugs, that we reported. Both bugs were originally detected and
reported in version 8.257 and fixed in version 8.26. Both bugs were in the code-
base for over 16 years. Reproducing the detection was successful in 30 of 30
attempts with a mean time of 1.59 h ± 0.66 h until the first detected violation.

We detected another previously unknown bug in ptx. Although we originally
identified the bug in version 8.27, we reported it after the release of 8.288, leading
7 GNU tail report 1: http://bugs.gnu.org/24495.

GNU tail report 2: http://bugs.gnu.org/24903.
8 GNU ptx report: http://bugs.gnu.org/28417.

http://bugs.gnu.org/24495
http://bugs.gnu.org/24903
http://bugs.gnu.org/28417
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to a fix in version 8.29. This bug is not easily detected: Only 9 of 30 runs
completed within the time limit of 24 h. For these, mean time to first detection
was 17.15 h ± 3.74 h.

Performance. Figure 4 shows the relative changes in instructions per second
and peak resident set. As can be seen, performance is only reduced slightly
below the KLEE baseline and the memory overhead is even less significant. The
leftmost tool, make-prime-list, shows the by far most significant change from
the KLEE baseline. This is because make-prime-list only reads very little
input, followed by a very complex computation in the course of which no further
input is read.

6.2 BusyBox

For this experiment we used BusyBox version 1.27.2 [44]. As BusyBox contains
a large number of network tools and daemons, we had to exclude 232 tools from
the evaluation, leaving us with 151 tools.

Violations. Compared with Coreutils’ yes, detecting the expected liveness vio-
lation in the BusyBox implementation of yes took comparatively long with
27.68 s ± 0.33 s. We were unable to detect any violations in BusyBox sed with-
out restricting the size of the symbolic arguments. When restricting them to one
argument with four symbolic characters, we found the first violation in all 30
runs within 1.44 h ± 0.08 h. Our evaluation uncovered two previously unknown
bugs in BusyBox hush9. We first detected both bugs in version 1.27.2. In all 30
runs, a violation was detected after 71.73 s ± 5.00 s.

Performance. As shown in Fig. 5, BusyBox has a higher slowdown on average
than the GNU Coreutils (c.f. Fig. 4). Several tools show a decrease in memory
consumption that we attribute to the drop in retired instructions. yes shows the
least throughput, as baseline KLEE very efficiently evaluates the infinite loop.

Fig. 6. Toybox, 60 min time limit. Relative change of instructions per second (top)
and peak resident set (bottom) versus the KLEE baseline. Note the logarithmic scale
and the black 99% confidence intervals.

9 BusyBox hush report 1: https://bugs.busybox.net/10421.
BusyBox hush report 2: https://bugs.busybox.net/10686.

https://bugs.busybox.net/10421
https://bugs.busybox.net/10686
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6.3 Toybox

The third and final experiment with real-world software consists of 100 tools
from toybox 0.7.5 [48]. We excluded 76 of the total of 176 tools, which rely on
operating system features not reasonably modeled by KLEE.

Violations. For yes we encounter the first violation after 6.34 s ± 0.24 s, which
puts it in between the times for GNU yes and BusyBox yes. This violation is
also triggered from env by way of toybox’s internal path lookup. As with the
other sed implementations, toybox sed often fails to complete when run with
the default parameter set. With only one symbolic argument of four symbolic
characters, however, we encountered a violation in all 30 runs within 4.99 min ±
0.25 min.

Performance. Overall as well, our approach shows a performance for toybox in
between those for the GNU Coreutils and BusyBox, as can be seen in Fig. 6. Both
memory and velocity overhead are limited. For most toybox tools, the overhead
is small enough to warrant always enabling our changes when running KLEE.

Fig. 7. Changes in instructions per second, peak res-
ident set and branch coverage over multiple KLEE
timeouts. Note the logarithmic scale and the black
99% confidence intervals.

Fig. 8. Heap usage of a 30 min
BusyBox hush run. The 186
vertical lines show detected
liveness violations.

6.4 Scaling with the Time Limit

To ascertain whether the performance penalty incurred by our implementation
scales with the KLEE time limit, we have repeated each experiment with time
limits 15 min, 30 min and 60 min. The results shown in Fig. 7 indicate that, at
least at this scale, baseline KLEE and our implementation scale equally well.
This is true for almost all relevant metrics: retired instructions per second, peak
resident set and covered branches. The prominent exception is BusyBox’s mem-
ory usage, which is shown exemplary in Fig. 8 for a 30 min run of BusyBox hush.
As can be seen, the overhead introduced by the liveness analysis is mostly stable
at about a quarter of the total heap usage.
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6.5 Summary

All evaluated tool suites show a low average performance and memory penalty
when comparing our approach to baseline KLEE. While the slowdown is signif-
icant for some tools in each suite, it is consistent as long as time and memory
limits are not chosen too tightly. In fact, for these kinds of programs, it is rea-
sonable to accept a limited slowdown in exchange for opening up a whole new
category of defects that can be detected. In direct comparison, performance
varies in between suites, but remains reasonable in each case.

7 Limitations

Our approach does not distinguish between interpreters and interpreted pro-
grams. While this enables the automatic derivation of input programs for such
interpreters as sed, it also makes it hard to recognize meaningful error cases. This
causes the analysis of all three implementations of sed used in the evaluation
(Sect. 6) to return liveness violations.

In its current form, our implementation struggles with runaway counters, as a
64 bit counter cannot be practically enumerated on current hardware. Combining
static analyses, such as those done by optimizing compilers may significantly
reduce the impact of this problem in the future.

A different pattern that may confound our implementation is related to
repeated allocations. If memory is requested again after releasing it, the newly
acquired memory may not be at the same position, which causes any pointers
to it to have different values. While this is fully correct, it may cause the imple-
mentation to not recognize cycles in a reasonable time frame. This could be
mitigated by analyzing whether the value of the pointer ever actually matters.
For example, in the C programming language, it is fairly uncommon to inspect
the numerical value of a pointer beyond comparing it to NULL or other pointers.
A valid solution would however require strengthening KLEE’s memory model,
which currently does not model pointer inspection very well.

Another potential problem is how the PC is serialized when using symbolic
expressions as the value of a fragment (c.f. Sect. 5.2). We currently reuse KLEE’s
serialization routines, which are not exactly tuned for performance. Also, each
symbolic value that is generated by KLEE is assigned a unique name, that is
then displayed by the serialization, which discounts potential equivalence.

Finally, by building upon SymEx, we inherit not only its strengths, but also
its weaknesses, such as a certain predilection for state explosion and a reliance
on repeated SMT solving [12]. Also, actual SymEx implementations are limited
further than that. For example, KLEE returns a concrete pointer from allocation
routines instead of a symbolic value representing all possible addresses.

8 Conclusion and Outlook

It is our strong belief that the testing and verification of liveness properties
needs to become more attractive to developers of real-world programs. Our work
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provides a step in that direction with the formulation of a liveness property that
is general and practically useful, thereby enabling even developers uncomfortable
with interacting with formal testing and verification methods to at least check
their software for liveness violation bugs.

We demonstrated the usefulness of our liveness property by implementing it
as an extension to the Symbolic Execution engine KLEE, thereby enabling it to
discover a class of software defects it could not previously detect, and analyzing
several large and well-tested programs. Our implementation caused the discovery
and eventual correction of a total of five previously unknown defects, three in
the GNU Coreutils, arguably one of the most well-tested code bases in existence,
and two in BusyBox. Each of these bugs had been in released software for over 7
years—four of them even for over 16 years, which goes to show that this class of
bugs has so far proven elusive. Our implementation did not cause a single false
positive: all reported violations are indeed accompanied by concrete test cases
that reproduce a violation of our liveness property.

The evaluation in Sect. 6 also showed that the performance impact, in matters
of throughput as well as in matters of memory consumption, remains significantly
below 2× on average, while allowing the analysis to detect a completely new
range of software defects. We demonstrated that this overhead remains stable
over a range of different analysis durations.

In future work, we will explore the opportunities for same-state merging that
our approach enables by implementing efficient equality testing of SymEx states
via our fingerprinting scheme. We expect that this will further improve the per-
formance of our approach and maybe even exceed KLEE’s baseline performance
by reducing the amount of duplicate work done.
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Abstract. This paper describes our experience with symbolic model
checking in an industrial setting. We have proved that the initial boot
code running in data centers at Amazon Web Services is memory safe,
an essential step in establishing the security of any data center. Standard
static analysis tools cannot be easily used on boot code without modifica-
tion owing to issues not commonly found in higher-level code, including
memory-mapped device interfaces, byte-level memory access, and linker
scripts. This paper describes automated solutions to these issues and
their implementation in the C Bounded Model Checker (CBMC). CBMC
is now the first source-level static analysis tool to extract the memory
layout described in a linker script for use in its analysis.

1 Introduction

Boot code is the first code to run in a data center; thus, the security of a data
center depends on the security of the boot code. It is hard to demonstrate boot
code security using standard techniques, as boot code is difficult to test and
debug, and boot code must run without the support of common security miti-
gations available to the operating system and user applications. This industrial
experience report describes work to prove the memory safety of initial boot code
running in data centers at Amazon Web Services (AWS).

We describe the challenges we faced analyzing AWS boot code, some of which
render existing approaches to software verification unsound or imprecise. These
challenges include

1. memory-mapped input/output (MMIO) for accessing devices,
2. device behavior behind these MMIO regions,
3. byte-level memory access as the dominant form of memory access, and
4. linker scripts used during the build process.

Not handling MMIO or linker scripts results in imprecision (false positives), and
not modeling device behavior is unsound (false negatives).

We describe the solutions to these challenges that we developed. We imple-
mented our solutions in the C Bounded Model Checker (CBMC) [20]. We achieve
c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 467–486, 2018.
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soundness with CBMC by fully unrolling loops in the boot code. Our solutions
automate boot code verification and require no changes to the code being ana-
lyzed. This makes our work particularly well-suited for deployment in a continu-
ous validation environment to ensure that memory safety issues do not reappear
in the code as it evolves during development. We use CBMC, but any other
bit-precise, sound, automated static analysis tool could be used.

2 Related Work

There are many approaches to finding memory safety errors in low-level code,
from fuzzing [2] to static analysis [24,30,39,52] to deductive verification [21,34].

A key aspect of our work is soundness and precision in the presence of very
low-level details. Furthermore, full automation is essential in our setting to oper-
ate in a continuous validation environment. This makes some form of model
checking most appealing.

CBMC is a bounded model checker for C, C++, and Java programs, available
on GitHub [13]. It features bit-precise reasoning, and it verifies array bounds
(buffer overflows), pointer safety, arithmetic exceptions, and assertions in the
code. A user can bound the model checking done by CBMC by specifying for a
loop a maximum number of iterations of the loop. CBMC can check that it is
impossible for the loop to iterate more than the specified number of times by
checking a loop-unwinding assertion. CBMC is sound when all loop-unwinding
assertions hold. Loops in boot code typically iterate over arrays of known sizes,
making it possible to choose loop unwinding limits such that all loop-unwinding
assertions hold (see Sect. 5.7). BLITZ [16] or F-Soft [36] could be used in place
of CBMC. SATABS [19], Ufo [3], Cascade [55], Blast [9], CPAchecker [10], Cor-
ral [33,43,44], and others [18,47] might even enable unbounded verification. Our
work applies to any sound, bit-precise, automated tool.

Note that boot code makes heavy use of pointers, bit vectors, and arrays,
but not the heap. Thus, memory safety proof techniques based on three-valued
logic [45] or separation logic as in [8] or other techniques [1,22] that focus on the
heap are less appropriate since boot code mostly uses simple arrays.

KLEE [12] is a symbolic execution engine for C that has been used to find
bugs in firmware. Davidson et al. [25] built the tool FIE on top of KLEE for
detecting bugs in firmware programs for the MSP430 family of microcontrollers
for low-power platforms, and applied the tool to nearly a hundred open source
firmware programs for nearly a dozen versions of the microcontroller to find bugs
like buffer overflow and writing to read-only memory. Corin and Manzano [23]
used KLEE to do taint analysis and prove confidentiality and integrity proper-
ties. KLEE and other tools like SMACK [49] based on the LLVM intermediate
representation do not currently support the linker scripts that are a crucial part
of building boot code (see Sect. 4.5). They support partial linking by concatenat-
ing object files and resolving symbols, but fail to make available to their analysis
the addresses and constants assigned to symbols in linker scripts, resulting in an
imprecise analysis of the code.
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S2E [15] is a symbolic execution engine for x86 binaries built on top of the
QEMU [7] virtual machine and KLEE. S2E has been used on firmware. Parvez
et al. [48] use symbolic execution to generate inputs targeting a potentially buggy
statement for debugging. Kuznetsov et al. [42] used a prototype of S2E to find
bugs in Microsoft device drivers. Zaddach et al. [56] built the tool Avatar on
top of S2E to check security of embedded firmware. They test firmware running
on top of actual hardware, moving device state between the concrete device and
the symbolic execution. Bazhaniuk et al. [6,28] used S2E to search for security
vulnerabilities in interrupt handlers for System Management Mode on Intel plat-
forms. Experts can use S2E on firmware. One can model device behavior (see
Sect. 4.2) by adding a device model to QEMU or using the signaling mechanism
used by S2E during symbolic execution. One can declare an MMIO region (see
Sect. 4.1) by inserting it into the QEMU memory hierarchy. Both require under-
standing either QEMU or S2E implementations. Our goal is to make it as easy
as possible to use our work, primarily by way of automation.

Ferreira et al. [29] verify a task scheduler for an operating system, but that
is high in the software stack. Klein et al. [38] prove the correctness of the seL4
kernel, but that code was written with the goal of proof. Dillig et al. [26] syn-
thesize guards ensuring memory safety in low-level code, but our code is written
by hand. Rakamarić and Hu [50] developed a conservative, scalable approach to
memory safety in low-level code, but the models there are not tailored to our code
that routinely accesses memory by an explicit integer-valued memory address.
Redini et al. [51] built a tool called BootStomp on top of angr [54], a frame-
work for symbolic execution of binaries based on a symbolic execution engine
for the VEX intermediate representation for the Valgrind project, resulting in a
powerful testing tool for boot code, but it is not sound.

3 Boot Code

We define boot code to be the code in a cloud data center that runs from the
moment the power is turned on until the BIOS starts. It runs before the operating
system’s boot loader that most people are familiar with. A key component to
ensuring high confidence in data center security is establishing confidence in boot
code security. Enhancing confidence in boot code security is a challenge because
of unique properties of boot code not found in higher-level software. We now
discuss these properties of boot code, and a path to greater confidence in boot
code security.

3.1 Boot Code Implementation

Boot code starts a sequenced boot flow [4] in which each stage locates, loads,
and launches the next stage. The boot flow in a modern data center proceeds as
follows: (1) When the power is turned on, before a single instruction is executed,
the hardware interrogates banks of fuses and hardware registers for configuration
information that is distributed to various parts of the platform. (2) Boot code
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starts up to boot a set of microcontrollers that orchestrate bringing up the
rest of the platform. In a cloud data center, some of these microcontrollers are
feature-rich cores with their own devices used to support virtualization. (3) The
BIOS familiar to most people starts up to boot the cores and their devices.
(4) A boot loader for the hypervisor launches the hypervisor to virtualize those
cores. (5) A boot loader for the operating system launches the operating system
itself. The security of each stage, including operating system launched for the
customer, depends on the integrity of all prior stages [27].

Ensuring boot code security using traditional techniques is hard. Visibility
into code execution can only be achieved via debug ports, with almost no abil-
ity to single-step the code for debugging. UEFI (Unified Extensible Firmware
Interface) [53] provides an elaborate infrastructure for debugging BIOS, but not
for the boot code below BIOS in the software stack. Instrumenting boot code
may be impossible because it can break the build process: the increased size
of instrumented code can be larger than the size of the ROM targeted by the
build process. Extracting the data collected by instrumentation may be difficult
because the code has no access to a file system to record the data, and memory
available for storing the data may be limited.

Static analysis is a relatively new approach to enhancing confidence in boot
code security. As discussed in Sect. 2, most work applying static analysis to boot
code applies technology like symbolic execution to binary code, either because
the work strips the boot code from ROMs on shipping products for analysis
and reverse engineering [42,51], or because code like UEFI-based implementa-
tions of BIOS loads modules with a form of dynamic linking that makes source
code analysis of any significant functionality impossible [6,28]. But with access
to the source code—source code without the complexity of dynamic linking—
meaningful static analysis at the source code level is possible.

3.2 Boot Code Security

Boot code is a foundational component of data center security: it controls what
code is run on the server. Attacking boot code is a path to booting your own
code, installing a persistent root kit, or making the server unbootable. Boot code
also initializes devices and interfaces directly with them. Attacking boot code
can also lead to controlling or monitoring peripherals like storage devices.

The input to boot code is primarily configuration information. The run-
time behavior of boot code is determined by configuration information in fuses,
hardware straps, one-time programmable memories, and ROMs.

From a security perspective, boot code is susceptible to a variety of events
that could set the configuration to an undesirable state. To keep any malicious
adversary from modifying this configuration information, the configuration is
usually locked or otherwise write-protected. Nonetheless, it is routine to dis-
cover during hardware vetting before placing hardware on a data center floor
that some BIOS added by a supplier accidentally leaves a configuration register
unlocked after setting it. In fact, configuration information can be intentionally
unlocked for the purpose of patching and then be locked again. Any bug in a
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patch or in a patching mechanism has the potential to leave a server in a vulner-
able configuration. Perhaps more likely than anything is a simple configuration
mistake at installation. We want to know that no matter how a configuration
may have been corrupted, the boot code will operate as intended and without
latent exposures for potential adversaries.

The attack surface we focus on in this paper is memory safety, meaning
there are no buffer overflows, no dereferencing of null pointers, and no pointers
pointing into unallocated regions of memory. Code written in C is known to
be at risk for memory safety, and boot code is almost always written in C, in
part because of the direct connection between boot code and the hardware, and
sometimes because of space limitations in the ROMs used to store the code.

There are many techniques for protecting against memory safety errors and
mitigating their consequences at the higher levels of the software stack. Lan-
guages other than C are less prone to memory safety errors. Safe libraries can do
bounds checking for standard library functions. Compiler extensions to compil-
ers like gcc and clang can help detect buffer overflow when it happens (which is
different from keeping it from happening). Address space layout randomization
makes it harder for the adversary to make reliable use of a vulnerability. None of
these mitigations, however, apply to firmware. Firmware is typically built using
the tool chain that is provided by the manufacturer of the microcontroller, and
firmware typically runs before the operating system starts, without the benefit of
operating system support like a virtual machine or randomized memory layout.

4 Boot Code Verification Challenges

Boot code poses challenges to the precision, soundness, and performance of any
analysis tool. The C standard [35] says, “A volatile declaration may be used to
describe an object corresponding to an MMIO port” and “what constitutes an
access to an object that has volatile-qualified type is implementation-defined.”
Any tool that seeks to verify boot code must provide means to model what the
C standard calls implementation-defined behavior. Of all such behavior, MMIO
and device behavior are most relevant to boot code. In this section, we discuss
these issues and the solutions we have implemented in CBMC.

4.1 Memory-Mapped I/O

Boot code accesses a device through memory-mapped input/output (MMIO).
Registers of the device are mapped to specific locations in memory. Boot code
reads or writes a register in the device by reading or writing a specific location in
memory. If boot code wants to set the second bit in a configuration register, and if
that configuration register is mapped to the byte at location 0x1000 in memory,
then the boot code sets the second bit of the byte at 0x1000. The problem
posed by MMIO is that there is no declaration or allocation in the source code
specifying this location 0x1000 as a valid region of memory. Nevertheless accesses
within this region are valid memory accesses, and should not be flagged as an
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out-of-bounds memory reference. This is an example of implementation-defined
behavior that must be modeled to avoid reporting false positives.

To facilitate analysis of low-level code, we have added to CBMC a built-in
function

__CPROVER_allocated_memory(address , size)

to mark ranges of memory as valid. Accesses within this region are exempt
from the out-of-bounds assertion checking that CBMC would normally do. The
function declares the half-open interval [address, address+size) as valid memory
that can be read and written. This function can be used anywhere in the source
code, but is most commonly used in the test harness. (CBMC, like most program
analysis approaches, uses a test harness to drive the analysis.)

4.2 Device Behavior

An MMIO region is an interface to a device. It is unsound to assume that the
values returned by reading and writing this region of memory follow the seman-
tics of ordinary read-write memory. Imagine a device that can generate unique
ids. If the register returning the unique id is mapped to the byte at location
0x1000, then reading location 0x1000 will return a different value every time,
even without intervening writes. These side effects have to be modeled. One
easy approach is to ‘havoc’ the device, meaning that writes are ignored and
reads return nondeterministic values. This is sound, but may lead to too many
false positives. We can model the device semantics more precisely, using one of
the options described below.

If the device has an API, we havoc the device by making use of a more general
functionality we have added to CBMC. We have added a command-line option

--remove -function -body device_access

to CBMC’s goto-instrument tool. When used, this will drop the implemen-
tation of the function device access from compiled object code. If there is
no other definition of device access, CBMC will model each invocation of
device access as returning an unconstrained value of the appropriate return
type. Now, to havoc a device with an API that includes a read and write method,
we can use this command-line option to remove their function bodies, and CBMC
will model each invocation of read as returning an unconstrained value.

At link time, if another object file, such as the test harness, provides a second
definition of device access, CBMC will use this definition in its place. Thus, to
model device semantics more precisely, we can provide a device model in the test
harness by providing implementations of (or approximations for) the methods
in the API.

If the device has no API, meaning that the code refers directly to the address
in the MMIO region for the device without reference to accessor functions, we
have another method. We have added two function symbols

__CPROVER_mm_io_r(address , size)

__CPROVER_mm_io_w(address , size , value)
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to CBMC to model the reading or writing of an address at a fixed integer address.
If the test harness provides implementations of these functions, CBMC will use
these functions to model every read or write of memory. For example, defining

char __CPROVER_mm_io_r(void *a, unsigned s) {

if(a == 0x1000) return 2;

}

will return the value 2 upon any access at address 0x1000, and return a non-
deterministic value in all other cases.

In both cases—with or without an API—we can thus establish sound and, if
needed, precise analysis about an aspect of implementation-defined behavior.

4.3 Byte-Level Memory Access

It is common for boot code to access memory a byte at a time, and to access a
byte that is not part of any variable or data structure declared in the program
text. Accessing a byte in an MMIO region is the most common example. Boot
code typically accesses this byte in memory by computing the address of the
byte as an integer value, coercing this integer to a pointer, and dereferencing
this pointer to access that byte. Boot code references memory by this kind of
explicit address far more frequently than it references memory via some explicitly
allocated variable or data structure. Any tool analyzing boot code must have a
method for reasoning efficiently about accessing an arbitrary byte of memory.

The natural model for memory is as an array of bytes, and CBMC does
the same. Any decision procedure that has a well-engineered implementation
of a theory of arrays is likely to do a good job of modeling byte-level memory
access. We improved CBMC’s decision procedure for arrays to follow the state-
of-the-art algorithm [17,40]. The key data structure is a weak equivalence graph
whose vertices correspond to array terms. Given an equality a = b between two
array terms a and b, add an unlabeled edge between a and b. Given an update
a{i ← v} of an array term a, add an edge labeled i between a and a{i ← v}.
Two array terms a and b are weakly equivalent if there is a path from a to b
in the graph, and they are equal at all indices except those updated along the
path. This graph is used to encode constraints on array terms for the solver. For
simplicity, our implementation generates these constraints eagerly.

4.4 Memory Copying

One of the main jobs of any stage of the boot flow is to copy the next stage
into memory, usually using some variant of memcpy. Any tool analyzing boot
code must have an efficient model of memcpy. Modeling memcpy as a loop iterating
through a thousand bytes of memory leads to performance problems during
program analysis. We added to CBMC an improved model of the memset and
memcpy library functions.

Boot code has no access to a C library. In our case, the boot code shipped
an iterative implementation of memset and memcpy. CBMC’s model of the C
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library previously also used an iterative model. We replaced this iterative
model of memset and memcpy with a single array operation that can be han-
dled efficiently by the decision procedure at the back end. We instructed CBMC
to replace the boot code implementations with the CBMC model using the
--remove-function-body command-line option described in Sect. 4.2.

4.5 Linker Scripts

Linking is the final stage in the process of transforming source code into an
executable program. Compilation transforms source files into object files, which
consist of several sections of related object code. A typical object file contains
sections for executable code, read-only and read-write program data, debugging
symbols, and other information. The linker combines several object files into a
single executable object file, merging similar sections from each of the input files
into single sections in the output executable. The linker combines and arranges
the sections according to the directives in a linker script. Linker scripts are
written in a declarative language [14].

The functionality of most programs is not sensitive to the exact layout of the
executable file; therefore, by default, the linker uses a generic linker script1 the
directives of which are suited to laying out high-level programs. On the other
hand, low-level code (like boot loaders, kernels, and firmware) must often be
hard-coded to address particular memory locations, which necessitates the use
of a custom linker script.

One use for a linker script is to place selected code into a specialized memory
region like a tightly-coupled memory unit [5], which is a fast cache into which
developers can place hot code. Another is device access via memory-mapped I/O
as discussed in Sects. 4.1 and 4.2. Low-level programs address these hard devices
by having a variable whose address in memory corresponds to the address that
the hardware exposes. However, no programming language offers the ability to
set a variable’s address from the program; the variable must instead be laid out
at the right place in the object file, using linker script directives.

