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Abstract. Often datasets may involve thousands of attributes, and it is
important to discover relevant features for machine-learning (ML) algorithms.
Here, approaches that reduce or select features may become difficult to apply,
and feature discovery may be made using frequent-set mining approaches. In
this paper, we use the Apriori frequent-set mining approach to discover the most
frequently occurring features from among thousands of features in datasets
where patients consume pain medications. We use these frequently occurring
features along with other demographic and clinical features in specific ML
algorithms and compare algorithms’ accuracies for classifying the type and
frequency of consumption of pain medications. Results revealed that Apriori
implementation for features discovery improved the performance of a large
majority of ML algorithms and decision tree performed better among many ML
algorithms. The main implication of our analyses is in helping the
machine-learning community solves problems involving thousands of attributes.
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1 Introduction

Since the early 90s, machine-learning (ML) algorithms have been used to help mine
patterns in data sets concerning fraud detection and others [1]. In recent years, ML
algorithms have also been utilized in the healthcare sector [2]. In fact, the existence of
electronic health records (EHRs) has allowed researchers to apply ML algorithms to
learn hidden patterns in data to improve patient outcomes like the type of medications
patients consume and the frequency at which they consume these medications [3].
Mining hidden patterns in healthcare data sets could help healthcare providers and
pharmaceutical companies to plan quality healthcare for patients in need.
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To predict healthcare outcomes accurately, ML algorithms need to focus on dis-
covering appropriate features from data [4]. In general, healthcare data sets are large,
and they may contain several thousands of attributes to enable learning of patterns in
data [5]. The presence of many attributes in data sets may make it difficult to discover
the most relevant features for predicting outcomes via ML algorithms.

Presence of thousands of attributes in the data is problematic for classification
algorithms for processing these attributes as features require large memory usage and
high computational costs [37]. Two techniques have been suggested in the literature to
address the problem of datasets possessing a large number of features: feature reduction
(dimensionality reduction) and feature selection [38]. Feature reduction technique
reduces the number of attributes by creating new combinations of attributes; whereas,
feature selection techniques include and exclude attributes present in the data without
changing them [38]. Popular algorithms like Principal Component Analysis (PCA; for
features reduction) and Analysis of variance (ANOVA; for features selection) have
been used for datasets with a large number of features in the past [6, 7]. PCA is a linear
feature-based approach that uses eigenvector analysis to determine critical variables in
a high dimensional data without much loss of information [8]. ANOVA is a collection
of statistical models used to analyze the differences between group means and their
associated procedures (such as “variation” among and between groups) [9].
In ANOVA, the features that describe the most substantial proportion of the variance
are the features that are retained in data [10]. Although both PCA and ANOVA
approach seem to help in feature discovery, these approaches may become computa-
tionally expensive to apply in problems where there are thousands of features in data
(e.g., thousands of diagnostic and procedure codes across several patient cases in
medical datasets). Another disadvantage of the PCA method is that it is an elimination
technique that considers a single feature to be important or unimportant to the problem
rather than a group of features being important [8]. Similarly, in ANOVA, researchers
need to test assumptions of normality and independence, which may not be the case
when features depend upon each other [9, 10]. One way to address the challenge posed
by data sets with several thousands of features is by using frequent item-set mining
algorithms (e.g., Apriori algorithm) to discover a subset of features because these
algorithms look at the associations among items while selecting frequent item-sets [11].
The primary goal of this paper is to evaluate the potential of Apriori frequent item-set
mining algorithm for feature discovery before application of different ML algorithms.
Specifically, we take a healthcare dataset involving consumption of two pain medi-
cations in the US, and we apply different ML algorithms both with and without a prior
feature-discovery process involving the Apriori algorithm. The Apriori algorithm
works on the fundamental property that an item-set is frequent only if all its non-empty
subsets are also frequent [11]. Using the Apriori algorithm, we generate frequently
appearing diagnosis and procedure codes in a healthcare dataset. Then, using these
frequently occurring diagnosis and procedure codes as present/absent features, along
with other features, we apply certain supervised ML algorithms. We check the benefits
of using the Apriori algorithm by comparing the classification accuracies of certain ML
algorithms when all attributes are considered as features in the dataset and when only
the discovered attributes via Apriori are considered as features. To get confidence in
our results, we replicate our analyses using several ML algorithms such as the decision
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tree [27], Naïve Bayes classifier [30, 41], logistic regression [31], and support vector
machine [33, 42].