While linker scripts are essential to implement the functionality of low-level
code, their use in higher-level programs is uncommon. Thus, we know of no
work that considers the role of linker scripts in static program analysis; a recent
formal treatment of linkers [37] explicitly skips linker scripts. Ensuring that
static analysis results remain correct in the presence of linker scripts is vital
to verifying and finding bugs in low-level code; we next describe problems that
linker scripts can create for static analyses.

Linker Script Challenges. All variables used in C programs must be defined
exactly once. Static analyses make use of the values of these variables to decide
program correctness, provided that the source code of the program and libraries
used is available. However, linker scripts also define symbols that can be accessed
as variables from C source code. Since C code never defines these symbols, and

1 On Linux and macOS, running ld --verbose displays the default linker script.
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linker scripts are not written in C, the values of these symbols are unknown to
a static analyzer that is oblivious to linker scripts. If the correctness of code
depends on the values of these symbols, it cannot be verified. To make this
discussion concrete, consider the code in Fig. 1.

/* main.c */

#include <string.h>

extern char text_start;

extern char text_size;

extern char scratch_start;

int main() {

memcpy (&text_start ,

&scratch_start ,

(size_t )& text_size );

}

/* link.ld */

SECTIONS {

.text : {

text_start =.;

*(. text)

}

text_size=SIZEOF (.text);

.scratch : {

scratch_start =.;

.=.+0 x1000;

scratch_end =.;

}

}

Fig. 1. A C program using variables whose addresses are defined in a linker script.

This example, adapted from the GNU linker manual [14], shows the common
pattern of copying an entire region of program code from one part of memory to
another. The linker writes an executable file in accordance with the linker script
on the right; the expression “.” (period) indicates the current byte offset into
the executable file. The script directs the linker to generate a code section called
.text and write the contents of the .text sections from each input file into that
section; and to create an empty 4 KiB long section called .scratch. The symbols
text_start and scratch_start are created at the address of the beginning of
the associated section. Similarly, the symbol text_size is created at the address
equal to the code size of the .text section. Since these symbols are defined in
the linker script, they can be freely used from the C program on the left (which
must declare the symbols as extern, but not define them). While the data at the
symbols’ locations is likely garbage, the symbols’ addresses are meaningful; in
the program, the addresses are used to copy data from one section to another.

Contemporary static analysis tools fail to correctly model the behavior of this
program because they model symbols defined in C code but not in linker scripts.
Tools like SeaHorn [32] and KLEE [12] do support linking of the intermediate
representation (IR) compiled from each of the source files with an IR linker. By
using build wrappers like wllvm [46], they can even invoke the native system
linker, which itself runs the linker script on the machine code sections of the
object files. The actions of the native linker, however, are not propagated back to
the IR linker, so the linked IR used for static analysis contains only information
derived from C source, and not from linker scripts. As a result, these analyzers
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lack the required precision to prove that a safe program is safe: they generate
false positives because they have no way of knowing (for example) that a memcpy

is walking over a valid region of memory defined in the linker script.

Information Required for Precise Modeling. As we noted earlier in this
section, linker scripts provide definitions to variables that may only be declared
in C code, and whose addresses may be used in the program. In addition, linker
scripts define the layout of code sections; the C program may copy data to and
from these sections using variables defined in the linker script to demarcate valid
regions inside the sections. Our aim is to allow the static analyzer to decide the
memory safety of operations that use linker script definitions (if indeed they
are safe, i.e., don’t access memory regions outside those defined in the linker
script). To do this, the analyzer must know (referencing our example in Fig. 1
but without loss of generality):

1. that we are copying &text_size bytes starting from &text_start;
2. that there exists a code section (i.e., a valid region of memory) whose starting

address equals &text_start and whose size equals &text_size;
3. the concrete values of that code section’s size and starting address.

Fact 1 is derived from the source code; Fact 2—from parsing the linker script;
and Fact 3—from disassembling the fully-linked executable, which will have had
the sections and symbols laid out at their final addresses by the linker.

Extending CBMC. CBMC compiles source files with a front-end that emu-
lates the native compiler (gcc), but which adds an additional section to the end
of the output binary [41]; this section contains the program encoded in CBMC’s
analysis-friendly intermediate representation (IR). In particular, CBMC’s front-
end takes the linker script as a command-line argument, just like gcc, and del-
egates the final link to the system’s native linker. CBMC thus has access to the
linker script and the final binary, which contains both native executable code
and CBMC IR. We send linker script information to CBMC as follows:

1. use CBMC’s front end to compile the code, producing a fully-linked binary,
2. parse the linker script and disassemble the binary to get the required data,
3. augment the IR with the definitions from the linker script and binary, and
4. analyze the augmented intermediate representation.

Our extensions are Steps 2 and 3, which we describe in more detail below. They
are applicable to tools (like SeaHorn and KLEE) that use an IR linker (like
llvm-link) before analyzing the IR.

Extracting Linker Script Symbols. Our extension to CBMC reads a linker
script and extracts the information that we need. For each code section, it
extracts the symbols whose addresses mark the start and end of the section,
if any; and the symbol whose address indicates the section size, if any. The
sections key of Fig. 2 shows the information extracted from the linker script in
Fig. 1.



Model Checking Boot Code from AWS Data Centers 477

Extracting Linker Script Symbol Addresses. To remain architecture inde-
pendent, our extension uses the objdump program (part of the GNU Binutils [31])
to extract the addresses of all symbols in an object file (shown in the addresses

key of Fig. 2). In this way, it obtains the concrete addresses of symbols defined
in the linker script.

"sections" : {

".text": {

"start": "text_start",

"size": "text_size"

},

".scratch" : {

"start": "scratch_start",

"end": "scratch_end"

}

},

"addresses" : {

"text_start": "0x0200",

"text_size": "0x0600",

"scratch_start": "0x1000",

"scratch_end": "0x2000",

}

Fig. 2. Output from our linker script parser when run on the linker script in Fig. 1, on
a binary with a 1 KiB .text section and 4 KiB .scratch section.

Augmenting the Intermediate Representation. CBMC maintains a sym-
bol table of all the variables used in the program. Variables that are declared
extern in C code and never defined have no initial value in the symbol table.
CBMC can still analyze code that contains undefined symbols, but as noted ear-
lier in this section, this can lead to incorrect verification results. Our extension
to CBMC extracts information described in the previous section and integrates
it into the target program’s IR. For example, given the source code in Fig. 1,
CBMC will replace it with the code given in Fig. 3.

In more detail, CBMC

1. converts the types of linker symbols in the IR and symbol table to char *,
2. updates all expressions involving linker script symbols to be consistent with

this type change,
3. creates the IR representation of C-language definitions of the linker script

symbols, initializing them before the entry point of main(), and
4. uses the __CPROVER_allocated_memory API described in Sect. 4.1 to mark code

sections demarcated by linker script symbols as allocated.

The first two steps are necessary because C will not let us set the address of
a variable, but will let us store the address in a variable. CBMC thus changes
the IR type of text_start to char *; sets the value of text_start to the address
of text_start in the binary; and rewrites all occurrences of “&text_start” to
“text_start”. This preserves the original semantics while allowing CBMC to
model the program. The semantics of Step 4 is impossible to express in C,
justifying the use of CBMC rather than a simple source-to-source transformation.
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#include <string.h>

extern char text_start;

extern char text_size;

extern char scratch_start;

int main() {

memcpy (&text_start ,

&scratch_start ,

(size_t )& text_size );

}

#include <string.h>

char *text_start = 0x0200;

char *text_size = 0x0600;

char *scratch_start = 0x1000;

int main() {

__CPROVER_allocated_memory(

0x0200 , 0x0600);

__CPROVER_allocated_memory(

0x1000 , 0x1000);

memcpy(text_start ,

scratch_start ,

(size_t)text_size );

}

Fig. 3. Transformation performed by CBMC for linker-script-defined symbols.

5 Industrial Boot Code Verification

In this section, we describe our experience proving memory safety of boot code
running in an AWS data center. We give an exact statement of what we proved,
we point out examples of the verification challenges mentioned in Sect. 4 and our
solutions, and we go over the test harness and the results of running CBMC.

Boot sourcesBoot configuration

NAND8

UART

SNOR

Stage 2

Any binary

A
ny

so
ur
ce

Straps OTP

Stage 1

Device configuration

Any boot configuration

Any device configuration

No memory
safety errors

Fig. 4. Boot code is free of memory safety errors.

We use CBMC to prove that 783 lines of AWS boot code are memory safe.
Soundness of this proof by bounded model checking is achieved by having CBMC
check its loop unwinding assertions (that loops have been sufficiently unwound).
This boot code proceeds in two stages, as illustrated in Fig. 4. The first stage
prepares the machine, loads the second stage from a boot source, and launches
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the second stage. The behavior of the first stage is controlled by configuration
information in hardware straps and one-time-programmable memory (OTP),
and by device configuration. We show that no configuration will induce a memory
safety error in the stage 1 boot code.

More precisely, we prove:

Assuming
– a buffer for stage 2 code and a temporary buffer are both 1024 bytes,
– the cryptographic, CRC computation, and printf methods have no side

effects and can return unconstrained values,
– the CBMC model of memcpy and memset, and
– ignoring a loop that flashes the console lights when boot fails;

then
– for every boot configuration,
– for every device configuration,
– for each of the three boot sources, and
– for every stage 2 binary,

the stage 1 boot code will not exhibit any memory safety errors.

Due to the second and third assumptions, we may be missing memory safety
errors in these simple procedures. Memory safety of these procedures can be
established in isolation. We find all memory safety errors in the remainder of the
code, however, because making buffers smaller increases the chances they will
overflow, and allowing methods to return unconstrained values increases the set
of program behaviors considered.

The code we present in this section is representative of the code we ana-
lyzed, but the actual code is proprietary and not public. The open-source project
rBoot [11] is 700 lines of boot code available to the public that exhibits most of
the challenges we now discuss.

5.1 Memory-Mapped I/O

MMIO regions are not explicitly allocated in the code, but the addresses of
these regions appear in the header files. For example, an MMIO region for the
hardware straps is given with

#define REG_BASE (0x1000)

#define REG_BOOT_STRAP (REG_BASE + 0x110)

#define REG_BOOT_CONF (REG_BASE + 0x124)

Each of the last two macros denotes the start of a different MMIO region, leav-
ing 0x14 bytes for the region named REG_BOOT_STRAP. Using the builtin function
added to CBMC (Sect. 4.1), we declare this region in the test harness with

__CPROVER_allocated_memory(REG_BOOT_STRAP , 0x14);
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5.2 Device Behavior

All of the devices accessed by the boot code are accessed via an API. For example,
the API for the UART is given by

int UartInit(UART_PORT port , unsigned int baudRate );

void UartWriteByte(UART_PORT port , uint8_t byte);

uint8_t UartReadByte(UART_PORT port);

In this work, we havoc all of the devices to make our result as strong as
possible. In other words, our device model allows a device read to return any
value of the appropriate type, and still we can prove that (even in the context
of a misbehaving device) the boot code does not exhibit a memory safety error.
Because all devices have an API, we can havoc the devices using the command
line option added to CBMC (Sect. 4.2), and invoke CBMC with

--remove -function -body UartInit

--remove -function -body UartReadByte

--remove -function -body UartWriteByte

5.3 Byte-Level Memory Access

All devices are accessed at the byte level by computing an integer-valued address
and coercing it to a pointer. For example, the following code snippets from
BootOptionsParse show how reading the hardware straps from the MMIO region
discussed above translates into a byte-level memory access.

#define REG_READ(addr) (*( volatile uint32_t *)( addr))

regVal = REG_READ(REG_BOOT_STRAP );

In CBMC, this translates into an access into an array modeling memory at loca-
tion 0x1000 + 0x110. Our optimized encoding of the theory of arrays (Sect. 4.3)
enables CBMC to reason more efficiently about this kind of construct.

5.4 Memory Copying

The memset and memcpy procedures are heavily used in boot code. For example,
the function used to copy the stage 2 boot code from flash memory amounts to
a single, large memcpy.

int SNOR_Read(unsigned int address ,

uint8_t* buff ,

unsigned int numBytes) {

...

memcpy(buff ,

(void *)( address + REG_SNOR_BASE_ADDRESS),

numBytes );

...

}

CBMC reasons more efficiently about this kind of code due to our loop-free
model of memset and memcpy procedures as array operations (Sect. 4.4).
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5.5 Linker Scripts

Linker scripts allocate regions of memory and pass the addresses of these regions
and other constants to the code through the symbol table. For example, the linker
script defines a region to hold the stage 2 binary and passes the address and size
of the region as the addresses of the symbols stage2_start and stage2_size.

.stage2 (NOLOAD) : {

stage2_start = .;

. = . + STAGE2_SIZE;

stage2_end = .;

} > RAM2

stage2_size = SIZEOF (. stage2 );

The code declares the symbols as externally defined, and uses a pair of macros
to convert the addresses of the symbols to an address and a constant before use.

extern char stage2_start [];

extern char stage2_size [];

#define STAGE2_ADDRESS (( uint8_t *)(& stage2_start ))

#define STAGE2_SIZE (( unsigned )(& stage2_size ))

CBMC’s new approach to handling linker scripts modifies the CBMC interme-
diate representation of this code as described in Sect. 4.5.

5.6 Test Harness

The main procedure for the boot code begins by clearing the BSS section, copying
a small amount of data from a ROM, printing some debugging information, and
invoking three functions

SecuritySettingsOtp ();

BootOptionsParse ();

Stage2LoadAndExecute ();

that read security settings from some one-time programmable memory, read the
boot options from some hardware straps, and load and launch the stage 2 code.

The test harness for the boot code is 76 lines of code that looks similar to

void environment_model () {

__CPROVER_allocated_memory(REG_BOOT_STRAP , 0x14);

__CPROVER_allocated_memory(REG_UART_UART_BASE ,

UART_REG_OFFSET_LSR +

sizeof(uint32_t ));

__CPROVER_allocated_memory(REG_NAND_CONFIG_REG ,

sizeof(uint32_t ));

}

void harness () {

environment_model ();
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SecuritySettingsOtp ();

BootOptionsParse ();

Stage2LoadAndExecute ();

}

The environment_model procedure defines the environment of the software under
test not declared in the boot code itself. This environment includes more than
30 MMIO regions for hardware like some hardware straps, a UART, and some
NAND memory. The fragment of the environment model reproduced above uses
the __CPROVER_allocated_memory built-in function added to CBMC for this work
to declare these MMIO regions and assign them unconstrained values (model-
ing unconstrained configuration information). The harness procedure is the test
harness itself. It builds the environment model and calls the three procedures
invoked by the boot code.

5.7 Running CBMC

Building the boot code and test harness for CBMC takes 8.2 s compared to
building the boot code with gcc in 2.2 s.

Running CBMC on the test harness above as a job under AWS Batch, it
finished successfully in 10:02 min. It ran on a 16-core server with 122 GiB of
memory running Ubuntu 14.04, and consumed one core at 100% using 5 GiB of
memory. The new encoding of arrays improved this time by 45 s.

The boot code consists of 783 lines of statically reachable code, meaning the
number of lines of code in the functions that are reachable from the test harness
in the function call graph. CBMC achieves complete code coverage, in the sense
that every line of code CBMC fails to exercise is dead code. An example of dead
code found in the boot code is the default case of a switch statement whose cases
enumerate all possible values of an expression.

The boot code consists of 98 loops that fall into two classes. First are for-
loops with constant-valued expressions for the upper and lower bounds. Second
are loops of the form while (num) {...; num--} and code inspection yields a
bound on num. Thus, it is possible to choose loop bounds that cause all loop-
unwinding assertions to hold, making CBMC’s results sound for boot code.

6 Conclusion

This paper describes industrial experience with model checking production code.
We extended CBMC to address issues that arise in boot code, and we proved that
initial boot code running in data centers at Amazon Web Services is memory safe,
a significant application of model checking in the industry. Our most significant
extension to CBMC was parsing linker scripts to extract the memory layout
described there for use in model checking, making CBMC the first static analysis
tool to do so. With this and our other extensions to CBMC supporting devices
and byte-level access, CBMC can now be used in a continuous validation flow to
check for memory safety during code development. All of these extensions are in
the public domain and freely available for immediate use.



Model Checking Boot Code from AWS Data Centers 483

References

1. Abdulla, P.A., Bouajjani, A., Cederberg, J., Haziza, F., Rezine, A.: Monotonic
abstraction for programs with dynamic memory heaps. In: Gupta, A., Malik,
S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 341–354. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70545-1 33

2. AFL: American fuzzy lop. http://lcamtuf.coredump.cx/afl
3. Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: Ufo: a framework for

abstraction- and interpolation-based software verification. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 672–678. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31424-7 48

4. Arbaugh, W.A., Farber, D.J., Smith, J.M.: A secure and reliable bootstrap archi-
tecture. In: 1997 IEEE Symposium on Security and Privacy, 4–7 May 1997, Oak-
land, CA, USA, pp. 65–71. IEEE Computer Society (1997). https://doi.org/10.
1109/SECPRI.1997.601317

5. Arm Holdings: ARM1136JF-S and ARM1136J-S Technical Reference Manual
(2006). https://developer.arm.com/docs/ddi0211/latest/

6. Bazhaniuk, O., Loucaides, J., Rosenbaum, L., Tuttle, M.R., Zimmer, V.: Symbolic
execution for BIOS security. In: 9th USENIX Workshop on Offensive Technologies
(WOOT 15). USENIX Association, Washington, D.C. (2015)

7. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of the
Annual Conference on USENIX Annual Technical Conference, ATEC 2005, p. 41.
USENIX Association, Berkeley (2005)

8. Berdine, J., et al.: Shape analysis for composite data structures. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73368-3 22

9. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: Checking memory safety
with Blast. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 2–18. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31984-9 2

10. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

11. Burton, R.A.: rBoot: an open source boot loader for the ESP8266 (2017). https://
github.com/raburton/rboot

12. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Draves, R., van Renesse,
R. (eds.) 8th USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2008, 8–10 December 2008, San Diego, California, USA, Proceedings,
pp. 209–224. USENIX Association (2008). http://www.usenix.org/events/osdi08/
tech/full papers/cadar/cadar.pdf

13. C bounded model checker GitHub repository. https://github.com/diffblue/cbmc
14. Chamberlain, S., Taylor, I.L.: The GNU linker. Red Hat, Inc. (2018). https://

sourceware.org/binutils/docs/ld/
15. Chipounov, V., Kuznetsov, V., Candea, G.: The S2E platform: design, implemen-

tation, and applications. ACM Trans. Comput. Syst. 30(1), 2:1–2:49 (2012)
16. Cho, C.Y., D’Silva, V., Song, D.: BLITZ: compositional bounded model checking

for real-world programs. In: 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 136–146, November 2013

https://doi.org/10.1007/978-3-540-70545-1_33
http://lcamtuf.coredump.cx/afl
https://doi.org/10.1007/978-3-642-31424-7_48
https://doi.org/10.1109/SECPRI.1997.601317
https://doi.org/10.1109/SECPRI.1997.601317
https://developer.arm.com/docs/ddi0211/latest/
https://doi.org/10.1007/978-3-540-73368-3_22
https://doi.org/10.1007/978-3-540-31984-9_2
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://github.com/raburton/rboot
https://github.com/raburton/rboot
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://github.com/diffblue/cbmc
https://sourceware.org/binutils/docs/ld/
https://sourceware.org/binutils/docs/ld/


484 B. Cook et al.

17. Christ, J., Hoenicke, J.: Weakly equivalent arrays. In: Lutz, C., Ranise, S. (eds.)
FroCoS 2015. LNCS (LNAI), vol. 9322, pp. 119–134. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24246-0 8

18. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31424-7 23

19. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-31980-1 40

20. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

21. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 2

22. Condit, J., Hackett, B., Lahiri, S.K., Qadeer, S.: Unifying type checking and
property checking for low-level code. In: Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2009, pp. 302–314. ACM, New York (2009)

23. Corin, R., Manzano, F.A.: Taint analysis of security code in the KLEE sym-
bolic execution engine. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012. LNCS,
vol. 7618, pp. 264–275. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-34129-8 23

24. Synopsys static analysis (Coverity). http://coverity.com
25. Davidson, D., Moench, B., Ristenpart, T., Jha, S.: FIE on firmware: finding vul-

nerabilities in embedded systems using symbolic execution. In: Presented as part
of the 22nd USENIX Security Symposium (USENIX Security 2013), pp. 463–478.
USENIX, Washington, D.C. (2013)

26. Dillig, T., Dillig, I., Chaudhuri, S.: Optimal guard synthesis for memory safety. In:
Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 491–507. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 32

27. Dodge, C., Irvine, C., Nguyen, T.: A study of initialization in Linux and OpenBSD.
SIGOPS Oper. Syst. Rev. 39(2), 79–93 (2005). https://doi.org/10.1145/1055218.
1055226

28. Engblom, J.: Finding BIOS vulnerabilities with symbolic execution and vir-
tual platforms, June 2016. https://software.intel.com/en-us/blogs/2017/06/06/
finding-bios-vulnerabilities-with-excite

29. Ferreira, J.F., Gherghina, C., He, G., Qin, S., Chin, W.N.: Automated verification
of the FreeRTOS scheduler in HIP/SLEEK. Int. J. Softw. Tools Technol. Transf.
16(4), 381–397 (2014)

30. Fortify static code analyzer. https://software.microfocus.com/en-us/products/
static-code-analysis-sast/overview

31. Free Software Foundation: Documentation for Binutils 2.29 (2017). https://
sourceware.org/binutils/docs-2.29/

32. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
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Abstract. In this paper, we propose Android Stack Machine (ASM), a
formal model to capture key mechanisms of Android multi-tasking such
as activities, back stacks, launch modes, as well as task affinities. The
model is based on pushdown systems with multiple stacks, and focuses
on the evolution of the back stack of the Android system when interact-
ing with activities carrying specific launch modes and task affinities. For
formal analysis, we study the reachability problem of ASM. While the
general problem is shown to be undecidable, we identify expressive frag-
ments for which various verification techniques for pushdown systems or
their extensions are harnessed to show decidability of the problem.

1 Introduction

Multi-tasking plays a central role in the Android platform. Its unique design, via
activities and back stacks, greatly facilitates organizing user sessions through
tasks, and provides rich features such as handy application switching, back-
ground app state maintenance, smooth task history navigation (using the “back”
button), etc [16]. We refer the readers to Sect. 2 for an overview.

Android task management mechanism has substantially enhanced user expe-
riences of the Android system and promoted personalized features in app design.
However, the mechanism is also notoriously difficult to understand. As a witness,
it constantly baffles app developers and has become a common topic of question-
and-answer websites (for instance, [2]). Surprisingly, the Android multi-tasking
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mechanism, despite its importance, has not been thoroughly studied before, let
along a formal treatment. This has impeded further developments of computer-
aided (static) analysis and verification for Android apps, which are indispensable
for vulnerability analysis (for example, detection of task hijacking [16]) and app
performance enhancement (for example, estimation of energy consumption [8]).

This paper provides a formal model, i.e., Android Stack Machine (ASM),
aiming to capture the key features of Android multi-tasking. ASM addresses the
behavior of Android back stacks, a key component of the multi-tasking machin-
ery, and their interplay with attributes of the activity. In this paper, for these
attributes we consider four basic launch modes, i.e., standard ( STD), singleTop
(STP), singleTask (STK), singleInstance (SIT), and task affinities. (For simplic-
ity more complicated activity attributes such as allowTaskReparenting will not
be addressed in the present paper.) We believe that the semantics of ASM, spec-
ified as a transition system, captures faithfully the actual mechanism of Android
systems. For each case of the semantics, we have created “diagnosis” apps with
corresponding launch modes and task affinities, and carried out extensive exper-
iments using these apps, ascertaining its conformance to the Android platform.
(Details will be provided in Sect. 3.)

For Android, technically ASM can be viewed as the counterpart of push-
down systems with multiple stacks, which are the de facto model for (multi-
threaded) concurrent programs. Being rigours, this model opens a door towards
a formal account of Android’s multi-tasking mechanism, which would greatly
facilitate developers’ understanding, freeing them from lengthy, ambiguous, elu-
sive Android documentations. We remark that it is known that the evolution
of Android back stacks could also be affected by the intent flags of the activi-
ties. ASM does not address intent flags explicitly. However, the effects of most
intent flags (e.g., FLAG ACTIVITY NEW TASK, FLAG ACTIVITY CLEAR TOP) can
be simulated by launch modes, so this is not a real limitation of ASM.

Based on ASM, we also make the first step towards a formal analysis of
Android multi-tasking apps by investigating the reachability problem which is
fundamental to all such analysis. ASM is akin to pushdown systems with multiple
stacks, so it is perhaps not surprising that the problem is undecidable in general;
in fact, we show undecidability for most interesting fragments even with just two
launch modes. In the interest of seeking more expressive, practice-relevant decid-
able fragments, we identify a fragment STK-dominating ASM which assumes
STK activities have different task affinities and which further restricts the use
of SIT activities. This fragment covers a majority of open-source Android apps
(e.g., from Github) we have found so far. One of our technical contributions
is to give a decision procedure for the reachability problem of STK-dominating
ASM, which combines a range of techniques from simulations by pushdown sys-
tems with transductions [19] to abstraction methods for multi-stacks. The work,
apart from independent interests in the study of multi-stack pushdown systems,
lays a solid foundation for further (static) analysis and verification of Android
apps related to multi-tasking, enabling model checking of Android apps, secu-
rity analysis (such as discovering task hijacking), or typical tasks in software
engineering such as automatic debugging, model-based testing, etc.
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We summarize the main contributions as follows: (1) We propose—to the best
of our knowledge—the first comprehensive formal model, Android stack machine,
for Android back stacks, which is also validated by extensive experiments. (2) We
study the reachability problem for Android stack machine. Apart from strongest
possible undecidablity results in the general case, we provide a decision procedure
for a practically relevant fragment.

2 Android Stack Machine: An Informal Overview

In Android, an application, usually referred to as an app, is regarded as a collec-
tion of activities. An activity is a type of app components, an instance of which
provides a graphical user interface on screen and serves the entry point for inter-
acting with the user [1]. An app typically has many activities for different user
interactions (e.g., dialling phone numbers, reading contact lists, etc). A distin-
guished activity is the main activity, which is started when the app is launched.
A task is a collection of activities that users interact with when performing a
certain job. The activities in a task are arranged in a stack in the order in which
each activity is opened. For example, an email app might have one activity to
show a list of latest messages. When the user selects a message, a new activity
opens to view that message. This new activity is pushed to the stack. If the user
presses the “Back” button, an activity is finished and is popped off the stack.
[In practice, the onBackPressed() method can be overloaded and triggered when
the “Back” button is clicked. Here we assume—as a model abstraction—that
the onBackPressed() method is not overloaded.] Furthermore, multiple tasks
may run concurrently in the Android platform and the back stack stores all the
tasks as a stack as well. In other words, it has a nested structure being a stack
of stacks (tasks). We remark that in android, activities from different apps can
stay in the same task, and activities from the same app can enter different tasks.

Typically, the evolution of the back stack is dependent mainly on two
attributes of activities: launch modes and task affinities. All the activities of an
app, as well as their attributes, including the launch modes and task affinities,
are defined in the manifest file of the app. The launch mode of an activity decides
the corresponding operation of the back stack when the activity is launched. As
mentioned in Sect. 1, there are four basic launch modes in Android: “standard”,
“singleTop”, “singleTask” and “singleInstance”. The task affinity of an activity
indicates to which task the activity prefers to belong. By default, all the activ-
ities from the same app have the same affinity (i.e., all activities in the same
app prefer to be in the same task). However, one can modify the default affinity
of the activity. Activities defined in different apps can share a task affinity, or
activities defined in the same app can be assigned with different task affinities.
Below we will use a simple app to demonstrate the evolution of the back stack.

Example 1. In Fig. 1, an app ActivitiesLaunchDemo1 is illustrated. The app
contains four activities of the launch modes STD, STP, STK and SIT, depicted
1 Adapted from an open-source app https://github.com/wauoen/LaunchModeDemo.

https://github.com/wauoen/LaunchModeDemo
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by green, blue, yellow and red, respectively. We will use the colours to name the
activities. The green, blue and red activities have the same task affinity, while
the yellow activity has a distinct one. The main activity of the app is the green
activity. Each activity contains four buttons, i.e., the green, blue, yellow and red
button. When a button is clicked, an instance of the activity with the colour
starts. Moreover, the identifiers of all the tasks of the back stack, as well as
their contents, are shown in the white zones of the window. We use the following
execution trace to demonstrate how the back stack evolves according to the
launch modes and the task affinities of the activities: The user clicks the buttons
in the order of green, blue, blue, yellow, red, and green.
1. [Launch the app] When the app is launched, an instance of the main activity

starts, and the back stack contains exactly one task, which contains exactly
one green activity (see Fig. 1(a)). For convenience, this task is called the green
task (with id: 23963).

2. [Start an STD activity] When the green button is clicked, since the launch
mode of the green activity is STD, a new instance of the green activity starts
and is pushed into the green task (see Fig. 1(b)).

3. [Start an STP activity] When the blue button is clicked, since the top activity
of the green task is not the blue activity, a new instance of the blue activity
is pushed into the green task (see Fig. 1(c)). On the other hand, if the blue
button is clicked again, because the launch mode of the blue activity is STP
and the top activity of the green task is already the blue one, a new instance
of the blue activity will not be pushed into the green task and its content is
kept unchanged.

4. [Start an STK activity] Suppose now that the yellow button is clicked, since
the launch mode of the yellow activity is STK, and the task affinity of the
yellow activity is different from that of the bottom activity of the green task,
a new task is created and an instance of the yellow activity is pushed into
the new task (called the yellow task, with id: 23964, see Fig. 1(d), where the
leftmost task is the top task of the back stack).

5. [Start an SIT activity] Next, suppose that the red button is clicked, because
the launch mode of the red activity is SIT, a new task is created and an
instance of the red activity is pushed into the new task (called the red task,
with id: 23965, see Fig. 1(e)). Moreover, at any future moment, the red activity
is the only activity of the red task. Note that here a new task is created in
spite of the affinity of the red activity.

6. [Start an STD activity from an SIT activity] Finally, suppose the green button
is clicked again. Since the top task is the red task, which is supposed to contain
only one activity (i.e., the red activity), the green task is then moved to the
top of the back stack and a new instance of the green activity is pushed into
the green task (see Fig. 1(f)).

3 Android Stack Machine

For k ∈ N, let [k] = {1, · · · , k}. For a function f : X → Y , let dom(f) and rng(f)
denote the domain (X) and range (Y ) of f respectively.



Android Stack Machine 491

Fig. 1. ActivitiesLaunchDemo: the running example (Color figure online)

Definition 1 (Android stack machine). An Android stack machine (ASM)
is a tuple A = (Q,Sig, q0,Δ), where

– Q is a finite set of control states, and q0 ∈ Q is the initial state,
– Sig = (Act, Lmd,Aft, A0) is the activity signature, where

• Act is a finite set of activities,
• Lmd : Act → {STD,STP,STK,SIT} is the launch-mode function,
• Aft : Act → [m] is the task-affinity function, where m = |Act|,
• A0 ∈ Act is the main activity,

– Δ ⊆ Q × (Act ∪ {�}) × Inst × Q is the transition relation, where Inst =
{�, back} ∪ {start(A) | A ∈ Act}, such that (1) for each transition
(q,A, α, q′) ∈ Δ, it holds that q′ �= q0, and (2) for each transition (q, �, α, q′) ∈
Δ, it holds that q = q0, α = start(A0), and q′ �= q0.

For convenience, we usually write a transition (q,A, α, q′) ∈ Δ as q
A,α−−→ q′,

and (q, �, α, q′) ∈ Δ as q
�,α−−→ q′. Intuitively, � denotes an empty back stack, �

denotes there is no change over the back stack, back denotes the pop action, and
start(A) denotes the activity A being started. We assume that, if the back stack
is empty, the Android stack system terminates (i.e., no further continuation is
possible) unless it is in the initial state q0, We use Act� to denote {B ∈ Act |
Lmd(B) = �} for � ∈ {STD,STP,STK,SIT}.

Semantics. Let A = (Q,Sig, q0,Δ) be an ASM with Sig = (Act, Lmd,Aft, A0).
A task of A is encoded as a word S = [A1, · · · , An] ∈ Act+ which denotes

the content of the stack, with A1 (resp. An) as the top (resp. bottom) symbol,
denoted by top(S) (resp. btm(S)). We also call the bottom activity of a
non-empty task S as the root activity of the task. (Intuitively, this is the
first activity of the task.) For � ∈ {STD,STP,STK,SIT}, a task S is called a
�-task if Lmd(btm(S)) = �. We define the affinity of a task S, denoted by Aft(S),
to be Aft(btm(S)). For S1 ∈ Act∗ and S2 ∈ Act∗, we use S1 · S2 to denote the
concatenation of S1 and S2, and ε is used to denote the empty word in Act∗.

As mentioned in Sect. 2, the (running) tasks on Android are organized as
the back stack, which is the main modelling object of ASM. Typically we write
a back stack ρ as a sequence of non-empty tasks, i.e., ρ = (S1, · · · , Sn), where
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S1 and Sn are called the top and the bottom task respectively. (Intuitively, S1

is the currently active task.) ε is used to denote the empty back stack. For a
non-empty back stack ρ = (S1, · · · , Sn), we overload top by using top(ρ) to refer
to the task S1, and thus top2(ρ) the top activity of S1.

Definition 2 (Configurations). A configuration of A is a pair (q, ρ) where q ∈
Q and ρ is a back stack. Assume that ρ = (S1, · · · , Sn) with Si = [Ai,1, · · · , Ai,mi

]
for each i ∈ [n]. We require ρ to satisfy the following constraints:

1. For each A ∈ ActSTK or A ∈ ActSIT, A occurs in at most one task. Moreover,
if A occurs in a task, then A occurs at most once in that task. [At most one
instance for each STK/SIT-activity]

2. For each i ∈ [n] and j ∈ [mi − 1] such that Ai,j ∈ ActSTP, Ai,j �= Ai,j+1.
[Non-stuttering forSTP- activities]

3. For each i ∈ [n] and j ∈ [mi] such that Ai,j ∈ ActSTK, Aft(Ai,j) = Aft(Si).
[Affinities of STK- activities agree to the host task]

4. For each i ∈ [n] and j ∈ [mi] such that Ai,j ∈ ActSIT, mi = 1. [SIT-activities
monopolize a task]

5. For i �= j ∈ [n] such that btm(Si) �∈ ActSIT and btm(Sj) �∈ ActSIT, Aft(Si) �=
Aft(Sj). [Affinities of tasks are mutually distinct, except for those
rooted at SIT- activities]

By Definition 2(5), each back stack ρ contains at most |ActSIT| + |rng(Aft)|
(more precisely, |ActSIT| + |{Aft(A) | A ∈ Act \ ActSIT}|) tasks. Moreover, by
Definition 2(1–5), all the root activities in a configuration are pairwise distinct,
which allows to refer to a task whose root activity is A as the A-task.

Let ConfA denote the set of configurations of A. The initial configuration of
A is (q0, ε). To formalize the semantics of A concisely, we introduce the following
shorthand stack operations and one auxiliary function. Here ρ = (S1, · · · , Sn) is
a non-empty back stack.

Noaction(ρ) ≡ ρ Push(ρ,B) ≡ (([B] · S1), S2, · · · , Sn)
NewTask(B) ≡ ([B]) NewTask(ρ,B) ≡ ([B], S1, · · · , Sn)

Pop(ρ) ≡

⎧
⎨

⎩

ε, if n = 1 and S1 = [A];
(S2, · · · , Sn), if n > 1 and S1 = [A];
(S′

1, S2, · · · , Sn), if S1 = [A] · S′
1 with S′

1 ∈ Act+;
PopUntil(ρ,B) ≡ (S′′

1 , S2, · · · , Sn), where
S1 = S′

1 · S′′
1 with S′

1 ∈ (Act \ {B})∗ and top(S′′
1 ) = B;

Move2Top(ρ, i) ≡ (Si, S1, · · · , Si−1, Si+1, · · · , Sn)

GetNonSITTaskByAft(ρ, k) ≡
{

Si, if Aft(Si) = k and Lmd(btm(Si)) �= SIT;
Undef, otherwise.

Intuitively, GetNonSITTaskByAft(ρ, k) returns a non-SIT task whose affinity
is k if it exists, otherwise returns Undef.

In the sequel, we define the transition relation (q, ρ) A−→ (q′, ρ′) on ConfA to
formalize the semantics of A. We start with the transitions out of the initial
state q0 and those with � or back action.
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– For each transition q0
�,start(A0)−−−−−−→ q, (q0, ε)

A−→ (q,NewTask(A0)).
– For each transition q

A,�−−→ q′ and (q, ρ) ∈ ConfA such that top2(ρ) = A,
(q, ρ) A−→ (q′,Noaction(ρ)).

– For each transition q
A,back−−−−→ q′ and (q, ρ) ∈ ConfA such that top2(ρ) = A,

(q, ρ) A−→ (q′,Pop(ρ)).

The most interesting case is, however, the transitions of the form q
A,start(B)−−−−−−→

q′. We shall make case distinctions based on the launch mode of B. For each

transition q
A,start(B)−−−−−−→ q′ and (q, ρ) ∈ ConfA such that top2(ρ) = A, (q, ρ) A−→

(q′, ρ′) if one of the following cases holds. Assume ρ = (S1, · · · , Sn).
Case Lmd(B) = STD

– Lmd(A) �= SIT, then ρ′ = Push(ρ,B);
– Lmd(A) = SIT2, then

• if GetNonSITTaskByAft(ρ,Aft(B)) = Si
3, then ρ′ =Push(Move2Top(ρ, i), B),

• if GetNonSITTaskByAft(ρ,Aft(B)) =Undef, then ρ′ = NewTask(ρ,B);

Case Lmd(B) = STP

– Lmd(A) �= SIT and A �= B, then ρ′ = Push(ρ,B);
– Lmd(A) �= SIT and A = B, then ρ′ = Noaction(ρ);
– Lmd(A) = SIT (see footnote 2),

• if GetNonSITTaskByAft(ρ,Aft(B)) = Si (see footnote 3), then

* if top(Si) �= B, ρ′ = Push(Move2Top(ρ, i), B),
* if top(Si) = B, ρ′ = Move2Top(ρ, i);

• if GetNonSITTaskByAft(ρ,Aft(B)) = Undef, then ρ′ = NewTask(ρ,B);

Case Lmd(B) = SIT

– A = B (see footnote 2), then ρ′ = Noaction(ρ);
– A �= B and Si = [B] for some i ∈ [n]4, then ρ′ = Move2Top(ρ, i);
– A �= B and Si �= [B] for each i ∈ [n], then ρ′ = NewTask(ρ,B);

Case Lmd(B) = STK

– Lmd(A) �= SIT and Aft(B) = Aft(S1), then

• if B does not occur in S1
5, then ρ′ = Push(ρ,B);

• if B occurs in S1
6, then ρ′ = PopUntil(ρ,B);

– Lmd(A) �= SIT =⇒ Aft(B) �= Aft(S1), then

2 By Definition 2(4), S1 = [A].
3 If i exists, it must be unique by Definition 2(5). Moreover, i > 1, as Lmd(A) = SIT.
4 If i exists, it must be unique by Definition 2(1). Moreover, i > 1, as A �= B.
5 B does not occur in ρ at all by Definition 2(3–5).
6 Note that B occurs at most once in S1 by Definition 2(1).
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• if GetNonSITTaskByAft(ρ,Aft(B)) = Si
7,

* if B does not occur in Si (see footnote 5), then ρ′ =
Push(Move2Top(ρ, i), B);
* if B occurs in Si

8, then ρ′ = PopUntil(Move2Top(ρ, i), B),

• if GetNonSITTaskByAft(ρ,Aft(B)) = Undef, then ρ′ = NewTask(ρ,B);

This concludes the definition of the transition definition of A−→. As usual, we
use A⇒ to denote the reflexive and transitive closure of A−→.

Example 2. The ASM for the ActivitiesLaunchDemo app in Example 1 is A =
(Q,Sig, q0,Δ), where Q = {q0, q1}, Sig = (Act, Lmd,Aft, Ag) with

– Act = {Ag, Ab, Ay, Ar}, corresponding to the green, blue, yellow and red
activity respectively in the ActivitiesLaunchDemo app,

– Lmd(Ag) = STD, Lmd(Ab) = STP, Lmd(Ay) = STK, Lmd(Ar) = SIT,
– Aft(Ag) = Aft(Ab) = Aft(Ar) = 1, Aft(Ay) = 2,

and Δ comprises the transitions illustrated in Fig. 2. Below is a path in the graph
A−→ corresponding to the sequence of user actions clicking the green, blue, blue,
yellow, red, blue button (cf. Example 1),

(q0, ε)
�,start(Ag)−−−−−−−→ (q1, ([Ag]))

Ag,start(Ab)−−−−−−−−→ (q1, ([Ab, Ag]))
Ab,start(Ab)−−−−−−−→

(q1, ([Ab, Ag]))
Ab,start(Ay)−−−−−−−−→ (q1, ([Ay], [Ab, Ag]))

Ay,start(Ar)−−−−−−−−→
(q1, ([Ar], [Ay], [Ab, Ag]))

Ar,start(Ag)−−−−−−−−→ (q1, ([Ag, Ab, Ag], [Ar], [Ay])).

q0 q1

Ac, start(Ac′) :
c, c′ ∈ {g, b, y, r}

�, start(Ag)
back

Fig. 2. ASM corresponding to
the ActivitiesLaunchDemo app

Proposition 1 reassures that A−→ is indeed a
relation on ConfA as per Definition 2.

Proposition 1. Let A be an ASM. For each
(q, ρ) ∈ ConfA and (q, ρ) A−→ (q′, ρ′), (q′, ρ′) ∈
ConfA, namely, (q′, ρ′) satisfies the five con-
straints in Definition 2.

Remark 1. A single app can clearly be modeled
by an ASM. However, ASM can also be used
to model multiple apps which may share tasks/activities. (In this case, these
multiple apps can be composed into a single app, where a new main activity
is added.) This is especially useful when analysing, for instance, task hijacking
[16]. We sometimes do not specify the main activity explicit for convenience.
The translation from app source code to ASM is not trivial, but follows standard
routines. In particular, in ASM, the symbols stored into the back stack are just
7 If i exists, it must be unique by Definition 2(5). Moreover, i > 1, as Lmd(A) �=
SIT =⇒ Aft(B) �= Aft(S1).

8 Note that B occurs at most once in Si by Definition 2(1).
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names of activities. Android apps typically need to, similar to function calls
of programs, store additional local state information. This can be dealt with
by introducing an extend activity alphabet such that each symbol is of the
form A(b), where A ∈ Act and b represents local information. When we present
examples, we also adopt this general syntax.

Model validation. We validate the ASM model by designing “diagnosis” Android
apps with extensive experiments. For each case in the semantics of ASM, we
design an app which contains activities with the corresponding launch modes and
task affinities. To simulate the transition rules of the ASM, each activity contains
some buttons, which, when clicked, will launch other activities. For instance, in
the case of Lmd(B) = STD, Lmd(A) = SIT, GetNonSITTaskByAft(ρ,Aft(B)) =
Undef, the app contains two activities A and B of launch modes SIT and STD
respectively, where A is the main activity. When the app is launched, an instance
of A is started. A contains a button, which, when clicked, starts an instance of
B. We carry out the experiment by clicking the button, monitoring the content
of the back stack, and checking whether the content of the back stack conforms
to the definition of the semantics. Specifically, we check that there are exactly
two tasks in the back stack, one task comprising a single instance of A and
another task comprising a single instance of B, with the latter task on the top.
Our experiments are done in a Redmi-4A mobile phone with Android version
6.0.1. The details of the experiments can be found at https://sites.google.com/
site/assconformancetesting/.

4 Reachability of ASM

Towards formal (static) analysis and verification of Android apps, we study
the fundamental reachability problem of ASM. Fix an ASM A = (Q,Sig, q0,Δ)
with Sig = (Act, Lmd,Aft, A0) and a target state q ∈ Q. There are usually two
variants: the state reachability problem asks whether (q0, ε)

A−→ (q, ρ) for some
back stack ρ, and the configuration reachability problem asks whether (q0, ε)

A−→
(q, ρ) when ρ is also given. We show they are interchangeable as far as decidability
is concerned.

Proposition 2. The configuration reachability problem and the state reachabil-
ity problem of ASM are interreducible in exponential time.

Proposition 2 allows to focus on the state reachability problem in the rest of
this paper. Observe that, when the activities in an ASM are of the same launch
mode, the problem degenerates to that of standard pushdown systems or even
finite-state systems. These systems are well-understood, and we refer to [6] for
explanations. To proceed, we deal with the cases where there are exactly two
launch modes, for which we have

(
4
2

)
= 6 possibilities. The classification is given

in Theorems 1 and 2. Clearly, they entail that the reachability for general ASM
(with at least two launch modes) is undecidable. To show the undecidablity, we
reduce from Minsky’s two-counter machines [14], which, albeit standard, reveals

https://sites.google.com/site/assconformancetesting/
https://sites.google.com/site/assconformancetesting/
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the expressibility of ASM. We remark that the capability of swapping the order
of two distinct non-SIT-tasks in the back stack—without resetting the content of
any of them—is the main source of undecidability.

Theorem 1. The reachability problem of ASM is undecidable, even when the
ASM contains only (1) STD and STK activities, or (2) STD and SIT activities,
or (3) STK and STP activities, or (4) SIT and STP activities.

In contrast, we have some relatively straightforward positive results:

Theorem 2. The state reachability problem of ASM is decidable in polynomial
time when the ASM contains STD and STP activities only, and in polynomial
space when the ASM contains STK and SIT activities only.

As mentioned in Sect. 1, we aim to identify expressive fragments of ASM with
decidable reachability problems. To this end, we introduce a fragment called
STK-dominating ASM, which accommodates all four launch modes.

Definition 3 (STK-dominating ASM). An ASM is said to be STK-
dominating if the following two constraints are satisfied:

(1) the task affinities of the STK activities are mutually distinct,

(2) for each transition q
A,start(B)−−−−−−→ q′ ∈ Δ such that A ∈ ActSIT, it holds that

either B ∈ ActSIT ∪ ActSTK, or B ∈ ActSTD ∪ ActSTP and Aft(B) = Aft(A0).

The following result explains the name “STK-dominating”.

Proposition 3. Let A = (Q,Sig, q0,Δ) be an STK-dominating ASM with
Sig = (Act, Lmd,Aft, A0). Then each configuration (q, ρ) that is reachable from
the initial configuration (q0, ε) in A satisfies the following constraints: (1) for
each STK activity A ∈ Act with Aft(A) �= Aft(A0), A can only occur at the bot-
tom of some task in ρ, (2) ρ contains at most one STD/STP-task, which, when
it exists, has the same affinity as A0.

It is not difficult to verify that the ASM given in Example 2 is STK-dominating.

Theorem 3. The state reachability of STK-dominating ASM is in 2-EXPTIME.

The proof of Theorem3 is technically the most challenging part of this paper.
We shall give a sketch in Sect. 5 with the full details in [6].

5 STK-dominating ASM

For simplicity, we assume that A contains STD and STK activities only9. To
tackle the (state) reachability problem for STK-dominating ASM, we consider
two cases, i.e., Lmd(A0) = STK and Lmd(A0) �= STK. The former case is simpler

9 The more general case that A also contains STP and SIT activities is slightly more
involved and requires more space to present, which can be found in [6].
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because, by Proposition 3, all tasks will be rooted at STK activities. For the
latter, more general case, the back stack may contain, apart from several tasks
rooted at STK activities, one single task rooted at A0. Sections 5.1 and 5.2 will
handle these two cases respectively.

We will, however, first introduce some standard, but necessary, backgrounds
on pushdown systems. We assume familiarity with standard finite-state automata
(NFA) and finite-state transducers (FST). We emphasize that, in this paper,
FST refers to a special class of finite-state transducers, namely, letter-to-letter
finite-state transducers where the input and output alphabets are the same.

Preliminaries of Pushdown systems. A pushdown system (PDS) is a tuple P =
(Q,Γ,Δ), where Q is a finite set of control states, Γ is a finite stack alphabet,
and Δ ⊆ Q×Γ ×Γ ∗ ×Q is a finite set of transition rules. The size of P, denoted
by |P|, is defined as |Δ|.

Let P = (Q,Γ,Δ) be a PDS. A configuration of P is a pair (q, w) ∈ Q × Γ ∗,
where w denotes the content of the stack (with the leftmost symbol being the
top of the stack). Let ConfP denote the set of configurations of P. We define
a binary relation P−→ over ConfP as follows: (q, w) P−→ (q′, w′) iff w = γw1 and
there exists w′′ ∈ Γ ∗ such that (q, γ, w′′, q′) ∈ Δ and w′ = w′′w1. We use P⇒ to
denote the reflexive and transitive closure of P−→.

A configuration (q′, w′) is reachable from (q, w) if (q, w) P⇒(q′, w′). For C ⊆
ConfP , pre∗(C) (resp. post∗(C)) denotes the set of predecessor (resp. successor)
reachable configurations {(q′, w′) | ∃(q, w) ∈ C, (q′, w′) P⇒(q, w)} (resp. {(q′, w′) |
∃(q, w) ∈ C, (q, w) P⇒(q′, w′)}). For q ∈ Q, we define Cq = {q} × Γ ∗ and write
pre∗(q) and post∗(q) as shorthand of pre∗(Cq) and post∗(Cq) respectively.

As a standard machinery to solve reachability for PDS, a P-multi-automaton
(P-MA) is an NFA A = (Q′, Γ, δ, I, F ) such that I ⊆ Q ⊆ Q′ [4]. Evidently,
multi-automata are a special class of NFA. Let A = (Q′, Γ, δ, I, F ) be a P-MA
and (q, w) ∈ ConfP , (q, w) is accepted by A if q ∈ I and there is an accepting
run q0q1 · · · qn of A on w with q0 = q. Let ConfA denote the set of configurations
accepted by A. Moreover, let L(A) denote the set of words w such that (q, w) ∈
ConfA for some q ∈ I. For brevity, we usually write MA instead of P-MA when
P is clear from the context. Moreover, for an MA A = (Q′, Γ, δ, I, F ) and q′ ∈ Q,
we use A(q′) to denote the MA obtained from A by replacing I with {q′}. A set
of configurations C ⊆ ConfP is regular if there is an MA A such that ConfA = C.

Theorem 4 ([4]). Given a PDS P and a set of configurations accepted by an
MA A, we can compute, in polynomial time in |P| + |A|, two MAs Apre∗ and
Apost∗ that recognise pre∗(ConfA) and post∗(ConfA) respectively.