In what follows, we first provide a brief review of related literature. In Sect. 3, we
explain the methodology of using the Apriori algorithm for features discovery. In
Sect. 4, we present our experimental results and compare classification accuracies for
cases with or without the Apriori implementation. We conclude our paper and provide
a brief discussion on the implication of this research and its future scope.

2 Background

Data analytics could help in providing useful insights in very large healthcare datasets
[12]. These insights may aid in effective decision-making and save lives [12].
Researchers have applied many such techniques to mine the hidden knowledge in the
medical domain [15]. For example, various data-mining approaches such as classifi-
cation, clustering, statistical approaches, and association-rule mining have made a
significant contribution to healthcare research [13, 15].

Healthcare researchers have used different ML algorithms to investigate research
questions in healthcare [20–22]. For example, some researchers have used the Naive
Bayes classification algorithm to diagnose heart diseases [20]. Others have used ML
techniques like J48, MLP, Random Forest, SVM, and Bayesian Network classifiers to
classify liver-disease patients [21]. Researchers have also used frequent-set mining
approaches in the recent past [14–18]. For example, in the literature on frequent-set
mining, some researchers have introduced the frequent-set mining pincer-search
algorithm to discover the maximum frequent-item sets [15, 17]. Similarly, Rani, Pra-
kash, and Govardhan [16] presented a model for multilevel association rule mining,
which satisfies the different minimum support at each level. Also, certain researchers
have focused on identifying frequent diseases using the frequent-set mining algorithms
like Apriori [14] and mined different association rules for consumers of certain pain
medications [19].

Furthermore, prior research has combined methods like PCA with ML algorithms
for feature extraction and subsequent classification. For example, certain researchers
have used traditional methods like PCA, rough PCA, unsupervised quick reduction
algorithm, and empirical distribution ranking approach to extract features that could be
further used for an ML classification task [22]. However, to the best of authors’
knowledge, prior research has yet to combine frequent-set mining algorithms along
with ML algorithms in feature-discovery and predicting healthcare outcomes. In this
paper, we attend to this literature gap and apply the Apriori frequent-set mining
algorithm for features discovery before performing machine learning for classifying
healthcare outcomes. To test our Apriori approach, we take certain healthcare dataset
where there are potentially thousands of features to choose between and where feature
selection via traditional methods may become computationally expensive. We inves-
tigate the performance of different ML algorithms with and without frequent-set mining
using the Apriori approach.
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3 Method

3.1 Data

In this paper, we use the Truven MarketScan® health dataset containing patients’
insurance claims in the US [23]. The data set contains 120,000 patients, who consumed
two pain medications, medicine A, medicine B, or both between January 2011 and
December 2015.1 The dataset contains patients’ demographic variables (age, gender,
region, and birth year), clinical variables (admission type, diagnoses made, and pro-
cedures performed), the name of medicines, and medicines’ refill counts per patient.
We used a big-data architecture consisting of q-programming language to query a kdb+
database [24] for fetching patient records who have consumed pain medication A, B, or
both during their journeys. After fetching data from the kdb+ database, we prepared a
file containing different diagnoses and procedures corresponding to different patients,
who consumed both medications. The dataset contains 55.20% records of patients who
consumed medicine A only, 39.98% records of medicine B only, and 4.82% records for
those patients who consumed both these medications. There were 15,081 attributes
present in total against each patient in this dataset. These attributes consist of patients’
age, gender, region, type of admission, diagnoses and procedures performed on the
patient, medicine name and its refill information. Out of 15,081 attributes, 15,075
attributes were diagnoses and procedure codes some of which were inter-related.