The connection between ASM and PDS is rather obvious. In a nutshell,
ASM can be considered as a PDS with multiple stacks, which is well-known to
be undecidable in general. Our overall strategy to attack the state reachability
problem for the fragments of ASM is to simulate them (in particular, the multiple
stacks) via—in some cases, decidable extensions of—PDS.
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5.1 Case Lmd(A0) = STK

Our approach to tackle this case is to simulate A by an extension of PDS, i.e.,
pushdown systems with transductions (TrPDS), proposed in [19]. In TrPDS, each
transition is associated with an FST defining how the stack content is modified.
Formally, a TrPDS is a tuple P = (Q,Γ,T ,Δ), where Q and Γ are precisely
the same as those of PDS, T is a finite set of FSTs over the alphabet Γ , and
Δ ⊆ Q×Γ ×Γ ∗ ×T ×Q is a finite set of transition rules. Let R(T ) denote the
set of transductions defined by FSTs from T and �R(T )� denote the closure
of R(T ) under composition and left-quotient. A TrPDS P is said to be finite if
�R(T )� is finite.

The configurations of P are defined similarly as in PDS. We define a binary
relation P−→ on ConfP as follows: (q, w) P−→ (q′, w′) if there are γ ∈ Γ , the
words w1, u, w2, and T ∈ T such that w = γw1, (q, γ, u, T , q′) ∈ Δ, w1

T−→
w2, and w′ = uw2. Let P⇒ denote the reflexive and transitive closure of P−→.
Similarly to PDS, we can define pre∗(·) and post∗(·) respectively. Regular sets
of configurations of TrPDS can be represented by MA, in line with PDS. More
precisely, given a finite TrPDS P = (Q,Γ,T ,Δ) and an MA A for P, one can
compute, in time polynomial in |P|+ |�R(T )�|+ |A|, two MAs Apre∗ and Apost∗

that recognize the sets pre∗(ConfA) and post∗(ConfA) respectively [17–19].
To simulate A via a finite TrPDS P, the back stack ρ = (S1, · · · , Sn) of A

is encoded by a word S1� · · · �Sn�⊥ (where � is a delimiter and ⊥ is the bottom
symbol of the stack), which is stored in the stack of P. Recall that, in this
case, each task Si is rooted at an STK-activity which sits on the bottom of Si.
Suppose top(S1) = A. When a transition (q,A, start(B), q′) with B ∈ ActSTK is
fired, according to the semantics of A, the B-task of ρ, say Si, is switched to
the top of ρ and changed into [B] (i.e., all the activities in the B-task, except B
itself, are popped). To simulate this in P, we replace every stack symbol in the
place of Si with a dummy symbol † and keep the other symbols unchanged. On
the other hand, to simulate a back action of A, P continues popping until the
next non-dummy and non-delimiter symbol is seen.

Proposition 4. Let A = (Q,Sig, q0,Δ) be an STK-dominating ASM with
Sig = (Act, Lmd,Aft, A0) and Lmd(A0) = STK. Then a finite TrPDS P =
(Q′, Γ,T ,Δ′) with Q ⊆ Q′ can be constructed in time polynomial in |A| such
that, for each q ∈ Q, q is reachable from (q0, ε) in A iff q is reachable from
(q0,⊥) in P.

For a state q ∈ Q, pre∗
P(q) can be effectively computed as an MA Bq, and

the reachability of q in A is reduced to checking whether (q0,⊥) ∈ ConfBq
.

5.2 Case Lmd(A0) �= STK

We then turn to the more general case Lmd(A0) �= STK which is significantly
more involved. For exposition purpose, we consider an ASM A where there are
exactly two STK activities A1, A2, and the task affinity of A2 is the same as
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that of the main task A0 (and thus the task affinity of A1 is different from that
of A0). We also assume that all the activities in A are “standard” except A1, A2.
Namely Act = ActSTD∪{A1, A2} and A0 ∈ ActSTD in particular. Neither of these
two assumptions is fundamental and their generalization is given in [6].

By Proposition 3, there are at most two tasks in the back stack of A. The
two tasks are either an A0-task and an A1-task, or an A2-task and an A1-task.
An A2-task can only surface when the original A0-task is popped empty. If
this happens, no A0-task will be recreated again, and thus, according to the
arguments in Sect. 5.1, we can simulate the ASM by TrPDS directly and we are
done. The challenging case is that we have both an A0-task and an A1-task.
To solve the state reachability problem, the main technical difficulty is that
the order of the A0-task and the A1-task may be switched for arbitrarily many
times before reaching the target state q. Readers may be wondering why they
cannot simply simulate two-counter machines. The reason is that the two tasks
are asymmetric in the sense that, each time when the A1-task is switched from
the bottom to the top (by starting the activity A1), the content of the A1-task is
reset into [A1]. But this is not the case for A0-task: when the A0-task is switched
from the bottom to the top (by starting the activity A2), if it does not contain
A2, then A2 will be pushed into the A0-task; otherwise all the activities above
A2 will be popped and A2 becomes the top activity of the A0-task. Our decision
procedure below utilises the asymmetry of the two tasks.

Intuition of construction. The crux of reachability analysis is to construct a
finite abstraction for the A1-task and incorporate it into the control states of
A, so we can reduce the state reachability of A into that of a pushdown system
PA (with a single stack). Observe that a run of A can be seen as a sequence
of task switching. In particular, an A0;A1;A0 switching denotes a path in A−→
where the A0-task is on the top in the first and the last configuration, while the
A1-task is on the top in all the intermediate configurations. The main idea of
the reduction is to simulate the A0;A1;A0 switching by a “macro”-transition of
PA. Note that the A0-task regains the top task in the last configuration either
by starting the activity A2 or by emptying the A1-task. Suppose that, for an
A0;A1;A0 switching, in the first (resp. last) configuration, q (resp. q′) is the
control state and α (resp. β) is the finite abstraction of the A1-task. Then for
the “macro”-transition of PA, the control state will be updated from (q, α) to
(q′, β), and the stack content of PA is updated accordingly:

– If the A0-task regains the top task by starting A2, then the stack content is
updated as follows: if the stack does not contain A2, then A2 will be pushed
into the stack; otherwise all the symbols above A2 will be popped.

– On the other hand, if the A0-task regains the top task by emptying the A1-
task, then the stack content is not changed.

Roughly speaking, the abstraction of the A1-task must carry the information
that, when A0-task and A1-task are the top resp. bottom task of the back stack
and A0-task is emptied, whether the target state q can be reached from the
configuration at that time. As a result, we define the abstraction of the A1-task
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whose content is encoded by a word w ∈ Act∗, denoted by α(w), as the set of all
states q′′ ∈ Q such that the target state q can be reached from (q′′, (w)) in A.
[Note that during the process that q is reached from (q′′, (w)) in A, the A0-task
does not exist anymore, but a (new) A2-task, may be formed.] Let AbsA1 = 2Q.

To facilitate the construction of the PDS PA, we also need to record how the
abstraction “evolves”. For each (q′, A, α) ∈ Q×(Act\{A1})×AbsA1 , we compute
the set Reach(q′, A, α) consisting of pairs (q′′, β) satisfying: there is an A0;A1;A0

switching such that in the first configuration, A is the top symbol of the A0-task,
q′ (resp. q′′) is the control state of the first (resp. last) configuration, and α (resp.
β) is the abstraction for the A1-task in the first (resp. last) configuration.10

Computing Reach(q′, A, α). Let (q′, A, α) ∈ Q × (Act \ {A1}) × AbsA1 . We first
simulate relevant parts of A as follows:

– Following Sect. 5.1, we construct a TrPDS PA0 = (QA0 , ΓA0 ,TA0 ,ΔA0 )
to simulate the A1-task and A2-task of A after the A0-task is emptied, where
QA0 = Q ∪ Q × Q and ΓA0 = Act ∪ {�, †,⊥}. Note that A0 may still—as
a “standard” activity—occur in PA0 though the A0-task disappears.
In addition, we construct an MA Bq = (Qq, ΓA0 , δq, Iq, Fq) to represent
pre∗

PA0
(q), where Iq ⊆ QA0 . Then given a stack content w ∈ Act∗STDA1

of the A1-task, the abstraction α(w) of w, is the set of q′′ ∈ Iq ∩ Q such that
(q′′, w�⊥) ∈ ConfBq

.
– We construct a PDS PA0, A2 = (QA0, A2 , ΓA0, A2 ,TA0, A2 ,ΔA0, A2 ) to sim-

ulate the A1-task of A, where ΓA0, A2 = (Act \ {A2}) ∪ {⊥}. In addi-
tion, to compute Reach(q′, A, α) later, we construct an MA M(q′,A,α) =
(Q(q′,A,α), ΓA0, A2 , δ(q′,A,α), I(q′,A,α), F(q′,A,α)) to represent

post∗PA0, A2
({(q1, A1⊥) | (q′, A, start(A1), q1) ∈ Δ}).

Definition 4. Reach(q′, A, α) comprises

– the pairs (q′′, β) ∈ Q × AbsA1 satisfying that (1) (q′, A, start(A1), q1) ∈ Δ,

(2) (q1, A1⊥)
PA0, A2=====⇒ (q2, Bw⊥), (3) (q2, B, start(A2), q′′) ∈ Δ, and (4) β

is the abstraction of Bw, for some B ∈ Act \ {A2}, w ∈ (Act \ {A2})∗ and
q1, q2 ∈ Q,

– the pairs (q′′,⊥) such that (q′, A, start(A1), q1) ∈ Δ and (q1, A1⊥)
PA0, A2=====⇒

(q′′,⊥) for some q1 ∈ Q.

Importantly, conditions in Definition 4 can be characterized algorithmically.

Lemma 1. For (q′, A, α) ∈ Q × (Act \ {A1}) × AbsA1 , Reach(q′, A, α) is the
union of

– {(q′′,⊥) | (q′′,⊥) ∈ ConfM(q′,A,α)
} and

10 As we can see later, Reach(q′, A, α) does not depend on α for the two-task special
case considered here. We choose to keep α in view of readability.
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– the set of pairs (q′′, β) ∈ Q × AbsA1 such that there exist q2 ∈ Q and B ∈
Act \ {A2} satisfying that (q2, B, start(A2), q′′), and
(B(Act \ {A2})∗�⊥) ∩ (Act∗STDA1�⊥) ∩ (L(M(q′,A,α)(q2))〈⊥〉−1)�⊥ ∩ Lβ �= ∅,
where L(M(q′,A,α)(q2))〈⊥〉−1 is the set of words w such that w⊥ belongs to
L(M(q′,A,α)(q2)), and Lβ =

⋂

q′′′∈β

L(Bq(q′′′)) ∩
⋂

q′′′∈Q\β

L(Bq(q′′′)), with L

representing the complement language of L.

Construction of PA. We first construct a PDS PA0 = (QA0 , ΓA0 ,ΔA0), to
simulate the A0-task of A. Here QA0 = (Q × {0, 1}) ∪ (Q × {1} × {pop}),
ΓA0 = ActSTD ∪ {A2,⊥}, and ΔA0 comprises the transitions. Here 1 (resp. 0)
marks that the activity A2 is in the stack (resp. is not in the stack) and the tag
pop marks that the PDS is in the process of popping until A2. The construction
of PA0 is relatively straightforward, the details of which can be found in [6].

We then define the PDS PA = (QA, ΓA0 ,ΔA), where QA = (AbsA1 ×QA0)∪
{q}, and ΔA comprises the following transitions,

– for each (p, γ, w, p′) ∈ ΔA0 and α ∈ AbsA1 , we have ((α, p), γ, w, (α, p′)) ∈ ΔA
(here p, p′ ∈ QA0 , that is, of the form (q′, b) or (q′, b, pop)), [behaviour of
the A0-task]

– for each (q′, A, α) ∈ Q × (Act \ {A1}) × AbsA1 and b ∈ {0, 1} such that
M(q′,A,α)(q) �= ∅, we have ((α, (q′, b)), A,A, q) ∈ ΔA, [switch to the A1-
task and reach q before switching back]

– for each (q′, A, α) ∈ Q × (Act \ {A1}) × AbsA1 and (q′′, β) ∈ Reach(q′, A, α)
such that β �= ⊥,

• if A �= A2, then we have ((α, (q′, 0)), A,A2A, (β, (q′′, 1))) ∈ ΔA and
((α, (q′, 1)), A, ε, (β, (q′′, 1, pop))) ∈ ΔA,

• if A = A2, then we have ((α, (q′, 1)), A2, A2, (β, (q′′, 1))) ∈ ΔA,
[switch to the A1-task and switch back to the A0-task later by
launching A2]

– for each (q′, A, α) ∈ Q × (Act \ {A1}) × AbsA1 , (q′′,⊥) ∈ Reach(q′, A, α) and
b ∈ {0, 1}, we have ((α, (q′, b)), A,A, (∅, (q′′, b))) ∈ ΔA,
[switch to the A1-task and switch back to the A0-task later when
the A1-task becomes empty]

– for each α ∈ AbsA1 , b ∈ {0, 1} and A ∈ ActSTD ∪ {A2}, ((α, (q, b)), A,A, q) ∈
ΔA, [q is reached when the A0-task is the top task]

– for each q′ ∈ Q and α ∈ AbsA1 with q′ ∈ α, ((α, (q′, 0)),⊥,⊥, q) ∈ ΔA.
[q is reached after the A0-task becomes empty and the A1-task
becomes the top task]

Proposition 5. Let A be an STK-dominating ASM where there are exactly two
STK-activities A1, A2 and Aft(A2) = Aft(A0). Then q is reachable from the
initial configuration (q0, ε) in A iff q is reachable from the initial configuration
((∅, (q0, 0)),⊥) in PA.
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6 Related Work

We first discuss pushdown systems with multiple stacks (MPDSs) which are the
most relevant to ASM. (For space reasons we will skip results on general push-
down systems though.) A multitude of classes of MPDSs have been considered,
mostly as a model for concurrent recursive programs. In general, an ASM can be
encoded as an MPDS. However, this view is hardly profitable as general MPDSs
are obviously Turing-complete, leaving the reachability problem undecidable.

To regain decidability at least for reachability, several subclasses of MPDSs
were proposed in literature: (1) bounding the number of context-switches [15],
or more generally, phases [10], scopes [11], or budgets [3]; (2) imposing a linear
ordering on stacks and pop operations being reserved to the first non-empty
stack [5]; (3) restricting control states (e.g., weak MPDSs [7]). However, our
decidable subclasses of ASM admit none of the above bounded conditions. A
unified and generalized criterion [12] based on MSO over graphs of bounded
tree-width was proposed to show the decidability of the emptiness problem for
several restricted classes of automata with auxiliary storage, including MPDSs,
automata with queues, or a mix of them. Since ASMs work in a way fairly
different from multi-stack models in the literature, it is unclear—literally for
us—to obtain the decidability by using bounded tree-width approach. Moreover,
[12] only provides decidability proofs, but without complexity upper bounds. Our
decision procedure is based on symbolic approaches for pushdown systems, which
provides complexity upper bounds and which is amenable to implementation.

Higher-order pushdown systems represent another type of generalization of
pushdown systems through higher-order stacks, i.e., a nested “stack of stack”
structure [13], with decidable reachability problems [9]. Despite apparent resem-
blance, the back stack of ASM can not be simulated by an order-2 pushdown
system. The reason is that the order between tasks in a back stack may be
dynamically changed, which is not supported by order-2 pushdown systems.

On a different line, there are some models which have addressed, for instance,
GUI activities of Android apps. Window transition graphs were proposed for
representing the possible GUI activity (window) sequences and their associated
events and callbacks, which can capture how the events and callbacks modify
the back stack [21]. However, the key mechanisms of back stacks (launch modes
and task affinities) were not covered in this model. Moreover, the reachability
problem for this model was not investigated. A similar model, labeled transition
graph with stack and widget (LATTE [20]) considered the effects of launch modes
on the back stacks, but not task affinities. LATTE is essentially a finite-state
abstraction of the back stack. However, to faithfully capture the launch modes
and task affinities, one needs an infinite-state system, as we have studied here.

7 Conclusion

In this paper, we have introduced Android stack machine to formalize the back
stack system of the Android platform. We have also investigated the decidability



Android Stack Machine 503

of the reachability problem of ASM. While the reachability problem of ASM is
undecidable in general, we have identified a fragment, i.e., STK-dominating ASM,
which is expressive and admits decision procedures for reachability.

The implementation of the decision procedures is in progress. We also plan to
consider other features of Android back stack systems, e.g., the “allowTaskRepar-
enting” attribute of activities. A long-term program is to develop an efficient and
scalable formal analysis and verification framework for Android apps, towards
which the work reported in this paper is the first cornerstone.
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Abstract. We report on a machine assisted verification of an efficient
implementation of Montgomery Multiplication which is a widely used
method in cryptography for efficient computation of modular exponenti-
ation. We shortly describe the method, give a brief survey of the VeriFun

system used for verification, present the formal proofs and report on the
effort for creating them. Our work uncovered a serious fault in a pub-
lished algorithm for computing multiplicative inverses based on Newton-
Raphson iteration, thus providing further evidence for the benefit of
computer-aided verification.
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1 Introduction

Montgomery Multiplication [6] is a method for efficient computation of residues
aj mod n which are widely used in cryptography, e.g. for RSA, Diffie-Hellman,
ElGamal, DSA, ECC etc. [4,5]. The computation of these residues can be
seen as an iterative calculation in the commutative ring with identity Rn =
(Nn,⊕, in,�, 0, 1 mod n) where n ≥ 1, Nn = {0, . . . , n − 1}, addition defined by
a ⊕ b = a + b mod n, inverse operator defined by in(a) = a · (n − 1) mod n,
multiplication defined by a � b = a · b mod n, neutral element 0 and identity
1 mod n.

For any m ∈ N relatively prime to n, some m-1
n ∈ Nn exists such that

m � m-1
n = 1 mod n. m-1

n is called the multiplicative inverse of m in Rn and is
used to define a further commutative ring with identity Rm

n = (Nn,⊕, in,⊗, 0,
m mod n) where multiplication is defined by a ⊗ b = a � b � m-1

n and identity
given as m mod n. The multiplication ⊗ of Rm

n is called Montgomery Multipli-
cation.

The rings Rn and Rm
n are isomorphic by the isomorphism h : Rn → Rm

n

defined by h(a) = a � m and h−1 : Rm
n → Rn given by h−1(a) = a � m-1

n .
Consequently a · b mod n can be calculated in ring Rm

n as well because

a · b mod n = a � b = h−1(h(a � b)) = h−1(h(a) ⊗ h(b)). (∗)
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function redc(x, z,m, n:N):N <=
if m �= 0
then let q := (x+ n · (x · z mod m))/m in

if n > q then q else q − n end if
end let

end if

function redc∗(x, z,m, n, j:N):N <=
if m �= 0
then if n �= 0

then if j = 0
then m mod n
else redc(x · redc∗(x, z,m, n,-(j)), z,m, n)
end if

end if
end if

Fig. 1. Procedures redc and redc∗ implementing the Montgomery Reduction

The required operations h,⊗ and h−1 can be implemented by the so-called
Montgomery Reduction redc [6] (displayed in Fig. 1) as stated by Theorem 1:

Theorem 1. Let a, b, n,m ∈ N with m > n > a, n > b and n,m relatively
prime, let I = im(n-1

m) and let M = m2 mod n. Then I is called the Montgomery
Inverse and (1) h(a) = redc(a · M, I, m, n), (2) a ⊗ b = redc(a · b, I,m, n), and
(3) h−1(a) = redc(a, I,m, n).

By (∗) and Theorem 1, a · b mod n can be computed by procedure redc and
consequently aj mod n can be computed by iterated calls of redc (implemented
by procedure redc∗ of Fig. 1) as stated by Theorem 2:

Theorem 2. Let a, n,m, I and M like in Theorem1. Then for all j ∈ N:1

aj mod n = redc(redc∗(redc(a · M, I,m, n), I,m, n, j), I,m, n).

By Theorem 2, j + 2 calls of redc are required for computing aj mod n, viz.
one call to map a to h(a), j calls for the Montgomery Multiplications and one
call for mapping the result back with h−1. This approach allows for an efficient
computation of aj mod n in Rm

n (for sufficient large j), if m is chosen as a power
of 2 and some odd number for n, because x mod m then can be computed with
constant time and x/m only needs an effort proportional to log m in procedure
redc, thus saving the expensive mod n operations in Rn.

1 Exponentiation is defined here with 00 = 1 so that redc(redc∗(redc(0 ·M, I,m, n), I,
m, n, 0), I,m, n) = 1 mod n holds in particular.
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2 About �eriFun
The truth of Theorems 1 and 2 is not obvious at all, and some number theory with
modular arithmetic is needed for proving them. Formal proofs are worthwhile
because correctness of cryptographic methods is based on these theorems.

structure bool <= true, false
structure N <= 0,+(−:N)
structure signs <= ‘+’, ‘−’
structure Z <= [outfix] 〈 : 〉(sign:signs, [outfix]| :N)
structure triple[@T1,@T2,@T3] <= [outfix] � : � ( [postfix]1:@T1,

[postfix]2:@T2, [postfix]3:@T3 )

lemma z �= 0 → [x · (y mod z) ≡ x · y] mod z <= ∀ x, y, z:N

if{¬ z = 0, (x · (y mod z) mod z) = (x · y mod z), true}

Fig. 2. Data structures and lemmas in �eriFun

Proof assistants like Isabelle/HOL, HOL Light, Coq, ACL2 and others have
been shown successful for developing formal proofs in Number Theory (see e.g.
[14]). Here we use the �eriFun system2 [7,10] to verify correctness of Mont-
gomery Multiplication by proving Theorems 1 and 2. The system’s object lan-
guage consists of universal first-order formulas plus parametric polymorphism.
Type variables may be instantiated with polymorphic types. Higher-order func-
tions are not supported. The language provides principles for defining data struc-
tures, procedures operating on them, and for statements (called “lemmas”) about
the data structures and procedures. Unicode symbols may be used and function
symbols can be written in out-, in-, pre- and postfix notation so that readability
is increased by use of the familiar mathematical notation. Figure 2 displays some
examples. The data structure bool and the data structure N for natural numbers
built with the constructors 0 and +(. . .) for the successor function are the only
predefined data structures in the system. -(. . .) is the selector of +(. . .) thus
representing the predecessor function. Subsequently we need integers Z as well
which we define in Fig. 2 as signed natural numbers. For instance, the expression
〈‘−’, 42〉 is a data object of type Z, selector sign yields the sign of an integer (like
‘−’ in the example), and selector |. . .| gives the absolute value of an integer (like
42 in the example). Identifiers preceded by @ denote type variables, and therefore
polymorphic triples are defined in Fig. 2. The expression �42, 〈‘+’, 47〉, 〈‘−’, 5〉�
is an example of a data object of type triple[N, Z, Z]. The ith component of a
triple is obtained by selector (. . .)i.

Procedures are defined by if - and case-conditionals, functional composition
and recursion like displayed in Fig. 1. Procedure calls are evaluated eagerly,
2 An acronym for “A Verifier for Functional Programs”.
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i.e. call-by-value. The use of incomplete conditionals like for redc and redc∗

results in incompletely defined procedures [12]. Such a feature is required when
working with polymorphic data structures but is useful for monomorphic data
structures too as it avoids the need for stipulating artificial results, e.g. for
n/0. Predicates are defined by procedures with result type bool. Procedure
function[infix] > (x, y:N):bool <= . . . for deciding the greater-than relation is
the only predefined procedure in the system. Upon the definition of a procedure,
�eriFun’ s automated termination analysis (based on the method of Argument-
Bounded Functions [8,11]) is invoked for generating termination hypotheses
which are sufficient for the procedure’s termination and proved like lemmas.
Afterwards induction axioms are computed from the terminating procedures’
recursion structure to be on stock for future use.

Lemmas are defined with conditionals if : bool × bool × bool → bool as the
main connective, but negation ¬ and case-conditionals may be used as well.
Only universal quantification is allowed for the variables of a lemma. Figure 2
displays a lemma about (the elsewhere defined) procedure mod (computing the
remainder function) which is frequently used in subsequent proofs. The string
in the headline (between “lemma” and “<=”) is just an identifier assigning a
name to the lemma for reference and must not be confused with the statement
of the lemma given as a boolean term in the lemma body. Some basic lemmas
about equality and >, e.g. stating transitivity of = and >, are predefined in the
system. Predefined lemmas are frequently used in almost every case study so
that work is eased by having them always available instead of importing them
from some proof library.

Lemmas are proved with the HPL-calculus (abbreviating Hypotheses, Pro-
grams and Lemmas) [10]. The most relevant proof rules of this calculus are
Induction, Use Lemma, Apply Equation, Unfold Procedure, Case Analysis and
Simplification. Formulas are given as sequents of form H, IH � goal, where H
is a finite set of hypotheses given as literals, i.e. negated or unnegated predicate
calls and equations, IH is a finite set of induction hypotheses given as partially
quantified boolean terms and goal is a boolean term, called the goalterm of the
sequent. A deduction in the HPL -calculus is represented by a tree whose nodes
are given by sequents. A lemma � with body ∀ . . . goal is verified iff (i) the goal-
term of each sequent at a leaf of the proof tree rooted in {}, {} � goal equals true
and (ii) each lemma applied by Use Lemma or Apply Equation when building
the proof tree is verified. The base of this recursive definition is given by lemmas
being proved without using other lemmas. Induction hypotheses are treated like
verified lemmas, however being available only in the sequent they belong to.

The Induction rule creates the base and step cases for a lemma from an induc-
tion axiom. By choosing Simplification, the system’s first-order theorem prover,
called the Symbolic Evaluator, is started for rewriting a sequent’s goalterm
using the hypotheses and induction hypotheses of the sequent, the definitions
of the data structures and procedures as well as the lemmas already verified.
This reasoner is guided by heuristics, e.g. for deciding whether to use a pro-
cedure definition, for speeding up proof search by filtering out useless lemmas,
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etc. Equality reasoning is implemented by conditional term rewriting with AC -
matching, where the orientation of equations is heuristically established [13].
The Symbolic Evaluator is a fully automatic tool over which the user has no
control, thus leaving the HPL-proof rules as the only means to guide the system
to a proof.

Also the HPL-calculus is controlled by heuristics. When applying the Verify
command to a lemma, the system starts to compute a proof tree by choosing
appropriate HPL-proof rules heuristically. If a proof attempt gets stuck, the user
must step in by applying a proof rule to some leaf of the proof tree (sometimes
after pruning some unwanted branch of the tree), and the system then takes over
control again. Also it may happen that a further lemma must be formulated by
the user before the proof under consideration can be completed. All interactions
are menu driven so that typing in proof scripts is avoided (see [7,10]).

�eriFun is implemented in Java and installers for running the system under
Windows, Unix/Linux or Mac are available from the web [7]. When working
with the system, we use proof libraries which had been set up over the years
by extending them with definitions and lemmas being of general interest. When
importing a definition or a lemma from a library into a case study, all program
elements and proofs the imported item depends on are imported as well. The
correctness proofs for Montgomery Multiplication depend on 9 procedures and 96
lemmas from our arithmetic proof library, which ranges from simple statements
like associativity and commutativity of addition up to more ambitious theorems
about primes and modular arithmetic. In the sequel we will only list the lemmas
which are essential to understand the proofs and refer to [7] for a complete
account of all used lemmas and their proofs.

3 Multiplicative Inverses

We start our development by stipulating how multiplicative inverses are com-
puted. To this effect we have to define some procedure I : N × N → N satisfying3

∀x, y:N y 
= 0 ∧ gcd(x, y) = 1 → [x · I(x, y) ≡ 1]mod y (1)

∀x, y, z:N y 
= 0 ∧ gcd(x, y) = 1 → [z · x · I(x, y) ≡ z]mod y (2)

∀n, x, y, z:N y 
= 0 ∧ gcd(x, y) = 1 → [n + z · x · I(x, y) ≡ n + z]mod y. (3)

Lemma 2 is proved with Lemma 1 and library lemma

∀n,m, x, y:N gcd(n,m) = 1 ∧ [m · x ≡ m · y]modn → [x ≡ y]modn (4)

after instructing the system to use library lemma

∀x, y, z:N z 
= 0 → [x · (y mod z) ≡ x · y]mod z (5)
3 If x, y, z ∈ Z and n ∈ N, then n|z abbreviates z mod n = 0, where z mod n = −(|z|
mod n) if z < 0, and [x ≡ y] mod n stands for n|x − y. x mod n = y mod n is
sufficient for [x ≡ y] mod n but only necessary, if x and y have same polarity.
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and �eriFun proves Lemma 3 automatically using Lemma 2 as well as library
lemma

∀n, x, y, z:N z 
= 0 ∧ [x ≡ y]mod z → [x + n ≡ y + n]mod z. (6)

Multiplicative inverses can be computed straightforwardly with Euler’s φ-
function, where Lemma 1 then is proved with Euler’s Theorem [7,14]. But this
approach is very costly and therefore unsuitable for an implementation of Mont-
gomery Multiplication.

function euclid(x, y:N):triple[N, Z, Z] <=
if y = 0
then � x, 〈‘+’, 1〉, 〈‘+’, 0〉 �

else let e := euclid(y, (x mod y)), g := (e)1, s := (e)2, t := (e)3 in
case sign(s) of
‘+’ : � g, 〈‘ – ’, | t |〉, 〈‘+’, | s |+ (x/y) · | t |〉 �,
‘ – ’: � g, 〈‘+’, | t |〉, 〈‘ – ’, | s |+ (x/y) · | t |〉 �

end case
end let

end if

function IB(x, y:N):N <=
if y �= 0
then let s := (euclid(x, y))2 in

case sign(s) of ‘+’ : (| s | mod y), ‘ – ’ : y − (| s | mod y) end case
end let

end if

Fig. 3. Computation of multiplicative inverses by the extended Euclidean algorithm

3.1 Bézout’s Lemma

A more efficient implementation of procedure I is based on Bézout’s Lemma
stating that the greatest common divisor can be represented as a linear combi-
nation of its arguments:

Bézout’s Lemma
For all x, y ∈ N some s, t ∈ Z exist such that gcd(x, y) = x · s + y · t.

If y 
= 0, IB(x, y) := s mod y is defined and gcd(x, y) = 1 holds, then by
Bézout’s Lemma [x ·IB(x, y) = x · (s mod y) ≡ x · s ≡ x · s+ y · t = 1] mod y. To
implement this approach, the integer s need to be computed which can be per-
formed by the extended Euclidean algorithm displayed in Fig. 3. This approach
is more efficient because a call of euclid(x, y) (and in turn of IB(x, y) given as
in Fig. 3) can be computed in time proportional to (log y)2 if x < y, whereas
the use of Euler’s φ-function needs time proportional to 2log y in the context of
Montgomery Multiplication (as φ(2k+1) = 2k).

However, s ∈ Z might be negative so that y + (s mod y) ∈ N instead of
s mod y then must be used as the multiplicative inverse of x because the carriers



Formally Verified Montgomery Multiplication 511

lemma Bézout’s Lemma #1 <= ∀ x, y : N

let e := euclid(x, y), g := (e)1, s := (e)2, t := (e)3 in
case sign(s) of ‘+’ : x · | s | = y · | t |+ g, ‘–’ : x · | s |+ g =y · | t | end case
end let

(7)

lemma Bézout’s Lemma #2 <= ∀ x, y : N (euclid(x, y))1 = gcd(x, y) . (8)

Fig. 4. Bézout’s Lemma

of the rings Rn and Rm
n are subsets of N. We therefore define IB as shown in

Fig. 3 which complicates the proof of Lemma 1 (with I replaced by IB) as this
definition necessitates a proof of [x · y + x · (s mod y) ≡ 1] mod y if s < 0.

Bézout’s Lemma is formulated in our system’s notation by the pair of lemmas
displayed in Fig. 4. When prompted to prove Lemma 7, the system starts a Peano
induction upon x but gets stuck in the step case. We therefore command to use
induction corresponding to the recursion structure of procedure euclid. �eriFun
responds by proving the base case and simplifying the induction conclusion in
case sign(s) = ‘+’ to

y 
= 0 → x · |t|+g = (x mod y) · |t|+g + |t| · (y −1) · (x/y)+ |t| · (x/y) (i)

(where e abbreviates euclid(y, (x mod y)), g := (e)1, s := (e)2 and t := (e)3)
using the induction hypothesis

∀x′ : N let{e := euclid(x′, (x mod y)), g := (e)1, s := (e)2, t := (e)3;
case{sign(s);

‘+’ : x′ · | s | = (x mod y) · | t | + g,

‘−’ : x′ · | s | + g = (x mod y) · | t |}}

and some basic arithmetic properties. We then instruct the system to use the
quotient-remainder theorem for replacing x at the left-hand side of the equation
in (i) by (x/y)·y+(x mod y) causing �eriFun to complete the proof. The system
computes a similar proof obligation for case sign(s) = ‘−’ which is proved in the
same way.

By “basic arithmetic properties” we mean well known facts like associativity,
commutativity, distributivity, cancellation properties etc. of +,−, ·, /, gcd , . . .
which are defined and proved in our arithmetic proof library. These facts are
used almost everywhere by the Symbolic Evaluator so that we will not mention
their use explicitly in the sequel.

When called to prove Lemma 8 by induction corresponding to the recursion
structure of procedure euclid, �eriFun responds by proving the base case and
rewrites the step case with the induction hypothesis to

y 
= 0 → gcd(x, y) = gcd(y, (x mod y)). (ii)
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It then automatically continues with proving (ii) by induction corresponding
to the recursion structure of procedure gcd where it succeeds for the base and
the step case. Lemma 8 is useful because it relates procedure euclid to procedure
gcd of our arithmetic proof library so that all lemmas about gcd can be utilized
for the current proofs.

For proving the inverse property

∀x, y:N y 
= 0 ∧ gcd(x, y) = 1 → [x · IB(x, y) ≡ 1] mod y (9)

of procedure IB, we call the system to unfold procedure call IB(x, y). �eriFun
responds by proving the statement for case sign(s) = ‘+’ using Bézout’s Lemma 7
and 8 and the library lemmas

∀x, y, z:N z 
= 0 ∧ z | x → [x + y ≡ y]mod z (10)

∀x, y:N y 
= 0 → y | x · y (11)

as well as (5), but gets stuck in the remaining case with proof obligation

y 
= 0 ∧ sign(s) = ‘−’ ∧ g = 1 → [x · y − x · (|s| mod y) ≡ 1] mod y (iii)

where g abbreviates (euclid(x, y))1 and s stands for (euclid(x, y))2. Proof obli-
gation (iii) represents the unpleasant case of the proof development and necessi-
tates the invention of an auxiliary lemma for completing the proof. After some
unsuccessful attempts, we eventually came up with lemma

∀x, y, z, u:N y �= 0 ∧ y | (x · z + u) ∧ x ≥ u → [x · y − x · (z mod y) ≡ u]mod y. (12)

For proving (iii), we command to use Lemma12 for replacing the left-hand side
of the congruence in (iii) by g, and �eriFun computes

y 
= 0 ∧ sign(s) = ‘−’ ∧ g = 1 →
(x ≥ g → y | (x · |s| + g)) ∧
(x < g → [x · y − x · (|s| mod y) ≡ 1] mod y. (iv)

Now we can call the system to use Bézout’s Lemma 7 for replacing x · |s| + g

in (iv) by y · |t| causing �eriFun to complete the proof with Bézout’s Lemma 8
and library lemma (11) in case of x ≥ g and otherwise showing that x < g = 1
entails x = 0 and 1 = g = gcd(0, y) = y in turn, so that x · y − x · (|s| mod y)
simplifies to 0 and [0 ≡ 1] mod y rewrites to true.

It remains to prove auxiliary lemma (12) for completing the proof of Lemma 9:
After being called to use library lemma4

∀x, y, z:N z 
= 0 ∧ z | (x − y) ∧ z | (y − x) → [x ≡ y ] mod z (13)

4 At least one of z|(x − y) or z|(y − x) holds trivially because subtraction is defined
such that a − b = 0 iff a ≤ b.



Formally Verified Montgomery Multiplication 513

for replacing the left-hand side of the congruence in (12) by u, �eriFun computes

y 
= 0 ∧ y | (x · z + u) ∧ x ≥ u → y | (u − (x · y − x · (z mod y))) (v)

with the library lemmas (11) and

∀x, y, z:N z 
= 0 ∧ [x ≡ y] mod z → z | (x − y) (14)

∀x, y, z, n:N n 
= 0 → [x + y · (z mod n) ≡ x + y · z ] mod n. (15)

We then command to use library lemma ∀x, y, z:N z 
= 0 ∧ x ≤ y → x ≤ y · z
(with u substituted for x, x for y and y − (z mod y) for z) after x factoring out,
causing �eriFun to prove (v) with the synthesized lemma5

∀x, y:N y 
= 0 → y > (x mod y). (16)

function IN′(x, k:N):N <=
if 2 > k
then k
else let h := �k/2	; r := IN′((x mod 2 ↑ h), h); y := 2 ↑ k in

(2 · r + ((r · r mod y) · x mod y) mod y)
end let

end if

function IN (x, y:N):N <= if y �= 0 then y − IN′(x, log2(y)) end if

Fig. 5. Computation of multiplicative inverses by Newton-Raphson iteration

3.2 Newton’s Method

Newton-Raphson iteration is a major tool in arbitrary-precision arithmetic and
efficient algorithms for computing multiplicative inverses are developed in combi-
nation with Hensel Lifting [2]. Figure 5 displays an implementation by procedure
IN for odd numbers x and powers y of 2 (where ↑ computes exponentiation
satisfying 0 ↑ 0 = 1). Procedure IN is defined via procedure IN ′ which is
obtained from [3], viz. Algorithm 2′ Recursive Hensel, where however ‘−’ instead
of ‘+’ is used in the result term. Algorithm 2′ was developed to compute a mul-
tiplicative inverse of x modulo pk for any x not dividable by a prime p and
returns a negative integer in most cases. By replacing ‘−’ with ‘+’, all calcula-
tions can be kept within N so that integer arithmetic is avoided. As procedure
IN ′ computes the absolute value of a negative integer computed by Algorithm
2′, one additional subtraction is needed to obtain a multiplicative inverse which
is implemented by procedure IN . The computation of IN (x, 2k) only requires
log k steps (compared to k2 steps for IB(x, 2k)), and therefore IN is the method
of choice for computing a Montgomery Inverse.
5 Synthesized lemmas are a spin-off of the system’s termination analysis.
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However, Algorithm 2′ is flawed so that we wasted some time with our
verification attempts: The four mod-calls in the algorithm are not needed for
correctness, but care for efficiency as they keep the intermediate numbers small.
Now instead of using modulus 2k for both inner mod-calls, Algorithm 2′ calcu-
lates mod 2�k/2� thus spoiling correctness. As the flawed algorithm cares for even
smaller numbers, the use of mod 2�k/2� could be beneficial indeed, and there-
fore it was not obvious to us whether we failed in the verification only because
some mathematical argumentation was missing. But this consideration put us on
the wrong track. Becoming eventually frustrated by the unsuccessful verification
attempts, we started �eriFun’s Disprover [1] which—to our surprise—came up
with the counter example x = 3, k = 2 for Lemma 17 in less than a second.6 We
then repaired the algorithm as displayed in Fig. 5 and subsequently verified it
(cf. Lemma 20). Later we learned that the fault in Algorithm 2′ has not been
recognized so far and that one cannot do better to patch it as we did.7

For proving the inverse property (20) of procedure IN , we first have to verify
the correctness statement

∀x, k:N 2 � x → (x · IN ′(x, k) mod 2k) = 2k − 1 (17)

for procedure IN ′ : We call the system to use induction corresponding to the
recursion structure of procedure IN ′ which provides the induction hypothesis

∀x′:N k ≥ 2 ∧ 2 � x′ → (x′ · IN ′(x′, �k/2�) mod 2�k/2�) = 2�k/2� − 1. (18)

�eriFun proves the base case, but gets stuck in the step case with

k ≥ 2 ∧ 2 � x →
(x · (2A + (x · (A2 mod 2k) mod 2k) mod 2k)mod 2k) = 2k − 1 (i)

where A stands for IN ′((x mod 2�k/2�), �k/2�). By prompting the system to use
Lemma 5, proof obligation (i) is simplified to

k ≥ 2 ∧ 2 � x → (2B + B2 mod 2k) = 2k − 1 (ii)

(where B abbreviates x · A) thus eliminating the formal clutter resulting from
the mod-calls in procedure IN ′ . Next we replace 2B + B2 by (B + 1)2 − 1 and
then call the system to replace B by (B/C) · C + R where C = 2�k/2� and R =
((x mod C) · A mod C), which is justified by the quotient-remainder theorem as
R rewrites to (B mod C) by library lemma (5). This results in proof obligation

k ≥ 2 ∧ 2 � x → (((B/C) · C + R + 1)2 − 1 mod 2k) = 2k − 1 (iii)
6 The Disprover is based on two heuristically controlled disproving calculi, and its

implementation provides four selectable execution modes (Fast Search, Extended
Search, Simple Terms and Structure Expansion). For difficult problems, the user
may support the search for counter examples by presetting some of the universally
quantified variables with general terms or concrete values.

7 Personal communication with Jean-Guillaume Dumas.
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and we command to use the induction hypothesis (18) for replacing R in (iii) by
C − 1. �eriFun then responds by computing

k ≥ 2 ∧ 2 � x → (((B/C) · C + C)2 − 1 mod 2k) = 2k − 1 (iv)

using library lemmas ∀x, y, z:N y 
= 0∧z 
= 0∧z | y → [(x mod y) ≡ x] mod z and
(5) to prove 2 � (x mod 2�k/2�) for justifying the use of the induction hypothesis.

When instructed to factor out C in (iv), the system computes

k ≥ 2 ∧ 2 � x → ((2�k/2�)2 · (B/C + 1)2 − 1 mod 2k) = 2k − 1. (v)

We command to use library lemma

∀x, y, z:N z 
= 0 ∧ z � x ∧ z | y ∧ y ≥ x → (y − xmod z) = z − (xmod z) (19)

for replacing the left-hand side of the equation in (v) yielding

k ≥ 2 ∧ 2 � x → 2k − (1 mod 2k) = 2k − 1 (vi)

justified by proof obligation

k ≥ 2 ∧ 2 � x →
2k 
= 0 ∧ 2k � 1 ∧ 2k | (2�k/2�)2 · (B/C + 1)2 ∧ (2�k/2�)2 · (B/C + 1)2 ≥ 1

which �eriFun simplifies to

k ≥ 2 ∧ 2 � x → 2k | (2�k/2�)2 · (B/C + 1)2 (vii)

in a first step. It then uses auxiliary lemma ∀x:N x ≤ 2 · �x/2� and the library
lemmas (11) and ∀x, y, z:N x 
= 0 ∧ z ≤ y → xz | xy for rewriting (vii) subse-
quently to true. Finally the system simplifies (vi) to true as well by unfolding
the call of procedure mod, and Lemma 17 is proved.

When called to verify the inverse property

∀x, y:N 2 � x ∧ 2?(y) → [x · IN (x, y) ≡ 1] mod y (20)

of procedure IN (where 2?(y) decides whether y is a power of 2), �eriFun unfolds
the call of procedure IN and returns

y ≥ 2 ∧ 2 � x ∧ 2?(y) → (x · y − x · IN ′(x, log2(y)) mod y) = 1. (viii)

Now we instruct the system to use library lemma (19) for replacing the left-hand
side of the equation in (viii), and �eriFun computes

y ≥ 2 ∧ 2 � x ∧ 2?(y) →
(x · IN ′(x, log2(y)) mod y) 
= 0 ∧ y − (x · IN ′(x, log2(y)) mod y) = 1 (ix)

using auxiliary lemma ∀x, y:N 2?(y) → y > IN ′(x, log2(y)) and the library lem-
mas (11), (14) and

∀x, y, z:N x · y > x · z → y > z. (21)

Finally we let the system use library lemma ∀x:N 2?(x) → 2log2(x) = x to replace
both moduli y in (ix) by 2log2(y) causing �eriFun to rewrite both occurrences
of (x · IN ′(x, log2(y)) mod y) with Lemma 17 to y − 1 and proof obligation (ix)
to true in turn, thus completing the proof of (20).
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function i(x, y:N):N <= if y �= 0 then (x · -(y) mod y) end if

function h(x,m, n:N):N <= if n �= 0 then (x ·m mod n) end if

function ⊗(x, y,m, n:N):N <= if n �= 0 then (x · y · I(m, n) mod n) end if

function h−1(x,m, n:N):N <= if n �= 0 then (x · I(m, n) mod n) end if

function I(x, y:N):N <= if 2?(y) then IN (x, y) else IB(x, y) end if

Fig. 6. Procedures for verifying Montgomery Multiplication

4 Correctness of Montgomery Multiplication

We continue by defining procedures for computing the functions i, h,⊗ and h−1

as displayed in Fig. 6, where we write i(x, y) instead of iy(x) in the procedures
and lemmas. As we aim to prove correctness of Montgomery Multiplication
using procedure IN for computing the Montgomery Inverse with minimal costs,
2 � n ∧ 2?(m) instead of gcd(n,m) = 1 must be demanded to enable the use
of Lemma 20 when proving the statements of Theorems 1 and 2. However, the
multiplicative inverses n-1

m and m-1
n both are needed in the proofs (whereas only

n-1
m is used in applications of redc and redc∗). Consequently procedure IN can-

not be used in the proofs as it obviously fails in computing m-1
n (except for

case n = m = 1, of course). This problem does not arise if procedure IB is
used instead, where gcd(n,m) = 1 is demanded, because IB(n,m) = n-1

m and
IB(m,n) = m-1

n for any coprimes n and m by Lemma 9. The replacement of IB
by IN when computing the Montgomery Inverse then must be justified after-
wards by additionally proving

∀x, y:N 2 � x ∧ 2?(y) → IB(x, y) = IN (x, y). (22)

However, proving (22) would be a complicated and difficult enterprise because
the recursion structures of procedures euclid and IN ′ differ significantly. But we
can overcome this obstacle by a simple workaround: We use procedure I of Fig. 6
instead of IB in the proofs and let the system verify the inverse property

∀x, y:N y 
= 0 ∧ gcd(x, y) = 1 → [x · I(x, y) ≡ 1] mod y (i)

of procedure I before: �eriFun easily succeeds with library lemma (4) and the
inverse property (9) of procedure IB after being instructed to use library lemma
∀x, y, n:N n ≥ 2 ∧ n | y ∧ gcd(x, y) = 1 → n � x and the inverse property (20) of
procedure IN . Consequently I(n,m) = n-1

m and I(m,n) = m-1
n for any coprimes

n and m, and therefore I can be used in the proofs. The use of IN instead of I
when computing the Montgomery Inverse is justified afterwards with lemma

∀x, y:N 2?(y) → I(x, y) = IN (x, y)

having an obviously trivial (and automatic) proof.
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Central for the proofs of Theorems 1 and 2 is the key property

∀m,n, x:N m > n ∧ n · m > x ∧ gcd(n,m) = 1 →
redc(x, i(I(n,m),m),m, n) = (x · I(m,n) mod n) (23)

of procedure redc: For proving Theorem 1.1

∀m,n, a:N m > n > a ∧ gcd(n,m) = 1 →
h(a,m, n) = redc(a · (m · m mod n), i(I(n,m),m),m, n) (Thm 1.1)

we command to use (23) for replacing the right-hand side of the equation by
(a · (m · m mod n) · I(m,n) mod n). The system then replaces the left-hand side
of the equation with a · m mod n by unfolding procedure call h(a,m, n) and
simplifies the resulting equation to true with Lemma 2, the synthesized lemma
(16) and the library lemmas (5) and

∀x, y, u, v:N x > y ∧ u > v → x · u > y · v. (24)

Theorems 1.2 and 1.3, viz.

∀m,n, a, b:N m > n > a ∧ n > b ∧ gcd(n,m) = 1
→ ⊗(a, b,m, n) = redc(a · b, i(I(n,m),m),m, n) (Thm 1.2)

∀m,n, a:N m > n > a ∧ gcd(n,m) = 1

→ h−1(a,m, n) = redc(a, i(I(n,m),m),m, n) (Thm 1.3)

are (automatically) proved in the same way.
Having proved Theorem 1, it remains to verify the key property (23) for

procedure redc (before we consider Theorem 2 subsequently). We start by proving
that division by m in Rn can be expressed by I: We call the system to prove

∀m,n, x:N n 
= 0 ∧ m | x ∧ gcd(n,m) = 1 → [x/m ≡ x · I(m,n)] mod n (25)

and �eriFun automatically succeeds with Lemma 2 and the library lemmas (4)
and ∀x, y, z:Ny 
= 0 ∧ y | x → (x/y) · y = x.

As a consequence of Lemma 25, the quotient q in procedure redc can be
expressed in Rn by I in particular (if redc is called with the Montgomery Inverse
as actual parameter for the formal parameter z), which is stated by lemma

∀m,n, x:N n 
= 0 ∧ gcd(n,m) = 1
→ [(x + n · (x · i(I(n,m),m) mod m))/m ≡ x · I(m,n)] mod n. (26)

For obtaining a proof, we command to use Lemma 25 for replacing the left-hand
side of the congruence in (26) by (x + n · (x · i(I(n,m),m) mod m)) · I(m,n)
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causing �eriFun to complete the proof using Lemma 3 as well as the library
lemmas (5), (10), (11), (15) and ∀x, y:N y 
= 0 → y | (x + (y − 1) · x).

An obvious correctness demand for the method is that each call of redc (under
the given requirements) computes some element of the residue class mod n. This
is guaranteed by the conditional subtraction of n from the quotient q in the body
of procedure redc. However, at most one subtraction of n from q results in the
desired property only if n + n > q holds, which is formulated by lemma

∀m,n, x:N m · n > x → n + n > (x + n · (x · i(I(n,m),m) mod m))/m. (27)

We prompt the system to use a case analysis upon m · (n + n) > x + n · (x ·
i(I(n,m),m) mod m) causing �eriFun to prove the statement in the positive
case with the library lemmas (5) and ∀x, y, z:N x ·z > y → x > y/z and to verify
it in the negative case with the synthesized lemma (16) and the library lemmas
(5), (21) and ∀x, y, u, v:N x > y ∧ u ≥ v → x + u > y + v.