The diagnoses and procedures were written for patients using the International
Classification of Diseases (ICD)-9 codes [25]. The ICD codes are used by physicians
and other healthcare providers to classify different diagnoses and procedures recorded
during different illnesses in the United States [25]. We applied the Apriori frequent-set
mining algorithm to diagnoses made and procedures performed for different patients
consuming the two pain medications. The Apriori algorithm discovered the frequently
appearing diagnoses and procedures among the 15,075 unique diagnoses procedure
codes available in the dataset. We used these frequently occurring diagnoses and
procedures as input features along with other independent variables in different ML
algorithms that were applied to our dataset. The ML algorithms classified patients
according to the type of medications consumed and the frequency of refilling different
medications in the dataset.

3.2 Association-Rule Mining

Association-rule mining [36] is a popular technique that aims to extract associations
among items in data. An association rule represents a relationship between a group of
objects in the database. The basic model of association-rule mining is described below.

Let I = {I1, I2, …, In} be a set of n distinct items, where each attribute I1, I2 … In is
binary (0 or 1) in nature. T is a transaction with a unique transaction id that contains a
subset of items in I. Let D be a database having different transaction records, where
each transaction is differentiated by the transaction ID and may contain a subset of

1 Due to a non-disclosure agreement, we have anonymized the actual names of these medications.
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items in I. Thus, D = {T1, T2, …, TM}. An association rule is an implication in the
form of X ! Y, where X, Y � I and X \ Y = £. X is called an antecedent while Y
is called consequent. There are two measures for finding association rules: support
(S) and confidence (C). Support of an item-set X is defined as the proportion of the
transactions that contain the item-set X in the database D.

Support Xð Þ ¼ count Xð Þ
count Dð Þ ð1Þ

The confidence of an association rule X ! Y is defined as the proportion of
transactions that contain both items X and Y in all the transactions that contain item X.

Confidence X ! Yð Þ ¼ PðY j XÞ ¼ Support X [ Yð Þ
Support Xð Þ ð2Þ

The confidence is a measure of the strength of the association rules. If there is an
association rule “X ! Y” whose support and confidence satisfies minimum support
threshold (min_support) and minimum confidence threshold (min_conf) provided by a
user, then we call it an association rule with min_support and min_conf.

3.2.1 Apriori Algorithm
The Apriori algorithm [11] finds frequent item-sets using an iterative level-wise
approach based on candidate generation. This algorithm works in following steps:

1. The transactions in database D are scanned to determine frequent 1-itemsets, L1 that
possess the minimum support.

2. Generate candidate k item-sets Ck from joining two k − 1 itemsets, Lk�1, and
remove its infrequent subset.

3. Scan D to get support count for each k item-sets, Ck .
4. The set of frequent k item-sets, Lk , is then determined. Lk results from support

count of candidate k − 1 item-sets.
5. Back to step 2 until there is no candidate k + 1 item-sets, Ckþ 1.
6. Extract the frequent k item-sets, L = Lk .

The Apriori algorithm was used to mine the frequent diagnoses and procedures out
of 15,075 unique diagnoses and procedures present in the dataset. After getting the 9
frequent diagnoses and procedures from the result of Apriori algorithm, we formed two
ML problems. In the first problem, we used the frequent diagnoses and procedure codes
as categorical variables along with the other 6-independent variables to classify patients
by the medication they consumed; i.e., consuming medicine A, B, or both. Thus, the first
ML problem is a three-class problem. In the second ML problem, we used the frequent
diagnoses and procedure codes obtained from the result of Apriori algorithm along with
the other 6-independent variables to classify patients as frequent or infrequent buyers of
medications they consumed. This ML problem is a two-class classification problem.
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We then applied different ML algorithms to all 15,081 attributes in the dataset and
compared the classification results with the case when only 15 attributes were used in the
ML algorithms. Next, we discuss the brief descriptions of different ML algorithms that
we used in this paper, i.e., decision tree [27], Naïve Bayes [30, 41], logistic regression
[31], and support vector machine [33, 42]. We applied ZeroR [26] as a base line
algorithm to compare the classification accuracies of different ML algorithms mentioned
above.