Now the mod n property of procedure redc can be verified by proving lemma

∀m,n, x:N m > n ∧ n · m > x ∧ gcd(n,m) = 1 →
redc(x, i(I(n,m),m),m, n) = (redc(x, i(I(n,m),m),m, n) mod n). (28)

We let the system unfold the call of procedure mod in (28) causing �eriFun to
use the synthesized lemma (16) for computing the simplified proof obligation

m > n ∧ n · m > x ∧ gcd(n,m) = 1 → n > redc(x, i(I(n,m),m),m, n). (i)

Then we command to unfold the call of procedure redc which simplifies to

m > n ∧ n · m > x ∧ gcd(n,m) = 1∧
(x + n · (x · i(I(n,m),m) mod m))/m ≥ n

→ n > (x + n · (x · i(I(n,m),m) mod m))/m − n. (ii)

Finally we let the system use library lemma ∀x, y, z:N x > y ∧ y ≥ z → x − z >
y − z resulting in proof obligation

m > n ∧ n · m > x ∧ gcd(n,m) = 1
∧ (x + n · (x · i(I(n,m),m) mod m))/m ≥ n

[ n + n > (x + n · (x · i(I(n,m),m) mod m))/m∧
∧ (x + n · (x · i(I(n,m),m) mod m))/m ≥ n

→ (n + n) − n > (x + n · (x · i(I(n,m),m) mod m))/m − n ]
→ n > (x + n · (x · i(I(n,m),m) mod m))/m − n (iii)

which simplifies to

m > n ∧ n · m > x ∧ gcd(n,m) = 1
∧ (x + n · (x · i(I(n,m),m) mod m))/m ≥ n

∧ (n + n) − n > (x + n · (x · i(I(n,m),m) mod m))/m − n

→ n > (x + n · (x · i(I(n,m),m) mod m))/m − n (iv)

by Lemma 27 and to true in turn using the plus-minus cancellation.
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Now all lemmas for proving the key lemma (23) are available: We demand
to use Lemma 28 for replacing the left-hand side of the equation in (23) by
(redc(x, i(I(n,m),m),m, n) mod n) and to apply lemma (26) for replacing the
right-hand side by ((x+n · (x · i(I(n,m),m) mod m))/m mod n) resulting in the
simplified proof obligation

m > n ∧ n · m > x ∧ gcd(n,m) = 1 →
[redc(x, i(I(n,m),m),m, n) ≡ (x + n · (x · i(I(n,m),m) mod m))/m]mod n.

(v)

Then we unfold the call of procedure redc causing the system to prove (v) with
library lemma (5).

Having proved the key lemma (23), the proof of Theorem 2

∀m,n, a, j:N m > n > a ∧ gcd(n,m) = 1 →
(aj mod n) = redc(redc∗(redc(a · M, I,m, n), I,m, n, j), I,m, n) (Thm 2)

(where M = ((m·m) mod n) and I = i(I(n,m),m)) is easily obtained by support
of a further lemma, viz.

∀m,n, a, j:N m > n > a ∧ gcd(n,m) = 1 →
(m · aj mod n) = redc∗(redc(a · M, I,m, n), I,m, n, j). (29)

When called to use Peano induction upon j for proving (29), �eriFun proves
the base case and rewrites the step case with the induction hypothesis to

m > n > a ∧ gcd(n,m) = 1 ∧ j �= 0 →
(m · aj−1 · a mod n) = redc(redc(a · M, I,m, n) · (m · aj−1 mod n), I,m, n). (vi)

Then we command to replace both calls of redc with the key lemma (23) causing
�eriFun to succeed with the lemmas (2), (5), (16) and (24).

Finally the system proves (Thm 2) using lemmas (2), (5), (16), (29) and
library lemma ∀x, y, z:N x 
= 0 ∧ y > z → x · y > z after being prompted to use
(Thm 1.3) for replacing the right-hand side of the equation in (Thm 2).

5 Discussion and Conclusion

We presented machine assisted proofs verifying an efficient implementation of
Montgomery Multiplication, where we developed the proofs ourselves as we are
not aware of respective proofs published elsewhere. Our work also uncovered
a serious fault in a published algorithm for computing multiplicative inverses
based on Newton-Raphson Iteration [3], which could have dangerous conse-
quences (particularly when used in cryptographic applications) if remained
undetected.
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Proc. Lem. Rules User System % Steps mm:ss

IB(n,m) = n-1
m 8 (7) 49 (3) 241 (39) 36 (3) 205 (36) 85, 1 (92, 3) 3171 0:19

IN (n,m) = n-1
m 10 (9) 76 (3) 368 (59) 59 (3) 309 (56) 84, 0 (94, 9) 6692 1:32

Theorems 1 & 2 20 (12) 116 (3) 547 (78) 96 (6) 451 (72) 82, 4 (92, 3) 9739 2:19

Fig. 7. Proof statistics

Figure 7 displays the effort for obtaining the proofs (including all procedures
and lemmas which had been imported from our arithmetic proof library). Co-
lumn Proc. counts the number of user defined procedures (the recursively defined
ones given in parentheses), Lem. is the number of user defined lemmas (the
number of synthesized lemmas given in parentheses), and Rules counts the total
number of HPL-proof rule applications, separated into user invoked (User) and
system initiated (System) ones (with the number of uses of Induction given in
parentheses). Column % gives the automation degree, i.e. the ratio between Sys-
tem and Rules, Steps lists the number of first-order proof steps performed by the
Symbolic Evaluator and Time displays the runtime of the Symbolic Evaluator.8

The first two rows show the effort for proving Lemmas 9 and 20 as illustrated
in Sect. 3. As it can be observed from the numbers, verifying the computation of
multiplicative inverses by Newton-Raphson Iteration is much more challenging
for the system and for the user than the method based on Bézout’s Lemma.
Row Theorems 1 and 2 below displays the effort for proving Theorems 1 and
2 as illustrated in Sect. 4 (with the effort for the proofs of Lemmas 9 and 20
included).

The numbers in Fig. 7 almost coincide with the statistics obtained for other
case studies in Number Theory performed with the system (see e.g. [14] and also
[7] for more examples), viz. an automation degree of ∼85% and a success rate
of ∼95% for the induction heuristic. All termination proofs (hence all required
induction axioms in turn) had been obtained without user support, where 6 of
the 12 recursively defined procedures, viz. mod, /, gcd, log2, euclid and IN ′ , do
not terminate by structural recursion.9 While an automation degree up to 100%
can be achieved in mathematically simple domains, e.g. when sorting lists [7,9],
values of 85% and below are not that satisfying when concerned with automated
reasoning. The cause is that quite often elaborate ideas for developing a proof are
needed in Number Theory which are beyond the ability of the system’s heuristics
guiding the proof search.10 We also are not aware of other reasoning systems
offering more machine support for obtaining proofs in this difficult domain.

8 Time refers to running �eriFun 3.5 under Windows 7 Enterprise with an INTEL
Core i7-2640M 2.80 GHz CPU using Java 1.8.0 45.

9 Procedure 2?(. . .) is not user defined, but synthesized as the domain procedure [12]
of the incompletely defined procedure log2.

10 Examples are the use of the quotient-remainder theorem for proving (i) in Sect. 3.1
and (iii) in Sect. 3.2 which are the essential proof steps there although more complex
proof obligations result.
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From the user’s perspective, this case study necessitated more work than
expected, and it was a novel experience for us to spend some effort for verifying a
very small and non-recursively defined procedure. The reason is that correctness
of procedure redc depends on some non-obvious and tricky number theoretic
principles which made it difficult to spot the required lemmas. In fact, almost
all effort was spend for the invention of the auxiliary lemmas in Sect. 4 and
of Lemma 12 in Sect. 3.1. Once the “right” lemma for verifying a given proof
obligation eventually was found, its proof turned out to be a routine task. The
proof of Lemma17 is an exception as it required some thoughts to create it and
some effort as well to lead the system (thus spoiling the proof statistics). Proof
development was significantly supported by the system’s Disprover [1] which
(besides detecting the fault in Algorithm 2′) often helped not to waste time with
trying to prove a false conjecture, where the computed counterexamples provided
useful hints how to debug a lemma draft.
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Abstract. Delay differential equations are fundamental for modeling
networked control systems where the underlying network induces delay
for retrieving values from sensors or delivering orders to actuators. They
are notoriously difficult to integrate as these are actually functional equa-
tions, the initial state being a function. We propose a scheme to compute
inner and outer-approximating flowpipes for such equations with uncer-
tain initial states and parameters. Inner-approximating flowpipes are
guaranteed to contain only reachable states, while outer-approximating
flowpipes enclose all reachable states. We also introduce a notion of
robust inner-approximation, which we believe opens promising perspec-
tives for verification, beyond property falsification. The efficiency of our
approach relies on the combination of Taylor models in time, with an
abstraction or parameterization in space based on affine forms, or zono-
topes. It also relies on an extension of the mean-value theorem, which
allows us to deduce inner-approximating flowpipes, from flowpipes outer-
approximating the solution of the DDE and its Jacobian with respect to
constant but uncertain parameters and initial conditions. We present
some experimental results obtained with our C++ implementation.

1 Introduction

Nowadays, many systems are composed of networks of control systems. These
systems are highly critical, and formal verification is an essential element for
their social acceptability. When the components of the system to model are
distributed, delays are naturally introduced in the feedback loop. They may
significantly alter the dynamics, and impact safety properties that we want to
ensure for the system. The natural model for dynamical systems with such delays
is Delay Differential Equations (DDE), in which time derivatives not only depend
on the current state, but also on past states. Reachability analysis, which involves
computing the set of states reached by the dynamics, is a fundamental tool for the
verification of such systems. As the reachable sets are not exactly computable,
approximations are used. In particular, outer (also called over)-approximating
c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 523–541, 2018.
https://doi.org/10.1007/978-3-319-96142-2_31
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flowpipes are used to prove that error states will never be reached, whereas
inner (also called under)-approximating flowpipes are used to prove that desired
states will actually be reached, or to falsify properties. We propose in this article
a method to compute both outer- and inner-approximating flowpipes for DDEs.

We concentrate on systems that can be modeled as parametric fixed-delay
systems of DDEs, where both the initial condition and right-hand side of the
system depend on uncertain parameters, but with a unique constant and exactly
known delay: {

ż(t) = f(z(t), z(t − τ), β) if t ∈ [t0 + τ, T ]
z(t) = z0(t, β) if t ∈ [t0, t0 + τ ]

(1)

where the continuous vector of variables z belongs to a state-space domain D ⊆
R

n, the (constant) vector of parameters β belongs to the domain B ⊆ R
m, and

f : D × D × B → D is C∞ and such that Eq. (1) admits a unique solution1

on the time interval [t0, T ]. The initial condition is defined on t ∈ [t0, t0 + τ ]
by a function z0 : R+ × B → D. The method introduced here also applies in
the case when the set of initial states is given as the solution of an uncertain
system of ODEs instead of being defined by a function. Only the initialization of
the algorithm will differ. When several constant delays occur in the system, the
description of the method is more complicated, but the same method applies.

Example 1. We will exemplify our method throughout the paper on the system{
ẋ(t) = −x(t) · x(t − τ) =: f (x(t), x(t − τ), β) t ∈ [0, T ]
x(t) = x0(t, β) = (1 + βt)2 t ∈ [−τ, 0]

We take β ∈ [
1
3 , 1

]
, which defines a family of initial functions, and we fix τ = 1.

This system is a simple but not completely trivial example, for which we
have an analytical solution on the first time steps, as detailed in Example 4.

Contributions and Outline. In this work, we extend the method introduced by
Goubault and Putot [16] for ODEs, to the computation of inner and outer flow-
pipes of systems of DDEs. We claim, and experimentally demonstrate with our
prototype implementation, that the method we propose here for DDEs is both
simple and efficient. Relying on outer-approximations and generalized interval
computations, all computations can be safely rounded, so that the results are
guaranteed to be sound. Finally, we can compute inner-approximating flowpipes
combining existentially and universally quantified parameters, which offers some
strong potential for property verification, beyond falsification.

In Sect. 2, we first define the notions of inner and outer-approximating flow-
pipes, as well as robust inner-approximations, and state some preliminaries on
generalized interval computations, which are instrumental in our inner flowpipes
computations. We then present in Sect. 3 our method for outer-approximating

1 We refer the reader to [12,27] for the conditions on f .



Inner and Outer Approximating Flowpipes for Delay Differential Equations 525

solutions to DDEs. It is based on the combination of Taylor models in time
with a space abstraction relying on zonotopes. Section 4 relies on this approach
to compute outer-approximations of the Jacobian of the solution of the DDE
with respect to the uncertain parameters, using variational equations. Inner-
approximating tubes are obtained from these using a generalized mean-value
theorem introduced in Sect. 2. We finally demonstrate our method in Sect. 5,
using our C++ prototype implementation, and show its superiority in terms of
accuracy and efficiency compared to the state of the art.

Related Work. Reachability analysis for systems described by ordinary differ-
ential equations, and their extension to hybrid systems, has been an active
topic of research in the last decades. Outer-approximations have been dealt
with ellipsoidal [20], sub-polyhedral techniques, such as zonotopes or sup-
port functions, and Taylor model based methods, for both linear and non-
linear systems [2,4–6,10,14,17,26]. A number of corresponding implementations
exist [1,3,7,13,22,25,29]. Much less methods have been proposed, that answer
the more difficult problem of inner-approximation. The existing approaches use
ellipsoids [21] or non-linear approximations [8,16,19,31], but they are often com-
putationally costly and imprecise. Recently, an interval-based method [24] was
introduced for bracketing the positive invariant set of a system without rely-
ing on integration. However, it relies on space discretization and has only been
applied successfully, as far as we know, to low dimensional systems.

Taylor methods for outer-approximating reachable sets of DDEs have been
used only recently, in [28,32]. We will demonstrate that our approach improves
the efficiency and accuracy over these interval-based Taylor methods.

The only previous work we know of for computing inner-approximations of
solutions to DDEs, is the method of Xue et al. [30], extending the approach
proposed for ODEs in [31]. Their method is based on a topological condition and
a careful inspection of what happens at the boundary of the initial condition.
We provide in the section dedicated to experiments a comparison to the few
experimental results given in [30].

2 Preliminaries on Outer and Inner Approximations

Notations and Definitions. Let us introduce some notations that we will
use throughout the paper. Set valued quantities, scalar or vector valued, corre-
sponding to uncertain inputs or parameters, are noted with bold letters, e.g x.
When an approximation is introduced by computation, we add brackets: outer-
approximating enclosures are noted in bold and enclosed within inward fac-
ing brackets, e.g. [x], and inner-approximations are noted in bold and enclosed
within outward facing brackets, e.g. ]x[.

An outer-approximating extension of a function f : R
m → R

n is a func-
tion [f ] : P(Rm) → P(Rn), such that for all x in P(Rm), range(f,x) =
{f(x), x ∈ x} ⊆ [f ](x). Dually, inner-approximations determine a set of val-
ues proved to belong to the range of the function over some input set. An
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inner-approximating extension of f is a function ]f [: P(Rm) → P(Rn), such
that for all x in P(Rm), ]f [(x) ⊆ range(f,x). Inner and outer approxima-
tions can be interpreted as quantified propositions: range(f,x) ⊆ [z] can be
written (∀x ∈ x) (∃z ∈ [z]) (f(x) = z), while ]z[⊆ range(f,x) can be written
(∀z ∈ ]z[) (∃x ∈ x) (f(x) = z).

Let ϕ(t, β) for time t ≥ t0 denote the time trajectory of the dynamical system
(1) for a parameter value β, and z(t,β) = {ϕ(t, β), β ∈ β} the set of states
reachable at time t for the set of parameter values β. We extend the notion of
outer and inner-approximations to the case where the function is the solution
ϕ(t, β) of system (1) over the set β. An outer-approximating flowpipe is given by
an outer-approximation of the set of reachable states, for all t in a time interval:

Definition 1 (Outer-approximation). Given a vector of uncertain (con-
stant) parameters or inputs β ∈ β, an outer-approximation at time t of
the reachable set of states, is [z](t,β) ⊇ z(t,β), such that (∀β ∈ β) (∃z ∈
[z](t,β)) (ϕ(t, β) = z).

Definition 2 (Inner-approximation). Given a vector of uncertain (con-
stant) parameters or inputs β ∈ β, an inner-approximation at time t of the reach-
able set, is ]z[(t,β) ⊆ z(t,β) such that (∀z ∈]z[(t,β)) (∃β ∈ β) (ϕ(t, β) = z).

In words, any point of the inner flowpipe is the solution at time t of system (1),
for some value of β ∈ β. If the outer and inner approximations are computed
accurately, they approximate with arbitrary precision the exact reachable set.

Our method will also solve the more general robust inner-approximation
problem of finding an inner-approximation of the reachable set, robust to uncer-
tainty on an uncontrollable subset βA of the vector of parameters β:

Definition 3 (Robust inner-approximation). Given a vector of uncertain
(constant) parameters or inputs β = (βA, βE) ∈ β, an inner-approximation of the
reachable set z(t,β) at time t, robust with respect to βA, is a set ]z[A(t,βA,βE)
such that (∀z ∈]z[A(t,βA,βE)) (∀βA ∈ βA) (∃βE ∈ βE) (ϕ(t, βA, βE) = z).

Outer and Inner Interval Approximations. Classical intervals are used in
many situations to rigorously compute with interval domains instead of reals,
usually leading to outer-approximations of function ranges over boxes. We denote
the set of classical intervals by IR = {[x, x], x ∈ R, x ∈ R, x ≤ x}. Intervals are
non-relational abstractions, in the sense that they rigorously approximate inde-
pendently each component of a vector function f . We thus consider in this section
a function f : R

m → R. The natural interval extension consists in replacing
real operations by their interval counterparts in the expression of the function.
A generally more accurate extension relies on a linearization by the mean-value
theorem. Suppose f is differentiable over the interval x. Then, the mean-value
theorem implies that (∀x0 ∈ x) (∀x ∈ x) (∃c ∈ x) (f(x) = f(x0)+f ′(c)(x−x0)).
If we can bound the range of the gradient of f over x, by [f ′](x), then we can
derive the following interval enclosure, usually called the mean-value extension:
for any x0 ∈ x, range(f,x) ⊆ f(x0) + [f ′](x)(x − x0).
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Example 2. Consider f(x) = x2−x, its range over x = [2, 3] is [2, 6]. The natural
interval extension of f , evaluated on [2, 3], is [f ]([2, 3]) = [2, 3]2 − [2, 3] = [1, 7].
The mean-value extension gives f(2.5)+ [f ′]([2, 3])([2, 3] − 2.5) = [1.25, 6.25],
using x0 = 2.5 and [f ′](x) = 2x − 1.

Modal Intervals and Kaucher Arithmetic. The results introduced in this
section are mostly based on the work of Goldsztejn et al. [15] on modal intervals.
Let us first introduce generalized intervals, i.e., intervals whose bounds are not
ordered, and the Kaucher arithmetic [18] on these intervals.

The set of generalized intervals is denoted by IK = {x = [x, x], x ∈ R, x ∈
R}. Given two real numbers x and x, with x ≤ x, one can consider two general-
ized intervals, [x, x], which is called proper, and [x, x], which is called improper.
We define dual([a, b]) = [b, a] and pro ([a, b]) = [min(a, b), max(a, b)].

Definition 4 ([15]). Let f : Rm → R be a continuous function and x ∈ IK
m,

which we can decompose in xA ∈ IR
p and xE ∈ (dual IR)q with p + q = m. A

generalized interval z ∈ IK is (f,x)-interpretable if

(∀xA ∈ xA) (Qzz ∈ pro z) (∃xE ∈ pro xE) (f(x) = z) (2)

where Qz = ∃ if (z) is proper, and Qz = ∀ otherwise.

When all intervals in (2) are proper, we retrieve the interpretation of classi-
cal interval computation, which gives an outer-approximation of range(f,x), or
(∀x ∈ x) (∃z ∈ [z]) (f(x) = z). When all intervals are improper, (2) yields an
inner-approximation of range(f,x), or (∀z ∈ ]pro z[) (∃x ∈ pro x) (f(x) = z).

Kaucher arithmetic [18] provides a computation on generalized intervals that
returns intervals that are interpretable as inner-approximations in some simple
cases. Kaucher addition extends addition on classical intervals by x + y = [x +
y, x + y] and x − y = [x − y, x − y]. For multiplication, let us decompose IK in
P = {x = [x, x], x � 0 ∧ x � 0}, −P = {x = [x, x], x � 0 ∧ x � 0}, Z = {x =
[x, x], x � 0 � x}, and dual Z = {x = [x, x], x � 0 � x}. When restricted to
proper intervals, the Kaucher multiplication coincides with the classical interval
multiplication. Kaucher multiplication xy extends the classical multiplication to
all possible combinations of x and y belonging to these sets. We refer to [18] for
more details.

Kaucher arithmetic defines a generalized interval natural extension (see [15]):

Proposition 1. Let f : R
m → R be a function, given by an arithmetic

expression where each variable appears syntactically only once (and with degree
1). Then for x ∈ IK

m, f(x), computed using Kaucher arithmetic, is (f,x)-
interpretable.

In some cases, Kaucher arithmetic can thus be used to compute an inner-
approximation of range(f,x). But the restriction to functions f with single
occurrences of variables, that is with no dependency, prevents a wide use. A
generalized interval mean-value extension allows us to overcome this limitation:
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Theorem 1. Let f : R
m → R be differentiable, and x ∈ IK

m which we can
decompose in xA ∈ IR

p and xE ∈ (dual IR)q with p + q = m. Suppose that for
each i ∈ {1, . . . , m}, we can compute [Δi] ∈ IR such that{

∂f

∂xi
(x), x ∈ pro x

}
⊆ [Δi]. (3)

Then, for any x̃ ∈ pro x, the following interval, evaluated with Kaucher
arithmetic, is (f,x)-interpretable:

f̃(x) = f(x̃) +
n∑

i=1

[Δi](xi − x̃i). (4)

When using (4) for inner-approximation, we can only get the following sub-
set of all possible cases in the Kaucher multiplication table: (x ∈ P) × (y ∈
dual Z) = [xy, xy], (x ∈ −P) × (y ∈ dual Z) = [xy, xy], and (x ∈ Z) × (y ∈
dual Z) = 0. Indeed, for an improper x, and x̃ ∈ pro x, it holds that (x − x̃)
is in dual Z. The outer-approximation [Δi] of the Jacobian is a proper interval,
thus in P, −P or Z, and we can deduce from the multiplication rules that the
inner-approximation is non empty only if [Δi] does not contain 0.

Example 3. Let f be defined by f(x) = x2 − x, for which we want to compute
an inner-approximation of the range over x = [2, 3]. Due to the two occurrences
of x, f(dual x), computed with Kaucher arithmetic, is not (f,x)-interpretable.
The interval f̃(x) = f(2.5) + f ′([2, 3])(x − 2.5) = 3.75 + [3, 5](x − 2.5) given
by its mean-value extension, computed with Kaucher arithmetic, is (f,x)-
interpretable. For x = [2, 3], using the multiplication rule for P ×dual Z, we get
f̃(x) = 3.75 + [3, 5]([2, 3] − 2.5) = 3.75 + [3, 5][0.5,−0.5] = 3.75 + [1.5,−1.5] =
[5.25, 2.25], that can be interpreted as: (∀z ∈ [2.25, 5.25]) (∃x ∈ [2, 3]) (z = f(x)).
Thus, [2.25, 5.25] is an inner-approximation of range(f, [2, 3]).

In Sect. 4, we will use Theorem 1 with f being each component (for a n-
dimensional system) of the solution of the uncertain dynamical system (1): we
need an outer enclosure of the solution of the system, and of its Jacobian with
respect to the uncertain parameters. This is the objective of the next sections.

3 Taylor Method for Outer Flowpipes of DDEs

We now introduce a Taylor method to compute outer enclosures of the solution
of system (1). The principle is to extend a Taylor method for the solution of
ODEs to the case of DDEs, in a similar spirit to the existing work [28,32]. This
can be done by building a Taylor model version of the method of steps [27], a
technique for solving DDEs that reduces these to a sequence of ODEs.
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3.1 The Method of Steps for Solving DDEs

The principle of the method of steps is that on each time interval [t0+iτ, t0+(i+
1)τ ], for i ≥ 1, the function z(t−τ) is a known history function, already computed
as the solution of the DDE on the previous time interval [t0 + (i − 1)τ, t0 + iτ ].
Plugging the solution of the previous ODE into the DDE yields a new ODE on
the next tile interval: we thus have an initial value problem for an ODE with
z(t0 + iτ) defined by the previous ODE. This process is initialized with z0(t) on
the first time interval [t0, t0 + τ ]. The solution of the DDE can thus be obtained
by solving a sequence of IVPs for ODEs. Generally, there is a discontinuity in
the first derivative of the solution at t0 + τ . If this is the case, then because of
the term z(t − τ) in the DDE, a discontinuity will also appear at each t0 + iτ .

Example 4. Consider the DDE defined in Example 1. On t ∈ [0, τ ] the solution
of the DDE is solution of the ODE

ẋ(t) = f(x(t), x0(t − τ, β)) = −x(t)(1 + β(t − τ))2, t ∈ [0, τ ]

with initial value x(0) = x0(0, β) = 1. It admits the analytical solution

x(t) = exp
(

− 1
3β

(
(1 + (t − 1)β)3 − (1 − β)3

))
, t ∈ [0, τ ] (5)

The solution of the DDE on the time interval [τ, 2τ ] is the solution of the ODE

ẋ(t) = −x(t) exp
(

− 1
3β

(
(1 + (t − τ − 1)β)3 − (1 − β)3

))
, t ∈ [τ, 2τ ]

with initial value x(τ) given by (5). An analytical solution can be computed,
using the transcendantal lower γ function.

3.2 Finite Representation of Functions as Taylor Models

A sufficiently smooth function g (e.g. C∞), can be represented on a time interval
[t0, t0 + h] by a Taylor expansion

g(t) =
k∑

i=0

(t − t0)ig[i](t0) + (t − t0)k+1g[k+1](ξ), (6)

with ξ ∈ [t0, t0 + h], and using the notation g[i](t) := g(i)(t)
i! . We will use such

Taylor expansions to represent the solution z(t) of the DDE on each time interval
[t0 + iτ, t0 + (i + 1)τ ], starting with the initial condition z0(t, β) on [t0, t0 + τ ].
For more accuracy, we actually define these expansions piecewise on a finer time
grid of fixed time step h. The function z0(t, β) on time interval [t0, t0 + τ ] is thus
represented by p = τ/h Taylor expansions. The lth such Taylor expansion, valid
on the time interval [t0 + lh, t0 + (l + 1)h] with l ∈ {0, . . . , p − 1}, is

z0(t, β) =
k∑

i=0

(t − t0)iz[i](t0 + lh, β) + (t − t0)k+1z[k+1](ξl, β), (7)

for a ξl ∈ [t0 + lh, t0 + (l + 1)h].
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3.3 An Abstract Taylor Model Representation

In a rigorous version of the expansion (7), the z[i](t0+lh, β) as well as g[k+1](ξl, β)
are set-valued, as the vector of parameters β is set valued. The simplest way
to account for these uncertainties is to use intervals. However, this approach
suffers heavily from the wrapping effect, as these uncertainties accumulate with
integration time. A more accurate alternative is to use a Taylor form in the
parameters β for each z[i](t0 + lh, β). This is however very costly. We choose in
this work to use a sub-polyhedric abstraction to parameterize Taylor coefficients,
expressing some sensitivity of the model to the uncertain parameters: we rely on
affine forms [9]. The result can be seen as Taylor models of arbitrary order in
time, and order close to 1 in the parameters space.

The vector of uncertain parameters or inputs β ∈ β is thus defined as a vector
of affine forms over m symbolic variables εi ∈ [−1, 1]: β = α0+

∑mj

i=1 αiεi, where
the coefficients αi are vectors of real numbers. This abstraction describes the set
of values of the parameters as given within a zonotope. In the sequel, we will use
for zonotopes the same bold letter notation as for intervals, that account for set
valued quantities.

Example 5. In Example 1, β = [13 , 1] can be represented by the centered form
β = 2

3 + 1
3ε1. The set of initial conditions x0(t,β) is abstracted as a func-

tion of the noise symbol ε1. For example, at t = −1, x0(−1,β) = (1 − β)2 =
(1 − 2

3 − 1
3ε1)2 = 1

9 (1 − ε1)2. The abstraction of affine arithmetic operators is
computed componentwise on the noise symbols εi, and does not introduce any
over-approximation. The abstraction of non affine operations is conservative: an
affine approximation of the result is computed, and a new noise term is added,
that accounts for the approximation error. Here, using ε21 ∈ [0, 1], affine arith-
metic [9] will yield [x0](−1,β) = 1

9 (1 − 2ε1 + [0, 1]) = 1
9 (1.5 − 2ε1 + 0.5ε2), with

ε2 ∈ [−1, 1]. We are now using notation [x0], denoting an outer-approximation.
Indeed, the abstraction is conservative: [x0](−1,β) takes its values in 1

9 [−1, 4],
while the exact range of x0(−1, β) for β ∈ [13 , 1] is 1

9 [0, 4].

Now, we can represent the initial solution for t ∈ [t0, t0 + τ ] of the DDE (1)
as a Taylor model in time with zonotopic coefficients, by evaluating in affine
arithmetic the coefficients of its Taylor model (7). Noting r0j = [t0 + jh, t0 +
(j + 1)h], we write, for all j = 0, . . . , p − 1,

[z](t) =
k−1∑
l=0

(t − t0)l[z0j ][l] + (t − t0)k[z0j ][k], t ∈ r0j (8)

where the Taylor coefficients

[z0j ][l] :=
[z0](l)(t0 + jh,β)

l!
, [z0j ][l] :=

[z0](l)(r0j ,β)
l!

(9)

can be computed by differentiating the initial solution with respect to t ([z0](l)

denotes the l-th time derivative), and evaluating the result in affine arithmetic.
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Example 6. Suppose we want to build a Taylor model of order k = 2 for the
initial condition in Example 1 on a grid of step size h = 1/3. Consider the
Taylor model for the first step [t0, t0 + h] = [−1,−2/3]: we need to evaluate
[x00][0] = [x0](−1,β), which was done Example 5.

We also need [x00][1] and [x00][2]. We compute [x00][1] = [ẋ0](−1,β) = 2β(1−
β) and [x00][2] = [x0](2)(rl)/2 = [ẍ0](rl)/2 = β2, with β = 2

3 + 1
3ε1. We evaluate

these coefficients with affine arithmetic, similarly to Example 5.

3.4 Constructing Flowpipes

The abstract Taylor models (8) introduced in Sect. 3.3, define piecewise outer-
approximating flowpipes of the solution on [t0, t0+τ ]. Using the method of steps,
and plugging into (1) the solution computed on [t0+(i−1)τ, t0+iτ ], the solution
of (1) can be computed by solving the sequence of ODEs

ż(t) = f(z(t), z(t − τ), β), for t ∈ [t0 + iτ, t0 + (i + 1)τ ] (10)

where the initial condition z(t0 + iτ), and z(t − τ) for t in [t0 + iτ, t0 + (i + 1)τ ],
are fully defined by (8) when i = 1, and by the solution of (10) at previous step
when i is greater than 1.

Let the set of the solutions of (10) at time t and for the initial conditions
z(t′) ∈ z′ at some initial time t′ ≥ t0 be denoted by z(t, t′,z′). Using a Taylor
method for ODEs, we can compute flowpipes that are guaranteed to contain the
reachable set of the solutions z(t, t0 + τ, [z](t0 + τ)) of (10), for all times t in
[t0 + τ, t0 +2τ ], with [z](t0 + τ) given by the evaluation of the Taylor model (8).
This can be iterated for further steps of length τ , solving (10) for i = 1, . . . , T/τ ,
with an initial condition given by the evaluation of the Taylor model for (10) at
the previous step.

We now detail the algorithm that results from this principle. Flowpipes are
built using two levels of grids. At each step on the coarser grid with step size
τ , we define a new ODE. We build the Taylor models for the solution of this
ODE on the finer grid of integration step size h = τ/p. We note ti = t0 + iτ the
points of the coarser grid, and tij = t0 + iτ + jh the points of the finer grid. In
order to compute the flowpipes in a piecewise manner on this grid, the Taylor
method relies on Algorithm 1. All Taylor coefficients, as well as Taylor expansion
evaluations, are computed in affine arithmetic.

Step 1: Computing an a Priori Enclosure. We need an a priori enclosure
[zij ] of the solution z(t), valid on the time interval [tij , ti(j+1)]. This is done by a
straightforward extension of the classical approach [26] for ODEs relying on the
interval Picard-Lindelöf method, applied to Eq. (10) on [tij , ti(j+1)] with initial
condition [zij ]. If [f ] is Lipschitz, the natural interval extension [F ] of the Picard-
Lindelöf operator defined by [F ](z) = [zij ]+[tij , ti(j+1)][f ](z, [zi(j−1)],β), where
the enclosure of the solution over ri(j−1) = [ti(j−1), tij ] has already be computed
as [zi(j−1)], admits a unique fixpoint. A simple Jacobi-like iteration, z0 = [zij ],
zl+1 = F (zl) for all l ∈ N, suffices to reach the fixpoint of this iteration which
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Build by (9) the [z0j ]
[l], j ∈ {0, . . . , p − 1} that define the Taylor model on

[t0, t0 + τ ], and Initialize next flowpipe: [z10] = [z0](t10, β) at t10 = t0 + τ
For all i = 0, . . . , T/τ do

For all j = 0, . . . , p − 1 do
Step 1: compute an a priori enclosure [zij ] of z(t) valid on [tij , ti(j+1)]
Step 2: build by (12), (14), a Taylor model valid on [tij , ti(j+1)]
Using (11), initialize next flowpipe: [zi(j+1)] = [z](ti(j+1), tij , [zij ]) if

j < p − 1, [z(i+1)0] = [z](t(i+1)0, tij , [zij ]) if j = p − 1

Algorithm 1. Sketch of the computation of outer reachable sets for a DDE

yields [zij)], and ensures the existence and uniqueness of a solution to (10) on
[tij , ti(j+1)]. However, it may be necessary to reduce the step size.

Step 2: Building the Taylor Model. A Taylor expansion of order k of the
solution at tij which is valid on the time interval [tij , ti(j+1)], for i ≥ 1, is

[z](t, tij , [zij ]) = [zij ] +
k−1∑
l=1

(t − tij)l[f ij ]
[l] + (t − tij)k[f ij ]

[k], (11)

The Taylor coefficients are defined inductively, and can be computed by auto-
matic differentiation, as follows:[

f ij

][1] = [f ]
(
[zij ], [z(i−1)j ],β

)
(12)

[
f1j

][l+1] =
1

l + 1

([
∂f [l]

∂z

] [
f1j

][1] + [z0j ]
[
f0j

][1]) (13)

[
f ij

][l+1] =
1

l + 1

([
∂f [l]

∂z

] [
f ij

][1] +
[

∂f [l]

∂zτ

] [
f (i−1)j

][1])
if i ≥ 2 (14)

The Taylor coefficients for the remainder term are computed in a similar way,
evaluating [f ] over the a priori enclosure of the solution on rij = [tij , ti(j+1)].
For instance, [f ij ][1] = [f ]([zij ], [z(i−1)j ]). The derivatives can be discontinuous
at ti0: the [f i0]

[l] coefficients correspond to the right-handed limit, at time t+i0.
Let us detail the computation of the coefficients (12), (13) and (14). Let z(t)

be the solution of (10). By definition, dz
dt (t) = f(z(t), z(t−τ), β) = f [1](z(t), z(t−

τ), β) from which we deduce the set valued version (12). We can prove (14) by
induction on l. Let us denote ∂z the partial derivative with respect to z(t), and
∂zτ with respect to the delayed function z(t − τ). We have

f [l+1](z(t), z(t − τ), β) = 1
(l+1)!

d(l+1)z
dt(l+1) (t) = 1

l+1
d
dt

(
f [l](z(t), z(t − τ), β)

)
= 1

l+1

(
ż(t)∂f [l]

∂z + ż(t − τ)∂f [l]

∂zτ

)
= 1

l+1

(
f(z(t), z(t − τ), β)∂f [l]

∂z +

f(z(t − τ), z(t − 2τ), β)∂f [l]

∂zτ

)
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from which we deduce the set valued version (14). For t ∈ [t0 + τ, t0 + 2τ ], the
only difference is that ż(t − τ) is obtained by differentiating the initial solution
of the DDE on [t0, t0 + τ ], which yields (13).

Example 7. As in Example 6, we build the first step of the Taylor model of order
k = 2 on the system of Example 1. We consider t ∈ [t0 + τ, t0 + 2τ ], on a grid of
step size h = 1/3. Let us build the Taylor model on [t0 + τ, t0 + τ +h] = [0, 1/3]:
we need to evaluate[x10], [f10][1] and [f10][2] in affine arithmetic.

Following Algorithm 1, [x10] = [x0](t10,β) = [x0](t0 +τ,β) = [x0](0,β) = 1.
Using (12) and the computation of [x00] of Example 5, [f10][1] =
[f ]([x10], [x00]) = [f ](1, 1

9 (1.5 − 2ε1 + 0.5ε2)) = − 1
9 (1.5 − 2ε1 + 0.5ε2). Finally,

using (13), [f10][2] = 0.5ḟ(r10, r00), where ri0 for i = 0, 1 (with r00 = r10 − τ) is
the time interval of width h equal to [ti0, ti1] = [−1+ i,−1+ i+1/3], and ḟ(t, t−
τ) = ẋ(t)x(t− τ)+x(t)ẋ(t− τ) = f(t, t− τ)x(t− τ)+x(t)ẋ0(t− τ) = −x(t)x(t−
τ)2+2x(t)β(1+βt). Thus, [f10][2] = −0.5[x(r10)][x(r00)]2+[x(r10)]β(1+βr10).
We need enclosures for x(r00) and x(r10), to compute this expression. Enclosure
[x(r00)] is directly obtained as [x0](r00) = (1+βr00)2, evaluated in affine arith-
metic. Evaluating [x(r10)] requires to compute an a priori enclosure of the solu-
tion on interval r10, following the approach described as Step 1 in Algorithm 1.
The Picard-Lindelöf operator is [F ](x) = [x10] + [0, 1

3 ][f ](x, [x(r00)],β) =
1 + [0, 1

3 ](1 + βr00)2x. We evaluate it in interval rather than affine arith-
metic for simplicity: [F ](x) = 1 + [0, 1

3 ]
(
1 + [13 , 1][−1,− 2

3 ]
)2

x = 1 + [0, 72

35 ]x.
Starting with x0 = [x10] = 1, we compute x1 = [F ](1) = [1, 1 + 72

35 ],
x2 = [F ](x1) = [1, 1 + 72

35 + (7
2

35 )2], etc. This is a geometric progression, that
converges to a finite enclosure.

Remark. A fixed step size yields a simpler algorithm. However it is possible to
use a variable step size, with an additional interpolation of the Taylor models.

4 Inner-Approximating Flowpipes

We will now use Theorem 1 in order to compute inner-approximating flowpipes
from outer-approximating flowpipes, extending the work [16] for ODEs to the
case of DDEs. The main idea is to instantiate in this theorem the function f as
the solution z(t, β) of our uncertain system (1) for all t, and x as the range β of
the uncertain parameters. For this, we need to compute an outer-approximation
of z(t, β̃) for some β̃ ∈ β, and of its Jacobian matrix with respect to β at any
time t and over the range β. We follow the approach described in Sect. 3.4.

Outer-Approximation of the Jacobian Matrix Coefficients. For the DDE
(1) in arbitrary dimension n ∈ N and with parameter dimension m ∈ N, the
Jacobian matrix of the solution z = (z1, . . . , zn) of this system with respect to
the parameters β = (β1, . . . , βm) is

Jij(t) =
∂zi

∂βj
(t)
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for i between 1 and n, j between 1 and m. Differentiating (1), we obtain that
the coefficients of the Jacobian matrix of the flow satisfy

J̇ij(t) =
p∑

k=1

∂fi

∂zk
(t)Jkj(t) +

p∑
k=1

∂fi

∂zτ
k

(t)Jkj(t − τ) +
∂fi

∂βj
(t) (15)

with initial condition Jij(t) = (Jij)0(t, β) = ∂(zi)0
∂βj

(t, β) for t ∈ [t0, t0 + τ ].

Example 8. The Jacobian matrix for Example 1 is a scalar since the DDE is
real-valued and the parameter is scalar. We easily get J̇11(t) = −x(t−τ)J11(t)−
x(t)J11(t − τ) with initial condition (J11)0(t, β) = 2t(1 + βt).

Equation (15) is a DDE of the same form as (1). We can thus use the method
introduced in Sect. 3.4, and use Taylor models to compute outer-approximating
flowpipes for the coefficients of the Jacobian matrix.

Computing Inner-Approximating Flowpipes. Similarly as for ODEs [16],
the algorithm that computes inner-approximating flowpipes, first uses Algo-
rithm 1 to compute outer-approximations, on each time interval [tij , ti(j+1)],
of

1. the solution z(t, β̃) of the system starting from the initialization function
z0(t, β̃) defined by a given β̃ ∈ β

2. the Jacobian J(t, β) of the solution, for all β ∈ β

Then, we can deduce inner-approximating flowpipes by using Theorem1. Let
as in Definition 3 β = (βA, βE) and note JA the matrix obtained by extracting
the columns of the Jacobian corresponding to the partial derivatives with respect
to βA. Denote by JE the remaining columns. If the quantity defined by Eq. (16)
for t in [tij , ti(j+1)] is an improper interval

]z[A(t, tij ,βA,βE) = [z](t, tij , [z̃ij ]) + [J ]A(t, tij , [J ij ])(βA − β̃A)

+[J ]E(t, tij , [J ij ])(dual βE − β̃E) (16)

then the interval (pro ]z[A(t, tij ,βA,βE)) is an inner-approximation of the reach-
able set z(t,β) valid on the time interval [tij , ti(j+1)], which is robust with
respect to the parameters βA, in the sense of Definition 3. Otherwise the inner-
approximation is empty. If all parameters are existentially quantified, that is if
the subset βA is empty, we obtain the classical inner-approximation of Defini-
tion 2. Note that a unique computation of the center solution [z̃] and the Jacobian
matrix [J ] can be used to infer different interpretations as inner-approximations
or robust inner-approximations. With this computation, the robust inner flow-
pipes will always be included in the classical inner flowpipes.

The computation of the inner-approximations fully relies on the outer-
approximations at each time step. A consequence is that we can soundly imple-
ment most of our approach using classical interval-based methods: outward
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rounding should be used for the outer approximations of flows and Jacobians.
Only the final computation by Kaucher arithmetic of improper intervals should
be done with inward rounding in order to get a sound computation of the inner-
approximation.

Also, the wider the outer-approximation in Taylor models for the center and
the Jacobian, the tighter and thus the less accurate is the inner-approximation.
This can lead to an empty inner-approximation if the result of Eq. (16) in
Kaucher arithmetic is not an improper interval. This can occur in two way.
Firstly, the Kaucher multiplication [J ]E(dual βE − β̃E) in (16), yields a non-
zero improper interval only if the Jacobian coefficients do not contain 0. Sec-
ondly, suppose that the Kaucher multiplication yields an improper interval. It
is added to the proper interval [z](t, tij , [z̃ij ]) + [J ]A ∗ (βA − β̃A). The center
solution [z](t, tij , [z̃ij ]) can be tightly estimated, but the term [J ]A(βA − β̃A)
that measures robustness with respect to the βA parameters can lead to a wide
enclosure. If this sum is wider than the improper interval resulting from the
Kaucher multiplication, then the resulting Kaucher sum will be proper and the
inner-approximation empty.

5 Implementation and Experiments

We have implemented our method using the FILIB++ C++ library [23] for inter-
val computations, the FADBAD++2 package for automatic differentiation, and (a
slightly modified version of) the aaflib3 library for affine arithmetic.

Let us first consider the running example, with order 2 Taylor models, and
an integration step size of 0.05. Figure 1 left presents the results until t = 2
(obtained in 0.03 s) compared to the analytical solution (dashed lines): the solid
external lines represent the outer-approximating flowpipe, the filled region rep-
resents the inner-approximating flowpipe. Until time t = 0, the DDE is in its
initialization phase, and the conservativeness of the outer-approximation is due
to the abstraction in affine arithmetic of the set of initialization functions. Using
higher-order Taylor models, or refining the time step improves the accuracy.
However, for the inner-approximation, there is a specific difficulty: the Jacobian
contains 0 at t = −1, so that the inner-approximation is reduced to a point.
This case corresponds to the parameter value β = 1. To address this problem,
we split the initial parameter set in two sub-intervals of equal width, compute
independently the inner and outer flowpipes for these two parameters ranges,
and then join the results to obtain Fig. 1 center. It is somehow counter intuitive
that we can get this way a larger, thus better quality, inner-approximating set,
as the inner-approximation corresponds to the property that there exist a value
of β in the parameter set such that a point of the tube is definitely reached. Tak-
ing a larger β parameter set would intuitively lead to a larger such inner tube.
However, this is in particular due to the fact that we avoid here the zero in the

2 http://www.fadbad.com.
3 http://aaflib.sourceforge.net.

http://www.fadbad.com
http://aaflib.sourceforge.net
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Jacobian. More generally, such a subdivision yields a tighter outer-approximation
of the Jacobian, and thus better accuracy when using the mean-value theorem.

Fig. 1. Running example (Taylor model order 2, step size 0.05)

In order to obtain an inner-approximation without holes, we can use a subdi-
vision of the parameters with some covering. This is the case for instance using 10
subdivisions, with 10% of covering. Results are now much tighter: Fig. 1 right rep-
resents a measure γ(x, t) of the quality of the approximations (computed in 45 s)
for a time horizon T = 15, with Taylor Model of order 3, a step size of 0.02. This
accuracy measure γ(x, t) is defined by γ(x, t) = γu(x)

γo(x)
where γu(x) and γo(x) mea-

sure respectively the width of the inner-approximation and outer-approximation,
for state variable x. Intuitively, the larger the ratio (bounded by 1),
the better the approximation. Here, γ(x, t) almost stabilizes after some time,
to a high accuracy of 0.975. We noted that in this example, the order of the Tay-
lor model, the step size and the number of initial subdivisions all have a notable
impact on the stabilized value of γ, that can here be decreased arbitrarily.

Example 9. Consider a basic PD-controller for a self-driving car, controlling the
car’s position x and velocity v by adjusting its acceleration depending on the
current distance to a reference position pr, chosen here as pr = 1. We consider a
delay τ to transfer the input data to the controller, due to sensing, computation
or transmission times. This leads, for t ≥ 0, to:{

x′(t) = v(t)
v′(t) = −Kp

(
x(t − τ) − pr

) − Kd v(t − τ)

Choosing Kp = 2 and Kd = 3 guarantees the asymptotic stability of the con-
trolled system when there is no delay. The system is initialized to a constant
function (x, v) ∈ [−0.1, 0.1] × [0, 0.1] on the time interval [−τ, 0].

This example demonstrates that even small delays can have a huge impact
on the dynamics. We represent in the left subplot of Fig. 2 the inner and outer
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Fig. 2. Left and center: velocity and position of controlled car (left τ = 0.35, center
τ = 0.2); Right: vehicles position in the platoon example

approximating flowpipes for the velocity and position, with delay τ = 0.35, until
time T = 10. They are obtained in 0.32 s, using Taylor models of order 3 and a
time step of 0.03. The parameters were chosen such that the inner-approximation
always remains non-empty. We now study the robustness of the behavior of the
system to the parameters: Kp and Kd are time invariant, but now uncertain
and known to be bounded by (Kp,Kd) ∈ [1.95, 2.05]× [2.95, 3.05]. The Jacobian
matrix is now of dimension 2 × 4. We choose a delay τ = 0.2, sufficiently small
to not induce oscillations. Thanks to the outer-approximation, we prove that
the velocity never becomes negative, in contrast to the case of τ = 0.35 where
it is proved to oscillate. In Fig. 2 center, we represent, along with the over-
approximation, the inner-approximation and a robust inner-approximation. The
inner-approximation, in the sense of Definition 2, contains only states for which
it is proved that there exists an initialization of the state variables x and v in
[−0.1, 0.1] × [0, 0.1] and a value of Kp and Kd in [1.95, 2.05] × [2.95, 3.05], such
that these states are solutions of the DDE. The inner-approximation which is
robust with respect to the uncertainty in Kp and Kd, in the sense of Defini-
tion 3, contains only states for which it is proved that, whatever the values of
Kp and Kd in [1.95, 2.05] × [2.95, 3.05], there exist an initialization of x and v in
[−0.1, 0.1]×[0, 0.1], such that these states are solutions of the DDE. These results
are obtained in 0.24 s, with order 3 Taylor models and a time step of 0.04. The
robust inner-approximation is naturally included in the inner-approximation.

We now demonstrate the efficiency of our approach and its good scaling
behavior with respect to the dimension of the state space, by comparing our
results with the results of [30] on their seven-dimensional Example 3:

Example 10. Let ẋ(t) = f(x(t), x(t − τ)), t ∈ [τ = 0.01, T ], where f(x(t),
x(t − τ) = (1.4x3(t) − 0.9x1(t − τ), 2.5x5(t) − 1.5x2(t), 0.6x7(t) −
0.8x3(t)x2(t), 2−1.3x4(t)x3(t), 0.7x1(t)−x4(t)x5(t), 0.3x1(t)−3.1x6(t), 1.8x6(t)−
1.5x7(t)x2(t)), and the initial function is constant on [−τ, 0] with values in
a box4 [1.0, 1.2] × [0.95, 1.15] × [1.4, 1.6] × [2.3, 2.5] × [0.9, 1.1] × [0.0, 0.2] ×
[0.35, 0.55]. We compute outer and inner approximations of the reachable
sets of the DDE until time t = 0.1, and compare the quality measure

4 The first component is different from that given in [30], but is the correct initial
condition, after discussion with the authors.
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γ(x1), . . . , γ(x7) for the projection of the approximations over each variable
x1 to x7, of our method with respect to [30]. We obtain for our work
the measures 0.998, 0.996, 0.978, 0.964, 0.97, 0.9997, 0.961, to be compared to
0.575, 0.525, 0.527, 0.543, 0.477, 0.366, 0.523 for [30]. The results, computed with
order 2 Taylor models, are obtained in 0.13 s with our method, and 505 s with
[30]. Our implementation is thus both much faster and much more accurate.
However, this comparison should only be taken as a rough indication, as it is
unfair to [30] to compare their inner boxes to our projections on each component.