3.3 Machine-Learning Algorithms

3.3.1 ZeroR
ZeroR is the simplest classification method which relies on the target to be classified
and ignores all predictors [26]. The ZeroR classifier simply predicts all points as
belonging to the majority class. Although there is no predictability power in ZeroR, it is
useful for determining a baseline performance as a benchmark for other classification
methods.

3.3.2 Decision Tree
A decision tree is a tree, where non-leaf nodes denote tests on attributes, each branch
denotes the result of different tests, and each leaf node denotes the class label [27]. In
the decision tree, each internal node is labelled with an input feature, and leaf of the tree
either gives a class label or a probability distribution over the classes. The results
obtained from decision trees are easier to interpret. Following assumptions are taken
into account while creating a decision tree [28]:

1. Initially, the complete training set is considered as the root.
2. Feature values are preferred to be categorical. If the values are continuous, then they

are discretized before building the model.
3. Records are distributed recursively by attribute values.
4. Order of placing attributes as root or internal node of the decision tree is done by

using a statistical approach based on the calculation of entropy and gain.

The first challenge in a decision tree implementation is to identify which of the
attributes to select as the root node and at each level. Random selection of nodes may
give bad results with very low accuracy. Handling this problem is known as the
attributes selection. We have used the information-gain measure to identify the attribute
that can be considered as the root node at each level [39].

3.3.3 Naïve Bayes
This classifier belongs to a family of probabilistic classifiers that is based on the Bayes
theorem with strong independence assumptions between features [30, 41]. It assumes
that the value of a particular feature is independent of the value of any other feature,
given the class variable. This classifier attempts to maximize the posterior probability
in determining the class of a transaction. A Naïve Bayes classifier assumes features to
contribute independently to the probability, regardless of any correlation between
features.
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Suppose, n be the number of features in a problem which is represented by a vector
y = (y1, y2, …,yn) and K be the possible number of classes Ck. Naïve Bayes is a
conditional probability model which can be decomposed as [40]:

p Ck=yð Þ ¼ p Ckð Þp y=Ckð Þ
p yð Þ ð3Þ

In practice, the numerator of this equation determines the LHS (the denominator is
a constant). Under the independence assumption among attributes, the probability of
certain attributes belonging to a certain class is defined as [40]

p Ck=y1; . . .; ynð Þ ¼ p Ckð Þ
Yn

i¼1
pðyi=CkÞ ð4Þ

A common rule is to pick the class that is the most probable. This most probable
class is defined by the maximum a posteriori (MAP) decision rule [40] as:

y ¼ argmaxk21...K p Ckð Þ
Yn

i¼1
pðyi=CkÞ ð5Þ

3.3.4 Logistic Regression
Logistic regression is used to describe data and to explain the relationship between one
dependent binary variable and one or more nominal, ordinal, interval, or ratio-level
independent variables [31]. The dependent variable in logistic regression or logit model
is categorical. Logistic regression is named for the function used at the core of the
method, the logistic function [32]. It’s an S-shaped curve that can take any real-valued
number and map it into a value between 0 and 1, but never exactly at those limits. Input
values (x) are combined linearly using weights or coefficient values to predict an output
value (y). The simple logistic regression is defined as:

y ¼ e b0þ b1�xð Þ= 1þ e b0þ b1�xð Þð Þ ð6Þ

where y is the predicted output, b0 is the bias or intercept term, and b1 is the coefficient
for the single input value (x). In the general logistics regression model, each column in
data has an associated b coefficient (a constant real value) that must be learned from the
training data.

3.3.5 Support Vector Machines
Support vector machines are supervised learning models that are binary classification
algorithms [33]. Support vector machines construct a hyperplane or a set of hyper-
planes in a high dimensional space that can be used for classification, regression, or
other tasks. There are two types of support vector machines: linear SVM and the
non-linear SVM [42]. If the data is linearly separable, then the linear SVM is sufficient
to perform classification. However, if the problem cannot be classified linearly, then we
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require a non-linear SVM to perform the task. The non-linear support vector machine
function takes the data into the high dimensional plane and then performs classification
[42]. In the SVM algorithm, we optimize the support weights to minimize the objective
(error) function for better classifications.

3.4 Model Calibration

3.4.1 Apriori Implementation
To find the frequent diagnoses and procedure codes using Apriori algorithm, we
needed to set the threshold limits for support and confidence. For setting the minimum
threshold limits for support and confidence, we conducted sensitivity analyses. We first
calculated the male-to-female ratio among patients who consumed either medication A,
B, or both in the dataset. This ratio turned out to be 0.58. Then, we tried different values
of minimum support and minimum confidence till the point when the association rules
obtained from Apriori algorithm had the same male-to-female ratio of 0.58 as in the
dataset. With 3% threshold support and 99% threshold confidence, we got the similar
male-to-female ratio for all the association rules with frequent diagnoses and procedure
codes. We got three association rules when we applied the Apriori algorithm. These
rules were made up of the following nine ICD-9 codes: total knee arthroplasty,
osteoarthrosis secondary lower leg, removal of foreign body from the eye, total knee
replacement, osteoarthrosis primary lower leg, osteoarthrosis generalized lower leg,
total hip arthroplasty, iridectomy, and total hip replacement.

3.4.2 Machine Learning Combined with Apriori
For the ML analyses, the dataset was randomly divided into two parts: 70% of the data
was used for training, and 30% of the data was used for testing. We used the
d-prime = z (true-positive rate) – z (false-positive rate) as measure of accuracy [34,
43]. The higher the d-prime, the better the performance (a d-prime = 0 indicates ran-
dom performance, where true-positive rate = false-positive rate). Our first machine
learning problem is a three-class problem, where we classified a patient according to
the medication consumption. So, a patient can be classified under class A, class B or
both. Our second ML problem is a two-class problem, where we classified patients
according to their frequency of medicine consumption. So, a patient can be classified as
a frequent buyer or an infrequent buyer of medications. We took the median of refill
counts per patient (=3) to distinguish between a frequent buyer (>3) and an infrequent
buyer (� 3). In the dataset, 41.11% patients belong to the frequent class and rest to the
infrequent class. We used the frequent codes obtained from Apriori algorithm as cat-
egorical variables along with the other demographic and clinical features while training
our ML models. For different classification problems, we used different features from
the original dataset and the Apriori output (see Table 1). Table 1 shows the list of
15-features used in different ML models after applying Apriori procedure for the
three-class and two-class classification problems. As shown in Table 1, some of these
15-features were excluded in certain problems (e.g., refill count was excluded in the
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two-class problem). That is because these attributes were strongly correlated with the
predicted class. Certain features of this table were directly included from the dataset
(sex, age group, region, type of admission, refill count and pain medication) while rest
were included after applying Apriori on the procedure and diagnoses codes.

For both the classification problems, we ran two different datasets on different ML
models. The first dataset contained features obtained from the Apriori algorithm along
with other demographic and clinical features from the dataset; whereas, the second
dataset contained all the features (=15,081).