Example 11. Consider now the model, adapted from [11], of a platoon of n
autonomous vehicles. Vehicle Ci+1 is just after Ci, for i = 1 to n − 1. Vehi-
cle C1 is the leading vehicle. Sensors of Ci+1 measure its current speed vi+1 as
well as the speed vi of the vehicle just in front of it. There respective positions
are xi+1 and xi. We take a simple model where each vehicle Ci+1 accelerates so
that to catch up with Ci if it measures that vi > vi+1 and acts on its brakes
if vi < vi+1. Because of communication, accelerations are delayed by some time
constant τ :

ẋi(t) = vi(t) i = 2, · · · , n
v̇i+1(t) = α(vi(t − τ) − vi+1(t − τ)) i = 2, · · · , n − 1

We add an equation defining the way the leading car drives. We suppose it adapts
its speed between 1 and 3, following a polynomial curve. This needs to adapt
the acceleration of vehicle C2:

ẋ1(t) = 2 + (x1(t)/5 − 1)(x1(t)/5 − 2)(x1(t)/5 − 3)/6
v̇2(t) = α(2 + (x1(t)/5 − 1)(x1(t)/5 − 2)(x1(t)/5 − 3)/6 − v2(t − τ))

We choose τ = 0.3 and α = 2.5. The initial position before time 0 of car Ci is
slightly uncertain, taken to −(i − 1) + [−0.2, 0.2], and its speed is in [1.99,2.01].
We represent in the right subplot of Fig. 2 the inner and outer approximations
of the position of the vehicles in a 5 vehicles platoon (9-dimensional system)
until time T = 10, with a time step of 0.1, and order 3 Taylor models, computed
in 2.13 s. As the inner-approximations of different vehicles intersect, there are
some unsafe initial conditions, such that the vehicules will collide. This example
allows us to demonstrate the good scaling of our method: for 10 vehicles (19-dim
system) and with the same parameters, results are obtained in 6.5 s.

6 Conclusion

We have shown how to compute, efficiently and accurately, outer and inner flow-
pipes for DDEs with constant delay, using Taylor models combined with an
efficient space abstraction. We have also introduced a notion of robust inner-
approximation, that can be computed by the same method. We would like to
extend this work for fully general DDEs, including variable delay, as well as study
further the use of such computations for property verification on networked con-
trol systems. Indeed, while testing is a weaker alternative to inner-approximation
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for property falsification, we believe that robust inner-approximation provides
new tools towards robust property verification or control synthesis.
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CAV 2015. LNCS, vol. 9207, pp. 338–355. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-21668-3 20

https://doi.org/10.1007/978-3-642-02658-4_40
https://doi.org/10.1007/978-3-642-02658-4_40
https://doi.org/10.1007/978-3-7091-8577-3_3
https://doi.org/10.1007/978-3-7091-8577-3_3
https://doi.org/10.1007/3-540-46430-1_19
https://doi.org/10.1007/978-0-387-85595-0_9
https://doi.org/10.1007/978-0-387-85595-0_9
https://doi.org/10.1007/978-3-319-02444-8_37
https://doi.org/10.1007/978-3-319-02444-8_37
https://doi.org/10.1007/978-3-319-65765-3_16
https://doi.org/10.1007/978-3-319-65765-3_16
https://doi.org/10.1007/978-3-319-41528-4_25
https://doi.org/10.1007/978-3-319-21668-3_20
https://doi.org/10.1007/978-3-319-21668-3_20


Inner and Outer Approximating Flowpipes for Delay Differential Equations 541

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Author Index

Abate, Alessandro I-270
Akshay, S. I-251
Albarghouthi, Aws I-327
Albert, Elvira II-392
Anderson, Greg I-407
Argyros, George I-427
Arndt, Hannah II-3

Backes, John II-20
Bansal, Suguman I-367, II-99
Bardin, Sébastien II-294
Barrett, Clark II-236
Bartocci, Ezio I-449, I-547
Bauer, Matthew S. II-117
Becchi, Anna I-230
Berzish, Murphy II-45
Biere, Armin I-587
Bloem, Roderick I-547
Blondin, Michael I-604
Blotsky, Dmitry II-45
Bonichon, Richard II-294
Bønneland, Frederik M. I-527
Bouajjani, Ahmed II-336, II-372
Büning, Julian II-447

Češka, Milan I-612
Chadha, Rohit II-117
Chakraborty, Supratik I-251
Chatterjee, Krishnendu II-178
Chaudhuri, Swarat II-99
Chen, Taolue II-487
Cheval, Vincent II-28
Chudnov, Andrey II-430
Collins, Nathan II-413, II-430
Cook, Byron I-38, II-430, II-467
Cordeiro, Lucas I-183
Coti, Camille II-354
Cousot, Patrick II-75

D’Antoni, Loris I-386, I-427
David, Cristina I-270
Dillig, Isil I-407
Dodds, Joey II-430
Dohrau, Jérôme II-55

Dreossi, Tommaso I-3
Dureja, Rohit II-37

Eilers, Marco I-596, II-12
Emmi, Michael I-487
Enea, Constantin I-487, II-336, II-372
Esparza, Javier I-604

Fan, Chuchu I-347
Farinier, Benjamin II-294
Fedyukovich, Grigory I-124, I-164
Feng, Yijun I-507
Finkbeiner, Bernd I-144, I-289
Frehse, Goran I-468
Fremont, Daniel J. I-307

Gacek, Andrew II-20
Ganesh, Vijay II-45, II-275
Gao, Pengfei II-157
Gao, Sicun II-219
Ghassabani, Elaheh II-20
Giacobazzi, Roberto II-75
Giacobbe, Mirco I-468
Goel, Shubham I-251
Gómez-Zamalloa, Miguel II-392
Goubault, Eric II-523
Grishchenko, Ilya I-51
Gu, Ronghui II-317
Gupta, Aarti I-124, I-164, II-136

Hahn, Christopher I-144, I-289
Hassan, Mostafa II-12
He, Jinlong II-487
Henzinger, Monika II-178
Henzinger, Thomas A. I-449, I-468
Hsu, Justin I-327
Hu, Qinheping I-386
Huffman, Brian II-430

Isabel, Miguel II-392

Jaax, Stefan I-604
Jansen, Christina II-3
Jensen, Peter Gjøl I-527



Jha, Somesh I-3
Ji, Kailiang II-372

Kabir, Ifaz II-45
Katoen, Joost-Pieter I-507, I-643, II-3
Kelmendi, Edon I-623
Kesseli, Pascal I-183, I-270
Khazem, Kareem II-467
Kolokolova, Antonina II-275
Kong, Hui I-449
Kong, Soonho II-219
Kragl, Bernhard I-79
Krämer, Julia I-623
Kremer, Steve II-28
Křetínský, Jan I-567, I-623
Kroening, Daniel I-183, I-270, II-467
Kulal, Sumith I-251

Larsen, Kim Guldstrand I-527
Li, Haokun I-507
Li, Jianwen II-37
Li, Wenchao I-662
Loitzenbauer, Veronika II-178
Lukert, Philip I-289
Luttenberger, Michael I-578

MacCárthaigh, Colm II-430
Maffei, Matteo I-51
Magill, Stephen II-430
Malik, Sharad II-136
Matheja, Christoph II-3
Mathur, Umang I-347
Matyáš, Jiří I-612
McMillan, Kenneth L. I-191, I-407
Meggendorfer, Tobias I-567
Mertens, Eric II-430
Meyer, Philipp J. I-578
Mitra, Sayan I-347
Mora, Federico II-45
Mrazek, Vojtech I-612
Mullen, Eric II-430
Müller, Peter I-596, II-12, II-55
Münger, Severin II-55
Muñiz, Marco I-527
Mutluergil, Suha Orhun II-336

Namjoshi, Kedar S. I-367
Nguyen, Huyen T. T. II-354
Nickovic, Dejan I-547

Niemetz, Aina I-587, II-236
Noll, Thomas II-3, II-447

Oraee, Simin II-178

Petrucci, Laure II-354
Pick, Lauren I-164
Pike, Lee II-413
Polgreen, Elizabeth I-270
Potet, Marie-Laure II-294
Prasad Sistla, A. II-117
Preiner, Mathias I-587, II-236
Pu, Geguang II-37
Püschel, Markus I-211
Putot, Sylvie II-523

Qadeer, Shaz I-79, II-372
Quatmann, Tim I-643

Rabe, Markus N. II-256
Rakotonirina, Itsaka II-28
Ranzato, Francesco II-75
Rasmussen, Cameron II-256
Reynolds, Andrew II-236
Robere, Robert II-275
Rodríguez, César II-354
Roeck, Franz I-547
Rozier, Kristin Yvonne II-37
Rubio, Albert II-392

Sa’ar, Yaniv I-367
Sahlmann, Lorenz II-523
Satake, Yuki I-105
Schemmel, Daniel II-447
Schneidewind, Clara I-51
Schrammel, Peter I-183
Sekanina, Lukas I-612
Seshia, Sanjit A. I-3, I-307, II-256
Shah, Shetal I-251
Sickert, Salomon I-567, I-578
Singh, Gagandeep I-211
Solar-Lezama, Armando II-219
Song, Fu II-157, II-487
Soria Dustmann, Oscar II-447
Sousa, Marcelo II-354
Srba, Jiří I-527
Stenger, Marvin I-289
Subramanyan, Pramod II-136
Summers, Alexander J. II-55

544 Author Index



Tang, Qiyi I-681
Tasiran, Serdar II-336, II-430, II-467
Tautschnig, Michael II-467
Tentrup, Leander I-289, II-256
Tinelli, Cesare II-236
Toman, Viktor II-178
Tomb, Aaron II-413, II-430
Torfah, Hazem I-144
Trtik, Marek I-183
Tullsen, Mark II-413
Tuttle, Mark R. II-467

Unno, Hiroshi I-105
Urban, Caterina II-12, II-55

van Breugel, Franck I-681
van Dijk, Tom II-198
Vardi, Moshe Y. II-37, II-99
Vasicek, Zdenek I-612
Vechev, Martin I-211
Viswanathan, Mahesh I-347, II-117
Vizel, Yakir II-136
Vojnar, Tomáš I-612

Wagner, Lucas II-20
Walther, Christoph II-505

Wang, Chao II-157
Wang, Guozhen II-487
Wang, Xinyu I-407
Wehrle, Klaus II-447
Weininger, Maximilian I-623
Westbrook, Eddy II-430
Whalen, Mike II-20
Wolf, Clifford I-587
Wu, Zhilin II-487

Xia, Bican I-507

Yahav, Eran I-27
Yan, Jun II-487
Yang, Junfeng II-317
Yang, Weikun II-136
Yuan, Xinhao II-317

Zaffanella, Enea I-230
Zhan, Naijun I-507
Zhang, Jun II-157
Zhang, Yueling I-124
Zheng, Yunhui II-45
Zhou, Weichao I-662
Ziegler, Christopher I-567

Author Index 545


	Preface
	Organization
	Contents -- Part II
	Contents – Part I
	Tools
	Let this Graph Be Your Witness!
	1 Introduction
	2 The Attestor Tool
	2.1 Input
	2.2 Phases
	2.3 Abstract State Space Generation
	2.4 Output
	2.5 Frontend

	3 Evaluation
	References

	MaxSMT-Based Type Inference for Python 3
	1 Introduction
	2 Constraint Generation
	3 Constraint Solving
	4 Experimental Evaluation
	5 Related and Future Work
	References

	The JKIND Model Checker
	1 Introduction
	2 Functionality and Main Features
	2.1 Post Processing and Re-verification

	3 Experimental Evaluation
	4 Integration and Applications
	5 Related Work
	6 Conclusion
	References

	The DEEPSEC Prover
	1 Introduction
	2 Description of the Tool
	2.1 Example: The Helios Voting Protocol
	2.2 The Underlying Theory
	2.3 Implementation

	3 Experimental Evaluation
	References

	SimpleCAR: An Efficient Bug-Finding Tool Based on Approximate Reachability
	1 Introduction
	2 Algorithms and Implementation
	2.1 High-Level Description of Backward-CAR
	2.2 Tool Implementation

	3 Experimental Analysis
	3.1 Strategies
	3.2 Results

	4 Summary
	References

	StringFuzz: A Fuzzer for String Solvers
	1 Introduction
	2 StringFuzz
	3 Instance Suites
	4 Experimental Results and Analysis
	5 Related Work
	References

	Static Analysis
	Permission Inference for Array Programs
	1 Introduction
	2 Programming Language
	3 Permission Inference for Loop-Free Code
	4 Handling Loops via Maximum Expressions
	4.1 Sufficient Permission Preconditions for Loops
	4.2 Permission Inference for Loops

	5 A Maximum Elimination Algorithm
	5.1 Background: Quantifier Elimination
	5.2 Maximum Elimination

	6 Implementation and Experimental Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

	Program Analysis Is Harder Than Verification: A Computability Perspective
	1 Introduction
	2 Background
	3 Abstract Domains
	3.1 Abstract Domains in Abstract Interpretation

	4 Program Analysers and Verifiers
	5 Rice's Theorem for Static Program Analysis and Verification
	6 Comparing Analysers and Verifiers
	6.1 Optimal and Best Analysers and Verifiers

	7 Reducing Verification to Analysis and Back
	7.1 Reducing Verification to Analysis
	7.2 Reducing Analysis to Verification

	8 Conclusion and Future Work
	References

	Theory and Security
	Automata vs Linear-Programming Discounted-Sum Inclusion
	1 Introduction
	2 Preliminaries
	3 Prior Work
	3.1 DetLP: DS-determinization and LP-based
	3.2 BCV: Comparator-based approach

	4  QuIP: BCV-based Solver for DS-inclusion
	4.1 Analysis of BCV
	4.2 Baseline Automata: An Optimized Comparator
	4.3 QuIP: Algorithm Description

	5 Experimental Evaluation
	5.1 Implementation Details
	5.2 Benchmarks
	5.3 Design and Setup for Experimental Evaluation
	5.4 Observations

	6 Concluding Remarks and Future Directions
	References

	Model Checking Indistinguishability of Randomized Security Protocols
	1 Introduction
	2 Preliminaries
	3 POMDP Indistinguishability
	4 Randomized Security Protocols
	4.1 Terms, Equational Theories and Frames
	4.2 Process Syntax
	4.3 Process Semantics
	4.4 Indistinguishability in Randomized Cryptographic Protocols

	5 Implementation and Evaluation
	6 Conclusion
	References

	Lazy Self-composition for Security Verification
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 Information Flow Analysis
	4.1 Symbolic Taint Analysis
	4.2 Self-composition

	5 Lazy Self-composition for Information Flow Analysis
	5.1 IFC-CEGAR
	5.2 IFC-BMC

	6 Implementation and Experiments
	6.1 Implementation Details
	6.2 Evaluation Benchmarks
	6.3 IFC-CEGAR Results
	6.4 IFC-BMC Results

	7 Related Work
	8 Conclusions and Future Work
	References

	SCINFER: Refinement-Based Verification of Software Countermeasures Against Side-Channel Attacks
	1 Introduction
	2 Preliminaries
	2.1 Probabilistic Boolean Programs
	2.2 Side-Channel Attacks and Masking

	3 The Semantic Type Inference System
	3.1 The Type System
	3.2 Checking Semantic Independence
	3.3 Verifying Higher-Order Masking

	4 The Gradual Refinement Approach
	4.1 SMT-Based Approach
	4.2 Feeding SMT-Based Analysis Results Back to Type System
	4.3 The Overall Algorithm

	5 Experiments
	5.1 Benchmarks
	5.2 Experimental Results
	5.3 Detailed Statistics

	6 Related Work
	7 Conclusions and Future Work
	References

	Symbolic Algorithms for Graphs and Markov Decision Processes with Fairness Objectives
	1 Introduction
	2 Definitions
	2.1 Basic Problem Definitions
	2.2 Basic Concepts Related to Algorithmic Solution

	3 Symbolic Divide-and-Conquer with Lock-Step Search
	4 Graphs with Streett Objectives
	5 Symbolic MEC Decomposition
	6 MDPs with Streett Objectives
	7 Experiments
	8 Conclusion
	References

	Attracting Tangles to Solve Parity Games
	1 Introduction
	2 Preliminaries
	3 Tangles
	4 Solving by Learning Tangles
	4.1 Attracting Tangles
	4.2 The solve Algorithm
	4.3 The search Algorithm
	4.4 Extracting Tangles from a Region
	4.5 Tangle Learning Solves Parity Games
	4.6 Variations of Tangle Learning

	5 Complexity
	6 Implementation
	7 Empirical Evaluation
	7.1 Overall Results
	7.2 Model Checking and Equivalence Checking Games
	7.3 Random Games

	8 Tangles in Other Algorithms
	8.1 Small Progress Measures
	8.2 Quasi-polynomial Time Progress Measures
	8.3 Strategy Improvement
	8.4 Priority Promotion
	8.5 Zielonka's Recursive Algorithm

	9 Conclusions
	References

	SAT, SMT and Decision Procedures
	Delta-Decision Procedures for Exists-Forall Problems over the Reals
	1 Introduction
	2 Preliminaries
	2.1 Delta-Decisions and CNF-Formulas
	2.2 The Branch-and-Prune Framework

	3 Algorithm
	3.1 -Clauses as Pruning Operators
	3.2 Double-Sided Error Control
	3.3 Locally-Optimized Counterexamples

	4 -Completeness
	5 Evaluation
	5.1 Nonlinear Global Optimization
	5.2 Synthesizing Lyapunov Function for Dynamical System

	6 Conclusion
	References

	Solving Quantified Bit-Vectors Using Invertibility Conditions
	1 Introduction
	2 Preliminaries
	3 Invertibility Conditions for Bit-Vector Constraints
	3.1 Synthesizing Invertibility Conditions
	3.2 Verifying Invertibility Conditions

	4 Counterexample-Guided Instantiation for Bit-Vectors
	4.1 Selection Functions for Bit-Vectors
	4.2 Implementation

	5 Evaluation
	6 Conclusion
	References

	Understanding and Extending Incremental Determinization for 2QBF
	1 Introduction
	2 Preliminaries
	2.1 Unique Skolem Functions

	3 Inference Rules for Incremental Determinization
	3.1 True QBF
	3.2 False QBF
	3.3 Example
	3.4 Termination
	3.5 Pure Literals
	3.6 Relation of ID and CDCL

	4 Inductive Reasoning
	5 Expansion
	6 Experimental Evaluation
	7 Conclusion
	References

	The Proof Complexity of SMT Solvers
	1 Introduction
	1.1 Our Contributions
	1.2 Previous Work

	2 Preliminaries
	2.1 Propositional Proof Systems
	2.2 First-Order Theories

	3 Res(T): Resolution Modulo Theories
	4 Lazy SMT Solvers and Res(T)
	4.1 DPLL(T) and Res(T)

	5 Case Studies: Resolution Modulo Common Theories
	5.1 Resolution over E: A Theory of Equality
	5.2 Resolution over EUF: Equality with Uninterpreted Functions
	5.3 Resolution over LA: A Theory of Linear Arithmetic

	6 Lazy vs. Eager Reductions and the Exponential Time Hypothesis
	7 Conclusion
	References

	Model Generation for Quantified Formulas: A Taint-Based Approach
	1 Introduction
	2 Motivation
	3 Notations
	4 Musing with Independence
	4.1 Independent Interpretations, Terms and Formulas
	4.2 Independence Conditions

	5 Generic Framework for SIC-Based Model Generation
	5.1 SIC-Based Model Generation
	5.2 Taint-Based SIC Inference
	5.3 Complexity and Efficiency
	5.4 Discussions

	6 Theory-Dependent SIC Refinements
	6.1 Refinement on Theories
	6.2 R-Absorbing Functions

	7 Experimental Evaluation
	7.1 Implementation
	7.2 Evaluation

	8 Related Work
	9 Conclusion
	References

	Concurrency
	Partial Order Aware Concurrency Sampling
	1 Introduction
	2 Running Example
	3 Preliminary
	4 POS - Algorithm and Analysis
	4.1 BasicPOS
	4.2 POS
	4.3 Probability Guarantee of POS on General Programs

	5 Implementation
	6 Evaluation
	6.1 Micro Benchmark
	6.2 Macro Benchmark

	7 Conclusion
	References

	Reasoning About TSO Programs Using Reduction and Abstraction
	1 Introduction
	2 Overview
	3 TSO Robustness
	4 A Reduction Theory for Checking Robustness
	5 Abstractions and Verifying Non-robust Programs
	6 Experimental Evaluation
	7 Related Work
	References

	Quasi-Optimal Partial Order Reduction
	1 Introduction
	2 Preliminaries
	3 Unfolding-Based DPOR
	4 Complexity
	5 New Algorithm for Computing Alternatives
	5.1 Computing Causality and Conflict for PES Events
	5.2 Computing Causality and Conflict for Tree Nodes
	5.3 Computing Conflicting Extensions

	6 Experimental Evaluation
	6.1 Comparison to SDPOR
	6.2 Evaluation of the Tree-Based Algorithms
	6.3 Evaluation Against the State-of-the-Art on System Code
	6.4 Profiling a Stateless POR

	7 Conclusion
	References

	On the Completeness of Verifying Message Passing Programs Under Bounded Asynchrony
	1 Introduction
	2 Motivating Examples
	3 Message Passing Systems
	4 Synchronizability
	5 Characterizing Synchronous Traces
	6 Checking Synchronizability
	6.1 Borderline Synchronizability Violations
	6.2 Simulating Borderline Violations on the Synchronous Semantics
	6.3 Detecting Synchronizability Violations

	7 Experimental Evaluation
	8 Related Work
	References

	Constrained Dynamic Partial Order Reduction
	1 Introduction
	2 Background
	2.1 Basics of Partial Order Reduction
	2.2 State-of-the-Art DPOR with Unconditional Independence

	3 DPOR with Conditional Independence
	3.1 Using Precomputed ICs Directly Within DPOR
	3.2 Transitive Uniformity: How to Further Exploit ICs Within DPOR
	3.3 The Constrained DPOR Algorithm

	4 Automatic Generation of ICs Using SMT
	4.1 The Basic Inference
	4.2 IC for Blocks with Process Creation
	4.3 Other Extensions

	5 Experiments
	6 Related Work and Conclusions
	References

	CPS, Hardware, Industrial Applications
	Formal Verification of a Vehicle-to-Vehicle (V2V) Messaging System
	1 Introduction
	2 Vehicle-to-Vehicle Communications
	3 ASN.1
	3.1 The ASN.1 Data Description Language and Encoding Schemes
	3.2 Example ASN.1 Specification
	3.3 ASN.1 Security

	4 Our Tools for Generating and Verifying ASN.1 Code
	4.1 High-Assurance ASN.1 Workbench (HAAW)
	4.2 The Software Analysis Workbench (SAW)

	5 Properties: Encode/Decode Self Consistency
	6 Verification
	6.1 First Steps
	6.2 Compositional Verification with SAW Overrides
	6.3 Overriding ``copy_bits'' in SAW
	6.4 Multiple Overrides for ``copy_bits'' in SAW
	6.5 Results

	7 Discussion
	7.1 LLVM and Definedness
	7.2 Other Assumptions
	7.3 Proof Robustness

	8 Conclusion
	References

	Continuous Formal Verification of Amazon s2n
	1 Introduction
	2 Proof of HMAC
	2.1 High-Level HMAC Specification
	2.2 Security Properties of HMAC
	2.3 Low-Level Specification
	2.4 Implementation Verification
	2.5 Integrating the Proof into Development

	3 Proof of TLS Handshake
	4 Operationalizing the Proof
	5 Conclusion
	References

	Symbolic Liveness Analysis of Real-World Software
	1 Introduction
	1.1 Key Contributions
	1.2 Structure

	2 Related Work
	3 Liveness
	4 Finding Lassos
	4.1 Symbolic Execution
	4.2 Fingerprinting
	4.3 Algorithm Overview

	5 Efficient Implementation of the Algorithm
	5.1 LLVM Intermediate Representation
	5.2 Fragments
	5.3 Fingerprint Tracking
	5.4 Avoiding Comparisons

	6 Evaluation
	6.1 GNU Utilities
	6.2 BusyBox
	6.3 Toybox
	6.4 Scaling with the Time Limit
	6.5 Summary

	7 Limitations
	8 Conclusion and Outlook
	References

	Model Checking Boot Code from AWS Data Centers
	1 Introduction
	2 Related Work
	3 Boot Code
	3.1 Boot Code Implementation
	3.2 Boot Code Security

	4 Boot Code Verification Challenges
	4.1 Memory-Mapped I/O
	4.2 Device Behavior
	4.3 Byte-Level Memory Access
	4.4 Memory Copying
	4.5 Linker Scripts

	5 Industrial Boot Code Verification
	5.1 Memory-Mapped I/O
	5.2 Device Behavior
	5.3 Byte-Level Memory Access
	5.4 Memory Copying
	5.5 Linker Scripts
	5.6 Test Harness
	5.7 Running CBMC

	6 Conclusion
	References

	Android Stack Machine
	1 Introduction
	2 Android Stack Machine: An Informal Overview
	3 Android Stack Machine
	4 Reachability of ASM
	5 STK-dominating ASM
	5.1 Case Lmd(A0) = STK
	5.2 Case Lmd(A0) =STK

	6 Related Work
	7 Conclusion
	References

	Formally Verified Montgomery Multiplication
	1 Introduction
	2 About VeriFun
	3 Multiplicative Inverses
	3.1 Bézout's Lemma
	3.2 Newton's Method

	4 Correctness of Montgomery Multiplication
	5 Discussion and Conclusion
	References

	Inner and Outer Approximating Flowpipes for Delay Differential Equations
	1 Introduction
	2 Preliminaries on Outer and Inner Approximations
	3 Taylor Method for Outer Flowpipes of DDEs
	3.1 The Method of Steps for Solving DDEs
	3.2 Finite Representation of Functions as Taylor Models
	3.3 An Abstract Taylor Model Representation
	3.4 Constructing Flowpipes

	4 Inner-Approximating Flowpipes
	5 Implementation and Experiments
	6 Conclusion
	References

	Author Index