Table 1. Description of input features for classification problems and their source

Features Description Features for
3-class
problem

Features for
2-class
problem

Sex Male
Female

Included Included

Age group 0–17, 18–34, 35–44, 45–54, 55–64 Included Included
Region Northeast, northcentral, south, west,

unknown
Included Included

Type of admission Surgical, medical, maternity and
newborn, psych and substance abuse,
unknown

Included Included

Refill count Count in number Included Excluded
Pain medication A, B, Both Excluded Included
Total knee
arthroplasty

Present/not present Included Included

Osteoarthrosis of
secondary lower leg

Present/not present Included Included

Removal of foreign
body from eye

Present/not present Included Included

Total knee
replacement

Present/not present Included Included

Osteoarthrosis of
primary lower leg

Present/not present Included Included

Osteoarthrosis of
generalized lower
leg

Present/not present Included Included

Total hip
arthroplasty

Present/not present Included Included

Iridectomy Present/not present Included Included
Total hip
replacement

Present/not present Included Included
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4 Results

4.1 Apriori Algorithm

Based on the Apriori algorithm [11], we found the following three association rules
among patients who consumed either medicine A, medicine B, or both during their
patient journeys:

1. If a patient goes for total knee arthroplasty, osteoarthrosis of primary/
secondary/generalized lower leg and removal of foreign body from posterior eye
segments, then he/she goes for total knee replacement and consumes A/B.

2. If a patient goes for total knee arthroplasty, then he/she goes for total knee
replacement and consumes A/B.

3. If a patient goes for total hip arthroplasty and Iridectomy, then he/she goes for
total hip replacement and consumes both the medications.

As explained above, we took nine frequently occurring ICD-9 diagnoses and proce-
dures codes from the rules above. These codes have been bolded in the rules.

4.2 Machine-Learning Algorithms

We applied various ML algorithms like Naïve Bayes, Decision Tree, Logistic
Regression, Support Vector Machine (linear kernel), and Support Vector Machine
(radial kernel) [26–33] on our dataset and compared their classification accuracy using
d-prime. Figure 1 shows the d-prime results from different ML algorithms for the
three-class problems (Fig. 1A) and two-class problems (Fig. 1B) with and without
Apriori algorithm implementation. We have only used 1000 features for SVMs as the
algorithm was not able to scale for 15,081 features (in without Apriori implementa-
tion). In the three-class problem (Fig. 1A), without the Apriori implementation, the best
d-prime was obtained by the SVM with a radial kernel function. However, with the
Apriori implementation in the three-class problem, the best performance was obtained
by the decision tree. The performance of all the algorithms improved with the
implementation of Apriori algorithm. Furthermore, in the two-class problem (Fig. 1B),
both with and without the Apriori implementation, the best d-prime was obtained by
the decision tree. In fact, barring the decision tree, all other algorithms possessed a
d-prime = 0 (true-positive rate = false-positive rate) in the two-class problem without
the Apriori implementation. Barring the SVM with linear kernel and ZeroR algorithms,
the performance of all other algorithms improved with the implementation of Apriori
algorithm. In general, for both with and without Apriori implementation, all algorithms
performed better (higher d-prime) in the three-class problem compared to the two-class
problem.
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Fig. 1. The d-prime results from different ML algorithms for the three-class problems (A) and
two-class problems (B) with and without Apriori algorithm implementation.
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5 Discussion and Conclusions

Medical data concerning patient and their journeys may likely contain a large number
of attributes detailing demographics as well as procedural and diagnostic information
[44, 45]. Thus, before attempting different machine-learning (ML) algorithms on
patient-journey datasets, it would be good to reduce the number of attributes used as
features. One way to address this reduction is by using frequent item-set mining
algorithms (e.g., Apriori algorithm). These algorithms help discover a subset of features
by evaluating the associations among items in different transactions [11]. The primary
objective of this paper was to evaluate the potential of Apriori frequent item-set mining
algorithm for features discovery before application of different ML algorithms. First,
using Apriori algorithm, we discovered the frequently occurring attributes (diagnoses
and procedures) among patients consuming pain medications. The Apriori frequent-set
mining approach gave nine frequently occurring diagnoses and procedure attributes in
association rules out of a total of 15,075 possible attributes in the dataset. Second, we
found that the Apriori implementation led to improved performance from ML algo-
rithms: in general, the d-prime was higher after application of Apriori compared to
when Apriori was not applied, and all attributes were considered in the algorithms.
Third, we found that the ML algorithms classified the patients according to the med-
ication used (the three-class problem) better compared to the frequency of medication
used (the two-class problem). Finally, we found that the decision-tree algorithm per-
formed better compared to a large number of ML algorithms across both the three-class
and two-class problems.

First, we found that using the Apriori implementation [11] improved the perfor-
mance of a large majority of ML algorithms. One likely reason for this finding is that
Apriori procedures allow us to find features that frequently occur together or are
correlated with each other. For example, the nine-attributes selected by the Apriori
algorithm out of a total of 15,075 attributes occurred in three association rules that
possessed the confidence of 99%. Given the high confidence of these rules, the attri-
butes present in them were highly correlated. As the rules predicted the use of medi-
cations, these attributes seemed to predict the medications’ use and their frequency
well. Overall, given our results, the Apriori algorithm seems to be a suitable technique
for identifying important features, when the dataset contains thousands of relevant or
irrelevant attributes.

Third, we found that the ML algorithms classified the patients according to the
medication used (the three-class problem) better compared to the frequency of medi-
cation used (the two-class problem). One likely reason for this finding could be the
nature of the predicted class in the three-class problem compared to the two-class
problem. In the three-class problem, the predicted class was the medicine name, which
is a discrete attribute. However, in the two-class problem, the predicted class was the
frequency of the medicine use, which is a discrete attribute derived from a continuous
attribute (frequency/refill count). On account of the differences between the nature of
the predicted classes, it seems that the classification boundary could divide one class
from the other in the three-class problem compared to the two-class problem. However,
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this line of reasoning needs to be further explored for other predicted classes (discrete
or continuous) as well as for other datasets.

Overall, we found that the decision tree algorithm performed better compared to a
large class of algorithms across both the 2- and 3- class classification problems.
Decision tree implicitly performs feature selection using measures like information
gain, and they do not require making any assumption regarding linearity in the data
[35]. Thus, it seems that decision trees can classify datasets where there are a large
number of relevant and irrelevant attributes [28]. Also, due to the superior performance
of the decision tree algorithm, we believe that this algorithm could be used for per-
forming machine-learning in healthcare datasets.

Our results have some important real-world implications for using data analytics in
the healthcare domain. First, we believe that supervised learning algorithms like
decision trees and others can classify medicine intake and the medicine frequency to a
certain accuracy. However, as the d-prime values were all less than 1.0 in our results,
we believe that these algorithms need more improvements before we can reliably use
them for confirming hypotheses in healthcare datasets. Based upon our results, among
different algorithms, we would suggest decision trees to be most robust in datasets with
a large number of attributes. Second, we also believe that predicting the type of
medications consumed and their frequency of use could be extremely helpful for
pharmaceutical companies to decide upon their drug manufacture strategies. Specifi-
cally, such strategies could reduce supply-chain costs by managing the delays in
ordering and stocking of medications.

In this paper, we performed a preliminary analysis on using frequent-set mining
approach on a healthcare dataset involving several attributes, and there are a number of
extensions possible of this work in the near future. For example, in future, we would
like to compare the classification accuracies of ML algorithms after applying PCA and
ANOVA and other features selection techniques to those resulting from applying
frequent-set mining algorithms. Here, it would be interesting to extend our investiga-
tion to other medical and non-medical datasets as well as to other ML algorithms (e.g.,
neural networks). We plan to embark on some of these ideas as part of our research in
the near future.
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